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Abstract
Smartphones with Wi-Fi enabled periodically transmit

Wi-Fi messages, even when not associated to a network. In
one 12-hour trial on a busy road (average daily traffic count
37,000 according to the state DOT), 7,000 unique devices
were detected by a single road-side monitoring station, or
about 1 device for every 5 vehicles.

In this paper, we describe a system for passively tracking
unmodified smartphones, based on such Wi-Fi detections.
This system uses only common, off-the-shelf access point
hardware to both collect and deliver detections. Thus, in ad-
dition to high detection rates, it potentially offers very low
equipment and installation cost.

However, the long range and sparse nature of our oppor-
tunistically collected Wi-Fi transmissions presents a signif-
icant localization challenge. We propose a trajectory es-
timation method based on Viterbi’s algorithm which takes
second-by-second detections of a moving device as input,
and produces the most likely spatio-temporal path taken. In
addition, we present several methods that prompt passing de-
vices to send additional messages, increasing detection rates
an use signal-strength for improved accuracy.

Based on our experimental evaluation from one 9-month
deployment and several single-day deployments, passive Wi-
Fi tracking detects a large fraction of passing smartphones,
and produces high-accuracy trajectory estimates.

1 Introduction
Smartphone sales and use have seen explosive growth in

the past several years. In addition to a big display and com-
pelling apps, virtually all smartphones come with a Wi-Fi
network interface, allowing them to offload their high data
demands to Wi-Fi networks when available. To detect when
Wi-Fi networks are available, these phones periodically scan
the Wi-Fi band for access points, which typically involves
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probe message transmissions.
By deploying Wi-Fi monitoring equipment in an area of

interest, it is possible to detect these transmissions, provid-
ing a coarse-grained location trace for each phone that passes
through the area without modifying the phones. Every Wi-
Fi transmission contains a unique device identifier (MAC
address). Given the popularity of smartphones today, this
may be an attractive means of, for example acquiring ag-
gregate movement statistics in an area of interest. In this
paper, we study the feasibility of passive Wi-Fi tracking of
smartphones through a number of real-world deployments,
and present a method of estimating the spatio-temporal tra-
jectories of phones given a set of detections by our monitors.

Tracking vehicles and individuals by the electronic de-
vices they carry is not a new idea. Previous work has
performed similar tasks using Bluetooth transmissions [1,
2, 11], tollway transponders, cellphones[3], passport RFID
chips [8] and even jogging shoes [24]. In [22], Wi-Fi de-
tections were used to predict bus/train arrival times based
on Wi-Fi access points installed in these vehicles. To our
knowledge, however, this paper represents the first study
of using Wi-Fi transmissions for passive tracking of Wi-Fi
clients, and we present the first trajectory estimation method
for sparse, RF-based tracking systems in general. §2 con-
trasts this sparse RF tracking against the more common RF
localization methods in the literature.

The primary contributions of this paper are as follows:
• A probabilistic, HMM-based method for estimating

smartphone trajectories from Wi-Fi detections.

• A characterization of Wi-Fi scanning and power saving
behaviors of a number of popular smartphone models.

• Three methods for increasing the number of detected
phones, and per-phone detection count as it passes by a
monitor.

• Experimental measurements verifying the widespread
use of probe messages by smartphones in the field.

• Evaluation of trajectory estimation accuracy against
GPS ground-truth.

• An unexpected finding showing very large numbers
(60,000+) of MAC addresses with unlisted OUI pre-
fixes.

Through fixed and temporary deployments, we have
found Wi-Fi smartphones to be both numerous and gener-



ous with their Wi-Fi transmissions. In one 12-hour trial us-
ing 7 monitors across 2.8 kilometers of arterial road, over
23,000 unique phones were observed. On average, if Wi-Fi
is turned on, a monitor detects a passing smartphone 69%
of the time. Combined with our probabilistic trajectory es-
timation method, this resulted in mean error across the en-
tire trajectory of 67 meters compared to GPS ground-truth.
In more concrete terms: using seven $70 access points with
updated firmware, we were able to produce GPS-equivalent
traces with 67 meter mean error for up to 23,000 passing de-
vices over 12 hours.

The remainder of the paper is structured as follows. Back-
ground on RF-based tracking and other related work is pro-
vided in §2. We describe the overall operation of our system
in §3. In §4, our probabilistic trajectory estimation technique
is described, followed by three methods for increasing Wi-
Fi emissions in §5 and our compact logging method in §6.
Deployment options, cost and operational challenges in §7,
followed by our evaluation results in §8. §9 concludes the
paper.

2 Background
Radio-frequency localization and tracking is a research

area with a long history, and a rich area of ongoing research.
The majority of work in this area, such as RADAR finger-
printing [6], outdoor Wi-Fi localization [10, 17] and sensor
network localization [9, 27, 12, 20, 7] relies on the localized
device being an active participant in the process.

In a sense, our passive Wi-Fi localization method is the
converse of the now commonplace Wi-Fi localization [10]
technique. In our scheme, a non-instrumented device is lo-
calized by placing monitors in the area of interest. Active
Wi-Fi localization works by modifying the device to listen
for un-instrumented stationary access points.

In localization with RF monitors, some prior work has
used a dense set of overlapping monitors to triangulate the
location of a passive device. In [14], authors tracked devices
that were associated with various APs in a campus environ-
ment. This work assumes that phones are configured to as-
sociate to the network in question. By contrast, our proposed
technique tracks unmodified phones and produces trajectory
estimates from sparsely deployed monitors.

Most of the traffic monitoring and tracking systems de-
ployed today instrument streets with special purpose sensors
such as magnetic loops [16, 15, 18], cameras [5], and toll-
tag readers. These methods tend to focus on highways, and
are typically very costly to deploy. Some commercial ven-
dors [1, 2] offer vehicle tracking using Bluetooth where traf-
fic flow and travel time is estimated from re-identification
of bluetooth devices inside the car. This is the closest work
to ours. However, these products produce pairwise time es-
timates, whereas our proposed method estimates the entire
vehicle trajectory.

Nericell [19] combined multiple sensors available in to-
day’s smartphone to monitor road conditions and traffic.
The possibility of tracking vehicles using the wireless tire-
pressure sensors already present in contemporary vehicles
is explored in [23]. However, the radio of the tire-pressure
sensor has very limited range. This, combined with custom

hardware requirements makes for a costly system to deploy.
In [3], a similar method is described for tracking users by
their cellphone signal. By comparison, we produce full de-
vice trajectories, and use off-the-shelf Wi-Fi hardware.

In [21], authors showed that the past location history of
a person can be discovered based on probe requests sent by
their Wi-Fi devices. This history is also used in our oppor-
tunistic AP emulation technique, see §5.

Traffic monitoring is often done by instrumented probe
vehicles [26, 25, 13]. Using passive Wi-Fi tracking, we
are able to essentially turn non-instrumented vehicles into
probes, in the area of interest. A problem with vehicle probes
is that the coverage may be sparse both spatially and tempo-
rally. The large number of probes produced by passive Wi-Fi
tracking may help address this problem.

