Nonlinear Control

Lecture2: Lyapunov Stability
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Lyapunov Stability

® Overview
o Definitions
o Stability analysis
e Lyapunov Linearization Method

e Lyapunov Direct Method
v' Local Stability
v’ Global Stability

e Invariant Set

o Lyapunov Function Generation

e Krosovskii Methods
e Variable Gradient Method

o Lyapunov Based Controller Design
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Lyapunov Stability

® Stability Definitions
o Consider the closed-loop autonomous system:
z = f(z) (3.1)
e Where f D — R"is locally Lipschitz.
e The equilibrium point is @ origin: X =0.
Definition 3.1 The eguilibrium point 2 = 0 of (3.1) is
o stable if, for each ¢ > 0, there is & = 6(¢) > 0 suck ihat

l2(0)) < & = [la(d)] <&, ¥ ¢20

o unstable if not stable.

o asymplotically stable if i1 is stable and § can be chosen such thal

lz(0)} < & = lim 2(t) =0
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Lyapunov Stability

® Stability Definitions

o Stability in sense of Lyapunov:

e The system trajectory can be kept arbitrary close to
the equilibrium point.

o Geometric Representation

Asymptotically
Stable

ﬁ
Unstable

>

)

N \v/g

\(;

v

Stable in sense
of Lyapunov
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Lyapunov Stability

® Stability Definitions
o Example: Van der Pol

e J¢ the trajectories
diverges

e Unstable Eq. Point
e Stable Limit Cycle

o Example: Pendulum

e V& — 30 > starting from %%
inside & the trajectory N >
remains in € \&y

e Stable (not asymptotically)
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Lyapunov Stability

e Stability Definitions

, Exponential Stability

Definition = An equiltbrium point O is exponentially stable if there exist two
strictly positive numbers o and & such that

vi>0, (kO S ollx@ )™ (3.9)

in some ball B, around the origin.

, Global Stability

Definition ©  If asymproric (or exponential) stability holds for any inittal states, the
equiithrium potnt is said to be asymprotically {or expaneniially) stable in the large. Ii
15 afso called globally asympiosically (or exponentially) siable.
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Lyapunov Stability

® Overview
o Definitions
Stability analysis
e Lyapunov Linearization Method

(e)

e Lyapunov Direct Method
v’ Local Stability
v’ Global Stability

e |[nvariant Set

Lyapunov Function Generation

e Krosovskii Methods
e Variable Gradient Method

Lyapunov Based Controller Design

(@)

o
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Lyapunov Stability

. Stability Analysis
o Linearization

e Lyapunov indirect or linearization method

Theorem .  Let x = 0 be an equilibrium poini for the nonlinear sysiem
z = f{z)
where f : D — R" is confinnously differentiable and D is a neighborhood of the
origin. Lel s :
A=)
8z r=0
Then,

1. The origin ts asympiotically stable if Ked; < O for all eigenvalues of A.

2. The origin is unstable if Re); > 0 for one or more of the eigenvalues ofA.

v If eq. point is non-hyperbolic = Inconclusive!
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Lyapunov Stability

® Stability Analysis
o Linearization

e Example 1: Consider the system #=az®

_of

A=5

= 30:2'4::3 =

% =0

v" The eigenvalue is on imaginary axis = Inconclusive.

e Example 2: Pendulum

£1 = I3
2 = — (%)Siﬂ&'[-—(r—f{):ﬂg

v' The eq. points are @ (0,0) and (r,0).

v’ Jacobian: o1 Iigf,'i' %} [ 0 1 ]
-é__: =
e T Hen -@)
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Lyapunov Stability

® Stability Analysis
o Linearization

e Example 2: Pendulum (cont.)
v’ For (0,0) Eq. point :

- e RS LR O
= Eigenvalues Hurwitz = Asymptotically Stable
v" For (1,0) eq. point.
= Change variables s1 = 21—, 23 = =z
= Chack Jacobian @ z=0
- 2
A=l —] = n =i% () @

