

Nonlinear Control

Lecture2: Lyapunov Stability

- Overview
 - Definitions
 - Stability analysis
 - Lyapunov Linearization Method
 - Lyapunov Direct Method
 - ✓ Local Stability
 - ✓ Global Stability
 - Invariant Set
 - Lyapunov Function Generation
 - Krosovskii Methods
 - Variable Gradient Method
 - Lyapunov Based Controller Design

- Stability Definitions
 - Consider the closed-loop autonomous system: $\dot{x} = f(x)$ (3.1)
 - Where $f: D \rightarrow \mathbf{R}^n$ is locally Lipschitz.
 - The equilibrium point is @ origin: $\mathbf{x}^* = \mathbf{0}$.

Definition 3.1 The equilibrium point x = 0 of (3.1) is

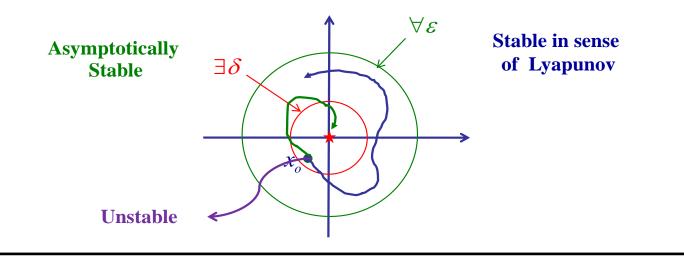
• stable if, for each $\epsilon > 0$, there is $\delta = \delta(\epsilon) > 0$ such that

$$||x(0)|| < \delta \Rightarrow ||x(t)|| < \epsilon, \quad \forall \ t \ge 0$$

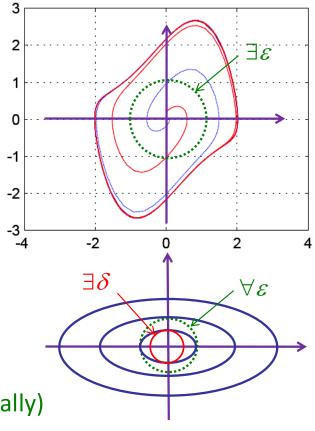
- unstable if not stable.
- asymptotically stable if it is stable and δ can be chosen such that

$$||x(0)|| < \delta \Rightarrow \lim_{t \to \infty} x(t) = 0$$

- Stability Definitions
 - Stability in sense of Lyapunov:
 - The system trajectory can be kept arbitrary close to the equilibrium point.
 - Geometric Representation



- Stability Definitions
 - Example: Van der Pol
 - ∃ε the trajectories diverges
 - Unstable Eq. Point
 - Stable Limit Cycle
 - Example: Pendulum
 - $\forall \varepsilon \rightarrow \exists \delta \ni$ starting from inside δ the trajectory remains in ε
 - Stable (not asymptotically)



• Stability Definitions

_o Exponential Stability

Definition : An equilibrium point **0** is <u>exponentially stable</u> if there exist two strictly positive numbers α and λ such that

$$\forall t > 0, \quad || \mathbf{x}(t) || \le \alpha || \mathbf{x}(0) || e^{-\lambda t}$$
(3.9)

in some ball \mathbf{B}_r around the origin.

_o Global Stability

Definition : If asymptotic (or exponential) stability holds for any initial states, the equilibrium point is said to be asymptotically (or exponentially) stable <u>in the large</u>. It is also called <u>globally</u> asymptotically (or exponentially) stable.

- Overview
 - Definitions
 - Stability analysis
 - Lyapunov Linearization Method
 - Lyapunov Direct Method
 - ✓ Local Stability
 - ✓ Global Stability
 - Invariant Set
 - Lyapunov Function Generation
 - Krosovskii Methods
 - Variable Gradient Method
 - Lyapunov Based Controller Design

Stability Analysis

- Linearization
 - Lyapunov indirect or linearization method

Theorem : Let x = 0 be an equilibrium point for the nonlinear system

 $\dot{x} = f(x)$

where $f: D \rightarrow \mathbb{R}^n$ is continuously differentiable and D is a neighborhood of the origin. Let

$$A = \left. \frac{\partial f}{\partial x}(x) \right|_{x=0}$$

Then,

- 1. The origin is asymptotically stable if $Re\lambda_i < 0$ for all eigenvalues of A.
- 2. The origin is unstable if $Re\lambda_i > 0$ for one or more of the eigenvalues of A.

 \checkmark If eq. point is non-hyperbolic \rightarrow Inconclusive!

- Stability Analysis
 - Linearization
 - Example 1: Consider the system $\dot{x} = ax^3$

$$A = \left. \frac{\partial f}{\partial x} \right|_{x=0} = \left. 3ax^2 \right|_{x=0} = 0$$

✓ The eigenvalue is on imaginary axis → Inconclusive.

• Example 2: Pendulum

$$\begin{array}{rcl} x_1 & = & x_2 \\ \dot{x}_2 & = & - & \left(\frac{g}{l}\right) \sin x_1 - \left(\frac{k}{m}\right) x_2 \end{array}$$

✓ The eq. points are @ (0,0) and (π ,0).

Jacobian:

$$\frac{\partial f}{\partial x} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\left(\frac{g}{1}\right)\cos x_1 & -\left(\frac{k}{m}\right) \end{bmatrix}$$

- Stability Analysis
 - Linearization
 - Example 2: Pendulum (cont.)

