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Abstract
Link quality estimation is a fundamental component of the
low power wireless network protocols and is essential for
routing protocols in Wireless Sensor Networks (WSNs).
However, accurate link quality estimation remains a chal-
lenging task due to the notoriously dynamic and unpre-
dictable wireless environment. In this paper, we argue that
in addition to the estimation of current link quality, predic-
tion of the future link quality is more important for the rout-
ing protocol to establish low cost delivery paths. We pro-
pose to apply machine learning methods to predict the link
quality in the near future to facilitate the utilization of in-
termediate links with frequent quality changes. Moreover,
we show that by using online learning methods, our adaptive
link estimator (TALENT) adapts to network dynamics bet-
ter than statically trained models without the need of a pri-
ori data collection for training the model before deployment.
We implemented TALENT in TinyOS with Low-Power Lis-
tening (LPL) and conducted extensive experiments in three
testbeds. Our experimental results show that the addition of
TALENT increases the delivery efficiency 1.95 times on av-
erage compared with 4B, the state of the art link quality esti-
mator, as well as improve the end-to-end delivery rate when
tested on three different wireless testbeds.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Net-

work Architecture & Design—Wireless communication

General Terms
Design, Measurement, Performance

Keywords
Link quality estimation, Link quality prediction

1 Introduction
Link quality estimation is a fundamental component of the
network protocols in WSNs. Typically, a link estimator mea-
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sures the quality of the wireless links continuously and pro-
vides the link quality information to the network protocols
in the upper level such that the routing protocol can estab-
lish efficient end-to-end delivery paths in an ad-hoc man-
ner. For many sensor networks applications and deploy-
ments [26, 35, 32], the routing protocol employs a multi-
hop tree topology, in which the nodes in the network con-
nect to the root node(s) through one or more hops, forming
a tree-like structure. Due to the high power consumption of
the radio components [27], one of the main goals of the net-
work protocols is to reduce the total number of radio trans-
missions in packet delivery, especially for battery-powered
WSNs. Efficient link quality estimation is important for re-
ducing the energy consumption of communications as accu-
rate link quality information is vital to achieve optimal rout-
ing topologies.

The physical layer (PHY) information such as Received
Signal Strength Indicator (RSSI) and Signal to Noise Ra-
tio (SNR) is directly related to the quality of the wireless
channel, and can be used as direct indicators of link qual-
ity. Also, the CC2420 [12], a widely used off-the-shelf low
power radio chip, provides Link Quality Indicator (LQI) as
another link quality metric from the physical layer. These
PHY parameters reflect the wireless channel quality when
a packet is received and can be used in link quality estima-
tion. For example, there are routing protocols that use LQI as
link quality metric [24]. However, due to the short temporal
dynamics of wireless channels and differences in hardware
calibration [9], it is hard to find a well defined correlation be-
tween the PHY parameters and packet reception rate (PRR)
over different links and even different networks. As a re-
sult, WSNs routing protocols often utilize PRR based link
estimation metrics such as ETX [13] instead of using PHY
parameters directly. For example, CTP [18], the default col-
lection protocol in TinyOS [31], uses ETX to measure link
quality and create routing topologies.

An intrinsic problem of PRR based metrics is that they
do not perform well when monitoring intermediate links that
show often short temporal quality variations. Because the
calculation of PRR requires several packets, PRR based met-
rics such as ETX tend to capture the long term link quality
instead of short term quality variations. As a result, routing
protocols such as CTP tend to ignore the intermediate bursty
links [2] that have low average PRR in long term (PRR be-
tween 10% and 90%), but show continuous high quality in



short periods. Prior work [11] has shown that intermediate
bursty links usually cover longer distances than high quality
links, and routing protocols could take advantage of the high
quality periods of bursty links and use themwhen forwarding
a packet. This strategy can reduce the number of hops in the
path, and ultimately reduce the number of transmissions for
delivering a data packet. Nevertheless, it is relatively hard
for ETX to identify when an intermediate link will be in a
high quality period due to the convergence time of ETX it-
self. Another problem is that PRR based metrics assume that
the current link quality remains the same as the last estima-
tion, but this assumption of stable link quality is often invalid
due to the notoriously frequent variations of wireless links.
Thus, accurate quality estimation of intermediate links re-
mains a difficult task due the convergence time of ETX and
the dynamic nature of wireless channels.

We argue that in order to leverage the intermediate qual-
ity links, the network protocol needs not only a link quality
estimator that measures the past link quality, but also a link
quality predictor that predicts the link quality in the near fu-
ture. In this paper, we propose to predict the expected quality
of the link based on historical information of PRR as well as
PHY parameters of recently received packets. Due to the dy-
namic nature of the wireless channel, such prediction will be
valid for only a short period before the link quality changes.
Nevertheless, with the knowledge of expected link quality
in the immediate future, the routing protocol may be able to
select efficient data forwarding path promptly during a burst
transmission of data packets, and ultimately increase deliv-
ery efficiency and reduce communication costs.

An essential requirement of such prediction-based esti-
mator is adaptivity. When the network exhibits large dy-
namics, a link estimator should be able to adjust itself to
cope with changes. While it might be possible to find the
correct set of parameters in a estimator to improve its perfor-
mance for a certain level of dynamics, this parameter set will
not work in all the cases as we deploy in different environ-
ments or even as the temporal dynamics change in the same
location.

Another important feature of the estimator is plug-and-
play. Ideally, a link estimator should work on any network
without pre-deployment efforts to tune the prediction model.
Prior studies have shown that model based predictors such
as 4C [21] significantly outperform link estimators such as
STLE [2] and 4B [17], but the main disadvantage of 4C is
the need to collect link data at the target deployment site for
training the link prediction model. Although the required
training dataset is small, collecting it still requires additional
effort and might not be feasible for all deployments. Fur-
thermore, as wireless conditions change from the time we
collect the training data, the same set of model parameters
may cause performance degradation. Therefore, it is impor-
tant to have an estimator that needs no training data or prior
knowledge from the target deployment.

Based on the above requirements, we propose Temporal
Adaptive Link Estimator with No Training (TALENT), an
adaptive prediction based link estimator that focuses on es-
timating temporal link quality variations. TALENT utilizes
online learning algorithms to adapt to different network con-

ditions without any user intervention and no a priori training
and is designed to be a plug-and-play estimator for any en-
vironment and level of dynamics.

The contributions of our work are four fold. First, we
show that by using online learning techniques, our predic-
tion model can adapt to a wide range of network dynamics
without prior training data and with fast convergence time.
To our knowledge, this is the first attempt to introduce online
learning techniques to adapt network link estimation param-
eters under environmental and network dynamics. Second,
we designed and implemented TALENT in TinyOS and in-
tegrated it into CTP for a reference implementation. Third,
we integrated TALENT with LPL [25], a low-power listen-
ing protocol for efficient communication and actual energy
savings when using duty-cycled radios. Finally, we show
that by utilizing TALENT, the routing protocol could use in-
termediate links more efficiently and achieve lower commu-
nication costs when sending data packets in bursts. From
our extensive experimental evaluation, we show significant
improvment of packet delivery efficiency, with an average of
95.3% improvement over 4B [17] in many different scenar-
ios, as well as an improvement in end-to-end delivery rate.
2 Related Work
Link quality estimation is a critical component for wireless
communications in WSNs. Woo et al. [34] argued that PRR
based metrics such as ETX [13] are more suitable in cost-
sensitive WSNs and showed that ETX with the windowed
mean estimator with exponentially weighted moving average
(WMEWMA) works better than other established estimation
techniques. Following their design, Fonseca et al. [17] pro-
posed 4B, a hybrid link estimator that combines information
from the physical, data-link and network layers. 4B uses the
parameters from PHY layer as an indication of high quality
wireless channel and ETX as link quality metric.

