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Preface

Through several centuries there has been a lively interaction between
mathematics and mechanics. On the one side, mechanics has used mathemat-
ics to formulate the basic laws and to apply them to a host of problems
that call for the quantitative prediction of the consequences of some action.
On the other side, the needs of mechanics have stimulated the development
of mathematical concepts. Differential calculus grew out of the needs of
Newtonian dynamics; vector algebra was developed as a means.to describe
force systems; vector analysis, to study velocity fields and force fields; and
the calculus of variations has evolved from the energy principles of mechan-
ics. .

In recent times the theory of tensors has attracted the attention of the
mechanics people. Its very name indicates its origin in the theory of elasticity.
For a long time little use has been made of it in this area, but in the last
decade its usefulness in the mechanics of continuous media has been widely
recognized. While the undergraduate textbook literature in this country
was becoming * vectorized” (lagging almost half a century behind the
development in Europe), books dealing with various aspects of continuum
mechanics took to tensors like fish to water. Since many authors were not
sure whether their readers were sufficiently familiar with tensors, they either
added a chapter on tensors or wrote a separate book on the subject. Tensor
analysis has undergone notable changes in this process, especially in notations
and nomenclature, but also in a shift of emphasis and in the establishment of
a cross connection to the Gibbs type of vector analysis (the “boldface
vectors ).
~ Many of the recent books on continuum mechanics are only * tensorized >
to the extent that they use cartesian tensor notation as a convenient
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shorthand for writing equations. This is a rather harmless use of tensors.
The general, noncartesian tensor is a much sharper thinking tool and, like
other sharp tools, can be very beneficial and very dangerous, depending on
how it is used. Much nonsense can be hidden behind a cloud of tensor
symbols and much light can be shed upon a difficult subject. The more
thoroughly the new generation of engineers learns to understand and to use
tensors, the more useful they will be.

This book has been written with the intent to promote such understanding.
It has grown out of a graduate course that teaches tensor analysis against the
background of its application in mechanics. As soon as each mathematical
concept has been developed, it is interpreted in mechanical terms and its
use in continuum mechanics is shown. Thus, chapters on mathematics and
on mechanics alternate, and it is hoped that this will bring lofty theory down
to earth and help the engineer to understand the creations of abstract thinking
in terms of familiar objects.

Mastery of a mathematical tool cannot be acquired by just reading about
it—it needs practice. In order that the reader may get started on his way to
practice, problems have been attached to most chapters. The reader is
encouraged to solve them and then to proceed further, and to apply what he
has learned to his own problems. This is what the author did when, several
decades ago, he was first confronted with the need of penetrating the thicket
of tensor books of that era.

The author wishes to express his thanks to Dr. William Prager for critically
reading the manuscript, and to Dr. Tsuneyoshi Nakamura, who persuaded
him to give a series of lectures at Kyoto University. The preparation of these
lectures on general shell theory gave the final push toward starting work on
this book.

Stanford, California W. F.
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CHAPTER 1

Vectors and Tensors

I'r IS ASSUMED THAT the reader is familiar with the representation of
vectors by arrows, with their addition and their resolution into components,
i.e. with the vector parallelogram and its extension to three dimensions. We
also assume familiarity with the dot product and later (p. 36) with the cross
product. Vectors subjected to this special kind of algebra will be called Gibbs
type vectors and will be denoted by boldface letters.

In this and the following sections the reader will learn a completely different
means of describing the same physical quantities, called tensor algebra.
Each of the two competing formulations has its advantages and its drawbacks.
The Gibbs form of vector algebra is independent of a coordinate system,
appeals strongly to visualization and leads easily into graphical methods,
while tensor algebra is tied to coordinates, is abstract and very formal. This
puts the tensor formulation of physical problems at a clear disadvantage as
long as one deals with simple objects, but makes it a powerful tool in situa-
tions too complicated to permit visualization. The Gibbs formalism can
be extended to physical quantities more complicated than a vector (moments
of inertia, stress, strain), but this extension is rather cumbersome and rarely
used. On the other hand, in tensor algebra the vector appears as a special
case of a more general concept, which includes stress and inertia tensors but
is easily extended beyond them.

1.1. Dot Product, Vector Components

In a cartesian coordinate system x, y, z (Figure 1.1) we define a reference
frame of unit vectors i, i,, i, along the coordinate axes and with their help
a force vector

W. Flugge, Tensor Analysis and Continuum Mechanics
© Springer-Verlag Berlin Heidelberg 1972



2 Vectors and Tensors [Ch.1

P=Pi, + Pji + P, (1.1a)
and a displacement vector
= ud, + uji, + u,i,. (1.1b)

These formulas include the well-known definition of the addition of vectors
by the parallelogram rule.

In mechanics the work W done by the force P during a displacement u
is defined as the product of the absolute values P and u of the two vectors
and of the cosine of the angle § between them:

W = Pucos f.

This may be interpreted as the product of the force and the projection of u
on the direction of P or as the product of the displacement and the projection
of the force onu. It is commonly written as the dot product of the two vectors:

W=P-u=u'P=Pucosp. (1.2)

This equation represents the definition of the dot product and may be
applied to any two vectors. Since the projection of a vector u =v -+ w on
the direction of P is equal to the sum of the projections of v and w, it is
evident that the dot product has the distributive property:

P (v+w=P'v+P-w

When any one of the unit vectors i,, i,, i, is dot-multiplied with itself, the
angle f of (1.2) is zero, hence

N

Fioure 1.1 Vectors in cartesian coordinares.
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If, on the other hand, two different unit vectors are multiplied with each
other, they are at right angles and cos § = 0, hence

i, =i-i,=4,i,=0.
These relations may be combined into a single one:
i,1,= 0., mn=x,y,z (1.3)
if we introduce the Kronecker delta, é,,, by the equations

omm=1 if m=n,

5o=0 if me#n 1.4

We write the dot product of the right-hand sides of (1.1a,b):
P u=(Pi, + Pji, + P,i,) * (u,d, + ui, + u,i;).

When we multiply the two sums term by term, we encounter all the possible
combinations of m and »n in (1.3). Because of (1.4), only three of the nine
products survive and we have

P-u=P.u,+Pyu,+P,u, (1.5)

a well-known formula of elementary vector algebra.

We try now to repeat this line of thought in a skew coordinate system.
To simplify the demonstration, we restrict ourselves to two dimensions
(Figure 1.2). We write the work, i.e. the dot product, first as the work done
by P,i, plus that done by P,i,:

P-u=W=P,(u,+ u,cos a) + Py(u, + u, cos a) (1.6a)

I
l
]
B »l
iz Uiy Pziz \ . x
P, cos a-i,

FIGURE 1.2 Vectors in a skew rectilinear coordinate system.
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and then as the work done by P if the displacements u,i, and u,i, occur
subsequently:

P-u=W=u (P, + P,cos a) + u,(P, + P, cos ). (1.6b)
Each of these equations can be brought into the form
P-u=P.u, + P,u,+ (Pyu, + Pyu,) cos a.

This has yielded a result, but it has not increased our insight. It is better
to leave equations (1.6) as they stand and to realize that we must deal with
two different sets of components of each vector: (i) the usual ones, like
P,, P, which are obtained when P is made the diagonal of a parallelogram
whose sides are parallel to the coordinate axes, and (ii) the components
(P, + P,cos @), (P, + P,cosa), which are the normal projections of P
on the axes x and y.

Before we embark upon a closer inspection of these components we intro-
duce the notation which is fundamental for tensor theory and which will be
used from now on inthisbook. Instead of components P, , P, we write Pl P2,
using superscripts, and call these quantities the contravariant components
of the vector P. For the second set of components we write

P, + P,cosa =Py,
P,+P,cosa=P,

and call these the covariant components of P. The quantities P" are vector
components in the familiar sense of the word. When we multiply them with

the unit vectors i, = i; and i, = i, and add the products, we obtain the vector
P:

P =P, + P%, = ¥ P"i,. (1.72)

The covariant components can be added in a similar manner if we interpret
them as shown in Figure 1.3. This figure contains, besides the axes 1 and 2,
two other axes, which are at right angles to them. On these we project P

by the usual parallelogram construction to obtain components of the
magnitude

P,,+Pycosaz= P,
sin « sin «

and

P,+ P.cosa _P
sin o sin o

When we interpret them as vectors, they add up to form P. -We write them



§1.1] Dot Product, Vector Components 5

Pyi2 y

by

Py+P,cosa

sin a /
/
/

FIGURE 1.3 Covariant and contravariant components of a vector.

using reference vectors i, i2, which are not unit vectors, but have the absolute
value 1/sin . Then we can write

P=P1il+P2iz=ZPmim (1.7b)

as a second component representation of the vector P.

The idea explained here in two dimensions may easily be extended to three
(and even more) dimensions. We choose an arbitrary set of three unit
vectors i, i,, i3, called a reference frame. Then we resolve an arbitrary
vector v in the usual way into components along the directions of these unit
vectors and write them as v"i,, n =1, 2, 3. The vector v is then the sum of
these contravariant components

v=Y vi,. (1.8)

Next, we choose vectors i”, which satisfy the condition
" i, = o, (1.9)

where 67 is another way of writing the Kronecker symbol 6, defined in
(1.4). Each of the vectors i defined by (1.9) is at right angles to the vectors
i, with n# m and of such magnitude that its absolute Value |i"| is the
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reciprocal of cos (i,, i”). We may now resolve v in components in the direc-
tions of the vectors i™ and write

v=Y o,i" (1.10)

Since, in general, |i"| # 1, the covariant components v, are not simply
the absolute values of the component vectors v,,i™.

When we now consider any two vectors u and v, we may resolve one of
them into contravariant components according to (1.8) and the other one
into covariant ones according to (1.10):

=Y u",, v=Y y,i"
n m
The dot product is then

u-v=2"zm:u"v,,,i,,-i"‘=;§u”v,,5;”. (1.11)

The double sum contains all possible combinations of » and m, nine terms
all together. However, only in the three terms for which » = m, does the
Kronecker symbol 8 = 1, while for the other six it equals zero. We may,
therefore, write

u'v= Z u"v,, = u‘vl + u292 + u3vs ’ (112)

which shows that also in skew rectilinear coordinates the formula for the dot
product is as simple as (1.5), if for one vector we use the contravariant com-
ponents and for the other the covariant ones.

We may now do the final step to build up the notation to be used with
vectors and tensors. - It will turn out that we always have to deal with sums
over some index which appears twice in each term, once as a superscript in a
contravariant component and once as a subscript indicating a covariant
component. We shall in all these cases omit the summation sign and use the

SUMMATION CONVENTION: Whenever the same Latin letter (say »)
appears in a product once as a subscript and once as a superscript, it is
understood that this means a sum of all terms of this kind (i.e. for n=1,
2, 3).

With this convention we rewrite (1.12) as
u-v=u"y, (1.13)
and (1.11) as
u-v=u"p,i, i" = u",dy, (1.14)

implying in this case a summation over all n and over all m.
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Since in the result of such a summation the summation index no longer
appears, it does not matter which letter we use for it. Such an index is called
a dummy index, and when necessary, we may change the letter used for it from
one equation to the next or from the left-hand side to the right-hand side of
the same equation. It will often be necessary to do so because we must avoid
making the summation convention unclear by using the same letter for two
sums.

1.2. Base Vectors, Metric Tensor

In (1.7a) we used unit vectors i, as a base for defining the contravariant
components, but in (1.7b) we found it necessary to choose vectors i", which do
not have unit magnitude. We broaden our experience by considering a
vector in a polar coordinate system, Figure 1.4. As a specimen vector we
choose a line element ds. Defining unit vectors i,,i, in the direction of
increasing coordinates, we can write

ds =i, dr + i,r d6. (1.15)

FIGURE 1.4 Base vectors in polar coordinates.

Here, as everywhere, we want to consider the differentials of the coordinates
as the contravariant components of the line element vector ds:

dr=dx', df=dx’.

It is then necessary that, instead of unit vectors, we use the coefficients of
these differentials in (1.15) as base vectors:

g =iy, g = i,r.
We call them the contravariant base vectors and rewrite (1.15) in the form

ds = g, dx' + g, dx* = g; dx'. (1.16)
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While g, is still a unit yector, g, has the absolute value r and is not even
dimensionless, as the unit vectors are. We see also that, different from
rectilinear coordinates, these base vectors are not constant, but depend on
the coordinates of the point A4, for which they have been defined. The
directions of g, and g, depend on # and the magnitude of g, depends on r.
 We generalize (1.16) by extending it to an arbitrary (possibly curvilinear)
three-dimensicunal coordinate system x* (i = 1, 2, 3). Atany point A we choose
three vectors g; of such direction and magnitude that the line element vector

ds =g, dx'. (1.17)

Now consider the position vector r leading from a fixed point O (possibly
the origin of the coordinates) to the point 4. The line element ds is the
increment of r connected with the transition to an adjacent point, ds = dr.
We can write this increment in the form
or . .

dr = 5;1 dx',
where again the summation convention is to be applied (accepting the super-
script in the denominator in lieu of the required subscript). Comparing this
expression with (1.17), we see that

or
Ei—a-;- (1.18)

We apply the base vectors g; defined by (1.17) or (1.18) to all vectors
associated with the point 4. As an example, a force P acting at this point is
written as

P =g, P} (1.19)

any of the components P’ has the dimension of a force if the corresponding

g, is dimensionless [as g, in (1.16)] and otherwise has such a dimension that
its product with g; is a force.

A second set of base vectors g’ is defined by an equation similar to (1.9):
g g =dl. (1.20)

Each vector g’ is at right angles to all vectors g; for which i # j and has such
magnitude (and such a dimension) that its dot product with g; equals unity.
This defines completely the vectors g/, which are called the contravariant

base vectors. They may be used to define covariant components P; of any
vector P:

P=gP,. (.21)
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When we apply the definitions (1.19) and (1.21) to any two vectors u and
v, we may write their dot product as

u-v=u'g o8’ =u;g - g/ = ulv;6{ = u', (1.22a)

since

and in the alternate form
u-v=ug - v'g; = u 06 = u v’ (1.22b)

Every vector can be resolved into covariant or into contravariant compo-
nents. When we try to write the covariant base vector g, in contravariant
components, we have

g1=g'1+g°'0+g;-0,

i.e. a triviality. No matter what the actual magnitude of g, is, it always has
the components (1, 0, 0) in the system of base vectors g;. However, when we
resolve a covariant base vector into covariant components, we are led to a set
of new, important quantities:

8= gijgj- (1.23a)

The entity of the nine quantities g;; thus defined is called the metric tensor

and the individual g;; are its covariant components. The meaning which

stands behind this terminology wiil become clear when we study the tensor
concept (see p. 15).

In analogy to (1.23a), we may resolve g’ into contravariant components,

g =g'g; (1.23b)

and thus define contravariant components of the metric tensor.
Let us now consider dot products of base vectors of the same set:

88 =09x8 g =9udi=g; (1.24a)

or
g g =g%g g =g"]=g" (1.24b)
Since the two factors in a dot product may be interchanged, it follows that
9i;=95 g7 =g" (1.25)

Equations (1.24) may be used as the definitions of g;; and g”. If this is done,
(1.23) must be derived from them. This can be done in the following way:
Tentatively, let

g = aijgj
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and dot-multiply both sides of this equation by g;. This yields
8 &= aijgj ‘8= aij‘sl{ = Qi
and, because of (1.24a),
Aix =9ix-

Next, let us consider the product of base vectors from opposite systems.
From (1.20) we know that g; - g/ = &/ and, on the other hand, we have

g ¢ =gut &8 =9u9" = gug’
Comparing both statements, we obtain the result
gu g’ = 8. (1.26)

For a fixed value of j and for i = 1, 2, 3 this yields three component equations

9119°' + 9129 + 91397 = 6,

9219’ + 9229 + 9239 = 84,

9319’ + 93,97 + 93397 = 84,
which may be solved for the g, k =1, 2, 3 if the g, are known. Conversely,
(1.26) may also be used to calculate the g;, from known g'*.

As a last step in exploring the properties of the g;;, we consider a line
element vector d$ as in (1.17) and dot-multiply it by itself:

ds-ds=g;dx' g;dx) =g, dx" dx’. (1.27)

This equation is often used to derive expressions for the g;; in terms of the
coordinates. Its left-hand side is the square of the line element, and it is
usually easy to express it as a quadratic form in the coordinate differentials
dx'. Its coefficients are the g, ;- In this quadratic form it is, of course, not
possible to distinguish between the coefficients of dx! dx* and dx? dx', i.e.
between g,, and g,,; but because of (1.25) this is not necessary since g,
and g,, are each half of the total coefficient of the product of these two
differentials. Once the g;; have been found, (1.26) can be used to calculate
the g¥.

The g;; and g/ may be used to express the covariant and the contravariant
components of a vector in terms of each other. Take an arbitrary vector u
and write

u=u'g;.
Using (1.23a), we may write instead

= 24t j
u= uyijgj’
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and this must be the same as u;g’. However, when we write the equation
uigijgj = ”jgj,

we cannot simply ““cancel the factor” g/ on both sides, since these expres-

sions are not simple products but rather sums of three products containing the

factors g', g2, g°, respectively. To get rid of the factor g/, we must use the

following procedure. We dot-multiply both sides by g;. This yields on the
left-hand side

uigijgj “& = “igij 6l = u'gy
and on the right-hand side
ujgj &= “j‘si = Uy,
and now we can equate the results:

ulgi,‘ = U. (1.283)
In the same way one shows that

u, g™ = u*. (1.28b)

The operation described by (1.28) is known as lowering or raising an index.
With the help of these equations we may obtain two more forms of the
dot product:

u-v=uv'=uv;97 =uly,;. (1.29)

Here is a good place to pause and look back at what we have done. To
define the components of a vector, we need base vectors g;, g/, and since
these base vectors depend on the coordinates, for each vector we must choose
a definite point from which the base vectors are to be taken. Such a choice
cannot be meaningful unless the physical quantity, which the vector rep-
resents, is attached to a definite point in space. For a force, this is the point
where it is applied to a body. For a velocity in a flow field, it is the location
of a specific particle at a specific time. For a line element ds, it is the point
where this infinitesimal quantity is supposed to converge to zero. However,
a position vector r, as we used it on page 8, is not associated with one point,
but with two at a finite distance. Therefore, we cannot resolve it into co-
variant or contravariant components unless we arbitrarily specify from which
point we will take them. One of the essential difficulties of the theory of
large elastic deformations is that the displacement vector is not infinitesimal
and has to be considered with respect to two sets of base vectors—one located
at one end in the undeformed body and the other at the other end in the
deformed body.

Let us also have another look at the technique of handling the summation
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convention. In the second member of (1.27) we have two independent sums
separated by the multiplication dot. It is necessary to use two different
letters, i and j, for the dummy indices to make clear what belongs together
in one sum or the other. We may then shift the position of the factors and
combine them as suitable, and this has been done in the third member of
this equation.

In many equations we find indices which are not dummies. They occur
only once in each term and are either all subscripts or all superscripts, as for
example, the subscript k in (1.28a) or the superscripts i, j in (1.24b). This
means that such an equation is valid, separately, for any value this index may
assume. Therefore, (1.28a) represents three equations, written for k = 1, 2, 3,
and (1.24b) represents nine equations for the nine possible combinations of
i and j.

1.3. Coordinate Transformation

Let us consider two reference frames, the “old”” frame g; and the “new”
frame g;., where i’ = 1,2, 3. We assume that a vector is known by its
components ¢ in the old reference frame and we want to calculate its com-
ponents in the new one.

In each of the two frames we can define a set of contravariant base vectors
g/, g’, which satisfy (1.20):
g-g=06, g g=5. (1.30a, b)

The new base vectors may be resolved in components with respect to the old
base vectors of the same variance:

g =plg;, & =pBg. (1.31a,b)

These equations define two sets of nine quantities each, which express a
relation between the two reference frames. We introduce (1.31) with suitable
changes of the dummy indices into (1.30b):

6 =gv g =plg; e =BlBe; & =PBlBS;
and after summation over /:
Bl.BY =éF. (1.32a)

Since this equation can be written separately for any i and &/, it represents
nine equations between the various f. We may write them in matrix form:

Bi Bt BL[BU BT BY 100
B: B3 B |8 B BY|=|0 1 O
By B3 B3ILAY BT B3 001
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In matrix language this means that the matrices formed of the f/ and the
B% are reciprocals of each other. If one of them is known, the elements of
the other one can be calculated. One easily derives a counterpart to (1.32a):

BB = ok, (1.32b)

Now let us multiply both sides of (1.31a) by i . This involves, of course,
application of the summation convention to i" and because of (1.32b) yields

Bigr = BiBig; = dlg; = &, (1.33a)

i.e. an expression for the old base vectors in terms of the new ones. Similarly,
one can show that

g =pig" (1.33b)
We may now define components of a vector v in both reference frames:
A v=u,g' =0v'g, =v.g" =0v'g,. (1.34)
To find a relationship between v; and v;., we make use of (1.33b):
v=ug=up.8"=u gk

Again, we cannot simply ““cancel the factor” g*’ from the third and fourth
members, but we may dot-multiply both sides by g;.:

v, Big g =veg g,
v B 05 = v 85,
0B = ;. (1.352)
Multiplying both sides by Bi ', we obtain on the left
v; /3; ﬂi = 5;; = U

and hence
v =10 Bl (1.35b)

Equations (1.35) express the new covariant camponents in terms of the old
ones and vice versa. Similarly, one derives a pair of formulas for the con-
travariant components:

o =il ol =o'Bi. (1.35¢, d)

We may summarize (1.33) and (1.35) in the following form: Any quantity
which has a subscript, like g;, v;, must be multiplied by a B} to transform
it to the new reference frame, and whatever has a superscript, like g', v/,
needs a ff{. We arbitrarily take the base vectors g, as the standard of
comparison,and all quantities which vary in the same way are called covariant
and those which vary in the opposite way are called contravariant.
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In a coordinate system x' we may write the line element dr in the following
two forms:
dr =g dx' = p¥g,. dx'
and
. ox* .
dr = g, dx* = g, 2— dx'.
0x
Equating the right-hand sides again yields an equation in which we would
like to cancel a factor:

. ; ox¥ .
By dx' = g, 2 dx.
0x
To legalize the dropping of dx', we proceed in the following way: The
dx' (i =1, 2, 3) are the components of dr, and the equation is valid for any
choice of dr. Now choose a line element which points in the direction 1.
Then dx? = dx® =0, and since the sums over i have only one term i =1,
the factor dx! can be cancelled. Then consider line elements in directions
2 and 3 to find that, for every i separately, the relation
, ox¥
k = —_—
Bi g =8 Fa%
holds true. To get rid of the factor g,., we proceed as we have done already
on similar occasions. We dot-multiply by g/, find Kronecker deltas and
perform summations to find that

P
Bl = ai . (1.36a)
0x
Similarly,
. ox!
Br= o (1.36b)

Equations (1.36) can be used to calculate the transformation coefficients
p{ and B; by differentiating the equations which express one set of co-
ordinates in terms of the other. Often it is difficult to invert the relations
x'=x'(x'") or x!" = x/'(x") and only one of (1.36) can be applied. Then
(1.32) may be used to find the opposite set of f coefficients.

We obtain an interesting result when we ask how the g;; transform into
the new coordinates. The answer may be found in different ways. One is
is to write (1.24) in the new coordinates and then to apply (1.31):

gijy =8 8y = B g Bj g =p ﬁ_l, Ius (1.37a)
g =g gl = Bigh- pi'g = BiBi g". (1.37b)
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The g;; transform similarly to the covariant vector components in (1.35a),
but we need two S factors, one for each subscript, and the g/ show what
we may call double contravariant behavior. We may now understand why
the g;; and g are called components of the metric tensor. Metric because of
(1.27); they correlate the actual length of the line element (ds - ds)!/? and
the increments dx’ of the coordinates and thus establish the metric of the
space of these coordinates. Tensor because of (1.37), since we shall see in the
next section that this law of transformation is the essential property of a
tensor. Covariant and contravariant because of the type of § occurring in
each of (1.37).

There is a second way of deriving (1.37), and since it contains an important
technique of reasoning we shall demonstrate it here. We start from (1.27):

ds-ds=g,; dx' dd =g, dx' dx’.
Since dx’ are vector components, (1.35d) may be applied to them:
gy dx" dx? = g;; Bi dx" Bl dx”.

Since this equation holds for the components of any line element vector ds,
we first choose one for which only dx!’ # 0 and thus prove (1.37) for i’ =
= 1’. Then we do the same for i’ =j' =2’ and =3". Then we use a line
element for which only dx® = 0 and after cancelling from both sides of the
equation what is already known to be equal, we are left with

G dxV dx? + gy dx¥ dx' = g; (B BS dx' dx* + By Bl dx* dx').
172 j

We may cancel the differentials and in the last term we may interchange
iand j:
gra + ga =g By B + 9;i By Bis

whence, because of g;.,- = g,-1- and g;; = g;;, (1.37) is seen to be true for
g12-. This can be continued to cover the remaining components g;-3-
and gy3-.

We now know two techniques for ““cancelling a factor” in an equation:
(1) We make use of the general validity of the equation and go through a
sequence of special cases, or (2) when the factor to be cancelled is a base

vector, we dot-multiply by another base vector to produce a Kronecker
delta.

1.4. Tensors

We shall now generalize the result we obtained when transforming the
components of the metric tensor. Consider two vectors a and b, which, in a
reference frame g', have the components g; and b;. In a second (the *“new ™)
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reference frame g they have components a;. and b;.. We form the products
cj=a;b; and ¢y =a;by. (1.38a, b)

Such products may represent physical quantities, but at present our thinking
is merely formal and not attached to any physical visualization. We ask how
the nine quantities ¢; ;- depend on the nine c;;.

The answer comes, of course, from the transformation formula (1.35a).
We use it to express a;-and b;. in terms of @; and b; and find

Cirjr = a; i bjﬁf:' = CijB::’ ﬁ}' > (1.39a)
i.e. the same relation as (1.37a). Similarly we can use (1.35b) to find that
cij=apBibyBj = cvy BB (1.39b)
We may also use the contravariant components of a and b and define
cl=db and ' =a"b, (1.40)
and we can derive the relations
=cUpipy, H=c"BLpL. (1.41a,b)

In the terminology introduced in connection with (1.37), ¢;; shows double
covariant behavior and ¢" is double-contravariant. We call them the covar-
jant and the contravariant components of a tensor. The physical entity
which these components represent is not as easily visualized as a vector.
Since there are nine components c;;, an arrow has not enough free parameters
and in this book we shall not make any attempt at the visualization of tensors.
We shall, however, get familiar with a number of physical quantities which
are tensors.
We may also define tensor components of mixed variance, e.g.

oy

ct/

C‘l = aibj or cl'l = a,-bj. (142)
It may be left to the reader to show that
¢ = c'B. B, (1.43)

i.e. that one B of each set is needed to transform ¢/ into the new coordinates.
Since, in general,

a'b;=c!; #cf =a;b,

it is important to indicate which index comes first. The little dot used in
these symbols serves to mark a vacant space and is in handwriting more
useful than in print.

On the left-hand side of (1.38a) there are nine components ¢;;, but they
depend on the six components of the vectors a and b. It follows that not ail
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the c;; are independent of each other. We arrive at a perfectly general
tensor with nine independent components when we replace the right-hand
side of (1.38a) by a sum of at least two terms:

Cij = a,b] + diej'

Since all our conclusions apply to each term on the right-hand side of
this equation, all our results are equally applicable to these tensor compo-
nents ¢;; .

There is a second way to define a tensor ¢;;. We start from a set of nine
such quantities. Then the equation

a'c;;=b; (1.44a)
associates with every vector a another vector b; it is a mapping of all the
vectors a on all the vectors b. When we now change from one pair of refer-
ence frames g;, g' to another pair g;., g, we want to find quantities c;. I
such that the equation

a'c; =b, (1.44b)

connects the same pair of vectors a and b. We apply the transformations
(1.35b, d) to (1.44a):

a' Bl ¢ij = by ﬁf
When we multiply both sides of this equation by p/., we find on the right-
hand side
be BB = b, 8% = b,
and, hence,
a‘ﬁ: Igj cj=by;
we see that (1.44b) is satisfied for all pairs'a’, b;. if and only if (1.39a) holds.

We now consider quantities ¢;* found from the products of the components
of two tensors:

¢t = a; b, k= ayj b, (1.45a, b)
We assume that @;; and a;.;. are the components of the same tensor in two
reference terms, i.e. that they are connected by the transformation (1.39)
and that similarly (1.41) apply for b’ and »/*". We ask whether also ¢
are tensor components, i.e. whether they and ¢;*" are related through (1.43).

We find the answer by introducing (1.39a) and (1.41a) on the right-hand
side of (1.45b):

Ci'k’ = a; ﬁ: ﬁj blkﬁljlﬁzl = 4;j blkézjﬂg' ﬁll:
=a,; "B B = "Bl B¢ -
This indeed is (1.43).
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In (1.38), (1.40) and (1.42) we have defined tensor components of different
variance, starting from the same vectors a and b. We ask how these compo-
nents are related to each other. Let us start from (1.38a) and apply (1.28a)
to one or both of g; and b;:

Cij = aibkgkj = alglibkgkj-
Comparison with (1.40) and (1.42) shows that this can be written

¢y = ¢'gij = g1 g (1.46)

and that the procedure of raising or lowering an index, which we derived
for vector components on page 11, applies also to tensor components.
The comparison also shows that we need one factor g;; for each index to be
lowered and one factor g* for each index to be raised. This gives us the right
to consider ¢;;, ¢/, c!;, and ¢” as different sets of components of one object,
the tensor, although this tensor itself (different from the vectors a, b) will
never appear in our equations.

In general, ¢;; # c;;, but we shall later meet with many tensors for which
the relation :
Cij=Cj; (1.47)

ij
holds. Such tensors are called symmetric. Raising one index, we find from
(1.47)
¢t = cijgjk = cjigjk =c

and we may simply write ¢} for either ¢* or ¢*;. However, even for a sym-
metric tensor, there is not ¢f = cf. This relation is not only wrong, but it
does not even have correct tensor form, having a subscript i on one side and
a superscript i on the other.

When we raise both indices in (1.47), we arrive at the relation

¢ = ¢J, (1.48)
which holds for every symmetric tensor.
Occasionally we shall also meet tensors for which
(1.49)

This implies that ¢;; = 0 when i = j. Tensors of this kind are called antimetric
or skew-symmetric. A general second-order tensor c¢;; can always be written
as the sum of a symmetric and an antimetric tensor:

¢ij=a;;+ by; (1.50)

C,-J = _Cji'

with
a; =4%(ci; +c;) =ay, (1.51a)
biy=3(ci; = ¢;) = —bji = —3(c;i — ¢yy) (1.51b)
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If a;; is symmetric and b" is antimetric, the sum
a!-j.b“ =0 (1.52)
as may easily be verified.
Equation (1.26) may be interpreted as raising the second index of gy .

The result, which, because of the symmetry of the metric tensor, should be
written as g/, turns out to be a Kronecker delta:

g{ =8l (1.53)

It represents the mixed-variance components of the metric tensor in all
reference frames.

Thus far, we have distinguished between * the vector a” and “the vector
components @; or a'.”’ Since the components define the vector completely,
we shall, from now on, ease the language and speak of ‘““the vector a;”
and in a similar sense of ““ the tensor ¢;;,” which, of course, is identical with
“the tensor ¢'/.”

The tensors which were introduced by (1.38), (1.44), and (1.45) always
had two indices, which we could choose as subscripts or superscripts. We
shall call these tensors, when necessary, tensors of the second order. We now
introduce tensors of higher order by relations like the following:

J?

duk =a,-bjck or d,-jk=a,-jbk or aidijk=bjk. (1.54)

Since we may use covariant or contravariant components in the definitions,
this tensor of the third order may have a great many different components,
e.g diy, di%, d%, d*, etc. We leave it to the reader to prove that: (i) all
these components are related to each other by equations like (1.46); (ii) these
components are transformed to another reference frame by equations similar
to (1.39) and (1.41). For raising or lowering every index one g-factor is
needed, and the transformation needs three f-factors—the choice between
pm and B depends upon the variance of the component to be transformed.

All this applies to tensors of any higher order, which may be formed in the
same way. ’

Tensors of higher order may be symmetric or antimetric with respect to a
certain pair of subscripts.or superscripts. For example, the permutation
tensor €;;, to be defined on page 33, is antimetric with respect to any pair
of subscripts:

€ijk = — €jik = —€ixj = —Eji

and the elastic modulus EV*™ introduced in (4.11) is symmetric with respect
to the pair ij and with respect to the pair /m:

ijl jilm __ prijml
Eiitm = Eiiim = Elimt,

but a relation EY'™ = E''™ does not hold.
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In any tensor we may choose to make one subscript and one superscript
equal and to invoke the summation convention. When this is done to a
second-order tensor, no free index is left and the result is a simple number,
a scalar:

¢ = a.
In a third-order tensor c;* we have

ci* = gk, ¢!t = b/,
and these are two different vectors. This operation is called contraction,
and since it always absorbs two indices, it lowers the order of a tensor by two.
Vectors are, in this sense, tensors of the first order, and scalars are tensors
of zero order.

The contraction may, of course, be applied to products of components,
which have tensor character. For example, the second member of (1.46)
is one of the possible contractions of the fourth-order tensor ¢ g, .

This equation demonstrates another important fact. All its members are
tensors of the second order with the free subscripts f, j, but they contain
different numbers of dummy indices, namely. none, one pair &, and two pairs
I, k. To make sense, every tensor equation must be an equation between
tensors of the same order and of the same variance and with the same symbols
for the free indices. It may, for example, have the form

a; b* =rys™,u,k

with a free subscript i and a free superscript &, thus representing 3-3 =9
component equations. When everything is assembled on the left-hand side,
the equation has the form

AF =0,

to be true for i, k = 1, 2, 3. When we now transform all quantities to another
reference frame, we see that

A = A B
is a sum of terms which are all zero, whence
4;¥ =0.

This proves that any tensor equation which helds true in one reference frame
is also true in any other frame. This is a very efficient device for deriving
physical equations. All that is needed is to derive an equation in cartesian co-
ordinates and to choose the notations so that every quantity is written as a
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tensor component. We shali see later that this 1s noi always quite as simple
as it may look here, but still simple enough to make thiy device an important
tool of tensor analysis.

Problens

1.1. In the spherical coordinate system shown in Figure 1.3, let r = x!, # =x2,
¢ = x3. (a) Starting from an expression for the square of the line element, calculate
g:;and g¥. (b) What are the covariant components », of a vector whose contravariant
components v’ are known? (c) Calculate the transformation coefficients 8;. and
B which connect these coordinates with cartesian coordinates x!".

x3’
/
r \o
/' l r -~ X’
;////
e
xV
FIGURE 1.5

-1.2. In (1.16) the base vectors g. have been chosen so that the contravariant
components of the line element vector ds are the increments of the polar coordinates
r and 6. Show that the covariant components dx; of ds cannot be inteipreted as
increments of any coordinates x;.

1.3. Replace (1.16) by the equation ds = g’ dx; and choose the contravariant base
vectors so that dx; == dr, dx, = df. What is the relation between these dx, and those
to be derived from the dx' of the original equation?

References

There exists a great variety of presentations of tensor analysis. At one end
of the gamut are the books serving abstract mathematical purposes, not of
direct usefulness in applied mechanics. At the other end one finds chapters
on cartesian tensors in many recent books on the theory of elasticity, con-
tinuum mechanics, and dynamics. Most of these do not go beyond describing
a shorthand notation for writing equations. Here we mention a few books
which present general tensors in a form that lends itself to use in applied
sciences.
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The book by Block [2] is a brief, very readable introduction to the subject.
Lass [17] gives a vector analysis in Gibbs formulation in Chapter 2 and an
introduction to tensors in Chapter 3. The books by Wills [35], Synge-Schild
[31], Coburn [4], and Duschek-Hochrainer [5] are substantial treatises,
which may be consulted for further detail beyond the scope of the present
book. Hawkins [14] aims directly at the applications. Brillouin [3] starts
from very general concepts and gradually narrows them down to the tensor
concept used here and elsewhere. In the first chapter, Green-Zerna [13]
give a presentation directly aimed at the theory of large elastic deformations.

Some of the authors use Gibbs notation to about the same degree as this
book, while others avoid it entirely.



CHAPTER 2

The Strain Tensor

Wz CONSIDER A BODY before and after deformation. In the undeformed
body we establish a coordinate system x‘ and permanently affix the values of
its coordinates to each material point (particle). This means that such points
will also be known by the same values x’ even after deformation, although
moved to a different place. In other words, the coordinate system undergoes
the same deformation as the body. Coordinates used in this way are called
particle coordinates or convected coordinates.

Before the deformation we have base vectors g, and a metric tensor g;;
such that a line element is

ds = g, dx' 2.0
and its square

ds - ds =g, dx' dx’. 2.2)

After deformation, the line element d§ connecting the same material points is
different in length and direction and may be written

ds =g, dx'. 2.3)
The square of the line element is now
ds-ds§ = g,; dx' dx'. (2.4)

Here g, is the vector into which the original base vector g; has been deformed,
and §;; is the metric tensor in the deformed coordinate system.

The degree of deformation can be described by the change of the metric
tensor, i.e. by the quantities

Yij = gij ~9gij- (2.5)

W. Flugge, Tensor Analysis and Continuum Mechanics
© Springer-Verlag Berlin Heidelberg 1972
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Both §;; and g;; are components of tensors, but in different reference
frames, and it is not evident whether their difference y;; is a tensor in the
undeformed reference frame g;. To clarify the situation, we transform
everything from the coordinate system x’ to another one, x*, in which

ds =g, dx*, ds =g, dx". (2.6)
The undeformed base vectors are related by (1.31a), which we rewrite as
g =hg,
and a similar relation holds in the deformed state:
g = ﬁf@.

Since we are using convective coordinates, there is no difference between x*
and £’ and from (1.36b) we have

;0 i
B = 7 = B

Therefore, both terms on the right-hand side of (2.5) are transformed in the
same way and

Yy = Yij B ﬂf .
This proves the tensor character of y;;, and we call the entity of the nine
components y;; the strain tensor. Later (p. 27) we shall see how these y,;; are

related to the quantities commonly called strains. Since g;; and §;; are
symmetric, the same holds for the strain tensor:

Yij = Vji- 2.7

Equation (2.5) derives the strain tensor from the covariant components of
the metric tensor. When we now define quantities

(= g — g, @38)
one might expect that these are the contravariant strain components '
Y = yug™g’. 2.9

This, however, is not the case, as we may easily see. The components §;; and
4" of the metric tensor of the deformed medium are, of course, related by
the formula

g\ijgjk = 5; = 55‘,
and when we use (2.5) and (2.8), we have

(9" + 00)(g5 + ) = O + v+ L+ {yp = 8L
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The last term in the second member is quadratic in strainlike quantities.
When we neglect it, we find that for small strains

&= =%,
hence
Cij —_ _,yij
and
—yi =gl — g¥, (2.10)

The deformation of a body is completely described when, for each of its
points, we know the displacement vector u, which extends from the position
before deformation to that occupied by the same material point after de-
formation. - It must, therefore, be possible to express y;; in terms of u. This
relation we shall now derive. In doing so, we shall have to differentiate
a vector u = g'y;. Since we have not yet learned how to differentiate a base
vector—a long story, which cannot be told in passing (see p. 66)—we will
restrict ourselves to rectilinear coordinate systems x’, in which the base vec-
tors are constant. Then we have simply

L ou; o . '
du=g —dx’. 2.11
g7 (2.11)
For the partial derivative of the vector component we introduce a new
notation and write

ou
67"' =u;. (2.12)

This comma notation will henceforth be used for all derivatives with respect
to coordinates. When we introduce it into (2.11), this equation reads

du = gly; ; dx/ (2.13)

with the summation convention applied to i and j. However, we must keep
in mind that (2.12) does not imply that u; ; is a tensor. 1f it were, we would
have to prove it, but in fact it is not.

