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ABSTRACT
This paper presents and evaluates a method for simulta-
neously tracking a target while localizing the sensor nodes
of a passive device-free tracking system. The system uses
received signal strength (RSS) measurements taken on the
links connecting many nodes in a wireless sensor network,
with nodes deployed such that the links overlap across the
region. A target moving through the region attenuates links
intersecting or nearby its path. At the same time, RSS mea-
surements provide information about the relative locations
of sensor nodes. We utilize the Sequential Monte Carlo (par-
ticle filtering) framework for tracking, and we use an online
EM algorithm to simultaneously estimate static parameters
(including the sensor locations, as well as model parameters
including noise variance and attenuation strength of the tar-
get). Simultaneous tracking, online calibration and param-
eter estimation enable rapid deployment of a RSS-based de-
vice free localization system, e.g., in emergency response sce-
narios. Simulation results and experiments with a wireless
sensor network testbed illustrate that the proposed tracking
method performs well in a variety of settings.

Categories and Subject Descriptors
C.3 [SPECIAL-PURPOSE AND APPLICATION-BASED

SYSTEMS]: Signal processing systems; G.3 [PROBABILITY

AND STATISTICS]: Probabilistic algorithms (including Monte
Carlo)

General Terms
Algorithms, Measurement
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1. INTRODUCTION
In a wireless sensor network, signal attenuation occurs

when a target moves between and around nodes in the net-
work. For radio-frequency (RF) links connecting different
pairs of nodes, the amount of attenuation seen on these
links varies based on the proximity of the target to the links.
These time-varying patterns of link attenuation provide in-
formation about the target location, allowing the network
to track the target’s motion. This procedure is referred to
as RF tomography.

RF tomography is a promising technique with many prac-
tical applications. For example, it is often difficult for first
responders to locate survivors in disaster situations such as
fires or earthquakes [21]. RF tomography could be used
to locate these survivors quickly without the need for re-
sponders to enter any structures, saving time and, poten-
tially, lives. Similarly, RF tomography can be used for secu-
rity and surveillance applications such as through-the-wall
imaging and perimeter monitoring. RF tomography could
be used in a smart home to control lighting, heating, and
air-conditioning, saving power by sensing when there are no
people in a room. It can also be used by doctors to track
the movements of elderly patients remotely, either at home
or at a hospital, without violating their privacy.

RF tomography is a passive, device-free [22] system. In
particular, targets are not required to cooperate by trans-
mitting a beacon or carrying, for instance, an RFID tag.
The system is capable of detecting and tracking moving ob-
jects within the region of interest (the convex hull of the
sensor nodes). In comparison to video-based (optical or in-
frared) surveillance systems, RF tomography does not re-
quire that the region of interest be illuminated [20]. Using
wireless sensors also reduces the cost of the system in prac-
tical deployments, especially in small-scale target tracking
scenarios, since it only requires several low-cost sensors and
a laptop to process the data. Furthermore, it only takes
a few minutes to place sensors around the area that needs
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to be sensed. The ability to deploy a network easily and
quickly makes RF tomography useful in the emergency re-
sponse scenarios mentioned above.

In this paper, we propose and evaluate a novel algorithm
for simultaneous RF tomographic tracking and sensor local-
ization. Unlike existing RF tomography schemes, we do not
assume that sensor locations are known a priori. We adopt
a particle filtering (sequential Monte Carlo) approach. In
order to make the algorithm computationally efficient and
improve tracking accuracy, we introduce a new measurement
model, whose form is validated by experimental data. This
model does not quantize the region of interest into pixels,
in contrast to the measurement models of [20, 21]. Our al-
gorithm incorporates an on-line Expectation Maximization
(EM) procedure to estimate the parameters of the dynamic
model of the target and the observation model. These pa-
rameters can vary significantly for different targets and envi-
ronments, so the on-line EM algorithm provides an impor-
tant self-calibration mechanism. Received signal strength
(RSS) measurements also encode information about the lo-
cations of the sensor nodes themselves. Leveraging this fact,
we also incorporate a technique for simultaneously localiz-
ing sensors while tracking, where our localization algorithm
corrects for the distortion to RSS-based distance estimates
caused by the attenuating object whose motion we are track-
ing through the field. We validate our approach via both ex-
tensive simulations and experiments conducted with a wire-
less sensor network testbed.

1.1 Related Work

1.1.1 RF Tomographic Tracking
Many localization and tracking techniques have been pro-

posed in the past, and they can be divided into two funda-
mental categories, device-based techniques and device-free
techniques, depending on whether the targets carry tags or
not. Device-based techniques such as GPS [22] and some
RF-based systems [3] require the targets to cooperate and
carry devices which can transmit beacon signals. This ap-
proach is not applicable in many of the scenarios mentioned
above (e.g., emergency response situations like earthquakes
or fires).

The term “device-free passive localization and tracking”
(DFPLT) was coined by Youssef, Mah, and Agrawala [22] to
describe the tracking systems that do not require the target
to carry any device. DFPLT systems, such as RF tomogra-
phy, use variations in received RF signals to detect and track
targets moving through the region of interest. Many differ-
ent DFPLT algorithms have been proposed in the past five
years [12, 18, 22]. In contrast to the approach taken in this
paper, these approaches require a significant initial training
phase, with data gathered when there are targets at known
locations. This makes rapid deployment, e.g., in emergency
response scenarios, more challenging.

