

Microsoft ADO.NET Entity
Framework Step by Step

John Paul Mueller

Published with the authorization of Microsoft Corporation by:
O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, California 95472

Copyright © 2013 by John Mueller
All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

ISBN: 978-0-735-66416-6

1 2 3 4 5 6 7 8 9 LSI 8 7 6 5 4 3

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, O’Reilly Media, Inc., Microsoft Corporation,
nor its resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions and Developmental Editor: Russell Jones

Production Editor: Christopher Hearse

Editorial Production: Zyg Group, LLC

Technical Reviewer: Russ Mullen

Indexer: Zyg Group, LLC

Cover Design: Twist Creative • Seattle

Cover Composition: Ellie Volckhausen

Illustrator: Rebecca Demarest

This book is dedicated to Kevin Smith, a good friend who’s
helped us realize some of our most special dreams. He’s always
helped us help ourselves—an outstanding gift that’s exceptionally
rare in this world.

—John Paul Mueller

Contents at a glance

Introduction	 xvii

Part I	 INTRODUCING THE ENTITY FRAMEWORK

Chapter 1	 Getting to know the Entity Framework	 3

Chapter 2	 Looking more closely at queries	 29

Chapter 3	 Choosing a workflow	 49

Part II	 COMPLETING BASIC TASKS

Chapter 4	 Generating and using objects	 79

Chapter 5	 Performing essential tasks	 101

Part III	 MANIPULATING DATA USING THE ENTITY FRAMEWORK

Chapter 6	 Manipulating data using LINQ	 119

Chapter 7	 Manipulating data using Entity SQL	 147

Chapter 8	 Interaction with stored procedures	 175

Chapter 9	 Interaction with views	 193

Chapter 10	 Interaction with Table-Valued Functions	 213

Part IV	 OVERCOMING ENTITY ERRORS

Chapter 11	 Dealing with exceptions	 237

Chapter 12	 Overcoming concurrency issues	 265

Chapter 13	 Handling performance problems	 287

Part V	 ADVANCED MANAGEMENT TECHNIQUES

Chapter 14	 Creating custom entities	 319

Chapter 15	 Mapping data types to properties	 347

Chapter 16	 Performing advanced management tasks	 369

Index	 405

		 vii

Contents

Introduction. xvii

Part I	 INTRODUCING THE ENTITY FRAMEWORK

Chapter 1	 Getting to know the Entity Framework	 3
Defining an entity. 4

Understanding the Entity Framework elements. 6

Considering the conceptual model. 7

Considering the storage model. 8

Considering the model mappings. 8

Introducing the Entity Framework files. 9

Viewing the Conceptual Schema Definition Language file 9

Viewing the Store Schema Definition Language file. 11

Viewing the Mapping Specification Language file.11

Developing a simple Entity Framework example . 12

Starting the Entity Data Model Wizard. 12

Using the Entity Data Model Designer. 16

Working with the mapping details. 18

Using the resulting framework to display data. 22

Getting started with the Entity Framework. 26

Chapter 1 quick reference. 27

Chapter 2	 Looking more closely at queries	 29
Defining a basic query. 30

Creating the model. 30

Working with enumerations. 31

Obtaining an application data source. 33

Creating the test application. 36

Running the basic query. 39

Creating specific queries. 41

Using literals. 41

viii	 Contents

Using operators, properties, and methods. 42

Combining and summarizing data . 44

Grouping data. 45

Getting started with the Entity Framework. 47

Chapter 2 quick reference. 48

Chapter 3	 Choosing a workflow	 49
Understanding the code-first workflow. 51

Understanding the model-first workflow. 53

Understanding the database-first workflow. 54

Defining the workflow choices. 55

Creating a code-first example . 57

Creating a project . 57

Defining the initial classes . 58

Adding Entity Framework 5 support. .59

Creating a code-first context. 60

Adding a record . 61

Viewing the results. 63

Creating a model-first example. 66

Defining the database model . 66

Adding a record and viewing the results. 70

Creating a database-first example. 71

Reverse engineering the database model. 71

Adding a record and comparing results . 73

Getting started with the Entity Framework. 74

Chapter 3 quick reference. 75

Part II	 COMPLETING BASIC TASKS

Chapter 4	 Generating and using objects	 79
Understanding the Entity objects . 80

Considering object services. 80

Considering the base classes. 81

	 Contents	 ix

Working with an EntityCollection. 82

Understanding the role of Entity SQL . 84

Making queries using objects. 85

Considering the role of lambda expressions. 86

Creating a basic query using Entity SQL . 86

Creating a basic query using LINQ. 88

Modifying data using objects. 89

Adding the forms. 90

Adding purchases. 92

Updating purchases. 93

Deleting purchases . 95

Working with Query Builder methods . 97

Getting started with the Entity Framework. 98

Chapter 4 quick reference. 99

Chapter 5	 Performing essential tasks	 101
Defining the essential tasks. 101

Viewing the data . 102

Saving changes. 104

Inserting new values. 104

Deleting old values . 105

Creating a master/detail form. 106

Creating the data source . 106

Configuring the data source . 109

Adding and configuring the controls. 110

Testing the result. 112

Getting started with the Entity Framework. 114

Chapter 5 quick reference. 114

Part III	 MANIPULATING DATA USING THE ENTITY FRAMEWORK

Chapter 6	 Manipulating data using LINQ	 119
Introducing LINQ to Entities. 120

Considering the LINQ to Entities provider. 120

x	 Contents

Developing LINQ to Entities queries. 122

Defining the LINQ to Entities essential keywords. 125

Defining the LINQ to Entities operators. 127

Understanding LINQ compilation. 135

Following an IQueryable sequence. 135

Following a List sequence. 138

Using entity and database functions. 139

Creating the function . 139

Accessing the function. 142

Getting started with the Entity Framework. 145

Chapter 6 quick reference. 146

Chapter 7	 Manipulating data using Entity SQL	 147
Understanding Entity SQL. 148

Considering the Entity SQL data flow. 148

Defining the Entity SQL components. 149

Selecting data. 159

Working with literals in Entity SQL. 161

Using the standard literals. 161

Adding some additional data . 162

Using a date or time literal. 164

Interacting with a decimal literal. 166

Ordering data . 168

Grouping data. 169

Getting started with the Entity Framework. 171

Chapter 7 quick reference. 172

Chapter 8	 Interaction with stored procedures	 175
Understanding stored procedures. 176

Adding stored procedures to your model. 179

Defining the stored procedure using Server Explorer. 179

Testing the stored procedure. 181

Updating the model . 182

	 Contents	 xi

Modifying a stored procedure. 184

Building an application using stored procedures. 188

Creating a basic stored procedure example . 188

Getting started with the Entity Framework. 191

Chapter 8 quick reference. 192

Chapter 9	 Interaction with views	 193
Understanding views. 194

Adding views to your model. 196

Defining views using Server Explorer. 196

Testing the view. 198

Updating the model . 200

Creating a basic view example. 202

Making views writable. 204

Getting started with the Entity Framework. 210

Chapter 9 quick reference. 211

Chapter 10	 Interaction with Table-Valued Functions	 213
Understanding TVFs. 214

Comparing TVFs to views. 214

Comparing TVFs to stored procedures . 215

Defining the storage layer . 215

Defining the mapping layer. 216

Defining the conceptual layer. 217

Defining the object layer . 218

Adding TVFs to your model . 218

Defining the TVF using Server Explorer. 219

Testing the TVF. 221

Updating the model . 223

Calling a TVF using Entity SQL. 225

Calling a TVF using LINQ. 227

Mapping a TVF to an entity type collection. .228

xii	 Contents

Getting started with the Entity Framework. 232

Chapter 10 quick reference. 233

Part IV	 OVERCOMING ENTITY ERRORS

Chapter 11	 Dealing with exceptions	 237
Understanding exceptions . 238

Considering exception sources. 240

Dealing with the System.Data.EntityException 240

Working through System.Data namespace exceptions. 242

Working through System.Data.Common namespace
exceptions. 246

Working through System.Data.Linq namespace exceptions 247

Handling connection string exceptions . 248

Seeing the connection string problem. 248

Creating code for the connection string problem. 250

Adding another layer of exception handling 253

Dealing with query exceptions. 256

Dealing with other data exception types. 258

Understanding concurrency exceptions. 261

Getting started with the Entity Framework. 262

Chapter 11 quick reference. 263

Chapter 12	 Overcoming concurrency issues	 265
Visualizing database concurrency issues . 266

Considering optimistic concurrency problems. 268

Rejecting the change. 269

Performing a partial update. 270

Obtaining user input. 270

Ignoring concurrency issues completely. 270

Performing a forced update. 271

Implementing optimistic concurrency in an application. 271

Developing the test environment. 272

	 Contents	 xiii

Testing the default concurrency. 275

Coding for field changes. 277

Using field-specific concurrency. 279

Using row-version concurrency. 282

Considering pessimistic concurrency issues. 284

Getting started with the Entity Framework. 285

Chapter 12 quick reference. 286

Chapter 13	 Handling performance problems	 287
Understanding performance issue sources. 288

Considering the layers. 288

Retrieving too many records. 289

Using the local cache. 290

Relying on pregenerated views. 290

Relying on precompiled queries. 293

Disabling change tracking. 294

Choosing between lazy loading and eager loading. 294

Viewing performance issues. 295

Direct query viewing. 295

Using third-party products. .301

Defining the performance triangle. 302

Considering the effects of raw speed. 303

Considering the effects of security. 305

Considering how raw speed and security affect reliability. 309

Using multithreading as an aid to speed. 312

Getting started with the Entity Framework. 315

Chapter 13 quick reference. 316

Part V	 ADVANCED MANAGEMENT TECHNIQUES

Chapter 14	 Creating custom entities	 319
Developing POCO classes. 320

Configuring the model. 320

xiv	 Contents

Adding the classes. 322

Creating an ObjectContext class to interact with the
POCO classes. 325

Testing the POCO application. 326

Creating a DbContext class to interact with the POCO classes . . . 328

Creating the classes in a different project. 330

Creating and using event handlers. 337

Handling ObjectContext events. 337

Creating and handling custom events. 339

Creating custom methods. 341

Creating custom properties . 343

Getting started with the Entity Framework. 345

Chapter 14 quick reference. 346

Chapter 15	 Mapping data types to properties	 347
Understanding mapping automation configuration 348

Configuring properties. 349

Changing property mapping. 351

Filtering the data. 352

Working with standard data types . 354

Considering the standard data type mapping scenarios. 354

Creating the Rewards3 database. 355

Performing standard data type mapping. 358

Working with enumerated data types . 361

Working with complex data types. 363

Working with geography and geometry spatial data types. 366

Getting started with the Entity Framework. 367

Chapter 15 quick reference. 368

Chapter 16	 Performing advanced management tasks	 369
Developing multiple diagrams for a model. 370

Creating the new diagram. 371

Configuring the diagram appearance . 374

	 Contents	 xv

Performing batch imports of stored procedures and functions. 376

Mapping a stored procedure that returns multiple result sets. 377

Creating the stored procedure . 378

Using the code-access technique. 380

Using the EDMX modification technique. 383

Creating entities with inheritance . 387

Creating the Rewards4 database. 387

Using inheritance with the model-first workflow. 388

Using inheritance with the code-first workflow. 394

Controlling context actions for automatically generated classes. 400

Getting started with the Entity Framework. 402

Chapter 16 quick reference. 403

Index	 405

		 xvii

Introduction

Gaining access to data in a managed way without a lot of coding—that’s a tall order!
The Entity Framework fulfills this promise and far more. Each version of the Entity

Framework is more capable than the last. The latest version, Entity Framework version 5,
provides you with access to far more database features with less work than ever before,
and Microsoft ADO.NET Entity Framework Step by Step is your gateway to finding just
how to use these phenomenal new features. In this book, you get hands-on practice
with all the latest functionality that the Entity Framework provides. By the time you
finish, you’ll be ready to tackle some of the most difficult database management tasks
without the heavy-duty coding that past efforts required.

Fortunately, this book doesn’t get so immersed in high-end features that it forgets
to tell you how to get started. Unlike a lot of tomes on the topic, this book starts simply
and helps you gain a good foothold in understanding just why the Entity Framework
is such an amazing addition to the your developer toolbox. You’ll see examples where
the automation does just about everything for you with little coding required, and
yet you obtain professional-looking results. In fact, that’s what you’re buying with the
Entity Framework—a reliable means of creating code quickly and successfully without
the problems that would ensue if you tried to create the same code completely by
hand. The book’s 44 examples help you gain experience using the Entity Framework in
a hands-on environment where you actually create code, rather than just reading about
what might work.

Of course, you do eventually delve into higher-end topics. You’ll find an entire
chapter on one of the most requested features, Table-Valued Functions (TVFs). Access
to this feature alone makes the upgrade to Entity Framework 5 a significant one. You’ll
also discover how to handle performance problems and perform low-end tasks such as
using inheritance when creating a model. In short, by the time you finish this book, you
will have the experience required to handle every common task that developers need
to know how to perform.

Who should read this book

Anyone who creates database applications using ADO.NET and is tired of writing reams
of code will definitely benefit from reading this book. What you should ask yourself is
whether you want to become more productive while writing code that is both more

xviii   Introduction

reliable and better able to interact with the database. Although the coding examples
are written in C#, several Microsoft Visual Basic developers tested this book during the
writing process and found that they could follow the examples quite well. All you really
need is a desire to write database applications more quickly and with less fuss.

Assumptions
To use this book successfully, you need a good knowledge of database programming
concepts using a technology such as ADO.NET. Although every attempt is made to ex-
plain basic (and essential) topics, a knowledge of working with databases using the .NET
Framework will make working through the examples significantly easier.

You also need to know how to write applications using the C# programming lan-
guage. All of the examples are written using C#, and there isn’t any attempt to explain
how the language elements work. If you don’t have the required C# knowledge, you
should consider getting John Sharp’s Microsoft Visual C# 2010 Step by Step (Microsoft
Press, 2010).

Some of the examples also require some knowledge of Transact-Structured Query
Language (T-SQL). Again, there are plenty of comments provided with the various
scripts, but there isn’t a lot of additional information provided about language ele-
ments. The book assumes that you know how basic SQL queries work.

Who should not read this book

This book is most definitely not aimed at the complete novice. You must know a little
about both SQL and ADO.NET to work with the book successfully. In addition, you must
know the C# programming language fairly well. The examples in the book focus a little
more on enterprise developers, but hobbyists should be able to follow the examples
without problem. If you’re looking for a high-end book with lots of low-end program-
ming examples and no hands-on techniques, this is most definitely not the book for
you. This book is all about getting people started using the Entity Framework in a
meaningful way to perform most common tasks, which means it uses several different
techniques to convey information so that a majority of readers can understand and use
the material presented.

	 Introduction   xix

Organization of this book

This book is organized into five parts. Each part is designed to demonstrate a particu-
lar facet of the Entity Framework, with an emphasis on the functionality provided by
version 5. Here is a brief overview of the book parts (each part introduction has more
detailed information about the content of the chapters in that part):

■■ Part I: Introducing the Entity Framework  This part of the book introduces
you to the Entity Framework version 5. You’ll discover what is new in this version
of the Entity Framework and also basic concepts such as the parts of a model.
Unlike many other texts, this part also tells you about the three workflows avail-
able when working with the Entity Framework: model first, database first, and
code first. Every chapter includes coding examples that emphasize the basics so
that you can see precisely how the Entity Framework works at a basic level.

■■ Part II: Completing basic tasks  Once you have a basic understanding of
what the Entity Framework does and why you’d want to use it, it’s time to see
how to perform basic Create, Review, Update, and Delete (CRUD) operations.
This part of the book provides an essential discussion of how to perform es-
sential tasks with full automation in place. It’s the part of the book you want to
read to emphasize speed of development over flexibility in accessing database
functionality.

■■ Part III: Manipulating data using the Entity Framework  Most applications
require more than a display of raw database data and simple CRUD operations.
This part of the book takes the next step in your journey of actually controlling
how the data appears and precisely what data is retrieved from the database.
You discover two client-side techniques for manipulating data (Language
Integrated Query [LINQ] and Entity Structured Query Language [Entity SQL]).
In addition, you see how to use server-based techniques that include stored
procedures, views, and TVFs.

■■ Part IV: Overcoming entity errors  It’s nearly impossible to create an applica-
tion that is free from error. In fact, smart developers know that it is impossible
because you really never have full control over absolutely all of the code that
goes into your application. This part of the book discusses three realms of error:
exceptions, concurrency issues, and performance problems.

xx   Introduction

■■ Part V: Advanced management techniques  This is the low-level-coding
part of the book. This is where you learn how to create custom entities and use
inheritance as a tool to create more robust models. You also discover tech-
niques for mapping various kinds of data to the Entity Framework, even when
the Entity Framework normally doesn’t support the data type. The key thing to
remember about this part is that you discover manual methods for modifying
how the automation works.

Finding your best starting point in this book
The different sections of Microsoft® ADO.NET Entity Framework Step by Step cover a
wide range of technologies associated with the Entity Framework. Depending on your
needs and your existing understanding of Microsoft data tools, you may wish to focus
on specific areas of the book. Use the following table to determine how best to proceed
through the book.

If you are Follow these steps

New to the Entity Framework Begin with Chapter 1, “Getting to know the
Entity Framework,” and move through Chapter
13, “Handling performance problems.” Skip the
last part of the book until you have gained some
experience using the automation that the Entity
Framework provides.

Familiar with earlier releases of the Entity
Framework

Read through Chapter 1 and Chapter 3,
“Choosing a workflow,” carefully. Chapter 3 is
especially important because it helps you under-
stand the new workflows. Work through Parts III,
IV, and V as needed to update your knowledge.

Interested in learning advanced Entity Framework
techniques

Move directly to Part V of the book. The first four
parts of this book are designed to help you learn
about the Entity Framework and interact success-
fully with the automation it provides.

Interested in using the existing database infra-
structure of your organization

Read Parts I and II to ensure you understand the
basics of how the Entity Framework works, and
then skip to Chapter 8, “Interaction with stored
procedures,” Chapter 9, “Interaction with views,”
and Chapter 10, “Interaction with table-valued
functions.”

Every chapter in this book contains at least one hands-on example (and usually
more). The only way you’ll actually gain a full understanding of the Entity Framework is
to download the sample code and then work through the hands-on examples. Each of
these procedures demonstrates an important element of the Entity Framework.

	 Introduction   xxi

Conventions and features in this book

This book presents information using conventions designed to make the information
readable and easy to follow.

Note  Note boxed elements tell you about additional information that will prove
useful in working with the Entity Framework. Notes normally include text about
techniques used to create examples or the sources of information used in creating
the chapter’s content.

Tip  Tip boxed elements provide additional information that will enhance your
productivity, make it easier to perform tasks, or help you locate additional sources
of information. Most tips provide helpful information that you don’t need to know
in order to use the book, but the information will prove helpful later as you work
with real-world code.

Warning  Warning boxed elements describe potentially dangerous situations
where performing an act could result in damage to your application, the data it
manages, or the user environment (such as the need to keep certain types of in-
formation secure). Pay special attention to warning elements because they’ll save
you time and effort.

■■ Each exercise consists of a series of tasks, presented as numbered steps (1, 2,
and so on) listing each action you must take to complete the exercise.

■■ Sidebars contain useful information that isn’t part of the main flow of discussion
in a chapter. These elements always have a title that tells you about the topic
of discussion. You can safely skip sidebars if desired or simply read them later.
Sidebars always provide you with helpful real-world resource information that
will help you as you create or manage applications.

■■ Text that you type (apart from code blocks) appears in bold.

■■ A plus sign (+) between two key names means that you must press those keys at
the same time. For example, “Press Alt+Tab” means that you hold down the Alt
key while you press the Tab key.

xxii   Introduction

■■ A vertical bar between two or more menu items (for example, File | Close)
means that you should select the first menu or menu item, then the next, and
so on.

System requirements

You will need the following hardware and software to complete the practice exercises in
this book:

■■ A copy of Microsoft Windows that will work with Microsoft Visual Studio 2012,
which can include Windows 7 SP1 (x86 and x64), Windows 8 (x86 and x64), Win-
dows Server 2008 R2 SP1 (x64), or Windows Server 2012 (x64).

■■ A copy of Visual Studio 2012 Professional or better. This book won’t work well
with Visual Studio 2012 Express Edition. In fact, many of the examples won’t
work at all, even if you use the downloaded source code.

■■ A copy of Microsoft SQL Server 2012 Express Edition with SQL Server Manage-
ment Studio 2012 Express or higher (included with Visual Studio). You can also
use the full-fledged version of SQL Server 2012.

Your computer must also meet these minimum requirements (although higher rat-
ings are always recommended):

■■ 1.6 GHz or faster processor

■■ 1 GB of RAM (1.5 GB if running on a virtual machine)

■■ 10 GB of available hard disk space

■■ 600 MB of available hard disk space

■■ 5400 RPM hard drive

■■ DirectX 9–capable video card running at 1024×768 or higher display resolution

■■ DVD drive

Your computer must also have access to an Internet connection to download soft-
ware or chapter examples.

	 Introduction   xxiii

Note  Many of the tasks in this book require that you have local administrator
rights. Newer versions of Windows include stricter security that requires you
to have additional rights to perform tasks such as creating copies of database
files.

Code samples

Most of the chapters in this book include exercises that let you interactively try out new
material learned in the main text. All sample projects can be downloaded from the fol-
lowing page:

http://aka.ms/ADONETEFSbS/files

Follow the instructions to download the zip file.

Note  In addition to the code samples, your system should have Visual Studio
2012 Professional (or better) and SQL Server 2012 Express Edition (or better)
installed. The exercises will include instructions for working with SQL Server
2012. In most cases, the exercises rely on Server Explorer to make it easy to
perform all tasks from the Visual Studio Integrated Development Environment
(IDE).

Installing the code samples
All you need to do to install the code samples is download them and unzip the archive
to a folder on your hard drive. The complete source code file will include all of the
databases used in the book. Simply attach these databases to your copy of SQL Server
or open them in Visual Studio by right-clicking Data Connections in Server Explorer and
choosing Add Connection. Use the Microsoft SQL Server Database Connection option
when creating the connection. If you encounter problems installing the code samples,
please contact me at John@JohnMuellerBooks.com. You can also find answers to com-
mon questions for this book on my blog, at http://blog.johnmuellerbooks.com/catego-
ries/263/entity-framework-development-step-by-step.aspx.

xxiv   Introduction

Using the code samples
The downloaded source code includes one folder for each chapter in the book. Simply
open the chapter folder and then the example folder for the example you want to work
with in the book. The downloaded source contains the completed source code so that
you can see precisely how your example should look. If you want to work through the
examples from scratch, the book contains complete instructions for developing them.

The downloaded source code also contains a Databases folder that contains all of
the databases for the book. Simply create a connection to the database you need to
use. The example will tell you which database is required. If you desire, the exercises
also tell you how to create the databases from scratch so that you can use whatever
setup you like.

Acknowledgments

Thanks to my wife, Rebecca, for working with me to get this book completed. I really
don’t know what I would have done without her help in researching and compiling
some of the information that appears in this book. She also did a fine job of proofread-
ing my rough draft. Rebecca keeps the house running while I’m buried in work.

Russ Mullen deserves thanks for his technical edit of this book. He greatly added to
the accuracy and depth of the material you see here. Russ is always providing me with
great URLs for new products and ideas. However, it’s the testing Russ does that helps
most. He’s the sanity check for my work. Russ also has different computer equipment
from mine, so he’s able to point out flaws that I might not otherwise notice.

Matt Wagner, my agent, deserves credit for helping me get the contract in the first
place and taking care of all the details that most authors don’t really consider. I always
appreciate his assistance. It’s good to know that someone wants to help.

A number of people read all or part of this book to help me refine the approach, test
the coding examples, and generally provide input that all readers wish they could have.
These unpaid volunteers helped in ways too numerous to mention here. I especially ap-
preciate the efforts of Eva Beattie and Glenn Russell, who provided general input, read
the entire book, and selflessly devoted themselves to this project.

	 Introduction   xxv

Finally, I would like to thank my editor, Russell Jones; Christopher Hearse; Damon
Larson; and the rest of the editorial and production staff at O’Reilly for their assistance
in bringing this book to print. It’s always nice to work with such a great group of profes-
sionals.

Errata & book support

We’ve made every effort to ensure the accuracy of this book and its companion con-
tent. Any errors that have been reported since this book was published are listed on our
Microsoft Press site at oreilly.com:

http://aka.ms/ADONETEFSbS/errata

If you find an error that is not already listed, you can report it to us through the
same page.

If you need additional support, email Microsoft Press Book Support at mspinput@
microsoft.com.

Please note that product support for Microsoft software is not offered through the
addresses above.

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most
valuable asset. Please tell us what you think of this book at

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in
advance for your input!

Stay in touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress.

http://aka.ms/ADONETEFSbS/errata

		 1

PART I

Introducing the Entity
Framework

Creating a database can be difficult. A database models information in the real world using a col-
lection of tables, indexes, views, and other items. In other words, a database is an abstraction of the
real-world information that it’s supposed to represent. When a developer is tasked with creating an
application that relies on the data within a database, the developer must create a second level of
abstraction because the application won’t see the data in precisely the same way that the database
does. Defining this second level of abstraction is even harder than creating the original database,
because it requires interpreting the real world through an abstraction. In order to define a realistic
presentation of the data in the database—one that precisely represents the real world—a developer
needs help. That’s what the Entity Framework does. It provides help to a developer in the form of a
modeling methodology that eases the amount of work the developer must perform to create a real-
istic presentation. To make things even easier, the Entity Framework relies on a graphical presentation
of the data so that the developer can literally see the relationships between the various tables and
other database items.

Even though the concept of the Entity Framework is straightforward, you need to know more
about it before you can simply use it to create a connection between the database and your applica-
tion. Working with models is definitely easier than working with hand-coded connections. However,
you still need to have a good understanding of how those models work and the various ways you
can interact with them. The purpose of the three chapters in this part is to introduce you to the Entity
Framework concepts. You’ll use this information to build a picture of how the Entity Framework per-
forms its task so that you can perform more complex operations with the Entity Framework later in
the book.

		 3

C H A P T E R 1

Getting to know the Entity
Framework

After completing the chapter, you’ll be able to

■■ Define what an entity is and why it’s important.

■■ Specify the major elements of the Entity Framework.

■■ List and describe the files used to store Entity Framework information.

■■ Create a simple Entity Framework example.

When an architect wants to design a real-world building by creating a blueprint, one of the tools
used to ensure the blueprint is accurate is a model. Often you see a model of the building as

part of the presentation for that building. Models are helpful because they help others visualize the
ideas that reside in the architect’s head. In addition, the models help the architect decide whether the
plan is realistic. Likewise, software developers can rely on models as a means of understanding a soft-
ware design, determining whether that design is realistic, and conveying that design to others. The
Entity Framework provides the means to create various kinds of models that a developer can interact
with in a number of ways. As with the architect’s model, the Entity Framework uses a graphical inter-
face to make information about the underlying database structure easier to understand and modify.

The Entity Framework is actually a Microsoft ActiveX Data Object .NET (ADO.NET) technology
extension. When you create the model of the database, you also make it possible for the Integrated
Development Environment (IDE) to automatically create some of the code required to make the con-
nection between an application and the database real. Because of the way ADO.NET and the Entity
Framework interact, it’s possible to create extremely complex designs and then use those designs
directly from your code in a way that the developer will understand. There isn’t any need to translate
between the levels of abstraction—the Entity Framework performs that task for you.

Before you can begin using the Entity Framework to perform useful work, however, you need to
know a little more about it. For one thing, you need to know why it’s called an Entity Framework. It’s
also important to know how the various models work and how they’re stored on your system, should
you ever need to access them directly. The following sections provide this information and more
about the Entity Framework. You’ll then use the knowledge you’ve gained to create a very simple ex-
ample. This example will help you better understand what the Entity Framework can do because you’ll
actually use it to interact with a simple database.

4   PART I  Introducing the Entity Framework

Defining an entity

An entity is the data associated with a particular object when considered from the perspective of
a particular application. For example, a customer object will include a customer’s name, address,
telephone number, company name, and so on. The actual customer object may have more data than
this associated with it, but from the perspective of this particular application, the customer object is
complete by knowing these facts. If you want to understand this from the traditional perspective of
a database administrator, the entity would be a single row in a view that contains all of the related
information for the customer. It includes everything that the database physically stores in separate
tables about that particular client. When thinking about entities, you need to consider these views of
the data:

■■ Physical  The tables, keys, indexes, views, and other constructions that hold and describe the
data associated with a real-world object such as a customer. All of these elements are opti-
mized to make it easier for the Database Management System (DBMS) to store and manipu-
late the data efficiently and reliably, without error. As such, a single customer data entry can
appear in multiple tables and require the use of multiple keys to create a cohesive view of
that customer. The physical storage of the data is efficient for the DBMS, but difficult for the
developer to understand.

■■ Logical  The combined elements required to define the data used with a single object, such
as a client. From a database perspective, the logical view of the data is often encapsulated in a
view. The view combines the data found within tables using keys and other database elements
that describe the relationships and order required to re-create the customer successfully. Even
so, the logical view of a database is still somewhat abstract and could cause problems for the
developer, not to mention require a lot of code to manage successfully. ADO.NET does reduce
the amount of coding the developer performs through the use of built-in objects, but the
developer must still understand the underlying physical construction of that data.

■■ Conceptual  The real-world view of the data as it applies to the object. When you view a
customer, you see attributes that define the customer and remember items that describe the
customer, such as the customer’s name. A conceptual view of the data presents information in
this understandable manner—as objects where the focus is on the data, not on the structure
of the underlying database.

When you want to think about customers as a group, you work with entities. Each entity is a single
customer, and the customers as a group are entities as well. In order to visualize the data that com-
prises a customer, the Entity Framework relies on models. These models help the developer concep-
tualize the entities. In addition, the Entity Framework stores these models in XML format for use in
automatically generating code to create objects based on the models. Working with objects makes
life easier for the developer.

	 Chapter 1  Getting to know the Entity Framework    5

Note  You may be tempted to think of the Entity Framework as a technology that only ap-
plies to Microsoft SQL Server and other relational databases. The Entity Framework is a full
solution that works with any data source, even flat-file and hierarchical databases. For the
sake of making the discussion clear, this book will rely upon SQL Server for the examples,
but you should know that using SQL Server is only a convenience, and you can use the
Entity Framework for any data source your application needs to work with. In addition, you
can mix and match data sources as needed within a single application.

In times past, developers needed to consider the physical (tables), logical (views), and conceptual
(data model) perspectives of data stored in a database. A developer had to know precisely which
table stored a particular piece of data, how that table was related to other tables in the database,
and how to relate the data in such a way as to create a complete picture of a particular entity. The
developer then wrote code to make the connectivity between the application and the database work.
The Entity Framework reduces the need to perform such tasks. A developer focuses on the entity, not
the underlying physical or logical structure of the database that contains the data. As a result, the
developer is more productive. Working with entities also makes the data easier to explain to others.

An entity contains properties. Just as objects are described by the properties they contain, entities
contain individual properties that describe each data element. A customer’s last name would be a
property of a customer entity. Just as classes have configurable getters and setters, so do properties
in the Entity Framework. Every entity has a special property called the key property. The key property
uniquely defines the entity in some way. An entity can have more than one key property, but it always
has at least one. An entity can also group multiple properties together to create a complex type that
mimics the use of user-defined types with standard classes.

Note  It’s important to remember that properties can contain either simple or complex
data. Simple data is of a type defined by the .NET Framework, such as Int32. Complex data
is more akin to a user-defined type and consists of multiple base types within a structure-
like context.

It’s possible to create a relationship between two entities through an association. For example, you
might create an association between a customer entity and the order entities associated with the cus-
tomer. The association type defines the specifics of the association. In some respects, an association
is similar to a database-level join. One or more properties in each entity, called association endpoints,
define the relationship between the two entities. The properties can define both single and multicol-
umn connections between the two entities. The multiplicity of the association endpoints determines
whether the association is one-to-one, one-to-many, or some other combination. The association

6   PART I  Introducing the Entity Framework

is bidirectional, so entities have full access to each other. In addition, an entity association can exist
even when the target data lacks any form of database-level join specification. All of the association
instances used to define an association type make up what is called the association set.

In order to allow one entity to view the data provided by an associated entity, the entities have a
navigation property. For example, a customer entity that’s associated with multiple order entities will
have a navigation property that allows each order to know that it’s associated with that customer.
Likewise, each order will have a navigation property that allows each customer entity to see all of the
orders associated with it. The use of navigation properties allows your code to create a view of the en-
tities from the perspective of a particular entity. When working with a customer entity, the application
can gain access to all of the orders submitted by that customer. In some respects, this feature works
much like a foreign key does in a database, but it’s easier to work with and faster to implement.

Some entities derive from other entities. For example, a customer can create an order. However,
the order will eventually have a state that creates other entities, such as a past-due order entity or a
delivered-order entity. These derived entities exist in the same container as the order entity as part of
an entity set. You can view the relationship between entities and derived entities as being similar to
a database and its views. The database contains all of the data, but a view looks at the data in a par-
ticular way. In the same way, a derived entity would help you create applications that view a particular
entity type within the set of entities.

The final piece of information you need to know for now about entities concerns the entity con-
tainer. In order to provide a convenient means to hold all of the entity information together, the Entity
Framework employs the entity container. Before you can interact with an entity, your application cre-
ates an entity container instance. This instance is known as the context. Your application accesses the
entities within a particular context.

Understanding the Entity Framework elements

The Entity Framework relies on XML files to perform its work. These files perform three tasks: defin-
ing the conceptual model, defining the storage model, and creating mappings between the models
and the physical database. Even though the Entity Framework does a lot of the work for you, it’s still
important to understand how these elements work together to create a better environment in which
to write applications.

	 Chapter 1  Getting to know the Entity Framework    7

Note  This chapter discusses the idea of models generically. However, it’s important to real-
ize that the Entity Framework lets you interact with the database using one of three tech-
niques:

■■ Database first  The Entity Framework creates classes that reflect an existing database
design.

■■ Design first  You define a model of the database that the Entity Framework then creates
on the database server.

■■ Code first  You create an application, and the Entity Framework defines a model that it
then uses to create the database on the database server.

In all three cases, the Entity Framework eventually creates a model that follows the stan-
dards described in this chapter. You’ll learn more about the methods of working with the
Entity Framework in Chapter 3, “Choosing a workflow.” For now, the important consider-
ation is the model itself.

Now that you a have a little idea of what constitutes the Entity Framework elements, it’s time
to discuss them in greater detail. In this case, we’re looking at the logical structure of the Entity
Framework. The physical structure (the XML files and their content) is discussed in the “Introduc-
ing the Entity Framework files” section of the chapter. The following sections discuss the conceptual
model, storage model, and model mappings.

Considering the conceptual model
The conceptual model is the part of the Entity Framework that developers interact with most. This
model defines how the database looks from the application’s perspective. Of course, the application
view must somehow match the physical realities of the underlying database, but there are many ways
in which this happens. For example, a C# application will use an INT32 value, rather than the Struc-
tured Query Language (SQL) int type. The conceptual model will refer to the data type as INT32, but
the reality is that the database itself stores the data as an int.

The conceptual model is also used to create the classes used to interact with the database. The
Entity Framework manages the conceptual model. As you make changes to the conceptual model, the
changes are reflected in both the classes that the Entity Framework creates for your application and in
the structure of the database. In addition, the Entity Framework automatically tracks changes to the
database design and incorporates them into your implementation classes. As a result, your application
can always access the data and functionality included with the target database.

8   PART I  Introducing the Entity Framework

Note  It’s important to realize that changes to the database design can occur at several
levels. The two most common levels are from the developer, when making changes to
the database model to accommodate application requirements; and from the Database
Administrator (DBA), to accommodate enterprise-wide changes to the database as needed
to efficiently and reliably store information. No matter how a change occurs, the database
structure is ultimately affected, at which point the Entity Framework detects the change and
updates the application using the data.

A conceptual model also incorporates the concept of a namespace, just as your applications do. An
Entity Framework namespace performs the same functions as the namespace in your application. For
example, it helps define entities with the same name as unique features. Using namespaces also helps
group like entities together. For example, everything related to a customer can appear in the same
namespace, making it easier to interact with the customer in every way needed.

At the heart of the conceptual model are the entity and association definitions used to create the
view of the database. Each entity definition includes the information described in the “Defining an
entity” section earlier in this chapter. When you use the designer to interact with the database model,
what you’re really doing is modifying the XML entries that create and define each of these entity
definitions. The XML entries are stored on disk and used to re-create the graphic appearance of the
model when you reopen the project.

Considering the storage model
The storage model is the part of the Entity Framework that defines how the database looks from
the database manager’s perspective. However, this model provides this view within Microsoft Visual
Studio, and it provides support for the conceptual model. This model is often called the logical model
because it provides a logical view of the database that ultimately translates into the physical database
(see the “Defining an entity” section earlier in this chapter for a description of the various database
views).

As with the conceptual model, the storage model consists of entity and association definitions.
However, these definitions reflect the logical appearance of the actual database, rather than the
presentation of the conceptual model within the application. In addition to the entity and association
definitions, the storage model includes actual database data such as commands used to query the
information within the database. You’ll also find stored procedures in this model. All of this additional
information is used by ADO.NET to create connection and command objects automatically, so that
you don’t have to hand-code the information as part of your application.

Considering the model mappings
At this point, you know that there are two models used with the Entity Framework—the conceptual
model presents the application view of the database and the storage model presents the logical
database manager view of the database. These two models are necessarily different. If they were the

	 Chapter 1  Getting to know the Entity Framework    9

same, you wouldn’t need two models. The need for two models is also easy to understand once you
consider that the application’s use of the database is always going to differ from the database manag-
er’s goals of storing the data efficiency and reliably. In order to make the two models work together,
the Entity Framework requires model mapping—a third element that describes how something in the
conceptual model translates to the storage model, and vice versa.

The overall goal of the model-mapping part of the Entity Framework is to create a definition of
how the entities, properties, and associations in the conceptual model translate to elements within
the storage model. This mapping makes it possible for the application to create a connection to the
database, modify its structure, manage data, and perform other tasks with a minimum of manually
written code. Most of the code used to interact with the database is automatically generated for the
developer using the combination of the conceptual model, storage model, and this mapping layer.

Introducing the Entity Framework files

As previously mentioned, all of the files used with the Entity Framework rely on XML. The use of XML
makes the files portable and easy to use with other applications. You can also view the content of
these files and reasonably expect to understand much of what they contain. However, each of the
Entity Framework elements uses a different XML file with a different file extension and a different
language inside.

After you create a new application that relies on the Entity Framework and define the required
database models, you can find the resulting files in the main folder of the project. When working with
Visual Studio 2012, you’ll find a single Entity Data Model XML (.EDMX) file. However, when working
with older versions of Visual Studio, you may find individual files for each of the Entity Framework
elements.

Providing a complete tutorial on each of these files is outside the scope of this book. The following
sections provide a useful overview of the files, which you can use for further study.

Viewing the Conceptual Schema Definition Language file
The Conceptual Schema Definition Language (.CSDL) file contains the XML required to build the con-
ceptual model of the database content as viewed by the application. You see this content in graphi-
cal format when working with Visual Studio. To see it in plain-text form, locate the .CSDL or .EDMX
file for your application in the project folder. Right-click this file in Microsoft Windows Explorer and
choose Open With from the context menu. Locate Notepad or some other suitable text editor in the
Open With dialog box, clear any option that says that this program will become the default program
for opening this file, and click OK. You’ll see the XML for the conceptual model for the application.
Following is the XML for the sample application that appears later in the chapter (some <Schema>
attributes are removed to make the listing easier to read).

10   PART I  Introducing the Entity Framework

Note  When using Visual Studio design tools to create the .CSDL, Store Schema Definition
Language (.SSDL), and Mapping Specification Language (.MSL) files, all three are stored in
a single .EDMX file, rather than in separate files. Whether the data appears in a single file or
within multiple files, it’s always stored as XML. An .EDMX file also contains some designer
information not found in the separate files. You can safely ignore the designer information
when viewing the .EDMX file in order to understand how the conceptual model, storage
model, and model mapping interact.

<!-- CSDL content -->
<edmx:ConceptualModels>
 <Schema xmlns="http://schemas.microsoft.com/ado/2009/11/edm"...>
 <EntityContainer Name="Model1Container" annotation:LazyLoadingEnabled="true">
 <EntitySet Name="Customers" EntityType="Model1.Customer" />
 </EntityContainer>
 <EntityType Name="Customer">
 <Key>
 <PropertyRef Name="CustomerID" />
 </Key>
 <Property Type="Int32" Name="CustomerID" Nullable="false"
 annotation:StoreGeneratedPattern="Identity" />
 <Property Type="String" Name="FirstName" Nullable="false" />
 <Property Type="String" Name="LastName" Nullable="false" />
 <Property Type="String" Name="AddressLine1" Nullable="false" />
 <Property Type="String" Name="AddressLine2" Nullable="false" />
 <Property Type="String" Name="City" Nullable="false" />
 <Property Type="String" Name="State_Province" Nullable="false" />
 <Property Type="String" Name="ZIP_Postal_Code" Nullable="false" />
 <Property Type="String" Name="Region_Country" Nullable="false" />
 </EntityType>
 </Schema>
</edmx:ConceptualModels>

The XML makes it easier to understand the preceding discussion of how an Entity object works.
Notice that the XML describes an entity container, used to hold all of the entities for this particular
model. Within that container is a single EntityType named Customer. As with all Entity objects, this
one has a Key property named CustomerID that gives the Entity a unique value. In addition, there are
a number of properties associated with this Entity, such as FirstName. You’ll see how the properties
work later in the chapter. Of course, an Entity can have other elements associated with it, and you’ll
see them at work later in the book.

Look at the individual <Property> entries. Each one includes a .NET type. In this case, the types are
limited to Int32 and String, but you have access to a number of other types. You can see the primitive
data types supported by the Entity Framework at http://msdn.microsoft.com/library/ee382832.aspx.

	 Chapter 1  Getting to know the Entity Framework    11

Viewing the Store Schema Definition Language file
The .SSDL file contains the XML required to define the storage model of the database content as
viewed by the database manager. As with the conceptual model, you see the database described in
terms of the entities required to create it. The entries rely on SQL data types, rather than .NET data
types. Here’s an example of the XML used to create a storage model for the example that appears
later in the chapter (the <Schema> has been shortened to make the text easier to read):

 <!-- SSDL content -->
 <edmx:StorageModels>
 <Schema Namespace="Model1.Store" Alias="Self"...>
<EntityContainer Name="Model1StoreContainer">
 <EntitySet Name="Customers" EntityType="Model1.Store.Customers" store:Type="Tables"
 Schema="dbo" />
</EntityContainer>
<EntityType Name="Customers">
 <Key>
 <PropertyRef Name="CustomerID" />
 </Key>
 <Property Name="CustomerID" Type="int" StoreGeneratedPattern="Identity"
 Nullable="false" />
 <Property Name="FirstName" Type="nvarchar(max)" Nullable="false" />
 <Property Name="LastName" Type="nvarchar(max)" Nullable="false" />
 <Property Name="AddressLine1" Type="nvarchar(max)" Nullable="false" />
 <Property Name="AddressLine2" Type="nvarchar(max)" Nullable="false" />
 <Property Name="City" Type="nvarchar(max)" Nullable="false" />
 <Property Name="State_Province" Type="nvarchar(max)" Nullable="false" />
 <Property Name="ZIP_Postal_Code" Type="nvarchar(max)" Nullable="false" />
 <Property Name="Region_Country" Type="nvarchar(max)" Nullable="false" />
</EntityType>

Viewing the Mapping Specification Language file
The .MSL file creates a relationship between the .CSDL and .SSDL files. The mapping serves to define
how the application view and the database manager view reflect the same database, but from differ-
ing perspectives. For example, the model mapping defines which conceptual model property trans-
lates into a particular storage model property. Here’s the model-mapping content for the example
that appears later in the chapter:

<!-- C-S mapping content -->
<edmx:Mappings>
<Mapping Space="C-S" xmlns="http://schemas.microsoft.com/ado/2009/11/mapping/cs">
<EntityContainerMapping StorageEntityContainer="Model1StoreContainer"
 CdmEntityContainer="Model1Container">
 <EntitySetMapping Name="Customers">
 <EntityTypeMapping TypeName="IsTypeOf(Model1.Customer)">

12   PART I  Introducing the Entity Framework

 <MappingFragment StoreEntitySet="Customers">
 <ScalarProperty Name="CustomerID" ColumnName="CustomerID" />
 <ScalarProperty Name="FirstName" ColumnName="FirstName" />
 <ScalarProperty Name="LastName" ColumnName="LastName" />
 <ScalarProperty Name="AddressLine1" ColumnName="AddressLine1" />
 <ScalarProperty Name="AddressLine2" ColumnName="AddressLine2" />
 <ScalarProperty Name="City" ColumnName="City" />
 <ScalarProperty Name="State_Province" ColumnName="State_Province" />
 <ScalarProperty Name="ZIP_Postal_Code" ColumnName="ZIP_Postal_Code" />
 <ScalarProperty Name="Region_Country" ColumnName="Region_Country" />
 </MappingFragment>
 </EntityTypeMapping>
 </EntitySetMapping>
</EntityContainerMapping>
</Mapping>
</edmx:Mappings>

Developing a simple Entity Framework example

The best way to begin learning about the Entity Framework is to use it. This example won’t do any-
thing too spectacular. In fact, it’s downright mundane, but it does reflect a process that many devel-
opers use to experiment with the Entity Framework. In this case, you’ll use the model-first technique
to create an example application. Remember that in the model-first approach, you begin by creating
a model that’s then added to the database, rather than relying on an existing database to define the
model. The model-first technique has the advantage of allowing you to create and manipulate a data-
base that won’t have any impact on anyone else, so you’re free to experiment as much as you want.

The example will start with a Windows Forms application. You’ll create the model needed to make
the database work with SQL Server Express (installed automatically on your system), and then use the
resulting model to create a functional application. You’ll test the application by managing some data
you create with it. The entire process will take an amazingly short time to complete, as described in
the following sections.

Starting the Entity Data Model Wizard
The first step is to create the database model. You can perform this task using a number of methods,
most of which developers never use. The easy method is to start the Entity Data Model Wizard and
have it do the work for you. That’s the approach this example takes, as described in the following
steps (you can find this project in the \Microsoft Press\Entity Framework Development Step by Step\
Chapter 01\SimpleEF folder of the downloadable source code):

	 Chapter 1  Getting to know the Entity Framework    13

Creating the SimpleEF application and adding a database model to it

1.	 Start Visual Studio 2012.

Note  This book is designed around Entity Framework 5 and Visual Studio 2012
Professional or above. You could possibly try other versions of Visual Studio, but
there is no guarantee that the examples will work. You will most definitely encounter
problems trying to work through the examples using any of the Microsoft Express
editions of Visual Studio.

2.	 Choose File | New | Project to display the New Project dialog box, as shown here:

3.	 Type SimpleEF in the Name field and click OK. You’ll see a new Windows Forms project.

4.	 Choose View | Other Windows | Data Sources. You’ll see the Data Sources window, as shown
here:

14   PART I  Introducing the Entity Framework

5.	 Click Add New Data Source. You’ll see the Data Source Configuration Wizard dialog box. The
wizard asks you to select a data source type, as shown here:

6.	 Select Database and click Next. The Data Source Configuration Wizard asks you to select a
database model, as shown here:

	 Chapter 1  Getting to know the Entity Framework    15

Note  The Data Source Configuration Wizard provides access to a number of data
source types, not just a database. For example, you could create an application that
relies on access to a web service or uses a special kind of object to interact with data.
There’s also an option to create a data source from your Microsoft SharePoint instal-
lation. These other sources are helpful, but discussing them is outside the scope of
this book. For the purposes of this book, you work with databases as a data source
because the Entity Framework deals with databases, not the other data sources at
your disposal.

7.	 Choose Entity Data Model and click Next. The Data Source Configuration Wizard asks you to
choose the model content, as shown here:

8.	 Choose Empty Model and click Finish. You’ll see Visual Studio perform a few tasks. When you
have the default User Access Control (UAC) set up, you’ll see a Security Warning dialog box
telling you that running the script required to generate the Entity Data Model could harm
your system. If you see this message, check the Do Not Show This Message Again option and
click OK to continue generating the Entity Data Model. It’s during this phase of the procedure
that you’ll see the Entity Data Model Wizard perform the tasks required to generate an empty
model for you. After a few additional moments, you’ll see a blank Entity Data Model Designer
window like the one shown here:

16   PART I  Introducing the Entity Framework

Note  When working with existing data, you choose the Generate From Database
option instead. The Entity Data Model Wizard will ask you a number of additional
questions and create a model based on the existing database, including a full set of
diagrams graphically displaying the database structure. Chapter 3 shows how the
database-first technique works. For now, just focus on the process used to interact
with the Entity Framework.

Solution Explorer also shows the result of adding the new data source. Notice the Model1.EDMX
file shown in the screen shot. This file contains the conceptual model, store model, and model map-
pings. Each feature uses the language (CSDL, SSDL, and MSL) required for that part of the Entity
Framework data.

Using the Entity Data Model Designer
After you add an Entity Data Model to your application, you can begin adding items to it from the
toolbox—just as you do when adding controls to your application. For example, if you want to add an
entity to the model, you drag and drop it onto the Entity Data Model Designer. The toolbox, shown
here, contains the elements described earlier in the chapter.

	 Chapter 1  Getting to know the Entity Framework    17

You’ll begin working with a model by adding an Entity to it and then configuring the Entity as
needed. The example uses a simple Entity named Customer with just a few properties that describe
the resulting Customer object. In this case, you’ll use the following properties:

■■ First Name (FirstName)

■■ Last Name (LastName)

■■ First Address Line (AddressLine1)

■■ Second Address Line (AddressLine2)

■■ City (City)

■■ State/Province (State_Province)

■■ ZIP/Postal Code (ZIP_Postal_Code)

■■ Region/Country (Region_Country)

Defining the SimpleEF Entity Data Model

1.	 Drag an Entity object from the toolbox to the Entity Data Model Designer. You’ll see a new
square added containing a blank entity, as shown here:

Notice that the designer automatically adds an Id property for you. This property uniquely
identifies a particular entry.

2.	 Right-click the Entity1 object and choose Rename from the context menu. The Entity1 entry
changes to a text box. Type Customer and press Enter.

3.	 Right-click the Id property and choose Rename from the context menu. The Id property
changes to a text box. Type CustomerID and press Enter.

18   PART I  Introducing the Entity Framework

4.	 Right-click the Customer object and choose Add New | Scalar Property from the context
menu. You’ll see a new property added with the name as a text box.

5.	 Type FirstName (the value shown in parentheses in the previous list) and press Enter.

6.	 Perform steps 4 and 5 for all of the properties described earlier in this section. When you’re
finished, your entity should look like this one:

At this point, you could select any of these entity properties and change their properties using
the Properties window, just as you would with any application feature. For example, you could
change the Type property to any of the supported data types. However, for the purposes of
this example, you don’t actually need to change anything.

Notice that the default Entity object color is blue. When working with a complex design, you may
want to color code the entities to make them easier to identify. For example, you may want to color
customer entities blue and employee entities red. Color coding can make it easier to find the specific
entity group you want. To change the color of an entity, select the entity in the designer and change
the Fill Color property in the Properties window.

Working with the mapping details
At this point, you’ve defined a model for the example application. Right-click the Customer entity
and choose Validate from the context menu. The IDE tells you that entity Customer isn’t mapped, as
shown here:

Creating a model doesn’t create the required mapping. In fact, the database you just created
doesn’t exist at all. The model for the database exists, but you still need to tell Visual Studio to inter-
act with the database manager (SQL Server Express in this case) to create the physical database and
develop a map between your model and the logical database.

	 Chapter 1  Getting to know the Entity Framework    19

Developing the database and the required mapping

1.	 Right-click the Customer entity and choose Generate Database From Model on the context
menu. You’ll see the Generate Database Wizard dialog box, as shown here:

2.	 Click New Connection. You’ll see the Choose Data Source dialog box shown here:

3.	 Select Microsoft SQL Server and then click Continue. You’ll see a Connection Properties dialog
box like the one shown here:

20   PART I  Introducing the Entity Framework

Note  If you plan to work with other database managers, make sure you clear the
Always Use This Selection check box. Doing so ensures that Visual Studio displays
this dialog box each time so that you can choose which database manager you want
to use.

4.	 Choose the name of the server you want to use in the Server Name drop-down list box.

5.	 Type TestCustomer in the Select Or Enter A Database Name field.

Note  If you click Test Connection at this point, you should see an error message
stating the database doesn’t exist. That’s because Visual Studio hasn’t created it yet.
The database will exist after these steps are complete.

6.	 Click OK. You’ll see a dialog box telling you that the database doesn’t exist. Visual Studio asks
permission to attempt to create the database for you.

	 Chapter 1  Getting to know the Entity Framework    21

7.	 Click Yes. Visual Studio creates the new database for you. This is a blank database—it doesn’t
contain any tables, views, indexes, or anything else normally associated with a database. You’ll
return to the Generate Database Wizard dialog box. However, now the connection informa-
tion is filled in.

8.	 Click Next. The Generate Database Wizard creates the Data Definition Language (DDL) script
required to create everything in the model you designed, as shown here. You can scroll
through this script to see the SQL statements used to make your model a real database and
associated table.

9.	 Click Finish. You’ll see the script, Model1.EDMX.sql, open. It hasn’t executed yet. All that the
Generate Database Wizard has done is create the script required to make your database
model functional.

10.	 Choose SQL | Transact-SQL Editor | Execute. You’ll see a connection dialog box where you can
enter the information required to connect to the SQL Server instance you’ve selected.

11.	 Enter any required credentials and click Connect. Visual Studio connects to the database
manager and executes the SQL script it created. At this point, your database is ready for use.
Notice that you didn’t have to access the database manager yourself or create any scripts by
hand.

22   PART I  Introducing the Entity Framework

Using the resulting framework to display data
Now that you have a database to use—a database generated from a model you created—you might
want to see the database in action. There are a number of ways to accomplish the task, but for this
first sample, it’s probably best to try something easy. The one piece of information you absolutely
need to know before you start is that the model you created earlier also generated code. Part of this
code is the creation of a container that you use to access the database. The container class always
starts with the name of the model, followed by the word container. For this example, this means that
the name of the container class is Model1Container.

Nothing else you do with the Entity Framework is going to be outside your experience if you’ve
worked with collections in the past. The following steps create a simple application that will test just
a few of the features that this model provides. Chapter 2, “Looking more closely at queries,” will help
you start performing more complex tasks.