Many studies have attempted to find correlations between
the PHY parameters and PRR. In theory, PRR can be com-
puted based on SNR and other radio parameters such as the
modulation scheme, encoding scheme, frame and preamble
lengths [37]. However, Zhao et al. [36] showed that estima-
tion for low and intermediate quality links using RSSI values
only is difficult due to the short wireless channel coherence
time. Lai et al. [19] confirmed that the expected packet suc-
cess rate (PSR) can be approximated by SNR with a sigmoid
function, but Son et al. [29] also showed that due to differ-
ence in radio and transmission power, there is a significant
variation of about 6 dB in the threshold of the sigmoid func-
tion. Senel et al. [28] proposed a SNR based estimator that
uses a Kalman Filter to processed SNR and estimates the
PSR with a pre-calibrated SNR- PSR function. TALENT
mainly differs from the above metrics in terms of modeling
approach as detailed in the following sections.

It is well established that most of the link quality varia-
tions are observed in the intermediate quality links as pointed
out by numerous studies [36, 34, 10]. Srinivasan et al. [30]
showed that packet losses are correlated and the intermediate
links often show bursty patterns on packet reception. More-
over, they proposed a β factor to quantitatively measure the
burstiness of a link. Alizai et al. [2] proposed a bursty routing
extension (BRE) to CTP that utilizes a short term link esti-
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Figure 1. TALENT attempts to infer the probability that
future PRR exceeds a certain threshold θ.

mator (STLE) to detect short-term high quality links. STLE
takes a receiver-initiated design, which allows the overhear-
ing nodes to notify the senders about the availability of the
better path. The overhearing nodes detect the high quality
links based on the heuristic that any link becomes temporar-
ily reliable after three consecutive packets are received over
that link. Our design is fundamentally different from STLE
as we try to predict high quality periods in near future us-
ing models trained with online learning techniques instead
of using heuristics.

Using data-driven models to predict the wireless link
quality has been relatively less studied in WSNs. Farkas et
al. [16] proposed XCoPred, a pattern matching approach
based on SNR to predict link quality variations, but their
work was focused on 802.11 ad-hoc network. Liu and
Cerpa [21] presented 4C, a data-driven link quality estima-
tor that tries to predict the success probability of the next
packet using a logistic regression classifier. The classifier
is trained with data collected a priori in the intended envi-
ronment. TALENT shares many of its design decisions, but
uses online learning techniques to avoid the need for a train-
ing data set. Furthermore, the goal of TALENT is to estimate
the quality of the link in the near future instead of the recep-
tion probability of a single packet.

3 Modeling
We propose to build models to predict the future link quality
with information from both the physical layer and the link
layer. The intuition of using information from both layers is
simple: by using a combination of PRR from the link layer
and PHY parameters from physical layer as input, the pro-
posed model could supplement the PRR, accurate for long
term link estimation, with PHY parameters to improve the
short temporal quality estimation for the intermediate links,
which are highly unstable and exhibit the most variations.
More importantly, we propose to utilize online learning al-
gorithms such that the models can adapt their parameters to
the network dynamics without the overhead of data collec-
tion and training.

3.1 Problem Definition
To predict the high link quality in the near future based on
the recent packet reception, we propose creating a model to
solve the following problem: given W packets as input, de-
termine the probability that the future reception rate on the

link will be greater than a predefined threshold θ during a
short period of time t. Figure 1 illustrates our approach. For-
mally, the input of the model is the historical information
available fromW packets:

Inputi = [PKTi−1,PKTi−2, . . . ,PKTi−W ] (1)
The information available for a packet PKTi is comprised
of a subset of the PHY layer parameters associated with the
packet as well as the PRR when the packet is received:

PKTi = [PRRi,PHYi], PHYi ⊂ (RSSIi,SNRi,LQIi) (2)
All the values in a packet vector are discrete. PRRi can be
calculated from the WMEWMA output and has a range be-
tween [0,1]. The physical parameters (RSSI, SNR and LQI)
are scaled down to the the unit range [0,1] also. With this
notation, we can represent a lost packet as PKTi = [PRRi,0],
where the PHYi = 0 since there is no physical parameter
available for the lost packet.

The output of the model is the probability of the temporal
link quality being better than the threshold θ during the time
t in the future:

P(PRRt ≥ θ|Inputi) (3)
The calculation of the instantaneous link quality PRRt is sub-
ject to the time t and the number of packets sent during that
time. For our analysis, we set θ to 0.9, the time t to 1 sec-
ond, and the number of packets sent during t is fixed to 10
with a inter-packet interval of 0.1 seconds.We chose a small
t and inter-packet interval because the temporal variation of
the wireless channel is correlated at intervals smaller than 1
second [1, 30], and our model tries to take advantage of this
behavior. We used the same parameters in our experiments
in order to best approximate the real network conditions.

A major difference between TALENT and 4C is the
model output. 4C tries to predict the success probability of
the next packet, whereas in TALENT, the model output is
the probability of future link quality higher than a threshold
over a short period of time. From the routing prospective,
the evaluation of link quality over a period of time can help
a routing protocol decide on the predicted quality of a path
in a more powerful way than a prediction of an individual
packet. Another advantage is that by predicting average link
quality over a larger time scale than the reception of a single
packet, we smooth the random noise that might affect the in-
dividual packet reception. Therefore, we consider the output
of TALENT superior to 4C for practical routing purposes.

3.2 Modeling Method
The complex dynamics of wireless networks cannot be cap-
tured by a single rigid model. For example, the correlation
between PRR and RSSI will likely change if a noise source
is added to the network. In this case, the model needs to be
adaptive to the changes and follow the dynamics by choosing
a new set of model parameters.

We propose to use a stochastic gradient descent (SGD)
online learning algorithm [22] to train a logistic regression
classifier (LR) such that the model can adapt to the chang-
ing network conditions.We choose to use LRmodels because
prior work [21] has shown that the link quality can be accu-
rately predicted by LR models. We considered many online
learning frameworks, such as weight majority, winnow and
SGD, among others [5], and we settled for SGD mainly due



to its performance and simplicity to implement it under strin-
gent computational and energy constraints.

Assume X =< X1 . . .Xn > represents the input vector and
Y is the binary variable denoting the high temporal link qual-
ity PRRt > θ, the logistic regression classifier can be ex-
pressed as:

P(Y = 1|X) =
1

1+ exp(− f (X))
(4)

and
P(Y = 0|X) =

exp(− f (X)

1+ exp(− f (X))
(5)

where f (X) = β0+∑n
i=1 βiXi, and β is a vector of the weight

parameters to be estimated.
The input X is the model input defined in the previous

section, which consists of the PHY parameters and PRR as-
sociated to W historical packets. Given a training set of N
samples, {(X1,Y 1) . . . ,(XN ,YN)}, we train the logistic re-
gression classifier by maximizing the log of the conditional
likelihood, which is the sum of the log likelihood for each
training example:

l(β) =
N

∑
l=1

Y l logP(Y = 1|X l
,β)

+(1−Y l) log(P(Y l = 0|X l
,β)) (6)

Note that due to the fact that Y can take only values of 0
and 1, only one of the two terms in the expression will be
non-zero for any given Y l .