Now let us consider two adjacent material points 4 and B in the undeformed
body, Figure 2.1, which are the end points of a line element vector ds. During
the deformation, 4 undergoes the displacement u and moves to A, while B
experiences a slightly different displacement u + du when moving to B.
From Figure 2.1 we read the simple vector equation

u+dS=ds+u+du,
and from this and (2.13) we have
d8 =ds + du =ds + g'u, ; dx’. (2.149)
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o

u+dua

ds
A

FIGURE 2.1 Displacement and strain.

We may now write the square of the deformed line element:
ds - d§ = (g, dx' + ghu,; dx') - (g; dx’ + glu, ; dx).

Since all indices are dummies, they have been chosen so that the final result
looks best. When we multiply the two factors term by term and switch the
notation for some dummy pairs, we obtain

d§ ° dﬁ = (g'.’ -+ 2gi . glul,j + gkluk’l‘ ul,j) dxi dxj.
With the help of (2.4) and (2.5) this may be written
v dx dx?) = Quy ; + gMu uy ) dxt dxd.

In this equation both dx’ and dx’ represent, in different sums, the three
components of the same line element vector ds. Since this vector can be
chosen arbitrarily we may apply an extension of the technique explained
on page 15. We first choose ds =g; dx' and prove that the factors of
dx' dx' on both sides are equal, and then we do the same for i =j = 2 and
=3, but then the procedure differs because u; ; # u; ;. When we choose a
line element ds = g, dx' + g, dx* and cancel the terms which have already
been recognized to be the same on both sides, we are left with the statement
that '
Yiz + 921 = 20y 5 + Uz 1) + 9w U + up o1y y).

In the last term we make use of the fact that g*' is a constant and include it in
one of the derivatives and write

K Kl 1 k k
(9% u) qu,2 + (g7 w) 1ty 2 = 0 yuy 5 + 0" quy 5 = 20" juy 5,
and since y,, = y,,, we finally have

_ k
Viz=Ug Uy + U U5
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Proceeding to line elements with dx! = 0 or dx* =0, we prove that the re-
lation

Vi = Ui +u1i+u i Up, (2.15)

holds for all 7, j.

The last term on the right-hand side of this equation is quadratic in the
displacement and therefore negligible when the displacement is sufﬁaently
small. Equation (2.15) then reduces to

'yii = ui’j + uj,i . (2-16)

The statements made in (2.15) and (2.16) are independent of the forces acting
and of the elastic or inelastic character of the material. They are concerned
with the geometry of the motion which leads from the undeformed to the
deformed position and are known as the kinematic relations.

'On page 24 we called the y;; the components of the strain tensor. This
imposes the obligation of demonstrating that they are identical with the
quantities commonly called strain, or at least closely related to them. For
this purpose, we specialize (2.15) and (2.16) to cartesian coordinates, writing

dxt =dx, dx*=dy, dx®=dz,
and
uy =u, U, =v, U3=w.

For i =j = 1, (2.16) then reads

- Ou
VU—Z
andfori=1,j=2:
_6u+ ov
sz—ay %

The equations are identical with the kinematic relations found in books on
the theory of elasticity, if one sets

Y11 =28_,‘, Y12 = Vxy-

When the nonlinear equation (2.15) is subjected to the same treatment, it

yields
_ 23u + (6u)2 N (60)2 + (6w)2
L g P dy) oz)
_6u+ 6v+6u6u+ ov 6v+6_waw
12 = dy 0x ©0éxdy 0xdy 0xdy
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Also these expressions are equal to 2e, and y,,, respectively, if one adopts
a strain definition based on the change of the square of the line element. In
this case they are not second-order approximations, but are exact for any
amount of deformation. This is not so if the strain ¢, is defined as the in-
crement of length divided by the original length (linear strain).

In the future, as a measure of the strain, we shall prefer to use the tensor

&= %7y 2.17)

mainly because products of the ¢;; with the stresses are the work done during
the deformation. For later reference we rewrite the kinematic relations in this
notation:

small displacements (linearized formula),

&y =3(u;; +u;); (2.18)
large displacements (exact formula),
&y =Y(u;; +uy; + “k,i U ;). (2.19)

Since quantities like u; ; are not components of a tensor, these equations are
not tensor equations, but, on page 85, we shall see how one can use them to
derive tensor equations.

Problem

2.1. Use the general kinematic relations (2.18) and (2.19) to derive kinematic
relations in skew rectilinear coordinates.

References

The subject of this chapter is treated 'in all books on the theory of
elasticity. The kinematic relation (2.16) in cartesian component form is
found in Love [19, p. 38] or in Timoshenko—-Goodier [33, p. 7].



CHAPTER 3

The Cross Product

AFTER HAVING STUDIED STRAIN, we should next study stress. Since
a stress is a force acting on a certain area element, we have to see how such
an area element can be expressed in tensor form. Before we can do this,
we need some preparation, which is the purpose of this chapter.

3.1. Permutation Tensor

We define quantities e;; = e, the permutation symbols, by the following
rules:

ejn=+1 if i,j,k=1,2,3, oraneven permutation of this sequence (that
is,2,3,10r3,1,2);

e =—1 if i, j, kisan odd permutation of 1, 2, 3 (thatis, 3,2, 10r2,1,3
or 1, 3, 2);

e = 0 if any two of the subscripts or all three are equal (for example,
1,1,30r2,3,2).

We call these sequences i, j, k cyclic, anticyclic, and acyclic, respectively.
There are altogether 27 possible sequences, which are represented in Figure
3.1 as the points of the cubic grid. In this figure the six combinations for
which e;;, # 0 have been marked by heavy dots.

The permutation symbols can be used to expand a third-order determinant.
Let
ay aj

a3 aj 3.1)

a3 a3

Q

Q
]
Q8
G e N e

W. Flugge, Tensor Analysis and Continuum Mechanics
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30 The Cross Product [Ch. 3

|~
3>

FIGURE 3.1 Permutation symbol e, .

Then one definition of a is that it is the sum of all the products + a{aja’ which
satisfy the condition that i, j, k are all different, the plus sign to be used when
the sequence i, j, k is cyclic and the minus sign when it is anticyclic. This can
be expressed in the form

a =alajale; (3.2a).
and in the alternate form

a=alaZale™. (3.3)
If we make any permutation among the subscripts in (3.2a), e.g. if we write
ak ajd’ e, this amounts to interchanging two columns of the determinant
and the result will be —a. A further permutation would change the sign
again and lead back to +a. This can be expressed in the form

ae,,,,,, = a;a;’" a,‘,‘e,-jk (3.43.)
and similarly we have
ae'* = alajake™. 3.5
When we replace the determinant a of (3.1) by the more general one
a; a; a;

A= 0.'-’ af af ’

al al af
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wehave A =aif o,p,q=r,s,t=1,2, 3 and any permutation in one of these
sequences changes the sign so that

A = ae’Ple,. (3.6)

Equations (3.2a) through (3.5) can easily be extended to other positions
of the indices. With a corresponding change in the definition of @ we have

a =|a"| = a"a’?a"%e;;, = at'a*"ae,,,, (3.2b)
aé™ = a'a’mq*e,;, (3.4b)
and
- — ijk Imn
a=layl =aya;a;e" =aya,,a;3,e™, (3.2¢)
= ijk
Ay = A1 A jy App 7. (3.4c)

We use (3.2a) and (3.4a) to prove the following theorem: Given two square
matrices A and B. The determinant of their product C = AB equals the
product of the determinants of 4 and B. The proo. will be restricted to
3 x 3 matrices; it can easily be extended to larger and smaller ones by intro-
ducing permutation symbols with the proper number of indices.

Let A = [a/] and B = [b;*]. Their product C = [¢;*] has the elements

Cik = a,-jbjk.
The determinants of 4 and B are
det A= a= allazn’a3"21m,, N
det B = b With e,,m, b = blibmjb"keijk .
Their product is
ab = a,lazma3"e,,,,,, b = dllbliazmbmja3"bnkeijk = cl iCZjC3keijk = C, (3.7)

which proves the theorem.

For the transformation of vectors and tensors between two reference
frames of base vectors we used the quantities fi. and B’. Because of (1.32),
the matrices formed by these two sets of coefficients are reciprocals of each
other and then (3.7) states that their determinants are also reciprocals:

Bil=a  1B1=%. (39

Quite similarly we may arrange the nine components g;; of the metric
tensor in a square matrix and then calculate its determinant

911 Y12 Y13
g=19i;1=1921 922 923 3.9
931 932 Y33
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From (1.26) it follows that
lgi; 971 = 164 =1
and then from (3.7) that
gl 19" =1,
hence

|
g = =. (3.10
g% p )

When we transform the g;; to another reference frame, we have
gy = 9i; Bt B}
and hence by repeated applications of (3.7):
9" =19uy = lgi; Bl 1B} = lgi;l 181 1B} = gAA. (3.11)

This equation describes the transformation of the determinant g from one
reference frame to another. Although g is a scalar (a tensor of order zero),
it is not the same in both frames. Such quantities are called pseudoscalars,
and there are pseudoscalars of different classes, depending on the positive or
negative power of the transformation determinant appearing in equations
like (3.11). We shall occasionally meet with such pseudoscalars, but in this
book an effort has been made to avoid them, because they make the theory
more complicated without being very helpful.

Thus far, the permutation symbols e;; have not been attached to any
coordinate system. We now attach them to a cartesian system x' and write

ei'j'k' = ei’j’k’ .

We ask what happens when we transform these quantities as tensor com-
ponents to another coordinate system x’. According to the general trans-
formation rule, stated on page 19, we have

€ijk = €y ﬂfﬂfﬁk = €yjr ﬁ:ﬂjﬁi 3.12)

Fori, j, k =1, 2, 3 this is (3.2a), that is the expansion formula of the determin-
ant 1/A. Since in the cartesian system

g = lai'j'l =1,

(3.11) shows that in our case

=9

B
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and, hence,
€jx = + \/ _g if i, j, k is a cyclic sequence;
€= —+/9 if i j,kisan anticyclic sequence; (3.13)
€jk = 0 if i, j, kis an acyclic sequence.
The quantities €;, being derived by a tensor transformation, are the
covariant components of a third-order tensor, the permutation tensor.t

Using the metric tensor g'/, one may form components of other variances.
The only set of interest are the triple-contravariant ones:

€lmn - eijk gilgjmgkn_ (3.14)

To find their numerical values, we start from the determinant of the g'/
and apply to it the expansion formula (3.4b):

51 12 13

g o . 1
- elmn = gmll gm22 gm: — gllgmjgnkeijk = gltgmjgnk \/5 eijk'
g g g
Because of (3.14) this is €™/,/ g and, hence,
1
€M = — elmn (3.15)

Voo
i.e. €™ hasthevalues +1 /\/ g or 0 depending upon whether /, m, n is a cyclic,
an anticyclic, or-an acyclic sequence.

From (3.13) it follows that ¢;; changes its sign when any two of its indices
are interchanged, and the same is true for ¢*. In other words: the permuta-
tion tensor is antimetric with respect to any pair of indices. Therefore, its
contracted product with any symmetric tensor ¢/ = t/! is

eijk tU = 0 and eijkt,-j = 0. (316)
To prove the formulas, let, for example, k = 1; then i, j = 2,3 or 3,2 and
€t = €317 + €30, 17 = (€231 + €32)17,
and this vanishes because of (3.13).
As €, and €* have tensor character, while the permutation symbols
e; and e* do not, it is useful to know that some of the determinant expan-
sion formulas developed on page 30 can be written in terms of the e. Multi-

plying (3.4a) on both sides by \/g_ and dividing (3.5) by the same quantity,
we see that

+ Here we are facing one of the cases (not uncommon nowadays) where established
notations of two previously separated fields come to a clash. We shall use the ““English”’
character € for the permutation tensor and the * continental ”’ character ¢ for the strain.
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A€y = ali al{l a:eijk s (317)
ae' = ajay,aze™. (3.18)

The nine quantities 6} are the elements of a unit matrix, and their deter-
minant equals unity:

61 8 &3
ot o3 &
5 6 a3
To this determinant we apply (3.6) and, realizing that, because of (3.13) and
(3.15),

= 1.

€%y = €€y,
we find that
8 0w O,
8 8L 81| =€ .
6 On O
Expansion of the determinant yields the formula
€1y = 610, 8% — 555 5Y, + 6L 616k, — 61516 + 8%, 8]16F — 65,8{6%. (3.19)

Through the pracess of contraction we derive from it the following useful
relations:

€t = B1(0% 0% — 6155) + 1610, — 54,51 + 5L(513% — 6/5%)

= 03, 0n — 630n,, (3.20)
ik, = 33k — 516 = 26%, (3.21)
6ijk€ijk = 25,’: = 6_ (322)

With the results just obtained, we may bring the determinant expansion
formula (3.17) into another, very useful form. We multiply on both sides
by €™ and find that

A€y €™ = 6a = afa},afe,; €™ (3.23)

In an antimetric tensor b;; (see p. 18) the components with i = are zero
and the others are interdependent in pairs by the relation b;; = —b ji- There-
fore, such a tensor has just as many indepéndent components as a vector.
The permutation tensor permits the association of a definite vector u* with

every antimetric tensor b;; through the relations

uk = bU €Uk, U, = bijfl'jk . (3.24)
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One of the components of this vector is
u' = (by3 — b3y)e®.

Equation (3.24) may also be used with any unsymmetric tensor thereby
isolating from it the antimetric part.

Thus far we have always dealt with three-dimensional space, using co-
ordinates x', i = 1,2, 3. Many problems in mechanics are formulated in only
two dimensions. For example, plane stress systems and plane flow fields
are described in terms of plane coordinates x!, x2, and in the theory of shells
we use two coordinates x!, x? on a curved surface. It has become general
usage to emphasize the difference between equations valid in two and in three
dimensions by observation of the following

RANGE CONVENTION: All Latin indices have the range i, j, k, I, m, . . .=
1, 2, 3; while all Greek indices have the range a, 8, 7,6, ...=1, 2.

This applies to free indices and to dummies. The vector equation a; = b;
represents three component equations, while a, = b, represents two. The
sum a'b; has three terms, but the sum a*b, has two terms.

We may consider any two-dimensional space as a subspace of the general
three-dimensional space, adding to its coordinates x* a third coordinate x*
with a unit base vector g; =i; normal to the vectors g,. We have then
9.3 =8, ' 83 =0 and g,; = 1, and the determinant of the metric tensor is

911 912 g g
g=1|921 922 O|= 1 121, ) (3.25)
0 0 1 921 922

In every nonvanishing component ¢;; of the permutation tensor one of
the subscripts must be a 3, and we can, by cyclic permutation, always arrange
it so that k = 3. Then i and j are restricted to the range 1,2 and we may
introduce a two-dimensional permutation tensor €., writing

€ij3 = €53 = €gp (3.26a)
with
€4 = €35, =0, 612=\/;= — €3y (3.27a)
The contravariant components are
€3 = ¢ = (3.26b)
with

= —¢?l. (3.27b)
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At the proper places we shall make much use of these quantities. At
present, we list a few formulas for later reference, leaving the proofs to the
reader (see the exercises on page 43).

For a second-order determinant

L _|at at
- ai a3
the following formulas hold:
ac,; = ajafe,y,  ae® =dfale”, (3.28a, b)
2a = aafe, €. (3.28¢)

Products of the permutation tensors have the following values:
€, = 0565 — 5308, (3.29a)
“e,, = 5, ey =2. (3.29b, ¢)

For an unsymmetric tensor T,;, the difference T,; — T}, does not vanish
and can be written in the following form:

Tys — Ty, = Topl(8304 — 6300) = Topetbe,s. (3.30)
If a tensor T,, is symmetric, then
Tpe?=0. (3.31)

The vector v = u,€*g; is normal to the vector u = u,g". We prove this
statement by showing that the dot product of the two vectors equals zero:

Vou=ueg ug =uu,e?6)=uuy e’

Since the tensor T,z = u, u; is symmetric, it follows from (3.31) that v-u = 0.

3.2. Cross Product

In a cartesian reference frame i, j, k we introduce the cross product of two
vectors by the equations

ixj=k, jxk=i, kxi=j.

Writing g, or g* for the unit vectors, we may summarize these three equations
in the form

g % g =e;g.
Since in the cartesian reference frame e;; = €;;, we may write as well
8 X g = €85 (3.32)
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and this equation is written entirely in tensor symbols and carries over in all
other reference frames. If g, g,, g5 in this order are a right-handed frame,
so are the vectors g;, 8;, 8; X &;-

Instead of (3.32) we might have written

g x g/ = eli*g, , (3.33)

which is also a tensor formula and, hence, generally valid. Both e symbols
change sign when two of their indices are interchanged. We therefore have

g xg=—-8xg, gxg=-gxg. (3.34)

When visualizing the cross product of two vectors, we shall find it useful to
adhere to the right-hand rule. It should, however, be kept in mind that there
is nothing wrong with left-handed reference frames and that, in exceptional
cases, the vectors g; associated with a curvilinear coordinate system may be
right-handed in some part of space and left-handed in another.

The definition of the cross product of two base vectors may easnly be
extended to arbitrary vectors a and b by writing

q=2axb=a'g x blg; = a'te,; g =g, 8" (3.352)
with
G =a'ble (3.35b)
or
q=a,g x b;g/ =a,b;je’'g =q'g (3.36)
with
g* =a;b; e (3.36b)

Also in this case the product vector 1s at right angles with each of the factors.
We show this for a by forming the dot product

q-a=gq.d=adbe;d = a'blde; /9.

This is the expansion formula for a determinant whose rows are the com-
ponents of the vectors a, b, a. Since two of these rows are equal, the deter-
minant equals zero, and this proves the orthogonality of q and a.

For our purposes it is important that the absolute value of the vector
q=a x b is equal to the area A4 of the parallelogram whose sides are the
vectors a and b. We prove this statement by proving that the components of
q in a cartesian reference frame g; are equal to the areas of the projections
of this parallelogram on the reference planes. Let

a=aigi’ b=bjgj’ q'=quk’
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FIGURE 3.2 Calculation of the cross product.

then
9k .= aibje,-_’-k .

We consider now one of these components, say
q, = a*b® — a*b>.

In the plane of the unit vectors g, and g, this appears as the difference of
two rectangles. Figure 3.2 shows the projections OA4 and OB of the vectors
a and b on this plane. The area representing g, is indicated by contour shad-
ing. Half of it is the area enclosed by the heavy line, and this is obviously
equal to that of the triangle OAB. This, in turn, is half of the parallelogram
0OACB, which is the projection of the parallelogram area 4 on the 2, 3 plane,
and a similar statement can be proved for the components ¢, and ¢;.

The fact that the cross product is the vector representation of an area
is of great importance in mechanics of continuous media, since we need an
area element to define stresses. Before we take up this subject, we will learn
a few useful facts connected with the cross product.

When we dot-multiply the cross product of two vectors with a third vector,
we have

axb-c=a'ble; g g =a'bicle,; 5= a'bicke,,. (3.37)
On the other hand, from (1.2) and Figure 3.3 we have

axb-c=|axb|jc| cosp,
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o =7
axXb - / /// /
A ] P /
- / - /
c / ! /
/ / /
/ / /
/
/
B8 / / //
b // / j/
. Al ~
- P
- P -
4}/
a

FIGURE 3.3 The product a X b-c.

and this is the volume V of the skew block outlined in the figure, which,
hence, can be written in the form

V= aibjckeijk =axX b-c. (3.38)

In the double product a x b - ¢ it is not customary to indicate by paren-
theses that the cross-multiplication has to be done first, because there is no
other choice. The dot product b - ¢ is a scalar, and the cross product between
this scalar and the vector a is meaningless.

When we interchange any two factors in the product a x b - ¢, we must
interchange the corresponding subscripts in €;, €.g.

axc-b=adbe,;=—acdbe;=-V.
From this we see that a cyclic interchange of factors does not change the

result, while an anticyclic sequence of factors produces the opposite sign:

axb-ec=cxa-b=bxc-a
=—cxb-a=-axc'b=-bxa-c (3.39)

Moreovet, since the two factors of a dot product can be interchanged, we
have

bxc-ra=a‘bxeg,
and by comparison with the preceding equation

a‘bxc=axb-ec (3.40)

This shows that it does not matter where we place the cross and where the
dot; all that matters is the sequence of the factors. The product is positive
when they are so arranged that they form a right-handed system (more
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precisely: a system of the same “handedness” as the reference frame g; on
which the definition of the cross product is based).
Since, from (3.32),

8 X 8= €338 = \/—9783»
we have

8 X8 B =98 8 =9 (3.41)
and, similarly, from (3.33)

1
glx gl g®=e%g, g'= T (3.42)
g

This interprets /g as the volume of a blockt that has the covariant base
vectors for its edges.

When we rewrite (3.35) in the form
dA = dr x ds, dA, = dr' ds’ €, (3.43

we are representing an area element by a vector normal to it (Figure 3.4a).
On the other hand, a volume element

dV=dl' X dS'dt=dride dtk e,-jk (3.44)

is a scalar (Figure 3.4b). In continuum mechanics we frequently meet
quantities which are defined per unit of an area or a volume. We shall now
inspect a few samples of this kind.

ZZ -~
=
P = -
PP :
P =
s

-
dr

(a) (b)

FIGURE 3.4 Area and volume elements.

1 Commonly called a parallelepipedon. It seems time that our language adopt a word that
is easier to pronounce and to spell than this monster.
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The mass dm of a volume element is the product-of the density p and the
volume dV:

dm = p dV= p dfidy'ldtk fiﬂ‘.
We subject the base vectors g; to a transformation
g =pe, dr'= By dr"
and have
dm = pBi. B3, B dr" ds™ dt™ B BY Bi ey

= poLoL. &, dr’ ds™ dt" ey g,

=pdrfds? At e,y .
The volume element appears in the same form, as was to be expected, and p
is a scalar, the same in all coordinate systems.

The same is true for the pressure p of a fluid or a gas. Its product with an
area of element dA, on which it acts, is a force, and this force is normal to
the area, i.e. it has the direction of dA. If we arrange things so that dA is
the outer normal, the force is

dF = —pdA
with components
dFk = ‘_p dAk = —pdr." dS‘i el'jk‘

Again, when we transform to another reference frame, dr' ds’ ¢, ;, g* transforms
into an expression of the same form in the new frame and the scalar p remains
unchanged.

The weight dW of a volume element dV is a vector, the product of the
volume and the specific weight

7="748,
hence
dW=1y'g dV=y'gdidsdte.
In another reference frame g;. the same weight of the same volume is
dW =y'g,. dr'' ds’ dt¥’e;.j.,

and y' transforms like any contravariant vector component. The same is
true for the forces X' per unit volume (or per unit mass) which occur in the
equilibrium conditions of continuum mechanics.

Thus far, the two factors of our cross products had always the dimension
of a length. On page 2 we have introduced the dot product as the work
product of a length and a force. There exists a second product of a force
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and a distance, the moment of a force P at the lever arm r, and this is the
cross product of the two quantities:

M=rx P. (3.45)

When all three vectors are represented in components with respect to a
reference frame, (3.35b). gives the covariant components of the moment as

M, =r'Pe;,. (3.46)
In this book we shall mostly restrict our interest to the actual space of three
dimensions and to a two-dimensional subspace. In connection with the cross
product, however, it is interesting to have a brief look at its possible extension
to four dimensions.
Let us first go back one step and restrict the vectors a and b of (3.35) to
two dimensions:
a=dg, b=>dg.

Then k in (3.35) must necessarily equal 3 and the cross product q has only
one component

gz = adbpeap .

In any two-dimensional transformation, which changes the base vectors g,
into new vectors g,., the unit vector g® = g, normal to g, and g, is not
changed and neither is g;; that is, the cross product is a scalar.

In four dimensions we use-indices 7, J, K, L ... with the range 1, 2, 3, 4 and
define a permutation symbol e;;,; by the following rules:

eyxe= 1 if IJ,K,L=1,2,3,4 or an even permntation of this se-
quence,

ey = —1 if I,J,K, Lisan odd permutation of 1, 2, 3, 4,

ey = 0 if not all four subscripts are different.

Associating e;x, with a cartesian reference frame and then transforming to

a noncartesian frame produces the permutation tensor ¢k, as described on
page 32.

We now have the choice of two courses to take. The first one is to define
the components of the cross product of two vectors

a=d'gy and b=2>d'g
as
Gxr = @'V ey . (3.47)

This cross product is a second-order tensor. As in two or three dimensions,
its components change sign when the sequence of the factors is inverted :

bxa=—axh,
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and in addition, the tensor gy, is antimetric:

9xL = —91k-

The second choice of a generalization of the cross product consists in intro-
ducing a third vector ¢ = c¢*gx and in defining a triple cross product

g=axbxc=gq.g"
with
gL =a'b'Kepgy, {3.48)

and this product is a four-dimensional vector. As in its three-dimensional
counterpart, the interchange of two of its factors changes the sign of the
result.

Each of these extensions of the cross product may be extended further to
spaces of any number of dimensions. It may be mentioned in passing, that
the extension of the dot product is trivial. All that is needed is to extend in
(1.13) the range of the indices.

Problems

3.1. Use tensor notation to prove the following vector formulas:
@ (@axb)-(exd)=(@-c)b-d)—(a-d)b-o),
(b)ax (bxc)=(-c)h—(a-b)c.

3.2. Derive equations (3.28) and (3.29).



CHAPTER 4

Stress

To DEFINE STRESS, we need an area element of arbitrary size and orienta-
tion without insisting that it have any particular shape. On the rear side of
this element there is some material and on its front side there is empty space.
An outer normal points into this empty space.

4.1. Stress Tensor

We have seen that area elements in the shape of a parallelogram can be
represented by a vector dA with components d4;. To visualize these com-
ponents, we proceed as follows: We choose a plane of the desired orientation
and intersect it with the base vectors g; of a reference frame (Figure 4.1a).
We connect the points of intersection to form a triangle 4ABC and then move
the plane parallel to itself until this triangle has the desired size and thus is
the area element dA which we want to consider. Denoting two of its sides
by dr and ds as shown, we may write

dA =1dr xds (4.1

and thus represent the element by a vector in the direction of its outer normal.
Since dr = db — da and ds = dc — da, we may write (4.1) in the form

dA = 4(db — da) x (dc — da) = 3(db x dc + dc x da + da x db).

The vectors
da=da'g,, db=db’>g,, de=dcg, (4.2)

have each only one nonvanishing contravariant component, and their cross
products point in the directions of the base vectors g':

W. Flugge, Tensor Analysis and Continuum Mechanics
© Springer-Verlag Berlin Heidelberg 1972
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dF¥

(b)

FIGURE 4.1 Definition of stress.

dA = ‘l‘(dbz dc3 6231 gl + d(,‘3 dal 6312 gz + dal dbl 6123 g3) = dA‘ gi
with
dAl = %6123 dbz dc3, dAz = %‘5123 dc3 dal, dA3 = %6123 dal dbz (43)
On the other hand, the triangle OA4 B can be represented by its outer normal
'%db X da = % dbz dal 6213g3 = —dA3 g3

and similar statements hold for OBC and OCA. The four vectors representing
the four sides of the tetrahedron OABC add up to zero, and the inner normals
of the three sides joined at O are the covariant components of dA.

Now let this tetrahedron be cut from some material and let forces dP,
dQ, dR, and dF act on it as shown in Figure 4.1b. Each of them is propor-

tional to the area on which it acts and can be resolved into contravariant
components
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dP = "‘Glj dA1 gJ' dQ = —sz dA2 gJ’ dR = —st dA3 g". (4.4)

They define nine quantities ¢*/, which we may understand as force components
referred to the size of the areas in which they are transmitted. However,
ol dA, is not exactly a force, but only becomes one when multiplied by the
base vector g; (which may not be a unit vector and may not even be dimen-
sionless), and o'2g, is not a force per unit area, because d4, is not an area
unless multiplied by g* (which is not a unit vector and may have dimension).
The quantities o'/ come as close to the usual concept of stress as it is possible
to come within the concepts of tensor mechanics.

Equilibrium of the tetrahedron in Figure 4.1b demands that the sum of all
forces acting on it equal zero, whence

dF = —dP-dQ—dR=¢"dA, g;=dF g, 4.5)

with the components
dFi = ¢ dA;. (4.6)

This equation shows that the 6"/ do not only describe the forces acting on
three sides of the tetrahedron OABC, but also describe those in any arbitrary
area element determined by its components d4;. Since dF’ and dA; are
vector components, it follows that ¢'/ are the components of a second-order
tensor, the stress tensor.

When we choose as the reference frame g; a cartesian system of unit
vectors i, j, k, the stresses ¢*/ become identical with the commonly used
stresses: o'' =0, =0,, ¢'*=0,,=1,,, etc. Since 7, = 7,,, we may ask
whether a similar relation holds between ¢*/ and ¢/". To find the answer,
we study the moment equilibrium of the skew block shown in Figure 4.2.
Three of its edges are arbitrary vectors da, db, de. The forces acting on
three of the faces are

dP =dP™ g, = '™ db’ dc* €,;,.8,,,
dQ=dQ" g, = ¢ dc* da’ €8,
dR =dR™ g, = ¢'" da' db’ €,;8,,.
There are equal forces of opposite direction on the opposite faces of the
block and, together, they form three couples, which have the moments
da x dP = da' dP™ ¢,,,,g" = ¢'™ da' db’ dc* €, €, 2",
db X dQ = db" ClQm €j"m‘g" = Glm dai db'/ dck €rit €jmn g",
de x dR = dc* dR™ ¢, 8" = 6™ da' db’ dc* €}, € &
Equilibrium requires that the sum of these three moments be zero. This is a

vector represented by its covariant components, M = M, g", and each com-
ponent M, must vanish: :
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FIGURE 4.2 - Moment equilibrium of stresses.

OJ"' dai dbj dck(‘jkl €imn + €xil €j,,m + eiﬂfm) =0, - (4.7)

This equation is valid separately for each n, but contains five dummy indices
and, hence, 3% =243 terms. Of course, most of them are zero. Still, it is
worthwhile to avoid a lengthy search for the nonvanishing terms and to
specialize, choosing the vectors da, db, dc to be those described by (4.2).
Then we have always i= 1, j=2, k =3. For n=1, (4.7) then reads simply

Im, -
6 ™(€231€1m1 + €311€2m1 T+ €121€3m1) = 0.

The first term in the parentheses contains €,,,; = 0. In the other two only two
choices are left: /=2, m =3 and /= 3, m = 2, respectively, and all that is
left of the many sums is

23 32 _
0°7€312 €231 + 07°€133 €351, = 0.

The first three of the components of the permutation tensor have cyclic
subscripts, but in the last one they are anticylic, hence

0? = 032 =0,

Choosing in (4.7) n = 2 or n = 3 yields similar statements for the other pairs
of stress components and proves in general that the stress tensor is symmetric:

o' =g/, 4.8)

Thus far, we have only considered the contravariant components of the



48 Stress [Ch. 4

stress tensor. We may, of course, make use of the metric tensor and introduce
other types:

i ik i __ ki - okl
5’-'j=0' Gijs aj‘—a.gkj’ 0ij=0"9kidij-
Since o = ¢*', there is also

P i
i=0j

=g 4.9)

[ js

but as explained on page 18, this is not the same as ¢4. This fact that there
are nine different components ¢/ while there are only six different 6"/ makes
the components of mixed variance less desirable than the other ones.

It is easily possible to visualize the different components. We consider
(in a homogeneous state of stress) an area element formed by the base vectors
g, and g, (Figure 4.3). Because of (3.32) and (4.5) the force transmitted
through it can be written as

dF = O'ij dAl g.l
with
dA=dA;g' =g, x g = €8,
It follows that dA; = d4, = 0 and dA; = ¢;,5, hence
dF= 0’3j€123gj. (4.10a)

The stresses are, except for the factor ¢,,5 = \/;, the contravariant com-
ponents of dF. Stresses of this kind, acting on four sides of a volume element,
are shown in Figure 4.4a.

We might as well use covariant components and write

dF=0'; dA,gJ': 0?6123gj. (410b)

Some stresses of this kind are shown in Figure 4.4b. We may also consider an
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FIGURE 4.3 Visualization of stresses.
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FIGURE 4.4 Stress components of different variance.

area element formed by the contravariant base vectors g' and g2. In this case
we use the alternative form (3.33) of the cross product and write the force
transmitted through this section as

with dA = g' x g2 = €'?3g,, whence d4' = dA? =0, d4*>=¢!?? and
dF = gle' g, = g,;¢'23g/. (4.10c,d)

Such stress components are illustrated by Figures 4.4c,d.

It should be noted that the stresses in Figures 4.4b, c are the same in mag-
nitude although quite differently defined. This equality is particularly
surprising for the stresses ¢3. On the other hand, in each of these figures
it is obvious why a} # a?, since the stresses ¢} and g3 form two couples,
which participate in the moment equilibrium of the element.

Among the four choices of stress components shown in Figures 4.4a-d,
the first one is most appealing. The element is cut along the base vectors
g;, which are tangent to the coordinate lines, and the forces on the sides of
the element are resolved in components in the same directions. It is not
surprising that these are the components of the stresses that appear in the
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equilibrium conditions.. On the other hand, we shall see that Hooke’s law
assumes its simplest form when written in mixed components, since this is
the compromise between contravariant stresses and the covariant strains
coming out of the kinematic relations. It is one of the special merits of the
tensor calculus that it affords an easy formal transition from one set of
components to another one when circumstances make this desirable.

We have thus far avoided the question of the “physical components,”
which makes other tensor presentations of the theory of elasticity so com-
plicated, but we may use the stresses ¢/ to explain this point. As is seen
from (4.10a), the force (in actual force units) on an area element dA is ob-
tained by multiplying ¢*/ by ¢,,; = \/‘5 and by vectors g;, which are not
unit vectors. Therefore, ¢/ is not a force per unit area, but is connected with
such a quantity by a conversion factor (\/E)Ig |, different for each component.
However, having these conversion factors does not fully answer the question
for the ““actual” stresses, since the 6"/ are skew components and what we
ultimately want to have are normal and shear stresses in the usual meaning
of these words. However, it would be of little use to have these orthogonal
components for the nonorthogonal sections x_i = const of a skew coordinate
system. The most sensible thing to do is to find the principal stresses defined
on page 177. They are physical components measured .in stress units.

4.2. Constitutive Equations

The mechanics of continua draws its physical information from three
sources: the conditions of equilibrium (to be replaced by Newton’s law of
motion in problems of dynamics), the kinematic relations, and the stress—
strain relations. We have dealt in a preliminary way with the kinematic
relations (p. 27) and shall come back to them after we have learned how to
differentiate vectors and tensors. The equilibrium conditions will also have
to be postponed until then. The stress—strain relations, however, are essen-
tially algebraic, and after having defined stress and strain, we are ready to
inspect them in detail.

The stress—strain relations are the mathematical description of the mechani-
cal properties of the material—its constitutive equations. There are as many
kinds of such equations as there are different materials, and we shall study a
few of them.

We begin with a linear elastic material, but we do not require isotropy.
Then evety stress component ¢/ is a linear function of all strain components:

¢/ = Elitmg, 4.11)

Tl}is is Hooke’s law for a general anisotropic solid. The elastic moduli
E"'™ represent a tensor of the fourth order. Since each of the superscripts
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i, j, I, m can independently assume any of the values 1, 2, 3, there are
3* = 81 components E ijim Hut they are not all different from each other.

Since ¢/ = ¢/, there must be E¥'™ = E/ '™, Since ¢, = &,;, it is at least
possible to choose EV'™ = EY™, assigning to each of the two equal strain
components half of the infiuence which they exert together on ¢'. All
together we have then

Eitm — piitm _ piimt _ giimt 4.12)

which says that within each pair of subscripts, #, j and /, m, we can interchange
the order. If this is permitted, there are six different pairs left (1,1;1,2; 1, 3;
2,2:2,3; 3,3), and we have, at most, 6> = 36 different values E¥'™. A further
reduction in number comes from the existence of a strain energy.

In cartesian coordinates we have the strain energy per unit volume (the
strain energy density)

-1
a= 'Z—(Gx €x + Oy Sy + 08 + Txy yxy + Tyz yyz + Tox yzx)‘

We bring the right-hand side of this formula in tensor form by letting
o, =0 .., Ty, =02 ., 6, =81,..., Vxy =282+ &,.... This yields

the expression
a=14oVeg;. (4.13)

Since this equation is in tensor form, it is valid in all coordinate systems.
The left-hand side is a scalar.

Equation (4.13) shows that also in general coordinates each of the stress
components does work at the corresponding strain component (if contravari-
ant stresses and covariant strains are used), the factor 4 being caused by the
fact that the work on a *“displacement” ¢;; is done while a *“force” is gradu-
ally increasing from zero to its final value ¢"/. From this we conclude that
for a small increment of stress and strain the increment of a is to the first
order the work of the existing stress done on the increment of the strain:

dd = O.ij d&u . (4‘14)
On the other hand, we may formally derive from (4.13) for da the expression
da , .. da
da =md0'j+é£—d8ij

ij
and, since ¢"/ and ¢,,, are related through (4.11), this may be written

- A ij - A lm
ca co da da co ca
dc' dg, /
m

da i
ce;; 7 da™ g dey;
—1 Imij c i
=3(gn E™ +0%) dey; .

ij

(4.15)
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Because of ¢;; = ¢;;, the nine dg;; cannot be chosen entirely arbitrarily, but
we may choose one pair ij and let only that d;; = de;; be different from zero.
It then follows that the sum of the coefficients of these two differentials
must be the same on the right-hand sides of (4.14) and (4.15), that is,

o + o/' = 4[e,,(E'™/ + E™i) 4 6' 4 ¢/'].
Because of (4.8) and (4.12) this amounts to
o' =g, E™,
Comparison with (4.11) shows that
Elitm = plmij, (4.16)

which says that, in addition to the symmetry stated in (4.12), we are also
allowed to interchange the pairs i, j and /, m. This reduces the number of
different EY'™ from 36 to 21.
We shall now give life to Hooke’s law (4.11) and to the moduli EV'™ by
writing explicitly the elastic laws of several materials in cartesian coordinates.
For an isotropic body we have the well-known relations

3 E
T+ (1= 2v)

H [(1 = v)ey; + vey, + ves;],

E

12

S et & y

0+ v)(axz + €31)
in which we have already used tensor symbols. Comparison with (4.11)
yields E''!', E'122 = E'133 and E'2!2 = E'22! iy terms of Young’s modulus
E and Poisson’s ratio v. Because of isotropy and the symmetry relations,
other moduli are equal to these:

E(1-v) 1—v

E'lUL - g2222 _ E3333 _ =2G =142y,
(1 +v)(L-2v) 1-2v +eu
EIIZZ — E1133 - EZle
Ev v
— E2233 _ p3311 _ p3322 _ =2G =2,
E E (0 + (1 = 2v) -

E
E1212=E1221=E2112___E2121= =G =u.
2L +v) #

In the last line, eight more moduli can be added, formed with the pairs 23
and 31, but all other moduli are zero. for example

E1223 _ piuaz _ pui2d _ g

4.17)
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In (4.17) the nonvanishing moduli have also been expressed in terms of the
shear modulus G and Poisson’s ratio and in terms of Lamé’s elastic constants
A and u, which are seldom used in engineering work, but are useful in some
three-dimensional problems.