Creating an application based on the TestCustomer database

1.	 Add four buttons to the Windows Forms application you created at the outset of this example,
and name them btnCount, btnAdd, btnDelete, and btnQuit. Here’s an example of the simple
form as it appears in the downloadable source:

2.	 Right-click the Form1.cs entry in Solution Explorer and choose View Code from the context
menu. You’ll see the Code Editor. Add a reference to the model container and instantiate it in
the form’s constructor, as shown here:

// Define a container to hold the database information.
Model1Container ThisContainer;

public Form1()
{
 InitializeComponent();

 // Instantiate the container.
 ThisContainer = new Model1Container();
}

	 Chapter 1  Getting to know the Entity Framework    23

ThisContainer contains a reference to all of the elements found in the model. In this case, the
model only contains a reference to one table, Customers. However, in a production applica-
tion, you could use ThisContainer to access every table, view, index, or other feature in the
database.

3.	 Double-click Count. Visual Studio creates an event handler for you. Add the following code to
the event handler:

private void btnCount_Click(object sender, EventArgs e)
{
 // Display the number of database records.
 MessageBox.Show("There are " +
 ThisContainer.Customers.Count().ToString() +
 " Records.");
}

The container for all of the database elements is found in ThisContainer. Within the container
is a table named Customers. The Count() method outputs the number of records in the speci-
fied table.

4.	 Double-click Add and add the following code to the resulting event handler:

private void btnAdd_Click(object sender, EventArgs e)
{
 // Create a new record.
 Customer ThisCustomer = ThisContainer.Customers.Create();

 // Add some random data.
 Random ThisValue = new Random(DateTime.Now.Millisecond);
 ThisCustomer.FirstName = ThisValue.Next().ToString();
 ThisCustomer.LastName = ThisValue.Next().ToString();
 ThisCustomer.AddressLine1 = ThisValue.Next().ToString();
 ThisCustomer.AddressLine2 = ThisValue.Next().ToString();
 ThisCustomer.City = ThisValue.Next().ToString();
 ThisCustomer.State_Province = ThisValue.Next().ToString();
 ThisCustomer.ZIP_Postal_Code = ThisValue.Next().ToString();
 ThisCustomer.Region_Country = ThisValue.Next().ToString();

 // Add a new record.
 ThisContainer.Customers.Add(ThisCustomer);
 ThisContainer.SaveChanges();

 // Inform the user.
 MessageBox.Show("Added " + ThisCustomer.CustomerID.ToString());
}

The example begins by creating a new Customer record, ThisCustomer. It then fills the fields
with random numeric values. The content is simply there to make it easy to view the record
information later.

In order to add the new record to the database, the example calls the ThisContainer.
Customers.Add() method. This method requires a Customer object as input. The changes won’t
take effect until the application calls ThisContainer.SaveChanges(). You need to make sure your

24   PART I  Introducing the Entity Framework

code calls the SaveChanges() method regularly; otherwise, you risk losing application data.
Finally, the application shows the record number added to the application.

5.	 Double-click Delete and add the following code to the resulting event handler:

private void btnDelete_Click(object sender, EventArgs e)
{
 // Obtain the first record.
 Customer ThisCustomer = null;
 if (ThisContainer.Customers.Count() > 0)
 ThisCustomer = ThisContainer.Customers.First();
 else
 {
 // Display an error message if there are no records to delete.
 MessageBox.Show("No Records to Delete");
 return;
 }

 // Delete it.
 ThisContainer.Customers.Remove(ThisCustomer);
 ThisContainer.SaveChanges();

 // Inform the user.
 MessageBox.Show("Deleted " + ThisCustomer.CustomerID.ToString());
}

A production application would have a lot more checks than this one does, but the code
begins by checking whether there are any records to delete in the Customers table. If not, the
event handler exits after providing an error message.

There are a number of ways to obtain a record from the Customers table. For that mat-
ter, you might simply want to search for a particular record based on some criterion and
delete all those that match. In this case, the code uses the ThisContainer.Customers.First()
method to obtain a copy of the first record in the table. The code then calls ThisContainer.
Customers.Remove() to remove the record and ThisContainer.SaveChanges() to make the
changes permanent. The code then informs the user about the deletion and displays the ID of
the customer it deleted.

6.	 Double-click Quit and add the following code to the resulting event handler:

private void btnQuit_Click(object sender, EventArgs e)
{
 // Save the database.
 ThisContainer.SaveChanges();

 // End the program.
 Close();
}

One task you should always perform before you exit the application is to save the database
changes one more time—just to ensure that none of the changes are lost. After the code calls
ThisContainer.SaveChanges(), it exits by closing the form.

	 Chapter 1  Getting to know the Entity Framework    25

7.	 Click Start and try some of the buttons. For example, click Count and you’ll see the current
record count (0 if there are no records). Click Add and you’ll see the identifier of the customer
that the application has added. Likewise, click Delete and you’ll see the identifier of the cus-
tomer that the application has deleted. Make sure you end up with at least one record in the
database.

8.	 Choose View | Server Explorer. You’ll see the Server Explorer window shown here:

9.	 Drill down into the TestCustomer.dbo\Tables\Customers entry, as shown in the preceding im-
age. Notice that the complete table structure is precisely as you designed it.

10.	 Right-click Customers and choose Show Table Data from the context menu. You’ll see a new
window appear with the data from the table as shown here (your data will most definitely dif-
fer from mine because the data is randomly generated in this application):

This environment is fully interactive, so you can use it to check the results of your database
experiments. More importantly, you can use it to modify the data as necessary to meet test
requirements.

11.	 Click Quit to end the application. You can always experiment with this application later.

26   PART I  Introducing the Entity Framework

Getting started with the Entity Framework

The Entity Framework makes it possible to write database applications using less manually written
code because the Entity Framework relies on the content of the conceptual model, storage model,
and mapping model files to automatically generate classes that an application can use to access the
database reliably. The use of the Entity Framework makes developers more productive and gener-
ally reduces application errors. In addition, the automation that the Entity Framework provides helps
ensure that the application remains up to date. Changes made by the developer or DBA are automati-
cally reflected in the application.

This chapter has introduced you to the Entity Framework. Make sure you understand the three
layers—conceptual model, storage model, and model mapping—before you proceed to Chapter 2.
Also take time to create the sample application and view the files it creates. The more time you spend
interacting with the data that the Entity Framework creates and manages, the better. Of course, all of
the work of creating classes is done for you in the background, but it’s still a good idea to know the
source of the automation and have an idea of how it works for those situations where the automation
doesn’t quite produce the results you expected. As part of working with this chapter, try creating your
own project based on data that you already have in a sample database on your system. (Please don’t
work with any production data until you’re proficient with the Entity Framework.)

Chapter 2 takes the next natural step in working with the Entity Framework. Instead of simply cre-
ating a project and viewing the resulting files, you’re going to begin working with some data by mak-
ing queries. After all, data stored in a database isn’t useful until you can get it out and display it to an
end user in a useful form. Once you complete Chapter 2, you may want to come back to this chapter
and use the techniques described here to view the files that the sample in that chapter creates. You’ll
see some differences because now you’ll be interacting with the data in a meaningful way. Viewing
the differences will add to your knowledge of how the Entity Framework interacts with the database
and generates XML to model it.

	 Chapter 1  Getting to know the Entity Framework    27

Chapter 1 quick reference

To Do this

See how the application views the database Open the .CSDL or .EDMX file and view its content.

See how the database manager views the database Open the .SSDL or .EDMX file and view its content.

Determine how the Entity Framework resolves differences
between the application view and the database manager
view of the database

Open the .MSL or .EDMX file and view its content.

Create a new conceptual model Click Add New Data Source in the Data Source window and
choose Empty Model when prompted.

Add entities to the new conceptual model Drag and drop an Entity object from the Entry Framework
folder of the toolbox to the Entity Data Model Designer.

Generate a physical database based on your design Right-click the entity you want to work with and choose
Generate Database From Model on the context menu.

Generate the tables and other elements in your model Choose SQL | Transact-SQL Editor | Execute.

Use the new database in an application Create a reference to the model container, such as
Model1Container ThisContainer = new Model1Container();,
where Model1 is the name of the model you want to use.

		 29

C H A P T E R 2

Looking more closely at queries

After completing the chapter, you’ll be able to

■■ Perform a basic query against a database.

■■ Use special query mechanisms to create specific queries.

■■ Combine and summarize data as needed.

■■ Group data to make it easier to see relationships.

The most natural act when you have a data store of some type is to ask it a question. This
activity doesn’t necessarily require a database. Knowledgeable people are asked lots of questions

by those who want to know something. Someone long ago decided to call this activity a query when
it comes to computers, but the concept is precisely the same. When you store data with a computer,
you want to be able to ask the computer questions about that data later—otherwise, the data is use-
less. That’s what this chapter is about—asking the computer questions to gain information about the
data store in the database you create.

Just as there are many ways to ask human experts questions, there are many ways to ask a com-
puter questions. For example, you could simply create a SQL Query object to perform the task. Some
questions become quite complex though, and asking them using a SQL query may prove difficult for
some developers. That’s when you start relying on other techniques, such as Language-Integrated
Query (LINQ), which uses a SQL-like syntax, but greatly simplifies the method used to actually ask the
question. Of course, you can use standard methods that you use with any collection as well. You can
even ask for the information found in a specific record number, assuming you know what that record
number is.

Presentation is large part of understanding data. When you ask a human expert a question, the ex-
pert might provide an answer that would require even more knowledge to understand, or might pro-
vide a simplified answer that anyone can understand. Likewise, when you ask computers questions,
you want to get output that’s understandable by the viewer. Part of making the answer understand-
able is combining the data in specific ways, so that the viewer sees an overview of the information,
rather than drowning in detail. In addition, grouping information in certain ways can help viewers
make associations that aren’t obvious from the raw data. In short, presentation quality can make the
answer to a question either easier or harder to understand, depending on the presentation you use.
This chapter discusses presentation issues as they relate to working with data directly.

30   PART I  Introducing the Entity Framework

Defining a basic query

A basic query is one in which the person asking the question needs straightforward results without
any special formatting. A basic query could be as simple as obtaining a specific record from a single
table in the database and viewing the raw data it provides. Sometimes a user needs only basic infor-
mation, so it’s important to know how to make a basic query to reduce the time and effort required
to obtain the information. The following sections describe how to create and run a basic query. You
can find the code for this example in the \Microsoft Press\Entity Framework Development Step by
Step\Chapter 02\GetUserFavorites folder of the downloadable source code.

Note  You can download the source code for this book from the publisher’s site at Provide
URL Here. It’s an exceptionally good idea to download the book’s source code so that you
can see how the examples should look as you work through them. In addition, if you make
a mistake, you can always use the downloaded source code to locate the error and make
corrections to your code. If you choose not to type everything in by hand, the download-
able source makes it possible for you to participate in the rest of the book’s material.

Creating the model
Chapter 1, “Getting to know the Entity Framework,” showed you how to create a basic entity, convert
it to a database, and then use it within an application. This example begins with a simple entity that
consists of a user name (type String), favorite number (type Int32), favorite color (type Int32), and
birth date (type DateTime), as shown here:

Notice that the key property is named UserId and that the entity is named UserFavorites. Besides
providing a simple dataset to work with for your first query, this example also exposes you to some
new data types so that you can get a better understanding of how they work in the Entity Framework.
To start this example, you will create a Microsoft Windows Forms project and then add a class library
to it. The following procedure will get you started.

Defining the project and model

1.	 Choose File | New | Project. You’ll see the New Project dialog box.

2.	 Select the Windows Forms Application template.

	 Chapter 2  Looking more closely at queries    31

3.	 Type TestBasicQuery in the Name field and GetUserFavorites in the Solution field. Click OK.
Microsoft Visual Studio creates a new project for you.

4.	 Right-click TestBasicQuery in Solution Explorer and choose Add | New Item from the context
menu. You’ll see the Add New Item dialog box.

5.	 Select the Data folder in the left pane and the ADO.NET Entity Data Model template in the
center pane, as shown here:

6.	 Type UserFavoritesModel in the Name field and click Add. You’ll see the Entity Data Model
Wizard appear.

7.	 Select Empty Model and click Finish. You’ll see a blank diagram.

8.	 Use the techniques you used in the “Using the Entity Data Model Designer” section of Chapter
1 to create the model shown earlier in this chapter. Start with the UserFavorites entity, rename
the key value to UserId, and then add the required scalar values. Change the Type property
for each of the scalar values as needed to match the description of the model.

Working with enumerations
This example is going to show how to perform a new technique with FavoriteColor. The first ques-
tion you must have asked when creating the entity is why FavoriteColor is an Int32 type, rather than
a String, since colors are normally presented as human-readable names. You don’t actually want the
user to be able to input all sorts of odd colors. If you let the user enter a string name, you might
end up with several hundred shades of blue, many of which won’t actually use the word blue in their
name. This is a situation where an enumerated type is going to work well. You can still allow a number
of colors from which the user can select, but you also make it possible to search for specific colors.
The following procedure tells how to convert an Int32 type into an enumerated type.

32   PART I  Introducing the Entity Framework

Note  The ability to work with enumerated types is new to Entity Framework 5. This feature
is really useful for all sorts of data needs. For example, in a production application, you
could use an enumerated type to limit the methods for shipping products to those allowed
by the organization. Entity Framework 5 also makes working with entities quite easy, as
you’ll see in this chapter.

Creating an enumerated type for FavoriteColor

1.	 Right-click FavoriteColor and choose Convert To Enum from the context menu. You’ll see the
Add Enum Type dialog box shown here:

2.	 Type ColorNames in the Enum Type Name field. This is the name that the application will use
to access the enumerated type. You’ll also use it within your code to access the enumerated
members.

3.	 Type Red in the first Member Name field entry and press Enter. The entry point will automati-
cally advance to the next blank entry in the list.

	 Chapter 2  Looking more closely at queries    33

4.	 Add in turn Blue, Green, Orange, Yellow, Purple, Pink, Black, and White. You should end up
with a number of color entries like the ones shown here:

5.	 Click OK. FavoriteColor is now an enumerated type. It doesn’t look any different, but if you
look in the Properties window, you’ll see that the Type property value has changed to Color-
Names.

At this point, you can generate the database from the model using precisely the same technique
that you did in Chapter 1. Give the database a name of UserFavoritesData.

Obtaining an application data source
If you look at the Data Sources window now, you’ll see that it still doesn’t contain a data source listed
in it, despite the fact you started there to create the UserFavorites entity. You used the model, User-
FavoritesModel, to create the database. However, you can’t use UserFavoritesModel to interact with
the database through the application without writing code. If you wanted to use the coded approach,
you’d write something like this to start:

// Create the database connection.
var UserFavoritesContext = new UserFavoritesModelContainer();

At this point, UserFavoritesContext provides a connection to the database that you can use to in-
teract with it. After you create an object like UserFavoritesContext, you’d access database functionality,
such as adding a new record, by using code like this:

34   PART I  Introducing the Entity Framework

// Create a new record.
UserFavorites NewRecord = new UserFavorites();

// Fill in the record data.
NewRecord.Name = "Mark Hassall";
NewRecord.FavoriteNumber = 22;
NewRecord.FavoriteColor = ColorNames.Red;
NewRecord.Birthday = new DateTime(1990, 7, 10);

// Add the record to the database.
UserFavoritesContext.UserFavorites.Add(NewRecord);

// Save the record to the physical database.
MessageBox.Show(UserFavoritesContext.SaveChanges().ToString() + " records changed.");

When you run this code opens a window showing the data you just added to the table. Here are
typical results for the code, the application adds a new record to the database. In fact, you can verify
it by opening the connection to the database in Server Explorer, drilling down to the UserFavorites
table, right-clicking the table entry, and choosing Show Table Data from the context menu. Visual
Studio presented in this short example:

There’s nothing wrong with hand-coding the specifics of the database interface, especially when
you need to create an application that performs a special task. Fortunately, there’s an easier way to
work with the database when you perform common tasks that doesn’t involve writing a lot of code by
hand. It begins with creating an object data source you can use to interact with the model you cre-
ated earlier in an easier way than writing code for it. The following procedure describes how to create
the object data source you use for this example.

Defining an application data source

1.	 Click Add New Data Source in the Data Sources window. You’ll see the Data Source Configura-
tion Wizard shown here:

	 Chapter 2  Looking more closely at queries    35

It’s essential to remember what sort of connection you need to create when working with the
Entity Framework. What you want is a connection to an object that will help you create the
application. The connection already exists as part of the model you created earlier. In some
cases, developers become lost when thinking about the connection, rather than the goal,
which is to make the data visible to the end user.

2.	 Select Object and click Next. The Data Source Configuration Wizard asks you to select a data
object. You know from the code shown earlier in this section that the UserFavoritesModelCon-
tainer provides access to the connection and the underlying data. However, if you select it,
in this case, you’ll find that you miss the goal of creating the user interface needed to inter-
act with the data. What you really need to do is to drill down to the UserFavorites object, as
shown here, and select it:

36   PART I  Introducing the Entity Framework

3.	 Check the UserFavorites box and click Finish. Visual Studio creates the required data source, as
shown here:

Creating the test application
At this point, you have a data source you can use to create an application. The data source is
configurable—you can define how each object should appear when dropped onto a form. For ex-
ample, you can change UserId from a text box to a label. The following steps help you define the data
source configuration and then create a test application using it.

Creating an application from a data source

1.	 Highlight UserFavorites. You’ll see a drop-down list box. (Some developers don’t realize that
these list boxes are available; they contain configuration options for specific objects.) In this
case, you want to see the records one at a time, so you need to change the configuration from
grid view to details view.

	 Chapter 2  Looking more closely at queries    37

2.	 Select Details from the drop-down list. Notice that the UserFavorites icon changes to reflect
the change in configuration. Some of the individual fields also require configuration. For
example, you don’t want to allow the user to change the UserId field because this field value is
automatically generated by the database.

3.	 Highlight UserId and choose Label from the drop-down list box. Notice that the icon changes
to match the new field configuration.

4.	 Highlight FavoriteColor. Remember that FavoriteColor has an Integer data type, but you want
it to appear as an enumerated value. This means a little extra configuration at the outset.
Choose Customize from the drop-down list box, and you’ll see the Options dialog box shown
here:

5.	 Choose the Enum option in the Data Type field and then click OK. This changes the data type,
but not the field type.

6.	 Choose ComboBox from the drop-down list box. The FavoriteColor field icon changes to
match the new configuration.

7.	 Drag and drop UserFavorites onto Form1. Visual Studio automatically creates a form-based
application for working with the database you created earlier, as shown here:

38   PART I  Introducing the Entity Framework

Normally, you’d take time to make this form look pretty and organize it a bit differently from
what Visual Studio has provided, but for the sake of simplicity (and getting to the meat of the
application faster), just leave things as-is for now. This setup will work just fine for your tests.
The application won’t work just yet; you do need to make a few additional changes to it.

Notice that Visual Studio also creates two components, userFavoritesBindingSource and user-
FavoritesBindingNavigator. These two components perform many of the tasks that you’d nor-
mally hand-code automatically. In fact, you’ll be amazed at how much work they do for you.

8.	 Add code to create and initialize the database content and load the records needed by the
application. Right-click Form1 in Solution Explorer and choose View Code from the context
menu. The code you need to add appears in bold.

// Define the context used to access the database.
UserFavoritesModelContainer UserFavoritesContext;

public Form1()
{
 InitializeComponent();

 // Initialize the database context.
 UserFavoritesContext = new UserFavoritesModelContainer();

 // Query the database for the records you want.
 var dbQuery =
 UserFavoritesContext.UserFavorites.Where(id => id.UserId >= 0).ToArray();
}

This code begins by creating a database context, just as the code in the first example in the
first part of the chapter did. The database context provides access to the data that you de-
fined with your model. However, that data exists in the database. In order to use it locally, you
must make a query.

The query code requests every record where the UserId field has a value greater than 0, which
is all of the records in the table, since they start with a value of 1. Making a call to ToArray()
actually loads the records from the database to a local variable called Local. You’ll see how the
Local variable works in the next step.

9.	 Double-click Form1 to create a Load() event handler. This event handler configures the display
elements every time the form loads. Here’s the code needed for this task:

private void Form1_Load(object sender, EventArgs e)
{

 // Assign a local copy of the queried records to the
 // binding source.
 userFavoritesBindingSource.DataSource =
 UserFavoritesContext.UserFavorites.Local;

 // Fill the Favorite Colors list with acceptable colors and
 // choose a default.
 favoriteColorComboBox.DataSource = Enum.GetValues(typeof(ColorNames));

	 Chapter 2  Looking more closely at queries    39

 favoriteColorComboBox.SelectedItem = ColorNames.Red;
}

By setting the userFavoritesBindingSource.DataSource property to UserFavoritesContext.User-
Favorites.Local, you make it possible for the application to access a local copy of the data from
the database. Using a local copy greatly increases application speed. This local copy tracks any
changes to the data as the reader works with it. Consequently, when the changes are complet-
ed, the user can save them as a batch to the database, improving overall application efficiency.

The application must also configure the favoriteColorComboBox to provide access to the
standard list of colors that you’ve defined. The example code shows how to perform this task
and then define the default selection. In order to make favoriteColorComboBox a little more
bulletproof, you need to set the DropDownStyle property to DropDownList.

10.	 Select the Save button (the last one on the toolbar) and set its Enabled property to True. Now
you need to add some code to actually make the Save button do something.

11.	 Double-click the Save button. Visual Studio will create a new event handler for it. Here’s the
code you need to save the data to disk:

private void userFavoritesBindingNavigatorSaveItem_Click(object sender, EventArgs e)
{
 UserFavoritesContext.SaveChanges();
}

In a production application, you’d attach this code to the Closing() event to ensure that all of
the user’s changes are saved. The example uses the Save button as a convenience for experi-
mentation purposes, so you can choose not to save changes you’ve made.

12.	 Compile the application. It’s ready to run.

Running the basic query
When you run the application the first time, you won’t see any records. Click the yellow plus icon (Add
New) to add a new record to the database. Type some data in the form, press Tab after the last field
you enter to ensure it’s been accepted, and then click Save Data. Here’s what a typical record will look
like:

40   PART I  Introducing the Entity Framework

Add several more records to the database. Make sure you click Add New between each record and
press Tab after the final field. You’ll eventually have a number of records to use in the sections that
follow. Table 2-1 shows the data entries that the examples will use (the user ID is added automatically).

TABLE 2-1  Example data entries

Name Favorite number Favorite color Birthday

Mark Hassall 22 Red July 10, 1990

Kim Abercrombie 15 Blue August 12, 1991

Yossi Banai 7 Green January 22, 1970

Andrew Rath 17 Red July 22, 1989

Corinna Bolender 11 Red November 30, 1985

Charlie Keen 7 Blue May 15, 1976

Julia Ilyina 3 Orange October 5, 1990

Note  You can also load these values using a script. Choose File | Open in Visual Studio.
Navigate to the \Microsoft Press\Entity Framework Development Step by Step\Chapter 02\
SQL Data folder and open the UserFavorites Data.SQL file. Right-click the open file and
choose Execute Script from the context menu. When you see the Connect To Server dialog
box, make sure the connection settings are correct for your system and click Connect. The
script will execute and add the required rows to the UserFavorites table you created earlier.

After you enter the records, make sure you click Save Data. Otherwise, the records will only appear
in the Local property, not in the database itself. The controls at the top of the application let you
perform all of the standard database tasks. For example, you can use the controls to move between
records. Any change you make to a record will end up in the host database as long as you click Save
Data afterward. You can also delete records. All of this functionality comes without much in the way
of programming that you’ve done. The following are the most important tasks to remember when
creating an application this way:

■■ Create the database context.

■■ Perform a query to load the Local property with data.

■■ Use the Local property as the data source for the BindingSource control.

■■ Save changes using the SaveChanges() method of the database context.

	 Chapter 2  Looking more closely at queries    41

Creating specific queries

The GetUserFavorites application obtains all of the records that the database contains by using a gen-
eral query in the form of the following lambda expression: id => id.UserId >= 0. The query will obtain
all of the records because the automatic numbering starts UserId with a value of 1. You can’t add a
record with a value less than 1, so this query always obtains every record.

There are times when you don’t want to obtain all of the records. For example, you may decide
that you want to see only the people who like the color red or the people born in 1990. The que-
ries you create can also accommodate these needs. In order to accommodate queries, you need to
modify the previous example using the procedure that follows. You can find the code for the ex-
amples in these sections in the \Microsoft Press\Entity Framework Development Step by Step\Chapter
02\SpecificQueries folder of the downloadable source code.

Adding a button to a toolbar

1.	 Click the down arrow next to the new item icon on the toolbar, as shown here. You’ll see a
series of potential controls you can add to the toolbar.

2.	 Select the Button control. Visual Studio adds a generic button, as shown here:

3.	 Double-click the button. Visual Studio creates a toolStripButton1_Click() event handler for it.

The button you’ve just added will provide a means for experimenting with various query types.
The following sections describe how to create queries that will obtain certain records.

Using literals
Most people are familiar with using literals to create a query. The use of any absolute value defines a
literal query. For example, you can ask the application which users like red as a color. The literal value
is Red in this case. Use the following procedure to see how a literal query works with the example.

42   PART I  Introducing the Entity Framework

Testing for literal values in LINQ

1.	 Type the following code (shown in bold) into the toolStripButton1_Click() event handler:

private void toolStripButton1_Click(object sender, EventArgs e)
{
 // Define and perform the query.
 var Results = UserFavoritesContext.UserFavorites.Where<UserFavorites>(
 color => color.FavoriteColor == ColorNames.Red);

 // Create and display the output.
 StringBuilder Output = new StringBuilder();
 foreach (UserFavorites Result in Results)
 Output.Append(Result.UserId + "\t" + Result.Name + "\r\n");
 MessageBox.Show(Output.ToString());
}

In this case, the query places the output of the query in Results. The actual query consists of
a lambda expression that compares each of the entries in the database with the ColorNames.
Red literal value. After the application has the records it needs, it uses a for loop to place the
results in Output, and then displays Output on screen.

2.	 Start the application. You’ll see the new button in place in the toolbar.

3.	 Click toolStripButton1. You’ll see the application output, as shown here. The application has
indeed found all of the records where a user prefers red, which you can verify by viewing each
of the records individually.

4.	 Click OK to close the dialog box.

5.	 Verify that records with the UserId values of 1, 4, and 5 do indeed like the color red.

6.	 Stop the application.

Using operators, properties, and methods
Careful creation of literal queries will address a number of needs. You can even combine literal query
values to obtain specific results. Queries that you create for the Entity Framework have access to the
same operators that you can use for any other kind of programming need. The following procedure
helps you explore the use of operators, properties, and methods when working with queries.

	 Chapter 2  Looking more closely at queries    43

Using operators in LINQ

1.	 Modify the toolStripButton1_Click() event handler code as shown here to rely on operators to
create complex queries:

private void toolStripButton1_Click(object sender, EventArgs e)
{
 // Define and perform the query.
 var Results = UserFavoritesContext.UserFavorites.Where<UserFavorites>(
 query => ((query.FavoriteColor == ColorNames.Red || query.FavoriteNumber < 10)
 && (query.Name.Length < 15)));

 // Create and display the output.
 StringBuilder Output = new StringBuilder();
 foreach (UserFavorites Result in Results)
 Output.Append(Result.UserId + "\t" + Result.Name.Length + "\t" +
 Result.FavoriteColor.ToString() + "\t" + Result.Name + "\r\n");
 MessageBox.Show(Output.ToString());
}

This query relies on operators to complete the task. Any record that has a FavoriteColor value
of Red or has a FavoriteNumber value less than 10 qualifies at the outset. However, the Name
field must also have a length that’s less than 15 characters long. You can combine elements in
any number of ways in order to produce the desired logic. This example relies on both logical
AND (&&) and logical OR (||) elements, plus it uses object properties as part of the query.

To make it easier to verify that the output is correct, this example also modifies the output
string. In this case, it adds the name length and the favorite color so you can see them as part
of the output.

2.	 Start the application and click toolStripButton1. The application displays the results of the
query, as shown here:

3.	 Click OK to close the dialog box.

4.	 Verify that the chosen records do indeed meet the selection criteria. For example, you should
try to determine why the record with a user ID of 5 wasn’t chosen. After all, the user likes red
in that case.

5.	 Stop the application.

44   PART I  Introducing the Entity Framework

Combining and summarizing data

Most users don’t want all of the data that a database contains. The term information overload applies
to most enterprise data because there’s simply too much for any one person to work with effectively.
In order for users to make sense of the data you provide, you must initially filter it to provide only the
records the user needs. However, large databases still offer more information than the user can use, in
most cases, so you have two other choices for getting the information under control:

■■ Combine data to create aggregate information, such as a list of users who like the color red,
but without listing anything but the names.

■■ Summarize data to provide an overview of the information, such as the total number of users
who like the color red, without listing any of the data.

The example in this section shows the effect of combining and summarizing data to obtain
specific results. You can find the downloadable code for this example in the \Microsoft Press\Entity
Framework Development Step by Step\Chapter 02\CombineAndSummarize folder. Before you begin,
add two buttons to the application using the “Adding a button to a toolbar” procedure found in the
“Creating specific queries” section of the chapter. The following procedure shows how to create and
use this example.

Combining and summarizing data with LINQ

1.	 Select toolStripButton1 and change its Text property to read “Combine.”

2.	 Select toolStripButton2 and change its Text property to read “Summarize.”

3.	 Modify the toolStripButton1_Click() event handler to perform a type of combine operation, as
shown here:

private void toolStripButton1_Click(object sender, EventArgs e)
{
 // Define and perform the query.
 List<String> Results = UserFavoritesContext.UserFavorites.Where<UserFavorites>(
 query => query.FavoriteColor == ColorNames.Red).
 Select<UserFavorites, String>(item => item.Name).ToList<String>();

 // Create and display the output.
 StringBuilder Output = new StringBuilder();
 foreach (String Result in Results)
 Output.Append(Result + "\r\n");
 MessageBox.Show(Output.ToString());
}

In this case, the data is first filtered using a query. After that, the names are separated from
the rest of the data, combined into a list, and displayed on screen.

4.	 Modify the toolStripButton2_Click() event handler to perform a type of summarize operation,
as shown here:

	 Chapter 2  Looking more closely at queries    45

private void toolStripButton2_Click(object sender, EventArgs e)
{
 // Summarize the data.
 var Results = UserFavoritesContext.UserFavorites.Count(
 query => query.FavoriteColor == ColorNames.Red);

 // Display the result.
 MessageBox.Show(String.Format(
 "The number of users who like Red is {0}.", Results));
}

LINQ provides access to a number of statistical methods, such as Count(), Min(), and Max().
You can combine these methods with queries in order to obtain specific results and then
summarize them for the user. In this case, the application provides a summary count of the
number of users who like the color red.

5.	 Start the application and click Combine. The application displays the names of users who like
the color red.

6.	 Click OK to close the dialog box.

7.	 Click Summarize. The application displays the number of people who like the color red, as
shown here:

8.	 Click OK to close the dialog box.

9.	 Stop the application.

Grouping data

The presentation of data in an order the user understands is an essential part of creating useful
database applications. Users sometimes can’t see patterns because of the wealth of data. By creating
applications that help the user see patterns where they exist, you make it possible for the user to ob-
tain more information than the data itself presents. With this in mind, add a button to the application

46   PART I  Introducing the Entity Framework

using the “Adding a button to a toolbar” procedure found in the “Creating specific queries” section
of the chapter. The following procedure describes how to create the code required to demonstrate
data grouping. You can find the downloadable code for this example in the \Microsoft Press\Entity
Framework Development Step by Step\Chapter 02\GroupData folder.

Grouping data with LINQ

1.	 Modify the toolStripButton1_Click() event handler to group the data by user color choices, as
shown here:

private void toolStripButton1_Click(object sender, EventArgs e)
{
 // Create a grouped query.
 var Results = UserFavoritesContext.UserFavorites.GroupBy(
 group => group.FavoriteColor);

 // Work through each group.
 StringBuilder Output = new StringBuilder();
 foreach (var Group in Results)
 {
 Output.Append(Group.Key + "\r\n");

 foreach (UserFavorites UserList in Group)
 {
 Output.Append("\t" + UserList.Name + "\r\n");
 }
 }

 // Display the result.
 MessageBox.Show(Output.ToString());
}

It’s important to understand that you end up with a list of group objects, and within those
group objects is a key and a list of UserFavorites objects. In order to display the data, you must
work through each group first, and then through the list of UserFavorites within the group.
The Key property contains the key value for this particular group.

2.	 Start the application and click toolStripButton1. The application displays the results of combin-
ing the data, as shown here:

	 Chapter 2  Looking more closely at queries    47

3.	 Click OK to close the dialog box.

4.	 Stop the application.

Getting started with the Entity Framework

This chapter has focused on creating queries that help you get the most out of the data that the
Entity Framework helps you access and manage. In this case, you created a model, defined a data-
base based on that model, developed an application to manage the database, and finally filled the
database with data to test it. The remainder of the chapter explored various techniques for interacting
with the data, such as creating complex queries, and summarizing, combining, and grouping the data.
The point is that the Entity Framework makes it possible to create flexible applications that contain
very little code and yet perform a number of interesting tasks.

Getting the right output so that the user can see how the data is related is an important part of
any application development experience. When working with the Entity Framework, it’s important
to optimize the way in which your application interacts with the database. Remember that there’s a
local copy of the data that requires local system resources and network bandwidth to download. The
better you define a query to obtain only the data the user actually requires, the faster your applica-
tion will run and the fewer resources it uses. With this in mind, try creating a few queries on your own
based on the queries you’ve already worked with in this chapter. For example, try to discover how
many people were born in 1990. Use the techniques shown in this chapter to count the number of
output records and also group them by color choice.

The Entity Framework actually supports a number of workflow models, and this chapter shows only
one of them. The design-first approach will appeal to a lot of developers because using it means that
you don’t have to go outside the Visual Studio IDE, yet you can be assured of the correct result from
the outset (assuming you spend the time required to create a useful database design). Chapter 3,
“Choosing a workflow,” shows all three workflow models—database first, design first, and code first—
so that you can choose the appropriate workflow for a given situation and use it effectively.

48   PART I  Introducing the Entity Framework

Chapter 2 quick reference

To Do this

Add a new named model to your project Right-click the project entry in Solution Explorer, choose
Add | New from the context menu, and then select the
ADO.NET Entity Data Model template. Type the name of
the model you want to create in the Name field.

Create an enumerated type Start with an Int32 data type and then use the Add Enum
Type dialog box (accessed by right-clicking the property
and choosing Convert To Enum from the context menu)
to change it to an enumerated type.

Define a model context Create a variable to hold the context contained in the
model container. For example, if the model is called
UserFavoritesModel, you could create a variable to hold
the context like this:

var UserFavoritesContext = new
UserFavoritesModelContainer();

Save changes made locally to the host database Call the SaveChanges() method of the context variable.
For example, if you had created a context variable named
UserFavoritesContext, then you’d call the following:

UserFavoritesContext.SaveChanges()

Fill the Local property with data for use in your applica-
tion

Create a LINQ query that describes which data to use in
the application. For example, in the sample application,
you fill the Local property with all of the records in the
database by calling this:

UserFavoritesContext.UserFavorites.Where(id =>
id.UserId >= 0).ToArray();

Create complex queries Combine logical elements in a single lambda expres-
sion. For example, you can use the && and || operators to
produce complex results. In addition, you can access the
methods and properties of each object element to further
define the query.

Obtain additional information about the data Rely on object-specific properties and methods. For ex-
ample, you can use the Length property to determine the
size of objects such as strings.

Combine the data Create queries that filter the data, extract the pertinent
information, and then create an aggregate output of just
the information the user needs.

Summarize the data Use statistical methods such as Count(), Min(), and Max(),
along with filtering queries, to produce specific output
that presents the user with an overview of the data.

Group the data Use the GroupBy() method to group the data by specific
fields. Remember that each group is a hierarchy consist-
ing of a key and the underlying data associated with that
key.

		 49

C H A P T E R 3

Choosing a workflow

After completing the chapter, you’ll be able to

■■ Describe the code-first workflow approach.

■■ Describe the model-first workflow approach.

■■ Describe the database-first workflow approach.

■■ Define the differences between the workflow choices and make an appropriate choice based
on the situation.

■■ Create an application using the code-first approach.

■■ Create an application using the model-first approach.

■■ Create an application using the database-first approach.

Getting work done quickly, efficiently, and accurately depends, in part, on creating an ordered
work environment where tasks are performed in a certain way with predictable results. That

may sound quite boring, but boring is good when it comes to performing work tasks without a lot of
headaches. No one needs or wants drama when working. One of the most important tools in creating
an ordered work environment for developers is defining a workflow. Workflows provide an ordered
means for accomplishing tasks. They define a procedure where one step follows another in an or-
dered and timely fashion. The emphasis of a workflow is on the flow part of the equation—one step
should naturally flow into the next. When working with the Entity Framework, there are three com-
mon workflows: code first, model first, and database first. You use each of these workflows to meet
specific needs and under specific conditions. However, the point of the workflow is to make the work
easier and more predictable so that you can focus on the database and code more, and the process
for creating the application less.

Because understanding the workflow is so important, this chapter begins by reviewing each of the
workflows and helping you understand how they work. After you understand the workflows, you’ll
discover when to use each of the workflows to obtain a desired result from the Entity Framework.
In fact, the chapter provides a table that describes how each of the workflows differs and compares
them in a way that helps you choose the right workflow for a particular situation.

The chapter ends by showing you an example of each workflow in action. You’ll create a simple
application that relies on that particular workflow to obtain a desired result. In a production environ-
ment, you’ll find that understanding the workflows and knowing when and how to use each of them

50   PART I  Introducing the Entity Framework

saves you considerable time and makes using the Entity Framework a lot easier. The examples in this
chapter will all work with essentially the same database, but each example will highlight how you
would interact with that database using that particular workflow. For example, when working with
the code-first workflow, you define the database structure using code and then rely on the Entity
Framework automation to create the database for you based on the code you provide. Likewise, when
working with the model-first workflow, you create a graphical presentation of the database, and then
rely on the Entity Framework automation to create the database and underlying classes that you re-
quire. The database-first example will actually start with the database you create using the model-first
approach.

Considering the user’s focus
Most business applications interact with data in some way. The purpose of the application is to
help the user manage the data in an efficient and ordered manner. From the user’s perspective,
the focus is on the data, and the application should be invisible. The more invisible you can
make the application, the better the user can focus on the data and complete a desired task.
Obviously, an application can’t disappear completely, but you can make it appear that way.
Here are some things to keep in mind as you work with the Entity Framework to develop your
application.

■■ Keep it simple  An essential part of making the application disappear is to hide complex-
ity whenever possible. In some cases, hiding complexity literally means hiding aspects
of the application that the user won’t need very often. However, in other cases it means
making specific choices, such as creative use of controls. It’s much easier to get a user to
check a box or select an option than it is to have the user type specific information. More
importantly, the need to keep things simple will affect the model you create with the
Entity Framework to some extent. Simplify the model and you’ll usually simplify the user
interface as well.

■■ Make it fun  The more fun you can make the application, the less the user will pay atten-
tion to the fact that the application is designed to do work. For example, creative use of
what-if scenarios helps users see how application choices affect output. Most users will
try to game the application to obtain a specific output, and in the process forget com-
pletely about the work aspect of the application. As a result, the user sees a game that
manipulates data, rather than an application designed to do work.

■■ Create a flow  Most data entry has a flow to it. For example, when you ask a user to enter
a person’s name, most users find it more natural to enter the first name, middle name,
and last name—in that order. When the flow is disrupted by illogical data entry choices,
the user becomes more aware of the application and less aware of the data. When creat-
ing a new application, track how users currently enter data and use the same flow for
your application.

	 Chapter 3  Choosing a workflow    51

The reasons you need to consider the user’s focus is that it will sometimes affect your work-
flow when interacting with the Entity Framework. For example, the code-first workflow can help
you focus on the user’s needs first, and then form the database around the user’s needs. This
approach doesn’t always work, however, especially when you must meet specific business or
legal requirements. The idea, though, is to find a balance that helps the user focus attention on
the data without breaking any rules in the interim.

Understanding the code-first workflow

The code-first workflow (introduced in Entity Framework 4.1) is commonly used when you have an ex-
isting application (or existing code) that models a database-like structure. The code consists of one or
more classes that define the data model, and then relies on additional code to define how the classes
interact. For example, you might create a class called Book that defines the properties for identifying
a book in a collection; these properties then define the database model, as shown here:

public class Book
{
 // Define the fields used for the database.
 public Int32 BookID { get; set; }
 public String Name { get; set; }
 public String Author { get; set; }
 public String ISBN { get; set; }
 public Int32 PageCount { get; set; }
 public DateTime LastRead { get; set; }
}

You could use this class in an application without ever creating a database. By adding some ad-
ditional code, you could store the data from this class on disk as an XML file if desired, or you could
continue to use it as an in-memory database for experimentation purposes. However, as your applica-
tion becomes more complex, you might decide that storing the information in a database really is
necessary. This is the point at which the code-first workflow comes into play, because you can use the
code you have already created and developed to define the database automatically. The developer
doesn’t worry about the details of the database and instead focuses on the code that models the
database.

Note  It’s important to note that this class has a field with ID in the name as type Int32. The
automation used with the code-first workflow requires that you provide an ID field to use
as a key for the database. Anything with ID in the name, such as the BookID field shown
here, will work just fine. You could map another field, such as ISBN, as the key field, but that
requires some additional programming that isn’t discussed in this chapter. Later chapters
will discuss various mapping strategies, along with techniques you can use to specify things
like the database name. For now, think only about the automation presented in this chapter.

52   PART I  Introducing the Entity Framework

The code-first workflow was created after the model-first and database-first workflows by Micro-
soft for developers who want to write code, rather than work with a designer. You create the object
model for your application using standard Common Language Runtime (CLR) objects with a tech-
nique that involves using Plain Old CLR Object (POCO) classes. This workflow is code-centric, rather
than designer-centric. When working with this model, you begin with objects that have no relation-
ship with the Entity Framework—you don’t need to think or worry about the Entity Framework at all.
Once the classes you want to use are in place, you use tools that infer the database model from the
design of the classes. After the tools complete their work, you can go back and tweak the model so
that it works precisely as you intend it to.

Note  An important difference between Entity Framework 5 and previous versions of the
Entity Framework is that your classes become the model. When working with earlier ver-
sions of the Entity Framework, the developer had the option of generating POCO classes.
However, it was the developer’s responsibility to maintain the relationship between the
generated classes and the Entity Data Model XML (.EDMX) file containing the designer
model. If these two sources got out of sync, the results were unpredictable. As a result,
developers using earlier versions of the Entity Framework ended up making changes in
two places when using a code-first workflow—once in the code and again in the designer.
Obviously, this approach led to errors.

Microsoft Visual Studio isn’t clairvoyant. You need to tell it to create the database. This doesn’t
mean you need to change anything about your existing classes, but you do need to create at least
one class that tells the application to create the database automatically for you. To start the process,
you must tell your application to use Entity Framework 5 using a wizard, which you’ll see in action in
the “Adding Entity Framework 5 support” section later in this chapter. After that, you add a reference
to System.Data.Entity. You then add the following using statement:

using System.Data.Entity;

The class must inherit from DbContext. However, the code you create to define the database re-
quirement is simple. Here’s a minimalistic approach to the previous class example:

public class BookContext:DbContext
{
 // Create a database context.
 public DbSet<Book> BookCollection { get; set; }
}

The Entity Framework defines a number of methods for interacting with the database without
really caring anything about it. For example, you can add records to the database without knowing
any details about the connection. You don’t even need to know the name of the database. Here’s an
example of code you could use to add a record to a Microsoft SQL Server database with the informa-
tion you have so far:

	 Chapter 3  Choosing a workflow    53

private void btnAdd_Click(object sender, EventArgs e)
{
 // Create a new record.
 Book NewBook = new Book();
 NewBook.Author = "John Paul Mueller";
 NewBook.Name = "Professional IronPython";
 NewBook.ISBN = "978-0-470-54859-2";
 NewBook.PageCount = 458;
 NewBook.LastRead = DateTime.Now;

 // Define the database context.
 BookContext context = new BookContext();

 // Create the database, add the record to it, and save
 // the changes.
 context.BookCollection.Add(NewBook);
 context.SaveChanges();
}

This code is a bit simplistic, but it clearly shows how you use this workflow. Of course, you can con-
trol every aspect of the database transaction if you desire. This example uses the maximum amount
of automation and still produces perfectly acceptable results—at least for a small application. Later
chapters will delve into some of the details of customizing the code-first workflow to meet specific
needs.

Understanding the model-first workflow

The model-first workflow (introduced in Entity Framework 4) is designed to make it easy to create
new applications that require database support without having to use the DBMS tools to do it. Every
task is performed directly in the Visual Studio IDE. You’ve already seen this workflow in action in
Chapter 2, “Looking more closely at queries.” In this case, you create a list of a user’s favorite number
and color, along with the user’s birth date. The workflow begins when you design the database. How-
ever, in this case, you use a graphical environment, rather than code, to describe the database design.
The result is the same—you end up with a database that contains the data you want in the form you
want it, without a lot of extra work or knowledge of the inner workings of the database.

Note  Some developers wonder why there was no Entity Framework 2 or 3. Microsoft
decided to renumber the Entity Framework versions to match the corresponding .NET
Framework. When Entity Framework 4 shipped, it shipped with .NET Framework 4. However,
Microsoft is now releasing Entity Framework versions out of band through NuGet, which
means there isn’t a good reason for the Entity Framework and the .NET Framework version
numbers to match any longer. You can see a summary of the changes in each version of the
Entity Framework at http://msdn.microsoft.com/data/jj574253.

http://msdn.microsoft.com/data/jj574253

54   PART I  Introducing the Entity Framework

As with the code-first workflow, interacting with the database revolves around a context. In fact,
the actual database interaction is the same whether you use model first or code first. You follow the
same sequence in both cases:

1.	 Create the record you want to add to the database.

2.	 Define a database context.

3.	 Add the record to the database using the context.

4.	 Save the changes to the database.

Understanding the database-first workflow

The database-first workflow (introduced in the original Entity Framework) was the original reason to
use the Entity Framework. Developers often need to write new applications for existing data. How-
ever, databases tend to become complex rather quickly, and trying to create a model that develop-
ers can understand is hard. Harder still is the whole concept of using the model to write code that
interacts with the database in a safe manner.

In many respects, the database-first workflow is the reverse of the model-first workflow. The data-
base already exists, so the developer must know where the database is located and also have infor-
mation about the database name. However, the developer need not understand the inner workings of
the database—the Entity Framework still hides the inner workings from view.

Considering the need for Entity Framework–aware providers
In order to access a database from the Entity Framework, the database vendor or a third party
must create an Entity Framework–aware provider. The provider marshals data and instructions
between the Entity Framework and the DBMS. Visual Studio natively ships with the SqlClient
provider that lets you access most newer SQL Server versions: the full or Express edition of
SQL Server 2005 and the full or Express edition of SQL Server 2008. Starting with Visual Studio
2010, Microsoft dropped support for SQL Server 2000. You can learn more about this provider
at http://msdn.microsoft.com/library/bb896309.aspx.

It’s even possible to build an application that accesses SQL Server Compact. However, this
provider has some strict limitations, such as an inability to support schemas with duplicate
constraint names. Make sure you understand the limitations before you begin writing an ap-
plication in this case. SQL Server Compact support isn’t shipped with Visual Studio, but you
can obtain it from Microsoft. Read more about SQL Server Compact support at http://msdn.
microsoft.com/library/cc835494.aspx.

http://msdn.microsoft.com/library/bb896309.aspx
http://msdn.microsoft.com/library/cc835494.aspx
http://msdn.microsoft.com/library/cc835494.aspx

	 Chapter 3  Choosing a workflow    55

You can also access a number of third-party database products, but only if you install the
appropriate provider on your system. Third-party providers currently include MySQL, Oracle,
Progress, VistaDB, Devart, OpenLink, several IBM products, SQL Anywhere, Sybase, SQLite,
Synergex, Firebird, and PostgreSQL (through the Npgsql provider). The list of providers is
constantly growing, so it’s important to check with your vendor to determine whether there’s
a provider to fit your need. Review the third party options at http://msdn.microsoft.com/data/
dd363565.aspx.

Missing from the list of providers is support for Microsoft’s Access database. According
to Microsoft, there’s no Entity Framework support for Access now and none planned for the
future. You’ll also find that the Entity Framework doesn’t support older technologies and access
techniques, such as Open Database Connectivity (ODBC). In order to obtain Entity Frame-
work support for a particular database, you must have an Entity Framework–aware provider
for it. Microsoft does make it possible for third parties to create new providers, and you can
learn about this capability at http://blogs.msdn.com/b/adonet/archive/tags/sample+provider/.
(Microsoft requires that you sign in using Microsoft Windows Live ID to access MSDN content.)
The technique for creating an Entity Framework provider is outside the scope of this book, so
this is the last time you’ll see it mentioned. To reduce complexity, all of the examples in this
book rely on the native SqlClient provider that comes with Visual Studio.

The database workflow begins with a database. In fact, you can use several databases as sources
for a single model when desired. An Entity Framework model can theoretically span as many data-
bases as necessary, and the database need not even use the same DBMS. The only requirement is that
the databases all have an Entity Framework–aware provider that can translate between instructions
and data that the Entity Framework understands and the instructions and data that the DBMS un-
derstands. With the proper provider, the Entity Framework can create a model that combines all data
sources in a way that a developer can understand.

Once the model is in place, you use the Entity Framework to interact with the objects defined by
the model as you would with either the code-first or model-first strategy. This means creating a con-
text and then using that context to perform all of the required tasks. Behind the scenes, the context
provides everything needed to manage the data as an object, rather than individual tables within the
individual databases.

Defining the workflow choices

Workflow patterns describe a pure approach to completing work. For example, when you start an
application from scratch, you might employ the model-first workflow to ensure that your applica-
tion works as anticipated from the outset. However, many work environments are anything but pure,
which is why you need to make choices about the individual workflow or combinations of workflows
that you use to complete a project. A project may begin with an existing application where you use
the code-first workflow to get started. However, once you have the starting application moved to the

http://msdn.microsoft.com/data/dd363565.aspx
http://msdn.microsoft.com/data/dd363565.aspx
http://blogs.msdn.com/b/adonet/archive/tags/sample+provider/

56   PART I  Introducing the Entity Framework

Entity Framework, you might employ the model-first workflow instead in order to create new applica-
tion elements. In short, the preliminary sections of this chapter examined pure environments, but you
typically need to mix and match workflows in a real-world environment. Table 3-1 helps you under-
stand the choices a little better.

TABLE 3-1  Selecting an Entity Framework workflow

Database type Design preference Workflow type Description

New database Designer centric Model first When you need to create a new database and want to see
the design in graphical form, using the model-first work-
flow works best. In the model-first workflow

■■ You create the model using the .EDMX designer.
■■ You tell the Entity Framework to create the database

based on your design.
■■ The Entity Framework automatically generates the classes

required to interact with the database.

Existing data-
base

Designer centric Database first When you have an existing database and want to see the
design for it in graphical form, using the database-first
workflow works best. In the database-first workflow

■■ You tell the Entity Framework to reverse engineer the
existing database to create the .EDMX model.

■■ The Entity Framework automatically generates the classes
required to interact with the database.

New database Code centric Code first When you need to create a new database and want to see
the design for it in code form, using the code-first work-
flow works best. In the code-first workflow

■■ You define classes that specify the data for e``ach table in
the database using code.

■■ You define mapping by creating classes that use the
tabular class definitions.

■■ You optionally define any special conditions for creating
the database and its connection.

■■ The Entity Framework automatically generates the data-
base at run time.

Existing data-
base

Code centric Code first (code
second)

Microsoft doesn’t have a good method for interacting
with an existing database when you want to see the de-
sign in code form. Many developers call the approach
used in this case code second because you are creating
code after the database is already in existence (even
though Microsoft associates it with the code-first work-
flow). When working with the code-first workflow in this
way

■■ You reverse engineer classes that specify the data for each
table in the database using code.

■■ You reverse engineer mapping by creating classes that
use the tabular class definitions.

Microsoft does provide tools to assist in reverse engi-
neering the database. You need to download the Entity
Framework Power Tools. These tools will reverse engineer
the database for you and generate at least some of the
code automatically. You can then tweak the code as
needed to define the model precisely. This book doesn’t
cover this particular technique because it’s time-consum-
ing and most developers won’t use this approach. You can
read more about this technique at http://www.infoq.com/
news/2011/05/EF-CodeFirst-PowerTools.

http://www.infoq.com/news/2011/05/EF-CodeFirst-PowerTools
http://www.infoq.com/news/2011/05/EF-CodeFirst-PowerTools

	 Chapter 3  Choosing a workflow    57

Creating a code-first example

Reading previous sections of the chapter tells you that the example in this section will rely on classes
you create in code to define the database. In this case, you’ll work through an example that shows
two tables in a one-to-many relationship. Even though this example is a little more complex than the
one shown in the “Understanding the code-first workflow” section, you’ll find that it isn’t really any
more difficult to create.

Creating a project
Many of the applications in this book will start in the same way. You’ll create a project that demon-
strates how the example works. Rather than repeat that material an absurd number of times, in this
section you’ll learn how to create a basic project once, and then you can refer back to this section as
needed when creating the other examples. The following procedure gets you started creating a basic
project.

Creating a basic project

1.	 Start Visual Studio 2012. The examples in this book don’t work with the Express edition—you
must have one of the paid versions. You can download a free trial of any version of Visual
Studio 2012 at http://www.microsoft.com/visualstudio/downloads. If you register your copy of
the trial, you can extend it for 90 days.

2.	 Choose File | New | Project. You’ll see the New Project dialog box shown here:

3.	 Select the Templates\Visual C# folder in the left pane and Windows Forms Application in the
middle pane.

58   PART I  Introducing the Entity Framework

4.	 Check Create Directory For Solution if it isn’t already checked.

5.	 Type TestCodeFirst in the Name field.

6.	 Choose a location to store the application. The example uses C:\Microsoft Press\Entity
Framework Development Step by Step\Chapter 03.

Note  All of the example code for this book will appear in the Microsoft Press\Entity
Framework Development Step by Step\ folder of the downloadable code, organized
by chapter. Therefore, all the examples for this chapter appear in the Microsoft
Press\Entity Framework Development Step by Step\Chapter 03 folder. You can locate
the particular example file, which is CodeFirst in this case, and use the example code
provided, rather than type everything yourself. Using the downloadable code will
make your learning experience easier, but following the procedures will help you
learn more.

7.	 Type CodeFirst in the Solution Name field.

8.	 Click OK. Visual Studio creates a Windows Forms application you can use to test the output of
this example.

Defining the initial classes
In order to define the database, you must create a class that describes it. In this case, you have a one-
to-many relationship to consider, so you need two classes. The first will contain the details, while the
second will contain the parent. The example uses customers in a store. Every time a customer visits
and purchases something, the amount of the purchase is added to the customer’s Rewards account.
When the customer achieves a certain purchase level, the store awards the customer with a reward of
some type. The following procedure tells how to create the classes used for this example.