A number of other algorithms have been developed based
on models of received signal strength [9,10,20,21,23]. These
approaches eliminate the need for extensive training. By an-
alyzing the changes in the RSS values, these algorithms can
track the targets as soon as nodes are deployed in a new en-
vironment. Zhang et al. [23] use Mica2 sensors placed on the
ceiling to localize the targets moving below. The Radio To-
mographic Imaging (RTI) system proposed by Wilson and
Patwari [21] makes use of image reconstruction methods to

estimate a map of attenuation in the region of interest at
sequential points in time. This work was extended in [20] to
use the empirical RSS variance on each link, rather than the
mean RSS, to determine the presence of the targets, and this
promising approach has demonstrated the ability to track
people through walls. The recent thesis [19] also describes a
particle filter for RF tomographic tracking. That approach
is based solely on sequential importance resampling, and
model parameters such as noise variance, attenuator param-
eters, and sensor locations are assumed to be known. Our
previous work [10] proposed a particle filtering approach for
RF tomographic tracking under the assumption of known
sensor locations. This paper builds on those previous re-
sults, incorporating a scheme to jointly estimate unknown
sensor locations while tracking and providing a more exten-
sive experimental evaluation.

1.1.2 Node Localization
Node localization is a fundamental problem in wireless

sensor networks, and it has been studied extensively (see,
e.g., [13] and references therein). RSS-based localization
schemes model RSS as a decaying function of the distance
between the transmitter and receiver, where the rate of de-
cay (the path-loss parameter) is either assumed to be known
or it is estimated from training data in the particular envi-
ronment of interest. Several previously-proposed localiza-
tion algorithms (such as those in [14] and [5]) rely on first
estimating inter-node distances from noisy RSS measure-
ments and then finding an embedding of the nodes in the
plane that respects the estimated distances. This embedding
can be made unique through the use of a few anchor nodes
whose position is known a priori (e.g., via GPS). However,
most previous work generally assumes a homogeneous en-
vironment (i.e., constant path-loss). Our previous work [8]
proposes a method for node localization that directly ac-
counts for the attenuating and scattering effects of objects
which may be located between and around the nodes whose
locations are being determined, assuming the locations of
these attenuating objects have been estimated. The method
proposed in this paper builds upon this previous work, in-
corporating the localization technique with the sequential
Monte Carlo framework for tracking attenuating objects.

1.1.3 Simultaneous Localization and Mapping
The simultaneous localization and mapping (SLAM)

problem has received significant attention in the robotics
community (see [4, 7, 11]). In that problem, the robot must
track its own state while also localizing landmarks and build-
ing a map, given observations of the world which are of-
ten translated to estimates of distances to the landmarks.
Within the wireless sensor networks community, the prob-
lem of simultaneous localization and tracking (SLAT) has
also been considered [1, 17]. There are high-level parallels
between SLAM/SLAT and the problem considered in this
paper, in that we are also simultaneously localizing based on
measurements of the target relative to a number of reference
points (sensor locations) which also need to be determined.
However, there are also a number of differences which pre-
vent one from directly applying SLAM/SLAT techniques in
our problem setting. First, these methods typically treat
the unknown parameters (landmark locations) as additional
state variables within the filtering methodology. This leads
to a number of known problems, since these locations are
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static and thus have no meaningful dynamic model. More-
over, SLAM/SLAT techniques are based on the probabilistic
modeling assumption that the landmark locations (corre-
sponding to sensor locations in our problem) are condition-
ally independent given the target location. However, this
is not the case in our setup, since each measurement corre-
sponds to a link in the network, carrying information about
the distance between the two sensors at the ends of the link
and not the distance between the target and each sensor.
Thus, the conditional independence modeling assumption
does not apply.

1.2 Contributions
This paper presents and evaluates a novel RF tomogra-

phy tracking algorithm integrated with node localization and
model parameter estimation techniques. The proposed ap-
proach is based on a continuous model for the effects of
attenuating objects on a given link which avoids quantiz-
ing the region of interest into pixels. The extent to which
an attenuator affects a particular link is exponential in the
attenuator’s proximity to the link. This model is validated
via measurements with a TelosB wireless testbed. We adopt
a particle filtering (sequential Monte Carlo) approach for
tracking. Specifically, we use a version of the auxiliary par-
ticle filter which incorporates an online EM algorithm for
estimating model parameters. In this manner, while we
are tracking the target location, we simultaneously estimate
model parameters such as the noise variance, parameters in
the target attenuation model, as well as the sensor locations.
These parameters can vary significantly for different targets
and environments, so the on-line EM algorithm provides an
important self-calibration mechanism. We envision this ap-
proach being applied in scenarios where the network opera-
tors rapidly deploy the network and provide rough estimates
of the locations where sensors were deployed (e.g., circling
the approximate sensor location on a GUI, which could be
interpreted as a Gaussian ellipsoid), and we use this prior in-
formation to initialize the sensor locations. We evaluate the
proposed approach via both simulation and via experiments
conducted with a wireless sensor network testbed.

1.3 Paper Organization
The rest of the paper is organized as follows. Section 2

provides a formal problem statement. Section 3 describes
the attenuation measurement model and Section 4 intro-
duces the on-line SMC localization and tracking algorithm.
Simulation and experimental results for the combined ap-
proach are presented in Sections 5 and 6, respectively, and
Section 7 makes concluding remarks.

2. PROBLEM STATEMENT
Received signal strength (RSS) measurements on the

many links connecting nodes in a sensor network reflect in-
formation about both (1) the pair-wise distances between
sensor nodes and (2) objects moving through the sensed re-
gion. In particular, obstructions inside the area can absorb,
scatter or reflect part of the signals. As the target moves,
different links will be affected, revealing information about
the location of the target within the region. Moreover, the
precise nature of the RSS measurements depends on a num-
ber of model parameters which are generally not known a
priori. Our goal is to use measurements of RSS on the links
between many pairs of nodes and over multiple time steps to

jointly track a target moving through the region of interest,
localize sensor nodes, and estimate model parameters such
as the noise variance.

