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19. f .x/ D cos 2x 20. f .x/ D sin
x
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21. f .x/ D sin�x 22. f .x/ D cos
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23. Sketch the graph of y D 2 cos
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24. Sketch the graph of y D 1C sin
�
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�
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�

.

In Exercises 25–30, one of sin � , cos � , and tan � is given. Find the

other two if � lies in the specified interval.
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2
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�

Trigonometry Review

In Exercises 31–42, ABC is a triangle with a right angle at C . The

sides opposite angles A;B , and C are a, b, and c, respectively.

(See Figure P.91.)

A

CB a

b
c

Figure P.91

31. Find a and b if c D 2, B D
�

3
.

32. Find a and c if b D 2, B D
�

3
.

33. Find b and c if a D 5, B D
�

6
.

34. Express a in terms of A and c.

35. Express a in terms of A and b.

36. Express a in terms of B and c.

37. Express a in terms of B and b.

38. Express c in terms of A and a.

39. Express c in terms of A and b.

40. Express sinA in terms of a and c.

41. Express sinA in terms of b and c.

42. Express sinA in terms of a and b.

In Exercises 43–50, ABC is an arbitrary triangle with sides a, b,

and c, opposite to angles A, B , and C , respectively. (See

Figure P.92.) Find the indicated quantities. Use tables or a

scientific calculator if necessary.

A

b

CaB

c

Figure P.92

43. Find sinB if a D 4, b D 3, A D
�

4
.

44. Find cosA if a D 2, b D 2, c D 3.

45. Find sinB if a D 2, b D 3, c D 4.

46. Find c if a D 2, b D 3, C D
�

4
.

47. Find a if c D 3, A D
�

4
, B D

�

3
.

48. Find c if a D 2, b D 3, C D 35ı.

49. Find b if a D 4, B D 40ı, C D 70ı.

50. Find c if a D 1, b D
p

2, A D 30ı. (There are two possible

answers.)

51. Two guy wires stretch from the top T of a vertical pole to

points B and C on the ground, where C is 10 m closer to the

base of the pole than is B . If wire BT makes an angle of 35ı

with the horizontal, and wire CT makes an angle of 50ı with

the horizontal, how high is the pole?

52. Observers at positions A and B 2 km apart simultaneously

measure the angle of elevation of a weather balloon to be 40ı

and 70ı, respectively. If the balloon is directly above a point

on the line segment between A and B , find the height of the

balloon.

53. Show that the area of triangle ABC is given by

.1=2/ab sinC D .1=2/bc sinA D .1=2/ca sinB .

54.I Show that the area of triangle ABC is given by
p

s.s � a/.s � b/.s � c/, where s D .aC b C c/=2 is the

semi-perimeter of the triangle.

ThisI symbol is used throughout the book to indicate an exercise

that is somewhat more difficult than most exercises.

ThisA symbol is used throughout the book to indicate an exercise

that is somewhat theoretical in nature. It does not imply difficulty.
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C H A P T E R 1

Limits and
Continuity

“
Every body continues in its state of rest, or of uniform motion in a right

line, unless it is compelled to change that state by forces impressed

upon it.

”Isaac Newton 1642–1727

from Principia Mathematica, 1687

“
It was not until Leibniz and Newton, by the discovery of the differential

calculus, had dispelled the ancient darkness which enveloped the

conception of the infinite, and had clearly established the conception

of the continuous and continuous change, that a full productive

application of the newly found mechanical conceptions made any

progress.

”Hermann von Helmholtz 1821–1894

Introduction Calculus was created to describe how quantities change.

It has two basic procedures that are opposites of one an-

other, namely:

� differentiation, for finding the rate of change of a given function, and

� integration, for finding a function having a given rate of change.

Both of these procedures are based on the fundamental concept of the limit of a func-

tion. It is this idea of limit that distinguishes calculus from algebra, geometry, and

trigonometry, which are useful for describing static situations.

In this chapter we will introduce the limit concept and develop some of its proper-

ties. We begin by considering how limits arise in some basic problems.

1.1 Examples of Velocity, Growth Rate, and Area

In this section we consider some examples of phenomena where limits arise in a natural

way.

Average Velocity and Instantaneous Velocity
The position of a moving object is a function of time. The average velocity of the

object over a time interval is found by dividing the change in the object’s position by

the length of the time interval.
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E X A M P L E 1
(The average velocity of a falling rock) Physical experiments

show that if a rock is dropped from rest near the surface of the

earth, in the first t s it will fall a distance

y D 4:9t
2 m:

(a) What is the average velocity of the falling rock during the first 2 s?

(b) What is its average velocity from t D 1 to t D 2?

Solution The average velocity of the falling rock over any time interval Œt1; t2� is the

change �y in the distance fallen divided by the length �t of the time interval:

average velocity over Œt1; t2� D
�y

�t
D

4:9t22 � 4:9t
2
1

t2 � t1
:

(a) In the first 2 s (time interval Œ0; 2�), the average velocity is

�y

�t
D

4:9.22/ � 4:9.02/

2 � 0
D 9:8 m/s:

(b) In the time interval Œ1; 2�, the average velocity is

�y

�t
D

4:9.22/ � 4:9.12/

2 � 1
D 14:7 m/s:

E X A M P L E 2
How fast is the rock in Example 1 falling (a) at time t D 1?

(b) at time t D 2?
Table 1. Average velocity over

Œ1; 1C h�

h �y=�t

1 14:7000

0:1 10:2900

0:01 9:8490

0:001 9:8049

0:0001 9:8005

Solution We can calculate the average velocity over any time interval, but this ques-

tion asks for the instantaneous velocity at a given time. If the falling rock had a

speedometer, what would it show at time t D 1? To answer this, we first write the

average velocity over the time interval Œ1; 1C h� starting at t D 1 and having length h:

Average velocity over Œ1; 1C h� D
�y

�t
D

4:9.1C h/2 � 4:9.12/

h
:

We can’t calculate the instantaneous velocity at t D 1 by substituting h D 0 in this ex-

pression, because we can’t divide by zero. But we can calculate the average velocities
Table 2. Average velocity over

Œ2; 2C h�

h �y=�t

1 24:5000

0:1 20:0900

0:01 19:6490

0:001 19:6049

0:0001 19:6005

over shorter and shorter time intervals and see whether they seem to get close to a par-

ticular number. Table 1 shows the values of �y=�t for some values of h approaching

zero. Indeed, it appears that these average velocities get closer and closer to 9:8 m/s

as the length of the time interval gets closer and closer to zero. This suggests that the

rock is falling at a rate of 9.8 m/s one second after it is dropped.

Similarly, Table 2 shows values of the average velocities over shorter and shorter

time intervals Œ2; 2C h� starting at t D 2. The values suggest that the rock is falling at

19.6 m/s two seconds after it is dropped.

In Example 2 the average velocity of the falling rock over the time interval Œt; t C h� is

�y

�t
D

4:9.t C h/
2
� 4:9t

2

h
:

To find the instantaneous velocity (usually just called the velocity) at the instants t D 1

and t D 2, we examined the values of this average velocity for time intervals whose

lengths h became smaller and smaller. We were, in fact, finding the limit of the average

velocity as h approaches zero. This is expressed symbolically in the form

velocity at time t D lim
h!0

�y

�t
D lim

h!0

4:9.t C h/2 � 4:9t2

h
:

Read “limh!0 : : : ” as “the limit as h approaches zero of : : : ” We can’t find the limit

of the fraction by just substituting h D 0 because that would involve dividing by zero.

However, we can calculate the limit by first performing some algebraic simplifications

on the expression for the average velocity.
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E X A M P L E 3
Simplify the expression for the average velocity of the rock over

Œt; t C h� by first expanding .t C h/2. Hence, find the velocity v.t/

of the falling rock at time t directly, without making a table of values.

Solution The average velocity of the rock over time interval Œt; t C h� is

4:9.t C h/2 � 4:9t2

h
D

4:9.t2 C 2thC h2
� t2/

h

D

4:9.2thC h2/

h

D 9:8t C 4:9h:

The final form of the expression no longer involves division by h. It approaches 9:8tC

4:9.0/ D 9:8t as h approaches 0. Thus, t s after the rock is dropped, its velocity is

v.t/ D 9:8t m/s. In particular, at t D 1 and t D 2 the velocities are v.1/ D 9:8 m/s

and v.2/ D 19:6 m/s, respectively.

The Growth of an Algal Culture
In a laboratory experiment, the biomass of an algal culture was measured over a

74-day period by measuring the area in square millimetres occupied by the culture on a

microscope slide. These measurements m were plotted against the time t in days and

the points joined by a smooth curve m D f .t/, as shown in red in Figure 1.1.

Figure 1.1 The biomass m of an algal

culture after t days

m

1

2

3

4

5

t10 20 30 40 50 60 70

m

t

Observe that the biomass was about 0.1 mm2 on day 10 and had grown to about

1.7 mm2 on day 40, an increase of 1:7 � 0:1 D 1:6 mm2 in a time interval of

40 � 10 D 30 days. The average rate of growth over the time interval from day 10

to day 40 was therefore

1:7 � 0:1

40 � 10
D

1:6

30
� 0:053 mm2/d:

This average rate is just the slope of the green line joining the points on the graph of

m D f .t/ corresponding to t D 10 and t D 40. Similarly, the average rate of growth

of the algal biomass over any time interval can be determined by measuring the slope

of the line joining the points on the curve corresponding to that time interval. Such

lines are called secant lines to the curve.

E X A M P L E 4
How fast is the biomass growing on day 60?
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E X A M P L E 1
(The average velocity of a falling rock) Physical experiments

show that if a rock is dropped from rest near the surface of the

earth, in the first t s it will fall a distance

y D 4:9t
2 m:

(a) What is the average velocity of the falling rock during the first 2 s?

(b) What is its average velocity from t D 1 to t D 2?

Solution The average velocity of the falling rock over any time interval Œt1; t2� is the

change �y in the distance fallen divided by the length �t of the time interval:

average velocity over Œt1; t2� D
�y

�t
D

4:9t22 � 4:9t
2
1

t2 � t1
:

(a) In the first 2 s (time interval Œ0; 2�), the average velocity is

�y

�t
D

4:9.22/ � 4:9.02/

2 � 0
D 9:8 m/s:

(b) In the time interval Œ1; 2�, the average velocity is

�y

�t
D

4:9.22/ � 4:9.12/

2 � 1
D 14:7 m/s:

E X A M P L E 2
How fast is the rock in Example 1 falling (a) at time t D 1?

(b) at time t D 2?
Table 1. Average velocity over

Œ1; 1C h�

h �y=�t

1 14:7000

0:1 10:2900

0:01 9:8490

0:001 9:8049

0:0001 9:8005

Solution We can calculate the average velocity over any time interval, but this ques-

tion asks for the instantaneous velocity at a given time. If the falling rock had a

speedometer, what would it show at time t D 1? To answer this, we first write the

average velocity over the time interval Œ1; 1C h� starting at t D 1 and having length h:

Average velocity over Œ1; 1C h� D
�y

�t
D

4:9.1C h/2 � 4:9.12/

h
:

We can’t calculate the instantaneous velocity at t D 1 by substituting h D 0 in this ex-

pression, because we can’t divide by zero. But we can calculate the average velocities
Table 2. Average velocity over

Œ2; 2C h�

h �y=�t

1 24:5000

0:1 20:0900

0:01 19:6490

0:001 19:6049

0:0001 19:6005

over shorter and shorter time intervals and see whether they seem to get close to a par-

ticular number. Table 1 shows the values of �y=�t for some values of h approaching

zero. Indeed, it appears that these average velocities get closer and closer to 9:8 m/s

as the length of the time interval gets closer and closer to zero. This suggests that the

rock is falling at a rate of 9.8 m/s one second after it is dropped.

Similarly, Table 2 shows values of the average velocities over shorter and shorter

time intervals Œ2; 2C h� starting at t D 2. The values suggest that the rock is falling at

19.6 m/s two seconds after it is dropped.

In Example 2 the average velocity of the falling rock over the time interval Œt; t C h� is

�y

�t
D

4:9.t C h/
2
� 4:9t

2

h
:

To find the instantaneous velocity (usually just called the velocity) at the instants t D 1

and t D 2, we examined the values of this average velocity for time intervals whose

lengths h became smaller and smaller. We were, in fact, finding the limit of the average

velocity as h approaches zero. This is expressed symbolically in the form

velocity at time t D lim
h!0

�y

�t
D lim

h!0

4:9.t C h/2 � 4:9t2

h
:

Read “limh!0 : : : ” as “the limit as h approaches zero of : : : ” We can’t find the limit

of the fraction by just substituting h D 0 because that would involve dividing by zero.

However, we can calculate the limit by first performing some algebraic simplifications

on the expression for the average velocity.
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E X A M P L E 3
Simplify the expression for the average velocity of the rock over

Œt; t C h� by first expanding .t C h/2. Hence, find the velocity v.t/

of the falling rock at time t directly, without making a table of values.

Solution The average velocity of the rock over time interval Œt; t C h� is

4:9.t C h/2 � 4:9t2

h
D

4:9.t2 C 2thC h2
� t2/

h

D

4:9.2thC h2/

h

D 9:8t C 4:9h:

The final form of the expression no longer involves division by h. It approaches 9:8tC

4:9.0/ D 9:8t as h approaches 0. Thus, t s after the rock is dropped, its velocity is

v.t/ D 9:8t m/s. In particular, at t D 1 and t D 2 the velocities are v.1/ D 9:8 m/s

and v.2/ D 19:6 m/s, respectively.

The Growth of an Algal Culture
In a laboratory experiment, the biomass of an algal culture was measured over a

74-day period by measuring the area in square millimetres occupied by the culture on a

microscope slide. These measurements m were plotted against the time t in days and

the points joined by a smooth curve m D f .t/, as shown in red in Figure 1.1.

Figure 1.1 The biomass m of an algal

culture after t days

m

1

2

3

4

5

t10 20 30 40 50 60 70

m

t

Observe that the biomass was about 0.1 mm2 on day 10 and had grown to about

1.7 mm2 on day 40, an increase of 1:7 � 0:1 D 1:6 mm2 in a time interval of

40 � 10 D 30 days. The average rate of growth over the time interval from day 10

to day 40 was therefore

1:7 � 0:1

40 � 10
D

1:6

30
� 0:053 mm2/d:

This average rate is just the slope of the green line joining the points on the graph of

m D f .t/ corresponding to t D 10 and t D 40. Similarly, the average rate of growth

of the algal biomass over any time interval can be determined by measuring the slope

of the line joining the points on the curve corresponding to that time interval. Such

lines are called secant lines to the curve.

E X A M P L E 4
How fast is the biomass growing on day 60?
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Solution To answer this question, we could measure the average rates of change over

shorter and shorter times around day 60. The corresponding secant lines become

shorter and shorter, but their slopes approach a limit, namely, the slope of the tan-

gent line to the graph of m D f .t/ at the point where t D 60. This tangent line is

sketched in blue in Figure 1.1; it seems to go through the points .2; 0/ and .69; 5/, so

that its slope is

5 � 0

69 � 2
� 0:0746 mm2/d:

This is the rate at which the biomass was growing on day 60.

The Area of a Circle
All circles are similar geometric figures; they all have the same shape and differ only

in size. The ratio of the circumference C to the diameter 2r (twice the radius) has the

same value for all circles. The number � is defined to be this common ratio:

C

2r
D � or C D 2�r:

In school we are taught that the area A of a circle is this same number � times the

square of the radius:

A D �r
2
:

How can we deduce this area formula from the formula for the circumference that is

the definition of �?

The answer to this question lies in regarding the circle as a “limit” of regular

polygons, which are in turn made up of triangles, figures about whose geometry we

know a great deal.

Suppose a regular polygon having n sides is inscribed in a circle of radius r . (See

Figure 1.2.) The perimeter Pn and the area An of the polygon are, respectively, less

than the circumference C and the area A of the circle, but if n is large, Pn is close to

C and An is close to A. (In fact, the “circle” in Figure 1.2 was drawn by a computer

as a regular polygon having 180 sides, each subtending a 2ı angle at the centre of the

circle. It is very difficult to distinguish this 180-sided polygon from a real circle.) We

would expect Pn to approach the limit C and An to approach the limit A as n grows

larger and larger and approaches infinity.

Figure 1.2 A regular polygon (green) of n

sides inscribed in a red circle. Here n D 9

�=n

�=n

r

r

O A

B

M

Pn

C

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 1 – page 63 October 15, 2016

SECTION 1.1: Examples of Velocity, Growth Rate, and Area 63

A regular polygon of n sides is the union of n nonoverlapping, congruent, isosce-

les triangles having a common vertex at O , the centre of the polygon. One of these

triangles, 4OAB , is shown in Figure 1.2. Since the total angle around the point O is

2� radians (we are assuming that a circle of radius 1 has circumference 2�), the angle

AOB is 2�=n radians. If M is the midpoint of AB , then OM bisects angle AOB .

Using elementary trigonometry, we can write the length of AB and the area of triangle

OAB in terms of the radius r of the circle:

jABj D 2jAM j D 2r sin
�

n

area OAB D
1

2
jABjjOM j D

1

2

�

2r sin
�

n

� �

r cos
�

n

�

D r
2 sin

�

n
cos

�

n
:

The perimeter Pn and area An of the polygon are n times these expressions:

Pn D 2rn sin
�

n

An D r
2
n sin

�

n
cos

�

n
:

Solving the first equation for rn sin.�=n/ D Pn=2 and substituting into the second

equation, we get

An D

�

Pn

2

�

r cos
�

n
:

Now the angleAOM D �=n approaches 0 as n grows large, so its cosine, cos.�=n/ D

jOM j=jOAj, approaches 1. Since Pn approaches C D 2�r as n grows large, the

expression for An approaches .2�r=2/r.1/ D �r
2, which must therefore be the area

of the circle.

Remark There is a fundamental relationship between the problem of finding the area

under the graph of a function f and the problem of finding another function g whose
v

t

v D 9:8t

t

A

Figure 1.3 A D
1

2
t .9:8t/ D 4:9t

2

rate of change is f: It will be explored fully beginning in Chapter 5. As an example,

for the falling rock of Example 1–Example 3, the green area A under the graph of the

velocity function v D 9:8t m/s and above the interval Œ0; t � on the t-axis is the area of

a triangle of base length t s and height 9:8t m/s, and so (see Figure 1.3) is

A D
1

2
.t/.9:8t/ D 4:9t

2 m;

which is exactly the distance y that the rock falls during the first t seconds. The rate

of change of the area function A.t/ (that is, of the distance function y) is the velocity

function v.t/.

E X E R C I S E S 1.1

Exercises 1–4 refer to an object moving along the x-axis in such a

way that at time t s its position is x D t2 m to the right of the

origin.

1. Find the average velocity of the object over the time interval

Œt; t C h�.

2. Make a table giving the average velocities of the object over

time intervals Œ2; 2C h�, for h D 1, 0.1, 0.01, 0.001, and

0.0001 s.

3. Use the results from Exercise 2 to guess the instantaneous

velocity of the object at t D 2 s.

4. Confirm your guess in Exercise 3 by calculating the limit of

the average velocity over Œ2; 2C h� as h approaches zero,
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Solution To answer this question, we could measure the average rates of change over

shorter and shorter times around day 60. The corresponding secant lines become

shorter and shorter, but their slopes approach a limit, namely, the slope of the tan-

gent line to the graph of m D f .t/ at the point where t D 60. This tangent line is

sketched in blue in Figure 1.1; it seems to go through the points .2; 0/ and .69; 5/, so

that its slope is

5 � 0

69 � 2
� 0:0746 mm2/d:

This is the rate at which the biomass was growing on day 60.

The Area of a Circle
All circles are similar geometric figures; they all have the same shape and differ only

in size. The ratio of the circumference C to the diameter 2r (twice the radius) has the

same value for all circles. The number � is defined to be this common ratio:

C

2r
D � or C D 2�r:

In school we are taught that the area A of a circle is this same number � times the

square of the radius:

A D �r
2
:

How can we deduce this area formula from the formula for the circumference that is

the definition of �?

The answer to this question lies in regarding the circle as a “limit” of regular

polygons, which are in turn made up of triangles, figures about whose geometry we

know a great deal.

Suppose a regular polygon having n sides is inscribed in a circle of radius r . (See

Figure 1.2.) The perimeter Pn and the area An of the polygon are, respectively, less

than the circumference C and the area A of the circle, but if n is large, Pn is close to

C and An is close to A. (In fact, the “circle” in Figure 1.2 was drawn by a computer

as a regular polygon having 180 sides, each subtending a 2ı angle at the centre of the

circle. It is very difficult to distinguish this 180-sided polygon from a real circle.) We

would expect Pn to approach the limit C and An to approach the limit A as n grows

larger and larger and approaches infinity.

Figure 1.2 A regular polygon (green) of n

sides inscribed in a red circle. Here n D 9

�=n

�=n

r

r

O A

B

M

Pn

C
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A regular polygon of n sides is the union of n nonoverlapping, congruent, isosce-

les triangles having a common vertex at O , the centre of the polygon. One of these

triangles, 4OAB , is shown in Figure 1.2. Since the total angle around the point O is

2� radians (we are assuming that a circle of radius 1 has circumference 2�), the angle

AOB is 2�=n radians. If M is the midpoint of AB , then OM bisects angle AOB .

Using elementary trigonometry, we can write the length of AB and the area of triangle

OAB in terms of the radius r of the circle:

jABj D 2jAM j D 2r sin
�

n

area OAB D
1

2
jABjjOM j D

1

2

�

2r sin
�

n

� �

r cos
�

n

�

D r
2 sin

�

n
cos

�

n
:

The perimeter Pn and area An of the polygon are n times these expressions:

Pn D 2rn sin
�

n

An D r
2
n sin

�

n
cos

�

n
:

Solving the first equation for rn sin.�=n/ D Pn=2 and substituting into the second

equation, we get

An D

�

Pn

2

�

r cos
�

n
:

Now the angleAOM D �=n approaches 0 as n grows large, so its cosine, cos.�=n/ D

jOM j=jOAj, approaches 1. Since Pn approaches C D 2�r as n grows large, the

expression for An approaches .2�r=2/r.1/ D �r
2, which must therefore be the area

of the circle.

Remark There is a fundamental relationship between the problem of finding the area

under the graph of a function f and the problem of finding another function g whose
v

t

v D 9:8t

t

A

Figure 1.3 A D
1

2
t .9:8t/ D 4:9t

2

rate of change is f: It will be explored fully beginning in Chapter 5. As an example,

for the falling rock of Example 1–Example 3, the green area A under the graph of the

velocity function v D 9:8t m/s and above the interval Œ0; t � on the t-axis is the area of

a triangle of base length t s and height 9:8t m/s, and so (see Figure 1.3) is

A D
1

2
.t/.9:8t/ D 4:9t

2 m;

which is exactly the distance y that the rock falls during the first t seconds. The rate

of change of the area function A.t/ (that is, of the distance function y) is the velocity

function v.t/.

E X E R C I S E S 1.1

Exercises 1–4 refer to an object moving along the x-axis in such a

way that at time t s its position is x D t2 m to the right of the

origin.

1. Find the average velocity of the object over the time interval

Œt; t C h�.

2. Make a table giving the average velocities of the object over

time intervals Œ2; 2C h�, for h D 1, 0.1, 0.01, 0.001, and

0.0001 s.

3. Use the results from Exercise 2 to guess the instantaneous

velocity of the object at t D 2 s.

4. Confirm your guess in Exercise 3 by calculating the limit of

the average velocity over Œ2; 2C h� as h approaches zero,
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using the method of Example 3.

Exercises 5–8 refer to the motion of a particle moving along the

x-axis so that at time t s it is at position x D 3t2 � 12t C 1 m.

5. Find the average velocity of the particle over the time intervals

Œ1; 2�, Œ2; 3�, and Œ1; 3�.

6. Use the method of Example 3 to find the velocity of the

particle at t D 1, t D 2, and t D 3.

7. In what direction is the particle moving at t D 1? t D 2?

t D 3?

8. Show that for any positive number k, the average velocity of

the particle over the time interval Œt � k; t C k� is equal to its

velocity at time t .

In Exercises 9–11, a weight that is suspended by a spring bobs up

and down so that its height above the floor at time t s is y ft, where

y D 2C
1

�
sin.�t/:

9. Sketch the graph of y as a function of t . How high is the

weight at t D 1 s? In what direction is it moving at that time?

C 10. What is the average velocity of the weight over the time

intervals Œ1; 2�, Œ1; 1:1�, Œ1; 1:01�, and Œ1; 1:001�?

11. Using the results of Exercise 10, estimate the velocity of the

weight at time t D 1. What is the significance of the sign of

your answer?

Exercises 12–13 refer to the algal biomass graphed in Figure 1.1.

12. Approximately how fast is the biomass growing on day 20?

13. On about what day is the biomass growing fastest?

14. The annual profits of a small company for each of the first five

years of its operation are given in Table 3.

Table 3.

Year Profit ($1,000s)

2011 6

2012 27

2013 62

2014 111

2015 174

(a) Plot points representing the profits as a function of year

on graph paper, and join them by a smooth curve.

(b) What is the average rate of increase of the annual profits

between 2013 and 2015?

(c) Use your graph to estimate the rate of increase of the

profits in 2013.