= One of the eigenvalues is not Hurwitz
- Unstable

10
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Lyapunov Stability

® Overview
o Definitions
o Stability analysis
e Lyapunov Linearization Method

e Lyapunov Direct Method
v’ Local Stability
v Global Stability

* [nvariant Set

o Lyapunov Function Generation
o Krosovskii Methods
e Variable Gradient Method

o Lyapunov Based Controller Design

11
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Lyapunov Stability

® Stability Analysis
o Direct Method, The Philosophy

e Mathematical extension of a physical observation:

v'If the total energy is continuously dissipating

v Then the system (Linear or Nonlinear) must settle down

to an equilibrium point.

e Example: Mass with nonlinear spring-damper

v Consider the system:
m¥ +bxld+kyx+k;x*=0
v hardening spring +

nonlinear damping
v’ Is the resulting motion stable?

nontinear
spring and
% damper

—

//;x

12
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Lyapunov Stability

® Direct Method, The Philosophy

o Examine the total energy
1 - 1 1 - l l
V(x)=imx2+L (k,x+kyx3)ydx = imx2+5kax2+ak]x4

e Physical observations:

* ze10 energy corresponds (o the equikibrium point (x =0, x=0)
* asymptotic stability implies the convergence of mechanical energy to zero
» instability is related to the growth of mechanical energy

e Stability is related to the variation of energy
V(X) = mi3+ (kyx + k) 03 k= & (-bxlkly=-blxl3

v' The energy of the system is continuously dissipating

toward zero . .
v’ The motion is converging to eq. point.

13
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Lyapunov Stability

e Direct Method, The Philosophy
o The energy function has three properties:

e V(X) is a scalar function
e V(X) is strictly positive except @ (x=0,x=0)
e V(X) is monotonically decreasing.

o Lyapunov Direct Method is

e A Mathematical generalization of the above
observation
v’ Find a scalar energy-type function
v" which along system trajectory is continuously decreasing
v’ Then the eq. point is stable.

14
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® Direct Method

Definition : A scalar continuous function V(x) is said to be locally positive
definite if VIWy =0 and, ina bali B R,

xz0 = V(x)>0

If V(0) = 0 and the above property holds over the whole state space, then V(X) is said
to be globally pasitive definite.

o Example: Mass with nonlinear spring-damper
e Kinetic Energy: V(X)=%m>'<2

v" Is NOT positive definite, since V(X) is zero for nonzero
states such as (X:=c, x2=0).

1,1 1
e Total Energy: V()=2mi + kX" + 2 kX’

v' Is globally positive definite, since it is everywhere
positive except at the origin.

15
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Lyapunov Stability

® Direct Method v

o Positive Definiteness -«Vﬂ;

e Geometrical Representation v=h
e Negative Definite w

if ~V(x) is positive definite

® Positive Semi-Definite
ifVO)=0and V(x)20forx =10

e Time derivative OR

Derivative along trajectory

gV AV 3V o

dt 0x dx
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Lyapunov Stability

® QOverview
o Definitions

(@]

Stability analysis
e Lyapunov Linearization Method

 Lyapunov Direct Method
v’ Local Stability
v’ Global Stability

e |[nvariant Set

Lyapunov Function Generation

o

e Krosovskii Methods
e Variable Gradient Method

Lyapunov Based Controller Design

(@)

17
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® Stability Analysis
o Lyapunov Direct Method
e Local Stability

Theorem .| Lel z =0 be an equilibrium point for (3.1) and D C R™ be a domain

contaiming £ = 0. Lel V : D — R be a continuously differentiable funclion, °~h
thai

V(0)=0 and V(z)}>0in D - {0}

V(z)<0in D %2
. . V= V3 Vl < Vz <V
Then, ® = 0 25 slable. Moreover, if higl\ 3
- ; V=V
V(e) < 0in D — {0} ! or\\ x,
then £ = 0 ts asympiotically stable.

e Proof Idea: (Full proof in Khalil Book page 115)
v’ Lyapunov Surface: V(X)=c¢ for ¢>0.

v If V(x) <0, then a trajectory crosses a Ly. S. , it moves
inside and can never come out again.