We consider a wireless sensor network of N nodes and
M = N2−N

2
bidirectional links. In each measurement in-

terval, the N nodes successively broadcast packets and all
neighboring nodes measure the RSS. The RSS value of bidi-
rectional link i at time step k is denoted γi(k). We take γi(k)
to be the average of the RSS values along both the forward
γFi (k) and reverse γRi (k) links: γi(k) = 1

2

(
γFi (k) + γRi (k)

)
.

The precise measurement model for γi(k) is described in
Section 3 below. Nodes successively broadcast packets at
relatively small time intervals (e.g., every 5 ms), gathering
RSS measurements which we stack into the vector γ(k). Un-
der the RSS model adopted in this paper, γi(k) can be split
into three main terms: γi(k) = γ̄i + zik + ζik, where γ̄i is the
average RSS on link i when no target is present, zik is the
attenuation on link i at time step k, and ζik is additive white
Gaussian noise affecting the measured RSS on link i at time
step k. We assume that there is a window where we can
gather measurements on all links when no target is present
in order to estimate γ̄i, allowing us to estimate zik from later
measurements by subtracting off γ̄i from γi(k). Stacking
these quantities into vector form, we have the measured RSS
at time step k is γ(k), and the attenuation caused by the
target is reflected in the differences zk.

Our goal is to track a single moving target described by
state xk, with motion specified by a Markovian dynamic
model f(xk|xk−1). In order to do this, we strive to maintain
a particle approximation of the marginal posterior p(xk|z1:k)
and estimate the expected value of xk under this distribu-
tion. Simultaneously, we seek to estimate the unknown sen-
sor locations, s, and measurement model parameters θ from
the RSS measurements γ(k), assuming that the locations of
a few anchor nodes are known in advance.

3. MEASUREMENT MODEL
The measurement model describes the relationship be-

tween the true state, the sensor locations and the measure-
ment values. Wilson et al. proposed measurement models
for RF tomography in [20, 21]. Since these were employed
in an imaging framework, the models were pixelized, i.e.
the area under surveillance was divided into fixed size pix-
els. Our goal is tracking, not imaging, so there is no need
to introduce pixels, and indeed such an introduction is un-
desirable, because it necessarily leads to additional quanti-
zation error. We therefore develop a pixel-free model that
is better suited to the sequential Monte Carlo method we
adopt, significantly enhancing the computational efficiency
and leading to improved tracking accuracy.

The form of the proposed pixel-free model is motivated by
experimental data recorded in a sensor network deployed in
multiple outside environments with relatively few obstruc-
tions (some trees and a statue). The experiments involved a
human walking around a region surrounded by sensor nodes
(see Section 6 for more details of the sensor deployment).

For the bidirectional link i between a node pair, consider
an ellipse with foci at the transmitter c and receiver e. De-
fine

λik , dci (xk) + dei (xk)− di (1)

where dci (xk), dei (xk) are the distances from the target’s
position to the transmitter and receiver, respectively. The
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parameter λik is equal to the major diameter of an ellipse
passing through xk with foci at the transmitter c and re-
ceiver e of the ith link, minus the length of ith link, di. Note
that this quantity captures information about the position
of link i at time step k.

Figure 1: Attenuation level versus λ for the pro-
posed pixel-free model (a comparison between the
model and experimental measurements.)

For every measurement set, we calculated λi for all links
and measured the corresponding attenuation zi on the ith
link (the measured RSS value minus the background mean,
determined from a set of measurements conducted when the
monitored area was empty). Figure 1 plots these attenuation
values as a function of λ. Superimposed on the figure is
the mean attenuation (calculated over all points within bins
of λ-range 0.01) and our proposed model, detailed below.
The model involves three parameters; in the graph these
have been determined by using straightforward regression
to minimize the mean-squared error.

Figure 1 suggests that the mean attenuation level decays
approximately exponentially with λ. The individual attenu-
ation levels are scattered around this mean and this can be
reasonably captured by an additive Gaussian “noise”. The
pixel-free model for the attenuation caused by an object can
then be described as follows:

zk = φ× gk + σsSk. (2)

Here φ is the (modelled) value of mean attenuation at λ = 0
(i.e., when the target is in directly obstructing the link),
and Sk ∼ N (0, IM×M ) is additive white Gaussian noise; the
parameter σs is the standard deviation that captures the
variance of the noise, which is modelled as independent of
λ. The M × 1 vector gk is defined as

gk ,
[
g1
k . . . g

i
k . . . g

M
k

]T
(3)

where gik , exp{− λik
2σλ
}. The parameter σλ controls the rate

of decay of the mean attenuation with respect to λ.
The proposed attenuation measurement model has three

unknown parameters, φ, σλ, and σs. After conducting a
large number of experiments, we have concluded that the
value of σλ that provides the best fit to the observed data
varies little for different (human) targets and surveillance en-
vironments. We have observed considerably more variation

in the best-fit values of φ and σs.
In addition to the attenuation, the localization task re-

quires a model for the raw received signal strength measure-
ments. The log-distance path loss model [16] relates the
distance di between two sensors to the measured RSS γi as

di = d010(P0−γi)/(10np). (4)

Here P0 is the received power at a reference distance d0 and
np is the path loss exponent. These three values are assumed
known or measurable during a calibration phase.

In this model the effects of any attenuating objects on the
RSS are ignored. We attempt to address this oversight by
expanding (4) to

di = d010(P0−γi−zi−bi)/(10np), (5)

where zi represents the attenuation due to a moving target
and bi represents the attenuation due to background objects.