From a privacy standpoint, passive Wi-Fi tracking is rel-
atively benign, in that it only tracks phones in an area of
interest. For further privacy protection, storing only seeded
hashes of MAC addresses would be prudent.

3 Passive Wi-Fi Tracking
A passive Wi-Fi tracking system consists of a number of

Wi-Fi monitors, and a central tracking server1. The focus
of this paper is on the collection and processing of Wi-Fi
detections. Here, detection processing at the server turns a
series of detections of a single phone, into a single consistent
and highly likely spatio-temporal trajectory, analogous to a
GPS trace for each detected phone.

Device detections are made by capturing Wi-Fi transmis-
sions from the device in question: such transmissions all
carry a device-unique address (MAC address), enabling de-
vice re-identification across monitors. Unfortunately, pas-
sive Wi-Fi detection is an unreliable and highly noisy source
of location information by modern localization standards.
Phones are unmodified, and thus transmit at their discretion.
Wi-Fi transmissions from a cellphone may be received at up
to 300 meters, or may be too faint to detect at 20 meter range
depending on transmit power, path loss and fading effects.
Finally, Wi-Fi tracking deployments are likely to be sparse,
potentially leading to extended periods of time without any
detections at all. §4 describes the trajectory estimation prob-
lem in more detail, and proposes a probabilistic trajectory
estimation technique to address it.

Figure 1 gives an operational overview of the passive Wi-
Fi tracking system. As a phone travels along a spatial net-
work of roads or paths, it passes by a series of Wi-Fi moni-
tors deployed in the region of interest. Any successfully re-
ceived transmission is logged as a detection, and reported to
the central server on a second by second basis. Upon receipt,
the server processes the data from the monitors to reproduce
the vehicle’s most likely trajectory, which is exported in the
form of a second by second location trace.

The quality of the trajectory estimate is typically tied to
the number of detections made of a given phone. One way to
increase this number is to increase the number of monitors.
As we describe in §7, the cost of the necessary equipment

1For online tracking, each monitor needs some online means of sending
messages to the server, such as Wi-Fi mesh networking, a nearby Wi-Fi
Internet access point, etc.
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Figure 1. Operational overview of our passive Wi-Fi tracking system. Monitors detect passing phones, forward compact
detection records to central estimation server, which produces a GPS-like, second-by-second trajectory estimate.

and connectivity for a dense deployment is low, though ex-
ternal factors may still restrict the number of monitors. An-
other, complementary option is to increase the number of
detections made by a single monitor. As detections are only
possible when a phone transmits a Wi-Fi packet, a mecha-
nism is needed by which passing phones may be encouraged
to increase their number of transmissions. In §5 we describe
three different techniques that prompt passing phones to send
additional packets.

4 Estimating Smartphone Trajectories
In our proposed system, Wi-Fi monitors detect transmis-

sions from passing phones. We make the assumption that
phones travel along a spatial network of roads or paths: i.e.
tracking free movement in an open area is not supported.
Based on a series of detections of a phone, our goal is to pro-
duce an accurate second-by-second estimate of the phone’s
location. This task is made difficult by several factors, as
listed below.

Spatial Sparsity of Detections Densely instrumenting
the entire area of interest with Wi-Fi monitors may be nei-
ther feasible nor desirable. This makes standard RF localiza-
tion methods [6, 10] poorly suited for this problem, as they
typically rely one some variant of triangulation. In the case
of Wi-Fi detections, the number of monitors simultaneously
detecting a phone typically varies between 0 and 1, and may
occasionally reach 2.

Temporal Sparsity of Detections Detections rely on
phones actively transmitting Wi-Fi packets, which may not
happen regularly or reliably. When a phone does transmit, it
may transmit only a few packets, over a very short duration.
Often times, a phone may pass by a monitor without being
detected at all.

Overlap The measured Wi-Fi packet reception range in
our experiments is 250-300 meters. Thus, if a pair of moni-
tors are spaced more closely than 600 meters, a transmission
may be detected by two monitors simultaneously.

Unpredictable path loss Differences in phone place-
ment, immediate surroundings and transmission power con-
tribute to significant differences in received power between
devices at the same range from a monitor.

Fading Mobility and a highly dynamic environment lead
to significant temporal variations in received signal strength

and highly stochastic behavior. In cases with overlap, this
can lead to situations where, for two monitors A and B, a
phone is closer to monitor A than monitor B, but is detected
by monitor B one second, and by monitor A the next.

From the list above, it is clear that no passive Wi-Fi track-
ing system can guarantee accurate tracking performance. In
particular, the significant possibility of missed detections
may introduce positional ambiguity that cannot be com-
pletely resolved, even if the car travels only on instrumented
streets. Below, we first discuss a simple straw-man solution,
and then go on to describe our proposed trajectory estimation
algorithm.
4.1 A Straw-Man Algorithm

For the sake of argument, consider the following naı̈ve
solution.

Whenever a detection is made, take the detecting
monitor’s location as the phone’s location. Inter-
polate phone locations between detections.

This is a poor solution for several reasons. First, the long
range and temporal sparsity of detections means the phone
may be as much as 300 meters away from the monitor lo-
cation when a detection is made. Received signal strength
(RSS) is a distance indicator, but no useful one-to-one map-
ping between distance and RSS can be found: while a high
RSS is very unlikely at long distances, a low RSS may arrive
from a wide range of distances.

Second, overlap and variations in signal strength means
a phone that is stationary between two monitors may well
be detected intermittently by either or both. This straw-man
algorithm would have the phone’s location jumping rapidly
back and forth between the two monitor locations. Imposing
restrictions on acceleration or velocity would help, but would
not solve the fundamental problem.

Third, straight-line interpolation between distant loca-
tions produces very low-quality trajectories. Imposing a spa-
tial network, such as a road map, can significantly improve
this quality, but introduces a route ambiguity which must be
resolved. Using the shortest path between monitor locations
is not feasible due to the high location uncertainty.

As this example suggests, this problem does not lend itself
well to standard deterministic algorithms, due to the highly
stochastic nature of our detections.
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Figure 2. Hidden Markov model of two intersecting one-
way roads. Road segments are subdivided to increase
granularity. (Figure not to scale.)

4.2 Basic Trajectory Estimation Algorithm
Below, we discuss a probabilistic trajectory estimation

method. In essence, rather than directly assign the phone
to a single location at each instance in time, we model the
distribution of possible locations over time, and extract the
maximum probability trajectory from this model.

To reduce the possible set of locations, restrict movements
and so help produce an accurate trajectory, we assume that
phones travel along a known spatial network such as a road
or trail map. A model of this spatial network, consisting of
spatially located vertices connected by directional edges, is
taken as input.2

Given such a spatial network, the trajectory estimation
problem bears a measure of similarity to map-matching, in
that a network path is produced from a series of potentially
low-accuracy location estimates. Indeed, our trajectory es-
timation method is inspired by Viterbi map-matching [26].
We thus formulate the trajectory estimation problem using a
hidden Markov model of states, transition probabilities and
emission probabilities, and use Viterbi’s algorithm to find
the maximum probability path traversed, represented by a
sequence of hidden states visited in the Markov model.