18
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® Lyapunov Direct Method

o Example 1: Pendulum without friction

e System: o= oa
Ta = = (T)smml
e Lyapunov Candidate: V(a:):(%) (1 - coszy) + Lu2

v’ How??! (Total Energy)
v’ It is positive definite in the domain —2z < z; < 2%

e Lyapunov Function?
v’ Derivative along trajectory:
V(z) = (%) z1 802 + Tz = (%) zosinz, — (%) roginzy =0
v’ Eq. point is stable.
v’ But not asymptotically stable!

v’ Trajectory starting @ Ly. S. V(z) = ¢, remain on it.
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® |yapunov Direct Method
o Example 2: Pendulum with viscous friction

e System: B
ysrem i = = (Denzi— (X)) e
e Lyapunov Candidate: V() = (%) (1 - cosz1) + 343

v The same as Ex1. (Total Energy)
e Lyapunov Function?

v’ Derivative along trajectory:
. b
V(I) = (%) &1 8ih 2 + TpTe = — (—) :l‘:g

m
v’ Positive Semi-definite: zero irrespective of xz
v Only stable but not asymptotically stable!

v’ Phase portrait and linearization method = Asy. Stable.

o Lyapunov direct conditions are only sufficient!

20
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® Lyapunov Direct Method
o Example 2: Pendulum with viscous friction

e Use another Lyapunov Candidate:

V(z) = 32’ Pz+ (%) (1 —coszy)

= 1 1 Pz £1 ANTEE
= alm xﬂ[_ﬁ?lz P22 ] [ 2 ]+ (I)[l 0 21)

e Lyapunov Function?
V' V(x) > 0if p11>0; paz > 0; prapes — piy > €

e Derivative along trajectory:
Viz) = (-’;—) (1 = p2z)z2sinz; — (%) P12T1 8in 2y

k k 5
TP —Piz{ ) Z1%2+ IP1a — P22 | ]| 22

v If 12 = 0.5(k/m}, then
V=1 (%) (%) 21 singy — L (%) 22

becomes neg-def. over the domain D= {z € R? | |z1| < =}

21
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® |Lyapunov Direct Method

o Example 3: Consider the first-order differential equation

z = ~g(r)

where g(z) is locally Lipschitz on (—a, a) and satisfies

9{(0)=0; zg(z)>0, Y2#0, z € (~a,a)

e Lyapunov Candidate:
v' How??! (Total Energy)
v’ It is positive definite in the

e Lyapunov Function?
v’ Derivative along trajectory:

V(@) = 2 [-a(e)] =~

V(z) = f: a(y) dy

domain B = (—a,a)

2) <0, ¥YzeD- {0)

v’ The eq. point is Asymptotically stable

22
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® Lyapunov Direct Method
o Example 4: Consider the following system:

.;II =X I:X]Z‘l' Izz—z)—“.l'!){zz
.i:z = 4,1.'12.1'2 + .l"z [.t‘lz +.1.'?_2 - 2:'
e The eqg. point is @ origin.
e Lyapunov Candidate:
Vixp, ) = 2%+ xp2

v’ Derivative along trajectory:
f”‘ = 2(1'[2 + I'lz) (.IIZ + .-1’22 -2)

v It is negative definite in a ball: x,? +x,2<2
v' The eq. point is asymptotically stable.