We can rearrange this equation to obtain the following
model for the RSS measurement for link i at time k:

γi(k) = P0 − zik − bik − 10np log10(di/d0). (6)

For the remainder of the paper, we assume we have access
to a window of sensor measurements when there is no target
moving through the sensed area. From these measurements
we calculate an average background RSS vector γavg which
contains the average RSS values on all M links. This vector
captures the attenuation caused by stationary obstructions
in the region of surveillance. During the tracking period,
an instantaneous RSS vector γk is collected at time k, and
we subtract the background RSS to obtain the vector zk =
γavg − γk of RSS changes.

4. TRACKING AND LOCALIZATION
Our task is to localize the sensors and, at the same time,

track the moving target. We adopt a Sequential Monte
Carlo (particle filtering) framework to perform the tracking
and use an online expectation-maximization (EM) approach
to sequentially update the estimates of static parameters,
which include the node locations, two of the parameters of
the measurement model, φ and σs, and one parameter that
represents the noise standard deviation of the motion model,
σv. We fix the third parameter in the measurement model,
σλ, to a constant value, which is estimated from experimen-
tal data.

We model the target dynamics using a one-tap autoregres-
sive (AR-1) Gaussian model, i.e. xk+1 = axk +σvvk, where
xk is the target position in the 2D plane and vk ∼ N (0, 1).
The constant a < 1 models a (small) drift towards the cen-
ter of the surveillance region; we choose a as a constant
that is close to 1, so that the drift is very small. There are
two main motivations for the adoption of this model: (i) it
assumes little knowledge about the nature of the motion;
(ii) the online EM methodology we adopt requires that the
target process is stationary and ergodic (which eliminates a
pure random walk process). We denote the static parame-
ters θ = [s, φ, σs, σv], where s are the sensor locations.

4.1 Auxiliary Particle Filtering
We apply auxiliary particle filtering in the on-line SMC

algorithm to track the marginal posterior distribution
pθ(xk|z1:k). Here we provide a fairly brief description of the
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auxiliary particle filter; please see [6] for more detail and an
excellent discussion.

The auxiliary particle filter builds on the sequential impor-
tance resampling (SIR) particle filter, so we begin with a de-
scription of the SIR filter. It strives to calculate at each time

step k a weighted particle approximation {x(i)
1:k,W

(i)
k }

K
i=1 to

a posterior of interest p(x1:k|z1:k). To do this, it exploits
the Markovian nature of the dynamic process and the condi-
tional independence of the likelihood functions (observation
zk depends only on target state xk).

If the particle approximation is available at time k − 1,
then the particle filter can form an updated approxima-
tion for time k by (i) propagating (extending) the particles
by sampling from an importance function q(xk|xk−1, zk);
(ii) evaluating the likelihoods of the extended particles and
updating the weights accordingly; and (iii) optionally re-
sampling the particles to construct a particle set with more
evenly distributed weights. The resampling procedure repli-
cates particles with high weights and eliminates those with
low weights.

The SIR filter can perform poorly if the importance func-
tion q does not adequately take into account the informa-
tion available in the measurements zk. The auxiliary parti-
cle filter (APF), introduced in [15], modifies the sampling
step in an attempt to improve performance. The filter

calculates a first-stage weight ρ
(i)
k for each particle based

on how well the particle can explain the observations zk.
Ideally, this weight should be a good approximation to

the likelihood p(zk|x(i)
k−1) =

∫
p(zk|xk)p(xk|x(i)

k−1) dxk, i.e.

ρ
(i)
k = p̂(zk|x(i)

k−1). The APF then resamples the particles

x
(i)
k−1 according to the first-stage weights. After the resam-

pling step, the particles are propagated according to an im-

portance function q(xk|x(i)
k−1) and the new weights are cal-

culated. The APF optionally includes a second resampling
step.

The algorithm is specified below in Algorithm 1. Al-
though it is not an ideal choice because it can lead to un-
bounded variance in the estimates [6], we use the following

first-stage weights: ρ
(i)
k = p(zt|µ(i)

k ). Here µ
(i)
k is the mean of

p(xk|x(i)
k−1); this was one of the suggested approaches in [15].

4.2 On-line EM
The auxiliary particle filter can only operate if the values

θ are provided; since we do not have knowledge of these, we
need to estimate them and it is desirable to do this online
while tracking the target. We use an on-line EM algorithm
to form estimates of the set of parameters θ = [φ, σs, σv]. We
develop a procedure based on the generic method outlined
in Section III.B of [2].

The on-line EM algorithm in [2] strives to maximize a
pseudo-likelihood function in order to form point estimates
of the parameters θ. Recursive maximization of the likeli-
hood functions themselves, p(z1:k|θ), would require estima-
tion of statistics based on probability distributions whose di-
mension is growing in time. The substitution of the pseudo-
likelihood leads to calculations in a fixed dimension.