When used in conjunction with the Viterbi algorithm, a
hidden Markov model expects periodic sensor input, and
produces one state transition i → j per period. Transitions
are governed by transition probabilities p(i → j), and emis-
sion probabilities p(obs|i), where obs is the current obser-
vation. Self-transitions (transitions s.t. i = j) are allowed.
Below we describe the HMM formulation in more detail, in
terms of hidden states, transition probabilities and emission
probabilities.

4.3 Hidden States: Cut-Up Road Segments
A simple road map typically consists of vertices,

representing intersections, edges representing road seg-
ments between intersections, and (mostly for vehicles)
turn-restrictions determining allowable transitions between

2If no spatial network is available, this is a spatial network consisting of
all the monitors, and a bi-directional edge between each pair of monitors.

edges. In prior work on Viterbi map-matching [26] each road
is represented as a state in the Hidden Markov Model. Over
time, a tracked phone travels from one road segment to an-
other road segment via their adjacent intersections. This has
been shown to work well for both GPS and WiFi localization
(with an active receiver in the vehicle). Here, the location of
the device is relatively well known, and the objective is sim-
ply to determine which road segment is being traversed.

In the case of passive Wi-Fi tracking however, our ob-
jective is to determine the second-by-second location. The
output from the Viterbi algorithm is a maximum-probability
sequence of states. Thus street-segments, which may be hun-
dreds of meters in length or more, are not of a sufficient
granularity for trajectory estimation. Moreover, we would
like our model to capture the stochastic relationship between
signal strength and distance. To do so, we also require states
with a significantly smaller spatial extent.

Figure 2 illustrates our simple solution. The zoomed in
section of the map contains two one-way roads going south
and east. Here, the two east-bound street segments on either
side of the intersection are divided into multiple sub-states.
Each sub-state represents a rectangular area in which a phone
may be located, and a road segment may only be traversed
by passing through each of its sub-states in sequence. Turn
restrictions are maintained for the final substate of any seg-
ment.

This accomplishes two things. First, it increases the gran-
ularity of the HMM such that an approximate location along
the street can be produced. Second, it enforces a speed-limit
of sorts. In the HMM, transitions happen in lock-step with
incoming sensor readings, at regular intervals. Thus, given
one sensor reading per second (which may sometimes show
“no detection”), only one sub-state per second can be tra-
versed, limiting travel speed to one sub-state length per sec-
ond. Enforcing a speed-limit helps significantly in suppress-
ing the output of spurious routes.

4.4 Transition Probabilities
Transition probabilities primarily model the behavior at

intersections: continuing straight, or turning. In this work,
we do not make any assumptions about driver behavior, and
use uniform transition probabilities between adjacent seg-
ments. Thus, for each segment i with adjacent segments
n ∈ N, p(i → i) = p(i → n) = 1

|N|+1 . Any turn restrictions,
including allowed or disallowed u-turns, are accounted for in
the adjacent segments.

4.5 Emission Probabilities
Emission probabilities describe the probability p(obs|s)

of making observation obs if the current state is s. In our
case, the observation is the set of observations of the phone in
question, by all monitors, at the present time. As mentioned
above, the state s is a part of a road segment. Thus, we are
asking “if the phone was here, what is the probability that we
would have made the detection we just made?”

Correctly modeling the emission probability is central to
our trajectory estimator. The emission probability model
defines the probability distribution of the phone’s location
across the entire spatial network, for each second.
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Several factors influence the emission probability of an
observation. Distance, of course, plays a big role. Intuitively,
the probability of making a detection decreases with dis-
tance, reaching zero at the maximum reception range. How-
ever, variability in channel quality (fading) is a significant
factor as well, influenced primarily by placement and (po-
tentially moving) obstacles. This implies that a transmission
may not be detected, even when sent at close range.

Also, a detection can only be made if a transmission ac-
tually took place: phones typically transmit WiFi packets at
rather long intervals, and for short durations of time. We
discuss this, and how the frequency and duration can be in-
creased, in more detail in §5. Unfortunately, we cannot pre-
dict when a transmission will happen. Thus, a phone may
pass by a monitor without transmitting anything, and remain
undetected.

An observation obs consists of a set of events em ∈ obs,
one from each monitor m, such that

p(obs|s) = ptx ∏
m∈obs

p(em|s, tx), (1)

where tx indicates that a transmission happened, and ptx is
the probability of a transmission happening. As we do not
have a good model for predicting when a phone will transmit
next, we estimate a constant ptx =

1
300 from measurements

under controlled conditions. Note that the algorithm is not
very sensitive to this value.

Each event em can take the values detectionm or
nondetectionm. Here, nondetectionm simply indicates that
the phone was not detected at this monitor. While this may
seem like an insignificant event, it does in fact carry some
valuable information. Of course, non-detections need not
be physically reported to the server: the absence of a de-
tection report indicates a non-detection. Each detectionm is
accompanied by a signal strength annotation. Naturally, a
nondetectionm has no equivalent.

For all states s, it is true that p(nondetectionm|s) = 1−
p(detectionm|s). For states outside of the maximum detec-
tion range, p(detectionm|s) = 0.

Figure 3 illustrates a motivating example for this design.
The phone enters the area at monitor 1, where it is detected.
It then travels to monitor 3 along an unknown path, and is
not detected until it reaches monitor 3. Here, the fact that no
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Figure 4. Distance probability density function for sev-
eral RSS ranges.

detection is made between monitors 1 and 3 carries some in-
formation. All other things being equal, it is more likely that
the phone traveled the route with no intermediate detector.

Finally, to determine p(detectionm|s, tx) we rely on ex-
perimental measurements of the RF channel. Figure 4 illus-
trates, for a received packet at a given RSS, the probability
density of the transmitter being at a certain distance, p(dist).
To create this plot, we repeatedly drove and walked past sev-
eral monitors at approximately constant velocity, carrying
several smartphones configured to transmit packets period-
ically. We then compute, over each RSS bin, a Gaussian ker-
nel density estimate over the distance of all received packets,
or

p(dist|RSS) = ∑
dist∈received packets

N(dist,σ2), (2)

where σ is the kernel bandwidth, which we picked visually
to be 15 meters, to produce a smooth curve. Interestingly, the
-70dBm curve has close to zero probability density near the
monitor, whereas all others have a high density at that point.

Intuitively, a low signal strength packet may have come
from a wide range of distances, whereas a high signal
strength detection almost certainly originated near the mon-
itor. This allows us to compute p(detectionm|s, tx) for a
packet of a given signal strength over the area covered by
s, or,

p(detectionm|s, tx) =
∫

x

∫
y

p(dist(x,y,m)|RSS)dxdy, (3)

where dist(x,y,m) is the Euclidean distance between the co-
ordinate (x,y) and the monitor. Due to this measurements-
driven approach, our passive Wi-Fi tracking system is easily
adapted to different channel conditions: calibration can be
done by simply traversing the instrumented area with a se-
lection of phones and a GPS receiver.
4.6 Viterbi Processing

Every second, each monitor reports the MAC addresses it
observed during that second. Given aggregate detections or
non-detections of a given phone from all monitors, we com-
pute the emission probability of the combined multi-monitor
observation as described above. We then use Viterbi’s al-
gorithm to turn a series of observations and corresponding
emission probabilities into a location trace.
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Figure 5. When multiple maximum-probability estimates
exist, choose the trajectory that minimizes the expected
error over all estimates.