To maximize the log likelihood, we use the gradient,
which is the partial derivative of the log conditional likeli-
hood. The ith component of the gradient vector is:

∂

∂βi

l(β) =
N

∑
l=1

(Y l− P̂(Y l = 1|X l
i ,β))X

l
i (7)

where P̂(Y l = 1|X l
i ,β) is the logistic regression prediction

using equations (4) and (5) and the weights β.
A common approach to learn the weights is batch train-

ing, which updates the weights β on the basis of the gradient
accumulated over the entire predefined training set:

βi← βi+λ
N

∑
l=1

(Y l− P̂(Y l = 1|X l
i ,β))X

l
i (8)

where λ is the learning rate which determines the step size.
Different from the batch training that optimizes the cost

function defined on all the training samples, SGD is an on-
line algorithm that operates by repetitively drawing a fresh
random sample and adjusting the weights on the basis of this
single sample only. It performs weight updates on the basis
of the gradient of a single sample X l ,Y l :

βi← βi+λ∆βl
i (9)

where ∆βl
i is the gradient of the lth sample:

∆βl
i = (Y l− P̂(Y l = 1|X l

i ,β))X
l
i (10)

Using an online learning algorithm to model the link quality
variations has several advantages. From a networking aspect,
each packet is a new sample, thus the training dataset con-
tinues to grow indefinitely. In terms of computation speed,
the stochastic learning algorithms will likely outperform the
batch learning algorithms that operate over a training set [6].
Stochastic learning is also useful when the function being
modeled is changing over time, a quite common scenario
in networking where the data traffic patterns and the wire-
less channel quality variations are both non-deterministic.

Also, stochastic learning often results in better solutions be-
cause the noise in the updates can cause the weights jumping
into multiple, possibly deeper local minimum, whereas batch
training will only converge to one minimum [20].

3.3 Learning Rate Adaptation
An important parameter of SGD is the learning rate λ. The
rate affects the learning speed and how fast the gradient
descent converges. Different from batch gradient descent,
which has a linear convergence speed [14], online gradient
descent proceeds rather slowly during the final convergence
phase [7]. The noisy gradient estimate causes the parame-
ter vector to fluctuate around the optimum in a bowl whose
size depends on the actual learning rates. Ideally, we want a
learning algorithm that converges quickly when the network
is stable, and updates its parameters promptly once the pre-
diction error increases due to network dynamics.

We tried two adaptive learning rate algorithms, ALAP
and s-ALAP [3] ALAP is a normalized step size adaptation
method with the main idea of changing the global learning
rate λ to time-varying local learning rates < λ1 . . .λn > that
adapt by gradient descent, while simultaneously adapting the
weights. At time t, we would like to change the learning rate
(before changing the weight) such that the error at the next
time step is reduced. For the lth sample, ALAP performs the
learning rate update with the following equation:

λi←max(0.5,1+q∆βl
i∆βl−1

i )λi (11)
where q is a meta learning rate which controls the step size
of learning rate update. The weight is updated with the new
local learning rate:

βi← βi+λl
i∆βl

i . (12)
s-ALAP is a variation of ALAP with smoothed gradient de-
scent by using an exponential trace of past gradients, which
uses the following learning rate update rule:

λi←max

(

0.5,1+q∆βl
i

∆βl−1
i

(∆βl
i)
2

)

λi (13)

where (∆βl
i)
2 is an exponential moving average of the square

of ∆βl
i . The weight update rule is same as equation (12).

The only global parameter for both ALAP and s-ALAP is
the meta learning rate q, which determines the step size of
learning rate update. According to empirical experience, we
set q to 0.8 in our evaluation.

Another common extension of SGD algorithm is the use
of momentum term [22]. With the momentum term, the
weight update of lth sample becomes:

βi← βi+λl∆βl
i +m∆βl−1

i (14)
where 0 < m < 1 is a new global momentum parameter
which must be determined by trial and error. Momentum
simply adds a fraction m of the previous weight update to
the current one. When the gradient keeps pointing in the
same direction, this increases the size of the steps taken to-
wards the minimum and speeds up the learning process. On
the other hand, when the gradient keeps changing direction,
momentum will smooth out the variations. In our evaluation,
we compared the performance of the two learning rate adap-
tation algorithms, ALAP and s-ALAP as well as the momen-
tum to select the best candidate for the link quality predictor.
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Figure 2. The prediction accuracy of LR models using three online learning algorithms, as well as a batch trained LR
model and the WMEWMA estimator.

3.4 Online Learning Algorithm Evaluation
In order to select the best algorithm for predicting short term
link quality when the network dynamics are non-negligible,
we need packet traces of intermediate links to evaluate the
candidate algorithms. The packet traces were collected from
a local wireless testbed comprised of 54 TMote Sky motes.
To collect the traces, one node was programmed to send 30-
byte long packets with an inter-packet interval of 0.1 seconds
for 1 hour, and all the other nodes in the network record the
sequence number, RSSI and LQI of the received packets re-
spectively.The wireless channel used was channel 26, and the
sending node always used full power (RF power level = 0).
After the sender node stops, the packet traces recorded from
intermediate links are selected in the evaluation. The pro-
cess was repeated 10 times, each time with a different send-
ing node. The data was collected during three week days
at different times of the day, including day and night times.
In the end, we collected extensive packet traces with more
than 490 thousand packets from 18 intermediate links with
average PRR ranging from 0.54 to 0.89.

We then apply SGD with momentum, ALAP and s-ALAP
to these empirical packet traces to evaluate their performance
in terms of prediction accuracy, i.e., the ratio of the correctly
predicted high quality periods to the total number of predic-
tions made. In addition to these online algorithms, we also
apply a WMEWMA estimator described in [34] as well as
a batched trained logistics regression model (Batch) to com-
pare their performance. Please note that the batch trained
LR model was intentionally over-fitted to the specific link to
maximize the accuracy of the batch trained model.

The input of the prediction models is comprised of
PRR and LQI values from historical packets (Inputi =
[PRRi,LQIi]). PRR is computed by the WMEWMA estima-
tor, which can be expressed as:

ETXi = α∗ETXi−1+(1−α)∗ETXnew (15)
where α = 0.9 and the window size of ETXnew calculation is
5. These parameters are based on the default values used by
4B in TinyOS 2. In other words, for each input vector, the
PRR is always the last WMEWMA’s PRR estimate and is up-
dated every 5 packets received, whereas the LQI is updated
for every packet received. The model computes the predic-
tion for each input vector and runs the learning algorithms
(ALAP/s-ALAP) for every packet received. As pointed out
by prior studies [21], input of this size is enough for LR
based models. We also experimented with RSSI and SNR as
input, and our results indicate that including other PHY pa-
rameters do not significantly affect the prediction accuracy,
which also confirms the results presented in [21].Therefore,

we use PRR and LQI in our evaluation and omit the results
of RSSI/SNR in the input vector for brevity.

While one could tune the WMEWMA parameters such
that it can better match the level of dynamics seen by any par-
ticular data trace, please note that any fixed set of parameters
will not adapt to the changing conditions since one param-
eter set does not fit all conditions. Furthermore, the update
process would require user intervention, further data gath-
ering and reprogramming the parameters. This is precisely
what we want to avoid in our case, and one of the strengths
of using a dynamically adaptive online learning algorithm.

Figure 2 shows the prediction accuracy of the 5 link es-
timators with respect to the link PRR. It is clear that the
WMEWMA estimator performs the worst among other esti-
mators, which verifies that the WMEWMA estimator could
not accurately estimate the link quality variations in the short
term. The batch trained model is better thanWMEWMA, but
its prediction accuracy is still consistently worse than any of
the three online learning algorithms. This result implies that
the best model for link quality prediction gradually changes
over time due to frequent network dynamics: even if the LR
model converges at a global optimal, the non-stationary wire-
less environments could soon make the static model obso-
lete. The online learning algorithms are ideal for tracking
such non-stationary environments. In fact, all three methods
achieved similar prediction accuracy with s-ALAP slightly
better than the other two. Moreover, comparing with mo-
mentum, s-ALAP can select the learning rate adaptively, and
consequently eliminates the need of selecting a global learn-
ing rate and momentum term. Therefore, we choose s-ALAP
as the learning algorithm for TALENT.