Creating the customer and purchases classes

1.	 Right-click the CodeFirst entry in Solution Explorer and choose Add | New Project from the
context menu. You’ll see the New Project dialog box.

2.	 Choose the Class Library template.

3.	 Type CodeFirstClasses in the Name field and click OK. Visual Studio creates a new class
library for you.

4.	 Delete the existing Class1 class code.

	 Chapter 3  Choosing a workflow    59

5.	 Type the following code to define the classes used for this example:

public class Customer
{
 // Identify the individual customer.
 public Int32 CustomerId { get; set; }
 public String CustomerName { get; set; }

 // Provide linkage to the Purchase class.
 public virtual List<Purchase> Purchases {get; set;}
}

public class Purchase
{
 // Define the individual purchase entries.
 public Int32 PurchaseId { get; set; }
 public DateTime PurchaseDate { get; set; }
 public Decimal Amount { get; set; }

 // Store the customer's identifier for this record.
 public Int32 CustomerId { get; set; }
}

The example code simply defines a customer and associated purchases. Each customer has a
name and customer ID. The customer ID is used as a key field (for the Customer table) that the
Entity Framework generates for you later. In addition, there’s a link to a list of Purchase entries
associated with the customer. Notice that this link is a virtual List<Purchase> object. You don’t
actually include a copy of the purchase with the customer data—you only need to create a
link to it.

The Purchase class contains a purchase ID, which is used to identify the particular purchase,
because the customer could make more than one purchase on a particular day. It also contains
the date of the purchase and the amount of that particular purchase. The class doesn’t contain
any particulars about the purchase because you don’t need them for the purpose of giving
the customer a reward. Notice, however, that the class does include CustomerId, which is field
that contains the identifier of the customer that made the purchase.

Warning  The field name of the key field in the primary class—Customer in this case—must
match the foreign key field in the secondary class—Purchase in this case—or else the Entity
Framework won’t create the foreign key field properly. Yes, you’ll see a foreign key de-
fined, but it won’t match an actual column in the table. In this case, the Customer key field,
CustomerId, matches the Purchase foreign key field, CustomerId.

Adding Entity Framework 5 support
Whenever you hand-code items for the Entity Framework, you need to add Entity Framework support
before you can start adding Entity Framework–specific code. However, you need to do more than
simply add a reference. In this case, you must actually install the Entity Framework support. The

60   PART I  Introducing the Entity Framework

following procedure tells how to perform this task (a task that you perform somewhat often in this
book, so I’ll be referencing this procedure again later).

Adding Entity Framework 5 support to a file

1.	 Right-click the CodeFirstClasses entry in Solution Explorer and choose Manage NuGet Pack-
ages from the context menu. You’ll see the Manage NuGet Packages dialog box shown here
(the first part of the title bar will always contain the name of the file that will receive the sup-
port you install):

2.	 Select EntityFramework, as shown in the figure. Notice that the right pane shows the version
number of the EntityFramework support you’re installing. Make sure you install version 5.0.0
for the examples in this book as a minimum.

3.	 Click Install. You’ll see a License Acceptance dialog box.

4.	 Click I Accept. Visual Studio installs the required support for your application.

5.	 Click Close. Visual Studio closes the Manage NuGet Packages dialog box.

6.	 Add the following using statement to the top of the code file:

using System.Data.Entity;

Creating a code-first context
Adding Entity Framework support to CodeFirstClasses automatically provides references to the classes
you need. In this case, you definitely need access to System.Data.Entity, but this support is added
automatically for you (check the References folder to see for yourself). However, Visual Studio doesn’t

	 Chapter 3  Choosing a workflow    61

know how to create a database context for you, so you need to perform that task manually using the
following procedure.

Creating the RewardsContext class

1.	 Add the following database context class to the Class1.cs file:

// Create a context to the database.
public class RewardsContext:DbContext
{
 // Specify the name of the database as Rewards.
 public RewardsContext()
 : base("Rewards")
 {
 }

 // Create a database set for each of the data items.
 public DbSet<Purchase> Purchases { get; set; }
 public DbSet<Customer> Customers { get; set; }
}

This code will actually create two connections to the database. The first will be a table named
Purchases, which holds the purchase records for each customer; and the second will be a table
named Customers, which holds the customer information. A number of examples online ap-
pear to show that you only need to interact with the parent table, which would be Customers
in this case, but you need both entries and you need to interact with both of them to create a
complete transaction with the database.

Notice the constructor with the base() entry. This entry defines the name of the database. If
you don’t specify this value, then you get a database that uses the name of the application
and context, which probably isn’t what you want.

2.	 Choose Build | Build Solution. Visual Studio builds the application for you.

3.	 Verify that the solution compiles without error.

Adding a record

At this point, you have the classes and the context required to interact with a database that doesn’t
even exist yet. Just creating the classes doesn’t actually do anything with the database. The Entity
Framework creates the database when you add a record to it. With this in mind, the following proce-
dure completes this example by showing how to use the classes you created earlier to add a record to
the database. The example won’t do anything fancy—it’s only intended to add a record for you.

62   PART I  Introducing the Entity Framework

Creating and adding a database record using the code-first approach to the database

1.	 Add Entity Framework support to Form1 using the procedure found in the “Adding Entity
Framework 5 Support” section of this chapter.

2.	 Add a Button control to Form1 and place it in the upper-right corner of the dialog box.

3.	 Change the Button name to btnAdd and change its Text property value to &Add.

4.	 Double-click btnAdd to create a Click() event handler for it. You’ll see the btnAdd_Click() event
handler.

5.	 Right-click the References folder in Solution Explorer and choose Add Reference. You’ll see the
Reference Manager dialog box shown here:

6.	 Select the Projects folder. Check the CodeFirstClasses option and click OK. Visual Studio adds
the required reference for you.

7.	 Add the following using statement to the top of the Form1.cs file:

using CodeFirstClasses;

8.	 Type the following code in the btnAdd_Click() event handler:

private void btnAdd_Click(object sender, EventArgs e)
{
 // Create a new purchase.
 Purchase NewPurchase = new Purchase();
 NewPurchase.Amount = new Decimal(5.99);
 NewPurchase.PurchaseDate = DateTime.Now;

 // Create a new customer and add the purchase.
 Customer NewCustomer = new Customer();
 NewCustomer.CustomerName = "Josh Bailey";

	 Chapter 3  Choosing a workflow    63

 // Create the context.
 RewardsContext context = new RewardsContext();

 // Add the record and save it.
 context.Customers.Add(NewCustomer);
 context.Purchases.Add(NewPurchase);
 context.SaveChanges();

 // Display a success message.
 MessageBox.Show("Record Added");
}

The code begins by creating a new purchase and associated customer. You’d need to perform
these actions no matter how you used the classes, so there’s nothing unusual here.

At this point, the code creates a RewardsContext object, context, and uses it to add the new
items to the Customers and Purchases tables. The code then calls the Add() method for each
of the tables and adds the new entries to them. Calling SaveChanges() makes the changes to
the database permanent. In this case, calling SaveChanges() also creates the database. The
code ends with a simple message box telling you that the record has been added.

9.	 Click Start or press F5. The application compiles and runs.

10.	 Click Add. You’ll see a message box saying that the record has been added.

11.	 Close the application. At this point, the Rewards database has a new record in it.

Viewing the results
The previous sections helped you create a code-first application. Of course, the question now is
whether it produced the desired results. The following procedure will help you view the results of this
application. You’ll use the same steps, with a different database name, to view the results of other
examples in the book.

Viewing the application output

1.	 Open Server Explorer by choosing View | Server Explorer or by pressing Ctrl+Alt+S. You’ll see
the Server Explorer window shown here:

64   PART I  Introducing the Entity Framework

2.	 Right-click Data Connection and choose Add Connection from the context menu. You’ll see
the Choose Data Source dialog box shown here:

3.	 Choose Microsoft SQL Server and click Continue. You’ll see an Add Connection dialog box like
the one shown here:

4.	 Select the SQL Server installation on your local machine in the Server Name field.

5.	 Select the Rewards database in the Select Or Enter a Database Name field and click OK. Visual
Studio creates the connection for you, automatically opens it, and places the cursor on the
connection so that you can work with it.

	 Chapter 3  Choosing a workflow    65

6.	 Drill down into the Rewards database. You’ll see that it contains two tables, Customers and
Purchases, as expected, and that those two tables have the expected columns, as shown fol-
lowing. Of course, there’s more to these tables than this view shows. For one thing, you need
to verify that there’s a foreign key set up between the Purchases and Customers tables. The
Purchases table should have a foreign key to the Id field in the Customers table. Fortunately,
Visual Studio provides the means to drill down further into the tables as needed.

7.	 Right-click the Purchases table and choose Open Table Definition from the context menu.
You’ll see the dbo.Purchases: Table window, which shows the details for each of the columns
in the table. For example, you can determine that none of the columns will allow Null value
entries.

8.	 Choose Table Designer | Relationships. You’ll see the Foreign Key Relationships dialog box
shown here:

66   PART I  Introducing the Entity Framework

9.	 Drill down into the Tables And Columns Specific category. You’ll see that the foreign key is
based on the CustomerId fields in both the Purchases and Customers tables. At this point, you
know that the database and tables are configured correctly. Of course, you can review any
of the other database and table properties as needed to verify the correct output from this
example.

10.	 Click Close to close the Foreign Key Relationships dialog box.

11.	 Right-click the Customers table and choose Show Table Data from the context menu. You’ll see
that the table contains the expected data, as shown here:

12.	 Right-click the Purchases table and choose Show Table Data from the context menu. You’ll see
that this table also includes the expected information.

Creating a model-first example

Remember that model-first design techniques let you create the design of the database graphically
before you actually create the database. The model-first example described in the sections that fol-
low replicate the results of the code-first example described in the “Creating a code-first example”
section of the chapter. The only difference will be the name of the database. Using this approach lets
you compare techniques to help you determine which method of creating a database you prefer.
Of course, there are times where you must use a particular workflow in order to obtain the desired
results.

Defining the database model
If you followed the previous example, you know that the example will contain two tables: Customers
and Purchases. The Customers table contains two columns: Id and CustomerName. The Purchases
table contains four columns: Id, PurchaseDate, Amount, and CustomersId (there’s a reason this field is
plural in this case—the IDE generates it automatically for you as part of the model definition process).
There’s a one-to-many relationship between Customers and Purchases. With this in mind, use the fol-
lowing procedure to create a model for the Rewards2 database.

Defining the Rewards2 database

1.	 Use the procedure found in the “Creating a project” section earlier in this chapter to create a
Windows Forms project named TestModelFirst and a solution named ModelFirst.

	 Chapter 3  Choosing a workflow    67

2.	 Right-click the TestModelFirst entry in Solution Explorer and choose Add | New Item from the
context menu. You’ll see the Add New Item dialog box shown here:

3.	 Select the ADO.NET Entity Data Model entry. You’ll see the project described in the right pane.

4.	 Type Rewards2Model.EDMX in the Name field and click Add. Visual Studio starts the Entity
Data Model Wizard, as shown here:

68   PART I  Introducing the Entity Framework

5.	 Choose the Empty Model option and click Finish. Visual Studio adds the new model to your
project. Like the example shown in the “Using the Entity Data Model Designer” section of
Chapter 1, “Getting to know the Entity Framework,” you use the Entity control in the toolbox
to add entities to your model.

6.	 Add a Customers entity to the model that contains two properties: Id and CustomerName
(type String).

7.	 Add a Purchases entity to the model that contains four properties: Id, PurchaseDate (type
DateTime), and Amount (type Decimal). Don’t add the CustomersId property to the Purchases
entity—Visual Studio automatically adds this property for you later.

Note  You must set the Scale property of the Amount property to 2, or Visual Studio
will assume you want to have zero decimal places. Because Amount is a monetary
value, two decimal places will work fine, but you must set the value or it won’t work
properly. If you want to limit the size of the monetary values that a user can input,
you can also set the Precision property to the total number of numbers you want to
store. For example, if you set Precision to 18 and Scale to 2, the integer portion of
the entry can have up to 16 places in it.

8.	 Right-click the Customers entity and choose Add New | Association from the context menu.
You’ll see the Add Association dialog box shown here:

	 Chapter 3  Choosing a workflow    69

Notice that the dialog box automatically fills in the needed information. For example, because
you added Customers first and Purchases second, it assumes a one-to-many relationship be-
tween Customers and Purchases. In some cases, you need to modify the content of this dialog
box, but often, the IDE will automatically determine the correct settings for you.

9.	 Click OK. Visual Studio creates a one-to-many relationship for you. In addition, it automatically
generates the CustomersId property for you in the Purchases entity. At this point, your model
is complete, and it should look like the one shown here:

10.	 Use the procedure in the “Working with the mapping details” section of Chapter 1 to generate
the database. Give your database a name of Rewards2.

11.	 Choose Build | Solution. Visual Studio saves all of the changes that you’ve made to the project
and then compiles the application. Most importantly, it automatically generates a DbContext
class for you use to access the database.

Note  You’ll notice as the book progresses that more and more of the procedures from ear-
lier chapters are referenced to reduce the complexity of the current procedure. The Entity
Framework makes it possible to perform many tasks exclusively with wizards and routine
procedures, which takes a lot of guesswork out of the entire process. Workflows should be
consistent, repeatable, and most of all, reliable. So, the reuse of procedures from earlier
chapters simply makes sense. Doing so allows you to focus on the new information at hand,
rather than get bombarded by information you already know.

70   PART I  Introducing the Entity Framework

Adding a record and viewing the results
Unlike the code-first approach, where you must create everything by hand-coding it, the model-first
approach includes a certain amount of automation. It even creates the code required to access the
database using a context. In addition, you already have the required Entity Framework 5 support
added to your application, so there’s no manual process involved in this case. Chapter 2 shows how to
access the database using a data source. The following procedure shows how to access the database
using a context. You’ll find that the technique is similar to the one used in the code-first technique,
but you don’t have to generate any of the code by hand—it is done automatically for you.

Creating and adding a database record using the model-first approach

1.	 Add a Button control to Form1 and place it in the upper-right corner of the dialog box.

2.	 Change the Button name to btnAdd and change its Text property value to &Add.

3.	 Double-click btnAdd to create a Click() event handler for it. You’ll see the btnAdd_Click() event
handler.

4.	 Type the following code in the btnAdd_Click() event handler:

private void btnAdd_Click(object sender, EventArgs e)
{
 // Create a new purchase.
 Purchases NewPurchase = new Purchases();
 NewPurchase.Amount = new Decimal(5.99);
 NewPurchase.PurchaseDate = DateTime.Now;

 // Create a new customer and add the purchase.
 Customers NewCustomer = new Customers();
 NewCustomer.CustomerName = "Josh Bailey";

 // Create the context.
 Rewards2ModelContainer context = new Rewards2ModelContainer();

 // Add the record and save it.
 context.Customers.Add(NewCustomer);
 context.Purchases.Add(NewPurchase);
 context.SaveChanges();

 // Display a success message.
 MessageBox.Show("Record Added");
}

This code is similar to the code-first example, but there’s one important difference. As with the
code-first example, the code begins by creating a new purchase and associated customer.

At this point, the code creates a Rewards2ModelContainer object, context, and uses it to
add the new items to the Customers and Purchases tables. You may not realize at first that
the Rewards2ModelContainer is all you need to access the database, but it is. Open the
Rewards2Model.Context.cs file in the IDE, and you’ll see it contains essentially the same code

	 Chapter 3  Choosing a workflow    71

that you used to hand-code the DbContext class earlier, in the “Creating a code-first example”
section of the chapter.

As before, the code then calls the Add() method for each of the tables and adds the new
entries to them. Calling SaveChanges() makes the changes to the database permanent. In this
case, calling SaveChanges() also creates the database. The code ends with a simple message
box telling you that the record has been added.

5.	 Click Start or press F5. The application compiles and runs.

6.	 Click Add. You’ll see a message box saying that the record has been added.

7.	 Close the application. At this point, the Rewards2 database has a new record in it.

8.	 Use the technique shown in the “Viewing the results” section earlier in this chapter to verify
that the database contains the expected contents.

Creating a database-first example

Many developers start with an existing database. The Entity Framework has this need covered. In fact,
working with existing databases was the initial purpose in creating the Entity Framework. You use the
database-first workflow to address this requirement in a graphical environment (theoretically, you can
also use the code-first approach, but in this case, writing the code first seems like a hard way to do
things). The following sections describe how to reverse engineer an existing database and add a new
record to it.

Note  This example relies on the Rewards or Rewards2 database created in the “Creating a
code-first example” or “Creating a model-first example” section of this chapter. You can use
either database. The steps assume you’re using the Rewards database, but the Rewards2
database is precisely the same and will work just as well.

Reverse engineering the database model
The first step in using the database-first workflow is to reverse engineer an existing database. The
database can exist on any server that provides Entity Framework support. For that matter, you can
actually use multiple sources in your model, and the sources need not use the same DBMS. A model
simply defines how the various sources interact. In the interest of simplicity, though, the example in
the following procedure relies on the Rewards (or Rewards2) database created earlier in this chapter.

72   PART I  Introducing the Entity Framework

Reverse engineering an existing database

1.	 Use the procedure found in the “Creating a project” section of this chapter to create a
Windows Forms project named TestDatabaseFirst and a solution named DatabaseFirst.

2.	 Right-click the TestDatabaseFirst entry in Solution Explorer and choose Add | New Item. You’ll
see the Add New Item dialog box.

3.	 Select the ADO.NET Entity Data Model entry. You’ll see the project described in the right pane.

4.	 Type RewardsModel.EDMX in the Name field and click Add. Visual Studio starts the Entity
Data Model Wizard.

5.	 Choose Generate From Database and click Next. The wizard asks you to choose a database
connection, as shown here:

In this case, you already have a connection to use. The example will work fine with either the
Rewards or Rewards2 database. If you didn’t have an existing connection to use, you’d click
New Connection and follow the same steps you used in the “Viewing the results” section of
this chapter to create a connection to the database.

6.	 Choose either the Rewards or Rewards2 database connection and click Next. (The example
uses the Rewards database, and the screen shots will reflect that fact, but your screen shots
will look similar, even if you use the Rewards2 database.) Visual Studio retrieves the database
information. After a moment, the wizard asks you to choose the database elements you want
to use in your application, as shown here:

	 Chapter 3  Choosing a workflow    73

7.	 Drill down into the Tables object by clicking the right-pointing arrows next to each entry.
You’ll see the tables that make up the example database, as shown in the screen shot.

8.	 Check the Customers and Purchases table entries and click Finish. Visual Studio reads the
information from the database. After a few moments, you’ll see the model generated from
the database. The resulting model should look similar to the output of the procedure in the
“Defining the database model” section earlier in this chapter. The only difference should be
the fact that the entity names are singular, rather than plural, if you used the Rewards data-
base.

9.	 Choose Build | Solution. Visual Studio saves the changes you’ve made and then compiles the
application. You shouldn’t see any error messages.

Adding a record and comparing results
There’s already a record in this database, so you’re adding another record to it in this section. The
new record appears in the database you’re working with (Rewards or Rewards2). In many respects, the
process for adding the record is the same as adding a record in the model-first example. You can use
the procedure found in the “Adding a record and viewing the results” section of the chapter to add a

74   PART I  Introducing the Entity Framework

record to the database. There are some differences in the code shown in step 4 of that procedure, but
they’re small.

private void btnAdd_Click(object sender, EventArgs e)
{
 // Create a new purchase.
 Purchase NewPurchase = new Purchase();
 NewPurchase.Amount = new Decimal(5.99);
 NewPurchase.PurchaseDate = DateTime.Now;

 // Create a new customer and add the purchase.
 Customer NewCustomer = new Customer();
 NewCustomer.CustomerName = "Carole Poland";

 // Create the context.
 RewardsEntities context = new RewardsEntities();

 // Add the record and save it.
 context.Customers.Add(NewCustomer);
 context.Purchases.Add(NewPurchase);
 context.SaveChanges();

 // Display a success message.
 MessageBox.Show("Record Added");
}

As previously mentioned, the table names are singular when working with the Rewards database,
so you need to use that form when working with that database. The DbContext class name also dif-
fers. In this case, you type RewardEntities instead. However, if you open the RewardsModel.Context.
cs file, you’ll find that the code is almost exactly the same as the other two workflows. What you
should take away from this third example is that each of the workflows produces similar results. In
fact, except for some naming differences, each workflow produces precisely the same result. That’s
the point. You can work the way you need to work with the Entity Framework and be assured that
you’ll get the same result every time.

Getting started with the Entity Framework

This chapter has emphasized the need for all three workflows that you typically use when work-
ing with the Entity Framework. The essential idea to take away from this chapter is that the Entity
Framework is designed to work with you, to help you achieve success with a minimum of effort. The
three workflows described in this chapter—code first, model first, and database first—are the ones
most commonly used. Nothing says that you have to strictly adhere to them or create a workflow of
your own that better serves your needs. Consider the content of this chapter as a starting place for
your own efforts. What you really need to do is consider how you work and then optimize your ef-
forts around the way you naturally do things. Always remember that the key part of a workflow is the
flow—things should move along smoothly without surprises.

Now that you’ve had some exposure to the various workflows, think about some of the application
scenarios you might experience personally. Try to work out which workflows or workflow

	 Chapter 3  Choosing a workflow    75

combinations you’d use to address these application requirements. Part of discovering the useful-
ness of the Entity Framework is seeing how it can apply to your particular situation. You won’t get the
most out of the Entity Framework until it becomes part of your work environment (rather than a new
technique that’s simply bolted on).

The next part of the book discusses how to perform basic tasks using the Entity Framework. Chap-
ter 4, “Generating and using objects,” begins by helping you understand how to interact with objects
better. The applications to this point have been relatively simple. The examples you see in the next
part of the book are a little more complex and better model what you might do in a real-world situa-
tion. Don’t worry that you’ll suddenly become buried in detail, though—Chapter 4 is just one step up
from what you’ve done so far.

Chapter 3 quick reference

To Do this

Create a context Define a class that inherits from the DbContext class. In
this class, you must create a DbSet object to access the
database in a way that reflects the application view of the
database. A context will typically look like this:

public DbSet<ApplicationClass>
LocalCollectionObject { get; set; }

where the ApplicationClass is a class that defines the
database structure that resides in your application, and
LocalCollectionObject is a List() object that provides local
memory storage of the database content. A context helps
you perform standard tasks, such as adding, editing, and
removing records.

Move your existing application to the Entity Framework Employ the code-first workflow and then modify the
model that the IDE generates for you to match the actual
database requirements completely.

Create an application from scratch Employ the model-first workflow to create the database
model, generate the database from the model, and then
create the application based on both the model and
physical database.

Use an existing database in a new application Employ the database-first workflow to create a model
based on the existing database, and then create the ap-
plication based on both the model and physical database.

Develop new features in an existing application Use a combination of workflow approaches that matches
the scenario for your application. For example, use the
code-first workflow for existing code where no database
currently exists and the model-first workflow for new
features.

		 77

PART II

Completing basic tasks

The first part of this book introduced you to the Entity Framework and the workflows it supports.
Now that you have a better idea of what the Entity Framework is, it’s time to see how you can use it to
perform basic tasks. This part of the book shows how to perform basic tasks at two levels. In Chapter
4, “Generating and using objects,” you begin by gaining knowledge of the Entity Framework objects
and how they’re used to perform tasks such as querying data and modifying it (including the three
basic tasks of adding, editing, and deleting records). The chapter then moves on to the more ad-
vanced topics of using Query Builder methods and working with extension methods.

Chapter 5, “Performing essential tasks,” builds on what you’ve learned in Chapter 4. The chapter
begins by showing you how to refine the rough management methods in Chapter 4 so that you can
build more refined applications that query, add, edit, and delete records. You’ll then see how to per-
form tasks such as saving data to the database safely. The examples, up to this point, have examined
the parent-child relationship from an overview perspective—now you’ll begin to build on this knowl-
edge to create applications that can manipulate records with relationships more safely. When you
finish Chapter 5, you should be able to create a basic application—one that can work with multiple
tables at some level. You won’t have the knowledge required to work with truly complex datasets, but
you’ll know enough to build simple applications that manage data safely.

		 79

C H A P T E R 4

Generating and using objects

After completing the chapter, you’ll be able to

■■ Describe the basic Entity objects and how they’re used.

■■ Make a query using an object.

■■ Modify data using an object.

■■ Use Query Builder methods.

■■ Create and use extension methods.

Previous chapters in the book have hinted at the sorts of things you can do when working with
objects. You know that you can use a class that inherits from DbContext to create a context to a

specific database and access its tables. This chapter begins to go beyond these really simple ideas by
introducing you to a new query language, Entity SQL. It helps you understand the Entity Framework
objects at greater depth and begin to use them to perform more complicated tasks. This new knowl-
edge will help you make queries on datasets and let the user view the data in a form that makes
sense. You’ll also discover how to manipulate data safely (the previous chapters simply showed how to
get the task done in the easiest manner possible).

Early query examples in this chapter show how to work with Entity SQL, which is a language for
working with the Entity Data Model. Working directly with Entity SQL can be cumbersome, so, as
with many things in programming, there’s a shortcut: using Query Builder methods. These methods
use a syntax similar to Language Integrated Query (LINQ) to help you to create queries easily. (If
you haven’t worked with LINQ in the past, don’t worry, this chapter will show everything you need
to know.) Underneath it all, Microsoft Visual Studio creates an Entity SQL statement that queries the
database for you. This chapter is only an introduction to the Query Builder methods—you’ll use them
often throughout the book.

This chapter also provides a brief introduction to extension methods. You use extension methods
to add functionality to built-in .NET classes, so that they behave more as you need them to behave
in order to perform useful work with a minimum of code. Using extension methods makes it possible
to reduce the amount of repetitive coding you perform. In short, you really aren’t changing the .NET
class; you simply add to it to meet a specific coding need in your application. Because many coding
sequences in the Entity Framework become repetitive, using extension methods can reduce the code
you need to provide and also reduce the work required to fix bugs in your application. However, the

80   PART II  Completing basic tasks

main impact is that you end up with a class that saves you time and effort—it’s more a matter of con-
venience than necessity, and you could easily skip this section if desired.

Understanding the Entity objects

Entity objects serve an important purpose—they provide access to the entities in your model. The
entities, in turn, provide access to properties, associations, and other model features. The purpose of
the Entity Framework is to make it easy for the developer to understand the data that the application
modifies. In order to do this, the Entity Framework presents the elements of the model you create
as objects that you can access within your application. By accessing these objects, you affect the
underlying database. You can make changes to the data within the database, modify the database
structure, and perform other tasks without really knowing anything about the database (or databases)
involved. All you need to know is how to interact with the Entity Framework. In short, the purpose of
the Entity objects is to provide a consistent means to work with data in your applications no matter
what the source of that data might be. With this in mind, the following sections explore Entity objects
in more detail before you begin working with them as part of an application programming example.

Considering object services
The Entity Framework is composed of a number of layers. The topmost layer, the Entity Data Model,
provides the required access to object services. Using object services meets the following needs:

■■ It reduces the amount of code needed to create applications.

■■ It makes it possible to program against familiar objects, rather than unfamiliar database con-
structs.

■■ It creates an environment where the developer can access data from any source.

Object services also provide access to the lower layers of the Entity Framework. You can use them
to obtain various sorts of access, including the following:

■■ Specific type information

■■ Relationship information

■■ Basic data readers and writers

The combination of hiding complexity, yet providing access to details of the underlying model,
makes it possible for developers to become more productive with fewer errors and with less knowl-
edge of the actual database functionality. Using object services helps you perform a number of tasks,
including the following:

■■ Creating queries using Entity SQL or Query Builder methods (theoretically, you can also use
LINQ)

■■ Performing Create, Read, Update, and Delete (CRUD) operations against data

	 Chapter 4  Generating and using objects    81

■■ Managing state

■■ Performing lazy loads (where data needed to perform a task is automatically loaded into the
context as needed)

■■ Managing inheritance

■■ Navigating relationships

There are, in fact, a host of tasks that object services help you perform that you’ll see throughout
this book. The important thing to remember is that object services don’t simply allow you to perform
CRUD operations, as some developers might expect. The overall goal of object services is to create a
robust environment that scales to any size application and any size data source, as needed, while pro-
viding full error handling, data access, and data layer support. A large part of this chapter is devoted
to the query portion of object services, but it’s important to know that you’ll ultimately do more with
object services as the book progresses.

Considering the base classes
The majority of the classes you need to consider when working with the Entity Framework re-
side in the System.Data.Entity namespace. This namespace contains the classes that provide Entity
Framework functionality. No matter what kind of application you create, you’ll always find at least
three of these classes automatically added to your application:

■■ DbContext  Defines a framework in which an application can create connections to a
database as required to perform CRUD tasks. All changes to the database are gathered and
grouped within the content and then saved to the database as a batch operation. You can
perform tasks such as validating the changes before they’re sent to the database, which makes
your application faster and more efficient.

■■ DbModelBuilder  Creates a map between Common Language Runtime (CLR) classes and the
database schema. This particular class is associated with the code-first workflow. However, you
also see it used with the DbContext.OnModelCreating() method to signal an error that occurs
when an application has generated a context in the database-first or model-first workflows,
and then tries to use that context in code-first mode.

■■ DbSet/DbSet<TEntity>  Represents the entity set that’s actually used to perform CRUD op-
erations. The System.Data.Entity namespace offers access to both untyped and typed versions
of this class. The untyped version is used when the type of the entity isn’t known at build time.

This namespace also contains a number of other classes that you might encounter while work-
ing with the Entity Framework. These other classes all help you create the infrastructure required to
implement CRUD functionality in your application.

■■ CreateDatabaseIfNotExists<TContext>  Creates a new database when the database
doesn’t exist and optionally seeds the database with data. In order to add default records to
the database, you must derive a class from this base class and override the Seed() method.

82   PART II  Completing basic tasks

■■ Database  Provides access to the database underlying an Entity Framework model. You can
use the methods associated with this class to create or delete the database, check for its exis-
tence, or execute a SQL command. You can also use the static methods of this class to delete a
database or check for its existence based solely on a standard connection.

■■ DbExtensions  Defines a number of useful static methods that you can use to interact with
queries. For example, you can define which objects to return in a query result. It’s also possible
to return a query without caching the result in either the DbContext or ObjectContext objects.

■■ DbModelBuilderVersionAttribute  Sets the version of the DbContext and DbModelBuilder
conventions that the application should use when building a model from code. The DbModel-
BuilderVersion enumeration described at http://msdn.microsoft.com/library/system.data.entity.
dbmodelbuilderversion.aspx tells which versions are available.

■■ DropCreateDatabaseAlways<TContext>  Creates a new database in all situations and
optionally seeds the database with data. In order to add default records to the database,
you must derive a class from this base class and override the Seed() method. If the database
already exists, it’s automatically dropped before creating the new database.

■■ DropCreateDatabaseIfModelChanges<TContext>  Creates a new database only when the
model changes and optionally seeds the database with data. In order to add default records
to the database, you must derive a class from this base class and override the Seed() method.
If the database already exists, it’s automatically dropped before creating the new database.

■■ MigrateDatabaseToLatestVersion<TContext, TMigrationsConfiguration>  Migrates an
existing database to the latest version of the database model using code-first migrations. You
can see an example of code-first migrations at http://msdn.microsoft.com/en-us/data/jj591621.

The Entity Framework also requires support classes to perform tasks such as exception handling.
These support classes appear as part of the System.Data.Entity.Infrastructure namespace. The one
class that’s always added to your application is UnintentionalCodeFirstException, and it’s used to
signal an error in the way a workflow is used. Essentially, this type of error occurs when an application
generates a context in the database-first or model-first workflow, and then tries to use that context in
the code-first mode. This namespace also includes a number of other classes (as described at http://
msdn.microsoft.com/library/system.data.entity.infrastructure.aspx) that are used as needed to provide
support to the Entity Framework model.

Working with an EntityCollection
In reviewing the Rewards and Rewards2 databases created in Chapter 3, “Choosing a workflow,“
you see that each entry in the Customer table can have one or more entries in the Purchase table. A
customer must make a purchase before appearing in the Customer table, so you know that the cus-
tomer has at least one entry in the Purchase table, but it’s likely that each customer will have multiple
Purchase table entries. When working with records, then, it’s quite possible to work with an individual
customer, but it’s likely that you’ll have to handle a collection of purchases. The entries will appear as
part of an EntityCollection object.

	 Chapter 4  Generating and using objects    83

Warning  It’s important to note that the Entity Framework uses an EntityCollection object
that has nothing to do with the classes in the System.Collections namespace. In fact, the
EntityCollection class doesn’t implement the ICollections interface. Therefore, even though
the basic principle behind an EntityCollection is the same as any other collection you’ve
used, it isn’t compatible with the classes found in the System.Collections namespace. Trying
to make the two work side by side won’t work.

The EntityCollection class is part of the System.Data.Objects.DataClasses namespace. This
namespace provides the following:

■■ Classes for types that are defined as part of the Entity Data Model

■■ Base classes for types that are returned as part of navigation properties

■■ Classes that define attributes that map CLR objects to conceptual model types

When viewing the EntityCollection class role within the namespace, you see the method used to
define properties that point to a collection of records in a one-to-many relationship. Look again at
the Rewards2 database model used with the ModelFirst example in Chapter 3.

The Purchases navigation property found in the Customers entity points to a one-to-many
relationship with the Purchases entity. In most cases, you’d expect this property to derive from
System.Collections.ICollection. However, it actually derives from System.Data.Objects.DataClasses.
EntityCollection—the two classes aren’t interchangeable. You can see the one-to-many relationship in
the Multiplicity property of the Properties window when you view the Purchases navigation property,
as shown here:

84   PART II  Completing basic tasks

Understanding the role of Entity SQL
The Entity Framework provides a number of methods for interacting with the objects that represent
a database. Many developers will already have experience working with T-SQL (Transact-Structured
Query Language) or a similar SQL-based language and will want to use that knowledge when working
with the Entity Framework. The Entity Framework does work entirely with objects, but it also provides
a SQL-like language named Entity SQL that these developers can use to interact with those objects.

It’s important to remember that Entity SQL and T-SQL are two different languages, and they’re in-
tended for two different purposes. Most developers will immediately notice that Entity SQL has some
specific differences that are related to its use with Entity Framework objects:

■■ Selections only  You can only select data using Entity SQL. Languages such as T-SQL provide
elements that also allow adding, deleting, and editing records. The assumption is that the
Entity Framework features will address these other requirements. Because there are only
selections, you’ll also find that Entity SQL lacks support for these T-SQL features:

•	 Data Manipulation Language (DML)

•	 Data Definition Language (DDL)

•	 Imperative programming

•	 Grouping functions

•	 Analytic functions

•	 Hints

■■ Support for collections  An Entity SQL statement can use collections. These collections can
appear as part of the FROM, IN, EXISTS, UNION, INTERSECT, and EXCEPT keywords. In addi-
tion, you can use collections as part of join operations.

	 Chapter 4  Generating and using objects    85

■■ Support for expressions  Unlike T-SQL, which has both subqueries and expressions, the level
of collection support in Entity SQL requires that everything be treated as an expression. This
treatment has a significant benefit in that every expression can appear everywhere.

■■ No batch queries  It isn’t possible to perform batch queries using Entity SQL.

■■ No stored procedures  Entity SQL also lacks support for stored procedures. However, you
can use functions when their only use is to select data.

■■ Logical table and row focus  When working with Entity SQL, you’re still using the concep-
tual model that the Entity Framework creates. This means that any queries you create focus on
that conceptual model, rather than the underlying database, and that the mapping layer is still
in place between the two.

■■ No support for the * operator  It’s possible to obtain the same effects as using the *
operator, but you need to use the language in a different manner. For example, instead of
the count(*) aggregate, you use count(0) instead. The examples later in this chapter help you
understand how the loss of the * operator is fully compensated for as part of the Entity SQL
language.

■■ Dot syntax differences  When working with T-SQL, you use dot syntax to access the column
of a row of a table. Entity SQL extends this notation to allow referencing of properties using
dot syntax.

■■ Built-in functions and operators  Entity SQL supports only a subset of the built-in functions
and operators that T-SQL supports. You can see a description of the function support at http://
msdn.microsoft.com/library/bb738525.aspx. A list of operators and their precedence appears at
http://msdn.microsoft.com/library/bb387132.aspx.

These are the highlights of the differences between Entity SQL and T-SQL. You can find a more
detailed list of differences at http://msdn.microsoft.com/library/bb738573.aspx. The essential concept
to remember is that Entity SQL is a SQL-like language, but not SQL itself.

Making queries using objects

In order to be useful, any data system requires some means of retrieving the data it stores. In fact,
data retrieval is the main task of most data systems. People spend far more time querying the data
than modifying it. Consequently, it pays to have a system in place that’s easy for the developer to
understand and program, and both easy and flexible for the user to use. The reliance on objects in
the Entity Framework makes working with the complex data found in most data systems consider-
ably easier. The following paragraphs describe the objects of interest when working with the Entity
Framework. Of course, .NET provides a considerable array of other objects, and you’ll encounter a
number of them in later chapters.

86   PART II  Completing basic tasks

Considering the role of lambda expressions
Before going any further, it’s essential to clarify the concept of a lambda expression, because many
developers find it confusing (if you don’t find it confusing, simply skip this first paragraph). A lambda
expression is an anonymous function (one that doesn’t have a specific name) that you use to create
delegates or expression trees. The goal behind a lambda expression is to simplify the task of express-
ing abstractions within an application. Essentially, lambda expressions make it possible to express a
concept as a statement. The lambda expression uses the lambda operator, =>, to create the expres-
sion. On the left side of the operator you find any arguments used to provide input to the expres-
sion. On the right side of the operator is the code used to manipulate the input. Consequently, the
expression x => x * x means that the lambda expression accepts a value, x, as input and provides the
square of that value as output. This short description should help you better understand the material
that follows. If you still find lambda expressions confusing, check out the article at http://blogs.msdn.
com/b/ericwhite/archive/2006/10/03/lambda-expressions.aspx for further clarification. You first saw a
form of lambda expression used in the “Creating the test application” section of Chapter 2, “Looking
more closely at queries.” The lambda expression is used to perform a test of a condition and return a
Boolean result, as shown here:

var dbQuery =
 UserFavoritesContext.UserFavorites.Where(id => id.UserId >= 0).ToArray();

In this case, the query will return only those values where id.UserId is greater than or equal to 0.
Trying to express this concept in some way other than using a lambda expression would be difficult
to say the least. As you can see, the left side contains the input argument, id, which Visual Studio
will help you work with on the right side of the expression (in this case, gaining access to the UserId
property).

Lambda expressions are typically used within Entity Framework method calls and as part of Entity
SQL to perform selections, determine how to group data, and perform other tasks where the criterion
is better expressed as a function. Many of the examples in this book rely on lambda expressions to
perform specific tasks, so you’ll see them used (and explained) relatively often.

Creating a basic query using Entity SQL
The best way to begin understanding Entity SQL is to use it. The syntax is relatively straightforward,
but you can see an overview of the syntax at http://msdn.microsoft.com/library/bb738683.aspx. This
example begins with the ModelFirst example you created in the “Creating a model-first example”
section of Chapter 3. Use the following procedure to create an Entity SQL statement that obtains a
customer record from the database, along with the purchases that the customer has made.

Making an Entity SQL query

1.	 Copy the ModelFirst example you created in Chapter 3 to a new folder and use this new copy
for this example (rather than the copy you created in Chapter 3).

http://blogs.msdn.com/b/ericwhite/archive/2006/10/03/lambda-expressions.aspx
http://blogs.msdn.com/b/ericwhite/archive/2006/10/03/lambda-expressions.aspx

	 Chapter 4  Generating and using objects    87

2.	 Add a new button to Form1. Name the button btnQuery and set its Text property to &Query.

3.	 Double-click btnQuery to create a new click event handler.

4.	 Type the following code for the btnQuery_Click() event handler:

private void btnQuery_Click(object sender, EventArgs e)
{
 // Create the context.
 EntityConnection conn =
 new EntityConnection("name=Rewards2ModelContainer");
 ObjectContext context = new ObjectContext(conn);

 // Define a command string for making the query.
 String EntitySQLCmd =
 "SELECT VALUE CustomerList " +
 "FROM Rewards2ModelContainer.Customers " +
 "AS CustomerList";

 // Create a query object.
 ObjectQuery<Customers> Query =
 new ObjectQuery<Customers>(EntitySQLCmd, context);

 // Execute the query.
 List<Customers> Result = Query.Execute(MergeOption.NoTracking).ToList();

 // Display the customer name on screen.
 MessageBox.Show(Result[0].CustomerName);
}

The example begins by creating a connection to the database and then using that connection
to create a context. Notice that you must provide the name of the connection to use, which is
Rewards2ModelContainer in this case.

After creating the connection, the code defines a query string using Entity SQL. This is a sim-
ple query, but it serves to show that the syntax is much like the SQL statements you’ve used in
the past. Again, notice that you must reference Rewards2ModelContainer to gain access to the
Customers object. The use of CustomerList replaces the * that would normally appear after the
SELECT keyword.

In order to use the query, you must create an ObjectQuery object, Query, and then call
Execute() on that object. The output is a List (Result in this case). You have several options for
creating usable output with the query. The first customer name is displayed on screen.

5.	 Add the following two using statements to the beginning of the file:

using System.Data.Objects;
using System.Data.EntityClient;

6.	 Click Start or press F5. The application compiles and runs.

7.	 Click Query. You’ll see the customer’s name, Josh Bailey, displayed.

88   PART II  Completing basic tasks

Creating a basic query using LINQ
Most developers rely on LINQ when making queries. LINQ is significantly easier to use and shorter as
well. It also has a SQL-like syntax; albeit, not quite as closely attuned to SQL as Entity SQL is. The fol-
lowing procedure shows how to create a query using LINQ and the ModelFirst example you created in
the “Creating a model-first example” section of Chapter 3.

Making a LINQ query

1.	 Copy the ModelFirst example you created in Chapter 3 to a new folder and use this new copy
for this example (rather than the copy you created in Chapter 3).

2.	 Add a new button to Form1. Name the button btnDisplay and set its Text property to
&Display.

3.	 Double-click btnDisplay to create a new click event handler.

4.	 Type the following code for the btnDisplay_Click() event handler:

private void btnDisplay_Click(object sender, EventArgs e)
{
 // Create the context.
 Rewards2ModelContainer context = new Rewards2ModelContainer();

 // Obtain the first customer.
 var ThisCustomer =
 (from cust in context.Customers
 select cust).First();

 // Place the customer name in the output.
 StringBuilder Output = new StringBuilder(
 ThisCustomer.CustomerName + " has made purchases on: ");

 // Add each of the customer purchases to the output.
 foreach (Purchases ThisPurchase in ThisCustomer.Purchases)
 Output.Append("\r\n\t" + ThisPurchase.PurchaseDate);

 // Display the result on screen.
 MessageBox.Show(Output.ToString());
}

The example begins by creating a context, much as the previous example did to add a record
to the database. It then creates the first Entity SQL statement for this chapter. If you’re familiar
with LINQ or SQL, you can see how this statement works to an extent. The var keyword de-
fines a variable, ThisCustomer, of an unknown type. The compiler ascertains the correct type
during the build process. Theoretically, you could also assign a specific type in this case, but
using var works just fine and reduces the potential for errors during the compilation process.

	 Chapter 4  Generating and using objects    89

The Entity SQL statement selects the values from context.Customers and places them in cust.
The from cust part of the statement says that the output is taken from the temporary variable
cust. The data source is specified by context.Customers. The actual query is specified by select
cust (you could modify this part of the statement to change the output if desired). If you were
to include a where clause, you could choose specific records in the database. However, in this
case, all of the records are selected. The output from this Entity SQL statement is then modi-
fied by a call to First(), which returns just the first record and places it in ThisCustomer.

The code now has access to a single record from the database. It places the customer’s name
in Output. At this point, ThisCustomer.Purchases points to all of the purchases the customer
has made. The code uses a foreach statement to place the purchase date for each purchase
in Output. The end result is that Output contains the customer’s name and all of the dates of
purchase associated with that customer.

5.	 Click Start or press F5. The application compiles and runs.

6.	 Click Display. You’ll see the result shown here (assuming that you ran the example from Chap-
ter 3 and didn’t modify the code from that example):

Note  Most of the information you see in the dialog boxes in this chapter will match those
on your system. However, you’ll encounter a few differences, such as dates. In addition, the
application dialog boxes may not match precisely. These small differences won’t make any
difference in the performance of the example applications.

Modifying data using objects

Querying data is an essential part of applications and it’s indeed the task that users perform most
often; but at some point, you’ll need to add new records, update existing records, and delete old
records. This section discusses techniques for performing all three tasks using objects. In this case,
you’ll work with the ModelFirst example you created in the “Creating a model-first example” sec-
tion of Chapter 3 to add, update, and delete purchases that Josh Bailey has made as a customer of
your company. However, before you can get to the code for handling these tasks, you need to add a
couple of forms to the example. The following sections describe how to perform all of these tasks.

90   PART II  Completing basic tasks

Adding the forms
In order to make it easier for the user to perform the required tasks, you need two forms: one to
display a list of purchases that the user can use to select records to update and delete, and another to
provide spaces for adding or updating data. The following procedure begins by adding the selection
form. The selection form provides a simple list of purchases made by Josh. All the user needs to do is
select the appropriate entry and click a button to use it.

Adding the selection form

1.	 Copy the ModelFirst example you created in the “Creating a basic query using LINQ” section
of this chapter to a new folder, and use this new copy for this example (rather than the copy
you created earlier). This example relies on the Display button you created earlier to show the
results of tasks you perform.

2.	 Right-click the TestModelFirst project entry in Solution Explorer and choose Add | Windows
Form from the context menu. You’ll see the Add New Item dialog box.

3.	 Type frmSelection in the Name field and click Add. Visual Studio adds the new form to your
project.

4.	 Add two buttons (btnSelect and btnCancel), a label (lblPurchases), and a list box (lstPurchases)
to the form, as shown here:

	 Chapter 4  Generating and using objects    91

5.	 Set the DialogResult property for btnSelect to OK, the DialogResult property for btnCancel to
Cancel, and the Modifiers property for lstPurchases to Public.

Now that you have the selection form in place, you need a second form for modifying the data.
In this case, the form provides fields for each of the data fields for the Purchases table. The following
procedure shows how to add this form.

Adding the data form

1.	 Right-click the TestModelFirst project entry in Solution Explorer and choose Add | Windows
Form from the context menu. You’ll see the Add New Item dialog box.

2.	 Type frmData in the Name field and click Add. Visual Studio adds the new form to your
project.

3.	 Add two buttons (btnModify and btnCancel), four labels (lblID, lblPurchaseDate, lblAmount,
and lblCustomerID), three text boxes (txtID, txtAmount, and txtCustomerID), and a Date-
TimePicker (dtpPurchaseDate), as shown here:

4.	 Set the DialogResult property for btnModify to OK, the DialogResult property for btnCancel to
Cancel, the Modifiers property for txtID, dtpPurchaseDate, txtAmount, and txtCustomerID to
Public, and the ReadOnly property for txtID and txtCustomerID to True.

92   PART II  Completing basic tasks

Adding purchases
A good first step for updating this application is to create a method for adding purchases. In this case,
all you need to do is display a form for adding the data. The example will continue to use Josh Bailey’s
customer record for the sake of simplicity. Use the following procedure to add the code required to
add new purchase records.

Adding a Purchase

1.	 Add a new button to Form1. Name the button btnAddPurchase and set its Text property to
Add &Purchase.

2.	 Double-click btnAddPurchase to create a new click event handler.

3.	 Type the following code for the btnAddPurchase_Click() event handler:

private void btnAddPurchase_Click(object sender, EventArgs e)
{
 // Create the form and display it.
 frmData AddData = new frmData();
 DialogResult Result = AddData.ShowDialog(this);

 // Check the dialog result.
 if (Result == DialogResult.Cancel)
 return;

 // Create the context.
 Rewards2ModelContainer context = new Rewards2ModelContainer();

 // Obtain the customer record.
 var ThisCustomer =
 (from cust in context.Customers
 select cust).First();

 // Create a new purchase.
 Purchases NewPurchase = new Purchases();
 NewPurchase.Amount =
 Convert.ToDecimal(AddData.txtAmount.Text);
 NewPurchase.CustomersId = ThisCustomer.Id;
 NewPurchase.PurchaseDate = AddData.dtpPurchaseDate.Value;

 // Add the purchase to the customer record.
 ThisCustomer.Purchases.Add(NewPurchase);
 context.SaveChanges();

 // Display a success message.
 MessageBox.Show("Record Added");
}

The code begins by displaying the form. When the user clicks Modify, the code returns and
creates a new context. It then obtains the record for Josh Bailey. At this point, the code can
use a combination of the data from Josh Bailey’s record and frmData to create a new purchase
object. Notice that the code adds the new purchase directly to Josh Bailey’s record. As a final

	 Chapter 4  Generating and using objects    93

step, the code saves the changes made to the context and displays a message saying the
record was added.

4.	 Click Start or press F5. The application compiles and runs.

5.	 Click Add Purchase. You’ll see the Purchase Data dialog box.

6.	 Change the value in the Amount field to 6.99 and click Modify. The application adds the new
record to the database. Of course, you’ll want to verify the addition.

7.	 Click Display. You’ll see the result shown here (assuming that you ran the example from Chap-
ter 3 and didn’t modify the code from that example):

Updating purchases
When users aren’t viewing data, they spend considerable time updating it. This part of the example
continues using Josh Bailey’s record to keep things simple. In order to make a change, the user must
select an existing record and then modify the content of that record, so this part of the example uses
both of the forms that you created earlier. The following procedure shows how to perform this task.

Updating a Purchase

1.	 Add a new button to Form1. Name the button btnUpdatePurchase and set its Text property to
&Update Purchase.

2.	 Double-click btnUpdatePurchase to create a new click event handler.

3.	 Type the following code for the btnUpdatePurchase_Click() event handler:

private void btnUpdatePurchase_Click(object sender, EventArgs e)
{
 // Create the context.
 Rewards2ModelContainer context = new Rewards2ModelContainer();

 // Obtain the customer record.
 var ThisCustomer =
 (from cust in context.Customers
 select cust).First();

 // Fill the selection form with data.
 frmSelection RecSelect = new frmSelection();
 foreach (Purchases ThisPurchase in ThisCustomer.Purchases)

94   PART II  Completing basic tasks

 RecSelect.lstPurchases.Items.Add(ThisPurchase.PurchaseDate);

 // Obtain a record selection.
 DialogResult Result = RecSelect.ShowDialog(this);
 if (Result == DialogResult.Cancel)
 return;

 // Obtain the desired purchase record.
 var UpdatePurchase =
 from purchase in ThisCustomer.Purchases
 where purchase.PurchaseDate ==
 (DateTime)RecSelect.lstPurchases.SelectedItem
 select purchase;

 // Create the update form and add data to it.
 frmData ChangeData = new frmData();
 ChangeData.txtAmount.Text =
 UpdatePurchase.First().Amount.ToString();
 ChangeData.txtID.Text =
 UpdatePurchase.First().Id.ToString();
 ChangeData.dtpPurchaseDate.Value =
 UpdatePurchase.First().PurchaseDate;

 // Display the form and wait for changes.
 Result = ChangeData.ShowDialog(this);
 if (Result == DialogResult.Cancel)
 return;

 // Update the purchase record.
 UpdatePurchase.First().Amount =
 Convert.ToDecimal(ChangeData.txtAmount.Text);
 UpdatePurchase.First().PurchaseDate =
 ChangeData.dtpPurchaseDate.Value;
 context.SaveChanges();

 // Display a success message.
 MessageBox.Show("Record Updated");
}

This example starts by obtaining a context to the database and using it to populate the entries
in frmSelection. The code then displays the resulting object, RectSelect, to the user, who can
select one of the purchase entries based on the date.

When the user selects a date, the code uses the information to obtain the specific purchase
record from the database. It then creates a frmData object, ChangeData; uses the informa-
tion from the purchase record, UpdatePurchase; and displays it on screen. The user can now
modify the data.

After the user closes the dialog box, the code updates the purchase record using UpdatePur-
chase. You don’t actually have to work directly with the context or the actual customer object,
ThisCustomer. A call to SaveChanges() saves the information to the database.

	 Chapter 4  Generating and using objects    95

4.	 Click Start or press F5. The application compiles and runs.

5.	 Click Update Purchase. You’ll see the list of purchases made by the user, as shown here:

6.	 Highlight the second date—the one you added in the “Adding purchases” section of the
chapter—and click Select. You’ll see the Purchase Data dialog box. This dialog box will auto-
matically contain all of the data for this specific record, as shown here:

7.	 Choose the previous day’s date in the Purchase Date field and click Modify. The applica-
tion modifies the record and displays a success message. Of course, you’ll want to verify the
addition.

8.	 Click Display. The dialog will display the changed purchase date for you.

Deleting purchases
Deleting records is something that users perform the least often of all of the activities discussed so
far. In fact, there are database applications that don’t allow deletions, for legal and other reasons.
Deleting a record means selecting the entry you want to remove and then signifying you want it
gone. As with the other examples, this one relies on Josh Bailey’s record. The following procedure
shows how to delete a purchase entry from the database.

96   PART II  Completing basic tasks

Deleting a Purchase

1.	 Add a new button to Form1. Name the button btnDeletePurchase and set its Text property to
&Delete Purchase.

2.	 Double-click btnDeletePurchase to create a new click event handler.

3.	 Type the following code for the btnDeletePurchase_Click() event handler:

private void btnDeletePurchase_Click(object sender, EventArgs e)
{
 // Create the context.
 Rewards2ModelContainer context = new Rewards2ModelContainer();

 // Obtain the customer record.
 var ThisCustomer =
 (from cust in context.Customers
 select cust).First();

 // Fill the selection form with data.
 frmSelection RecSelect = new frmSelection();
 foreach (Purchases ThisPurchase in ThisCustomer.Purchases)
 RecSelect.lstPurchases.Items.Add(ThisPurchase.PurchaseDate);

 // Obtain a record selection.
 DialogResult Result = RecSelect.ShowDialog(this);
 if (Result == DialogResult.Cancel)
 return;

 // Create a purchases object the matches the record to remove.
 Purchases RemoveThis =
 ThisCustomer.Purchases.ElementAt(RecSelect.lstPurchases.SelectedIndex);

 // Use the record selection to remove the record from the list.
 context.Purchases.Remove(RemoveThis);
 context.SaveChanges();

 // Display a success message.
 MessageBox.Show("Record Deleted");
}

Much of this code should look familiar from the other sections of the chapter. The difference
is in the selection of a record to delete. The user selects this record, and the record is placed
in RemoveThis via the use of the ElementAt() method with the selection as the index. The code
calls Remove(), which deletes the selected record, and then updates the database. Notice that
the code uses the Purchases table object directly, rather than trying to remove the record us-
ing ThisCustomer.Purchases. A message box shows successful completion.