1.2 Limits of Functions
In order to speak meaningfully about rates of change, tangent lines, and areas bounded

by curves, we have to investigate the process of finding limits. Indeed, the concept of

limit is the cornerstone on which the development of calculus rests. Before we try to

give a definition of a limit, let us look at more examples.

E X A M P L E 1 Describe the behaviour of the function f .x/ D
x2
� 1

x � 1
near

x D 1.

Solution Note that f .x/ is defined for all real numbers x except x D 1. (We can’t

divide by zero.) For any x ¤ 1 we can simplify the expression for f .x/ by factoring

the numerator and cancelling common factors:

f .x/ D
.x � 1/.x C 1/

x � 1
D x C 1 for x ¤ 1:

The graph of f is the line y D xC1 with one point removed, namely, the point .1; 2/.

This removed point is shown as a “hole” in the graph in Figure 1.4. Even though f .1/

is not defined, it is clear that we can make the value of f .x/ as close as we want to 2 by

choosing x close enough to 1. Therefore, we say that f .x/ approaches arbitrarily close

to 2 as x approaches 1, or, more simply, f .x/ approaches the limit 2 as x approaches

1. We write this as

y

x

y D f .x/

.1; 2/

1

2

Figure 1.4 The graph of f .x/ D
x2
� 1

x � 1

lim
x!1

f .x/ D 2 or lim
x!1

x2
� 1

x � 1
D 2:
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E X A M P L E 2
What happens to the function g.x/ D .1 C x2/1=x2

as x ap-

proaches zero?

Solution Note that g.x/ is not defined at x D 0. In fact, for the moment it does not
Table 4.

x g.x/

˙1:0 2:0000 00000

˙0:1 2:7048 13829

˙0:01 2:7181 45927

˙0:001 2:7182 80469

˙0:0001 2:7182 81815

˙0:00001 1:0000 00000

appear to be defined for any x whose square x2 is not a rational number. (Recall that if

r D m=n, where m and n are integers and n > 0, then xr means the nth root of xm.)

Let us ignore for now the problem of deciding what g.x/ means if x2 is irrational and

consider only rational values of x. There is no obvious way to simplify the expression

for g.x/ as we did in Example 1. However, we can use a scientific calculator to obtain

approximate values of g.x/ for some rational values of x approaching 0. (The values

in Table 4 were obtained with such a calculator.)

Except for the last value in the table, the values of g.x/ seem to be approaching a

certain number, 2:71828 : : : , as x gets closer and closer to 0. We will show in Section

3.4 that

lim
x!0

g.x/ D lim
x!0

.1C x
2
/
1=x2

D e D 2:7 1828 1828 45 90 45 : : : :

The number e turns out to be very important in mathematics.

K Observe that the last entry in the table appears to be wrong. This is important. It is

because the calculator can only represent a finite number of numbers. The calculator

was unable to distinguish 1 C .0:00001/2 D 1:0000000001 from 1, and it therefore

calculated 110;000;000;000
D 1. While for many calculations on computers this reality

can be minimized, it cannot be eliminated. The wrong value warns us of something

called round-off error. We can explore with computer graphics what this means for

g near 0. As was the case for the numerical monster encountered in Section P.4, the

computer can produce rich and beautiful behaviour in its failed attempt to represent g,

which is very different from what g actually does. While it is possible to get computer

algebra software like Maple to evaluate limits correctly (as we will see in the next

section), we cannot use computer graphics or floating-point arithmetic to study many

mathematical notions such as limits. In fact, we will need mathematics to understand

what the computer actually does so that we can be the master of our tools.

0

0.5

1

1.5

2

2.5

3

y

–1 –0.5 0.5 1
x

Figure 1.5 The graph of

y D g.x/ on the interval Œ�1; 1�

1

3

5

7

y

–2e–08 2e–08
x

Figure 1.6 The graphs of y D g.x/

(colour) and y D e � 2:718 (black) on

the interval Œ�5 � 10�8; 5 � 10�8�

1

3

5

7

y

1e–08 2e–08 x

Figure 1.7 The graphs of y D g.x/

(colour) and y D .1C 2 � 10�16/1=x2

(black) on the interval Œ10�9; 2:5 � 10�8�

Figures 1.5–1.7 illustrate this fascinating behaviour of g with three plots made with

Maple using its default 10-significant-figure precision in representing floating-point

(i.e., real) numbers. Figure 1.5 is a plot of the graph of g on the interval Œ�1; 1�. The

graph starts out at height 2 at either endpoint x D ˙1 and rises to height approximately

2:718 � � � as x decreases in absolute value, as we would expect from Table 4. Figure 1.6

shows the graph of g restricted to the tiny interval Œ�5 � 10�8; 5 � 10�8�. It consists

of many short arcs decreasing in height as jxj increases, and clustering around the

line y D 2:718 � � �, and a horizontal part at height 1 between approximately �10�8

and 10�8. Figure 1.7 zooms in on the part of the graph to the right of the origin

up to x D 2:5 � 10�8. Note how the arc closest to 0 coincides with the graph of
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using the method of Example 3.

Exercises 5–8 refer to the motion of a particle moving along the

x-axis so that at time t s it is at position x D 3t2 � 12t C 1 m.

5. Find the average velocity of the particle over the time intervals

Œ1; 2�, Œ2; 3�, and Œ1; 3�.

6. Use the method of Example 3 to find the velocity of the

particle at t D 1, t D 2, and t D 3.

7. In what direction is the particle moving at t D 1? t D 2?

t D 3?

8. Show that for any positive number k, the average velocity of

the particle over the time interval Œt � k; t C k� is equal to its

velocity at time t .

In Exercises 9–11, a weight that is suspended by a spring bobs up

and down so that its height above the floor at time t s is y ft, where

y D 2C
1

�
sin.�t/:

9. Sketch the graph of y as a function of t . How high is the

weight at t D 1 s? In what direction is it moving at that time?

C 10. What is the average velocity of the weight over the time

intervals Œ1; 2�, Œ1; 1:1�, Œ1; 1:01�, and Œ1; 1:001�?

11. Using the results of Exercise 10, estimate the velocity of the

weight at time t D 1. What is the significance of the sign of

your answer?

Exercises 12–13 refer to the algal biomass graphed in Figure 1.1.

12. Approximately how fast is the biomass growing on day 20?

13. On about what day is the biomass growing fastest?

14. The annual profits of a small company for each of the first five

years of its operation are given in Table 3.

Table 3.

Year Profit ($1,000s)

2011 6

2012 27

2013 62

2014 111

2015 174

(a) Plot points representing the profits as a function of year

on graph paper, and join them by a smooth curve.

(b) What is the average rate of increase of the annual profits

between 2013 and 2015?

(c) Use your graph to estimate the rate of increase of the

profits in 2013.

1.2 Limits of Functions
In order to speak meaningfully about rates of change, tangent lines, and areas bounded

by curves, we have to investigate the process of finding limits. Indeed, the concept of

limit is the cornerstone on which the development of calculus rests. Before we try to

give a definition of a limit, let us look at more examples.

E X A M P L E 1 Describe the behaviour of the function f .x/ D
x2
� 1

x � 1
near

x D 1.

Solution Note that f .x/ is defined for all real numbers x except x D 1. (We can’t

divide by zero.) For any x ¤ 1 we can simplify the expression for f .x/ by factoring

the numerator and cancelling common factors:

f .x/ D
.x � 1/.x C 1/

x � 1
D x C 1 for x ¤ 1:

The graph of f is the line y D xC1 with one point removed, namely, the point .1; 2/.

This removed point is shown as a “hole” in the graph in Figure 1.4. Even though f .1/

is not defined, it is clear that we can make the value of f .x/ as close as we want to 2 by

choosing x close enough to 1. Therefore, we say that f .x/ approaches arbitrarily close

to 2 as x approaches 1, or, more simply, f .x/ approaches the limit 2 as x approaches

1. We write this as

y

x

y D f .x/

.1; 2/

1

2

Figure 1.4 The graph of f .x/ D
x2
� 1

x � 1

lim
x!1

f .x/ D 2 or lim
x!1

x2
� 1

x � 1
D 2:
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E X A M P L E 2
What happens to the function g.x/ D .1 C x2/1=x2

as x ap-

proaches zero?

Solution Note that g.x/ is not defined at x D 0. In fact, for the moment it does not
Table 4.

x g.x/

˙1:0 2:0000 00000

˙0:1 2:7048 13829

˙0:01 2:7181 45927

˙0:001 2:7182 80469

˙0:0001 2:7182 81815

˙0:00001 1:0000 00000

appear to be defined for any x whose square x2 is not a rational number. (Recall that if

r D m=n, where m and n are integers and n > 0, then xr means the nth root of xm.)

Let us ignore for now the problem of deciding what g.x/ means if x2 is irrational and

consider only rational values of x. There is no obvious way to simplify the expression

for g.x/ as we did in Example 1. However, we can use a scientific calculator to obtain

approximate values of g.x/ for some rational values of x approaching 0. (The values

in Table 4 were obtained with such a calculator.)

Except for the last value in the table, the values of g.x/ seem to be approaching a

certain number, 2:71828 : : : , as x gets closer and closer to 0. We will show in Section

3.4 that

lim
x!0

g.x/ D lim
x!0

.1C x
2
/
1=x2

D e D 2:7 1828 1828 45 90 45 : : : :

The number e turns out to be very important in mathematics.

K Observe that the last entry in the table appears to be wrong. This is important. It is

because the calculator can only represent a finite number of numbers. The calculator

was unable to distinguish 1 C .0:00001/2 D 1:0000000001 from 1, and it therefore

calculated 110;000;000;000
D 1. While for many calculations on computers this reality

can be minimized, it cannot be eliminated. The wrong value warns us of something

called round-off error. We can explore with computer graphics what this means for

g near 0. As was the case for the numerical monster encountered in Section P.4, the

computer can produce rich and beautiful behaviour in its failed attempt to represent g,

which is very different from what g actually does. While it is possible to get computer

algebra software like Maple to evaluate limits correctly (as we will see in the next

section), we cannot use computer graphics or floating-point arithmetic to study many

mathematical notions such as limits. In fact, we will need mathematics to understand

what the computer actually does so that we can be the master of our tools.

0

0.5

1

1.5

2

2.5

3

y

–1 –0.5 0.5 1
x

Figure 1.5 The graph of

y D g.x/ on the interval Œ�1; 1�

1

3

5

7

y

–2e–08 2e–08
x

Figure 1.6 The graphs of y D g.x/

(colour) and y D e � 2:718 (black) on

the interval Œ�5 � 10�8; 5 � 10�8�

1

3

5

7

y

1e–08 2e–08 x

Figure 1.7 The graphs of y D g.x/

(colour) and y D .1C 2 � 10�16/1=x2

(black) on the interval Œ10�9; 2:5 � 10�8�

Figures 1.5–1.7 illustrate this fascinating behaviour of g with three plots made with

Maple using its default 10-significant-figure precision in representing floating-point

(i.e., real) numbers. Figure 1.5 is a plot of the graph of g on the interval Œ�1; 1�. The

graph starts out at height 2 at either endpoint x D ˙1 and rises to height approximately

2:718 � � � as x decreases in absolute value, as we would expect from Table 4. Figure 1.6

shows the graph of g restricted to the tiny interval Œ�5 � 10�8; 5 � 10�8�. It consists

of many short arcs decreasing in height as jxj increases, and clustering around the

line y D 2:718 � � �, and a horizontal part at height 1 between approximately �10�8

and 10�8. Figure 1.7 zooms in on the part of the graph to the right of the origin

up to x D 2:5 � 10�8. Note how the arc closest to 0 coincides with the graph of
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y D
�

1 C 2 � 10�16
�1=x2

(shown in black), indicating that 1 C 2 � 10�16 may be

the smallest number greater than 1 that Maple can distinguish from 1. Both figures

show that the breakdown in the graph of g is not sudden, but becomes more and more

pronounced as jxj decreases until the breakdown is complete near˙10�8.

The examples above and those in Section 1.1 suggest the following informal definition

of limit.

D E F I N I T I O N

1

An informal definition of limit

If f .x/ is defined for all x near a, except possibly at a itself, and if we can

ensure that f .x/ is as close as we want to L by taking x close enough to a,

but not equal to a, we say that the function f approaches the limit L as x

approaches a, and we write

lim
x!a

f .x/ D L or limx!af .x/ D L:

This definition is informal because phrases such as close as we want and close enough

are imprecise; their meaning depends on the context. To a machinist manufacturing a

piston, close enough may mean within a few thousandths of an inch. To an astronomer

studying distant galaxies, close enough may mean within a few thousand light-years.

The definition should be clear enough, however, to enable us to recognize and evaluate

limits of specific functions. A more precise “formal” definition, given in Section 1.5,

is needed if we want to prove theorems about limits like Theorems 2–4, stated later in

this section.

E X A M P L E 3
Find (a) lim

x!a
x and (b) lim

x!a
c (where c is a constant).

Solution In words, part (a) asks: “What does x approach as x approaches a?” The

answer is surely a.

lim
x!a

x D a:

Similarly, part (b) asks: “What does c approach as x approaches a?” The answer here

is that c approaches c; you can’t get any closer to c than by being c.

lim
x!a

c D c:

Example 3 shows that limx!a f .x/ can sometimes be evaluated by just calculating

f .a/. This will be the case if f .x/ is defined in an open interval containing x D a

and the graph of f passes unbroken through the point .a; f .a//. The next example

shows various ways algebraic manipulations can be used to evaluate limx!a f .x/ in

situations where f .a/ is undefined. This usually happens when f .x/ is a fraction with

denominator equal to 0 at x D a.

E X A M P L E 4
Evaluate:

(a) lim
x!�2

x
2
C x � 2

x2
C 5x C 6

, (b) lim
x!a

1

x
�

1

a

x � a
, and (c) lim

x!4

p

x � 2

x2
� 16

.

Solution Each of these limits involves a fraction whose numerator and denominator

are both 0 at the point where the limit is taken.
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(a) lim
x!�2

x2
C x � 2

x2
C 5x C 6

fraction undefined at x D �2

Factor numerator and denominator.

(See Section P.6.)

D lim
x!�2

.x C 2/.x � 1/

.x C 2/.x C 3/
Cancel common factors.

D lim
x!�2

x � 1

x C 3
Evaluate this limit by

substituting x D �2.

D

�2 � 1

�2C 3
D �3:

(b) lim
x!a

1

x
�

1

a

x � a
fraction undefined at x D a

Simplify the numerator.

D lim
x!a

a � x

ax

x � a

D lim
x!a

�.x � a/

ax.x � a/
Cancel the common factor.

D lim
x!a

�1

ax
D �

1

a2
:

(c) lim
x!4

p

x � 2

x2
� 16

fraction undefined at x D 4

Multiply numerator and denominator

by the conjugate of the expression

in the numerator.
D lim

x!4

.
p

x � 2/.
p

x C 2/

.x2
� 16/.

p

x C 2/

D lim
x!4

x � 4

.x � 4/.x C 4/.
p

x C 2/

D lim
x!4

1

.x C 4/.
p

x C 2/
D

1

.4C 4/.2C 2/
D

1

32
:

Figure 1.8

(a) lim
x!0

1

x
does not exist

(b) lim
x!2

g.x/ D 2, but g.2/ D 1

y

x

.1; 1/

y D
1

x

.�1;�1/

y

x

.2; 1/

.2; 2/

y D g.x/

(a) (b)

BEWARE! Always be aware

that the existence of limx!a f .x/

does not require that f .a/ exist and

does not depend on f .a/ even if

f .a/ does exist. It depends only on

the values of f .x/ for x near but

not equal to a.

A function f may be defined on both sides of x D a but still not have a limit at x D a.

For example, the function f .x/ D 1=x has no limit as x approaches 0. As can be seen

in Figure 1.8(a), the values 1=x grow ever larger in absolute value as x approaches 0;

there is no single number L that they approach.

The following example shows that even if f .x/ is defined at x D a, the limit of

f .x/ as x approaches a may not be equal to f .a/.
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y D
�

1 C 2 � 10�16
�1=x2

(shown in black), indicating that 1 C 2 � 10�16 may be

the smallest number greater than 1 that Maple can distinguish from 1. Both figures

show that the breakdown in the graph of g is not sudden, but becomes more and more

pronounced as jxj decreases until the breakdown is complete near˙10�8.

The examples above and those in Section 1.1 suggest the following informal definition

of limit.

D E F I N I T I O N

1

An informal definition of limit

If f .x/ is defined for all x near a, except possibly at a itself, and if we can

ensure that f .x/ is as close as we want to L by taking x close enough to a,

but not equal to a, we say that the function f approaches the limit L as x

approaches a, and we write

lim
x!a

f .x/ D L or limx!af .x/ D L:

This definition is informal because phrases such as close as we want and close enough

are imprecise; their meaning depends on the context. To a machinist manufacturing a

piston, close enough may mean within a few thousandths of an inch. To an astronomer

studying distant galaxies, close enough may mean within a few thousand light-years.

The definition should be clear enough, however, to enable us to recognize and evaluate

limits of specific functions. A more precise “formal” definition, given in Section 1.5,

is needed if we want to prove theorems about limits like Theorems 2–4, stated later in

this section.

E X A M P L E 3
Find (a) lim

x!a
x and (b) lim

x!a
c (where c is a constant).

Solution In words, part (a) asks: “What does x approach as x approaches a?” The

answer is surely a.

lim
x!a

x D a:

Similarly, part (b) asks: “What does c approach as x approaches a?” The answer here

is that c approaches c; you can’t get any closer to c than by being c.

lim
x!a

c D c:

Example 3 shows that limx!a f .x/ can sometimes be evaluated by just calculating

f .a/. This will be the case if f .x/ is defined in an open interval containing x D a

and the graph of f passes unbroken through the point .a; f .a//. The next example

shows various ways algebraic manipulations can be used to evaluate limx!a f .x/ in

situations where f .a/ is undefined. This usually happens when f .x/ is a fraction with

denominator equal to 0 at x D a.

E X A M P L E 4
Evaluate:

(a) lim
x!�2

x
2
C x � 2

x2
C 5x C 6

, (b) lim
x!a

1

x
�

1

a

x � a
, and (c) lim

x!4

p

x � 2

x2
� 16

.

Solution Each of these limits involves a fraction whose numerator and denominator

are both 0 at the point where the limit is taken.
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(a) lim
x!�2

x2
C x � 2

x2
C 5x C 6

fraction undefined at x D �2

Factor numerator and denominator.

(See Section P.6.)

D lim
x!�2

.x C 2/.x � 1/

.x C 2/.x C 3/
Cancel common factors.

D lim
x!�2

x � 1

x C 3
Evaluate this limit by

substituting x D �2.

D

�2 � 1

�2C 3
D �3:

(b) lim
x!a

1

x
�

1

a

x � a
fraction undefined at x D a

Simplify the numerator.

D lim
x!a

a � x

ax

x � a

D lim
x!a

�.x � a/

ax.x � a/
Cancel the common factor.

D lim
x!a

�1

ax
D �

1

a2
:

(c) lim
x!4

p

x � 2

x2
� 16

fraction undefined at x D 4

Multiply numerator and denominator

by the conjugate of the expression

in the numerator.
D lim

x!4

.
p

x � 2/.
p

x C 2/

.x2
� 16/.

p

x C 2/

D lim
x!4

x � 4

.x � 4/.x C 4/.
p

x C 2/

D lim
x!4

1

.x C 4/.
p

x C 2/
D

1

.4C 4/.2C 2/
D

1

32
:

Figure 1.8

(a) lim
x!0

1

x
does not exist

(b) lim
x!2

g.x/ D 2, but g.2/ D 1

y

x

.1; 1/

y D
1

x

.�1;�1/

y

x

.2; 1/

.2; 2/

y D g.x/

(a) (b)

BEWARE! Always be aware

that the existence of limx!a f .x/

does not require that f .a/ exist and

does not depend on f .a/ even if

f .a/ does exist. It depends only on

the values of f .x/ for x near but

not equal to a.

A function f may be defined on both sides of x D a but still not have a limit at x D a.

For example, the function f .x/ D 1=x has no limit as x approaches 0. As can be seen

in Figure 1.8(a), the values 1=x grow ever larger in absolute value as x approaches 0;

there is no single number L that they approach.

The following example shows that even if f .x/ is defined at x D a, the limit of

f .x/ as x approaches a may not be equal to f .a/.
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E X A M P L E 5 Let g.x/ D
n

x if x ¤ 2

1 if x D 2.
(See Figure 1.8(b).) Then

lim
x!2

g.x/ D lim
x!2

x D 2; although g.2/ D 1:

One-Sided Limits
Limits are unique; if limx!a f .x/ D L and limx!a f .x/ D M , then L D M .

(See Exercise 31 in Section 1.5.) Although a function f can only have one limit at

any particular point, it is, nevertheless, useful to be able to describe the behaviour of

functions that approach different numbers as x approaches a from one side or the other.

(See Figure 1.9.)

ax

a x

negative side of a
= left-hand side of a

x ! a� means x approaches a from the left

x ! aC means x approaches a from the right

positive side of a
= right-hand side of a

Figure 1.9 One-sided approach

D E F I N I T I O N

2

Informal definition of left and right limits

If f .x/ is defined on some interval .b; a/ extending to the left of x D a, and

if we can ensure that f .x/ is as close as we want to L by taking x to the left

of a and close enough to a, then we say f .x/ has left limit L at x D a, and

we write

lim
x!a�

f .x/ D L:

If f .x/ is defined on some interval .a; b/ extending to the right of x D a, and

if we can ensure that f .x/ is as close as we want to L by taking x to the right

of a and close enough to a, then we say f .x/ has right limit L at x D a, and

we write

lim
x!aC

f .x/ D L:

Note the use of the suffix C to denote approach from the right (the positive side) and

the suffix � to denote approach from the left (the negative side).

E X A M P L E 6
The signum function sgn .x/ D x=jxj (see Figure 1.10) has left

limit �1 and right limit 1 at x D 0:

lim
x!0�

sgn .x/ D �1 and lim
x!0C

sgn .x/ D 1

because the values of sgn .x/ approach �1 (they are �1) if x is negative and ap-

proaches 0, and they approach 1 if x is positive and approaches 0. Since these left and

right limits are not equal, limx!0 sgn .x/ does not exist.

y

x

�1

y D sgn .x/

1
y D 1

y D �1

Figure 1.10

lim
x!0

sgn .x/ does not exist, because

lim
x!0�

sgn .x/ D �1, lim
x!0C

sgn .x/ D 1

As suggested in Example 6, the relationship between ordinary (two-sided) limits and

one-sided limits can be stated as follows:

T H E O R E M

1

Relationship between one-sided and two-sided limits

A function f .x/ has limit L at x D a if and only if it has both left and right limits

there and these one-sided limits are both equal to L:

lim
x!a

f .x/ D L ” lim
x!a�

f .x/ D lim
x!aC

f .x/ D L:

E X A M P L E 7 If f .x/ D
jx � 2j

x2
C x � 6

, find: lim
x!2C

f .x/, lim
x!2�

f .x/, and lim
x!2

f .x/.
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Solution Observe that jx � 2j D x � 2 if x > 2, and jx � 2j D �.x � 2/ if x < 2.

Therefore,

lim
x!2C

f .x/ D lim
x!2C

x � 2

x2
C x � 6

D lim
x!2C

x � 2

.x � 2/.x C 3/

D lim
x!2C

1

x C 3
D

1

5
;

lim
x!2�

f .x/ D lim
x!2�

�.x � 2/

x2
C x � 6

D lim
x!2�

�.x � 2/

.x � 2/.x C 3/

D lim
x!2�

�1

x C 3
D �

1

5
:

Since limx!2� f .x/ ¤ limx!2C f .x/, the limit limx!2 f .x/ does not exist.

E X A M P L E 8
What one-sided limits does g.x/ D

p

1 � x2 have at x D �1 and

x D 1?

Solution The domain of g is Œ�1; 1�, so g.x/ is defined only to the right of x D �1

and only to the left of x D 1. As can be seen in Figure 1.11,

lim
x!�1C

g.x/ D 0 and lim
x!1�

g.x/ D 0:

g.x/ has no left limit or limit at x D �1 and no right limit or limit at x D 1.

y

x�1 1

y D
p

1 � x2

Figure 1.11
p

1 � x2 has right limit 0 at

�1 and left limit 0 at 1

Rules for Calculating Limits
The following theorems make it easy to calculate limits and one-sided limits of many

kinds of functions when we know some elementary limits. We will not prove the

theorems here. (See Section 1.5.)

T H E O R E M

2

Limit Rules

If limx!a f .x/ D L, limx!a g.x/ DM , and k is a constant, then

1. Limit of a sum: lim
x!a

Œf .x/C g.x/� D LCM

2. Limit of a difference: lim
x!a

Œf .x/� g.x/� D L �M

3. Limit of a product: lim
x!a

f .x/g.x/ D LM

4. Limit of a multiple: lim
x!a

kf .x/ D kL

5. Limit of a quotient: lim
x!a

f .x/

g.x/
D

L

M
; if M ¤ 0:

If m is an integer and n is a positive integer, then

6. Limit of a power: lim
x!a

�

f .x/
�m=n

D L
m=n

; providedL > 0 if n is even,

and L ¤ 0 if m < 0.