To further analyze the potential gain of using s-ALAP, we
plot the detailed prediction results of s-ALAP, batch trained
LR model and the WMEWMA estimator in Figure 3. In this
figure, each prediction is classified into one of the four cat-
egories: True Positives (TP), which means both the model
output and the actual PRR is high; True Negatives (TN),
meaning the output and the target PRR is both low; False
Positives (FP), indicating the output are high whereas the
actual target PRR is low; and False Negatives (FN), which
means the output is low whereas the actual target is high.
Then, the prediction accuracy is calculated as the ratio of
TPs and TNs over all the four classes. The four categories
are marked with different colors in Figure 3, and the predic-
tion accuracy of the link are labeled on the top of each graph
respectively. From the figure, it is obvious that WMEWMA
performs the worst compared with the other two. Also the
prediction accuracy of the batch trained LR model is lower
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Figure 3. Prediction accuracy of three prediction methods applied to 18 intermediate links. The numbers on top of each
graph shows the prediction accuracy, and the labels on the bottom indicate the link PRR. The detailed results (TP, TN,
FP, FN) are marked with different colors for each link.

than using s-ALAP, suggesting that having a rigid model
can not adjust to the changing network conditions. The size
of the area for the TP cases (dark blue, bottom) indicates
the percentage of time an intermediate quality link could be
used to forward packets with low losses. TALENT is capa-
ble of detecting high quality periods for intermediate links
and provides more viable paths for the routing protocol than
WMEWMA. Note that WMEWMA is designed to estimate
the average link quality, whereas the other estimators are de-
signed and trained to predict the probability of the tempo-
ral link quality being high during time t in the future (in
our case, PRRt > 0.9). When the average PRR of the link
is close but below the 0.9 threshold, WMEWMA tends to
make many FN mistakes because it converges to the average
link PRR that is below the threshold. Hence, WMEWMA
fails to predict short intervals of time when the short term
PRR is high, a very common event for a link with average
PRR in the high 0.8 range. When the average link PRR is
very different from the threshold (e.g., in the cases of links
in the 0.5 range), or above the threshold (e.g. the 0.92 link)
WMEWMA tends to perform much better. This is because
the likelihood of a link in the mid 0.5 range to have short
bursts of very high quality above the 0.9 threshold is sig-
nificantly smaller, and therefore WMEWMA tends to cor-
rectly predict a failure. This behavior can be seen clearly in
Figure 3: when the link PRR is close to 0.5, WMEWMA
achieves high prediction accuracy only because of the high
number of TNs. When the average PRR of the link is above
the threshold (like the 0.92 link), then all estimators work
fine. Thus, it is clear that WMEWMA is not suitable for es-
timating temporal high quality periods for intermediate links.

3.5 Convergence Speed
We now investigate SGD with s-ALAP in terms of conver-
gence speed. In the case of adapting to link dynamics, we
want the model to adapt to the new distribution with as few
new samples as possible, i.e., update to the new weights with
only a few packets. Figure 4 shows how the prediction error
evolves during the first 10 seconds when s-ALAP is applied
to a bursty link with 54% PRR. The crosses in the figure de-
note the packet reception (0 means lost, 1 means received),
and the solid line represents the prediction error, i.e., the ab-
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Figure 4. Prediction error with respect to time.

solute difference between the actual packet reception (1/0)
and the model output. As seen in Figure 4, in the first 2
seconds right after initializing the node, the prediction error
starts from 50% and quickly declines as the s-ALAP algo-
rithm updates its weight for the link. By the time t = 2.1
seconds, the prediction error already drops below 5%. After
2.7 seconds, the error stabilizes and never exceeds the 5%
mark. Given the 0.1 seconds inter-packet interval, the SGD
model with s-ALAP took about 20 – 30 samples (2 to 3 sec-
onds) to converge. This number is quite consistent for all the
18 packet traces: on average, SGD with s-ALAP needs 25 ±
4 packets to reduce prediction error to below 5%.

3.6 Summary
To summarize, we propose to use machine learning meth-
ods to build models that can predict the short temporal high
link quality periods for intermediate links. Through analysis
with empirical data traces, we showed that LR based mod-
els using PRR and LQI values can predict the instantaneous
PRR in the near future significantly better than WMEWMA
for intermediate links. Moreover, by using the SGD online
learning algorithm and the s-ALAP learning rate adaption
method, the model is able to adapt to individual links and
network dynamics in around 2 to 3 seconds without prior
data collection or training. This adaptive behavior is a major
advantage over 4C [21], which also uses LR based predic-
tion model that requires a priori off-line training but does not
adapt to network dynamics well. With these encouraging re-
sults, we show in the following section how we implement
the LR based model with s-ALAP in TALENT to supplement
the existing link estimators in TinyOS.



4 System Design
TALENT is implemented as an extension module of CTP, the
default collection protocol in TinyOS. Our design is receiver-
initiated: the prediction model in TALENT works in an over-
hearing node and notifies the sender if a better path is avail-
able. As illustrated in Figure 5, the predictor takes the LQI
of the overheard packet, combines it with the link PRR given
by the 4B link estimator to predict the future link quality.
The predicted link quality is then added to the node’s rout-
ing cost to compute the expected path cost if the packet was
to be forwarded by the overhearing node. If the expected
cost is smaller than the cost of current forwarding path, the
overhearing node notifies the sender about the availability of
the new path, announcing itself as a new temporary parent
(TP). On receiving the TP notification, the sender uses the
TP as the next hop until the TP notifies the sender again to
denounce its TP status. The sender reverts back to use the
original next hop when the TP denouncement packet is re-
ceived, or when a number of packets are lost consecutively.

The receiver-initiated design is similar to 4C [21] and
STLE [2] since all of them allow the overhearing nodes to
become temporary parents. However, there are multiple dif-
ferences between TALENT and these two link estimators.
The main difference between TALENT and STLE is the pre-
diction model. STLE is based on the heuristic that three
consecutive packet receptions signify a high link quality pe-
riod, whereas TALENT utilizes machine learning methods to
model the link characteristics without assuming prior heuris-
tics. Moreover, due to the adaptive online learning algorithm,
TALENT will be able to adapt to network conditions when
the STLE heuristic does not apply. 4C and TALENT both
use an LR model for link quality prediction. One major im-
provement of TALENT over 4C is the adaptive online al-
gorithm: TALENT can adapt to network dynamics quickly
without any overhead of data collection and model training,
whereas 4C needs offline training to tune the model param-
eters. This advantage is significant from a practical point
of view. There is no need for a priori data collection (with
the associated costs) for training, nor re-collection for new
training data if network conditions change. There is also no
need to send the newly updated parameters to reprogram the
nodes in this case. Moreover, 4C attempts to predict the suc-
cess probability of the next packet, whereas TALENT pre-
dicts the probability of high quality periods.

4.1 Temporary Parent Announcement
In CTP, each node is assigned with a routing gradient that
represents the number of transmissions needed to deliver a
packet from this node to the root node. The root node nor-
mally acts as a base-station and has a gradient of 0. A non-
root node selects its next hop, or parent based on the path
cost, which is calculated by adding the gradient of a neigh-
bor node and the link ETX, i.e., the number of transmis-
sions needed to send a packet from the node to the neighbor.
The node selects the neighbor node (among other neighbor
nodes) with the least path cost as its parent and will send its
packet to the parent only. This scheme is sender-initiated as
it is the sender who picks its parent.

In our scheme, we take the receiver-initiated approach

Figure 5. TALENT Overall Design

where the nodes on the receiver side compute the path cost
for the sender and notify the sender if better paths are avail-
able. An overhearing node can snoop on the traffic of a
neighboring sender, and the predictor in TALENT will try to
predict the link quality between the sender and the overhear-
ing node. By adding the predicted link quality to the routing
gradient of the overhearing node itself, the overhearing node
can compute the path cost if the sender were to route its pack-
ets to it. Then, if the predicted path cost is smaller than the
sender’s current parent, the overhearing node sends a notifi-
cation to the sender to be a potential temporary parent.

Specifically, assume a sender S sends packets to its par-
ent P with a gradient of CP while an overhearing node O is
snooping on the channel, whose routing gradient is CO. The
path cost of forwarding through P isCS→P+CP, whereCS→P

is the link cost between S and P. Similarly, the path cost of
using O as the forwarder is CS→O +CO. The sender S se-
lected P as its parent, thereforeCS→O+CO >CS→P+CP.