23
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Lyapunov Stability

® Overview
o Definitions
o Stability analysis
e Lyapunov Linearization Method

e Lyapunov Direct Method
v' Local Stability
v’ Global Stability

e |[nvariant Set

o Lyapunov Function Generation

e Krosovskii Methods
e Variable Gradient Method

o Lyapunov Based Controller Design

24
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® Stability Analysis

o Lyapunov Direct Method
e Global Stability

Theorem .  Lel x = 0 be an equilibrium poini for (3.1). Let V : R — R be a
continuously differentiable function such that

V{0)=0 and V(z)>0, Ve #£0
Radial Unboundedness (||| = o0 = V(z) — o

Viz)<0, Yz #0

then z = 0 is globally asympiotically stable. *2

For small ¢ the Ly. Surfaces V(x)=c are closed,
but for large c the Ly. S. are not closed, then the

trajectory may diverge.
J y may 9 Radial Unboundedness

25
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® Lyapunov Direct Method

o Example 5:System asinEx3: i+ e =0
In which, ¢(0) =0 and xe«(x) > 0 for x#0

4 c(xj

e Lyapunov Candidate: V=x?

v’ It is positive definite in the whole space

v It is radially unbounded
e Lyapunov Function?

v/ Derivative along trajectory: V=2xi==-2xc(¥)

v’ Hence: V<iaslongasx=0

v'Hence, the origin is globally asymptotically stable.
e Typical Examples

v k=-x? OR i=sin®s-x (sinx<sinx<l.)

v xc(x)=x*>0 and xc(x)=x*—xsin’x>x*—x|x| >0

-t

26
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® |yapunov Direct Method

o Example 6: Consider the following system:

X =ap =X (xt + x50
Xy ==X -x:{.r,z +x32}
e The eq. point is @ origin.
e Lyapunov Candidate:
Vix) = xy + x,?
v’ Derivative along trajectory:
Vix) = 2xy X + 2530y = —20(x,2 + x,2)?
v It is negative definite everywhere,
v’ It is radially unbounded,

v’ The eq. point is globally asymptotically stable .

27
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® |Lyapunov Direct Method
o Remarks:

1.

2.

Use total energy as the first Lyapunov candidate,
but don’t limit yourself to that.

Many Lyapunov functions exist for a system. If Vs
a Lyapunov function, sois ¥; = pV %,

Lyapunov theorems are sufficient theoremes, if a

Lyapunov candidate doesn’t work, search for
another one!

28
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Lyapunov Stability

® QOverview
o Definitions
Stability analysis
e Lyapunov Linearization Method

(o]

e Lyapunov Direct Method
v" Local Stability
v’ Global Stability

¢ |nvariant Set

(@]

Lyapunov Function Generation

e Krosovskii Methods
e Variable Gradient Method

Lyapunov Based Controller Design

o

29


pardazesh rayaneh
Rectangle

pardazesh rayaneh
Line


® |nvariant Set Theorems:

o Asymptotic stability needs V(x) <0
e In many systems we reachto V(X) <0
e Use invariant set to prove asymptotic stability

Definition : A set G is an invariant_set for a dynamic system if every system
trajectory which starts from a point in G remains in (s for all future time.

e Examples of invariant sets
v An equilibrium point
v" A limit cycle
v Any trajectory
v The domain of attraction of an eq. point or a limit cycle
v The whole state space

30
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® |nvariant Set Theorem:
o Krasovskii - Lasalle’s Theorem

Theorem : (Local Invariant Set Theorem) Consider an awonomous system of
the form (3.2), with [ continuous, and let V(X) be a scalar function with continuous
first partial derivatives. Assume that

e for some [ > 0, the region K defined by\ V(x) <1 is bounded

. f’(x} <0 forallxinQ,
Let R be the set of all points within Ly where Vx)=0, and M be the largest
invariant setin R. Thet, every solution X(1) originating in £2; tends toM as t = ©9,
v' The function V does not need to be positive definite!
v The set Qs called a compact set.
v’ largest invariant set means the union of all invariant sets.

v" This theorem introduces the notion of Region of Attraction.

v" Can be used for Eq. point, limit cycle, or any invariant set.