Note  When working with record deletions, you must interact with the table that holds the
data, rather than through a foreign key. If you attempt to remove the record through the
foreign key, the application displays an error message.

	 Chapter 4  Generating and using objects    97

4.	 Click Start or press F5. The application compiles and runs.

5.	 Click Delete Purchase. You’ll see the list of purchases made by the user.

6.	 Highlight the second date—the one you added in the “Adding purchases” section of the
chapter—and click Select. The application deletes the record and shows a success dialog box.

7.	 Click Display. You’ll see that the customer now has only one available purchase.

Working with Query Builder methods

Both Entity SQL and LINQ methods of working with data require a little extra effort on the part of the
developer in knowing how to build the required statements. Entity SQL takes a strong SQL state-
ment approach, while LINQ uses an approach that more closely matches the object dot syntax that
developers are used to using. Query Builder methods are a bit more verbose than either of the other
methods, but do have an advantage in making the creation of a successful statement easier and
the implications of that statement clearer to others viewing the code. The procedure in this section
demonstrates the use of Query Builder methods. This example relies on the ModelFirst example you
created in the “Creating a model-first example” section of Chapter 3.

Making a Query Builder query

1.	 Copy the ModelFirst example you created in Chapter 3 to a new folder and use this new copy
for this example (rather than the copy you created in Chapter 3).

2.	 Add a new button to Form1. Name the button btnBuildQuery and set its Text property to
&Build Query.

3.	 Double-click btnQuery to create a new click event handler.

4.	 Type the following code for the btnQuery_Click() event handler:

private void btnBuildQuery_Click(object sender, EventArgs e)
{
 // Create the context.
 Rewards2ModelContainer context = new Rewards2ModelContainer();

 // Create the query.
 List<Customers> ThisCustomer =
 context.Customers
 .Where(name => name.CustomerName == "Josh Bailey")
 .ToList();

 // Place the customer name in the output.
 StringBuilder Output = new StringBuilder(
 ThisCustomer[0].CustomerName + " has made purchases on: ");

98   PART II  Completing basic tasks

 // Add each of the customer purchases to the output.
 foreach (Purchases ThisPurchase in ThisCustomer[0].Purchases)
 Output.Append("\r\n\t" + ThisPurchase.PurchaseDate);

 // Display the result on screen.
 MessageBox.Show(Output.ToString());
}

The code begins by creating a context similar to the one used for the LINQ example. It then
creates a query. The query actually results in an ObjectQuery output, but the example casts
the output to a standard List by calling ToList() on the output. Using a List makes the output
easier to enumerate. One of the things that you’ll notice as you build the query is that the IDE
is quite helpful in providing aid in constructing a usable statement. There are no text-specific
inputs where you have to guess what to provide.

The output part of this example is much like the LINQ example. The code relies on a foreach
statement to parse through the purchases and output them to the screen.

5.	 Click Start or press F5. The application compiles and runs.

6.	 Click Build Query. You’ll see the same result shown in the “Creating a basic query using LINQ”
section of the chapter.

Getting started with the Entity Framework

This chapter has helped you understand the Entity Framework objects at a basic level. In addition,
you’ve learned a little about Entity SQL and about using Query Builder methods to construct Entity
SQL statements quickly and easily. Even though the section on extension methods is short, what you
need to take away is the fact that it’s possible to extend Entity Framework (or any other .NET) classes
to meet specific needs. The idea isn’t so much to create a new sort of class, but to reduce the work
of the class when you work with it. The most important thing you can take away from this chapter is
that working with Entity SQL and Query Builder methods is similar to working with T-SQL and LINQ,
but that there are differences, and you need to work with both of these technologies to begin to truly
understand them.

Now that you have a basic understanding of the Entity objects and can use both Entity SQL and
Query Builder methods, you need to practice a bit with them. Try changing some of the queries in the
examples to obtain different results. For example, try creating a query that obtains every customer
who has a purchase in the amount of $5.99. Try creating the query using both Entity SQL and Query
Builder methods. Compare the two methods and determine which works better for you—especially
which method is easier to understand.

Chapter 5, “Performing essential tasks,” builds on the information found in this chapter. Now that
you have the basics down, you need to see how to use these techniques to perform more complex
tasks than the ones you’ve performed to date. For example, you need to know how to ensure that
your database maintains referential integrity and that the database doesn’t end up with duplicates

	 Chapter 4  Generating and using objects    99

of specific customer records. This second goal will require a modification of the existing Rewards
database. Since this is the first time you make a model change, this part of Chapter 5 is especially
important.

Chapter 4 quick reference

To Do this

Perform selection or computational tasks easily Create a lambda expression, ensuring that the left side of
the lambda operator, =>, contains the variables you want
to use, and the right side contains an expression that out-
puts the desired result.

Work with datasets when the type isn’t known at build
time

Rely on the DbSet class, rather than the generic
DbSet<TEntity> class.

Create a lambda expression Supply a set of variables, add the => operator, and then
provide an expression that performs a task with those
variables. For example, x => x * x returns the square of the
input value, x.

Select a record using Entity SQL Create a connection, and then a context from that
connection. Define a query using SQL-like state-
ments, such as SELECT VALUE CustomerList FROM
Rewards2ModelContainer.Customers AS CustomerList.
Execute the query and output it as a List or other easily
enumerated object.

Select a record using LINQ Write a statement that includes the from, in, and select
clauses. Add a variable to hold the temporary data from
the query and provide the data source as part of the in
clause. For example, from cust in context.Customers select
cust will obtain all of the customer records in the current
context.

Select a record using Query Builder Create a query that relies on methods called on objects
supplied by the context you create. You use lambda
statements to define how the query should define the
data output. A typical statement will include a num-
ber of linked method calls such as context.Customers.
Where(name => name.CustomerName == “Josh Bailey”).
ToList().

Add a record Create the new content, and then call the Add() method
on either a foreign key (navigation property) or table
object. Call SaveChanges() to save the new record to the
database.

Update a record Gain access to the required record, change the contents
of the individual properties, and then call SaveChanges()
to save the content to the database.

Delete a record Gain access to the required record and then call Remove
on the table object. Call SaveChanges() to make the dele-
tion permanent.

		 101

C H A P T E R 5

Performing essential tasks

After completing the chapter, you’ll be able to

■■ Specify how the Entity Framework makes viewing, saving, inserting, and deleting data easier.

■■ Make and save changes to a database.

■■ Add objects to a database.

■■ Work with parent/child data.

■■ Remove objects from the database.

Every application you create will perform a number of essential tasks. Chapter 4, “Generating and
using objects,” introduced you to these four tasks: querying (viewing) data, adding new records,

making changes to existing records, and deleting old records. Even though database applications
can become quite complex, the tasks they perform boil down to one of these four activities at some
point. For example, the act of printing requires that the application perform a query first, and then
send the data it finds to the printer. The Entity Framework makes it easier than ever to perform these
four tasks, even when the database itself becomes relatively complex. In addition, using the Entity
Framework makes changes less painful. You still have to change some code, but overall, you’ll find
that you spend less time working through changes, and the changes will contain fewer errors that
you’ll have to debug later.

Besides discussing the four essential tasks at a greater level of detail, this chapter also explores
the parent/child relationship in more depth. You’ll also see how changes to database design can (and
will) affect both the model and your code. All of these sorts of tasks are part of an essential core of
skills that you need to build to use the Entity Framework effectively. The goal when you complete
this chapter is to be able to work through most basic Entity Framework tasks without problems, even
when the supporting database becomes relatively complex. Of course, future chapters will help you
with many of the nuances of working with databases, such as using stored procedures to perform
common tasks.

Defining the essential tasks

As part of working through a design using the Entity Framework, you need to consider the tasks that
the application will perform. Previous sections of this book have referred to the four basic tasks as
follows: making a query, adding new records, modifying existing records, and deleting old records.

102   PART II  Completing basic tasks

It’s important to define these essential tasks as part of creating a design. The following sections take
a slightly different view of the four tasks in that they discuss the four tasks in view of how they’re
used within the application. For example, making a query is a specific task, but this task is used in
more than one way. In order to add a record, you must first query the database to ensure the record
doesn’t exist. When adding a child record, you must first query the database to obtain the parent
record that the child record will reference.

Viewing the data
When designing your Entity Framework model, you must consider everything that will transpire when
a user views the data. It’s important to remember that users view data far more often than perform-
ing any other tasks. Consequently, viewing the data is a critical path for your application—the act
must be both fast and reliable. Of course, the act of viewing the data means making queries to the
database.

However, the act of viewing data is far more than simply making a query. The application must
retrieve and verify user input in order to make the query. This means accessing tables that contain
additional information required for automation (see the “Considering the effects of automation on
database design” sidebar for details). In addition, once the query is made, the server must perform
any required postprocessing and send the processed data to the client, and then the client must pres-
ent the information on screen in a usable and pleasing format.

Considering the effects of automation on database design
Something that most tomes on database design leave out is that users anticipate and rely on
certain levels of automation in the flow of data from the server to the client application and
back. The design you create must include functionality for these requirements. In some cases,
this means adding tables to support user needs. Other design decisions may include flattening
a table out, rather than attempting to achieve pure referential design, in the interest of making
the application faster and more efficient by reducing the number of queries. Following are the
five levels of automation that you need to consider as part of your database design:

■■ User preferences  Users find it annoying when an application always starts in a default
state, which necessitates configuration before each session can begin. The use of various
application strategies, such as a mix of desktop and browser-based applications, makes
it easier to store user preferences at the server and then automatically configure the user
interface when the application starts—no matter which version of the application the
user is employing at a given time.

■■ Data input  Input errors are a major concern for database developers. Some errors are
seemingly small, yet loom large in their effect. For example, simple misspellings or differ-
ences in capitalization can cause serious data-flow problems. Anything you can do to au-
tomate the data input, such as providing predefined values, reduces errors and increases
user efficiency—making tasks easier and faster to perform.

	 Chapter 5  Performing essential tasks    103

■■ Distinguishing between client and server processing  Many applications perform
all processing at the client or at the server, rather than distinguishing between the two
environments and using the best location for a particular task. Any user input should be
validated at the client before being sent to the server, in order to reduce the number of
network transmissions and shorten the time required for a user to discover there’s an er-
ror in input. The user expects to know that an error has occurred in input before moving
to the next field of a form so that the application doesn’t report back with a number of
errors that have nebulous error information provided with them. However, performing
calculations and other sorts of intensive tasks that have nothing to do with the user on
the client system needlessly burdens the client, creates a throughput bottleneck, and
causes the application to work more slowly than it should. A simple way to look at the
problem is to consider each network transmission and ask whether the trip is really neces-
sary. In addition, consider whether a task is user oriented (requiring client-side processing)
or processing oriented (requiring server-side processing).

■■ Output presentation  After a user completes a given task, it’s important to provide some
sort of feedback so that the user knows the task has completed successfully. Many appli-
cations rely on a one-size-fits-all approach for output presentation. The output may work
well for a desktop application, but not very well at all when displayed on a smartphone.
An application must detect and format the output for the device that the user is utilizing
for a given task, especially in this age of Bring-Your-Own-Device (BYOD). In many cases,
making this work means storing predefined settings on the server to ensure the presenta-
tion is correct.

■■ Error resolution  One of the toughest types of automation to provide, error resolution,
is possibly the most important. Every user shows specific patterns in making errors dur-
ing data input. Word processors are an example of modern applications that detect and
store these patterns for use in correcting user input. This is a kind of automation that your
application should provide in order to resolve errors quickly. When a user has to think
through the same error every time it occurs, it becomes annoying and the user begins
wasting time in frustration. Storing common user errors for specific users, along with the
error resolution that applies to that user, can save a significant amount of time and ensure
that some errors are resolved automatically for the user.

Automation takes a considerable number of forms in applications today, but you can group
all forms of automation into one of these five categories. Planning the database design to ac-
commodate these forms of applications will help you create more robust applications that are
significantly more pleasant to use.

104   PART II  Completing basic tasks

Saving changes
After viewing data in various ways, users change existing information relatively often. The act of sav-
ing these changes requires a specific data flow that affects how you design your database using the
Entity Framework. A user commonly saves changes under the following circumstances:

■■ Adding a new record

■■ Making updates to an existing record

■■ Modifying application preferences (see the “Considering the effects of automation on data-
base design” sidebar for details)

■■ Creating specific kinds of output, such as printed reports

■■ Performing data analysis

■■ Correcting input or other kinds of user-specific errors

The act of saving a change means verifying that the change occurs successfully and appears in
every affected location. For example, some developers will flatten a database so that an application
performs more quickly. When an application uses a flattened dataset that appears in a single table—
rather than using multiple related tables, as would occur in relational databases—data redundancies
can occur, which will affect your application design. Part of the reason to use the Entity Framework
models is to help you best decide how to configure the data sources within your application.

Note  It’s beyond the scope of this book to discuss when and how to flatten datasets to
provide specific application benefits. You can find a discussion of dataset–flattening tech-
niques at http://msdn.microsoft.com/library/windows/desktop/ms716948.aspx. The example
at http://msdn.microsoft.com/library/windows/desktop/ms713681.aspx is especially helpful.
You should also note that a flattened dataset isn’t the same as a flat-file database, where
a single table is used to store all information. A flattened dataset is only used for perfor-
mance enhancement and to reduce the complexity of the application used to manage the
data.

Inserting new values
Initially, a database receives a considerable amount of new input. However, as the dataset grows, the
new input is replaced by data updates and data queries as primary uses. In fact, there are situations
where all data input by common users stops and new entries are made only by highly trusted and
skilled personnel. Historical databases may not receive any new input at all. Just how the dataset ages
will depend on the kind of data stored in it. Common reasons for inserting new values include the
following:

■■ Adding a new record

■■ Deleting an existing record

	 Chapter 5  Performing essential tasks    105

■■ Logging database or application events

■■ Creating a new set of user preferences (see the “Considering the effects of automation on
database design” sidebar for details)

■■ Defining changes to the overall database structure

Most modern database applications don’t actually delete data. The reasons are many and of-
ten complex in nature. Whatever the reason for not wanting to delete the data, a record that’s no
longer useful is often moved to an archive database and stored offline. So, the very act of deleting a
record may mean adding a record to an archive. There’s no concept of moving data when it comes
to database management. The data is usually added to the new location and then deleted in the old
location, rather than moved.

All of the changes to a database are usually tracked in some way. Many DBMS managers provide
some sort of automatic logging for database changes, but you may have a requirement to track
changes made by the user as well in the form of application events. Each of these events will result in
a new record in the tracking table. Rather than add such functionality late in the design process (or
after the application has already gone into production), you need to consider adding these features
to the initial database model.

New values—those that have never appeared in the database before—represent a major upheaval
to the database in some cases. For example, a change to a law could require a company to store ad-
ditional information about customers, which will require changes to the database structure and the
insertion of new values for each customer. When designing a database using the Entity Framework,
you must consider how these changes will affect the existing data, as well as the overall structure of
the associated application. In addition, you must consider how elements such as the user interface are
affected.

Deleting old values
Deleting, rather than archiving, data is becoming a somewhat rare event in database management.
The issue is one of accountability. Without a record of what has happened, it’s impossible to de-
termine how a specific set of actions caused a particular result. Consequently, many organizations
archive all data that’s removed from a database in some form. However, deletions do occur; here are
the most common reasons for deleting data:

■■ Deleting an existing record

■■ Removing user preferences (see the “Considering the effects of automation on database de-
sign” sidebar for details)

■■ Optimizing a dataset for performance reasons

106   PART II  Completing basic tasks

Creating a master/detail form

Many data manipulation tasks fall into a master/detail format, where a single parent record points to
one or more child records. This is the case with the Rewards and Rewards2 databases that you origi-
nally created in Chapter 3, “Choosing a workflow.” A single Customer table record points to multiple
Purchase table records. In the past, creating a master/detail form required at least some amount of
code—some of which was error prone. Fortunately, Microsoft Visual Studio can perform a great deal
of the required work for you when you use the graphical interface to your advantage. The example
described in the sections that follows begins with the ModelFirst example you created in the “Creating
a model-first example” section of Chapter 3.

Note  This example creates a new user interface for the ModelFirst application. Before you
begin working through this example, you should remove the Add button found on Form1,
along with its associated event handler. Make sure you start with a clean form before work-
ing through the example.

Creating the data source
The ModelFirst example provides a model of the database, but not an actual connection to it. Before
you can do anything else, you need to create a data source that you can use to access the application
data. You could write code to perform this task, as was done in previous chapters. However, in this
example, you use the IDE to perform all of the heavy lifting. The following procedure shows how to
create a data source for a master/detail form.

Creating the master/detail data source

1.	 Copy the ModelFirst example you created in Chapter 3 to a new folder and use this new copy
for this example (rather than the copy you created in Chapter 3).

2.	 Delete btnAdd from Form1, along with its associated event handler, btnAdd_Click().

3.	 Choose View | Other Windows | Data Sources to open the Data Sources window. You’ll see the
Data Source window. It shouldn’t currently contain any data sources.

4.	 Click the Add New Data Source link. You’ll see the Data Source Configuration Wizard shown
here:

	 Chapter 5  Performing essential tasks    107

5.	 Select the Database option and click Next. The wizard asks you to choose a database model,
as shown here:

108   PART II  Completing basic tasks

6.	 Select the Dataset option and click Next. The wizard asks you to choose a data connection, as
shown here:

The model you created earlier for this particular example is the Rewards2 database, so that’s
the data connection you should choose as well. Depending on the workflow you use, you gen-
erally maintain the model and data source in the same project.

Note  The precise wording of the connection information you see will likely vary
from the wording shown in the screen shot. The wording depends on the name of
the machine hosting Microsoft SQL Server (main) and the name of the SQL Server
connection, which is sqlexpress in this case. Make sure you choose a name that re-
flects your system configuration.

7.	 Choose the Rewards2 data connection and click Next. The wizard will ask whether you want to
save the connection name as part of your application. You definitely want to save the connec-
tion, and the default name usually works fine.

8.	 Click Next to accept the default connection-saving options. The wizard will ask you to choose
the database objects you want to use.

	 Chapter 5  Performing essential tasks    109

9.	 Check the Tables option, as shown here:

Checking this option will allow access to all of the tables found in the Rewards2 database.
Notice that the dialog box also contains a DataSet Name field. Using the default name nor-
mally works fine.

10.	 Click Finish. The new data source appears in the Data Source window. Before you can use the
data source, however, you need to configure it for this application.

Configuring the data source
You have a source for data. However, the data source isn’t configured so that you can use it effectively
to create a master/detail application. The following procedure helps you perform the configuration
required to allow the automation provided by the IDE to work better.

Configuring the master/detail data source

1.	 Expand the data source entries by clicking the right-pointing arrow next to Rewards2DataSet.
Choose Details in the drop-down list for Customers, as shown here:

110   PART II  Completing basic tasks

Using the Details option presents a single record at a time so that the user can focus on a
single customer and the purchases for that particular customer.

2.	 Choose Label in the Id field for Customers.

3.	 Expand the Purchases entry under the Customers entry. Choose Label in the Id field.

4.	 Choose None in the CustomersId field. Your configuration should look like the one shown
here:

Adding and configuring the controls
At this point, you’ve created and configured a data source to use for the application. The next step
is to add and configure the controls. This procedure shows how to add the Customers and Purchases
tables to the form.

Adding and configuring the master/detail controls

1.	 Drag and drop the Customers table from the Data Sources window to the form. Visual Studio
creates the required controls for you. Notice that the Id field is a label, while the Customer
Name field is a text box. Visual Studio also adds a BindingNavigator to the form so that you
can easily move between records.

	 Chapter 5  Performing essential tasks    111

2.	 Drag and drop the Purchases table from the Data Sources window to the form. Visual Studio
creates a data grid that contains the fields used to hold purchase information.

3.	 Arrange the controls for a pleasing appearance, as shown here:

If you started the application now, you’d see all of the purchases for all of the customers in the
data grid, which isn’t acceptable. The next step describes how to create a relationship between
the customer information and the purchases.

4.	 Select purchasesDataGridView. You’ll see the properties for this control in the Properties
window.

5.	 Locate the DataSource property. The drop-down list shows an entry for
FK_CustomersPurchases, as shown here:

Using the FK_CustomersPurchases data source will link the customer data with the purchases
data in the data grid.

112   PART II  Completing basic tasks

6.	 Choose FK_CustomersPurchases. Visual Studio automatically generates a new BindingSource
control named fKCustomersPurchasesBindingSource. One of the annoying features of the IDE
is that it doesn’t always remove columns you don’t need. The data grid currently contains the
CustomerId field, which isn’t needed or wanted.

7.	 Click the ellipses in the Columns property. You’ll see the Edit Columns dialog box, as shown
here:

8.	 Highlight the CustomersId entry in the Selected Columns list and click Remove. Click OK.
Visual Studio removes the offending column from the data grid.

Testing the result
There’s more work you could do with the application, but the essential tasks are finished, and the re-
sult is ready for a first test. There are a number of fit and finish issues that you’d address in a produc-
tion application. For example, you would want to make sure that the Anchor property is set correctly
for the data grid so that it sizes properly when the user changes the form size. Modifying the field
names so that they look nice would be another touch, but these are minor issues for now. The follow-
ing procedure helps you test the basic application and provides a few tips for modifications you may
want to try on your own.

Testing the master/detail view

1.	 Click Start or press F5. The application compiles and runs. Notice that Josh Bailey’s record ap-
pears with the one purchase that he has made.

	 Chapter 5  Performing essential tasks    113

2.	 Click in the second row of the data grid to create a new purchase record. Type 2/19/2013 in
the PurchaseDate field and 7.99 in the Amount field. Click Save Data (the icon that looks like
a floppy disk). The application saves the new purchase. Notice that the Id field of the data grid
changes from –1 to the next number in line (most likely 3 or 4) when you click Save. This is an
indicator that the record is actually saved.

Note  One change that would be nice is an automatic update of the database. Each
time a change occurs, the data should be saved to the database. The user is unlikely
to know that clicking Save Data is required.

3.	 Click Add New (the yellow plus sign). The application adds a new master record.

4.	 Type Christian Hess in the Customer Name field and then click Save Data. The Id field
changes from –1 to the next number in line (most likely 2). Again, this is an indicator that the
record has been saved.

Warning  If you attempt to add both a new customer and an associated purchase
without clicking Save Data between operations, the application will experience an
error. The automation provided by the IDE doesn’t handle this particular situation.
One of the changes you would need to make is to provide some means of saving the
customer data first, and then provide a means of saving the new purchase for that
customer behind the scenes. A user is unlikely to make the changes one at a time.

5.	 Click in the first row of the data grid to create a new purchase record. Type 2/18/2013 in the
PurchaseDate field and 6.99 in the Amount field. Click Save Data.

6.	 Click Move Previous (the left-pointing arrow). Notice that the contents of the data grid change
to reflect the purchases made by Josh Bailey.

7.	 Select the second row (not an individual cell) of the data grid and press Delete (don’t press the
Delete button on the toolbar; press the actual Delete key on your keyboard). Click Save Data.
The application removes the purchase record.

Note  It would be nice if the Delete button could detect where the user has focus
and delete the appropriate entry type. As it is now, clicking Delete (the red X) re-
moves the entire record no matter where the insertion point is.

8.	 Click Move Next (the right-pointing arrow). Notice that the contents of the data grid change
to reflect the purchases made by Christian Hess. The essential elements of the application are
working, but as you can see, there are fit and finish issues that you’d need to address. Even so,
this application can perform all of the required essential tasks.

114   PART II  Completing basic tasks

Getting started with the Entity Framework

The main purpose of this chapter has been to help you understand the four essential tasks that every
database application performs at some point. If you feel comfortable with querying data, adding
new records, updating record information, and deleting old records, then you’ve gained the essential
information from this chapter. Many database books make things sounds really complex when it really
does come down to performing these four tasks well. Everything after these four tasks is simply an
addition to the basic four tasks.

This is one chapter you shouldn’t leave until you really do understand the material completely,
because this chapter provides the basic building blocks for everything that follows. One of the better
ways to test your knowledge is to work with the code. Try to change the code so that it performs the
task in a different way. Add some of the error trapping and range checking that you’d use in a pro-
duction application to see how these changes affect the examples. The example code is there for you
to experiment with, so that you don’t have to experiment with the production code that your business
depends upon. The example code is also fully commented and provides a straightforward environ-
ment in which to test things—both of which are positives when it comes to the learning curve.

Part III, “Manipulating data using the Entity Framework,” begins a new focus on manipulating
data in specific ways, rather than simply working with it to perform the four basic tasks. Chapter 6,
“Manipulating data using LINQ,” begins this transition by exploring Language Integrated Query
(LINQ) in more detail. Most developers use LINQ when working with the Entity Framework because
it’s extremely flexible, terse, and relatively self-documenting. Chapter 6 is especially important be-
cause it acquaints you with LINQ functions that can make performing the four basic tasks easier and
faster. These functions often provide shortcuts to the longer code examples that you’ve seen in this
chapter.

Chapter 5 quick reference

To Do this

Design an Entity Framework application properly Define how the application will perform the four basic
tasks: making a query, adding new records, modifying
existing records, and deleting old records. Once you’ve
done this analysis, you need to consider how the
application will combine the four basic tasks to create
a data flow and to ensure that data is successfully
managed without error.

Create a robust design that considers user requirements Design around the five levels of automation that
define the user’s expectations in today’s computing
environment: user preferences, data input, client and
server processing, output presentation, and error
resolution.

View data Ask for user input, create a query, obtain the requested
data from the server, and present the output in a form
preferred by the user. Ensure that the user preferences
and automation allow for input in a manner that works
best with the user’s needs.

	 Chapter 5  Performing essential tasks    115

To Do this

Save changes Obtain records that require modification, obtain and
verify input from the user at the client level, send the
requested changes to the server, perform any required
postprocessing on the server, and obtain a change status
for the user as output.

Insert new values Create the requested information template at the client
level, obtain and verify input from the user at the client
level, send the new information to the server, perform
any required postprocessing on the server, and obtain a
new input status for the user as output.

Delete old values Obtain the required deletion information from the user,
verify the user request, add the deleted record to an
archive database, delete the record from the production
database, and obtain a deletion status for the user as
output.

Sync a detail view with a master view Set the detail view DataSource property to point to the
foreign key of the master dataset.

		 117

PART III

Manipulating data using the
Entity Framework

Working with data means performing three essential, but different, tasks: viewing (querying), manag-
ing, and manipulating the data. Viewing the data means requesting information from the database.
You create a query, and the database sends raw data to your application based on that query. Man-
aging the database means performing create, update, and delete tasks that keep the data relevant.
Often, the first two tasks are combined into Create, Retrieve, Update, and Delete (CRUD) processes.
Manipulating the data means taking raw data and filtering, organizing, or modifying it in some fash-
ion to produce a final result. This part of the book discusses all three of these tasks, but focuses on
manipulation.

There are two places to manipulate the data: the client and the server. Chapter 6, “Manipulating
data using LINQ,” and Chapter 7, “Manipulating data using Entity SQL,” discuss methods for manipu-
lating data at the client using Language Integrated Query (LINQ). Of the two, LINQ tends to be easier
to understand and work with, while Entity SQL provides greater flexibility and control.

Chapters 8, “Interaction with stored procedures,” Chapter 9, “Interaction with views,” and Chap-
ter 10, “Interaction with table-valued functions,” focus on manipulating data at the server. The most
common method for manipulating data is using stored procedures, which is the topic of Chapter 8.
However, stored procedures are considered unsafe for certain types of tasks, so Chapter 9 shows how
to work with a safer technique: using views. Chapter 10 discusses an entirely new technique for Entity
Framework version 5: using Table-Valued Functions (TVFs). Taken together, these three techniques
provide a complete server-based solution for manipulating data before presenting it to the end user.

		 119

C H A P T E R 6

Manipulating data using LINQ

After completing the chapter, you’ll be able to

■■ Describe the basics of LINQ to Entities functionality.

■■ Specify how LINQ statements are compiled.

■■ List and use the essential LINQ to Entities functions.

In most cases, developers with a strong C# background, but without an equally strong database
background, use Language Integrated Query (LINQ) to query the databases they create and manage

using the Entity Framework. LINQ to Entities offers a number of benefits to developers, but the main
benefit is simplicity. It’s possible to create relatively complex queries without knowing much about the
underlying database from a DBMS perspective. Developers can also use syntax that’s familiar to make
the query, rather than resorting to working with SQL. In addition, the compiler performs part of the
work of interacting with the database for the developer, so that the developer can focus on the data-
set and not on the language used to access it. In short, the developer gains a considerable efficiency
advantage using LINQ to Entities.

This chapter begins by introducing you to LINQ to Entities. You need to know something about
how LINQ to Entities works, and you also need to know the syntax so that you can make queries.
The chapter won’t provide an extensive reference, but you’ll have enough information to perform
common tasks and a few advanced tasks. The point is that you’ll have the information required to get
started using LINQ to Entities to perform useful work. The material provided will help you understand
the examples better.

Tip  There are actually two syntaxes you can use to formulate a LINQ query: query and
method based. The query expression syntax tends to be easier to understand and clearer,
so that’s the form used in this book whenever possible. The method-based expression syn-
tax is more flexible, and you can perform a few tasks using it that you can’t with the query
expression syntax, so the book will use this form when necessary to perform complex tasks.
Presenting the examples this way will help you better understand when you need to use
one syntax over the other. You can also read a comparison of the two syntaxes at http://
msdn.microsoft.com/library/bb397947.aspx.

120   PART III  Manipulating data using the Entity Framework

As with any LINQ query, LINQ to Entities queries are compiled to determine what they actually
mean. The compiler takes the query you create and turns it into something that .NET understands.
The next section of this chapter discusses how this process occurs and how it affects the way you use
LINQ to Entities. This part of the chapter also provides a few insights into when you need to use the
method-based expression syntax to obtain the output you desire.

The final part of the chapter discusses how to use LINQ to Entities with both entity and database
functions, which, after all, is the entire point of working with LINQ to Entities in the first place. This
section provides you with examples you can use to better understand how LINQ to Entities works. In
addition, this material sets the stage for future examples in the book. When you finish this section,
you’ll have the knowledge needed to move on to the more advanced examples in the book.

Note  LINQ to Entities is just one form of a more complex product that appears under the
LINQ umbrella. There are, in fact, many different forms of LINQ you can use. However,
once you know how to use one form of LINQ, you essentially know how to use them
all. That’s one of the beauties of a declarative language—you focus on what you need,
rather than how to obtain it. You can find a general overview of LINQ as a product at
http://msdn.microsoft.com/library/bb308959.aspx.

Introducing LINQ to Entities

One of the most important concepts to understand about LINQ to Entities is that it’s a declarative
language. The focus is on defining what information you need, rather than on how to obtain the in-
formation. This means that you can spend more time working with data and less time trying to figure
out the underlying code required to perform tasks such as accessing the database. It’s important to
understand that declarative languages don’t actually remove any control from the developer; rather,
they help the developer focus attention on what’s important.

The sections that follow provide you with a basic overview of LINQ to Entities. You learn about how
the LINQ to Entities provider, EntityClient, works, discover how to create a basic query, and then move
on to some reference information you need later to work with LINQ to Entities in examples. These
sections will continue to be useful as a reference as you progress through the book, so keep them in
mind as you move on to other topics later.

Considering the LINQ to Entities provider
When working with LINQ to Entities, you rely on a new provider named EntityClient. LINQ to Entities
transforms your query into EntityClient objects and method calls. The EntityClient provider then
creates an interface between the LINQ to Entities queries and the underlying Microsoft ADO.NET
providers through the various layers of the Entity Framework. The EntityClient interacts directly with
the conceptual model, as shown in the following graphic.

http://msdn.microsoft.com/library/bb308959.aspx

	 Chapter 6  Manipulating data using LINQ    121

Warning  A number of drawings and discussions available online don’t mention the need
for a database-specific provider. If you’re using a DBMS other than Microsoft SQL Server
or one of the compatible DBMSs described in Chapter 1, “Getting to know the Entity
Framework,“ then you’ll find that your queries won’t work. You still depend on ADO.NET to
complete tasks.

122   PART III  Manipulating data using the Entity Framework

You don’t create an EntityClient directly. Instead, you indirectly work with the members of the Sys-
tem.Data.EntityClient namespace (see http://msdn.microsoft.com/library/system.data.entityclient.aspx
for details). In order to start a session with a database, the application creates a connection to it with
the EntityConnection object. It then transmits queries and other requests using an EntityCommand
and reads the results using an EntityDataReader. When you work with LINQ to Entities, the compiler
generates the necessary code for you—the focus for you as a developer is the query declaration,
rather than the actual code used to make the calls. However, it’s important to know what happens in
the background.

The standard ADO.NET providers are still used to communicate with the database. However, you
don’t need to worry about writing all of the code used to perform this communication; EntityClient
performs this task for you. A simple way to look at EntityClient is as a translator that takes your de-
clarative language query and puts it into terms that ADO.NET can understand.

The LINQ to Entities provider interacts with ADO.NET directly, which means that you don’t need
any other provider to use LINQ to Entities with other databases. However, ADO.NET uses database-
specific providers. Microsoft Visual Studio ships with ADO.NET providers for both SQL Server and SQL
Server Compact. Of course, there are other databases on the market. You can find a number of ADO.
NET providers for other databases at http://msdn.microsoft.com/data/dd363565.aspx. If you don’t find
a suitable provider on MSDN, try other sites, such as Devart (http://www.devart.com/linqconnect/) and
SQLite (http://www.sqlite.org/).

Developing LINQ to Entities queries
There are a number of ways to formulate LINQ queries. The use of different approaches provides
developers with flexibility and enables a developer to code using the style that the developer is used
to. The first division in LINQ queries is the syntax. A developer has a choice between using the query
expression syntax or the method-based expression syntax. Of the two, the query expression syntax is
the easiest to understand, while the method-based expression syntax offers the greatest flexibility.

It’s also possible to specify precise output type or to allow the compiler to derive the output type
based on the query you create (an implicit type). A precise output type means providing a specific
type, such as IQueryable<Customers>. A derived output type relies on the var keyword (see http://
msdn.microsoft.com/library/bb383973.aspx for a detailed description of this keyword). The compiler
determines the variable type for you. The precise output type provides you with additional control
over how the query is made and the results it provides. Using the var keyword is necessary at times
because you may not be able to determine the precise type. In addition, the var keyword makes it
more likely that the query will succeed and provide usable data, because the compiler determines the
correct type for you.

The query itself requires the use of keywords or methods that reflect those keywords. When using
the query expression syntax, a query will use the select, in, and from keywords as a minimum. The best
way to see how this works is through an example. The following procedure relies on the ModelFirst
example you created in the “Creating a model-first example” section of Chapter 3, “Choosing a work-
flow.” (You can find this example in the \Microsoft Press\Entity Framework Development Step by Step\
Chapter 06\ModelFirst (LINQ Query) folder of the downloadable source code.)

	 Chapter 6  Manipulating data using LINQ    123

Creating a LINQ to Entities query

1.	 Copy the ModelFirst example you created in Chapter 3 to a new folder and use this new copy
for this example (rather than the copy you created in Chapter 3).

2.	 Add a new button to Form1. Name the button btnQuery and set its Text property to &Query.

3.	 Double-click btnQuery to create a new click event handler.

4.	 Type the following code for the btnQuery_Click() event handler:

private void btnQuery_Click(object sender, EventArgs e)
{
 // Create the context.
 Rewards2ModelContainer context = new Rewards2ModelContainer();

 // Obtain the customer list.
 var CustomerList =
 from cust in context.Customers
 select cust;

 // Process each customer in the list.
 StringBuilder Output =
 new StringBuilder("Customer List:");
 foreach (var Customer in CustomerList)
 {
 // Create a customer entry for each customer.
 Output.Append("\r\n" + Customer.CustomerName +
 " has made purchases on: ");

 // Process each purchase for that particular customer.
 foreach (var Purchase in Customer.Purchases)
 Output.Append("\r\n\t" + Purchase.PurchaseDate);
 }

 // Display the result on screen.
 MessageBox.Show(Output.ToString());
}

The example begins by creating a context. It’s important to remember that you still need to
create this connection to the Entity Framework layers in order to access the database. The
LINQ query will be translated by the EntityClient into a series of commands that will interact
with the context to perform the tasks you specify.

The LINQ query comes next. Notice that the example is using the var keyword rather than
a specific type. The example asks for the list of customers from the context and places each
customer in cust. It then selects cust and places this value in CustomerList. Hover the mouse
over CustomerList in the foreach loop that follows, and you’ll see that Visual Studio really does
assign it a type of IQueryable<Customers>, as shown here:

124   PART III  Manipulating data using the Entity Framework

Let’s say that you decide you want to use IEnumerable instead of IQueryable (see the “Deter-
mining when to use IEnumerable in place of IQueryable” sidebar for details). In order to use
IEnumerable, you’d need to rewrite the query like this:

// Obtain the customer list.
IEnumerable<Customers> CustomerList =
 from cust in context.Customers
 select cust;

This is a master/detail database setup, so the example creates two foreach loops to process the
data. The first foreach loop obtains one Customer from CustomerList and processes the cus-
tomers one at a time. The second foreach loop obtains one Purchase from Customer.Purchases
and processes each purchase for that customer one at a time. The result is an output string
that is displayed in a message box.

5.	 Click Start or press F5. The application compiles and runs.

6.	 Click Query. You’ll see the result shown here (assuming that you ran the example from Chapter
3 and didn’t modify the code from that example):

Note  Most of the information you see in the dialog boxes in this chapter will match those
on your system. However, you’ll encounter a few differences, such as dates. In addition, the
application dialog boxes may not match precisely. These small differences won’t make any
difference in the performance of the example applications.

	 Chapter 6  Manipulating data using LINQ    125

Determining when to use IEnumerable in place of IQueryable
When working with LINQ to Entities, some developers assume that you should always use
IQueryable because it derives from IEnumerable and therefore must be superior. Actually, the
two interfaces have specific purposes and you should employ the one that works best for your
particular need. There are quite a few differences between the two, but here are some general
rules of thumb you can follow:

■■ IEnumerable  Provides a forward-only in-memory presentation of data. Because the
query is executed immediately and completely, your application will see a performance
boost during the enumeration process when the user is most apt to see the difference.
Working with IEnumerable means that your application uses Func objects that result in the
query being executed immediately. You can read more about Func objects at http://msdn.
microsoft.com/library/bb534960.aspx.

■■ IQueryable  Provides remote access to a database or a web service and allows both for-
ward and reverse iteration. Use this form to enhance the flexibility of your application and
its ability to work with remote sources, especially web services. Working with IQueryable
means that your application uses Expression objects that result in the query being ex-
ecuted only when the application requests an enumeration. Because the query is delayed,
an IQueryable object can perform certain optimizations when using a where or other
clause that would throw out some of the results that would normally be processed by an
IEnumerable object. The tradeoff is that you save memory and some network bandwidth
in exchange for longer enumeration times. You can read more about Expression objects at
http://msdn.microsoft.com/library/system.linq.expressions.aspx.

Using the correct object type for the situation can improve the efficiency of your applica-
tion. It’s important to consider how your application works when making the choice. When in
doubt, IQueryable is the preferred choice because it does offer greater flexibility, and the per-
formance benefits of IEnumerable could be outweighed by the amount of data retrieved over
high-cost network connections. When creating a query that includes a where clause, the costs
of using IEnumerable quickly make IQueryable the better choice. IEnumerable is almost always
a better choice when making a straightforward query, like the one in the example, because the
example uses all of the results anyway.

Defining the LINQ to Entities essential keywords
It’s important to know the basic keywords used to create a LINQ query. Interestingly enough, there
are only a few keywords to remember, but you can combine them in various ways to obtain specific
results. The following list contains these basic keywords and provides a simple description of each one
(future examples will expand on these definitions for you):

126   PART III  Manipulating data using the Entity Framework

■■ ascending  Specifies that a sorting operation takes place from the least (or lowest) element
of a range to the highest element of a range. This is normally the default setting. For example,
when performing an alphabetic sort, the sort would be in the range from A to Z.

■■ by  Specifies the field or expression used to implement a grouping. The field or expression
defines a key used to perform the grouping task.

■■ descending  Specifies that a sorting operation takes place from the greatest (or highest) ele-
ment of a range to the lowest element of a range. For example, when performing an alpha-
betic sort, the sort would be in the range from Z to A.

■■ equals  Used between the left and right clauses of a join statement to join the primary
contextual data source to the secondary contextual data source. The field or expression on the
left of the equals keyword specifies the primary data source, while the field or expression on
the right of the equals keyword specifies the secondary data source.

■■ from (required)  Specifies the data source used to obtain the required information and
defines a range variable. This variable has the same purpose as a variable used for iteration in
a loop.

■■ group  Organizes the output into groups using the key value you specify. Use multiple group
clauses to create multiple levels of output organization. The order of the group clauses deter-
mines the depth at which a particular key value appears in the grouping order. You combine
this keyword with by to create a specific context.

■■ in (required)  Used in a number of ways. In this case, the keyword determines the contextual
database source used for a query. When working with a join, the in keyword is used for each
contextual database source used for the join.

■■ into  Specifies an identifier that you can use as a reference for LINQ query clauses such as
join, group, and select.

Warning  A common error that some developers make is to confuse the into key-
word with the in keyword. The into keyword serves an entirely different purpose, and
using it in place of the in keyword will cause an error.

■■ join  Creates a single data source from two related data sources, such as in a master/detail
setup. A join can specify an inner, group, or left-outer join, with the inner join as the default.
You can read more about joins at http://msdn.microsoft.com/library/bb311040.aspx.

■■ let  Defines a range variable that you can use to store subexpression results in a query
expression. Typically, the range variable is used to provide an additional enumerated output
or to increase the efficiency of a query (so that a particular task, such as finding the lowercase
value of a string, need not be done more than one time).

	 Chapter 6  Manipulating data using LINQ    127

■■ on  Specifies the field or expression used to implement a join. The field or expression defines
an element that is common to both contextual data sources.

■■ orderby  Creates a sort order for the query. You can add the ascending or descending key-
word to control the order of the sort. Use multiple orderby clauses to create multiple levels of
sorting. The order of the orderby clauses determines the order in which the sort expressions
are handled, so using a different order will result in different output.

■■ where  Defines what LINQ should retrieve from the data source. You use one or more
Boolean expressions to define the specifics of what to retrieve. The Boolean expressions are
separated from each other using the && (AND) and || (OR) operators.

■■ select (required)  Determines the output from the LINQ query by specifying what informa-
tion to return. This statement defines the data type of the elements that LINQ returns during
the iteration process.

Defining the LINQ to Entities operators
The keywords described in the “Defining the LINQ to Entities essential keywords” section of the
chapter determine what happens when a query is made using the query expression syntax. Operators
determine how the query is made when using the method-based expression syntax. You use opera-
tors to modify the output in the following ways:

■■ Sort  Modify the natural order of the data returned from the data source. For example, you
could create a sorted order of customers based on their last name, even if the database keeps
the customer list in a random order.

■■ Group  Create an order that is depending on a specific field or expression. For example, you
could group a list of customers by the first letter of their last name.

■■ Shape  Modify the natural appearance of the data to obtain specific results. For example, you
could filter the data so that the output only contains customers whose last name begins with a
G, or you could determine the average value of the data using aggregation.

The following sections describe a number of common tasks you can perform using LINQ to Entities
operators. These are basic operations. Remember that you can combine operators to create almost
any data manipulation scenario. Using LINQ to Entities operators makes it possible for you to declare
what you want as output, rather than determine how to obtain it. The compiler determines how a
particular task is done.

128   PART III  Manipulating data using the Entity Framework

Note  LINQ to Entities supports most, but not all, of the standard LINQ methods. For ex-
ample, you can use a Select method with this signature:

IQueryable<TResult> Select<TSource, TResult>(
this IQueryable<TSource> source,
Expression<Func<TSource, TResult>> selector
)

But you can’t use a Select method with this signature:

IQueryable<TResult> Select<TSource, TResult>(
this IQueryable<TSource> source,
Expression<Func<TSource, int, TResult>> selector
)

The difference is subtle. Notice that the second signature includes an int as part of the Func
declaration, which means you can’t use the index of the element, as described at http://
msdn.microsoft.com/library/system.linq.enumerable.select.aspx. You can see a complete list
of the supported and unsupported methods at http://msdn.microsoft.com/library/bb738550.
aspx.

Performing filtering and projection
The main task of any LINQ to Entities expression is to obtain data and provide it as output. The
“Developing LINQ to Entities queries” section of this chapter demonstrates the techniques for
performing this basic task. However, once you have the data, you may want to project or filter it as
needed to shape the data prior to output.

Projection is the act of modifying the output to shape it in a specific way. For example, you can
change the case of the characters in a string or perform a calculation on numeric output. It’s also pos-
sible to use methods to transform the data in a variety of ways that are only limited by your imagina-
tion and the requirements of your application. The methods associated with projection are Select()
and SelectMany().

Filtering is the act of removing undesirable elements from the output. You may only want the
names of customers who have achieved a certain number of sales or who live in a particular area. Use
the Where() method to achieve the desired level of filtering.

Note  LINQ to Entities supports all of the common LINQ methods associated with filtering
and projection, except for those that require a positional (indexing) argument.

Performing joins
Look again at the example in the “Developing LINQ to Entities queries” section of this chapter. Notice
that the example is able to obtain the list of purchases associated with a particular customer because
there is a navigable property that is defined as part of the model. It’s important to keep this bit of

	 Chapter 6  Manipulating data using LINQ    129

information in mind, especially when you normally work with SQL Server directly by making SQL
statements. The join defined by LINQ to Entities is for related tables that have no navigable proper-
ties in the model. The result is the same as a standard join, but the purpose of the join is different. Use
navigable properties whenever possible to work with related tables.

When performing a join to group like tables together, you use the Join() or GroupJoin() method.
The tables must still possess a common attribute or property that you can exploit to create the rela-
tionship. For example, let’s say that your in-house database has a table containing a list of products
that employ a bar code for identification. However, the description of the product resides on a web
service hosted by the supplier. You can use a join on the bar code to obtain a description for the
product in your in-house database from the supplier’s web service. Because you don’t support or own
the supplier’s database, the database won’t appear as part of your model, and you won’t have any
navigable properties to access it.

Note  The LINQ to Entities Join() and GroupJoin() methods provide full support for all of the
standard LINQ overrides, except those that require use of the IEqualityComparer interface.
This is because LINQ to Entities can’t translate the comparer to the source database. You
can read more about IEqualityComparer at http://msdn.microsoft.com/library/ms132151.
aspx.

Creating a set
Shaping a result set means defining the set according to specific properties. For example, you might
only want the distinct elements from the result set of a query. Even though a particular row in a table
is distinct, the result set may not contain the entire row, resulting in duplicates in the output, so you
need a way to shape the output so the user only sees unique entries. The methods for creating sets
are All(), Any(), Concat(), Contains(), DefaultIfEmpty(), Distinct(), EqualAll(), Except(), Intersect(), and
Union().

Note  The LINQ to Entities set-related methods provide full support for all of the standard
LINQ overrides, except those that require use of the IEqualityComparer interface. This is
because LINQ to Entities can’t translate the comparer to the source database. You can read
more about IEqualityComparer at http://msdn.microsoft.com/library/ms132151.aspx.

Ordering the output
Sorting a result set modifies the order in which the individual records appear so that the user can
more easily detect patterns in the output, find a specific output, and look for errors, such as misspell-
ings and duplicate entries. You can combine ordering methods to create a unique output. However,
it’s an error to provide the same ordering methods more than one time on a result set, and you’ll see
an exception if you try to do so. The ordering methods are OrderBy(), OrderByDescending(), ThenBy(),
ThenByDescending(), and Reverse().

130   PART III  Manipulating data using the Entity Framework

When ordering a result set, it’s important to realize that LINQ to Entities works against the data
source, rather than using an in-memory representation, as would be done when working with the
Common Language Runtime (CLR) objects. The data source may have special sort functionality imple-
mented, such as case ordering, kanji ordering, and null ordering. The difference in sort functionality
will affect the output you see.

Note  The LINQ to Entities ordering-related methods provide full support for all of the
standard LINQ overrides, except those that require use of the IComparer interface. This is
because LINQ to Entities can’t translate the comparer to the source database. You can read
more about IComparer at http://msdn.microsoft.com/library/8ehhxeaf.aspx.

Grouping the output
Sorting a result by grouping like items together using a common attribute (such as all customers who
live in a particular city) helps users see patterns in the output. When grouping like items together, you
use the GroupBy() method. It’s possible to create multiple levels of grouping by combining multiple
GroupBy() method calls. Unlike sorting methods, you can create multiple levels of the same GroupBy()
method calls because each GroupBy() method call creates a new level in the output.

When grouping a result set, it’s important to realize that LINQ to Entities works against the data
source, rather than using an in-memory representation, as would be done when working with the CLR
objects. The data source may contain null values that will affect the output in ways that you don’t see
when performing the same task using CLR objects.

Note  The LINQ to Entities GroupBy() method provides full support for all of the standard
LINQ overrides, except those that require use of the IEqualityComparer interface. This is
because LINQ to Entities can’t translate the comparer to the source database. You can read
more about IEqualityComparer at http://msdn.microsoft.com/library/ms132151.aspx.

Performing aggregation
Shaping the result set by combining or aggregating it in certain ways can help a user see the infor-
mation in a new way. For example, you might obtain the average of a numeric field so that the user
knows when a particular entry is either higher or lower than average. The methods you use to aggre-
gate data are Aggregate(), Average(), Count(), LongCount(), Max(), Min(), and Sum().

There are some significant differences in the way that aggregation occurs when using LINQ to
Entities, as contrasted to using the CLR. The most important difference is that the calculations occur
on the server, so any loss of precision or type conversions will occur on the server as well. When an
error occurs, such as an overflow, the exception is raised as a data source or Entity Framework excep-
tion, rather than a standard CLR exception. The errors are only raised when they conflict with the data
source assumptions about the data. For example, when working with null values, a CLR calculation

	 Chapter 6  Manipulating data using LINQ    131

will raise an error, but SQL Server won’t. Table 6-1 describes how SQL Server handles nulls so that you
know what to expect as output.

TABLE 6-1  Techniques SQL Server uses to handle nulls

Method No data All nulls Some nulls No nulls

Average Returns null Returns null Returns the average
of the non-null values
in the sequence

Returns the average
of all of the values in
the sequence

Count Returns 0 Returns the number
of null values in the
sequence

Returns the com-
bined number of null
and non-null values
in the sequence

Returns the total
number of values in
the sequence

Max Returns null Returns null Returns the maxi-
mum of the non-
null values in the
sequence

Returns the maxi-
mum of all of the val-
ues in the sequence

Min Returns null Returns null Returns the minimum
of the non-null values
in the sequence

Returns the minimum
of all of the values in
the sequence

Sum Returns null Returns null Returns the sum of
the non-null values in
the sequence

Returns the sum of all
of the values in the
sequence

Interacting with type
Shaping data by converting its type from one form to another lets you perform additional tasks, such
as creating specific output views. For example, it’s common to convert data to a string type so that it’s
possible to use the string methods to manipulate the appearance of the data in certain ways, such as
to make the data more aesthetically pleasing to the viewer.

The only types that you can convert or test are those that map to an Entity Framework type.
This functionality works at the conceptual level, rather than at the data source, as does some of the
other functionality discussed so far. The two common methods for converting and testing data are
Convert() (primitive types) and OfType() (entity types). When working with C#, you can also use the
is() and as() methods.

Tip  You can find information about primitive type mapping at http://msdn.microsoft.com/
library/ee382832.aspx. Entity type mapping information appears at http://msdn.microsoft.
com/library/ee382837.aspx. Even though the documentation doesn’t specifically mention it,
you can also use the OfType() method with complex types, which are described at http://
msdn.microsoft.com/library/ee382831.aspx. When working with a DBMS other than SQL
Server, you need to find the mapping for that DBMS. For example, the documentation for
MySQL appears at http://www.devart.com/dotconnect/mysql/docs/DataTypeMapping.html.

http://www.devart.com/dotconnect/mysql/docs/DataTypeMapping.html

132   PART III  Manipulating data using the Entity Framework

Paging the output
Paging methods sort the data by interacting with the rows out of order or shape the data by remov-
ing some rows entirely. The output you receive depends on the way in which you use the paging
methods in your code. The paging methods are ElementAt(), First(), FirstOrDefault(), Last(), LastOrDe-
fault(), Single(), Skip(), Take(), and TakeWhile(). If you try to use a paging method on a sequence that
doesn’t contain any entries or contains all null values, the result is null.

Note  Not all overrides of all of the paging methods are supported, because there isn’t any
way to map them to a function at the data source. The functionality you receive from the
paging methods depends on the capabilities of the DBMS you work with. Some DBMSs will
return a default value for some methods, and this value is always converted to an Entity
Framework primitive type result or a reference type with a null default. Unless your ADO.
NET provider fully documents the Entity Framework paging method functionality sup-
ported, you’ll need to test this functionality as part of your application (realizing that it may
not work at all).

Summarizing the LINQ operators
LINQ (and by extension LINQ to Entities) supports a number of operators that you access as methods.
The following list provides a description of each of these methods; you can use it to determine which
to use to perform a specific task:

■■ Aggregate()  Applies an accumulator function over the elements of a sequence. For ex-
ample, you might choose to concatenate the individual strings of a series of records together.
You can read more about this method at http://msdn.microsoft.com/library/bb548651.aspx.

■■ All()  Determines whether all of the elements in a sequence satisfy a particular condition. You
can read more about this method at http://msdn.microsoft.com/library/bb548541.aspx.

■■ Any()  Determines whether a sequence contains any elements. You can read more about this
method at http://msdn.microsoft.com/library/bb337697.aspx.

■■ Average()  Computes the average of the elements found in a sequence. You can read more
about this method at http://msdn.microsoft.com/library/bb354760.aspx.

■■ Concat()  Adds (concatenates) one sequence to another, so that you end up with a single se-
quence. You can read more about this method at http://msdn.microsoft.com/library/bb302894.
aspx.

■■ Contains()  Looks for the specified element in the specified sequence using the default
equality comparator. You can read more about this method at http://msdn.microsoft.com/
library/bb352880.aspx.

■■ Convert()  Changes the base type of an element into another base type. You can read more
about this method at http://msdn.microsoft.com/library/system.convert.aspx.

	 Chapter 6  Manipulating data using LINQ    133

■■ Count()  Obtains the number of elements in a sequence. You can read more about this
method at http://msdn.microsoft.com/library/bb338038.aspx. (See the LongCount() method
when you want to count a large number of elements.)

■■ DefaultIfEmpty()  Returns the sequence when there are elements to return. Otherwise, this
method returns the default value for the specified sequence, which will likely be an empty
or null value. You can read more about this method at http://msdn.microsoft.com/library/
bb360179.aspx.