One may easily verify that (4.17) can be summarized in the form

EU'm = .69 6™ + u(6" 59 + 5™ 6. (4.18)

Indeed, if all four superscripts are equal, all the Kronecker deltas are equal
to 1, and on the right-hand side we have A+ 2u. If i=j#/=m, only
E''™ = } remains, and if either i =/# j=m or i =m # j =1, one of the §
products in the second term survives and we have EV"™ = p. ‘
Equations (4.17) and (4.18) are valid only in cartesian coordinates, but
as we have done before with other equations, we may generalize (4.18) by
replacing the Kronecker deltas with the proper components of the metric
tensor:

Eijlm = )vgijglm + #(gilgjm +gimgjl)‘ (4193)

Drawing upon another part of (4.17), we may write this in the alternate form
. E [ 2v .. . I

Eulm = ij Im il  jm + im jl>. 419b

2(l+v)(-—l~2vggv+gg 9"g (4.19b)

Both equations (4.19) are valid in any coordinate system.
As a second example, we consider an idealized porous material, as shown
in Figure 4.5. It consists of many thin walls of thickness t < a, parallel

FiGURE 4.5 Model of a porous material.
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to the coordinate planes of a cartesian system x, y,z. The size a of the pores
is small compared with the dimensions of a volume element cut from the
material. In each of the walls a plane stress system is possible, and we have,
for example, in the walls parallel to the x, y plane Hooke’s law in the form

E
a'x = I—_T;i (sx + Vsy),
E
Oy =177 (g + vey), > (4.20)
E
Tay = GYyy = 1+ vaxy'

To explore the elastic behavior of this porous material, we subject it to several
simple states of strain and note the forces needed on the faces of a cube of
side length na with n > 1, Figure 4.6.
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FIGURE 4.6 Element of a porous material.

The first strain to be imposed is a simple stretching ¢, = ¢, in the x direction
with ¢, = g, = 0 and no shear strains. On the faces x = const this requires
stresses o, in the vertical and in the horizontal walls. They add up to the
force

E
F,. =2n%ato, = 2n’at T fue

The vertical walls normal to the x axis have no strain and no stress, and on
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the faces y = const we have only a contribution from the horizontal walls:

Ev
Fyy = nzatay = nzatl—_-‘-ﬁ €11>

and a force of the same magnitude must be applied to the faces z = const,
F,, = F,,. There are no shear forces. When we divide each force by the
gross area (na)? of the face in which it is transmitted, we have the gross
stresses for the porous material. We use for them the notation ¢'!, 622, ¢33
and have
2E t Ev

1 v 811, 022=033=;1 8“.
When we subject the porous medium to a strain ¢, = ¢,, Or ¢, = ¢£,5, similar
formulas hold, and for a combined stretching in all three directions we find
by linear superposition

t
ot =1L
a

(4.21)

1t E

¢l = (Zsu + vey; + VE33) (4.22a)

t
al—y?
and two similar equations. Now let us subject the medium to a shear strain
&,y = &, in the x, y plane. Then only the horizontal walls are stressed,

E
T+

On the faces x = const and y = const the stresses add up to forces

Txy= 812.

E
F,, =F,, = n%at ,
na1+v£12

from which we derive the gross stress

t E t E
12 21
0 =0"" =———¢, =———— (8,5, + &). 4.22b
ST Ty Gt (@42)
Equations {(4.22a, b) and their obvious companion equations for the other
coordinate planes represent the elastic law of the material in cartesian
coordinates. By comparison with the general equations (4.11) we read from
them the following expressions for the elastic constants:

EUU1 _ p2222 _ (3333 _ 2E 2‘_
1-v?a’

1122 1133 2233 Ev t

E'2 = EUB < o N CYE)
-y

E1212 E2323 E3l3l E t

2(1 + v)a
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The three numerically different moduli are not independent of each -other
since they all depend on the two parameters E and v, but their ratio is quite
different from that of the corresponding moduli of an isotropic solid. With
v = 0.3, (4.23) yields

EM ;. E1N22 E1212 = 1:0.15:0.175,

while (4.17) yields
EM11 . 1122 . g1212 1 :0.428 : 0.286.

The porous material with cubic pores has little lateral contraction and hence
needs little transverse stress to prevent it. This material is also much softer
in shear than the isotropic solid.

Since the pores have the same dimension g in all three directions, and since
the walls have the same thickness ¢, the material shows the same elastic
behavior in the directions of all three coordinate axes, but it is not isotropic.
This becomes apparent when we rotate the coordmate system.

We choose a cartesian coordinate system x*° whose relation to a cubic cell
of the material is shown in Figure 4.7. Starting from the coordinate axes x’,

FiGURE 4.7 Rotation of coordinate system.

which coincide with three edges of the cube, we subject them to a rotation of
45° about the axis x*. This brings the axis x? into its final position x?', while
the axis x* assumes the position of the diagonal OA of the bottom face of
the cube. Then we rotate the axes about x?" until the axis x> coincides with a
space diagonal of the cube. In this position it is the new axis x> and x*’ lies
in the plane O4BC, which is a plane of symmetry of the cellular structure.
The transformation coefficients are the cosines of the angles between the
axes x' and x*". One easily verifies the following numerical values:
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p'=0816,  p¥=0, By =0.577,
BY = —0.408, I =0707, B} =0.577,
By = —-0.408, p¥=-0707, B¥=0.577.

From these and the general transformation formula

o (4.24)
the following values of
1-v2 a griwr
E ¢

may be computed:

i’j, 1[1/ 2’2[ 3[3’ 1’2/ 2}3/ 3/1/
k'

't 1.500 0.467 0.633 0 0 0.236
22 1.500 0.633 0 0 ~0.236
33 1.333 0 0 0
12 0.517 —0.236 0
23 0.683 0
3 0.683

The symmetry relation (4.16) may be used to fill the lower left part of the
table. The numbers show that the relation between stress and strain is not
the same in all directions. Also the shear moduli in the coordinate planes
are not all equal. A shear strain ¢,.,. produces not only a shear stress ¢! %',
but also a shear stress 62 3". Because of the symmetry of Figure 4.7 with
respect to the 1’3’ plane, the shear stress in this plane is not coupled with
shear strains in other planes. However, the strains ¢;.,- and &,.,. are coupled
with the shear stress ¢3! = g''%".

The elastic law of isotropic bodies may be cast in a much simpler form,
which we shall need later on. We start from (4.19b), which we introduce
in (4.11):

2v
1—2v

ij

(gilgjm + gimgjl + gijglm)elm.

ST +v)

We lower the index j and also move the index /, down in the bracket and up
in the strain. This yields
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. E
%= 3T+

__E (s‘+ img 4+ pad 5‘8"‘)
Sy \F T T T, Ot

2v
(al 6"! + glmgjl + 5l 5"!)

and finally

i E i d m si
a"—1+v(8"+1-—2v8"'5")' (4.25)

A comparison with (4.17) shows that the elastic constants of this equation
are the Lamé moduli:

o' = 2uel + Aep 8% (4.25")
Equation (4.25) [just like (4.11)] gives the stress in terms of the strain. It

may easily be inverted. To do so, we first let i = j and invoke the summation
convention for i. With §; = 3 we have then

. E . 3y E
i = : ") = 3 4.26
% 1+v(8'+1——2v8"') T-2v'" (4.26)
This is used to express &" in (4.25) in terms of 6™:
i v i
%14y 9= 1+ oL
whence _ _
Ee; = (1 +v)a; — vo,, 63 (4.27)

Equations (4.25) and (4.27) represent two versions of Hooke’s law in general
tensor form, valid for isotropic materials. Because of the Kronecker delta,
their right-hand side has only one term for shear, but two for tension. The
quantities &)y and o’ occurring in these equations lend themselves to physical
interpretation. In cartesian coordinates, &r = e} + &3 + &3 is.the cubic
dilation, while 1o” is the average of the normal stresses and is called the
hydrostatic stress. Equation (4.26) constitutes a relation between both:

1 n E m __ m

3 Oy = m em = Kep, . (428)
The equation states that the cubic dilatation, i.e. the elastic change of the
volume, depends only on the hydrostatic stress and, in a linear material,
is proportional to it. The constant K is the bulk modulus of the material.

An interesting and important variant of (4.25) and (4.27) is obtained when

we introduce a new notation. We write for the bulk quantities

Je=g), 3s=op (4.29a, b)
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and introduce the strain deviation and the stress deviation

ef=¢—ed, si=0"—s0. (4.30a,b)
Equation (4.26) may then be rewritten
Ee=(1—-2v)s (4.31a)

and (4.27) yields
E(¢ + ed)) = (1 + v)s§ + (1 + v)s8} — 3vsé} = (1 + v)s} + (1 — 2v)sd’,
from which, after subtraction -of (4.31a), there follows
Eej=(1+v)s}. (4.31b)
For the strain deviations, we find from (4.30a) that
ei=¢ — ed;=3e—3e=0, (4.32)

which indicates that the tensor e} (called the strain deviator) describes a
change of shape without a change of volume (called a distortion). On the
other hand, when e} = 0, there are only three equal tensile strains

i i
&= ed;,

which describe a change of volume without a change of shape (called a
dilatation). Equations (4.29) and (4.30) describe the splitting of the strain
tensor in a dilatation and a distortion and the splitting of the stress tensor in
two similar parts. Equations (4.31) are that formulation of Hooke’s law
which uses these concepts and which turns out to be- particularly simple.
They may be written with the Lamé moduli:

s=04+2pe, s=2ué. (4.33a,b)

After having studied elastic materials in some detail, we now turn to a few
other simple materials. A viscous fluid is characterized by the fact that its
stresses do not depend on the strains, but on the time derivatives of the
strains—the strain rates
e, g Oel . Oe ,;_ Oej

=% T Tw Ta
For an isotropic viscous fluid, we may use (4.33), simply replacing the strains
by the strain rates:
s =(34+ 2u)é, §=2ué]. (4.34a,b)

The coefficients 4 and p are now, of course, no longer Lame’s elasticity
moduli, but rather viscosity coefficients. Equation (4.34a) represents volume-
viscosity. In most flow problems its influence is negligible and we may get
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rid of it by letting A — c0. Then é = 0, and s is independent of the deforma-
tion or vice versa. The fluid represented by this modified law is incom-
pressible. Since real fluids combine elastic compressibility with viscous

distortion, we might combine (4.33a) and (4.34b) with a proper notation for
the coefficients:

s=3Ke, sj=2pé]. (4.35)

This leads us into the field of viscoelastic materials, which combine elastic
and viscous behavior in a more general form. Their constitutive equations
contai~ time derivatives of stress and strain and may be written in a form
analogous to (4.33) and (4.34):

Zpi-g—’;=2q£%kt—i,

k
$n%-Ta%d

In these equations, i and j are tensor indices, while k is used as always in
writing derivatives of the kth order. Equations (4.36) contain as special
cases Hooke’s law (4.31), the viscous law (4.34) and the law (4.35) of the
common, compressible viscous fluid, which is elastic in compression, but
viscous in distortion.

(4.36)

4.3. Plasticity

In the uni-axial tension test a material is called ideally (or perfectly)
plastic if stress and strain are related according to the following rules: (i) They
obey Hooke’s law ¢ = E¢ for stresses o < gy. (ii) At the yield stress oy the
strain can increase indefinitely, without any restriction on the strain rate
de/dt except that this rate can never be negative. (iii) The stress cannot be
increased beyond oy. These three statements describe the constitutive law
represented in the first quadrant of Figure 4.8. A similar law holds on the
negative side.

In two and three dimensions the yield limit is reached when a certain

oy

FIGURE 4.8 Stress—strain curve in ideal plasticity.
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function of all the stress components reaches a fixed value. In the early times
of the theory of plasticity attempts have been made to find “the” yield
condition. Several have been proposed and experiments have been made to
decide which of them is the right one. Today it is understood that there may
be as many yield conditions as there are materials, and interest has been
focused on establishing one which is suitable for mathematical handling and
still close enough to the facts. Two such conditions are in general use, those
of H. Tresca and of R. v. Mises. Between them the Mises condition is better
fitted for a tensorial presentation.

No yield condition is a general law of nature, but rather a part of the con-
stitutive equations of a particular material. Therefore, it cannot be derived by
mathematical reasoning from basic principles, but it can be made plausible
by correlating it with some basic concepts of mechanics.

We start from the expression (4.13) for the elastic strain energy density
and there introduce the stress and strain deviators from (4.30), which we
rewrite in the form

o = sg' + sY, & =eg;; +e;.
This yields
a =3(sg" + sY)(eg; + e;;) = §(sed + sef + sie + s'e,).
From (4.32), which applies equally to the stresses, it follows that the
second and third terms in the parentheses vanish, and we are left with
a = }(3se + s'e;)). (4.37)

Using Hooke’s law in the form (4.33), we may write this also as

a =331+ 2uee + pele;. (4.38)

The first term depends entirely on the change of volume and the second one
on the change of shape. They are known as the dilatation energy and the
distortion energy, respectively.

In plastic flow there is practically no permanent change of volume and it
seems plausible that the occurrence of plastic yield should depend entirely
on the stress deviator, which represents the distortional part of the stress
system. The Mises yield condition in particular states that the yield limit
is reached when the distortion energy

L. 1 ..
—SUS"=—SI'54
4u- Y A

has reached a certain value, which is characteristic for the material. We may
write the condition in the form

LY P
5e; =

shsi = 2k? (4.39)
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and we may use (4.29) and (4.30) to express the stress deviations in terms of
the actual stresses and write

F(c%) =30 6{— 6/} — 6k*=0. (4.40)
For later use we write the equation in contravariant stress components:
F(o") = 6™07"(3gx9: — g9 ) — 6k* = 0. (4.41)

In these equations, which represent the Mises yield condition, k2 is the square
of a material constant k, which has the dimension of a stress. To understand
its physical meaning, we use cartesian coordinates and consider two very
simple stress states.

In simple tension we have ¢} = g, and (4.40) reads
35,2 - 6,2 = 20,2 = 6k?,
whence
o, = k\/s.
In simple shear we have ¢} = ¢} = 7,, and hence
3(o} 02 + 0}0}) — 0 = 67,,% = 6k?,

whence
vy = K.

We see that k is the yield stress in simple shear and that the Mises yield
condition fixes the ratio between the yield limits in shear and in uni- ax1a1
tension as 1: \/ 3.

Once the yield limit has been reached plastxc flow may begin. It is un-
bounded and the flow law regulates neither its magnitude nor its speed. As
long as the stress tensor is not changed, the flow may (but need not) con-
tinue and its progress in any time element df is described by the components
&;; dt, where the dot—as elsewhere in this book—indicates differentiation with
respect to time. Since we decided to neglect as insignificant the dilatational
part of the plastic strain, the strain rate tensor &;; is a deviator, §; = ¢;

lj 2
and the work done by the stresses during the incremental strain g dti 1s

da = d di = sVg;; dt = 6'Is,; dt. (4.42)

To arrive at a reasonable flow law, we consider a change do*/ of the stress
tensor such that also the stresses 6/ + 5o/ satisfy the yield condition. This will
cause an elastic change of strain and the attendaat change of strain energy,
with which we are not concerned, and the subsequent plastic flow will have
the strain rate ¢;; + 6§;;, leading to a plastic work rate

d + 6d = (6" + SaY)(é;; + 8¢;) = a + S0é;; + 0V 88,
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We postulate that the change dd depends only on the change of the deforma-
tion and not directly on the change of stress, so that

50'”8.“ = 0. (4'43)
On the other hand, we have, in view of (4.41),

i . i OF _ .. OF _ ..
F(a’+6a’)=F(a’)+‘—3(—7-,.7601=a—0‘.750J=0. (4.44)
If every choice of the 6o/ which satisfies (4.44) is also to satisfy (4.43), the
coefficients of both equations must be proportional to each other,

. oF
8,-j =u 5‘0—”, (4.45)
where u is an arbitrary scalar factor.

Because of the symmetry of the stress tensor the choice of the d¢*/ is limited
not only by (4.44), and we cannot say that the coefficients of do'? and 02!
must, separately, satisfy (4.45). We may state only that

OF oF )

g2+ &5 = #(&1—2 3571

but since on either side the two terms are equal to each other, this confirms
the validity of (4.45).

Differentiating F trom (4.41) yields

oF : .
o™ = 611(39‘;" 9m — Jmn gjl) + alk(3gmk 9in— ik gmn)

= 36,m — 0} Gmn + 30um — O} G
= 60, — 65Gmn = OSpn
and (4.45) can now be written as
&ij = Asy; (4.46)

with 4 = 6u. This equation is known as the Mises—Reuss flow law.

There exists an interesting way of “visualizing” the yield condition
(4.41) and the flow law (4.45). We begin with introducing a new notation for
the six independent stress components, letting

oy =0, 0, = =
Gy =022, 05 =02 =02, = %3,

We may then consider a six-dimensional stress space, in which oy with
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N=1,...,6 are the cartesian coordinates of a point or the cartesian com-
ponents of its position vector, the stress vector

0'=0'NiN. .

Here iy are six unit vectors serving as base vectors in the stress space and the
summation convention is applied to a repeated subscript N (different from
the general rule, which requires a subscript and a superscript).

In this stress space the yield condition (4.41) describes a five-dimensional
hypersurface, the yield surface. All points F < 0 lie in the interior of this
surface and represent elastic states of stress. When the stresses have been
increased so far that the point oy comes to lie on the yield surface, plastic
flow can occur. Points F > 0 represent impossible states of stress.

In the flow law (4.45) it was understood that Fis a function of nine stresses,
¢'? and ¢?! counting as separate variables. When we now replace F(a")
by F(oy), we have

oF oF oF OoF

90, TR 2 do'?

and this suggests introducing a strain rate vector £y with the components

]
™

e

1= €11, & =8y, + &, g3 =¢&3+ &3,
&, =43, &5 =¢&3 + &35, g =&33.

We may then write (4.45) in the form

En=u—. 4.47

N = H on ( )
On the left-hand side there stands a component of the strain rate vector
é = éNiN
and on the right-hand side the corresponding component of the vectorf
oF
rad F = —1i

g a oN N>

which is normal to the yield surface F = 0. In terms of these vectors the flow
law (4.47) states that the strain rate vector is normal to the yield surface.

It may be noted that, in cartesian coordinates, .the components of the
six-dimensional strain rate vector € are the usual strain components ¢,, ...,
Yxy» - - - » and that the plastic work done during the strain increment & dt is

da=ocopéydt =0 Eadt (4.48)

t See page 70, equation (5.20).
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Problem

4.1. The truss work shown in Figure 4.9 extends indefinitely in all directions. It
consists of simple tension-compression bars connected by frictionless hinges and is
used as a model for an anisotropic plane homogeneous slab. Subject this truss
consecutively to uniform strains &, &,, and &,, and calculate the forces which these
strains produce in the bars. Assume that all horizontal and vertical bars have the
same cross section 4 and that the diagonals have the cross section A4/2.

Interpret the internal forces as stresses in a slab of unit thickness and calculate the
elastic moduli. The relation between strains and stresses will have the form (7.27).
Transform the moduli to the coordinate system x** shown in the figure.

x1’

x2 /
4

b

T

x2!

x1

k-a—]

FIGURE 4.9
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CHAPTER 5§

Derivatives and Integrals

“/E HAVE DIFFERENTIATED VECTOR COMPONENTS on page 25 and
have introduced the comma notation for the derivatives in definition (2.12).
In rectilinear coordinates the changes of the vector components indicate the
change of the vector. This is no longer so when the coordinates are curvilinear.
As a simple example consider Figure 5.1a. It shows a polar coordinate system
and in it three vectors v. The vectors are equal, but their radial components
v! are not and neither are the circumferential components v®. On the other
hand, the vectors in Figure 5.1b are different, but they have the same radial
component ' and the same circumferential component > = 0.

5.1. Christoffel Symbols

When we want to differentiate a vector, we must differentiate the sum of
the products of the components with the base vectors:

V= (lfigi).j =v ', g + l’.igi,j (5.1a)
= (l’igi),j = Ui,jgi + v gi_.j- (5.1b)

These formulas contain the partial derivatives of the base vectors with
respect to a coordinate x’. These derivatives are also vectors and may be
resolved in components with respect to the base vectors g’ or g;. We write

g =T gt = rf} 8. (5.2)
Dot-multiplying this equation by another base vector, we find

g, &=Ty g g = T & = | P (5.32)

W. Flugge, Tensor Analysis and Continuum Mechanics
© Springer-Verlag Berlin Heidelberg 1972
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(a) (b)

FIGURE 5.1 Vectors in a polar coordinate system.

g, g=Thg g="06=I}. (5.3b)

Either (5.2) or (5.3) may be considered as the definition} of the Christoffel
symbols T and T;. Before introducing them in the differentiation formulas
(5.1) we establish a few useful relations.

Dot-multiplying the second and third members of (5.2) by g, or g', we find

Tijk 5;‘ =T= ri_,;gkl (5.42)
and

[ gt =TFé, =T, (5.4b)
which proves that the third index of the Christoffel symbols can be raised and
lowered like the index of a vector component. However, this is not true for
the other two subscripts, i and j in (5.2), and the Christoffel symbols do not
transform like a third-order tensor.

When we differentiate (1.18) with respect to x/, we have

8,;=ri=I;;=8;; (5.5)

and from (5.2)
Cij g = T g, rz!j g = rjig! )
which, after dot-multiplication by g, or g*, yields
riik = rjik s rfi = rf;i' (5.6)

t There exists a great variety of notations for the Christoffel symbols. For details see the
references on page 84.
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The Christoffel symbols are symmetric with respect to the first two subscripts.
When we differentiate (1.24a) with respect to x*, we find

Gijx=8ix 8 +8  8jx
and with (5.3a)
Gijee = Tiej + Tjs. 5.7

We write the result three times, permuting the subscripts and making use of
(5.6):

Lj + T =Gijk> (a)
Luj +Tip= Gji> (b)
Cjwi + Tije = Guaj - (c)
Subtracting (a) from the sum of (b) and (c), we obtain the relation
2L = Gjui + Guij — Gijks (5.8)

which may be used for the actual calculation of the Christoffel symbols in a
coordinate system when the expressions for the components of the metric
tensor are known. Formulas for the Christoffel symbols in the most common
coordinate systems may be found in many textbooks and handbooks. When
these formulas are used, attention must be paid to the notations, as explained
in the footnote on p. 67. Since in cartesian coordinates the g;; are constants,
it follows from (5.8) that there I';;, = I'f; = 0.
Differentiating (1.20) with respect to x*, we find that

g8 +8¢i=0,
hence
g gi=—-gu 8= -TIk,
whence, after a change of indices,

g, =-Tig. (5.9)

5.2. Covariant Derivative
We may now return to the differentiation formulas (5.1) and write
V‘j = U‘.‘j gi + U'FZ gk .

By an interchanging of the notation for the two dummy indices in the last
term it becomes possible to factor g;:

V,j = (Ui,j + Ukrjk)gi = vilj gl" (5'10)
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The quantity
Ui'j = vi,j + Ukriik (5.11)

is the i-component of the j-derivative of v. As (5.11) shows, it is different
from the j-derivative of the i-component, the difference being the term
o*T%;. It is called the covariant derivative of the vector v'.

A similar expression can be obtained from (5.1b) by use of (5.9):

Vi= vi,jg v; r‘kg =(v;,; — v I} )g = U.l; (5.12)
This leads to the covariant derivative of v;:
Uilj = vi,j - vk rfj . (5.13)

We may bring the pairs of equations (5.10), (5.11) and (5.12), (5.13) into
another form, which will be useful when we formulate differential equations
of physical systems. When we proceed from a point x/ to an adjacent point
x’ 4 dx/, moving along a line element vector with the components dx/, a
vector v(x’) changes by the differential dv = v ; dx’ and we have

dv=dv' g; =v'|; g; dx’ (5.14a)
or
av=dv, g =v,);g dx’. (5.14b)

In cartesian coordinates there is no difference between covariant and
ordinary differentiation because all the I';;, and I'}; are zero.

When we call ¢'|; and v;|; covariant denvatlves we must prove that they
deserve this name. We write v in components in a second coordinate system

i’

x':
v=o.g".
Differentiation yields
Vy=0p;8 +0:8 p =08
On the other hand, using the chain rule of differentiation and (1.36b), we have

ox!

\ J , a 7 ll j iﬁj

Equating the right-hand sides of both equations, we see that
vyl gi' = vy; giﬁj:'

and after dot-multiplication by

8 = ﬂ‘l: -4
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it follows that
vk’lj’ = vklj ﬂI’: ;Bf . (5.15)

This shows that the v,|; are the covariant components of a second-order ten-
sor. Similarly one proves that the v*|; -are tensor components of mixed
variance. From this it-follows immediately that

vsliy"" =, (5.16)
and we may introduce the nofution
vil* =v,l; g™ (5.17)

After having learned how to differentiate a.vector, we have a brief look at
the derivatives of a scalar ¢. We write

o9 _
ot T
and have in a second coordinate system
_0p opox ;
= ax’  axox Gibi (518)

where again (1.36b) has been used. Equation (5.18) shows that the ¢ ;
transform like the components of a vector. We acknowledge this by writing

¢,:= ¢l (5.19)

and say that, for a scalar, common and covariant differentiation are identical.
Since the ¢|; are vector components, they define a vector

u=¢|;g' = grad ¢, (5.20)

the gradient vector of the scalar field ¢ = ¢(x"). The vector field u = u(x’) is
called a gradient field. When we proceed in a scalar field ¢(x’) from the point
x' to the point x' + dx’ or, in other words, when we move along the vector
dx', the value of ¢ increases by

dp = ¢ ;dx’ = |, dx’ = (grad ¢) - dx. (5.21)

The gradient vector measures the rate of change of a scalar field quantity
and points in the direction of maximum change.

We may now turn our attention to second-order tensors. When we mul-
tiply a tensor 4;; by two vectors #' and ¢/, we obtain-a scalar:

¢ = Aijuivj.



§5.2] Covariant Derivative 71

We differentiate it with respect to x* and make use of (5.11):
Gu= Ay ut) + Aut vl + A ud
= Aij,k u'DJ + AU u‘lk vj + .4” uib‘j[k
- AU u'r,'.‘, Uj - AU uivlril .
We can write this in the form
(.blk = (AU Llin)Ik = Aljll\ Llil.’j + Alj uilkvj + AU uivj,k (5-22)
if we define
Aijlk uivj = Aij,k uin - A‘.l “lvjrlid - A,j uiv’r,{, .
By switching notations for the dummies this may be written
Aijlk u'v’ = (Aij,k - Aljrgk - Ay rll:j)uivj-
This relation will hold for a certain 4;; and for all vectors #' and ¢/ if and only
if
Aijlk =A;jp— Ay rgk — 4y rij > (5.23a)

and this is the definition of the covariant derivative of 4;;.
It is important that the covariant derivative 4|, has been defined without
assuming symmetry of the tensor and that its definition holds also when

Aij ¢ Ajl. .
In a similar way one may derive the following relations:
Afl = Af = AT + AT, (5.23¢)
Al =AY, + AT}, + A'T], (5:230)

and similar relations hold for tensors of higher order.

The derivation of (5.23) is rather abstract and we shall now try to visualize
what the covariant derivative of a tensor represents. As an example, we con-
sider the stress tensor o'/, According to (4.5) in-an arbitrary section element
dA = dA; g' located at a point x* the force

dF = ¢" dA4,; g;

is transmitted. When we shift our attention to another such section element,
located at an adjacent point x* + dx*, we find there a force which differs from
dF by dF , dx*. Using (5.10) and (5.22), we write the derivative of the force
vector as

dF ;= (c" dA)lg; = (6], dd; + ¢ dA;lg; -
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Now let us choose at x* and x* + dx* two area elements J4 equal in size and
orientation. Then dA ;, =0 and hence dA4;|; =0 and the derivative of the
force dF is
dF,k = O'i'i,k dAl gj .

This vanishes, for any choice of the components d4; of the two section
elements, if and only if ¢*/|, = 0. Each of the 27 quantities ¢'/|, expresses one
aspect of the rate of change of the stress tensor, namely the j-component of
the change of the force as far as it depends on the i~component of dA. Vanish-
ing of all components of the covariant derivative means that between adjacent
points the physical stress tensor (as represented by its cartesian components)
does not change. A similar statemeént can be made for all other tensors; an
example is the tensor of the elastic moduli E'™ (see p. 50). If EV™|, =0,
the material is homogeneous, i.e. it has everywhere the same elastic properties
with the same orientation of its anisotropy.

We arrive at two important statements when we apply covariant differentia-
tion to the metric tensor and the permutation tensor. In cartesian coordinates
gy = 6;; and ;5 = e, and since these are constants, we have

gij,k = 0 and €ijk,l = 0.

Partial and covariant derivatives being identical in cartesian coordinates, we
may just as well write

9iile =0, (5.24)
el'jk‘l =0. (5-25)

These are two tensor equations, stating that all components of a certain
tensor of the third or the fourth order are zero and, therefore, these equations
carry over into all other coordinate systems. The tensors g;; and ¢, (but not
their individual components!) are constants. The same can be shown to be
true for g/ and €'/*, Whenever one of these quantities is a factor in a prod-
uct subjected to covariant differentiation, it may be pulled out of the
differential operator, for example

(vigij)'k = Ui,kgij'

When we apply to €,,,|; an equation similar to (5.2351), but written for a
third-order tensor, we have

€123 = €123 — €23 111 — €143 13 — €12, T3
= €123, €123 Th—€23T5 — €53
= €123~ €123 m-
Because of (5.25), this vanishes, whence

€123 = €123 m. (5.26)
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Since v;|; is a second-order covariant tensor, we may apply (5.23a) to it
and form its covariant derivative with respect to x*. Let

vl =v; — va 0= 4y,
then

viljlk = viljk = Aijlk
=0 = Vm [ —(0,; — Um rz"j')rfk = (v = v, DL licj . (5.27)

We ask whether this is the same as v;|,;, that is, whether the order of two
covariant differentiations can be interchanged. We find v;|,; by simply inter-
changing the subscripts j and k:

vi'kj = (Vi) — Up rﬂ),j — (Vg — Um rﬁc)r:j —(viy = Um ror ,'ik .

Because of (5.6), the last term in both expressions is the same and cancels
when we form the difference. The other ones yield

P m m 'm
Ol ik = Ol = Vi ji = Vigj = Oma L ij + Omj Tik — Um Ik
m /] /] myl m I
+ 0, Thj = 0T + 0 Uiy + 0, T Tl — 0 T Ty

On the right-hand side the first two terms cancel each other since the order of
common partial differentiations is interchangeable. Among the other terms
there are two pairs which cancel, and there remains

vi'jk - vilkj = vm(l'?,:,,- -+ r;"j r:k -Ti Fﬁj =Up R?iljk' (5.28)

Since the first member of this equation is a covariant tensor of the third order,
the same must be true for the third member, and then R7}; must be a tensor
of the fourth order. It is known as the Riemann-Christoffel tensor. Our
question whether the order of two covariant differentiations is interchange-
able is equivalent to the question whether R = 0. Since this is a tensor
equation, it either holds in all coordinate systems or not at all. Now, in
cartesian coordinates I ﬂ-‘,- =0 and hence also R7j;; =0. This proves the
interchangeability of the differentiations.

There exists, however, an important limitation to this statement. In shell
theory we shall have to deal with equations which hold for the points of a
curved surface, i.e. for a two-dimensional subspace of the three-dimensional
space in which R, = 0. On this curved surface a cartesian coordinate system
is not possible and the argument just presented cannot be repeated. Inter-
changeability of covariant differentiations on the two-dimensional curved
surface depends on whether or not a two-dimensional Riemann-Christoffel
tensor R%,, with p, o, B, y =1, 2 vanishes. This two-dimensional tensor is
obtained by omitting from the definition (5.28) all terms in which one or more
of the indices have the vaiue 3. It is possible and really happens that the
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remainder does not add up to zero and then it matters which of two differentia-
tions is carried out first. We shall come back to this point on page 140.

The reader may expect that there exists a relation similar to (5.12) between
the second derivative v j of a vector v and the second covariant derivative
vil. It is easy to show and important to know that the relation is more
complicated. - To find it, we start from the second member of (5.12) and
differentiate it with respect to x*:

Vi = Ui jk g+ v; gi,k = Uik rj’l g - rj'l,k g - I"i-, gl,k'
Making use of (5.9) and changing the notation of dummy indices where
convenient, we bring this into the following form:
V= (U jx — vy I - Omp Uij = Om Ui + 0, 1)) rig'.
In the parentheses we recognize part of the right-hand side of (5.27) and
hence we have ;
V= Uil g+ (Vig = Vm r,i'l’)rllcj g,
which, with the help of (5.13), may ultimately be written as
V= (Uil + vl Th)g! (5.29a)
and in the alternate form

Vik= (viljk + v, rj‘k)gi' (5.29b)

5.3. Divergence and Curl

In (5.20) we saw the tensor form of the gradient. It is a vector whose
covariant components are the covariant derivatives of a scalar function
¢(x*). We can easily find similar expressions for the other two field derivatives
used in the Gibbs form of vector analysis, the divergence and the curl.

In cartesian coordinates the divergence of a vector field v is

. dv, Ov, Ov
divv=—+ 2+,
ox 0dy o0z
To bring this formula into tensor form, we replace dv,/0x by v' ; =v'|, etc.
and find

divv =1, = (5.30)

as an expression valid in all coordinate systems.
In cartesian coordinates the curl is defined as

curl v = (g_v_z. — %)l + (% _ 5122). + (@Uy (‘}vx)k
oy oz oz ox )’ ox ay)
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Each of the six terms of this expression involves three directions, that of a
component of v, the direction in which the derivative is taken, and that of the
unit vector with which this derivative is multiplied. These are always three
different directions, and when any two of them are interchanged, a term with
the opposite sign results. This points to the use of the permutation symbols,
and we rewrite the curl in the following form:

curlv= (6vze +6uye )i+ (6U”e +6uze )
u - ay yzx 62 zyx 52 Xy ax xzy J

ov, ov,
+ (a—x' €yyz + —a—; em)k.

In cartesian coordinates, the permutation symbols are identical with the
components of the permutation tensor, and the unit vectors i, j, k are the
base vectors g; or g'. We may therefore write

0 0 0 5
curl v = (55% e + a—;;e“‘)gl + (5:—; e+ 5%6’32)&

Now we replace the common partial derivatives by covariant derivatives and
make use of the summation convention and thus arrive at the simple form

w = curl v = v|;e*g, = v/)’¢;; g (5.31)

which, having tensor form, is generally valid. In pure tensor notation it says
that the vector

wh =)l (5.31")

is the curl of the vector »;. The covariant derivative v;|; of a vector v; is a
tensor. The curl is the vector associated with the antimetric part of this
tensor, introduced in (3.24).

Another differential operator which belongs in this group is the Laplace
operator. It may be defined in several ways, for example as the divergence of a
gradient:

V2¢ = div(grad ¢).
We write (5.20) in the form
u=grad ¢ = ¢|;g' = u;g’
and apply (5.30) to obtain
V¢ =divu =y = ¢|.. (5.32)
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Now let us take the curl of (5.20). Using (5.31), we find that
curl grad ¢ = ¢|j|i€mgk = ¢|ji€m&-
Since ¢|;; = ¢l;;, this vanishes:
curl grad ¢ =0, (5.33)

A gradient field has no curl.
Another equation of this kind is found by taking the divergence of (5.31):

div curl v = (v;]; )], = v;] s €%
Since v;|; is symmetric with respect to 7 and k, also this vanishes:
divcurl v=0. (5.39)

A vector field w = curl v is called a solenoidal field and v is called the vector
potential of the field w. We see that a solenoidal field has no divergence.

5.4. The Integral Theorems of Stokes and Gauss

Consider a plane or a curved surface S and in it a coordinate system x*.
On this surface we draw a curve C and select in it a line element

ds=ds" g,.

If C is a closed curve and the contour of a domain 4, we shall always choose
the direction of ds such that the interior of 4 is to its left.f To every line
element ds we define a normal vector dn which has the direction of the outer
normal, is tangential to S, and has the same length as ds. Assuming that in
Figure 5.2 a unit vector i, is normal to S and points out of the paper, we may
write

dn=ds x iy = ds® €,5,8° = dn, g,

whence
dng = ds"eg, . (5.35)

Now let there be in S a vector field u = #’g,. We want to evaluate
§|1~d|x=§u’dny

along the contour of the small quadrilateral ABCD in Figure 5.3, following it
counterclockwise as indicated by the little arrows. On each of the four sides

+ This definition implies that one side of the surface is considered the upper side. In pictures
it is always obvious which side this is; but, when one faces the real object in space, this is
not so and an additional convention is required to give our statement meaning.
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A dr B

FIGURE 5.2 Normal vector of a FIGURE 5.3 Area element.
line element.

we choose for u the value at one end as representative. This amounts to
disregarding contributions which are in the differentials of a higher order than
the terms carried. Using (5.35), we find

§ w dn, = u’ dric,, + (W' + w|; drf) ds%,, — (u” + u’|; dsP) drie,, — u” ds%€,,
= uw'|g€,(dr? ds* — dr* dsP).

We change dummy indices and then apply (3.30) and (3.29):

ff u? dn, = (W €,5 — Ulg€,) dr* ds® = w|;€,0€% ¢,p dr* ds?
= |58 €5 Ar* ds? = '], €,5 dr* ds”. (5.36)

In a reference frame consisting of the base vectors g* and i’ the area of the
quadrilateral ABCD is described by a vector dA = dA, i, and since there are
no other components, we may write d4; = d4. From (3.43) we have then

dA = dr @ dsp €dﬁ
and hence

§ u? dn, = u’|, dA.

Many such quadrilaterals may be assembled to fill the area A enclosed by a
curve C, Figure 5.4. In the sum of the contour integrals the contributions of
all interior elements dr and ds cancel because they appear twice with opposite
signs in adjacent area elements. Only the contributions of line elements of the
contour C of A are left and their sum, the integral of u” dn, around C, equals
the sum of the contributions u’|, d4 of all area elements:

| W, ey dridsf =§ u?dn,. (5.37)
A C
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FIGURE 5.4 Area elements and boundary curve C.