31
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® |nvariant Set Theorem:
o Local Asymptotic Stability

Corollary 3.1 Let x = 0 be an equilibrium point for (3.1). Let V : D — R be a
conlinucusly differentiable positive definite funciion on a domain D conlaining the
erigin & = 0, such that V{z) < 0 in D. Let S = {x € D | V() = 0} and suppose
that no solution can slay identically in S, other than the trivial solution. Then, the
orimn is asympiotically stable. &

o Global Asymptotic Stability

Corollary 3.2 Let ¢ = 0 be an eguilibrium point for (3.1), Let V. R® = R ke a
continuously differentiable, radially unbounded, postlwe definite function such that
V(zg) <0 forallz € R*. Let S = {z € R* | V(2) = 0} and suppose thal no
solution can stay identically in S, other than the trivial solution. Then, the origin
is globally asympiotically stable. <

e No Compact Set
e No sign of Region of Attraction

32
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Invariant Set Theorem:
o Example 1: Mass with nonlinear spring-damper

e System dynamics ;-;rrql:geaanil
m¥ + bx\\ +k,x+kx3=0 % damper m
e Lyapunov Function g
%—1

1 1 1
V(X)==mx*+=k x*>+=kx*
() 2 2 ° 4 "

V(x)=-b[x’ <0
v The set R where V(x) =0 is R={(x,X)| x=0}
v’ Is the largest invariant set in R, M ={(0,0)} ? \

N Y

<\

Suppose any arbitrary point of R, such as (x3,0) is also in M. ] X

Any trajectory passing through this point must satisfy:
¥ == (k,/m)x~ (kJm)x* 20. hence the trajectory moves out from R.

v The equilibrium point is asymptotically stable.

33
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® |nvariant Set Theorem:

o Example 2: ,
. Yy = Io
e System dynamics: £q —g{x1) — h(x2)
v’ In which,
9(0) =0, yg(v) >0, Yy#0, y € (~a,a)
A(0) =0, yh(y) >0, Yy#0, y€(—a,a)
e Eg. point @ origin.
e Lyapunov Candidate: V(:}):/; g(y) dy + jzj

it

v’ In the domain P={ze R*| —a <z < a} is positive definite.

e Lyapunov function derivative:
V() = g(1)3 -+ 25[~g(21) ~ h(z2)] = —z2h(22) < O

v’ Positive semi-definite, needs invariant set Theorem.

34
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® |nvariant Set Theorem:
o Example 2: (cont.)

e Characterize the Set R where:

1;’(3]:0 = 2oh(22) =0 = 2;=0, since ~a< ;< q

* Hence, R={(x,%,)|x, =0}
e Show that M includes only origin:

v’ Suppose x(t) is a trajectory belonging to R, then
Zo(t) S0 = &) = 0= gz (N =02 01 () =0

v'Hence, the solution to this trajectory is only the origin.

e The equilibrium point in asymptotically stable.

35
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® |nvariant Set Theorem:

o Example 3: Region of Attraction
) Xy =xp 02 4 1,2 = 2) = dxpx,?
e System dynamics:
i-2'= 41’1212 * .Iz (Xlz +122 - 2)
e Eg. point is @ origin.
e Lyapunov candidate: Vix), xp) = x)2 + x,2
v for |=2, the region Q defined by V(X) <2 is a compact set.

e Lyapunov derivative:  ¥=2(2+x? x;2+x,2-2)

v For set () the derivative is always negative except @ origin.

e The set R includes only the origin.
v" Invariant Set Theorem conditions hold.
v’ The eq. point is locally asymptotically stable.
v’ The Region of Attraction is Q a circle with radius r =+/2.