■■ Distinct()  Returns only the unique elements from a sequence. When two elements have the
same value, returns just one of the two elements. You can read more about this method at
http://msdn.microsoft.com/library/bb348436.aspx.

■■ ElementAt()  Returns the element found at the specified index. You can read more about
this method at http://msdn.microsoft.com/library/bb299233.aspx.

■■ EqualAll()  Determines whether two sequences are precisely equal, which means that they
must have the same members appearing in the same order. This operator isn’t documented
as a standard LINQ operator, so Microsoft may restrict its use. You can read more about this
method at http://msdn.microsoft.com/vstudio/bb737910.aspx.

■■ Except()  Creates a sequence that contains the elements that don’t match between two
sequences. The comparison is made using the default comparer. You can read more about this
method at http://msdn.microsoft.com/library/bb300779.aspx.

■■ First()  Returns the first element in a sequence. You can read more about this method at
http://msdn.microsoft.com/library/bb291976.aspx.

■■ FirstOrDefault()  Returns the first element in a sequence or a default element when no
elements exist. You can read more about this method at http://msdn.microsoft.com/library/
bb340482.aspx.

■■ GroupBy()  Places the elements in a sequence in groups using the specified key. You can
read more about this method at http://msdn.microsoft.com/library/bb534501.aspx.

■■ GroupJoin()  Combines and groups two separate sequences into a single sequence using a
common attribute or property. The resulting groups are based upon the same type of expres-
sion used to group a single sequence using the Group() method. You can read more about this
method at http://msdn.microsoft.com/library/bb534675.aspx.

■■ Intersect()  Produces the set intersection of two sequences by using the default comparator.
You can read more about this method at http://msdn.microsoft.com/library/bb460136.aspx.

■■ Join()  Combines two separate sequences into a single sequence using a common attribute
or property. You can read more about this method at http://msdn.microsoft.com/library/
bb534675.aspx.

■■ Last()  Returns the last element in a sequence. You can read more about this method at
http://msdn.microsoft.com/library/bb358775.aspx.

http://msdn.microsoft.com/library/bb338038.aspx

134   PART III  Manipulating data using the Entity Framework

■■ LastOrDefault()  Returns the last element in a sequence or a default element when no
elements exist. You can read more about this method at http://msdn.microsoft.com/library/
bb301849.aspx.

■■ LongCount()  Obtains the number of elements in a sequence and returns that value as a
64-bit number. You use this version of Count() when the number of elements is high and you
want to avoid a potential overflow condition. You can read more about this method at http://
msdn.microsoft.com/library/bb353539.aspx.

■■ Max()  Determines which element contains the maximum value in a sequence. You can read
more about this method at http://msdn.microsoft.com/library/bb335614.aspx.

■■ Min()  Determines which element contains the minimum value in a sequence. You can read
more about this method at http://msdn.microsoft.com/library/bb298087.aspx.

■■ OfType()  Determines whether an element is of a specific type. You can read more about this
method at http://msdn.microsoft.com/library/bb360913.aspx.

■■ OrderBy()  Sorts the elements of a sequence in ascending order using the specified key. You
can read more about this method at http://msdn.microsoft.com/library/bb534966.aspx.

■■ OrderByDescending()  Sorts the elements of a sequence in descending order using the
specified key. You can read more about this method at http://msdn.microsoft.com/library/
bb534855.aspx.

■■ Reverse()  Inverts the order of the elements in a sequence. The elements aren’t sorted—
merely reversed in order. You can read more about this method at http://msdn.microsoft.com/
library/bb358497.aspx.

■■ Select()  Chooses each element of a sequence and optionally modifies its form. You can read
more about this method at http://msdn.microsoft.com/library/bb548891.aspx.

■■ SelectMany()  Chooses each element of a sequence, places it in an IEnumerable object, and
flattens the entire sequence into a single sequence. You can read more about this method at
http://msdn.microsoft.com/library/bb534336.aspx.

■■ Single()  Returns the only element in a sequence that satisfies the specified condition and
throws an exception if more than one element that satisfies the condition exists. You can read
more about this method at http://msdn.microsoft.com/library/bb155325.aspx.

■■ Skip()  Bypasses (skips) the specified number of elements in a sequence and then returns the
elements that remain. You can read more about this method at http://msdn.microsoft.com/
library/bb358985.aspx.

■■ Sum()  Adds (sums) the individual values of each element in a sequence to create a total. You
can read more about this method at http://msdn.microsoft.com/library/bb298138.aspx.

■■ Take()  Returns the specified number of elements in a sequence and then skips (bypasses)
the elements that remain. You can read more about this method at http://msdn.microsoft.com/
library/bb503062.aspx.

	 Chapter 6  Manipulating data using LINQ    135

■■ TakeWhile()  Returns the specified number of elements in a sequence while the specified
condition remains true, and then skips (bypasses) the elements that remain. You can read
more about this method at http://msdn.microsoft.com/library/bb534804.aspx.

■■ ThenBy()  Performs a subsequent sorting of elements in a sequence in ascending order us-
ing the specified key. You must precede this method call with either the OrderBy() or Order-
ByDecending() method call. You can read more about this method at http://msdn.microsoft.
com/library/bb534743.aspx.

■■ ThenByDescending()  Performs a subsequent sorting of elements in a sequence in descend-
ing order using the specified key. You must precede this method call with either the OrderBy()
or OrderByDecending() method call. You can read more about this method at http://msdn.
microsoft.com/library/bb534736.aspx.

■■ Union()  Produces the set union of two sequences by using the default comparator. You can
read more about this method at http://msdn.microsoft.com/library/bb341731.aspx.

■■ Where()  Filters a sequence based on the criterion you provide in the form of an expression.
You can read more about this method at http://msdn.microsoft.com/library/bb534803.aspx.

Understanding LINQ compilation

LINQ to Entities compiles the queries you create into something that the EntityClient can understand.
You’ve seen one example of this compilation in the “Developing LINQ to Entities queries” section
of the chapter in the form of bubble help. You were able to hover the mouse over the CustomerList
object and see its type.

The following sections look at compilation in another way. These procedures take you through
the process of using a query with the debugger. It’s interesting to see how the debugger handles the
query based on the way you create it. In fact, using the debugger as shown in the following proce-
dures will help you gain a much better understanding of the Entity Framework as a whole because
you can trace through the tasks it performs in the background for you.

Following an IQueryable sequence
The example shown in the “Developing LINQ to Entities queries” section of the chapter uses the var
keyword to create the CustomerList object. The var keyword is also used to create Customer and Pur-
chase. When using the var keyword, you allow the compiler to automatically determine which type to
use to satisfy a particular need. However, it’s nice to see this process in action.

Simply running the example leaves some questions unanswered. For example, you may wonder
how and when Customer and Purchase are created. Working through the example with the debugger
helps you answer these kinds of questions.

136   PART III  Manipulating data using the Entity Framework

Tracing through an IQueryable example

1.	 Open the ModelFirst example that you worked with in the “Developing LINQ to Entities que-
ries” section of the chapter.

2.	 Place a breakpoint at the foreach line so that it looks like this:

3.	 Click Start or press F5. The application compiles and runs.

4.	 Click Query. The debugger stops the application at the foreach line. There are some interest-
ing things to see at this point.

5.	 Choose Debug | Windows | Autos. You’ll see the Autos window shown here:

Notice that even though CustomerList uses var as its type, the actual type is IQueryable. The
value of CustomerList is a form of the query you used.

When you open the Results View, you see that there are two members of type System.Data.
Entity.DynamicProxies. When working with the Entity Framework, it actually creates a dynami-
cally generated derived type that acts as a proxy for the entity. You can read about these
proxies at http://msdn.microsoft.com/data/jj592886.aspx. For now, it’s important to realize that
the TestModelFirst.Customers objects don’t actually exist.

6.	 Expanding the Results View has automatically created the customers for you, so click Stop.

7.	 Perform steps 3 and 4 again to restart the debugger.

8.	 Click Step Into or press F11 three times. Visual Studio opens a new file, Customers.cs, and
places the instruction pointer on the constructor for the Customers class, as shown here:

	 Chapter 6  Manipulating data using LINQ    137

Here, the application is actually creating a Customers object. This object includes Purchases, as
shown.

9.	 Click Step Into or press F11 four times. The debugger takes you back to the original file and
highlights the in part of the foreach loop, where it verifies that there is another item to pro-
cess.

10.	 Click Step Into or press F11. The debugger highlights the var Customer part of the foreach
loop. Choose Debug | Windows | Locals. You’ll see the Locals window, as shown here:

Notice that Customer is still null. However, the data type shows that var Customer creates a
TestModelFirst.Customers type. The compiler has automatically chosen the correct type for the
variable.

11.	 Click Step Into or press F11. The value of Customer changes to a System.Data.Entity.
DynamicProxies entry. The type is correct for the kind of information presented, and you see
the individual values for Customer when you click the plus sign next to it.

138   PART III  Manipulating data using the Entity Framework

12.	 Click Step Into or press F11 six times. The instruction pointer will end up at the Output.
Append() line. Notice that the application doesn’t create the Purchase object as it did the
Customer object. That’s because the Purchase object already exists as part of the Customer
object.

13.	 Click Step Into or press F11 enough times to take the instruction pointer back to the in part of
the foreach loop. When you click Step Into or press F11 one more time, the debugger reopens
Customers.cs, and you start the process of creating a Customers object again, as described in
step 9. You can follow this process at least twice if you created the records described in previ-
ous chapters.

14.	 Click Stop to end the debugging session. At this point, you know that working with the Entity
Framework with IQueryable means creating objects on demand.

Following a List sequence
Working with IQueryable produces one result. However, converting the query to a List and then
processing that List produces another. It’s interesting to modify the code slightly to see what happens
when you use a List to interact with a LINQ to Entities query. The following procedure does just that.

Tracing through a List example

1.	 Modify the query in the ModelFirst example so that it looks like this:

// Obtain the customer list in list form.
List<Customers> CustomerList =
 (from cust in context.Customers
 select cust).ToList<Customers>();

The result of the query is the same. The only difference is that the output is converted to a
List.

2.	 Click Start or press F5. The application compiles and runs.

3.	 Click Query. The debugger stops the application at the foreach line.

4.	 Click Step Into or press F11 four times. You end up at the opening curly brace for the foreach
loop. Notice that the debugger didn’t open Customers.cs or interact with the constructor in
that file. That’s because the act of converting the query output to a List automatically retrieves
the data from the database.

5.	 Choose Debug | Windows | Locals. You’ll see the Locals window shown here:

	 Chapter 6  Manipulating data using LINQ    139

Notice that, even though the CustomerList type is not System.Collections.Generic.
List<TestModelFirst.Customers>, the Customer object hasn’t changed from before. It’s still of
type TestModelFirst.Customers and contains a System.Data.Enty.DynamicProxies value. The
only change that using a List creates is the fact that the data entries are retrieved immediately,
rather than as needed. That said, using a List could save time when working with larger data-
sets. You could always create a thread for the data retrieval process so the user can continue
working in the foreground.

6.	 Click Stop to stop the debugger.

Using entity and database functions

Functions are an important part of modern database applications. You use them to perform a variety
of tasks, such as finding the average value of a customer’s purchases. Creating and using functions
need not be a grueling task. The following sections describe how to create and use functions with the
Entity Framework. You can find this example in the \Microsoft Press\Entity Framework Development
Step by Step\Chapter 06\ModelFirst (Function) folder of the downloadable source code.

Creating the function
Before you can use a function, you must create it. The following procedure demonstrates one tech-
nique for creating functions in SQL Server without leaving the Visual Studio IDE. The procedure relies
on the ModelFirst example you created in the “Creating a model-first example” section of Chapter 3.

140   PART III  Manipulating data using the Entity Framework

Defining a function using Visual Studio

1.	 Copy the ModelFirst example you created in Chapter 3 to a new folder and use this new copy
for this example (rather than the copy you created in Chapter 3).

2.	 Choose View | Server Explorer. You’ll see the Server Explorer window shown here:

3.	 Open the Rewards2 connection.

4.	 Right-click the Functions folder and choose Add New | Table-Based Function. Visual Studio
opens a new SQL file for you that contains a basic template for creating table-based functions.

5.	 Type the following code into the file:

USE [Rewards2]
GO

CREATE FUNCTION [dbo].[AveragePurchase]
(
 @CustomerId int
)
RETURNS DECIMAL(3,2)
AS
BEGIN
 DECLARE @Average DECIMAL(3,2)
 SELECT @Average = avg(Amount)
 FROM Purchases
 WHERE CustomersId = @CustomerId;
 RETURN @Average
END

This function begins by selecting the appropriate database for modification. It then creates
a function named AveragePurchase, which accepts a single input, CustomerId. The function
creates a variable, @Average, of type DECIMAL, and uses it as part of an SQL statement that
selects the average of the purchases contained in Amount from the Purchases table, where the
CustomerId value matches the @CustomerId input. The result is the average purchase amount
for a single customer.

	 Chapter 6  Manipulating data using LINQ    141

6.	 Right-click anywhere in the code window and choose Execute from the context menu. You’ll
see the Connect To Server dialog box.

7.	 Provide the required credentials and click Connect. Visual Studio will execute the command
for you. You should see “Command(s) completed successfully.” on the Message tab that ap-
pears when you execute the command.

8.	 Right-click the Rewards2 entry in Server Explorer and choose Refresh from the context menu.
You’ll see the new function appear in the Functions folder, as shown here:

9.	 Right-click AveragePurchase and choose Execute from the context menu. You’ll see an Execute
Function dialog box like the one shown here, telling you the function requires an input value
to execute:

142   PART III  Manipulating data using the Entity Framework

10.	 Type 1 in the Value field for @CustomerId and click OK. Visual Studio automatically creates a
new query and executes it. You’ll see the output shown here:

11.	 Close the SQL file without saving it. The test shows that the query works.

Accessing the function
At this point, you have a database function you can use. You know it works because you tested it. Of
course, you have to figure out how to access the function from your code. The following procedure
shows how to access the function from within your application.

Tracing through a List example

1.	 Open the Rewards2Model.EDMX file by double-clicking its entry in Solution Explorer.

2.	 Right-click in any clear area of the designer and choose Update Model From Database from
the context menu. You’ll see the Update Wizard dialog box shown here:

	 Chapter 6  Manipulating data using LINQ    143

3.	 Check AveragePurchase and click Finish. It seems as if nothing has happened to your diagram,
but the .EDMX file does indeed include a change.

4.	 Open the Form1.cs file. Add this using statement to the beginning of the file:

using System.Data.Objects.DataClasses;

5.	 Add this function to the file:

[EdmFunction("Rewards2Model.Store", "AveragePurchase")]
public static decimal? AveragePurchase(Int32 CustomerId)
{
 throw new NotSupportedException("Direct calls are not supported.");
}

This function requires a little explanation. The [EdmFunction()] attribute tells the compiler to
look into the .EDMX file in the requested store, which is Rewards2Model.Store in this case, for
a function named AveragePurchase. You added this entry during the update, even though it
doesn’t show up in the designer.

The function itself requires an odd format. For one thing, it’s a static function, and the return
type is decimal. Notice the question mark (?) behind the type declaration. You must include
it or the function won’t work. The function name comes next, along with any arguments the
function requires. The only content for the function is the exception shown. The function actu-
ally executes at the database.

144   PART III  Manipulating data using the Entity Framework

6.	 Add a new button to Form1. Name the button btnAverage and set its Text property to
&Average.

7.	 Double-click btnAverage to create a new click event handler.

8.	 Type the following code for the btnAverage_Click() event handler:

private void btnAverage_Click(object sender, EventArgs e)
{
 // Create the context.
 Rewards2ModelContainer context = new Rewards2ModelContainer();

 // Make the query.
 var CustomerList =
 from cust in context.Customers
 select new
 {
 Name = cust.CustomerName,
 Average = AveragePurchase(cust.Id)
 };

 // Create a string to hold the result.
 StringBuilder Output = new StringBuilder();

 // Parse the result.
 foreach (var CustEntry in CustomerList)
 Output.Append(
 CustEntry.Name + " makes an average purchase of "
 + CustEntry.Average + ".\r\n");

 // Display the result on screen.
 MessageBox.Show(Output.ToString());
}

The code begins by creating a context. It then creates a LINQ to Entities query based on
that context. Notice that the select part of the query is different. It creates a new object
that contains two entries: Name and Average. The Name entry is directly obtained from
cust.CustomerName. However, the Average entry is actually a call to the AveragePurchase()
function you created in the database in the “Creating the function” section. What you end up
with is a structure-like IQueryable object. (Tracing through this example in the debugger is
educational, and you should give it a try.)

After the application obtains the names and averages, it creates a string from them using a
foreach loop. Notice that you access the entries as properties. CustEntry is actually an anony-
mous type. The code ends by displaying the output in a message box.

Note  This is an example of an application where you must use var instead of either
IQueryable or IEnumerable. The problem is that you’re working with an anonymous
type—a type that isn’t known at design time.

	 Chapter 6  Manipulating data using LINQ    145

9.	 Click Start or press F5. The application compiles and runs.

10.	 Click Average. You’ll see the output shown here:

Getting started with the Entity Framework

This chapter has introduced you to LINQ to Entities, which provides a method of querying a database
using a simple and straightforward query language. The most important idea to take away from this
chapter is that LINQ to Entities makes it possible to focus on the information you need to work with,
rather than the method used to obtain it. In order to define what information you need, a declarative
language uses a set of keywords and operators that make it possible to tell the compiler what you
want. LINQ to Entities queries are compiled into a form that the .NET Framework understands. So,
there isn’t any hocus-pocus going on—LINQ to Entities simply makes it possible for you to get your
work done faster and with fewer errors.

The chapter contains a number of examples. What you need to do at this point is play with those
examples to determine how they work. If necessary, single-step through the code using the debugger
to determine precisely how the queries work. Once you understand the queries as they appear in the
chapter, make changes to them to see how different operators and keywords affect the output. The
best way to gain an appreciation of how LINQ to Entities works is to play with it. Spend some time
mixing and matching items until you gain a clear understanding of how each item works.

Chapter 7 moves on to another way of interacting with data, using Entity SQL. In this chapter, you
gain an in-depth view of working with Entity SQL to perform specific tasks. As in Chapter 6, you start
with a basic tutorial of how Entity SQL works, and then move on to examples that demonstrate how
to use it. When you finish Chapter 7, you’ll be able to compare LINQ to Entities with Entity SQL to de-
termine the strengths and weakness of each approach. You’ll also have a better idea of which technol-
ogy you prefer to use to address a particular need.

146   PART III  Manipulating data using the Entity Framework

Chapter 6 quick reference

To Do this

Access a non–SQL Server database using LINQ to Entities Obtain the required database-specific provider to use
with ADO.NET.

Create a basic LINQ to Entities query Combine the from, in, and select keywords to create
an expression, and then place the output from this
expression into a variable. For example, var CustomerList
= from cust in context.Customers select cust obtains a list
of all of the customers found in the Customers table of
the specified context named context.

Specify that LINQ group the return values in a certain
way

Use the group keyword to specify that you want
grouping and the by keyword to define which field or
expression to use to perform the grouping task. Place
the result of the grouping into a variable by using the
into keyword.

Specify that LINQ sort the return values in a certain way Use the orderby keyword to specify that you want the
output sorted and include a field or expression to use to
perform the sorting task. Control the order of the sort
using the ascending or descending keyword.

Output a result set using an in-memory presentation
that provides performance benefits during enumeration

Create an output object based on IEnumerable.

Output a result set using a remote presentation that
provides flexibility

Create an output object based on IQueryable.

Project specific output values from the query Use the Select() or SelectMany() methods.

Filter the output to remove undesirable elements Use the Where() method.

Join two data sources that lack a navigable property Use the Join() or GroupJoin() method to create an inner,
group, or left-outer join.

Create a result set that exhibits one or more specific
properties

Use the set-related methods: All(), Any(), Concat(),
Contains(), DefaultIfEmpty(), Distinct(), EqualAll(),
Except(), Intersect(), and Union().

Change the order in which the rows in a result set appear Use the ordering-related methods: OrderBy(),
OrderByDescending(), ThenBy(), ThenByDescending(), and
Reverse().

Define groups of rows containing the same attribute Use the GroupBy() method.

Define new views of existing data by combining rows Use the aggregation-related methods: Aggregate(),
Average(), Count(), LongCount(), Max(), Min(), and Sum().

Perform type conversion and testing Use the Convert() (primitive types) and OfType() (entity
types). When working with C#, you can also use the is()
and as() methods.

Access the rows out of order or remove some rows from
the sequence depending on position

Use one of the paging methods: ElementAt(), First(),
FirstOrDefault(), Last(), LastOrDefault(), Single(), Skip(),
Take(), or TakeWhile().

		 147

C H A P T E R 7

Manipulating data using
Entity SQL

After completing the chapter, you’ll be able to

■■ Describe the basic functionality of Entity SQL.

■■ Use Entity SQL to select data.

■■ Employ literals when working with Entity SQL.

■■ Place data in a specific order.

■■ Group data by content.

Chapter 4, “Generating and using objects,” provides a basic introduction to Entity SQL, but it
doesn’t explore this method of interacting with the Entity Framework in detail. As described in

the “Understanding the role of Entity SQL” section of Chapter 4, this technique of creating queries is
focused on making use of SQL language knowledge that developers already possess. That said, Entity
SQL provides a considerable array of features that makes it possible to extract data from a database
quickly and relatively simply, as long as you know the Entity SQL language (the example in the “Creat-
ing a basic query using Entity SQL” section of Chapter 4 shows the barest of examples). It’s essential
to remember that unlike T-SQL, you can’t use Entity SQL to make changes to the database or its data.
The first section of this chapter describes other differences that you need to understand before work-
ing with Entity SQL.

Working with Entity SQL is about selecting data. However, there are many ways in which to select
data, and this chapter explores a number of them. For the most part, you’ll use LINQ to Entities, which
is described in Chapter 6, “Manipulating data using LINQ,” to make queries. However, Entity SQL has
some specific advantages, such as the ability to perform dynamic query building. In addition, the
SQL-like foundation language makes it easier to transition code that you may already own into a form
that works well with the Entity Framework—something that isn’t possible when working with LINQ
to Entities. (When all is said and done, Entity SQL and LINQ to Entities both allow you to perform
most of the same tasks, but by using different strategies and sets of language skills in each case.) The
remainder of this chapter will explore these special advantages so that you know they exist and can
make use of them when needed.

148   PART III  Manipulating data using the Entity Framework

Understanding Entity SQL

Entity SQL is a SQL-like language you use for creating queries against a database. As mentioned in
Chapter 4, the language is SQL-like, not completely compatible with SQL. In addition, the focus isn’t
on interacting directly with the DBMS, but rather extracting data from the DBMS using a language
that’s easily translated to a DBMS-specific language. Given an appropriate database-specific provider,
it’s possible to use Entity SQL to interact with any DBMS, not just Microsoft SQL Server. The following
sections help you better understand how Entity SQL works and the ways in which you can use it to
create queries against the DBMS.

Considering the Entity SQL data flow
As with LINQ to Entities, Entity SQL relies on EntityClient to translate what it does into something the
Entity Framework layers can map into database-specific commands through Microsoft ADO.NET and
database-specific providers. The entire stack of software is about the same in structure as shown here:

Warning  A number of drawings and discussions available online don’t mention the need
for a database-specific provider. If you’re using a DBMS other than SQL Server or one of the
compatible DBMSs described in Chapter 1, “Getting to know the Entity Framework,” then
you’ll find that your queries won’t work without adding a database-specific provider. You
still depend on ADO.NET to complete tasks.

Chris: I scaled this
down to 85% manu-
ally to get it to fit on
the page. Please ask
Rebecca to scale down
the actual figure, then
you can scale this back
to 100% in ID.

	 Chapter 7  Manipulating data using Entity SQL    149

However, the actual functioning of Entity SQL is quite different from LINQ to Entities, even if the
path is approximately the same. When working with Entity SQL, you create a command that the
EntityClient executes against the conceptual model. The process isn’t working against the database
directly. Rather, the command is mapped by the Entity Framework layers into something ADO.NET
can understand and send to the database-specific provider. By the time the DBMS sees the command,
it’s translated into a form that the DBMS can understand. On the return trip, the results of the DBMS
query are mapped into .NET objects, which are sent through the EntityClient and reported by Entity
SQL as a result.

Commands are created as EntityCommand objects. The actual Entity SQL command is stored with-
in the EntityCommand.CommandText property. So, this is where the string you construct ends up—as
part of an object. In most cases, your application will call the EntityCommand.ExecuteReader() method
to actually execute the command. This method returns an EntityDataReader object you can use to
interact with the data from the DBMS. Of course, this data is in a form that works well with .NET—it
isn’t in its original format. All of these objects (and quite a few others related to Entity SQL) reside in
the System.Data.EntityClient namespace, described at http://msdn.microsoft.com/library/system.data.
entityclient.aspx.

Defining the Entity SQL components
Entity SQL most definitely differs from T-SQL, as described in the “Understanding the role of Entity
SQL” section of Chapter 4. However, this overview hardly tells you everything there is to know about
Entity SQL. The following sections describe the components used to make up Entity SQL—the features
that you use to create queries and execute them against the server. After you read this overview,
you’ll be ready to work through the rest of the chapter, which describes these components in detail
and demonstrates them as needed.

SELECT VALUE and SELECT
Entity SQL provides two methods for selecting items. Each method has a specific purpose, as de-
scribed in the following list:

■■ SELECT VALUE  Provides the means for selecting a single item without constructing a row
wrapper around the items. This means you can shape the item more easily because you can
access it directly.

■■ SELECT  Provides the means for selecting multiple items. The return value is a collection of
data rows containing one or more fields. This approach is more flexible and allows you to cre-
ate complex datasets.

Note  For the sake of clarity, this chapter will often illustrate Entity SQL statements as pure
text, instead of as part of an example. Normally, you always create an Entity SQL statement
as a string and assign it to the EntityCommand.CommandText property.

http://msdn.microsoft.com/library/system.data.entityclient.aspx
http://msdn.microsoft.com/library/system.data.entityclient.aspx

150   PART III  Manipulating data using the Entity Framework

To illustrate the difference between SELECT VALUE and SELECT, begin with the example query from
Chapter 4. In this case, the query selects a single item, so it uses SELECT VALUE, as shown here:

SELECT VALUE CustomerList
FROM Rewards2ModelContainer.Customers
AS CustomerList

The result is a single value, which contains the entire dataset. However, you can also return
individual members by using SELECT. Here’s an example of using SELECT to obtain just part of the
information:

SELECT CustomerList, CustomerList.Purchases
FROM Rewards2ModelContainer.Customers
AS CustomerList

In this case, the result set includes the customer information and the purchase information as two
separate entities that you’d need to process separately. However, using this approach would allow ad-
ditional flexibility in processing the data that you wouldn’t have when working with the single object
returned by SELECT VALUE. You’ll see more examples of how this would work later in the chapter.

Literals
A literal is essentially a kind of string. You can enclose literal values in either single or double quotes in
most cases—Entity SQL won’t care which delimiter you use. However, there are many types of literals
used with Entity SQL, and there are peculiarities in the way you work with them. With this in mind,
you want to know how literals work in Entity SQL to ensure that you get the proper results. The fol-
lowing sections discuss literal values and how to format them correctly. (You can find more detailed
information on MSDN, at http://msdn.microsoft.com/library/bb399176.aspx.)

Warning  The problem with Entity SQL literals is that if you don’t format them correctly,
Entity SQL may raise an exception or the query may simply refuse to provide any return
information. If it does provide a return value, the information you receive may not be what
you expected. In fact, it could be completely incorrect. It’s essential that you format the lit-
erals correctly and that you test the results of your queries to ensure you obtain the proper
information in return from the DBMS.

String  A string literal is a series of characters used to store textual information. There isn’t anything
mysterious about string literals except in the way you store the characters. It turns out that there are
two presentations, Unicode and non-Unicode. The default settings use non-Unicode (8-bit) characters
that don’t work well with many languages and will most definitely cause problems when making que-
ries against DBMSs that rely on Unicode characters. In order to overcome this problem, you preface
the string with an N, like this:

N"My Unicode string"

	 Chapter 7  Manipulating data using Entity SQL    151

The N must appear next to the string literal without any spaces, and it must be an uppercase N.
You do have the option of using single or double quotes to enclose the string.

DateTime and Time  There isn’t any literal that’s specifically designed to provide a date value. All
date values must include both the date and the time. In addition, a date value is independent of
locale; it must appear in a specific format regardless of what format is commonly used to denote date
and time in that locale. A date and time value is always preceded by the DATETIME keyword. Notice
that this keyword must appear in uppercase. You can’t use mixed case. However, you can place one or
more spaces between the DATETIME keyword and the literal value, but the DATETIME keyword and
the literal value must appear on the same line.

To create a date-and-time mixed value, you use the format DATETIME “2013-03-04 17:53” where
2013 is the year, 03 is the month, 04 is the day, 17 is the hour, and 53 represents the minutes. You may
optionally add seconds and fractional seconds. The fractional seconds can range from 0 to 9999999,
but must always consume seven spaces. A value of DATETIME “2013-03-04 17:53:00:000000000” is
the same as the previous date and time value because the number of seconds is 0 and the fractional
seconds value is also 0.

Warning  There are no default literal date/time or time values. You must specify a value
as part of the literal. The literal must contain all of the required elements. If you leave ele-
ments out, Entity SQL will either raise an exception or not return the requested information,
even when the information resides in the database.

Entity SQL does provide a time-specific literal value. In this case, you precede the literal value with
the TIME keyword. Again, you can add one or more spaces between the TIME keyword and the literal
value. The literal value must contain hours and minutes—seconds and fractional seconds are optional.
A time literal value of TIME “17:53:22” contains 17 hours (5 P.M.), 53 minutes, and 22 seconds.

Note  You can also create a date/time offset value. The Microsoft documentation details
how to create this type of literal. Essentially, it’s the same as working with a date/time, but
with a little added information—the offset.

Integer, real, and decimal  Numeric literals aren’t enclosed in quotes, but they do have specific
formatting requirements. Integer types come in two sizes: Int32 and Int64. The default size is Int32.
You create an integer value by providing a series of numbers without a decimal or fractional part. For
example, 123 is an Int32 literal value. In order to create an Int64 literal value, you add an uppercase
L—for example, 123L.

Real numbers, both float and double, provide an integer value, decimal point, and fractional value,
such as 123.0. In this case, the double (64-bit) value is the default. To create a 32-bit floating-point
value, you add a lowercase f after the number—for example, 123.0f.

152   PART III  Manipulating data using the Entity Framework

Decimal values provide added precision for financial calculations. As with real numbers, a decimal
value has an integer value, decimal point, and fractional value. However, in this case, you add an up-
percase M after the number, such as in 123.0M.

Other  In order to provide a complete solution, Entity SQL provides access to a number of other liter-
als. For example, you can use the null keyword to create null values of any type. However, when work-
ing with null values, you must follow some special rules. For example, you can only use null values in
special contexts, as described at http://msdn.microsoft.com/library/bb387141.aspx. As described on
this page, it would be illegal to use a null value as an argument for a row constructor (theoretically, to
create a blank row).

Boolean literals are represented by the keywords true and false. Even though the documentation
doesn’t specify case in this instance, it’s best to use lowercase true and false.

Binary strings are a series of hexadecimal digits enclosed in single quotes, preceded by the BINARY
keyword or the shortcut X. You must use single quotes. In this case, you can use either a lowercase or
uppercase X to represent the binary string. In addition, the hexadecimal digits can be either upper-
case or lowercase. When you create a binary string, use an even number of digits. If you don’t, Entity
SQL will pad the string to produce an even number of digits. You can use any number of spaces be-
tween the BINARY keyword or the X shortcut and the string, but they must appear on the same line.
All the following binary strings are acceptable:

BINARY '0123456789ABCDEF'
X '0123456789ABCDEF'
x '0123456789abcdef'

It’s also possible to create Globally Unique Identifiers (GUIDs) using literals. A GUID relies on hexa-
decimal digits within single quotes (no double quotes allowed) in a 8-4-4-4-12 pattern. Each group of
digits must be separated by a hyphen. You can use any number of spaces between the GUID keyword
and the string, but they must appear on the same line. Here’s a typical example of a GUID literal:

GUID '01234567-89AB-CDEF-0123-456789ABCDEF'

Type constructors
Type constructors create objects of a specific type. Entity SQL provides support for row, collection,
and named type constructors. The following sections describe each of these types. You can discover
additional information about these constructors at http://msdn.microsoft.com/library/bb386869.aspx.

ROW  You use the row constructor to create anonymous, structurally typed records. The result is a
ROW type (see http://msdn.microsoft.com/library/bb399170.aspx for details) that contains one or more
fields, each of which has a type that corresponds to the type of data the field contains. Each field
should have an alias associated with it. Even though the Entity Framework will attempt to generate an
alias if you don’t provide one, providing an alias is always the best way to construct a row type. The
following example constructs a row type containing four fields:

ROW(1 AS IntValue, 1.5 AS DoubleValue, "ABC" AS StringValue, true as BooleanValue)

	 Chapter 7  Manipulating data using Entity SQL    153

The constructor begins with the ROW keyword. The individual fields appear in parentheses after
the ROW keyword, and there’s no space between the keyword and the opening parenthesis. Each
field defines an alias using the AS keyword. There are some rules you must follow when working with
the row constructor:

■■ Each field must use a unique alias.

■■ Expressions in a row constructor can’t refer to other expressions in the same constructor.

Collection  A collection constructor creates a MULTISET<T> object (see http://msdn.microsoft.com/
library/bb387137.aspx for details) that contains a group of items of the same type that you can ac-
cess as a list. Every item of type T must be mutually compatible. The following example creates a
MULTISET<T> of strings:

MULTISET("One", "Two", "Three")

The constructor begins with the MULTISET keyword, followed by a list of items to include in the
MULTISET in parentheses. There isn’t any space between the MULTISET and the list.

Named type  The named type constructor lets you create a conceptual model of an instance, com-
plex, or entity type (see http://msdn.microsoft.com/library/bb738526.aspx for details). There’s no key-
word associated with this type, but you must provide a type alias. Here’s an example of an instance
type named Name:

Name("Josh", "Bailey")

Notice that the alias is a single term and that the type definition includes two strings. You can use
any valid Entity SQL type as content. Here’s an example of a complex type named Customer.Id:

Customer.Id(5, "Josh", "Bailey")

The difference, in this case, is that there’s a type, Customer, that has a property, Id, that contains
three fields: one integer and two strings. A complex type can have other properties, and you can nest
types within each other, like this:

Customer.Id(5, "Josh", "Bailey", Customer.Purchase(5, 6.99M))

In this case, there’s a Customer type that has one level that contains Id information, and a second
level that contains a Purchase. The Id consists of an integer and two strings. The Purchase consists of
an integer and a decimal value. An entity type describes an entire entry for a particular model, like
this:

Model.Customer(5, "Josh", "Bailey", Customer.Purchases(Purchase(5, 6.99M), Purchase(6, 6.99M)))

The essential fact to remember is that named types can vary in complexity and purpose. You can
use them to model an instance, a complex type, or an entire entity, as needed. Named types are also

154   PART III  Manipulating data using the Entity Framework

returned from a number of the method calls you use with Entity SQL, as will become clearer as the
chapter progresses.

References
Entity SQL provides access to a number of reference operators that you use to interact with foreign
keys in an entity set. The operators react to the foreign key reference as a type of pointer. The follow-
ing list describes each of the reference operators. You’ll see them used in other areas of the chapter.
Each list entry also provides a reference to further information, should you want to explore these
operators in greater detail.

■■ CREATEREF  Creates a reference to an entity within an entity set (essentially creating a
foreign key). You can read more about this operator at http://msdn.microsoft.com/library/
bb386880.aspx.

■■ DEREF  Dereferences a reference pointer so that you can work with the entity pointed at by
the reference. You can read more about this operator at http://msdn.microsoft.com/library/
bb386885.aspx.

■■ KEY  Extracts the key used to create a reference or entity expression. You can read more
about this operator at http://msdn.microsoft.com/library/bb399756.aspx.

■■ NAVIGATE  Provides the means for navigating over the relationship created between
entities. The result is a Ref<T> object when working with a one-to-one relationship or a
Collection<Ref<T>> object when working with a one-to-many relationship. The navigation oc-
curs through the conceptual model, rather than against the DBMS. You can read more about
this operator at http://msdn.microsoft.com/library/bb387146.aspx.

■■ REF  Returns a reference to an entity instance that consists of the entity key and the en-
tity set name. You can read more about this operator at http://msdn.microsoft.com/library/
bb399743.aspx.

Functions
Working with functions makes it easier to perform some tasks, especially when the tasks require com-
plex computations or repetition. When working with Entity SQL, you can use following:

■■ User-defined functions  As with the user-defined function described in the “Using Entity
and database functions” section of Chapter 6, most Entity SQL functions you use are per-
formed against the conceptual model. Entity SQL also provides the means to define functions
inline, as part of the query.

■■ Canonical functions  The Entity Framework provides a number of built-in functions that you
can use with Entity SQL. The database-specific provider you use will normally support these
functions, but you need to check the vendor documentation to be certain. When a canoni-
cal function isn’t supported, the Entity SQL query fails and usually generates an exception.

http://msdn.microsoft.com/library/bb386880.aspx
http://msdn.microsoft.com/library/bb386880.aspx
http://msdn.microsoft.com/library/bb386885.aspx
http://msdn.microsoft.com/library/bb386885.aspx
http://msdn.microsoft.com/library/bb399756.aspx

	 Chapter 7  Manipulating data using Entity SQL    155

However, since these functions are consistent across all vendors, Microsoft recommends using
them over provider-specific functions.

■■ Provider-specific functions  A vendor can choose to implement functions as part of the
database-specific provider. These functions are unique to a particular provider and may not
even work across all versions of a particular DBMS. Because these functions are unique to a
particular database-specific provider, they aren’t discussed in this book—you need to consult
the documentation that comes with the database-specific provider to learn more.

The following sections help you better understand how to work with functions when using Entity
SQL. It won’t surprise you to know that even though the techniques for doing so are different than
when working with LINQ to Entities, the sources and results of the functions are the same. In addition,
the rules for working with functions follow those established for .NET functions in general.

User-defined functions  Most developers associate user-defined functions with functions created
within the database. You access these functions to perform specific tasks. To create such a function,
you rely on a SQL query. You can see an easy method for creating such a function in the “Creating
the function” section of Chapter 6. In fact, you’ll see an example of accessing this function later in the
chapter.

One of the ways in which Entity SQL excels when compared to LINQ to Entities is in the way it
lets you dynamically create functions inline. You perform this task using the FUNCTION operator, as
described at http://msdn.microsoft.com/library/dd490947.aspx. An inline function exists only for the
time that the query executes. Dynamically creating functions in this way provides you with additional
flexibility without clogging the database with functions that you don’t intend to use regularly.

Note  An Entity SQL query can actually contain multiple functions. In addition, the functions
can have the same name as long as they have a unique signature. See the “Working with
overloaded functions” section later in the chapter for details on how Entity SQL manages
multiple functions with the same name.

Aggregate functions  You can think of an aggregate as a method of combining various parts into
a cohesive whole. That’s what happens when you work with aggregates in Entity SQL. The function
combines a collection of records into a single value of some sort. For example, you might choose to
count the number of records in a collection or locate the maximum record. Aggregate functions come
in two forms, collection functions and group functions, as described in the following list:

■■ Collection functions  Functions that you can use anywhere in an expression to aggregate
a collection into a scalar value. (A scalar value is one that has a specific value or magnitude,
such as a number or a string.) This includes using the functions within predicates and as part
of projections. These functions include the following (you can find detailed information about
them at http://msdn.microsoft.com/library/bb399163.aspx):

•	 AVG  Determines the average value of a collection.

•	 CHECKSUM_AGG  Calculates the checksum of the values in a collection.

http://msdn.microsoft.com/library/bb399163.aspx

156   PART III  Manipulating data using the Entity Framework

•	 COUNT/COUNT_BIG  Returns the number of items in a collection. When using COUNT,
you receive an Int32 value. Using COUNT_BIG returns an Int64 value.

•	 MAX  Determines the maximum value in a collection and returns that value.

•	 MIN  Determines the minimum value in a collection and returns that value.

•	 STDEV  Returns the standard deviation of all of the values in a collection.

•	 STDEVP  Returns the standard deviation for the population of all of the values in a collec-
tion.

•	 SUM  Calculates the total value of all of the values in a collection.

•	 VAR  Returns the variance of all of the values in a collection.

•	 VARP  Returns the variance for the population of all of the values in a collection.

■■ Group functions  Functions that appear as part of a GROUP BY clause in a query. The ag-
gregate is calculated on all of the members of a particular group, and the scalar value of each
group is placed in an output collection. You can modify these functions using the DISTINCT
and ANY keywords. You can use the same functions as with a collection, but the result is based
on groups, not the collection as a whole.

Note  Entity SQL also allows the use of user-defined aggregate functions. A discussion of
user-defined aggregates is outside the scope of this book. However, you can find a discus-
sion of them at http://msdn.microsoft.com/library/ms190678.aspx.

Working with overloaded functions  You can create multiple functions with the same name in
Entity SQL as long as each function has a unique signature. In other words, Entity SQL must be able
to determine which function to use based on the criteria used to determine a unique signature. When
working with multiple functions that have the same name, Entity SQL uses these rules to find a unique
signature in the order presented:

■■ Number of parameters

■■ Types of input arguments

■■ Subtypes of input arguments

■■ Types or subtypes of promoted input arguments (where arguments are cast to another type)

When Entity SQL can’t make a clear determination of which function to use based on these criteria,
then the expression is ambiguous, and Entity SQL can’t execute it. You’ll receive an exception that
specifies the ambiguity. Even if Entity SQL can determine that a single function matches the signature
of the call, the input arguments may not precisely match the required parameters. In this case, Entity
SQL will raise an exception.

	 Chapter 7  Manipulating data using Entity SQL    157

Namespaces
Just as you use namespaces to avoid naming issues with the .NET Framework, you can use them with
Entity SQL to avoid naming problems with type names, entity sets, functions, and other elements. In
fact, the use of namespaces in Entity SQL is similar to the use of namespaces in the .NET Framework.
Importing a namespace can take two forms, as shown here:

USING System.Data;
USING tsql = System.Data;

Essentially, Entity SQL searches namespaces for functions and other elements needed to perform
a query, much as the .NET Framework does (there’s a discussion of the topic at http://msdn.microsoft.
com/library/bb399361.aspx). However, unlike the .NET Framework, you can’t use partially qualified
namespaces with Entity SQL. Namespaces can be used over the DbCommand and DbConnection
objects used to create, manage, and execute queries.

Paging
A query can rely on paging to obtain just part of the result set of a query. Using part of the result
set means that the query will take less time and use fewer resources, improving overall application
performance. The technique is called paging because it’s typically used to display one page of results
at a time in output where the results would normally require multiple pages. You can also use paging
to limit the results to those matching a numeric limitation.

Entity SQL implements paging as part of the ORDER BY clause of a query. There are three key-
words associated with paging: SKIP, LIMIT, and TOP. You can use SKIP and LIMIT together to create
certain effects. TOP is always used by itself. The following list describes these keywords:

■■ SKIP  Skips the specified number of rows in the result set. For example, if you specify SKIP 5,
then the output would begin with the sixth record in the result set. You can read more about
SKIP at http://msdn.microsoft.com/library/bb738680.aspx.

■■ LIMIT  Returns just the number of rows specified from the result set. For example, if you
specify LIMIT 5, then the output would contain just five records. You can read more about
LIMIT at http://msdn.microsoft.com/library/bb738635.aspx.

■■ SKIP/LIMIT  When used together, SKIP and LIMIT create a record range. For example, if you
specify SKIP 10 LIMIT 5, the output would begin with record number 11 and end with record
number 15 from the result set.

■■ TOP  Returns the specified number of rows from the beginning of the result set. For example,
if you specify TOP 50, then records 1 through 50 from the result set will appear in the output.
You can read more about TOP at http://msdn.microsoft.com/library/bb738522.aspx.

158   PART III  Manipulating data using the Entity Framework

Grouping
Creating groups of like rows from a collection is an important part of creating many queries. En-
tity SQL accomplishes this task using the GROUP BY clause. Unlike using LINQ to Entities, you must
follow SQL-like rules when creating a GROUP BY clause in Entity SQL. The most important of these
rules is that every expression in the SELECT clause must be accounted for in the GROUP BY clause
or wrapped in an aggregate. You’ll see examples of how this works in the “Grouping data” sec-
tion later in the chapter. You can read about other requirements of using the GROUP BY clause at
http://msdn.microsoft.com/library/bb399764.aspx.

Navigation
Navigation is the process of using a reference to access another entity from the current entity. For
example, when you access a list of purchases from a customer’s records (as you did in earlier chap-
ters, and you’ll do again in this one), you’re using navigation to move from the customer record to
its associated purchases. Navigation can also work in the other direction, as shown by the model for
the examples in this book. When working with a Purchases record, you can access the associated
Customer record using navigation, as shown here:

The purpose of the Navigation Properties section of the model is to show you the navigation you
can use to relate one record to another. Of course, this is at the entity level. Interestingly enough, you
can use the navigational properties for other tasks. For example, you can use them to help filter and
sort the query based on the relation of a record in one table to a record in another table.

CASE expression
SQL provides a CASE statement that many developers find useful. Fortunately, Entity SQL provides an
equivalent in the form of the CASE expression. The CASE expression provides the means for perform-
ing tasks based on the result of one or more Boolean expressions. It takes the following form:

CASE
 WHEN Boolean_expression THEN result_expression
 [...n]

http://msdn.microsoft.com/library/bb399764.aspx

	 Chapter 7  Manipulating data using Entity SQL    159

 [
 ELSE else_result_expression
]
END

The Boolean expression determines whether the result_expression is executed. An optional ELSE
clause provides the means of performing some other actions when the Boolean expression is false.
For example, you might check a customer’s name and do something about it, like this:

CASE
 WHEN Customers.CustomerName == "Josh Bailey"
 THEN "Good Customer!"
 ELSE "Watch this one."
END

In this case, when the customer’s name is Josh Bailey, the CASE expression returns a value of Good
Customer! However, when the customer’s name is something else, the CASE expression returns Watch
this one. This expression is useful in making decisions as part of a query so that you can gain addi-
tional flexibility in creating useful output.

Note  The flexibility provided by the CASE expression is another area in which Entity SQL
excels in relation to LINQ for Entities. A few people have tried to come up with equivalents
for LINQ to Entities. For example, you can find one method at http://sankarsan.wordpress.
com/2010/05/16/case-statement-equivalent-in-linq/. In most cases, you’ll find that the LINQ
to Entities equivalents tend to be complex and a bit hard to understand.

Selecting data

As described in the “SELECT VALUE and SELECT” section earlier in the chapter, there are actually two
methods for selecting data using Entity SQL. The “Creating a basic query using Entity SQL” section
of Chapter 4 shows how to use the SELECT VALUE method for obtaining the data. The procedure in
this section adds a second method that relies simply on SELECT to obtain data, using the Chapter 4
example as a starting point.

Creating a SELECT query

1.	 Copy the ModelFirst (Display - Entity SQL) example you created in Chapter 4 to a new folder
and use this new copy for this example (rather than the copy you created in Chapter 4).

2.	 Add a new button to Form1. Name the button btnQuery2 and set its Text property to Query
&2.

3.	 Double-click btnQuery2 to create a new click event handler.

160   PART III  Manipulating data using the Entity Framework

4.	 At the top of the file, you need to add the following using statement to provide access to the
DbDataRecord class:

using System.Data.Common;

5.	 Type the following code for the btnQuery2_Click() event handler:

private void btnQuery2_Click(object sender, EventArgs e)
{
 // Create the context.
 EntityConnection conn =
 new EntityConnection("name=Rewards2ModelContainer");
 ObjectContext context = new ObjectContext(conn);

 // Define a command string for making the query.
 String EntitySQLCmd =
 "SELECT CustomerList.Id, CustomerList.CustomerName " +
 "FROM Rewards2ModelContainer.Customers " +
 "AS CustomerList";

 // Create a query object.
 ObjectQuery<DbDataRecord> Customers =
 context.CreateQuery<DbDataRecord>(EntitySQLCmd);

 // Display the customer name on screen.
 MessageBox.Show(Customers.First()["CustomerName"].ToString());
}

The code begins by creating a context. It uses precisely the same technique as the example in
Chapter 4.

The next step is to create the command string. Notice that this example retrieves the Id and
CustomerName fields from the database separately, so you don’t include the VALUE clause.
In all other respects, the command string is the same. For example, you still retrieve the data
from Rewards2ModelContainer.Customers.

The ObjectQuery object, Customers, uses a different approach in this example. In this case, the
code creates an instance of DbDataRecord, which provides some useful functionality for mov-
ing between records. You can read more about this class at http://msdn.microsoft.com/library/
system.data.common.dbdatarecord.aspx. This class will also appear in a number of examples in
this chapter so you can see it at work.

The final task is to display the customer name on screen, just as the example from Chapter
4 does. The First() method obtains the first record from the list of records retrieved by the
query. You can use either a string or integer index to retrieve a specific field from the record.
Using a string is more readable, but using an integer provides a small performance boost. The
field data is an object, so you need to convert it to a string using the ToString() method, as
shown.

6.	 Click Start or press F5. The application compiles and runs.

7.	 Click Query 2. You’ll see the customer’s name, Josh Bailey, displayed.

	 Chapter 7  Manipulating data using Entity SQL    161

Working with literals in Entity SQL

Literals are used in a number of ways in Entity SQL. You’ve seen a number of uses for them so far in
the chapter. However, one of the easiest ways to experiment with literals is to create queries that use
them to perform some specific task. The following sections discuss the literals by overall type and
show you examples of their use within a query.

Using the standard literals
The standard literals include Boolean, integer, float, double, and string types. These are the types you
use most often to perform queries that rely on the WHERE clause. The following procedure describes
how to use a string literal to select a specific record from the Customers table of the sample database.

Creating a standard literals query

1.	 Add a new button to Form1. Name the button btnQuery3 and set its Text property to Query
&3.

2.	 Double-click btnQuery3 to create a new click event handler.

3.	 Type the following code for the btnQuery3_Click() event handler:

private void btnQuery3_Click(object sender, EventArgs e)
{
 // Create the context.
 EntityConnection conn =
 new EntityConnection("name=Rewards2ModelContainer");
 ObjectContext context = new ObjectContext(conn);

 // Define a command string for making the query.
 String EntitySQLCmd =
 "SELECT CustomerList.Id, CustomerList.CustomerName " +
 "FROM Rewards2ModelContainer.Customers " +
 "AS CustomerList " +
 "WHERE CustomerList.CustomerName='Josh Bailey'";

 // Create a query object.
 ObjectQuery<DbDataRecord> Customers =
 context.CreateQuery<DbDataRecord>(EntitySQLCmd);

 // Create an output string.
 StringBuilder Output =
 new StringBuilder("Customer Data:");
 DbDataRecord ThisRecord = Customers.First();
 for (int i = 0; i < ThisRecord.FieldCount; i++)
 Output.Append("\r\n\t" + ThisRecord.GetName(i) +
 ": " + ThisRecord[i].ToString());

 // Display the customer name on screen.
 MessageBox.Show(Output.ToString());
}

162   PART III  Manipulating data using the Entity Framework

This example works similarly to the one in the “Selecting data” section of the chapter. How-
ever, notice that the query now includes a WHERE clause. The query is specifically designed to
locate the record of Josh Bailey. The name is enclosed in single quotes as a string literal. This is
commonly how you see string literals in queries in your code.

The act of obtaining the data from the DBMS is the same. However, notice that this example
obtains and displays the individual field values for the first record in the DbDataRecord collec-
tion. In some cases, you do need to obtain the actual field names, which are retrieved using
the GetName() method.

4.	 Click Start or press F5. The application compiles and runs.

5.	 Click Query 3. You’ll see the output shown here:

Adding some additional data
It would be helpful to have a few additional records for testing purposes. The procedure in this sec-
tion uses what you discovered in the “Using the standard literals” section to add some new purchase
records to the existing customers. These records will be helpful in working with other examples in this
chapter.

Adding records using a SELECT

1.	 Add a new button to Form1. Name the button btnNewPurchases and set its Text property to
&New Purchases.

2.	 Double-click btnNewPurchases to create a new click event handler.

3.	 Type the following code for the btnNewPurchases_Click() event handler:

private void btnNewPurchases_Click(object sender, EventArgs e)
{
 // Create the query context.
 EntityConnection conn =
 new EntityConnection("name=Rewards2ModelContainer");
 ObjectContext context = new ObjectContext(conn);

 // Define a command string for making the query.
 String EntitySQLCmd =
 "SELECT CustomerList.Id, CustomerList.CustomerName " +
 "FROM Rewards2ModelContainer.Customers " +

	 Chapter 7  Manipulating data using Entity SQL    163

 "AS CustomerList";

 // Create a query object.
 List<DbDataRecord> Customers =
 context.CreateQuery<DbDataRecord>(EntitySQLCmd).ToList();

 // Create the management context.
 Rewards2ModelContainer management = new Rewards2ModelContainer();

 // Create new purchases for Josh Bailey.
 Purchases NewPurchase1 = new Purchases();
 NewPurchase1.CustomersId = Convert.ToInt32(Customers[0][0]);
 NewPurchase1.Amount = new Decimal(10.99);
 NewPurchase1.PurchaseDate = new DateTime(2013, 3, 20);
 management.Purchases.Add(NewPurchase1);

 Purchases NewPurchase2 = new Purchases();
 NewPurchase2.CustomersId = Convert.ToInt32(Customers[0][0]);
 NewPurchase2.Amount = new Decimal(3.99);
 NewPurchase2.PurchaseDate = new DateTime(2013, 3, 14);
 management.Purchases.Add(NewPurchase2);

 // Create new purchases for Christian Hess.
 Purchases NewPurchase3 = new Purchases();
 NewPurchase3.CustomersId = Convert.ToInt32(Customers[1][0]);
 NewPurchase3.Amount = new Decimal(0.99);
 NewPurchase3.PurchaseDate = new DateTime(2013, 3, 18);
 management.Purchases.Add(NewPurchase3);

 Purchases NewPurchase4 = new Purchases();
 NewPurchase4.CustomersId = Convert.ToInt32(Customers[1][0]);
 NewPurchase4.Amount = new Decimal(15.99);
 NewPurchase4.PurchaseDate = new DateTime(2013, 3, 19);
 management.Purchases.Add(NewPurchase4);

 // Save the purchases to the database.
 Int32 NumRecords = management.SaveChanges();

 // Display a success message.
 MessageBox.Show(NumRecords.ToString() + " New Records Added!");
}

There are a few tricks you should note in this example. The first is the technique used to
convert the query to a List immediately. Using List objects can have some definite advantages
when working with Entity SQL. In this case, notice that you can access the customer’s Id field
by using simple array references, such as Customers[0][0] for Josh Bailey.

