# SolidWorks® 2005

**SolidWorks Routing** 

### **Table of Contents**

#### Lesson 1: Explaining Routes

| Introduction             | 7 |
|--------------------------|---|
| Recommended Settings.    | 7 |
| Types of Routes.         | 8 |
| File Naming in Routing   | 9 |
| Routes                   | 9 |
| External Components      | 9 |
| Route Components 1       | 0 |
| FeatureManager Listing 1 | 1 |
| Individual Components    | 2 |
|                          |   |

#### Lesson 2: Review of Configurations

| <u> </u> |                                  |    |
|----------|----------------------------------|----|
|          | Review of Configurations         | 17 |
|          | How Routing Uses Configurations  | 17 |
|          | A Note About File References     |    |
|          | Find References                  |    |
|          | Copy Files                       |    |
| - P      | File Management                  |    |
|          | PDMWorks®                        |    |
|          | How Libraries Use Configurations |    |
|          | Design Tables                    |    |
|          | Design Table Input and Output.   |    |
|          |                                  |    |

| Lesson 3:                  |                                                  |    |
|----------------------------|--------------------------------------------------|----|
| Top Down Design            |                                                  |    |
|                            | Top Down Introduction.                           | 23 |
|                            | Parts and Assemblies                             | 23 |
|                            | Edit Part                                        | 23 |
|                            | Appearance of Components While Editing           | 24 |
|                            | Editing Options                                  | 25 |
|                            | Edit Assembly                                    | 25 |
|                            | Edit Part                                        | 25 |
|                            | Edit Sub-assembly                                | 26 |
|                            | Edit Route                                       | 26 |
|                            | Assembly Feature                                 | 26 |
| Lesson 4:                  |                                                  |    |
| <b>Design Library Intr</b> | oduction                                         |    |
|                            | Design Library Parts Introduction                | 29 |
|                            | Routing Points.                                  | 29 |
|                            | Connection Points.                               | 29 |
|                            | Route Points                                     | 30 |
|                            | Libraries                                        | 30 |
|                            | "Pipe" Parts                                     | 36 |
|                            | Design Table Parameters                          | 36 |
| Lesson 5:                  |                                                  |    |
| <b>Design Library Rev</b>  | /iew                                             |    |
|                            | Design Library Task Pane                         | 39 |
|                            | Essentials of Using the Design Library Task Pane | 39 |
|                            | Directory Structure                              | 39 |
|                            | Organizing Your Libraries                        | 41 |
|                            | Routing Options                                  | 42 |
| Lesson 6:                  |                                                  |    |
| <b>3D Sketching Revie</b>  | ew                                               |    |
|                            | 3D Sketching.                                    | 45 |
|                            | Space Handles                                    | 45 |
|                            | Orthogonal 3D Sketching                          | 46 |
|                            | Sketching on Selected Planes                     | 48 |
|                            | Spline                                           | 50 |
|                            | Profesor:                                        |    |
| ]                          | PEDRO LUIS RUIZ                                  |    |

#### Lesson 7: Tubing Routes

| Tubing Routes               | 55 |
|-----------------------------|----|
| Before You Begin            | 55 |
| File Locations              | 55 |
| Routing                     | 55 |
| Route Properties            | 56 |
| 3D Sketch Route             | 58 |
| Deleting a Route            | 59 |
| Auto Routing                | 60 |
| Clips                       | 61 |
| Orthogonal Auto Route       | 64 |
| Create Bend Tables          | 65 |
| Editing a Route             | 68 |
| Change Route Diameter       | 68 |
| Add Fitting                 | 69 |
| Constrain Sketch to Fitting | 70 |

#### Lesson 8: Piping Routes

| Setup for Piping                | 73 |
|---------------------------------|----|
| Sketching a Route               | 73 |
| Starting the Route              | 74 |
| Piping Auto Route               | 76 |
| Elbow Selection                 | 76 |
| Angled 3D Sketch Route          | 78 |
| Alternate Elbows.               | 82 |
| Editing a Route                 | 83 |
| Adding Fittings                 | 84 |
| Using Assembly Fittings.        | 86 |
| Remove Tube/Pipe                | 88 |
| Custom Pipe/Tube Configurations | 88 |
| Pipe Penetrations.              | 89 |
|                                 |    |

#### Lesson 9: Building Routing Library Parts

|    | Fabricated Tube or Pipe Parts       | . 93 |
|----|-------------------------------------|------|
|    | Elbow Parts                         | . 98 |
|    | Routing Points.                     | 102  |
| D  | Fitting Parts                       | 104  |
| Γ. | Flange Parts                        | 107  |
|    | Assembly Fittings                   | 109  |
|    | Assembly-Level Routing Points       | 109  |
|    | Exercise 1: Auto routing with Tubes | 113  |
|    | Exercise 2: Multiple Piping Routes  | 116  |
|    | Exercise 3: Creating Library Parts  | 123  |
|    | Exercise 4: Using Library Parts     | 127  |
|    |                                     |      |

| Lesson 10:                               |                                  |     |
|------------------------------------------|----------------------------------|-----|
| <b>Electrical Routes</b>                 |                                  |     |
|                                          | Electrical Routes                | 133 |
|                                          | Basic Electrical Routing         | 134 |
|                                          | Electrical Connection Points.    | 134 |
|                                          | Electrical Route Properties      |     |
|                                          | Adding Wire Information          | 139 |
|                                          | The Cable / Wire Library         | 139 |
|                                          | Edit Wires                       |     |
| Lesson 11:                               |                                  |     |
| Importing Electric<br>and Electrical Har | cal Data                         |     |
|                                          | Harnessing                       |     |
|                                          | Importing Electrical Data        |     |
|                                          | Cable / Wire Library             |     |
|                                          | Import Cable / Wire Library      |     |
|                                          | Component Library.               |     |
|                                          | Import Component Library         |     |
|                                          | From - To List.                  |     |
|                                          | Import From-To List              |     |
|                                          | Edit Wires                       |     |
|                                          | Electrical Attributes            |     |
|                                          | Harness Flattening and Detailing |     |
|                                          | Connector Views.                 |     |
|                                          | Harness Drawing.                 |     |

### Lesson 1 Explaining Routes

Upon successful completion of this lesson, you will:

- Understand the basics of routing.
- Understand the different types of routes.
- Understand the various routing components and their roles.



| Introduction            | <b>SolidWorks Routing</b> is an advanced course, requiring a basic<br>knowledge of various SolidWorks operations, including top-down<br>design, general part design, use of configuration and design tables,<br>drawing creation, etc.                                                                                                 |  |  |  |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                         | This manual assumes this level of SolidWorks skills. If you are new to<br>SolidWorks it is recommended that you refer to the <i>SolidWorks</i><br><i>Essentials: Parts and Assemblies</i> and <i>SolidWorks Essentials: Drawings</i><br>training manuals. Please contact your reseller regarding these<br>SolidWorks training courses. |  |  |  |
|                         |                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Recommended<br>Settings | It is recommended that you begin with the following options settings:                                                                                                                                                                                                                                                                  |  |  |  |
| Oettings                | Tools, Options                                                                                                                                                                                                                                                                                                                         |  |  |  |
|                         | System Options, Colors                                                                                                                                                                                                                                                                                                                 |  |  |  |
|                         | Check Use specified colors when editing parts in assemblies<br>System Options, Display/Selection<br>Assembly transparency for in context edit set to Opaque<br>assembly.                                                                                                                                                               |  |  |  |
|                         | System Options, File Locations<br>Under Design Library, add the location c:\solidworks 2005<br>training files\routing\training design<br>library\routing\electrical\harnessing, and use Move<br>Up to put it at the top of the list.                                                                                                   |  |  |  |
|                         | (NOTE: This is the default location for unpacking of the training files; adjust path if necessary.)                                                                                                                                                                                                                                    |  |  |  |
|                         | System Options, Routing<br>Set Library folder to<br>c:\solidworks 2005 training files\<br>routing\training design library                                                                                                                                                                                                              |  |  |  |
|                         | (NOTE: This is the default location for unpacking of the training files; adjust path if necessary.)                                                                                                                                                                                                                                    |  |  |  |
|                         | Under Component and route defaults, check<br>Automatically route on drop of clips                                                                                                                                                                                                                                                      |  |  |  |
| p                       | System Options, Large Assembly Mode<br>Under Display, uncheck Hide all planes, sketches, curves,                                                                                                                                                                                                                                       |  |  |  |
|                         | Check Preview when inserting new components                                                                                                                                                                                                                                                                                            |  |  |  |

Check Preview when inserting new components

#### **Types of Routes**

SolidWorks Routing enables the designer to create tube, pipe and electrical (cable and wire) routes. Routes fall into several categories; some examples are below:

■ Soldered copper, PVC, flexible tubing, electrical wiring enclosure, welded piping, fabricated cable, and associated fittings.



### File Naming in Routing

The default naming convention for routing components is intended to be compatible with PDMWorks<sup>®</sup> and other PDM systems. As always, users may name files according to their own preference or company standard.

The default format for route sub-assemblies is:

RouteAssy#-<upper level assembly name>.sldasm

and for tube, pipe and cable parts within these route sub-assemblies:

Tube or Pipe (and configuration) or Cable-RouteAssy#-<upper level assembly name>.sldprt.

There may be references in this manual that do not conform to this new convention.

A **Piping** route is used in this description because it uses the most specialized components.

The **Route** is a component of a routing **Sub-assembly**, including a **3D Sketch**, that describes the centerline path of the piping, tubing or cable / harness route from a starting connection to an end connection. The properties of the route includes information to set the pipe, tube or cable nominal size, schedule or gage, and default elbow.

#### Note

#### **Routes**

#### External Components

#### Routes are **Sub-assemblies**

that can be connected to external components such as tanks, cylinders, manifolds or various electrical components. The subassembly component keeps the route components separate from the external components and other routes.

#### Route Components

Using the route properties and sketch geometry, pipes and elbows are added. Based on the elbow locations and geometry, the lengths of pipe between them are determined and added as individual components. In this example all the pipes are purple; elbow and flange fittings are yellow and reducer fittings are red.

Anywhere the **Fabricated Pipe** changes direction is considered an elbow and is generally represented in the sketch as an arc. The straight lengths are represented as lines.

With rigid tubing, bends replace elbows.

Flexible tubing (hose) and cable typically use spline shapes; it is unusual for there to be truly straight runs of these components.

## Profesor: PEDRO LUIS RUIZ

#### FeatureManager Listing

The FeatureManager for the **Routing Sub-assembly** lists the pipe and components used in the route. The component types used in this example are: pipes, flanges, elbows, reducers and custom elbows. One of each type is labelled graphically.



Note

The **Route Components** are attached to the route sketch directly and do not require mates to each other. Only the flange type, which connects to components outside the route, is mated.



#### Individual Components

Many of the common piping components, both parts and assemblies, are supplied with the SolidWorks **Design Library**. You can create your own custom components and libraries.

**Tubes** are parts that follow the length of the route, to the end of the sketch or to a fitting. The part includes all bends whether they are orthogonal or free form. Pipes, or more specifically Fabricated Pipes, are parts that are placed between elbows and fittings following the route. The FeatureManager listing includes the name, configuration and length. *Rigid* copper tubing would be considered fabricated pipe. Cables are parts that follow the length of the route, to the end of the sketch or to an electrical connector. Unlike Tubes and Pipes, there is no cable "seed" part; the cable is generated within the route, with specifications extracted from a default or user specified Microsoft Excel or XML file. Standard Elbows are part components that are placed at changes in direction along the route. They are placed automatically at 90 and 45 degree bends. The FeatureManager listing includes the name and

configuration.





### Lesson 2 Review of Configurations

Upon successful completion of this lesson, you will:

- Understand how Routing and Design Library parts use configurations.
- Understand the role of design tables.



Lesson 2 Review of Configurations

TEST PIPE Configuration(s) (3.0 Nom Sch40 T)

🐝 2.0 Nom Sch4

- 2.0 Nom Sch40 C - 2.0 Nom Sch40 G

2.0 Nom Sch40 T
 2.5 Nom Sch40
 2.5 Nom Sch40 C

### Review of Configurations

**Configurations**, specifically those created by **Design Tables**, are an integral part of Routing. They are used to create and store library parts such as tubes, pipes and elbows. For example, one part can be used to represent multiple tubes, each having different diameters and wall thicknesses.

#### How Routing Uses Configurations

Tube/Pipe Components Routing uses configurations to select matching tubes or pipes and related components to size the route.

When a tube/pipe route is started with a fitting such as a **Flange**, the configuration that represents a specific nominal diameter is selected. The pipe that connects to that fitting now has limited set of configurations to choose from based on that nominal diameter. The choices are limited to the type of pipe or the schedule in that diameter.

The tube/pipe part is copied to the local folder and configurations are used to represent the required lengths.

That tube/pipe part is used throughout the route. Added components must match the sizing that has been selected for the route.

🐝 2.5 Nom Sch40 G 📽 3.0 Nom Sch40 🐝 3.0 Nom Sch40 ( % TEST PIPE (3.0 Nom Sch40 T) 🔤 📽 3.0 Nom Sch40 T Annotations 🐝 3.5 Nom Sch40 C 🗄 상 Design Binder 3.5 Nom Sch40 G 📲 3.5 Nom Sch40 T - 🖧 4.0 Nom Sch40 🖶 🚂 Lighting - 44 4.0 Nom Sch40 C 🗄 🔽 Equations E Solid Bodies(1) 🗚 4.0 Nom Sch40 T 5.0 Nom Sch40 🔆 Front - 🐝 5.0 Nom Sch40 C - 🐝 5.0 Nom Sch40 G 🔆 Тор --🚫 Right - 5.0 Nom Sch40 1 🗼 Origin 🔣 Design Table 🗄 💽 Extrusion FilterSketch • Weld Chamfer 1 • Meld Chamfer 2 🗄 🖓 Groove 1 🗄 🖓 Groove 2 🗄 🚮 NPT 1 🗄 🖓 NPT 2 📎 Pln1 🔪 Axs1 🔆 Pln2

Note

**Fittings** 

Electrical routes do not use configurations to determine route and component size.

Axs2

Fitting configurations are chosen by matching the configuration of the tube/ pipe. If the fitting does not contain a matching configuration, an error is produced.

Unlike tubes and pipes, fitting parts are

*not* copied to the local folder. They remain referenced to the Design Library.

| A Note About<br>File References | Referenced files do not have to be stored with the document that<br>references them. In most practical applications, the referenced<br>documents are stored in multiple locations on the computer or network.<br>SolidWorks provides several tools to determine the references that exist<br>and their location.  |  |  |  |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Find References                 | <b>Find References</b> provides the exact locations of referenced part and assembly files. <b>Find References</b> will display the Search Results dialog box which lists the component files used, including the full path names. This is useful if you have several versions of the component files.             |  |  |  |
| Where to Find It                | ■ From the File menu, select Find References.                                                                                                                                                                                                                                                                     |  |  |  |
| Copy Files                      | The <b>Copy Files</b> button can be used to copy the files to another,<br>common, directory. Find references can be used as a "Pack and Go" by<br>copying the parent and all referenced files to a single location. This can<br>be useful when creating a ZIP file with a drawing, assembly and all the<br>parts. |  |  |  |
| File Management                 | As noted previously, pipe and tube parts are copied and saved in the working directory with only the required configurations. Fitting parts are not copied, so the assembly will reference the file in the Design Library directory.                                                                              |  |  |  |
|                                 | If the entire assembly is to be copied, moved, archived or zipped, consider saving all the reference files (Design Library parts) with it. <b>Find References</b> will accomplish this.                                                                                                                           |  |  |  |
|                                 | It is also a good idea to include a copy of the original pipe or tube file<br>from the Design Library with the assembly. In this way, should a new<br>pipe or tube route of the same type be added to the assembly after it has<br>been moved, the same seed part can be used.                                    |  |  |  |
|                                 | The configured pipe or tube files that exist in the assembly do not have<br>all the required information to be used in a <i>new</i> route and hence cannot<br>be used this way. <b>Find References</b> will NOT copy this file, it must be<br>done manually.                                                      |  |  |  |
| PDMWorks®                       | SolidWorks Office Professional includes PDMWorks®, which provides a powerful way to manage library parts and project files.                                                                                                                                                                                       |  |  |  |
|                                 | For more information, see the File Management training manual.                                                                                                                                                                                                                                                    |  |  |  |

#### **How Libraries Use** Configurations

Library Parts are supplied by SolidWorks through the **Design Library**. These parts and assemblies, as required, use design tables as the engine to create configurations. Design tables can set the values for dimensions and suppress features by configuration name. The result of the design table is a set of configurations shown in the Configuration Manager.



#### **Design Tables**

configurations. Using an Excel spreadsheet, the configurations and the variations between them are recorded and stored.

The **Design Table** contains columns for configurations, dimension values, suppression of features, configuration specific properties and notes. Using the Auto-create function allows the table to be generated automatically from the input.

### Design Table Input and Output

The input options include the parameters dimensions, features and properties. The output is a set of configurations that are added to the ConfigurationManager of the part. As always, descriptive names should be used for dimensions and features included in the design table.

If the design table settings allow it, changes can be bi-directional.

Dimension Values

A **Dimension Name** appended with \$<feature name> as a column header controls the value of that dimension by configuration.

Feature Suppression

Prefixing a Feature Name with \$STATE@ allows that feature to be suppressed or unsuppressed by configuration. Suppress, S, Unsuppress or U appear in the cells below the header. A blank cell assumes unsuppress.

Configuration Specific Properties

Properties added to the part through **File**, **Properties Configuration Specific** tab appear in the design table with the prefix \$PRP.

Notes

User defined notes can be added in rows or columns with \$USER NOTES as the row or column header.