If f .x/ � g.x/ on an interval containing a in its interior, then

7. Order is preserved: L �M

Rules 1–6 are also valid for right limits and left limits. So is Rule 7, under the as-

sumption that f .x/ � g.x/ on an open interval extending from a in the appropriate

direction.

In words, rule 1 of Theorem 2 says that the limit of a sum of functions is the sum of

their limits. Similarly, rule 5 says that the limit of a quotient of two functions is the

quotient of their limits, provided that the limit of the denominator is not zero. Try to

state the other rules in words.

We can make use of the limits (a) limx!a c D c (where c is a constant) and (b)

limx!a x D a, from Example 3, together with parts of Theorem 2 to calculate limits

of many combinations of functions.
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E X A M P L E 5 Let g.x/ D
n

x if x ¤ 2

1 if x D 2.
(See Figure 1.8(b).) Then

lim
x!2

g.x/ D lim
x!2

x D 2; although g.2/ D 1:

One-Sided Limits
Limits are unique; if limx!a f .x/ D L and limx!a f .x/ D M , then L D M .

(See Exercise 31 in Section 1.5.) Although a function f can only have one limit at

any particular point, it is, nevertheless, useful to be able to describe the behaviour of

functions that approach different numbers as x approaches a from one side or the other.

(See Figure 1.9.)

ax

a x

negative side of a
= left-hand side of a

x ! a� means x approaches a from the left

x ! aC means x approaches a from the right

positive side of a
= right-hand side of a

Figure 1.9 One-sided approach

D E F I N I T I O N

2

Informal definition of left and right limits

If f .x/ is defined on some interval .b; a/ extending to the left of x D a, and

if we can ensure that f .x/ is as close as we want to L by taking x to the left

of a and close enough to a, then we say f .x/ has left limit L at x D a, and

we write

lim
x!a�

f .x/ D L:

If f .x/ is defined on some interval .a; b/ extending to the right of x D a, and

if we can ensure that f .x/ is as close as we want to L by taking x to the right

of a and close enough to a, then we say f .x/ has right limit L at x D a, and

we write

lim
x!aC

f .x/ D L:

Note the use of the suffix C to denote approach from the right (the positive side) and

the suffix � to denote approach from the left (the negative side).

E X A M P L E 6
The signum function sgn .x/ D x=jxj (see Figure 1.10) has left

limit �1 and right limit 1 at x D 0:

lim
x!0�

sgn .x/ D �1 and lim
x!0C

sgn .x/ D 1

because the values of sgn .x/ approach �1 (they are �1) if x is negative and ap-

proaches 0, and they approach 1 if x is positive and approaches 0. Since these left and

right limits are not equal, limx!0 sgn .x/ does not exist.

y

x

�1

y D sgn .x/

1
y D 1

y D �1

Figure 1.10

lim
x!0

sgn .x/ does not exist, because

lim
x!0�

sgn .x/ D �1, lim
x!0C

sgn .x/ D 1

As suggested in Example 6, the relationship between ordinary (two-sided) limits and

one-sided limits can be stated as follows:

T H E O R E M

1

Relationship between one-sided and two-sided limits

A function f .x/ has limit L at x D a if and only if it has both left and right limits

there and these one-sided limits are both equal to L:

lim
x!a

f .x/ D L ” lim
x!a�

f .x/ D lim
x!aC

f .x/ D L:

E X A M P L E 7 If f .x/ D
jx � 2j

x2
C x � 6

, find: lim
x!2C

f .x/, lim
x!2�

f .x/, and lim
x!2

f .x/.
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Solution Observe that jx � 2j D x � 2 if x > 2, and jx � 2j D �.x � 2/ if x < 2.

Therefore,

lim
x!2C

f .x/ D lim
x!2C

x � 2

x2
C x � 6

D lim
x!2C

x � 2

.x � 2/.x C 3/

D lim
x!2C

1

x C 3
D

1

5
;

lim
x!2�

f .x/ D lim
x!2�

�.x � 2/

x2
C x � 6

D lim
x!2�

�.x � 2/

.x � 2/.x C 3/

D lim
x!2�

�1

x C 3
D �

1

5
:

Since limx!2� f .x/ ¤ limx!2C f .x/, the limit limx!2 f .x/ does not exist.

E X A M P L E 8
What one-sided limits does g.x/ D

p

1 � x2 have at x D �1 and

x D 1?

Solution The domain of g is Œ�1; 1�, so g.x/ is defined only to the right of x D �1

and only to the left of x D 1. As can be seen in Figure 1.11,

lim
x!�1C

g.x/ D 0 and lim
x!1�

g.x/ D 0:

g.x/ has no left limit or limit at x D �1 and no right limit or limit at x D 1.

y

x�1 1

y D
p

1 � x2

Figure 1.11
p

1 � x2 has right limit 0 at

�1 and left limit 0 at 1

Rules for Calculating Limits
The following theorems make it easy to calculate limits and one-sided limits of many

kinds of functions when we know some elementary limits. We will not prove the

theorems here. (See Section 1.5.)

T H E O R E M

2

Limit Rules

If limx!a f .x/ D L, limx!a g.x/ DM , and k is a constant, then

1. Limit of a sum: lim
x!a

Œf .x/C g.x/� D LCM

2. Limit of a difference: lim
x!a

Œf .x/� g.x/� D L �M

3. Limit of a product: lim
x!a

f .x/g.x/ D LM

4. Limit of a multiple: lim
x!a

kf .x/ D kL

5. Limit of a quotient: lim
x!a

f .x/

g.x/
D

L

M
; if M ¤ 0:

If m is an integer and n is a positive integer, then

6. Limit of a power: lim
x!a

�

f .x/
�m=n

D L
m=n

; providedL > 0 if n is even,

and L ¤ 0 if m < 0.

If f .x/ � g.x/ on an interval containing a in its interior, then

7. Order is preserved: L �M

Rules 1–6 are also valid for right limits and left limits. So is Rule 7, under the as-

sumption that f .x/ � g.x/ on an open interval extending from a in the appropriate

direction.

In words, rule 1 of Theorem 2 says that the limit of a sum of functions is the sum of

their limits. Similarly, rule 5 says that the limit of a quotient of two functions is the

quotient of their limits, provided that the limit of the denominator is not zero. Try to

state the other rules in words.

We can make use of the limits (a) limx!a c D c (where c is a constant) and (b)

limx!a x D a, from Example 3, together with parts of Theorem 2 to calculate limits

of many combinations of functions.
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E X A M P L E 9 Find: (a) lim
x!a

x2
C x C 4

x3
� 2x2

C 7
and (b) lim

x!2

p

2x C 1.

Solution

(a) The expression
x

2
C x C 4

x3
� 2x2

C 7
is formed by combining the basic functions x and

c (constant) using addition, subtraction, multiplication, and division. Theorem 2

assures us that the limit of such a combination is the same combination of the

limits a and c of the basic functions, provided the denominator does not have

limit zero. Thus,

lim
x!a

x
2
C x C 4

x3
� 2x2

C 7
D

a
2
C aC 4

a3
� 2a2

C 7
provided a3

� 2a2
C 7 ¤ 0.

(b) The same argument as in (a) shows that limx!2 .2x C 1/ D 2.2/C 1 D 5. Then

the Power Rule (rule 6 of Theorem 2) assures us that

lim
x!2

p

2x C 1 D
p

5:

The following result is an immediate corollary of Theorem 2. (See Section P.6 for a

discussion of polynomials and rational functions.)

T H E O R E M

3

Limits of Polynomials and Rational Functions

1. If P.x/ is a polynomial and a is any real number, then

lim
x!a

P.x/ D P.a/:

2. If P.x/ and Q.x/ are polynomials and Q.a/ ¤ 0, then

lim
x!a

P.x/

Q.x/
D

P.a/

Q.a/
:

The Squeeze Theorem
The following theorem will enable us to calculate some very important limits in sub-

sequent chapters. It is called the Squeeze Theorem because it refers to a function g

whose values are squeezed between the values of two other functions f and h that

have the same limit L at a point a. Being trapped between the values of two functions

that approach L, the values of g must also approach L. (See Figure 1.12.)

Figure 1.12 The graph of g is squeezed

between those of f (blue) and h (green)

y

x

y D h.x/

y D f .x/

y D g.x/

y D g.x/

L

a
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T H E O R E M

4

The Squeeze Theorem

Suppose that f .x/ � g.x/ � h.x/ holds for all x in some open interval containing a,

except possibly at x D a itself. Suppose also that

lim
x!a

f .x/ D lim
x!a

h.x/ D L:

Then lim
x!a

g.x/ D L also. Similar statements hold for left and right limits.

E X A M P L E 10
Given that 3�x2

� u.x/ � 3Cx2 for all x ¤ 0, find limx!0 u.x/.

Solution Since limx!0.3�x
2
/ D 3 and limx!0.3Cx

2/ D 3, the Squeeze Theorem

implies that limx!0 u.x/ D 3.

E X A M P L E 11
Show that if limx!a jf .x/j D 0, then limx!a f .x/ D 0.

Solution Since �jf .x/j � f .x/ � jf .x/j, and �jf .x/j and jf .x/j both have limit

0 as x approaches a, so does f .x/ by the Squeeze Theorem.

E X E R C I S E S 1.2

1. Find: (a) lim
x!�1

f .x/, (b) lim
x!0

f .x/, and (c) lim
x!1

f .x/, for

the function f whose graph is shown in Figure 1.13.

y

x

�1 1

1

y D f .x/

Figure 1.13

2. For the function y D g.x/ graphed in Figure 1.14, find each of

the following limits or explain why it does not exist.

(a) lim
x!1

g.x/, (b) lim
x!2

g.x/, (c) lim
x!3

g.x/

y

x

1 2 3

1

y D g.x/

Figure 1.14

In Exercises 3–6, find the indicated one-sided limit of the function

g whose graph is given in Figure 1.14.

3. lim
x!1�

g.x/ 4. lim
x!1C

g.x/

5. lim
x!3C

g.x/ 6. lim
x!3�

g.x/

In Exercises 7–36, evaluate the limit or explain why it does not

exist.

7. lim
x!4

.x
2
� 4x C 1/ 8. lim

x!2
3.1 � x/.2 � x/

9. lim
x!3

x C 3

x C 6
10. lim

t!�4

t2

4 � t

11. lim
x!1

x2
� 1

x C 1
12. lim

x!�1

x2
� 1

x C 1

13. lim
x!3

x2
� 6x C 9

x2
� 9

14. lim
x!�2

x2
C 2x

x2
� 4

15. lim
h!2

1

4 � h2
16. lim

h!0

3hC 4h2

h2
� h3

17. lim
x!9

p

x � 3

x � 9
18. lim

h!0

p

4C h � 2

h

19. lim
x!�

.x � �/2

�x
20. lim

x!�2
jx � 2j

21. lim
x!0

jx � 2j

x � 2
22. lim

x!2

jx � 2j

x � 2

23. lim
t!1

t
2
� 1

t2 � 2t C 1
24. lim

x!2

p

4 � 4x C x2

x � 2

25. lim
t!0

t
p

4C t �
p

4 � t
26. lim

x!1

x
2
� 1

p

x C 3 � 2

27. lim
t!0

t2 C 3t

.t C 2/2 � .t � 2/2
28. lim

s!0

.s C 1/2 � .s � 1/2

s

29. lim
y!1

y � 4
p

y C 3

y2
� 1

30. lim
x!�1

x3
C 1

x C 1
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E X A M P L E 9 Find: (a) lim
x!a

x2
C x C 4

x3
� 2x2

C 7
and (b) lim

x!2

p

2x C 1.

Solution

(a) The expression
x

2
C x C 4

x3
� 2x2

C 7
is formed by combining the basic functions x and

c (constant) using addition, subtraction, multiplication, and division. Theorem 2

assures us that the limit of such a combination is the same combination of the

limits a and c of the basic functions, provided the denominator does not have

limit zero. Thus,

lim
x!a

x
2
C x C 4

x3
� 2x2

C 7
D

a
2
C aC 4

a3
� 2a2

C 7
provided a3

� 2a2
C 7 ¤ 0.

(b) The same argument as in (a) shows that limx!2 .2x C 1/ D 2.2/C 1 D 5. Then

the Power Rule (rule 6 of Theorem 2) assures us that

lim
x!2

p

2x C 1 D
p

5:

The following result is an immediate corollary of Theorem 2. (See Section P.6 for a

discussion of polynomials and rational functions.)

T H E O R E M

3

Limits of Polynomials and Rational Functions

1. If P.x/ is a polynomial and a is any real number, then

lim
x!a

P.x/ D P.a/:

2. If P.x/ and Q.x/ are polynomials and Q.a/ ¤ 0, then

lim
x!a

P.x/

Q.x/
D

P.a/

Q.a/
:

The Squeeze Theorem
The following theorem will enable us to calculate some very important limits in sub-

sequent chapters. It is called the Squeeze Theorem because it refers to a function g

whose values are squeezed between the values of two other functions f and h that

have the same limit L at a point a. Being trapped between the values of two functions

that approach L, the values of g must also approach L. (See Figure 1.12.)

Figure 1.12 The graph of g is squeezed

between those of f (blue) and h (green)

y

x

y D h.x/

y D f .x/

y D g.x/

y D g.x/

L

a
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T H E O R E M

4

The Squeeze Theorem

Suppose that f .x/ � g.x/ � h.x/ holds for all x in some open interval containing a,

except possibly at x D a itself. Suppose also that

lim
x!a

f .x/ D lim
x!a

h.x/ D L:

Then lim
x!a

g.x/ D L also. Similar statements hold for left and right limits.

E X A M P L E 10
Given that 3�x2

� u.x/ � 3Cx2 for all x ¤ 0, find limx!0 u.x/.

Solution Since limx!0.3�x
2
/ D 3 and limx!0.3Cx

2/ D 3, the Squeeze Theorem

implies that limx!0 u.x/ D 3.

E X A M P L E 11
Show that if limx!a jf .x/j D 0, then limx!a f .x/ D 0.

Solution Since �jf .x/j � f .x/ � jf .x/j, and �jf .x/j and jf .x/j both have limit

0 as x approaches a, so does f .x/ by the Squeeze Theorem.

E X E R C I S E S 1.2

1. Find: (a) lim
x!�1

f .x/, (b) lim
x!0

f .x/, and (c) lim
x!1

f .x/, for

the function f whose graph is shown in Figure 1.13.

y

x

�1 1

1

y D f .x/

Figure 1.13

2. For the function y D g.x/ graphed in Figure 1.14, find each of

the following limits or explain why it does not exist.

(a) lim
x!1

g.x/, (b) lim
x!2

g.x/, (c) lim
x!3

g.x/

y

x

1 2 3

1

y D g.x/

Figure 1.14

In Exercises 3–6, find the indicated one-sided limit of the function

g whose graph is given in Figure 1.14.

3. lim
x!1�

g.x/ 4. lim
x!1C

g.x/

5. lim
x!3C

g.x/ 6. lim
x!3�

g.x/

In Exercises 7–36, evaluate the limit or explain why it does not

exist.

7. lim
x!4

.x
2
� 4x C 1/ 8. lim

x!2
3.1 � x/.2 � x/

9. lim
x!3

x C 3

x C 6
10. lim

t!�4

t2

4 � t

11. lim
x!1

x2
� 1

x C 1
12. lim

x!�1

x2
� 1

x C 1

13. lim
x!3

x2
� 6x C 9

x2
� 9

14. lim
x!�2

x2
C 2x

x2
� 4

15. lim
h!2

1

4 � h2
16. lim

h!0

3hC 4h2

h2
� h3

17. lim
x!9

p

x � 3

x � 9
18. lim

h!0

p

4C h � 2

h

19. lim
x!�

.x � �/2

�x
20. lim

x!�2
jx � 2j

21. lim
x!0

jx � 2j

x � 2
22. lim

x!2

jx � 2j

x � 2

23. lim
t!1

t
2
� 1

t2 � 2t C 1
24. lim

x!2

p

4 � 4x C x2

x � 2

25. lim
t!0

t
p

4C t �
p

4 � t
26. lim

x!1

x
2
� 1

p

x C 3 � 2

27. lim
t!0

t2 C 3t

.t C 2/2 � .t � 2/2
28. lim

s!0

.s C 1/2 � .s � 1/2

s

29. lim
y!1

y � 4
p

y C 3

y2
� 1

30. lim
x!�1

x3
C 1

x C 1
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31. lim
x!2

x4
� 16

x3
� 8

32. lim
x!8

x2=3
� 4

x1=3
� 2

33. lim
x!2

�

1

x � 2
�

4

x2
� 4

�

34. lim
x!2

�

1

x � 2
�

1

x2
� 4

�

35. lim
x!0

p

2C x2
�

p

2 � x2

x2
36. lim

x!0

j3x � 1j � j3x C 1j

x

The limit lim
h!0

f .x C h/ � f .x/

h
occurs frequently in the study of

calculus. (Can you guess why?) Evaluate this limit for the

functions f in Exercises 37–42.

37. f .x/ D x2 38. f .x/ D x3

39. f .x/ D
1

x
40. f .x/ D

1

x2

41. f .x/ D
p

x 42. f .x/ D 1=
p

x

Examine the graphs of sinx and cosx in Section P.7 to determine

the limits in Exercises 43–46.

43. lim
x!�=2

sinx 44. lim
x!�=4

cosx

45. lim
x!�=3

cos x 46. lim
x!2�=3

sinx

C 47. Make a table of values of f .x/ D .sinx/=x for a sequence of

values of x approaching 0, say ˙1:0,˙0:1, ˙0:01, ˙0:001,

˙0:0001, and ˙0:00001. Make sure your calculator is set in

radian mode rather than degree mode. Guess the value of

lim
x!0

f .x/.

C 48. Repeat Exercise 47 for f .x/ D
1 � cos x

x2
.

In Exercises 49–60, find the indicated one-sided limit or explain

why it does not exist.

49. lim
x!2�

p

2 � x 50. lim
x!2C

p

2 � x

51. lim
x!�2�

p

2 � x 52. lim
x!�2C

p

2 � x

53. lim
x!0

p

x3
� x 54. lim

x!0�

p

x3
� x

55. lim
x!0C

p

x3
� x 56. lim

x!0C

p

x2
� x4

57. lim
x!a�

jx � aj

x2
� a2

58. lim
x!aC

jx � aj

x2
� a2

59. lim
x!2�

x
2
� 4

jx C 2j
60. lim

x!2C

x
2
� 4

jx C 2j

Exercises 61–64 refer to the function

f .x/ D

8

<

:

x � 1 if x � �1

x2
C 1 if �1 < x � 0

.x C �/2 if x > 0.

Find the indicated limits.

61. lim
x!�1�

f .x/ 62. lim
x!�1C

f .x/

63. lim
x!0C

f .x/ 64. lim
x!0�

f .x/

65. Suppose limx!4 f .x/ D 2 and limx!4 g.x/ D �3. Find:

(a) lim
x!4

�

g.x/C 3

�

(b) lim
x!4

xf .x/

(c) lim
x!4

�

g.x/

�2

(d) lim
x!4

g.x/

f .x/ � 1
.

66. Suppose limx!a f .x/ D 4 and limx!a g.x/ D �2. Find:

(a) lim
x!a

�

f .x/C g.x/

�

(b) lim
x!a

f .x/ � g.x/

(c) lim
x!a

4g.x/ (d) lim
x!a

f .x/=g.x/.

67. If lim
x!2

f .x/ � 5

x � 2
D 3, find lim

x!2
f .x/.

68. If lim
x!0

f .x/

x2
D �2, find lim

x!0
f .x/ and lim

x!0

f .x/

x
.

Using Graphing Utilities to Find Limits

Graphing calculators or computer software can be used to evaluate

limits at least approximately. Simply “zoom” the plot window to

show smaller and smaller parts of the graph near the point where

the limit is to be found. Find the following limits by graphical

techniques. Where you think it justified, give an exact answer.

Otherwise, give the answer correct to 4 decimal places. Remember

to ensure that your calculator or software is set for radian mode

when using trigonometric functions.

G 69. lim
x!0

sinx

x
G 70. lim

x!0

sin.2�x/

sin.3�x/

G 71. lim
x!1�

sin
p

1 � x
p

1 � x2
G 72. lim

x!0C

x �
p

x
p

sinx

G 73. On the same graph, plot the three functions y D x sin.1=x/,

y D x, and y D �x for �0:2 � x � 0:2, �0:2 � y � 0:2.

Describe the behaviour of f .x/ D x sin.1=x/ near x D 0.

Does limx!0 f .x/ exist, and if so, what is its value? Could

you have predicted this before drawing the graph? Why?

Using the Squeeze Theorem

74. If
p

5 � 2x2
� f .x/ �

p

5 � x2 for �1 � x � 1, find

lim
x!0

f .x/.

75. If 2 � x2
� g.x/ � 2 cos x for all x, find lim

x!0
g.x/.

76. (a) Sketch the curves y D x2 and y D x4 on the same graph.

Where do they intersect?

(b) The function f .x/ satisfies:

�

x2
� f .x/ � x4 if x < �1 or x > 1

x4
� f .x/ � x2 if �1 � x � 1

Find (i) lim
x!�1

f .x/, (ii) lim
x!0

f .x/, (iii) lim
x!1

f .x/.

77. On what intervals is x1=3 < x3? On what intervals is

x1=3 > x3? If the graph of y D h.x/ always lies between the

graphs of y D x1=3 and y D x3, for what real numbers a can

you determine the value of limx!a h.x/? Find the limit for

each of these values of a.

78.I What is the domain of x sin
1

x
? Evaluate lim

x!0
x sin

1

x
.

79.I Suppose jf .x/j � g.x/ for all x. What can you conclude

about limx!a f .x/ if limx!a g.x/ D 0? What if

limx!a g.x/ D 3?
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1.3 Limits at Infinity and Infinite Limits

In this section we will extend the concept of limit to allow for two situations not covered

by the definitions of limit and one-sided limit in the previous section:

(i) limits at infinity, where x becomes arbitrarily large, positive or negative;

(ii) infinite limits, which are not really limits at all but provide useful symbolism for

describing the behaviour of functions whose values become arbitrarily large, pos-

itive or negative.

Figure 1.15 The graph of x=
p

x2
C 1

y

x

1

�1

Limits at Infinity
Consider the functionTable 5.

x f .x/ D x=
p

x2
C 1

�1;000 �0:9999995

�100 �0:9999500

�10 �0:9950372

�1 �0:7071068

0 0:0000000

1 0:7071068

10 0:9950372

100 0:9999500

1;000 0:9999995

f .x/ D
x

p

x2
C 1

whose graph is shown in Figure 1.15 and for which some values (rounded to 7 decimal

places) are given in Table 5. The values of f .x/ seem to approach 1 as x takes on

larger and larger positive values, and �1 as x takes on negative values that get larger

and larger in absolute value. (See Example 2 below for confirmation.) We express this

behaviour by writing

lim
x!1

f .x/ D 1 “f .x/ approaches 1 as x approaches infinity.”

lim
x!�1

f .x/ D �1 “f .x/ approaches �1 as x approaches negative infinity.”

The graph of f conveys this limiting behaviour by approaching the horizontal lines

y D 1 as x moves far to the right and y D �1 as x moves far to the left. These lines are

called horizontal asymptotes of the graph. In general, if a curve approaches a straight

line as it recedes very far away from the origin, that line is called an asymptote of the

curve.

D E F I N I T I O N

3

Limits at infinity and negative infinity (informal definition)

If the function f is defined on an interval .a;1/ and if we can ensure that

f .x/ is as close as we want to the number L by taking x large enough, then

we say that f .x/ approaches the limit L as x approaches infinity, and we

write

lim
x!1

f .x/ D L:

If f is defined on an interval .�1; b/ and if we can ensure that f .x/ is as

close as we want to the number M by taking x negative and large enough

in absolute value, then we say that f .x/ approaches the limit M as x ap-

proaches negative infinity, and we write

lim
x!�1

f .x/ DM:

Recall that the symbol1, called infinity, does not represent a real number. We cannot

use 1 in arithmetic in the usual way, but we can use the phrase “approaches 1” to

mean “becomes arbitrarily large positive” and the phrase “approaches �1” to mean

“becomes arbitrarily large negative.”
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31. lim
x!2

x4
� 16

x3
� 8

32. lim
x!8

x2=3
� 4

x1=3
� 2

33. lim
x!2

�

1

x � 2
�

4

x2
� 4

�

34. lim
x!2

�

1

x � 2
�

1

x2
� 4

�

35. lim
x!0

p

2C x2
�

p

2 � x2

x2
36. lim

x!0

j3x � 1j � j3x C 1j

x

The limit lim
h!0

f .x C h/ � f .x/

h
occurs frequently in the study of

calculus. (Can you guess why?) Evaluate this limit for the

functions f in Exercises 37–42.

37. f .x/ D x2 38. f .x/ D x3

39. f .x/ D
1

x
40. f .x/ D

1

x2

41. f .x/ D
p

x 42. f .x/ D 1=
p

x

Examine the graphs of sinx and cosx in Section P.7 to determine

the limits in Exercises 43–46.

43. lim
x!�=2

sinx 44. lim
x!�=4

cosx

45. lim
x!�=3

cos x 46. lim
x!2�=3

sinx

C 47. Make a table of values of f .x/ D .sinx/=x for a sequence of

values of x approaching 0, say ˙1:0,˙0:1, ˙0:01, ˙0:001,

˙0:0001, and ˙0:00001. Make sure your calculator is set in

radian mode rather than degree mode. Guess the value of

lim
x!0

f .x/.