Viterbi’s algorithm produces the maximum probability
series of states, given a finite series of observations. How-
ever, due to our handling of non-observations, the observa-
tion series does not end. Rather, as a vehicle leaves the re-
ception range of the monitors, the lack of packet receptions
are regarded as non-observations, which are then fed into the
algorithm.

Since our goal is to reproduce the path traveled, rather
than estimate a probability distribution we must at some
point choose a single path. In general, the longer the wait,
the more information is assimilated by the algorithm, result-
ing in more accurate paths. However, the information value
of repeated non-observations decreases quickly. Thus, our
algorithm by default makes a “hard” choice, which implies
that a location trace is produced, after an inactivity period T .

If real-time tracking is desired, an alternative solution is
to produce the trajectory in a streaming fashion. That is,
produce output as soon as part of a trajectory can be esti-
mated with high confidence. Clearly, non-detections do not
admit high-confidence estimates: we essentially have no idea
where the phone went, until we hear from it again. Thus,
additional trace portions are not produced during periods of
non-detection. In our implementation, output is delayed fur-
ther: given observations at monitors m1, m2, m3 in that or-
der, the first trace portion, between m1 and m2, is produced
only when the first observation at m3 is made.
4.7 Error-Minimizing Estimates for Periods

of Non-Detection
The output of the Viterbi algorithm is the maximum prob-

ability state sequence for the given time series of observa-
tions. During periods of detection, the variations in emission
probability induced by mobility typically keeps ambiguity
relatively low, and a unique maximum probability path often
exists.

However, during periods of non-detection, such as when a
phone travels between two well-separated monitors, or sim-
ply does not transmit any Wi-Fi packets for a while, ambi-
guity in the maximum probability path rises quickly. Figure
5 illustrates an example situation. Here, during the period
of non-detection, any number of maximum-probability paths
exist.

In Figure 5, consider the case where no detections are
made between points (a) and (b). The probability of non-
detection in all states between (a) and (b) is one. Hence, as
long as the transition probabilities are equal for all states be-
tween (a) and (b), any allowable sequence of states between

these two points is a maximum probability path. Without
further guidance, an arbitrary path will be selected by the
Viterbi algorithm.

Note that in this example, and indeed in most scenarios of
this type, all maximum-probability paths follow a single spa-
tial path between (a) and (b). The difference lies only in the
duration of time spent in each state. Thus, rather than let the
Viterbi algorithm choose an arbitrary distribution of time, we
want to distribute the time spent in each state in such a way
that the expected error is minimized over the distribution of
all possible trajectories. For the (a)–(b) case above, it can
be shown that straight interpolation achieves this goal. Thus,
given a total duration T , during which a spatial path con-
sisting of |S| equal-sized segments s ∈ S, the optimal time
spent in each segment during a period of non-detection is
t(s) = T

|S| .
In general, and this is illustrated by the case (c)–(d) in

Figure 5, we believe (but have not proven) that the optimal
distribution is

t(s) =
T p(obs|s)

∑u∈S p(obs|u)
,

where obs is the observation that shows non-detection in all
monitors. In §8.4, we compare this error-minimizing method
against standard Viterbi processing, and find that it achieves
a significant reduction in mean error as well as root mean-
squared error.
5 Prompting Additional Transmissions

The performance of passive Wi-Fi tracking can be defined
in terms of coverage (the number or percentage of phones
tracked), or in terms of accuracy (e.g. mean location error
over time). In this section, we describe three mechanisms
that address these dual objectives: maximizing the number
of devices detected, and maximizing the number of packet
receptions from each detected device. As discussed in §4,
increasing the number of packets received from each device
is important for determining accurate trajectories of moving
devices.

To satisfy these goals we employ three techniques in
the Wi-Fi monitor in addition to passive monitoring. First,
we advertise two popular access point SSID’s (attwifi, tmo-
bile)3. This increases both the number of phones detected,
and the number of packets received from each phone.

Second, we emulate APs with SSID for which a directed
probe-request is made by a phone. This does not increase the
number of phones detected, but does increase the number of
packets received from each phone.

Finally, we periodically send RTS packets to detected
phones, causing them to respond with a CTS. This increases
the number of packets received from each phone. In §6, we
discuss how detections are stored and delivered to the central
tracking server.
5.1 Popular SSID AP Emulation

Cellular data network of mobile operators are struggling
to keep up with the increasing data demands of smartphones

3While anybody can advertise any SSID, advertising a “pretend” attwifi
access point where a real AP exists could create confusion. We disable such
advertisements whenever such confusion may occur.



and tablets. One mechanism mobile operators use to alle-
viate this problem is Wi-Fi data offloading. For example,
AT&T provides free open Wi-Fi access at Starbucks and
other public places. These not only provide convenient In-
ternet access to people but also allow offload data demands
from the cellular network.

Mobile operators also try to make sure smartphones au-
tomatically connect to their Wi-Fi hotspot. For example,
AT&T’s free Wi-Fi hotspots use attwifi as SSID. Once an
iPhone has been associated with an attwifi AP, the iPhone
automatically associates with any future attwifi APs it finds
nearby.

When a phone scans for nearby access points, two things
may cause our monitor to not detect the phone. First, a
phone may enable its Wi-Fi receiver, yet not transmit any
probe messages, or second, the phone may transmit a mes-
sage which is not received correctly by the AP. In both
cases, we can use the auto-associating features of typical
smartphones to recover. By transmitting beacons advertising
popular SSID’s such as “attwifi” and “tmobile”, any phone
with an active receiver tuned to the correct channel becomes
aware of these two “virtual” APs. Many times, the phone
will then send an association request, increasing chances of
a phone being detected by a monitor.

Perhaps more importantly, we also want to increase the
number of packets received by each passing phone. For this,
we use hostapd, to emulate the full operation of an open Wi-
Fi access point (though in our case without providing end-to-
end Internet connectivity). Thanks to hostapd, the energy
saving functions of IEEE 802.11 are handled automatically,
making sure that packets are only sent to the phone when
its receiver is active. The power-saving functionality in the
phone typically results in the transmission of null-frames to
the AP, which we can use for tracking purposes. This process
continues as long as a station is associated with our AP.
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Figure 6. Distribution of time duration of null packet re-
ception for associated devices in fixed APs.

We receive additional packets from most associated sta-
tions using this technique. Figure 6 shows the CDF of
the number of seconds (not necessarily consecutive) dur-
ing which null packets are received from associated devices,
across 7 different monitors and several thousand phones. For
most monitors, packets are received for a median of 10-15
additional seconds, typically well spaced through the time of
association. Some associations result in significantly higher

numbers, likely due to differences in mobility: a phone that
moves slower stays associated for longer, and has more op-
portunities to transmit. One point should be noted here that
we record only one packet every second for the purpose of
compact logging and hence the actual number of packets re-
ceived can be higher.
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Figure 7. Unique devices associated with different types
of APs during 12 hour deployment.