✓ For (0,0) Eq. point :

$$A = \frac{\partial f}{\partial x}\Big|_{x=0} = \begin{bmatrix} 0 & 1\\ -\left(\frac{k}{l}\right) & -\left(\frac{k}{m}\right) \end{bmatrix} \implies \lambda_{1,2} = -\frac{k}{2m} \pm \frac{1}{2}\sqrt{\left(\frac{k}{m}\right)^2 - \frac{4g}{l}}$$

■ Eigenvalues Hurwitz → Asymptotically Stable

- ✓ For (π ,0) eq. point.
 - Change variables $z_1 = x_1 \pi$, $z_2 = x_2$
 - Chack Jacobian @ z=0

$$\tilde{A} = \frac{\partial f}{\partial x}\Big|_{x_1 = \pi, x_2 = 0} = \begin{bmatrix} 0 & 1\\ \left(\frac{g}{f}\right) & -\left(\frac{k}{m}\right) \end{bmatrix} \implies \lambda_{1,2} = \begin{bmatrix} -\frac{k}{2m} \pm \frac{1}{2}\sqrt{\left(\frac{k}{m}\right)^2 \pm \frac{4g}{l}}$$

One of the eigenvalues is not Hurwitz

→ Unstable

- Overview
 - Definitions
 - Stability analysis
 - Lyapunov Linearization Method
 - Lyapunov Direct Method
 - ✓ Local Stability
 - ✓ Global Stability
 - Invariant Set
 - Lyapunov Function Generation
 - Krosovskii Methods
 - Variable Gradient Method
 - Lyapunov Based Controller Design

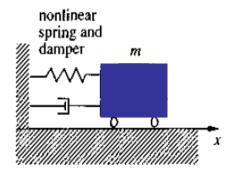
- Stability Analysis
 - Direct Method, The Philosophy
 - Mathematical extension of a physical observation:
 - ✓ If the total energy is continuously dissipating
 - Then the system (Linear or Nonlinear) must settle down to an equilibrium point.
 - Example: Mass with nonlinear spring-damper
 - ✓ Consider the system:

 $m\ddot{x} + b\dot{x}|\dot{x}| + k_o x + k_1 x^3 = 0$

✓ hardening spring +

nonlinear damping

✓ Is the resulting motion stable?



- Direct Method, The Philosophy
 - Examine the total energy

$$V(\mathbf{x}) = \frac{1}{2}m\dot{x}^2 + \int_o^x (k_o x + k_1 x^3) dx = \frac{1}{2}m\dot{x}^2 + \frac{1}{2}k_o x^2 + \frac{1}{4}k_1 x^4$$

- Physical observations:
 - zero energy corresponds to the equilibrium point $(x = 0, \dot{x} = 0)$
 - · asymptotic stability implies the convergence of mechanical energy to zero
 - instability is related to the growth of mechanical energy
- Stability is related to the variation of energy

 $\dot{V}(\mathbf{x}) = m\dot{x}\ddot{x} + (k_o x + k_1 x^3) \dot{x} = \dot{x} (-b\dot{x}|\dot{x}|) = -b|\dot{x}|^3$

 ✓ The energy of the system is continuously dissipating toward zero
 ✓ The motion is converging to eq. point.

- Direct Method, The Philosophy
 - The energy function has three properties:
 - V(x) is a scalar function
 - V(x) is strictly positive except @ (x = 0, $\dot{x} = 0$)
 - $\dot{V}(x)$ is monotonically decreasing.
 - Lyapunov Direct Method is
 - A Mathematical generalization of the above observation
 - ✓ Find a scalar energy-type function
 - ✓ which along system trajectory is continuously decreasing
 - ✓ Then the eq. point is stable.

Direct Method

Definition : A scalar continuous function $V(\mathbf{x})$ is said to be <u>locally positive</u> <u>definite</u> if $V(\mathbf{0}) = 0$ and, in a ball \mathbf{B}_{R_o}

 $\mathbf{x} \neq \mathbf{0} \quad = > \quad V(\mathbf{x}) > \mathbf{0}$

If V(0) = 0 and the above property holds over the whole state space, then $V(\mathbf{x})$ is said to be globally positive definite.

- Example: Mass with nonlinear spring-damper
 - Kinetic Energy: $V(\mathbf{x}) = \frac{1}{2}m\dot{x}^2$

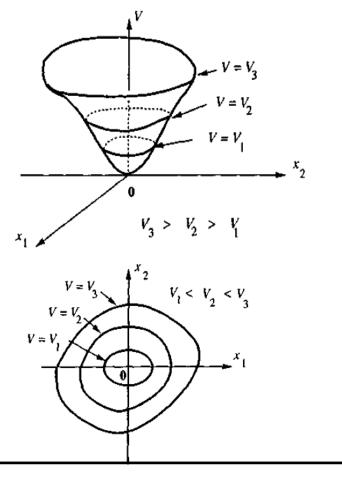
✓ Is NOT positive definite, since V(x) is zero for nonzero states such as $(x_1=c, x_2=0)$.

• Total Energy:
$$V(\mathbf{x}) = \frac{1}{2}m\dot{x}^2 + \frac{1}{2}k_0x^2 + \frac{1}{4}k_1x^4$$

✓ Is globally positive definite, since it is everywhere positive except at the origin.

- Direct Method
 - Positive Definiteness
 - Geometrical Representation
 - Negative Definite
 - if $-V(\mathbf{x})$ is positive definite:
 - Positive Semi-Definite
 if V(0) = 0 and V(x) ≥ 0 for x ≠ 0;
 - Time derivative OR
 Derivative along trajectory

$$\dot{V} = \frac{dV(\mathbf{x})}{dt} = \frac{\partial V}{\partial \mathbf{x}} \dot{\mathbf{x}} = \frac{\partial V}{\partial \mathbf{x}} \mathbf{f}(\mathbf{x})$$



- Overview
 - Definitions
 - Stability analysis
 - Lyapunov Linearization Method
 - Lyapunov Direct Method
 - ✓ Local Stability
 - ✓ Global Stability
 - Invariant Set
 - Lyapunov Function Generation
 - Krosovskii Methods
 - Variable Gradient Method
 - Lyapunov Based Controller Design

- Stability Analysis
 - Lyapunov Direct Method
 - Local Stability

Theorem : Let x = 0 be an equilibrium point for (3.1) and $D \subset \mathbb{R}^n$ be a domain containing x = 0. Let $V : D \to \mathbb{R}$ be a continuously differentiable function, such that

$$V(0) = 0$$
 and $V(x) > 0$ in $D - \{0\}$
 $\dot{V}(x) \le 0$ in D

Then, x = 0 is stable. Moreover, if

$$\dot{V}(x) < 0$$
 in $D - \{0\}$

V = V

 $V = V_1$

then x = 0 is asymptotically stable.