36
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® |nvariant Set Theorem:
o Example 4: Attractive Limit Cycle

e System dynamics h=xm - nllyt 20 -10)
Xy = =xy = 3x° [xd+2xy%-10]
e There exist an invariant set: xd+2x,2=10
v’ Since, its derivative is zero on the set.
%(11‘ +2x,0-10) = =40 + 12,5 (x*+ 257~ 10) =0
e On the invariant set: ’
) = A

v' Simplified system dynamics

. - _ 3
v’ Invariant setis a limit cycle "2 7~ ™™

e |s the limit cycle attractive?
v’ Lyapunov candidate: V=t + 25,2 10)?
v’ Physical insight: distance to the limit cycle.

37
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® |nvariant Set Theorem:

o Example 4: Attractive Limit Cycle (cont.)

e Forany|>0,
v the region Qdefined by V(X) <lis a compact set.
e Lyapunov function derivative:
v from before, ¥ = -8¢x"0+3.5,8)(x,%+2.x,2-10)2
v V(X)<0 everywhere except at
4200 =10 or The limit Cycle.

= 0030 =0 The Eq. point @ origin.

v’ The eq. point at origin is unstable.

e From invariant set theorem, all the trajectories
converge to the limit cycle.

38
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® |nvariant Set Theorem:
o Example 4: Attractive Limit Cycle (cont.)

e Phase portrait:

39
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Linear Time Invariant (LTI) Systems:

o Consider an LTI system X = AX
e State Transition Matrix: X(t) =e"x,

o Stability of an LTI system
e Hurwitz VA, R(A)<O
e Lyapunov Equation

v Theorem: A matrix Ais Hurwitz, iff for any given positive
definite matrix Q, there exists a positive definite matrix P
that satisfies the Lyapunov Equation: A'P + PA=-Q

= Sketch of proof: Lyapunov candidate V(=) =2" Pz
= Derivative: V(z)=2T P+ 4T Pz = 2T(PA+ ATP)e = 2T Qz

= Lyapunov Equation PA+ATP=-Q

40
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Instability Theorem

Theorem @ Let 2 = 0 be an equilibrium point for (3.1). Let V : D — R be a
continuously differentiable function such that V(0) = 0 and V(zg) > Q for some x;
with arbitrarily small ||2o]l. Define a set U as in (3.8) and suppose that V(z) > 0
tn /. Then, x = 0 13 unsiable. <&

U={zeB, |Viz)>0} (3.8)
o Example 1:
o For V(9= -x)
v ' V(0)=0, V(x,) >0 in the hatched area:
v The Region U is the hatched area

e For Instability it is sufficient to have
v 3x, 5> V(x,)>0,and
v wxeU V(X)>0

41
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e |nstability Theorem

o Example 2: B = x4 91(2)
e System dynamics:  #2 = -—z2+g2(z)
v" in which, lgi ()| < kliz||3

* Eqg. point @ origin, since gi{0) =0
® Consider: V(z)=1i(z3—23)

v The set U is as shown

v" For a point inside U V(x,) >0

® Derivative along trajectory
Viz) = 22 + 22 + 2101 () — 22g2(2) R
v’ But, 2191 (%) = zag2(2)] < D Izil - [gi(=)] < 2k|1=()3

=1

¥ Hence: V{z) > llz|)3 — 2k|=(13 = |l=}|2(1 — 2k(|=()2)
v ForaBall B. C Dand 7 < 1/2k ,V(x)>0 == Unstable

42
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Lyapunov Stability

® QOverview
o Definitions
o Stability analysis
e Lyapunov Linearization Method

e Lyapunov Direct Method
v" Local Stability
v’ Global Stability

* |[nvariant Set
o Lyapunov Function Generation

e Krosovskii Methods
e Variable Gradient Method

o Lyapunov Based Controller Design

43
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® [yapunov Function Generation
o Krasovskii Method

Theorem  (Krasovskii) Consider the autonomous system defined by (3.1), with
the equilibrium point of interest being the origin. Let A(X) denote the Jacobian matrix
of the sysiem, i.e.,

Al

dx

If the matrix F=A+ AT s negative definite in a neighborhood Q, then the
equilibrium point at the origin is asymptotically stable. A Lyapunov function for this
system is

Vix) = f1(x) f(x)

{f €} is the entire state space and, in addition, V(x) = ©° as |[[x]] = o0, then the
equifibrium point is globally asympltotically stable.