Even though you can create a query using Entity SQL, you can never use it to manage data-
base data. That’s why this example creates a second context, management, to provide this
functionality. The management content provides the means for adding the new records.

Each record must appear in a unique object if you plan to save all of the changes at one time
to improve application performance. If you try to reuse an existing object, the changes you

164   PART III  Manipulating data using the Entity Framework

make will overwrite any previous changes. Consequently, this example uses NewPurchase1
through NewPurchase4 to hold the new records.

When you do save the changes, you can retrieve the total number of changes as output from
the SaveChanges() method call. That’s how this example is able to tell you how many records
are added to the Purchases table.

4.	 Click Start or press F5. The application compiles and runs.

5.	 Click New Purchases. The application displays a dialog box telling you it has added four new
records.

Using a date or time literal
Many user searches focus on date and time. When something happened is as important as what hap-
pened in many situations. You may want to know that a customer spent a certain amount of money
on a specific date—any other purchases are immaterial at the time of the search. The procedure in
this section looks at the use of a date literal to choose specific records from the example database.

Creating a date literal query

1.	 Add a new button to Form1. Name the button btnQuery4 and set its Text property to Query
&4.

2.	 Double-click btnQuery4 to create a new click event handler.

3.	 Type the following code for the btnQuery4_Click() event handler:

private void btnQuery4_Click(object sender, EventArgs e)
{
 // Create the context.
 EntityConnection conn =
 new EntityConnection("name=Rewards2ModelContainer");
 ObjectContext context = new ObjectContext(conn);

 // Define a command string for making the query.
 String EntitySQLCmd =
 "SELECT PurchaseList, PurchaseList.Customer.CustomerName " +
 "FROM Rewards2ModelContainer.Purchases " +
 "AS PurchaseList " +
 "WHERE PurchaseList.PurchaseDate > DATETIME '2013-02-17 00:00'";

 // Create a query object.
 ObjectQuery<DbDataRecord> Purchases =
 context.CreateQuery<DbDataRecord>(EntitySQLCmd);

 // Create an output string.
 StringBuilder Output =
 new StringBuilder("Purchase Data:");

 // Process the individual purchase records.

	 Chapter 7  Manipulating data using Entity SQL    165

 foreach (var Purchase in Purchases)
 {
 // Add the customer name.
 Output.Append("\r\n\t" + Purchase[1]);

 // Obtain access to the purchase information.
 var PurchaseInfo = Purchase[0] as Purchases;

 // Add the purchase information.
 Output.Append(" spent " + PurchaseInfo.Amount +
 " on " + PurchaseInfo.PurchaseDate + ".");
 }

 // Display the customer name on screen.
 MessageBox.Show(Output.ToString());
}

This example begins in the same way that others in this chapter begin, by creating a con-
text and a query. There are several points of interest in this query. The first thing you should
notice is that this SELECT query selects the entire Purchases table in the first element, and the
CustomerName field from the Customer reference in the Purchases table as the second entry.
It’s absolutely essential that you not confuse the reference with the table. When this query is
made, the customer information will correspond to the individual purchase.

The second thing you should notice is that the WHERE clause uses the PurchaseDate field
as a comparison. However, the comparison operator is a greater-than symbol, not an equal
symbol. The reason is that dates must be precise—they include time information as well as
the date. If you want to obtain a specific day, you must perform a range comparison from
midnight of that day to 11:59 in the evening. Also note how the DATETIME keyword is used
and the date is formatted.

Working with the data is different in this example as well. A foreach loop provides the means
to view all of the records retrieved by the query. The foreach loop retrieves an individual re-
turn, which includes both the Purchases table as the first element and the CustomerName field
as the second element. To add the CustomerName field value to the output, all you need to
do is place Purchase[1] into Output.

The code uses a two-step process to obtain the purchase information. The PurchaseInfo ob-
tained retrieves the entire Purchases table content for a single record from Purchase. It then
selects specific fields from that record to add to Output.

4.	 Click Start or press F5. The application compiles and runs.

5.	 Click Query 4. You’ll see the output shown here:

166   PART III  Manipulating data using the Entity Framework

Interacting with a decimal literal
Searching for monetary values in a database is also a big concern for users. Locating entries based
on monetary values could help a user find customers who need additional incentives to buy more or
help a manager find departments that are spending too much. The procedure in this section helps
you create a query based on a decimal literal.

Creating a decimal literal query

1.	 Add a new button to Form1. Name the button btnQuery5 and set its Text property to Query
&5.

2.	 Double-click btnQuery5 to create a new click event handler.

3.	 Type the following code for the btnQuery5_Click() event handler:

private void btnQuery5_Click(object sender, EventArgs e)
{
 // Create the context.
 EntityConnection conn =
 new EntityConnection("name=Rewards2ModelContainer");
 ObjectContext context = new ObjectContext(conn);

 // Define a command string for making the query.
 String EntitySQLCmd =
 "SELECT PurchaseList, PurchaseList.Customer.CustomerName " +
 "FROM Rewards2ModelContainer.Purchases " +
 "AS PurchaseList " +
 "WHERE PurchaseList.Amount > 1.00M " +
 "&& PurchaseList.Amount < 10.00M";

 // Create a query object.
 ObjectQuery<DbDataRecord> Purchases =
 context.CreateQuery<DbDataRecord>(EntitySQLCmd);

 // Create an output string.
 StringBuilder Output =
 new StringBuilder("Purchase Data:");

 // Process the individual purchase records.
 foreach (var Purchase in Purchases)

	 Chapter 7  Manipulating data using Entity SQL    167

 {
 // Add the customer name.
 Output.Append("\r\n\t" + Purchase[1]);

 // Obtain access to the purchase information.
 var PurchaseInfo = Purchase[0] as Purchases;

 // Add the purchase information.
 Output.Append(" spent " + PurchaseInfo.Amount +
 " on " + PurchaseInfo.PurchaseDate + ".");
 }

 // Display the customer name on screen.
 MessageBox.Show(Output.ToString());
}

This example uses the same approach as the example in the “Using a date or time literal” sec-
tion of the chapter. However, there are some differences you should notice. First, this query
uses a range check to obtain records that appear between a specific starting and ending
point. Second, notice the addition of the M after the monetary amount. If you leave this letter
off, the query will fail because a double won’t match a decimal value.

4.	 Click Start or press F5. The application compiles and runs.

5.	 Click Query 5. You’ll see the output shown here:

6.	 Close the application. Remove the M from either (or both) of the decimal values.

7.	 Click Start or press F5. The application compiles and runs.

8.	 Click Query 5. You’ll see the error message shown here:

168   PART III  Manipulating data using the Entity Framework

9.	 Click Stop Debugging to end the debugging process.

10.	 Close the application.

11.	 Add the M back to the decimal values. Choose Build | Build Solution to make the change
permanent.

Ordering data

When viewing the output of the example in the “Using a date or time literal” section, it probably oc-
curred to you that the data would be better viewed in a specific order. Of course, you want all of the
records for a specific customer together, and then you want to order those records by date, so the
example actually requires two levels of ordering. The procedure in this section examines a technique
for ordering data to make it easier to work with.

Ordering purchases by CustomerId and PurchaseDate

1.	 Add a new button to Form1. Name the button btnQuery6 and set its Text property to Query
&6.

2.	 Double-click btnQuery6 to create a new click event handler.

3.	 Copy the code from the btnQuery4_Click() event handler and modify the query string so that
it looks like this:

// Define a command string for making the query.
String EntitySQLCmd =
 "SELECT PurchaseList, PurchaseList.Customer.CustomerName " +
 "FROM Rewards2ModelContainer.Purchases " +
 "AS PurchaseList " +
 "WHERE PurchaseList.PurchaseDate > DATETIME '2013-02-17 00:00' " +
 "ORDER BY PurchaseList.CustomersId, " +
 "PurchaseList.PurchaseDate";

	 Chapter 7  Manipulating data using Entity SQL    169

Notice that this query relies on the ORDER BY clause. You specify the ordering criteria in the
order in which you want to see the data ordered. Reversing the two ORDER BY criteria in this
case would change the output. Each ORDER BY criterion is separated by a comma, as shown in
this example.

4.	 Click Start or press F5. The application compiles and runs.

5.	 Click Query 6. You’ll see the output shown here:

Grouping data

Data often lends itself to grouping. Creating a group makes it possible for users to see patterns with
greater ease and generally makes the data a bit neater. The procedure in this section shows how to
create groups of data and display them in a logical manner on screen.

Creating a decimal literal query

1.	 Add a new button to Form1. Name the button btnQuery7 and set its Text property to Query
&7.

2.	 Double-click btnQuery7 to create a new click event handler.

3.	 Type the following code for the btnQuery7_Click() event handler:

private void btnQuery7_Click(object sender, EventArgs e)
{
 // Create the context.
 EntityConnection conn =
 new EntityConnection("name=Rewards2ModelContainer");
 ObjectContext context = new ObjectContext(conn);

 // Define a command string for making the query.
 String EntitySQLCmd =
 "SELECT Grouping.CustomersId, " +
 " (SELECT PurchaseList, PurchaseList.Customer.CustomerName " +
 " FROM Rewards2ModelContainer.Purchases " +
 " AS PurchaseList " +
 " WHERE PurchaseList.CustomersId = Grouping.CustomersId " +
 " ORDER BY PurchaseList.Amount) " +

170   PART III  Manipulating data using the Entity Framework

 "FROM Rewards2ModelContainer.Purchases " +
 "AS Grouping " +
 "GROUP BY Grouping.CustomersId";

 // Create a query object.
 ObjectQuery<DbDataRecord> CustomerData =
 context.CreateQuery<DbDataRecord>(EntitySQLCmd);

 // Create an output string.
 StringBuilder Output =
 new StringBuilder("Purchase Data:");

 // Process the data records.
 foreach (var Customer in CustomerData)
 {
 // Obtain the list of customer data as a List.
 var CustomerList = (List<DbDataRecord>)Customer[1];

 // Add the customer's name.
 Output.Append("\r\n\t" + CustomerList.First()[1]);

 // Process each purchase in the list.
 foreach (var Purchase in CustomerList)
 {
 // Add the purchase data.
 var PurchaseData = (Purchases)Purchase[0];
 Output.Append("\r\n\t\t" + PurchaseData.Amount);
 Output.Append(" on " + PurchaseData.PurchaseDate);
 }
 }

 // Display the customer name on screen.
 MessageBox.Show(Output.ToString());
}

The focus of this example is on the query and then the processing of the output data. The
query is actually in two parts. First, there’s the query that groups all of the records by the
CustomersId. Second, there’s a nested query that obtains the data for each of these groups
from the database, along with the CustomerName data using navigation. You saw a similar
approach in the “Ordering data” section of the chapter. The difference is that now the data is
ordered by Amount and the data is also grouped by CustomersId.

Of course, if you simply make the query and subquery without any sort of linkage, you’d see
every purchase for every customer, which is not what you want. The WHERE clause is excep-
tionally important in this query. Notice that the only records selected are those where the
CustomersId value matches in each of the queries. The WHERE clause must make a match on
fields that are actually selected as part of the GROUP BY clause in the first query.

Processing the data also takes a somewhat different form this time. There are two foreach
loops: one for the first query and one for the second. The first query selects individual
customer IDs. However, you don’t want to display a customer ID on screen—what you really
want to display is the CustomerName field. The problem is that CustomerData returns two
objects—the first contains the CustomersId value, and the second contains the combination of

	 Chapter 7  Manipulating data using Entity SQL    171

the Purchases table record and the Customer reference used for navigation. To obtain the Cus-
tomerName, you must first cast the second object in Customer to a List<DbDataRecord>. You
can then extract the first record of that list and obtain the CustomerName from it as shown.

The second foreach loop works exclusively with the Purchases table record. Again, you must
cast the data in Purchase to the correct type. Obtaining the data from PurchaseData is simply
a matter of accessing the field value at that point.

4.	 Click Start or press F5. The application compiles and runs.

5.	 Click Query 7. You’ll see the output shown here:

Getting started with the Entity Framework

This chapter has helped you explore Entity SQL in some depth. You’ve discovered that you can per-
form a considerable number of tasks using this SQL-like language. If you are familiar with SQL, you’ve
no doubt also noticed a considerable number of differences between Entity SQL and standard SQL or
T-SQL. If you take one thing away from this chapter, though, it’s that Entity SQL is its own language
and not specifically associated with SQL or T-SQL. In fact, you can use Entity SQL against any DBMS
for which you have the appropriate database-specific provider, much as you can use LINQ to Entities
against any DBMS under the same circumstances. The choice comes down to which form of commu-
nication works best for you as a developer.

The only way to learn a language such as LINQ to Entities or Entity SQL is to play around with it.
It’s important to use the language and see what it can do. This chapter contains a number of Entity
SQL examples that you could easily modify just to see what happens. That’s the essence of play when
it comes to learning language fundamentals—to tweak and see what happens. Try working with
the examples in both Chapter 6 and this chapter to see which language—LINQ to Entities or Entity
SQL—works best for you in particular situations. If you’re like some developers, you may find that one
solution works best most of the time, but the other solution has advantages for specific needs. That’s
why knowing both techniques will prove handy.

172   PART III  Manipulating data using the Entity Framework

Chapter 8, “Interaction with stored procedures,” moves back to LINQ to Entities to work with
stored procedures. Using stored procedures can help you leverage code that a Database Administra-
tor (DBA) has already created to perform certain tasks directly on the DBMS. In addition, you’ll find
that there are performance benefits in using stored procedures instead of local code to perform
certain tasks. Of course, to use a stored procedure, you must know the language of the host DBMS,
which is going to be some form of SQL most of the time. In this case, you rely on the Entity Frame-
work to call the stored procedure, send it any required data, and receive the result, but the stored
procedure actually performs the task for you.

Chapter 7 quick reference

To Do this

Create a Unicode string Place an uppercase N in front of the string, such as
N”This is my Unicode string.” The N must be uppercase,
and there can’t be any spaces between the N and the
string.

Create a date/time value Create a string in the following format: DATETIME “2013-
03-04 17:53”, where 2013 is the year, 03 is the month,
04 is the day, 17 represents the hours, and 53 represents
the minutes. You may optionally add seconds and
milliseconds as well.

Create a time value Create a string in the following format: TIME “17:53”,
where 17 represents the hours and 53 represents
the minutes. You may optionally add seconds and
milliseconds as well.

Define a 64-bit integer value Add an uppercase L after the number, such as 123L.

Define a 32-bit real value Add a lowercase f after the number, such as 123.0f.

Define a decimal value Add an uppercase M after the number, such as 123.0M.

Define a null value Use the null keyword.

Define a Boolean value Use the true or false keyword.

Generate a binary string Use the BINARY keyword or X (or lowercase x) shortcut,
followed by the string in single quotes, such as BINARY
‘0123456789ABCDEF’.

Generate a GUID Use the GUID keyword followed by a string that has
the proper format in single quotes, such as GUID
‘01234567-89AB-CDEF-0123-456789ABCDEF’.

Create an anonymous, structurally typed record Employ the row constructor using the ROW keyword
and aliased fields, like this: ROW(1 AS IntValue,
1.5 AS DoubleValue, “ABC” AS StringValue, true AS
BooleanValue).

Define a multiset Employ the collection constructor using the MULTISET
keyword and a list of items with the same type, such as
MULTISET(“One”, “Two”, “Three”).

Specify a named type Create a conceptual model of an instance, complex, or
entity type using a type alias and type content such as
Customer.Id(5, “Josh”, “Bailey”) for a complex type.

Work with references that allow you to interact with
foreign keys in an entity set

Use one of the reference keywords (CREATEREF, DEREF,
KEY, NAVIGATE, or REF) to perform the required task.

	 Chapter 7  Manipulating data using Entity SQL    173

To Do this

Combine an entire collection into a single scalar output Use one of the aggregate collection functions: AVG,
CHECKSUM_AGG, MAX, MIN, STDEV, STDEVP, SUM, VAR,
or VARP.

Combine like groups of records within a collection into a
single scalar output

Use one of the aggregate group functions, AVG,
CHECKSUM_AGG, MAX, MIN, STDEV, STDEVP, SUM, VAR,
or VARP, with the GROUP BY clause in a query. As part
of this aggregate use, you can combine the GROUP BY
clause with the DISTINCT or ANY keyword.

Overload a function name Vary the number of parameters, types of input
arguments, subtypes of input arguments, or types or
subtypes of promoted input arguments. The signature
of two functions with the same name must differ in
some unambiguous manner, or Entity SQL will raise an
exception.

Add a namespace Start with the USING keyword, followed by the
namespace you want to add, such as USING System.Data.

Select ranges of records within a query Use the paging-related keywords—SKIP, LIMIT, or TOP—
to select a specific record range. You may combine the
SKIP and LIMIT keywords to specify a nonzero output
range. For example, if you specify SKIP 10 LIMIT 5, the
output would begin with record number 11 and end with
record number 15 from the result set. You can’t use TOP
with the other keywords.

Group records with a like value in a specific field Use the GROUP BY clause and provide the key you want
to use for grouping. Remember that every expression in
the SELECT clause must be accounted for in the GROUP
BY clause or wrapped in an aggregate.

Make choices within a query based on an expression Use the CASE statement. Provide the expression within the
WHEN clause and the output in the THEN clause. You may
optionally include an ELSE clause that provides output when
the expression is false. A typical CASE statement looks like this:

CASE
 WHEN Customers.CustomerName == "Josh Bailey"
 THEN "Good Customer!"
 ELSE "Watch this one."
END

Create record-based output from a query Use the DbDataRecord class as the input to the
ObjectQuery object.

		 175

C H A P T E R 8

Interaction with stored procedures

After completing the chapter, you’ll be able to

■■ Describe what a stored procedure is and how it affects the Entity Framework.

■■ Create a stored procedure as part of your database model.

■■ Describe how to develop an application that uses a stored procedure.

■■ Create an application that uses a stored procedure.

Stored procedures provide a means of storing data management code directly on the server in the
SQL language. Unlike other forms of application code described in this book, a stored procedure

is accessible by anyone who has access to the server and the required security privileges. It doesn’t
matter what language you’re using outside of Microsoft SQL Server, or whether you’re using another
language at all. In short, stored procedures provide the best general-purpose method of creating
data management code that everyone can access.

Using stored procedures provides a certain level of continuity between applications and ensures
that every application performs a specified task in precisely the same manner (increasing reliability
and reducing the potential for error). Of course, there are downsides to using stored procedures as
well, not the least of which is that developers have to learn the SQL language. This chapter explores
using stored procedures as part of your Entity Framework solution. It begins by providing an overview
of stored procedures in the first section (and you can easily skip that section if you’ve used stored
procedures extensively).

Note  Knowing how to use stored procedures with the Entity Framework is important. Many
organizations have policies in place that restrict direct access to the database for security or
legal reasons. The only method of access allowed is through the use of stored procedures.
In fact, some organizations go further and allow queries only through views (a topic dis-
cussed in Chapter 9, “Interaction with Views,”), so there’s no chance of accidentally modify-
ing the data.

Understanding what a stored procedure is and how to use it from the Entity Framework are two
different things. The chapter will discuss and demonstrate the techniques used to create and add
stored procedures to your Entity Framework model. Following this, you can use the example stored
procedure in your application to perform various tasks, just as anyone else will use the stored proce-

176   PART III  Manipulating data using the Entity Framework

dure as part of an application solution. The effect is similar to the one demonstrated for functions in
the “Using Entity and database functions” section of Chapter 6, “Manipulating data using LINQ.”

Understanding stored procedures

At its simplest level, a stored procedure is simply a kind of macro that contains the steps that a Da-
tabase Administrator (DBA) would normally perform to accomplish a task. When you review many
stored procedures, what you see is a series of steps. These steps are often modified with the use of
parameters that provide additional data to the stored procedure, but the overall simple view is that
you’re simply recording a series of task-related steps for later playback. The goal is to automate
repetitive steps so the DBA doesn’t have to perform them. However, some stored procedures can
become quite complex, and they’re used for more than simple automation. No matter what sort of
stored procedure you’re using, they all have some essential characteristics that are discussed in this
section of the chapter.

Note  It’s outside the scope of this book to provide you with a complete tuto-
rial about stored procedures. Most books about SQL Server take entire chapters to
even scratch the surface. What this chapter provides is a light overview—enough
information so that you’ll be able to follow the examples in the rest of the chap-
ter. If you find yourself getting lost, there’s an excellent stored procedure tutorial at
http://www.mssqltips.com/sqlservertutorial/160/sql-server-stored-procedure/.

You’ve already worked with stored procedures in a couple of places in the book. For example,
when generating the database from a model, you create a .SQL file first that contains the same sort
of code found in a stored procedure, and then you right-click that file and choose Execute from the
context menu to create the database (see the “Working with the mapping details” section of Chapter
1, “Getting to know the Entity Framework,” as an example). You could also add data to a database us-
ing the SQL script found in UserFavorites Data.sql in the “Running the basic query” section of Chap-
ter 2, “Looking more closely at queries.” In short, you already have a little experience using stored
procedure–like scripts. They both use the same language—a stored procedure simply adds a little to
the basic functionality of scripts found in .SQL files.

A stored procedure starts simply. All you need is a task to perform, such as a query. For example,
you might decide that you want to obtain a list of customers from the Rewards2 database. In this
case, your query might be this:

SELECT * FROM Rewards2.dbo.Customers

This query selects all of the fields for all of the customers from the Rewards2 Customers table. The
abbreviation DBO stands for “database owner.” It usually appears in lowercase as dbo to represent the
owner in resources found in the database. In order to create a stored procedure, you simply tell SQL
Server to create it using the following:

http://www.mssqltips.com/sqlservertutorial/160/sql-server-stored-procedure/

	 Chapter 8  Interaction with stored procedures    177

CREATE PROCEDURE GetCustomers

This command simply says to create a stored procedure named GetCustomers. There are all sorts
of naming conventions that organizations follow, but any unique name will do. You connect the
command to create the stored procedure with the query you want the stored procedure to perform
with the AS keyword. A command often ends with the keyword GO, which means to perform the task
immediately, rather than waiting for a number of commands to pile up to perform in batch mode. So,
the entire script for creating a simple stored procedure is as follows:

CREATE PROCEDURE GetCustomers
AS
SELECT * FROM Rewards2.dbo.Customers
GO

Stored procedures can also accept arguments as input. The arguments always appear with an @
(at) sign in front of them, and you supply a value to the argument as part of making the query. For
example, you could specify a query like this one:

SELECT * FROM Rewards2.dbo.Customers WHERE CustomerName = @Name

The need for the variable is expressed as part of the CREATE PROCEDURE syntax. So, you’d add @
Name to it and create a statement like this one:

CREATE PROCEDURE GetCustomers @Name NVarChar(30)
AS
SELECT * FROM Rewards2.dbo.Customers WHERE CustomerName = @Name
GO

The NVarChar(30) part of the CREATE PROCEDURE statement defines the type (Unicode variable
length character string) and length (30 characters maximum). You must define the type as a minimum
and some types, such as NVarChar, require further definition for their length.

Note  SQL Server queries are case insensitive. This book relies on case to help make the
query easier to understand. By convention, the keywords appear in uppercase and variable
information in mixed (Pascal) case. However, you can use whatever case your organization
requires to make the queries clear and understandable without any loss of functionality.

There’s a logical process to creating and managing stored procedures. This chapter won’t focus on
that topic, but you’ll work with simple stored procedures like those shown in this section. You’ll also
see how to create stored procedures without using the SQL Server tools—the chapter will use Server
Explorer to perform the task instead. When you view the database in either Server Explorer or SQL
Server Management Studio, you’ll see the stored procedures in a Stored Procedures folder, as shown
here. (When working with SQL Server Management Studio, this folder resides under the Programma-
bility folder for the database in question.)

178   PART III  Manipulating data using the Entity Framework

Using stored procedures vs. views to select data
Many developers wonder about the differences between stored procedures and views. They’re
actually quite different in concept and functionality. Stored procedures are flexible and they
can do more than simply select data—you can use them to perform the create, read, update,
and delete (CRUD) operations that reflect the sum of tasks you perform with a database. In ad-
dition, stored procedures accept parameters (arguments), and you can use control logic within
them to determine the output based on environment, user rights, parameter data, and other
forms of input.

A view, on the other hand, is a stored query. It accepts no parameters and doesn’t rely on
any sort of control logic. The output from a view remains consistent. You get the same columns
and the same type of result set. The only thing that varies is the data in the database. The data
that a view works with ultimately controls the variation in data returned by the view. A view
works best in situations where you can anticipate the output needed in advance. For example,
if an organization requires the same report every week, using a view makes sense because the
view will return the data with the least fuss and the smallest potential for damage to the data.

From a SQL perspective, a view is a kind of virtual table, while a stored procedure is a series
of statements that return a result. Views have some advantages in that you can use them as
you would tables. For example, you can index a view or join it to another view, much as you
would join two tables. Stored procedures don’t allow indexing or joining, because you’re get-
ting a result set back, not a table. Theoretically, a view will perform better because you’re re-
turning the same optimized dataset each time. However, there’s a lot of debate on the matter,
and the optimization that Microsoft provides for stored procedures makes the decision hard.

	 Chapter 8  Interaction with stored procedures    179

In general, you want to use stored procedures where flexibility and the ability to perform
CRUD operations are concerns. Views work best where security and the ability to treat the out-
put as a table are concerns. As to performance, you’ll need to create both a view and a stored
procedure form of the same query, and time the results. In most cases, you’ll find that the
view is faster, but you may also find that a stored procedure works better in cases where SQL
Server’s ability to optimize the query works to an advantage.

Adding stored procedures to your model

In order to use stored procedures with the Entity Framework, you must have the required stored
procedure in the database and then update the model with it. If you work for an organization that
requires you to use stored procedures, you probably have a wealth of them available already. How-
ever, the first section that follows shows how to create a simple stored procedure that you can use
with the examples in this chapter, and also so you know how to do it in the future. The next section
demonstrates how to update the model to use the stored procedures. Once you have the update in
place, you can use the stored procedure in a manner similar to how you worked with the function in
the “Using entity and database functions” section of Chapter 6.

Defining the stored procedure using Server Explorer
Before you can do anything with stored procedures, you need a stored procedure to work with. If
you work for an organization that requires the use of stored procedures for all database tasks, you’ll
undoubtedly have plenty of stored procedures to work with. However, it’s good to know how to cre-
ate stored procedures, and your example database doesn’t currently have any stored procedures in
it. The following procedure shows how to define a simple stored procedure for use with the examples
throughout the rest of the chapter.

Creating a simple stored procedure

1.	 Open your copy of Microsoft Visual Studio. You don’t need to have a project loaded because
you’re going to be interacting with Server Explorer and SQL Server.

2.	 Choose View | Server Explorer to open the Server Explorer window if it isn’t already open.
Under Data Connections, you should see closed connections to the four databases used in the
book.

Tip  You can easily tell when a connection is closed. The database icon will have a
red X in the lower-right corner.

180   PART III  Manipulating data using the Entity Framework

3.	 Open the connection to the Rewards2 database by clicking the right-pointing arrow next to it.
You’ll see a list of folders associated with the database, including the Stored Procedures folder.

4.	 Right-click the Stored Procedures folder and choose Add New Stored Procedure from the
context menu. You’ll see a new window appear that has a template for creating a stored pro-
cedure in it, like the one shown here:

5.	 Overwrite the template code with the following code:

CREATE PROCEDURE ChooseClients
AS
 SELECT * FROM Customers AS C
 INNER JOIN Purchases AS P
 ON C.Id = P.CustomersId
 ORDER BY P.PurchaseDate

6.	 Click the Update button that appears on the left side directly above the editor. Visual Studio
prepares the update and displays the following dialog box showing the changes:

7.	 Click Update Database. Visual Studio begins the database update. You can follow the progress
of the update in the Data Tools Operations window. When the process is complete, you’ll see
an “Update completed successfully” message like the one shown here:

	 Chapter 8  Interaction with stored procedures    181

Testing the stored procedure
At this point, you’ve created a new stored procedure and updated the database with it. Unfortunately,
you don’t know whether the stored procedure will work properly. Testing the stored procedure now
will save you considerable time later. If you know that the stored procedure works, then you can look
elsewhere when you encounter problems getting the application to work. The following procedure
demonstrates how to test the stored procedure you created in the “Defining the stored procedure
using Server Explorer” section of this chapter. Of course, you can use this process any time you have a
stored procedure to check.

Testing a simple stored procedure

1.	 Choose View | Server Explorer to open the Server Explorer window if it isn’t already open.

2.	 Open the Stored Procedures folder, and you should now see the ChooseClients stored proce-
dure, as shown here:

3.	 Right-click the ChooseClients entry and choose Execute from the context menu. Visual Studio
creates and executes a new SQL query. You’ll see results similar to the ones shown here:

182   PART III  Manipulating data using the Entity Framework

Updating the model
At this point, you have a stored procedure to use and you’ve tested it. The stored procedure is still
inaccessible from your database model, which means you can’t use it in an application yet. From an
Entity Framework perspective, stored procedures and functions are similar. In fact, stored procedures
use a modified form of the same entries that functions do. With this in mind, the following procedure
will look similar to the one that you used to update the model with a function in Chapter 6.

Updating the model to use stored procedures

1.	 Copy the ModelFirst example you created in Chapter 3, “Choosing a workflow,” to a new
folder, and use this new copy for this example (rather than the copy you created in Chapter 3).

2.	 Open the copied solution in Visual Studio.

3.	 Open the Rewards2Model.EDMX file by double-clicking its entry in Solution Explorer.

4.	 Right-click in any clear area of the designer and choose Update Model From Database from
the context menu. You’ll see the Update Wizard dialog box, as shown here:

	 Chapter 8  Interaction with stored procedures    183

Notice that the wizard groups both stored procedures and functions together. It’s essential
that you know whether an addition is a stored procedure or a function, so you know how to
interact with it later. Review your choices in Server Explorer as needed.

Note  The only items you see are those that are either new or updated. The reason
the AveragePurchase function appears, in this case, is that you’re using the Chapter
3 copy of the ModelFirst application, which hasn’t had this function added to it.
Normally, functions or stored procedures that you’ve already added to an applica-
tion won’t appear in the list.

5.	 Drill down to the ChooseClients stored procedure entry and check it. Click Finish. The wizard
completes its task. As with the function, you won’t see the addition to the designer view of the
model.

6.	 Choose Build | Build Solution to update the model. At this point, you can see the stored proce-
dure, but you must do something special.

7.	 Right-click in any open area of the model designer and choose Model Browser from the con-
text menu. You’ll see the Model Browser window, as shown here:

184   PART III  Manipulating data using the Entity Framework

8.	 Drill down into the Rewards2Model\Function Imports folder, and you’ll see a ChooseClients
entry. Look at the Properties window, and you’ll see that this entry tells you that ChooseClients
is both the function and stored procedure name, and that it returns a ChooseClients_Result
type (which is the result of the query you make using it).

9.	 Drill down into the Rewards2Model.Store\Stored Procedures/Functions folder and you’ll see
a second ChooseClients entry. This time, the Properties window provides information used
by the Entity Framework to interact with the stored procedure. Most of this information isn’t
changeable.

10.	 Drill down into the Rewards2Model\Complex Types folder, and you’ll see the
ChooseClients_Result complex type entry. Open this entry, and you’ll see a list of fields re-
turned by the query. When you select a particular field, you can see the properties for it. For
example, when you select Amount, the query returns a Decimal type with a precision of 18
digits and a scale (decimal portion) of 2 digits.

Modifying a stored procedure
Sometimes a stored procedure performs as requested, but new requirements come to light, and you
need to modify it so that it performs differently. For example, in the case of the example stored pro-
cedure, you may decide that it’s important to provide a method for changing the order of the entries.
Using the date order of the original stored procedure may not work for your particular needs.

In order to change the ordering, you need to provide a parameter for the stored procedure that
allows it to modify the ordering field. Any change to a stored procedure requires that you test it again
before using it. Finally, the copy of the stored procedure that’s seen by the model isn’t the copy that’s
currently on the server, so you need to perform an update. The following sections perform all of these
tasks.

	 Chapter 8  Interaction with stored procedures    185

Performing the required update
Stored procedures can be extremely flexible when you put them together correctly. The simple stored
procedure you started with for this example performs a single query. However, by adding parameters
to the stored procedure, you can make a single piece of code perform quite a few other tasks. The
update, in this case, is modest. You’ll change the stored procedure so that it can now accept input and
change the order in which the output appears.

Updating a simple stored procedure

1.	 Choose View | Server Explorer to open the Server Explorer window if it isn’t already open.

2.	 Right-click the ChooseClients entry found in the Stored Procedures folder for the Rewards2
database, and choose Open. You’ll see an editor open with the code for the stored procedure
you created earlier.

3.	 Change the script so it looks like this:

ALTER PROCEDURE ChooseClients
 @OrderBy NVarChar(20)
AS
 SELECT * FROM Customers AS C
 INNER JOIN Purchases AS P
 ON C.Id = P.CustomersId
 ORDER BY
 CASE @OrderBy
 WHEN 'PurchaseDate' THEN P.PurchaseDate
 WHEN 'Amount' THEN P.Amount
 WHEN 'CustomersId' THEN P.CustomersId
 ELSE P.PurchaseDate
 END

The editor will complain about the use of the ALTER keyword. However, if you don’t use ALTER,
SQL Server will complain that the stored procedure already exists when you try to execute the
script. The script will work fine as shown.

This example adds an argument, @OrderBy, that allows you to define which field to use to or-
der the output. However, you can’t pass a field directly to SQL Server, so you have two choices:
use a CASE statement, as shown in the example, or rely on dynamic SQL. The example uses the
CASE statement because it’s more reliable and secure. The size of @OrderBy is also designed
to reduce the chance of someone passing data other than the name of a field to the script.

The CASE statement provides the means to sort on several different fields, including the cus-
tomer’s name and ID. Notice that it provides an ELSE clause. This approach ensures that even if
the caller passes an incorrect value, the output information will still be ordered.

4.	 Right-click the editor window and choose Execute from the context menu. The script is ex-
ecuted, and you’ll see “Command(s) completed successfully” as an output message.

186   PART III  Manipulating data using the Entity Framework

Retesting the stored procedure
Any time you make a change to a stored procedure, you need to test it to ensure that it still works as
intended. The problem with updates is that they can appear quite reasonable and well thought out,
but then testing shows that they don’t (or won’t) work as intended. The better you test any stored
procedure before you begin using it in your application, the less likely it will be that you’ll end up with
problems in your application later. The following procedure shows the retesting procedure for this
stored procedure.

Retesting a simple stored procedure

1.	 Choose View | Server Explorer to open the Server Explorer window if it isn’t already open.

2.	 Open the Stored Procedures folder. Right-click the ChooseClients stored procedure and
choose Execute from the context menu. This time, the stored procedure doesn’t execute im-
mediately. What you see is the Execute Stored Procedure dialog box shown here:

3.	 Type Amount in the Value field and click OK. The output shows the purchases sorted by
amount, rather than by purchase date.

4.	 Repeat steps 2 and 3 for PurchaseDate and CustomersId. In each case, the stored procedure
will output the results in the desired order.

5.	 Repeat steps 2 and 3 with a value such as SomeValue. The stored procedure will output the
results in purchase date order.

6.	 Repeat steps 2 and 3 with a value that’s too long, such as ThisValueIsALittleTooLong. You won’t
see an error—the stored procedure will output the results in purchase date order. However,
SQL Server will truncate the input string at the 20th letter.

Adding the update to the model
It may seem as if the model should already know about the ChooseClients stored procedure, and it
does—it knows about the original version that doesn’t require any sort of parameter. Every time you
update a stored procedure (or other facet) of your database, you need to update the model as well.

	 Chapter 8  Interaction with stored procedures    187

There are rare cases when the model doesn’t require an update, but in such cases, the Update Wizard
will simply not show the feature being available for update. The following procedure shows how to
update the model after you make the required changes to the stored procedure.

Updating the model after a stored procedure change

1.	 Right-click in any clear area of the designer and choose Update Model From Database from
the context menu. You’ll see the Update Wizard.

2.	 Drill down into the Stored Procedures and Functions\dbo folder. Notice that the ChooseClients
entry isn’t there. That’s because the entry doesn’t exist in the model.

3.	 Select the Refresh tab. Drill down into the Stored Procedures and Functions\dbo folder and
select ChooseClients.

4.	 Click Finish. Visual Studio generates the required changes to the model. Of course, you want
to verify the changes.

5.	 Choose Build | Build Solution to save the modifications to the model.

6.	 Right-click in any open area of the model designer and choose Model Browser from the con-
text menu. You’ll see the Model Browser window.

7.	 Drill down into the Rewards2Model\Function Imports folder, and you’ll see a ChooseClients
entry. Open the ChooseClients entry, and you’ll see that there’s a new entry for @OrderBy, as
shown here. (The same entry appears in the ChooseClients entry in the Rewards2Model.Store\
Stored Procedures/Functions folder.)

188   PART III  Manipulating data using the Entity Framework

Building an application using stored procedures

All of the examples so far in the book have relied on the Entity Framework to use client-side code to
perform all of the Create, Retrieve, Update, and Delete (CRUD) operations required to maintain the
database. In this scenario, the client application creates a command and uses Microsoft ADO.NET
to pass it to the server. A large part of the processing burden is placed on the client in this scenario.
This solution makes the most sense when you’re working with fat clients, such as desktop systems,
and there are no organizational requirements to use stored procedures for consistency and security
reasons.

However, it’s entirely possible to use stored procedures for every bit of the processing required by
the client application. In this case, the client calls on the stored procedure on the server to perform all
of the required work. The client simply passes any required parameters to the server along with the
request so that the server has what it needs to fulfill the request. This scenario works best with thin
clients because the processing burden is on the server. In addition, it can be more efficient because
network traffic is reduced. Instead of sending all of the data to the client for processing, the server
sends just the subset that the client actually needs.

It’s important to understand that using stored procedures is an option that comes with specific
requirements. For example, using stored procedures means that you must have the means to perform
four basic tasks:

■■ Create (Insert)

■■ Read (select)

■■ Update

■■ Delete

These requirements are normally addressed by four separate stored procedures. You must provide
this information to the client application in order for the application to work. In short, you must cre-
ate and test each of the stored procedures, update the Entity Framework model, and then incorporate
the changes into the client application. The method of incorporation depends on how the client is
configured.

Creating a basic stored procedure example

The stored procedure is ready for use. You can select the list of purchases and the associated cus-
tomers for each purchase in the database. In addition, the stored procedure provides the means for
ordering the output in various ways. The procedure in this section relies on the updated ModelFirst
example you’ve been working with throughout the chapter. It demonstrates how to use the stored
procedure as part of an application solution.

	 Chapter 8  Interaction with stored procedures    189

Developing an application that uses stored procedures

1.	 Add the following new controls to Form1:

•	 Button  (Name) btnQuery, Text &Query

•	 Label  (Name) lblOrderBy, Text &Order By

•	 ComboBox  (Name) cbOrderBy, Text PurchaseDate

2.	 Click the ellipses in the Items property for cbOrderBy. You’ll see the String Collection editor.

3.	 Enter the following values, one on each line, in the String Collection editor:

•	 Amount

•	 CustomersId

•	 PurchaseDate

4.	 Click OK. Visual Studio adds the order-by strings to cbOrderBy.

5.	 Double-click btnQuery to create a new click event handler.

6.	 Type the following code for the btnQuery_Click() event handler:

private void btnQuery_Click(object sender, EventArgs e)
{
 // Create the context.
 Rewards2ModelContainer context = new Rewards2ModelContainer();

 // Make the query.
 var PurchaseList =
 from purchase
 in context.ChooseClients(cbOrderBy.SelectedItem.ToString())
 select purchase;

 // Create a string to hold the result.
 StringBuilder Output = new StringBuilder();

 // Parse the result.
 foreach (var PurchaseEntry in PurchaseList)
 Output.Append(
 PurchaseEntry.CustomerName + " ID " +
 PurchaseEntry.CustomersId + " purchased " +
 PurchaseEntry.Amount + " on " +
 PurchaseEntry.PurchaseDate + "\r\n");

 // Display the result on screen.
 MessageBox.Show(Output.ToString());
}

This example uses the context object to access the ChooseClients() method directly. This meth-
od requires string input to define the order of the output, which is supplied by cbOrderBy in
this case.

190   PART III  Manipulating data using the Entity Framework

After the call is made, PurchaseList contains one entry for each purchase in the database. A
foreach loop provides access to each of the purchases and places them in PurchaseEntry. You
can access the fields directly, as shown.

7.	 Click Start or press F5. The application compiles and runs.

8.	 Select Amount In The Order By field of the example application.

9.	 Click Query. You’ll see the exception dialog box shown here:

There’s no Id1 column in the model. However, the model does have two Id columns, and you
can’t create a type that has two properties with the same name. You’ll encounter this problem
at times when working with the Entity Framework. When you use the model-first workflow,
you do have the choice of changing the conflicting field name. However, when working with
a production system, changing a field name is probably a bad idea. The example shows a
second course, which is simply to delete the conflicting property.

10.	 Select Rewards2Model.EDMX and then open the Model Browser window.

11.	 Drill down into the Complex Types folder and open the ChooseClients_Result complex type.
You’ll see a list of properties, as shown here:

12.	 Right-click Id1 and choose Delete From Model from the context menu. Visual Studio removes
the property.

	 Chapter 8  Interaction with stored procedures    191

13.	 Click Start or press F5. The application compiles and runs.

14.	 Select Amount in the Order By field of the example application.

15.	 Click Query. You’ll see the output shown here:

16.	 Perform steps 14 and 15 for each of the two remaining ordering methods so that you can see
how they work.

Getting started with the Entity Framework

This chapter has demonstrated the basics for creating, managing, and using stored procedures with
the Entity Framework. Knowing how to work with stored procedures is essential because many orga-
nizations don’t allow direct database access—they only allow access through stored procedures and
views. The most important concept to take away from this chapter is that defining and using stored
procedures need not be difficult, and you can perform a considerable amount of work without leav-
ing the IDE. Server Explorer is a great tool for working with stored procedures, and you should spend
some time practicing with it.

Now that you have some knowledge of stored procedures, take some time to play around with
them for a while. For example, try creating a new stored procedure on your own. This time, start with
the Purchases table and query it. Try modifying queries and using the modified form in your applica-
tion. The only way to become proficient with stored procedures is to create, update, and test them in
your application. Make sure you spend time working through the steps required to keep the stored
procedure and your model in sync. Try working with complex types as needed to fully understand
how complex types modify the use of stored procedures.

Views are also an important part of working with the Entity Framework. A view offers a method of
obtaining data from the database without actually touching the data. Using views is considered safer
than stored procedures because views aren’t able to modify the database content in any way. In addi-
tion, using views, when you can, enhances application performance. You’ll find that your application is
faster when using views to make queries. Rely on stored procedures when you need to make complex
queries or manage the database in some way (such as adding or deleting records).

192   PART III  Manipulating data using the Entity Framework

Chapter 8 quick reference

To Do this

Create a stored procedure Define the stored procedure using the CREATE PROCEDURE
statement, followed by the word AS, your query, and the word
GO. A simple stored procedure might look like this:

CREATE PROCEDURE GetCustomers
AS
SELECT * FROM Rewards2.dbo.Customers
GO

Allow the stored procedure to access variable input Add arguments to the stored procedure. You provide the
arguments as part of the CREATE PROCEDURE statement and
again as part of the query. Arguments always begin with an
@ sign. Here’s an example of a stored procedure that has an
argument of @Name:

CREATE PROCEDURE GetCustomers @Name NVarChar(30)
AS
SELECT * FROM Rewards2.dbo.Customers WHERE
CustomerName = @Name
GO

Create a new stored procedure Right-click the Stored Procedures folder in Server
Explorer and choose Add New Stored Procedure from
the context menu.

Test an existing stored procedure Right-click the entry for the stored procedure in the
Stored Procedures folder in Server Explorer, and choose
Execute from the context menu.

Update the model so that it knows about the stored
procedure

Right-click in any clear area of the designer and choose
Update Model from Database from the context menu.
Follow the steps provided by the wizard to include the
stored procedure in the model (you won’t actually see
the stored procedure appear in the designer).

See the addition of a function or stored procedure to a
model

Right-click in any open area of the model designer and
choose Model Browser from the context menu.

Modify a stored procedure Change the CREATE keyword to ALTER so that SQL Server
modifies the existing stored procedure.

Create a stored procedure that works with multiple field
values

Rely on a CASE statement to transform an input string into
a field value, like this:

ALTER PROCEDURE ChooseClients
 @OrderBy NVarChar(20)
AS
 SELECT * FROM Customers AS C
 INNER JOIN Purchases AS P
 ON C.Id = P.CustomersId
 ORDER BY
 CASE @OrderBy
 WHEN 'PurchaseDate' THEN P.PurchaseDate
 WHEN 'Amount' THEN P.Amount
 WHEN 'CustomersId' THEN P.CustomersId
 ELSE P.PurchaseDate
 END

C H A P T E R 9

Interaction with views

After completing the chapter, you’ll be able to

■■ Describe what a view is and how it affects the Entity Framework.

■■ Create a view as part of your database model.

■■ Create an application that uses a view.

■■ Develop a writable view.

Views and stored procedures are often confused. The two serve completely different purposes
(see the “Using stored procedures vs. views to select data” sidebar in Chapter 8, “Interaction with

stored procedures”), and you need to know how to use both of them to develop complete applica-
tions with a maximum of both security and reliability. A view, as the name implies, is an actual view
of the data—it’s a read-only snapshot of the data. It’s a type of virtual table you use to obtain access
to data. Like tables themselves, you can index views and join views together to create a new perspec-
tive of the information. However, views also make it impossible to perform the full set of Create, Read,
Update, and Delete (CRUD) operations—all you can do is select (read) the data using a view alone.

This chapter demonstrates the techniques used to create new views, add them to your model, and
then use them as part of an application. The flexibility of views will surprise you, and you’ll likely find
that you use them relatively often, even if company policy does permit you to use client-side code
to perform most tasks. The one thing you need to take away from this chapter is that a view on the
server is accessible to every application you create, so you only have to define and test the selection
criteria one time in order to use it everywhere. That’s one of the special features of views—they make
it possible for you to reduce your workload.

Note  As with many other programming techniques, it’s possible to overuse views or use
them in the wrong way. Remember that you can’t send parameters to views, so views won’t
be as flexible as stored procedures in some situations. In addition, you should reserve views
for those situations where you really do plan to use the same selection criteria across appli-
cations. For example, you might need to select specific data for a report that’s used every-
where. It’s important not to clutter the database with views that are only used once or with
a single application.

The final portion of this chapter deals with a special task you can perform with views. It’s possible
to make views writable by adding stored procedures to the process. (You can also make views writ-
able by fiddling with the model at a low level, but this isn’t a recommended approach.) The example
in this chapter shows a basic but usable approach to the problem.

Understanding views

Views are used in an entirely different way from functions or stored procedures, and indeed, they’re
an entirely different kind of strategy. A Database Administrator (DBA) normally creates views as a
means for accessing data in a safe manner. The view doesn’t allow any changes. All that a user can
do with a view is access the data for use in some type of output, such as a report. Because most user
activity with a database involves some sort of search—accessing the data to obtain information from
it—using views answers many user needs. There’s a class of user that never inputs data directly. This
group performs searches for information and uses the data for output such as reports, but the input
is performed by someone else. For example, consider someone who searches a parts catalog for a
specific item. The goal of the search is to find the part. Yes, this same individual may come back later
and make a purchase, but the purchase will affect an entirely different database. This person has no
need to ever modify the parts catalog, so views work fine.

So far, this book hasn’t worked with any views. However, using a view is much the same as working
with a stored procedure. It begins with a query such as this one:

SELECT * FROM Rewards2.dbo.Customers

It’s important to remember that the query must be self-contained. You can’t pass parameters that
will change the query in any way. Consequently, the query you create for a view is static and never
changes unless someone actually rewrites the code. For example, if you write a query that needs to be
ordered in four different ways, you theoretically require four different views. However, there’s a way
around this limitation. You can create a more generic view and then perform tasks such as ordering
the data at the client—getting the best of both views and local processing.

This query selects all of the records and all of the fields from the Rewards2 Customers table. The
dbo portion stands for “database owner.” The use of the asterisk (*) is a wildcard for all fields. To create
the query, you use a statement like this one:

CREATE VIEW ViewCustomers

The first keyword, CREATE, defines a new entry in the database. VIEW is the kind of entry to create.
ViewCustomers is the name of the entry. By convention, most DBAs begin views with the word View
to make their use apparent. It’s important to use names that make the purpose and functionality of a
view or stored procedure easy to determine. In this case, the query will create a view of the Customers
table.

	 Chapter 9  Interaction with views    195

You connect the CREATE statement to the query with the AS keyword, just as you would for a
stored procedure. Adding the word GO means that the task will be performed immediately, rather
than waiting for a number of other tasks to complete in a batch process. So, the resulting script for
creating a new view could look like this:

CREATE VIEW ViewCustomers
AS
SELECT * FROM Rewards2.dbo.Customers
GO

As with stored procedures, you can modify views to incorporate needed changes. For example,
you may decide that the view isn’t working quite right. A view, like a stored procedure, uses the ALTER
keyword to signify an alternation instead of a new view. Consequently, a script to alter a view might
look like this:

ALTER VIEW ViewCustomers
AS
SELECT * FROM Rewards2.dbo.Customers
GO

Views are stored in a special location in Server Explorer. To locate the views you create, look in the
Views folder of the database connection you create in Server Explorer, as shown here. (When working
with Microsoft SQL Server Management Studio, there’s a Views folder as one of the main entries for
the database in question.)

Note  This chapter provides only an overview of views to get you through the examples.
Like stored procedures, views can become quite complex and incorporate a number of use-
ful and interesting features. For example, you can tell SQL Server to encrypt the results of a
view to make unauthorized viewing next to impossible. You can learn more about the VIEW
syntax at http://msdn.microsoft.com/library/ms187956.aspx. Views are also one of the most
common and standardized SQL features. There’s an excellent generic tutorial for using them
at http://www.w3schools.com/sql/sql_view.asp.

http://www.w3schools.com/sql/sql_view.asp

196   PART III  Manipulating data using the Entity Framework

Adding views to your model

Before you can do anything with a view, you need to have a view to use. As with stored procedures,
a production database is likely to have a number of views defined for you by the DBA. However, you
need to know how to create and use views, because you can’t be sure that there will be a DBA to
define them for you, and you also need to create them for test purposes. The following sections show
how to create views using Server Explorer, test them, and then update your model to use them.
Working with views is somewhat different than working with functions (described in Chapter 6, “Ma-
nipulating data using LINQ”) and stored procedures (described in Chapter 8), but you’ll also notice
similarities.

Defining views using Server Explorer
There are a number of different ways to create views using the SQL Server tools. However, most
developers will prefer creating a view using Server Explorer because doing so doesn’t require leaving
the IDE. Fortunately, Microsoft Visual Studio makes the task relatively easy. You can use essentially
the same procedure you use to create stored procedures, with a few modifications, as noted in the
following procedure.

Creating a simple view

1.	 Open your copy of Visual Studio. You don’t need to have a project loaded because you’re go-
ing to be interacting with Server Explorer and SQL Server.

2.	 Choose View | Server Explorer to open the Server Explorer window if it isn’t already open.
Under Data Connections, you should see closed connections to the four databases used in the
book.

3.	 Open the connection to the Rewards2 database by clicking the right-pointing arrow next to it.
You’ll see a list of folders associated with the database, including the Views folder.

4.	 Right-click the Views folder and choose Add New View from the context menu. You’ll see a
new window appear that has a template for creating a view in it, like the one shown here:

	 Chapter 9  Interaction with views    197

Compare this screen shot with the one in the “Defining the Stored Procedure Using Server
Explorer” section of Chapter 8. You’ll see some important differences. For example, the tem-
plate doesn’t include parameters because you can’t use them with a view. In addition, notice
that a view doesn’t have a RETURN statement by default, because views are virtual tables, not
functions. You can’t use the RETURN statement in a view. The query itself assumes that you’re
going to work with a table—the stored procedure template query is more generic because
you can do other things with it.

5.	 Overwrite the template code with the following code:

CREATE VIEW ViewClients
AS
 SELECT C.CustomerName, P.Id, P.Amount, P.CustomersId, P.PurchaseDate
 FROM Customers AS C
 INNER JOIN Purchases AS P
 ON C.Id = P.CustomersId

Tip  This query spells out the individual fields that the query should return. Notice
that the C.Id field is missing from the list. You don’t need it to work with the data
in this case, so excluding it removes problems with duplicate field names that you
might otherwise experience. Using individual field names can save you work and the
need for error resolution later.

6.	 Click the Update button that appears on the left side directly above the editor. Visual Studio
prepares the update and displays the following dialog box showing the changes:

198   PART III  Manipulating data using the Entity Framework

7.	 Click Update Database. Visual Studio begins the database update. You can follow the progress
of the update in the Data Tools Operations window. When the process is complete, you’ll see
an Update Completed Successfully message like the one shown here:

Testing the view
Some developers get the idea that simply because a view doesn’t modify data in the database, it
requires less stringent testing than a stored procedure or function. However, views, like stored proce-
dures, present plenty of opportunity for errors. The focus is on the client part of the application in this
case. You need to ensure that the view provides precisely the results that you expected. If the results
differ, you need to find out why. A user will make decisions based on the information that a view
provides, so the information needs to be accurate. In addition, an application can use the output from
a view as input to a stored procedure. When the view output is less than accurate, the input to the
stored procedure is affected as well, potentially causing damage to the database. Consequently, views
require the same level of testing that stored procedures do in order to ensure your applications run
well. The following steps provide a testing procedure you can use for the example view and modify to
meet your view-testing requirements.

Testing a simple view

1.	 Choose View | Server Explorer to open the Server Explorer window if it isn’t already open.

2.	 Open the Stored Procedures folder, and you should now see the ViewClients view, as shown
here.

Note  You may have to click the Refresh button in the upper-left corner of Server
Explorer to refresh the display if you can’t see the ViewClients entry. Server Explorer
may not automatically refresh its content to show the new entry.

	 Chapter 9  Interaction with views    199

Tip  Clicking the right-pointing arrow next to ViewClients also displays the names of
fields returned by the view. You can click each field in turn and check its entries in
the Properties window to ensure that each field will return the information you need.

3.	 Right-click the ViewClients entry and choose Show Results from the context menu. Visual
Studio displays the view to you. You’ll see results similar to those shown here:

Note  You should have noticed that the view doesn’t execute—it simply returns the
data as a table. It’s essential to remember that stored procedures and functions ex-
ecute, while views are virtual tables that you see as tables.

200   PART III  Manipulating data using the Entity Framework

Updating the model
You’ve already seen that there are significant differences between views and stored procedures, even
though both can return data to an application using queries. However, one thing they share in com-
mon is that you must add both views and stored procedures to your model before you can success-
fully use them in an Entity Framework application. The following procedure describes how to add a
view to a model after you create and test the view using the procedures in the previous sections.