Figure 7 shows the number of unique devices associated
with our emulated APs (attwifi, tmobile), for a 12 hour de-
ployment using 7 monitors. Here, attwifi dominates due to
its significant iPhone presence, but tmobile produces a mea-
surable number of associations as well. The third set of bars
illustrates the number of associations using “opportunistic”
AP emulation, discussed below.
5.2 Opportunistic AP Emulation

A station that wants to get associated with an AP scans
for APs nearby either passively by observing AP beacons or
actively by sending probe requests. While scanning actively
for APs, most phones will transmit an anonymous, broadcast
probe request. While these provide a detection, we have not
found a way to leverage such broadcasts into multiple trans-
missions. However, phones frequently also transmit directed
probe-requests for a particular SSID that it has been associ-
ated to in the past. Such probe requests reveal the association
desires of the phone in question, which we can take advan-
tage of.

By emulating the requested SSID, we can encourage the
device to attempt to associate with us. However, the associ-
ation process initiates at the station, which will only attempt
association if it recognizes the emulated AP as one that it has
connected to in the past. One major factor in this recognition
process is the security protocol used, which is not specified
in the probe request.

For open authentication, there is no security protocol, and
the station gets associated with the AP as in the popular
SSID case above. But for secured Wi-Fi networks, the smart-
phone will not try to associate if the security protocol does
not match with the devices’ remembered security protocol.
Hence we emulate multiple APs with same SSID but differ-
ent security protocols for each observed SSID so that one
of the emulated APs matches with the station’s remembered
APs and the device associates with the emulated AP.

The overall association process in shown in Figure 8. In
the case of open association, the association process com-
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Figure 8. Association process of a station with an AP. In
the case of open association, the process completes at A.
However, for WPA/WPA2 the subsequent secure associa-
tion 4-way handshake (C) is required. If this is not initi-
ated by the AP, the station repeatedly sends null packets
and probe-request packets.

Platform Behavior
IOS 4.3.3 Sends null-function packets continuously

and probe request packets intermittently for
around 10 minutes.

IOS 5.0 Send a single null packet and disassociates
after 5 seconds. Then repeats association at-
tempt.

Android
2.3.4

Sends 10 null packets every second for 10
seconds, then disassociates. Then repeats as-
sociation attempt.

Table 1. Smartphone secure Wi-Fi association behavior
after open system association.

pletes at time A (labels on right side of figure). However, for
WPA/WPA2 secure association, a 4-way handshake at time
C is expected. As we do not have the pre-shared key for
PSK or valid certificate for 802.1x, our emulated AP cannot
perform this 4-way handshake, and does not attempt it. How-
ever, as shown in the Figure 8, if the AP does not start 4-way
handshake, the station stays at (B), which sends null packets
continuously to see if the AP is still there. This satisfies our
goal of getting additional packets from the phone.

Table 1 summarizes the different behaviors of smart-
phones at time B in Figure 8. Essentially, once a phone as-
sociates, it will either send null and probe packets at regular
intervals, or repeat the association after a timeout. Either
case provides useful packet transmissions for tracking.

Our implementation supports the PSK and 802.1x au-
thentication protocols and TKIP, CCMP ciphers, some of
the more popular options for secure WPA/WPA2 authenti-
cation. Figure 9 shows the CDF of packet reception duration
in opportunistic APs. A small majority of associated phones
sent packets for increased duration due to this mechanism,
and 30% of phones sent packets for more than 50 seconds.
Again, these are spaced throughout the duration of the asso-
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Figure 9. Distribution of time duration of packet recep-
tion for associated devices in opportunistic APs.
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Figure 10. CDF of number of seconds during which CTS
packets are received per MAC, for non-associated MACs
only.

ciation, making them valuable for tracking purposes.
5.3 RTS Injection

Our third and final method addresses phones that do not
attempt to associate with our emulated access points. Ac-
cording to the IEEE 802.11 standard, when a station receives
an RTS frame, it should respond with a CTS if the channel
is clear, its receiver is active and tuned to the correct chan-
nel. It should be noted that RTS packet contains a receiver
address but no transmitter address. Hence it is not possible
to determine the transmitter of a CTS packet directly from
the packet.

Since the transmitter address is required for tracking, we
devise a simple solution to this problem. The device trans-
mitting the CTS uses the transmitter address in the corre-
sponding RTS as the receiver address in the CTS packet.
Hence, by using separate transmitter addresses for each in-
tended receiver, we can distinguish between the transmitters
of CTS packets. Another possible solution would be to rely
on the timing of RTS and CTS frames to determine the iden-
tity of the sender. However, such precise timing information
was not available on our hardware.

Figure 10 shows the results of RTS injection, for non-
associated MACs only. We find that response to RTS in-
creased the tracking duration by at least one second for 20%
of observed, non-associated MACs. This is decidedly fewer
phones and fewer responses than we had hoped for. The low
numbers may be explained by two reasons. First, the fact
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Figure 12. Impact of our three “prompting” techniques
on the increment of packet reception duration per phone.

that a phone that is not associated does not keep the receiver
active, or tuned to the same channel, for an extended period
of time. Second, we keep only one packet every second and
response to RTS can be thrown away because of this.

5.3.1 Null Frames
Recently, we were made aware of one more potential av-

enue of soliciting additional packets from a passing phone.
Apparently, if a phone receives a null frame, it will respond
with an ACK. We have not investigated this further thus far.
However, it appears likely that this technique, if success-
full, would produce results similar to the RTS technique de-
scribed above.

5.4 Combined System
Figure 11 shows the high-level architecture of the Wi-Fi

monitor subsystems discussed above. On top, each “inter-
face” represents a virtual interface only. Each monitoring
device has a single Wi-Fi radio. The left part of the figure
illustrates the operation of our compact logger, which is dis-
cussed in §6. Data is delivered to the central server via one
of several uplink options, discussed in §7.

To get an estimate of the combined impact of our three
methods, we compare the total number of packets received
per device, for a 7-monitor passive deployment, vs. a 7-
monitor deployment with all three techniques activated. Fig-
ure 12 illustrates the result of this experiment. We find our
techniques significantly increase the number of packets re-
ceived per phone, increasing the median packet count by 5×,
and the 90th percentile by 3×. Given the RTS results above,
it is likely that this improvement is primarily due to the first
two techniques.

6 Monitor Resource Conservation
Many of the areas of most interest for Wi-Fi tracking stud-

ies may well have a high level of background Wi-Fi activity.
Capturing and retaining all of these packets, independent of
whether they come from moving phones, would require sig-
nificant storage and/or uplink capacity. For a practical and
low-cost system, it is paramount that we reduce these re-
quirements dramatically.

Our system supports both offline store-and-retrieve and
real-time data upload modes of operation. In the case of real-
time data upload, using little bandwidth is important as the

uplink may be either costly (cellular), low capacity (long-
range Wi-Fi mesh) or donated (nearby Wi-Fi AP). The lower
the bandwidth requirements, the easier and less costly the de-
ployment. To reduce data storage and transmission demand,
we only retain second-by-second aggregates, and attempt to
retain and transmit data from moving devices only.
6.1 Filtering out Stationary Devices

Stationary Wi-Fi devices are commonplace in virtually
any populated area. However, we are only interested in trans-
missions from moving devices. To filter out packets from
stationary devices, we use the following simple heuristics.