The link costCS→O is estimated by the underlying link es-
timator (4B) by exchanging beacon packets. In parallel, the
predictor in TALENT continuously predicts the link quality
with the PHY parameters from the overheard data packets
from S. If the prediction output is greater than 0.5, TALENT
considers the link S→ O in a high quality period, and over-
rides the CS→O with the minimum value of 1. In this case, if
the new path cost of using O is smaller than the path cost of
using P, then S should use O as a temporary parent. In other
words, if the predictor indicates the link S→ O is in a high
quality period, and the following formula holds:

CS→O+1<CS→P+CP (16)

then the overhearing node O will send a notification to S to
announce itself as the temporary parent. On the other hand,
if this formula does not hold due to change of the prediction
output or the routing gradients, O will again send a notifica-
tion to S to denounce the temporary parent status.

4.2 Predictor Implementation
The predictor is responsible for computing the prediction and
performing the weight update for the model. The prediction
calculation is done by the logistic regression model, which
takes the LQI of overheard packets and the estimated PRR
(from 4B) of the link between the sender and the overhear-
ing node as the input. We employ a linear approximation
proposed by H. Amin et al. [4] to accelerate the sigmoid
function calculation required by the model. The measured
execution time in TMote is 0.5 ± 0.004 ms.



Algorithm 1 s-ALAP Weight Update Rule

Input: Input x j(t) = [PRR(t),LQI(t)], output y(t), instanta-
neous PRR PRRInst(t) and meta learning rate q

Output: Updated weightsW (t) and learning rate λ(t)
1: if PRRInst(t)> 0.9 then
2: target(t)← 1
3: else
4: target(t)← 0
5: end if
6: for j = 1 : D do
7: gradient j(t)← (target(t)− y(t))x j(t)
8: ∆Wj(t−1)← ∆Wj(t)
9: ∆Wj(t)←Wj(t)gradient j(t)

10: ∆W 2
j (t)← 0.8∆W 2

j (t)+0.2∆W 2
j (t)

11: λ j(t)← λ j(t)max

(

0.5,1+q∆Wj(t)
∆Wj(t−1)

∆W 2
j (t)

)

12: Wj(t)←Wj(t)+λ j()∆Wj(t)
13: end for
14: return W (t), λ(t)

The predictor also performs weight updates. Once a pre-
diction is calculated, the predictor records the prediction out-
put as well as the inputs, and then starts to measure the in-
stantaneous PRR after the prediction. Because all the pack-
ets are embedded with a monotonically increasing sequence
number, the exact number of packets sent can be inferred by
counting the gap between the sequence numbers of received
packets. The instantaneous PRR is then calculated by di-
viding the number of packets overheard with the packet gap.
Once the instantaneous PRR is available, it is then used in the
weight update along with the corresponding predictor input
and output. The algorithm of the weight update is listed in
Algorithm 1, which implements the Equation (12) and (13).

The implementation of the s-ALAP algorithm takes sev-
eral measures to minimize the execution time. First, it uses
integer numbers instead of floating points by scaling decimal
values up to avoid floating point calculation. Second, the im-
plementation tries to avoid multiplications and divisions as
much as possible by replacing them with bit shift operations.
Also, it only checks integer overflow when necessary, i.e.,
only check those operations that might involve large num-
bers. The measured execution time of a single weight update
is 2.31 ± 0.19 ms in TMote. Considering the usual packet
interval of sensor networks is at least in the order of 100
ms, this execution time should not hamper the normal opera-
tion of the node. More importantly, we perform the s-ALAP
weight update only once every 10 packets (see Section 4.3)

Running the s-ALAP algorithm consumes extra energy.
According to TMote Sky datasheet, the nominal current con-
sumption of the MCU and radio on (TX or RX) is around 19
mA, whereas the current consumption of having MCU on
and radio off is 1.8 mA. Assuming sending a 30-byte packet
and receiving its ACK requires 5 milliseconds, the energy
spent to transmit a single packet would be able to support
more than 50 milliseconds of computation time. Given the
2.31 milliseconds execution time of the s-ALAP algorithm

(less than 20 times the energy of a single packet), and that
this operation is performed once every 10 packets in our im-
plementation, we see that TALENT will save energy as long
as it can save at least one packet every 200 packets sent.
4.3 Integration to Existing Network Stack
Overall, TALENT is implemented as an extension to the ex-
isting link estimator. As shown in Figure 5, TALENT com-
municates with almost all the components of the network
stack, including the 4B link estimator, the routing engine and
the forwarding engine. We carefully designed TALENT such
that it does not interfere the normal operation of other com-
ponents; furthermore, we made some modifications to 4B to
take full advantage of the overheard packets.

The first problem of TALENT and CTP integration is
routing stability. CTP establishes a routing gradient using
the path cost. When a node changes its parent, CTP updates
the routing gradient with beacon packets. During the routing
gradient update, TALENT should not send any TP notifica-
tion as the path cost itself is not stabilized. Therefore, we
added a counter to suppress the TP announcements when a
parent change is detected. Moreover, to avoid two or more
overhearing nodes trying to become TP of the same sender,
the same counter is used to prevent such racing conditions.

A common problem is how to deal with broken links.
If the link quality between the sender and the TP suddenly
drops, the TP can not notify the sender even if it realizes the
quality drop as the notification packet may get lost, and the
sender will attempt to retransmit its packets until the route
update mechanism of CTP kicks in and changes the parent
node. To prevent this situation, we set a TP loss thresh-
old that limits the maximum number of consecutive packet
losses when a TP is set. In our implementation, the sender
will switch back to the old parent after 5 consecutive packets
losses instead of relying on the slow CTP route update. For
all the switch back to old parent events seen in our experi-
ments, only 12% of the cases were due to the loss threshold,
whereas 54% and 34% of the cases were due to denounce TP
notifications and CTP parent changes respectively.

An important design decision is when and how to pre-
form weight updates due to the short effective period of the
prediction. Conceptually, after the prediction model is up-
dated, the prediction output is only valid for 1 second be-
fore network dynamics render the prediction inaccurate. In
our design, TALENT performs weight updates once every
10 packets and uses a timer to keep track of the most current
update. Any prediction output is marked invalid if the pre-
diction is made after 1 second of the previous weight update.
The intuition here is that when the traffic rate is high (e.g.,
inter-packet interval is 0.1 seconds), packets arrive at a fast
rate so that the prediction model can be updated frequently
and the output will be mostly valid, whereas in the low traf-
fic rate cases, the timer will prevent the use of out-of-date
predictions as the model will be updated less often. When a
temporary parent has obsolete predictions, we take an oppor-
tunistic approach that allows the sender to continue sending
packets to the temporary parent without notifying the expi-
ration of the prediction. Due the the presence of the TP loss
threshold, the sender realizes of any potential link quality
degradation and switches back to the old parent quickly.



Another subtle issue is how to perform the weight up-
date on big packet losses. Large packet losses leave a big
gap in packet reception, which translates to a long trace of
lost packets that requires multiple weight updates. To avoid
unnecessary weight updates and computational stress on the
mote, we limit the number of weight updates caused by large
packet gaps to 5, such that the weight update operations do
not hamper normal operations of the mote.

4.4 Low Power Listening
For energy constrained sensor networks, Low Power Listen-
ing [25] (LPL) is an important component that conserves en-
ergy by duty-cycling the radio. LPL periodically wakes up
the radio to perform clear channel assessment (CCA) and
turns off the radio if there is no activity detected. If there is
activity in the channel, LPL keeps the radio on so that the
MAC protocol can receive the potential packet. Once the
packet is received, the MAC protocol will signal the receive
event to upper layers, and LPL will put the radio back to
sleep after a short wait period.