#### Configuration Names

Configuration names added in the header row become configurations that appear in the ConfigurationManager.



### Lesson 3 Top Down Design

Upon successful completion of this lesson, you will:

- Understand the basics of top down assembly design.
- Understand the function and mode of commands for editing of parts and sub-assemblies in context of the top level assembly.



#### Top Down Introduction

Top Down Assembly modeling involves the switching between the editing of parts and assemblies.

1 Open assembly. Open the assembly Equipment Assembly.

#### Parts and Assemblies

When using routing, several types of components are used. Each can be edited in turn to make effective use of top down design and complete the routing assembly. The types of components are labelled below.

Note that the subassembly in this case is a specific type, a *Routing* subassembly.



#### Edit Part

While you are in an assembly, you can switch between editing the assembly — adding mate relations, inserting components, etc. — and editing a specific part. Editing a part while in the context of an assembly allows you to take advantage of geometry and dimensions of other components while creating matching or related features. Using geometry outside the

part creates External References and In-context Features.

Four commands, Edit Part, Edit Assembly, Edit Sub-assembly and Edit Route are used to switch back and forth between editing one component in an assembly and editing the assembly itself. When you are in edit part mode, you have access to all the commands and functionality the part modeling portion of SolidWorks. Plus, you have access to other geometry in the assembly.

| Introducing:<br>Edit Part,<br>Edit Assembly and<br>Edit Sub-assembly                                                                                                                                                                                                                                                               | Edit Part/Edit Assembly/Edit Sub-assembly is used to switch<br>between editing a part and an assembly. The right-mouse menu will<br>display the proper command.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Where to Find It                                                                                                                                                                                                                                                                                                                   | Select the part or sub-assembly you wish to edit. Then:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|                                                                                                                                                                                                                                                                                                                                    | <ul> <li>Click Edit, Part, or Edit, Assembly or Edit, Sub-assembly.</li> <li>Or, from the right-mouse menu, select Edit Part, Edit Assembly or Edit Sub-assembly.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                    | <ul> <li>Or, from the Assembly toolbar, click the stool.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Note The colors are set through Tools, Options, System Options, Col-<br>as Assembly, Edit Part and Assembly, Non-Edit Parts. In order<br>see these colors, the option Use specified colors when editing p<br>in assemblies must be enabled. Otherwise, the edited part's color<br>not change. This option is unchecked by default. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| Appearance of<br>Components While<br>Editing                                                                                                                                                                                                                                                                                       | When you edit a part in the context of the assembly, if the option above<br>is turned on, the component you selected turns opaque pink (or any<br>user-specified color). The appearance of the other components depends<br>on the assembly transparency settings you choose.                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Introducing<br>Change Assembly<br>Transparency                                                                                                                                                                                                                                                                                     | <ul> <li>The transparency of components that are <i>not</i> being edited can be set to one of three conditions:</li> <li>Opaque assembly. All components become opaque gray, except for the component you are editing, which becomes opaque pink (recommended, particularly for complex designs.)</li> <li>Maintain assembly transparency. All components maintain whatever their current transparency is, except for the one you are editing, which becomes opaque pink.</li> <li>Force assembly transparency. All components become transparency. All components become transparent except the one you are editing, which becomes opaque pink.</li> </ul> |  |  |  |
| Where to Find It                                                                                                                                                                                                                                                                                                                   | <ul> <li>From the menu click Tools, Options, System Options, Display/<br/>Selection, Assembly transparency for in context edit</li> <li>Or, from the Assembly toolbar, click the intervention tool.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| <ul> <li>Note</li> <li>Use the slider to adjust the transparency level for Force assem transparency. When you move the slider to the right, the comp become more transparent.</li> </ul>                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |

#### Editing Options

Each editing option is useful in its own way in the assembly context. By editing parts in context, you can take advantage of any entity in the assembly for sketching, offsetting, converting and dimensioning.

#### **Edit Assembly**

**Edit Assembly** is the default state of an assembly when it is created or opened.

Also, when **Edit Part** or **Edit Sub-assembly** is "turned off" the top level assembly returns to this state.

Use Edit Assembly to:

- Add or delete components from the top level assembly.
- Add or delete mates from the top level assembly.

Edit Part

**Edit Part** is used to access a specific part and edit it while remaining in the top level assembly.

Use Edit Part to:

- Add or edit individual sketches of a part within the assembly.
- Add or edit features of a part within the assembly.

Profesor:

**PEDRO LUIS RU** 



♥ Equipment Assembly
▲ Annotations
● ◇ Design Binder

🔆 Top Plane

↔ Right Plane

→ → Positioning ⊕ (f) Tank Body<1>

External Connection <1>

⊕ 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 • 
 •

#### Edit Sub-assembly

**Edit Sub-assembly** is used to access a sub-assembly and edit it while remaining in the top level assembly. In routing it is often used to make changes to

the route sub-assembly 🧐.

#### Use Edit Sub-assembly to:

- Add or delete components within the sub-assembly.
- Add or delete mates within the sub-assembly.



#### **Edit Route**

Edit Route is used to edit the 3D Sketch that defines the tube or pipe route. This automatically switches to Edit Sub-assembly mode using the route sub-assembly.

Use Edit Route to:

- Create and edit the 3D Sketch used as the route.
- Add inline components such as reducers and tees.

#### **Assembly Feature**

An **Assembly Feature** is used to add a cut feature or hole to the top level assembly. The feature uses a **Feature Scope** to determine which components are affected by the cut.

#### Use Assembly Feature to:

 Add a cut feature that exists only in the top level assembly.



⊕…∭ Mates ⊕… 间 Cut-Extrude1

🧐 Equipment Assembly

**Editing Options** 

### Lesson 4 Design Library Introduction

Upon successful completion of this lesson, you will:

- Understand how Design Library parts are used in Routing.
- Understand the function of Routing Points in Design Library parts.
- Understand the Configuration Specific Properties required for Routing components.



#### Design Library Parts Introduction

Design Library Parts are standard components of various types that can be stored on the Part Design Library for insertion into an assembly quickly and easily. SolidWorks supplies some, but users may also make their own.

The Design Library parts supplied with the SolidWorks software are configured with established standard sizes. They include some standard fasteners and mechanical components, but in this case we will work with standard pipe, tube and electrical components.

There are both geometric and non-geometric (property) requirements in building design library parts.

#### **Routing Points**

Note

There are specific geometric requirements for Design Library parts including the **Route Point** and **Connection Point** features.

Route Points (RPoint) and Connection Points (CPoint) are collectively referred to as Routing Points.

#### **Connection Points**

required in fittings and electrical connectors such as elbows, tees, crosses and crimp terminals. They are used to determine where the routing ends and the direction that it enters the fitting or connector.

**Connection Points** are

They are also used to specify the nominal diameter of the route and the type of route: **Electrical, Tubing** or **Fabricated Piping**.



Double-clicking a CPoint Tip displays the nominal diameter assigned to the CPoint. In an **Electrical** route, the nominal diameter is defined as a maximum cable size for that component. **Route Points** Route Points are required in fittings such as elbows, tees, crosses and route clips. They are used to place the fitting on an endpoint on the 3D Sketch route line, or in the case of clips, to help define the path of of a flexible route. Tip Route line components (tube, fabricated pipe, or electrical cable) do not have routing points in them. Libraries SolidWorks provides Design Library parts and assemblies that include common tube, wiring and pipe sizes and associated fittings. For more vendor-supplied routing components, visit

3DContentCentral<sup>SM</sup>, <u>www.3dcontentcentral.com</u>.

| Tubing                        | C:\Program Files\SolidWorks2005\data\design<br>library\routing\tubing |                                       |        |  |
|-------------------------------|-----------------------------------------------------------------------|---------------------------------------|--------|--|
| Tubes                         | tube-ss                                                               |                                       |        |  |
| Flanges                       | slipontube<br>flange-ss                                               |                                       |        |  |
| Tube Fittings<br>(Connectors) | solidworks<br>-lok male<br>pipe weld<br>connector                     | solidworks<br>-lok male<br>connector  |        |  |
| Tube Fittings<br>(Tees)       | solidworks<br>-loktubing<br>branch tee                                | solidworks<br>-lok male<br>branch tee | tee-ss |  |

### PEDRO LUIS RUIZ

| Threaded<br>Piping            | C:\Program Files\SolidWorks2005\data\design<br>library\routing\piping\threaded fittings (npt) |                               |                   |  |
|-------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------|-------------------|--|
| Pipes                         | threaded<br>steel pipe                                                                        | W NOV                         |                   |  |
| Elbows                        | threaded<br>elbow<br>45deg                                                                    | threaded<br>elbow<br>90deg    |                   |  |
| Tees, Laterals<br>and Crosses | threaded<br>tee                                                                               | threaded<br>lateral           | threaded<br>cross |  |
| Couplings and<br>Unions       | threaded<br>coupling                                                                          | threaded<br>half-<br>coupling | threaded<br>union |  |
| Reducers and<br>Cap           | threaded<br>reducer                                                                           | threaded<br>cap               | RUIZ              |  |

| Piping     | C:\Program Files\SolidWorks2005\data\design<br>library\routing\piping |                      |                        |             |
|------------|-----------------------------------------------------------------------|----------------------|------------------------|-------------|
| Pipes      | Pipe                                                                  |                      |                        |             |
|            |                                                                       | W WOO                |                        |             |
| 45° Elbows | 45° LR Inch                                                           | 45°LR<br>Metric      |                        |             |
|            |                                                                       |                      |                        |             |
| 90° Elbows | 90° LR Inch                                                           | 90° LR<br>Metric     | 90° SR Inch            | 90° 3R Inch |
| Tees       | Reducing<br>Outlet Tee<br>Inch                                        | Straight<br>Tee Inch |                        |             |
| Flanges    | Socket Weld<br>Flange                                                 | SlipOnWeld<br>Flange | Welding<br>Neck Flange |             |

| Piping   | C:\Program Files\SolidWorks2005\data\design<br>library\routing\piping |                                  |                             |  |
|----------|-----------------------------------------------------------------------|----------------------------------|-----------------------------|--|
| Crosses  | Straight<br>Cross Inch                                                | Reducing<br>Outlet<br>Cross Inch | Straight<br>Cross<br>Metric |  |
| Reducers | Reducer                                                               | Eccentric<br>Reducer             | 65                          |  |

| Assemblies | C:\Program Files\SolidWorks2005\data\design<br>library\routing\assembly fittings |                                    |      |  |
|------------|----------------------------------------------------------------------------------|------------------------------------|------|--|
|            | assembly<br>fitting                                                              | assembly<br>fitting<br>without acp |      |  |
| Valves     | 2in control<br>valve                                                             | LUIS                               | RUIZ |  |

| Electrical              | C:\Program Files\SolidWorks2005\data\design<br>library\routing\electrical |                                 |                                    |                                                |
|-------------------------|---------------------------------------------------------------------------|---------------------------------|------------------------------------|------------------------------------------------|
| Ring Crimp<br>Terminals | ring_term_<br>awg-14-<br>16_awg-x 8                                       | ring_term_<br>18-22_awg-<br>x_6 |                                    |                                                |
| DIN<br>Connectors       | socket-<br>6pinmindin                                                     | plug-6pin-<br>minidin           | plug-<br>5pindin                   |                                                |
| USB Plugs               | plug-usb1                                                                 | plug-usb2                       |                                    |                                                |
| DB<br>Connectors        | db9 male                                                                  | db15-e                          |                                    |                                                |
| Clips                   | pclip2                                                                    | richco_<br>hurc-4-01-<br>clip   | richco_<br>dhurc-4-01<br>-dualclip | cable<br>constraint<br>(novisible<br>geometry) |
| Other                   | plug-sma                                                                  | LUIS                            | KUIZ                               |                                                |
| "Pipe" Parts                         | The classification of "Pipe" parts includes tubes as well as true fabricated pipes and elbows.                                                                                                                                                                                                                                                                |  |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Note                                 | Unless otherwise specified, these properties apply to tubing and piping only, not to electrical components.                                                                                                                                                                                                                                                   |  |
| Design Table<br>Parameters           | All Design Library pipe parts require design tables to store the required information:                                                                                                                                                                                                                                                                        |  |
|                                      | <ul> <li>\$PRP@Pipe Identifier</li> <li>InnerDiameter@PipeSketch or @FilterSketch</li> <li>OuterDiameter@PipeSketch or @FilterSketch</li> <li>NominalDiameter@FilterSketch</li> </ul>                                                                                                                                                                         |  |
|                                      | Certain other components may use these parameters to size themselves<br>accordingly when dropped into an assembly. These include pipe elbows<br>and pipe and electrical hangers/clips such as pclip2 (Nominal, Inner<br>and Outer Diameters).                                                                                                                 |  |
|                                      | Electrical wire and cable use only the<br>OuterDiameter@PipeSketch parameter. Data for wire and cable<br>parts are stored in a .XML file; There is no Design Library part.                                                                                                                                                                                    |  |
| Configuration Name                   | The <b>Configuration Name</b> is used in the <b>Route Properties</b> dialog as the <b>Base Configuration</b> .                                                                                                                                                                                                                                                |  |
| Configuration<br>Specific Properties | The <b>Pipe Identifier</b> property is required for the component to be<br>recognized as a tube or pipe. The property is entered as a<br><b>Configuration Specific Property</b> through the <b>File</b> , <b>Properties</b> dialog<br>as \$PRP@Pipe Identifier. The value of this property is used to<br>name all instances of the tube or pipe in the route. |  |
|                                      | Other properties can also be added as descriptions or additions to a BOM table. Properties such as Description, Weightperfoot, Wall Thickness and Swbompartno are common additions.                                                                                                                                                                           |  |
| Dimensions                           | The InnerDiameter, OuterDiameter dimensions are taken<br>from the PipeSketch sketch of the Extrude or Sweep feature.<br>The NominalDiameter is taken from the FilterSketch sketch.                                                                                                                                                                            |  |
|                                      | Additional dimensions can be added for use in equations or descriptions.                                                                                                                                                                                                                                                                                      |  |
| Note P                               | The length of each tube or pipe segment is extracted for use in the BOM table.                                                                                                                                                                                                                                                                                |  |

### Lesson 5 Design Library Review

Upon successful completion of this lesson, you will:

- Understand the function of the Design Library: Features, Parts and Assemblies.
- Be able to organize Design Library components.
- Understand the options available for Routing.



| Design Library<br>Task Pane                            | The <b>Design Library</b> pane is used to access and store commonly used library features, sheet metal forming tools and parts. <b>Design Library</b> parts can be added to an assembly by simply dragging and dropping them into that assembly. Mate Relations, SmartMates and Route Points are used to position the part.                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Introducing: Design<br>Library                         | <ul> <li>The Design Library Task Pane tab is a menu set devoted to the storage and easy retrieval of library features, forming tools, assemblies, and piece parts. It is designed to resembly Windows Explorer in apprearance and function.</li> <li>Navigation through the directory structure is by single (select and view) and double (open) click.</li> <li>Reload refreshes the window with changes that have been made to the folder since it was opened.</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Design Library       Image: Constraint of the second |
| Where to Find It                                       | <ul> <li>On the Task Pane, select the Design Library </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Essentials of<br>Using the Design<br>Library Task Pane | Taking full advantage of the Design Library pane requires an<br>understanding of the file structure it uses. Although some library<br>features and parts are supplied with the SolidWorks software, the real<br>power of the Design Library is in creating and using your own folders<br>and libraries.                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Directory<br>Structure                                 | These files can be located on<br>your hard drive using Windows<br>Explorer by browsing to the<br>Solidworks install folder<br>and opening the data\<br>design library folder.<br>This folder contains five main<br>folders for the Design Library<br>pane: assemblies,<br>features, forming<br>tools, parts, and<br>routing.<br>Note: The view in the Design<br>Library pane is virtually<br>identical to that in Windows<br>Explorer.                                      | design library     annotations     assemblies     mold bases     for mold bases     for mold actives     for inch     fold power portrip     foring grooves     for retaining ring gro     slots     forming tools     forming | <ul> <li>Library Assemblies</li> <li>Library Features</li> <li>Library Forming Tools</li> <li>Library Parts</li> <li>Routing Components</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| Library Parts            | Parts shipped with the Design Library are found<br>in the subdirectories located under the folder<br>parts. Each folder creates a corresponding<br>folder in the Design Library pane. All of these<br>must be *.sldprt files.                                                                                                  |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Library Assemblies       | Assemblies shipped with the Design Library are<br>found in the subdirectories located under the<br>folder assemblies. These must be<br>*.sldasm files.                                                                                                                                                                         |
| Adding to the<br>Folders | You can add any library feature, part or assembly to these folders,<br>either using the Design Library panes or Windows Explorer, and they<br>will appear in the Design Library lower pane. They will appear as icons<br>showing their preview pictures.                                                                       |
|                          | You can drag and drop files onto the Design Library pane from the<br>open file or from Windows Explorer. Press the Delete key to remove<br>them from the Design Library.                                                                                                                                                       |
| Sub-folders and<br>Panes | Each sub-folder, such as threaded<br>fittings (npt), holds the appropriate<br>type of files (*.sldprt in this case). The<br>folder name appears in the Design Library<br>upper pane. The folders and files<br>themselves appear as icons in the lower<br>pane (similar to the left-right relationship in<br>Windows Explorer). |
|                          | You can also add your own sub-folders in<br>any of the directories. These will appear as<br>folders in the Design Library pane.                                                                                                                                                                                                |
| Icons                    | The graphics of the icon are taken automatically from the last saved image of the library feature or part. They can be shaded or wireframe images, but you should zoom in on them for the best results.                                                                                                                        |
| P                        | The name of the icon comes from the name of the library feature, part<br>or assembly as it appears within the folder. It can be changed by<br>clicking on it.                                                                                                                                                                  |

### Organizing Your Libraries

You can control where the SolidWorks software looks for your libraries by setting a search path in **Tools**, **Options**, **System Options**, **File Locations**, **Design Library**.

|         | System Options - File Locations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|         | System Options         General         General         Deplay Style         Area Hatch/Fill         Colors         Sketch         Relations/Snaps         Display/Selection         Performance         Assembles         Lorge Assembly Mode         External References         Deplay/Selection         Performance         Assembles         Lorge Assembly Mode         External References         Deplay/Selection         Performance         Assembles         Lorge Assembly Mode         External References         PedureManager         Spis Numements         Www Rotation         Backups         Routing         Data Options         External References         Collaboration         More Extra References         Deplay         Routing         Data Options         External References         Deplay         Routing         Data Options         External References         Deplay         Routing         Routing <th></th> |        |
| Note    | See " <b>Before You Begin</b> " at the beginning of <b>Lesson 7</b> , rega<br>adding the Training Design Library location.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rding  |
| Folders | In the <b>Folders</b> list you can set search paths for many files that<br>SolidWorks references. A partial list is given below. For a com<br>list, refer to the online help.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | plete  |
|         | <ul> <li>Library parts, assemblies, features, and forming tools.</li> <li>Color swatches, material databases and textures.</li> <li>Document templates, referenced documents, sheet formats.</li> <li>Blocks, BOM templates, hole callout format files, and dime<br/>favorites.</li> <li>Macros, journal files and macro feature files.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ension |
|         | Several paths can be set for each category. If you have more the path, the system searches them in the order they are listed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | an one |

### Routing Options

Options that are specific to Routing can be found in the **Tools**, **Options**, **System Options**, **Routing**.