- s asymptotically stable.
- **Proof Idea:** (Full proof in Khalil Book page 115)

✓ Lyapunov Surface: V(x) = c for c > 0.

✓ If $\dot{V}(x) < 0$, then a trajectory crosses a Ly. S. , it moves inside and can never come out again.

 $V_{1} < V_{2} < V_{3}$

Lyapunov Direct Method

- Example 1: Pendulum without friction
 - System: $\dot{x}_1 = x_2$ $\dot{x}_2 = -\left(\frac{g}{I}\right)\sin x_1$
 - Lyapunov Candidate:

$$V(\boldsymbol{x}) = \left(\frac{g}{l}\right) \left(1 - \cos x_1\right) + \frac{1}{2}x_2^2$$

- ✓ How??! (Total Energy)
- ✓ It is positive definite in the domain $-2\pi < x_1 < 2\pi$
- Lyapunov Function?
 - ✓ Derivative along trajectory:

$$\dot{V}(x) = \left(\frac{g}{l}\right)\dot{x}_1\sin x_1 + x_2\dot{x}_2 = \left(\frac{g}{l}\right)x_2\sin x_1 - \left(\frac{g}{l}\right)x_2\sin x_1 = 0$$

- ✓ Eq. point is stable.
- ✓ But not asymptotically stable!
- ✓ Trajectory starting @ Ly. S. V(x) = c, remain on it.

Lyapunov Direct Method

- Example 2: Pendulum with viscous friction
 - System: $\dot{x}_1 = x_2$ $\dot{x}_2 = -\left(\frac{g}{l}\right)\sin x_1 - \left(\frac{k}{m}\right)x_2$
 - Lyapunov Candidate: $V(x) = \left(\frac{g}{l}\right)(1 \cos x_1) + \frac{1}{2}x_2^2$ \checkmark The same as Ex1. (Total Energy)
 - Lyapunov Function?
 - ✓ Derivative along trajectory:

$$\dot{V}(x) = \left(rac{g}{l}
ight)\dot{x}_1\sin x_1 + x_2\dot{x}_2 = - \ \left(rac{k}{m}
ight)x_2^2$$

- ✓ Positive Semi-definite: zero irrespective of x_1
- ✓ Only stable but not asymptotically stable!
- ✓ Phase portrait and linearization method → Asy. Stable.
- o Lyapunov direct conditions are only sufficient!

- Lyapunov Direct Method
 - Example 2: Pendulum with viscous friction
 - Use another Lyapunov Candidate:

$$\begin{aligned} f'(x) &= \frac{1}{2} x^T P x + \left(\frac{g}{l}\right) (1 - \cos x_1) \\ &= \frac{1}{2} [x_1 \ x_2] \begin{bmatrix} p_{11} & p_{12} \\ p_{12} & p_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \left(\frac{g}{l}\right) (1 - \cos x_1) \end{aligned}$$

• Lyapunov Function?

$$\checkmark V(x) > 0$$
 if $p_{11} > 0; p_{22} > 0; p_{11}p_{22} - p_{12}^2 > 0$

• Derivative along trajectory:

$$\dot{V}(x) = \left(\frac{g}{l}\right)(1 - p_{22})x_2 \sin x_1 - \left(\frac{g}{l}\right)p_{12}x_1 \sin x_1 \\ + \left[p_{11} - p_{12}\left(\frac{k}{m}\right)\right]x_1x_2 + \left[p_{12} - p_{22}\left(\frac{k}{m}\right)\right]x_2^2 \\ \text{If } p_{12} = 0.5(k/m), \text{ then} \\ \dot{V}(x) = -\frac{1}{2}\left(\frac{g}{l}\right)\left(\frac{k}{m}\right)x_1 \sin x_1 - \frac{1}{2}\left(\frac{k}{m}\right)x_2^2 \\ \end{cases}$$

becomes neg-def. over the domain
$$D = \{x \in \mathbb{R}^2 \mid |x_1| < \pi\}$$

Lyapunov Direct Method

• Example 3: Consider the first-order differential equation

$$\dot{x} = -g(x)$$

where g(x) is locally Lipschitz on (-a, a) and satisfies

$$g(0) = 0; xg(x) > 0, \forall x \neq 0, x \in (-a, a)$$

- Lyapunov Candidate:
 - ✓ How??! (Total Energy) $V(x) = \int_0^x g(y) \, dy$
 - \checkmark It is positive definite in the domain D = (-a, a)
- Lyapunov Function?

✓ Derivative along trajectory:

$$\dot{V}(x) = rac{\partial V}{\partial x}[-g(x)] = -g^2(x) < 0, \ \forall \ x \in D - \{0\}$$

✓ The eq. point is Asymptotically stable

Lyapunov Direct Method

• Example 4: Consider the following system: $\dot{x}_1 = x_1 (x_1^2 + x_2^2 - 2) - 4x_1 x_2^2$

$$\dot{x}_2 = 4x_1^2 x_2 + x_2 (x_1^2 + x_2^2 - 2)$$

- The eq. point is @ origin.
- Lyapunov Candidate:

 $V(x_1, x_2) = x_1^2 + x_2^2$

✓ Derivative along trajectory:

$$\dot{V} = 2(x_1^2 + x_2^2)(x_1^2 + x_2^2 - 2)$$

✓ It is negative definite in a ball: $x_1^2 + x_2^2 < 2$ ✓ The eq. point is asymptotically stable.