TALENT is implemented on top of BoX-MAC [23], the
default MAC protocol of CC2420 radio in TinyOS which
supports overhearing. In BoX-MAC, LPL wakes up the
radio purely based on the periodical CCAs, and therefore
overhearing-based operations are perfectly functional with
LPL. An overhearing node can wake up for channel activi-
ties to snoop for packets just like it were to receive the pack-
ets. Furthermore, since the CCA in BoX-MAC does not per-
form any address check, even a non-overhearing node will
have to wake up and receive the packet being transmitted
when channel activities are detected. It is the upper network
layer’s job to decide whether the packet is addressed to the
node itself. In this sense, the energy overhead of overhearing
nodes is only caused by the processing of overheard packets
compared with non-overhearing nodes, and the radio energy
consumption is independent of using overhearing. Because
of the above reasons, receiver-initiated approaches such as
TALENT will work with LPL in BoX- MAC normally with-
out incurring any significant overhead on the energy usage.
We believe that TALENT could still work even if the MAC
protocol does not directly support overhearing with LPL as
discussed in Section 6.

The wake up interval is the most important parameter as
it controls the frequency of the CCA operation, and therefore
decides the duty-cycle rate of the radio.A short interval may
increase the duty-cycle rate unnecessarily, whereas setting
the interval too long may cause packet losses due to queue
overflow on the sender nodes. In our experiments, we set the
wake up interval to 100 ms to meet the relatively high data
rate, but in future work we are planning to set this interval
dynamically to accommodate the realtime traffic demand.

5 Experimental Evaluation
We evaluate the performance of TALENT in terms of end-to-
end delivery cost, loss rate and path length. The delivery cost
refers to the total number of transmissions needed to deliver
a packet to the root, the loss rate is the percentage of packets
sent but never received at the root, and the path length refers
to the number of hops in a delivery path. The performance
of TALENT is compared against three other state-of-the-art

link estimators, namely, 4B [17], STLE [2] and 4C [21]. To
take full advantage of the snoop interface, we updated the
networking stack so it can use the overheard packets to up-
date the ETX estimation. This modification is applied to
all receiver-initiated estimators, namely, TALENT, 4C and
STLE so there is fair ground for performance comparison.

5.1 Experimental Setup
We conducted extensive experiments in three wireless
testbeds: a local testbed, the Harvard Motelab [33] testbed,
and the Indriya [15] testbed. The local testbed is comprised
of 54 Tmotes placed along the corridor of a typical office
building. The Motelab testbed is a sensor network testbed
composed of 180 Tmotes deployed on three floors. Unfortu-
nately, only 47 nodes were available at the time of our exper-
iments due to node failures. The Indriya testbed consists of
127 TelosB motes deployed across three floors of the School
of Computing of the National University of Singapore.

Since TALENT tries to predict the short temporal link
quality, our experiments are focused on bursty traffic. We
tried different scenarios to test TALENT under different con-
ditions. First, we conducted extensive single sender exper-
iments in the three testbeds with similar experimental set-
tings used by the STLE authors. Second, we tested TALENT
under variable sending rates to see the impact on its pre-
diction ability and performance. Finally, we tried multiple
sender experiments to stress test the performance of TAL-
ENT in congested networks by letting multiple nodes send
data packets at high traffic rates simultaneously.

In all experiments, we have LPL active, the sender(s) send
30-byte long data packets with a sending interval of 100 ms
to mimic burst data transmissions. When testing variable
sending rate, we add 50 ms randomization to the nominal
sending rate. For all the local testbed experiments, we set the
radio output power level to−25 dBm to increase the network
size, and for theMotelab and Indriya testbeds the power level
is set to 0 dBm for better connectivity. We perform single
sender experiments with little external interference on chan-
nel 26, as well as variable rate experiments with interference
from 802.11 radios on channel 11. We run more than 80
experiments in all testbeds combined, with each experiment
sending 6,000 packets for a total of 480,000 packets sent.

5.2 Link Estimation with Bursty Traffic
We perform some preliminary analysis to motivate the use
of short term link quality estimators under bursty traffic.
We consider three link estimator settings: 4B with default
WMEWMA parameter α = 0.9, 4B with α = 0.1 and TAL-
ENT. Intuitively, 4B with α= 0.9 means the ETX calculation
will give more weight to the historical link quality, making
4B insensitive to sparse link quality changes. On the other
hand, 4B with α = 0.1 assigns more weight to the current
link quality, and hence increase the reactiveness of 4B. In
the reminder of this section, we refer to 4B with α = 0.9 as
“stable 4B” and 4B with α= 0.1 as “reactive 4B”. These two
different flavors of 4B are compared with TALENT experi-
mentally under a burst traffic pattern to examine the differ-
ences in path selection and the end-to-end delivery cost.

Our evaluation employs a simple network consisting of
five nodes in a linear topology: a sender S, three forwarders
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Figure 6. The path length and the delivery cost of 4B (stable and reactive) and TALENT during a 5 minutes experiment.

F1, F2 and F3, and a root node R. The links between im-
mediate neighbors, such as S→ F1 and F1→ F2, are high
quality and stable, whereas other links, such as the links be-
tween S→ F2 and S→ R, are of various quality with tempo-
ral variations. Therefore, there are five possible paths to de-
liver packets from S to R: a long path using only good links
(S→ F1→ F2→ F3→ R ), or short paths using the inter-
mediate links, such as S→ F1→ F2→ R or S→ R. Short
paths have less hops than the longer paths and are preferable
to the routing protocol, but the low quality links may offset
the advantage due to packet losses. The choice of least costly
path is truly determined by the link estimator.

In this network, the sender sends packets in a burst pat-
tern: only one packet is sent every 30 seconds in the first
minute, and in the second minute the sender sends 10 pack-
ets per second with a 0.1 seconds inter-packet interval. This
pattern repeats in the remaining three minutes till the exper-
iment ends at the end of fifth minute. The experiment is first
conducted with CTP and stable 4B (α = 0.9), and then re-
peated using reactive 4B (α = 0.1) and TALENT back to
back to ensure minimal environmental changes. The behav-
iors of the three estimators are illustrated in Figure 6 respec-
tively. In each plot, the solid line shows how the path length
evolves over the course experiment, the dashed line indicates
the corresponding end-to-end delivery cost, and the circles
represent the beacons received by the sender S. For each cir-
cle, the x axis notes when the beacon is received and the y
axis is the estimated delivery cost of the beacon sender.

Judging from the path length showed in the top plot in
Figure 6, it is clear that with stable 4B, CTP took the longer
path (4 hops) from the beginning and was never stray away
from it over the course of the experiment. The merit of this
path is that the links are of high quality and stable, thus al-
most all the send attempts were successful and very little
number of retransmissions were required except for a few
seconds after 60 seconds. This is reflected by the mostly
smooth delivery cost in the plot. Note that due to the stable
WMEWMA estimator, the several seconds of high losses are
not enough to make the stable 4B change its path. In other
words, stable 4B selected a path with a cost per hop almost
equal to 1 and never changed even with packet losses.

Different behavior can be observed from reactive 4B in
the middle plot of the figure. CTP started off by using a
short path (3 hops), but when the data rate was increased to

10 packets per second after time t = 60 seconds, reactive 4B
soon realized that the selected path quality is not perfect due
to the high losses and switched to a longer path immediately
at around 80 seconds. The time of the switch is truly depen-
dent on the timing of the losses in the experiment, as another
switch occurred at around 190 seconds, again due to high
losses. In summary, the reactive 4B is sensitive to packet
losses and changes to longer paths with stable, high quality
links almost immediately after experiencing losses.