Library folder path - Similar to the Design Library location in File Locations, this is the default routing component location. It may be the same as a Design Library location, or can be a different folder. This location will appear in the Route Properties dialog and may be edited there as well.

| Library rolder                              |  |  |
|---------------------------------------------|--|--|
| C:\Program Files\SolidWorks\data\design lib |  |  |
| Component and route defaults                |  |  |
|                                             |  |  |
| Create custom rittings                      |  |  |
| Create pipes on open line segments          |  |  |
| Automatically create sketch fillets         |  |  |
| Automatically route on drop of clips        |  |  |
| Enable minimum bend radius check for cables |  |  |
| Enable minimum bend radius check for wires  |  |  |
|                                             |  |  |
|                                             |  |  |
| Connection and route points                 |  |  |
| Text size                                   |  |  |
|                                             |  |  |
|                                             |  |  |
| 0 0.5 1                                     |  |  |
|                                             |  |  |
| ·                                           |  |  |
| Slack Percentage: 0                         |  |  |
|                                             |  |  |

It is important to set this path to the Training Design Library before beginning the case studies in Lessons 7 and 8.

- Create custom fittings Automatically creates custom configurations of the default elbow fitting when needed.
- Create pipes on open line segments Generates a pipe for 3D sketch segments that are connected to a fitting at only one end.
- Automatically create sketch fillets Automatically add fillets at intersections as you sketch.
- Automatically route on drop of clips Will auto-route a flexible tube or cable through a properly configured route clip when it is dropped from the Design Library.
- Enable minimum bend radius check For electrical cables only. Reports an error if the bend radius of an arc or spline in the route is less than the minimum specified for the cable in the cable library.
- Enable minimum bend radius check for wires For electrical cables / wires / harnesses only. Reports an error if the bend radius of an arc or spline in the route is less than the minimum specified for the individual wire or cable core in the cable library. If there are many wires in the assembly, this option might result in slower performance.
- Connection and route points text size Scales text for
- connection and route points to a fraction of the document's Note font.
- **Slack Percentage** For electrical routes only. Calculated cable lengths are increased by the stated percentage to compensate for sag in flexible routes caused by gravity.

#### Note

### Lesson 6 3D Sketching Review

Upon successful completion of this lesson, you will be able to:

- Create a 3D Sketch.
- Use the orthogonal method to sketch using standard planes.
- Use the selected plane method to sketch using user defined planes and planar faces.
- Use the spline tool to create a freeform route line.



### **3D Sketching**

A **3D Sketch** is a sketch that allows you to create geometry in any plane or planar face. In routing, it is used to define the path followed by the tube, pipe or cable.

Orientation changes during sketching are provided by the **Space Handles**, a set of red axes that show the current directions as you sketch. The **Tab** key is used to toggle from the default Front axes to those of the Right and Top planes.



**Space Handles** The **Space Handles** are a set of axes that can be changed on the fly while sketching. When the **Line** tool is selected, a set of axes appear with the line as it is sketched. These axes are parallel to those of the Front reference plane and allow sketching along those axes or within the plane. Two other planes can be accessed through the **Tab** key.





Regardless of the plane used, the axis labels refer to the axes of the Front plane (**X**, **Y** and **Z**).

|                            | <pre>1 Open part.<br/>Open the part 3D<br/>Sketch Example. The<br/>part contains two visible<br/>sketches that will be used<br/>as connection points.</pre>                                                                                                       |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Orthogonal 3D<br>Sketching | Using the <i>standard</i> three planes for sketching allows you to sketch along the <b>X</b> , <b>Y</b> and <b>Z</b> axes of the Front plane. You can also sketch on any plane formed by a pair of the axes.                                                      |
| Where to Find It           | <ul> <li>Click  from the Sketch toolbar.</li> <li>Click Insert, 3D Sketch.</li> </ul>                                                                                                                                                                             |
|                            | 2 New 3D Sketch.                                                                                                                                                                                                                                                  |
|                            | Click <b>3D Sketch</b> to open a new 3D Sketch.                                                                                                                                                                                                                   |
|                            | <b>3</b> Along X Axis.<br>Clicking the Line tool and start a new line at the upper point and drag the other end of the line.<br>Position along the axis until the X label appears indicating that the line is on the X axis. Extend the line as shown.            |
|                            | <ul> <li>Using the Space Handles.<br/>Begin the next line at the open endpoint and drag the line. Press the Tab key to orient the Space Handles to the orientation shown. Drag the line along the Y axis. Locate the end of the line roughly as shown.</li> </ul> |
|                            | 5 Along Y Axis.<br>Using the same<br>set of axes,<br>sketch a line<br>along the Y axis<br>followed by the<br>Z axis.                                                                                                                                              |



Тір

3D Sketches offer a few more relations than a standard sketch. They are **ParallelYZ**, **ParallelZX** and **AlongZ** and refer to the planes and axes of the sketch.









#### 3 Spline.

Click **Spline**, then click one of the straight segment endpoints. Drag the shape toward the other endpoint.



You can use either click-click or click-drag method.

You can add intermediate spline points, by clicking the left mouse button, to help form the desired shape.

#### 4 End the Spline.

Click on the endpoint of the other line segment to finish the spline. Right-click and choose **End spline**.

Add **Tangent** relations between the spline curve and each of the straight segments.

The spline can also be shaped by dragging the endpoints, or adding intermediate spline points after creation.



Note

Note

When using a spline in routing, the tangent relations are added automatically.



### Lesson 7 Tubing Routes

Upon successful completion of this lesson, you will be able to:

- Route flexible tubing using the spline tool.
- Route rigid tubing using 3D orthogonal sketching.
- Using Auto Route for both rigid and flexible tubing.



| Tubing Routes       | <b>Tubing Routes</b> use tube parts shaped by 3D Sketches to form sub-<br>assemblies that contain tubes and fittings. The tube can be shaped<br>orthogonally (rigid tube) or flexibly (hose or malleable tube).                                                                                                                                                               |  |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Before You<br>Begin | Supplied with the training files for this and other case studies in this<br>manual are simplified versions of the Part and Assembly Design<br>Library directories. The purpose of this is to avoid conflict between<br>your Design Library, installed with the SolidWorks software, and the<br>Design Library-based parts that exist already in these training<br>assemblies. |  |
| File Locations      | Before starting these lessons, you should open the <b>Tools</b> , <b>Options</b> dialog, and on the <b>File Locations</b> tab, browse to and add these training paths to the Design Library.                                                                                                                                                                                  |  |
|                     | C:\SolidWorks 2005 Training<br>Files\Routing\training design library                                                                                                                                                                                                                                                                                                          |  |
| Routing             | Next, on the Routing tab, under Library folder, set to                                                                                                                                                                                                                                                                                                                        |  |
|                     | C:\SolidWorks 2005 Training<br>Files\Routing\training design library\routing                                                                                                                                                                                                                                                                                                  |  |
|                     | Also, click Automatic route on drop of clips.                                                                                                                                                                                                                                                                                                                                 |  |
| Note                | This is the default install location for the SolidWorks training files. If<br>the files were installed in an alternate location, this path should be set<br>accordingly.                                                                                                                                                                                                      |  |
|                     | These locations should be used for all component insertions in this manual. It is important to set this path first to avoid conflict with the files in the other (SolidWorks installed) Design Library location.                                                                                                                                                              |  |
| Note                | Some of the paths displayed in illustrations of dialogs in the manual may not coincide with this guideline.                                                                                                                                                                                                                                                                   |  |
|                     |                                                                                                                                                                                                                                                                                                                                                                               |  |

# Profesor: PEDRO LUIS RUIZ

-

#### 1 Open assembly.

Open the assembly Tubing Assembly in the Tube Route directory. The assembly includes two tubing fittings, solidworks-lok male connector<1> and <2>. Each fitting contains the routing points CPoint2 and RPoint1.



2 Route Points. Show the routing points using View, Routing Points.

### Route Properties

The **Route Properties** are settings that define the characteristics of a route. It is used to determine which tube part is used on the route 3D Sketch, whether a flexible or orthogonal route is used and whether bends or elbows are used at changes in direction.

The dialog is triggered when a new route is created.

| 3 | Start Route.<br>Zoom in on the<br>manifold part.                                                                                                                                                                                                                | *                                                                                                          |                                                                                                                                                                                  |                                                                                                                                                                                                          |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Right-click the CPoint and select <b>Start Route</b> .                                                                                                                                                                                                          | * Crown                                                                                                    | 3                                                                                                                                                                                |                                                                                                                                                                                                          |
|   | The <b>Start Route</b> dialog<br>requests an <b>Assembly</b><br><b>file name</b> . This name is<br>used for the routing<br>sub-assembly.                                                                                                                        | Start Route<br>Route assembly<br>Assembly file name:<br>Document template:<br>Press OK to Start rout       | Tube Route\RouteAssy0-Tubin<br>\$\SolidWorks\data\templates\ro                                                                                                                   | g Assembly.SLDASM uteAssembly.asmdot                                                                                                                                                                     |
|   | Leave the default name and click <b>OK</b> .                                                                                                                                                                                                                    | (309).                                                                                                     | OK Cancel                                                                                                                                                                        |                                                                                                                                                                                                          |
| 4 | Route Properties Dialog<br>Click OK and the Route<br>Under Options, choose t<br>library\routing\t<br>folder path. This sets the<br>fittings chosen to represe<br>For Tube, choose tube-<br>the Tubes directory and<br>configuration Tube . 5<br>X . 010in wall. | g.<br>Properties<br>training<br>tubing as t<br>proper fold<br>nt the tube.<br>-ss_t in<br>Base<br>00 in OD | dialog appears.<br>design<br>he <b>Library</b><br>ler for the<br><b>Route Properties</b><br><b>Route Properties</b><br><b>Cube</b><br><b>Tube</b><br><b>tube</b> studers t.idort | Options         Library folder path:         esign library\routing\tubing         Browse         If Create gustom fittings         If Create pipes on open lines         If Automatically create fillets |
|   | Clear Use flexible.                                                                                                                                                                                                                                             |                                                                                                            | Browse                                                                                                                                                                           |                                                                                                                                                                                                          |
|   | For <b>Bends - Elbows</b> , cho<br>radius: 1"and <b>Center lin</b><br>position.<br>Click <b>OK</b> to start the rout                                                                                                                                            | oose <b>Bend</b><br>ne                                                                                     | Base configuration:<br>Tube .500in OD X .01<br>Wall thickness:<br>0.01in<br>Use flexible<br>Multibody part                                                                       | 0                                                                                                                                                                                                        |
|   | Profes                                                                                                                                                                                                                                                          | sor:                                                                                                       | Bends - Elbows<br>Always use elbow<br>Always form bends<br>Prompt for selection<br>Bend radius:<br>1.0<br>C Inside C Center line                                                 |                                                                                                                                                                                                          |

Note

The **Base configurations** are restricted to those that match the nominal diameter set by the **Connection Point**.

#### 5 Drag Route Line.

A short route line is started at the CPoint location. Select the endpoint of the line and drag it, increasing the length of the line. This is the start of the route.



#### 6 Add.

Right-click the CPoint on the opposite side of the assembly and select **Add to route**. This adds another small route line as part of the current route.



Routes can also be created from a manual 3D Sketch. The sketch is created in the **Edit Route** mode that occurs after Route Properties are completed.

#### 7 Orthogonal route.

Complete the route by sketching an orthogonal line from the initial segment toward the end segment. **Tab** once to use the YZ plane.Drag **Along Z**, but don't release the endpoint yet.



# PEDRO LUIS RUIZ

rofesor:

|                                                                                                                         | 8 Snap.<br>As with 2D sketching, lines will snap to<br>horizontal and vertical positions. However these<br>two segments are not on the same Y plane, so a<br>horizontal sketch will not close the loop.                                                                     |  |
|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                         | Drag the endpoint up to create an angled tube segment. The cursor shows we are still on the YZ plane.                                                                                                                                                                       |  |
|                                                                                                                         | 9 Finish the sketch.<br>Drop the endpoint on the open endpoint of the<br>other segment. The bend is added automatically.                                                                                                                                                    |  |
| <b>Note</b> This sketch could also be completed with a conventional with 3 bends, using <b>Merge</b> to join open ends. |                                                                                                                                                                                                                                                                             |  |
|                                                                                                                         | <b>10 Close sketch and save.</b><br>Close the sketch. You are prompted to save the tubing part created.<br>Click <b>Save</b> . Return to editing the top level assembly.                                                                                                    |  |
| Deleting a Route                                                                                                        | Routes are sub-assemblies that can be edited or deleted as components.<br>Deleting a route deletes all the components within it including tubes,<br>3D Sketches and fittings.                                                                                               |  |
|                                                                                                                         | 11 Delete the route.<br>Select the component RouteAssyl-Tubing Assembly and press<br>the Delete key. Click Yes to confirm deletion.                                                                                                                                         |  |
| Spline Sketch                                                                                                           | Routes for flexible tubing can be created using a spline. The 3D skete<br>is created in <b>Edit Route</b> mode, but uses the spline tool instead of the<br>line tool. 3D space is respected as the tool will form the spline as<br>necessary through changes in X, Y and Z. |  |
|                                                                                                                         | PEDRO LUIS RUIZ                                                                                                                                                                                                                                                             |  |

#### 12 Start a new route.

From the same CPoint, start a new route, with all the same parameters, *except* this time check **Use flexible** in the **Route Properties** dialog. This will allow for the use of a spline curve.

Add another route segment to the .375 AIR CONTROL VALVE as before.

#### 13 Close off with a spline.

Select the spline root. Click and drag from one endpoint to the other.





Note

It is not necessary to use **Tab** to change planes when dragging directly to an existing endpoint. The system will intuitively align itself in 3D space.

When released, the ends of the spline form tangent relations with the straight segments automatically.

Profesor:



### Auto Routing

Tubing routes, both flexible and orthogonal (or orthographic), can be automatically generated using the **Auto Route** option.

#### 14 Delete spline.

Delete the existing spline segment. Leave the start and end sketch line segments.

15 Auto Route Settings.

Right-click one of the open endpoints and choose Auto Route. Select the

### endpoint of the other segment. A spline is added connecting the endpoints. It is tangent to both line 😢 Auto Route segments. Click OK. V)?)-Items To Connect Jurrent selection Point2 Orthagonal route Alternate paths: 16 Shape Spline. Drag the line endpoints to shape the spline. The spline shape can be further edited with the addition of spline points (right-click Insert Spline Point). For clearest manipulation of the added spline points, switch to side, front or top views of the design. Clips Auto routing can also be achieved by the drop of a clip from the Design Library. The clip must have appropriate RPoints and a mate reference. 17 Delete spline. While still editing the sketch, delete the spline segment just created. Leave the two straight segments intact. 18 Drag and drop a clip. From the Training Design Library, in the routing\tubing directory, drag the tubing-clip 0.5 into the assembly. Drop it on one of the small holes in the horizontal member above the tube.

Routing by dropping clips works with *flexible* tubing, not rigid, or with electrical wiring only (Use flexible checked in route properties).

Auto Routing

Note

Tip

#### 19 Result.

The tube is routed automatically through the clip. Two segments are added; a spline and a straight segment defined by the clip.

20 Repeat.

Add a second clip on the other hole. Again, the route is extended automatically.

Exit Insert Component mode.

21 Close the route. Finish the route by using Auto Route between open endpoints.

> If the minimum radius of curvature is exceeded, it can be adjusted afterwards by dragging the straight segments.

Note

Clips and other route components can be selected manually to establish a sequence. Click **View, Axes** and select the axis within the routing component.

#### 22 Save tube.

Exit the sketch. The tube part used in the route is saved with the route from the Part Design Library. The default name is generated from the name of the configuration used and the parent assemblies.



The tube is Tube-500X.010-RouteAssy0-Tubing Assembly with the configuration Tube .500in OD X .010in Wall. The length of the tube is listed following the configuration.

The **Route1** component includes the route sketch, 3DSketch1.

Both the tube and the route are created in-context as indicated by the -> suffix.