- Overview
 - Definitions
 - Stability analysis
 - Lyapunov Linearization Method
 - Lyapunov Direct Method
 - ✓ Local Stability
 - ✓ Global Stability
 - Invariant Set
 - Lyapunov Function Generation
 - Krosovskii Methods
 - Variable Gradient Method
 - Lyapunov Based Controller Design

• Stability Analysis

Lyapunov Direct Method

• Global Stability

Theorem : Let x = 0 be an equilibrium point for (3.1). Let $V : \mathbb{R}^n \to \mathbb{R}$ be a continuously differentiable function such that

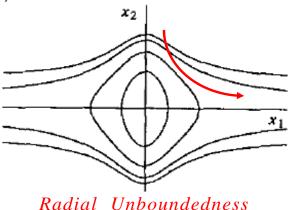
$$V(0) = 0$$
 and $V(x) > 0$, $\forall x \neq 0$

Radial Unboundedness $||x|| \to \infty \Rightarrow V(x) \to \infty$

$$\dot{V}(x) < 0, \quad \forall \ x \neq 0$$

then x = 0 is globally asymptotically stable.

For small *c* the Ly. Surfaces V(x)=c are closed, but for large c the Ly. S. are not closed, then the trajectory may diverge.



Lyapunov Direct Method

- Example 5: System as in Ex3: $\dot{x} + c(x) = 0$ In which, c(0) = 0 and xc(x) > 0 for $x \neq 0$
 - Lyapunov Candidate: $V = x^2$
 - ✓ It is positive definite in the whole space
 - ✓ It is radially unbounded
 - Lyapunov Function?
 - ✓ Derivative along trajectory: $\dot{V} = 2x\dot{x} = -2xc(x)$
 - ✓ Hence: $\dot{V} < 0$ as long as $x \neq 0$.
 - ✓ Hence, the origin is globally asymptotically stable.
 - Typical Examples
 - ✓ $\dot{x} = -x^3$ OR $\dot{x} = \sin^2 x x$ ($\sin^2 x \le |\sin x| < |x|$.) ✓ $x c(x) = x^4 > 0$ and $x c(x) = x^2 - x \sin^2 x > x^2 - x |x| > 0$

c(x)

Lyapunov Direct Method

• Example 6: Consider the following system:

$$\dot{x}_1 = x_2 - x_1 (x_1^2 + x_2^2)$$
$$\dot{x}_2 = -x_1 - x_2 (x_1^2 + x_2^2)$$

- The eq. point is @ origin.
- Lyapunov Candidate:

$$V(\mathbf{x}) = x_1^2 + x_2^2$$

✓ Derivative along trajectory:

$$\dot{V}(\mathbf{x}) = 2x_1\dot{x}_1 + 2x_2\dot{x}_2 = -2(x_1^2 + x_2^2)^2$$

- ✓ It is negative definite everywhere,
- ✓ It is radially unbounded,
- ✓ The eq. point is globally asymptotically stable .

- Lyapunov Direct Method
 - Remarks:
 - Use total energy as the first Lyapunov candidate, but don't limit yourself to that.
 - 2. Many Lyapunov functions exist for a system. If V is a Lyapunov function, so is $V_1 = \rho V^{\alpha}$.
 - Lyapunov theorems are sufficient theorems, if a Lyapunov candidate doesn't work, search for another one!

- Overview
 - Definitions
 - Stability analysis
 - Lyapunov Linearization Method
 - Lyapunov Direct Method
 - ✓ Local Stability
 - ✓ Global Stability
 - Invariant Set
 - Lyapunov Function Generation
 - Krosovskii Methods
 - Variable Gradient Method
 - Lyapunov Based Controller Design

- Invariant Set Theorems:
 - Asymptotic stability needs $\dot{V}(x) < 0$
 - In many systems we reach to $\dot{V}(x) \le 0$
 - Use invariant set to prove asymptotic stability

Definition : A set G is an <u>invariant set</u> for a dynamic system if every system trajectory which starts from a point in G remains in G for all future time.

- Examples of invariant sets
 - ✓ An equilibrium point
 - ✓ A limit cycle
 - ✓ Any trajectory
 - \checkmark The domain of attraction of an eq. point or a limit cycle
 - ✓ The whole state space

Krasovskii - Lasalle's Theorem

Theorem : (Local Invariant Set Theorem) Consider an autonomous system of the form (3.2), with f continuous, and let $V(\mathbf{x})$ be a scalar function with continuous first partial derivatives. Assume that

• for some l > 0, the region Ω_l defined by $V(\mathbf{x}) < l$ is bounded

• $\dot{\mathbf{V}}(\mathbf{x}) \leq 0$ for all \mathbf{x} in Ω_{l}

Let **R** be the set of all points within Ω_i where $\dot{V}(\mathbf{x}) = 0$, and **M** be the largest invariant set in **R**. Then, every solution $\mathbf{x}(t)$ originating in Ω_i tends to **M** as $t \to \infty$.

✓ The function V does not need to be positive definite!

- ✓ The set Ω_1 is called a compact set.
- \checkmark largest invariant set means the union of all invariant sets.
- ✓ This theorem introduces the notion of Region of Attraction.

✓ Can be used for Eq. point, limit cycle, or any invariant set.