This equation is the two-dimensional form of Gauss’ divergence theorem.
We may write it also in the Gibbs notation:

L divedA = §C u- dn. (5.37)

A similar relation can be derived for a three-dimensional vector field
u=u'g,. We choose a volume element with edges dr’ g;, ds’ g;, and dr* g, as
shown in Figure 5.5 and calculate for it the surface integral

fu-dA=J'u'dA,,

where each of the vectors d4, g’ representing one of the six faces is assumed
to have the direction of the outer normal.

For the face on the right we have dA4, = ds’ dt* €3, and with the opposite
sign the same expression represents the face on the left. The corresponding
values of the vector components are «' on the left and u’ + #'|; dr’ on the right.
The sum of the contributions of these two faces is

ul(—dA) + (' + u'|;dr') dA; = '\, dr dA; = u'|; dr’ ds’ d* €.

FIGURE 5.5 Volume element.
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Applying (3.21) and then (3.19), we bring this successively into the following
forms:

“‘|i5uk = ullm 5;”6111; = %ul|m €mm€ipq €1jk
= 3|, €ip(01'05 67 — O7'0f0% + o578 — op ot of + 070pof — 870Fo))
= ‘}[ullz(eijk — €xj) + ul|k(5ilj —€p) + '] (€ — €)]
= “l'h €ijx — u'lk €iji — u'ljfiu; .
The contributions of the other two pairs of faces of the volume element are
obtained by cyclic permutation of the free indices ijk and the total is
u dA, = W€ — wli€n — ;€ + W€ — uli€ — uli€m
1 1€ijk k€iji €tk 1€jki — Uli€ju k€jii
+ ull €5 — ullj.ekil - u'li6)) dr* ds’ dt* (5.38)
= (3“", eijk - 2ulli€ljk - 2u'|j 6,-", - 2ul|k Ciﬂ) dri ds'i dtk.

In the second, third, and fourth terms the sum over / contains at most one
term because / must be different from the other two indices of the ¢ factor.
If there is no difference between these two indices, the term drops out altogether.
We consider two typical sequences i, j, k. When all three indices. are differ-
ent, for example i, j, k = 1, 2, 3, we have

() =3u'l €523 — 2u*| €123 — 2u%|2 €123 — 2u3|3€453 = U] €423
and when two of them are equal, for example, i, j, k = 2, 2, 3, we have
() =0—2u'|;€153 —2u'|,€3,3 = 0=0.
We see that the expression enclosed in parentheses in (5.38) is nonzero only if
i # j # k and then equals '|,¢;; . Hence,

f ul dA, = u') € dr' ds’ di. (5.39)

Comparison of the right-hand side with (3.44) and (5.30) shows that it is the
product of div u and the volume dV of the element.

When we combine volume elements to form a finite domain V, the con-
tributions of faces common to two adjacent elements cancel from the sum of
all integrals and we are left with the integral over the surface S of the domain,
and (5.39) shows that

j w6 dr' ds’ dt* = f u' dA, (5.40)
1 4 S
or, in Gibbs notation,

fy divudy = fs u- dA. (5.40)
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This is the three-dimensional form of the divergence theorem of Gauss.
Both versions (5.37) and (5.40) of the theorem state that in any vector field
u the integral of its divergence, extended over a closed domain, equals the
integral of the normal component, extended over the boundary.
Let us consider once more a vector field u = »;g' and place in it the in-
finitesimal triangle shown in Figure 5.6. This triangle is represented by the
area vector

dA = }dr x dt = 4dr' dt ¢, g". (5.41)

q

FIGURE 5.6 Triangular area element.

We calculate the integral § u; ds’ extended counterclockwise over the contour
ABCA. When we follow the little arrows, ds' is in sequence identical with
dri, dt' — dr', and —dr'. On each of these sides we use for u; the average of
its value at the endpoints and find

51} w; ds' = (u; + yuyl; drl) drt + [ + 4wl (dr? + deH)1(dr — dr')
+ (u; + 3uyl; dv)(—dt))
= Yu,| (dr! dt' — dr* dt) = u| (6], 6} — 8} 8L )kdr™ dr.
To the last expression we apply (3.20) and this leads to the result

§ u; ds' = uy)je/*eppy 1dr™ dt".

Comparison with (5.31) and (5.41) shows that this is the product of the
k-component of curl u and the component d4, of the area vector of the tri-
angle and, after summation over k%, it is the product.(curl u) - dA.

Any area A with contour C in a plane or on a curved surface may be
covered with triangular elements like the one just ccnsidered. In the sum
of all their contour integrals of u; ds* the contributions of interior boundaries
cancel again and only the integral over the contour C is left and this equals
the integral of the right-hand side extended over the entire domain 4:

fﬁ u; dsi=%ef"‘e,,,,,,‘f wl; drm de" (5.42)
c 4
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or, in Gibbs notation,
§ u-ds= j (curl u) - dA. (5.42")
[ A

This is Stokes’ theorem. The integral on the left-hand side is called the circu-
lation of u along the curve C.

In (5.42) the components of the permutation tensor have been pulled before
the integral sign although each one of them depends on the space coordinates
in the domain 4. This was possible since the product e/, = ¢/*e,. and
has only the values +1 or 0 and, hence, is a constant.

On page 70, we learned how to derive from every scalar field ¢ =¢p(x%)
a vector field

u=grad ¢ = ¢|;g' = ¢ ;8" (5.43)

We invert the problem and, starting from a given vector field u, try to find a
scalar field ¢ of which it is the gradient. The problem does not necessarily
have a solution and we shall see under which condition it does.

We choose a fixed point O and a variable point P, which may take any
position in space, connect both by a curve and integrate:

P P

fou - ds = joui dx' = f:qs,,. dx' = ¢(P) — $(0). (5.44)

In order to yield a unique value of ¢ for every point P it is necessary that the
integral is independent of the path chosen for the integration. If we choose
two paths, OQP and ORP, and the integral for both of them is the same, then
the integral over the closed loop OQPRO vanishes. This is the condition
for the existence of a potential ¢ of a vector field u. It amounts to requiring
that the integral on the left-hand side of (5.42) must vanish for any closed
curve C, and this in turn is only possible if curl u =0 everywhere. On
page 76 we saw that in every gradient field the curl vanishes. Here we see
that the opposite is also true:

If curlu=0, then u=grad ¢; (5.45)

every vector whose curl vanishes is a gradient.

It is also possible to prove the inverse of (5.34), namely, that any vector
ficld w whose divergence vanishes is a solenoidal field and has a vector
potential v connected with it by (5.31) or (5.31"). It suffices to prove the
theorem in cartesian coordinates. Since it is a statement about vectors, it
will then hold true in all coordinate systems.

In cartesian coordinates x°, (5.31’) reads



82 Derivatives and Integrals [Ch. 5

03,2 - 02,3 = Wl,, (a)
01’3 - 173’1 = Wz, (b)
vZ,l - Ul’z = W3, (c)

and we consider these as three simultaneous partial differential equations for
the unknown components v; of the vector potential. To construct a particular
solution, we arbitrarily let

v3=0. d)
Then, from (b) and (a),

x3 %3
v, = f w2dx3, v,=-— fo whdx® + f(xy, x3), (e, )
[

the integrals being extended along any line x' = const, x* = const (that is, a
coordinate line x*). Upon introducing these expressions for v, and v, in (c),
we find that

x3
- f Wi, +w! )dx*+ f; =w
0

We now make use of our assumption that div w = 0, that is, that
Wlll + W2’2 =+ W3‘3' = 0

and find that, for fixed values of x! and x?,
x?
j w3 dx® + f, = wi(xd).
(1]

For x* = 0 this yields
.f,l(-xl’ x2) = Ws(xls xz’ 0)

and then.
f(x‘,’xz) = J. w3 dx?.
)

When this is inserted in (f), this equation together with (d) and (e) represents
in cartesian coordinates a vector potential v of the field w. It is not the only
one. In view of (5.33), we may add to it an arbitrary gradient field u = grad ¢
and thus have a more general vector potential ® = v + u of the field w. This

proves that every vector field whose divergence vanishes can be written as the
curl of another field:

If divw=0, then w=curlo. (5.46)

The result is a property of a vector field and this may be restated in any
mathematical language, in particular in tensor notation, valid in all co-
ordinate systems,
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Now let us consider an arbitrary vector field u = 'g; and calculate its
divergence and its curl:

u'l; =6, W€ = Vi (5.47)
We propose to find a vector field v/ which has the same divergence but no
curl:

V=98, V|gu=0.
This is a gradient field

v; = ¢l
and hence
of' =li=0. (5.48)

This is Poisson’s equation. It always has a solution, and the solution is not
even unique unless we subject it to a boundary condition. The difference

w=u -0 (5.49)
has no divergence, but the same curl as u':
Wi|i =0, wjlieijk =%

and is a solenoidal field. This proves that every vector field may be split
(in more than one way) into a gradient field and a solenoidal field and hence
may be written in the form

u; = ¢l; + e, (5.50)

where ¢ is a scalar and w, a vector potential.

Problems

5.1. For the vectors-shown in Figure 5.1a, show that v,|, =0 while v, # 0.

5.2. For the vectors shown in Figure 5.1b, show that v, # 0 while v,,; = 0.

5.3. In a plane polar coordinate system r = x!, 6 = x* a vector field is described
by the equations

v'=Acosx?, v*=—(A/x")sinx’

Find the covariant derivatives v%};.
5.4. For spherical coordinates r = x', 6 = x?, ¢ = x> (see Figure 1.5) write the
square of the line element and use this expression to calculate gi;, " T'isxs Y.
5.5. Establish the transformation from cartesian coordinates to the spherical
coordinates of the preceding problem. Using this transformation, calculate for the
coordinates x' the following quantities: g:, g', g1y, 9" Tin, T'ly.
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5.6. With reference to a cartesian coordinate system x*= the elastic moduli for
plane strain are given in the following form:

Evvry = 4 EVV2¥ = B
E¥*72? = (, EV212 —G.

All moduli not dependent on these by symmetry relations are zero. .

For a polar coordinate system r = x*, § = x? calculate E*!??|;,. Make a plan how
to find this derivative and then calculate only those moduli EY/'™ and only those
Christoffel symbols which are nesded to answer the question.

References

For collateral study the reader is referred to the books mentioned on page
22,

There is more diversity of notation*for the Christoffel symbols than for
other quantities and operations occurring in tensor analysis. The oldest
notation used for I';; and I'}; seems to be [}/] and {i’}. It has practically
disappeared from the modern literature. Madelung [20] mentions it, but
uses Iy ;; I"{j. Brillouin [3, p. 119], does the same and adds “ Les notations
I" de Weyl paraissent plus pratiques, parce qu’elles placent les indices en des
positions haut et bas correspondant & nos conventions.” Many authors of
the last decades, like Synge-Schild [31], Aris [1], Eringen [6], Block [2],
Sokolnikoff [30], and Hawkins [14], have tried to combine logic and con-
servatism and use [ij,k], {{-‘j}, which, at least in the second symbol, brings the
indices into the proper position. Levi-Civita [18] and Wills [35] use [ij,k]
and {ij,k}. Duschek-Hochrainer [5] write T;;, I'; but mostly use [ij,k]
and {}‘j}. Coburn [4], Green—Zerna [13], Lass [17], and Schild [28] have the
notation adopted in this book.



CHAPTER 6

The Fundamental Equations
of Continuum Mechanics

CONTINUUM MECHANICS draws its equations from three sources of
physical information. In Section 4.2 we have already discussed the con-
stitutive equations, which describe the empirical properties of the material.
The kinematic relations between the displacement vector and the strain tensor
have been explained in Chapter 2, but the treatment given there had a
preliminary character because we approached the subject before we had
learned how to differentiate a vector. We shall have to-come back to this
subject. The equilibrium conditions and their dynamic counterpart, the
equations of motion, have not yet been touched upon. All this will be done
now, and then we shall see how one can condense all these equations to a
single one for one surviving unknown.

6.1. Kinematic Relations

Equations (2.18) and (2.19) are the linearized and the exact forms of the
kinematic equation, but their validity is restricted to coordinate systems in
which every component of the metric tensor is a constant, i.e. for which
gij =0. Because of the presence of the partial derivatives u; ; etc., these
equations are not tensor equations. However, on page 69 we saw that in
cartesian coordinates the partial derivatives are identical with the covariant
derivatives so that we may replace one by the other. Therefore, we may write

&i; = 3l + wl0) 6.1
for the linear version of the kinematic equation and

e =30ul; + ujli + ') (6.2)

W. Flugge, Tensor Analysis and Continuum Mechanics
© Springer-Verlag Berlin Heidelberg 1972
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for the exact equation. In this form they are tensor equations and can be
carried over into all coordinate systems.

Comparison of (6.1) with (1.51a) shows that for small displacements the
strain tensor is the symmetric part of the tensor of the displacement derivatives
u;|;. According to (3.24) the antimetric part 3(u;]; — u;|;) may be associated
with a vector

""2(0" = ui!jeuk. (6.3)
Comparison with (5.31) shows that
w'g, =% curl u.

A geometric interpretation is easily obtained by applying (6.3) in a cartesian
coordinate system. In this system,

= —3uy 2 €23 + uy 4 213) = 3(uy,y — uy 0)

As may be seen from Figure 6.1, the derivatives u, ; and —u, , are the angles
of rotation of line elements dx' and dx?, both positive when counterclock-
wise. The vector component > is their average and may be considered as
‘representing one component of the average rotation of a deformable volume
element. '

There are three displacement components u;, but six different strain
components ¢;;. If we want to use (6.1) to calculate the strains from the
displacements, we have one equation for every ¢;;, but if we consider them as
differential equations for the u;, we have three more equations than unknowns.
We cannot expect that these equations are compatible with each other for
any given set of six functions ¢;;(x*). There must exist some conditions to
which these functions are subjected.

—uy,z dx?

up, ;1 dxt

FIGURE 6.1 Average rotation of a deformable element.
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We find these compatibility conditions by eliminating the displacements
from (6.1). We calculate the second derivative

2,5l = uil ju + Uil

and see that the first term on the right is symmetric with respect to the indices
j and I Its product with the antimetric permutation tensor ¢/ vanishes.
Similarly, the product of the second term and €*™ is zero, and when we
multiply the equation with both factors, we have

&l €°me™ =0.

This is the compatibility condition. There are six essentially different com-
ponent equations (6.4) for the choices mn =11, 22, 33, 12, 23, 31. Let us
look at two typical samples.

For m =n =3 we have

e11las €12%€123 4 g ,0,, €131 4 gy |1, €213€12% 4 gy,),,€ 213212 = 0
or
€12z + €22l11 — 2842142 =0.
Transcribed into cartesian coordinates x, y, z, this yields the well-known
equation
d%, azsy 52ny B

2 T e T axay

Now consider a case where m # n, for example m =2, n = 3. Then

132,213 312,123

132 123 312,213 _
eralza€ "€ T a3 € 7€ Fegglia €7 e T de3y] €7 €T =0

3

in cartesian coordinates, after multiplication by a factor 2:

) %, 0 [6*@ Ney awyz}
oy0z oxloy 9z ex)

and this is also one of a set of three compatibility equation known from the
theory of elasticity.

The compatibility conditions belong to the general group of kinematic
relations. However, they are not the primary equations of this group, but a
result of mathematical operation performed upon (6.1), which is the
primary relation.

6.2. Condition of Equilibrium and Equation of Motion

We now turn to another group of fundamental equations of continuum
mechanics, the conditions of equilibrium.
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Figure 6.2 shows an infinitesimal block with parallel faces, cut from a
solid or fluid material supposed to be in equilibrium. Its edges are vectors
dr'g;, ds'g;, di* g,. The face on its right-hand side has the area dd, =
ds’dt*c;,,. Through it and through the face opposite it forces are transmitted
which, in first approximation, are d4, ¢'™g,, and which, in second approxima-
tion, differ by

(dA,0'™)|,dr' g, =dd,c"|; dr'g, =ds’ dt* ¢, 6™, dr' g,.
J

g dA, c'™ g,

FIGURE 6.2 Stresses acting on a volume element.

This is the amount by which the force on the right-hand side is greater than
that on the opposite face. The other two pairs of faces of the volume element
produce similar unbalanced forces, and all three contributions add up to

dr’ dsj dt"(a""!,ej,‘; + U'm,j €+ a'"'lkeij,)gm. (6.5)

We met a similar expression in (5.38), but in that equation we were
dealing with a vector «' instead of the tensor /™. Repeating the argument
presented there, we verify that the expression (6.5) equals

dr‘ dsj dtkq'mlleijkgm’

This is the resultant of all the stresses acting on the volume element. Because
of (3.44), it may be written in the simpler form ¢"|, dV g, or, with a change
of the dummy indices, 6/!|; dV'g;. In addition there may be a volume force
(mass force), which we write in the form X* dV'g;. The sum of the unbalanced
stresses and this volume force must be zero:

(¢, + XHdV g, =0.

This equation must hold separately for each of the three components, whence,
after dropping the constant factor dV, we have

o'l, + X =0. (6.6)
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This is the condition of equilibrium for the forces acting on a volume element.
The equilibrium of moments is taken care of by (4.8), that is, by the symmetry
of the stress tensor o*.

If the body is in moti. 1, we have the choice between two formulations of
the problem. In the Lagr. ngian or particle formulation we attach coordinates
(that is, names) to the ind vidual particles and write the dynamic equations
in terms of these coordinates, which are moved and deformed with the
material. In the Eulerian or field formulation we use a fixed, rigid coordinate
system and let the material move in it. In the first case our equations say
what happens to a certain particle, in the second case they say what happens
at a certain point in space.

For the small motions of a solid both formulations coincide. We can
associate a certain, time-dependent velocity with each particle, but since the
particle always stays close to the position which it has at rest, the same velocity
is also associated with that point in space. The velocity is simply the partial
derivative of the displacement u,

L
Tat Tt

with the understanding that u is a function of time ¢ and of the coordinates
x’ attached to the material. The negative product of acceleration and mass
density p is the d’Alembert inertia force per unit of volume and must be
added to the volume force X' in (6.6). This leads to the dynamic equation,

/i), = = X' + pii. 6.7

6.3. Fundamental Equation of the Theory of Elasticity

We now have all the basic equations which describe the equilibrium and
the small motions of an elastic solid, namely, (i) the kinematic relation (6.1),
(ii) the equilibrium condition (6.6) or, in its place, the dynamic equation (6.7),
and (iii) Hooke’s law (4.11) or (4.25). They stand for 6 + 3 + 6 = 15 com-
ponent equations and contain as many unknowns, namely, the 6 components
of the symmetric strain tensor ¢;;, 6 components of the stress tensor ¢*/, and
3 displacement components ;. It is possible and desirable to eliminate the
majority of these unknowns between the equations and thus to reduce the
rather large system to a set of three differential equations for the displace-
ment components u;. We show this separately for the anisotropic and the
isotropic cases.

If the material is anisotropic, we introduce the expressions for the stresses
from (4.11) into the equation of motion (6.7) to obtain

(E™e)l; = = X' + pit
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and now use the kinematic relation (6.1) to express the strain in terms of the
displacements:

[Eijlm(ullm + umll)]"f = —2X‘ + 2pi"i, (6.8)

This tensor equation, valid for i =1, 2, 3, represents three component
equations for the u; and is called the fundamental equation of the theory of
elasticity. In a homogeneous material the covariant derivative of the elastic
modulus vanishes and we may pull EY/'™ before the differential operator:

Eijlm(ullm + umll)'j _ _zxi + 2pil'i. (69)

In the isotropic case we use (4.25), in which we must raise the index j.
This is done by multiplying the equation by g’* and, after j has disappeared
in the process, replacing k by j:

E ; v
ij _ ij m . ij
’ 1+v(E ti— )
When this is introduced in (6.7), the following equation results:
___E
(1+v)(1-2v)

In order to combine this with the kinematic relation (6.1), we must there
raise one or both subscripts:

[(1 = 2v)e¥|; + veml; 9] = —X* + pii’. (6.10)

& =3 + )

and
&) = 3(u'|; + ul’),
whence
& = HU"p + tpl™) = U (6.11)
The results are used on the left-hand side of (6.10), which then reads
a+ v)j‘(gl ~2) [ _22v Wi+ 1) + il g”]
E

= STrod =2y [~ 2l + wi)

Thus we arrive at the following fundamental equation:

___E
2(1 + v)(1 — 2v)

which again stands for three component equations. Equations (6.8) and (6.12)

[(A = 2w}l + w/|}] = = X' + piit, (6.12)
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are two forms of the fundamental equation of elastodynamics. If the term
with i’ is dropped, they are valid for problems of elastic equilibrium.

1t is, of course, possible to derive (6.12) from the more general equation
(6.8) by introducing there the expression (4.19b) for the elastic modulus.

For the discussion of further details we drop the body force X and intro-
duce the Lamé moduli A, u from (4.17). Instead of (6.12) we then have

'l + (A + ] — piit = 0. (6.13)

We apply the divergence operator (5.30) to this equation and then inter-
change the dummies i and j in the second term:

p'ld + (& + o'l — pid'l; = 0.

Using the Laplace operator from (5.32), we may write our equation in the
form
V3|, - ctii'|; =0, (6.14)

where ¢? is not a tensor quantity, but the square of a quantity

| e
c_\/—qu, (6.15)

which has the dimension of a velocity.
Another important equation is obtained when (6 13) is subjected to the
curl operator (5.31):

Iluilf,:kfku + (A + ,U)Uj’j'kfku — pii'ffey = 0.

In this equation the second term vanishes because v’ ¥ = u/|* and the equa-
tion assumes the form

(Vzui!k - Czil'ilk)é'kil = 0 (6.16)

c=\/£. (6.17)
U

Every solution of the fundamental equation (6.13) must satisfy (6.14) and
(6.16), which have been derived from it. Both these equations are homo-
geneous and have trivial solutions.

Equation (6.16) has the trivial solution

u'lke, . =0, e curlu =0. (6.18)

with

A vector field satisfying this condition may be written as a gradient field

u = grad ¢, u' = ¢l (6.19)
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where ¢ is the displacement potential. In a gradient field we have
W =gl = g1/ =],
and when we introduce this in (6.13), it simplifies and reads
(4 + 20} — pii =0

or
Vi — it =0 (6.20)
with ¢ from (6.15).
On the other hand, (6.14) has the trivial solution
;=0, ie  diva=0. (6.21)

Then the second term of (6.13) drops out and the equation again assumes
the form (6.20), but with ¢ from (6.17).

To get a physical understanding of the phenomena represented by the
two versions of (6.20), we write it in cartesian coordinates x, y, z and for the
corresponding displacement components u; = u':

azu; 62u,- azu; 2 azui

E‘—Z-F*a?'{-g;z'— 3;-2-=0, (i=1,2,3). (6.22)
These equations are satisfied by
u=A4fl{x—ct), (=123), (6.23)

with three arbitrary functions f;. This solution represents a stress system
which moves in positive x-direction with the speed ¢ through the elastic
body, i.e. an elastic wave.

We may either choose ¢ from (6.15) and satisfy (6.18), or we may choose
¢ from (6.17) and then we must satisfy (6.21).

Equation (6.18) is satisfied if we let 4, = A3 =0. Then only u, # 0 and
&,, =&, = 0u/dx is the only nonvanishing strain component. This leads to
an elastic dilatation

Em =&, + & + &,

but there are no shear stresses. Such waves are called dilatational waves.
On the other hand, we may satisfy (6.21) by choosing A, = 4, =0. The
only nonvanishing displacement is then

u = A4, f(x —ct),

which is at right angles with the direction in which the wave propagates.
The only strain is a shear strain
10u,

13 == —

2 ox

and the dilatation is zero. These waves are called shear waves.
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Generalizing from this experience, we conclude that solutions of (6.20)
with curl u =0 are dilatational waves and propagate with the speed ¢ given
by (6.15) and that solutions with divu =0 are shear waves, whose speed of
propagation is given by (6.17).

6.4. Flow of Viscous Fluids

For the description of fluid flows the Eulerian formulation is generally
preferable. Besides the coordinate system x/, which is tied to the particles
and is deformed with the fluid, we introduce a rigid coordinate system y*,
in which we ultimately want to write our equations. While the same particle
has always the same coordinates x/, its change of position is described by the
time dependence of its coordinates y*. When we write partial derivatives with
respect to time, we must, in each case, specify what is to be held constant,
x/ or y'. In this section we shall use the notation d( )/t = (') when y' = const
and D()/Dt when x/ = const. In the first case ' we are measuring the change
occurring at a fixed point in space (““local” tithe derivative), while in the
second case we are following a particle on its way (*‘ particle ”” time derivative).

The change of the coordinate y of a particle is identical with its displace-
ment «* and in particular the infinitesimal displacement du’, which takes place
in a time element dt, is identical with the increment dy’. We may, therefore,
write the velocity of a particle in the two forms

i i
V= Bl—l- = &J- (6.24)
Dt Dt
The two time derivatives of any field quantity p (scalar, vector, tensor) are
connected through the relation

Dp dp BpD}’i_5p+ : Op

DY g 6.25
Di_ ot oy Di ot oy (6.25)

We want to write our final equations in terms of y‘ and, therefore, use
base vectors g; =dr/dy’ and derive from them the metric tensor g;;, the
permutation tensor ¢,;, and the Christoffel symbols. All these quantities
are time-independent, while the metric based upon the deformable coordin-
ates x/ is changing with time.

We have already introduced the dot notation for the time derivative at
constant . We shall use the comma notation for partial derivatives with
respect to y' and the slash notation for covariant derivatives with respect
to these coordinates:

D=3 V=

d . . .
a—;-i = (v, + 0 Thg, = vlg;. (6.26)
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We may then write (6.25) in the form

Dp .
— =7 '‘pi. 6.27
D= PP (6.27)

The acceleration is the time derivative of the velocity for constant x/:
v o, .
a=E=v+v’v’j,

in components:
. DY
a=—=70+0;. 6.28
= ] (6.28)
The formula is easily interpreted. When the flow is not stationary, the velocity
at a fixed location changes with time and &' measures the rate of this change.
When the flow is stationary, ¢' =0; but even then the velocity of a particle
changes because in the time df it moves to another point of the flow field
where the velocity is different. The amount of acceleration stemming from
this cause depends on the space derivative of the velocity and on how far the
particle moves in the time dt, hence on the product of ¢|; and /.

The dynamic equation of fluid flow is the same as that used for solids,
(6.7), but we avoid the use of displacements and replace #’ by a’, for which
we use (6.28). Hence,

o’y = =X+ p(& + o). (6.29)

When we differentiate the kinematic relation (6.1) with respect to time for
x’ = const, we arrive at thie strain rate

De; 1
—D—;{ = 3 (wil; + v,1)- (6.30)

In view of the constitutive equations to be used, we split this into a rate of
dilatation and a rate of distortion according to (4.29) and (4.30). Using
also (6.11), we find that

D D
3Fj='5;£":=vm'"’ (6313)
and
De! . De; De 1 | .
DtJ * -D—-;k -9 D2 (Wil + vl g™ = 3 V"|m0; s
whence finally
F; = E(DJll + vlij) -_ '5 Umlm (S;. (631b)
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Here we shall consider a viscous, incompressible fluid. For this material,
(4.34a) degenerates into the kinematic statement De/Dt = 0, whence
", =0. (6.32)

This incompressibility condition is also known as the continuity condition
of the flow field. It states that the divergence of the velocity field is zero.
Equation (6.31b) simplifies in this case and there is no difference between e}
and &

S D
_ = ') = - (U_ill -+ U'Ij)' (6.33)

In a fluid at rest and also in an inviscid fluid in motion, the pressure p is
the same in all directions. When a viscous fluid is in motion, the volume
elements are undergoing a deformation and there are compressive stresses of
different magnitude in different directions. If we still want to speak of a
pressure in the fluid, we may define it as the average of the normal stress,
to be counted positive when compressive,

p=—s=—1an. (6.34)
When this is introduced in (4.30b), it reads
;= a5 + pd;,
and this may be used in the constitutive relation (4.34b), in which the time
derivatives are, of course, particle derivatives:
De;

o} + poy=2u 5. (6.35)

With the help of the kinematic relation (6.33) we bring this into the form
ob = —pdi + p(v,' + v])).

We replace j by k and then multiply by g#* to obtain a similar expression in
the contravariant components:

o = —pg" + u(’|' + v'}h). (6.36)
This equation combines the information contained in the kinematic relation
and in one of the constitutive equations (4.34). Our last step on the way to a
fundamental equation is the elimination of o'/ between (6.29) and (6.36).
We find that
—pl;g" + u(l; + V1) = = X"+ p(8" + v70)).

On the left-hand side, ¢/|} is the i-derivative of ¢/|;, which, from (6.32),
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vanishes identically. Rearranging the remaining terms, we bring the equation
in the following form:

pi* + pv'v!|; — pv'l) = X* — p|'. (6.37)

This is the Navier-Stokes equation. It stands for three component equations
and contains four unknowns, »' and p. Together with the continuity con-
dition (6.32) it determines the flow of the fluid.

In the velocity field o' we may conceive a set of curves which are everywhere
tangent to the vector v. They are called the streamlines of the flow field.
Similar lines are possible in any other vector field. Magnetic and electric
field lines are well-known examples. When we draw the streamlines that
pass through all the points of a closed curve C, they form a tube called a
stream tube. Now let us choose a special coordinate system y' in which the
base vector g, has the same direction, though not necessarily the same
magnitude, as the velocity vector v. Then v =0v'g, and v? =v> =0. For
the curve C we choose a quadrilateral with sides dr = dr? g, and ds = ds° g; .
The area enclosed by C is then

dA—_-dr X ds =dr2 ds.3 6231g1
and the flux of fluid through it is
v-dA =0v' dr? ds® €,,.

When we intersect the stream tube at some other place with a surface
y! =const, the cross section is again the cross product of some vectors
dr’g, and ds® g; and since the wall of the stream tube is formed of lines along
which only y! varies, the components dr? and ds® of these vectors are the
same as for C, although the base vectors may be different. Therefore, the
rate of change of the flux from one cross section of the stream tube to an
adjacent one is

(v-dA), = dr® d53(016231),1 =dr? ds3(vlez31)|r =dr? ds* 5231”111

and this vanishes because of the continuity condition (6.32). We thus arrive
at the result that in a unit of time the same amount of fluid passes through
all cross sections of a stream tube. For the velocity field of an incompressible
fluid this is physically obvious, but the same mathematical reasoning applies
to all vector fields which satisfy (6.32), that is, whose divergence vanishes.
We shall soon make use of thls fact in a vector field for which the result is not
physically obvious.

If the fluid flow is stationary (¢’ = 0), the streamlines are the paths fol-
lowed by fluid particles during their motion in the flow field. If the flow is not
stationary, the shape of the streamlines changes with time and an individual
particle follows only one line element of a streamline and continues to follow
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a line element of a slightly changed streamline and so on. The pathlines
x/ = const are then different from the streamlines.

When the fluid is at rest, the velocity terms must be dropped from (6.37)
and all that remains is the statement

pli=X,, (6.38)

which determines the hydrostatic pressure. Since p is a scalar, X; must be a
gradient field,

X, =9Q|, (6.39)
and, hence, must satisfy the condition
curl X =0, X;l é* =0. (6.40)

Otherwise, the fluid cannot be in equilibrium.

In many important fluids, like water and air, the viscosity u is small and
can often be disregarded. In such inviscid flow the Navier-Stokes equation
(6.37) loses the viscosity term and reads as follows:

po; + pvivy; = X, - pl;. (6.41)

Comparison of the left-hand side of this equation with (6.28). shows that it
equals p(Dv,/Dt).

Now let us consider a closed space curve C in the velocity field, its points

attached to the fluid particles, and calculate the time derivative of the circula-
tion integral (see p. 81) of the velocity:

D Dy, D dy
Dt A\ dr——§vdy—§—ﬁdy +§vi—l)—t"

The line element dr = djy* g; is the difference of the position vectors pointing
from a fixpoint to two adjacent particles on C. We may interchange the two
differentiations in the last integral and then use (6.24) to obtain

D dy § d § v, dvt = § (v; dv* + dv;v') = é[vil’i]-

The bracketed term represents the difference of the values v;v* at both ends
of C. Since the curve is closed, its ends coincide and the difference equals
zero, This leaves us with

D ; 1 ;
—dvdyi=¢p—dy== = pl.) dyv
5 P i dy Dtd p§(xl Pl d',

which, with (5.19) and (6.39), ylelds

1 L1
-§; Q,-pydy'=-[Q-p],
5P @—pady'=-10~7]
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and also -this difference of terminal values equals zero for a closed curve C.
Thus we arrive at the statement that for an inviscid fluid moving in a con-
servative force field

§ v; dy' = const (6.42)

for any closed curve moving with the particles of the fluid. This is in par-
ticular true for any infinitesimal curve bounding an area element JA. From
Stokes’ theorem (5.42) we conclude that then curl v-dA is also a constant.
Since, in a general flow field, dA changes magnitude and direction, this does
not mean that the vorticity

o=curlv
is a constant.

Also the vorticity vector ® forms a vector field and we may define a kind of
streamlines, which we shall call vorticity lines or vortex filaments and we
may consider a vortex tube formed by the vortex filaments passing through
all the points of a closed curve C. The product @-dA is the flux of vorticity
through the cross section dA of such a tube. Since we saw on page 76 that
every curl field has a vanishing divergence, we may repeat the reasoning
given for the stream tubes and conclude that along a vortex tube, for constant
time, the flux ®-dA is constant. The flux through the wall of the vortex
tube is zero by its definition. When we now attach the points of this tube
to the fluid particles, we see that the flow through any element of its wall will
remain zero and that these particles will for all times be the wall of a vortex
tube. We also see that a cross section of the tube, no matter how it may
change, will always remain a cross section of this tube and will have the same
flux @-dA. The volume integral of the vorticity vector @ extended over an
element of a vortex tube will always be the same and will stay with the same
particles.

Many unsteady flows start from rest and in many steady flows the fluid
approaches from infinity with a uniform velocity toward an obstacle creating
a nontrivial velocity field. In both cases there was originally curl v =0 for
each fluid particle, and since the dot product of the curl with any area element
is constant, it follows that in these cases curl v =0 throughout and that,
according to (5.45), the flow field is a gradient field. The velocity may be
written as the gradient of a scalar @, called the velocity potential:

v, =0, =0 ;. (6.43)

A velocity field of this kind is called a potential flow. Introducing (6.43) into
the continuity condition (6.32), one obtains a differential equation for the
flow potential:

o|i =0, (6.44)
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the Laplace equation. The introduction of (6.43) into (6.41) yields an equa-
tion for the pressure p:

pli=X;— p(®|; + (I)qu)lij) =X, - p(d +%(D|j(p|j)'i' (6.45)

The boundary condition for the differential equation (6.45) is a statement
regarding the velocity component normal to the boundary S of the domain
in which fluid flow takes place. Let n’ be a unit vector normal to the surface
S, then the normal component of the velocity is

i i
v;n' = ®;n'.

It may not be prescribed entirely arbitrarily, but is subject to an integrability
condition imposed by the divergence theorem (5.40). When we apply this
equation to the velocity field v/, then, because of the continuity condition
(6.32), the integrand on the left-hand side vanishes identically and the
boundary values of v;n' must be so chosen that

fsv"dAi= 0.

6.5. Seepage Flow

The fluid flow considered thus far is the flow of a mass of fluid filling a
certain part of space. We now turn our attention to a quite different kind of
flow, the seepage flow of a fluid through a porous medium. .

There are two kinds of porous materials. In those made to be used as
floats the pores are closed cavities, not connected with each other and not
accessible from the outside. In these materials no flow is possible. Other
materials, such as sand, porous rocks, concrete, filter materials, etc., have
a system of communicating pores and a fluid may flow through a maze of
tiny channels, bifurcating and recombining randomly. In most cases the flow
channels are so small that the movement of the fluid through them is domin-
ated by viscous friction and its velocity is proportional to the pressure
gradient.

Since the flow channels are very irregular, the actual velocity of the fluid
varies within a wide range and nothing is known about the details. The
velocity which we shall use in our equations is not any average of the actual
velocities, but is based on the observable mass flow through the bulk volume
of the porous medium. To get a precise definition of this velocity, we con-
sider the tetrahedral element shown in Figure 6.3. This element has the
same shape as the one shown in Figure 4.1 and the geometric statements
made there may be used. In particular, the outer normal of the triangle
ABC is

dA =dA; g,
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FIGURE 6.3 Definition qf the filter velocity.

where dA4, g!, dA,g?, and dA,g® are the inner normals of the triangles OBC,
OCA, and OAB, respectively. If the tetrahedron is small enough, the volume
of fluid which enters or leaves it per unit of time through any one of its sides is
proportional to the area of that side. Let the fluid entering through OBC
be v! dA,. Similar amounts enter through OCA and OAB, and the sum of
all three is

v'dA;=v8; dA; =v'g; - g'd4; =V dA.
The same amount of fluid must leave through the face ABC. The vector

v =vlg;

is the velocity of the fluid flow with respect to the bulk cross section. It has
been called the filter velocity. If the area element ABC is at right angles with
v, then its normal vector dA and the velocity vector v have the same direction
and the flux through the element is the product of |v| and the total area,
solid and pores, of that side of the tetrahedron.

The flow through the pores of a solid body is a viscous flow and no flow
will take place unless there is a force field to produce and maintain it. If a
certain piece of a porous medium is saturated with fluid and so enclosed
that the fluid cannot move, there will be a hydrostatic pressure field satisfying
(6.38), where X; is the force acting on a unit of the fluid volume (not of the
bulk volume of the porous medium). The vector X; may simply be the specific
weight of the fluid referred to the base vectors g, or an electrostatic force,
or a d’Alembert inertia force like the centrifugal force acting on the fluid in a
rotating filter. :

To make the fluid move, p]; —X; must be different from zero and if the
pore geometry has no preferential direction, the filter velocity follows the
direction of the force field X; — p|; and is proportional to its intensity:

v; =k(X; = pi;) =k(Q - p)l;- (6.46)
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This linear law is known as Darcy’s law. Some porous media are aniso-
tropic. The pores may be arranged in long strings going all in one direction,
or the material may have layers, in which flow is easy, while flow at right
angles to these layers meets with much more resistance. To cover such cases,
we replace the permeability coefficient k by the permeability tensor k¥
and write

o' = k(X - pl)) =K@ - p);. (647)

Continuity of the flow again requires that the divergence of the velocity
field be zero,

vl =0, (6.48)

and when this and (6.47) are combined, a differential equation for the pressure
p results:

(kijph)h = (kinj)li . (6.49)
In a homogeneous medium k*/|; = 0 (see p. 72), and then we have simply
kply; = kVX;l;, (6.50)

which in the isotropic case k¥ = kg*/ simplifies to
kgijplij = kginin’
whence
pli = X¥);. (6.51)

This is the Poisson equation and, in the absence of body forces, the Laplace
equation.