#### 24 Delete route.

Select the component RouteAssy0-Tubing Assembly and press the **Delete** key. Click **Yes**.

### Orthogonal Auto Route

Routes can also be created using Auto Route in an orthogonal scenario, rather than flexible. The sketch is created in the **Edit Route** mode that occurs after Route Properties are completed and uses right-angle bends only.



Note

Some solutions can create invalid routes. When this happens, a warning dialog appears.



For example, when there is not enough space between two perpendicular segments to put in a full radius of the default size, the segments will show as a sharp corner. An adjustment to that particular radius or to the separation will be needed to show a proper radius.

Simply click **OK** to continue.



### Create Bend Tables

**Bend Tables** can be used to extract detailed information from a tubing route for fabrication. The information is available in several file formats including text, html and eDrawings<sup>TM</sup> eprt file.

#### 29 Create Bend Data.

Right-click Tubing Route 3D and select Create Bend Tables.

For **Options**, click those shown at right and click **Create**.

The files created are listed in the **Files** group box.



Note

You must have eDrawings<sup>TM</sup> installed to view the \*.eprt file. The files are placed in a folder named Tubing Assembly under the current folder.

RADIUS

0 0000

#### 30 View file. Х 0 0000 Select the Tube-500X.0 Route

|                       | 0.0000 | 0.0000 | 0.0000   | 0.0000 |
|-----------------------|--------|--------|----------|--------|
| 500X 010-Tubing       | 5.0000 | 0.0000 | 0.0000   | 0.500  |
|                       | 5.0000 | 0.0000 | 20.86000 | 0.500  |
| Route 3D-             | 5.0000 | 3.0000 | 20.86000 | 0.500  |
| Default.html file and | 4.500  | 3.0000 | 20.86000 | 0.0000 |
|                       |        |        |          |        |

Y

0 0000

Z

0 0000

click View Selected File(s)

Other options with the files include Copy All Files 🗎, Send Email

Containing All Files and Create a Zip Archive Containing All

Files ZIP

#### 31 Bill of Materials.

Create a drawing of the Tubing Route 3D sub-assembly with one isometric view.

Select the view, and insert the BOM (Insert, Tables, Excel Based Bill of Materials...) using the Piping BOM Template (located in <SolidWorks install directory>\lang\english folder). It includes the CUT LENGTH property.



#### 32 Alternate BOM.

Alternatively, you can insert a standard (non-Excel) Bill of Materials and customize the cells or use the supplied

Tubing BOM Template.sldbomtbt template with Insert,

#### Tables, Bill of Materials.

| ITEM NO. | PART NO.                     | DESCRIPTION                     | CUT LENGTH | QTY. |
|----------|------------------------------|---------------------------------|------------|------|
| 1        | Tube .500in OD X .010in Wall | Tube-500X.010_1-Tubing Route 3D | 31.369in   | 1    |
|          |                              |                                 |            |      |

The template is located in the training design library folder.

| Editing a Route          | <b>Jte</b> Tubing and piping routes can be edited to change: route diameter fittings, remove tube/pipe sections and create pipe penetrations. Nof these operations are performed while in <b>Edit Route</b> mode. |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          | 1                                                                                                                                                                                                                 | <b>Open Tubing Options.</b><br>Open the assembly Tubing<br>Options in the directory of the<br>same name. It contains a flange<br>and tube route.                    |                                                                                                                                                                                                                                                                                                                                                                                                              |
| Change Route<br>Diameter | 5                                                                                                                                                                                                                 | Change Route Diameter is used<br>route including the tube and relat<br>nominal diameter of the tubing is<br>Edit route mode.                                        | I to change the diameter of the entire<br>ed fittings. In this example, the current<br>s <b>1 inch</b> . This option is available in                                                                                                                                                                                                                                                                         |
| Where to Find It         | 0                                                                                                                                                                                                                 | <ul> <li>Right-click a line of the route</li> </ul>                                                                                                                 | e and select Change Route Diameter.                                                                                                                                                                                                                                                                                                                                                                          |
|                          | 2                                                                                                                                                                                                                 | Edit route.<br>Edit the existing route.                                                                                                                             | Select a Configuration                                                                                                                                                                                                                                                                                                                                                                                       |
|                          | 3                                                                                                                                                                                                                 | Larger Diameter.<br>Right-click the route and select<br>Change Route Diameter.<br>Select the configuration Tube<br>Flange 1_25-150 from the<br>dialog and click OK. | Tube Flange 05-150         Tube Flange 075-150         Tube Flange 1.25-150         Tube Flange 1.25-150         Tube Flange 2.150         OK         Cancel         Cancel All         Help |
| Note                     | ote Using the Automatic selection of pipes and elbows chow would prevent the second dialog from appearing.                                                                                                        |                                                                                                                                                                     | of pipes and elbows check box from appearing.                                                                                                                                                                                                                                                                                                                                                                |
|                          |                                                                                                                                                                                                                   | In the next dialog, select the same configuration name.                                                                                                             | Select a Configuration                                                                                                                                                                                                                                                                                                                                                                                       |
|                          | P                                                                                                                                                                                                                 | EDRO LUIS                                                                                                                                                           | List all configurations     Automatic selection of pipes and elbows       OK     Cancel         Cancel All     Help                                                                                                                                                                                                                                                                                          |
| Note                     |                                                                                                                                                                                                                   | If the Route Properties dialog appears. select the file tube_ss_t for the pipe.                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                              |

Lesson 7 Tubing Routes

|                  | 4 Rebuild.<br>Both the flange and tubing have<br>been changed to match 1.25"<br>diameter tubing. The <i>name</i> of the<br>tubing part does <i>not</i> change with<br>the diameter change.                                                                                                                                                                     |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Add Fitting      | Fittings such as flanges and tees can be added directly to the route without using the Design Library. This option is available in <b>Edit Route</b> mode.                                                                                                                                                                                                     |
| Where to Find It | Right-click a line of the route and select Add Fitting.                                                                                                                                                                                                                                                                                                        |
| Note             | <ul> <li>5 Edit the route.</li> <li>Edit the route, then right-click the open endpoint of the sketch and select Add Fitting.</li> <li>Browse to the Training Design Library directory and select the slip_on_tube_flange-ss_t component. from the Tubing folder.</li> <li>It is important that you use the part from this directory because this is</li> </ul> |
|                  | the same part that already exists in the assembly (a second instance).                                                                                                                                                                                                                                                                                         |
|                  | Select the configuration Tube_Flange<br>1_25-150 and click OK.<br>Select a configuration to be used<br>Ube Flange 1_25-300<br>List all configurations<br>OK Cancel Help                                                                                                                                                                                        |
|                  | PEDRO LUIR<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>PEDRO LUIR                                                                                                                                                                                                                                                                                       |

R1

### Constrain Sketch to Fitting

Fittings that are added to an existing route endpoint are controlled by the sketch, moving with changes to the attachment point. **Constrain Sketch to Fitting** can be used to reverse that by repositioning the fitting and driving the sketch. This option is available in **Edit Subassembly** mode and is usually used with piping.

Where to Find It Right-click a pipe of the route and select Constrain Sketch to Fitting or Constrain Fitting to Sketch.

#### 6 Drag endpoint.

### Edit the route sketch and drag the line indicated to reshape the route. The component is attached to the line and moves with it. 7 Drag fitting. Exit the 3D Sketch, remaining in Edit Sub-assembly mode. **Right-click the** slip on tube flangess t<2> component and select Constrain Sketch to Fitting. Drag the fitting component and drop it. The route will re-connect to it. Select Constrain Fitting to **Sketch** to return to control by the sketch.

8 Save and close.

### Lesson 8 Piping Routes

Upon successful completion of this lesson, you will be able to:

- Route fabricated piping using orthogonal 3D sketching and angled 3D sketching.
- Use an alternate elbow in a piping route.
- Use orthogonal auto routing with pipes.
- Edit a piping route and add fittings to a route.


Lesson 8 Piping Routes

### **Setup for Piping**

As before, be sure **Tools**, **Options**, **System Options**, **Routing**, **Library folder path** is set to the training design library directory:

training design library\
routing\piping



# Sketching a Route

This route will be sketched in a similar manner to the 3D Sketch of the previous lesson.

- 1 Open assembly. Open the assembly Piping Assembly.
- 2 Set Editing Colors. Click Tools, Options, System Options and Color. *Clear* the option Use specified colors when editing parts in assemblies.

### 3 Routing components.

The components .375 AIR CONTROL VALVE and three instances of the manifold are routing components. Click **View**, **Routing Points** to see the connection and routing points of each one.



### Starting the Route

Piping routes are started in the same way as tubing routes.

### 4 Start route at CPoint.

Start the route at a the connection point CPoint2 of manifold<1>. Right-click the **CPoint** and select **Start Route**.

5 Start Route Settings. In the Start Route dialog, use the default name of the route subassembly and use the default template.

| itart Route              |                                                              |
|--------------------------|--------------------------------------------------------------|
| - Route assembly         |                                                              |
| Assembly file name:      | uting\Lesson8\RouteAssy0-Piping Assembly.SLDASM              |
| Document template:       | olidW/ork x2004\data\templates\routeAssembly asmdot          |
| Document template.       |                                                              |
| Press OK to Start routin | g, Press Cancel to place component without starting a route. |
|                          |                                                              |
|                          | UK Lancel                                                    |

### 6 Route Properties.

Click OK and the Route Properties dialog appears.

Under **Options**, choose training design library\routing\piping\Threaded Fittings (NPT) as the **Library folder path**. This sets the proper folder for the fittings chosen to represent the pipe and bends.



CPoint2 of manifold<1>

For Pipe, choose Threaded\_Steel\_Pipe\_t and Base configuration Threaded Pipe 0.375 in, Sch 40.

For Bends - Elbows, choose Threaded\_Elbow--90deg\_t and Base configuration CLASS 2000 THREADED ELBOW, .375IN.

Note that the base configurations are restricted to those that match the nominal diameter set by the **Connection Point**.



Click OK.

After adjusting the **Library folder path**, it is a good idea to reload the part files (tube, pipe and elbow) via the **Browse...** buttons to insure that the correct source file is displayed and loaded.

The **Parameters** option can be used to limit selections to a certain **Specification** such as a schedule or thickness value.



### 7 Route is started.

The route line is started as a short line in the direction indicated by the connection point. Drag the endpoint to make the line longer. This is the start of the route.

# PEDRO LUIS RUI



Note

Note

### 8 Add to route. Right-click the CPoint4 on .375 AIR CONTROL VALVE<1> and select Add to route. Drag the endpoint away from the Frame. This is the end of the route. **Piping Auto** Piping routes require lines and arcs in 3D space. In order to create Route these, a 3D Sketch is required. In this example, the sketch will be created automatically using and Auto Route. Auto Route. 9 Select the open endpoints and use an Orthogonal route. 8.000 Select the solution that looks like the one shown at right. Add the 8in dimension to the starting line. 10 Exit the sketch. Close the sketch and **Save** the pipe part with the default name. **Elbow Selection** Piping routes require elbows at the common endpoints (bends) of lines. To complete the route, identify the proper elbow to use in the Bends -

Elbows dialog.



### 13 Pipe Lengths.

Changing the transparency of the elbows shows where the pipe segments end. The pipe is stopped at the CPoint locations in the fittings.

Hide the sub-assembly RouteAssy0-Piping Assembly for clarity in the next section.



### Angled 3D Sketch Route

Routes that include angles other than 90° between lines induce some selection options when the route is completed. An example of this might be a drain pipe that requires a pitch other than horizontal.

In order to satisfy the route, you have options to:

Use Default/Alternate Elbow

Select an alternative to the default elbow selected in the Route Properties. If the library contains an elbow of the proper angle (commonly a 45) it can be selected and used.

### Make Custom Elbow

Create a custom elbow from a selected elbow such as the default 90° elbow (except threaded). The selected elbow is copied and modified to the angle formed. The component name is suffixed with \_Local# and the configuration name includes the diameter, angle and radius of the elbow.

Creation of a custom elbow from a standard threaded elbow, though possible within SolidWorks, is not practical or realistic.

Create Form Bends

Form bends can be used where the piping is bent like tubing rather than connected with elbows.

### 1 Set Editing Colors.

Click Tools, Options, System Options and Color. Check the option Use specified colors when editing parts in assemblies.

 $\overline{\boldsymbol{\checkmark}}$  Use specified colors when editing parts in assemblies

Note

This option changes the colors of component being edited to Assembly, Edit Part color. All other components are set to the Assembly, Non-Edit Parts color (default grey).

2 New Route.

Add a new route, using the default route name, starting at the connection point on the lower portion of the manifold<1> component. Drag the new route line down below the Frame.

### 3 Add to the route.

Right-click the CPoint on the manifold<2> and select Add to route. This starts another route line in the current route. Drag the line.

4 Using the Space Handles. Continue the route by clicking the Line tool and starting a



new line. Click the initial open endpoint and drag the other end of the line.

Press the **Tab** key to orient the **Space Handles**. When the axis orientation shown appears, stop clicking the **Tab** key and drag the line along the axis labelled  $\frac{1}{2}$  (plane YZ). Locate the end of the line roughly as shown.



### 5 Sketch in plane.

Start the next line segment and press **Tab** to sketch an angled line in the ZX plane. Watch for light colored guides along the axes Z and X of the plane.



Due to the nature of a 2D graphical representation of 3D space, dragging 3D sketch entities after creation can give undesirable results, and is not recommended without first applying some constraints to the sketch.

### 6 Sketch along X Axis.

Create the last line along the horizontal – axis (plane ZX) as shown.



Тір

### 7 Merge Endpoints.

Select the open endpoints and add a Merge relation.



### 9 Dimensions.

Add the angle and linear dimensions as shown. The angle dimension forces both corners to be  $45^{\circ}$  angles.



### Alternate Elbows

All corners that are not equal to 90°, (equal to the default elbow), are flagged by the route as requiring a different type of elbow. The proper elbow must be selected for each bend.

### 10 Exit the route.

Exit the route using **Exit Sketch** to access the **Bends** - **Elbow** dialog.

### 11 Choose Elbow.

Exit the sketch and the **Bends** -**Elbows** dialog appears. The first elbow in question is zoomed and highlighted. The **Bends** -**Elbows** dialog

appears.



|                 | Use Browse to select the                                                                                                                                                                | Bends - Elbows                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|                 | threaded_elbow<br>45deg_t component for use<br>at this corner. Select the<br>CLASS 2000 THREADED<br>ELBOW, .750IN as the<br>configuration to use and click<br><b>OK</b> .               | Parameters       Options         Diameter       0.755in         Radius       0.765in         Angle       45deg         Create Ebow using:       Create Form Bends         Ingl.threaded fittings (npt))Threaded_Elbow45deg_t.SLDPR1       Browse         Configuration to use:       CLASS 2000 THREADED ELBOW, .750 IN         CLASS 5000 THREADED ELBOW, .750 IN       CLASS 1000 THREADED ELBOW, .750 IN |  |  |  |  |  |  |
|                 |                                                                                                                                                                                         | Save custom elbow as:  C:\Temp\threaded_elbow90deg_t_Local1-RouteAssy2-Piping OK Cancel Help                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
|                 | Select the same replacement<br>elbow for the next 45° corner u<br>same method.                                                                                                          | ising the                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
|                 | Next save the pipe part file.                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
|                 | DII                                                                                                                                                                                     | 14.000                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
| 12              | <b>12 Completed route.</b><br>Edit the main assembly, closing the route sub-assembly. The pipes associated elbows, both 90° and 45°, are added to the route RouteAssy1-Piping Assembly. |                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
| Editing a Route | Once created, the route and ass change route sketch, add fitting                                                                                                                        | ociated sub-assembly can be edited to<br>a or delete them.                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
|                 |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |

# Profesor: PEDRO LUIS RUIZ

### 13 Split Entities.

Edit the route. Use **Split Entities** to break the line as shown. Add a dimension to locate the break.



### **Adding Fittings**

Pipe and elbow components are added to the route automatically based on the shape of the route's 3D Sketch. Other components like tees and eccentric reducers must be added manually at specific locations along the pipe route.



### **Fitting Orientation**

The fitting orientation can be flipped using the **Tab** key provided an orientation line is not used. The orientation line is sketched from the end of the split line. An angled orientation line can be created using references planes and axes.



Lesson 8 Piping Routes



Тір

Do not use **Add to route** from the tee side of the line because it is already an active route line.



### Using Assen Fittings

Assembly based fittings include any fittings (valves and strainers for example) the are represented as multiple part components. They are added to the route using the same methods as part fittings.

Lesson 8 Piping Routes

### **19 Add Fitting.**

Use **Split Entities** to break the angled line and add a **3in** dimension to the end line.

Right-click the point and select **Add Fitting** and select the assembly Valve\_t (located in the training design library\routing\ assembly fittings\valves folder) and list all configurations to select the 0.75in configuration.



The fitting can also be dragged and dropped from the Design Library similar to the tee fitting.

### 20 Completed Route.

Exiting the sketch again calls the **Bends - Elbows** dialog to select another  $45^{\circ}$  elbow.