C 48. Repeat Exercise 47 for f .x/ D
1 � cos x

x2
.

In Exercises 49–60, find the indicated one-sided limit or explain

why it does not exist.

49. lim
x!2�

p

2 � x 50. lim
x!2C

p

2 � x

51. lim
x!�2�

p

2 � x 52. lim
x!�2C

p

2 � x

53. lim
x!0

p

x3
� x 54. lim

x!0�

p

x3
� x

55. lim
x!0C

p

x3
� x 56. lim

x!0C

p

x2
� x4

57. lim
x!a�

jx � aj

x2
� a2

58. lim
x!aC

jx � aj

x2
� a2

59. lim
x!2�

x
2
� 4

jx C 2j
60. lim

x!2C

x
2
� 4

jx C 2j

Exercises 61–64 refer to the function

f .x/ D

8

<

:

x � 1 if x � �1

x2
C 1 if �1 < x � 0

.x C �/2 if x > 0.

Find the indicated limits.

61. lim
x!�1�

f .x/ 62. lim
x!�1C

f .x/

63. lim
x!0C

f .x/ 64. lim
x!0�

f .x/

65. Suppose limx!4 f .x/ D 2 and limx!4 g.x/ D �3. Find:

(a) lim
x!4

�

g.x/C 3

�

(b) lim
x!4

xf .x/

(c) lim
x!4

�

g.x/

�2

(d) lim
x!4

g.x/

f .x/ � 1
.

66. Suppose limx!a f .x/ D 4 and limx!a g.x/ D �2. Find:

(a) lim
x!a

�

f .x/C g.x/

�

(b) lim
x!a

f .x/ � g.x/

(c) lim
x!a

4g.x/ (d) lim
x!a

f .x/=g.x/.

67. If lim
x!2

f .x/ � 5

x � 2
D 3, find lim

x!2
f .x/.

68. If lim
x!0

f .x/

x2
D �2, find lim

x!0
f .x/ and lim

x!0

f .x/

x
.

Using Graphing Utilities to Find Limits

Graphing calculators or computer software can be used to evaluate

limits at least approximately. Simply “zoom” the plot window to

show smaller and smaller parts of the graph near the point where

the limit is to be found. Find the following limits by graphical

techniques. Where you think it justified, give an exact answer.

Otherwise, give the answer correct to 4 decimal places. Remember

to ensure that your calculator or software is set for radian mode

when using trigonometric functions.

G 69. lim
x!0

sinx

x
G 70. lim

x!0

sin.2�x/

sin.3�x/

G 71. lim
x!1�

sin
p

1 � x
p

1 � x2
G 72. lim

x!0C

x �
p

x
p

sinx

G 73. On the same graph, plot the three functions y D x sin.1=x/,

y D x, and y D �x for �0:2 � x � 0:2, �0:2 � y � 0:2.

Describe the behaviour of f .x/ D x sin.1=x/ near x D 0.

Does limx!0 f .x/ exist, and if so, what is its value? Could

you have predicted this before drawing the graph? Why?

Using the Squeeze Theorem

74. If
p

5 � 2x2
� f .x/ �

p

5 � x2 for �1 � x � 1, find

lim
x!0

f .x/.

75. If 2 � x2
� g.x/ � 2 cos x for all x, find lim

x!0
g.x/.

76. (a) Sketch the curves y D x2 and y D x4 on the same graph.

Where do they intersect?

(b) The function f .x/ satisfies:

�

x2
� f .x/ � x4 if x < �1 or x > 1

x4
� f .x/ � x2 if �1 � x � 1

Find (i) lim
x!�1

f .x/, (ii) lim
x!0

f .x/, (iii) lim
x!1

f .x/.

77. On what intervals is x1=3 < x3? On what intervals is

x1=3 > x3? If the graph of y D h.x/ always lies between the

graphs of y D x1=3 and y D x3, for what real numbers a can

you determine the value of limx!a h.x/? Find the limit for

each of these values of a.

78.I What is the domain of x sin
1

x
? Evaluate lim

x!0
x sin

1

x
.

79.I Suppose jf .x/j � g.x/ for all x. What can you conclude

about limx!a f .x/ if limx!a g.x/ D 0? What if

limx!a g.x/ D 3?
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1.3 Limits at Infinity and Infinite Limits

In this section we will extend the concept of limit to allow for two situations not covered

by the definitions of limit and one-sided limit in the previous section:

(i) limits at infinity, where x becomes arbitrarily large, positive or negative;

(ii) infinite limits, which are not really limits at all but provide useful symbolism for

describing the behaviour of functions whose values become arbitrarily large, pos-

itive or negative.

Figure 1.15 The graph of x=
p

x2
C 1

y

x

1

�1

Limits at Infinity
Consider the functionTable 5.

x f .x/ D x=
p

x2
C 1

�1;000 �0:9999995

�100 �0:9999500

�10 �0:9950372

�1 �0:7071068

0 0:0000000

1 0:7071068

10 0:9950372

100 0:9999500

1;000 0:9999995

f .x/ D
x

p

x2
C 1

whose graph is shown in Figure 1.15 and for which some values (rounded to 7 decimal

places) are given in Table 5. The values of f .x/ seem to approach 1 as x takes on

larger and larger positive values, and �1 as x takes on negative values that get larger

and larger in absolute value. (See Example 2 below for confirmation.) We express this

behaviour by writing

lim
x!1

f .x/ D 1 “f .x/ approaches 1 as x approaches infinity.”

lim
x!�1

f .x/ D �1 “f .x/ approaches �1 as x approaches negative infinity.”

The graph of f conveys this limiting behaviour by approaching the horizontal lines

y D 1 as x moves far to the right and y D �1 as x moves far to the left. These lines are

called horizontal asymptotes of the graph. In general, if a curve approaches a straight

line as it recedes very far away from the origin, that line is called an asymptote of the

curve.

D E F I N I T I O N

3

Limits at infinity and negative infinity (informal definition)

If the function f is defined on an interval .a;1/ and if we can ensure that

f .x/ is as close as we want to the number L by taking x large enough, then

we say that f .x/ approaches the limit L as x approaches infinity, and we

write

lim
x!1

f .x/ D L:

If f is defined on an interval .�1; b/ and if we can ensure that f .x/ is as

close as we want to the number M by taking x negative and large enough

in absolute value, then we say that f .x/ approaches the limit M as x ap-

proaches negative infinity, and we write

lim
x!�1

f .x/ DM:

Recall that the symbol1, called infinity, does not represent a real number. We cannot

use 1 in arithmetic in the usual way, but we can use the phrase “approaches 1” to

mean “becomes arbitrarily large positive” and the phrase “approaches �1” to mean

“becomes arbitrarily large negative.”
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E X A M P L E 1
In Figure 1.16, we can see that limx!1 1=x D limx!�1 1=x D

0. The x-axis is a horizontal asymptote of the graph y D 1=x.

The theorems of Section 1.2 have suitable counterparts for limits at infinity or

negative infinity. In particular, it follows from the example above and from the Product

Rule for limits that limx!˙1 1=xn
D 0 for any positive integer n. We will use this

fact in the following examples. Example 2 shows how to obtain the limits at ˙1 for

the function x=
p

x2
C 1 by algebraic means, without resorting to making a table of

values or drawing a graph, as we did above.

y

x

.1; 1/

y D
1

x

.�1;�1/

Figure 1.16 lim
x!˙1

1

x
D 0

E X A M P L E 2 Evaluate lim
x!1

f .x/ and lim
x!�1

f .x/ for f .x/ D
x

p

x2
C 1

.

Solution Rewrite the expression for f .x/ as follows:

f .x/ D
x

s

x2

�

1C
1

x2

�

D

x

p

x2

r

1C
1

x2

Remember
p

x2
D jxj.

D

x

jxj

r

1C
1

x2

D

sgn x
r

1C
1

x2

; where sgn x D
x

jxj
D

n

1 if x > 0

�1 if x < 0.

The factor
p

1C .1=x2/ approaches 1 as x approaches1 or �1, so f .x/ must have

the same limits as x !˙1 as does sgn .x/. Therefore (see Figure 1.15),

lim
x!1

f .x/ D 1 and lim
x!�1

f .x/ D �1:

Limits at Infinity for Rational Functions
The only polynomials that have limits at ˙1 are constant ones, P.x/ D c. The

situation is more interesting for rational functions. Recall that a rational function is

a quotient of two polynomials. The following examples show how to render such a

function in a form where its limits at infinity and negative infinity (if they exist) are

apparent. The way to do this is to divide the numerator and denominator by the highest

power of x appearing in the denominator. The limits of a rational function at infinity

and negative infinity either both fail to exist or both exist and are equal.

E X A M P L E 3
(Numerator and denominator of the same degree) Evaluate

limx!˙1
2x2
� x C 3

3x2
C 5

.

Solution Divide the numerator and the denominator by x2, the highest power of x

appearing in the denominator:

lim
x!˙1

2x2
� x C 3

3x2
C 5

D lim
x!˙1

2 � .1=x/C .3=x2/

3C .5=x2/
D

2 � 0C 0

3C 0
D

2

3
:

E X A M P L E 4
(Degree of numerator less than degree of denominator) Eval-

uate limx!˙1
5x C 2

2x3
� 1

.
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Solution Divide the numerator and the denominator by the largest power of x in the

denominator, namely, x3:

lim
x!˙1

5x C 2

2x3
� 1
D lim

x!˙1

.5=x2/C .2=x3/

2 � .1=x3/
D

0C 0

2 � 0
D 0:

The limiting behaviour of rational functions at infinity and negative infinity is summa-

Summary of limits at˙1

for rational functions

Let Pm.x/ D amx
m
C � � � C a0

and Qn.x/ D bnx
n
C � � � C b0

be polynomials of degree m and

n, respectively, so that am ¤ 0

and bn ¤ 0. Then

lim
x!˙1

Pm.x/

Qn.x/

(a) equals zero if m < n,

(b) equals
am

bn

if m D n,

(c) does not exist if m > n.

rized at the left.

The technique used in the previous examples can also be applied to more general

kinds of functions. The function in the following example is not rational, and the limit

seems to produce a meaningless1�1 until we resolve matters by rationalizing the

numerator.

E X A M P L E 5 Find limx!1

�

p

x2
C x � x

�

:

Solution We are trying to find the limit of the difference of two functions, each of

which becomes arbitrarily large as x increases to infinity. We rationalize the expres-

sion by multiplying the numerator and the denominator (which is 1) by the conjugate

expression
p

x2
C x C x:

lim
x!1

�
p

x2
C x � x

�

D lim
x!1

�

p

x2
C x � x

��

p

x2
C x C x

�

p

x2
C x C x

D lim
x!1

x2
C x � x2

s

x2

�

1C
1

x

�

C x

D lim
x!1

x

x

r

1C
1

x
C x

D lim
x!1

1
r

1C
1

x
C 1

D

1

2
:

(Here,
p

x2
D x because x > 0 as x !1.)

Remark The limit limx!�1.
p

x2
C x � x/ is not nearly so subtle. Since �x > 0

as x ! �1, we have
p

x2
C x � x >

p

x2
C x, which grows arbitrarily large as

x ! �1. The limit does not exist.

Infinite Limits
A function whose values grow arbitrarily large can sometimes be said to have an infi-

nite limit. Since infinity is not a number, infinite limits are not really limits at all, but

they provide a way of describing the behaviour of functions that grow arbitrarily large

positive or negative. A few examples will make the terminology clear.

E X A M P L E 6
(A two-sided infinite limit) Describe the behaviour of the func-

tion f .x/ D 1=x2 near x D 0.

Solution As x approaches 0 from either side, the values of f .x/ are positive and

grow larger and larger (see Figure 1.17), so the limit of f .x/ as x approaches 0 does

not exist. It is nevertheless convenient to describe the behaviour of f near 0 by saying

that f .x/ approaches1 as x approaches zero. We write

lim
x!0

f .x/ D lim
x!0

1

x2
D 1:

Note that in writing this we are not saying that limx!0 1=x
2 exists. Rather, we are

saying that that limit does not exist because 1=x2 becomes arbitrarily large near x D

0. Observe how the graph of f approaches the y-axis as x approaches 0. The y-axis

is a vertical asymptote of the graph.

y

x

y D
1

x2

Figure 1.17 The graph of y D 1=x2

(not to scale)
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E X A M P L E 1
In Figure 1.16, we can see that limx!1 1=x D limx!�1 1=x D

0. The x-axis is a horizontal asymptote of the graph y D 1=x.

The theorems of Section 1.2 have suitable counterparts for limits at infinity or

negative infinity. In particular, it follows from the example above and from the Product

Rule for limits that limx!˙1 1=xn
D 0 for any positive integer n. We will use this

fact in the following examples. Example 2 shows how to obtain the limits at ˙1 for

the function x=
p

x2
C 1 by algebraic means, without resorting to making a table of

values or drawing a graph, as we did above.

y

x

.1; 1/

y D
1

x

.�1;�1/

Figure 1.16 lim
x!˙1

1

x
D 0

E X A M P L E 2 Evaluate lim
x!1

f .x/ and lim
x!�1

f .x/ for f .x/ D
x

p

x2
C 1

.

Solution Rewrite the expression for f .x/ as follows:

f .x/ D
x

s

x2

�

1C
1

x2

�

D

x

p

x2

r

1C
1

x2

Remember
p

x2
D jxj.

D

x

jxj

r

1C
1

x2

D

sgn x
r

1C
1

x2

; where sgn x D
x

jxj
D

n

1 if x > 0

�1 if x < 0.

The factor
p

1C .1=x2/ approaches 1 as x approaches1 or �1, so f .x/ must have

the same limits as x !˙1 as does sgn .x/. Therefore (see Figure 1.15),

lim
x!1

f .x/ D 1 and lim
x!�1

f .x/ D �1:

Limits at Infinity for Rational Functions
The only polynomials that have limits at ˙1 are constant ones, P.x/ D c. The

situation is more interesting for rational functions. Recall that a rational function is

a quotient of two polynomials. The following examples show how to render such a

function in a form where its limits at infinity and negative infinity (if they exist) are

apparent. The way to do this is to divide the numerator and denominator by the highest

power of x appearing in the denominator. The limits of a rational function at infinity

and negative infinity either both fail to exist or both exist and are equal.

E X A M P L E 3
(Numerator and denominator of the same degree) Evaluate

limx!˙1
2x2
� x C 3

3x2
C 5

.

Solution Divide the numerator and the denominator by x2, the highest power of x

appearing in the denominator:

lim
x!˙1

2x2
� x C 3

3x2
C 5

D lim
x!˙1

2 � .1=x/C .3=x2/

3C .5=x2/
D

2 � 0C 0

3C 0
D

2

3
:

E X A M P L E 4
(Degree of numerator less than degree of denominator) Eval-

uate limx!˙1
5x C 2

2x3
� 1

.
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Solution Divide the numerator and the denominator by the largest power of x in the

denominator, namely, x3:

lim
x!˙1

5x C 2

2x3
� 1
D lim

x!˙1

.5=x2/C .2=x3/

2 � .1=x3/
D

0C 0

2 � 0
D 0:

The limiting behaviour of rational functions at infinity and negative infinity is summa-

Summary of limits at˙1

for rational functions

Let Pm.x/ D amx
m
C � � � C a0

and Qn.x/ D bnx
n
C � � � C b0

be polynomials of degree m and

n, respectively, so that am ¤ 0

and bn ¤ 0. Then

lim
x!˙1

Pm.x/

Qn.x/

(a) equals zero if m < n,

(b) equals
am

bn

if m D n,

(c) does not exist if m > n.

rized at the left.

The technique used in the previous examples can also be applied to more general

kinds of functions. The function in the following example is not rational, and the limit

seems to produce a meaningless1�1 until we resolve matters by rationalizing the

numerator.

E X A M P L E 5 Find limx!1

�

p

x2
C x � x

�

:

Solution We are trying to find the limit of the difference of two functions, each of

which becomes arbitrarily large as x increases to infinity. We rationalize the expres-

sion by multiplying the numerator and the denominator (which is 1) by the conjugate

expression
p

x2
C x C x:

lim
x!1

�
p

x2
C x � x

�

D lim
x!1

�

p

x2
C x � x

��

p

x2
C x C x

�

p

x2
C x C x

D lim
x!1

x2
C x � x2

s

x2

�

1C
1

x

�

C x

D lim
x!1

x

x

r

1C
1

x
C x

D lim
x!1

1
r

1C
1

x
C 1

D

1

2
:

(Here,
p

x2
D x because x > 0 as x !1.)

Remark The limit limx!�1.
p

x2
C x � x/ is not nearly so subtle. Since �x > 0

as x ! �1, we have
p

x2
C x � x >

p

x2
C x, which grows arbitrarily large as

x ! �1. The limit does not exist.

Infinite Limits
A function whose values grow arbitrarily large can sometimes be said to have an infi-

nite limit. Since infinity is not a number, infinite limits are not really limits at all, but

they provide a way of describing the behaviour of functions that grow arbitrarily large

positive or negative. A few examples will make the terminology clear.

E X A M P L E 6
(A two-sided infinite limit) Describe the behaviour of the func-

tion f .x/ D 1=x2 near x D 0.

Solution As x approaches 0 from either side, the values of f .x/ are positive and

grow larger and larger (see Figure 1.17), so the limit of f .x/ as x approaches 0 does

not exist. It is nevertheless convenient to describe the behaviour of f near 0 by saying

that f .x/ approaches1 as x approaches zero. We write

lim
x!0

f .x/ D lim
x!0

1

x2
D 1:

Note that in writing this we are not saying that limx!0 1=x
2 exists. Rather, we are

saying that that limit does not exist because 1=x2 becomes arbitrarily large near x D

0. Observe how the graph of f approaches the y-axis as x approaches 0. The y-axis

is a vertical asymptote of the graph.

y

x

y D
1

x2

Figure 1.17 The graph of y D 1=x2

(not to scale)
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E X A M P L E 7
(One-sided infinite limits) Describe the behaviour of the function

f .x/ D 1=x near x D 0. (See Figure 1.18.)

Solution As x approaches 0 from the right, the values of f .x/ become larger and

larger positive numbers, and we say that f has right-hand limit infinity at x D 0:

lim
x!0C

f .x/ D1:

Similarly, the values of f .x/ become larger and larger negative numbers as x ap-

proaches 0 from the left, so f has left-hand limit �1 at x D 0:

lim
x!0�

f .x/ D �1:

These statements do not say that the one-sided limits exist; they do not exist because

1 and �1 are not numbers. Since the one-sided limits are not equal even as infinite

symbols, all we can say about the two-sided limx!0 f .x/ is that it does not exist.

y

x

.1; 1/

y D
1

x

.�1;�1/

Figure 1.18 limx!0� 1=x D �1;

limx!0C 1=x D1

E X A M P L E 8
(Polynomial behaviour at infinity)

(a) limx!1 .3x3
� x2

C 2/ D1 (b) limx!�1 .3x3
� x2

C 2/ D �1

(c) limx!1 .x4
� 5x3

� x/ D1 (d) limx!�1 .x4
� 5x3

� x/ D1

The highest-degree term of a polynomial dominates the other terms as jxj grows large,

so the limits of this term at1 and �1 determine the limits of the whole polynomial.

For the polynomial in parts (a) and (b) we have

3x
3
� x

2
C 2 D 3x

3

�

1 �
1

3x
C

2

3x3

�

:

The factor in the large parentheses approaches 1 as x approaches˙1, so the behaviour

of the polynomial is just that of its highest-degree term 3x3.

We can now say a bit more about the limits at infinity and negative infinity of a rational

function whose numerator has higher degree than the denominator. Earlier in this

section we said that such a limit does not exist. This is true, but we can assign1 or

�1 to such limits, as the following example shows.

E X A M P L E 9
(Rational functions with numerator of higher degree) Evaluate

lim
x!1

x3
C 1

x2
C 1

.

Solution Divide the numerator and the denominator by x2, the largest power of x in

the denominator:

lim
x!1

x
3
C 1

x2
C 1
D lim

x!1

x C
1

x2

1C
1

x2

D

limx!1

�

x C
1

x2

�

1
D 1:

A polynomial Q.x/ of degree n > 0 can have at most n zeros; that is, there are at

most n different real numbers r for which Q.r/ D 0. If Q.x/ is the denominator of

a rational function R.x/ D P.x/=Q.x/, that function will be defined for all x except

those finitely many zeros of Q. At each of those zeros, R.x/ may have limits, infinite

limits, or one-sided infinite limits. Here are some examples.
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E X A M P L E 10

(a) lim
x!2

.x � 2/2

x2
� 4

D lim
x!2

.x � 2/2

.x � 2/.x C 2/
D lim

x!2

x � 2

x C 2
D 0:

(b) lim
x!2

x � 2

x2
� 4
D lim

x!2

x � 2

.x � 2/.x C 2/
D lim

x!2

1

x C 2
D

1

4
:

(c) lim
x!2C

x � 3

x2
� 4
D lim

x!2C

x � 3

.x � 2/.x C 2/
D �1. (The values are negative for

x > 2, x near 2.)

(d) lim
x!2�

x � 3

x2
� 4
D lim

x!2�

x � 3

.x � 2/.x C 2/
D1. (The values are positive for

x < 2, x near 2.)

(e) lim
x!2

x � 3

x2
� 4
D lim

x!2

x � 3

.x � 2/.x C 2/
does not exist.

(f) lim
x!2

2� x

.x � 2/3
D lim

x!2

�.x � 2/

.x � 2/3
D lim

x!2

�1

.x � 2/2
D �1:

In parts (a) and (b) the effect of the zero in the denominator at x D 2 is cancelled

because the numerator is zero there also. Thus a finite limit exists. This is not true in

part (f) because the numerator only vanishes once at x D 2, while the denominator

vanishes three times there.

Using Maple to Calculate Limits
Maple’s limit procedure can be easily used to calculate limits, one-sided limits,

limits at infinity, and infinite limits. Here is the syntax for calculating

lim
x!2

x
2
� 4

x2
� 5x C 6

; lim
x!0

x sinx

1 � cos x
; lim

x!�1

x
p

x2
C 1

; lim
x!1

x
p

x2
C 1

;

lim
x!0

1

x
; lim

x!0�

1

x
; lim

x!a�

x
2
� a

2

jx � aj
; and lim

x!aC

x
2
� a

2

jx � aj
:

> limit((x^2-4)/(x^2-5*x+6),x=2);

�4

> limit(x*sin(x)/(1-cos(x)),x=0);

2

> limit(x/sqrt(x^2+1),x=-infinity);

�1

> limit(x/sqrt(x^2+1),x=infinity);

1

> limit(1/x,x=0); limit(1/x,x=0,left);

undefined

�1

> limit((x^2-a^2)/(abs(x-a)),x=a,left);

�2 a
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E X A M P L E 7
(One-sided infinite limits) Describe the behaviour of the function

f .x/ D 1=x near x D 0. (See Figure 1.18.)

Solution As x approaches 0 from the right, the values of f .x/ become larger and

larger positive numbers, and we say that f has right-hand limit infinity at x D 0:

lim
x!0C

f .x/ D1:

Similarly, the values of f .x/ become larger and larger negative numbers as x ap-

proaches 0 from the left, so f has left-hand limit �1 at x D 0:

lim
x!0�

f .x/ D �1:

These statements do not say that the one-sided limits exist; they do not exist because

1 and �1 are not numbers. Since the one-sided limits are not equal even as infinite

symbols, all we can say about the two-sided limx!0 f .x/ is that it does not exist.

y

x

.1; 1/

y D
1

x

.�1;�1/

Figure 1.18 limx!0� 1=x D �1;

limx!0C 1=x D1

E X A M P L E 8
(Polynomial behaviour at infinity)

(a) limx!1 .3x3
� x2

C 2/ D1 (b) limx!�1 .3x3
� x2

C 2/ D �1

(c) limx!1 .x4
� 5x3

� x/ D1 (d) limx!�1 .x4
� 5x3

� x/ D1

The highest-degree term of a polynomial dominates the other terms as jxj grows large,

so the limits of this term at1 and �1 determine the limits of the whole polynomial.

For the polynomial in parts (a) and (b) we have

3x
3
� x

2
C 2 D 3x

3

�

1 �
1

3x
C

2

3x3

�

:

The factor in the large parentheses approaches 1 as x approaches˙1, so the behaviour

of the polynomial is just that of its highest-degree term 3x3.

We can now say a bit more about the limits at infinity and negative infinity of a rational

function whose numerator has higher degree than the denominator. Earlier in this

section we said that such a limit does not exist. This is true, but we can assign1 or

�1 to such limits, as the following example shows.

E X A M P L E 9
(Rational functions with numerator of higher degree) Evaluate

lim
x!1

x3
C 1

x2
C 1

.