Updating the model to use views

1.	 Copy the ModelFirst example you created in Chapter 3, “Choosing a workflow,” to a new
folder, and use this new copy for this example (rather than the copy you created in Chapter 3).

2.	 Open the copied solution in Visual Studio.

3.	 Open the Rewards2Model.EDMX file by double-clicking its entry in Solution Explorer.

4.	 Right-click in any clear area of the designer and choose Update Model From Database from
the context menu. You’ll see the Update Wizard, as shown here:

Notice that the wizard places views in a separate Views folder. This is because views are
significantly different from stored procedures and functions. The fact that views appear in a
separate table should help remind you of this difference.

	 Chapter 9  Interaction with views    201

Views are a kind of virtual table. However, the wizard also keeps them separate from the
tables to help enforce the idea that views aren’t tables. They can be thought of as virtual
tables, but you’re still dealing with an entity created from a query.

5.	 Drill down to the ViewClients view entry and check it. Click Finish. The wizard completes its
task. In contrast with stored procedures and functions, in this case the ViewClients view is
actually added to the model, as shown here:

6.	 Choose View | Output. You’ll notice that the Output window contains the result of updating
the model with the ViewClients view. Your results will look something like this:

The model was generated with warnings or errors.
Please see the Error List for more details. These issues must be fixed before running
your application.
Loading metadata from the database took 00:00:00.4400890.
Generating the model took 00:00:00.9720729.

7.	 Choose View | Error List. You’ll see the Error List window, which contains the following error
message:

The table/view 'Rewards2.dbo.ViewClients' does not have a primary key defined. The key
has been inferred and the definition was created as a read-only table/view.

8.	 Look again at the Rewards2Model.EDMX designer window, and you’ll see that the wizard’s
solution for fixing the problem of not having a key field was to make every field a key field.
Obviously, this is a less-than-optimal solution.

202   PART III  Manipulating data using the Entity Framework

9.	 Right-click CustomerName and click Entity Key to remove the check mark next to it. You’ll see
that CustomerName now uses a standard field icon.

10.	 Repeat step 9 for the Amount, CustomersId, and PurchaseDate fields. Only the Id field should
retain the key field icon.

11.	 Choose Build | Build Solution to update the model.

Creating a basic view example

Using a view in an application is relatively simple compared to working with a stored procedure. All
you really need to do is access the context, and most of the work is done for you. However, it’s impor-
tant to remember that you can’t order the data simply by passing a parameter to the view. The view
will present the data in record order unless you modify the data somehow. In fact, you can consider
the data in a view as raw data that results from making a particular query, such as joining two tables
together, as is the case in this example. The following procedure shows how to work with a view in
such a way as to order the output (much the same way as the example in the “Creating a basic stored
procedure example” section of Chapter 8).

Developing an application that uses a view

1.	 Add the following new controls to Form1:

•	 Button  (Name) btnQuery, Text &Query

•	 Label  (Name) lblOrderBy, Text &Order By

•	 ComboBox  (Name) cbOrderBy, Text PurchaseDate

2.	 Click the ellipses in the Items property for cbOrderBy. You’ll see the String Collection editor.

3.	 Enter the following values, one on each line, in the String Collection editor:

•	 Amount

•	 CustomersId

•	 PurchaseDate

4.	 Click OK. Visual Studio adds the order by strings to cbOrderBy.

5.	 Double-click btnQuery to create a new click event handler.

6.	 Type the following code for the btnQuery_Click() event handler.

private void btnQuery_Click(object sender, EventArgs e)
{
 // Obtain the context.
 Rewards2ModelContainer context = new Rewards2ModelContainer();

	 Chapter 9  Interaction with views    203

 // Create a variable to hold the ordered data.
 IOrderedQueryable<ViewClient> OrderedData = null;

 // Determine the data order.
 switch (cbOrderBy.SelectedIndex)
 {
 case 0:
 OrderedData = context.ViewClients.OrderBy(value => value.Amount);
 break;
 case 1:
 OrderedData = context.ViewClients.OrderBy(value => value.CustomersId);
 break;
 case 2:
 OrderedData = context.ViewClients.OrderBy(value => value.PurchaseDate);
 break;
 default:
 OrderedData = context.ViewClients.OrderBy(value => value.PurchaseDate);
 break;
 }

 // Define a variable to hold the output.
 StringBuilder Output = new StringBuilder();

 // Create the application output.
 foreach (var Client in OrderedData)
 Output.Append(Client.CustomerName + " ID " +
 Client.CustomersId + " purchased " +
 Client.Amount + " on " +
 Client.PurchaseDate + ".\r\n");

 // Show the output on screen.
 MessageBox.Show(Output.ToString());
}

The example begins by creating a context of type Rewards2ModelContainer. It then cre-
ates a variable, OrderedData, of type IOrderedQueryable<ViewClient>, to hold the ordered
information. You create a data order much as you would with a stored procedure, by using a
field name. The switch block performs the actual order selection using the value provided by
cbOrderBy.SelectedIndex.

Each OrderBy() method call uses a different lambda expression to output the data in a par-
ticular order. As with stored procedures, you select a sort order using a field name.

Tip  An advantage of using a view is that you can create multiple levels of order-
ing. For example, OrderedData = context.ViewClients.OrderBy(value => value.
CustomersId).OrderBy(value => value.Amount); would sort the data first by customer
ID, and then by the amount of the purchase. You can create any number of levels of
ordering desired (with the idea that more levels usually reduce application
performance).

204   PART III  Manipulating data using the Entity Framework

The example than creates a StringBuilder object, Output, to hold the information. It uses a
foreach loop to obtain the values for each customer and place them in Output. Finally, the ap-
plication displays the content of Output in a dialog box.

7.	 Click Start or press F5. The application compiles and runs.

8.	 Select Amount in the Order By field of the example application.

9.	 Click Query. You’ll see the output shown here:

The output from this example is the same as the output of the example in Chapter 8. However,
the technique for arriving at this output is different. You have options for creating output
using a number of techniques when working with the Entity Framework, and it’s a good idea
to keep them in mind as you work through various issues. In some cases, you’ll find that views
excel, while other situations call for a stored procedure.

10.	 Perform steps 8 and 9 for each of the two remaining ordering methods so that you can see
how they work.

Making views writable

There’s a technique for creating a writable view. The view itself isn’t writable, but the stored proce-
dures you create to go with the view are writable. You can couple views and stored procedures in a
manner that creates an application with the best features of both. Access to the database is strictly
controlled using methods that are fully controlled and approved by the organization. The following
procedure describes how to perform this task.

Developing a writable view

1.	 Copy the ModelFirst example you created in the “Updating the Model” section of this chapter
(and updated in the “Creating a Basic View Example” section) to a new folder and use this new
copy for this example (rather than the copy you created earlier).

2.	 Open the copied solution in Visual Studio.

3.	 Create a new stored procedure named AddClient using the techniques shown in Chapter 8.

	 Chapter 9  Interaction with views    205

4.	 Add the following code to AddClient:

CREATE PROCEDURE AddClient
 @CustomerName NVarChar(max),
 @PurchaseDate DateTime,
 @Amount Decimal(18,2)
AS
 /* Determine whether the customer already exists. */
 DECLARE @CustCount Int
 SET @CustCount = (SELECT COUNT(CustomerName) FROM Customers WHERE CustomerName=@
CustomerName)

 /* When @CustCount equals 0, the customer doesn't exist.
 The call to INSERT INTO will add the customer. */
 IF @CustCount = 0
 BEGIN
 INSERT INTO Customers (CustomerName)
 VALUES (@CustomerName)
 END

 /* Obtain the customer's Id value for use in adding a new record to the
 Purchases table. */
 DECLARE @CustId Int
 SET @CustId = (SELECT Id FROM Customers WHERE CustomerName=@CustomerName)

 /* Perform the insertion. */
 INSERT INTO Purchases (CustomersId, Amount, PurchaseDate)
 VALUES (@CustId, @Amount, @PurchaseDate)

This stored procedure is a lot more complicated than the stored procedures you used in the
past. The stored procedure must actually perform several different tasks to update the two ta-
bles, Customers and Purchases, in the database. First, it must determine whether the customer
already exists. When the customer doesn’t exist, the stored procedure adds the new customer.

Second, the stored procedure must obtain the customer’s Id value for use in adding a record
to the Purchases table. Theoretically, you could ask the client to provide this information, but
it’s much safer to obtain it directly from the database, as shown.

Third, the stored procedure adds the new purchase to the database. This means adding the
customer’s ID, the amount, and the purchase date. The purchase ID value is automatically
provided by the DBMS.

Note  In some cases, the Entity Framework will misinterpret the return type of the
stored procedure and map it incorrectly. When this occurs, you’ll see a “The data
reader returned by the store data provider doesn’t have enough columns for the
query requested” error message. To fix this error, open the Model Browser window,
select the errant function in the Function Imports folder, and verify that the Return
Type property is set to (None).

5.	 Create a new stored procedure named DeleteClient using the techniques shown in Chapter 8.

206   PART III  Manipulating data using the Entity Framework

6.	 Add the following code to DeleteClient:

CREATE PROCEDURE DeleteClient
 @PurchaseId int
AS
 /* Obtain and save the customer's ID */
 DECLARE @CustId Int
 SET @CustId = (SELECT CustomersId FROM Purchases WHERE Id=@PurchaseId)

 /* Verify that the purchase exists. */
 IF @CustId IS NULL
 BEGIN
 RETURN -1
 END

 /* Delete the purchase from the database. */
 DELETE FROM Purchases WHERE Id=@PurchaseId

 /* Verify there are purchase records left for this
 customer */
 DECLARE @PurchaseCount Int
 SET @PurchaseCount = (SELECT COUNT(*) FROM Purchases WHERE CustomersId=@CustId)

 /* If there are no purchase records left, delete
 the customer record as well */
 IF @PurchaseCount < 1
 BEGIN
 DELETE FROM Customers WHERE Id=@CustId
 END

 /* Return a success value */
 RETURN 0

Records are removed from the database based on the purchase ID. However, before the
stored procedure can remove the record, it must first save the customer ID associated with
that record. If @CustId comes up NULL after performing a search, it means that the stored
procedure received an errant purchase ID, and the stored procedure exits.

When @CustId is a valid value, the stored procedure removes the record from Purchases. Of
course, you also want to remove the customer’s record when there are no more purchases
associated with that customer. The stored procedure next checks for additional purchases by
that customer—when none exist, the stored procedure also removes the customer record
from the Customers table.

7.	 Create a new stored procedure named UpdateClient using the techniques shown in Chapter 8.

8.	 Add the following code to UpdateClient:

CREATE PROCEDURE UpdateClient
 @PurchaseId Int,
 @CustomerName NVarChar(max),
 @PurchaseDate DateTime,
 @Amount Decimal(18,2)

	 Chapter 9  Interaction with views    207

AS
 /* Begin by updating the purchase record. */
 UPDATE Purchases
 SET PurchaseDate=@PurchaseDate, Amount=@Amount
 WHERE Id=@PurchaseId

 /* Obtain the customer's ID. */
 DECLARE @CustId Int
 SET @CustId = (SELECT CustomersId FROM Purchases WHERE Id=@PurchaseId)

 /* Make a customer name change as well. */
 UPDATE Customers
 SET CustomerName=@CustomerName
 WHERE Id=@CustId

The update procedure is straightforward. First, the stored procedure updates the Purchases
table. It then finds the customer ID based on @PurchaseId and uses this information to update
the Customers table as well.

Note  Make sure that each of the stored procedures is added to the model so that
you can use them in the example. Otherwise, you won’t be able to use the stored
procedures with the view.

9.	 Open the Rewards2Model.EDMX file by double-clicking its entry in Solution Explorer.

10.	 Right-click the ViewClient entry in the designer and choose Stored Procedure Mapping from
the context menu. You’ll see a Mapping Details window like the one shown here:

11.	 Click <Select Insert Function> and choose AddClient from the list. Visual Studio automatically
creates the required mapping for you, as shown here:

208   PART III  Manipulating data using the Entity Framework

12.	 Click <Select Update Function> and choose UpdateClient from the list. Visual Studio auto-
matically creates the required mapping. Notice that there isn’t any mapping between the
@PurchaseId parameter and a property. If you don’t create a mapping, Visual Studio will raise
an error when you try to compile the application.

13.	 Select Id : Int32 to map @PurchaseId to the Id field of the Purchases table.

14.	 Click <Select Delete Function> and choose DeleteClient from the list. Visual Studio automati-
cally creates the required mapping. Again, you must manually map the @PurchaseId
parameter.

15.	 Select Id : Int32 to map @PurchaseId to the Id field of the Purchases table.

16.	 Add three buttons to Form1:

•	 btnAdd2 with a Text property value of Add &2

•	 btnUpdate with a Text property value of &Update

•	 btnDelete with a Text property value of &Delete

17.	 Add code for the event handlers for each button, as shown here:

private void btnAdd2_Click(object sender, EventArgs e)
{
 // Obtain the context.
 Rewards2ModelContainer context = new Rewards2ModelContainer();

 // Add a new record to the database.
 context.AddClient(
 "Carole Poland", new DateTime(2013, 04, 16), new Decimal(20.99));

 // Display a success message.
 MessageBox.Show("Record Added Successfully");
}

private void btnUpdate_Click(object sender, EventArgs e)
{
 // Obtain the context.
 Rewards2ModelContainer context = new Rewards2ModelContainer();

 // Locate the specified record.
 IQueryable<ViewClient> Record = context.ViewClients
 .Where(CustName => CustName.CustomerName == "Carole Poland")
 .Where(PurchDate => PurchDate.PurchaseDate.Equals(new DateTime(2013, 04, 16)))
 .Where(PurchAmount => PurchAmount.Amount.Equals(new Decimal(20.99)));

 // Modify the data.
 context.UpdateClient(Record.First().Id, "Carole Poland",
 new DateTime(2013, 04, 17), new Decimal(25.99));

 // Display a success message.
 MessageBox.Show("Record Updated Successfully");
}

	 Chapter 9  Interaction with views    209

private void btnDelete_Click(object sender, EventArgs e)
{
 // Obtain the context.
 Rewards2ModelContainer context = new Rewards2ModelContainer();

 // Locate the specified record.
 IQueryable<ViewClient> Record = context.ViewClients
 .Where(CustName => CustName.CustomerName == "Carole Poland")
 .Where(PurchDate => PurchDate.PurchaseDate.Equals(new DateTime(2013, 04, 17)))
 .Where(PurchAmount => PurchAmount.Amount.Equals(new Decimal(25.99)));

 // Modify the data.
 context.DeleteClient(Record.First().Id);

 // Display a success message.
 MessageBox.Show("Record Deleted Successfully");
}

In each case, the event handlers obtain a Rewards2ModelContainer context, and then use it to
access the database. When working with the AddClient() stored procedure, all you need to do
is provide the required input arguments, which consist of the customer’s name, the purchase
date, and the purchase amount.

Notice how the btnUpdate_Click() and btnDelete_Click() event handlers locate a specific record
using ganged Where() methods. Each Where() method has a lambda function that further
refines the search criteria using the customer’s name, the purchase date, and the purchase
amount. The goal of this search is to obtain a purchase ID to use to identify a specific record
to the stored procedure. As with record addition, in this case the event handlers call either
UpdateClient() or DeleteClient() using the context and by supplying the required values.

18.	 Click Start or press F5. The application compiles and runs.

19.	 Click Add 2.

20.	 Click Query. You’ll see the output shown here:

21.	 Perform steps 19 and 20 using the Update button first, and then the Delete button. You
should see the expected results each time.

210   PART III  Manipulating data using the Entity Framework

Getting started with the Entity Framework

This chapter has helped you understand how views work and how to incorporate them into your ap-
plication. View-based applications are quite secure because data doesn’t pass from the application
directly to the database, and views aren’t able to accept parameters that could be used to perform
tasks outside the desired range of actions envisioned by the DBA. Many organizations use views
whenever possible because the security and reliability features they offer. In addition, you’ll find
that many users have no need to modify the data in a database—all they really need is the ability
to retrieve, search, and order the data for various uses, such as reports. If you take one thing away
from this chapter, it’s that a view is probably the best way to access data from multiple applications
because it also provides a means to create a consistent data source across all applications that the
view services.

You’ve seen a number of view examples in the chapter. As with stored procedures, the best way
to become better acquainted with views is to play with them. Take some time to work through the
examples and then make modifications to the views to achieve specific results. Remember that you
must use the ALTER VIEW keywords, rather than the CREATE VIEW keywords, to make changes to a
view. It’s possible to create views of any complexity you need by defining queries that work well in
many situations.

Chapter 10, “Interaction with table-valued functions,” moves into a new area for the Entity
Framework: Table-Valued Functions (TVFs). Developers have wanted access to TVFs for quite some
time, and Microsoft finally provided access to them in Entity Framework 5. (You can see a list of other
new Entity Framework 5 features at http://msdn.microsoft.com/data/ee712907.) The TVF support in
the Entity Framework is a little limited. For example, you must use the database-first workflow to use
TVFs. While TVFs are similar to stored procedures, they have one specific advantage: the ability to be
used as part of a Language Integrated Query (LINQ) query because they’re composable (a compos-
able entity is one that can be combined with other components to create a desired result, which
means that the entity must be both self-contained and stateless). You’ll find all the details about TVFs
in Chapter 10.

	 Chapter 9  Interaction with views    211

Chapter 9 quick reference

To Do this

Create a view Define the view using the CREATE VIEW
statement, followed by the word AS, your
query, and the word GO. A simple view might
look like this:

CREATE VIEW ViewCustomers
AS
SELECT * FROM Rewards2.dbo.Customers
GO

Alter a view Specify which view to change using the
ALTER VIEW statement, followed by the word
AS, your query, and the word GO. A simple
view alteration might look like this:

ALTER VIEW ViewCustomers
AS
SELECT * FROM Rewards2.dbo.Customers
GO

Create a new view using Server Explorer Right-click the Views folder under the desired
database entry in Server Explorer and choose
Add New View from the context menu.

Update the model so it knows about the view Right-click in any clear area of the designer
and choose Update Model From Database
from the context menu. Follow the steps
provided by the wizard to include the view in
the model (you should see the view added to
the designer, just as you would a table).

Remove a field from the list of entity keys Right-click the affected field in the designer
and click Entity Key in the context menu to
remove the check mark next to it.

Modify the order of table data obtained from a view Use the OrderBy() method and place the re-
sult in another variable, such as the following:

var OrderedData = context.ViewClients.
OrderBy(value => value.Amount);

where OrderedData is generally an object of
type IOrderedQueryable<T>, the context is
obtained from the data model, ViewClients is
the name of a view, and the lambda expres-
sion specifies the sort order by providing the
name of a field.

		 213

C H A P T E R 1 0

Interaction with Table-Valued
Functions

After completing the chapter, you’ll be able to

■■ Describe what a Table-Valued Function (TVF) is and how it affects the Entity Framework.

■■ Create a TVF as part of your database model.

■■ Interact with a TVF using Entity SQL.

■■ Interact with a TVF using Language Integrated Query (LINQ).

■■ Perform entity mapping.

Many developers haven’t even heard of TVFs yet because they’re a relatively new technology, and
organizations are often slow to adopt new technologies. A TVF is a User-Defined Function (UDF)

that returns a table instead of a scalar type. The technology has actually been around since Microsoft
SQL Server 2005. Any Database Administrators (DBAs) reading this introduction are probably rolling
their eyes, but developers usually focus on what is available, and TVFs haven’t been available for use
until this latest version of the Entity Framework. A TVF mixes some of the best elements of views and
stored procedures. For example, as with a view, you can use a TVF to represent a table. However, as
with a stored procedure, you can use parameters with TVFs and incorporate a certain level of pro-
grammability. The first section of this chapter goes into a little more detail, but that’s the essential
overview of TVFs if you want to get right into the coding areas.

Note  This chapter presents an overview of TVFs that’s adequate for working through the
examples, and it describes the way they affect the Entity Framework. It doesn’t discuss
TVFs in detail. You can find a more detailed overview of TVFs at http://msdn.microsoft.com/
library/ms191165.aspx. There’s also an interesting introduction to TVFs from a Common
Language Runtime (CLR) perspective at http://www.mssqltips.com/sqlservertip/2582/
introduction-to-sql-server-clr-table-valued-functions/. Finally, see Chapter 5 of the book
Microsoft® SQL Server®2012 T-SQL Fundamentals, by Itzik Ben-Gan (Microsoft Press, 2012),
which you can obtain here: http://shop.oreilly.com/product/0790145321978.do.

The next parts of the chapter show how to create a TVF, test it, and add it to the Entity Framework
model. You then create a simple application that relies on the TVF to perform useful work; it’s similar

http://msdn.microsoft.com/library/ms191165.aspx
http://msdn.microsoft.com/library/ms191165.aspx
http://www.mssqltips.com/sqlservertip/2582/introduction-to-sql-server-clr-table-valued-functions/
http://www.mssqltips.com/sqlservertip/2582/introduction-to-sql-server-clr-table-valued-functions/

214   PART III  Manipulating data using the Entity Framework

to the stored procedure and view examples in Chapter 8, “Interaction with stored procedures,” and
Chapter 9, “Interaction with views.” Using this approach helps you gain a better understanding of
just how TVFs differ from both stored procedures and views. Each technology has a particular task to
perform and a special place in your developer toolbox.

The final parts of the chapter help you understand various types of mapping you can perform with
TVFs to make the data they provide more accessible. Mapping becomes even more important than it
was with views because with TVFs, you can map the data in a number of ways. A particular mapping
strategy can make the data easier to access and less of a hassle to use in your application. The final
part of the chapter describes how to interact with TVFs using recursion.

Understanding TVFs

TVFs are simply UDFs that return a table, as described in the introduction to the chapter. However,
they’re a bit more than that, and it pays to know as much as you can about TVFs before you start
working with them in the Entity Framework. The following sections help you understand TVFs at a
more detailed level. If you’ve already spent considerable time working with TVFs in other environ-
ments, you can probably skip the first two sections, but make sure you read the last four sections,
because they’re Entity Framework specific.

Note  If you’re not quite sure what UDFs are, you should spend a little time reviewing
some material about them. A full discussion of UDFs is outside the scope of this book. You
can find an excellent (albeit older) overview of UDFs at http://msdn.microsoft.com/library/
aa175085.aspx and a more detailed article at http://www.extremeexperts.com/sql/articles/
UDFFunctions.aspx. There’s also an excellent MSDN article that can double as a tutorial at
http://msdn.microsoft.com/magazine/cc164062.aspx. For people who would prefer to have
a tutorial, check out this one on the Techipost site: http://www.techipost.com/2011/03/16/a-
tutorial-on-stored-procedures-and-user-defined-functions/.

Comparing TVFs to views
TVFs and views have one essential similarity—they’re both composable. This means that the Entity
Framework will treat a TVF as a virtual table. In addition, you can use a TVF as part of a SQL query—
just as you would a table. However, TVFs and views have some significant differences that you need to
know about:

■■ TVFs can have multiple SELECT statements (views have just one).

■■ TVFs can contain procedural code, which means that they can do many of the things that
stored procedures can do.

■■ TVFs allow the use of parameters, which means you can pass values to a TVF to modify its
behavior.

http://msdn.microsoft.com/library/aa175085.aspx
http://msdn.microsoft.com/library/aa175085.aspx
http://www.extremeexperts.com/sql/articles/UDFFunctions.aspx
http://www.extremeexperts.com/sql/articles/UDFFunctions.aspx

	 Chapter 10  Interaction with Table-Valued Functions    215

Comparing TVFs to stored procedures
TVFs are more like stored procedures than views. However, they have some significant advantages
over the stored procedures:

■■ They are allowed anywhere within a query.

■■ They allow use of filtering.

It may seem at first that you would want to use TVFs in place of stored procedures in all cases.
However, stored procedures still have one significant advantage over TVFs: they allow you to return
multiple result sets. In addition, a stored procedure can return a scalar type—TVFs always return a
table.

Note  TVFs are actually used in a number of ways as part of SQL Server. For ex-
ample, you rely on them to perform tasks such as a full text search (see
http://msdn.microsoft.com/library/cc721269.aspx for details).

Defining the storage layer
Normally, you don’t worry too much about the actual code used to maintain the model. A combina-
tion of the designer, Model Browser window, and other Microsoft Visual Studio features makes it quite
easy to understand what to do without actually spending time with the underlying XML. However, the
XML is important in this case, because the differences are subtle, and the use of TVFs is relatively new.

TVFs and functions look much the same in the XML. In Chapter 6,” Manipulating data using LINQ,”
you created a function named AveragePurchase. The XML for AveragePurchase looks something like
this (some attributes have been removed because they have no bearing on this discussion):

<Function Name="AveragePurchase" ReturnType="decimal" IsComposable="true" Schema="dbo">
 <Parameter Name="CustomerId" Type="int" Mode="In" />
</Function>

Note  In previous versions of the Entity Framework, it wasn’t possible to set the
IsComposable attribute to true for functions. This is a new feature of Entity Framework 5. In
order to use the output of a function as part of a query, it’s necessary to set IsComposable
to true.

Notice that the ReturnType attribute returns a decimal value. The AveragePurchase function is a
scalar function—it returns a single value so you can define that value using the ReturnType attribute.
When working with a TVF, you’re dealing with a complex return type, so a simple attribute won’t do.
Consequently, the TVF uses a fuller XML description, similar to this one:

<Function Name="ObtainClients" IsComposable="true" Schema="dbo">
 <Parameter Name="OrderBy" Type="nvarchar" Mode="In" />
 <ReturnType>

http://msdn.microsoft.com/library/cc721269.aspx

216   PART III  Manipulating data using the Entity Framework

 <CollectionType>
 <RowType>
 <Property Name="RowNo" Type="bigint" Nullable="false" />
 <Property Name="CustomerName" Type="nvarchar(max)" />
 <Property Name="Id" Type="int" />
 <Property Name="PurchaseDate" Type="datetime" />
 <Property Name="Amount" Type="decimal" Scale="2" />
 <Property Name="CustomersId" Type="int" />
 </RowType>
 </CollectionType>
 </ReturnType>
</Function>

The changes shown here make the return type a collection of rows. Each of these rows contains
five database fields: CustomerName, Id, PurchaseDate, Amount, and CustomersId. (Don’t worry about
the RowNo field for right now—you’ll receive an explanation of how this field works when you create
the TVF in the “Defining the TVF Using Server Explorer” section of the chapter.) The mapping between
these property values describes the database structure and the resulting output of the function,
which uses .NET types. This new feature is called function mapping, and it allows the Entity Framework
to provide full Create, Read, Update, and Delete (CRUD) support for TVFs in your application.

Defining the mapping layer
When working with any database object, the Entity Framework must provide mapping between the
storage layer and the conceptual layer, where the application finally interacts with the entity. A TVF
can use two forms of mapping:

■■ Entity type  A template used as the basis for the Entity Framework. Entity types define the
top-level structures for any model, including the database definition. The template for an
Entity type accepts these types of information:

•	 Unique name (required)

•	 Entity key, defined by one or more properties (required)

•	 Data, in the form of properties (optional)

•	 Navigation properties used to create associations between entities (optional)

■■ Complex type  A template designed to provide rich, structured properties in entities or other
complex types. Like entity types, complex types can carry a data payload in the form of primi-
tive types or other complex types. Complex types require only a unique name and the data
payload in the way of template information, so you can use them for data that has no key.
However, complex types have these differences from entity types:

•	 Complex types can’t exist independently because they lack identities.

•	 Complex types can’t be part of an association, and therefore aren’t usable for navigation
properties.

	 Chapter 10  Interaction with Table-Valued Functions    217

In the creation of the mapping layer, the entity type begins with an <EntityTypeMapping> tag,
which defines the entity TypeName attribute. Likewise, the complex type begins with a <Complex-
TypeMapping> tag that defines the complex TypeName attribute. Both types define a series of
<ScalarProperty> tags, which define the mapping between the storage layer and the conceptual
layer. These tags are precisely the same in both cases. Here’s an example of what function mapping
might look like for complex type mapping (the default scenario for TVFs):

<FunctionImportMapping FunctionImportName="ObtainClients"
 FunctionName="Rewards2Model.Store.ObtainClients">
 <ResultMapping>
 <ComplexTypeMapping TypeName="Rewards2Model.ObtainClients_Result">
 <ScalarProperty Name="RowNo" ColumnName="RowNo" />
 <ScalarProperty Name="CustomerName" ColumnName="CustomerName" />
 <ScalarProperty Name="Id" ColumnName="Id" />
 <ScalarProperty Name="PurchaseDate" ColumnName="PurchaseDate" />
 <ScalarProperty Name="Amount" ColumnName="Amount" />
 <ScalarProperty Name="CustomersId" ColumnName="CustomersId" />
 </ComplexTypeMapping>
 </ResultMapping>
</FunctionImportMapping>

Notice that the mapping begins by defining a relationship between the storage layer function
definition and the conceptual layer function definition. The mapping includes a definition of the
parameter provided as input (without actually naming the parameter in this case). The result of the
call appears within a <ResultMapping> tag, followed by a <ComplexTypeMapping> tag, and finally the
<ScalarProperty> tags that define the actual mapping between the storage layer and the conceptual
layer.

Defining the conceptual layer
The conceptual layer provides a definition of how the TVF appears to the application. When working
with a TVF, the definition is a straightforward description of which types to use to interact with the
lower layers. The definition could look like this:

<FunctionImport Name="ObtainClients" IsComposable="true"
 ReturnType="Collection(Rewards2Model.ObtainClients_Result)">
 <Parameter Name="OrderBy" Mode="In" Type="String" />
</FunctionImport>

The conceptual layer also defines the result type, which relies on a <ComplexType> tag that in-
cludes the Name attribute defining the name of the result type. Within this definition are a number
of <Property> tags that define the details of each element of the complex type. Here’s an example of
what a complex type definition might look like:

<ComplexType Name="ObtainClients_Result">
 <Property Type="Int64" Name="RowNo" Nullable="false" />
 <Property Type="String" Name="CustomerName" Nullable="true" />
 <Property Type="Int32" Name="Id" Nullable="true" />
 <Property Type="DateTime" Name="PurchaseDate" Nullable="true" Precision="23" />
 <Property Type="Decimal" Name="Amount" Nullable="true" Precision="18" Scale="2" />

218   PART III  Manipulating data using the Entity Framework

 <Property Type="Int32" Name="CustomersId" Nullable="true" />
</ComplexType>

Defining the object layer
Interestingly enough, even though most texts compare TVFs to views and stored procedures be-
cause of the way that TVFs work, in practice, TVFs are more related to functions. This means that at
the object layer, within your code, you access a TVF in much the same way as you would any other
function—by creating a stub function and adding the [EdmFunction()] attribute to it. The “Using
Entity and Database Functions” section of Chapter 6 details the process for creating and using a
function. However, unlike a SQL function, the stub contains meaningful code (as you’ll see later in the
chapter), rather than simply throwing an exception whenever someone tries to call it. Here’s what a
TVF stub might look like:

[EdmFunction("Rewards2ModelContainer", "ObtainClients")]
public virtual IQueryable<ObtainClients_Result> ObtainClients(string orderBy)
{
 var orderByParameter = orderBy != null ?
 new ObjectParameter("OrderBy", orderBy) :
 new ObjectParameter("OrderBy", typeof(string));

 return ((IObjectContextAdapter)this).ObjectContext.CreateQuery<ObtainClients_Result>(
 "[Rewards2ModelContainer].[ObtainClients](@OrderBy)", orderByParameter);
}

It’s important to note that you can call this function directly in your code. In addition, this function
accepts arguments that it then passes along to the TVF on the server. You also need to consider these
issues when working with a TVF:

■■ The function returns a DbDataRecord, which means that the records aren’t richly typed—
limiting the kinds of tasks you can perform with the output.

■■ You use the store name with the [EdmFunction()] attribute, just as you would with a function,
because this is a store function.

■■ The inclusion of a meaningful body in the function means you can call this function directly
from LINQ as needed.

■■ The stub isn’t necessary when working with Entity SQL, because you call the TVF directly in
this situation.

Adding TVFs to your model

Before you can use a TVF, you must create one, test it, and then add it to the model. The following
sections provide details on performing these essential steps. Not surprisingly, most of the steps look
similar to those that you perform for functions, stored procedures, and views, but there are subtle dif-
ferences, and you need to take care in performing them.

	 Chapter 10  Interaction with Table-Valued Functions    219

Defining the TVF using Server Explorer
Creating a TVF using Server Explorer is similar to creating a function. The main difference is how the
function is created. The following procedure helps you through the process of creating the TVF for
this example (and TVFs in general).

Creating a simple TVF

1.	 Open your copy of Visual Studio. You don’t need to have a project loaded, because you’re go-
ing to be interacting with Server Explorer and SQL Server.

2.	 Choose View | Server Explorer to open the Server Explorer window if it isn’t already open.
Under Data Connections, you should see closed connections to the four databases used in the
book.

3.	 Open the connection to the Rewards2 database by clicking the right-pointing arrow next to it.
You’ll see a list of folders associated with the database, including the Functions folder shown
here:

4.	 Right-click the Functions folder and choose Add New | Table-Valued Function. Visual Studio
opens a new .SQL file for you that contains a basic template for creating a TVF.

5.	 Type the following code into the file:

CREATE FUNCTION ObtainClients
(
 @OrderBy NVarChar(20)
)
RETURNS @returntable TABLE
(
 RowNo BigInt PRIMARY KEY NOT NULL,
 CustomerName NVarChar(Max),
 Id Int,
 PurchaseDate DateTime,
 Amount Decimal(18,2),
 CustomersId Int

220   PART III  Manipulating data using the Entity Framework

)
AS
BEGIN
 INSERT INTO @returntable
 SELECT ROW_NUMBER()OVER(ORDER BY
 CASE @OrderBy
 WHEN 'PurchaseDate' THEN P.PurchaseDate
 WHEN 'Amount' THEN P.Amount
 WHEN 'CustomersId' THEN P.CustomersId
 ELSE P.PurchaseDate
 END
)RowNo,
 C.CustomerName,
 P.Id,
 P.PurchaseDate,
 P.Amount,
 P.CustomersId
 FROM Customers AS C
 INNER JOIN Purchases AS P
 ON C.Id = P.CustomersId
 RETURN
END

The script starts out by defining a parameter, @OrderBy, of type NVarChar(20), which you use
to define the sort order of the output. This parameter works precisely the same as it did for
the stored procedure in Chapter 8.

A TVF returns a table. It may not necessarily be the same table you started with, but it’s a
table. In this case, you see that @returntable is a TABLE that contains fields from both Cus-
tomers and Purchases. However, the first field is actually new. RowNo is a generated field that
provides the means to order the output. The ORDER BY clause used with the stored procedure
in Chapter 9 won’t work with a TVF.

Warning  Microsoft changed the way that ORDER BY works in SQL Server 2012.
Even though scripts written for SQL Server 2008 work just fine with the ORDER BY
clause, they won’t work with SQL Server 2012. The script shown in this chapter works
with both versions of SQL Server. There’s a discussion of this issue on StackOverflow
(http://stackoverflow.com/questions/11222043/table-valued-function-order-by-is-
ignored-in-output) that discusses the details, but the essential bit of information to
take away from this chapter is that you must use the generated field to obtain useful
results.

Now that the table is defined, the script will SELECT data into it. The overall SELECT statement
looks similar to the one used with the stored procedure, except that it doesn’t contain the
ORDER BY clause. Instead of the ORDER BY clause, you’ll see the generated field create by the
ROW_NUMBER() ranking function (see http://msdn.microsoft.com/library/ms186734.aspx for
details), which returns the row number of a result set. The OVER clause specifies the sequence

http://stackoverflow.com/questions/11222043/table-valued-function-order-by-is-ignored-in-output
http://stackoverflow.com/questions/11222043/table-valued-function-order-by-is-ignored-in-output

	 Chapter 10  Interaction with Table-Valued Functions    221

used to generate the row number. In this case, the row number is generated as the result of an
ORDER BY clause that’s determined by @OrderBy.

6.	 Right-click the Functions folder and choose Refresh from the context menu. You’ll see the new
function, as shown here (notice this function uses a different icon from the scalar function you
added in Chapter 6):

Testing the TVF
You now have a somewhat complex-looking TVF to use, but you have no idea whether it will work
(especially given the odd generated field). As with stored procedures and views, it’s essential to test
a TVF before you begin using it with your application. The following procedure will look somewhat
familiar (with a few twists). It helps you test the TVF and ensure that it generates the output that you
expect from this example.

Testing a simple TVF

1.	 Choose View | Server Explorer to open the Server Explorer window if it isn’t already open.

2.	 Open the Functions folder, and you should see the ObtainClients TVF.

3.	 Right-click the ObtainClients TVF and choose Execute from the context menu. You’ll see the
Execute Stored Procedure dialog box shown here:

222   PART III  Manipulating data using the Entity Framework

4.	 Type Amount in the Value field and click OK. A new SQL query window appears. The output
shows the purchases sorted by amount, as shown here:

Notice that the output is also sorted by the RowNo field. It’s important to realize that RowNo
is the actual sort order. Yes, the output does appear with the Amount field sorted, but this is
the result of creating the generated RowNo field, rather than ordering by the Amount field
directly.

5.	 Repeat steps 3 and 4 for PurchaseDate and CustomersId. In each case, the TVF will output the
results in the desired order.

6.	 Repeat steps 3 and 4 with a value such as SomeValue. The TVF will output the results in pur-
chase date order.

7.	 Repeat steps 3 and 4 with a value that’s too long, such as ThisValueIsALittleTooLong. You won’t
see an error. The TVF will output the results in purchase date order. However, SQL Server will
truncate the input string at the 20th letter.

	 Chapter 10  Interaction with Table-Valued Functions    223

Updating the model
Once you’re certain that the TVF is ready for use, you need to update the model with it. This step lets
you use the TVF in a number of ways to obtain information from the database and present it to the
user. The following procedure shows how to add a TVF to the model.

Updating the model to use a TVF

1.	 Copy the ModelFirst example you created in Chapter 3, “Choosing a workflow,” to a new
folder, and use this new copy for this example (rather than the copy you created in Chapter 3).

2.	 Open the copied solution in Visual Studio.

3.	 Open the Rewards2Model.EDMX file by double-clicking its entry in Solution Explorer.

4.	 Right-click in any clear area of the designer and choose Update Model From Database from
the context menu. You’ll see the Update Wizard, as shown here:

Notice that the wizard groups functions, stored procedures, and TVFs together. It’s essential
that you know whether an addition is a stored procedure or a function, so you know how to
interact with it later. Review your choices in Server Explorer as needed.

224   PART III  Manipulating data using the Entity Framework

Note  The only items you see are those that are either new or updated. The reason
the functions and stored procedures from previous chapters appear in the list is
that you’re using the Chapter 3 copy of the ModelFirst application, which hasn’t had
these items added to it. Normally, functions or stored procedures that you’ve already
added to an application won’t appear in the list.

5.	 Drill down to the ObtainClients TVF entry and check it. Click Finish. The wizard completes its
task. As with both functions and stored procedures, you won’t see the addition to the design-
er view of the model.

6.	 Choose Build | Build Solution to update the model. At this point, you can see the TVF using
the Model Browser.

7.	 Right-click in any open area of the Model Designer and choose Model Browser from the con-
text menu. You’ll see the Model Browser window shown here:

8.	 Drill down into the Rewards2Model\Function Imports folder, and you’ll see an ObtainClients
entry. Look at the Properties window, and you’ll see that this entry tells you that ObtainClients
is both the TVF and stored procedure name, and that it returns an ObtainClients_Result type
(which is the result of the query you make using it).

	 Chapter 10  Interaction with Table-Valued Functions    225

9.	 Drill down into the Rewards2Model.Store\Stored Procedures/Functions folder, and you’ll see a
second ObtainClients entry. This time the Properties window provides information used by the
Entity Framework to interact with the stored procedure. Most of this information isn’t
changeable.

10.	 Drill down into the Rewards2Model\Complex Types folder, and you’ll see the ObtainClients_
Result complex type entry. Open this entry and you’ll see a list of fields returned by the query.
When you select a particular field, you can see the properties for it. For example, when you
select Amount, you’ll see that it returns a Decimal type with a precision of 18 digits and a scale
(decimal portion) of 2 digits.

Calling a TVF using Entity SQL

You can use Entity SQL to call a TVF directly once it has been added to your model. The advantage
of this approach is that you gain a little flexibility in making calls to the TVF. However, it also has the
disadvantage of requiring you to create the query in code. The following procedure shows how to call
a TVF directly.

Developing an Entity SQL application that uses a TVF

1.	 Add the following new controls to Form1:

•	 Button  (Name) btnQueryEntitySQL, Text &Entity SQL

•	 Label  (Name) lblOrderBy, Text &Order By

•	 ComboBox  (Name) cbOrderBy, Text PurchaseDate

2.	 Click the ellipses in the Items property for cbOrderBy. You’ll see the String Collection editor.

3.	 Enter the following values, one on each line, in the String Collection editor:

•	 Amount

•	 CustomersId

•	 PurchaseDate

4.	 Click OK. Visual Studio adds the order-by strings to cbOrderBy.

5.	 Double-click btnQueryEntitySQL to create a new click event handler.

6.	 Add the following using statements to the beginning of the file:

using System.Data.Objects;
using System.Data.EntityClient;
using System.Data.Common;

226   PART III  Manipulating data using the Entity Framework

7.	 Type the following code for the btnQuery_Click() event handler:

private void btnQueryDirect_Click(object sender, EventArgs e)
{
 // Create the context.
 EntityConnection conn =
 new EntityConnection("name=Rewards2ModelContainer");
 ObjectContext context = new ObjectContext(conn);

 // Define a command string for making the query.
 String EntitySQLCmd =
 "SELECT OC " +
 "FROM Rewards2ModelContainer.ObtainClients('" +
 cbOrderBy.SelectedItem + "') " +
 "AS OC";

 // Create a query object.
 ObjectQuery<DbDataRecord> Query =
 new ObjectQuery<DbDataRecord>(EntitySQLCmd, context);

 // Execute the query.
 ObjectResult<DbDataRecord> Result = Query.Execute(MergeOption.NoTracking);

 // Define an output string.
 StringBuilder Output = new StringBuilder();

 // Enumerate the records and add them to the output.
 foreach (var Record in Result)
 {
 // Cast the first item in the record as the proper type.
 ObtainClients_Result ThisRow = (ObtainClients_Result)Record[0];

 // Add the individual items.
 Output.Append(ThisRow.CustomerName + " ID " +
 ThisRow.CustomersId + " purchased " +
 ThisRow.Amount + " on " +
 ThisRow.PurchaseDate + ".\r\n");
 }

 // Display the customer name on screen.
 MessageBox.Show(Output.ToString());
}

This version of the example makes a direct query of the TVF using Entity SQL. The code begins
by creating a connection to the container and using that connection to create a context. The
next steps are to create a query string; use the string to build an ObjectQuery, Query; and then
execute Query to obtain an ObjectResult, Result. Notice how the query string is created. It ob-
tains all of the data from the table by using SELECT OC, where OC is the full output of the call
to Rewards2ModelContainer.ObtainClients(). Remember that the ObtainClients() TVF requires
an @OrderBy value, which is supplied by cbOrderBy.SelectedItem in this case.

Result is an ObjectResult that contains a single field holding a materialized data record,
Record[0]. To make that information useful, you must perform an ObtainClients_Result cast on

	 Chapter 10  Interaction with Table-Valued Functions    227

it. This act makes the individual fields readily available. The code uses the information to cre-
ate a StringBuilder, Output, which is finally used as input for a message box.

8.	 Click Start or press F5. The application compiles and runs.

9.	 Select Amount in the Order By field of the example application.

10.	 Click Query. You’ll see the output shown here:

11.	 Perform steps 9 and 10 for each of the two remaining ordering methods so that you can see
how they work.

Calling a TVF using LINQ

Using LINQ to access your TVF is similar to accessing a stored procedure. In fact, you may not actually
notice much of a difference. It’s important to remember that stored procedures and TVFs are used in
different ways, but that the Entity Framework tends to smooth the playing surface from the devel-
oper’s perspective. Consequently, what may appear to the developer as essentially the same routine is
actually much different beneath the surface. With this in mind, the following procedure shows how to
use the TVF you created earlier with LINQ.

Developing a LINQ application that uses a TVF

1.	 Add a new button named btnQueryLINQ with a Text property of &LINQ to Form1.

2.	 Double-click btnQueryLINQ to create a new click event handler.

3.	 Type the following code for the btnQuery_Click() event handler:

private void btnQueryLINQ_Click(object sender, EventArgs e)
{
 // Create the context.
 Rewards2ModelContainer context = new Rewards2ModelContainer();

 // Make the query.
 var PurchaseList =
 from purchase
 in context.ObtainClients(cbOrderBy.SelectedItem.ToString())
 select purchase;

228   PART III  Manipulating data using the Entity Framework

 // Create a string to hold the result.
 StringBuilder Output = new StringBuilder();

 // Parse the result.
 foreach (var PurchaseEntry in PurchaseList)
 Output.Append(
 PurchaseEntry.CustomerName + " ID " +
 PurchaseEntry.CustomersId + " purchased " +
 PurchaseEntry.Amount + " on " +
 PurchaseEntry.PurchaseDate + "\r\n");

 // Display the result on screen.
 MessageBox.Show(Output.ToString());
}

In this case, the code begins by creating a context. It then uses the context to execute a LINQ
query. Notice that the TVF works in precisely the same way that a stored procedure works.
You simply pass the order you want to use along with the query. The code enumerates the
result of the query and places it in a StringBuilder, Output, which is then displayed on screen.

4.	 Click Start or press F5. The application compiles and runs.

5.	 Select Amount in the Order By field of the example application.

6.	 Click Query. You’ll see the same output as for the Entity SQL example in the “Calling a TVF
Using Entity SQL” section of the chapter.

7.	 Perform steps 5 and 6 for each of the two remaining ordering methods so that you can see
how they work.

Mapping a TVF to an entity type collection

There are advantages to using entities, rather than complex types, when working with TVFs. For one
thing, entities can have key fields, while complex types can’t. The default model update for your TVF
is a complex type. You need to perform that update before you can work with the TVF at all. The fol-
lowing procedure takes you to the next step. It shows how to take the example you’ve already created
and map it to an entity collection.

Mapping a TVF to an entity

1.	 Copy the ModelFirst example you initially created in this chapter to a new folder and use this
new copy for this example (rather than the copy you created earlier).

2.	 Open the copied solution in Visual Studio.

	 Chapter 10  Interaction with Table-Valued Functions    229

3.	 Open Form1 and remove btnAdd, along with its associated code. Choose Build | Build Solution
to make the changes complete.

4.	 Open the Rewards2Model.EDMX file by double-clicking its entry in Solution Explorer.

5.	 Right-click in any clear area of the designer and choose Add New | Entity from the context
menu. You’ll see the Add Entity dialog box shown here:

The name you choose for the entity should reflect its use within the application. Unlike a com-
plex type, an entity should have a key property. The temptation would be to use the Id field
because it’s the key property for the Purchases table. However, this is a TVF, and the RowNo
field is actually the key field in this case.

6.	 Type ObtainClientsEntity in the Entity Name field. Notice that the dialog box automatically
fills in the Entity Set field name for you.

7.	 Type RowNo in the Property Name field. Choose Int64 in the Property Type field. These two
fields define the key field used for this entity.

8.	 Click OK. Visual Studio creates the entity for you.

9.	 Right-click the ObtainClientsEntity entity and choose Add New | Scalar Property from the
context menu.

230   PART III  Manipulating data using the Entity Framework

10.	 Type Amount in the new property entry and press Enter. Visual Studio creates the new scalar
property for you.

11.	 Choose Decimal in the Type property in the Properties window. Because this is a decimal
value, type 18 for the Precision property and 2 for the Scale property.

12.	 Repeat steps 9 through 11 for CustomerName (type String), CustomersId (type Int32), Id (type
Int32), and PurchaseDate (type DateTime and precision 23). At this point, the entity is com-
plete; however, it isn’t yet accessible. Your entity should look like the one shown here:

13.	 Choose Build | Build Solution to create the code required to work with the entity. You’ll see an
error message, “Error 3027: No mapping specified for the following EntitySet/AssociationSet -
ObtainClientsEntities.” Don’t worry, this is normal.

14.	 Select the ObtainClients entry in the Rewards2Model\Function Imports folder of the Model
Browser. You’ll see the properties for this entry in the Properties window, as shown here:

15.	 Click the ellipses in the Return Type property. You’ll see an Edit Function Import dialog box
like the one shown here:

	 Chapter 10  Interaction with Table-Valued Functions    231

16.	 Select the Entities option. Choose ObtainClientsEntity from the associated drop-down list box.
Click OK. The example is now using entity mapping. However, the code won’t compile as-is,
because it still relies on complex type mapping. There’s actually only one line of code you
need to change.

17.	 Change the line of code in the btnQueryEntitySQL_Click() event handler that reads

ObtainClients_Result ThisRow = (ObtainClients_Result)Record[0];

to read

ObtainClientsEntity ThisRow = (ObtainClientsEntity)Record[0];

18.	 Click Start or press F5. The application compiles and runs.

19.	 Select Amount in the Order By field of the example application.

20.	 Click Query. You’ll see the same output as for the Entity SQL example in the “Calling a TVF Us-
ing Entity SQL” section of the chapter.

21.	 Perform steps 5 and 6 for each of the two remaining ordering methods so that you can see
how they work.

232   PART III  Manipulating data using the Entity Framework

Getting started with the Entity Framework

This chapter has helped you understand a little more about TVFs by giving you a general overview. A
lot of developers find TVFs confusing, but most of those who do understand TVFs really want to use
them in their applications. TVFs are nothing more than UDFs that return a table. This latest version of
the Entity Framework provides full support for TVFs, which should make it unnecessary to perform
any odd workarounds to obtain tabular data when needed. The most important thing to remember is
that you must use the latest version of the Entity Framework to get this support—customers who are
using older versions of the Entity Framework will need to upgrade in order to use your code.

It would be relatively easy to play with the TVF examples in this chapter. Make small changes at
first to see how they work. Because you’ll be experimenting quite a bit while getting started with TVFs
anyway, make sure you understand the process for updating the model after a change. The newness
of TVFs makes them a special challenge, so it’s important to do things like trying different data types
to see how they’re mapped by the Entity Framework.

Chapter 11, “Dealing with exceptions,” marks a change in direction. You’ll be starting to work
through errors that the Entity Framework produces and consider how best to deal with them. Any-
thing as complex as DBMSs will experience errors from time to time, even if your code is perfect and
your users input data with absolute accuracy (neither of which is likely to happen). Problems such as
server glitches, downed network connections, data stream corruption, and all sorts of other issues
that aren’t under your control will create errors that you must handle as part of your application code.
Chapter 11 marks the starting point for dealing with the most common sorts of errors.

	 Chapter 10  Interaction with Table-Valued Functions    233

Chapter 10 quick reference

To Do this

Create a TVF Define the TVF using the CREATE FUNCTION statement
with any required parameters. You must define the return
type as a table using the RETURNS TABLE statement and
a table content declaration. This statement can include
a variable, such as @returntable. The table declaration
is followed by the word AS, an INSERT statement, your
query, and the word RETURN. (There are actually many
variations of the TVF—this is just one formulation.) A
simple TVF might look like this:

CREATE FUNCTION SimpleObtainClients
(
)
RETURNS @returntable TABLE
(
 CustomerName NVarChar(Max),
 Id Int,
 PurchaseDate DateTime,
 Amount Decimal(18,2),
 CustomersId Int
)
AS
BEGIN
 INSERT INTO @returntable
 SELECT C.CustomerName,
 P.Id,
 P.PurchaseDate,
 P.Amount,
 P.CustomersId
 FROM Customers AS C
 INNER JOIN Purchases AS P
 ON C.Id = P.CustomersId
 RETURN
END

Alter a TVF Specify which TVF to change using the ALTER FUNCTION
statement, followed by the modifications you want to
make. The process is similar to the one you use for creat-
ing a TVF and for altering other database elements such
as scalar functions, stored procedures, and views.

Create a new TFV using Server Explorer Right-click the Functions folder under the desired da-
tabase entry in Server Explorer and choose Add New |
Table-Valued Function from the context menu.

Update the model so it knows about the TVF Right-click in any clear area of the designer and choose
Update Model From Database from the context menu.
Follow the steps provided by the wizard to include the
TVF in the model (you should see the view added to the
designer, just as you would a table).

		 235

PART IV

Overcoming entity errors

Every application experiences some sort of error from time to time. Even if you have created perfect
code (a near impossibility), the libraries and underlying platform that the application uses to ex-

ecute instructions could be less than perfect. In addition, users can and will create exceptional condi-
tions under which errors occur. You must also consider sources of error due to the local environment
and the environment to which the client computer connects. The network is also a source of errors. In
short, your application will experience errors of various types, and you need to know how to handle
them. That’s the focus of this part of the book—dealing with errors of all sorts.

Chapter 11, “Dealing with exceptions,” discusses exceptions. An exception is an error that occurs
when a condition that the developer couldn’t (or didn’t) anticipate happens within the application, its
network connection, its environment, or the server and its database. Exceptions register exceptional
conditions—unanticipated events.

Chapter 12, “Overcoming concurrency issues,” moves on to a particular kind of error that occurs
in environments where multiple requests overlap and cause problems. Concurrency is a kind of error
that occurs when the consistency of the output of one component is violated by another component.
The result is erroneous data. The data may end up at the client or within the database, but the point
is that concurrency issues cause errors that result when components collide in their interactions and
cause some sort of damage.

Chapter 13, “Handling performance problems,” helps you understand performance as it applies to
the Entity Framework. You may not view performance issues as an error, but delivering data to the cli-
ent at a glacial pace can cause all sorts of problems for the end user. The end user normally responds
to slow applications by damaging them and the data they’re supposed to protect in some way—
usually out of sheer frustration. In short, performance is a significant source of errors that you need to
consider as part of creating robust applications.

		 237

C H A P T E R 1 1

Dealing with exceptions

After completing the chapter, you’ll be able to

■■ Explain what an exception is.

■■ Define common exception sources.

■■ Create code to handle string exceptions.

■■ Create code to handle query exceptions.

■■ Develop methods for handling other exception types.

■■ Define concurrency exceptions.

When you discuss an exception, it’s always in regard to something unexpected. For example, an
exception to a rule is a situation that the rule couldn’t anticipate. You do something different, in

such a case, because the rule didn’t cover it. Application code encounters the same situation. Even the
best developer (or development team) can’t anticipate every contingency. Situations will occur that
defy even the best efforts at mitigation, causing an error. However, you aren’t without resources in
dealing with these situations. Handling an exception with code that deals with the exception by doing
something different—something special—makes a bad situation better.