The situation is quite different from CTP using TALENT.
As seen in the bottom plot in Figure 6, the path length is
1 at the beginning, indicating that the shortest path was se-
lected. The cost of delivering a packet fluctuated when the
data rate increased to 10 packets per second after 60 seconds,
confirming that the S→ R link is not stable and has interme-
diate quality. At around t = 75 second, CTP switched to a
longer path due to quality degradation on the shortest path.
However, TALENT enabled CTP to quickly switch back and
fourth between the shortest path and longer path once the
instantaneous link quality of S → R is high enough. This
switching behavior can be clearly observed between 90 and
120 seconds, as well as from 180 seconds to 240 seconds in
the experiment. Despite the cost fluctuation associated with
the shortest path, the average delivery cost of CTP with TAL-
ENT is significantly smaller than both stable 4B and reactive
4B. In this experiment, the average delivery cost of stable 4B
is 3.12, reactive 4B is 3.47, whereas TALENT is 2.32, 34%
smaller than stable 4B and 50% smaller than reactive 4B.

Why 4B does not switch to the shorter paths if they are
available? The beacon distributions presented in Figure 6 of-
fer an explanation. The beacon packet contains the link qual-
ity and delivery cost estimation from the beacon sender, and
the recipient node of the beacon can compute the estimated
delivery cost assuming the beacon sender as its parent. Ac-
cording to the CTP adaptive beaconing policy, all nodes send
beacon packet frequently to establish the initial link quality
estimations and select parents at the beginning of the exper-
iment, but the inter-beacon interval grows exponentially as a
stable route is established. This can be observed in all the
three plots in Figure 6: the beacon packets received by the
sender are clustered within the first 30 seconds of the experi-
ment, whereas only several beacon packets were received in
the remaining time. Once CTP switched from a short path
to a longer path due to link quality degradation, the ETX
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Figure 7. The average delivery cost per hop ratio of TALENT and (4B/STLE/4C) versus the path length ratio
(4B/STLE/4C) and TALENT in all the single sender experiments. The marks above the line x− y = 0 indicate better
overall costs of TALENT over the other link estimators.

estimation of the old parent only reflects the bad link qual-
ity that caused the switch. For CTP to use the shorter path
again, the previous bad quality estimation must be updated
to reflect the current path quality. Unfortunately, the sparse
beacon packets could not adjust the estimation due to the
EWMA filter fast enough even for the reactive 4B. In this
case, the skewed ETX estimation will prevent CTP from uti-
lizing the shorter path over the course of the experiment. On
the other hand, TALENT constantly updates its link quality
estimation by using the overheard data packets and follows
closely with the actual link quality. Even though the ETX
estimation was skewed by the lossy periods of the link for
several times, CTP was able to switch back to the shorter
path as soon as TALENT indicates a high quality period is
available on the shorter path. This observation is based on
a simple linear network, but it is also applicable to larger
networks. In a dense network, CTP may have more links
to choose from and may find alternative routes with small
end-to-end costs. However, a dense network also means that
the number of potential temporary parents is large, and this
allows TALENT to find shorter routes as well. The relative
savings of TALENT vs 4B across different network densities
remain relatively constant as shown in the following section.

This result highlights the caveat of using only cost based
estimators. For a cost based estimator such as 4B, the ETX
of a link is evaluated based on reception of beacon pack-
ets provided that the link is not part of the forwarding path.
Meanwhile, CTP adapts the adaptive beacon policy, which
increases the beacon packet interval exponentially when the
route is stable. The problem arises when CTP finds a stable
route, the ETX of this link will be updated less often due
to the increased beacon interval. Consequently, the ETX es-
timation of an intermediate link could be easily skewed by
short temporal quality degradations, and it will take a long
time for the ETX estimation to converge to the average link
quality. The combination of all these factors effectively pre-
vents CTP with 4B from utilizing intermediate links even if
they exhibit frequent high quality periods. Moreover, with
reactive 4B, CTP switches to longer paths at the first hint of
packet losses, making it even less efficient than stable 4B.

5.3 Path Length vs. Delivery Cost
The above experiment shows a simple but illustrative exam-
ple of why CTP with 4B may prefer a longer and more stable
path, while in many cases in practice a shorter path with a
dynamic intermediate link might be better (less costly). We

argue that the intermediate links are underutilized with cost
based link estimators such as 4B, and using TALENT would
enable the routing protocol to actively select the shorter paths
with more intermediate links. Although the cost per hop may
be higher for intermediate quality links compared with high
quality links, the end-to-end delivery cost is reduced ulti-
mately due to the lower number of hops.

To study the trade off between a longer path with stable
high quality links and a shorter path with unstable interme-
diate quality in larger networks, we extend our evaluation
by comparing the behavior of TALENT with respect to 4B,
STLE and 4C in extensive single sender experiments con-
ducted in three wireless testbeds: the local, Motelab and In-
driya testbeds. The experimental conditions were described
in Section 5.1. Each experiment was repeated three times
with the same network settings, i.e., packet length, radio
power level and node configuration in the network. The
4C modeling parameters were assigned based on LR model
trained on training sets collected at each testbed, and this
training cost is not included.

To make our point clearer, we break down the end-to-
end delivery cost into the hop count times the cost per hop.
Figure 7 shows the average delivery cost per hop ratio of
TALENT and 4B/STLE/4C versus the path length ratio of
4B/STLE/4C and TALENT for the experiments conducted
in the three testbeds. In general, if the rate of cost per hop
increase is smaller than the rate of path length decrease, the
overall cost for delivering packets is reduced. For example, if
CostPerHop(TALENT )

CostPerHop(4B) <
PathLength(4B)

PathLength(TALENT ) , TALENT achieves
lower cost than 4B. Therefore, any point plotted above the
line x = y indicates TALENT has lower delivery cost 4B in
one experiment, and vice-versa.

As shown in Figure 7, the majority of the experiment re-
sults were marked above the x = y line, indicating that the
overall delivery cost of CTP with TALENT is better than the
other estimators. For the local testbed and the Indriya testbed
experiments, a large group of the results exhibits small or
even negative cost increment while using shorter paths, im-
plying that using TALENT can reduce the path length while
maintaining the delivery cost. There are also cases where the
path length of TALENT and the other estimators are the same
but the cost of TALENT is much smaller (see Figure 7(a)
and 7(b)). This is due to a poorly connected network and/or
sudden link quality changes that causes 4B and STLE to send
excessive retransmissions before switching to another path.
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Figure 8. End-to-end delivery cost and loss rate of local
testbed. Each bar represents the average results of 3 ex-
periments with the same network settings.

In this case, TALENT enables fast route updates with such
network dynamics by taking advantage of the temporary par-
ent mechanism: the overhearing node can notify the sender
about the alternative routes even if the ETX estimation in the
sender side is lagging behind the link quality changes.

For the Motelab experiments, this behavior is more obvi-
ous. Originally, the Motelab testbed had 180 nodes, but the
number of nodes has been reduced to 47 at the time we con-
ducted our experiments. Due to the sparsely connected net-
work, the number of possible routes are limited and the use
of intermediate links is almost unavoidable in some cases
to avoid network partitions. From Figure 7(a) and 7(c), it
can be observed that many of the Motelab experiments for
4B and 4C are clustered around (1,1), indicating that both
TALENT and 4B/4C took similar paths. However, several
experiments show drastic cost reduction of TALENT over
4B and STLE particularly when the path length ratio does
not show particular trend. This is because the crucial links in
the forwarding path were suddenly broken, in which case the
4B and STLE estimators could not find an alternative path
fast enough. As a consequence of the network partition, the
data packets were accumulated in the forwarding nodes and
eventually dropped before a new route is established, causing
low end-to-end delivery rate in addition to high delivery cost.
On the other hand, TALENT can recover quickly from such
dynamics due to the fast adapting predictor and the receiver-
initiated approach of temporary parent selection.

While the overall performance of TALENT is still better
than 4C on average, the improvement is smaller when com-
pared with the previous two estimators. This can be seen
by the smaller distance from all the points towards the iden-
tity line. It should be noted that 4C was extensively trained
using a priori collected training data for each testbed. This
additional training cost, together with the propagation of the
updated parameters in the case of re-training that is required
in a real setting, is not included in the evaluation.