Total Observation Duration If a device d has been ob-
served for a time greater than a blacklist threshold θ, add d
to the monitoring blacklist.

However, we should not keep a device blacklisted forever
as it may become mobile in future. Our second heuristic
removes devices from the blacklist.

Time Since Last Observation If device d has not been
observed for a time longer than the blacklist expiry threshold
ε, then remove the device from blacklist and reset the total
observation duration for this device.
6.2 Data Aggregation

While our algorithm operates on a second-by-second ba-
sis, it is common for Wi-Fi stations to transmit a large num-
ber of packets per second. Due to this, reporting the actual
packets received, or even just the headers of these packets, is
not practical due to bandwidth constraints.

Our system retains only a minimal set of information
about the observations made in each second. For each ob-
served device, we keep the MAC address and maximum re-
ceived signal strength. Intuitively, and according to Figure
4, the maximum signal strength packet contains the most lo-
cation information. This aggregate data is then forwarded
second-by-second to the central server, or stored locally for
subsequent retrieval.

For a 12-hour, 7 node deployment on a busy arterial street,
during which a total of 23,000 phones were detected, the
mean output rate of the monitors was 120 bytes/s (std.dev.
30 bytes), or a total of 5 MB each over the full 12-hour pe-
riod.
7 Deployment Considerations

Our passive Wi-Fi tracking system consists of one or
more Wi-Fi monitors placed in the area of interest, and a
central server where Wi-Fi observations are aggregated and
analyzed.

Wi-Fi monitors are created from standard Wi-Fi access
point hardware with a custom firmware update. This pro-
vides several significant benefits. First, outdoor AP hardware
is readily available, reliable and very low cost. For example,
our hardware of choice, the Ubiquity PicoStation 2, retails
for around $70.

The two main challenges for a large Wi-Fi monitoring de-
ployment are power supply and connectivity. While moni-
tors consume very little power (approx. 7W for our hard-
ware), power may not be readily available in the area of
interest, especially outdoors. In our experiments, we used
two different solutions to this problem. For short-term de-
ployments of less than 24 hours, we used a battery pack.
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For longer-term deployments on campus and next to streets,
monitors were deployed indoors near a window facing the
area of interest. A large scale outdoor deployment would
benefit tremendously from cooperation with the local mu-
nicipal agency, which typically has power available at every
intersection.

Monitors can be placed at any distance from each other
depending on application requirements. However, the denser
the placement, the more accurate the trajectory estimate.
When Wi-Fi or Ethernet connectivity is available, each mon-
itor connects directly to this uplink. We used this deploy-
ment mode successfully at the edge of campus, as well as in
nearby restaurants and residences. We found that using the
radio for both monitoring and uplink works well, and set-up
was easy.

When no uplink infrastructure exists, three remaining op-
tions exist. Monitors can be equipped with a cellular mo-
dem for Internet access. Unfortunately, this incurs a signif-
icant monthly cost, which may be prohibitive for long-term
or large-scale deployments. A benefit of a dense monitor
deployment is that it enables monitors to form a back-haul
mesh network. Given the minimal bandwidth requirements
of the monitors, a single uplink somewhere in the mesh can
potentially serve a large network. We were able to success-
fully establish mesh links across a city block distance. This
suggest that a dense deployment with one monitor per inter-
section may be the ideal configuration.

Finally, if no Internet connectivity is available at all, we
also support local storage mode. In this mode, monitors store
their detections for retrieval by a “data mule”, which wire-
lessly downloads the log as it drives by. A data muling back-
haul may be attractive where real-time tracking of phones is
not necessary.

8 Results
We used three different deployments, shown in Figure 13,

for the results described in this section. First, we have per-

manently deployed 5 nodes along the streets near our campus
as shown in green. These nodes are deployed indoors, near
windows overlooking the street. The permanent deployment
spans 9 months, during which time 400000 unique MACs
were observed.

Second, a 12-hour temporary rectangular deployment
with 6 nodes on moderately busy roads, marked in red. These
nodes were mounted on existing poles along the street, and
performed passive monitoring only. In this trial, a total of
20000 unique MACs were observed across all monitors.

Finally, a 12-hour temporary linear 7-node deployment
spanning 2.8 kilometers along a single highly trafficked road,
marked in blue. Nodes were mounded on street poles. In this
trial, we also enabled our optimizations to encourage phones
to send additional packets. Here, a total of 23000 unique
MACs were observed.

For performance evaluation purposes, we repeatedly trav-
eled the streets covered, both walking and driving, with sev-
eral different phones in our hands, pockets, or on the seat
next to us in the car. For each walk or drive, we also col-
lected a GPS trace to serve as the ground truth for location
estimation.

8.1 Mystery Addresses with Unlisted OUI
The first three octets of a MAC address is the Organiza-

tionally Unique Identifier, which designates the vendor of the
device. The OUI list at [4] is the authoritative list of OUIs,
updated daily.

Excluded from our reported datasets, and all our other
measurements, is a large fraction of MAC addresses with
unlisted OUIs. Because we have not been able to verify the
origin of these addresses (i.e. they may be spoofed or oth-
erwise non-indicative of a unique device), we conservatively
choose to exclude them. We have verified that these are not
link-local addresses, nor multicast addresses: the vast ma-
jority of offending addresses have the two lower order bits
of the first octet set to zero. Certain statistical properties are
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Figure 13. Three deployments of monitor nodes used for evaluation.
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also the same between regular and unlisted OUI MAC ad-
dresses, see §8.2.

Across all of our deployments, we have observed well
over 60,000 unique MAC addresses with unlisted OUIs. The
movement of such a large number of unlisted (and hence ir-
regular) MAC addresses on public streets is an unexplained
mystery to us, and we would appreciate any input from the
community. This claim is further supported by the fact that
virtually no “mystery addresses” occur with the link local or
multicast bits set to one.

8.2 Statistical Properties
We begin with a statistical study of the output of our mon-

itors. For these results, we use data from our 9-month de-
ployment unless otherwise noted.

By looking up the OUI in the official registry [4], we
can compute a distribution of vendors, as shown in Figure
14. This shows Apple in a dominating position, followed
by RIM and HTC. Note that these results show what was
detected only, not the distribution of phones on the street.
It is conceivable, indeed likely, that the default configura-
tion of many Android phones precludes these from being
detected. Alternatively, Android phones are the source of
the mystery MACs mentioned above. Our only evidence
in this direction is the fact that the number of such mystery
addresses is roughly equal to Apple MACs across measure-
ments, and that Android phones are not significantly repre-

sented elsewhere—hardly damning evidence.
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monitors. Lower no of MACs are observed during week-
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One interesting application of passive Wi-Fi tracking is
traffic flow or congestion monitoring. Wi-Fi tracking pro-
duces two possible measures for this type of application:
speed and travel time estimates, as output by the trajectory
estimator, and proportional volume. Actual volume cannot
be measured directly, since not all vehicles contain smart-
phones and less than 100% of phones are detected by our
monitors. As an indication of the significance of the vol-
ume measure, Figure 15 shows the average unique devices
observed across four different monitors for each day over a
two-month period. A clear weekly pattern emerges across
all monitors: each Saturday is marked by a vertical bar. The
astute reader will observe a large drop across all monitors on
Thu Nov 24 and Fri Nov 25, corresponding to the American
Thanksgiving holiday.