Solution Divide the numerator and the denominator by x2, the largest power of x in

the denominator:

lim
x!1

x
3
C 1

x2
C 1
D lim

x!1

x C
1

x2

1C
1

x2

D

limx!1

�

x C
1

x2

�

1
D 1:

A polynomial Q.x/ of degree n > 0 can have at most n zeros; that is, there are at

most n different real numbers r for which Q.r/ D 0. If Q.x/ is the denominator of

a rational function R.x/ D P.x/=Q.x/, that function will be defined for all x except

those finitely many zeros of Q. At each of those zeros, R.x/ may have limits, infinite

limits, or one-sided infinite limits. Here are some examples.
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E X A M P L E 10

(a) lim
x!2

.x � 2/2

x2
� 4

D lim
x!2

.x � 2/2

.x � 2/.x C 2/
D lim

x!2

x � 2

x C 2
D 0:

(b) lim
x!2

x � 2

x2
� 4
D lim

x!2

x � 2

.x � 2/.x C 2/
D lim

x!2

1

x C 2
D

1

4
:

(c) lim
x!2C

x � 3

x2
� 4
D lim

x!2C

x � 3

.x � 2/.x C 2/
D �1. (The values are negative for

x > 2, x near 2.)

(d) lim
x!2�

x � 3

x2
� 4
D lim

x!2�

x � 3

.x � 2/.x C 2/
D1. (The values are positive for

x < 2, x near 2.)

(e) lim
x!2

x � 3

x2
� 4
D lim

x!2

x � 3

.x � 2/.x C 2/
does not exist.

(f) lim
x!2

2� x

.x � 2/3
D lim

x!2

�.x � 2/

.x � 2/3
D lim

x!2

�1

.x � 2/2
D �1:

In parts (a) and (b) the effect of the zero in the denominator at x D 2 is cancelled

because the numerator is zero there also. Thus a finite limit exists. This is not true in

part (f) because the numerator only vanishes once at x D 2, while the denominator

vanishes three times there.

Using Maple to Calculate Limits
Maple’s limit procedure can be easily used to calculate limits, one-sided limits,

limits at infinity, and infinite limits. Here is the syntax for calculating

lim
x!2

x
2
� 4

x2
� 5x C 6

; lim
x!0

x sinx

1 � cos x
; lim

x!�1

x
p

x2
C 1

; lim
x!1

x
p

x2
C 1

;

lim
x!0

1

x
; lim

x!0�

1

x
; lim

x!a�

x
2
� a

2

jx � aj
; and lim

x!aC

x
2
� a

2

jx � aj
:

> limit((x^2-4)/(x^2-5*x+6),x=2);

�4

> limit(x*sin(x)/(1-cos(x)),x=0);

2

> limit(x/sqrt(x^2+1),x=-infinity);

�1

> limit(x/sqrt(x^2+1),x=infinity);

1

> limit(1/x,x=0); limit(1/x,x=0,left);

undefined

�1

> limit((x^2-a^2)/(abs(x-a)),x=a,left);

�2 a
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> limit((x^2-a^2)/(abs(x-a)),x=a,right);

2 a

Finally, we use Maple to confirm the limit discussed in Example 2 in Section 1.2.

> limit((1+x^2)^(1/x^2), x=0); evalf(%);

e

2:718281828

We will learn a great deal about this very important number in Chapter 3.

E X E R C I S E S 1.3

Find the limits in Exercises 1–10.

1. lim
x!1

x

2x � 3
2. lim

x!1

x

x2
� 4

3. lim
x!1

3x3
� 5x2

C 7

8C 2x � 5x3
4. lim

x!�1

x2
� 2

x � x2

5. lim
x!�1

x2
C 3

x3
C 2

6. lim
x!1

x2
C sinx

x2
C cos x

7. lim
x!1

3x C 2
p

x

1 � x
8. lim

x!1

2x � 1
p

3x2
C x C 1

9. lim
x!�1

2x � 1
p

3x2
C x C 1

10. lim
x!�1

2x � 5

j3x C 2j

In Exercises 11–32 evaluate the indicated limit. If it does not exist,

is the limit1, �1, or neither?

11. lim
x!3

1

3 � x
12. lim

x!3

1

.3 � x/2

13. lim
x!3�

1

3 � x
14. lim

x!3C

1

3� x

15. lim
x!�5=2

2x C 5

5x C 2
16. lim

x!�2=5

2x C 5

5x C 2

17. lim
x!�.2=5/�

2x C 5

5x C 2
18. lim

x!�.2=5/C

2x C 5

5x C 2

19. lim
x!2C

x

.2 � x/3
20. lim

x!1�

x
p

1 � x2

21. lim
x!1C

1

jx � 1j
22. lim

x!1�

1

jx � 1j

23. lim
x!2

x � 3

x2
� 4x C 4

24. lim
x!1C

p

x2
� x

x � x2

25. lim
x!1

x C x3
C x5

1C x2
C x3

26. lim
x!1

x3
C 3

x2
C 2

27.I lim
x!1

x
p

x C 1
�

1 �
p

2x C 3
�

7 � 6x C 4x2

28. lim
x!1

�

x2

x C 1
�

x2

x � 1

�

29.I lim
x!�1

�
p

x2
C 2x �

p

x2
� 2x

�

30.I lim
x!1

.

p

x2
C 2x �

p

x2
� 2x/

31. lim
x!1

1
p

x2
� 2x � x

32. lim
x!�1

1
p

x2
C 2x � x

33. What are the horizontal asymptotes of y D
1

p

x2
� 2x � x

?

What are its vertical asymptotes?

34. What are the horizontal and vertical asymptotes of

y D
2x � 5

j3x C 2j
?

y

�1

1

2

3

x1 2 3 4 5 6

y D f .x/

Figure 1.19

The function f whose graph is shown in Figure 1.19 has domain

Œ0;1/. Find the limits of f indicated in Exercises 35–45.

35. lim
x!0C

f .x/ 36. lim
x!1

f .x/

37. lim
x!2C

f .x/ 38. lim
x!2�

f .x/

39. lim
x!3�

f .x/ 40. lim
x!3C

f .x/

41. lim
x!4C

f .x/ 42. lim
x!4�

f .x/

43. lim
x!5�

f .x/ 44. lim
x!5C

f .x/

45. lim
x!1

f .x/

46. What asymptotes does the graph in Figure 1.19 have?

Exercises 47–52 refer to the greatest integer function bxc

graphed in Figure 1.20. Find the indicated limit or explain why it

does not exist.
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y

x

y D bxc

1

1

Figure 1.20

47. lim
x!3C

bxc 48. lim
x!3�

bxc

49. lim
x!3
bxc 50. lim

x!2:5
bxc

51. lim
x!0C

b2 � xc 52. lim
x!�3�

bxc

53. Parking in a certain parking lot costs $1.50 for each hour or

part of an hour. Sketch the graph of the function C.t/

representing the cost of parking for t hours. At what values of

t does C.t/ have a limit? Evaluate limt!t0� C.t/ and

limt!t0C C.t/ for an arbitrary number t0 > 0.

54. If limx!0C f .x/ D L, find limx!0� f .x/ if (a) f is even,

(b) f is odd.

55. If limx!0C f .x/ D A and limx!0� f .x/ D B , find

(a) lim
x!0C

f .x
3
� x/ (b) lim

x!0�
f .x

3
� x/

(c) lim
x!0�

f .x
2
� x

4
/ (d) lim

x!0C
f .x

2
� x

4
/:

1.4 Continuity

When a car is driven along a highway, its distance from its starting point depends on

time in a continuous way, changing by small amounts over short intervals of time. But

not all quantities change in this way. When the car is parked in a parking lot where

the rate is quoted as “$2.00 per hour or portion,” the parking charges remain at $2.00

for the first hour and then suddenly jump to $4.00 as soon as the first hour has passed.

The function relating parking charges to parking time will be called discontinuous at

each hour. In this section we will define continuity and show how to tell whether a

function is continuous. We will also examine some important properties possessed by

continuous functions.

Continuity at a Point
Most functions that we encounter have domains that are intervals, or unions of separate

intervals. A point P in the domain of such a function is called an interior point of

the domain if it belongs to some open interval contained in the domain. If it is not an

interior point, then P is called an endpoint of the domain. For example, the domain of

the function f .x/ D
p

4 � x2 is the closed interval Œ�2; 2�, which consists of interior

points in the interval .�2; 2/, a left endpoint �2, and a right endpoint 2. The domain

of the function g.x/ D 1=x is the union of open intervals .�1; 0/ [ .0;1/ and

consists entirely of interior points. Note that although 0 is an endpoint of each of

those intervals, it does not belong to the domain of g and so is not an endpoint of that

domain.

D E F I N I T I O N

4

Continuity at an interior point

We say that a function f is continuous at an interior point c of its domain if

lim
x!c

f .x/ D f .c/:

If either limx!c f .x/ fails to exist or it exists but is not equal to f .c/, then

we will say that f is discontinuous at c.

In graphical terms, f is continuous at an interior point c of its domain if its graph has

no break in it at the point .c; f .c//; in other words, if you can draw the graph through

that point without lifting your pen from the paper. Consider Figure 1.21. In (a), f is

continuous at c. In (b), f is discontinuous at c because limx!c f .x/ ¤ f .c/. In (c),
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> limit((x^2-a^2)/(abs(x-a)),x=a,right);

2 a

Finally, we use Maple to confirm the limit discussed in Example 2 in Section 1.2.

> limit((1+x^2)^(1/x^2), x=0); evalf(%);

e

2:718281828

We will learn a great deal about this very important number in Chapter 3.

E X E R C I S E S 1.3

Find the limits in Exercises 1–10.

1. lim
x!1

x

2x � 3
2. lim

x!1

x

x2
� 4

3. lim
x!1

3x3
� 5x2

C 7

8C 2x � 5x3
4. lim

x!�1

x2
� 2

x � x2

5. lim
x!�1

x2
C 3

x3
C 2

6. lim
x!1

x2
C sinx

x2
C cos x

7. lim
x!1

3x C 2
p

x

1 � x
8. lim

x!1

2x � 1
p

3x2
C x C 1

9. lim
x!�1

2x � 1
p

3x2
C x C 1

10. lim
x!�1

2x � 5

j3x C 2j

In Exercises 11–32 evaluate the indicated limit. If it does not exist,

is the limit1, �1, or neither?

11. lim
x!3

1

3 � x
12. lim

x!3

1

.3 � x/2

13. lim
x!3�

1

3 � x
14. lim

x!3C

1

3� x

15. lim
x!�5=2

2x C 5

5x C 2
16. lim

x!�2=5

2x C 5

5x C 2

17. lim
x!�.2=5/�

2x C 5

5x C 2
18. lim

x!�.2=5/C

2x C 5

5x C 2

19. lim
x!2C

x

.2 � x/3
20. lim

x!1�

x
p

1 � x2

21. lim
x!1C

1

jx � 1j
22. lim

x!1�

1

jx � 1j

23. lim
x!2

x � 3

x2
� 4x C 4

24. lim
x!1C

p

x2
� x

x � x2

25. lim
x!1

x C x3
C x5

1C x2
C x3

26. lim
x!1

x3
C 3

x2
C 2

27.I lim
x!1

x
p

x C 1
�

1 �
p

2x C 3
�

7 � 6x C 4x2

28. lim
x!1

�

x2

x C 1
�

x2

x � 1

�

29.I lim
x!�1

�
p

x2
C 2x �

p

x2
� 2x

�

30.I lim
x!1

.

p

x2
C 2x �

p

x2
� 2x/

31. lim
x!1

1
p

x2
� 2x � x

32. lim
x!�1

1
p

x2
C 2x � x

33. What are the horizontal asymptotes of y D
1

p

x2
� 2x � x

?

What are its vertical asymptotes?

34. What are the horizontal and vertical asymptotes of

y D
2x � 5

j3x C 2j
?

y

�1

1

2

3

x1 2 3 4 5 6

y D f .x/

Figure 1.19

The function f whose graph is shown in Figure 1.19 has domain

Œ0;1/. Find the limits of f indicated in Exercises 35–45.

35. lim
x!0C

f .x/ 36. lim
x!1

f .x/

37. lim
x!2C

f .x/ 38. lim
x!2�

f .x/

39. lim
x!3�

f .x/ 40. lim
x!3C

f .x/

41. lim
x!4C

f .x/ 42. lim
x!4�

f .x/

43. lim
x!5�

f .x/ 44. lim
x!5C

f .x/

45. lim
x!1

f .x/

46. What asymptotes does the graph in Figure 1.19 have?

Exercises 47–52 refer to the greatest integer function bxc

graphed in Figure 1.20. Find the indicated limit or explain why it

does not exist.
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y

x

y D bxc

1

1

Figure 1.20

47. lim
x!3C

bxc 48. lim
x!3�

bxc

49. lim
x!3
bxc 50. lim

x!2:5
bxc

51. lim
x!0C

b2 � xc 52. lim
x!�3�

bxc

53. Parking in a certain parking lot costs $1.50 for each hour or

part of an hour. Sketch the graph of the function C.t/

representing the cost of parking for t hours. At what values of

t does C.t/ have a limit? Evaluate limt!t0� C.t/ and

limt!t0C C.t/ for an arbitrary number t0 > 0.

54. If limx!0C f .x/ D L, find limx!0� f .x/ if (a) f is even,

(b) f is odd.

55. If limx!0C f .x/ D A and limx!0� f .x/ D B , find

(a) lim
x!0C

f .x
3
� x/ (b) lim

x!0�
f .x

3
� x/

(c) lim
x!0�

f .x
2
� x

4
/ (d) lim

x!0C
f .x

2
� x

4
/:

1.4 Continuity

When a car is driven along a highway, its distance from its starting point depends on

time in a continuous way, changing by small amounts over short intervals of time. But

not all quantities change in this way. When the car is parked in a parking lot where

the rate is quoted as “$2.00 per hour or portion,” the parking charges remain at $2.00

for the first hour and then suddenly jump to $4.00 as soon as the first hour has passed.

The function relating parking charges to parking time will be called discontinuous at

each hour. In this section we will define continuity and show how to tell whether a

function is continuous. We will also examine some important properties possessed by

continuous functions.

Continuity at a Point
Most functions that we encounter have domains that are intervals, or unions of separate

intervals. A point P in the domain of such a function is called an interior point of

the domain if it belongs to some open interval contained in the domain. If it is not an

interior point, then P is called an endpoint of the domain. For example, the domain of

the function f .x/ D
p

4 � x2 is the closed interval Œ�2; 2�, which consists of interior

points in the interval .�2; 2/, a left endpoint �2, and a right endpoint 2. The domain

of the function g.x/ D 1=x is the union of open intervals .�1; 0/ [ .0;1/ and

consists entirely of interior points. Note that although 0 is an endpoint of each of

those intervals, it does not belong to the domain of g and so is not an endpoint of that

domain.

D E F I N I T I O N

4

Continuity at an interior point

We say that a function f is continuous at an interior point c of its domain if

lim
x!c

f .x/ D f .c/:

If either limx!c f .x/ fails to exist or it exists but is not equal to f .c/, then

we will say that f is discontinuous at c.

In graphical terms, f is continuous at an interior point c of its domain if its graph has

no break in it at the point .c; f .c//; in other words, if you can draw the graph through

that point without lifting your pen from the paper. Consider Figure 1.21. In (a), f is

continuous at c. In (b), f is discontinuous at c because limx!c f .x/ ¤ f .c/. In (c),
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f is discontinuous at c because limx!c f .x/ does not exist. In both (b) and (c) the

graph of f has a break at x D c.

Figure 1.21

(a) f is continuous at c

(b) lim
x!c

f .x/ ¤ f .c/

(c) lim
x!c

f .x/ does not exist

y

x

y

x

y

xc c c

y D f .x/

y D f .x/

y D f .x/

(a) (b) (c)

Although a function cannot have a limit at an endpoint of its domain, it can still

have a one-sided limit there. We extend the definition of continuity to provide for such

situations.

D E F I N I T I O N

5

Right and left continuity

We say that f is right continuous at c if lim
x!cC

f .x/ D f .c/.

We say that f is left continuous at c if lim
x!c�

f .x/ D f .c/.

E X A M P L E 1
The Heaviside functionH.x/, whose graph is shown in Figure 1.22,

is continuous at every number x except 0. It is right continuous at

y

x

y D H.x/

y D 1

y D 0

1

Figure 1.22 The Heaviside function

0 but is not left continuous or continuous there.

The relationship between continuity and one-sided continuity is summarized in the

following theorem.

T H E O R E M

5

Function f is continuous at c if and only if it is both right continuous and left contin-

uous at c.

D E F I N I T I O N

6

Continuity at an endpoint

We say that f is continuous at a left endpoint c of its domain if it is right

continuous there.

We say that f is continuous at a right endpoint c of its domain if it is left

continuous there.

E X A M P L E 2
The function f .x/ D

p

4 � x2 has domain Œ�2; 2�. It is contin-

uous at the right endpoint 2 because it is left continuous there,

that is, because limx!2� f .x/ D 0 D f .2/. It is continuous at the left endpoint

�2 because it is right continuous there: limx!�2C f .x/ D 0 D f .�2/. Of course,

f is also continuous at every interior point of its domain. If �2 < c < 2, then

limx!c f .x/ D
p

4 � c2
D f .c/. (See Figure 1.23.)

y

x�2 2

y D f .x/

Figure 1.23 f .x/ D
p

4 � x2 is

continuous at every point of its domain
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Continuity on an Interval
We have defined the concept of continuity at a point. Of greater importance is the

concept of continuity on an interval.

D E F I N I T I O N

7

Continuity on an interval

We say that function f is continuous on the interval I if it is continuous at

each point of I . In particular, we will say that f is a continuous function if

f is continuous at every point of its domain.

E X A M P L E 3
The function f .x/ D

p

x is a continuous function. Its domain is

Œ0;1/. It is continuous at the left endpoint 0 because it is right

continuous there. Also, f is continuous at every number c > 0 since limx!c

p

x D
p

c.

E X A M P L E 4
The function g.x/ D 1=x is also a continuous function. This may

seem wrong to you at first glance because its graph is broken at

x D 0. (See Figure 1.24.) However, the number 0 is not in the domain of g, so we will

prefer to say that g is undefined rather than discontinuous there. (Some authors would

say that g is discontinuous at x D 0.) If we were to define g.0/ to be some number,

y

x

.1; 1/

y D
1

x

.�1;�1/

Figure 1.24 1=x is continuous on its

domain

say 0, then we would say that g.x/ is discontinuous at 0. There is no way of defining

g.0/ so that g becomes continuous at 0.

E X A M P L E 5
The greatest integer function bxc (see Figure 1.20) is continuous

on every interval Œn; nC 1/, where n is an integer. It is right con-

tinuous at each integer n but is not left continuous there, so it is discontinuous at the

integers.

lim
x!nC

bxc D n D bnc; lim
x!n�

bxc D n� 1 ¤ n D bnc:

There Are Lots of Continuous Functions

The following functions are continuous wherever they are defined:

(a) all polynomials;

(b) all rational functions;

(c) all rational powers xm=n
D

n
p

xm;

(d) the sine, cosine, tangent, secant, cosecant, and cotangent functions defined in Sec-

tion P.7; and

(e) the absolute value function jxj.

Theorem 3 of Section 1.2 assures us that every polynomial is continuous everywhere

on the real line, and every rational function is continuous everywhere on its domain

(which consists of all real numbers except the finitely many where its denominator is

zero). If m and n are integers and n ¤ 0, the rational power function xm=n is defined

for all positive numbers x, and also for all negative numbers x if n is odd. The domain

includes 0 if and only if m=n � 0.

The following theorems show that if we combine continuous functions in various

ways, the results will be continuous.
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f is discontinuous at c because limx!c f .x/ does not exist. In both (b) and (c) the

graph of f has a break at x D c.

Figure 1.21

(a) f is continuous at c

(b) lim
x!c

f .x/ ¤ f .c/

(c) lim
x!c

f .x/ does not exist

y

x

y

x

y

xc c c

y D f .x/

y D f .x/

y D f .x/

(a) (b) (c)

Although a function cannot have a limit at an endpoint of its domain, it can still

have a one-sided limit there. We extend the definition of continuity to provide for such

situations.

D E F I N I T I O N

5

Right and left continuity

We say that f is right continuous at c if lim
x!cC

f .x/ D f .c/.

We say that f is left continuous at c if lim
x!c�

f .x/ D f .c/.

E X A M P L E 1
The Heaviside functionH.x/, whose graph is shown in Figure 1.22,

is continuous at every number x except 0. It is right continuous at

y

x

y D H.x/

y D 1

y D 0

1

Figure 1.22 The Heaviside function

0 but is not left continuous or continuous there.

The relationship between continuity and one-sided continuity is summarized in the

following theorem.

T H E O R E M

5

Function f is continuous at c if and only if it is both right continuous and left contin-

uous at c.

D E F I N I T I O N

6

Continuity at an endpoint

We say that f is continuous at a left endpoint c of its domain if it is right

continuous there.

We say that f is continuous at a right endpoint c of its domain if it is left

continuous there.

E X A M P L E 2
The function f .x/ D

p

4 � x2 has domain Œ�2; 2�. It is contin-

uous at the right endpoint 2 because it is left continuous there,

that is, because limx!2� f .x/ D 0 D f .2/. It is continuous at the left endpoint

�2 because it is right continuous there: limx!�2C f .x/ D 0 D f .�2/. Of course,

f is also continuous at every interior point of its domain. If �2 < c < 2, then

limx!c f .x/ D
p

4 � c2
D f .c/. (See Figure 1.23.)

y

x�2 2

y D f .x/

Figure 1.23 f .x/ D
p

4 � x2 is

continuous at every point of its domain
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Continuity on an Interval
We have defined the concept of continuity at a point. Of greater importance is the

concept of continuity on an interval.

D E F I N I T I O N

7

Continuity on an interval

We say that function f is continuous on the interval I if it is continuous at

each point of I . In particular, we will say that f is a continuous function if

f is continuous at every point of its domain.

E X A M P L E 3
The function f .x/ D

p

x is a continuous function. Its domain is

Œ0;1/. It is continuous at the left endpoint 0 because it is right

continuous there. Also, f is continuous at every number c > 0 since limx!c

p

x D
p

c.

E X A M P L E 4
The function g.x/ D 1=x is also a continuous function. This may

seem wrong to you at first glance because its graph is broken at

x D 0. (See Figure 1.24.) However, the number 0 is not in the domain of g, so we will

prefer to say that g is undefined rather than discontinuous there. (Some authors would

say that g is discontinuous at x D 0.) If we were to define g.0/ to be some number,

y

x

.1; 1/

y D
1

x

.�1;�1/

Figure 1.24 1=x is continuous on its

domain

say 0, then we would say that g.x/ is discontinuous at 0. There is no way of defining

g.0/ so that g becomes continuous at 0.

E X A M P L E 5
The greatest integer function bxc (see Figure 1.20) is continuous

on every interval Œn; nC 1/, where n is an integer. It is right con-

tinuous at each integer n but is not left continuous there, so it is discontinuous at the

integers.

lim
x!nC

bxc D n D bnc; lim
x!n�

bxc D n� 1 ¤ n D bnc:

There Are Lots of Continuous Functions

The following functions are continuous wherever they are defined:

(a) all polynomials;

(b) all rational functions;

(c) all rational powers xm=n
D

n
p

xm;

(d) the sine, cosine, tangent, secant, cosecant, and cotangent functions defined in Sec-

tion P.7; and

(e) the absolute value function jxj.

Theorem 3 of Section 1.2 assures us that every polynomial is continuous everywhere

on the real line, and every rational function is continuous everywhere on its domain

(which consists of all real numbers except the finitely many where its denominator is

zero). If m and n are integers and n ¤ 0, the rational power function xm=n is defined

for all positive numbers x, and also for all negative numbers x if n is odd. The domain

includes 0 if and only if m=n � 0.

The following theorems show that if we combine continuous functions in various

ways, the results will be continuous.
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T H E O R E M

6

Combining continuous functions

If the functions f and g are both defined on an interval containing c and both are

continuous at c, then the following functions are also continuous at c:

1. the sum f C g and the difference f � g;

2. the product fg;

3. the constant multiple kf , where k is any number;

4. the quotient f=g (provided g.c/ ¤ 0); and

5. the nth root .f .x//1=n, provided f .c/ > 0 if n is even.

The proof involves using the various limit rules in Theorem 2 of Section 1.2. For

example,

lim
x!c

�

f .x/C g.x/
�

D lim
x!c

f .x/C lim
x!c

g.x/ D f .c/C g.c/;

so f C g is continuous.

T H E O R E M

7

Composites of continuous functions are continuous

If f .g.x// is defined on an interval containing c, and if f is continuous at L and

limx!c g.x/ D L, then

lim
x!c

f .g.x// D f .L/ D f

�

lim
x!c

g.x/

�

:

In particular, if g is continuous at c (so L D g.c/), then the composition f ı g is

continuous at c:

lim
x!c

f .g.x// D f .g.c//:

(See Exercise 37 in Section 1.5.)

E X A M P L E 6
The following functions are continuous everywhere on their re-

spective domains:

(a) 3x2
� 2x (b)

x � 2

x2
� 4

(c) jx2
� 1j

(d)
p

x (e)
p

x2
� 2x � 5 (f)

jxj
p

jx C 2j
.

Continuous Extensions and Removable Discontinuities
As we have seen in Section 1.2, a rational function may have a limit even at a point

where its denominator is zero. If f .c/ is not defined, but limx!c f .x/ D L exists, we

can define a new function F.x/ by

F.x/ D

n

f .x/ if x is in the domain of f

L if x D c.