There seems to be no fundamental physical law which would require that
the permeability tensor be symmetric. Proofs of symmetry may be found in
the literature [7], [27], but these are based on a somewhat vague idea of flow
channels in a random arrangement and are not fully convincing. The author
has tried to find a counterexample and has studied several regular, two-
dimensional pore systems, which were complicated enough to appear promis-
ing. In all cases the tensor k* turned out to be symmetric. Of course, the
negative result of this effort is not a conclusive proof of the symmetry, but
unless there is a valid demonstration to the contrary, it seems to be safe
to assume that k" = k/%.

The fluid moving through the channels of a porous medium is exerting
pressure and friction forces on the solid matrix, which act on it as.an external
load producing stresses. Before we can study these stresses, we need a
geometric concept, the porosity.

Figure 6.4a shows the same element as Figure 6.2, but embedded in a
cartesian coordinate system x, y, z. The dark part of its surface represents
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(a) (b

FIGURE 6.4 Volume element of a porous material.

solid matter while the small circles are sections through pores. When we cut
the material by several parallel planes, the share of the pores in the total
cross section vacillates around an average, in which alone we are interested.
Let the section dy dz on the right be an average section and let ¢ dy dz be
the area of the pores and (1 — @) dy dz the solid area of the section.

The dimensions dx, dy, dz of the volume element are, as in Figure 6.3,
infinitesimal in the sense that they are very small compared to the dimensions
of the flow field, but they are still large compared to the dimensions of the
individual pores. We consider now a slice whose thickness dx is of the order
of the pore diameter or even smaller. In the statistical average, the solid
volume in this slice is (I —¢) dy dz 6x. When we add the volume of all the
slices which constitute the element dx dy dz, we find that its solid volume is
(1 — ¢)dxdydz and its pore volume ¢ dx dy dz. Thus the same quantity
¢, called the porosity of the material, describes the amount of pores in a
volume and in a cross section. From this fact it follows that ¢ must be the
same for sections in any direction, even if the arrangement of the pores has a
preferred direction.

It is worthwhile to draw attention here to a few details of pore geometry.
(i) The pores whose cross sections appear in Figure 6.4a are not isolated
cavities, but parts of a system of coherent channels. In a material with
isolated cavities no seepage flow is possible.

(i) If a material contains both pore channels and closed bubbles, the latter
ones count for our purposes as part of the solid matrix.

(iii) The figure represents a spongelike material. In a gravel bed, the pores
are the coherent part of the section and the solid particles appear as islands.
Nevertheless, the definition of ¢ and all later statements including the equilib-
rium condition (6.53) are equally valid.
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Now let us turn to Figure 6.4b, which shows the same element, but with
notations appropriate for the use of general, curvilinear coordinates x‘.
On the side

ds x dt =ds' dt* €;,,8' =dA, g'

two forces are acting, the resultants of the stress 6" in the solid matrix and
of the fluid pressure p in the pores. It is convenient (and unobjectionable)
to define the stress in terms of the gross cross section so that the force is

c'™dA, g,, as mdlcated in the figure. The fluid pressure p acts on the cross
section ¢ dA, g' of the pores and is opposite in direction to the outer normal
of the section. Therefore, the total force acting on this side of the volume
element is

dF =o' dA, g, — p$p d4, g' = (6" — ppg™) dA, g,,. (6.52)

This force takes the placé of the force o'™dA, g, used in the derivation of
(6.5). When we introduce it there and then follow the derivation of the
equilibrium condition (6.6), we find in its place the equation

(6 — pdg')|; + X' =0,
which we may write in the form
o'l = X"+ (pp)|". (6.53)

The body force X' is the sum of all actual body forces (gravity, centrifugal
force, etc.) acting on the solid and fluid material in a volume element. We
see that the presence of a pressure field in the fluid has on the stress system in
the solid material the effect of an additional body force. It is remarkable
that even a constant pressure p produces stresses '/ if the porosity is variable.

For the formulation of stress problems in a solid subjected to a seepage
flow, (6.53) must be combined with Hooke’s law (4.25) and the kinematic
relation (6.1). Since the measurement of elastic constants is based on the
gross dimensions of the test specimen, the use of gross stress o'/ is practical
and unobjectionable. If the solid matrix breaks under the stress caused by
the pressure field p, the surface of rupture will deviate from a smooth surface
in the sense that it seeks the weakest places in the pore structure, where the
walls are thinnest and the pores largest. This, of course, is equally true if a
tensile test is performed with a dry specimen and the gross stress of rupture
includes this weakness as in any other tensile test. However, in the actual
surface of rupture the porosity has a value higher than-the average ¢. Since
the total force dF transmitted through one of its area elements is the same as
in a surface of average character with which it almost coincides, it is seen
from (6.52) that in the surface of rupture even the gross stress, if tensile, is
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higher than the value calculated from the differential equations of the prob-
lem. Since the porosity in an irregular rupture surface is hard to measure, it
appears necessary to determine the strength of the material not in a tension
test, but in an actual flow field.

Problems

6.1. Express the kinematic relation (6.1) in cylindrical coordinates x! = r, x> =6,
x3 = z shown in Figure 6.5.

- 9

FIGURE 6.5

6.2. Drop the dynamic term from the fundamental equation of elasticity (6.12)
and then write this equation as three component equations for the spherical coordi-
nate system shown in Figure 1.5.

6.3. Write the continuity condition (6.32) and the Navier-Stokes equation (6.37)
for plane polar coordinates.

References

For books on the theory of elasticity see the references on page 65.
Cartesian component equations of fluid mechanics are given by Lamb [16]
and Milne-Thomson [22], while Aris [1] uses a combination of general
tensor notation and Gibbs notation. The flow of a fluid in a nonisotropic
medium has been treated by many authors. Most of them think of a stratified
rock and take symmetry of the permeability tensor k*/ for granted. The
subject has been taken up seriously by Ferrandon [7]. His work is described
in the book by Scheidegger [27, p. 76]. The force exerted by the fluid upon
the solid medium has first been considered as a kind of static buoyancy.
A rational formulation was given by Fliigge [9] and the problem has been
taken up again by Ferrandon [7].



CHAPTER 7

Special Problems of FElasticity

THE SOLUTION OF the differential equations of the theory of elasticity is
greatly simplified when it is known in advance that certain components. of
the displacement vector u;, the strain tensor &;;, and the stress tensor ¢*/
are zero or are so small that they may be neglected. It is a historical peculiarity
of the literature written in English on the subject that only problems of the
first class are considered to belong to the Theory of Elasticity, while those of
the second class are relegated to her humble sister, called Strength of Mate-
rials. From the point of view of the engineer there is no reason for such a
class distinction and we shall accept them as equally honest and equally
good attempts to obtain solutions for practical problems.

7.1. Plane Strain

There are two plane problems in the theory of elasticity, the problems of
plane strain and of plane stress. In plane strain, the actual object is a cylin-
drical or prismatic body (Figure 7.1), which is so loaded and supported that
all stresses and deformations are independent of z. We may cut from this
body, at any place, a slice of any thickness and study the stress problem in it.
The same stresses, strains, and displacements will occur in all such slices.
In formulating and solving this problem, we use as coordinates z = x> and
two arbitrary, possibly curvilinear, coordinates x* in the x,y plane.

In plane stress we are dealing with a thin slab with free surfaces, loaded
only by forces in its middle plane, that is, in the plane which halves the thick-
ness everywhere. The thickness of the slab is not necessarily constant, but
should not vary abruptly. Also in this case we use a general plane coordinate
system x* and a coordinate x* measured normally to the plane of the other
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oa

FIGURE 7.1 Prismatic body in plane strain.

two, but instead of choosing x* = z, we may choose x> such that it assumes
the values +1 on the free surfaces of the slab. This is particularly advan-
tageous when the slab thickness varies with x*.

The base vectors g, of our coordinate system can make any angle with
each other, but g5 is always at right angles to both of them. Borrowing from
the terminology of the crystallographers, we may say that we are using a
monoclinic reference frame. In this system

9:3 =88 =0
and the metric tensor has the following components:
911 912 O
921 922 0 |.
0 0 93

In the coordinates x* x> some of the general formulas simplify. For
example, if we let k = 3 in(5.3a) and restrict i, j to the two-dimensional range,
we find that

T3 =8.5°8=0 (7.1a)
because gj is at right angles to g, ;. For a similar reason
Tosp=T3,5=83. 8 =0; (7.1b)

and also any other I';;;, or I'}; vanishes if one or more of its indices are equal
to 3.
To write the covariant derivative of a vector

v=1'g, =1'g, + 0’gs,

we use (5.11), where we split the sumover k =1,2,3 intoasumovery =1, 2
and a separate term for k = 3:

o'l =o', + 0T}, + 0’5,
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The last term vanishes. What remains needs to be inspected for different
cases. First, let i =a, j = f§; then

Vg =1" 5 + 0T, (7.2a)

which is simply (5.11) with a reduced range of all indices. Now let us have
i=a,butj=3:

b7y = 0%, + 0TS, = 075, (7.2b)
Similarly, with i =3 and j = a:
VB, =0, + 0T, =0, (7.2¢)

and
0313 = 03’3 . (72d)

In these three cases, the covariant derivative is identical to the common
partial derivative. Similar equations hold for the covariant components,

Vg = 0,5 — 0,1, Ugl3 = 0,3, U3, = V3,4, v3l3 =033 (7.3)

and also for tensors.
In plane strain, which we shall now study, the third displacement com-
ponent u; = 0 and the displacement

u=u,g"

is a plane vector. The linear kinematic relation (6.1) applies to the in-plane
components

saﬁ = %(”alﬁ + u/}lzz)v (74)

while in all other formulas the covariant derivatives are equal to the common
derivatives:

—1 -
Ep3 = F(Ug,3 + U3 ) and €33 = U3 3.

In the first of these equations, u, does not depend on x* and u; =0, and in
the second equation again u; = 0, hence

Ey3 = &3, =833 =0. (7.5)

For a general, anisotropic material, Hooke’s law is derived from (4.11)
For the in-plane stresses we write

o = E*PMe,, = E*¥% s + E*73 5 + E*3%,, + E¥ %,
Because of (7.5) the last three terms may be dropped and we have

o = E¥P7%.,. (7.6a)
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In addition, there is a stress

033 = E3¥%,,, (7.6b)
which is needed to keep €5 =0, but there might as well be stresses
o = E¥%%,,, (7.6¢c)

if there are nonzero moduli of this type. We shall look into this matter on
page 113 and restrict ourselves at present to the case of plane anisotropy,
in which all those moduli vanish which have one or three superscripts 3.

Later there will arise the need to invert (7.6a), that is, to express the strains
g, in terms of the stresses ¢®. If we take proper account of the symmetry
of both these tensors, (7.6a) represents three linear equations for aff = 11,
12, 22, and with the unknowns ¢,,, €5, €;,. They can be solved and the
result has the general form

8),5 = Cap),a Uaﬂ. (7.7)

The quantities C,q,; are called elastic compliances and, like the moduli,
constitute a plane tensor of the fourth order. A similar inversion is, of course,
also possible for the three-dimensional equations (4.11), but it leads to
compliances C;,;,, which are not identical to C,;,;. While the component
equations (7.6a) are a cut out of the equations (4.11), the same is not true
for the equations (7.7) in relation to their three-dimensional counterpart.

For an isotropic material we start from (4.25), which, with el =¢2 =¢3 =0
simply reduces to

E y
a _ a ¢ Sa » 7.
o 1+v(*’"+1—2v845")’ (7.8)
=0=0,
Ev .
3 &
BEArya-m%

To invert (7.8), we use the same technique as on page 58. We first let f =«
and find '

. . v\ E ¢
=TT v(g“+ i —2vs‘) TAEl-2m®
and then
of = i & + vo} 85,
whence
g =Y (02 _ vl an). (1.9)
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Obviously this is not what would be obtained by restricting in (4.27) all
terms to the two-dimensional range. One obtains, however, the correct
result if he uses the relation between o3 and &} following (7.8) to express o
in terms of of, that is if he makes use of the side condition &3 = 0 to eliminate
from (4.27) the stress o3, the only nonzero quantity which is not part of the
plane tensor oj.

The equilibrium conditions can easily be extracted from (6.6). Since
¢3* =0, we obtain, for i =a,

o®, + X* =0, (7.10)
and the equatxon for i = 3 has only vanishing terms.

Equations (7.4), (7.10), and either (7. 6a), (7.7) or (7.8) are eight component
equations for the eight unknowns 6!, 0'2, 622, ¢,,, &,5, €3, 43, 4. There
are two ways of reducing this system to smaller size by elimination of un-
knowns.

One way is to eliminate stresses and strains and thus to derive differential
equations for the displacement components u,. To do this, we introduce the
stresses from (7.6a) into (7.10):

(E#"%,,); + X* =0
and then use (7.4) to express the strain in terms of the displacement:
LEP(u, 5 + usl )l = —2X". (7.11)

If the material is homogeneous, the covariant derivative of the modulus
vanishes and we have instead

E*(u, )55 + Uglyp) = —2X" (1.12)
In the isotropic case we rewrite (7.4) and (7.8) in the form
= %(ualr + uyla)s

= (a‘;g"’ + 2v & g"") (7.13)

and proceed as before to obtain the following differential equation, which,
of course, is a special form of (7.12):

1 e 2(1+v)
1-2 E

Each of the tensor equations (7.12) and (7.14) represents a pair of simul-
taneous differential equations of the second order. Boundary conditions to
be imposed upon displacements or stresses can easily be formulated in terms
of u, and u,];. After the equations have been solved, strains and stresses
follow without further integration.

o =

W)l + X*=0. (7.14)
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The second way of simplifying the basic equations is more complicated and
is not applicable when boundary conditions for the displacements are
prescribed. - Nevertheless, it enjoys greater popularity (is, in fact, the only
one treated in several well-known books on the theory of elasticity), because
it leads to one simple equation, which, in the isotropic case, is the bipotential
equation.

We begin by postulating that the stress components are the second deriva-
tives of a scalar @, the stress function:

o = )|, (7.15)
whence
| = |y, .

There are two such equations, one for « = 1 and one for & = 2. Once « has
been chosen, A also is fixed to make €** # 0. This value ¢** is multiplied by
the sum e””(D]M", which vanishes because of (3.31) and ®|;;, =@[,,5. We
see that stresses ¢ from (7.15) satisfy the equilibrium condition (7.10) with
X*=0.

The procedure may easily be generalized to cover the case that the body
force X* is conservative and, hence, can be derived from a potential Q:

X*=QJ% (7.16)
We replace (7.15) by
0% = 2P|, — g*Q (7.17)
and have
0|y = D), — g7°Q) .
The first term on the right vanishes again and thus we have
oIy = —g™0l, = -0 = - X°,

which agrees with (7.10). We continue our work using (7.17), which in-
cludes, with Q = 0, the commonly treated case of vanishing body forces.

We need one differential equation for ® and have at our disposal the
kinematic relation (7.4) and Hooke’s law (7.7). We begin with (7.4) and
form the expression

yv, 90p __ v _dp 30 . yv
28,51y, €€ = U, 5, €7V€” + ugl,,, €€

After a change of notaticn for the dummy indices in the last term, this may
be written

v 0p __ ..,
2e,ly, €€ = 2u,),,, €.
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For every possible pair yv there are two terms in this sum, and because of
| 5vp = 1yl ,v5 and (3.31) they add up to zero. Therefore

8,5y, €€ = 0. (7.18)

This is the tensor form of the compatibility equation of two-dimensional
deformation. It could, of course, have been derived from (6.4) by restricting
there the dummy indices 7, j, k, / to the two-dimensional range. Then necessarily
m=n=3 and the three-dimensional permutation tensor reduces to its
two-dimensional counterpart shown in (7.18). This is a second-order differ-
ential equation, which the three strain components must satisfy to make it
possible to calculate them from the derivatives of only two displacement
components u,. We now use the elastic law (7.7) to write this condition in
terms of the stresses,

(Cazﬂyé oap)lvp e‘lveap = 03
and then express ¢* in terms of ® according to (7.17):
(Caﬁyé q)l).u)lvp ealeﬂueyveép = (Caﬁyé Q)'vp gaﬂeyveﬁp' (7'19)

This is the desired differential equation. It is of the fourth order, and as
long as all boundary conditions are prescribed in terms of the stresses, they
can easily be formulated in terms of second derivatives of ®. For a material
which is homogeneous though still anisotropic, we may again take the
compliance C,4,5 out of the covariant derivatives and have

Capys Plapy €26 €7°€” = Cpp,5 Q) 9P, (7.20)
In the isotropic case we replace (7.7) by (7.9), which we rewrite in the form

+v
E

&y = (aaﬁga}' gﬁé - vaaﬂgaﬁ gyé)' (721)

Introduction of this expression in the compatibility condition (7.18) shows
that

o'aﬂlvp(gay gﬁ& - "gaﬂ gyé)eyvedp =0
and introduction of ® from (7.17) yields the differential equation
(Di).uvp(gay gﬁ& - vguﬂ gya)edleﬂye}'veﬁp = gaﬁlep(gzy gﬂé - vg,:{f gyﬁ)ey‘,ea’)’ (7‘ 22)

which, of course, is again of the fourth order. It is still amenable to simplifica-
tion. We work at the coefficient of ®|,,,, and bring it successively into the
following forms, making use of (3.29b):
(€}€f — vefe)eP e’ = (6,597 €4 9% — vEp, g*€,59%)eP €™
=(9"g™ — vg*'g™)3,0; = g*'g"* — vg™'g".
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When we now multiply this by ®|,,,,, we interchange the dummies p and v
in the first term. This must, of course, be done in the superscripts of the
coefficient and in the subscripts of the derivative, but in the latter it does not
change the value and we may restore the former order and have

D) 10p(979% — vg*g") = (1 = VDI3.

When the right-hand side of (7.22) is subjected to a similar treatment, it
subsequently assumes the following forms:

Ql, (8 ef — 2veP)e” = Q) (€ — 2ve))e™
= (1= 20)Qfe,e” = (1 = 20)QL3, = (1 — )QY.

The differential equation. of the problem is now reduced to the following
simple form:

(1 =)@l = (1 —2)Qf; (7.23)
and in the case of vanishing body force it is simply
o5 =0. (7.24)

As may be seen from (5.32), this is the tensor form of the two-dimensional
bipotential equation V2V2® =0.

7.2. Plane Stress

This terminates our study of plane strain and we now turn to plane stress,
restricting ourselves to a slab of constant thickness 4. On the faces x* = +4/2
there are no external forces, i.e. the stresses 0°® =033 =0. Since the slab
is thin, we may then expect that these stress components are zero across its
thickness, while the strain ;5 can develop freely.

In the anisotropic case we start from the inversion of the elastic law (4.11),
i.e. from the equation

&im = Cijim0". (7.25)
For a plane stress system it yields the strains
8,,, = Caﬂy& a’p, (7.26)

g3 = Cupy3 a*, 233 = Copa3 o*.

In most cases C,p,2 =0, and we will assume that this is true. When (7.26)
is inverted, the result has the form

o™ = B ,, (7.27)

and the E*" are different from the E¥'™ of the three-dimensional law, as
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explained on page 108. In this case the strain equations (7.26) are a segment
of the three-dimensional system, and the stress equations are an inversion
of this segment.

In the isotropic case we start from (4.27) and let 6§ =62 =03 =0. Then

Ee5=(1 +v)o§ — vo'éé},‘,}
&=e=0 Ee&=—vd,

and (7.28) can be inverted using the technique demonstrated on (7.8). The
result is the following equation:

@ __ E x v { se
a"-1+v(£‘+1-—-v8‘6’)° (7.29)

Once the elastic law has been obtained, the procedure is the same as for
plane strain. The differential equation taking the place of (7.12) differs
from it only through the appearance of the moduli E**"® of (7.27) instead of
E*#7%, 1n the isotropic case, (7.14) must be replaced by

1+v 20 +v) _,
1—v E X

which differs only very little from it.

(7.28)

wlf + uf|3 + =0, (7.30)

In the approach using the stress function, the definition (7.15) and its
alternate (7.17) remain unchanged, and so does the compatibility equation
(7.18). For the anisotropic material, (7.26) replaces (7.7), which means that
in (7.20) the compliances C,4,; of the three-dimensional law replace the
compliances C,z,; of plane strain. In the isotropic case (7.9) is to be re-
placed by (7.28), which ultimately leads to the differential equation

Dlf = (1 —vQlE, (7.31)
which for vanishing body forces reduces to (7.24).

7.3. Generalized Plane Strain

We now come back to the more general case of plane strain mentioned
briefly on page 108. Figure 7.2 illustrates an anisotropic material of the more
general type. The shading indicates the direction of some grain or fibers,
i.e. a principal direction of elasticity. When a tensile stress a'! is applied,
the right angles of the element will not be preserved unless a shear stress
o' of a certain magnitude is also applied. Both stresses occur if the defor-
mation consists of nothing but a strain ¢,,. The shear stresses > and 23,
which thus are inevitable, are subjected to an equilibrium condition, which
follows from (6.6) with i =3 and X* =0:

#), =0, (1.32)
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FIGURE 7.2 Element of an anisotropic material.

and this equation upsets the balance between the number of unknowns and
of equations (the two new stresses are covered by two additional component
equations in Hooke’s law and the corresponding new strains by kinematic
relations). This makes it necessary to admit the existence of a third displace-
ment component u; = w, which is a function of the x* but, of course, not of
x°, and represents a warping of sections x> = const.

We write Hooke’s law for this general anisotropic material in the inverted
form

€5 = Capys 0F + Cp3,50°2 + Cap,56 % + C33,50%2.

The second and third terms represent the same sum and may be combined
into one:

€5 = Copys 0% + 2Cp3,56° + C33,50°3 (7.33a)

and, similarly, we may write
€y3 = Capy3 0% + 2C,3,30%% + C33,30%3, (7.33b)
€33 = Cup33 6™ + 2C 3336 + Cy3336°% = 0. (7.33¢c)

The kinematic relation (7.4) is still valid and leads again to the compatibility
condition (7.18), but now we have the additional relation
873 = %(uyh + u3'y)'

Since u, does not depend upon x* and since we want to set u; = w, we write
this kinematic relation as

g3 =3wl,. (7.34)
By differentiating it with respect to x* we obtain a new compatibility
condition:

873|v = %lev = %.W]vy = £v3|y'

We write it in the form

&3l =0. (7.35)
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Finally, we have the equilibrium conditions. For vanishing body forces
they are

=0, ¢, =0. (7.36a, b)

It may be left to the reader to extend the theory to the case of conservative
body forces obeying (7.16).

Omitting all duplications caused by the symmetry of the tensors involved,
we have in Hooke’s law (7.33), the compatibility conditions (7.18) and (7.35),
and the equilibrium conditions (7.36), a total of 6 + 2 + 3 = 11 equations for
as many unknowns, namely 6 stresses and 5 strains, not including &5, which
is known to be zero.

One of the equilibrium conditions (7.36) may again be satisfied identically
by introducing the stress function ® according to (7.15). To take care of
(7.36b), we use a second stress function W, for which

0*3 = &My, . (7.37)

The two stress functions and the stress o3 are the surviving unknowns of
the problem, and for these we shall now establish three equations. Two of
them are based on the compatibility conditions (7.18) and (7.35). We use
the elastic law to introduce the stresses and then (7.15) and (7.37) to introduce
® and V¥ and thus obtain the following differential equations, valid for any
anisotropic, yet homogeneous material:

(Caﬂy6q>|).uvp ealeﬁu + 2Ca3y6\y|lvp eal + CS 3yo o.33lvp)6yveép = Os (738a)
(Copy3 ®lapy eePr 4 2Cy3,3 ¥law e+ C, 393 a>3,)e” =0. (7.38b)

The third equation of the set is simply (7.33c) written in terms of the stress
functions:

C¢ﬁ33 q)!lﬂ- 6“"6"” + 2Ca333 lP’)' €al + C3333 0'33 = 0 (738C)

Since this is an algebraic equation, it may easily be used to eliminate ¢*3
from the other two with the following result:

[(CuﬁytS C3333 — Cupas3 C; 3-,5,)‘1)11,1‘4; ebr
+ 2(C,3,5C3333 — Ca333 C3 3yo)lyhvp]€“€w€'sp =0, (7.392)

[(Caﬂy3 Csazz — Caﬁ‘33 C33y3)®lm €
+2(Cl3y3 C3333 — Ca333 C33,3) Pl = 0. (7.3%b)

This is a system of iwo simultaneous differential equations for @ and ¥
It is of the sixth order, while we found one fourth-order equation when the
material was isotropic or had plane anisotropy.
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i i .

It is interesting to specialize (7.39) for plane anisotropy. It amounts to
setting

Ca376 =Cu33 = C¢ﬁ13 = C33-,3 =0.

This uncouples the equations, which now read

(CaprsC3333 — Cap33 C33,0)Planvp ePePree? = 0, (7.40a)
Casys Play €™ = 0. (7.400)

In addition there is (7.38c) for ¢33, which reduces to
Ci33306F = — ap33 ‘Dlzufdeﬁ"- (7.40c)

Equations (7.40a,c) are connected with the stress system ¢*#, 633, which we
have studied before, and we surmise that (7.40a) is identical with the homo-
geneous form (Q = 0) of (7.20). This may easily be verified. The elastic law
consists in this case of the two equations

816 = deﬂ"ﬂ + C33,3033,
833 = Capaaﬂ" + C333363 =0

and after elimination of ¢*? this yields the relation

Cap,5C - C
&= apys 3333 2433 C3318 ap

C3333

Comparison with (7.7) shows that the coefficient between parentheses in
(7.40a) equals C,,; C3333, and the scalar C;;33 may, of course, be factored
out and dropped.

Equation (7.40b) represents a second problem, which we have not treated
as part of the plane strain problem. The stress function ¥ is related to the
shear stresses 6°3 normal to planes x* = const, and the compliance Ce3ys
is a shear compliance connecting these stresses with the strains ¢,;, as may
be seen from (7.33b), which for plane anisotropy simplifies to read

— . 83 3 3a
873 - 2C¢3136 - ¢3730¢ + C3ay3 G

This shear problem is of the second order and is a special case of Milne-
Thomson’s antiplane problem [23]. In the case of general anisotropy it is
coupled with the ordinary plane strain problem.

7.4. Torsion

We consider a straight bar of constant cross section (a prism or a cylinder)
~and choose two coordinates »* in the plane of a cross section and a third
coordinate x* = z measured in the direction of the generators of the cylindrical
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FIGURE 7.3 Torsion bar.

surface. This is again a monoclinic coordinate system (see p. 106) with
9.3=0,933 =1

The bar is loaded by couples M at both ends (Figure 7.3). In every cross
section, stresses must act which transmit this torque from one side to the
other. They are shear stresses 6°* = 05 .

The deformation consists in the first place of the rotation of the cross
sections, each in its plane, about an axis parallel to the z axis. Since every
element of the bar of length dz undergoes the same deformation, the angle
of rotation y is a.linear function of z, in the simplest case proportional to z:

¥ =0z (7.41)

The quantity 0 is called the twist of the bar.

During the rotation the cross section does not change its shape, that is,
the in-plane strain components vanish:

ep=0, =0 (7.42)
From (6.1) it follows that
Uglg + ugl, =0 (7.43)
and hence '
Uglgy = —tigley.

Since the sequence of covariant differentiations is interchangeable, we con-
clude from (7.43) that

Uslgy = talyp = —Wylap = —Uylpa = +thglye = Uglay
and this contradicts the preceding equation, unless
u,[ﬂ, = 0.

We conclude that this statement must be true.

Because of (7.42), each area element of the cross section rotates in its
plane like a rigid body and the component @* of the “average” rotation
defined by (6.3) is simply the rotation y of the cross section:

w? = —}u,) e =y =0z (7.44)
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In addition to the rigid-body rotation of each cross section in its own plane,
a warping of the section takes place, consisting of a displacement u® =w
normal to the plane of the cross section, dependent on x%, but independent of
z. This leads to the strains

ez =e3=w3=0, (7.45a)
83 = 3(al3 + u3le) = 3(uals + wlo), (7.45D)
&3 = 5397 + £339° = 4(u’l5 + w[). (7.45¢)
Since w|,; = w|,, we have w|,z¢* =0 and find from (7.44) and (7.45b) that
ealp € = $(uglsp + Wlag)e® = du,lgy ¥ = —0 (7.46)

and also
&3|%e,p = —0. (7.47)

This completes the kinematics of the deformation.
When we introduce the strains from (7.42) and (7.45a) in Hooke’s law
(4.25), we see that

a E a v A 3yvSa )
UB—1+V|:8p+1—2v(£A+83)5ﬂ]—0

and also o3 turns out to be zero. The only nonvanishing stress components
are 6% = 6>* in the cross section and o2 = ¢*3 in longitudinal sections. The
former ones transmit the torque M and form a plane vector field oig,,
for which we may use the alternate notation t°g,. From (4.25) we have

a

E
T =U§=m£g. (748)

In combination with (7.47) this leads to

Ef
1+v

e, = T &3lfe,p = (7.49)

The last item of physical information needed is the equilibrium condition
(6.6). We drop the body force term and let i =3, j = a:
|, = 1%, =0. (7.50)

This equation is identically satisfied if we write the stress components as the
derivatives of a stress function ®@:

=, (7.51)
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When this is introduced in (7.49), a differential equation for @ results:

E6
1+v

With the help of (3.29b) the left-hand side can be simplified to read

Ofc e = —Blee = —B|05) = — |}

‘Dlg €ap €= —

and this ultimately leads to Poisson’s equation

o B9 _

;= T = 2G6. (7.52)
This is the differential equation of the torsion problem. It should be noted
that in deriving it we started from the assumption expressed by equations
(7.42), but that in the course of the derivation it turned out that all the
equations of the theory of elasticity could be satisfied. Therefore, the initial
assumption does not have the character of an approximation made to simplify
the analysis, but rather that of a partial anticipation of the result of an exact
theory.

In most problems of elasticity, the boundary conditions are obvious since
they consist of prescribing a number of mechanical quantities (stresses or
displacements) along the boundary. In the present problem the boundary
condition to be imposed upon @ needs closer inspection.

The only load to be applied to the torsion bar 1s the torque M at its ends.
The cylindrical surface is to be free of external tractions, in particular of
shear stresses 6*> and, hence, the shear stress vector t* at boundary points of
the cross section must not have a component normal to the boundary. Let
dx* g, be a line element vector of the boundary; then the fact that the stress
vector 1°g, is parallel to it may be expressed in the form that the cross product
of both vectors vanishes:

v *dxf e, =0.
Making use of (7.51) and (3.29b), we bring this into the form
@, e dxf e,p = — @], 8} dx? = — 0|, dx’ =0.
From this we conclude that along the boundary
® = const. (7.53)

If the cross section is simply connected, we may set on its boundary ® =0,
because any other choice of the boundary value would only add a constant
to ®(x?) in the entire field, and we are only interested in the derivative
®|, =®_, in which an additive constant does not show up. If the cross
section has one or several holes, its boundary consists of several separate
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curves. We still may assign the value ® = 0 to the exterior boundary, but the
values of @ along the edges of the holes are not free for arbitrary choice, but
follow from the requirement that the warping displacement w is a unique
function of x*. To formulate this requirement in terms of t” or of ®, we start
from (7.45¢c) and (7.48):

Te = 2G£a3 = G(ua'3 + wla)'

We solve for w|, = w_, and integrate along a closed curve which lies entirely
inside the material cross section, that is, in the domain in which w is defined.
Uniqueness of w requires that this integral vanishes:

1
§ w, dx* = G § T, dx* — § Ug|3 dx*=0. (7.54)

The plane vector u, describes the rigid-body rotation of the cross section in
its own plane. Although it has physical significance only in the material
cross section, it is uniquely defined in the entire plane including the holes.
Therefore, we may apply Stokes’ theorem (5.42) to the last integral in (7.54):

§ uals dx® = ey, [ udsgdr*di* = & [ uly dB

in which B is the area enclosed by the integration path and
e;, dr* dt* = dB

is an area element. We use (7.46) to express u, in terms of 6:
§u,|3dx==2f9d3=293
B

and equate this to the stress integral in (7.54), which may be written in terms
of ®@. This ultimately yields the condition

§ @[, dx* = 2GOB, (7.55)

which the stress function must satisfy when the integral is extended over any
one of the interior boundaries of the cross section (the edges of the holes).
“For a cross section with n holes the practical computation is done in the
following way: One first finds the solution @, of the differential equation
(7.52) which satisfies. the condition ® =0 on all boundaries. Then one
calculates solutions @ ,, kK =1,2,...,n of the homogeneous equation
®|2 =0, prescribing ® = 1 along the boundary of the kth hole and ® =0
on all other boundaries. For each of the solutions one eviluates the integral
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(7.55) for each of the interior boundaries. The correct solution is then found
by linear superposition:

Q= D, +kglc(k) Dty s

the free constants C, being determined from » linear equations resulting
from the application of the boundary condition (7.55) to each of the intericy
boundaries. The subscripts in parentheses are not subject to the range
convention and the summation convention and do not imply tensor character.

Thus far, we have solved the torsion problem in terms of the twist 0.
Usually it is not the twist that is known in advance, but rather the torque M.
To make our solution useful, we must find a relation between the two quanti-
ties. In addition, we might want to assure ourselves that the stress field 7*
in the cross section can really be reduced to a couple and does not have a
resultant force.

Here we stand before an intrinsic difficulty of the tensorial method. The
resultant force (if there should be one) is a vector which is not attached to a
specific point in the plane of the cross section; but the base vectors g,,
which we need for defining vector components, vary from point to point
and, therefore, there is no reference frame to which the resultant might be
referred. A similar difficulty arises for the torque. In principle, it is a vector,
but its only component points in the direction g;. Therefore, with respect
to the frame g, it is a scalar. But to write the moment, we need the lever arm
of each infinitesimal force t* d4 with respect to some fixpoint, and this again
is a finite vector not attached to the metric of any particular point of the
plane. We shall see how, in the present case, this difficulty can be avoided.

We can deal rather easily with the question whether or not the shear
stresses have a resultant R. If there is one, it will have to be the same in all
cross sections, and when we cut a piece of arbitrary length / from the bar,
there will be two forces acting on its ends as shown in Figure 7.4. They form
a couple, which requires some other forces for equilibrium. Since 1* = ¢>*
and ¢ are the only nonvanishing stress components and since ¢** =0 on
the surface of the bar, we know that there are no forces with which the couple

FIGURE 7.4 Finite length element of a torsion bar.
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IR could be in equilibrium. On the other hand, the stress system satisfies the
equlibrium condition (6.6), which assures the equilibrium of each volume
element and, hence, also that of the entire piece shown in Figure 7.4. Thus
we are forced to admit that R =0.

We now turn our attention to the torque M. Since the shear stresses z*
have no resultant, M is their moment with respect to any reference point O
in the plane of the cross section. In (7.51) we have connected t* with a
scalar function ®. We may plot the values of ® as ordinates nurmal to
the (horizontal) x* plane. This yields a surface, which covers the area of the
cross section, rising from zero values at the boundary. It is known as the
stress hill. At any point of the section the gradient vector @], g’ points in
the direction of the steepest ascent of the hill and, according to a statement
made on page 36, the shear stress is at right angles to this direction, hence
tangential to a line ® = const. ,

We-cut the hill by two horizontal planes at levels ® and @ + d® and project
the intersection curves into the x* plane. There they form two concentric
loops enclosing between them a narrow strip as shown in Figure 7.5. We
consider an area element of this strip, described by the vectors ds and dt. Its
area is

dt x ds = dt’ ds® e;,8° =dA, g° =dA g*.

The shear force acting in this element is
1dA = 0|, g, dsP di’ e;p.
Applying (3.29a), we write it in the form
1*dA = ®|, ds? di’(6}65 — 6} 63) = ®|,(ds* dt” — ds” di*).

According to (5.21), ®@|, ds” is the change of ® along the vector ds, which is
zero since the vector follows a line @ = const, and @, df” = d®, the change
of @ across the strip. Therefore,

* dA = do ds°®,

FIGURE 7.5 Torsion bar, lines ® = const in the cross seciion.
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which confirms that the shear vector has the direction of the lines ® = const.
"The moment of the force 1* d4 g, with respect to the point O is

rx t*dAg,=r x dsdd

and this is twice the product of d®, the triangle shaded in Figure 7.5, and the
unit vector g;. The sum of the moments of all the shear stresses acting in
the strip is 2B d®, where B is the area enclosed by any of the curves bounding
the strip. The product 2B d® is twice the volume of a horizontal slice of the
stress hill of thickness d®. It is a contribution dM to the torque M. The
entire torque is twice the sum of all such slices, that is, twice the volume of
the stress hill. This may be expressed by the integral of products of ® and
area elements dA of the cross section:

M=2[0da=2[[0ds dr,. (7.56)

It is now possible to solve the differential equation (7.52) of the torsion
problem for an assumed value of the twist 6, then calculate the torque M
from (7.56) and adapt the solution to any prescribed torque value by simply
applying a proportionality factor.

7.5. Plates

We again consider a thin plane sheet of elastic material, but this time we
assume that it undergoes a deflection normal to its middle plane. We again
use a coordinate system consisting of two coordinates x* in the middle plane
and a third coordinate x* normal to it. We choose as base vector g3 a unit
vector, and then x3 =z is simply the distance of a point from the middle
plane. Let us assume that the middle plane is horizontal and that g; points
upward.

Figure 7.6 shows a section through the plate before and after deformation.
The x! axis lies in the middle plane and AB is a normal to it. When a load is

z B
1 dx'g, C x1
1 ! o
Al
w
‘i‘"Lﬁ:;;;" T
i -V

FIGURE 7.6 Section through a plate before and after deformation.
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applied, the point A moves downward by the amount w to position A, hence
W= —u.

In the deformed plate, line elements AC of the middle plane are no longer
horizontal and normals like 4B are no longer vertical. The difference between
the rotations of both is a shear deformation of the plate material. In thin
plates, as in slender beams, this shear strain is small enough to be neglected,
and plate theory is built on the assumption of the conservation of normals:
All material points that lie on a normal to the middle plane before deforma-
tion, lie on a normal to the deformed middle plane after deformation.

The shear strain between a normal and the middle plane has two
components

&3 = 3(u,l3 + usl,).
When this equals zero, then u,|; = —u3|,. Making use of (7.3), we have
U3 = —Usly = W,
and after integration
u, = wl, x> =wl,z. (7.57)
From the displacement u, we find the strains parallel to the middle plane
ap = 3olp + Ugle) = H(Wlag + Wlg)z = Wl 2. (7.58)

Since these strains are proportional to z, the stresses to be calculated from
Hooke’s law also have the same distribution, and in each section of the plate

they can be combined to form a couple. We shall now proceed to find these
internal moments.

We cut the plate normal to its middle plane, along an arbitrary line element
dr=dx'g,.

In the area element of height # we define a subelement of height dz as shown
in Figure 7.7. Its area is represented by the vector

dA =drxdzgy;=dx'dze,;, g =¢€,dx" dz g,

which has the direction of the outer normal if we assume that the material
of the plate lies behind the section. In this subelement, the force

dF=de gﬁ +dF3 g3
is transmitted. Using the definition (4.6) of stress, we write its components as

dF? = o%¢,, dx’ dz,
dF? = 0*%¢,, dx" dz.
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FIGURE 7.7 Section through a plate.