The on-line EM algorithm updates the parameters ev-
ery L time-steps. We define Xb , xbL+1:(b+1)L and Zb ,
zbL+1:(b+1)L, where b is the index of the block. The log
pseudo-likelihood function employed in [2] is defined, for m

// Initialization at time k = 1
for i = 1, . . . ,K do

Sample x
(i)
1 ∼ q1(·);

Set weights W̃
(i)
1 =

pθ(z1|x
(i)
1 )p(x

(i)
1 )

q1(x
(i)
1 )

;

end

Normalize weights W̃
(i)
1 so that

∑K
i=1 W̃

(i)
1 = 1;

// For times k > 1
for k = 2, . . . do

// First-stage weights
for i = 1, . . . ,K do

Calculate ρ
(i)
k ;

Set W
(i)
k = W̃

(i)
k−1 × ρ

(i)
k ;

end
// Resample

Resample
{

x
(i)
k−1,W

(i)
k

}K
i=1

to obtain
{

x
′(i)
k−1,

1
K

}K
i=1

;

for i = 1, . . . ,K do

Set x
(i)
1:k−1 = x

′(i)
1:k−1 and ρ

(i)
k = ρ

′(i)
k ;

Sample x
(i)
k ∼ q(xk|x

(i)
k−1);

Set W̃
(i)
k =

pθ(zk|x
(i)
k

)p(xk|x
(i)
k−1

)

ρ
(i)
k
q(xk|x

(i)
k−1

)
;

end

Normalize weights W̃
(i)
1 so that

∑K
i=1 W̃

(i)
1 = 1;

// Optional second resample

Resample
{

x
(i)
1:k, W̃

(i)
k

}K
i=1

to obtain
{

x
(i)
1:k,

1
K

}K
i=1

;

end

Algorithm 1: Auxiliary Particle Filter

blocks, as

l(θ) =

m∑
b=1

log pθ(Zb) (7)

where

pθ(Zb) =

∫
XL

pθ(x,Zb) dx. (8)

If the process xk is stationary and ergodic, then it can be
shown that the average log pseudo-likelihood satisfies

l(θ) =

∫
ZL

log pθ(z)pθ∗(z) dz (9)

where θ∗ is the true value of θ. This implies that an algo-
rithm that can maximize l(θ) will identify the true value of
θ. We therefore apply online EM to recursively maximize
l(θ) by updating the estimate of θ via

θb = arg max
θ∈Θ

Q(θ, θb−1) (10)

where

Q(θ, θb−1) =

∫
XL×ZL

log(pθ(x, z))pθb−1(x|z)pθ∗(z) dx dz.

(11)

The direct computation of Q cannot be performed, but we
can replace (10) by the update θb = Λ(Ω(θb−1, θ

∗)), where
Ω(θb, θ

∗) is a set of sufficient statistics and Λ is a mapping
function from the sufficient statistics Ω(θ, θ∗) to the θ that
maximizes Q.
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Four sufficient statistics are required for the three param-
eters φ,σs, and σv. These are of the form

Ω(θb−1, θ
∗) = [ω1, ω2, ω3, ω4]

= Eθb−1,θ
∗ [ψ1, ψ2, ψ3, ψ4]. (12)

The expectation is with respect to pθb−1(x|z)pθ∗(z) and

ψ1(Xb,Zb) =

(b+1)L∑
k=bL+2

((xk − xk−1)T (xk − xk−1))

ψ2(Xb,Zb) =

(b+1)L∑
k=bL+1

((zk − φgk)T (zk − φgk))

ψ3(Xb,Zb) =

(b+1)L∑
k=bL+1

(zT
k gk)

ψ4(Xb,Zb) =

(b+1)L∑
k=bL+1

||gk||22.

The maximization function Λ is defined as

σvb =

√
ω1(θb−1, θ∗)

2(L− 1)
(13)

σsb =

√
ω2(θb−1, θ∗)

ML
(14)

φb =
ω3(θb−1, θ

∗)

ω4(θb−1, θ∗)
. (15)

The expectations cannot be computed, because they are
with respect to a measure that involves the unknown true
value θ∗. But the sufficient statistics can be recursively esti-
mated. The ergodicity and stationarity assumptions for the
process imply that the blocks Zb are samples from pθ∗(z)
and they can therefore be used for Monte Carlo integration.
We can thus form the following update of the statistics

Ω̂b = (1− αb)Ω̂b−1 + αbE(Φ(X,Zb)|Zb) (16)

where the expectation is with respect to pθb−1(x|Zb). Set-

ting αb = 1/b ensures convergence of Ω̂b to Ω(θb, θ
∗). The

maximization step then becomes θb = Λ(Ω̂b).
As one final approximation, since E(Φ(X,Zb)|Zb) does

not have an analytical solution, we can use importance sam-
pling, using the particle tracks and weights calculated by the
auxiliary particle filter

Ω̂b = (1− αb)Ω̂b−1 + αb

K∑
m=1

W
(m)
b ψ(X

(m)
b ,Zb). (17)

The estimation of the locations is addressed with a slightly
different procedure because of the difficulty in identifying
suitable sufficient statistics and maximization functions. For
each block of measurements b, we minimize the difference
between γb, the matrix of measured RSS distances over the
time window b, which is independent of s, and Γ(s), the
matrix of model-based RSS values according to

ŝb = argmin
s
||A ◦ (Γ(s)− γ)||2F (18)

= argmin
s

∣∣∣∣∣∣∣∣A ◦ (P0 − 10nplog10

d(s)

d0
− φbg(X̂b, s)− γ

)∣∣∣∣∣∣∣∣2
F

,

(19)

where ||.||F denotes the Frobenius norm, ◦ denotes the
Hadamard product, and A is a weighting matrix which as-
signs a weight to each link. The values φbg(X̂b, s) are the
estimated attenuations due to the target over the block of
time b, which are derived from the target position estimates
generated by the particle filter and the estimated φ value.

For each time k in this window, x̂k =
∑K
m=1 W

(i)
k x

(i)
k and

Xb = {x̂k} for k = (b− 1)L, . . . , bL.
The weight matrix A can be used to bias the algorithm

so that it assigns more confidence to the RSS measurements
taken over certain links at the expense of others, if there
is more certain knowledge about some sensor locations. In
our algorithm, we solve (18) using a simple gradient descent
procedure and we set the A matrix so that links which travel
from a non-anchor node to an anchor node (or vice versa)
are weighted more highly than links which travel between
two non-anchor nodes.