A diurnal pattern is also clearly detectable. Figure 16
shows the number of unique MAC addresses observed in
each of our 6 permanently deployed monitors, per hour.
These monitors are deployed relatively far from the street,
at an indoor location near streets that are only moderately
busy. This explains the somewhat low hourly numbers com-
pared to our temporary deployments on traffic poles. How-
ever, the pattern stands out clearly across all 6 monitors, over
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Figure 16. Average hourly unique devices observed in six
monitors over 9 months.

a 9 month period. The lack of a clear “rush hour” pattern is
explained by the significant presence of pedestrians on cam-
pus passing near these monitors.
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Figure 17. CDF of number of times a MAC is detected in
the same monitor during a day.

Figure 17 shows CDF of how many times a MAC is ob-
served in a particular monitor. Here the majority of MACs
were observed once or twice per day, as may be expected
from a typical commuting behavior.
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Figure 18. CDF of fraction of monitors detecting a given
device, for listed and unlisted OUI.

We are also interested in determining, for phones other
than our own, how often they are detected as they pass by our
monitors. That is, for a randomly chosen phone and monitor,
what is the probability that the monitor detects the phone as
it passes by. This number cannot be accurately computed
without knowing how many phones passed each monitor, a

number which we cannot collect. As a proxy, we report the
probability of detecting a phone, given that it can be detected.

Even computing this number can be a challenge, given
that the actual trajectory of each phone is unknown. We
use the following method. Let our monitors be numbered
1–7 in the east–west direction, as shown in Figure 13. For
each unique phone, calculate the largest numbered and low-
est numbered monitor that detected the phone. If these are
separated by at least one monitor, assume that the phone
took the shortest route, and therefore passed by the interme-
diate monitors. For each such intermediate monitor, check
whether it detected the phone passing by.

Figure 18 shows CDFs of the ratio between monitors
passed by, and the number of monitors detected for both
listed and unlisted OUI. Roughly 50% of phones were de-
tected by 100% of the monitors passed. Over all samples,
the mean probability of detection was 68%. Note the simi-
larity of distribution between MACs with listed and unlisted
OUIs, which suggests that the unlisted MACs do represent
actual smartphones.

Throughout our experimentation with passive Wi-Fi
tracking, we have made a number of observations about the
typical Wi-Fi transmission behaviors of iPhones in various
states of activation. Table 2 lists some of our more salient
observations. Overall, if a phone is in active use in some
way, it tends to be responsive over Wi-Fi. We also found that
some (but not all) iOS 5.0 phones scan at a higher than typ-
ical frequency, sending probe messages every minute. We
were unable to find what causes an iOS 5.0 phone to exhibit
this for our purposes highly beneficial behavior.

8.3 Trajectory Estimation Accuracy, Driving
and Walking

As discussed in §4, our trajectory estimator outputs times-
tamped positions of every moving device detected by our
network of Wi-Fi monitors. To evaluate the accuracy of this
trajectory estimate, we calculate the distance between each
timestamped position from the trajectory estimate, and the
reported GPS position for our ground-truth trips collected by
foot and by car.

Figure 19 shows a single trip as an illustrative example.
In the picture on the bottom, monitors are marked by a yel-
low pin, and a selection of relative positions are shown as
a green (true position) and red (estimated) car. The graph
above shows the distance error of the estimate vs. the ground
truth over time. As the graph clearly shows, distance error
varies significantly over the course of the drive, but is lim-
ited to ≈200m. By comparison, monitors are placed on av-
erage 460 meters apart, and the maximum detection range as
shown in Figure 4, is ≈250m.

Figure 20 shows the CDF of this distance error, separated
by driving and walking traces. The mean error is across all
traces is 69 meters, or about 1

7 th of the distance between
monitors. The difference in distribution between walking
and driving traces is primarily explained by the relatively
slower speed of walking.

Intuitively, the performance of the Viterbi algorithm
should be better for higher granularity observations. To
quantify this effect, we remove data for one or more mon-



State Behavior
Idle Sends probe request every 8 minutes for 30-60 minutes. Radio is off other times.
Idle (some iOS 5.0 phones) Sends probe requests every minute, radio is off other times.
Active from standby Wi-Fi is on and scanning (with probe requests).
Background app (email) Wi-Fi is on probe requests are sent when app need to data access
Associated and playing music Wi-Fi radio is on and responding to RTS
Associated and being charged Wi-Fi radio is on and responding to RTS

Table 2. Observations of iOS Wi-Fi behaviors. These are largely qualitative observations backed up by informal exper-
iments. Others are advised to verify these behaviors before relying on them for their own research.

Figure 19. Distance error of position estimate, with respect to ground truth over a 2.8 km route. For a sense of scale,
the red car in the map shows estimated position, and the green car is the ground-truth GPS location for a few selected
times. Actual time of each relative position on the time plot indicated by the red arrow. Mean and median distance erros
are 61 and 76 meters respectively.
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Figure 20. CDF of distance error between ground truth
and Viterbi location estimation for driving and walking.
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Figure 21. CDF of distance error of Viterbi algorithm as
monitors are removed

Time Dir. Mean Speed Std. Dev. #
10:00-11:00 East 21.6 km/h 7.4 km/h 30
10:00-11:00 West 21.2 km/h 9.3 km/h 34
18:00-19:00 East 12.8 km/h 3.1 km/h 34
18:00-19:00 West 11.9 km/h 8.6 km/h 25

Table 3. Speed and count for two hours on a 1.5 km
stretch of Roosevelt road.

itors from our traces and see how the performance of the
Viterbi algorithm degrades. This is illustrated at Figure 21.
Here, monitors were removed from the center of the deploy-
ment, with the worst-case scenario having a maximum inter-
monitor distance of almost 2 km. We note that while results
are significantly degraded, this degradation is graceful.

Finally, the table above shows the mean and standard de-
viation of the speed of travel on a 1.5 km stretch of Roosevelt
road. Here, the 10:00 time is representative of off-peak con-
ditions, and the 18:00 time represents rush hour traffic. The
striking difference in speed between peak and non-peak driv-
ing was expected, but the similarity between east and west-
bound lanes was surprising. We suspect this somewhat un-
usual symmetry is due to the heavy mix of business and res-
idential buildings in the area. The column labeled # shows
the number of vehicles that were detected traversing the en-
tire stretch of road in that hour. The somewhat low number
of vehicles traversing the full stretch of road can be explained
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Figure 22. CDF of distance error for Viterbi position
estimation with interpolation and without interpolation.
Mean error for interpolated, non-interpolated are 69m,
73m respectively. RMSE was 91m, 101m respectively.

by the influence of highway entrances and exits.

8.4 Error-Minimizing Estimates for Periods
of Non-Detection

In §4.7, we discuss the use of error-minimizing estimates
for periods of non-detection. Figure 22 shows the impact
of this post-processing step. An improvement can be seen in
the large error ranges. Overall, this technique yielded a mean
error reduction of 4 meters (RMSE 10 meters).