# PEDRO LUIS RUIZ

Тір

| Remove Tube/Pipe | The <b>Remove Tube/Pipe</b> option is used to create a condition where<br>bends or fittings contact each other directly. This option is available in<br><b>Edit Route</b> mode and is usually used with piping. |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Where to Find It | <ul> <li>Right-click a pipe of the route and select Remove Pipe or Remove<br/>Tube.</li> </ul>                                                                                                                  |
| 2                | <b>Open Piping Options.</b><br>Open the assembly Piping Options and edit the route.                                                                                                                             |
| 22               | Select Line.<br>Select the line to be<br>removed, indicated at<br>right, and right-click<br>Remove Pipe.                                                                                                        |

# Remove Pipe.

# Profes...

| Custom Pipe/Tube<br>Configurations | <b>Custom Pipe/Tube Configurations</b> can be created where pipe or tube lengths are equal but differ in geometry. This is useful when a penetration is used on one of two equal length pipes. This option is available in <b>Edit Sub-assembly</b> mode and is usually used with piping. |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Where to Find It                   | Right-click a pipe of the route and select <b>Create Custom Pipe/Tube Configurations</b> .                                                                                                                                                                                                |





## Lesson 9 Building Routing Library Parts

Upon successful completion of this lesson, you will be able to:

• Generate libraries of tubing and piping parts, including elbows and routing component assemblies, such as valves.



# Fabricated Tube<br/>or Pipe PartsFabricated Tube or Pipe Parts can be created for use in a route. They<br/>are used along the length of the 3d Sketch created while routing. The<br/>specific naming of dimensions, sketches and features is important to<br/>ensure that the finished component is recognized as a routing<br/>component.

Design of electrical routing parts is covered in *Lesson 10: Electrical Routes*.

In this example, a PVC pipe will be created.

Note

Note

The actual length of the pipe will be determined by the straight sections of the route.

The values used in this example are dimensions for a **1/2**" nominal diameter PVC pipe. Other sizes will be added through the design table.

Required naming information for the Tube/Pipe part:

| Base Feature<br>Sketch                  | Name: PipeSketch         | Dimensions:<br>InnerDiameter and<br>OuterDiameter |
|-----------------------------------------|--------------------------|---------------------------------------------------|
| Base Feature:                           | Name: Extrusion          | Dimension: Length                                 |
| Sketch:                                 | Name: FilterSketch       | Dimension:<br>NominalDiameter                     |
| Configuration<br>Specific<br>Properties | Name: Pipe<br>Identifier | Value: <pipe description=""></pipe>               |

Note

It is important to note that tubing and tubing components must use the term "pipe", not "tube", in these instances.

### 1 New Part.

Open a new inch part and edit the material to be **Plastics**, **PVC Rigid**.

Ø.840 (OuterDiameter)

### 2 Sketch.

3 Extrusion.

Length.

4

Create a new sketch on Front Plane (or Plane1), naming it PipeSketch. Create concentric circles as shown and name the dimensions OuterDiameter and InnerDiameter as shown.



Ø.500 (NominalDiameter)

Add a new sketch on the front face, naming it FilterSketch. Add a construction circle and a dimension named NominalDiameter.

### 5 Configuration Specific Properties.

There are **Configuration Specific Properties** that may be assigned to the part through **File**, **Properties**. These properties will be transferred to the design table.

Add the following properties and values as shown below:



Note

In order to be recognized as a pipe component, only the Pipe Identifier property is required, but all descriptions should be carried with the library part.

Again, it is important to note that even a *Tube* part needs the property called Pipe Identifier.



### **Close Design Table.**

Click outside the design table to close it. The design table changes will be saved.

### 9 Edit Table.

Right-click the design table icon and **Edit Table**. Add the selected **Parameters** selected to the table.

| The following configurations or parameters have b<br>added to the model since you last edited the desig<br>table. | jn<br>Jin |                                       |                            |                  |                                |                         |       |        |     |                     |                            |                      |   |   |
|-------------------------------------------------------------------------------------------------------------------|-----------|---------------------------------------|----------------------------|------------------|--------------------------------|-------------------------|-------|--------|-----|---------------------|----------------------------|----------------------|---|---|
| table.                                                                                                            | sign      | D                                     |                            | D                |                                |                         |       |        |     |                     |                            |                      |   |   |
|                                                                                                                   |           | D Table                               | for: F                     | Dine             | <b>E</b>                       | г                       |       | G      |     |                     | п                          |                      | J |   |
| Parameters<br>\$PRP@Pipe Identifier<br>\$PRP@SWbompathno<br>\$PRP@Weightperfoot                                   | Ī         | 9<br>9<br>90 OuterDiameter@PipeSketch | S InnerDiameter@PipeSketch | Length@Extrusion | O NominalDiameter@FilterSketch | S \$PRP@Pipe Identifier | Pipe, | 0.5in, | Sch | 5 \$PRP@SWbompartno | 0.<br>\$PRP@Wall Thickness | 9 SPRP@Weightperfoot |   |   |
| Show unselected items again                                                                                       |           | Sheet1                                | _                          |                  |                                |                         |       |        |     |                     |                            |                      |   | 1 |

### 10 Add new configurations.

While editing the table, replace the name Default on the first configuration and add three new ones as shown. Copy and paste where appropriate.

|     | A                    | В                        | С                        | D                | E                            | F                     | G                         | H                               |                     | J |
|-----|----------------------|--------------------------|--------------------------|------------------|------------------------------|-----------------------|---------------------------|---------------------------------|---------------------|---|
| 1   | Design Table for: PV | 'C Pipe                  |                          |                  |                              |                       |                           |                                 |                     |   |
| 2   |                      | OuterDiameter@PipeSketch | InnerDiameter@PipeSketch | Length@Extrusion | NominalDiameten@FilterSketch | \$PRP@Pipe Identifier | \$PRP@Swbompartno         | <pre>\$PRP@Wall Thickness</pre> | \$PRP@Weightperfoot |   |
| 3   | Pipe, 0.5, Sch 40    | 0.84                     | 0.6                      | 1                | 0.5                          | 0.5in, Schedule 40    | Pipe, 0.5in, Sch 40, PVC  | 0.109                           | 0.16                |   |
| 4   | Pipe, 0.75, Sch 40   | 1.05                     | 0.8                      | 1                | 0.75                         | 0.75in, Schedule 40   | Pipe, 0.75in, Sch 40, PVC | 0.113                           | 0.21                |   |
| 5   | Pipe, 1.0, Sch 40    | 1.315                    | 1.03                     | 1                | 1                            | 1.0in, Schedule 40    | Pipe, 1.0in, Sch 40, PVC  | 0.133                           | 0.32                |   |
| 6   | Pipe, 1.25, Sch 40   | 1.66                     | 1.36                     | 1                | 1.25                         | 1.25in, Schedule 40   | Pipe, 1.25in, Sch 40, PVC | 0.14                            | 0.46                |   |
| 7   |                      |                          |                          |                  |                              |                       |                           |                                 |                     | L |
| ( ( | ▶ N \Sheet1 /        |                          |                          |                  |                              |                       | ◀                         |                                 |                     |   |

# PEDRO LUIS RUIZ



### 1 Elbow sketch.

Open a new part file with inch units.

Create a new sketch on Front Plane, naming it ElbowArc. Add construction lines and a centerpoint arc as shown. Fully define the sketch and name the dimensions BendAngle and BendRadius.

Set the angle to **90** degrees before closing the sketch.



### 2 Route sketch.

Add a new plane using **Normal to curve** at the end of the arc. Create a new sketch named Route for the cross section of the elbow. Add the Diameter and ID dimensions as shown.



Profile/Ro

Path(ElbowArc)



along the **Path** ElbowArc.

Sweep

Profile and Path

V) 🗶 🕐

4 Hub.

Create a new feature named HubA that includes a concentric circle of diameter **1.197in** that is extruded to a height (depth) of **0.247in**.





Tip

Add the points first, then connect them with vertical and horizontal construction lines to fully define the location of the third point.

**Routing Points** Routing points, which include Connection Points (CPoints) and Route Points (**RPoints**), are used to determine several details of the route. **CPoints** determine where the routing ends, the direction that it enters or exits the fitting, and the nominal diameter of the pipe, tube, or cable. **RPoints** are used for placement of fittings on a route line sketch endpoint. Tip CPoints and RPoints can be renamed to suit your design. Add Connection Points. 9 - Connection Point Add a **CPoint** by selecting the  $(\checkmark)(\aleph)(?)$ face and sketch point. Selection Set Route type to Fabricated  $\bigcirc$ Pipe. L Fabricated Pipe -Set the Nominal diameter to Reverse direction 0.5". Parameters Ø 0.500in Specification field name Specification Specification value: Add another CPoint at the lower connection point. Doubleclicking the feature displays the nominal diameter at the connection point. Click View, Routing Points to see the CPoint and Rpoint symbols.





### 1 New part and Sketch.

Create a new part file with units inches and sketch using centerlines for symmetry. Use the dimension names as shown.



3 Route Points. - Connection Point Create points in a  $(\mathbf{v})(\mathbf{x})(\mathbf{?})$ sketch and add Selections . CPoints and an Face <1> Point14@Sketch3 RPoint as shown. Set type to L Fabricated Pipe • Fabricated Pipe. E Reverse direction Parameters . Set the **Nominal** <u>RPoint1</u> 🕗 0.50in CPoint2 diameter to 0.5 Specification field name: for each connection point. Specification value: C This configuration All configurations

Note

If this were a tubing connector, the CPoints would be designated as type **Tubing**. For electrical, the designation would be **Electrical**.

### 4 Add properties.

Add the configuration specific properties shown below.

|   | Property Name | Туре | Value / Text Expression      | Evaluated Value        |
|---|---------------|------|------------------------------|------------------------|
| 1 | SWbompartno   | Text | Coupling, 0.5in, Sch 40, PVC | Coupling, 0.5in, Sch 4 |
| 2 |               |      |                              |                        |
|   |               |      |                              |                        |
|   |               |      |                              |                        |
|   |               |      |                              |                        |
|   |               |      |                              |                        |
|   |               |      |                              |                        |
|   |               |      |                              |                        |
|   |               |      |                              |                        |
|   |               |      |                              |                        |
|   |               |      |                              |                        |
|   |               |      |                              |                        |
|   |               |      |                              |                        |
|   |               |      |                              |                        |
|   |               |      |                              |                        |
|   |               |      |                              |                        |
|   |               |      |                              |                        |

### 5 Populate the Design Table.

|            | A                     | B                              | C                | D                | Е                  | F               | G              | Н              | - I            |
|------------|-----------------------|--------------------------------|------------------|------------------|--------------------|-----------------|----------------|----------------|----------------|
| 1          | Design Table for: PVC | Coupling                       |                  |                  |                    |                 |                |                |                |
| 2          |                       | \$PRP@Swbompartho              | Diameten@CPoint1 | Diameter@CPoint2 | ConnLength@Sketch1 | ConnGap@Sketch1 | ConnOD@Sketch1 | ConnID@Sketch1 | PipelD@Sketch1 |
| 3          | 0.5 in, Sch 40, PVC   | Coupling, 0.5 in, Sch 40, PVC  | 0.5              | 0.5              | 1.4                | 0.09375         | 1.042          | 0.852          | 0.63           |
| 4          | 0.75 in, Sch 40, PVC  | Coupling, 0.75 in, Sch 40, PVC | 0.75             | 0.75             | 1.795              | 0.09375         | 1.29           | 1.064          | 0.834          |
| 5          | 1.0 in, Sch 40, PVC   | Coupling, 1.0 in, Sch 40, PVC  | 1                | 1                | 1.84               | 0.09375         | 1.53           | 1.33           | 1.059          |
| 6          | 1.25 in, Sch 40, PVC  | Coupling, 1.25 in, Sch 40, PVC | 1.25             | 1.25             | 1.97               | 0.09375         | 1.91           | 1.667          | 1.392          |
| 7          |                       |                                |                  |                  |                    |                 |                |                |                |
| <b>I</b> • | ♦ H\Sheet1 /          |                                |                  | •                |                    |                 |                |                |                |

| Note         | You may see other parameters entered into the table by default. These can be added, removed or customized:                                                                             |  |  |  |  |  |  |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|              | <ul> <li>D1@Revolve1</li> <li>This is the revolve angle of the base feature (360 degrees) and does not need to be configured.</li> </ul>                                               |  |  |  |  |  |  |
|              | MinStraightLength@CPoint1<br>This is the minimum length of pipe/tube used to start a route, in<br>order to avoid excessive strain (default varies with configuration<br>and size).     |  |  |  |  |  |  |
|              | <ul> <li>EndLengthAdjustment@CPoint1<br/>This is an additional length that can be added to the pipe/tube to<br/>allow for end treatments such as swaging (default is zero).</li> </ul> |  |  |  |  |  |  |
| Flange Parts | <b>Flange Parts</b> are used at the start or end of the route and are generally used for connections to equipment. Flange parts contain only one routing point, a CPoint.              |  |  |  |  |  |  |
|              | In this example, a PVC flange will be created from an existing part.                                                                                                                   |  |  |  |  |  |  |
| 1<br>P       | <b>Open Flange.sldprt.</b><br>Open the existing part Flange.                                                                                                                           |  |  |  |  |  |  |
## 2 Connection Point.

Add a point and **Fabricated Pipe** CPoint inside the bore, diameter **0.5in**.

For a tubing flange, you would add a **Tubing** type CPoint.

## 3 Set properties.

Add the configuration specific property SWbompartno Flange, 0.5in, Sch 40, PVC to the default configuration.



# 4 Design Table.

Insert a design table, as shown below.

|    | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | В                           | С              | D               | Е              | F                | G                    | Н                | 1              | J              | K                | L  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------|-----------------|----------------|------------------|----------------------|------------------|----------------|----------------|------------------|----|
| 1  | Design Table for: Flange                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | qe                          |                |                 |                |                  |                      |                  |                |                |                  |    |
| 2  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$PRP@SWbompartno           | BaseOD@Sketch1 | BaseTh@Extrude1 | ConnOD@Sketch3 | ConnHgt@Extrude2 | BoltPattDiam@Sketch4 | HoleDiam@Sketch4 | PipeOD@Sketch6 | PipelD@Sketch7 | Diameter@Cpoint1 |    |
| 3  | 0.5in, Sch 40, PVC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Flange, 0.5in, Sch 40, PVC  | 3.5            | 0.5             | 1.22           | 0.97             | 2.375                | 0.56             | 0.84           | 0.6            | 0.5              |    |
| 4  | 0.75in, Sch 40, PVC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Flange, 0.75in, Sch 40, PVC | 3.875          | 0.53            | 1.44           | 1.06             | 2.75                 | 0.56             | 1.05           | 0.8            | 0.75             |    |
| 5  | 1.0in, Sch 40, PVC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Flange, 1.0in, Sch 40, PVC  | 4.25           | 0.66            | 1.75           | 1.19             | 3.125                | 0.59             | 1.315          | 1.03           | 1                |    |
| 6  | 1.25in, Sch 40, PVC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Flange, 1.25in, Sch 40, PVC | 4.625          | 0.66            | 2.1            | 1.69             | 3.5                  | 0.59             | 1.66           | 1.36           | 1.25             |    |
| 7  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |                |                 |                |                  |                      |                  |                |                |                  | -  |
| 14 | ♦ ► ► ► Sheet1 / |                             |                |                 | •              |                  |                      |                  |                |                |                  | ۱I |

5 Mate Reference. Add a Mate Reference on the rear edge of the part

as shown. 6 Save.

# Save as PVC

Flange and add it to the Design Library.

Primary Reference Entity

Edge <1>

Default

Any

Secondary Reference Entity

Tertiary Reference Entity

-

Mate Reference

Reference Name

Default

 $(\mathbf{V})(\mathbf{X})(\mathbf{?})$ 

# Assembly Fittings

Routing "part" fittings that are actually assemblies can be created for use through the Assembly Palette. These assemblies must contain routing points at the assembly level based on routing points in the component parts.

|                                  | 1 | Open valve assembly.<br>Open the PVC Ball Valve<br>assembly. It consists of three<br>components:<br>PVC Valve Body,<br>PVC Valve Stem, and<br>PVC Valve Handle.                                                                                                                                                            |
|----------------------------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                  | 2 | Routing Parts.<br>One part in the assembly is a<br>routing part. The PVC Valve<br>Body contains the required<br>Routing Points: Fabricated pipe<br>CPoints and RPoint.                                                                                                                                                     |
|                                  |   | The remaining parts are components in the assembly but contain no routing information.                                                                                                                                                                                                                                     |
| Note                             |   | Two parts in the assembly contain multiple configurations: the PVC Valve Body and PVC Valve Stem. These component contain compatible configurations for both a 0.75" route and a 0.50" route.                                                                                                                              |
| Assembly-Level<br>Routing Points |   | Using the routing points embedded in the component parts, you can add<br>assembly-level routing points. <b>ACPoints</b> are used to locate the ends of<br>the route line, in this example where the pipe part is cut by the<br>assembly component. <b>ARPoints</b> are used to locate the assembly on the<br>route sketch. |
|                                  | 3 | View points.<br>Click View, Routing Points to see the<br>embedded CPoints and RPoint.                                                                                                                                                                                                                                      |

\* Point2 \* Point1 \* Point1



Repeat the procedure for the other CPoint of the PVC Valve Body, this time selecting the CPoint from the FeatureManager.

5 Assembly Route Point.

Add an assembly-based route point using the route point of the Valve Body component. It appears as the feature ARPoint1.

6 Configurations.

If the assembly is being used for multiple route diameters, multiple configurations must be used. The proper part configurations for each



assembly configuration should be selected through a design table.

| Ĩ             |   | A                                | В                                | С                                | D 🔽    |
|---------------|---|----------------------------------|----------------------------------|----------------------------------|--------|
|               | 1 | Design Table for: PVC Ball Valve |                                  |                                  |        |
|               | 2 |                                  | 6CONFIGURATION@PVC Valve Body<1> | SCONFIGURATION@PVC Valve Stem<1> |        |
|               | 3 | Ball Valve, 0.5in, Sch40, PVC    | Valve Body, PVC, 0.5in, Sch40    | Valve Stem, PVC, 0.5in, Sch40    | I      |
| -             | 4 | Ball Valve, 0.75in, Sch40, PVC   | Valve Body, PVC, 0.75in, Sch40   | Valve Stem, PVC, 0.75in, Sch40   |        |
|               | 5 |                                  |                                  |                                  |        |
| _ <u> </u>  4 | • | ► N \Sheet1 /                    |                                  | <b>↓</b>                         | ► [] - |

### 7 Add to Design Library.

Drag and drop the top level assembly icon into the Design Library.