The vertical components dF>g, in all the subelements have a resultant, the
shear force of the plate:

+h/2 +h/2

f dF3 g, = €, dx" g, f 03 dz = —¢,, dx’ Q°g;. (7.59)
-2

-=h/2
In the same way, we may write the resultant of the in-plane components
dF’g,:
+h/2 +h/2
f dFf g, = €, dx' g, f 6" dz = ¢,, dx’ N*’g;,  (7.60)
—h/2 —h/2
but we shall soon see that it vanishes in the case of plate bending.
The moment of dF with respect to the center of the section is
Zg3 X dF =Zg3 X (dFﬂ gp + dF3 g3) = de z€3ﬁ6g6

and by integrating across the thickness of the plate we find the resultant
moment

+h/2 +h/2 |
J dF? ze;58° = €, €55 X" &° f 0%z dz = —¢,, €5 dx” M*Pg’. (7.61)
—h/2 -h/2

From (7.59) through (7.61) we extract the following definitions for the
(transverse) shear force

+h/2
Q*=— o*3dz, (7.62a)
—h/2
the tension-and-shear tensor
+h/2
N* = f o dz, (7.62b)

=h/2
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and the moment tensor
+h/2

M* = — f 0%z dz. (7.62¢)
—~h/2
These quantities are called stress resultants, and they take the place of the
stresses when we describe the stress system of the plate. The minus signs in
two of the definitions have been added arbitrarily. They reflect the sign
conventions traditionally used in plate theory.

We shall now try to visualize the meaning of these definitions by applying
them to sections along coordinate lines of a skew, rectilinear coordinate
system. Figure 7.8 shows a plate element cut out along such lines. For the
line element vector 4B the component dx' = 0 and the last member of (7.61)
reduces to

— €y, €55 dx* M'Pg? = —¢,, dx?(e;, M''g? + €, M'?g").

The two components of this moment vector are shown in the figure in the
directions corresponding to positive values of M'! and M'2. In rectangular
coordinates, M*! is the bending moment and M!? is the twisting moment, as
shown in Figure 7.9 in the commonly used notation.

FIGURE 7.8 Moments acting on a plate element.

FIGURE 7.9 Bending and twisting moments acting on a cartesian plate element.
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By repeating the argument for the sides BC, CD, and DA, the reader will
find the other moment vectors shown in Figure 7.8. It should be noted that
the direction of the line element vectors has been so chosen that the plate
element lies to their left. This assures that the vectors dA of all section ele-
ments point in the direction of an outer normal.

The function of the two ¢ factors in (7.61) goes beyond regulating the
positive directions of the moment vectors in Figure 7.8. Because of the
factor ¢,, the first index in M* is opposed to the one indicating the direction
of the section element, and €z, makes the second index opposed to that of
the base vector g°.

The shear force components Q* have only one index and, therefore, are
the components of a vector

Q=0%,
lying in the middle plane of the plate. This vector is not in any sense the
resultant of the shear forces Q' and Q? acting in two different sections
x! = const and x? = const of the plate. The proper meaning of this vector
will become clear in a discussion of the principal axes problem on page 180.

Since the stress component a3 is either Zero or rather small and since the
shear stresses ¢**> do not affect the in-plane strains ¢,;, every thin layer of
thickness dz in the plate is in a state of plane stress. We may apply the
elastic law (7.27) with the meaning of the moduli as defined on page 112, and
introduce it into the definitions (7.62b, c). Making use of the kinematic
relation (7.58), we find

+h/2_ _ +h/2
N = E*Pw|,; z dz = E*w],, f zdz=0,
Jen2 -h/2
_ +h/2 _ h3
M® = —Eriy)| , f 22dz = —E*"_ w|,. (7.63)
—h/2 12

The first of these equations eliminates N*# from further consideration, and
(7.63) is what might be called the elastic law of the plate. It should be noted
that in this equation z? and 4® designate powers, not components, of these
quantities. '

For isotropic plates, we use the elastic law (7.29), which we write in the
form

o =clgV =

v -
T (876 ga}'gﬂé + — Ent gaﬂgns)‘. (7.64)

This leads to
ER3

ap — e —
M Bty "

o v a, a @
(970 + 12 69) = =KLt = i+ vwlz ]
(1.65)
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as the elastic law of the plate. The quantity

_ ER
T 12(1 =)

is called the bending stiffness of the plate.

There is, of course, no relation of a similar kind for Q% since the assump-
tion of the conservation of normals denies the existence of a deformation
directly attributable to the shear force.

The equilibrium of a plate element like the one shown in Figure 7.8 can
be expressed in terms of the stress resultants. To obtain the equilibrium
conditions, we choose a formal procedure, in which the plate element will
never appear. We start from the general equilibrium condition (6.6) and
rewrite it here for i =a. Splitting the summation over j=1,2,3 into a
summation over § = 1, 2 and an extra term for j = 3, we have

K (7.66)

0|y + 0|3 + X* =0.
We multiply this equation by z dz and integrate:
+h/2 +h/2 +h/2
j o|,zdz + f 0*3|3zdz + X°zdz=0. (7.67)
~h/2 -h/2 ~h/2

In the first term we recognize the covariant derivative of the moment M,
and in the second term we have

03 =0% 3+ 0"T; + 6" T3 =0"3 5

because of (7.1) and the statement attached to these equations. This allows
integration by parts:

+h/2 +h/2 +h/2

J._m 0*2,zdz= [a“3z] o~ f_m 0**dz=Q"+ [0’32]

and this brings (7.67) into the form

+h/2

=h/2

+h/2 +h/2
-M*,+ 0"+ [a“-"z] + X°zdz =0.
-h/2 ~hj2
The third term represents the moment of some surface shear stresses ¢*3
at lever arms +4/2, and the fourth term is the moment of volume forces
acting on the plate material. We may combine them into an external moment

m®, the moment per unit area of the middle surface. The equilibrium condition
thus assumes its final form

M|, = 0 + mr". C(7.68)

It represents the moment equilibrium of a plate element.
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We return to (6.6) and now write it for i = 3:
0'312111 + 0'33|3 + X3 = 0.
We multiply by dz and integrate:

+h/2
J.-~h/2

In the second term we may again write 63|, = 63 ; and then integrate Yo
obtain

+h/2 +h2
a*|, dz+f 6335 dz+f X3dz=0.
-h/2 =h/2

(033)z= +hj2 = (033)z= —h/2s

which is the resultant of normal surface tractions (positive when upward)
and may be combined with the volume forces of the third integral into the
load p; (positive when downward) of the plate. The equilibrium condition
of vertical forces then reads

Q%l,+p*=0. (7.69)

Equations (7.68) and (7.69) are the equilibrium conditions of the plate
element. Together with the elastic law in the form (7.63) or (7.65) they are
2 + 1 + 3 = 6 equations for three moments M*, two shear forces Q* and
the deflection w and, hence, a complete set of equations.

We may now proceed along well-established lines of plate theory to con-
dense these equations into a single differential equation for the deflection w.
First we differentiate (7.68) with respect to x* and introduce Q%|, from
(7.69):

M|y = m*|, - p*. (1.70)

Then we use the elastic law to express M* in terms of w. For the anisotropic
plate, (7.63) leads to

3

— o h
Eaﬂw '1-2 w,aﬁyé = P3 - mzla (771)

and for the isotropic plate we find from (7.65) the corresponding form of the
differential equation:

KI(1 = Wik + wih] = p* — m,.
Changing the dummy 7 into « simplifies this to read
Kw|# = p* — m%,. (7.72)
As explained on page 112,
wish = V2V3w

is the bi-Laplacian of w, and (7.72) is the tensor form of the well-known
plate equation.
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Problem

7.1. A plane curvilinear coordinate system x° is defined by its relation to cartesian
coordinates x, y:

x(Cosh x! + cos x?) = ¢ Sinh x?,
y(Cosh x! + cos x2) = ¢ sin x2.

Sketch a few of the coordinate lines. Transform the plate equation (7.72) into these
coordinates. Assume m* = 0.

References

The plane problems and the torsion problem are standard fare in solution-
oriented books on elasticity. For the plane problems see for example [13,
pp. 184 and 324], {19, p. 204], [29, p. 249], and [33, p. 15]; for the torsion of
prismatic bars [19, p. 310], [29, p. 109], and [33, p. 291]. The book by
Timoshenko-Goodier [33] is the most strongly solution-oriented and con-
tains a wide variety of solved problems. The other three books lean more
toward problem formulation and general solution methods.

A book by Milne-Thomson [23] is devoted to a peculiar group of problems
that can be formulated in two coordinates x*. Our generalized plane strain
problem belongs in this group.

For the theory of plate bending see the books by Girkmann [i2] and
Timoshenko-Woinowsky-Krieger [34]. Girkmann treats also the plane
stress problem. Both books are strongly solution-oriented.



CHAPTER 8

Geometry of Curved Surfaces

ONE OF THE most spectacular applications of tensor calculus in the field
of continuum mechanics is the general theory of shells. To study it, we shall
need some knowledge of the theory of curved surfaces and we shall now
embark upon this mathematical subject, keeping in mind the application we
later want to make of it.

8.1. General Considerations

On a curved surface it is, in general, not possible to trace a cartesian net-
work. This fact has far-reaching consequences and it is worth while to begin
with some general thoughts about the geometry of curved surfaces.

We are living and thinking in a three-dimensional, Euclidean space, in
which the curved surface is embedded. We can obtain all necessary geometric
information from a three-dimensional analysis, and this will be the way to get
into the problem. In the end, however, we want equations valid on the two-
dimensional surface. This is a two-dimensional subspace of the general
three-dimensional Euclidean space, but it is curved and in it some of the
basic concepts of Euclidean geometry do not apply.

To illustrate the situation, let us look at Figure 8.1, which shows one
octant of a sphere. On this spherical surface we want to define vectors. Since
vectors are usually considered to be elements of straight lines, there is no
such thing as a vector on a curved surface, but we may reconcile the con-
tradiction if we restrict ourselves to vectors of infinitesimal length (line
elements) or to vectors representing physical quantities like velocity or force.
Such vectors have direction and magnitude and they obey the transformation
laws, but they do not have any “length” in the geometrical sense, and the
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C

FIGURE 8.1 Vectors on an octant of a sphere.

lines which we use to represent them are only geometrical symbols of non-
geometrical objects. When we use this modified (or generalized) concept of a
vector, it makes sense to speak of vectors on (or in) a curved surface and to
ask whether two vectors are equal; that is, whether they have the same
magnitude and direction.

The vectors shown along the great circle AB in Figure 8.1 are of equal
magnitude and, in three-dimensional space, parallel to each other, hence
equal. Now consider another set of vectors along 4B, each of them normal to
the vector shown and pointing from A toward B. They are tangents to the
circle AB and, in Euclidean, three-dimensional terminology certainly not
parallel to each other. However, on the curved surface, they are the only
ones which are at right angles to a set of admittedly parallel vectors and we
should not hesitate to call them parallel. 1f we were to follow a sequence of
such arrows on the curved surface of the earth, we would certainly say that
we are going ““ always in the same direction.”” These vectors are as parallel as
they possibly can be on the curved surface, but whether we can accept this
new definition of parallelism depends on whether or not we can apply it
without somewhere running into a contradiction.

To explore this problem, we go from 4 to C and, at subsequent points of
the great circle AC, draw vectors which, in this new sense, would be called
parallel. They are shown in Figure 8.1. Now we do the same on the great
circle BC and thus obtain at C two vectors at right angles to each other,
which are both members of a set of allegedly parallel vectors. This shows that
the concept of parallel directions does not exist on a spherical surface and
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that there is no way of saying that two vectors located at different points of
this surface are equal. The situation is quite different on a cylinder. Any two
vectors which are parallel in a plane may still be considered as parallel when
this plane is wrapped around a cylinder.

Another well-known peculiarity of spherical geometry is the fact that in a
triangle formed by pieces of great circles (that i3, geodesics, the straightest
lines available on the curved surface) the sum of the angles is not 180°, but
more, 270° in the triangle shown in Figure 8.1. Neither of these facts is
particularly relevant for our purpose, but later (p. 141) we shall meet with
a very important one, which shakes a well-established mathematical prejudice.

8.2. Metric and Curvature

In shell theory we shall consider points located on a certain curved surface,
called the middle surface, and in its immediate vicinity. We use a coordinate
system consisting of two curvilinear coordinates x* on that middle surface
and the normal distance x* from it. This is a three-dimensional coordinate
system and all that we have learned about such systems can be applied.

We shall be interested in comparing quantities defined for points of the
middle surface, that is, as functions of x*, with quantities defined for another
surface at a small, constant distance z from it. It will be advantageous to use
two different notations for related quantities, one for the middle surface
x* = 0 and another for the generic surface x* = z = const, as shown in the
following table.

Middle surface General surface
(z=0) (z#0)

Geometry

position vector s r

line element ds dr

base vectors a,,a%a;=a’ g.,2%8:=¢°

metric tensor Qug, a** gap, 8%

Christoffe! symbols T3, T3,

permutation tensor €3, €% Ep, €%F
Deformation

displacement u=u.a*+ ua? V=10,8"+ 038

strain tensor €1y, Eap Niss Nas

For easier reference, this Jist contains a few quantities that will not be used
immediately. All formulas to be derived for z 0 are, in the limit, also valid
for the middle surface and may be restated in the symbols applicable to it.
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To the in-surface base vectors (1.18) is applicable:

A, =84, 8 =T, (81)

where s and r are position vectors emanating from a fixpoint O outside the
surface. Since x> is a linear distance, the third base vector is a unit vector,

g:-8=1 (8.2)

and the symbols g;, g%, a,, and a® may all be used interchangeably. The
base vectors g,, g5 are a monoclinic reference frame; only one of the angles
between them is not (or not necessarily) a right angle. Since g3 is normal to
g,, we have

9e3 =88 =0. (8.3)
The metric tensor has the following components:
(911 912 O
[9i]1= 1921 922 0 (8.4)
|0 O 1
and its determinant is
= |91 G2 8.5
g 921 922 (85)

The monoclinic character of the base vectors causes some important
simplifications in the Christoffel symbols, but they are not as sweeping as
those found on page 106, because of the curvature of the surface. From (8.3) it
follows by differentiation that

2.,5°8 +8,5 8=0,
whence, with (5.3a) and the symmetry relation (5.6),
TaﬂB = '—T3ﬂa = - TﬁSa = rﬂaS = —T3aﬁ = —_uap- (8.6)

Similarly, differentiation of (8.2) yields

8:,.°8=0
hence
Fos=Tu3=0 (8.7a)
and from g, ; = 0 one derives that
V T33,=T333=0. (8.7b)

Equations (8.7) state that any I';, vanishes if more than one of its subscripts is
a3



§8.2] Metric and Curvature 135

From (8.4) it also follows that

and then (5.4b) yields
T3 =T3p0" +Ty3,39% =Ty =0, (8.8a)
and, similarly, '
I =T%=T3=0 (8.8b)

These results may be introduced into (5.11) and (5.13) and lead to the
following formulas for the covariant derivative of a vector:

r T3
Palp = tap = 0, Loy — 03T, r } (8.9)
va|3=va,3"vyr:39 U3la=v3,a_vrr§a;
v*) g =% + 0'T;, + v°T,;, ) (8.10)
V3 =175+ 0TS, Plo=0v,+ v’rgy.f ’

In further formulas, we shall restrict ourselves to the surface z = 0 and use
the corresponding notation.

A line element ds in this surface is what we may call a plane vector; it has
no component in the direction of a;:

ds = a, dx".
The square of the line element is
ds-ds=a,dx" - agdx’ = a,; dx* dx”. (8.11)

In differential geometry this expression is known as the firs fundamental form
and its coefficients a,,, a,, = a,,, a,, were, in pretensor days, usually denoted
by 4, B, C.

The normal vector-a; is a unit vector. Its direction, but not its length,
depends on the coordinates x*. Its derivative is, therefore, a plane vector

a3,= —b,2’ (8.12)
whence
a3, ay=—b,a" -a;=—b, 0= -b,. (813

The quantities b,, are the covariant components of a plane tensor. called the
curvature tensor of the surface. Before attempting to justify that name, we
derive some useful relations.

By differentiating the orthogonality relation

a,-a2,=0
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with respect to x# and by using (8.13), we get
a,5°23;= —a, a3, = b,. (8.14)
We rewrite (5.2) in the new notation and have
8,5 =T,p,2" + [,532° (8.15)
and, hence,
bge=12,,5° 83 =T p3.

Since the Christoffel symbols are symmetric with respect to « and B, b, is
also symmetric with respect to « and 8, and, making use of (8.6), we can write

bup=Taps=Tap= —T3p= —T3p. = —To3y- (8.16)
From b,; we may derive mixed and contravariant components
b = b,za™, b = b3a. (8.17a, b)
From (8.16) we find then that
by = —T35a” = —I35= T} (8.18)

and rewriting (5.3b) with ijk = 3fa or f3a, we find
a;,-a"=ag ;-a*= —bj. (8.19)
Equation (8.12) may be written in the alternate form
a,,= —bla,, (8.20)
from which follows that
day = a;, dx" = —b,za’ dx° (8.21)
and
day-ds= —b,ga’ dx*-a,dx’ = —b,; 6 dx*dx"= —b,dx*dx". (8.22)

In differcntial geometry the last member of this equation is known as the
second fundamental form and its coefficients b, ,, b,, = b,,, b,, are denoted by
E, F, G. _

Now let us try to visualize the components b of the curvature tensor and
thus justify its name. We assume for a moment that only 5} s 0 and consider
a normal section through the surface along an x!-line as shown in
Figure8.2a. Since |a;| = 1, the length of the vector

da; =a;, dx' = —bla, dx'

equals the angle d¢ by which the normal to the surface rotates when we go
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das

(a) (b)

FIGURE 8.2 Visualization of the curvature components.

from A4 to B. When we divide this angle by the length ds of the vector a, dx',

we have the curvature of the surface,
do _ _lda,|
ds  |a,| dx’

We see that b} is the curvature of the surface in the direction x'.

Now let us assume that b} = 0, but let b? # 0. Using Figure 8.2b, we see
that

= |bil.

da, = a,, dx! = —bla, dx!
and find for the twist of the surface
ﬂ Idaa' = b 21 2] la,]
ds  |a,] dx %la,l’

If |a,] = |a,], then 4% and b} are equal to each other and to the twist of the
surface with respect to the coordinates x*. If |a,| # |a,|, also b3 # b}, but
both are closely related to the twist.

From the curvature tensor two important scalar quantities can be derived—
its invariants. The first one is

= bl + b3. (8.23)
It represents the sum of the two principal curvatures (see p. 179).and is often

called the mean curvature, although it really is twice that average. The other
invariant is the determinant

b} b3
b2 b2

called the Gaussian curvature of the surface.

b=

= blp2 — b1 b2, (8.24)



138 Geometry of Curved Surfaces [Ch. 8

8.3. Covariant Derivative

In Section 5.2 we studied the covariant derivative, which describes the rate
of change of a vector in a vector field. Now let us consider a vector v which is
defined for all points of the surface as a function of the coordinates x*, but
which is not necessarily a plane vector and may have a normal component:

v=y;a' =0,2" + v, 8%, ' (8.25a)
or
v=1'a, =1"a, + v’a,. (8.25b)
We follow (5.12) and write the derivative of v with respect to the coordinate
xb:
v'p = vllﬁ ai = v,lﬁ aa + valﬁ 33 (8-26)
with
Valp = Vap — 0, T35 — 03 1‘3,7,
Vslp = 03,0 = 0, T35 — 03 T35,

Making use of (8.8b), (8.16) and (8.18), we can rewrite the last two equations
in the following, simpler form

Valp = Vgp — 0, Tlp — 03 by, (8.27)
vslg = 03,5 + v, bp. (8.28)

The first two terms in (8.27) are a two-dimensional counterpart to the covari-
ant derivative defined by (5.13). We need a symbol for it and write

Vallpg = Vo5 — 0,12, (8.29)
whence
Valg = Vyllg — 3 bag - (8.30)
Equation (8.26) may now be rewritten as
vV 5 = (Vgllg — v3 bep)a® + v3lg a’
= (0,5 — 0,125 — v3 bp)a® + (v3 5 + v, bp)a’. (8.31)

Similar reasoning, based on (5.10) and (5.11), leads to the definition of the
plane covariant derivative of v*:

Vlp =05+ 0T}, (8.32)
and the relation
lg =%l — v3bj (8.33)

and yields an alternate form of (8.31):
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v g = (%5 — v’b)a, + v¥[pas
=(v"; + v'T5, — v°bYa, + (V25 + v'bya;. (8.34)
If v is not only defined for points on the surface, but also for points adjacent

to it, we may speak of a derivative v 3, for which formulas may easily be
deduced from (8.9) and (8.10):

= @ 3= Ma® 3
V3= 0,038+ v3]327 = (.3 + v, b))a" + v; 32 (8:35)

=138, + v’[3a; = ("3 —v'bj)a, + 1’3,3 a;.

There is, of course, no difference between a, and a® nor between v, and v3.

In the special case when v is a plane vector, we have v; = 0, and there is no
difference between the single-dash and double-dash (three-dimensional and
two-dimensional) covariant derivatives. Equations (8.31) and (8.34) then
simplify to

V.5 =0,pa" + 0, b} a° = v7;a, + v'b,4a, (8.36)

and in (8.35) the second term has to be dropped. It is remarkable that v 5 has
a third component although v has none.

To establish similar formulas for tensors, we start from (5.23d):

A}y = A 4 AVTY, 4 AV, + AVT) + A°TS,. (837)
If we restrict ourselves to plane tensors with 43% = 423 = 433 = 0, two terms
in (8.37) drop out and what is left is the plane covariant derivative. For
i, j= o, B we may write
A%), = 4P| = A+ A¥T, + 4TS (8.38)
However, there are also components 4*|, and 43#|,, for which we find
AP, = A% + AT + ATy = A%%b,,,
ASﬂI;' = Aaﬂbyé H
while 433|, = 0.
From (8.15), which we rewrite in the form
a,5=T%a; + b,a;, (8.40)

we may proceed to the second derivative

(8.39)

2,5, = Topy8; + T8, + bop 85 + bygas ;.
We use (8.20) and (8.40) to eliminate the derivatives of the base vectors:
aam = :ﬂﬂ, a; + rgﬂ(rg},aa + bc.’ 33) + baﬂ,ya3 - baﬂ b;s a;
and by collecting terms we find

8,5, = (T3, + T8 — bgbda; + (T5s by, + bys)as. (8.41)
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This must be equal to the partial derivative a, .5, which we obtain by inter-
changing f and y. For the a; components the comparison of the second-
order derivatives yields the relation
bag,y — rér byg = bayp = réﬂ b, .
Since
baﬂ"y = baﬂ v b&ﬂ ay bzé rﬁ-y s
we see that this may be written as
bglly = by lp (8.42a)
or
bgll, = byl (8.42b)

These are two tensor forms of the Gauss—-Codazzi equations of differential
geometry.
Comparing the coefficient of a, in (8.41) and its counterpart for a, ,, yields
the relation
r:.).,ﬂ - r:ﬂ,.’ + rg,’, rgﬂ - rﬁp rf.,, = ba.’. bg - baﬂ bz . (843)

Comparison of the left-hand side of this equation with the coefficient of v,, in
(5.28) shows that it is the Riemann-Christoffel tensor in the two-dimensional
space of the coordinates x*:

Rl =Toyp—Top, + Toy Tl — T T3, (8.44)

and (8.43) states that, on this curved surface, Rf’a,,y # 0. This has far-reaching
consequences, because, as we have seen on page 73, the order of two sub-
sequent covariant differentiations is not interchangeable unless R‘.’a,,,y =0.

If we wish, we may lower the index é and, for the Riemann—Christoffel
tensor, have the two equivalent statements

R%., = by by — by b,
Rsagy = baybps — bepbys }
With the help of (3.292), the last formula may be further simplified:
Riop, = bibi(a,, 05, — ag,a,,) = b} b5(8} 65 — 84 6))a,, a,,
= b}bje’e, a5, a,, = bibleg,€,;.

(8.45)

Now we apply the two-dimensional version of the determinant expansion
formula €3.17) to the Gaussian curvature b:

be&a = bs bien}. ’
multiply both sides by ¢;, and find that
R5¢ﬂ7 = bé'“ ep.' . (8.46)
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This equation shows that all components of the Riemann—Christoffel tensor
Rjapy vanish if and only if the Gaussian curvature b = 0. Then and only then
can the sequence of two covariant differentiations be interchanged. The same
equation also shows that

Rsapy = = Ruspy = — Riayp = Rezyp. (8.47)
If Ry, # O, then also v,]l, # v,/,,; and we may ask how much they differ.
We derive from (5.27) a definition of the second covariant derivative simply by
restricting the range of all indices to two dimensions:
Vallpy = (Va0 — 0, Tp) ; = (V25 — 0, TEITE, — (0,2 — v, TEIE,.  (8.48)
According to (5.28) and (8.46) the difference between this and Vgllyp is
v¢ "p, — v¢"7p = UJR“py = v’ b€6¢€ﬂ1 . (8.49)

Later we shall need a similar relation for the second covariant derivative of
a second-order tensor. We start from (5.23b) and apply this equation to a
symmetric, two-dimensional tensor 42, = 42:
A:"p = A:,, -+ A,‘,l"g, - AZI"‘,,.
Differentiating now with respect to x?, we find
Agllpy = (42,5 + AT — AITYy),, + (AL, + AT, — AITE)TE,

— (43, + 4T3 — AITITY, — (AL, + AT, — AXTE)TS,.

When we now form the difference 42| sy — Alll,s, very many terms cancel and
we are left with

A:"ﬁv - A:”w = Ag(rgﬂ,r - gr.ﬂ + rgvrl'-'ﬁ - r:ﬂ l'?,)
+ Ag(rfmﬂ - r(cﬂ.r + rflﬂrzr - f‘.‘,,l'i’p)
With the help of (8.44) this can be brought into the form
Allg, — A,y = A R%,p + AIRY,,. (8.50)

Problems

8.1. On a circular cylinder of radius a-a coordinate system is defined as follows
(see Figure 8.3):
xXl=z—agftanw=z—cl, x*=04,

where w and ¢ = a tan w are constants. Find the metric tensor a,; and the curvature
tensors b, and b3 . :

8.2. In a cartesian coordinate system x, y, z a hyperbolic paraboloid has the
equation z = xy/c. The cartesian coordinates x = x! and y = x? are used as co-
ordinates x* of a point on the surface. Calculate, in terms of these x°, the following
quantitieS: Qap, 'a.’y bﬁ‘ s b; H b “, I‘lﬂ'n I‘ZH > R,Ih .
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8.3. On a right circular cone (Figure 8.4a) coordinates x* are defined as shown.
Starting from the expression for the line element, calculate @.p, bap, Tagy, Rapy .

Do the same for a skew cone (Figure 8.4b).

8.4. Write the Navier-Stokes equation (6.37) as three component equations in
the spherical coordinate system of Figure 1.5. Then assume that the radial com-
ponent of the velocity is zero. This leads to the differential equation of fluid motion
on the surface of a sphere.

(a) . (b)

FiGure 8.4



CHAPTER 9

Theory of Shells

IN THE PRECEDING CHAPTER we studied the geometry of curved sur-
faces with the intention of applying the results to the theory of shells. By a
shell we understand a piece of solid matter contained in the narrow space
between two curved surfaces which are parallel or almost parallel to each
other. Their distance is the shell thickness A, which is supposed to be small
compared with other dimensions of the shell, in particular, with its radii of
curvature. The surface which halves the shell thickness everywhere is called
the middle surface and serves in the stress analysis the same purpose as the
middle plane of a plate or the axis of a beam. The deformation of the shell is
described in terms of the deformation of its middle surface, and the stress
system is described by stress resultants like those in plates and slabs, referred
to a unit length of section through the middie surface.

9.1. Shell Geometry

We consider a shell of uniform thickness /# and count the coordinate x> = z
from its middle surface. The outer faces then have the equations z = +4/2.
Now consider a.point B(x% x%). Our goal is to express all the quantities
associated with this poifit; like g, , g,5, T'op,, €tc., in terms of z and of the cor-
responding quantities a,, @,5, I',,, €tc., associated with the midsurface point
A(x*, 0) (Figure 9.1). Both points have the same cocrdinates x*. Another pair
of corresponding points, D and C, have the same coordinates x* + dx*. The
plane vectors AC and BD have the same components dx*, but in different sets
of base vectors, a, and g,, respectively.

" We read from the figure that

r=s+ za,

W. Flugge, Tensor Analysis and Continuum Mechanics
© Springer-Verlag Berlin Heidelberg 1972
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FIGURE 9.1 Section through a shell.

and find by differentiation that
T.=S,+ 283,
and with (1.18) and (8.20):
’ g =2, —zbla,=pla, .1
with
s = 85 — zbg. | 9.2)

This defines a tensor uj, which relates the base vectors at the points B and 4.
To obtain similar formulas for the contravariant quantities, we introduce a
tensor A2 by tentatively setting '

gl =ila 9.3)
Then, , v
g’ 8= Ala" - pla, = Ay} 85 = AL y5.
In connection with (1.20) this shows that v
Muz=295, 49

and from this equation the 44 can be calculated. They are fractions of two
polynomials in z. For our purposes we need 4% as a power expansion in z,
correct to the quadratic term:}

M=A+Biz+Cl22 4.,

T Note that z, not being a tensor symbol, will be used with exponents indicating powers.
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When this and p§ from (9.2) are introduced into (9.4), we can compare coefli-
cients of like powers of z to obtain 44, ...." This yields the following result:

M =08+ blz+bPblz?+---. 9.5)

From the definition (1.24) of the metric tensor combined with (9.1) and
(9.3) it follows that

Gap = 82" 8 = Ko8," #; a; = HZ#}; Ays5 (9.63)
g¥ =g*-gf = 1%a’- Ma’=222fa". (9.6b)
For later use we also list the following products:
g o’ =pla, 2’ =y, (9:7a)
g -a,=Aa" a;=43. (9.7b)

The tensors uf and Aj are of great importance for the development of the
shell equations. Therefore, we compile the formulas which will later be
needed.

Differentiating (9.4), we find that

Ml 5+ 28u5l, =0, 9.8
where, of course,
3lly = w5, + 85, — w515, . (9.9
Codazzi’s equation (8.42) together with the definition (9.2) yields
pally = w5l (9.10)
We shall need the determinant
P N | B ) ©.11)
B M2
Use of (9.2) shows that this is equal to
p=1-—2zb}+ 2% 9.12)

with b, the Gaussian curvature, as defined by (8.24). We may also apply to u
the two-dimensional version of the determinant expansion formula (3.17):

€aph = €y 74 ”; s (9.13)
whence, after multiplication by ¢*/ and use of (3.29c), we have
2u = ePe g 1. 9.14)

We differentiate both sides and note that the permutation tensor is a con-
stant:

2ull, = ePe,o(ulla 1 + p2pdll) = 2¢%e,s ul gl
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From (9.4) and (9.13) we see that

)‘gfaﬂ“ = fy;llz#/;z}~g = 676”19 (915)
and when we introduce this in the preceding equation, we find that
#lla = €23 e upflls = 23 0y gl = nalpsll ;. (9.16)
We also need the derivative of the determinant g in the direction normal to
the middle surface. Starting from (9.14), we calculate
2p 3 = e (1l s 1 + ph3 D) = 26Pe s pl 3 15
and, using (9.2) and (9.15),

H3= —€Pe, blup = —e’bl il = —03biA3p,
from which ultimately
py=—blilp 9.17)

We may now derive expressions for the Christoffel symbols I'4,, I'J; and
the permutation tensor 4, & at point B of Figure 9.1 in terms of the corres-
ponding quantities I'yg,, I'ls, €45, € for the point A. The former quantities
are derived from the base vectors g, and the metric tensor g,, of point B, while
the quantities without bars are defined in terms of a, and a,;4.

We start from (5.3b), which we rewrite for the two-dimensional range, and
use (9.1) and (9.3):

T =g., 8 =2, 4a
Now, with an alternate version of (8.15) and with (9.9) we find
(ﬂ:ao),p cat= H:.a 53 + I‘: T 55 = #E,ﬂ + Il: T3 = Hf."p + #Es r:p

and hence

Tip = A ully + 03T = Tlp + il (9.18)
Similarly we find with (8.15)
T =g, 2 =0la), a°=plby (9.19)

and with (8.12) and g, = a;:
T5p=835"8°= —bga’: ifal= —A3by,a”= -—it;‘b;?. (9.20)
For the permutation tensor, we start from
8 X 83 =538 =58
and use (9.1) and (9.3):

3 = 3
Upas X a3 = Eplya’.
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The left-hand side equals

Yoe,sal.
Now, when we equate the y-components on both sides and multiply them by
M2, we have

0 = ']
ﬂ;ﬂﬂ 676 = et)ﬂ 6:2, :

whence

€ap = Ug uﬁ €5+ 9.21)

Comparison of the right-hand side of this equation with that of (9.13) shows
that

éap = €aﬁ M. (9-22)

Both expressions will later be useful, each one in its place.

9.2. Kinematics of Deformation

When a shell is deformed, the position vector r of a generic point B (Figure
9.2) with coordinates x*, x> changes to

f=r+v, (9.23)

while that of the corresponding point 4 on the middle surface changes from s
to

§=s+u (9.24)

Since we associate with the same material point before and after deformation
the same coordinates x* x>, the coordinate net is deformed with the body and
we have, in the deformed state, new base vectors

g,=f, and 4,=8,. (9.25a,b)

We set the goal of expressing these quantities as well as the displacement v and
the components of the strain tensor #;; at B in terms of the displacement u of
point A and its derivatives. In this work we use the fundamental assumption
of the conservation of normals; that is, we assume that all particles lying on a
normal to the undeformed middle surface will, after deformation, be found on
a normal to the deformed middle surface. This amounts to assuming that the
components 7,3 = 13, of the strain tensor #,; are zero.

The relation between strain and displacement is given by (6.1), which we
rewrite in the notation for a point off the middle surface (see p. 133):

ni; = 3wl + vl). (.?-26)



148 Theory of Shells [Ch. 9

FIGURE 9.2 Section through a shell before and after deformation.

We let i =a, j = 3 and apply (8.9):

Ne3 = 3(Va,3 — T+ U3, — U ).

From the conservation of normals we conclude that

v¢,3 + 03,¢ = 2Up rg, . (9.27)

Since the shell is thin and since there is no stress >3 in the direction of the

base vector g, , the length of the normals does not change much during defor-
mation, so that we may set :

U3 = u3 =w. (9.28)

This statement is not part of the assumption of the conservation of normals
and must be used with some care. It is good for the kinematic purposes for
which we shall use it and amounts there essentially to a linearization in the
displacements. However, the statement &, =0, which this assumption
implies, must not be inserted into Hooke’s law, which then would yield a sub-
stantial 3. The shell is definitely not in a state of plane strain, but rather of
plane stress including the stress system known from the bending of plates.

When (9.27) is applied to the middle surface, (8.18) may be used to introduce
the curvature tensor

Ugs + Wo= —2uybl. (9.29)
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Our next aim is to get 45, the normal vector of a deformed shell element.
We differentiate (9.23) with respect to x> and then let z = 0, writing s ; for
lim r ;. This yields

§3=s;+u;,

and with (1.18) and (8.35)
§3 = 33 + (ua,3 + u., bZ)a“ + u3’3 83.

Since u; = w does not depend on x3, we have

8; —a; = (u, 3 + u, b))a%, (9.30)
and because of (9.29) this may be written in the alternate form
4; —a3;= —(w,+u,b)a" (9.31)

Since both 45 and a, are unit vectors, their difference is the angle of rotation
of the normal. It is a plane vector and (9.31) confirms that the partial
derivatives w , of the scalar w are vector components. This permits us to use
the notation

W, =W, = W,=w|,. (9.32)
Let us note in passing that, from (8.29),
Wllag = @,llpg = Wap — W, Top = Wilg,, (9.33)

a relation that will be of use later.

Once more, we use Figure 9.2, which shows two points 4 and B before
deformation and their positions 4 and B after deformation. From this figure
we read that

f=r+v=s+za;+v

and also
f=8+z48,=s+u+ z4;.
We equate the right-hand sides and use (9.31):
v=u+ z(8; — a,) = u;a’ + wa® — z(w, + u, b})a’. (9.34)

On the other hand, we have
v=10,g" + wg?

and hence
Vg, =08 8 =00;=10,.
We apply this to (9.34) and find the component

Uy = [ud - Z(W'a + uy bz)]aa ‘8-
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Because of (9.2) ard (9.7a), this is equivalent to

Uy = (u",' #33 - zw,é)tug . (935)
To calculate the strain 5,; from (9.26), we need the covariant derivative
v,lg. This derivative is to be taken using the metric at point B, i.e. with the
Christoffel symbols derived from g,, g5:

vdlﬂ =Vgp— Uy rgﬁ — U3 1——313
We apply (9.18) and (9.19):
va’ﬁ = va,ﬂ’ - Up(rgﬂ + ;‘g#g”ﬁ) - W.“Z b)vﬂ = vz”p - Up ;‘glu:”ﬁ - w.u: bw‘i .

Now it is time to introduce (9.35) and to express v,, v, in terms of the dis-
placement of the middle surface:

valp = [, 11 — 2wl )]l p — (u, il — 2wl s 28 ullip — Wil byg

= u,llppdul + w, w3l g1l + u, pi plllp — z(Wllag 1l + wils 12l )

— w1} 5518l + zwll, 8513llp — wilb,,.
Several terms cancel each other and there remains only
Valp = t,llp 3 il + vy 1}l g 1S — 2Wlsg 1S — Wil b, (9.36)
From this, v,|, is obtained by interchanging « and 8, and then (9.26) yields for
the strain
2’10:[3 = va]ﬁ + vﬂla‘ = (uyna #Z + uy”ﬁ /1:)/1% + uy(,ug #3”/} + #z #;’;”a)
= 2wl 1} + Wligs D) = Wl byp + p b). (9.37)
Because of the basic assumption that the normals are conserved, the defor-
mation of a shell element depends exclusively on the deformation of the
middle surface and it must be possible to express 7,5 in terms of the strains
&, of the middle surface and of its change of curvature.
The strain of the middle surface is easily obtained from (9.37) by letting
z =0 Then the third term drops out and in all the other ones the various u}
become Kronecker deltas with the same indices. All that remains is
26,5 = tplly + g — 2whyy. (9.38)
Transcribing (2.5) and (2.17) into the present notation, we may then calculate
the metric tensor for the deformed middle surface,
Qup = Qup + 26,5 (9.39)

The change of curvature of the middle surface is, of course, the difference
between the curvature tensors before and after deformation. Since their
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components are defined with respect to different reference frames, a, and 4,,
the differences b,5 — b,g, b — b5, and b* — b* are not components of the
same tensor and we must choose among them for our definition. We decide
in favor of the components of mixed variance, because in such components
the metric tensor is independent of the deformation, 42 = al = &2 [see (1.53)].
We define

k! = b! — b} (9.40)

and then calculate
Kep = K1ayp = b} a,5 — bgp. (9.41)
This tensor is not symmetric because, in the third member,
bla,; # b} a,,.
By introducing a,, from (9.39) in (9.41), we find that
Kep = D285 — 22,5) — bop = by — byp — 2b7¢,5.