F.x/ is continuous at x D c. It is called the continuous extension of f .x/ to x D

c. For rational functions f, continuous extensions are usually found by cancelling

common factors.

E X A M P L E 7 Show that f .x/ D
x2
� x

x2
� 1

has a continuous extension to x D 1,

and find that extension.
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Solution Although f .1/ is not defined, if x ¤ 1 we have
y

x

.1;1=2/

y D
x2
� x

x2
� 1

Figure 1.25 This function has a

continuous extension to x D 1

f .x/ D
x2
� x

x2
� 1
D

x.x � 1/

.x C 1/.x � 1/
D

x

x C 1
:

The function

F.x/ D
x

x C 1

is equal to f .x/ for x ¤ 1 but is also continuous at x D 1, having there the value 1=2.

The graph of f is shown in Figure 1.25. The continuous extension of f .x/ to x D 1

is F.x/. It has the same graph as f .x/ except with no hole at .1; 1=2/.

If a function f is undefined or discontinuous at a point a but can be (re)defined at that

single point so that it becomes continuous there, then we say that f has a removable

discontinuity at a. The function f in the above example has a removable discontinuity

at x D 1. To remove it, define f .1/ D 1=2.

E X A M P L E 8 The function g.x/ D
n

x if x ¤ 2

1 if x D 2
has a removable discontinuity

at x D 2. To remove it, redefine g.2/ D 2. (See Figure 1.26.)

Continuous Functions on Closed, Finite Intervals
Continuous functions that are defined on closed, finite intervals have special properties

that make them particularly useful in mathematics and its applications. We will dis-

y

x

.2; 1/

.2; 2/

y D g.x/

Figure 1.26 g has a removable

discontinuity at 2

cuss two of these properties here. Although they may appear obvious, these properties

are much more subtle than the results about limits stated earlier in this chapter; their

proofs (see Appendix III) require a careful study of the implications of the complete-

ness property of the real numbers.

The first of the properties states that a function f .x/ that is continuous on a closed,

finite interval Œa; b� must have an absolute maximum value and an absolute mini-

mum value. This means that the values of f .x/ at all points of the interval lie between

the values of f .x/ at two particular points in the interval; the graph of f has a highest

point and a lowest point.

T H E O R E M

8

The Max-Min Theorem

If f .x/ is continuous on the closed, finite interval Œa; b�, then there exist numbers p

and q in Œa; b� such that for all x in Œa; b�,

f .p/ � f .x/ � f .q/:

Thus, f has the absolute minimum value m D f .p/, taken on at the point p, and the

absolute maximum value M D f .q/, taken on at the point q.

Many important problems in mathematics and its applications come down to having to

find maximum and minimum values of functions. Calculus provides some very useful

tools for solving such problems. Observe, however, that the theorem above merely

asserts that minimum and maximum values exist; it doesn’t tell us how to find them. In

Chapter 4 we will develop techniques for calculating maximum and minimum values of

functions. For now, we can solve some simple maximum and minimum value problems

involving quadratic functions by completing the square without using any calculus.

E X A M P L E 9
What is the largest possible area of a rectangular field that can be

enclosed by 200 m of fencing?
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6

Combining continuous functions

If the functions f and g are both defined on an interval containing c and both are

continuous at c, then the following functions are also continuous at c:

1. the sum f C g and the difference f � g;

2. the product fg;

3. the constant multiple kf , where k is any number;

4. the quotient f=g (provided g.c/ ¤ 0); and

5. the nth root .f .x//1=n, provided f .c/ > 0 if n is even.

The proof involves using the various limit rules in Theorem 2 of Section 1.2. For

example,

lim
x!c

�

f .x/C g.x/
�

D lim
x!c

f .x/C lim
x!c

g.x/ D f .c/C g.c/;

so f C g is continuous.

T H E O R E M

7

Composites of continuous functions are continuous

If f .g.x// is defined on an interval containing c, and if f is continuous at L and

limx!c g.x/ D L, then

lim
x!c

f .g.x// D f .L/ D f

�

lim
x!c

g.x/

�

:

In particular, if g is continuous at c (so L D g.c/), then the composition f ı g is

continuous at c:

lim
x!c

f .g.x// D f .g.c//:

(See Exercise 37 in Section 1.5.)

E X A M P L E 6
The following functions are continuous everywhere on their re-

spective domains:

(a) 3x2
� 2x (b)

x � 2

x2
� 4

(c) jx2
� 1j

(d)
p

x (e)
p

x2
� 2x � 5 (f)

jxj
p

jx C 2j
.

Continuous Extensions and Removable Discontinuities
As we have seen in Section 1.2, a rational function may have a limit even at a point

where its denominator is zero. If f .c/ is not defined, but limx!c f .x/ D L exists, we

can define a new function F.x/ by

F.x/ D

n

f .x/ if x is in the domain of f

L if x D c.

F.x/ is continuous at x D c. It is called the continuous extension of f .x/ to x D

c. For rational functions f, continuous extensions are usually found by cancelling

common factors.

E X A M P L E 7 Show that f .x/ D
x2
� x

x2
� 1

has a continuous extension to x D 1,

and find that extension.
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Solution Although f .1/ is not defined, if x ¤ 1 we have
y

x

.1;1=2/

y D
x2
� x

x2
� 1

Figure 1.25 This function has a

continuous extension to x D 1

f .x/ D
x2
� x

x2
� 1
D

x.x � 1/

.x C 1/.x � 1/
D

x

x C 1
:

The function

F.x/ D
x

x C 1

is equal to f .x/ for x ¤ 1 but is also continuous at x D 1, having there the value 1=2.

The graph of f is shown in Figure 1.25. The continuous extension of f .x/ to x D 1

is F.x/. It has the same graph as f .x/ except with no hole at .1; 1=2/.

If a function f is undefined or discontinuous at a point a but can be (re)defined at that

single point so that it becomes continuous there, then we say that f has a removable

discontinuity at a. The function f in the above example has a removable discontinuity

at x D 1. To remove it, define f .1/ D 1=2.

E X A M P L E 8 The function g.x/ D
n

x if x ¤ 2

1 if x D 2
has a removable discontinuity

at x D 2. To remove it, redefine g.2/ D 2. (See Figure 1.26.)

Continuous Functions on Closed, Finite Intervals
Continuous functions that are defined on closed, finite intervals have special properties

that make them particularly useful in mathematics and its applications. We will dis-

y

x

.2; 1/

.2; 2/

y D g.x/

Figure 1.26 g has a removable

discontinuity at 2

cuss two of these properties here. Although they may appear obvious, these properties

are much more subtle than the results about limits stated earlier in this chapter; their

proofs (see Appendix III) require a careful study of the implications of the complete-

ness property of the real numbers.

The first of the properties states that a function f .x/ that is continuous on a closed,

finite interval Œa; b� must have an absolute maximum value and an absolute mini-

mum value. This means that the values of f .x/ at all points of the interval lie between

the values of f .x/ at two particular points in the interval; the graph of f has a highest

point and a lowest point.

T H E O R E M

8

The Max-Min Theorem

If f .x/ is continuous on the closed, finite interval Œa; b�, then there exist numbers p

and q in Œa; b� such that for all x in Œa; b�,

f .p/ � f .x/ � f .q/:

Thus, f has the absolute minimum value m D f .p/, taken on at the point p, and the

absolute maximum value M D f .q/, taken on at the point q.

Many important problems in mathematics and its applications come down to having to

find maximum and minimum values of functions. Calculus provides some very useful

tools for solving such problems. Observe, however, that the theorem above merely

asserts that minimum and maximum values exist; it doesn’t tell us how to find them. In

Chapter 4 we will develop techniques for calculating maximum and minimum values of

functions. For now, we can solve some simple maximum and minimum value problems

involving quadratic functions by completing the square without using any calculus.

E X A M P L E 9
What is the largest possible area of a rectangular field that can be

enclosed by 200 m of fencing?
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Solution If the sides of the field are x m and y m (Figure 1.27), then its perimeter

is P D 2x C 2y m, and its area is A D xy m2. We are given that P D 200, so

x C y D 100, and y D 100 � x. Neither side can be negative, so x must belong to

the closed interval Œ0; 100�. The area of the field can be expressed as a function of x

by substituting 100 � x for y:

A D x.100 � x/ D 100x � x
2
:

We want to find the maximum value of the quadratic function A.x/ D 100x � x2 on

the interval Œ0; 100�. Theorem 8 assures us that such a maximum exists.

x

y

Figure 1.27 Rectangular field:

perimeter D 2x C 2y, area D xy

To find the maximum, we complete the square of the function A.x/. Note that

x2
� 100x are the first two terms of the square .x� 50/2 D x2

� 100xC 2;500. Thus,

A.x/ D 2;500 � .x � 50/
2
:

Observe that A.50/ D 2; 500 and A.x/ < 2;500 if x ¤ 50, because we are subtracting

a positive number .x � 50/2 from 2;500 in this case. Therefore, the maximum value

of A.x/ is 2;500. The largest field has area 2;500 m2 and is actually a square with

dimensions x D y D 50 m.

Theorem 8 implies that a function that is continuous on a closed, finite interval is

bounded. This means that it cannot take on arbitrarily large positive or negative values;

there must exist a number K such that

jf .x/j � KI that is, �K � f .x/ � K:

In fact, for K we can use the larger of the numbers jf .p/j and jf .q/j in the theorem.

The conclusions of Theorem 8 may fail if the function f is not continuous or if

the interval is not closed. See Figures 1.28–1.31 for examples of how such failure can

occur.

y

x1

y D f .x/

Figure 1.28 f .x/ D 1=x is

continuous on the open

interval .0; 1/. It is not

bounded and has neither a

maximum nor a minimum

value

y

x1

y D f .x/

Figure 1.29 f .x/ D x is

continuous on the open

interval .0; 1/. It is bounded

but has neither a maximum

nor a minimum value

y

x1

y D f .x/

Figure 1.30 This function is

defined on the closed interval

Œ0; 1� but is discontinuous at

the endpoint x D 1. It has a

minimum value but no

maximum value

y

x1

y D f .x/

Figure 1.31 This function is

discontinuous at an interior

point of its domain, the closed

interval Œ0; 1�. It is bounded

but has neither maximum nor

minimum values

The second property of a continuous function defined on a closed, finite interval

is that the function takes on all real values between any two of its values. This property

is called the intermediate-value property.
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9

The Intermediate-Value Theorem

If f .x/ is continuous on the interval Œa; b� and if s is a number between f .a/ and

f .b/, then there exists a number c in Œa; b� such that f .c/ D s.

In particular, a continuous function defined on a closed interval takes on all values

between its minimum value m and its maximum value M , so its range is also a closed

interval, Œm;M�.

Figure 1.32 shows a typical situation. The points .a; f .a// and .b; f .b// are on

opposite sides of the horizontal line y D s. Being unbroken, the graph y D f .x/

must cross this line in order to go from one point to the other. In the figure, it crosses

the line only once, at x D c. If the line y D s were somewhat higher, there might have

been three crossings and three possible values for c.

Theorem 9 is the reason why the graph of a function that is continuous on an

interval I cannot have any breaks. It must be connected, a single, unbroken curve

with no jumps.

y

xa c b

f .a/

s

f .b/

y D f .x/

Figure 1.32 The continuous function f

takes on the value s at some point c

between a and b

E X A M P L E 10
Determine the intervals on which f .x/ D x3

� 4x is positive and

negative.

Solution Since f .x/ D x.x2
� 4/ D x.x � 2/.x C 2/, f .x/ D 0 only at x D 0; 2;

and �2. Because f is continuous on the whole real line, it must have constant sign

on each of the intervals .�1;�2/, .�2; 0/, .0; 2/, and .2;1/. (If there were points a

and b in one of those intervals, say in .0; 2/, such that f .a/ < 0 and f .b/ > 0, then

by the Intermediate-Value Theorem there would exist c between a and b, and therefore

between 0 and 2, such that f .c/ D 0. But we know f has no such zero in .0; 2/.)

To find whether f .x/ is positive or negative throughout each interval, pick a point

in the interval and evaluate f at that point:

Since f .�3/ D �15 < 0, f .x/ is negative on .�1;�2/.

Since f .�1/ D 3 > 0, f .x/ is positive on .�2; 0/.

Since f .1/ D �3 < 0, f .x/ is negative on .0; 2/.

Since f .3/ D 15 > 0, f .x/ is positive on .2;1/.

Finding Roots of Equations
Among the many useful tools that calculus will provide are ones that enable us to cal-

culate solutions to equations of the form f .x/ D 0 to any desired degree of accuracy.

Such a solution is called a root of the equation, or a zero of the function f . Using

these tools usually requires previous knowledge that the equation has a solution in

some interval. The Intermediate-Value Theorem can provide this information.

E X A M P L E 11
Show that the equation x3

�x�1 D 0 has a solution in the interval

Œ1; 2�.

Solution The function f .x/ D x3
�x�1 is a polynomial and is therefore continuous

everywhere. Now f .1/ D �1 and f .2/ D 5. Since 0 lies between �1 and 5, the

Intermediate-Value Theorem assures us that there must be a number c in Œ1; 2� such

that f .c/ D 0.

One method for finding a zero of a function that is continuous and changes sign on an

interval involves bisecting the interval many times, each time determining which half

of the previous interval must contain the root, because the function has opposite signs

at the two ends of that half. This method is slow. For example, if the original interval
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Solution If the sides of the field are x m and y m (Figure 1.27), then its perimeter

is P D 2x C 2y m, and its area is A D xy m2. We are given that P D 200, so

x C y D 100, and y D 100 � x. Neither side can be negative, so x must belong to

the closed interval Œ0; 100�. The area of the field can be expressed as a function of x

by substituting 100 � x for y:

A D x.100 � x/ D 100x � x
2
:

We want to find the maximum value of the quadratic function A.x/ D 100x � x2 on

the interval Œ0; 100�. Theorem 8 assures us that such a maximum exists.

x

y

Figure 1.27 Rectangular field:

perimeter D 2x C 2y, area D xy

To find the maximum, we complete the square of the function A.x/. Note that

x2
� 100x are the first two terms of the square .x� 50/2 D x2

� 100xC 2;500. Thus,

A.x/ D 2;500 � .x � 50/
2
:

Observe that A.50/ D 2; 500 and A.x/ < 2;500 if x ¤ 50, because we are subtracting

a positive number .x � 50/2 from 2;500 in this case. Therefore, the maximum value

of A.x/ is 2;500. The largest field has area 2;500 m2 and is actually a square with

dimensions x D y D 50 m.

Theorem 8 implies that a function that is continuous on a closed, finite interval is

bounded. This means that it cannot take on arbitrarily large positive or negative values;

there must exist a number K such that

jf .x/j � KI that is, �K � f .x/ � K:

In fact, for K we can use the larger of the numbers jf .p/j and jf .q/j in the theorem.

The conclusions of Theorem 8 may fail if the function f is not continuous or if

the interval is not closed. See Figures 1.28–1.31 for examples of how such failure can

occur.

y

x1

y D f .x/

Figure 1.28 f .x/ D 1=x is

continuous on the open

interval .0; 1/. It is not

bounded and has neither a

maximum nor a minimum

value

y

x1

y D f .x/

Figure 1.29 f .x/ D x is

continuous on the open

interval .0; 1/. It is bounded

but has neither a maximum

nor a minimum value

y

x1

y D f .x/

Figure 1.30 This function is

defined on the closed interval

Œ0; 1� but is discontinuous at

the endpoint x D 1. It has a

minimum value but no

maximum value

y

x1

y D f .x/

Figure 1.31 This function is

discontinuous at an interior

point of its domain, the closed

interval Œ0; 1�. It is bounded

but has neither maximum nor

minimum values

The second property of a continuous function defined on a closed, finite interval

is that the function takes on all real values between any two of its values. This property

is called the intermediate-value property.
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The Intermediate-Value Theorem

If f .x/ is continuous on the interval Œa; b� and if s is a number between f .a/ and

f .b/, then there exists a number c in Œa; b� such that f .c/ D s.

In particular, a continuous function defined on a closed interval takes on all values

between its minimum value m and its maximum value M , so its range is also a closed

interval, Œm;M�.

Figure 1.32 shows a typical situation. The points .a; f .a// and .b; f .b// are on

opposite sides of the horizontal line y D s. Being unbroken, the graph y D f .x/

must cross this line in order to go from one point to the other. In the figure, it crosses

the line only once, at x D c. If the line y D s were somewhat higher, there might have

been three crossings and three possible values for c.

Theorem 9 is the reason why the graph of a function that is continuous on an

interval I cannot have any breaks. It must be connected, a single, unbroken curve

with no jumps.

y

xa c b

f .a/

s

f .b/

y D f .x/

Figure 1.32 The continuous function f

takes on the value s at some point c

between a and b

E X A M P L E 10
Determine the intervals on which f .x/ D x3

� 4x is positive and

negative.

Solution Since f .x/ D x.x2
� 4/ D x.x � 2/.x C 2/, f .x/ D 0 only at x D 0; 2;

and �2. Because f is continuous on the whole real line, it must have constant sign

on each of the intervals .�1;�2/, .�2; 0/, .0; 2/, and .2;1/. (If there were points a

and b in one of those intervals, say in .0; 2/, such that f .a/ < 0 and f .b/ > 0, then

by the Intermediate-Value Theorem there would exist c between a and b, and therefore

between 0 and 2, such that f .c/ D 0. But we know f has no such zero in .0; 2/.)

To find whether f .x/ is positive or negative throughout each interval, pick a point

in the interval and evaluate f at that point:

Since f .�3/ D �15 < 0, f .x/ is negative on .�1;�2/.

Since f .�1/ D 3 > 0, f .x/ is positive on .�2; 0/.

Since f .1/ D �3 < 0, f .x/ is negative on .0; 2/.

Since f .3/ D 15 > 0, f .x/ is positive on .2;1/.

Finding Roots of Equations
Among the many useful tools that calculus will provide are ones that enable us to cal-

culate solutions to equations of the form f .x/ D 0 to any desired degree of accuracy.

Such a solution is called a root of the equation, or a zero of the function f . Using

these tools usually requires previous knowledge that the equation has a solution in

some interval. The Intermediate-Value Theorem can provide this information.

E X A M P L E 11
Show that the equation x3

�x�1 D 0 has a solution in the interval

Œ1; 2�.

Solution The function f .x/ D x3
�x�1 is a polynomial and is therefore continuous

everywhere. Now f .1/ D �1 and f .2/ D 5. Since 0 lies between �1 and 5, the

Intermediate-Value Theorem assures us that there must be a number c in Œ1; 2� such

that f .c/ D 0.

One method for finding a zero of a function that is continuous and changes sign on an

interval involves bisecting the interval many times, each time determining which half

of the previous interval must contain the root, because the function has opposite signs

at the two ends of that half. This method is slow. For example, if the original interval
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has length 1, it will take 11 bisections to cut down to an interval of length less than

0.0005 (because 211
> 2;000 D 1=.0:0005/), and thus to ensure that we have found

the root correct to 3 decimal places.

E X A M P L E 12
(The Bisection Method) Solve the equation x3

� x � 1 D 0 of

Example 11 correct to 3 decimal places by successive bisections.

Solution We start out knowing that there is a root in Œ1; 2�. Table 6 shows the results

of the bisections.

Table 6. The Bisection Method for f .x/ D x3
� x � 1 D 0

Bisection
Number x f .x/

Root in
Interval Midpoint

1 �1

2 5 Œ1; 2� 1:5

1 1:5 0:8750 Œ1; 1:5� 1:25

2 1:25 �0:2969 Œ1:25; 1:5� 1:375

3 1:375 0:2246 Œ1:25; 1:375� 1:3125

4 1:3125 �0:0515 Œ1:3125; 1:375� 1:3438

5 1:3438 0:0826 Œ1:3125; 1:3438� 1:3282

6 1:3282 0:0147 Œ1:3125; 1:3282� 1:3204

7 1:3204 �0:0186 Œ1:3204; 1:3282� 1:3243

8 1:3243 �0:0018 Œ1:3243; 1:3282� 1:3263

9 1:3263 0:0065 Œ1:3243; 1:3263� 1:3253

10 1:3253 0:0025 Œ1:3243; 1:3253� 1:3248

11 1:3248 0:0003 Œ1:3243; 1:3248� 1:3246

12 1:3246 �0:0007 Œ1:3246; 1:3248�

The root is 1:325, rounded to 3 decimal places.

In Section 4.2, calculus will provide us with much faster methods of solving equa-

tions such as the one in the example above. Many programmable calculators and com-

puter algebra software packages have built-in routines for solving equations. For ex-

ample, Maple’s fsolve routine can be used to find the real solution of x3
�x�1 D 0

in Œ1; 2� in Example 11:

> fsolve(x^3-x-1=0,x=1..2);

1:324717957

Remark The Max-Min Theorem and the Intermediate-Value Theorem are examples

of what mathematicians call existence theorems. Such theorems assert that something

exists without telling you how to find it. Students sometimes complain that mathemati-

cians worry too much about proving that a problem has a solution and not enough about

how to find that solution. They argue: “If I can calculate a solution to a problem, then

surely I do not need to worry about whether a solution exists.” This is, however, false

logic. Suppose we pose the problem: “Find the largest positive integer.” Of course,

this problem has no solution; there is no largest positive integer because we can add 1

to any integer and get a larger integer. Suppose, however, that we forget this and try to

calculate a solution. We could proceed as follows:

Let N be the largest positive integer.

Since 1 is a positive integer, we must have N � 1.

Since N 2 is a positive integer, it cannot exceed the largest positive integer.

Therefore, N 2
� N and so N 2

�N � 0.

Thus, N.N � 1/ � 0 and we must have N � 1 � 0.

Therefore, N � 1. Since also N � 1, we have N D 1.

Therefore, 1 is the largest positive integer.
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The only error we have made here is in the assumption (in the first line) that the prob-

lem has a solution. It is partly to avoid logical pitfalls like this that mathematicians

prove existence theorems.

E X E R C I S E S 1.4

Exercises 1–3 refer to the function g defined on Œ�2; 2�, whose

graph is shown in Figure 1.33.
y

1

2

x�2 �1 1 2

.1; 2/

.�1; 1/

y D g.x/

Figure 1.33

1. State whether g is (a) continuous, (b) left continuous,

(c) right continuous, and (d) discontinuous at each of the

points �2, �1, 0, 1, and 2.

2. At what points in its domain does g have a removable

discontinuity, and how should g be redefined at each of those

points so as to be continuous there?

3. Does g have an absolute maximum value on Œ�2; 2�? an

absolute minimum value?
y

�1

1

2

3

x1 2 3 4 5 6

y D f .x/

Figure 1.34

4. At what points is the function f , whose graph is shown in

Figure 1.34, discontinuous? At which of those points is it left

continuous? right continuous?

5. Can the function f graphed in Figure 1.34 be redefined at the

single point x D 1 so that it becomes continuous there?

6. The function sgn .x/ D x=jxj is neither continuous nor

discontinuous at x D 0. How is this possible?

In Exercises 7–12, state where in its domain the given function is

continuous, where it is left or right continuous, and where it is just

discontinuous.

7. f .x/ D

�

x if x < 0

x2 if x � 0
8. f .x/ D

�

x if x < �1

x2 if x � �1

9. f .x/ D

�

1=x2 if x ¤ 0

0 if x D 0
10. f .x/ D

�

x2 if x � 1

0:987 if x > 1

11. The least integer function dxe of Example 11 in Section P.5.

12. The cost function C.t/ of Exercise 53 in Section 1.3.

In Exercises 13–16, how should the given function be defined at

the given point to be continuous there? Give a formula for the

continuous extension to that point.

13.
x2
� 4

x � 2
at x D 2 14.

1C t3

1� t2
at t D �1

15.
t2 � 5t C 6

t2 � t � 6
at 3 16.

x2
� 2

x4
� 4

at
p

2

17. Find k so that f .x/ D

�

x2 if x � 2

k � x2 if x > 2
is a continuous

function.

18. Find m so that g.x/ D

�

x �m if x < 3

1 �mx if x � 3
is continuous for

all x.

19. Does the function x2 have a maximum value on the open

interval �1 < x < 1? a minimum value? Explain.

20. The Heaviside function of Example 1 has both absolute

maximum and minimum values on the interval Œ�1; 1�, but it

is not continuous on that interval. Does this violate the

Max-Min Theorem? Why?

Exercises 21–24 ask for maximum and minimum values of

functions. They can all be done by the method of Example 9.

21. The sum of two nonnegative numbers is 8. What is the largest

possible value of their product?

22. The sum of two nonnegative numbers is 8. What is (a) the

smallest and (b) the largest possible value for the sum of their

squares?

23. A software company estimates that if it assigns x

programmers to work on the project, it can develop a new

product in T days, where

T D 100 � 30x C 3x
2
:

How many programmers should the company assign in order

to complete the development as quickly as possible?

24. It costs a desk manufacturer $.245x � 30x2
C x

3
/ to send a

shipment of x desks to its warehouse. How many desks

should it include in each shipment to minimize the average

shipping cost per desk?

Find the intervals on which the functions f .x/ in Exercises 25–28

are positive and negative.

25. f .x/ D
x2
� 1

x
26. f .x/ D x2

C 4x C 3

27. f .x/ D
x

2
� 1

x2
� 4

28. f .x/ D
x

2
C x � 2

x3

29. Show that f .x/ D x3
C x � 1 has a zero between x D 0 and

x D 1.