# 000 routing

#### Note

Saving an assembly this way does not save the reference parts in the same location. To be safe, the part files should be copied to the Palette Assembly folder using **File**, **Find References...**, or Windows Explorer. In this way, should the original part files be moved or deleted, the assembly will find the parts in the local folder.

If not saved onto the Palette, the assembly can still be added easily to a route assembly using **Add Fitting**.



| Exercise 1:<br>Auto routing<br>with Tubes | Create multiple route<br>assembles using tub-<br>ing library parts.                                                                               |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
|                                           | This lab uses the following skills:                                                                                                               |
|                                           | <ul> <li>Setting route<br/>options and route<br/>properties.</li> <li>Auto routing.<br/>Units: inches</li> </ul>                                  |
| Setup                                     | Setup SolidWorks Routing to use a different library, in this example the included tubing library.                                                 |
|                                           | 1 Routing options.<br>Click Tools, Options, System Options, Routing and set the Library<br>folder to training design library\routing\tubing.      |
|                                           | 2 Design library settings.<br>Click Tools, Options, System Options, File Locations and add the<br>training design library folder.                 |
| Creating the<br>Routes                    | The route is added to an existing assembly that contains some components to start and stop it.                                                    |
|                                           | 3 Open Tubing Lab.<br>Open the existing assembly<br>Tubing Lab. It contains<br>sketches and 6<br>solidworks-<br>lok_male_connector_t<br>fittings. |
|                                           | 4 Routing Points.<br>Click View, Routing Points to<br>display the routing points.                                                                 |
|                                           | 5 Initial tube route.<br>Create Tube Route A using a 0.5in tube-ss_t tube with radius 0.5in.                                                      |





# Exercise 2: **Multiple Piping** Routes

Add to this assembly to create multiple piping routes and associated pipe fittings.

This lab uses the following skills:

- Auto routing for piping.
- Creating multiple piping routes.
- Add branch lines and tee fittings.
- Add inline fittings like valves and unions.
- Create piping drawings.

# Units: inches



x

# Procedure

Open an existing assembly.

### 1 Settings.

Under **Tools**, **Options**, **System Options**, **Routing** use the Library folder \\training design library\routing\piping.

## 2 Open Multiple Routes.

Open the Multiple Routes assembly. It contains tank components placed to start and end piping routes.

Select a Configuration

Select a configuration to be used

WNeck Flange 150-NPS0.5

### Adding the first route

Add the first piping route.

# 3 Add Flange.

Drag and drop a welding neck flange fitting onto the flange of Feeder Tank <1>. Use the configuration WNeck Flange 150-NPS2 for the 2" version.

#### Route name. 4

Name the route Route# 1 and use the default route assembly template.



### 5 Route properties.

Use the following settings for the route properties. The source library files are in piping/threaded fittings (npt).

Pipe

Select threaded steel pipe with the 2in Sch 40 configuration.

Elbow

Click Always use elbow and select threaded elbow--90deg with the CLASS 2000 THREADED ELBOW, 2.00 IN configuration.

### 6 Pipe name.

Exit the route sketch using right-click **Exit Sketch**. When saving the pipe configuration, use the default naming convention 2in Schedule40-Route# 1.

## Ending Route Line

Creating multiple route lines in the same route assembly can be used to represent the start and end of a route. Having the start and end lines makes it possible to use the **Auto Route** function.

### 7 Add fitting to existing route.

Drag and drop another welding neck flange onto the flange of the Holding Tank<1>

component. At the **Start Route** 



dialog, click **Cancel**. Click **OK** to insert the component into the assembly.

### 8 Edit Route.

Right-click on the Route# 1 sub-assembly or the Route1 feature in the active sub-assembly and choose **Edit Route**. This action puts edits the 3D Sketch of the route feature.

Profesor:

**EDRO LUIS RUIZ** 



Exercise 2



### **13 Add Route #2.** Using the same procedure, create Route #2 with the same settings. Use Auto Route to connect the open endpoints in this solution.



14 Add fitting. Right-click Exit Sketch and add another welding neck flange to the route. Again, cancel the new route and place the fitting in the assembly.

15 Add to route. Use Add to route to create a line from the new flange. Use Split Entities to break the line above it.

rot

**U12** 

Exercise 2



### Adding Assembly Fittings

Add an assembly fitting (valve) to the route.

### 17 Add valve.

Use **Split Entities** to break the new riser near the midpoint. Drag the 2incontrolvalve from the assembly fittings/ valves folder and drop it.

18 Editing the sketch. Follow the same procedure to create Route #3 Use the auto route solution that R2 3/8'' includes a 45° angle as R1 11/16' shown. Fully define 45° and exit the Elbow sketch.



**Properties** to change the DESCRIPTION column to one that uses the

Tip





23 Save and close the files.



# Exercise 3: Creating Library Parts

Edit this part and create a library part for use in another lab.

This lab uses the following skills:

- Adding reference geometry.
- Creating CPoints and RPoints.
   Adding parts to the Design Library.

Units: inches



O)

 $\bigcirc$ 

This Exercise illustrates the routing of electrical conduit as piping. Currently it is not possible to route electrically through conduit.

(0

0)

Function

Note

The library part is an electrical box that is placed inline on the route. It is placed at a common endpoint on the route line and cuts the pipe back in two places.

The lower image shows the section view of the part and pipe line.

rofes

### Procedure

Open an existing part.

### 1 Open PVC Inline Box.

Open the PVC Inline Box part. It is an imported solid model.

### 2 Add point. Sketch on the inner face as shown. Add a point that is Concentric to the circular

edges.



EDR

Repeat the procedure on the opposite side creating another concentric point.

Profes



### 6 Cpoints and Rpoint.

Create CPoints using the points and faces used to create the points. Use the settings for **Fabricated Pipe** and **Nominal Diameter 0.5**". Create one Rpoint using the point between the CPoints.



# **Exercise 4**: **Using Library Parts**

Create a route assembly using a set of PVC library parts, including one created in the previous lab, Exercise 3: Creating Library Parts on page 123.

This lab uses the following skills:

- Setting route options and route properties.
- 3D sketching.
- Adding library parts to the route.

Units: inches



Library folder

g\training design library\routing\piping\PVC

### Setup

1 **Routing options.** Click Tools, Options, System Options, Rou PVC

| I                     | Routing and set the Library folde                                                                             | <b>r</b> to                                                                                 | Component and route defaults —<br>greate custom fittings<br>Create pipes on open line sec<br>Automatically create sketch fi<br>Automatically route on drop of<br>Enable minimum bend radius of<br>Enable minimum bend radius of | jments<br>illets<br>of clips<br>check<br>check for wire: |
|-----------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
|                       |                                                                                                               |                                                                                             | Connection and route points                                                                                                                                                                                                     |                                                          |
|                       |                                                                                                               |                                                                                             | Slack Percentage: 0                                                                                                                                                                                                             |                                                          |
| 2 [<br>()<br>()<br>() | Design library settings.<br>Click Tools, Options, System<br>Options, File Locations and add<br>he PVC folder. | Show folders for<br>Design Library<br>Folders:<br>touting\training of<br>outing\training of | :<br>design library<br>design library\routing\piping\PVC                                                                                                                                                                        | Add<br>Dglete<br>Move Us                                 |
|                       |                                                                                                               |                                                                                             |                                                                                                                                                                                                                                 | Move Dou                                                 |

#### Starting the Route The route is added to an existing assembly that contains some components to start and stop it.

# 3 Open PVC Assembly.

Open the existing assembly PVC Assembly.



### 3D Sketching

Use 3D sketching to create the route.



From the starting line, add the lines shown at right in the 3D sketch.



### Adding fittings

Note

Add inline and terminal fittings to the route.

All pipes and route fittings (library part components) are 0.5in, Schedule 40 configurations.



Note

If you did not complete the previous lab *Exercise 3: Creating Library Parts* on page 123, use PVC Inline Box\_&.

# PEDRO LUIS RUIZ

# Lesson 10 Electrical Routes

Upon successful completion of this lesson, you will be able to:

- Route wires and cables using Auto Route and hardware.
- Add wire data to a route subassembly.



# Electrical Routes

**Electrical Routes** use electrical components and an optional cable / wire library to form wire and harness route sub-assemblies. In their simplest form, electrical routes are much like flexible tubing routes. However, Electrical Harnessing and Cable Detailing adds the ability to specify individual pins, wire types and colors, wire coverings and other attributes. Harnessing will be covered in depth in *Lesson 11: Importing Electrical Data and Electrical Harnessing*.

Electrical routes also differ from tubing and piping routes in that there is no source SolidWorks part file for the wire, as there is for a tube or pipe.

Instead, electrical routes may use an optional cable / wire library file. The cable / wire library defines the attributes of wires and cables, and is in .xml format, but may be imported from Excel format. With no cable / wire library specified, the route uses a generic wire or cable part representation.

Other elements of electrical routing:

- Routing Hardware, which includes clips, clamps and brackets, as well as ring terminals and other simple connectors. These help to define the start and end points, the path of the route around other components, and are useful in auto routing.
- A **Component Library** file cross-references the components in a from-to list (see below) to the SolidWorks part documents for those components. The component library file is also in .xml format (importable from Excel). Component libraries will be covered in more depth in *Lesson 11: Importing Electrical Data and Electrical Harnessing*.
- A **From-To List** defines component and pin connection data for a route. You can generate a From-To list manually, or use a third-party schematic program that generates the electrical connection data. From-To lists are in Excel format. From-To lists will be covered in more depth in *Lesson 11: Importing Electrical Data and Electrical Harnessing.*

# Basic Electrical Routing

Basic electrical routing is very similar to tube routing. Wires can be routed manually or automatically, orthogonally or flexibly. Clips can aid in route placement.

# 1 Open assembly Signal control system.

The assembly includes an enclosure, a circuit board assembly, and some pre-placed wire clips.



## Electrical Connection Points

There are some unique properties of Connection Points (CPoint) for electrical route connectors:

- The Nominal diameter of an electrical CPoint defines the maximum diameter of cable or wire bundle that the connector can take.
  - The **Conductor split length** adds to the cut length of the cable to allow for strip back, termination, and so on.
- **2d Schematic pin id** assigns identification information for the pin if the connection point is for one pin in a multi-pin connector. If the connection point is for multiple pins, leave blank.

# 2 The ring terminal.

In the Design Library, under routing\electrical, locate ring\_term\_18-22\_awg-x\_6. Right click on it, and select **Open**.



# 3 Edit CPoint.

Right-click the CPoint, and select **Edit Feature**. As with other CPoints, it references a point sketch and a planar face.

# 4 Electrical Parameters.

The **Nominal diameter** sets the maximum allowable wire diameter for this connector at **0.70**"

The **Conductor split length** is set at **0.3937**" (10 mm). A wire connected to this terminal will have this value added to its calculated length.



This is a single wire connector, so there is no reason for a Schematic pin id. For connectors with multiple contacts or pins, it may be desirable to add a CPoint for each and index them for individual wire assignments.

Exit CPoint properties and close this part file.

#### 5 View Orientation.

Orient the assembly model to the view called Wire route 1.

### 6 Locate the 2 washers.

On the side panel closest to the circuit board, and on the edge of the circuit board itself, there are two washers mated to small holes. We will add a ground wire between these two contact points.

Drag one of these terminals onto the circuit

board. When dragged over the washer, the pin-



in-hole cursor appears, indicating a concentric mate reference. Drop the terminal onto the washer. The **Start Route** dialog appears.

### 7 Create and save the route.

Accept the default route sub-assembly name to start the route.

# Electrical Route Properties

The Properties dialog for an electrical route differs from that of other route types:

■ Sub-type

Harness: A route with a bundle of wires or cables.

Cable/Wire: A route with a single cable or wire.

OD

Set the route outside diameter. Can not exceed the **Nominal Diameter** assigned to the CPoint.

Fix diameter

Sets the route diameter to the value set in OD. Clear to enable diameter updates based on the diameters of the cables and wires that you route. Generally, this option should be left *unchecked*.

See **SolidWorks Routing Help Topics** in the **Help** menu for more information.

# 8 Properties.

In the Route Properties dialog, select subtype **Cable/Wire**, and set the OD to **1.5mm**.

Make sure **Fix diameter** is unchecked.

While the Route Properties dialog is still displayed, the orientation of the ring terminal can be adjusted. Select it and drag

the barrel so that it exits to the right, off the board. Click OK.

# 9 Auto Route dialog.

The Auto Route dialog launches; If we had a predetermined route for this wire, we could use existing clips or terminal connections, or drop clips from the Design Library, to Auto Route. Click **OK** to close this dialog.

### 10 Save the wire.

We will need another terminal connector. Exit the route sketch, and save the wire part as it currently exists.

### 11 Drop another connector.

While still editing the route sub-assembly, drop

a different ring terminal on the other washer.

This time use ring\_term\_awg-14-

16\_awg-x 8 (the blue one).

Cancel the Insert Component dialog.

Rotate the connector so that the wire exits down.





#### 12 Edit the route.

Right click Route1 in the tree and select Edit Route.

#### 13 Add to route.

Right click the CPoint of the new connector and select Add to route.

#### 14 Auto Route.

Extend both wire segments to about the length of the strain relief. Right-click on one of the endpoints, and select **Auto Route**. Select the endpoint of the other wire segment to route to it.



The system auto routes a spline between the terminals. **OK** the Auto Route dialog, and exit the sketch.



### 15 Modify sketch.

Our wire bows through the bottom of the box, so will need some modification. Edit the sketch again.

Profesor:

Section view is very handy for the next step.



Tip



### 16 Spline point.

Add a spline point to manipulate the spline. Drag it back inside the box.



### 17 Branching.

Let's assume there is another component, to be added later, that also needs a ground connection.

While still editing the sketch, return to the Wire route 1 view.

### 18 Add split point.

Right click on the route, and select **Split Entities**. Click on the spline near its midpoint. Right click, and return to **Select** mode.

Profesor:

LI

JIS



Lesson 10 Electrical Routes

### 19 Add connector.

From the Design Library, drag and drop another ring terminal ring\_term\_18-22 awg-x 6 (red) into the assembly.

Answer **Yes** to the prompt.



Note

When a routing connector is added while editing a routing sketch, it is added to the route automatically.

### 20 Make the connection.

Right-click on the new connector's route line endpoint, and select **Auto Route**.

Route to the split point on the spline. A connecting route wire segment is added.

Close the sketch and save the assembly.

When the component is later added, the route sub-assembly can be edited, this connector mated to the component, and the route wire will update.



| Adding Wire<br>Information  | The route has been formed, but we know very little about the wire<br>itself. What is its gage and color, is it stranded or solid? Does it have a<br>protective covering of any kind?                                        |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             | Using the Wire Library, we can assign a standard wire to the route and add other information as well.                                                                                                                       |
| The Cable / Wire<br>Library | The Cable / Wire Library file contains data on the available wires. It can easily be generated in Microsoft Excel format and imported into the assembly as a .xml file.                                                     |
| Note                        | SolidWorks Routing has a default cable / wire library (cable.xml)<br>located in the design library\routing\electrical folder.<br>For this exercise we will use a comparable file located in the Training<br>Design Library. |
|                             | The cable / wire library file, including importation of a custom file, will be covered in more depth in <i>Lesson 11: Importing Electrical Data and Electrical Harnessing</i> .                                             |
|                             | See <b>SolidWorks Routing Help Topics</b> in the <b>Help</b> menu for more information on the wire library and Excel file column format.                                                                                    |

### 21 Open the library.

From the Electrical toolbar, click Cable / Wire Library 💽 .

**Browse** to \\training design library\

routing\electrical and select cable.xml and Open.

In the menu, select **Wire Library** from the list. The available wires are displayed.

| Cable/Wire Library                                                                             |           |            |             |             |     |       |         |                 | <u>? ×</u>   |
|------------------------------------------------------------------------------------------------|-----------|------------|-------------|-------------|-----|-------|---------|-----------------|--------------|
| C:\SolidWorks 2005 Training Files\Routing\training design library\routing\electrical\cable.xml |           |            |             |             |     |       |         |                 | Browse       |
| Ŷ                                                                                              | Wire List |            |             |             |     |       |         |                 |              |
|                                                                                                | ID        | Name       | Part Number | Description | OD  | Color | SWColor | Min Bend Radius | Save         |
|                                                                                                | 1         | 20g yellow | 9982        | 20g yellow  | 1mm | Y     |         | 1mm             |              |
|                                                                                                | 2         | 20g white  | 9983        | 20g white   | 1mm | W     |         | 1mm             | Save As      |
|                                                                                                | 3         | 20g red    | 9984        | 20g red     | 1mm | B     |         | 1mm             |              |
|                                                                                                | 4         | 20g blue   | 9985        | 20g blue    | 1mm | В     |         | 1mm             |              |
|                                                                                                |           | -          |             | -           |     |       |         |                 | OK<br>Cancel |

Click OK.

#### 22 Edit the route.

In order to add actual wire data to this route, we need to first edit the route.

# **Edit Wires**

After you define paths between connectors in the route sub-assembly, you can associate cable/wire data with the paths. The route diameter updates to reflect the diameter of the cables or wires you select for each path.

Where to find it:

While editing a route,

- From the Electrical toolbar, click Edit Wires 📚
- From the main menu, select Electrical, Edit Wires....