44
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® Lyapunov Function Generation
o Krasovskii Method

e Example: Consider the system
v The Jacobian:

-6 2
H‘ _.—_£=
X 2 -6-6x?

i’l =—6X| +2.Iz

.E'1=2.I| “611—21'2}

-12

F=A+AT=l
4

v'F is negative definite for the whole space.

v’ Lyapunov Function

V(x) = fT(x) (X)) = (=6x; +2x5)2 + (2x; = 6Xy = 2x,7)°

v It is Radially unbounded
V{x) 5 o0 as |x]| = =°

v’ The Eq. point is globally asymp

totically stable.

4
~12—12xy?

|
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® Lyapunov Function Generation

o Krasovskii Method

Theorem : (Generalized Krasovskii Theorem) Consider the autononious system
defined by (3.1), with the equilibrium point of interest being the orvigin, and let A(x)
denote the Jacobian matrix of the system. Then, a sufficient condition for the origin fo
be asymptotically stable is that there exist two symmetric positive definite matrices P
and Q, such that ¥Yx # 0, the matrix

Fx)=ATP+PA+Q

is negative semi-definite in some neighborhood Q of the origin. The function
V(x) = T PF is then a Lyapunov function for the system. If the region Q is the whole
state space, and if in addition, V{X) — o as ||X|| = €9, then the system is globally
asymplotically stable.

e Proof Idea:

V= g—i:f(x} = (TPAX)E + fTPATOOPE = (TFF-TQf
X

v If F<0and Q >0, then V (x) <0
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Lyapunov Stability

® Overview
o Definitions
o Stability analysis
e Lyapunov Linearization Method

e Lyapunov Direct Method
v" Local Stability
v Global Stability

e |[nvariant Set
o Lyapunov Function Generation

e Krosovskii Methods
e Variable Gradient Method

o Lyapunov Based Controller Design
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® [yapunov Function Generation

o Variable Gradient Method
e Search backward, start with V(x)<0, then find V(X).

e Procedure:
v Suppose g(X) is the gradient of V/(X): g(z) = YV = (8V/8z)T
v" Derivative of V(X) along trajectory:

V(o) = 2 fte) = o7 (@) )
v’ Choose g(x) such thatV(x) <0 while, V(x) > 0.

v’ For g(x) to be gradient of a scalar function:

Jg;  Og;
3&33' - 3:!:5’

v/ Under this constraint choose g(x) such that g' (x) f (x) <0

Vi i=1,...,n
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® Lyapunov Function Generation

o Variable Gradient Method

e Procedure (cont.):
v’ Then generate V(X) by integration

Vix) = f: g7 (y) dy = f: iys(y} dy;

i=1
v The integration can be taken along any path, but usually
it is taken along the principal axes:

T Iy
V(ﬂ:) = f 91(91}{}:—*-:0) dyl +[} g?(f‘liyz!gi'“!ﬂ) dyz
a

o]

v’ Leave some parameters of g(x) undetermined, and try to
choose them to ensure that V(x) positive.
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® \/ariable Gradient Method
o Example 1:

2y = Iy
e Consider the system: &, = —h(z1)~azs
v"where, a>0, h(0)=0 and yh(y)>0,vy € (-b,c)
e To ensure V(x)<0—g"(x)f(x)<0
v V{(z) = 01(2)es — g2{z)[h(z1) + azg) < 0, for z £ 0
e The Lypunov function is:
v V(m)z./:gT(y) dy>0, forz#0
e et ustry

2} = a(z)e; + B(x)s
v ey = [ 2@ + (z)es ]
e Gradient condition

8 _ Og2
62:2 - 31‘.‘1

o é)
m) Az} + Ef;zl + —Ezg = y{z) + ﬁ-xl + ?—6-:.':3

v Bz Ox1 dz4
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® \/ariable Gradient Method

o Example 1: (cont.)
e Derivative of Ly. f.