If we neglect a term quadratic in the strains, we may write this as

Kap = Bﬂﬂ - bap - 2bzsw. (9.42)
This equation shows that x,, derived from our definition of x} is not equal to
Baﬂ - af *
To calculate b,;, we apply (8.13) to the deformed middle surface:
byp = —45,-4,, (9.43)

Differentiating (9.31) and using (8.36), we find
b;,=1a3,— (Wi, + usb))ll.a” — (wll, + u, bj)bla>.

To find the deformed base vector 4, we start from its definition (9.25b) and
use (9.24) and (8.31):

fp=s,+u,=2a5+(ul; — whypa + (w, + u,b))a’.

When we dot-multiply 4; , and 4;, we keep only the terms linear in the dis-
placements and use (8.13) and (8.19):

bop = —23," a5 — (u,]ly — wh,p)a” - a5, + (wll, + u; b9)|,a” - a,
= b + (u,llg — whyp)bl + Wllge + (u; b9) - (9.44)
Equation (9.42) now yields the desired result:

Kap = (0,015 — whyp)b} + Wilap + (us b:})”a — 2bje,,
= u, bjlle + u,lla by — ugll, by + wllap + whi byp. (9.45)

In the first, fourth, and fifth terms « and f can be interchanged because of the
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Codazzi equation (8.42b), because of (9.33), and because of (1.22), which
applies to any product with one dummy index. In the second and third terms,
however, interchanging « and f changes the values and, therefore, x,5 # Kg, .

We may now come back to our intention of expressing 7,, in terms of ¢,;
and x,;. It seems reasonable to project &,; into the metric of point B in
Figure 9.1 by multiplying it by two u factors and, hence, to consider the
difference

2T = o ML H5) = wllo 3l + g 13l — w5 el 1p — usll, 12 uj
+ w5l p + 1f 15lle) — Wl byg + 1} by — 2263 bry)
- z(wuay [1% + W”py #Z)' (9'46)

We expect that this equals the product of z«x,; and some suitable factor and,
therefore, try to extract a factor z from every term. In the last term this has
already been achieved and all we do is to write it in the slightly changed form

~zwll,a(1} 83 + 1} 62).

In the other terms it is necessary to make use of (9.2), which defines uj, and
of two relations which can easily be derived from it. First, since 65 is a con-
stant, we see that

uglly = —zbll, ; (9.47a)
and, second, we find that
1e b = (83 — zb)bE = b% — zbj bl = by(6/— zbf) = b ub. (9.47b)
We use (9.47a) when dealing with the coefficient of u; in (9.46):
B psllp + pppSlla = —2(ugbillp + pp blle) = — 23, (3 0 + pp 82).
The coefficient of w makes only slightly more work. We use (9.2) and write
ibyp + 1) bye = 23 bys
= (0] — zb))b,p + (6} — zb}) b,, - 2(8} — zb)(65 — zb)b,5.
In this expression most terms cancel and all that is left is
28] b} b,y + zb) 85 bys — 222b] b} by = z(ul b} + p bDb,s,
which may be written in the form
zb} bys(ul 83 + u 8.

The terms of (9.46) which contain derivatives of u,, may be processed as
follows:
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o 3113 + w, g 13 2 — w5 13 02 — o pl i} 5
= p3[u,l(85 — 2b§) + u,ll5(85 — 2b%) — u,lI(8h — zbf) 82 — u, |l (6% — zb3)d5]
= —zu,|| u3[85 bj + 65 bl — 65 bj — 55 bL].
We make use of (9.47b) and continue the calculation:
= —zu, || [ b}(85 up + & 13) — b§(5F 3 + 82 1h)]
= —z[ugll, b§(8] kg + 85 u3)— usllg B3O} 13 + 8 13)]
—z(ull, b§ — ugll, bi)(él I‘fz + 0p 1)
Now we discover that all terms of (9.46) do not only cantain a factor z, but
still another common factor, and we may rewrite that equation in the following
form: »
2(’lan =&y 74 I»‘}’;) '
= 2(51112 + 57;#:)[—'44"7 bfs + “a"; bi-— u; bg”)' - ng b;a - W"y&]-
Comparison of the bracketed expression with the third member of (9.45) shows
that it equals —x,,. Therefore, we can write
Nap = Eys #Zﬂg - %ZKW(‘SZ I’l; + 6[’? Ii:) (948)

This equation shows that the strain 5,, and hence also the stress 6*# depends
only on the deformation of the middle surface and that our kinematic rela-
tions, in particular (9.37), will yield zero strain when the shell is subjected to a
rigid-body displacement.

9.3. Stress Resultants and Equilibrium

In a shell the stress systems of plates and slabs are combined. There is a
membrane force tensor N°** corresponding to the tension-and-shear tensor of
the plane slab and a moment tensor M *#, whose components are bending and
twisting moments, and, as in a plate, it is inseparable from transverse shear
forces Q% All these forces and moments participate in establishing the
equilibrium of the shell element, but because of its curvature they interfere
with each other in a more complicated way than in plates and slabs.

Our present task is to define all these stress resultants in terms of the
stresses in the shell.

We select an arbitrary line element ds = dx” a, on the middle surface. The
total of all the normals to the middle surface emanating from points of ds
forms a section element (Figure 9.3). It is roughly a rectangle of height # and
length ds, but since the middle surface has curvature and twist, the normals
are not precisely parallel to each other and do not even lie in one plane; hence
the section element is curved and twisted. We have to keep this in mind
when calculating stress resultants.
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FIGURE 9.3 Section through a shell.

Inside the section element we isolate a subelement of height dz, as indicated
in Figure 9.3. The line element vector dr, which is the base of this element,
differs from ds in magnitude and direction. It has the same components dx’,
but in a local reference frame g,,,

dr=dx'g,. (9.49)
The area of the subelement is
. dA=drxazdz=dx"dzé,,8" =dA, g
with the components
dA, = &, dx" dz. (9.50)

If we assume that the material of the shell lies behind the area element, the
vector dA has the direction of the outer normal.
Across the subelement a force

dF = dF® g, + dF3 g,

is transmitted. With the definition (4.6) of the stress 6/, we can write it in the
form

dF = 0¥ dA, g, + ¢°3 dA, g. (9.51)

The first term represents a force in the tangential plane of the middle surface,
while the second one is a force normal to the shell. We deal first with this
latter one because it is the simplest. Integrating across the shell thickness 4,
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we find the resultant

+h/2 '
de’ g;=a, fcr“3 dA, = a, dx’f 0*%¢,, dz.
-h/2
The permutation tensor &,, depends on the local metric g,,, but we may use
(9.22) to express it in terms of ¢,,, which is defined in terms of a,, and, hence,
does not depend on z. The resultant force is then

+h/2
de3 g =a;dx" ¢, J‘ o*3p dz.
-h/2
We define
+h/2
o =-|  oud (9.52)
Y =h/2
and have then the vertical force
f dF*g; = —¢,, dx” Q*a;. (9.53)

Q° is the transverse shear force of the shell. Its interpretation is the same as
that of the shear force in a plate. Equation (9.52) differs from its counterpart
{7.62a) for the plate by the presence of the factor u, which accounts for the
curvature of the shell and all its consequences.

We now turn to the first term in (9.51) and subject it to.a similar treatment.
This term contains a factor g; but while g, = a, is a constant, g, depends,
through (9.1), on z, and we have to make use of this equation to express the
force in the reference frame ag:

+h/2 +h/2

de" g; = f 0*%,, dx" dz g; = €,, dx" a, f o*upb dz.
-w2 -h2

We define
+h/2
N = f o*uul dz (9.54)
-h/2
and have then
[ dF® g = €,,dx"N"a,. (9.55)

The force dF of (9.51) has a lever arm za, with respect to the center of the
section and hence a moment

dM = za,; x dF = z(c™a; x g; + 0*%a; x g3) dA,.

Because of a; = g5, the second term in the parentheses equals zero and the
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total moment of the forces dF in the section element is

+h/2 +h/2
f dM = j 20y X piage,, p dx? dz = €, € a° dx? f o*ubuz dz.
—h/2 ~h/2

We define

+h/2
M = — f o ufuz dz (9.56)
-h/2

and have then
[aM = —¢,, e dx? Me2at. (9:57)

The definition of the moment tensor M * is similar to the definition (7.62¢) for
the plate; the difference lies again in the presence of factors which account for
the curvature and the twist of the shell.

The stress resultants Q% N*, M** must satisfy certain differential equa-
tions, which express the equilibrium of a shell element. We proceed in the
same way as we did for the plate, obtaining the equilibrium conditions by
integrating (6.6) without ever seeing a shell element. The only difference lies
in the factor by which we multiply this equation. It must be so chosen that
the three integrals obtained coincide with those occurring in (9.52), (9.54), and
(9.56).

Just as we did on page 128 for the plate, we let i = y in (6.6) and split the

three-term sum over j into a two-term sum over § plus an extra term for
j=3:

0”3+ 0”3+ X" =0. (9.58)
The covariant derivatives in this equation are, of course, the three-dimensional
derivatives based on the metric at the point B, Figure 9.1; that is, they are
based on g,; and g;;. We use (5.23d), (9.18), and (9.20) to express those

derivatives in terms of the two-dimensional covariant derivative based on the
metric of the middle surface. Beginning with ¢*|,, we find

a}'ﬁlﬂ = ayﬁ,ﬂ + o.;ﬁ Ep + Gygrg; + Gaﬁr};ﬂ + Uyarg3
= 0" 5 + (Tl + utly) + 0Tk + 4 udl)
— 0¥3b% — 678 b .
We may now use (8.38) to combine three of the termas into ¢”* llg, and we have
0%y = 6", + P udl, + oM udll — (a2} + 67 i5)b} .

Since we later shall multiply (9.58) by Ky 1, we now apply this factor to ¢*?| P
and make use of (9.4) and (9.16) to find
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1y s = 0Pl s e+ 0Pl gt + U5 il — (0 65+ 072 b
= ("us p)llp — (6¥b5 + 073 b
When ¢73|; is processed in the same manner, many of the Christoffel symbols
turn out to be zero and we have
073 = 6" 3 + Py = 0" ; — **2} 1]
and, after multiplication by u5u and use of (9.2),
a3 pyp = (07 3 4y ~ PbDu = (67 3 4% + 0P pg 3 )u = (67°43) 31

We now return to (9.58), multiply it by u$udz, introduce the results just
obtained, and integrate across the shell thickness 4:

+h/2 " +h/2 3
v/ L d - hZ d
f_m(v Hii)lg dz ,,f_ma p dz
+h/2 +h/2
+ f [—0"u5 455 + (0"°py) 5 u dz + f X'iudz=0. (9.59)
-n/2 -h/2

In the first two terms we recognize N #*||; and b3 Q” from (9.54) and (9.52) and
to the third integral we apply (9.17), which reduces it to
+h/2

+h/2
[ To™¥hs + @5),501 dz = [0k 4] (9.60)
—h/2 ~h/2*

This is the difference of the surface tractions acting on the faces z = + /2, each
of them multiplied by a facter, which reduces the local metric to that of the
middle surface. Similarly, the last integral represents the resultant of the local
volume forces, and both terms together can be combined into the tangential

load component
+h/2

h/2
= [0’3;1,#] 2 +f X'usp dz.
The equilibrium condition appears then in its ﬁnal form:
N4, + Qb5 + p*=0. (9.61)
It assures the equilibrium of forces in the direction a, (a = 1, 2).

To obtain the condition of equilibrium of forces normal to the shell, we
return to (6.6) and now let i =3 and j = a, 3:

o, + 63+ X3=0. 9.62)

When we apply (5.23d) to the first term, we recognize that one of the Christof-
fel symbols is zero, and we use equations (9.18) through (9.20) to reduce the
other ones to terms defined on the middle surface:

0%, = 0%+ ¢T3, + 0*'T%, + 6T3, + 0*T%,
+ o™ ’b a8 + 0'37(1-:. + )'-:”:"7) - 033’1; b:'
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While 6* is a two-dimensional stress tensor, 6> has only one free superscript
and is a vector. Therefore, its two-dimensional covariant derivative follows
(8.32). Its two terms can easily be recognized in the last expression, and after
multiplication by u, we have

6> p = 0" ulubyy + 63 1 + 6¥ull, + 0234 5.

In the last two terms of this equation, use has been made of (9.16) and (9.17).
It is easily seen that 0%3|; = ¢°3 ;, and when we now multiply (9.62) by u
and integrate across the shell thickness, we arrive at the following equation:

+h/2 . +h/2
baﬂf o o”ubpdz + f ,,,2("3“"““ +0%ull,) dz
+h/2 +h/2
+ f (s + 02, 0dz+ | Xudz=0.
-h/2 -h/2

The first integral is N* from (9.54); the second one is the a-derivative of Q°
from (9.52), and the third one can be integrated and combined with the last

one to yield
+h/2 +h/2

[a”u] + ’. X3udz = p?,
-h/2 ¥ —h/2
that is, the normal component of the distributed load in the direction of
positive z. The entire equation then assumes the following, final form:
Naﬂbaﬂ - Qa”a + p3 = 03 (963)
and this is the equilibrium condition for forces normal to the shell.

To insure the moment equilibrium of a shell element, we return to (9.59) and
insert a factor z under each integral. Since the sum of the integrands in this
equation vanishes, this is a permissible operation, exactly as the multiplication
of the original equilibrium condition by u§ 4, which is already incorporated in
(9.59). In the modified equation, the first integral is the covariant derivative
of M*?*from (9.56); in the third integral we repeat the operation which led to
(9.60) and integrate by parts:

+h/2 +hj2
[ [07mma+ @ )iz dz= [ (0"450) 2 dz

-h
+h/2 +hi2
= [07'3;1: yz] - f o3l dz.
-h/2 ~h/2

We can now write the modified equation (9.59) in the following form:

+h/2 +h/2

+h/2
. < ; ¢ .
- MP, — b;f o¥uzdz + [0"3}1‘;#2] ~ | Pusudz
~hi2 —h/2 ~hj2
“h/2
+ X'uSuz dz =
-2
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Making use of (9.2), we may combine the first two of the integrals:

+h/2 +h/2
- f o> (zbf + ppp dz = — f o 8udz = Q%;
—h/2 ~h/2

and the third and fifth terms are the contributions of the surface tractions and
the body forces to a moment load, which we denote by —m®. Thus we arrive
at the final form of our equation:

M, — Q%+ m* =0, (9.64)

This equation, which stands for two component equations, assures the moment
equilibrium with respect to all axes tangent to the middle surface.

In deriving (9.61), (9.63), and (9.64), we started from (6.6), which is a condi-
tion imposed upon the derivatives of the stresses in order to insure equilibrium
of a volume element. Like (6.6), the three shell equations derived from it are
differential equations and are essential conditions which the stress resultants
must satisfy. There is still another equilibrium condition,.the one for the
moments about a normal to the shell, and this equation has a quite different
position within the set of shell equations, as we shall presently see.

We start from (4.8), let i, j = o, f and make use of the permutation tensor,
writing

€0 =0, , (9.65)

We apply (9.21), multiply by u and integrate:

+h/2 p
€5 f o“plpbpdz = 0.
~h/2

We split the factor ug according to (9.2) and have
+h/2 +h/2
€5 f o*u)6judz — €., b} f oyl uz dz = 0,
-h/2 ¢ ~h/2
whence
€,5(N” + b} MP) =0
or, after some changes in the notation for the dummy indices,
€5(N* + b2 M"*) = 0. (9.66)

This is the desired equilibrium condition. Different from the other ones, it is
algebraic and therefore does not control the variation of the stress resultants
from one point to the next, but is a condition imposed on their values at any
single point. It flows immediately from the statement that the stress tensor
is symmetric and is nothing else but this statement, expressed in stress
resultants. This symmetry, which through Hooke’s law corresponds to the
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symmetry of the strain tensor, is part of our fundamental concepts and not an
additional condition imposed upon the stresses and the stress resultants.
This is the reason why (9.66) is not part of the fundamental shell equations,
but is a surplus equation, which the solution of the fundamental equations
will satisfy automatically. This does not mean that the equation is entirely
worthless. There have been many attempts at finding shortcuts to avoid the
complexity of the shell equations, and many of these attempts have introduced
simplifying assumptions leading to a violation of (9.66). This is not neces-
sarily a grievous deficiency of such attempts, since the violation may be very
slight, but in any simplified theory (9.66) deserves careful examination.
Equations (9.61), (9.63), and (9.64) are the essential equilibrium conditions
of the shell. It is possible to use (9.64) to eliminate the transverse shear force

Q° from the other two. The result of the simple calculation is the following
pair of equations:

NP=jg + MPY|, b2 = —p* — mPbj, }
Nb,y — My = —p + .. ©.67
When using these equations, one should keep in mind that the tensors N*#
and M*f are not symmetric and that in the second derivative the order of the
covariant differentiations cannot be interchanged. Together they represent
three component equations, associated with the equilibrium of forces in
tangential and normal directions.

When a shell is thin enough, it seems plausible that the moments M *
cannot make a substantial contribution to the equilibrium. Practical experi-
ence with solved problems shows that this is true if the boundary conditions
are favorable and if there are no discontinuities in the curvature of the shell
and the distribution of the load. Naturally, moment loads m* must be
excluded in this case. A shell theory based upon the assumption that M* = 0
is called membrane theory.

If the assumption is accepted, it follows immediately from (9.64) that also
Q® =0, and then (9.61) and (9.63) as well as the pair (9.67) reduce to

NPjy= —p, ¥ N¥b,= —p (9.68a, b)

In the absence of all moments (9.66) simply reads ¢,; N*# = 0-and shows that
N'? = N?' The two component equations (9.68a) and the single equation
(9.68b) then contain only three unknowns N!!, N2, N?2 and can be solved
for them if there are sufficiently many boundary conditions in terms of the
stress resultants to make the solution unique. A structure of this kind is
called statically determinate. If desired, its deformation can be calculated
after the stress system has been found.
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9.4. Flastic Law

After having established the kinematic relations (9.38) and (9.45) and ilie
equilibrium conditions (9.61), (9.63), and (9.64), we have only one step left to
complete the fundamental set of shell equations. We still must write the
elastic law, which connects the stress resultants N°f and M % with the mid-
surface strains &,; and k4.

The procedure is simple. We start from the definitions (9.54) and (9.56) of
the stress resultants, use Hooke’s law (7.29) to express the stress ¢*° in terms of
the local strain &}, which we now denote by 73, and use the kinematic equation
(9.48) to express 1} in terms of the midsurface strains. Equations (9.54) and
(9.56) contain contravariant stresses while Hooke’s law, in the form we want
to use, has components of mixed variance and (9.48) is written in covariant
components. This makes it necessary first to correlate all these components,
using the metric tensor g*# and (9.6b).

We write for the contravariant stress components

0® = 039" = 0% A3 X 0"
and use the plane stress form (7.29) of Hooke’s law:
E (3 L4
0y =1z [ = )5 + vdyme]
to obtain

E .
o‘““"=\1—:7 [ = v)ng + véenflal A2a’e.

This may be introduced into (9.54):

Nt = —E oo [0t = v+ 8 n81A0 22 i diz
1——V2 —m2 Y 7"{ o o K
-_E a** T [(1 = v)n® + v&2nt]At p dz
1—v2 —h2 b4 y1gd%p :

The strains 77}, 7 must now be expressed in terms of the covariant components
Nes -

Ny = Mys 9“ =Ny A‘: A‘: a"’ = 'I(J‘Sg 1: l‘: a”,

n = AL Asa”,

whence

E +h/2
NP = — artar f_,,/z [(1 = &2 + v83 ]n s A2 47 p dz.
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Now it is time to make use of (9.48), which we rewrite with appropriate
changes of the indices:

Nes = Eoc ML M5 — 32K (07 p5 + 05 7).

Introducing this into the preceding equation yields the following expression
for N°#:

N =

+h/2
—— " f [(1 = v)& A% + v8228]

~h/2

X [egy 1f = 2(xg, + Ky A3 p dz. (9.69)

s

The integrand in this equation contains the constants ¢,,, k¢, , Ks,, an explicit
factor z in the second bracket, and quantities uj, A5, u, which depend on z
and the curvature tensor according to (9.2), (9.5), and (9.12). When they are
explicitly expressed in powers of z, the integrand becomes a power series and
the integration can be performed separately for each term. The definite
integrals of the odd powers are zero, and the integrals of the even powers lead
us to introduce the extensional stiffness

Eh
=1 (9.70a)
and the bending stiffness
Eh?
= 9.70
K 12(1 — v?) ( ®)

We decide to drop terms with #* and higher powers of 4. This decision is made
in addition to the assumption of the conservation of normals, but it is not
independent of it. Since the conservation of normals is only approximately
true, it is worthless to carry the higher powers of %, and even the terms in hare
not exact. They are carried, however, since this is the only way one can obtain
a formulation of the shell equations which does not violate one or another of
the basic laws of mechanics.

Working out the details is lengthy, but simple, tensor algebra. The result is
the following relation:

N*¥ = D[(1 — v)e* + ve} a**]

1—v ) . N ;  pgne
- K[_Z [2a°°b*" + a?"b* + a®bP7 — bi(a*a?’ + a*aP?))

+ wW(a*b" + a?’b*f — a’”a""bﬁ)] K. (9.71)
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The only difference between (9.54) and (9.56) lies in a factor z under the
integral, which is present in M * and is missing in N**. We may, therefore,
obtain a formula for the moments by retracing all the steps leading vp to
(9.69), just inserting this factor z. Thea again when thc integrand is written
as a polynomial in z, there will be no term without z and, within the limits of
accuracy chosen, only the term with z? makes a contribution. Working out
the algebra yields

M = K[(1 — v)(bje”* - bje*) + v(b* — b} a*)e,
— 31 = (™ + ©**) + va*x}].- (9.72)
with
k¥ = xba" = x ;0. (9.73)

The two equations (9.71) and (9.72) represent the elastic law of the shell.
Together with the kinematic relations (9.38), (9.45) and the equilibrium
conditions (9.61), (9.63), (9.64) they are the fundamental equations of shell
theory.

Problems

9.1. Derive the relation
Ajug =55,

which is a counterpart of (9.4).

9.2. Calculate 8. =r,, and thence 8.; = £.'8s and 2,0 = s — gus. Compare
the result with (9.37).

9.3. Apply the fundamental equations of shell theory to a spherical shel! of
radius a. As coordinates, use the colatitude ¢ = x! measured along a meridian from
the apex and the longitude 6= x2.

References

For two generations, the last chapters of Love’s book [19] have been the
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strict adherence to the postulate of conservation of normals, is usually
attributed to Kirchhoff and Love. It seems that the first equations which, by
their standards, are exact, are the equations for the circular cylinder given in
[8] and reproduced in [10] and [11]. The subject has since then been taken up
by many authors. Equations for a general shell of revolution may be found
in [10].

A very general presentation of shell theory, using tensor notation and
general curvilinear coordinates, has been given by Naghdi [24] and Marlowe
{21]. The presentation in this book has made much use of these, but goes
beyond them. drawing a distinct line between strain quantities and displace-
ment quantities (including the so-called displacement gradients), admitting
only strain in the constitutive equations.



CHAPTER 10

Elastic Stability

“/E DEFINE AS a structure a solid body (or even a number of connected
bodies) which is so supported that it can carry loads. In general, elastic
structures are deterministic. To each (positive or negative) increment of load
they respond with a definite change of stress and deformation. This corre-
sponds to the fact that the displacement vector u, is determined by a linear
differential equation (6.8) which, together with the appropriate boundary
conditions, has a unique solution.

Observation shows that there are exceptions to the deterministic behavior.
There are elastic structures which, under a certain critical load, can be in
equilibrium in several adjacent states of stress and the corresponding states of
deformation. Since all these stress states pertain to the same load, the elastic
structure is in neutral equilibrium and a spontaneous transition from one
state of stress to another is possible. Such a transition is known as buckling of
the structure. The buckling of a straight column under its Euler load is an
example.

It is obvious that this phenomenon cannot be described by (6.8). The
differential equation which admits to more than one solution must contain
some sort of nonlinearity. To find it, we inspect the sources of the linearity of
(6.8), from which we shall now drop the dynamic term 2pii’. This equation
summarizes Hooke’s law (4.11), the kinematic relation (6.1), and the equi-
librium condition (6.6). Hooke’s law postulates that the material has linear
elastic behavior and we do not intend considering a different material. The
kinematic relation (6.1) has been obtained by linearizing the exact equation
(6.2). This linearization is possible as long as u;]; < 1. In a sequence of
adjacent states of deformation this is true for all if it is true for one. Since we
want to study a neutral equilibrium within the range of small deformation, we
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have no reason not to use the linearized form. More subtle and most impor-
tant is the linearization of the equilibrium condition (6.6). The element shown
in Figure 6.2'is the undeformed element, and (6.6) formulates the equilibrium
of forces acting on this element, while in reality they are acting on a deformed
element. Since elastic deformations are small, this approximation is good
enough in most cases, but not here, as we may easily understand.

When the load is gradually increased until it reaches its critical value, the
stresses and displacements approach everywhere definite limiting values,
which we denote by "/ and &i,. We call this the critical state. As soon as this
critical state has been reached, an adjacent state becomes possible, which we
call the buckled state and in which the stresses are 6"/ = ¢/ + ¢"/ and the
displacements #; = i, + u,. Thus, ¢ and u, are the small increments of
stress and displacement which occur during buckling. They are infinitesimal
in the sense that if we let the buckled state approach the unbuckled one, then
¢ - 0and u, - 0.

The equilibrium condition for the basic state contains the basic stress .
To write the condition for the buckled state, it is not enough simply to replace
&7 by &Y, because these stresses act in slightly different directions. These
differences are proportional to the difference in deformation, i.e. to the
buckling displacement u, and give rise to terms (¢ + ¢")u,. While 6"y, is a
product of two infinitesimal quantities and has to be dropped, the product
&'u, is of the same order of magnitude as the linear terms in ¢* and must be
kept. Terms of this type are characteristic for all problems of elastic buckling.
They are nonlinear because they are products of a stress and a displacement,
but they are still linear if we are looking only for the infinitesimal quantities
o/ and u, , whose existence signals the presence of an adjacent equilibrium.
Thus we arrive at the remarkable situation where we are dealing with a
differential equation which has nonunique sclutions, but where the mathema-
tical formalism stays within the domain of linear differential equations.

After these preparations we may formulate the differential equations of
our problem. As before, we use a coordinate system x' which is deformed
with the body. In the critical state (with stresses 5/ and displacements i} the
base vectors are g; = T ; and the metric tensor is §;;. This reference frame will
be used for writing the equations, and covariant derivatives are understood to
use the ', derived from its metric ;.

The rectangular body element shown in Figure 10.1 is cut from the body in
the critical state. The face ds x dt on its right-hand side has the area

dA; = de dtk éj“
and on it the force 6'™g,, dA, is acting.
In the buckled state the base vectors are

gm = (f + “),m = Em + U, = Em + u"l,,,§,,
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7'mg,, dA,
dt

dr

FIGURE 10.1 Stresses acting on a volume element in the prebuckling state.

and we write the force then acting as
&', dA,;

that is, we still refer it to the area before buckling, but we resolve it in com-
ponents with respect to the postbuckling base vectors §,,. We define the
incremental stress '™ through the equation

6.1»: _ aJm + 0‘“".
The force on the right-hand face of the volume element may then be written as
6" dA; = (G + 0"")@p + U'|nBy) dA = (G + 0" + G"U"), ) dA,,

omitting from. the last member a term which is of second order in the incre-
mental quantities ¢'™ and u".

We now go back to the derivation of the equilibrium condition (6.6) for the
volume element shown in Figure 10.1. We may apply that equation to the
stresses before buckling:

é", +Xm=0, (10.1)

denoting by X ™ the volume force then acting. After buckling, the forces
acting on the pair of faces ds x dt of the body element differ by

(68, ; dr' dA, = (™ + ™™ + &"u™,)|, &, dr' ds’ di* &,
i J!

We add the contributions of the other sides of the body element and have the
resultant force of all stresses:

(@™ + "™ + 6"l e + Ol & + Ol 18 dr* ds’ di*

According to the argument presented on page 79, this is the same as
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@™ + o' + &"um| ), & dr' ds’ di*,,
= [&" |, + 0™}, + (@"u™),) | Jé dr' ds’ dP'g,,. (10.2)

This force must be in equilibrium with the body force after buckling (see
p. 88), which we write in the form

(X™ 4 X™Yg, &,y dr' ds’ de*; (10.3)

that is, we refer also the incremental force X ™ to the base vectors g,, and to the
prebuckling volume of the body element. The sum of the expressions (10.2)
and (10.3) must vanish. When we subtract (10.1) from this statement, we are
left with

(o™l + ("u") |, + X7 dr' ds’ di*g,, = 0.

We may drop the scalar factor &, dr' ds’ dt* and, since the remaining vector
has to be zero, each of its components must vanish. After a change of dummy
indices this leads to the following torm of the equilibrium condition for the
buckled state:

o+ (@*dl)); + X =0. (10.9)

This equation, the elastic law (4.11) or (4.25), and the kinematic relation (6.1),
applied.to the incremental quantities ol, ¢;j, and u;, are the basic equations
of the stability problem.

Gravity forces do not change in magnitude or direction when the structure
buckles. If they appear as loads, the incremental load X = 0. Other body
forces, like centrifugal forces, may change, but then the increments X' are
proportional to the buckling deformation and thus are part of the unknowns
of the problem. Equations (10.4), (4.11), and (6.1) are then linear, homoge-
neous equations and the structure is in neutral equilibrium when they have a
nontrivial solution. This amounts to an eigenvalue problem, the eigenvalue
being hidden in the prebuckling stresses 6*/ occurring as coefficients in (10.4).

We shall now apply (10.4) to the buckling of a plane plate. The plate is
loaded by edge forces only (hence X = 0), which act in its middle plane. The
stress system is that-of a plane slab with the stresses ** uniformly distributed
across the thickness (6*f|; =0), while 6** = %3 =0. We introduce the
tension-and-shear tensor

N = h&

and otherwise may apply to this stress system all the notations and formulas
of plane stress systems (see pp. 112 through 113).

When the plate becomes unstable, it buckles laterally. Each peint of the
middle plane undergoes a deflection #® = w normal to that plane, which
depends only on x% but not on x> = z. Points not on the middle plane
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undergo the same displacement w, but also a displacement u, governed by
equation (7.57), which states the assumption of the conservation of normals.
The incremental strains &,; and stresses 6*/ are linear functions of z; these
stresses produce bending and twisting moments A*#, but no additions N* to
the prebuckling forces N*#. We keep this in mind now when we let i = 3 and
integrate (10.4) across the plate thickness 4:

+h/2
[, [l + 0%l + @l + @),
+ (Epawia)h; + (6*wl3)l;] dz = 0.

The second term of the integrand yields

+h/2 +h/2 +h/2
f 633)ydz = 0¥ ,dz= [033] =0
-h/2 -h/2 —h/2
because the faces of the plate are free from stress. In the fourth, fifth, and
sixth terms we note that §*” = 6°* = 0 and w|; = w 3 = 0. In the third term we
write

@)y = 8, wl, + 6wl

and see that the first term on the right vanishes because of (7.10), which applies
to the prebuckling stresses 3°” with X ¥ = 0. In the integrals that still remain,
we note that w and its derivatives do not depend on z and, therefore, may be
pulled before. the integral sign. We apply (7.62) to find that

+h/2 .
f.h/z (apsll’ + 6ﬂrw|7ﬂ) dz = _Qplﬂ + Wi, Nr=0

or, in changed notation,
0%l = N“w|,,. (10.5)

This equation describes the equilibrium between the transverse shear forces
Q° produced by the buckling and the original plane stress system N4, which,
through the curvature w|,; of the buckled plate, develops a thrust normal to
the middle plane.

To complete our equilibrium statements, we derive a moment equation,
multiplying (10.4) by a lever arm z and integrating. We let i = « and at once
omit terms containing the vanishing stress components 62 and °3:

+h/2
'[ - [6™]s + 6315 + (677u"),)|]z dz = 0.

We apply (7.62¢) to the integral of the first term and on the second term
we perform the same integration by parts as described on page 128. Since the
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stress ¢>* on the surfaces z = + A/2 is zero, we thus obtain from these integrals
— MPe| s+ O~

In the third term of the integrand we use the kinematic relation (7.57):

+h/2

+h/2
| @wlpzdz=] " (@lwlz + 3wl dz.
—h/2 -h/2

Everything in the parentheses is independent of z and can be pulled out of the
integral. Furthermore, 6°7| s = 0, as we have noted earlier. In the remaining
integral we use (7.66) and obtain

2) o,ﬂy

=B —_— 7
7wl E

(KWI (1 — v°)

The first factor on the right-hand side is of the order of a prebuckling strain
&3, and, hence, <1, while the second factor is, according to (7.65), of the order
of a derivative Mj|; of a moment. The entire integral is small in the ratio
€:1 compared to M "’Ip and, therefore, negligible. All that remains of our
equation is the simple statement

M*|, = 0", (10.6)

identical with equation (7.68) of plate bending when we there delete the exter-
nal moment m®, which is not present in this case.

When we eliminate Q* between (10.5) and (10.6), we find the condensed
equilibrium statement

MP| g, = N*w|,y. (10.7)

In a plate of isotropic material, the moments M are connected with the
deflection w through the same equation (7.65) as in plate bending, and when
we use it to eliminate M** from (10.7), we may make the same simple com-
putation as shown on page 129 and arrive at the differential equation for the
buckling deflection of the plate:

Kwlzh = — N*fw],,. (10.8)

This is a homogeneous, linear equation, which always has the trivial solution
w = 0. If the prebuckling forces N/ are proportional to a load parameter p,
it is possible that, for a certain value of this parameter, a nontrivial solution
can be found which satisfies the boundary conditions of a given plate. Such a
value of p is called an eigenvalue of the mathematical problem and represents
aloac for which the plate is in a neutral equilibrium, ready to deflect laterally
without provocation.
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CHAPTER 11

Principal Axes and Invariants

WE HAVE SEEN (on p. 46) how the force transmitted in an arbitrary
area element dA can be described in terms of the nine components ¢*/ of the
stress tensor. We may ask whether, among all the area elements passing
through a given point, one can find a special one for which the force 6%/ d4;
happens to be normal to the area on which it is acting. In that case the stress
would be a simple tension or compression, not accompanied by a shear stress.
The normal to such an area element and, hence, the direction of the stress in
it, is called a principal direction or a principal axis of the stress tensor g*.

If the force is to be normal to the area element dA = dA; g’, its covariant
components ¢} d4; must be proportional to the covariant components dA;
of that normal. Let the proportionality factor be denoted by o; then

or

(6 — 06')dA;=0. (11.2)

This tensor equation represents three component equations for the three
unknowns d4;. These equations are homogeneous and, in general, have only
the trivial and meaningless solution d4; = 0. A nontrivial solution exists if
and only if the determinant of the nine coefficients vanishes, i.e. if

6i—0c o} o3
S=det(ci—0ad)=| 0} oi—-0c o} |=0. (11.3)
o} 63 oi-o

This is a cubic equation for ¢. It has three roots o, , where the subscript (m)
serves to distinguish the three scalars oy, 6(,, 03, Which are not compo-
nents of a vector. The o,, are known as the eigenvalues of (11.2).

W. Flugge, Tensor Analysis and Continuum Mechanics
© Springer-Verlag Berlin Heidelberg 1972
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Once these eigenvalues have been calculated, each of them may be intro-
duced separately in (11.2) and will lead to a set d4;, which we shall denote by
dA ;. Since the linear equations (11.2) are homogeneous, they are also
satisfied by a multiple p d4,,;, where p may be any positive or negative or
even a complex number. This means that only the ratios dA,,; @4 m::
dA .y, are determined, that is, the orientation of the area element, but .10t its
size.

Since (11.3) has real coefficients, at ieast one of its roots must be real, while
the other two may be real or a conjugate complex pair, which would lead to
conjugate complex and therefore meaningless solutions dA4,,; of (11.2).

11.1. Unsymmetric Tensor

Equations like (11.2) and (11.3) can be written for any second-crder tensor
and yield three (real or complex) eigenvalues and the corresponding principal
axes. We shall now approach this problem in a general form, without refer-
ence to the special object of the stress tensor.

We start from a tensor ¢t/ and even drop the symmetry requirement.
admitting that

g, i E L (11.4)

With this tensor we associate an eigenvector v; through the linear teasor
equation

(f, - T&)w, =0, (11.5)

which stands for three component equations. Since these are homogeneous,
a nonvanishing vector v; exists only if the coefficient determinant vanishes:

th—-T 1} £
det(r); — Té%) = t.:z t3 - T . 5, |[=0. (11.6)
t.3 . t.3 t.3 - Tl

When we apply the expansion formula (3.23) to the determinant, we obtain
the following expression:
6 det(f'; — T8%) = (', — To})(t), — TEL)(th, — TS)e;j €™
=A- BT + CT?-DT?,

in which the exponents attached to T indicate powers of that sczlar, not com-
ponents. To the coefficients 4 -+ D we apply (3.20), (3.21), (3.22) and find
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A=6dett,
B=(8it), 15 + £ 65t + £ 1] 8h)e, ;0 €™
= (th, 1% e + 11 € + 1 10 €5 )E™
=t 15 (87 8% — 78] + 1158} OF — 8} 6]) + 14,15,(8} 6T — &5 67)
= th it — th 1 4 05 — i =
= 3(f. 1, — £, 1)),
C = (t', 8], 6k + oit], 8% + 8} 85t )e €™
= (the* 4 1, €™ + 1 €My
=2(t', 8! + 1}, 6T + ¢, 8F) = 61,

D = 5; 6',’,. (5:,‘ el'jk e’m" = eijk Gijk = 6.
The determinantal equation (11.6) thus assumes the form
T3 — T2 4+ 4(¢ ), — £,4)T — det £, = 0. (11.7)

This is a cubic equation for the eigenvalues T, called the characteristic equa-
tion of the tensor #J;.

The tensor components t.; are defined in a reference frame g; If we
switch to another reference frame g;., the corresponding tensor components
z."} will appear in (11.7), but its three solutions 7 must be the same as before.
This is possible only if the coefficients of this equation are the same in both
reference frames, that is, if they are invariant against coordinate transforma-
tions. We denote these invariants as follows:

t! = tfia
tIII = det tlJ.

They are known as the first, second, and third invariant of the tensor t ; and
are, respectively, a linear, a quadratic, and a cubic function of its com-
ponents. Any combination of the three is, of course, also invariant. There is
little chance to replace #; by anything simpler or t;;; by something more
obvious, but several combinations of 7;; and the square of f; have been
suggested to serve as the second invariant, for example

t% - tII = tlJ t'.", (11.93)
21} = 3ty =305 — 1t (11.9b)

The first of these has the advantage of simple appearance while the second one
can be expressed in terms of the deviator
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which we have introduced for stress and strain tensors in (4.30). The reader
may verify that

212 = 3, = 38,1, (11.10)

Let T, and T, be two distinct roots of (11.6) and let v ,,; and v, be the
eigenvectors associated with them through(11.5). We restate this equation in
the following form:

. _ ' _
L 0myi = Timy Vimyj and L1k = Tiny Oy +

We multiply the second of these equations by g*' and process its left-hand side
as follows:
159 0y = 19 oy = 10}y .