9 Conclusion
In conclusion, we have demonstrated that tracking un-

modified smartphones using Wi-Fi monitors is both practi-
cal, economical and accurate. Based on measurements from
several real-world deployments, we find that many smart-
phones are trackable using the techniques described here.

The accuracy of passive Wi-Fi tracking depends heavily
on the density and geometry of deployment. However, us-
ing monitors spaced over 400 meters apart, we achieved a
mean error under 70 meters as compared to GPS ground
truth. Given the low equipment cost, good accuracy and high
coverage of our proposed system, we believe it may be suit-
able for large-scale deployment in urban areas. In such ar-
eas, near real-time, high-coverage measurements of surface-
street traffic flow would likely be beneficial to commuters
and planners alike.

10 References
[1] http://trafficcast.com/products/view/blue-toad/.
[2] http://www.bliptrack.com/.
[3] http://www.pathintelligence.com/.
[4] IEEE OUI Registry. http://standards.ieee.org/develop/regauth/oui/oui.txt.
[5] C.-N. Anagnostopoulos, I. Anagnostopoulos, I. Psoroulas, V. Loumos,

and E. Kayafas. License plate recognition from still images and video
sequences: A survey. Intelligent Transportation Systems, IEEE Trans-
actions on, 9(3), sept. 2008.

[6] P. Bahl and V. Padmanabhan. Radar: an in-building rf-based user
location and tracking system. In Nineteenth Annual Joint Conference
of the IEEE Computer and Communications Societies. Proceedings.
IEEE (INFOCOM ’00), volume 2, 2000.

[7] N. Bulusu, J. Heidemann, and D. Estrin. Gps-less low-cost outdoor
localization for very small devices. Personal Communications, IEEE,
7(5), oct 2000.

[8] T. Chothia and V. Smirnov. A traceability attack against e-passports.
In In 14th International Conference on Financial Cryptography and
Data Security 2010, LNCS. Springer, 2010.

[9] B. J. Dil and P. J. M. Havinga. Stochastic radio interferometric po-
sitioning in the 2.4 ghz range. In Proceedings of the 9th ACM Con-
ference on Embedded Networked Sensor Systems (SenSys ’11), pages
108–120, New York, NY, USA, 2011. ACM.

[10] I. S. et. al. Place lab: Device positioning using radio beacons in the
wild. In In Proceedings of the Third International Conference on Per-
vasive Computing (Pervasive ’05). Springer, 2005.

[11] M. Hamedi, R. Fish, and A. Haghani. Data collection of freeway travel
time ground truth with bluetooth sensors. In Transportation Research
Record: J. of the Transportation Research Board, volume 2160, 2010.

[12] T. He, C. Huang, B. M. Blum, J. A. Stankovic, and T. Abdelzaher.
Range-free localization schemes for large scale sensor networks. In
Proceedings of the 9th annual international conference on Mobile
computing and networking (MobiCom ’03). ACM, 2003.

[13] R. Herring, A. Hofleitner, P. Abbeel, and A. Bayen. Estimating arterial
traffic conditions using sparse probe data. In Intelligent Transporta-
tion Systems, 2010 13th International IEEE Conference on (ITSC ’10).

[14] M. Kim, D. Kotz, and S. Kim. Extracting a mobility model from
real user traces. In 25th IEEE International Conference on Computer
Communications. Proceedings (INFOCOM ’06), april 2006.

[15] K. Kwong, R. Kavaler, R. Rajagopal, and P. Varaiya. Arterial travel
time estimation based on vehicle re-identification using wireless mag-
netic sensors. Transportation Research Part C: Emerging Technolo-
gies, 17(6), 2009.

[16] K. Kwong, R. Kavaler, R. Rajagopal, and P. Varaiya. Real-time mea-
surement of link vehicle count and travel time in a road network. Intell.
Transport. Sys., 11, Dec 2010.

[17] H. Lu, S. Zhang, X. Liu, and X. Lin. Vehicle tracking using particle
filter in wi-fi network. In Vehicular Technology Conference Fall, 2010
IEEE 72nd (VTC ’10), sept. 2010.

[18] M.Ndoye, V. Totten, B. Carter, D. Bullock, and J. Krogmeier. Vehi-
cle detector signature processing and vehicle reidentification for travel
time estimation. In Proceedings of 88th Transportation Research
Board Annual Meeting (TRB ’08), 2008.

[19] P. Mohan, V. N. Padmanabhan, and R. Ramjee. Nericell: rich monitor-
ing of road and traffic conditions using mobile smartphones. In Pro-
ceedings of the 6th ACM Conference on Embedded Networked Sensor
Systems (SenSys ’08), New York, NY, USA, 2008. ACM.

[20] D. Moore, J. Leonard, D. Rus, and S. Teller. Robust distributed net-
work localization with noisy range measurements. In Proceedings of
the 2nd international conference on Embedded networked sensor sys-
tems (SenSys ’04). ACM, 2004.

[21] J. Pang, B. Greenstein, R. Gummadi, S. Seshan, and D. Wetherall.
802.11 user fingerprinting. In Proceedings of the 13th annual ACM
international conference on Mobile computing and networking (Mo-
biCom ’07), pages 99–110, New York, NY, USA, 2007. ACM.

[22] I. Rose and M. Welsh. Mapping the urban wireless landscape with
argos. In Proceedings of the 8th ACM Conference on Embedded Net-
worked Sensor Systems (SenSys ’10), 2010.

[23] I. Rouf, R. Miller, H. Mustafa, T. Taylor, S. Oh, W. Xu, M. Gruteser,
W. Trappe, and I. Seskar. Security and privacy vulnerabilities of in-
car wireless networks: a tire pressure monitoring system case study.
In Proceedings of the 19th USENIX conference on Security (USENIX
Security’10), pages 21–21, 2010.

[24] T. S. Saponas, J. Lester, C. Hartung, S. Agarwal, and T. Kohno. De-
vices that tell on you: privacy trends in consumer ubiquitous comput-
ing. In Proceedings of 16th USENIX Security Symposium on USENIX
Security Symposium (SS ’07). USENIX Association, 2007.

[25] A. Thiagarajan, J. Biagioni, T. Gerlich, and J. Eriksson. Coopera-
tive transit tracking using smart-phones. In Proceedings of the 8th
ACM Conference on Embedded Networked Sensor Systems (SenSys
’10). ACM, 2010.

[26] A. Thiagarajan, L. Ravindranath, K. LaCurts, S. Madden, H. Balakr-
ishnan, S. Toledo, and J. Eriksson. Vtrack: accurate, energy-aware
road traffic delay estimation using mobile phones. In Proceedings
of the 7th ACM Conference on Embedded Networked Sensor Systems
(SenSys ’09), pages 85–98, New York, NY, USA, 2009. ACM.

[27] W. Xi, Y. He, Y. Liu, J. Zhao, L. Mo, Z. Yang, J. Wang, and X. Li. Lo-
cating sensors in the wild: pursuit of ranging quality. In Proceedings
of the 8th ACM Conference on Embedded Networked Sensor Systems
(SenSys ’10). ACM, 2010.