Local Asymptotic Stability

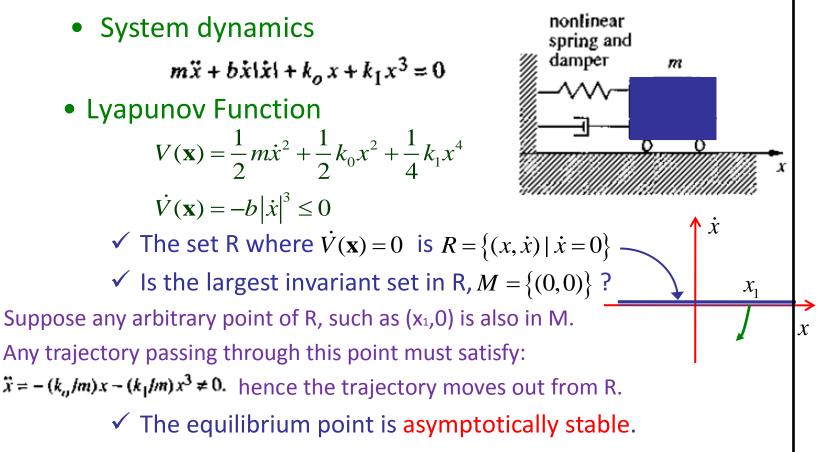
Corollary 3.1 Let x = 0 be an equilibrium point for (3.1). Let $V : D \to R$ be a continuously differentiable positive definite function on a domain D containing the origin x = 0, such that $\dot{V}(x) \leq 0$ in D. Let $S = \{x \in D \mid \dot{V}(x) = 0\}$ and suppose that no solution can stay identically in S, other than the trivial solution. Then, the origin is asymptotically stable.

Global Asymptotic Stability

Corollary 3.2 Let x = 0 be an equilibrium point for (3.1). Let $V : \mathbb{R}^n \to \mathbb{R}$ be a continuously differentiable, radially unbounded, positive definite function such that $\dot{V}(x) \leq 0$ for all $x \in \mathbb{R}^n$. Let $S = \{x \in \mathbb{R}^n \mid \dot{V}(x) = 0\}$ and suppose that no solution can stay identically in S, other than the trivial solution. Then, the origin is globally asymptotically stable.

- No Compact Set
- No sign of Region of Attraction

Example 1: Mass with nonlinear spring-damper



- Example 2:
 - System dynamics:
 ✓ In which,

 $\dot{x}_1 = x_2$ $\dot{x}_2 = -g(x_1) - h(x_2)$

$$g(0) = 0, yg(y) > 0, \forall y \neq 0, y \in (-a, a)$$

 $h(0) = 0, yh(y) > 0, \forall y \neq 0, y \in (-a, a)$

- Eq. point @ origin.
- Lyapunov Candidate: $V(x) = \int_0^{x_1} g(y) \, dy + \frac{1}{2}x_2^2$

✓ In the domain $D = \{x \in R^2 \mid -a < x_i < a\}$ is positive definite.

• Lyapunov function derivative:

 $\dot{V}(x) = g(x_1)x_2 + x_2[-g(x_1) - h(x_2)] = -x_2h(x_2) \leq 0$

✓ Positive semi-definite, needs invariant set Theorem.

- Invariant Set Theorem:
 - Example 2: (cont.)
 - Characterize the Set R where: $\dot{V}(x) = 0 \Rightarrow x_2h(x_2) = 0 \Rightarrow x_2 = 0$, since $-a < x_2 < a$
 - Hence, $R = \{(x_1, x_2) | x_2 = 0\}$
 - Show that M includes only origin:
 - \checkmark Suppose x(t) is a trajectory belonging to R, then

$$x_2(t) \equiv 0 \Rightarrow \dot{x}_2(t) \equiv 0 \Rightarrow g(x_1(t)) \equiv 0 \Rightarrow x_1(t) \equiv 0$$

 \checkmark Hence, the solution to this trajectory is only the origin.

• The equilibrium point in asymptotically stable.

- Invariant Set Theorem:
 - Example 3: Region of Attraction
 - System dynamics:

$$x_1 = x_1 (x_1^2 + x_2^2 - 2) - 4x_1 x_2^2$$
$$\dot{x}_2 = 4x_1^2 x_2 + x_2 (x_1^2 + x_2^2 - 2)$$

- Eq. point is @ origin.
- Lyapunov candidate: $V(x_1, x_2) = x_1^2 + x_2^2$
 - ✓ for l=2, the region Ω defined by V(x) < 2 is a compact set.
- Lyapunov derivative: $\dot{V} = 2(x_1^2 + x_2^2)(x_1^2 + x_2^2 2)$
 - ✓ For set Ω the derivative is always negative except @ origin.
- The set R includes only the origin.
 - ✓ Invariant Set Theorem conditions hold.
 - $\checkmark\,$ The eq. point is locally asymptotically stable.
 - ✓ The Region of Attraction is Ω a circle with radius $r = \sqrt{2}$.

- Invariant Set Theorem:
 - Example 4: Attractive Limit Cycle
 - System dynamics $\dot{x}_1 = x_2 x_1^7 [x_1^4 + 2x_2^2 10]$

$$\dot{x}_2 = -x_1^3 - 3x_2^5 [x_1^4 + 2x_2^2 - 10]$$

- There exist an invariant set: $x_t^4 + 2x_2^2 = 10$
 - \checkmark Since, its derivative is zero on the set.
 - $\frac{d}{dt}(x_1^4 + 2x_2^2 10) = -(4x_1^{10} + 12x_2^6)(x_1^4 + 2x_2^2 10) = 0$
- On the invariant set:
 - ✓ Simplified system dynamics
- $\dot{x}_1 = x_2$ $\dot{x}_2 = -x_1^3$
 - ✓ Invariant set is a limit cycle
- Is the limit cycle attractive?
 - ✓ Lyapunov candidate:

- $V = (x_1^4 + 2 x_2^2 10)^2$
- ✓ Physical insight: distance to the limit cycle.