This leads to the pair of equations
tlJ v(,,,)i = (m) v(,,,)j and 1}0{") = 7‘(',) U:"). (ll-lla, b)
Finally, we multiply (11.11a) by v{,, and (11.11b) by vy
25 O0myi Oy = Tomy Vmyi ¥lys 17 0(myi Oy = Timy Vimyi Vi -

The left-hand sides of these equations are equal if and only if #/; = ¢}, that is,
if the tensor 1/ is symmetric. On the right the factors T, and T, are defi-
nitely different and it follows that, for a symmetric tensor,

which indicates that the eigenvectors associated with two different eigenvalues
are orthogonal.t Therefore, if all the eigenvalues are real and different, the
principal axes of a symmetric tensor 7"/ are orthogonal to each other. For
unsymmetric tensors no statement of this kind can be made.

Restricting the further study to symmetric tensors, we may investigate the
possibility of complex eigenvalues. Let us assume that there is a pair T, =
R +iSand T(,, = R — iS among the roots of (11.6) and let the corresponding
eigenvectors be v(y); = u; + iw; and v(,,; = u; — iw; with real quantities R, S,
u; and w;. Then the orthogonality relation (11.12) requires that

(u; + iwp)’ — iw)y = u;w + w;w +i(w;i’ —u;w)=0.

The terms in parentheses are equal and cancel. The remaining terms are
each the dot product of a vector by itself, therefore positive and, since their
sum cannot be zero, we are forced to admit that there can be no complex
eigenvalues 7, .

t+ If (11.6) has a double root, the linear equations (11.5) have two linearly independent
solutions, which may be so chosen that they are orthogonal. Any linear combination of
them is also an eigenvector.
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We may use the eigenvectors Yom = u(,,,,g, as base vectors g, = B g:-
Their contravariant components v}, are identical with the transformation
coefficients Bi.. The orthogonality relation (11.12), which may also be
written as

Umy Vi 9ij =0, M #n,
yields
ﬁm ﬂn gu Imn = 0 fOI' m’ # n'
in agreement with our earlier finding that the reference frame g, is orthogonal.
Since (11.5) determines only the direction, but not the magnitude of each
‘eigenvector, we may choose the g, as unit vectors. If we do so, we have
additionally
B ﬁrj;’gij =Gmw =1 for m' =n'
and hence g, = Onn and the reference frame g, is cartesian.
Equation (11.5) may be written in the alternate form
115 Vo= Timy 9% m -
Replacing i, by B and multiplying both sides by Bi. we find that
tww = 13 B B = Tomy 935 Biv: Bi = Tomy Gmw
and hence
tww=0 for m' #n'.

For the reference frame of the principal axes, the symmetric tensor is thus
reduced to diagonal form: '

tyy O 0 T)91v 0 0
0 ty 0 |= 0 Ti2)922 0
0 0 1ty 0 0 Ti3y953

The foregoing discussion of principal axes and invariants may also be
applied to a two-dimensional tensor t*. For such a tensor ;; = 2f;; and
there are only two distinct invariants, ¢; and f;;. Symmetric tensors have a
pair of principal axes.

11.2. Tensors of Stress and Strain

We may now return to the stress tensor ¢, from which we started our
investigation of principal axes. Since it is symmetric, there always exists a set
of three principal directions, orthogonal to each other. On an area element
whose normal

dA ) = dA); &
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points in a principal direction, according to (11.1) the force
dF = 0‘; dA(m),- gj = 0'(",) dA(,,,) (11.13)

is acting, which has the direction of the vector dA;,,. The principal stress 6,
is, therefore, a normal stress, and is one of the roots ¢ of the determinantal
equation (11.3), which may be written in the alternate form

det(¢" — ag) = 0. (11.14)

Since the absolute value of the vector dA,, is the true area of the element, the
Stress o, is a stress in the common sense of the word, a physical component
not in need of a conversion factor.

In a general stress field ¢*/(x*) the principal directions change continuously
from point to point, and we may draw curves which have everywhere one of
these directions for a tangent. These curves are called stress trajectories.
They form a three-parametric, orthogonal net and may be chosen as coor-
dinate lines of a special, curvilinear coordinate system. The g, defined on
page 176 are its base vectors, but their length is not arbitrary and must be
chosen in accordance with the varying mesh width of the net. In section
elements normal to one of the principal directions (and tangential to the
other two) only a normal stress is transmitted—the principal stress G,y .

The quantity s defined by (4.29b) is one third of the first invariant o, as
defined by (11.8). The function of the stress components used in the yield
condition (4.40) and derived from the distortion energy is the second stress
invariant according to (11.9b).

The strain tensor ¢;; is also a symmetric tensor and has three principal axes.
Since in a reference frame g, using the directions of these axes there are no
shear strains ¢,,.,. (m’ # n’), these axes remain orthogonal during deforma-
tion, but the reference frame may, of course, undergo a rigid-body rotation.
With reference to these axes, the local deformation consists only of a stretching
(possibly negative) in the direction of each of them.

When Hooke’s law (4.25) is applied to the reference frame g, based on the
principal directions of strain, it turns out that only the stress components
o™, with m’ = n’ are different from zero. This proves that in an isotropic
elastic material the principal directions of stress and strain coincide.

In connection with the linear kinematic relation (6.1), we have seen that the
strain tensor is the symmetric part of the tensor u;|; of the displacement
derivatives, which, in general, is not symmetric. We may use this tensor to
study the properties of unsymmetric tensors.

The vector u/]; dx' describes the displacement of a point x' + dx’ with
respect to a reference frame g; attached to the point x"and participating in its
translatory motion /. We may ask whether we can find a line element vector
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dx’ such that the relative displacement u’|; dx' of its endpoint has the same
direction as the vector dx' itself. In this case there is

W) dx' = Adx/
or
(W], — 28]) dx' = 0. (11.15)

This equation has the same form as (11.5) if we change all subscripts into
superscripts and vice versa. The characteristic equation (11.7) here reads

A=, 22 + 3] — || )4 — det ull; = 0.
Now let x’ be a cartesian system with unit vectors g’ = i; as base vectors
and consider the plane displacement field
w=oax?, uwr=PBx', u*=0.
It leads to the characteristic equation
A} —afi=0,

which has the roots

A=Jap, i=-Jup, A=0.

The corresponding eigenvectors follow from (11.15):
dx* = [Bladx’, dx*= —/Bladx', dx'=dx*=0,
dx® =0, dx* =0, dx3 #0.

The third one is normal to the x*, x? plane and the other two are

dl‘ = (il i A/ B/d iz) dxl.

For B = 0.5x, they are the vectors dr;, and dr ,, shown in Figure 11.1a and
are not orthogonal. The corresponding displacement field is illustrated in
Figure 11.1b, which, for several points on a quarter circle, shows the vectors
u=#'|; dx' g;. One of them has precisely the direction of the corresponding
position vector dr. This is one of the principal directions of the tensor u/|;.
For 8 = 0, two of the eigenvectors dr coincide and #/|; has only two principal
directions, and for f < 0, they are complex valued so that there exists only one
principal axis. Other unsvmmetric tensors show the same behavior.

The tension-and-shear tensor N** and the moment tensor M** of planc
plates are defined by (7.62). They are plane, symmetric tensors and each
has a pair of orthogonal principal directions. The corresponding tensors for
a shell, defined by (9.54) and (9.56), are unsymmetric, but they are almost
symmetric, N*2 x~ N*!, M'?~ M?!. Therefore, they always have real
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x!

(a) (b)

FiGURE 11.1 Principal axes of the displacement derivative tensor.

principal directions and these are almost at right angles with each other. On
both plates and shells, one can draw force trajectories for N* and moment
trajectories for M *, which form orthogonal or almost orthogonal nets.

11.3. Curvature

Among other second-order tensors which we have encountered in this book,
the curvature tensor b,; of a curved surface deserves a brief inspection. It
has two invariants, the mean curvature 52 and the Gaussian curvature det b4,
introduced in (8.23) and (8.24), respectively. It is symmetric and has two
orthogonal principal directions with base vectors a,, for which b,, = b,; = 0.
The components b,; and b,, are the principal curvatures. As may be read
from (8.23) and (8.24), the mean curvature is the sum and the Gaussian

“curvature is the product of mixed-variant components b} and b2 of the
principal curvatures. On the surface one may draw curves which are every-
where tangent to one of the directions of principal curvature. They are called
lines of principal curvature and form an orthogonal net. They have often
been used as a coordinate net for the formulation of the basic equations of
shell theory (Love [19], Novozhilov [25]). In most cases their use is obvious
(surfaces of revolution, cylinders) but in other cases they are unsuitable
because the edge of the shell does not coincide with a coordinate line and a
skew coordinate net does a better service. It is the strength of the tensor
formulation of continuum mechanics that skew coordinate nets can easily be
used.



180 Principal Axes and. Invariants [Ch. 11

11.4. Vectors

In the light of what we have learned about second-order tensors, it is
interesting to have a look at vectors. The force vector P of (1.19) has a
certain direction and we may, if we wish, call this its principal axis. If we
transform the compenents P* from the reference frame g; to a frame g;.,
which is so chosen that g,. has the direction of P, then P?' = P* = 0. The
base vectors g,. and g5. need not be orthogonal to g;. and have no particular
interest, but the principal direction has an obvious physical meaning. For a
force vector, it is the direction in which the force is pulling; for a velocity
vector it is the direction in which motion takes place.

In a velocity field we may draw curves which have everywhere the local
vector v as a tangent—the streamlines. In a force field (for example a magnetic
force field), we may draw similar field lines tangent to the force vector P.

Surprisingly, there exist some vectors to which a physical interpretation of
this kind does not apply. The shear force Q% in a plate is an example. From
the definition (7.62a) and from the equilibrium conditions (7.68) and (7.69)
it is clear that Q satisfies the transformation requirement of a first-order
tensor, but the two components Q' and Q? represent forces transmitted in
different sections through the plate and are not the components of one force.
However, we may perform a coordinate transformation from the base vectors
g, to another pair g;.. Then, from (1.35¢),

0 =0,
Now let us assume that g, are unit vectors and that g, are a pair of orthogonal

unit vectors as shown in Figure 11.2. Applying (1.33a) to these vectors, one
easily verifies that

By =cosp, p¥= —sinp,
By =siny, B% = cos v,
whence
QY =Q'BY + Q*B3 = Q' cos B + Q*sin vy,
Q¥ =Q'BY + Q%7 = —Q'sin f+ Q*cos y.

We ask whether we may choose B and hence y = 90° + B — a so that Q!
becomes a maximum. Differentiating Q' with respect to f, we find that

QY .

Q__ —Q'sin B+ Q*cosy = Q%"

dp
Therefore, for the same orthogonal frame in which Q!  is a maximum,
Q% = 0. The vector g,. points in the direction in which the load is passed on
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g’
82

g’

B

> g1
FIGURE 11.2  Reference frames g. and gg-.

from one plate element to the next one, while in the direction normal to it no
force is.transmitted.

Also in this case it is possible to draw field lines following the direction of
the vectors Q = Q%,. This indicates the direction of the force flow which
carries the loads on a plate to the supports.

Problem

11.1. The torsion stresses 7° = o3* in the plane of the cross section are obviously
components of a plane vector. Show that the stresses 7° = ¢*? in longitudinal sec-
tions of the bar have the same character as the shear force Q¢ in a plate.



CHAPTER 12

Compilation of Tensor
Formulas

THE APPLICATION OF the tensor calculus to the formulation of prob-
lems in mechanics requires the skillful use of many formulas. The following
list of equations derived in the text will be useful as a ready reference. How-
ever, none of the formulas should be applied blindly; the derivation and
possible limitation may be found at the proper place.

The formulas have been arranged in logical groups and carry the same
numbers as in the text.

12.1. Mathematical Formulas
Range convention (see p. 35):

Latin indices 7, j, k,...=1,2,3

Greek indices a, f, 7, ...=1, 2

Capitals 1, J, ... and indices in parentheses (m), (n), ... are not subjected

to the range convention.
Summation convention (see p. 6):

ab'=3 a;b', a,b*=Ya,b"
Kronecker delta:
=1 if i=j, &=0 if i#j
6i=3, oHn=2 1.4)

Permutation symbol:
ijk

+1 if i, j, k are cyclic
-1 if i, j, k are anticyclic (see p. 29)
0 if i, j, k are acyclic

€ijx =

W. Flugge, Tensor Analysis and Continuum Mechanics
© Springer-Verlag Berlin Heidelberg 1972
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in two dimensions:
e =e;,=0, e = +1, e =—1
e =¢,

Permutation tensor:

Eijp = \/ .‘;ei.v'k ’ et = e \/5
€€y = 51 53, Ok — 5161 8% + 8% 5f 8%

(3.13), (3.15)

— 5885 0% + 61 5i5k — 61616k (3.19)

em‘fimn = 5#: 6: - 6:{ 6:1
€% = 20F
€y =
if t;=1;, thene,;=0
in two dimensions:

€ap = €ap3 5 € = 3
€*Pe,s = 8365 — 6508
Pep=05, Pep=2

Common derivative:

D

u ou;
Ili=——-

U s = —
oxt’ b oxd

Dot product:

(3.20)
(3.21)
(3.22)
(3.16)

(3.26)
(3.292)
(3.29b, ¢)

(2.12)

u-v=uv' =uv, = ;97 =ulvig; (1.22),(1.13), (1.29)

Base vectors:

g&=Tr,; g g =0
v=1'g; = vg
ds = dxi gl'
Metric tensor:
gi=9g,8, g=4g",;
gi;i=8i"8j» g"=g"-¢g
g;=9;
ik gﬂ‘ = 5{
ds . ds = g‘j dxi dxj

(1.18), (1.20)
(1.19), (1.21)
(1.16)

(1.23)
(1.24)
(1.53)
(1.26)
(1.27)
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vlg=v;, vgl=v (1.28)
ciga=ch, cgaga=c
¢ g’fk - cs‘k’ cugi'ig,r{'= c’f'l} (1.46)
Coordinate transformation:
ﬁj = xi,j,, ﬂf" = x'.',j (1.36)
BlL.B; = o,  BIBs = (1.32)
g-=plg;, g'=B% (1.31)
g=plg, &=p2 (1.33)
vy =vBy, v;=0v.B;
o =olgf, o = vp (1.33)
Cirjr = Cyj ﬁil: B j,: s = ci'j’ﬂi"ﬂfi’ (1.39)
¢V = BB, o= TBLB) (1.41)
e = c/BLBY (1.43)
Invariants of the tensor ¢;; :
Ly = tii’ .
=1t t.jj - tfj 1, (11.8)
tIII = det t:i
Determinants: .
1 .
g =lgijl, i lg¥l (3.9), (3.10)
; 1 -
A =6, A =|hi | (3.8)
Ayjmp = aliamjankeijk (343)
o (with a as on p. 29.)
A€y = 0/'2,70, €, 3.17)
Cross product:
gixg =68, g xgl=elg (3.32),(3.33)
Let u x v=w, then
w, = u'vle;, wh=uv;e* (3.35), (3.36)
for any vectors u, v, w:
UXV W=U'VXW (3.40)
uxv-w=uviwke, 3.370
8:X8:° 8= gxgg=1/g (34,34
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Christoffel symbols:
g.;=Tix gk = r?j 8k (5.2)
gi,j = —T gt (5.9)
8, &=Ti, 8" gt=T} (5.3)
r?jgkl =T, rijkgk' = rfj 5.4
rijk = rjik s r‘:‘j = rfi (5.6)
Giju = Tij + i 5.7
2L = Gji + Gui,j — Gijuk (5.8)
Covariant derivative:
V= 1)"|-’.gi = vilj gi (5.10), (5.12)
dV = vilj gi dx‘, = v,-l_,- gi dx" (5.14)
vy =0+ 0 T, olj=0; -0 T (5.11),(5.13)
vi'jgik = vklj s ”ilj G = vklj (5.16)
Uilk = vilj gjka vilk = viljgﬂ‘ (5.17)
for a scalar:
Pi=rl; (5.19)
for a tensor:
Aij'k = Aij,k - Alj r;!k — 4, r:;j
Aijlk = Aijk + Aljr’id - Ail rjk
J / ! L 5.23
Al = A7 — AT + AT, ( )
Al =AY, + AT, + AT,
-second derivative:
Vi = il + vl r}k)gl = (viljk + villr_lik)gi (5.29)
vi!jk = (l’i,j — U i — (0.; = Vn rmrfk - (vi,l - Uy r:’;)ri]" (5.27)
vi'jk - Uilkj = Up Rmijk’
5.28
R"'Uk=r;',",j—r,m].k'*"rrjr,{k—rﬂr:j ( )
special tensors:
gijlk =0, fijklt =0 (5.24),(5.25)
€123, = €123 1% (5.26)

Vector field operators:

gradp =p|;g’

(5.20)
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« divv=y]’ (5.30)
curl v = v;| £%g, = v')’¢;; 8 (5.31)
curl grad p =0, diveurlv=0 (5.33),(5.34)
V2p = div grad p = p|}, (5.32)
Integral theorems
divergence theorem (Gauss’ theorem) in two dimensions:
[ divuda=§ u-dn (5.37)
A C
[ e dreds® = § w dn, (537t
A C
divergence theorem (Gauss’ theorem) in three dimensions:
f divudV = f u-dA (5.40")
v s
J U™, € drids’ dt* = J u™dA,, (5.40)
1 4 N
circulation theorem (Stokes’ theorem):
j (curlu) - dA = § u-ds (5.42")
A [
e, f u, drm di" = § u, ds' (5.42)t
A C
Curvature of a surface:
byp=Top3 = —T3p= =T = Sﬂ (8.16)
by = ~T3; (8.18)
‘“mean”’ curvature = b3, Gaussian curvature b = |55 (8.23), (8.24)
baﬂ = a,,ﬂ ¢ 83 = —a3,ﬂ * ap N (8.13), (8.14)
da; = —b,,af dx* (8.21)
day - ds = —b,g dx* dx? (8.22)
Covariant derivative on a curved surface:
Vp= v,[,, a* + v3|3 33 = v’ll, a, + 03|, a; (8.26)
vuiﬁ = vn"ﬂ — V3 bﬂﬂ (8'30)

+ Note that here in (5.37) and (5.42) the area element dA is a rectangle with sides dr, ds and

dr, dt, while in equation (5.42) of the text it is a triangle.
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Vullp = V4 — v, T35 (8.29)
vl =v°ll, — v3bj (8.33)
Vllg =15+ 0Ty (8.32)
Vallgy = (Ua,p -v, 0%, (”;.,a -, r ﬁp)rgy - (”a,x -0, I)r 7; (8.48)
Vallgy = vallyp = V°bés, €5, (8.49)
Afll, = A5, + A3T5, — A3Ty,
A5ll,s — Aflls, = AfR %, + ARG (8.50)
Gauss-Codazzi equation:
baglly = bayllgs  bgll, = bllg (8.42)
Riemann-Christoffel tensor:
Ripys = beybps — basbp, = b €5 €5 (8.45), (8.46)
Shell geometry
My =083 —zbj, A3 =05+ zbf +2°b3bj+ -+ (9.2),(9.5)
Ml =0,  Xm=9, (9.4)
g, =pla,, g*=iza° (9.1), (9.3)
Gop = MiMp 0y 9% = 2570 (9.6)
p=u5l =1—zb} + 2%b = }e®Pe,s 12y} (9.12),(9.14)
Hlla = paz pllls (9.16)
pa=—bAu (9.17)
7y =T + A3l (9.18)
3, =ul bsg, = -4 bg (9.19), (9.20)
Eup = Explh (9.22)
12.2. Mechanical Formulas
Moment of a force:
M=rxP, M,=rPe, (3.45), (3.46)
Strain:
Vij=28;=0i; — 9i; (2.5),(2.17)
¥ =rag"e" = -7 +¢" (2.10)
Stress: ) .
dF! = ¢" dA;, (4.6)
di=0dl, ¢ ;=0i=0#07] (4.8), (4.9)
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Hooke’s law, anisotropic material:

o/ =E"Mg, .,  gp=Cijno’ (4.11), (7.25)
Eiim — Elilm o pliml  pimij (4.12), (4.16)
Elastic moduli, isotropic material:
. E 2v ; N .
ijlm = ij Im il o jm im_jl
E 2(1+v)(1—2vgg +t99 +~"~") (4.19)

= lgijglm_i_‘u(gilgjm_*_gimgﬂ)

Lamé moduli:

1= Ev _ 26y
TA+n1-=2v) 1-2v
_E . 4.17)
F=a+vy
Hooke’s law, isotropic muterial:
i E i Y o omsi
aj—1+v(sj+ 1—2v8”6j) 4.25)
Eej = (1 + v)o' — vap 5] 4.27)
m E m m
oy = =% em = 3Kep, 7 (4.28)
Je=¢p, Is=oan (4.29)
é=¢—ed, =0} —sb} (4.30)
Ee=(1-2v)s, Eéi=(1+v)s} (4.31)
s=(034+2pe, s}=2pe} (4.33)
Elastic strain energy density:
a = }0'e,; = 1o} e] = 3(3se + s ) (4.13), (4.37)
dilatation energy = se, distortion energy = }s} e/
isotropic material:
a=3(3A + 2p)ee + pee) (4.38)

Plasticity
yield condition:

sis{ =2k?,  30i0{ - cio)=6k? (4.39), (4.40)
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flow law:
& = As} (4.46)
Viscous fluid, viscous volume change:
s=(3i+2p)é,  s,=2pué} (4.34)
Viscous fluid, elastic volume changef
s=3Ke, s}=2pé} (4.35)

Linear viscoelastic material:

z Pk alk z Qh 61"’ z Dk aak;j Z qx aakt;: (436)

Kinematic relations

linear:
& = ¥ul; + uyl)) 6.1)
general:
&y = Hul; + wils + utiuyl)) 6.2)
compatibility:
&ijlu eim eitn = O (6.4)
Equilibrium:
ol +X'=0 (6.6)
Newton’s law:
o', = =X+ pii’ 6.7)

Fundamental equation of the theory of elasticity
anisotropic, homogeneous:

EV™(w)|; + upyy) = —2X° + 2piit (6.9)
isotropic:
Wi+ e ) = = (= X'+ pit) 612)
\ TT1-2v"Y 76 ’
Elastic waves
general:
(A +2p)V2u) i — pii]i=0 (6.14), (6.15)

(uVu, — piily) €% = (6.16), (6.17)



190 Compilation of Tensor Formulas [Ch. 12

dilatational wave:

A+ 20V = pii; =0,  ul,e™* =0  (6.20), (6.18)

shear wave:
uV2u; — pii; = 0, ;=0 (6.20), (6.21)
Incompressible fluid
continuity condition: ‘
v'];=0 (6.32)
Navier-Stokes equation:
po; + pojolld — pold = X, — pl; (6.37)
inviscid flow:
v =0, @=0 (6.43), (6.44)
Seepage flow
Darcy s law: ‘
o' =kY(X; - pl)) 6.47)
differential equation of the pressure field, general:
(k¥p 1)l = (KU X)), (6.49)
differential equation of the pressure field, homogeneous medium:
gross stress: -
o= —-X'+(po)|'. (6.53)
Plane strain
Hooke’s law:
E v
a a  sa
%=1 g (sﬂ + Tt 6ﬁ) (7.8)
1+v
g = 3 (0§ — vo 65) (7.9)

fundamental equation:

1 21 +v)
wlh =15 uk+ =5

X,=0 (7.14)

Airy stress function
definition:

o = |, — g**Q,  where X,=0Q|; (7.17)
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Airy stress function,
differential equation:
1= =01-2vQp. (7.16),(7.23)
Plane stress
Hooke’s law:
o= L (s" +— a¢5=) (1.29)
ETre v\ T =y Ep ’
. 14V v o
fundamental equation:
14+v 21 +v)
u,lh + = ugll + I3 X,=0. 7 (7.30)
Airy stress function, differential equation:
Olzh = (1 - v)Ql (7.31)
Torsion
stress function:
= 0|, " D)2 = 2G0O (7.51), (7.52)
torque:
M=2 f f ® ds’ df* .. (7.56)
Plates
elastic law:
h3
M = — 3 E*"y)., (7.63)
differential equation:
Kwlsh=p* — m", (7.72)
Shells
strains of the middle surface:
aaﬁ = i(“."ﬁ + up"a) - Wbu[h (938)
Kep = U, bz"a + uy"abz - uﬂ")vbz + w"aﬂ + Wb: byﬂ (945)

equilibrium:

NP, + QPb5 + p*=0, N%bz— Q%+ p* =0 (9.61),(9.63)

MPlp= Q"+ m* =0, €u(N*+b;M?)=0

(9.64), (9.66)
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reduced equilibrium conditions:

NP, + MP), b = — p* — mPh2 }
NFb,y — M),y = —p + o], 067

elastic law:

N* = D[(1 — v)e*® + ve{a*’]

- |
= K[ a4 1 b+ )

+ v(aaﬁbya + ayébaﬁ - aaﬂa'ﬂ’bi)] K,s (971)
M = K[(1 — v)(b3&"” — bje*®) + v(b* — bja*)el
— 31 = V(* + k%) + va*x3] (9.72)
Buckling of a plate: :
Kw|@ = —N*w,,. (10.8)



CHAPTER 13

Formulas for Special
Coordinate Systems

IN THE FOLLOWING formulas, i, j, k are a reference frame of unit vectors
in the directions of cartesian coordinates x, y, z. All components not explic-
itly listed and not connected by a symmetry relation to a listed one are
zero. Where convenient, the habitual notations for coordinates have been
used instead of x!, x?, x>. On the right-hand side of the formulas, letter
superscripts indicate contravariant components, but numbers are exponents
of powers.

13.1. Plane Polar Coordinates
r=x', 0=x? (see Figure 13.1).
g =icos@+jsind, g,= —irsinf+ jrcosé,
g9r=1, Goo =17, g =1, g% =1/r?,

T=r, Topp = ~1, Ioe=—r, rga=1/"-

FiGure 13.1

W. Flugge, Tensor Analysis and Continuum Mechanics
© Springer-Verlag Berlin Heidelberg 1972
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13.2. Plane Elliptic-Hyperbolic Coordinates

Definition: x = Cosh A cos p, y = Sinh A sin g, (see Figure 13.2)
g, =i Sinh 4 cos u + j Cosh 4 cos 4,
g, = —iCosh Asin u + j Sinh 4 cos p,

1
=g,, = Cosh? A — cos? p, Mgt = ,
920 = Guu =59 K 9 =9 = Cosh?i-cos’p

T2 =T;y, = =T, = Cosh 4 Sinh 4,
=T, =T =T, =cos usin 4,
Cosh 4 Sinh 4

Th=Th =T, = Cosh? 4 —cos® p’

cos u sin u
~Th=Tu=T,= Cosh? A —cos® u’

FIGURE 13.2

13.3. Plane Bipolar Coordinates
Definition: x! =y = ln(;), x? = ¢ (see Figure 13.3).

2x 2y

— ., tan¢= ,
14+ x*+)° ¢ 1-x2—y?

Tanh § =
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§13.3] Plane Bipolar Coordinates
y
¢
5
FiGuRe 13.3
_ Sinh _ sin ¢
x_Cosh|//+cos¢’ y-Coshlﬁ+cos¢’
—i 1+Coshycos¢p Sinh ¢ sin ¢
B =1 (Cosh v + cos g2 ) (Cosh y + cos ¢)2’
Sinh Y sin ¢ . 14+ Cosh y cos ¢
g¢ =1 2 J 2y ?
(Cosh ¥ + cos ¢) (Cosh ¥ + cos ¢?)
1

Gvw = 900 = (Cosh ¥ + cos ¢)?’
g% = g** = (Cosh ¥ + cos ¢)?,

Sinh
Fows =Tugs = —Topy = — (Cosh y + cos ¢)>’
sin ¢
Ty = =Ty = —Lopp = — (Cosh ¥ + cos ¢)3 ’

Sinh ¢

Vo_T¢ = [V, = SV
Tow =T Tos Cosh y + cos ¢’
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Voo [t [t o DS
The=-Thw=Te = Y+cosgd’

13.4. Skew Rectilinear Coordinates
The base vectors are unit vectors: |g,| = |g.| = |gs] = 1 (see Figure 13.4).
g11=922=633=1,

gi2 =COSY, ga23 =cosa, g13 = cos f,
g =1—cos? a — cos? B — cos? y + 2 cos a cos B cos ¥,

s 2 in2 in2
11 _Sin“a 22 _Sin B 33 _sin®y
g - ’ g = ’ g = ’

g g g
12 _ Cosacos f—cosy 23 _ COs B cosy — cosa
g - ’ 9 - ’

9 g

g13=cosacosy—-cosﬂ

g

Ficure 13.4

13.5. Cylindrical Coordinates
x' =r, x* =0, x® = z (see Figure 13.5).
All formulas for plane polar coordinates apply and in addition the following:

8: =k* g=:=gzz= L
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FIGURE 13.5

13.6. Spherical Coordinates
xt=r, 2=0, x*= ¢ (see Figure 13.6).
g, = (icos 8 + jsin B)cos ¢ + k sin ¢,
g, = r(—1isin 0@ + j cos O)cos ¢,
gy = —r(icos 0 + jsin @)sin ¢ + kr cos ¢,
grr = 1; gGO = (T Cos ¢)2’ g¢¢ = ,.2’
g"=1, g%=(rcos¢)”?, g*=r72
T = —Tesr=r, T,9 = —Tgp, =rcos 29,
r99¢ = “row = rz Cos ¢ sin ¢,
I = —rcos® ¢, Fg=cos¢sin,g TJy=-r,
T=T=1/r, I, = —tan ¢.

6

FIGURE 13.6
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13.7. Skew Circular Cone

Coordinates x* on the conical surface are x' = z, x? = 0 (see Figure 13.7).
Lines z = const are horizontal circles; lines 8 = const are straight generators.

a, = % [i(c + b cos 0) + jb sin 0 + kh],
1. . .
a, = h (—1ibz sin 6 + jbz cos 0),

1
0= 3 (h* + b* + ¢* + 2bc-cos 0),

bez . b2z
azo=—h—zsm0, aoo=’7’,
_ h? = h? csin @
" h* + (b + c cos 6)*’ " bz h* + (b + c cos 0)*’

e W h? + b* + c* + 2bc cos 0
b2 R+ (+ccosh)?

bz

bey =

" [h* + (b + ccos )22
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h%csin 0
[#? + (b + c cos 6)2]%%°

0 h h? + b? + c* + 2bc cos 0
o bz [h*+ (b + ccos §)*]%%°

h4c? sin? 6

by =

b =- bz [h* + (b + c cos )*]%/%’

b h*csin @ h* + b* + ¢? + 2bc cos 6
b’z [A? + (b + ccos 6)*]%% °

B = h* (h* + b? + c2 + 2bc cos 0)?

T b2 [+ (b+ccos0)TF °

be . b
rzOz=_h—251n8$ rzoo='roo:=';z—,

1 bz
0 _ _ z
I: =z Te h? + (b + ¢ cos 6)*°
re - _ bc sin 0
" " h24 (b + ccos 6)’
Réaﬁ'p:O'

13.8. Right Circular Cone

Coordinates x“ are defined in the same way as for the skew cone. (Other
definitions, see Figure 13.8.)

a, =(icos 0 + jsin O)cot a + k,
a, = z(—1isin @ + j cos O)cot a,

T —————— x.y

— p—

Ficure 13.8
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1
= — 52 ant2
a,, = e Qge = z° COt” a,
. 1
g =sina, a*=tan’aq,
z
, 0 1.
bgg = —z cosa, b= — -sinatana,
z
06 1. 3
b* = — sinatan® a,
z

T.p0 = —Tgp, = z cOt? 2,

I%=2z"1, T%=—zcos’a.

13.9. Hyperbolic Paraboloid

Equation of the surface: z = xy/c (see Figure 13.9). Coordinates x* on the
surface are x! = x, x* = y.

y
a,=1+kz, a,=j+k-§,
=1+ (2, =, a,=1+ )
e 4 X — xy w_ )P
—Cl+x2+y2’ - C2+x2+y2’ —‘:2+x2+y2’
b,, 1

= &+ x2_+ Yz’
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Xy
bi=b)= “(cz X2+ 2
. ¢ + x2 W 2 + y?
y = ('c'i_+ 2 + yz)s'/z s x = (' C+x2+ ‘y‘z')'a'/z' s
2 2
x_ 2xy(c* + x*)

== (F+x*+ yz)s/z’
_ et 4 cX(x? + y?) + 2x%y?

b
(CZ + x2 + y2)5/2 .9
e 2xy(c® + y?)
@+ < 1y
y x
rxyx"'?’ rxw'-'cz’
5 ) 2 -

= a7, | A AR
2 +x*+y? Tt x4 y??

1
nyxy = Ryxyx = —nyyx = -R)xxy == A+ x4+ y2 .
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Acceleration (fluid flow), 94
Airy stress function, 110
Antimetric tensor, 18, 34
Area vector, 37,40

Base vectors, 7
Basic state {(prebuckling), 166
Bending moment

plate, 126

shell, 153, 156
Bending stiffness, 128, 162
Body force; see Volume force
Buckling, 165

plate, 168

Cancellation of a factor, 11, 13
Cartesian coordinates, 1
Christoffel symbols, 68
covariant derivative, 69
Cellular material, 53
Change-of-curvature tensor, 151
Christoffel symbols, 66
Circulation, 81
Codazzi equation, 140
Compatibility condition
general, 87
plane elasticity, 111

Index

Complex eigenvalues, 175
Conservation of normals, 124, 147
Conservative force field, 98
Continuity condition, 95
Contraction, 20
Contravariant components
tensor, 16
vector, 4, 13
Convected coordinates, 23
Covariant components
tensor, 16
vector, 4, 13
Covariant derivative
curved surface, 138
metric tensor, 72
permutation tensor, 72
scalar, 70
second derivative, 73
tensor, 71
vector, 69
Critical load, 165
Cross product, 36
Cubic dilation, 58
Curl, 75
Curvature tensor, 135

Darcy’s law, 101
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Determinant of a matrix product, 31
Determinant expansion, 30
Determinants 4, g, 31
Deviator, 59
Diagonalization of a tensor, 176
Dilatation, 59
Dilatation energy, 61
Dilatational wave, 92
Distortion, 59
Distortion energy, 61
Divergence, 74
Divergence theorem, 77, 79
Dot product

definition, 2

tensor form, 6, 11
Dummy index, 7
Dynamic equation

elastic body, 89

fluid, 94

Eigenvalue

buckling, 168, 170

tensor, 172
Eigenvector, 173
Elastic compliance, 108, 112
Elastic law, 51, 57

shells, 161
Elastic modulus

general, 50

two dimensions, 112
Elastic waves, 92
Equilibrium conditions

plate, 128

shell, 157-159

three dimensions, 88
Euler formulation, 89
Extensional stiffness, 162

Field formulation, 89

Filter velocity, 100

Flow law (plasticity), 62
Fundamental equation, elasticity, 90

Fungamental form
first, 135
second, 136

Gauss-Codazzi equation, 140
Gaussian curvature, 137
Gauss’ theorem; see Divergence theorem
Gradient, 70, 81
in six dimensions, 64
Gradient field, 81

Hooke’s law

anisotropic, 51

isotropic, 52, 57
Hydrostatic equilibrium, 97
Hydrostatic stress, 58
Hypersurface, 64

Ideally plastic material, 60
Incompressibility, 95
Invariants, 174

Inviscid flow, 97

Isotropic material, 52

Kinematic relations, 27, 85
shells, 150, 151
Kronecker delta, 3, 19

Lagrange formulation, 89
Lamé moduli, 52
Laplace equation
potential flow, 98
seepage flow, 101
Laplacian, 75
Line element vector, 10
Local time derivative, 93
Lowering of an index
tensor, 18
vector, 11
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Index

Matrix product, determinant, 31
Mean curvature, 137
Membrane force tensor, 153
Membrane theory, 160
Metric tensor, 9, 19
curved surface, 134
deformed shell, 150
determinant, 31
Mises-Reuss flow law, 63
Mises yield condition, 61
Mixed variance, 16
Moment, 42
Moment tensor
plate, 126
shell, 153, 156
Monoclinic reference frame, 106, 134

Navier-Stokes equations, 96
Notation for shells, 133

Orthogonality of principal axes, 175

Parallel vectors, 132 »
Particle coordinates, 23
Particle formulation, 89
Particle time derivative, 93
Perfectly plastic material, 60
Permeability tensor, 101
Permutation symbol
3-dimensional, 29
4-dimensional, 42
Permutation tensor
antimetry, 19, 33
2-dimensional, 35
3-dimensional, 33
4-dimensional, 42
Physical components, 50
Plane strain, 105
generalized, 112
Plane stress, 105, 112
Plastic flow, 62
Plasticity, 60

Plate buckling, 168
Plate equation, 129
Porosity, 101
Porous material
elasticity, 53
fluid flow, 99
Potential (velocity), 98
Potential flow, 98
Pressure, 41
Principal axis, 172
Principal direction, 172
Principal stress, 177

Raising of an index
tensor, 18
vector, 11
Range convention, 35
Reuss flow law, 63
Riemann-Christoffel tensor, 73
on a curved surface, 140
Rotation (displacement field), 86

Scalar, 20
Second derivative, 74
Seepage flow, 99
stress problem, 103
Shear force (transverse)
plate, 125
shell, 153, 155
Shear wave, 92
Skew coordinates, 3
Skew-symmetric tensor, 18
Solenoidal field, 76, 81
Splitting of a tensor in symmetric and
antimetric part, 18
Splitting of a vector field in gradient and
curl, 83
Stability, 165
Stokes’ theorem, 80
Strain
Yiss 23
€y, 28
shell, 150
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Strain energy, 51 Torsion, 116
Strain rate, 59, 94 differential equation, 119
Strain rate vector (6-dimensional), 64 Transformation, 12
Stream line, 96 Transverse shear force
Stream tube, 96 plate, 125
Stress, 46 shell, 153, 155
Stress function Twist, 117

Airy’s, 110

torsion, 118
Stress hill, 122 Vector potential, 76, 81
Stress invariants, 177 Viscoelasticity, 60
Stress resultants, 126 Viscous fluid, 59, 93
Stress space, 63 Volume, 39
Stress trajectory, 177 Volume element, 40
Stress vector (6-dimensional), 64 Volume force, 41, 88
Stress waves, 92 Volume viscosity, 59
Summation convention, 6 Vortex filament, line, tube, 98
Symmetric tensor, 18 Vorticity, 98
Tension-and-shear tensor, 125 Warping (torsion) 118
Tensor Work, 2

second order, 15

third or higher order, 19
Tensorizing an equation, 20 Yield condition, 61
Torque, 123 Yield surface, 64