5.4 End-to-End Delivery Cost and Rate
We further present the performance of TALENT in terms of
end- to-end delivery cost and loss rate in this section. Fig-
ures 8, 9 and 10 show the average end-to-end delivery cost
per packet sent on the top and the end-to-end loss rate at the
bottom of each figure. The numbers on the x axis mark the
experiment number, representing different network settings.
Each column represents the results of three experiments con-
ducted in the same network under the same conditions using
the same sender. Figure 8 has different total number of nodes
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Figure 9. End-to-end delivery cost and loss rate of Mote-
lab testbed experiments. Motelab testbed is sparsely con-
nected, so the number of good paths is limited, which
leads to similar cost when the network is stable and heavy
cost increments when the path is disturbed.
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Figure 10. End-to-end delivery cost and loss rate of In-
driya testbed.

for each experiment, with 5, 6, 11, 25, 42, and 57 respec-
tively. Figure 9 uses 47 nodes, and Figure 10 uses 127 nodes
for all experiments. Each experiment uses STLE, 4B, 4C and
TALENT for 10 minutes back to back. The last column in
each figure shows the average of all the experiments in each
testbed. Overall, we see that TALENT provides the overall
best packet delivery cost, with average improvements over
all testbeds of 18% over 4C, 145% over STLE and 119%
over 4B. Moreover, TALENT reduces the end-to-end loss
rate on average over all our experiments by 1.5% over 4C,
17% over STLE, and 6.7% over 4B.

From Figure 8 experiments 4 and 5, and from Figure 9
experiments 1 and 3 we see that the delivery cost of 4B
is very high. This behavior can be explained by the prob-
lems explained in Section 5.2, i.e. slow beaconing activity
on alternative paths and slow EWMA convergence. Trace
analysis indicates that in these experiments, the number of
available forwarding path was limited. If the old forwarding
path was broken due to link failure, the sender could not find
an alternative parent and had to wait for the beacon from
neighboring nodes to update the link quality. This leads to
many retransmissions and eventually packet losses, whereas
TALENT maintains a connected network due to the receiver-
initiated approach. For example, in Figure 8 Exp #5, the 4B’s
end-to-end loss rate is close to 25%, which corresponds to a
high delivery cost due to the excessive send attempts to a
parent that’s no longer available. When we run TALENT
under the same conditions in the same network, it achieved
near 0% loss rate because the overhearing nodes can become
temporary parents as soon as the sender’s old parent is no
longer reachable.
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Figure 11. End-to-end delivery cost and loss rate of
variable sending rate and single sender.
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Figure 12. End-to-end delivery cost and loss rate of
variable sending rate and multiple senders.

The performance of STLE was all over the place. In all
the different environments tested, sometimes it achieved rea-
sonable results, but other times it led to a significant increase
in delivery cost and loss rate. STLE had the highest rate of
parent changes of all the estimators tested, which leads to a
lot of control packet overhead. Further, the heuristic used
to decide parent changes (3 consecutive successes to switch
to a temporal parent, and 1 loss to go back to the previous
path), may lead to wrong routing decisions and bad paths are
chosen. STLE ended up with the worst performance in terms
of end-to-end delivery rate of all the schemes tested.

It can be observed that TALENT is still better than 4C on
average but not by a wide margin compared to STLE or 4B.
This is not very surprising given that both 4C and TALENT
employ LR based prediction models, but again, the cost of
model training required by 4C is not included in the results,
whereas TALENT does not require prior training due to the
use of an online learning algorithm.

5.5 Variable Rate and Multiple Senders
To evaluate TALENT in more realistic environments, we
conducted more experiments in the local testbed with vari-
able sending interval as well as multiple senders. We also
introduce additional interference by using wireless channel
11, which is often shared by 802.11 traffic.

The variable rate experiments used the same network set-
tings in local single sender experiments, the only difference
is the inter-packet interval is randomly selected in [50,150]
ms range instead of using a fixed interval of 100 ms. As
shown in Figure 11, the end-to-end the delivery cost and loss
rate results are similar to the fixed interval experiments re-
sults observed in Figure 8, indicating the variable rate does
not affect the performance of TALENT significantly.

To test the performance of TALENT in congested net-
works, we also conducted several experiments with multiple
nodes sending simultaneously with packet interval ranging
from 50 to 100 ms. Please note that although having multi-
ple senders is common in WSNs, it is rare that these senders
send packets at a high data rate at the same time. We con-
sider this experiment setting as the worst case scenario where
the network is congested and affected by external interfer-
ence. Figure 12 shows that while TALENT still outperforms
STLE and and 4B by 57.8% and 32.9% in terms of delivery
cost, the cost reduction is smaller than with only one sender.
Trace analysis shows that multiple senders created more data
forwarding paths compared with single sender experiments,
and hence helped the 4B link estimator to evaluate more links
with higher rate. We leave further exploration of using TAL-

ENT in highly congested networks for future work.

6 Discussion
Integration with other MAC Protocols: LPL used in this
work is realized in the BoX-MAC [23], the default MAC
protocol in TinyOS 2. As discussed in Section 4.4, a nice
feature of BoX-MAC is that it provides the overhearing in-
terface without incurring much overhead in terms of power
consumption because the energy-based receive check (CCA)
does not perform any address check. Note that some MAC
protocols such as X-MAC [8] perform address checks be-
fore starting to receive the data packets, which limits the
use of overhearing operation. In this case, using overhear-
ing may negatively impact the performance of LPL. How-
ever, as pointed out by Moss and Levis [23], on CC2420-
based platforms, BoX-MAC consumes up to 40 – 50% less
energy than X-MAC under reasonable workload. Therefore,
we consider that our evaluation with BoX-MAC is sufficient.
Furthermore, even if the underlying MAC protocol does not
support overhearing with LPL, we believe that the PHY pa-
rameters could still be estimated when the MAC performs
receive checks. We leave this evaluation for future work.
Limitations of TALENT: The main limitation of TALENT
is that it only functions in high data rate scenarios. Due to
the short coherence time of the wireless channel and quick
dynamics of the link quality, historical packets from several
seconds ago may not represent the currently channel qual-
ity anymore and do not correlate with the current packet re-
ceptions. Consequently, TALENT only works well under
high data rate when the last packet transmission happened re-
cently. Using TALENT in low data rate applications will not
harm the routing performance, but it will not provide much
gain in terms of delivery cost.

This limitation can be resolved by utilizing TALENT only
when a batch of packets needs to be sent. We leave the deci-
sion to the application/network level as the higher level pro-
tocols will have more control of when and how many packets
to send. Ideally, TALENT-aware routing protocols should
have two operation modes: low data rate mode, in which
the TALENT is disabled and the LPL wakeup intervals are
set to a long value, and burst mode, in which TALENT is
enabled and LPL incorporates short wakeup intervals. By
doing local buffering and sending packets in bursts, appli-
cations allow TALENT to select the instantaneous low cost
paths, trading off increased latency for significantly larger
delivery efficiency and smaller delivery costs. We leave the
design of such protocol to future work.



7 Conclusion
Prior studies have shown that model based predictors such as
4C significantly outperforms link estimators such as STLE
and 4B. However, the main disadvantage of 4C is the need to
collect link data at the target deployment site for training the
link prediction model. In this paper, we present TALENT,
a self-learning, plug-and-play estimator to predict the qual-
ity of a wireless link in the near future using a combination
of packet and physical level quality indicators. One of the
main advantages of TALENT is the use of online learning
techniques that are able to adapt to the wireless dynamics
without the need for data collection and model re-training.
When using TALENT together with CTP, our experimen-
tal results show that on many different environments TAL-
ENT increases the delivery efficiency more than 1.95 times
in comparison to state-of-the-art link quality estimators.
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