Invariant Set Theorem:

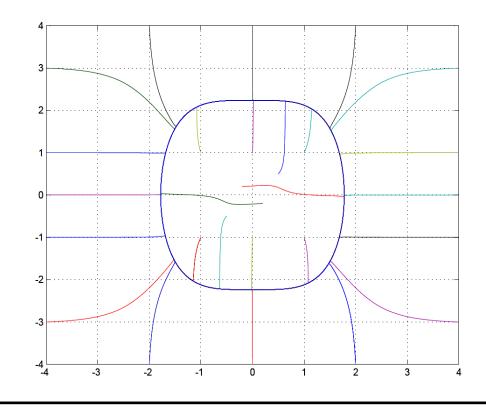
- Example 4: Attractive Limit Cycle (cont.)
 - For any *I* > *O*,
 - \checkmark the region Ω defined by V(x) < I is a compact set.
 - Lyapunov function derivative:
 - \checkmark from before, $\dot{V} = -8(x_1^{10} + 3x_2^6)(x_1^4 + 2x_2^2 10)^2$
 - ✓ $\dot{V}(\mathbf{x}) < 0$ everywhere except at
 - $x_1^4 + 2x_2^2 = 10$ or The limit Cycle.
 - $x_1^{10} + 3 x_2^6 = 0$ The Eq. point @ origin.

✓ The eq. point at origin is unstable.

• From invariant set theorem, all the trajectories converge to the limit cycle.

• Invariant Set Theorem:

- Example 4: Attractive Limit Cycle (cont.)
 - Phase portrait:



- Linear Time Invariant (LTI) Systems:
 - Consider an LTI system
 - State Transition Matrix:
 - Stability of an LTI system
 - Hurwitz

$$\forall \lambda_i, \quad \Re(\lambda_i) < 0$$

 $\dot{x} = Ax$

 $x(t) = e^{At} x_{o}$

- Lyapunov Equation
 - ✓ Theorem: A matrix *A* is Hurwitz, *iff* for any given positive definite matrix *Q*, there exists a positive definite matrix *P* that satisfies the Lyapunov Equation: $A^T P + PA = -Q$
 - Sketch of proof: Lyapunov candidate $V(x) = x^T P x$
 - Derivative: $\dot{V}(x) = x^T P \dot{x} + \dot{x}^T P x = x^T (PA + A^T P) x = -x^T Q x$
 - Lyapunov Equation $PA + A^T P = -Q$

Instability Theorem

Theorem : Let x = 0 be an equilibrium point for (3.1). Let $V : D \rightarrow R$ be a continuously differentiable function such that V(0) = 0 and $V(x_0) > 0$ for some x_0 with arbitrarily small $||x_0||$. Define a set U as in (3.8) and suppose that $\dot{V}(x) > 0$ in U. Then, x = 0 is unstable. $^{\circ}$

$$U = \{x \in B_r \mid V(x) > 0\}$$

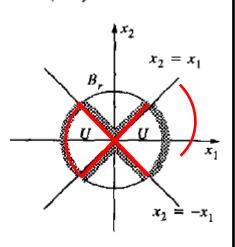
• Example 1:

- For $V(x) = (x_1^2 x_2^2)$
 - ✓ V(0) = 0, $V(x_o) > 0$ in the hatched area:

✓ The Region U is the hatched area

For Instability it is sufficient to have

$$\checkmark \exists x_o \ni V(x_o) > 0, \text{ and}$$
$$\checkmark \forall x \in U, \dot{V}(x) > 0$$



• Instability Theorem

- Example 2:
 - System dynamics: $\dot{x}_2 = -x_2 + g_2(x)$ \checkmark in which, $|g_i(x)| \le k ||x||_2^2$
 - Eq. point @ origin, since $g_i(0) = 0$
 - Consider: $V(x) = \frac{1}{2}(x_1^2 x_2^2)$
 - ✓ The set U is as shown

✓ For a point inside $U V(x_o) > 0$

• Derivative along trajectory $\dot{V}(x) = x_1^2 + x_2^2 + x_1 g_1(x) - x_2 g_2(x)$ $\checkmark \text{ But,} |x_1 g_1(x) - x_2 g_2(x)| \le \sum_{i=1}^2 |x_i| \cdot |g_i(x)| \le 2k ||x||_2^3$ $\checkmark \text{ Hence:} \quad \dot{V}(x) \ge ||x||_2^2 - 2k ||x||_2^3 = ||x||_2^2 (1 - 2k ||x||_2)$ $\checkmark \text{ For a Ball } B_r \subset D \text{ and } r < 1/2\dot{k}, V(x) > 0 \implies \text{Unstable}$

 $\dot{x}_1 = x_1 + g_1(x)$

 $x_2 = x_1$

 \boldsymbol{x}_1

- Overview
 - Definitions
 - Stability analysis
 - Lyapunov Linearization Method
 - Lyapunov Direct Method
 - ✓ Local Stability
 - ✓ Global Stability
 - Invariant Set
 - Lyapunov Function Generation
 - Krosovskii Methods
 - Variable Gradient Method
 - Lyapunov Based Controller Design

o Krasovskii Method

Theorem :(Krasovskii) Consider the autonomous system defined by (3.1), with the equilibrium point of interest being the origin. Let A(x) denote the Jacobian matrix of the system, i.e.,

$$\mathbf{A}(\mathbf{x}) = \frac{\partial \mathbf{f}}{\partial \mathbf{x}}$$

If the matrix $\mathbf{F} = \mathbf{A} + \mathbf{A}^T$ is negative definite in a neighborhood Ω , then the equilibrium point at the origin is asymptotically stable. A Lyapunov function for this system is

$$V(\mathbf{x}) = \mathbf{f}^T(\mathbf{x}) \mathbf{f}(\mathbf{x})$$

If Ω is the entire state space and, in addition, $V(\mathbf{x}) \to \infty$ as $\|\mathbf{x}\| \to \infty$, then the equilibrium point is globally asymptotically stable.

Krasovskii Method

- Example: Consider the system $\dot{x}_1 = -6x_1 + 2x_2$ Example: Consider the system $\dot{x}_2 = 2x_1 6x_2 2x_2^3$ ✓ The Jacobian:

$$A = \frac{\partial f}{\partial x} = \begin{bmatrix} -6 & 2\\ 2 & -6 - 6x_2^2 \end{bmatrix} \qquad F = A + A^T = \begin{bmatrix} -12 & 4\\ 4 & -12 - 12x_2^2 \end{bmatrix}$$

 \checkmark F is negative definite for the whole space.