30. Show that the equation x3
� 15x C 1 D 0 has three solutions

in the interval Œ�4; 4�.
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has length 1, it will take 11 bisections to cut down to an interval of length less than

0.0005 (because 211
> 2;000 D 1=.0:0005/), and thus to ensure that we have found

the root correct to 3 decimal places.

E X A M P L E 12
(The Bisection Method) Solve the equation x3

� x � 1 D 0 of

Example 11 correct to 3 decimal places by successive bisections.

Solution We start out knowing that there is a root in Œ1; 2�. Table 6 shows the results

of the bisections.

Table 6. The Bisection Method for f .x/ D x3
� x � 1 D 0

Bisection
Number x f .x/

Root in
Interval Midpoint

1 �1

2 5 Œ1; 2� 1:5

1 1:5 0:8750 Œ1; 1:5� 1:25

2 1:25 �0:2969 Œ1:25; 1:5� 1:375

3 1:375 0:2246 Œ1:25; 1:375� 1:3125

4 1:3125 �0:0515 Œ1:3125; 1:375� 1:3438

5 1:3438 0:0826 Œ1:3125; 1:3438� 1:3282

6 1:3282 0:0147 Œ1:3125; 1:3282� 1:3204

7 1:3204 �0:0186 Œ1:3204; 1:3282� 1:3243

8 1:3243 �0:0018 Œ1:3243; 1:3282� 1:3263

9 1:3263 0:0065 Œ1:3243; 1:3263� 1:3253

10 1:3253 0:0025 Œ1:3243; 1:3253� 1:3248

11 1:3248 0:0003 Œ1:3243; 1:3248� 1:3246

12 1:3246 �0:0007 Œ1:3246; 1:3248�

The root is 1:325, rounded to 3 decimal places.

In Section 4.2, calculus will provide us with much faster methods of solving equa-

tions such as the one in the example above. Many programmable calculators and com-

puter algebra software packages have built-in routines for solving equations. For ex-

ample, Maple’s fsolve routine can be used to find the real solution of x3
�x�1 D 0

in Œ1; 2� in Example 11:

> fsolve(x^3-x-1=0,x=1..2);

1:324717957

Remark The Max-Min Theorem and the Intermediate-Value Theorem are examples

of what mathematicians call existence theorems. Such theorems assert that something

exists without telling you how to find it. Students sometimes complain that mathemati-

cians worry too much about proving that a problem has a solution and not enough about

how to find that solution. They argue: “If I can calculate a solution to a problem, then

surely I do not need to worry about whether a solution exists.” This is, however, false

logic. Suppose we pose the problem: “Find the largest positive integer.” Of course,

this problem has no solution; there is no largest positive integer because we can add 1

to any integer and get a larger integer. Suppose, however, that we forget this and try to

calculate a solution. We could proceed as follows:

Let N be the largest positive integer.

Since 1 is a positive integer, we must have N � 1.

Since N 2 is a positive integer, it cannot exceed the largest positive integer.

Therefore, N 2
� N and so N 2

�N � 0.

Thus, N.N � 1/ � 0 and we must have N � 1 � 0.

Therefore, N � 1. Since also N � 1, we have N D 1.

Therefore, 1 is the largest positive integer.
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The only error we have made here is in the assumption (in the first line) that the prob-

lem has a solution. It is partly to avoid logical pitfalls like this that mathematicians

prove existence theorems.

E X E R C I S E S 1.4

Exercises 1–3 refer to the function g defined on Œ�2; 2�, whose

graph is shown in Figure 1.33.
y

1

2

x�2 �1 1 2

.1; 2/

.�1; 1/

y D g.x/

Figure 1.33

1. State whether g is (a) continuous, (b) left continuous,

(c) right continuous, and (d) discontinuous at each of the

points �2, �1, 0, 1, and 2.

2. At what points in its domain does g have a removable

discontinuity, and how should g be redefined at each of those

points so as to be continuous there?

3. Does g have an absolute maximum value on Œ�2; 2�? an

absolute minimum value?
y

�1

1

2

3

x1 2 3 4 5 6

y D f .x/

Figure 1.34

4. At what points is the function f , whose graph is shown in

Figure 1.34, discontinuous? At which of those points is it left

continuous? right continuous?

5. Can the function f graphed in Figure 1.34 be redefined at the

single point x D 1 so that it becomes continuous there?

6. The function sgn .x/ D x=jxj is neither continuous nor

discontinuous at x D 0. How is this possible?

In Exercises 7–12, state where in its domain the given function is

continuous, where it is left or right continuous, and where it is just

discontinuous.

7. f .x/ D

�

x if x < 0

x2 if x � 0
8. f .x/ D

�

x if x < �1

x2 if x � �1

9. f .x/ D

�

1=x2 if x ¤ 0

0 if x D 0
10. f .x/ D

�

x2 if x � 1

0:987 if x > 1

11. The least integer function dxe of Example 11 in Section P.5.

12. The cost function C.t/ of Exercise 53 in Section 1.3.

In Exercises 13–16, how should the given function be defined at

the given point to be continuous there? Give a formula for the

continuous extension to that point.

13.
x2
� 4

x � 2
at x D 2 14.

1C t3

1� t2
at t D �1

15.
t2 � 5t C 6

t2 � t � 6
at 3 16.

x2
� 2

x4
� 4

at
p

2

17. Find k so that f .x/ D

�

x2 if x � 2

k � x2 if x > 2
is a continuous

function.

18. Find m so that g.x/ D

�

x �m if x < 3

1 �mx if x � 3
is continuous for

all x.

19. Does the function x2 have a maximum value on the open

interval �1 < x < 1? a minimum value? Explain.

20. The Heaviside function of Example 1 has both absolute

maximum and minimum values on the interval Œ�1; 1�, but it

is not continuous on that interval. Does this violate the

Max-Min Theorem? Why?

Exercises 21–24 ask for maximum and minimum values of

functions. They can all be done by the method of Example 9.

21. The sum of two nonnegative numbers is 8. What is the largest

possible value of their product?

22. The sum of two nonnegative numbers is 8. What is (a) the

smallest and (b) the largest possible value for the sum of their

squares?

23. A software company estimates that if it assigns x

programmers to work on the project, it can develop a new

product in T days, where

T D 100 � 30x C 3x
2
:

How many programmers should the company assign in order

to complete the development as quickly as possible?

24. It costs a desk manufacturer $.245x � 30x2
C x

3
/ to send a

shipment of x desks to its warehouse. How many desks

should it include in each shipment to minimize the average

shipping cost per desk?

Find the intervals on which the functions f .x/ in Exercises 25–28

are positive and negative.

25. f .x/ D
x2
� 1

x
26. f .x/ D x2

C 4x C 3

27. f .x/ D
x

2
� 1

x2
� 4

28. f .x/ D
x

2
C x � 2

x3

29. Show that f .x/ D x3
C x � 1 has a zero between x D 0 and

x D 1.

30. Show that the equation x3
� 15x C 1 D 0 has three solutions

in the interval Œ�4; 4�.
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31. Show that the function F.x/ D .x � a/2.x � b/2 C x has the

value .aC b/=2 at some point x.

32.A (A fixed-point theorem) Suppose that f is continuous on the

closed interval Œ0; 1� and that 0 � f .x/ � 1 for every x in

Œ0; 1�. Show that there must exist a number c in Œ0; 1� such that

f .c/ D c. (c is called a fixed point of the function f .) Hint:

If f .0/ D 0 or f .1/ D 1, you are done. If not, apply the

Intermediate-Value Theorem to g.x/ D f .x/ � x.

33.A If an even function f is right continuous at x D 0, show that

it is continuous at x D 0.

34.A If an odd function f is right continuous at x D 0, show that it

is continuous at x D 0 and that it satisfies f .0/ D 0.

Use a graphing utility to find maximum and minimum values of

the functions in Exercises 35–38 and the points x where they

occur. Obtain 3-decimal-place accuracy for all answers.

G 35. f .x/ D
x2
� 2x

x4
C 1

on Œ�5; 5�

G 36. f .x/ D
sinx

6C x
on Œ��; ��

G 37. f .x/ D x2
C

4

x
on Œ1; 3�

G 38. f .x/ D sin.�x/C x.cos.�x/C 1/ on Œ0; 1�

Use a graphing utility or a programmable calculator and the

Bisection Method to solve the equations in Exercises 39–40 to 3

decimal places. As a first step, try to guess a small interval that

you can be sure contains a root.

G 39. x3
C x � 1 D 0 G 40. cos x � x D 0

Use Maple’s fsolve routine to solve the equations in Exercises

41–42.

M 41. sinx C 1 � x2
D 0 (two roots)

M 42. x4
� x � 1 D 0 (two roots)

M 43. Investigate the difference between the Maple routines

fsolve(f,x), solve(f,x), and

evalf(solve(f,x)), where

f := x^3-x-1=0.

Note that no interval is specified for x here.

1.5 The Formal Definition of Limit
The informal definition of limit given in Section 1.2 is not precise enough to enable

The material in this section is

optional.

us to prove results about limits such as those given in Theorems 2–4 of Section 1.2.

A more precise formal definition is based on the idea of controlling the input x of a

function f so that the output f .x/ will lie in a specific interval.

E X A M P L E 1
The area of a circular disk of radius r cm is A D �r

2 cm2. A

machinist is required to manufacture a circular metal disk having

area 400� cm2 within an error tolerance of ˙5 cm2. How close to 20 cm must the

machinist control the radius of the disk to achieve this?

Solution The machinist wants j�r2
� 400�j < 5, that is,

400� � 5 < �r
2
< 400� C 5;

or, equivalently,

p

400 � .5=�/ < r <
p

400C .5=�/

19:96017 < r < 20:03975:

Thus, the machinist needs jr � 20j < 0:03975; she must ensure that the radius of the

disk differs from 20 cm by less than 0:4 mm so that the area of the disk will lie within

the required error tolerance.

When we say that f .x/ has limit L as x approaches a, we are really saying that we

can ensure that the error jf .x/�Lj will be less than any allowed tolerance, no matter

how small, by taking x close enough to a (but not equal to a). It is traditional to use

�, the Greek letter “epsilon,” for the size of the allowable error and ı, the Greek letter

“delta,” for the difference x � a that measures how close x must be to a to ensure that

the error is within that tolerance. These are the letters that Cauchy and Weierstrass

used in their pioneering work on limits and continuity in the nineteenth century.

y

x

L

a

y D f .x/

a � ı aC ı

L� �

LC �

Figure 1.35 If x ¤ a and jx � aj < ı,

then jf .x/ � Lj < �
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If � is any positive number, no matter how small, we must be able to ensure that

jf .x/� Lj < � by restricting x to be close enough to (but not equal to) a. How close

is close enough? It is sufficient that the distance jx � aj from x to a be less than a

positive number ı that depends on �. (See Figure 1.35.) If we can find such a ı for any

positive �, we are entitled to conclude that lim
x!a

f .x/ D L.

D E F I N I T I O N

8

A formal definition of limit

We say that f .x/ approaches the limit L as x approaches a, and we write

lim
x!a

f .x/ D L or limx!af .x/ D L;

if the following condition is satisfied:

for every number � > 0 there exists a number ı > 0, possibly depending on

�, such that if 0 < jx � aj < ı, then x belongs to the domain of f and

jf .x/� Lj < �:

Though precise, the above

definition is more restrictive than

it needs to be. It requires that the

domain of f must contain open

intervals with right and left

endpoints at a. In Section 12.2 of

Chapter 12 we will give a new,

more general definition of limit

for functions of any number of

variables. For functions of one

variable, it replaces the

requirement that f be defined on

open intervals with right and left

endpoints at a with the weaker

requirement that every open

interval containing a must

contain a point of the domain of

f different from a. For now, we

prefer the simpler but more

restrictive definition given above.

The formal definition of limit does not tell you how to find the limit of a function, but

it does enable you to verify that a suspected limit is correct. The following examples

show how it can be used to verify limit statements for specific functions. The first of

these gives a formal verification of the two limits found in Example 3 of Section 1.2.

E X A M P L E 2
(Two important limits) Verify that:

(a) lim
x!a

x D a and (b) lim
x!a

k D k (k = constant).

Solution

(a) Let � > 0 be given. We must find ı > 0 so that

0 < jx � aj < ı implies jx � aj < �:

Clearly, we can take ı D � and the implication above will be true. This proves that

lim
x!a

x D a.

(b) Let � > 0 be given. We must find ı > 0 so that

0 < jx � aj < ı implies jk � kj < �:

Since k � k D 0, we can use any positive number for ı and the implication above

will be true. This proves that lim
x!a

k D k.

E X A M P L E 3
Verify that lim

x!2
x

2
D 4.

Solution Here a D 2 and L D 4. Let � be a given positive number. We want to find

ı > 0 so that if 0 < jx � 2j < ı, then jf .x/� 4j < �. Now

jf .x/� 4j D jx
2
� 4j D j.x C 2/.x � 2/j D jx C 2jjx � 2j:

We want the expression above to be less than �. We can make the factor jx � 2j as

small as we wish by choosing ı properly, but we need to control the factor jx C 2j so

that it does not become too large. If we first assume ı � 1 and require that jx�2j < ı,

then we have

jx � 2j < 1 ) 1 < x < 3 ) 3 < x C 2 < 5

) jx C 2j < 5:
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31. Show that the function F.x/ D .x � a/2.x � b/2 C x has the

value .aC b/=2 at some point x.

32.A (A fixed-point theorem) Suppose that f is continuous on the

closed interval Œ0; 1� and that 0 � f .x/ � 1 for every x in

Œ0; 1�. Show that there must exist a number c in Œ0; 1� such that

f .c/ D c. (c is called a fixed point of the function f .) Hint:

If f .0/ D 0 or f .1/ D 1, you are done. If not, apply the

Intermediate-Value Theorem to g.x/ D f .x/ � x.

33.A If an even function f is right continuous at x D 0, show that

it is continuous at x D 0.

34.A If an odd function f is right continuous at x D 0, show that it

is continuous at x D 0 and that it satisfies f .0/ D 0.

Use a graphing utility to find maximum and minimum values of

the functions in Exercises 35–38 and the points x where they

occur. Obtain 3-decimal-place accuracy for all answers.

G 35. f .x/ D
x2
� 2x

x4
C 1

on Œ�5; 5�

G 36. f .x/ D
sinx

6C x
on Œ��; ��

G 37. f .x/ D x2
C

4

x
on Œ1; 3�

G 38. f .x/ D sin.�x/C x.cos.�x/C 1/ on Œ0; 1�

Use a graphing utility or a programmable calculator and the

Bisection Method to solve the equations in Exercises 39–40 to 3

decimal places. As a first step, try to guess a small interval that

you can be sure contains a root.

G 39. x3
C x � 1 D 0 G 40. cos x � x D 0

Use Maple’s fsolve routine to solve the equations in Exercises

41–42.

M 41. sinx C 1 � x2
D 0 (two roots)

M 42. x4
� x � 1 D 0 (two roots)

M 43. Investigate the difference between the Maple routines

fsolve(f,x), solve(f,x), and

evalf(solve(f,x)), where

f := x^3-x-1=0.

Note that no interval is specified for x here.

1.5 The Formal Definition of Limit
The informal definition of limit given in Section 1.2 is not precise enough to enable

The material in this section is

optional.

us to prove results about limits such as those given in Theorems 2–4 of Section 1.2.

A more precise formal definition is based on the idea of controlling the input x of a

function f so that the output f .x/ will lie in a specific interval.

E X A M P L E 1
The area of a circular disk of radius r cm is A D �r

2 cm2. A

machinist is required to manufacture a circular metal disk having

area 400� cm2 within an error tolerance of ˙5 cm2. How close to 20 cm must the

machinist control the radius of the disk to achieve this?

Solution The machinist wants j�r2
� 400�j < 5, that is,

400� � 5 < �r
2
< 400� C 5;

or, equivalently,

p

400 � .5=�/ < r <
p

400C .5=�/

19:96017 < r < 20:03975:

Thus, the machinist needs jr � 20j < 0:03975; she must ensure that the radius of the

disk differs from 20 cm by less than 0:4 mm so that the area of the disk will lie within

the required error tolerance.

When we say that f .x/ has limit L as x approaches a, we are really saying that we

can ensure that the error jf .x/�Lj will be less than any allowed tolerance, no matter

how small, by taking x close enough to a (but not equal to a). It is traditional to use

�, the Greek letter “epsilon,” for the size of the allowable error and ı, the Greek letter

“delta,” for the difference x � a that measures how close x must be to a to ensure that

the error is within that tolerance. These are the letters that Cauchy and Weierstrass

used in their pioneering work on limits and continuity in the nineteenth century.

y

x

L

a

y D f .x/

a � ı aC ı

L� �

LC �

Figure 1.35 If x ¤ a and jx � aj < ı,

then jf .x/ � Lj < �
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If � is any positive number, no matter how small, we must be able to ensure that

jf .x/� Lj < � by restricting x to be close enough to (but not equal to) a. How close

is close enough? It is sufficient that the distance jx � aj from x to a be less than a

positive number ı that depends on �. (See Figure 1.35.) If we can find such a ı for any

positive �, we are entitled to conclude that lim
x!a

f .x/ D L.

D E F I N I T I O N

8

A formal definition of limit

We say that f .x/ approaches the limit L as x approaches a, and we write

lim
x!a

f .x/ D L or limx!af .x/ D L;

if the following condition is satisfied:

for every number � > 0 there exists a number ı > 0, possibly depending on

�, such that if 0 < jx � aj < ı, then x belongs to the domain of f and

jf .x/� Lj < �:

Though precise, the above

definition is more restrictive than

it needs to be. It requires that the

domain of f must contain open

intervals with right and left

endpoints at a. In Section 12.2 of

Chapter 12 we will give a new,

more general definition of limit

for functions of any number of

variables. For functions of one

variable, it replaces the

requirement that f be defined on

open intervals with right and left

endpoints at a with the weaker

requirement that every open

interval containing a must

contain a point of the domain of

f different from a. For now, we

prefer the simpler but more

restrictive definition given above.

The formal definition of limit does not tell you how to find the limit of a function, but

it does enable you to verify that a suspected limit is correct. The following examples

show how it can be used to verify limit statements for specific functions. The first of

these gives a formal verification of the two limits found in Example 3 of Section 1.2.

E X A M P L E 2
(Two important limits) Verify that:

(a) lim
x!a

x D a and (b) lim
x!a

k D k (k = constant).

Solution

(a) Let � > 0 be given. We must find ı > 0 so that

0 < jx � aj < ı implies jx � aj < �:

Clearly, we can take ı D � and the implication above will be true. This proves that

lim
x!a

x D a.

(b) Let � > 0 be given. We must find ı > 0 so that

0 < jx � aj < ı implies jk � kj < �:

Since k � k D 0, we can use any positive number for ı and the implication above

will be true. This proves that lim
x!a

k D k.

E X A M P L E 3
Verify that lim

x!2
x

2
D 4.

Solution Here a D 2 and L D 4. Let � be a given positive number. We want to find

ı > 0 so that if 0 < jx � 2j < ı, then jf .x/� 4j < �. Now

jf .x/� 4j D jx
2
� 4j D j.x C 2/.x � 2/j D jx C 2jjx � 2j:

We want the expression above to be less than �. We can make the factor jx � 2j as

small as we wish by choosing ı properly, but we need to control the factor jx C 2j so

that it does not become too large. If we first assume ı � 1 and require that jx�2j < ı,

then we have

jx � 2j < 1 ) 1 < x < 3 ) 3 < x C 2 < 5

) jx C 2j < 5:
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Hence,

jf .x/� 4j < 5jx � 2j if jx � 2j < ı � 1:

But 5jx�2j < � if jx�2j < �=5. Therefore, if we take ı D minf1; �=5g, the minimum

(the smaller) of the two numbers 1 and �=5, then

jf .x/� 4j < 5jx � 2j < 5 �
�

5
D � if jx � 2j < ı:

This proves that lim
x!2

f .x/ D 4.

Using the Definition of Limit to Prove Theorems
We do not usually rely on the formal definition of limit to verify specific limits such as

those in the two examples above. Rather, we appeal to general theorems about limits, in

particular Theorems 2–4 of Section 1.2. The definition is used to prove these theorems.

As an example, we prove part 1 of Theorem 2, the Sum Rule.

E X A M P L E 4
(Proving the rule for the limit of a sum) If lim

x!a
f .x/ D L and

lim
x!a

g.x/ D M , prove that lim
x!a

�

f .x/C g.x/
�

D LCM:

Solution Let � > 0 be given. We want to find a positive number ı such that

0 < jx � aj < ı )

ˇ

ˇ

�

f .x/C g.x/
�

� .LCM/
ˇ

ˇ < �:

Observe that

ˇ

ˇ

�

f .x/C g.x/
�

� .LCM/
ˇ

ˇ Regroup terms.

D

ˇ

ˇ

�

f .x/� L
�

C

�

g.x/�M
�ˇ

ˇ (Use the triangle inequality:

jaC bj � jaj C jbj).

� jf .x/�Lj C jg.x/�M j:

Since lim
x!a

f .x/ D L and �=2 is a positive number, there exists a number ı1 > 0 such

that

0 < jx � aj < ı1 ) jf .x/�Lj < �=2:

Similarly, since lim
x!a

g.x/ D M , there exists a number ı2 > 0 such that

0 < jx � aj < ı2 ) jg.x/�M j < �=2:

Let ı D minfı1; ı2g, the smaller of ı1 and ı2. If 0 < jx � aj < ı, then jx � aj < ı1,

so jf .x/� Lj < �=2, and jx � aj < ı2, so jg.x/�M j < �=2. Therefore,

ˇ

ˇ

�

f .x/C g.x/
�

� .LCM/
ˇ

ˇ <
�

2
C

�

2
D �:

This shows that lim
x!a

�

f .x/C g.x/
�

D LCM:

Other Kinds of Limits
The formal definition of limit can be modified to give precise definitions of one-sided

limits, limits at infinity, and infinite limits. We give some of the definitions here and

leave you to supply the others.
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D E F I N I T I O N

9

Right limits

We say that f .x/ has right limit L at a, and we write

lim
x!aC

f .x/ D L;

if the following condition is satisfied:

for every number � > 0 there exists a number ı > 0, possibly depending on

�, such that if a < x < aC ı, then x belongs to the domain of f and

jf .x/� Lj < �:

Notice how the condition 0 < jx � aj < ı in the definition of limit becomes a < x <

y

x
a aC ı

L � �

L

LC �

y D f .x/

Figure 1.36 If a < x < aC ı,

then jf .x/ � Lj < �

aC ı in the right limit case (Figure 1.36). The definition for a left limit is formulated

in a similar way.

E X A M P L E 5
Show that lim

x!0C

p

x D 0.

Solution Let � > 0 be given. If x > 0, then j
p

x � 0j D
p

x. We can ensure that
p

x < � by requiring x < �2. Thus, we can take ı D �2 and the condition of the

definition will be satisfied:

0 < x < ı D �
2 implies j

p

x � 0j < �:

Therefore, lim
x!0C

p

x D 0.

To claim that a function f has a limit L at infinity, we must be able to ensure that

the error jf .x/ � Lj is less than any given positive number � by restricting x to be

sufficiently large, that is, by requiring x > R for some positive number R depending

on �.

D E F I N I T I O N

10

Limit at infinity

We say that f .x/ approaches the limit L as x approaches infinity, and we

write

lim
x!1

f .x/ D L;

if the following condition is satisfied:

for every number � > 0 there exists a number R, possibly depending on �,

such that if x > R, then x belongs to the domain of f and

jf .x/� Lj < �:

You are invited to formulate a version of the definition of a limit at negative infinity.

E X A M P L E 6 Show that lim
x!1

1

x
D 0.

Solution Let � be a given positive number. For x > 0 we have

ˇ

ˇ

ˇ

ˇ

1

x
� 0

ˇ

ˇ

ˇ

ˇ

D

1

jxj
D

1

x
< � provided x >

1

�
:

Therefore, the condition of the definition is satisfied with R D 1=�. We have shown

that lim
x!1

1=x D 0.
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Hence,

jf .x/� 4j < 5jx � 2j if jx � 2j < ı � 1:

But 5jx�2j < � if jx�2j < �=5. Therefore, if we take ı D minf1; �=5g, the minimum

(the smaller) of the two numbers 1 and �=5, then

jf .x/� 4j < 5jx � 2j < 5 �
�

5
D � if jx � 2j < ı:

This proves that lim
x!2

f .x/ D 4.

Using the Definition of Limit to Prove Theorems
We do not usually rely on the formal definition of limit to verify specific limits such as

those in the two examples above. Rather, we appeal to general theorems about limits, in

particular Theorems 2–4 of Section 1.2. The definition is used to prove these theorems.

As an example, we prove part 1 of Theorem 2, the Sum Rule.

E X A M P L E 4
(Proving the rule for the limit of a sum) If lim

x!a
f .x/ D L and

lim
x!a

g.x/ D M , prove that lim
x!a

�

f .x/C g.x/
�

D LCM:

Solution Let � > 0 be given. We want to find a positive number ı such that

0 < jx � aj < ı )

ˇ

ˇ

�

f .x/C g.x/
�

� .LCM/
ˇ

ˇ < �:

Observe that

ˇ

ˇ

�

f .x/C g.x/
�

� .LCM/
ˇ

ˇ Regroup terms.