Vi) = a{z)e12z + B(z)zs — ay(x)21 %2
—ab(z)z} - 5(z)zah(e1) — 7(z)e h(z,)

v'To cancel cross terms  e(#)a(— ay(z)e: — 6(x)h(x,
Y Therefore,  V(z) = —[ab(z) - B(®))z} - x(z)a1h(z1)
v To simplify assign B, y, and & to be constant but keep a(x)

e From gradient condition

o ) 3 0]
Y B e g = () + e+ s

v a(x) = a(xi) and B = .

vooz)= [ o(z)2; + B(z)z: ] - g(z) = W’ vz }

7(x)x1 + 6(z)xy
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® \ariable Gradient Method

o Example 1: (cont.)
e Integrate g(x) to get the Ly. f.

n

1 T
Viz) = [ v + 6] du + [ o1+ 602) ds
0
T Ty
— %ayzfﬂ—ﬁ\/ﬂ hy) dy + yzi132 + 3625 = %:ETFJ:-]-E/ h{y) dy
0

v in which, P= [ ﬂ: }]

 Choose ¢ >0 and 0 < < aé to ensUrg(x)>0 and V(x) <0
v’ Forexample y=akb for 0 < & < 1

2 1
v Then, V(-":) — -;:ET [ ]i't:] hlu ] r+ 5‘[ h(y) dy
i)

v V(x)>0andV(x)<0 for D :{x eR*|-b <x1<c}
v’ The eq. point is asymptotically stable.
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Lyapunov Stability

® QOverview
o Definitions
o Stability analysis
e Lyapunov Linearization Method

e Lyapunov Direct Method
v’ Local Stability
v’ Global Stability

e Invariant Set

o Lyapunov Function Generation
e Krosovskii Methods
e Variable Gradient Method

o Lyapunov Based Controller Design
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Lyapunov Based Controller Design

o Example: Robotic Manipulator

e Physically derived Lyapunov function
e System dynamics Hig)g +biq, @} +gq) = 1
e Controller t=-K,g-Kpq+gQ)
e Lyapunov Candidate

v Total Energy V = %[ﬁTH&+ QTK_.,CI]
e Lyapunov Function Derivative

v’ Power of the external forces

V=§T(1-g)+§'Kpq
v’ Used control law
V=-q"Kpq
v’ Lasalle: Global Asymptotically stable
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® |yapunov Based Controller Design
o Design ldea:

e Consider a Lyapunov candidate
e Stability:

v’ Design the control law as a nonlinear function to ensure
negative definiteness of the Ly. F. Derivative.

e Performance:
v'Rate of decay is related to the time performance.

e Base of many nonlinear controller designs:
v’ Back-stepping
v" Sliding mode control

v’ Lyapunov redesign
2
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® Lyapunov Based Controller Design
o Example 2: Regulation

e System dynamics: K=X"4x =u
e Objective
v’ Push the trajectories toward origin.
e Consider the controller as: u=u(x,Xx)
e Lyapunov Candidate: V =1/2(x* + %)
e Derivative: V =X(x+X* = X" +u)
e Design u such that vVv(x)<o:
v’ For example, V=-Kx*su=-x+x-K x-x°

v’ Stability: Lasalle = asymptotically stable eq. point.
v’ Performance: increase K to have faster response.
v’ Controller is not unique.
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Lyapunov Stability

® Summary

o Definitions

o Stability analysis
e Lyapunov Linearization Method
e Lyapunov Direct Method
* |nvariant Set
e Linear system analysis
e [nstability theorems

o Lyapunov Function Generation
e Krosovskii Methods

e Variable Gradient Method
o Lyapunov Based Controller Design
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