✓ Lyapunov Function

$$V(\mathbf{x}) = \mathbf{f}^{T}(\mathbf{x}) \mathbf{f}(\mathbf{x}) = (-6x_{1} + 2x_{2})^{2} + (2x_{1} - 6x_{2} - 2x_{2}^{3})^{2}$$

✓ It is Radially unbounded

$$V(\mathbf{x}) \to \infty$$
 as $||\mathbf{x}|| \to \infty$

 \checkmark The Eq. point is globally asymptotically stable.

Krasovskii Method

Theorem : (Generalized Krasovskii Theorem) Consider the autonomous system defined by (3.1), with the equilibrium point of interest being the origin, and let A(x) denote the Jacobian matrix of the system. Then, a sufficient condition for the origin to be asymptotically stable is that there exist two symmetric positive definite matrices P and Q, such that $\forall x \neq 0$, the matrix

$\mathbf{F}(\mathbf{x}) = \mathbf{A}^T \mathbf{P} + \mathbf{P} \mathbf{A} + \mathbf{Q}$

is negative semi-definite in some neighborhood Ω of the origin. The function $V(\mathbf{x}) = \mathbf{f}^T \mathbf{P} \mathbf{f}$ is then a Lyapunov function for the system. If the region Ω is the whole state space, and if in addition, $V(\mathbf{x}) \to \infty$ as $||\mathbf{x}|| \to \infty$, then the system is globally asymptotically stable.

• Proof Idea:

 $\dot{V} = \frac{\partial V}{\partial x} \mathbf{f}(\mathbf{x}) = \mathbf{f}^T \mathbf{P} \mathbf{A}(\mathbf{x}) \mathbf{f} + \mathbf{f}^T \mathbf{P} \mathbf{A}^T(\mathbf{x}) \mathbf{P} \mathbf{f} = \mathbf{f}^T \mathbf{F} \mathbf{f} - \mathbf{f}^T \mathbf{Q} \mathbf{f}$ $\checkmark \text{ If } F < 0 \text{ and } Q > 0, \text{ then } \dot{V}(x) < 0$

- Overview
 - Definitions
 - Stability analysis
 - Lyapunov Linearization Method
 - Lyapunov Direct Method
 - ✓ Local Stability
 - ✓ Global Stability
 - Invariant Set
 - Lyapunov Function Generation
 - Krosovskii Methods
 - Variable Gradient Method
 - Lyapunov Based Controller Design

- Variable Gradient Method
 - Search backward, start with $\dot{V}(x) < 0$, then find V(x).

• Procedure:

- ✓ Suppose g(x) is the gradient of V(x): $g(x) = \nabla V = (\partial V / \partial x)^T$
- ✓ Derivative of *V*(*x*) along trajectory:

$$\dot{V}(x) = \frac{\partial V}{\partial x} f(x) = g^T(x) f(x)$$

✓ Choose g(x) such that $\dot{V}(x) < 0$ while, V(x) > 0.

 \checkmark For g(x) to be gradient of a scalar function:

$$\frac{\partial g_i}{\partial x_j} = \frac{\partial g_j}{\partial x_i}, \quad \forall \ i, j = 1, \dots, n$$

✓ Under this constraint choose g(x) such that $g^{T}(x)f(x) < 0$

- Variable Gradient Method
 - Procedure (cont.):
 - \checkmark Then generate V(x) by integration

$$V(x) = \int_0^x g^T(y) \, dy = \int_0^x \sum_{i=1}^n g_i(y) \, dy_i$$

✓ The integration can be taken along any path, but usually it is taken along the principal axes:

$$V(x) = \int_0^{x_1} g_1(y_1, 0, \dots, 0) \, dy_1 + \int_0^{x_2} g_2(x_1, y_2, 0, \dots, 0) \, dy_2 \\ + \dots + \int_0^{x_n} g_n(x_1, x_2, \dots, x_{n-1}, y_n) \, dy_n$$

✓ Leave some parameters of g(x) undetermined, and try to choose them to ensure that V(x) positive.

- Variable Gradient Method
 - Example 1:
 - Consider the system: $\dot{x}_1 = x_2$ • Consider the system: $\dot{x}_2 = -h(x_1) - ax_3$ \checkmark where, a > 0, h(0) = 0 and yh(y) > 0, $\forall y \in (-b, c)$
 - To ensure $\dot{V}(x) < 0 \rightarrow g^T(x) f(x) < 0$ $\checkmark \dot{V}(x) = g_1(x)x_2 - g_2(x)[h(x_1) + ax_2] < 0$, for $x \neq 0$
 - The Lypunov function is:

$$\checkmark \qquad V(x) = \int_0^x g^T(y) \ dy > 0, \ \text{ for } x \neq 0$$

• Let us try

$$\checkmark \qquad \qquad g(x) = \left[\begin{array}{c} \alpha(x)x_1 + \beta(x)x_2 \\ \gamma(x)x_1 + \delta(x)x_2 \end{array}\right]$$

• Gradient condition

$$\checkmark \quad \frac{\partial g_1}{\partial x_2} = \frac{\partial g_2}{\partial x_1} \quad \Longrightarrow \quad \beta(x) + \frac{\partial \alpha}{\partial x_2} x_1 + \frac{\partial \beta}{\partial x_2} x_2 = \gamma(x) + \frac{\partial \gamma}{\partial x_1} x_1 + \frac{\partial \delta}{\partial x_1} x_2$$

- Variable Gradient Method
 - Example 1: (cont.)
 - Derivative of Ly. f.