See **SolidWorks Routing Help Topics** in the **Help** menu for more information.

# PEDRO LUIS RUIZ



28 The other wire. Repeat for the second wire, this time choosing the path from the chassis to the "floating" ring terminal. Click **OK**.



### 29 Edit wires data.

The Edit wires dialog now displays some valuable information:

- The lengths of each wire
- The wire specification (part number, as supplied in the cable / wire library)
- The From- and To- component names

There are no "pins" in these connectors, but if there were we could also specify pins for each wire.

Click **OK**, then exit the sketch.



Lesson 10 Electrical Routes

### 30 Updated display.

The display of our route has now updated with this new information.

The two single wires display as blue, and the proper size of 1mm diameter, per the specification.

The grouped, parallel run of the wires to the chassis is displayed as a generic gray color, and is noticeable larger in diameter.






## Lesson 11 Importing Electrical Data and Electrical Harnessing

Upon successful completion of this lesson, you will be able to:

- Import wire and component libraries, and assign to routes
- Import a From To list, and assign to wires to contacts
- Generate a route from available data, with assorted hardware.
- Create a Harness Drawing



| Harnessing                   | <b>Harnessing</b> is the term given to the process of routing a bundle of wires or cables. A harness often involves branches to several different components and connection points. In the simplest terms, cable and wire routing refers to a single cable or wire, harnessing refers to more than one, and includes complete electrical data and a detailed Harness Drawing. |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Importing<br>Electrical Data | Electrical routes may use an optional cable / wire library, component<br>library, and from - to list files, to specify vital electrical connection<br>criteria. This electrical data would typically be supplied to the designer<br>by the electrical engineer.                                                                                                               |
|                              | ■ The <b>Cable / Wire Library</b> file consists of a table listing the wires available for any design or even in an entire plant inventory. The data in the table includes information such as part number, wire name, description, diameter, size (gage), and color.                                                                                                         |
| Note                         | SolidWorks supplies a default cable / wire library called cable.xml, located in the electrical directory.                                                                                                                                                                                                                                                                     |
|                              | • The <b>Component Library</b> file is a similar table of connector components required for the route assembly. It includes information such as the part number, the maximum cable/wire/segment diameter for the connector, the part file location (path), its usage configuration, and a general description.                                                                |
| Note                         | SolidWorks supplies a default component library called components.xml, located in the electrical directory.                                                                                                                                                                                                                                                                   |
|                              | The From - To List file is yet another table, with the data that assigns wires in the bundle to their respective pins on the appropriate connectors. It consists of data such as wire name, wire spec (part number), and connector and pin "from" and "to" designations. See from-to.xls in the Lesson 11 Case Study folder.                                                  |
| Note                         | The Excel data files can contain many more columns of data, but they will not be used in routing.                                                                                                                                                                                                                                                                             |
| P                            | EDRO LUIS RUIZ                                                                                                                                                                                                                                                                                                                                                                |

#### Cable / Wire Library

The Cable / Wire Library file contains data on the available wires.

See **SolidWorks Routing Help Topics** in the **Help** menu for more information.

#### 1 Open cables-wires.xls in Microsoft Excel.

The cable / wire library file is located with the other files in the Lesson 11 folder for this lesson.

This Excel files contains information about the wires available to be used in our assembly.

For the sake of simplicity, this library has been limited just to little more than those wires that we will use in this example.

LUIS RUI7

| Partno          | Wirename     | Cablename       | Description  | Outer Diameter | Min Bend Radius | Size         | NoOfCores | Color  | DispColor | /cable/core/conductorOD/@value | /cable/core/conductorOD/@value/#agg |
|-----------------|--------------|-----------------|--------------|----------------|-----------------|--------------|-----------|--------|-----------|--------------------------------|-------------------------------------|
| 9978-20GST-BRN  | AWM 1061-35  |                 | 20g Stranded | 0.001422       | 0               | 20g Stranded |           | brown  | brown     |                                |                                     |
| 9978-20GST-R    | AWM 1061-36  |                 | 20g Stranded | 0.001422       | 0               | 20g Stranded |           | red    | red       |                                |                                     |
| 9978-20GST-ORNG | AWM 1061-37  |                 | 20g Stranded | 0.001422       | 0               | 20g Stranded |           | orange | orange    |                                |                                     |
| 9978-20GST-Y    | AWM 1061-38  |                 | 20g Stranded | 0.001422       | 0               | 20g Stranded |           | yellow | yellow    |                                |                                     |
| 9978-20GST-GRN  | AVVM 1061-39 |                 | 20g Stranded | 0.001422       | 0               | 20g Stranded |           | green  | green     |                                |                                     |
| 9444            |              | UL AWM 2464 - 4 | stranded PVC | 0.005512       | 0               |              | 4         |        | white     |                                |                                     |
|                 | line 1       | UL AWM 2464 - 4 | core1        | 0.0016         | 0               | 20 AWG       |           | black  |           | 0.0016                         | 0.0016                              |
|                 | line 2       | UL AWM 2464 - 4 | core2        | 0.0016         | 0               | 20 AWG       |           | white  |           | 0.0016                         | 0.0016                              |
|                 | line 3       | UL AWM 2464 - 4 | core3        | 0.0016         | 0               | 20 AWG       |           | red    |           | 0.0016                         | 0.0016                              |
|                 | line 4       | UL AWM 2464 - 4 | core4        | 0.0016         | 0               | 20 AWG       |           | green  |           | 0.0016                         | 0.0016                              |

Note the data. Close the Excel file.

2 Open Signal control system. sldasm. It is in the completed state from the previous lesson.

|   | Where to find it:                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|   | From the Main Menu, select <b>Electrical, Import Data,</b> Library                                                                                                                                             | Import Cable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 3 | Import the wire library.<br>Select Electrical, Import Data, Import Cable<br>Library<br>Under Import Library, select the Browse button to<br>find the file cables-wires.xls in the Lesson                       | Import Cable/Wir Import Cable/Wire Library: Import library: C:\SolidWorks 2005 Trai Cable/Wire library file                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| 4 | Set the .xml file name and location.<br>Under Cable/Wire library file, browse to the folder<br>\\training design library\<br>routing\electrical to save the .xml file.<br>Save it as cables-wires.xml.         | C:\SolidWorks 2005 Trai<br>Header Definitions (Excel):  Part number:<br>Part No<br>Cable name:<br>Cablename<br>Wire name:<br>Wire name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 5 | Header Definitions.<br>These entries must agree with column headers in the<br>Excel file for import to be successful. If more than<br>one header is possible for the same item, separate<br>with a semi-colon. | Wire/Cable Diameter:         OuterDiameter;Outer Diamet         Size:         Size         Color;         Color; colour         Display color:         DispColor         Description:         Description         Min bend radius:         Min Bend Radius                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|   | Please refer to <b>SolidWorks Routing Help Topics</b> in the more information on Excel file columns construction.                                                                                              | he <b>Help</b> menu for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|   | Click OK.                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 6 | <b>Confirmation.</b><br>The import is confirmed with a pop-up window. If the errors, they will be displayed here.                                                                                              | ere are import                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|   | The library is now in .xml format.                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 7 | <b>Open the library.</b><br>From the Electrical toolbar, click <b>Cable / Wire Librar</b><br>see the data designated as <b>Cable Library</b> .                                                                 | <b>y <u>ड</u></b> . First we                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|   | 3 4 5 7                                                                                                                                                                                                        | <ul> <li>From the Main Menu, select Electrical, Import Data, Library</li> <li>3 Import the wire library. Select Electrical, Import Data, Import Cable Library</li> <li>Under Import Library, select the Browse button to find the file cables-wires.xls in the Lesson 11 folder.</li> <li>4 Set the .xml file name and location. Under Cable/Wire library file, browse to the folder \\training design library\ routing \electrical to save the .xml file. Save it as cables-wires.xml.</li> <li>5 Header Definitions. These entries must agree with column headers in the Excel file for import to be successful. If more than one header is possible for the same item, separate with a semi-colon.</li> <li>Please refer to SolidWorks Routing Help Topics in the more information on Excel file columns construction. Click OK.</li> <li>6 Confirmation. The import is confirmed with a pop-up window. If the errors, they will be displayed here. The library is now in .xml format.</li> <li>7 Open the library. From the Electrical toolbar, click Cable / Wire Library is now in .xml format.</li> </ul> |  |  |

In the menu, select **Wire Library** from the list. The available wires are displayed. Click **OK**.

|                                       | Cable/V        | Vire Library                                                                 |                                                     |                                                         |                           |                        |                   |                                | ? ×                      |  |
|---------------------------------------|----------------|------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------|---------------------------|------------------------|-------------------|--------------------------------|--------------------------|--|
|                                       | C:\Solid       | lWorks 2005 Train                                                            | ing Files\Routing\trainin                           | g design library\routing\electr                         | ical\cables-v             | vires.xml              |                   |                                | Browse                   |  |
|                                       | ,<br>Wire List |                                                                              |                                                     |                                                         |                           |                        | Wire Lib          | rary                           |                          |  |
|                                       | ID             | Name                                                                         | Part Number                                         | Description                                             | 0D                        | Color                  | SWColor           | Min Bend Radius                | Save                     |  |
|                                       | 2              | AWM 1061-35<br>AWM 1061-36                                                   | 9978-20GST-B                                        | 20g Stranded<br>20g Stranded                            | 1.42mm<br>1.42mm          | red                    |                   | Omm                            | Save As                  |  |
|                                       | 3              | AWM 1061-37                                                                  | 3978-20GST-ORNG                                     | 20g Stranded                                            | 1.42mm                    | orange                 |                   | <u> </u>                       |                          |  |
|                                       |                | AWM 1061-38<br>AWM 1061-39                                                   | 9978-20GST-GRN                                      | 20g Stranded<br>20g Stranded                            | 1.42mm                    | green                  |                   | Omm                            |                          |  |
|                                       |                |                                                                              |                                                     |                                                         |                           |                        |                   |                                | OK                       |  |
|                                       |                |                                                                              |                                                     |                                                         |                           |                        |                   |                                | Cancel                   |  |
|                                       |                |                                                                              | 11184                                               | 10000                                                   | _                         |                        |                   |                                |                          |  |
| Component<br>Library                  |                | The Cor<br>be used                                                           | nponent Lil<br>in the route                         | orary file conta<br>assembly.                           | ains in                   | forma                  | tion o            | on the cor                     | inectors to              |  |
|                                       |                | See <b>Sol</b> informa                                                       | idWorks Ro<br>tion.                                 | outing Help T                                           | opics                     | in the                 | Help              | <b>o</b> menu fo               | r more                   |  |
|                                       | 8              | Open c<br>The con<br>11 folde                                                | onnecto<br>nector libra<br>er for this le           | rs.xls in N<br>ry file is locate<br>sson.               | <b>licros</b><br>ed wit   | h the o                | ccel.             | files in th                    | e Lesson                 |  |
|                                       |                | This Ex-<br>in our as<br>assembl                                             | cel files con<br>ssembly. Th<br>y.                  | tains informatere are just tw                           | tion al                   | oout th<br>nector      | e cor<br>s to b   | nponents<br>e used in          | to be used<br>this route |  |
| Partno Max di                         | iameter (      | Configname D                                                                 | escription                                          | Libnar                                                  | ie                        |                        |                   | Pins T                         | erminals Gauge           |  |
| Socket-6pinmindin 0.0<br>db9 male 0.0 | 005<br>005     | Default<br>Default                                                           | connector design lil<br>connector (\training        | orary\routing\electrical\S<br>design library\routing\el | ocket-6pin<br>ectrical\db | mindin.SL<br>9 male.SL | DPRT<br>DPRT 1;   | 1,2,3,4,5,6<br>2,3,4,5,6,7,8,9 |                          |  |
| Note                                  |                | Importa<br>C:\Sol<br>should b                                                | <i>nt</i> : If the tra<br>lidWorks<br>be adjusted i | ining files we<br>2005 Trair<br>now.                    | re inst<br>ning           | talled<br>File         | to a lo<br>s, the | ocation ot<br>Libnan           | her than                 |  |
|                                       |                | Close the Excel file.                                                        |                                                     |                                                         |                           |                        |                   |                                |                          |  |
|                                       |                |                                                                              |                                                     |                                                         |                           |                        |                   |                                |                          |  |
|                                       |                |                                                                              |                                                     |                                                         | _                         |                        |                   |                                |                          |  |
| Import Compone                        | nt             | Where t                                                                      | o find it:                                          |                                                         |                           |                        |                   |                                |                          |  |
| Library                               |                | From the Main Menu, select Electrical, Import Data, Import Component Library |                                                     |                                                         |                           |                        |                   |                                |                          |  |
|                                       | P              | ED                                                                           | RO 1                                                | LUIS                                                    | R                         | UI                     | Ζ                 |                                |                          |  |

#### 9 Import the component library. Select Electrical, Import Data, Import Component Library....

Under Import Library, select the Browse button to find the file connectors.xls in the Lesson 11 folder.

#### 10 Set the .xml file name and location. Under Component library file, browse to the folder \\training design library\

routing\electrical to save the .xml file. Save it as connectors.xml.

#### 11 Merge library data.

If an *existing* library .xml file is chosen, the option to merge the files together into one is given.

| Import library:                         |
|-----------------------------------------|
| C:\SolidWorks 2005 Trai                 |
| Component library file:                 |
| C:\SolidWorks 2005 Trai                 |
| Merge library data                      |
| Overwrite existing comp                 |
|                                         |
| Header Definitions (Excel):             |
| Part number:                            |
| PartNo                                  |
| Library part name:                      |
| Libname                                 |
| Configuration name:                     |
| Configname                              |
| <u>M</u> aximum Wire/Cable<br>Diameter: |
| Max Diameter                            |
| Description:                            |
| Description                             |

M Import Componen

#### 12 Header Definitions.

These entries must agree with column headers in the Excel file for import to be successful. If more than one header is possible for the same item, separate with a semi-colon.

Please refer to **SolidWorks Routing Help Topics** in the **Help** menu for more information on Excel file columns construction and file location for the SolidWorks part files.

Click OK.

#### 13 Confirmation.

The import is confirmed with a pop-up window. If there are import errors, they will be displayed here.

The library is now in .xml format.

#### 14 Open the library.

From the Electrical toolbar, click **Component Library** S. The available components are displayed. This particular library contains *only* the components we need for this lesson. Click **OK**.

| Component Library                                                                                   |                  |                          |               |             |                   |      |         |  |  |
|-----------------------------------------------------------------------------------------------------|------------------|--------------------------|---------------|-------------|-------------------|------|---------|--|--|
| C:\SolidWorks 2005 Training Files\Routing\training design library\routing\electrical\connectors.xml |                  |                          |               |             |                   |      |         |  |  |
| Component List                                                                                      |                  |                          |               |             |                   |      |         |  |  |
| ID                                                                                                  | Name             | SolidWorks Document      | Configuration | Description | Pins List         | Terr | Save    |  |  |
| 1                                                                                                   | ocket-6pinmindin | Socket-6pinmindin.SLDPRT | Default       | connector   | 1,2,3,4,5,6       |      |         |  |  |
| 2                                                                                                   | db9 male         | db9 male.SLDPRT          | Default       | connector   | 1,2,3,4,5,6,7,8,9 |      | Save As |  |  |
|                                                                                                     |                  |                          |               |             |                   |      |         |  |  |
|                                                                                                     |                  |                          |               |             |                   |      |         |  |  |
|                                                                                                     |                  |                          |               |             |                   |      | ОК      |  |  |
|                                                                                                     |                  |                          |               |             |                   |      | Cancel  |  |  |

Тір

#### From - To List The From -To list contains information on how the connectors are to be

joined and with which wires.

With a from-to list, you can import both the connection data and the component data into a new or existing route sub-assembly. Alternatively, you can import only the connection data (no component data) or only component data (no connection data). You are not required to use a from-to list - you can also enter the connection data and insert components manually when you create a route.

See **SolidWorks Routing Help Topics** in the **Help** menu for more information.

#### 15 Open from-to.xls in Microsoft Excel.

Note the data, specific connection criteria for pins in the connectors.

|        |                 |          |          |                   | -      |        |                   |
|--------|-----------------|----------|----------|-------------------|--------|--------|-------------------|
| Wire   | Spec            | From Ref | From Pin | Partno            | To Ref | To Pin | Partno            |
| P5V    | 9978-20GST-BRN  | J1       | 1        | Socket-6pinmindin | J2     | 1      | Socket-6pinmindin |
| SW1    | 9978-20GST-R    | J1       | 2        | Socket-6pinmindin | J2     | 2      | Socket-6pinmindin |
| INTRPT | 9978-20GST-ORNG | J1       | 3        | Socket-6pinmindin | J2     | 3      | Socket-6pinmindin |
| RLGHT  | 9978-20GST-Y    | J1       | 4        | Socket-6pinmindin | J4     | 1      | db9 male          |
| ALERT  | 9978-20GST-GRN  | J1       | 5        | Socket-6pinmindin | J4     | 2      | db9 male          |
| SYNC   | 9978-20GST-BRN  | J1       | 6        | Socket-6pinmindin | J3     | 1      | db9 male          |
| SDATA1 | 9978-20GST-R    | J2       | 4        | Socket-6pinmindin | J4     | 4      | db9 male          |
| SDATA2 | 9978-20GST-ORNG | J2       | 5        | Socket-6pinmindin | J3     | 2      | db9 male          |
| SDATA3 | 9978-20GST-Y    | J2       | 6        | Socket-6pinmindin | J4     | 4      | db9 male          |

Close the Excel file.

**Import From-To** List

Where to find it:

- From the Electrical toolbar, click **Import Electrical Data** [5],
- From the main menu, select Electrical, Import Data, Import Electrical Data...