4.3 The Combined Algorithm
The complete algorithm, combining the auxiliary particle

filter and the on-line EM, is described in Algorithm 2 below.
For the simulations and experimental results reported in this

paper, we have used the prior p(xk|x(i)
k−1) as the importance

function q.

// Initialization
Sample θ0 ∼ q(θ) and set b = 1;
for k = 1, 2, . . . do

// Filtering

{x(i)
k ,W

(i)
k }

K
i=1 = Auxiliary particle

filter({x(i)
k−1,W

(i)
k−1}

K
i=1));

// On-line EM and Sensor Localization
if k mod L = 0 then

// E-step
for i = 1, . . . ,K do

Calculate W
(i)
b =

pθb−1
(X

(i)
b
|Zb)

qθb−1
(X

(i)
b
|Zb)

;

end

Normalize weights {W (i)
b } such that

∑K
i=1 W

(i)
b = 1;

Update

Ω̂b = (1− αb)Ω̂b−1 + αb
∑K
m=1W

(m)
b ψ(X

(m)
b ,Zb);

// M-step

Set θb = Λ(Ω̂b) and b = b+ 1;
// Sensor Localization
Set ŝb =

argmin
s

∣∣∣∣∣∣A ◦ (P0 − 10nplog10
d(s)
d0
− φbg(X̂b, s)− γ

)∣∣∣∣∣∣2
F

.;

end

end

Algorithm 2: SMC RF Tomographic Tracking

The complexity of SMC tracking algorithm is O(MN) per
time step, where M is the number of links and N is the num-
ber of particles used for tracking. The on-line EM algorithm,
which is only executed every L time-steps, has a complex-
ity of O(LMN). In other words, the complexity of on-line
EM algorithm is O(MN) during every execution. The com-
parable computational cost enables the tracking system to
collect the data packets and to perform real-time process-
ing using a standard off-the-shelf laptop (CPU: Core 2 Duo
T5670 1.8GHz, RAM 1GB in our experiment).
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Figure 2: Simulated comparison of node localization,
both taking z into account (for two attenuators, each
with φ = 6 and σp = 0.2) and ignoring it. The esti-
mated locations for the nodes are pushed away from
the ground truth.

5. SIMULATION RESULTS
In this section we present the results of simulations con-

ducted to explore the performance of the proposed online
SMC tracking and node localization methods. The simula-
tion mimics a wireless sensor network with 24 sensor nodes.
During the simulated period, a person walking within the
network area follows a specific route at a speed of 0.5 m/s.

5.1 Node localization
We first present results for simulations exploring the per-

formance of the proposed localization procedure, to highlight
the importance of accounting for the presence of attenuators.
When node locations are unknown, ignoring attenuators will
bias the location estimates away from their true values. To
illustrate this point, we compare the simulated performance
of our localization algorithm with the widely-cited algorithm
of Patwari et al. [14] for different values of σλ and φ in our
model (see [8] for more details). In general, for small values
of σλ and φ, our localization algorithm presents no signifi-
cant advantage. This is only natural as these are cases where
either the attenuator in the network does not have a very
strong effect (small values of φ) or else where its effect is not
very widespread (small values of σλ). However, as φ and σλ
increase, our algorithm begins to offer significant improve-
ments in localization. An example of one of our simulations
can be seen in Figure 2. Here, we use a simulated network
of 24 nodes (with the 4 corner nodes serving as anchors),
placed evenly around a square of size 7 m × 7 m. Two
attenuators, each with φ = 6 and σλ = 0.2, are placed in
the interior of the network. From this figure, we can easily
see that if a localization algorithm does not account for the
effects which obstructions have on RSS, its results will be
skewed.

5.2 Joint Tracking and Localization
On-line SMC tracking with integrated node localization

can be used when we only have location information about
a small number of anchor nodes and the locations of the
rest of the nodes remain unknown. We simulated a scenario

in which the motion of a single target was measured by a
sensor network. The data was generated using the pixel-free
model (with φ = 5, σs = 1 and σλ = 0.02).

We present simulation results for two trajectories and two
sensor layouts. The first sensor layout is a square of vary-
ing dimensions, with the four corner nodes being the anchor
nodes with known locations. The second sensor layout is an
irregular deployment. The four anchor nodes are approxi-
mately equally-spaced around the periphery. The trajecto-
ries include a square route (see Figure 3) and a zigzag route
(see Figure 4). In each case, the target moves at a speed
of 0.5 m/s and one complete set of measurements (all 24
sensors) is recorded every 120 milliseconds.
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Figure 3: Tracking performance for a simulated ex-
ample of simultaneous target tracking and localiza-
tion. The target follows a square trajectory and sen-
sors are arranged in a 28 m × 28 m square. The
localization performance for this example is shown
in Figure 5.
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Figure 4: Tracking performance for a simulated ex-
ample of simultaneous target tracking and localiza-
tion. The target follows a zigzag trajectory and
sensors are deployed in an irregularly-shaped “noisy
square” (roughly 50 m2).

For the non-anchor sensor nodes, we assume that the algo-
rithm has some prior, imprecise information about the loca-
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Figure 5: Localization performance for a simulated
example of simultaneous target tracking and node
localization. The target follows a square trajectory
and sensors are deployed in a 28 m × 28 m square.
The tracking performance for this example is shown
in Figure 3.

tions. For example, if the sensors have been deployed around
the perimeter of a building, we may have some knowledge
about which of the nodes are on the left side of the building
or the right side, even if we do not know precisely where
they lie. In our simulations, we employ independent pri-
ors for the node locations, each being a two dimensional
circularly-symmetric Gaussian with mean equal to the true
location and standard deviation σp. In our simulations, we
set σp = 2.