$$\dot{V}(x) = lpha(x)x_1x_2 + eta(x)x_2^2 - a\gamma(x)x_1x_2 -a\delta(x)x_2^2 - \delta(x)x_2h(x_1) - \gamma(x)x_1h(x_1)$$

✓ To cancel cross terms $\alpha(x)x - a\gamma(x)x_1 - \delta(x)h(x_1) = 0$ ✓ Therefore, $\dot{V}(x) = -[a\delta(x) - \beta(x)]x_2^2 - \gamma(x)x_1h(x_1)$ ✓ To simplify assign β , γ , and δ to be constant but keep $\alpha(x)$

• From gradient condition

$$\checkmark \qquad \beta(x) + \frac{\partial \alpha}{\partial x_2} x_1 + \frac{\partial \beta}{\partial x_2} x_2 = \gamma(x) + \frac{\partial \gamma}{\partial x_1} x_1 + \frac{\partial \delta}{\partial x_1} x_2$$

$$\checkmark \quad \alpha(x) = \alpha(x_1) \text{ and } \beta = \gamma.$$

$$\checkmark \quad g(x) \approx \left[\begin{array}{c} \alpha(x)x_1 + \beta(x)x_2 \\ \gamma(x)x_1 + \delta(x)x_2 \end{array}\right] \implies \quad g(x) = \left[\begin{array}{c} \alpha\gamma x_1 + \delta h(x_1) + \gamma x_2 \\ \gamma x_1 + \delta x_2 \end{array}\right]$$

- Variable Gradient Method
 - Example 1: (cont.)
 - Integrate g(x) to get the Ly. f.

$$V(x) = \int_0^{x_1} [a\gamma y_1 + \delta h(y_1)] \, dy_1 + \int_0^{x_2} (\gamma x_1 + \delta y_2) \, dy_2$$

= $\frac{1}{2} a\gamma x_1^2 + \delta \int_0^{x_1} h(y) \, dy + \gamma x_1 x_2 + \frac{1}{2} \delta x_2^2 = \frac{1}{2} x^T P x + \delta \int_0^{x_1} h(y) \, dy$
 \checkmark in which, $P = \begin{bmatrix} a\gamma & \gamma \\ \gamma & \delta \end{bmatrix}$

• Choose $\delta > 0$ and $0 < \gamma < a\delta$ to $\operatorname{ensur} (x) > 0$ and $\dot{V}(x) < 0$ \checkmark For example $\gamma = ak\delta$ for 0 < k < 1 \checkmark Then, $V(x) = \frac{\delta}{2}x^T \begin{bmatrix} ka^2 & ka \\ ka & 1 \end{bmatrix} x + \delta \int_0^{x_1} h(y) \, dy$ $\checkmark V(x) > 0$ and $\dot{V}(x) < 0$ for $D = \{x \in \mathbb{R}^2 \mid -b < x_1 < c\}$

✓ The eq. point is asymptotically stable.

- Overview
 - Definitions
 - Stability analysis
 - Lyapunov Linearization Method
 - Lyapunov Direct Method
 - ✓ Local Stability
 - ✓ Global Stability
 - Invariant Set
 - Lyapunov Function Generation
 - Krosovskii Methods
 - Variable Gradient Method
 - Lyapunov Based Controller Design

Lyapunov Based Controller Design

- Example: Robotic Manipulator
 - Physically derived Lyapunov function
 - System dynamics $H(q)\ddot{q} + b(q, \dot{q}) + g(q) = \tau$
 - Controller $\tau = -K_D \dot{\mathbf{q}} K_P \mathbf{q} + \mathbf{g}(\mathbf{q})$
 - Lyapunov Candidate

✓ Total Energy $V = \frac{1}{2} [\dot{\mathbf{q}}^T \mathbf{H} \dot{\mathbf{q}} + \mathbf{q}^T \mathbf{K}_p \mathbf{q}]$

Lyapunov Function Derivative

✓ Power of the external forces

$$\dot{V} = \dot{\mathbf{q}}^T \left(\boldsymbol{\tau} - \mathbf{g} \right) + \dot{\mathbf{q}}^T \mathbf{K}_P \mathbf{q}$$

✓ Used control law

$$\dot{V} = - \dot{\mathbf{q}}^T \mathbf{K}_D \dot{\mathbf{q}}$$

✓ Lasalle: Global Asymptotically stable

• Lyapunov Based Controller Design

- Design Idea:
 - Consider a Lyapunov candidate
 - Stability:
 - ✓ Design the control law as a nonlinear function to ensure negative definiteness of the Ly. F. Derivative.
 - Performance:

 \checkmark

- \checkmark Rate of decay is related to the time performance.
- Base of many nonlinear controller designs:
 - ✓ Back-stepping
 - ✓ Sliding mode control
 - ✓ Lyapunov redesign

Lyapunov Based Controller Design

- Example 2: Regulation
 - System dynamics:
 - Objective

✓ Push the trajectories toward origin.

- Consider the controller as: u = u
- Lyapunov Candidate:
- Derivative:
- Design u such that $\dot{V}(x) \le 0$:
 - ✓ For example, $\dot{V} = -K \dot{x}^2 \rightarrow u = -x + x^2 K \dot{x} \dot{x}^3$
 - ✓ Stability: Lasalle \rightarrow asymptotically stable eq. point.
 - ✓ Performance: increase K to have faster response.
 - ✓ Controller is not unique.

 $\ddot{x} - \dot{x}^3 + x^2 = u$

 $u = u(x, \dot{x})$

 $V = 1/2(x^{2} + \dot{x}^{2})$ $\dot{V} = \dot{x}(x + \dot{x}^{3} - x^{2} + u)$

- Summary
 - Definitions
 - Stability analysis
 - Lyapunov Linearization Method
 - Lyapunov Direct Method
 - Invariant Set
 - Linear system analysis
 - Instability theorems
 - Lyapunov Function Generation
 - Krosovskii Methods
 - Variable Gradient Method
 - Lyapunov Based Controller Design