#### 16 Import the electrical data. Select Electrical, Import Data, Import electrical Data....

Under Import From-To List, select the Browse button to find the file from-to.xls in the Case Study folder of this lesson.

Note that, under **Set Libraries**, you may also select alternate cable / wire and component libraries.

#### 17 Header Definitions.

As with the libraries, these entries must agree with column headers in the Excel file for import to be successful. If more than one header is possible for the same item, separate with a semi-colon.

Refer to **SolidWorks Routing Help Topics** in the **Help** menu for more detailed information on From - To list headers.

Click OK.

#### 18 Start the route.

With the import of From-To data, the route is initiated. Accept the default route name and template by clicking **OK**.

SolidWorks confirms that components can be placed. Click **Yes** to begin placement.

| Import Electrical D                                                                                               |
|-------------------------------------------------------------------------------------------------------------------|
| Import From/To List:<br>From-to list file<br>C:\SolidWorks 2005 Traini                                            |
| <ul> <li>Start a new assembly</li> <li>Use existing assembly</li> </ul>                                           |
| Set Libraries:  Component library file C:\SolidWorks 2005 Traini                                                  |
| Cable/Wire library file C:\SolidWorks 2005 Traini                                                                 |
| Header Definitions(From/To)<br>Column headers for data import.<br>Use ')' to enter multiple values.<br>Wire name: |
| From reference From Ref From pin:                                                                                 |
| Pin;From Pin       Part number:       From Part number;Part number                                                |
| To reference:<br>To Ref<br>To pin                                                                                 |
| Pin;To Pin<br>Part <u>n</u> umber:<br>To Part Number;Partno;Part n                                                |
| Cable name:<br>Cable;Cable name<br>Core name:                                                                     |
| Colour:<br>Colour:<br>Colour:Color                                                                                |
| Wire/Cable Spec;Cable Spec;\                                                                                      |

#### 19 Insert components.

The available components for this route appear in the **Insert Components**, **Open documents** list.

#### 20 Drop components.

Select the first connector, J1, and bring it into the assembly graphics area. Look for the "peg-in-hole" to be SmartMate cursor, and click to drop on the lower hole of the left side.



You do not need to "drag and drop" components by holding the left mouse button. Selecting them is all that is required.

#### 21 Insert J2.

Repeat with J2 for the lower hole on the opposite side. Be sure the body is oriented toward the inside of the enclosure.



Note

Tip

It is not necessary to insert all components at the beginning. You can resume insertion later by using **Insert Components** while editing the route.

#### 22 Insert J3 and J4.

Adjust the zoom to see the circuit board clearly.

Insert J3 on the second and J4 on the 5th receptacle as shown.





#### Note

The connector DB9 male (J3 and J4) from the Training Design Library has a mate reference added to it that allows for easy SmartMates. The connector supplied in the SolidWorks Design Library does not have this mate reference by default, but it can easily be added.

#### 23 Route Properties.

When all components are added, SolidWorks asks if you'd like to start modeling the route. Click **Yes**. The **Route Properties** dialog appears. Make certain **Fix diameter** is unchecked, and click **OK**.





#### 27 Split entites.

Right click on the route between the third clip and J2 select **Split Entities**.

Split the segment somewhere near the midpoint.

#### 28 Add branches.

Right click on the endpoint of the route segment of the J4 DB9 connector and select **Auto Route**. Route to the split point. Click **OK** to close the **Auto Route** dialog.



### 29 Route the other DB9 with clip.

Select the stub endpoint of the J3 DB9. From the Design Library, select richco\_hurc-4-01-clip and drag it into the assembly.



Drag it over the hole in the bottom of the enclosure that's just behind the connector.

Drop it; the cable Auto Routes from the connector through the clip. **Close** the **Insert Components** dialog.



It is important to note that, after dropping a clip from the Design Library, you can reorient the clip as desired from within the sketch. If necessary, zoom the display in to the clip, and drag it to the desired



orientation. The route will update after a move.

😤 Edit wire

Wire From-To List

ALERT\_5<36.037in>

P5V\_1<32.855in> RLGHT 4<36.037in>

SDATA1\_7<17.321in SDATA2\_8<22.119in

SDATA3 9<17.321in

Select path

Erom-To Parameters Wire/Cable spec:

То

Component re

् 🌫 🍣

# **Edit Wires** After you define paths between connectors in the route sub-assembly, you can associate cable/wire data with the paths. The route diameter updates to reflect the diameter of the cables or wires you select for each path.

**Edit Wires** is necessary to insure that the From-To and wire sizing information is applied to the harness appropriately.

Where to find it:

While editing a route,

- From the Electrical toolbar, click Edit Wires 📚
- From the main menu, select Electrical, Edit Wires....

See **SolidWorks Routing Help Topics** in the **Help** menu for more information.

#### 32 Edit Wires.

While still editing the route, click on

#### Edit Wires 📚 .

Here you can add or delete wires from the harness, or reorder the segments.

To add a wire, Click Add Wire S. From the library, select a wire specification, Click Add, and OK. The new wire will appear as magenta in the list, indicating that the path is not defined. Next, select the wire and click Select path to specify which segments of the harness should carry this new wire.

To delete, select a wire from the list and click

#### Delete Wire 🗳

 From-To Parameters will appear in the lower section when a wire is selected.

#### 33 OK.

Clicking **OK** in the **Edit Wires** dialog does two things:

Incorporates all changes made in this dialog into the route.
 Even if no other changes were made, OK will update all harness data per the From-To and cable/wire lists. This is necessary to resize all sections of the harness accordingly. Prior to this step, the harness sections were sized according to the CPoints on the connectors. When you click OK, you may see a subtle change in the section sizes.

#### 34 Exit and Save.

Exit the sketch and **Save** the cable part.

## Electrical Attributes

**Electrical Attributes** displays relevant information about a particular harness segment, including the name and length of each wire in that segment.

Where to find it:

 While editing a route, right-click a harness segment and choose Electrical Attributes.

See **SolidWorks Routing Help Topics** in the **Help** menu for more information.

#### 35 Electrical Attributes. 😤 Electrical Attribute: Right-click on a segment of the route and select X)(? Electrical Attributes. Wire List 36 Wire Data. ALERT 5<36.293in> INTRPT\_3<32.85in> Click on each of the wires in the **Wire List** in turn to P5V\_1<32.85in> RLGHT\_4<36.293in> see the Wire Data for that wire. SYNC\_6<41.27in> Click OK. 37 Save the top level assembly. Wire Data Wire Name Signal Name It is important to save the assembly before ALERT Color proceeding to Harness Drawing creation in order to areen Part Number : 9978-2 : 0.044in Wire Diameter insure propagation of all data, new and modified. Routed Lenath 36.262i Cutting Length 36,293i Comments From CompRef From PinRef : J1 : 5 : J4 : 2 To CompRef To PinRef ►

#### Harness Flattening and Detailing

Harness flattening and detailing functionality is used to develop 2D harness manufacturing drawings from 3D electrical route assemblies.

In SolidWorks, the 2D drawing is generated directly from the 3D route sub-assembly.

Prior to *creating* or *updating* a Harness Drawing, it is important to **Save** the route assembly to be sure all changes are propagated.



#### **Connector Views**

You can generate various 2D connector views for use in your Harness Drawing. For every unique connector in the harness, A SolidWorks block, generated from a drawing view of the connector, is inserted into the Harness Drawing near the segment endpoint where the connector is located.

The block is generated and inserted automatically into the Harness Drawing at creation or upon update if a SolidWorks drawing with a name that matches the connector file name exists in the folder \\SolidWorks\data\design library\routing\ electrical\harnessing\packages.

The source drawing need only have 2D geometry that has been converted from a SolidWorks drawing view or from another CAD file such as DXF, DWG, etc.

See **SolidWorks Routing Help Topics** in the **Help** menu for more information.

Note

|                 | 1 Open part J1 (socket-<br>6pindinmin) in its own window.<br>The part is a relatively simple mechanical<br>representation of the connector. It does<br>not have any true internal geometry, such<br>as electrical contacts. It does, however,<br>have a mate reference and an electrical<br>CPoint. Close the part. |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | 2 Open the block source drawing.<br>In the directory \\training design<br>library\routing\electrical\<br>harnessing\packages, open the<br>drawing file<br>socket-6pindinmin.slddrw.                                                                                                                                 |
|                 | This drawing file contains simple<br>geometry that will represent the<br>connector when imported into our<br>Harness Drawing in the form of a block.                                                                                                                                                                |
|                 | The block can be customized with notes<br>or other text, or with additional geometry.                                                                                                                                                                                                                               |
|                 | Notice the text within the central arc, specifying pins 1 through 6.<br>These notes determine the placement of wire color graphics, which<br>display the colors of wires in connector pins or cavities in the harness.                                                                                              |
| Note            | Drawing <i>views</i> themselves will not be brought into the Harness<br>Drawing. All graphical data must be converted to lines and arcs using<br>sketch tools.                                                                                                                                                      |
|                 | See <b>SolidWorks Routing Help Topics</b> in the <b>Help</b> menu for more information on connector blocks.                                                                                                                                                                                                         |
|                 | Close the file.                                                                                                                                                                                                                                                                                                     |
| Harness Drawing | The Harness Drawing takes the 3D mechanical data of the route sub-<br>assembly and applies it to a 2D harness manufacturing drawing,<br>flattened and with detail.                                                                                                                                                  |
| -               | See <b>SolidWorks Routing Help Topics</b> in the <b>Help</b> menu for more information.                                                                                                                                                                                                                             |
|                 | 3 Harness Drawing size.<br>If not already, return to the main assembly, Signal Control                                                                                                                                                                                                                              |

System.

From the **Wiring** menu, select **System Defaults...**. Here we select the size of our Harness Drawing. Be sure **Update reports automatically** is checked, and choose **4FT x 4FT** from the list, then click **OK**.

From the Wiring menu, select Wiring Summary....

The list displays both route sub-assemblies in this

Control System, and click Open Drawing.

assembly. Select RouteAssyl-Signal



A new drawing file,

4 Create the drawing.

RouteAssy1-Signal control system-1.SLDDRW, is created and saved automatically.



#### 5 Arrange segments and add relations.

The Harness appears in a default orientation. Arrange the segments to your liking or for visibility or logical manufacture.

All segments are sketch lines that can be given relations and constraints:

- First, add a Horizontal relation to the long segment on the left.
- Next, switch on the **Point** selection filter, and **Fix** the 4-way junction point.



Finally, spread the branches and lock them in place using either **Fix** constraints or dimensions.





You can add Part Tables for the other connectors in the assembly as well, and reposition them as needed.



#### 9 Add Wiring Reports.

Wiring Reports include Bill of Materials (BOM) and Circuit Summary tables.

Select Wiring, Reports.... Check both the Circuit Summary and Harness Bill Of Materials check boxes. Click OK.

| Descente                       |                     | Harness Bill Of Mater |                 |        |       |
|--------------------------------|---------------------|-----------------------|-----------------|--------|-------|
| Reports                        | Par                 | tNumber               | QTY             |        |       |
| 0000                           | Parts               |                       |                 |        |       |
|                                | \$ocket-ópinm       | indin                 | 2               |        |       |
|                                | db9 male            |                       | 2               |        |       |
| Circuit Suremanu A             | Terminals           |                       |                 |        |       |
|                                | Seals               |                       |                 |        |       |
| Sheet                          | Plugs               |                       |                 |        |       |
|                                | Misc parts          |                       |                 |        |       |
| Harnessboard                   | Vvire s             |                       |                 |        |       |
| 1                              | 9978-20G8T-G        | RN                    | 36.50 in        |        |       |
| Colump beaders                 | 9978-20G8T-O        | RNG                   | 5597 in         |        |       |
| Coldmin <u>T</u> eaders        | 9978-20 GST-B       | RN                    | 74.02 in        |        |       |
| Nome DaytNumber Length Fr      | 9978-20G8T-Y        |                       | 5454 in         |        |       |
| IName, Partivumber, Lengun, Pr | 9978-20 G81-R       |                       | 52.06 in        |        |       |
|                                | Cables              |                       |                 |        |       |
| 🔽 Harness Bill Of Materials 🔺  | Covering            |                       | AL              |        |       |
|                                |                     |                       | Circuit summary |        |       |
| Sheet                          | Name                | PartNumber            | Length .        | From   | To    |
|                                | A LERT              | 9978-20GST-GR         | 4 86.50 in      | J1-5   | J 4-2 |
| Harnessboard                   | IN TR PT            | 9978-20G8T-ORN        | G 22.61 in      | J1-3   | J 2-3 |
| Colump boodors                 | PSV 9978-20 GST-BRH |                       | l 88.61 in      | J1-1   | J 2-1 |
| Coldmin Treaders               | RLG HT              | 9978-20G\$T-Y         | 26.50 in        | J1-4   | J4-1  |
| PartNumber,QTY                 | S DATA 1            | 9978-20GST-R          | 18.45 in        | J2-4   | J 4-4 |
|                                | \$ DATA 2           | 9978-20 G 8T- O R N   | G 22.26 in      | J2-5   | J 3-2 |
| ✓ Insert type headers          | 8 DATA 3            | 9978-20G\$T-Y         | 18.45 in        | J2 - 6 | J 4-4 |
|                                | \$V//1              | 9978-20GST-R          | 88.61 in        | J1-2   | J 2-2 |
| P1°(                           | \$YN C              | 9978-20GST-BRH        | l 40.41 in      | J1-6   | J 3-1 |

The tables are added in the default (lower left) location, but can be repositioned or resized as desired.

#### 10 Other parts in the Harness.

Various other components may be required to complete this Harness, including, but not limited to, protective coverings, contact terminals, or seals. When added, the Harness BOM will update.

See **SolidWorks Routing Help Topics** in the **Help** menu for more information on the Harnessing Libraries.

#### 11 Add Covering.

Select Wiring, Edit, Covering....

From the Library name list, let's add Cor Tube . 5in BLK and give it the custom Name tubing1. Select the short segment to the J4 DB9 connector, and click Create/Edit.

Add other coverings as you see fit. Coverings with colors will change the color of the Harness segment.



ness Bill Of Ma

36.50 in

*\$5.97* in

74.02 in

21.61 in

#### 12 Add Terminals. Select Wiring, Edit, Terminals....

It is typical to add many more terminals to the assembly than is needed to account for drops, losses and breakage. Several terminal types are supplied in the Terminals Library.

Lets add 25 of 66506-9 and 25 of 207683. Enter 25 in Number to insert, and click Insert. 25 appear as **Unassigned**. Repeat for the other terminal.

Click OK.

The BOM updates accordingly.

#### 13 Edit Wires.

By editing the wires in the Harness, we can assign terminals to the wire ends.

Select Wiring, Edit, Wires..., or click Edit Wires

on the Wiring Toolbar. 

#### 14 Assign terminals.

Let's assume the 6 pin (J1 and J2) connectors require 66506-9 terminals, and the DB9 (J3 and (14) connectors require 207683 terminals.

As you select each wire in the list, you can see its From- and To- connection info. Under Terminals **connected**, add the appropriate terminal to each.

When complete, click **OK**.

#### 15 Edit Terminals dialog.

Return to Edit Terminals. The dialog displays some of the terminals as Assigned. Close the dialog.

Save the drawing.

| Edit Terminals             |                  |
|----------------------------|------------------|
|                            | PartNumber       |
|                            | Parts            |
|                            | Sooket-spinmin   |
| Taunia ala                 | db9 male         |
|                            | Terminals        |
| Library name               | 207683           |
|                            | 66506-9          |
| 66506-9                    | Seals            |
|                            | Plugs            |
| Assigned                   | Miso parts       |
| 0                          | Wires            |
| 10                         | 9978-20 GST-GR   |
| Unassigned                 | 9978-20 GST-OR   |
|                            | 9978-20 GST-8 RH |
| 0                          | 9978-20 GST-Y    |
|                            | 9978-20 GST-R    |
| Terminate All Wires        | Cables           |
|                            | Covering         |
| (                          | Loom .sin YEL    |
| Agjust Amount              | 8lk Tape         |
| Number to insert or delete | Cor Tube .Sin BL |
| 25 · · ·                   |                  |
| Library Properties         |                  |

GaugeRange = 20-24 Description = AMPLIMITE

Note = Loose

Vendor = AMP



#### **Editing Libraries**

Libraries of Harnessing parts can be edited from within SolidWorks.

Where to find it:

Select Wiring, Library, Edit...,

or click **Edit Library** < on the Wiring Toolbar.

#### 16 Edit Library.

From within this dialog you can **Edit**, **Create** or **Delete** entries in any of the Harnessing component library .xml files.



#### 17 Existing covering.

Let's look at wire coverings. Under **Choose Type**, select **Covering**. From the list, find Loom .5in YEL.

Under Properties, we can see the properties for this covering.

#### 18 Create new.

Under Property Name and Value, change Part name to Loom .5 in Green. Under Name, type in Color. Under Value, type in GRN.

#### Click Create/Edit.

This new green loom covering will now be available

for future use.

Add other property names and values as desired to complete the description.

Click OK, Save and Close the drawing.





#### Α

assemblies changing transparency 24 edit assembly 23 edit part 23

#### В

blocks, *See* Feature Palette *See also* components

#### С

change assembly transparency 24 copy files 18

#### Е

edit assembly 23 part 23

#### F

Feature Palette 39-??, 39-?? directory structure 39 file locations 41 forming tools 40 organizing your libraries 41 palette features 39 file find references 18 file extensions SLDASM 40 SLDLFP 39 SLDPRT 40 file locations 41 files copy 18 find references 18

Profesor:

**JIS RUIZ** 

#### L

library features modeling strategies 4

#### 0

options 41

#### Ρ

parts editing within an assembly 23