The tracking algorithm uses a Gaussian AR-1 dynamic
model. The particle filter uses 1000 particles, and the
unknown model parameters are initialized in the on-line
EM algorithm by drawing from the uniform distributions:
σs ∼ U(0,

√
5], φ ∼ U(0,

√
5] and σv ∼ U(0, 1].

Figures 3 and 5 present examples of the tracking and lo-
calization performance for a 28 m × 28 m square layout with
a square target trajectory. Figure 4 presents an example of
tracking performance for the irregular layout (with an area
of roughly 50 m2) with a zigzag route. A complete set of
sensor measurements is made once every 120 milliseconds;
at this sampling rate, the depicted square route take 161
time steps to complete and the zigzag route takes 40 time
steps.

In both cases, the on-line SMC tracking provides a good
approximation of the ground-truth trajectory, even though
we begin the algorithm with uncertainty about most of the
node locations. The estimated trajectory follows the ground
truth trajectory in straight lines, and experiences slightly
higher error at the corners of the square route. Figure 5
shows the evolution in our knowledge of the node locations
in the square route example. In this example, and in most
realizations of the simulation, all of the final estimates are
closer to the true positions than the initial guesses and the
average location error is relatively low.

In Figure 6(a), we show the root MSE (RMSE) of the
target tracking algorithm in the square layout for the square
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Figure 6: Box-and-whisker plot of RMSE as a func-
tion of time for a) tracking and b) node localization
for a simulated target moving in a square trajectory
within a 28 m × 28 m square using SMC tracking
with initially-unknown node locations. The boxes
range from the 25th to 75th quantiles, the whiskers
extend 3 times the interquartile range, the median
is marked as a line within the box, and the pluses
indicate outliers.

target trajectory example, averaged over 100 realizations.
This RMSE stays quite low (about 0.3 m) throughout most
of the target’s route in the 28 m × 28 m square. There are
relatively higher RMSE values (on the order of 1 m) at the
corners of the square trajectory. An abrupt turn is a much
less likely event in the AR-1 model employed by the filter,
so fewer particles are able to track the trajectory at the time
step when the target changes direction at the corners. Only
once out of 100 realizations did the algorithm lose track of
the target.

Figure 6(b) shows the average RMSE/node of the node
localization process in the square target trajectory example,
again averaged over 100 realizations. Here, the RMSE/node
starts out quite high and quickly decreases. The final local-
ization RMSE is approximately 0.57 m (here we only show
the first 100 time steps since the RMSE stays at roughly the
same level thereafter).

Figure 7(b) depicts the RMSE results for the zigzag tra-
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Figure 7: Box-and-whisker plot of RMSE as a func-
tion of time for a) tracking and b) node localization
for a simulated target moving in a zigzag trajec-
tory within an ≈ 50 m2 irregularly-shaped area us-
ing SMC tracking with initially-unknown node loca-
tions. The boxes range from the 25th to 75th quan-
tiles, the whiskers extend 3 times the interquartile
range, the median is marked as a line within the
box, and the pluses indicate outliers.

jectory. The median tracking RMSE is approximately 0.1
m after the first 10 time steps (once the online EM algo-
rithm has approximately converged) and the final median
node location error is approximately 0.17 m. The surveil-
lance region is smaller than in the square layout, leading to
a reduction in the error.

Using the aforementioned parameters for the measure-
ment and dynamic models, we simulated different square
layouts (ranging from 7 m × 7 m to 35 m × 35 m). The ini-
tial uncertainty in the node locations, governed by the value
σp, was scaled in accordance with the area of the square.
Tables 1 and 2 show, respectively, the RMSE of the target
tracking and the average RMSE/node for the localization in
these different scenarios. As expected, in both tables, the
error increases slightly as the network size increases and,
hence, as the density of the sensor nodes decreases. The ac-
curacy is acceptable in all cases, however, with an average
tracking RMSE of approximately 1m and a final localization

Network σp 1st step Final step RMSE
size RMSE Average RMSE

7 m × 7 m 1 0.5828 0.0860 0.2830

14 m × 14 m
√

2 1.0107 0.3175 0.5722

21 m × 21 m
√

3 1.3734 0.3621 0.6774
28 m × 28 m 2 1.9778 0.4538 0.8472

35 m × 35 m
√

5 2.7020 0.3980 1.0028

Table 1: RMSE (in m) of SMC tracking between the
first and final step. The RMSE over time represents
an average of the RMSEs over all 161 time steps.

Network size σp First step RMSE Final step RMSE
7 m × 7 m 1 0.7171 0.2520

14 m × 14 m
√

2 1.3907 0.5519

21 m × 21 m
√

3 1.9249 0.7398
28 m × 28 m 2 2.3500 0.8073

35 m × 35 m
√

5 2.7166 0.7810

Table 2: Average RMSE/node (in m/node) of local-
ization between the initial guess and the final esti-
mation.

RMSE of 0.8 m in the case of a 35 m × 35 m network.
In Table 3, we see how the SMC tracking with integrated

node-localization compares to tracking carried out with per-
fect a priori knowledge of the node locations. There is a clear
performance penalty when the node locations are initially
unknown. The RMSE values with unknown node locations
are 6-7 times higher than those with known node locations.
The estimation error experienced under unknown node loca-
tions scenarios is still practically acceptable (with a median
error of 1 m for a relatively large network); note also that
this is the average RMSE over all time steps. The average
error towards the end of the trajectory, when node location
and model parameter estimates are more accurate, is signif-
icantly less (median error of 0.4 m).