D

ˇ

ˇ

�

f .x/� L
�

C

�

g.x/�M
�ˇ

ˇ (Use the triangle inequality:

jaC bj � jaj C jbj).

� jf .x/�Lj C jg.x/�M j:

Since lim
x!a

f .x/ D L and �=2 is a positive number, there exists a number ı1 > 0 such

that

0 < jx � aj < ı1 ) jf .x/�Lj < �=2:

Similarly, since lim
x!a

g.x/ D M , there exists a number ı2 > 0 such that

0 < jx � aj < ı2 ) jg.x/�M j < �=2:

Let ı D minfı1; ı2g, the smaller of ı1 and ı2. If 0 < jx � aj < ı, then jx � aj < ı1,

so jf .x/� Lj < �=2, and jx � aj < ı2, so jg.x/�M j < �=2. Therefore,

ˇ

ˇ

�

f .x/C g.x/
�

� .LCM/
ˇ

ˇ <
�

2
C

�

2
D �:

This shows that lim
x!a

�

f .x/C g.x/
�

D LCM:

Other Kinds of Limits
The formal definition of limit can be modified to give precise definitions of one-sided

limits, limits at infinity, and infinite limits. We give some of the definitions here and

leave you to supply the others.

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 1 – page 91 October 15, 2016

SECTION 1.5: The Formal Definition of Limit 91

D E F I N I T I O N

9

Right limits

We say that f .x/ has right limit L at a, and we write

lim
x!aC

f .x/ D L;

if the following condition is satisfied:

for every number � > 0 there exists a number ı > 0, possibly depending on

�, such that if a < x < aC ı, then x belongs to the domain of f and

jf .x/� Lj < �:

Notice how the condition 0 < jx � aj < ı in the definition of limit becomes a < x <

y

x
a aC ı

L � �

L

LC �

y D f .x/

Figure 1.36 If a < x < aC ı,

then jf .x/ � Lj < �

aC ı in the right limit case (Figure 1.36). The definition for a left limit is formulated

in a similar way.

E X A M P L E 5
Show that lim

x!0C

p

x D 0.

Solution Let � > 0 be given. If x > 0, then j
p

x � 0j D
p

x. We can ensure that
p

x < � by requiring x < �2. Thus, we can take ı D �2 and the condition of the

definition will be satisfied:

0 < x < ı D �
2 implies j

p

x � 0j < �:

Therefore, lim
x!0C

p

x D 0.

To claim that a function f has a limit L at infinity, we must be able to ensure that

the error jf .x/ � Lj is less than any given positive number � by restricting x to be

sufficiently large, that is, by requiring x > R for some positive number R depending

on �.

D E F I N I T I O N

10

Limit at infinity

We say that f .x/ approaches the limit L as x approaches infinity, and we

write

lim
x!1

f .x/ D L;

if the following condition is satisfied:

for every number � > 0 there exists a number R, possibly depending on �,

such that if x > R, then x belongs to the domain of f and

jf .x/� Lj < �:

You are invited to formulate a version of the definition of a limit at negative infinity.

E X A M P L E 6 Show that lim
x!1

1

x
D 0.

Solution Let � be a given positive number. For x > 0 we have

ˇ

ˇ

ˇ

ˇ

1

x
� 0

ˇ

ˇ

ˇ

ˇ

D

1

jxj
D

1

x
< � provided x >

1

�
:

Therefore, the condition of the definition is satisfied with R D 1=�. We have shown

that lim
x!1

1=x D 0.
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To show that f .x/ has an infinite limit at a, we must ensure that f .x/ is larger than any

given positive number (say B) by restricting x to a sufficiently small interval centred

at a, and requiring that x ¤ a.

D E F I N I T I O N

11

Infinite limits

We say that f .x/ approaches infinity as x approaches a and write

lim
x!a

f .x/ D1;

if for every positive number B we can find a positive number ı, possibly

depending on B , such that if 0 < jx � aj < ı, then x belongs to the domain

of f and f .x/ > B .

Try to formulate the corresponding definition for the concept limx!a f .x/ D �1.

Then try to modify both definitions to cover the case of infinite one-sided limits and

infinite limits at infinity.

E X A M P L E 7 Verify that lim
x!0

1

x2
D 1.

Solution Let B be any positive number. We have

1

x2
> B provided that x

2
<
1

B
:

If ı D 1=
p

B , then

0 < jxj < ı ) x
2
< ı

2
D

1

B
)

1

x2
> B:

Therefore, limx!0 1=x
2
D 1.

E X E R C I S E S 1.5

1. The length L of a metal rod is given in terms of the

temperature T ( ıC) by L D 39:6C 0:025T cm: Within what

range of temperature must the rod be kept if its length must be

maintained within˙1 mm of 40 cm?

2. What is the largest tolerable error in the 20 cm edge length of

a cubical cardboard box if the volume of the box must be

within˙1:2% of 8;000 cm3?

In Exercises 3–6, in what interval must x be confined if f .x/ must

be within the given distance � of the number L?

3. f .x/ D 2x � 1, L D 3, � D 0:02

4. f .x/ D x2, L D 4, � D 0:1

5. f .x/ D
p

x, L D 1, � D 0:1

6. f .x/ D 1=x, L D �2, � D 0:01

In Exercises 7–10, find a number ı > 0 such that if jx � aj < ı,

then jf .x/ � Lj will be less than the given number �.

7. f .x/ D 3x C 1, a D 2, L D 7, � D 0:03

8. f .x/ D
p

2x C 3, a D 3, L D 3, � D 0:01

9. f .x/ D x3, a D 2, L D 8, � D 0:2

10. f .x/ D 1=.x C 1/, a D 0, L D 1, � D 0:05

In Exercises 11–20, use the formal definition of limit to verify the

indicated limit.

11. lim
x!1

.3x C 1/ D 4 12. lim
x!2

.5 � 2x/ D 1

13. lim
x!0

x
2
D 0 14. lim

x!2

x � 2

1C x2
D 0

15. lim
x!1=2

1 � 4x2

1 � 2x
D 2 16. lim

x!�2

x2
C 2x

x C 2
D �2

17. lim
x!1

1

x C 1
D

1

2
18. lim

x!�1

x C 1

x2
� 1
D �

1

2

19. lim
x!1

p

x D 1 20. lim
x!2

x
3
D 8

Give formal definitions of the limit statements in Exercises 21–26.

21. lim
x!a�

f .x/ D L 22. lim
x!�1

f .x/ D L

23. lim
x!a

f .x/ D �1 24. lim
x!1

f .x/ D1

25. lim
x!aC

f .x/ D �1 26. lim
x!a�

f .x/ D1

Use formal definitions of the various kinds of limits to prove the

statements in Exercises 27–30.
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27. lim
x!1C

1

x � 1
D1 28. lim

x!1�

1

x � 1
D �1

29. lim
x!1

1
p

x2
C 1
D 0 30. lim

x!1

p

x D1

Proving Theorems with the Definition of Limit

31.I Prove that limits are unique; that is, if limx!a f .x/ D L and

limx!a f .x/ DM , prove that L DM . Hint: Suppose

L ¤M and let � D jL �M j=3.

32.A If limx!a g.x/ DM , show that there exists a number ı > 0

such that

0 < jx � aj < ı ) jg.x/j < 1C jM j:

(Hint: Take � D 1 in the definition of limit.) This says that the

values of g.x/ are bounded near a point where g has a limit.

33.I If limx!a f .x/ D L and limx!a g.x/ DM , prove that

limx!a f .x/g.x/ D LM (the Product Rule part of

Theorem 2). Hint: Reread Example 4. Let � > 0 and write

jf .x/g.x/ � LM j D jf .x/g.x/ � Lg.x/CLg.x/ � LM j

D j.f .x/ � L/g.x/CL.g.x/ �M/j

� j.f .x/ � L/g.x/j C jL.g.x/ �M/j

D jg.x/jjf .x/ � Lj C jLjjg.x/ �M j

Now try to make each term in the last line less than �=2 by

taking x close enough to a. You will need the result of

Exercise 32.

34.A If limx!a g.x/ DM , where M ¤ 0, show that there exists a

number ı > 0 such that

0 < jx � aj < ı ) jg.x/j > jM j=2:

35.A If limx!a g.x/ DM , where M ¤ 0, show that

lim
x!a

1

g.x/
D

1

M
:

Hint: You will need the result of Exercise 34.

36.A Use the facts proved in Exercises 33 and 35 to prove the

Quotient Rule (part 5 of Theorem 2): if limx!a f .x/ D L

and limx!a g.x/ DM , where M ¤ 0, then

lim
x!a

f .x/

g.x/
D

L

M
:

37.I Use the definition of limit twice to prove Theorem 7 of

Section 1.4; that is, if f is continuous at L and if

limx!c g.x/ D L, then

lim
x!c

f .g.x// D f .L/ D f

�

lim
x!c

g.x/

�

:

38.I Prove the Squeeze Theorem (Theorem 4 in Section 1.2). Hint:

If f .x/ � g.x/ � h.x/, then

jg.x/ � Lj D jg.x/ � f .x/C f .x/ � Lj

� jg.x/ � f .x/j C jf .x/ � Lj

� jh.x/ � f .x/j C jf .x/ � Lj

D jh.x/ � L � .f .x/ � L/j C jf .x/ � Lj

� jh.x/ � Lj C jf .x/ � Lj C jf .x/ � Lj

Now you can make each term in the last expression less than

�=3 and so complete the proof.

C H A P T E R R E V I E W

Key Ideas

� What do the following statements and phrases mean?

˘ the average rate of change of f .x/ on Œa; b�

˘ the instantaneous rate of change of f .x/ at x D a

˘ limx!a f .x/ D L

˘ limx!aC f .x/ D L; limx!a� f .x/ D L

˘ limx!1 f .x/ D L; limx!�1 f .x/ D L

˘ limx!a f .x/ D1; limx!aC f .x/ D �1

˘ f is continuous at c.

˘ f is left (or right) continuous at c.

˘ f has a continuous extension to c.

˘ f is a continuous function.

˘ f takes on maximum and minimum values on interval I .

˘ f is bounded on interval I .

˘ f has the intermediate-value property on interval I .

� State as many “laws of limits” as you can.

� What properties must a function have if it is continuous and

its domain is a closed, finite interval?

� How can you find zeros (roots) of a continuous function?

Review Exercises

1. Find the average rate of change of x3 over Œ1; 3�.

2. Find the average rate of change of 1=x over Œ�2;�1�.

3. Find the rate of change of x3 at x D 2.

4. Find the rate of change of 1=x at x D �3=2.

Evaluate the limits in Exercises 5–30 or explain why they do not

exist.

5. lim
x!1

.x
2
� 4x C 7/ 6. lim

x!2

x2

1 � x2

7. lim
x!1

x
2

1 � x2
8. lim

x!2

x
2
� 4

x2
� 5x C 6

9. lim
x!2

x2
� 4

x2
� 4x C 4

10. lim
x!2�

x2
� 4

x2
� 4x C 4
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To show that f .x/ has an infinite limit at a, we must ensure that f .x/ is larger than any

given positive number (say B) by restricting x to a sufficiently small interval centred

at a, and requiring that x ¤ a.

D E F I N I T I O N

11

Infinite limits

We say that f .x/ approaches infinity as x approaches a and write

lim
x!a

f .x/ D1;

if for every positive number B we can find a positive number ı, possibly

depending on B , such that if 0 < jx � aj < ı, then x belongs to the domain

of f and f .x/ > B .

Try to formulate the corresponding definition for the concept limx!a f .x/ D �1.

Then try to modify both definitions to cover the case of infinite one-sided limits and

infinite limits at infinity.

E X A M P L E 7 Verify that lim
x!0

1

x2
D 1.

Solution Let B be any positive number. We have

1

x2
> B provided that x

2
<
1

B
:

If ı D 1=
p

B , then

0 < jxj < ı ) x
2
< ı

2
D

1

B
)

1

x2
> B:

Therefore, limx!0 1=x
2
D 1.

E X E R C I S E S 1.5

1. The length L of a metal rod is given in terms of the

temperature T ( ıC) by L D 39:6C 0:025T cm: Within what

range of temperature must the rod be kept if its length must be

maintained within˙1 mm of 40 cm?

2. What is the largest tolerable error in the 20 cm edge length of

a cubical cardboard box if the volume of the box must be

within˙1:2% of 8;000 cm3?

In Exercises 3–6, in what interval must x be confined if f .x/ must

be within the given distance � of the number L?

3. f .x/ D 2x � 1, L D 3, � D 0:02

4. f .x/ D x2, L D 4, � D 0:1

5. f .x/ D
p

x, L D 1, � D 0:1

6. f .x/ D 1=x, L D �2, � D 0:01

In Exercises 7–10, find a number ı > 0 such that if jx � aj < ı,

then jf .x/ � Lj will be less than the given number �.

7. f .x/ D 3x C 1, a D 2, L D 7, � D 0:03

8. f .x/ D
p

2x C 3, a D 3, L D 3, � D 0:01

9. f .x/ D x3, a D 2, L D 8, � D 0:2

10. f .x/ D 1=.x C 1/, a D 0, L D 1, � D 0:05

In Exercises 11–20, use the formal definition of limit to verify the

indicated limit.

11. lim
x!1

.3x C 1/ D 4 12. lim
x!2

.5 � 2x/ D 1

13. lim
x!0

x
2
D 0 14. lim

x!2

x � 2

1C x2
D 0

15. lim
x!1=2

1 � 4x2

1 � 2x
D 2 16. lim

x!�2

x2
C 2x

x C 2
D �2

17. lim
x!1

1

x C 1
D

1

2
18. lim

x!�1

x C 1

x2
� 1
D �

1

2

19. lim
x!1

p

x D 1 20. lim
x!2

x
3
D 8

Give formal definitions of the limit statements in Exercises 21–26.

21. lim
x!a�

f .x/ D L 22. lim
x!�1

f .x/ D L

23. lim
x!a

f .x/ D �1 24. lim
x!1

f .x/ D1

25. lim
x!aC

f .x/ D �1 26. lim
x!a�

f .x/ D1

Use formal definitions of the various kinds of limits to prove the

statements in Exercises 27–30.
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27. lim
x!1C

1

x � 1
D1 28. lim

x!1�

1

x � 1
D �1

29. lim
x!1

1
p

x2
C 1
D 0 30. lim

x!1

p

x D1

Proving Theorems with the Definition of Limit

31.I Prove that limits are unique; that is, if limx!a f .x/ D L and

limx!a f .x/ DM , prove that L DM . Hint: Suppose

L ¤M and let � D jL �M j=3.

32.A If limx!a g.x/ DM , show that there exists a number ı > 0

such that

0 < jx � aj < ı ) jg.x/j < 1C jM j:

(Hint: Take � D 1 in the definition of limit.) This says that the

values of g.x/ are bounded near a point where g has a limit.

33.I If limx!a f .x/ D L and limx!a g.x/ DM , prove that

limx!a f .x/g.x/ D LM (the Product Rule part of

Theorem 2). Hint: Reread Example 4. Let � > 0 and write

jf .x/g.x/ � LM j D jf .x/g.x/ � Lg.x/CLg.x/ � LM j

D j.f .x/ � L/g.x/CL.g.x/ �M/j

� j.f .x/ � L/g.x/j C jL.g.x/ �M/j

D jg.x/jjf .x/ � Lj C jLjjg.x/ �M j

Now try to make each term in the last line less than �=2 by

taking x close enough to a. You will need the result of

Exercise 32.

34.A If limx!a g.x/ DM , where M ¤ 0, show that there exists a

number ı > 0 such that

0 < jx � aj < ı ) jg.x/j > jM j=2:

35.A If limx!a g.x/ DM , where M ¤ 0, show that

lim
x!a

1

g.x/
D

1

M
:

Hint: You will need the result of Exercise 34.

36.A Use the facts proved in Exercises 33 and 35 to prove the

Quotient Rule (part 5 of Theorem 2): if limx!a f .x/ D L

and limx!a g.x/ DM , where M ¤ 0, then

lim
x!a

f .x/

g.x/
D

L

M
:

37.I Use the definition of limit twice to prove Theorem 7 of

Section 1.4; that is, if f is continuous at L and if

limx!c g.x/ D L, then

lim
x!c

f .g.x// D f .L/ D f

�

lim
x!c

g.x/

�

:

38.I Prove the Squeeze Theorem (Theorem 4 in Section 1.2). Hint:

If f .x/ � g.x/ � h.x/, then

jg.x/ � Lj D jg.x/ � f .x/C f .x/ � Lj

� jg.x/ � f .x/j C jf .x/ � Lj

� jh.x/ � f .x/j C jf .x/ � Lj

D jh.x/ � L � .f .x/ � L/j C jf .x/ � Lj

� jh.x/ � Lj C jf .x/ � Lj C jf .x/ � Lj

Now you can make each term in the last expression less than

�=3 and so complete the proof.

C H A P T E R R E V I E W

Key Ideas

� What do the following statements and phrases mean?

˘ the average rate of change of f .x/ on Œa; b�

˘ the instantaneous rate of change of f .x/ at x D a

˘ limx!a f .x/ D L

˘ limx!aC f .x/ D L; limx!a� f .x/ D L

˘ limx!1 f .x/ D L; limx!�1 f .x/ D L

˘ limx!a f .x/ D1; limx!aC f .x/ D �1

˘ f is continuous at c.

˘ f is left (or right) continuous at c.

˘ f has a continuous extension to c.

˘ f is a continuous function.

˘ f takes on maximum and minimum values on interval I .

˘ f is bounded on interval I .

˘ f has the intermediate-value property on interval I .

� State as many “laws of limits” as you can.

� What properties must a function have if it is continuous and

its domain is a closed, finite interval?

� How can you find zeros (roots) of a continuous function?

Review Exercises

1. Find the average rate of change of x3 over Œ1; 3�.

2. Find the average rate of change of 1=x over Œ�2;�1�.

3. Find the rate of change of x3 at x D 2.

4. Find the rate of change of 1=x at x D �3=2.

Evaluate the limits in Exercises 5–30 or explain why they do not

exist.

5. lim
x!1

.x
2
� 4x C 7/ 6. lim

x!2

x2

1 � x2

7. lim
x!1

x
2

1 � x2
8. lim

x!2

x
2
� 4

x2
� 5x C 6

9. lim
x!2

x2
� 4

x2
� 4x C 4

10. lim
x!2�

x2
� 4

x2
� 4x C 4
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11. lim
x!�2C

x2
� 4

x2
C 4x C 4

12. lim
x!4

2 �
p

x

x � 4

13. lim
x!3

x2
� 9

p

x �
p

3
14. lim

h!0

h
p

x C 3h �
p

x

15. lim
x!0C

p

x � x2 16. lim
x!0

p

x � x2

17. lim
x!1

p

x � x2 18. lim
x!1�

p

x � x2

19. lim
x!1

1 � x
2

3x2
� x � 1

20. lim
x!�1

2x C 100

x2
C 3

21. lim
x!�1

x3
� 1

x2
C 4

22. lim
x!1

x4

x2
� 4

23. lim
x!0C

1
p

x � x2
24. lim

x!1=2

1
p

x � x2

25. lim
x!1

sinx 26. lim
x!1

cosx

x

27. lim
x!0

x sin
1

x
28. lim

x!0
sin

1

x2

29. lim
x!�1

Œx C

p

x2
� 4x C 1�

30. lim
x!1

Œx C

p

x2
� 4x C 1�

At what, if any, points in its domain is the function f in Exercises

31–38 discontinuous? Is f left or right continuous at these points?

In Exercises 35 and 36,H refers to the Heaviside function: H.x/ D

1 if x � 0 and H.x/ D 0 if x < 0.

31. f .x/ D x3
� 4x

2
C 1 32. f .x/ D

x

x C 1

33. f .x/ D

�

x2 if x > 2

x if x � 2
34. f .x/ D

�

x2 if x > 1

x if x � 1

35. f .x/ D H.x � 1/ 36. f .x/ D H.9 � x2
/

37. f .x/ D jxj C jx C 1j

38. f .x/ D
n

jxj=jx C 1j if x ¤ �1

1 if x D �1

Challenging Problems

1. Show that the average rate of change of the function x3 over the

interval Œa; b�, where 0 < a < b, is equal to the instantaneous

rate of change of x3 at x D
p

.a2
C ab C b2/=3. Is this point

to the left or to the right of the midpoint .a C b/=2 of the

interval Œa; b�?

2. Evaluate lim
x!0

x

jx � 1j � jx C 1j
.

3. Evaluate lim
x!3

j5 � 2xj � jx � 2j

jx � 5j � j3x � 7j
.

4. Evaluate lim
x!64

x1=3
� 4

x1=2
� 8

.

5. Evaluate lim
x!1

p

3C x � 2

3
p

7C x � 2
.

6. The equation ax2
C2x�1 D 0, where a is a constant, has two

roots if a > �1 and a ¤ 0:

rC.a/ D
�1C

p

1C a

a
and r�.a/ D

�1 �
p

1C a

a
:

(a) What happens to the root r�.a/ when a! 0 ?

(b) Investigate numerically what happens to the root

rC.a/ when a! 0 by trying the values a D 1, ˙0:1,

˙0:01, : : : : For values such as a D 10�8, the limited pre-

cision of your calculator may produce some interesting re-

sults. What happens, and why?

(c) Evaluate lima!0 rC.a/ mathematically by using the iden-

tity

p

A �
p

B D
A � B
p

AC
p

B
:

7.A TRUE or FALSE? If TRUE, give reasons; if FALSE, give a

counterexample.

(a) If limx!a f .x/ exists but limx!a g.x/ does not exist,

then limx!a .f .x/C g.x// does not exist.

(b) If neither limx!a f .x/ nor limx!a g.x/ exists, then

limx!a .f .x/C g.x// does not exist.

(c) If f is continuous at a, then so is jf j.

(d) If jf j is continuous at a, then so is f .

(e) If f .x/ < g.x/ for all x in an interval around a, and if

limx!a f .x/ and limx!a g.x/ both exist, then

limx!a f .x/ < limx!a g.x/.

8.A (a) If f is a continuous function defined on a closed interval

Œa; b�, show that R.f / is a closed interval.

(b) What are the possibilities for R.f / if D.f / is an open

interval .a; b/?

9. Consider the function f .x/ D
x2
� 1

jx2
� 1j

. Find all points where

f is not continuous. Does f have one-sided limits at those

points, and if so, what are they?

10.A Find the minimum value of f .x/ D 1=.x�x2/ on the interval

.0; 1/. Explain how you know such a minimum value must

exist.

11.I (a) Suppose f is a continuous function on the interval Œ0; 1�,

and f .0/ D f .1/. Show that f .a/ D f

�

aC
1

2

�

for

some a 2

�

0;
1

2

�

.

Hint: Let g.x/ D f

�

x C
1

2

�

� f .x/, and use the

Intermediate-Value Theorem.

(b) If n is an integer larger than 2, show that

f .a/ D f

�

aC
1

n

�

for some a 2

�

0; 1 �
1

n

�

.
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C H A P T E R 2

Differentiation

“
‘All right,’ said Deep Thought. ‘The Answer to the Great Question : : : ’

‘Yes : : : !’

‘Of Life, the Universe and Everything : : : ’ said Deep Thought.

‘Yes : : : !’

‘Is : : : ’ said Deep Thought, and paused.

‘Yes : : : ! : : : ?’

‘Forty-two,’ said Deep Thought, with infinite majesty and calm.

: : :

‘Forty-two!’ yelled Loonquawl. ‘Is that all you’ve got to show for seven

and a half million years’ work?’

‘I checked it very thoroughly,’ said the computer, ‘and that quite

definitely is the answer. I think the problem, to be quite honest with

you, is that you’ve never actually known what the question is.’

”Douglas Adams 1952–2001

from The Hitchhiker’s Guide to the Galaxy

Introduction Two fundamental problems are considered in calculus.

The problem of slopes is concerned with finding the slope

of (the tangent line to) a given curve at a given point on the curve. The problem of

areas is concerned with finding the area of a plane region bounded by curves and

straight lines. The solution of the problem of slopes is the subject of differential cal-

culus. As we will see, it has many applications in mathematics and other disciplines.

The problem of areas is the subject of integral calculus, which we begin in Chapter 5.

2.1 Tangent Lines and Their Slopes
This section deals with the problem of finding a straight line L that is tangent to a

curve C at a point P . As is often the case in mathematics, the most important step in

the solution of such a fundamental problem is making a suitable definition.

For simplicity, and to avoid certain problems best postponed until later, we will

not deal with the most general kinds of curves now, but only with those that are the

graphs of continuous functions. Let C be the graph of y D f .x/ and let P be the

point .x0; y0/ on C , so that y0 D f .x0/. We assume that P is not an endpoint of C .

Therefore, C extends some distance on both sides of P . (See Figure 2.1.)

What do we mean when we say that the line L is tangent to C at P ? Past experi-

ence with tangent lines to circles does not help us to define tangency for more general

curves. A tangent line to a circle at P has the following properties (see Figure 2.2):

(i) It meets the circle at only the one point P .

(ii) The circle lies on only one side of the line.

y

x

P.x0; y0/

L

C

y D f .x/

Figure 2.1 L is tangent to C at P
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