Network size σp RMSE with RMSE with initially
known node unknown node

locations locations
7 m × 7 m 1 0.0436 0.2830

14 m × 14 m
√

2 0.0728 0.5722

21 m × 21 m
√

3 0.0975 0.6774
28 m × 28 m 2 0.1233 0.8472

35 m × 35 m
√

5 0.1732 1.0028

Table 3: Comparison of the tracking RMSE (in m)
averaged over all 161 time steps when node locations
are known vs. when they are initially unknown.

6. EXPERIMENTAL RESULTS
This section presents an evaluation of the proposed algo-

rithm using measurements from a wireless sensor network
test bed. We conducted a measurement campaign, collect-
ing RSS measurements with a set of 24 sensor nodes. All the
nodes were Crossbow TelosB motes running TinyOS and us-
ing the IEEE 802.15.4 standard for communication in the 2.4
GHz frequency band. A simple token-ring transmission pro-
tocol was developed using nesC and each node was assigned
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Figure 8: Experimental example of target tracking
for square trajectory in a 7 m × 7 m square with a
tree in the middle of it.

a fixed node ID at compile time. Data packets broadcast
by each node contained this node ID along with the time of
transmission and the measured inter-node RSS values which
were received by that node from other nodes in the network.
The interval between each transmission was set to 20 ms so
that 50 samples were recorded every second.

The sensor network itself was constructed in a grassy out-
door field with a tree in the center of it (Field 1). The sen-
sors were all placed on stands so that they were 1 m off the
ground, and these stands were placed in a 7 m × 7 m square,
mimicking the network we had heretofore been simulating.
Markers were placed at 20 positions within the square so
that the person walking through the network would be aware
of—and be able to follow—the predetermined ground truth
path. Before a person was brought into the network, how-
ever, the system sensed the vacant network area for roughly
3 minutes in order to generate the average RSS vector γavg.
After this data had been collected, a person walked through
the network following the ground truth path while the sen-
sors collected more RSS measurements.

6.1 SMC Tracking with Known Node Loca-
tions

Figure 8 shows the results of tracking a person walking
25 times around a square (with known node locations), fol-
lowing a square trajectory in a 7 m × 7 m square in Field
1. In this particular experiment, the nodes were arranged
such that there was a large tree in the center of the square.
We compare the performance of the proposed particle fil-
ter to the Kalman filtering (KF) approach described in [20],
where an image of attenuation is first estimated from the
instantaneous link RSS measurements, and a Kalman filter
is run over these estimated images. The RMSE of both the
on-line SMC algorithm and imaging with KF are shown in
Figure 9. The RMSE of both algorithms remains stable dur-
ing the experiments. As shown in Figure 9(a), the tracking
RMSE stays at about 0.3 m. Meanwhile, using the imaging
with KF algorithm, the tracking RMSE in Figure 9(b) is
about 0.6 m under the same condition.

We also carried out a similar tracking experiment for the
same scenario in another field which had no tree in it (Field
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(a) Target tracking RMSE using the on-line SMC algorithm.
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(b) Target tracking RMSE using the imaging with KF algo-
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Figure 9: Box-and-whisker plot of RMSE as a func-
tion of time for the tracking of a real target moving
in a square trajectory within a 7 m × 7 m square
in Field 2 using both a) the on-line SMC algorithm
and b) the imaging with KF algorithm with initially-
unknown node locations. The boxes range from the
25th to 75th quantiles, the whiskers extend 3 times
the interquartile range, the median is marked as a
line within the box, and the pluses indicate outliers.

2). A numerical comparison of the tracking performance
between Field 1 and Field 2 can be seen in Table 4. We
observe that both algorithms perform better when there are
no additional obstructions besides the one we are tracking
and that on-line SMC outperforms imaging with KF in both
scenarios. Here we only consider the performance of both
algorithms based on experimental data; more detailed com-
parison of simulation results and interpretation can be found
in [10].

In addition to the square trajectory scenario, we also
present a scenario where the target moves along a zigzag
route and where the sensors are arranged in a circular pat-
tern with 7 m diameter, as shown in Figure 10. The average
tracking RMSE is 0.2112 m when using on-line SMC and
0.4670 m when adopting the imaging with Kalman filtering
method. Both Figure 8 and Figure 10 demonstrate that the
proposed on-line SMC algorithm using the pixel-free model
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Figure 10: Experimental example of target tracking
for a zigzag trajectory in a 7 m diameter circle.

Algorithm RMSE for RMSE for
Field 1 (m) Field 2 (m)

SMC 0.4905 0.3214
Imaging with KF 0.8566 0.6404

Table 4: RMSE values for different algorithms run
on the experimental results obtained in a 7 m × 7
m square area with a tree in the center.

achieves good trajectory estimates in different scenarios with
experimental data, and it is capable of handling different
sensor deployments.

7. CONCLUSIONS
This paper introduces a particle filtering method for RF

tomographic tracking of a single target. The algorithm in-
corporates an on-line EM algorithm to estimate key param-
eters in the measurement and dynamic models. In order to
improve the accuracy and to reduce computational require-
ments, we developed a pixel-free measurement model which
is validated using experimental data. The proposed ap-
proach outperforms previously described approaches in the
scenarios considered in this paper (outdoors, with few ob-
structions). Currently we are investigating robust methods
for tracking and localization in more challenging indoor and
through-wall scenarios, where multi-path and small-scale
fading effects are more pronounced, as well as conducting
a more detailed evaluation of the proposed joint localization
and tracking methodology.
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