There are many situations where exceptions occur. This chapter considers some of the most com-
mon sources of exceptions with regard to the Entity Framework. There probably isn’t enough room in
an entire book to cover every possible exception, but this chapter will help you understand those that
happen often enough to cause you real problems with your application.

Note  This chapter doesn’t cover common .NET application exceptions, except where they
overlap with Entity Framework issues. Your application could still encounter other kinds of
errors that have nothing to do with the Entity Framework. For example, the failure of your
application to find an external configuration file is an application-specific error that this
chapter won’t discuss. You still need to handle these sorts of error as part of your applica-
tion code.

If you take nothing else away from this chapter, you should become more aware of the fact that
exceptions happen to everyone. You’re not a bad developer for experiencing exceptions. The appli-
cation only becomes poorly designed when it doesn’t handle exceptions well enough to recover in

238   PART IV  Overcoming entity errors

most cases. Even users understand that exceptions happen, but users are depending on you to handle
those exceptions so they can keep working with the application instead of suffering the consequences
of a crash. The focus of this chapter is on understanding exceptions and then determining what you
can do to handle them in a safe and succinct manner.

Understanding exceptions

There are many schools of thought regarding exceptions. The best way to view an exception is an
event that occurs due to unanticipated or unwanted circumstances. An exception is the response to
an exceptional event, such as when a user enters incorrect information or the network connection
suddenly fails. Some exceptions, such as incorrect user input, are avoidable. You can perform checks
on the incorrect input or you can use controls that don’t allow the incorrect input in the first place.
Other exceptions, such as a failed network connection, are unavoidable—the best you can hope to do
is to handle them when they occur. However, you could still check the network connection before you
use it and potentially avoid the problem using that approach.

When working with the Entity Framework, you not only consider the standard exceptions, but also
exceptions that are Entity Framework specific. The “Considering exception sources” section of the
chapter will provide a detailed view of these exceptions, but for the most part, the main exception
that you need to consider is the System.Data.Entity.EntityException exception. This is the base class for
all entities that are thrown by the EntityClient object. Knowing about this class and the classes that in-
herit from it will help you manage a large percentage of the exceptions that generally occur. However,
you do need to consider other sorts of exceptions that can happen (as described later in the chapter).

It’s important to realize that exceptions aren’t a strange beast in the Entity Framework, much as
you may think from reading some posts and articles. An exception works the same no matter the en-
vironment in which it appears. To take the mystery out of exceptions, simply consider them a means
of informing your application that something unexpected has happened. In some respects, an excep-
tion is a sort of specialized event in that it stops the normal application flow, and you use a special
structure (the try…catch block) to handle the exception. When working with the Entity Framework, as
in every other environment, use these best practices to handle exceptions efficiently and successfully:

■■ Handle small blocks of code  If you place a try…catch block around a huge number of lines of
code, it’s difficult to handle the exception because you don’t precisely know where the excep-
tion occurred or what caused it. Use try…catch blocks that focus on individual tasks so that it’s
more likely that your application will recover from the exception.

■■ Perform setups outside the try…catch block  To ensure that the exception focuses on the task
at hand, rather than the task setup, make sure the setup code resides outside the try…catch
block. This practice not only reduces the number of lines of code within the try…catch block,
but it also helps focus your attention on the task, rather than the task setup, when reviewing
code for potential sources of error.

	 Chapter 11  Dealing with exceptions    239

■■ Use the most specific exception possible  The more precise you can make the exception, the
more likely it is that you’ll discover the true source of an exception. Using general exceptions is
a last ditch effort to keep the application from crashing—not the first line of defense against
exceptions. For example, a System.Data.PropertyConstraintException is more specific (and
therefore a better choice) than a System.Data.ConstraintException. Of course, there are situa-
tions where you need both, because the PropertyConstraintException may not actually catch
the exception you need to catch. However, if you catch the PropertyConstraintException first,
you know that the ConstraintException comes from some other source.

■■ View all pertinent information  Some exception-handling code that you see only checks the
basic information without delving into the details. The detail information, when the code that
throws the exception provides it, can help your application recover from the exception in at
least some cases, but only if your application is designed to use the information.

■■ Rethrow exceptions as needed  If the current code block can’t handle an exception, rethrow
it so that the next level can attempt to repair the problem. Only when you reach the topmost
level of your application should you provide some means of handling, quashing, or ignoring
an exception. The last course of action your application should take is to fail gracefully when
all other courses of action have failed. Make sure your graceful failure doesn’t include data
loss.

■■ Don’t simply log exceptions  A common problem with database applications is that the ap-
plication logs exceptions that no one ever sees. An error can continue to occur for months
before a major data loss event has the administrator actually reviewing the application logs.
By the time the administrator looks at the logs your application creates, it’s usually too late
to correct the problem, and the data is lost. Make sure you provide some positive means
of informing the user, administrator, or developer about an exception. The more critical the
exception, the greater the need to inform multiple parties about it.

■■ Include a finally clause with your try…catch block  It’s important to ensure you don’t make a
situation worse by creating memory leaks or other problems in your application as the result
of an exception. For example, make sure you close and release any resources you may have
in use at the level you’re using them. The most essential task is to close any file resources to
ensure the data is flushed to the file and the application doesn’t experience data loss. You can
read more about the finally clause at http://msdn.microsoft.com/library/dszsf989.aspx.

These are the most common best practices you should follow when handling Entity Framework
exceptions. All of them could apply to any .NET application you can create (even though some are
specifically tweaked for use with the Entity Framework). The reason these best practices are empha-
sized when working with the Entity Framework is the complex environment that the Entity Framework
creates. A lot of activity takes place in the background automatically when you work with the Entity
Framework, and you need to ensure that your application properly handles tasks, because the auto-
mation may not work as expected when an exception occurs.

http://msdn.microsoft.com/library/dszsf989.aspx

240   PART IV  Overcoming entity errors

Tip  You can find a torrent of exceptional-handling advice online. Of course, no one actu-
ally has time to read all of that information. A good site to check for a succinct list of great
general exception tips for .NET developers is at http://www.codeproject.com/Articles/9538/
Exception-Handling-Best-Practices-in-NET.

Considering exception sources

The Entity Framework provides a rich computing experience for developers and users alike. This rich
computing experience also increases the complexity of the Entity Framework, which in turn creates
an environment where exceptions can happen in multiple ways. It’s not surprising that there are a
number of error sources associated with the Entity Framework. The problem is that these exception
sources are spread across a number of namespaces because the Entity Framework covers a lot of
ground. The following sections provide a good overview of the kinds of exceptions that you should
consider handling in your application to ensure the application has the best possible chance of com-
pleting tasks without interruption.

Tip  There are a number of cheat-sheet sites that provide lists of exceptions and cor-
responding short descriptions. For example, you can find one such list at http://www.
mikesdotnetting.com/Article/130/Cheat-Sheet-.NET-Framework-Exceptions. These exception
lists are helpful because they prevent you from having to scour the .NET documentation
looking for exceptions in the various namespaces. Using the most precise exception that
you can makes it a lot easier to handle the exception and potentially avoid an application
crash. Creating your own log of commonly encountered exceptions and how you handled
them is also a big help in locating and repairing similar exceptions later.

Dealing with the System.Data.EntityException
The System.Data.EntityException class acts as the base class for a number of exceptions that occur
when working with the EntityClient object. These are the classes that you use most often to safeguard
your Entity Framework applications. The following list provides a short description of each of the
specific exception classes that inherit from EntityException:

■■ System.Data.EntityCommandCompilationException  This exception occurs when you
create a command that the compiler isn’t able to turn into a command tree. In most cases, it
means that the query you created has some problem with it.

http://www.codeproject.com/Articles/9538/Exception-Handling-Best-Practices-in-NET
http://www.codeproject.com/Articles/9538/Exception-Handling-Best-Practices-in-NET
http://www.mikesdotnetting.com/Article/130/Cheat-Sheet-.NET-Framework-Exceptions
http://www.mikesdotnetting.com/Article/130/Cheat-Sheet-.NET-Framework-Exceptions

	 Chapter 11  Dealing with exceptions    241

■■ System.Data.EntityCommandExecutionException  This exception occurs when you create a
command that the compiler could turn into a command tree, but that the underlying stor-
age provider couldn’t execute for some reason. For example, the user may not have the rights
required to request that the database manager perform the task.

■■ System.Data.EntitySqlException  An Entity SQL query passes command text directly to the
storage provider. This exception indicates that the command text has a syntactic or semantic
rule error in it. In most cases, the error message will tell you the source of the problem, such
as a missing or invalid clause.

■■ System.Data.MappingException  In order to perform a task, the Entity Framework must be
able to map an application command into a command that the storage provider understands.
You see this exception when there isn’t any way to map the request. You could also see errors
that indicate that a particular type has been mapped more than once—this error occurs in
multithreaded applications with synchronization problems.

■■ System.Data.MetadataException  The Entity Framework must be able to find the .CSDL,
.SSDL, and .MSL files used to describe the underlying database mode. When you see this
exception, it means that the application is unable to locate one or more of these files. The
location of the files is stored in the application’s .CONFIG file—in most cases, in a string that
looks like this:

connectionString="metadata=res://*/Rewards2Model.csdl|res://*/Rewards2Model.ssdl|res://*/
Rewards2Model.msl;provider=System.Data.SqlClient;provider

The string is part of the <add> tag that appears as a child of the <connectionStrings> tag. The
names and paths of the metadata files must match the actual application configuration. When
you see this error, the problem is commonly that the developer has changed the name of the
.EDMX file.

■■ System.Data.ProviderIncompatibleException  This exception occurs when you attempt to
use a data provider that isn’t compatible with the version of the Entity Framework that you’re
using. The error can occur even when the data provider worked with a previous version of
the Entity Framework, so it’s important to test the data provider you plan to use as soon as
possible in the application development process. Obtain an updated data provider to fix this
particular problem.

242   PART IV  Overcoming entity errors

Common exceptions that apply to the Entity Framework
There are a number of exceptions that apply to the Entity Framework that are also used in
other situations. For example, the Entity Framework will generate a System.ArgumentException
or System.InvalidOperationException when the EntityConnectionString object is misconfigured.
The EntityConnectionString is used whenever you instantiate an ObjectContext. The connection
string actually appears in the application’s .CONFIG file. It will appear as the <add> tag in the
<connectionStrings> section of the .CONFIG file. The part of the string you need to look at to
resolve this issue is:

 name="Rewards2ModelContainer"

The name attribute value must match the name of the entity container. You’ll receive an
error message, such as “Connection String Can’t Be Found or Is Improperly Configured” or “No
connection string named ‘Container Name’ could be found in the application config file,” when
the two names don’t match. Of course, there can be other problems with the <add> tag as
well, and these other issues can also generate a System.ArgumentException or System.Invalid-
OperationException.

Another common exception is System.NotSupportedException. You can see this exception in
a number of situations. However, in most cases, you see it as the result of making a query that
the compiler can understand, but it has no direct mapping to the data store. One such example
is the ToShortDateString() method used with LINQ. In this case, the compiler understands the
method just fine, but when you try to run the application, it generates a somewhat confusing
message stating that LINQ to Entities doesn’t recognize the method. When you see this sort
of error, you know to look at the methods used in the query to ensure the data store actually
provides a mapping for them. The workaround is to modify the data after the query returns it
to you.

The point is that you need to be prepared to see some common exceptions as part of
working with the Entity Framework. In some cases, the source of the exception might not be
clear from the accompanying message. The best way to proceed is to begin by checking your
query. If the query looks fine, try different formulations to determine whether the source of the
exception is an unsupported mapping, such as the ToShortDateString() method. After you verify
that your query is fine, make sure you check your connection with the database. Of course,
you’ll also want to recheck any setups you perform to ensure that you’re passing valid informa-
tion to the database. Entity SQL queries are especially prone to problems involving typos and
other difficult-to-find issues.

Working through System.Data namespace exceptions
You use the System.Data namespace to access .NET features that work with the ADO.NET architec-
ture. This namespace includes access to all of the data-specific classes (including DataSet, DataTable,
DataRow, and DataColumn) that you work with when accessing a database. In most cases, the Entity

	 Chapter 11  Dealing with exceptions    243

Framework hides many of these data access specifics from view. However, just because they’re hidden
doesn’t mean you won’t see exceptions generated by them when necessary. Of course, you’ve already
seen a number of these exceptions in the “Dealing with the System.Data.EntityException” section of
the chapter. The following list provides a short description of the additional (less common) exception
classes you see when working with the System.Data namespace.

Note  Some exceptions are so generic that it’s unlikely you’ll ever see them, and they don’t
appear in this list. For example, System.Data.DataException acts as the base class for a
host of more specific exceptions, including System.Data.ConstraintException, System.Data.
DeletedRowInaccessibleException, System.Data.Design.TypedDataSetGeneratorException,
System.Data.DuplicateNameException, System.Data.EntityException, System.Data.
InRowChangingEventException, System.Data.InvalidCommandTreeException, System.
Data.InvalidConstraintException, System.Data.InvalidExpressionException, System.
Data.MissingPrimaryKeyException, System.Data.NoNullAllowedException, System.
Data.ObjectNotFoundException, System.Data.ReadOnlyException, System.Data.
RowNotInTableException, System.Data.StrongTypingException, System.Data.
TypedDataSetGeneratorException, System.Data.UpdateException, and System.Data.
VersionNotFoundException.

In addition, there are some exceptions that simply don’t apply to applications that use the
Entity Framework. For example, the System.Data.InRowChangingEventException only applies
when you provide code for the RowChanging event and call the EndEdit() method within
the associated event handler. Since it’s unlikely that you’ll create a handler for this event
when working with the Entity Framework, the exception doesn’t apply. These exceptions
don’t appear in the following list, but you need to be aware that some truly bizarre circum-
stance could cause the Entity Framework to throw them.

Just in case you didn’t think exceptions were confusing enough, at times it’s also possible to
find some exceptions that the .NET Framework documents, but doesn’t use. For example,
the .NET documentation lists the System.Data.InvalidCommandTreeException, and then
promptly tells you that this exception is never used. This list doesn’t include unused excep-
tions. If it turns out that Microsoft uses them sometime in the future, I’ll document them
on my blog for this book, at http://blog.johnmuellerbooks.com/categories/263/entity-frame-
work-development-step-by-step.aspx. However, just because Microsoft isn’t using a particu-
lar exception doesn’t mean you can’t use it in your code.

■■ System.Data.ConstraintException  Whenever you work with the database, you must ad-
here to any constraints placed on working with the various tables. In most cases, the model
you create also provides support for the constraints associated with the database. However,
when the model inadvertently lets you create a query that compromises a constraint, you see
this exception. A special form of this exception is the System.Data.PropertyConstraintException,
which applies specifically to database properties.

244   PART IV  Overcoming entity errors

■■ System.Data.DeletedRowInaccessibleException  This exception occurs when you attempt
to perform an operation on a row that has been deleted. There are specific causes for this
exception, but in general, any task you attempt to perform on the deleted row will throw this
exception. The source of the deletion need not be the client application, but could also be
from an external source.

■■ System.Data.DuplicateNameException  Every object you create in a database must have
a unique name. This exception is thrown whenever you attempt to create two objects of the
same type with the same name. The exception can occur in all sorts of situations. For example,
when reading a data source, such as an RSS feed, it’s possible to have two columns with the
same name. Even though the data file will parse and read correctly, having two columns with
the same name will raise this exception. The solution is to verify that the data source is not
only well formed, but uses unique names for each column you intend to import.

■■ System.Data.EvaluateException  A data column can have an expression that’s used to filter
rows, calculate the values in a column, or create an aggregate column. When the database
manager can’t evaluate this expression, you see this exception thrown. The exception can also
appear when the returned dataset doesn’t contain the column in question. Even if a query
works, it may not return the results you think it will, which can result in this particular
exception.

■■ System.Data.InvalidConstraintException  Although the Entity Framework makes this ex-
ception unlikely, you could create a query that attempts to either define or access a constraint
in an invalid manner. For example, if you create a relationship between a parent and a child
table, the key field must exist in both tables. Using the model-first or database-first workflow
eliminates all possibility of this exception occurring. However, you could possibly see it when
using a code-first workflow.

■■ System.Data.InvalidExpressionException  This is the parent class of System.Data.
EvaluateException and System.Data.SyntaxErrorException. You see it when there’s an error in a
data column expression, but it isn’t either an evaluation or syntax error. Data column expres-
sions are used to filter rows, calculate the values in a column, or create an aggregate column.

■■ System.Data.MissingPrimaryKeyException  Every table you create must have a pri-
mary key. You’ll encounter this particular error relatively often when working with the Entity
Framework, especially when using the model-first workflow. Fortunately, the designer or com-
piler will make you aware of the problem long before you actually run the code in most cases.

■■ System.Data.NoNullAllowedException  This exception is thrown whenever you attempt to
place a null value in a column that has its properties set not to allow null values.

■■ System.Data.ObjectNotFoundException  An object must exist in the model before you
can use it. This exception is thrown when you attempt to use an object that doesn’t exist. In at
least some cases, the cause of the exception could be as simple as a mistyped column name in
a query. It’s easier to create the conditions required for this exception when using Entity SQL
because the query isn’t checked at compile time.

	 Chapter 11  Dealing with exceptions    245

■■ System.Data.OperationAbortedException  A user can choose to abort certain tasks that
your application performs. Just which operations can be aborted depends on the configu-
ration and design of your application. Whenever a user does abort an operation (such as a
record update), you receive this exception. Aborting means that the user chose to prematurely
end the operation, as opposed to the operation simply timing out or encountering an error.

■■ System.Data.PropertyConstraintException  This specifies that a specific kind of constraint
exception has occurred. The application has attempted to modify a property in a way that
creates referential errors within the database. The parent exception is System.Data.Constraint-
Exception.

■■ System.Data.ReadOnlyException  Any time you try to write data to a database field that’s
marked read-only for some reason, the Entity Framework will throw this exception. You
normally see this exception as the result of a call to SaveChanges(). The exception can occur
when you try to write a value to an identity field used as a primary key (normally the Id field)
or when someone has the record locked in a pessimistic concurrency configuration. However,
there are a number of other causes for this problem, including the use of multiple contexts
when working with a database.

■■ System.Data.StrongTypingException  This exception is thrown when a strongly typed data-
set encounters a DBNull value. In fact, the act of calling IsDBNull() can cause the exception in
some cases, such as checking an Int32 field for DBNull, since an Int32 can never contain a null
value. The exception can also occur during a call to a method such as ToList(). If the dataset
includes a property or field that contains a null value, and the property or field shouldn’t con-
tain such a value, the Entity Framework throws this exception.

■■ System.Data.SyntaxErrorException  There are a number of situations in which you’ll see
this exception. The most common is that you actually have an error in the query you created.
This error happens most often when using Entity SQL. However, the problem could be one of
the provider not understanding a query element. For example, when working with MySQL, it’s
possible to see an error of this sort under certain circumstances when using a LINQ Where()
method call. Verify that the query is correct first, and then check to ensure the provider offers
full support for the query options you’ve used.

■■ System.Data.UpdateException  This is a catchall exception that occurs whenever the Entity
Framework can’t update a database and no specific error has occurred. A common source of
this exception is a shared context. A single update fails within the context for a specific rea-
son, such as a System.Data.ReadOnlyException. Because the errant update still resides in the
context, any subsequent call to SaveChanges() will fail and cause an UpdateException because
the update didn’t fail for a specific reason (other than it couldn’t proceed due to the failed
exception). The most important way to avoid this exception is to use the Unit of Work pattern,
described at http://blogs.msdn.com/b/adonet/archive/2009/06/16/using-repository-and-unit-
of-work-patterns-with-entity-framework-4-0.aspx.

http://www.mikesdotnetting.com/Article/130/Cheat-Sheet-.NET-Framework-Exceptions
http://www.mikesdotnetting.com/Article/130/Cheat-Sheet-.NET-Framework-Exceptions

246   PART IV  Overcoming entity errors

Working through System.Data.Common namespace exceptions
The exceptions that you encounter as part of the System.Data.Common namespace are database spe-
cific. They normally reflect some problem with the data source, rather than your code. The issue could
be as simple as a bad connection, but these exceptions normally reflect something a bit more precise
than that. For example, you might see an exception of this sort as the result of a misconfiguration at
the data source. There’s only one data source exception that you commonly see when working with
the Entity Framework:

■■ System.Data.Common.DbException  You see this exception when the system can’t figure
out precisely what is wrong with the data source. (Some developers also use this exception
when creating code that uses data sources from multiple vendors.) It’s more common to see
one of the provider-specific exceptions that inherit from this exception, such as the following:

•	 System.Data.Odbc.OdbcException  An error has occurred with an Open Database
Connectivity (ODBC) data source. Since the Entity Framework doesn’t support ODBC, you
shouldn’t expect to see this particular exception unless you write custom code to
support it.

•	 System.Data.OleDb.OleDbException  An error has occurred with an Object Linking and
Embedding for Databases (OLE-DB) data source. Since the Entity Framework doesn’t sup-
port OLE-DB, you shouldn’t expect to see this particular exception unless you write custom
code to support it.

•	 System.Data.OracleClient.OracleException  An error has occurred with an Oracle-
specific data source.

•	 System.Data.SqlClient.SqlException  An error has occurred with a Microsoft SQL
Server–specific data source.

Note  You may also see exceptions that aren’t listed in the .NET Framework documenta-
tion. In many cases, these exceptions come from non-Microsoft providers that provide the
required Entity Framework support. For example, MySQL provides such support through
the connector provided at http://www.mysql.com/downloads/connector/net. You can read
an article about using this particular provider with the Entity Framework at http://dev.mysql.
com/doc/refman/5.1/en/connector-net-tutorials-entity-framework-winform-data-source.
html. The use of third-party providers is one reason that some developers use the generic
System.Data.Common.DbException, rather than something more specific.

http://dev.mysql.com/doc/refman/5.1/en/connector-net-tutorials-entity-framework-winform-data-source
http://dev.mysql.com/doc/refman/5.1/en/connector-net-tutorials-entity-framework-winform-data-source

	 Chapter 11  Dealing with exceptions    247

Working through System.Data.Linq namespace exceptions
Although the System.Data.Linq namespace documentation says that it’s specific to LINQ to SQL us-
age, it also affects your use of LINQ to Entities when you make LINQ queries and the underlying data
source is SQL Server. (It may affect other providers as well, but there isn’t any documented evidence
to support this idea.) Theoretically, you could see these exceptions when working with Entity SQL
queries, but you’ll more likely see them when using LINQ queries. The following list describes the
exceptions you could see when working with the Entity Framework:

■■ System.Data.Linq.ChangeConflictException  Whenever you attempt to make a change to
a database with optimistic concurrency in place, there’s a chance that someone else will have
made a change between the time you obtained the record and the time you actually submit
any changes. This exception indicates that a change has occurred—someone else has modi-
fied the record. Interestingly enough, this exception can occur when performing a left outer
join or when working with some controls. One way to avoid this problem is to set the Update-
Check property for all non–primary key fields in the table. It’s also important to verify that the
database doesn’t have triggers that could fire between the time you obtain the record and the
time you submit a change. You also need to verify that a field marked nullable in the database
is marked as nullable in the model.

■■ System.Data.Linq.DuplicateKeyException  This exception occurs when you attempt to
add an object that passes a key that has already been used by another object to the identity
cache. For example, you might try to add a duplicate customer to a customer database. You’ll
likely find this exception as an inner exception to a System.Data.UpdateException. Another
potential source of this problem is when you delete an existing object and then create a new
object that contains the same key. Even though you delete the existing object first, the Entity
Framework may actually attempt to perform the insertion first. To avoid this issue, make sure
you call SaveChanges() after each unit of work. In other words, you would call SaveChanges()
after making the deletion to ensure the deletion is actually in place before you attempt the
insertion.

■■ System.Data.Linq.ForeignKeyReferenceAlreadyHasValueException  You see this excep-
tion when your application attempts to modify a foreign key after the entity is already loaded
into the cache. What this essentially means is that the association properties and the foreign
key aren’t equal for some reason—possibly as a result of a query you’ve made. There’s a good
discussion of this issue at http://www.faridesign.net/2010/11/linq-to-sql-operation-is-not-valid-
due-to-the-current-state-of-the-object/.

248   PART IV  Overcoming entity errors

Handling connection string exceptions

A common problem, especially when working on larger projects, is to encounter a problem with an
application’s connection string. The error could come from a multitude of sources. However, in most
cases you can trace the problem down to the application’s .CONFIG file. Something in the .CONFIG
file is wrong or has changed due to a configuration change in the application itself. The following sec-
tions describe how to see the exception and then show how to deal with it.

Seeing the connection string problem
A good technique for working through exception issues is to play with your code to see what sorts
of things can go wrong. Connection string issues can (and do) happen when an application resides
on a client system and is damaged or misconfigured in some way. The following procedure helps you
simulate such a configuration problem so that you can see how it will appear to the end user.

Observing connection string issues

1.	 Copy the LINQ query version of the ModelFirst example you created in Chapter 6, “Manipulat-
ing data using LINQ,” to a new folder, and use this new copy for this example (rather than the
copy you created in Chapter 6).

Note  The LINQ version of the ModelFirst example in Chapter 6 appears in the
ModelFirst (LINQ Query) folder of the downloadable source code. If you created your
own version of the example, the folder name will probably be different.

2.	 Open the copied solution in Microsoft Visual Studio.

3.	 Open the App.CONFIG file found in Solution Explorer.

4.	 Locate the <add> tag within the <connectionStrings> tag.

5.	 Change the following entry:

name="Rewards2ModelContainer"

to read:

name="BadEntry"

6.	 Click Start or press F5. The application compiles and runs.

7.	 Click Query. You’ll see the InvalidOperationException Was Unhandled dialog box shown here:

	 Chapter 11  Dealing with exceptions    249

8.	 Click Stop Debugging. The application stops and the IDE returns to editing mode.

9.	 Reverse the edit you made in step 5 and run the application to ensure that the change works
as expected. Click Query to ensure you see the desired output from Chapter 6.

10.	 Change the following entry:

metadata=res://*/Rewards2Model.csdl

to read:

metadata=res://*/BadEntry.csdl

11.	 Click Start or press F5. The application compiles and runs.

12.	 Click Query. You’ll see the MetadataException Was Unhandled dialog box shown here:

13.	 Click Stop Debugging. The application stops and the IDE returns to editing mode.

14.	 Reverse the edit you made in step 10 and run the application to ensure that the change works
as expected. Click Query to ensure you see the desired output from Chapter 6.

250   PART IV  Overcoming entity errors

Creating code for the connection string problem
Now that you have a better idea of what sorts of exceptions will happen and, more importantly,
where they’ll happen, you can add exception-handling code to the example application. The best way
to approach the issue is to create flexible, yet precise, exception-handling code that will deal with the
majority of the issues in a succinct manner. The following procedure shows one way to deal with the
connection string issues.

Handling a connection string problem

1.	 Open the Form1 source code file and locate the btnQuery_Click() event handler code.

2.	 Modify the code so that it now includes exception-handling code, as shown here:

// Create the new customer list.
IQueryable<Customers> CustomerList = null;

try
{
 // Obtain the customer list.
 CustomerList =
 from cust in context.Customers
 select cust;
}
catch (InvalidOperationException IOE)
{
 // Show an error message.
 MessageBox.Show("Cannot Create the Connection!\r\n" +
 IOE.Message);

 // Exit the event handler.
 return;
}
catch (MetadataException ME)
{
 // Show an error message.
 MessageBox.Show("Cannot Create the Connection!\r\n" +
 ME.Message);

 // Exit the event handler.
 return;
}
catch (DataException DE)
{
 // Show an error message.
 MessageBox.Show("Unexpected Data Exception!\r\n" +
 DE.GetType().FullName + "\r\n" +
 DE.Message);

 // Exit the event handler.
 return;
}
catch (Exception Ex)
{

	 Chapter 11  Dealing with exceptions    251

 // Show an error message.
 MessageBox.Show("Unexpected Error!\r\n" +
 Ex.GetType().FullName + "\r\n" +
 Ex.Message);

 // Exit the event handler.
 return;
}

The first thing you should notice is that CustomerList is now defined separately as
IQueryable<Customers>. You must perform this step to ensure that CustomerList is accessible
outside of the try…catch structure.

Notice that the two specific errors come first. Always test more specific errors before you test
less specific errors. The more precisely you can define an error, the less time you’ll spend fixing
it. In at least some cases, you’ll even be able to recover from the error enough to allow contin-
ued application use. In this case, the application continues to work. However, before this call
can proceed, you must fix the problem.

A less specific exception, DataException, allows you to provide a more detailed message than
using a general exception. However, you’re still not sure which exception has actually oc-
curred, so this error message returns DE.GetType().FullName. This property tells you the actual
exception type so that you can add a specific handler for it.

The final exception is the general exception. It doesn’t tell you anything about the error except
that it happened. As with DataException, the error output returns Ex.GetType().FullName so
that you know what specific exception has happened.

3.	 Open the App.CONFIG file found in Solution Explorer.

4.	 Locate the <add> tag within the <connectionStrings> tag.

5.	 Change the following entry:

name="Rewards2ModelContainer"

to read:

name="BadEntry"

6.	 Click Start or press F5. The application compiles and runs.

7.	 Click Query. This time you’ll see the error dialog box shown here:

252   PART IV  Overcoming entity errors

8.	 Click OK to close the dialog box. Close the application. The application stops and the IDE
returns to editing mode.

9.	 Reverse the edit you made in step 5 and run the application to ensure that the change works
as expected. Click Query to ensure you see the desired output from Chapter 6.

10.	 Change the following entry:

metadata=res://*/Rewards2Model.csdl

to read:

metadata=res://*/BadEntry.csdl

11.	 Click Start or press F5. The application compiles and runs.

12.	 Click Query. Again, you’ll see an error dialog box instead of the exception as you did before.

13.	 Click OK to close the dialog box. Close the application. The application stops and the IDE
returns to editing mode.

14.	 Reverse the edit you made in step 10 and run the application to ensure that the change works
as expected. Click Query to ensure you see the desired output from Chapter 6.

15.	 Change the following entry:

metadata=res://*/Rewards2Model.csdl

to read:

metadata=res://C:/Rewards2Model.csdl

This is actually a malformed string. You’ll see a correctly formed string for a local drive, but
with incorrect information, later in this procedure. An error like this actually happened to
someone as the result of a less skilled administrator manually changing the App.CONFIG file.

16.	 Click Start or press F5. The application compiles and runs.

17.	 Click Query. This error wasn’t trapped by any of the specific exceptions. Instead, you re-
ceive the general exception shown here (which includes the specific error type, System.
IO.FileLoadException):

	 Chapter 11  Dealing with exceptions    253

18.	 Click OK to close the dialog box. Close the application. The application stops and the IDE
returns to editing mode.

19.	 Reverse the edit you made in step 15 and run the application to ensure that the change works
as expected. Click Query to ensure you see the desired output from Chapter 6.

20.	 Change the following entry:

metadata=res://*/Rewards2Model.csdl

to read:

metadata=C:/Rewards2Model.csdl

This change shows how you’d reconfigure an application to use a file on a local drive, rather
than the embedded copy in the application. Using this approach could help you create a tem-
porary fix to the model. However, you must also supply the required file, which isn’t present in
this case.

21.	 Click Start or press F5. The application compiles and runs.

22.	 Click Query. You’ll see the “Cannot Create the Connection!” error message. Notice that the
message tells you precisely what is wrong this time. The application can’t find the resource it
needs on the local drive. Even though the error wasn’t anticipated, the exception handling was
flexible enough to handle it.

23.	 Click OK to close the dialog box. Close the application. The application stops and the IDE
returns to editing mode.

24.	 Reverse the edit you made in step 20 and run the application to ensure that the change works
as expected. Click Query to ensure you see the desired output from Chapter 6.

Adding another layer of exception handling
Exceptions can occur in multiple places in the application. Just because you can create a connection
to the database doesn’t mean that the application will work. The Unit of Work pattern describes a
method of creating applications where each task receives separate handling to ensure you get the
anticipated results. However, the example application still doesn’t do that. The following procedure
will show a weak point and a method for adding handling for that weak point.

Managing entity exceptions

1.	 Open the App.CONFIG file found in Solution Explorer.

2.	 Locate the <add> tag within the <connectionStrings> tag.

254   PART IV  Overcoming entity errors

3.	 Change the following entry:

initial catalog=Rewards2

to read:

initial catalog=Rewards3

4.	 Click Start or press F5. The application compiles and runs.

5.	 Click Query. You’ll see the EntityException Was Unhandled dialog box shown here:

It’s important to notice that this exception occurs in an entirely different place in the applica-
tion. The exception occurs after the connection is made, which means that the connection is
fine, but that something else is wrong.

6.	 Click Stop Debugging. The application stops and the IDE returns to editing mode.

7.	 Open the Form1 source code file and locate the btnQuery_Click() event handler code.

8.	 Modify the code so that it now includes exception-handling code, as shown here:

try
{
 foreach (var Customer in CustomerList)
 {
 // Create a customer entry for each customer.
 Output.Append("\r\n" + Customer.CustomerName +
 " has made purchases on: ");

 // Process each purchase for that particular customer.
 foreach (var Purchase in Customer.Purchases)
 Output.Append("\r\n\t" + Purchase.PurchaseDate);
 }
}
catch (EntityException EE)
{
 // Show an error message.
 MessageBox.Show("Cannot Open the Database!\r\n" +

	 Chapter 11  Dealing with exceptions    255

 EE.Message + "\r\n\r\nDetails:\r\n" +
 EE.InnerException.Message + "\r\n" +
 EE.InnerException.GetType().FullName);

 // Exit the event handler.
 return;
}
catch (Exception Ex)
{
 // Show an error message.
 MessageBox.Show("Unexpected Error!\r\n" +
 Ex.GetType().FullName + "\r\n" +
 Ex.Message);

 // Exit the event handler.
 return;
}

In this case, the exception doesn’t provide enough information. The message is too generic to
be helpful in locating the problem, so you must obtain information from the InnerException
as well. The code demonstrates how to make the output more useful. As before, the excep-
tion handler also includes a generic exception for those situations where the code creates an
exception you didn’t anticipate.

9.	 Click Start or press F5. The application compiles and runs.

10.	 Click Query. This time you’ll see the error dialog box shown here:

Notice that this output is fairly specific. You know that the provider failed when it attempted
to open a resource. The resource is a nonexistent database, Rewards3, and the code attempt-
ed to open it using a specific set of credentials. The underlying error occurred as part of a
System.Data.SqlClient.SqlException.

11.	 Click OK to close the dialog box. Close the application. The application stops and the IDE
returns to editing mode.

12.	 Reverse the edit you made in step 5 and run the application to ensure that the change works
as expected. Click Query to ensure you see the desired output from Chapter 6.

256   PART IV  Overcoming entity errors

Tip  There are many locations online that discuss the need to work with inner exceptions
when working with the Entity Framework. For example, you can see another developer’s
interpretation of this issue at http://www.codeproject.com/Tips/322250/Render-Exceptions-
in-an-Entity-Framework-applicati. The point is that you should consider precisely how to
interact with the Entity Framework exceptions so that you get maximum value from them.
In many cases, the information you need is buried and doesn’t appear as part of the initial
exception (which can prove confusing at first).

Dealing with query exceptions

Queries can be annoyingly difficult to create at times. Even simple queries can go awry due to simple
typos or a developer thinking one thing when another is required. You can create invalid queries
using either LINQ or Entity SQL, but it seems as if Entity SQL is more prone to problems, because it
provides less support in the form of IntelliSense and compiler checks. With this in mind, the following
procedure shows just two of the many ways in which a query can go wrong.

Observing Bad Queries

1.	 Copy the Entity SQL query version of the ModelFirst example you created in Chapter 7,
“Manipulating data using Entity SQL,” to a new folder, and use this new copy for this example
(rather than the copy you created in Chapter 7).

Note  The Entity SQL version of the ModelFirst example in Chapter 7 appears in the
ModelFirst (Display - Entity SQL) folder of the downloadable source code. If you cre-
ated your own version of the example, the folder name will probably be different.

2.	 Open the copied solution in Visual Studio.

3.	 Locate the btnQuery3_Click() method in the Form1.CS source code file and change the
EntitySQLCmd string so it reads as follows:

String EntitySQLCmd =
 "SELECT CustomerList.Id, CustomerList.CustomerName " +
 "FROM Rewards2ModelContainer.Customers " +
 "AS CustomerList " +
 "WHERE CustomerList.Id='Josh Bailey'";

In this case, the query is modified so that it uses the wrong field—Id instead of Customer-
Name. The query will fail because the Id field is an Int32 type, while the CustomerName field is
a String type.

	 Chapter 11  Dealing with exceptions    257

4.	 Click Start or press F5. The application compiles and runs.

5.	 Click Query 3. You’ll see the EntitySqlException Was Unhandled dialog box shown here:

6.	 Click Stop Debugging. The application stops and the IDE returns to editing mode.

7.	 Reverse the edit you made in step 3 and run the application to ensure that the change works
as expected. Click Query 3 to ensure you see the desired output from Chapter 7.

8.	 Change the EntitySQLCmd string so it reads as follows:

String EntitySQLCmd =
 "SELECT CustomerList.Id, CustomerList.CustomerName " +
 "FROM Rewards2ModelContainer.Customers " +
 "AS CustomerList " +
 "WHERE CustomerList.CustomerName>'Josh Bailey'";

Notice that the query is performing a greater-than (>) comparison using a String type. The
comparison is invalid. However, the application will never find the correct error in this case.
The Entity Framework doesn’t see it, nor does Entity SQL, nor does the database. In fact, the
error seemingly has nothing to do with an errant query, as you’ll see in the steps that follow.

9.	 Click Start or press F5. The application compiles and runs.

10.	 Click Query 3. You’ll see the InvalidOperationException Was Unhandled dialog box shown
here:

258   PART IV  Overcoming entity errors

It won’t take long for you to discover that some Entity SQL queries look perfectly valid to the
application, but don’t produce the correct results. This is the reason you must validate the
outcome of any queries you make as part of the testing process. Given a specific set of inputs
and a test database, you should look for specific outputs. When you don’t see those specific
outputs, you know there’s something wrong with the query.

11.	 Click Stop Debugging. The application stops and the IDE returns to editing mode.

12.	 Reverse the edit you made in step 8 and run the application to ensure that the change works
as expected. Click Query 3 to ensure you see the desired output from Chapter 7.

Dealing with other data exception types

Entity Framework applications can create a vast number of exception types depending on the precise
problem domain you’re dealing with at any given time. There isn’t space in this book to show you all
of the exceptions. However, you’ll encounter a number of interesting exception types as you work
through your application development. The following procedure demonstrates a few interesting
exceptions that fall into the other category of exception types.

Observing Other Exception Types

1.	 Copy the LINQ query version of the ModelFirst example you created in Chapter 6 to a new
folder and use this new copy for this example (rather than the copy you created in Chapter 6).

Note  The LINQ version of the ModelFirst example in Chapter 6 appears in the
ModelFirst (LINQ Query) folder of the downloadable source code. If you created
your own version of the example, the folder name will probably be different.

	 Chapter 11  Dealing with exceptions    259

2.	 Open the copied solution in Visual Studio.

3.	 Open the Rewards2Model.EDMX file found in Solution Explorer. Let’s say you decide you need
a larger Id field for Purchases because your customers are buying everything you have (and
you even have a backlog).

4.	 Select the Id property in Purchases.

5.	 Change the Type property in the Properties window to Int64.

6.	 Click Start or press F5. The application compiles and runs.

7.	 Click Query. You’ll see the MappingException Was Unhandled dialog box shown here:

8.	 Click Stop Debugging. The application stops and the IDE returns to editing mode.

9.	 Reverse the edit you made in steps 4 and 5 and run the application to ensure that the change
works as expected. Click Query to ensure you see the desired output from Chapter 6.

10.	 Select the PurchaseDate property in Purchases.

11.	 Change the Entity Key property in the Properties window to True.

12.	 Click Start or press F5. The application compiles and runs.

13.	 Click Query. You’ll see the EntityCommandCompilationException Was Unhandled dialog box
shown here:

260   PART IV  Overcoming entity errors

This is one of those situations where you’d need to look for more information before you
have any chance at all of fixing problem. When creating exception handling in this case, you’d
need to work with the detail information in order to derive the actual source of the problem.
Unfortunately, a lot of exception-handling code stops short at the first level, which means you
might not ever find the error.

14.	 Click View Detail. You’ll see the View Detail dialog box shown here:

You’re getting close to the actual problem. However, just looking at the View Detail dialog box
still won’t tell you what’s wrong.

15.	 Expand InnerException by clicking the right-pointing arrow. Click the down arrow next to the
Message field and you’ll see the following information:

	 Chapter 11  Dealing with exceptions    261

16.	 Click Stop Debugging. The application stops and the IDE returns to editing mode.

17.	 Reverse the edit you made in steps 10 and 11, and run the application to ensure that the
change works as expected. Click Query to ensure you see the desired output from Chapter 6.

Understanding concurrency exceptions

There’s a specific kind of exception—the System.Data.OptimisticConcurrencyException exception (see
http://msdn.microsoft.com/library/system.data.optimisticconcurrencyexception.aspx)—that’s thrown
whenever there’s a conflict updating the database. Conflicts can occur for a number of reasons, such
as one user’s data overwriting another user’s data. Any time two entities are working with the same
record at the same time, there’s a potential for conflict.

Concurrency refers to the database being used for more than one task at a time. Given that a da-
tabase may have hundreds of users, trying to keep all of the changes from conflicting with each other
is a difficult proposition. In some cases, databases employ pessimistic concurrency, where records are
locked until an application releases them. This model ensures that there are few, if any, updates for
which one user overwrites the changes made by another. However, it also causes problems such as
deadlock, where two application instances each have a record needed by the other to complete a
transaction. Microsoft promotes optimistic concurrency, where the records are left unlocked and any
issues are resolved when the update is made. You can read more about these two types of concur-
rency at http://msdn.microsoft.com/library/aa0416cz.aspx.

262   PART IV  Overcoming entity errors

Concurrency rules cover a lot of ground. For example, a database may have a constraint that
doesn’t appear as part of the Entity Framework model. Because the constraint is unknown to the
Entity Framework, it’s possible that your application will violate it as part of an update and the
database will generate this exception. Because this is a somewhat complex issue that could involve
a number of different problems, the book devotes an entire chapter to the topic. Chapter 12, “Over-
coming concurrency issues,” tells you all about the System.Data.OptimisticConcurrencyException and
other related exceptions.

Note  While the most common concurrency exception that you see is the System.Data.
OptimisticConcurrencyException, the Entity Framework can present you with other related
exceptions, such as the System.Data.DBConcurrencyException. In addition, concurrency is-
sues can trigger other exceptions, such as the System.Data.DeletedRowInaccessibleException.
When working with some exceptions, it’s important to keep the source of the exception in
mind—the cause may be outside of your application.

Getting started with the Entity Framework

The essential facts to remember about exceptions are that they register an unanticipated condition
and that they can come from multiple sources—not just your application code. In handling excep-
tions, the first line of defense is to keep the exception from occurring in the first place. The second
line of defense is to detect the exception as accurately as possible to make it possible to handle the
exception without an application crash. Only when you’ve exhausted every other possibility should
you depend on a generic exception. In most cases, it should be possible to recover from an excep-
tion and allow the application to continue handling user needs. However, if it becomes impossible to
recover, the application should always fail gracefully without any loss of data. Data loss is the ultimate
transgression that any application can commit because the value of an application is in the data it
protects and manages on the user’s behalf.

This chapter contains a number of examples of errant applications and demonstrates how to
handle the errors they create. However, the examples don’t demonstrate every sort of exception. One
useful technique for discovering how a particular exception looks is to simulate it. You might be sur-
prised to discover that some exceptions really don’t act the way that you think they might. Knowing
how an exception looks can help you diagnose and fix it faster when the boss is breathing down your
neck wondering when the application will be running again. Simulations are also a valuable way to
ensure that your application adequately handles exceptions that could occur.

	 Chapter 11  Dealing with exceptions    263

Concurrency issues occur when two components try to use the same resource simultaneously. The
components can appear in the same application or as part of different applications. In fact, the hard-
est concurrency issues to diagnose occur when two different applications try to use the same resource
at the same time and the developers of those applications don’t have much contact with each other.
They may not even realize the other application exists. Chapter 12 can’t solve every concurrency issue
you’ll encounter when building applications, but it does provide valuable information on diagnosing
and repairing concurrency issues that occur as part of the Entity Framework.

Chapter 11 quick reference

To Do this

Increase the chances of finding a specific exception cause Use the most specific exception class as the starting point
in a try…catch block, and then work your way to toward
more generic exception classes.

Increase the chances of locating the specific site of an
error in your code

Use multiple try…catch blocks around a smaller number
of lines of code so that the source of an error is specific to
a particular task, rather than a group of tasks within the
code.

Determine the cause of exceptions when the message is
too generic

Use the InnerException and process its contents. In fact,
you may have to process several levels of InnerException
properties to determine the true source of an exception.

Define the actual exception when using a generic excep-
tion handler

Obtain the actual exception name using the GetType().
FullName property of the exception object.

Ensure an exception is actually handled Rethrow the exception as needed so that a higher level
of code in your application can attempt to handle the
exception. Never quash or ignore an exception at lower
levels.

Reduce the risk of lost data Include a finally clause in your try…catch block to ensure
that all resources are freed and file handles closed. An
exception creates a situation where the .NET application
may not properly release resources, resulting in data loss.

Ensure that the application can connect to the server
without error

Verify that the <add> tag in the <connectionStrings>
section of the application’s .CONFIG file is set up correctly.
Although every attribute associated with the <add> tag is
important, the two most commonly misconfigured attri-
butes are name and connectionString.

	 Chapter 12  Overcoming concurrency issues    265

C H A P T E R 1 2

Overcoming concurrency issues

After completing the chapter, you’ll be able to

■■ Describe database concurrency issues and tell how they affect use of the Entity Framework.

■■ Define optimistic concurrency and describe how its use affects applications.

■■ Demonstrate how to use optimistic concurrency in an application.

■■ Define pessimistic concurrency and describe how its use affects applications.

Concurrency is the act of allowing multiple entities to perform multiple tasks on a database at the
same time. In order to be useful, a database must provide some level of concurrency to perform

Create, Read, Update, and Delete (CRUD) operations in a meaningful way. It turns out that some
CRUD operations are more likely to cause problems than others. For example, a read-only database
would have few, if any, concurrency problems. The first section of this chapter helps you visualize
these issues so you can gain a better understanding of the complexity that concurrency brings.

The issue of concurrency is quite complex. There are different ways to implement it; there are
different methods of ensuring that it meets Atomicity, Consistency, Isolation, and Durability (ACID)
requirements; and there is a wealth of other topics that would take an entire book to discuss. This
chapter discusses concurrency from an Entity Framework perspective in a relatively simple fashion,
involving optimistic and pessimistic concurrency (another form of concurrency—semioptimistic—
isn’t supported in any manner by the Entity Framework or the .NET Framework and is therefore not
covered). The combination of the Entity Framework, the .NET Framework, and Microsoft SQL Server
reduces the complexity of dealing with concurrency, and this chapter assumes you make use of all the
features provided by each technology.

Even with the assistance provided by the tools discussed in this chapter, concurrency can still go
wrong at times. For example, when using optimistic concurrency, two users can still fight over the
same record in the database, which means you must provide a method for resolving the issue that
doesn’t involve constant Database Administrator (DBA) intervention. This chapter provides some ba-
sics on how to perform this task in order to meet most application development needs.

266   PART IV  Overcoming entity errors

Warning  This chapter takes a very simple view of concurrency. However, it’s important to
realize that there are many different ways in which to view concurrency, and there are a
lot of underlying issues that the automation provided by the tools discussed in this book
take care of for you. As the development environment becomes more complex, so do the
concurrency issues. The use of multiple platforms complicates the means used to access
the database and therefore affects concurrency, as does the use of databases from mul-
tiple vendors. This chapter doesn’t address these complex issues, but you need to know
they exist so you can prepare for them adequately. When in doubt, make sure you research
potential concurrency issues before you place an application in production, because once
the application is in production, it’s actually too late to address the issues without potential
data loss.

Visualizing database concurrency issues

The reason that databases are so useful is that they allow any number of people to share the same
information. The only limiting factor is how well the database scales (handles the additional burden
placed on it by each user who requires access). As the number of users increases, the concurrency is-
sues also increase. The following list describes common concurrency problems:

■■ User A is trying to read a record that is in use by User B for an update or deletion.

■■ User A and User B are both changing different fields of the same record.

■■ User A is trying to update a record that User B deleted.

■■ User A and User B are both trying to add the same data to the database at the same time.

■■ User A and User B are both trying to delete the same record at the same time.

These scenarios happen relatively often with just 2 users, so you can imagine what happens when
40 or 50 users are all vying for the same records. In most cases, even with large databases, users are
typically vying for control of relatively few records. For example, new customers may require updates,
and customers that shop at a particular organization may require more attention than those who
don’t. On the other hand, some records can sit for years in a database without ever being touched.

There are many situations where you don’t need to worry about concurrency. For example, User A
and User B can both read the same record at the same time without problem. However, it’s helpful to
provide yourself with a complete list of potential scenarios and their effects on the database so that
you’re better prepared to choose policies that work for the greatest number of people as much of the
time as possible.

Part of creating a database application is to determine how to handle the concurrency problems
before you even create a model. Company policies usually dictate how to handle these issues, but in

	 Chapter 12  Overcoming concurrency issues    267

the absence of clear policies, you need to determine what to do when collisions occur. Here are some
examples of ways in which you can handle concurrency issues:

■■ Provide a user with a read-only copy of a record.

■■ Create a record that is a composite of the changes that are made in individual fields of a
record.

■■ Accept the changes of one user in favor of changes made by another based on the order of
precedence established for various groups in the organization.

■■ Tell the user that the record has been deleted and that the changes will be discarded.

■■ Allow the user to re-create the original record and make changes to it.

■■ Tell a user that there’s a duplicate record in the database and discard the duplicate.

■■ Allow a user to merge differences between duplicate records to create a new composite
record.

■■ Accept the first deletion request and ensure that a second deletion request doesn’t cause an
exception or other database issues.

Note  You should always tell a user how a concurrency problem is handled. Otherwise, the
user will think that any changes are accepted and the database may end up containing con-
taminated, incorrect, or otherwise useless data. Even if the user doesn’t have the permis-
sions required to correct record change issues, knowing about the problem will allow the
user to ask an administrator to make the required changes.

There’s no magic bullet when it comes to concurrency problems. Every policy you put in place will
have pros and cons, and more than a few compromises. For example, creating a composite record
based on the changes submitted by two users means that neither user fully realizes precisely how the
changes are made. In addition, using one or the other user’s edits may be correct, but using a com-
posite version may not—the composite record may contain incorrect or incompatible data.

You also need to consider the two forms of concurrency that the Entity Framework supports (pes-
simistic concurrency is supported only indirectly). The following list provides a quick overview of both
types and tells you the pros and cons of using it (you’ll read more about both types of concurrency in
the sections that follow).

■■ Optimistic  Using optimistic concurrency means that when a user requests a record, it’s
placed in a local cache, and then the user uploads the changed record as a separate task. Us-
ing this option means that the database server uses fewer resources to service users because
the resources are freed immediately after a request. In addition, multiple users can check out
a record at the same time, so there are no deadlocks. Overall, optimistic concurrency focuses
on high performance and flexibility with long record modification times. You normally use op-
timistic concurrency in an environment where users work with a large number of records and

268   PART IV  Overcoming entity errors

there’s little contention for records. In addition, this is the only option available for web-based
and other disconnected-scenario applications.

■■ Pessimistic  Using pessimistic concurrency means that when a user requests a record, the
database manager locks the record, and the user gains direct access to that record during the
CRUD process. Because the record is locked, there’s less chance of a conflict. However, this op-
tion also requires a dedicated connection throughout the process, which means it won’t work
in disconnected scenarios. Overall, pessimistic concurrency focuses on reliability and security
with short record modification times. You normally use pessimistic concurrency in an environ-
ment where there’s a lot of contention for a small number of records.

Note  There’s a third potential option, called last in wins. In this scenario, the user requests
a record that is downloaded to a local cache. The user makes any required changes to the
record. During the update process, the record is locked by the database manager so that no
one else can access the record during that short interval. However, there isn’t any attempt
made to compare the new record with the old record, so this option could end up overwrit-
ing newer changes made by another user. Because of the risky nature of this option, it isn’t
discussed in this book. You can read about this option at http://msdn.microsoft.com/library/
cs6hb8k4.aspx.

Considering optimistic concurrency problems

Optimistic concurrency doesn’t rely on locks to ensure the integrity of the database. It typically repre-
sents the preferred method for working with the database, because most developers view it as more
flexible and scalable than working with pessimistic concurrency. The main sticking point with optimis-
tic concurrency is that you must provide some means of resolving conflicts when they occur. Conflicts
occur whenever two parties interact with the record at the same time. The most common ways of
dealing with this issue are as follows:

■■ Reject the change completely and ask the user to work with the new data.

■■ Update only the record columns that haven’t changed since the record was read and reject
any columns that were already updated.

■■ Automatically update the record columns that haven’t changed since the record was read and
then ask the user about any columns that were already updated.

■■ Ask the user about each updated record column to determine which data to keep.

■■ Ignore the conflict completely.

■■ Overwrite any changes with all of the data from the updated record after asking user
permission.

	 Chapter 12  Overcoming concurrency issues    269

■■ Automatically overwrite any changes with all of the data from the updated record without
asking permission.

Each of these solutions to the problem of concurrency conflicts presents problems. There’s no
perfect solution—there’s simply the solution that works best in a particular situation with a specific
application. The following sections discuss these options in more detail (in order from more favorable
to the server to more favorable to the user).

Considering updates and legal issues
There are a number of settings where you need to consider the legality of allowing mixed
updates to a record. For example, allowing multiple updates to a single patient record in
a medical database could run afoul of Health Insurance Portability and Accountability Act
(HIPAA) regulations (see http://hipaa.stanford.edu/). When creating a database for a sensitive
application, you need to consider the potential legal ramifications of your update strategy,
along with the potential for consistency issues with the record. No one would want to create a
situation where consistency issues in a patient record would actually cause injury to the patient.
Of course, it’s essential to get legal advice from a professional trained in that area before you
proceed.

A problem for developers is that most aren’t trained to recognize potential legal or other is-
sues outside their professional experience. This is the reason that you must have a development
team that includes not only developers, but professionals from all of the areas that will interact
with the application. An update strategy that seems perfectly acceptable to a developer may
not work for other reasons. As a consequence, you need to get input from people who know
about such things and ensure that your design meets these criteria.

Legal or other issues represent the main reason you might need to use pessimistic concur-
rency. In some cases, you must guarantee that only one person can touch a record at any given
time because you must build a chain of authenticated changes. In other words, you must be
able to prove that a specific person is responsible for a given change.

Rejecting the change
Detecting that the record has changed since it was last read and sending that updated information to
the user instead of performing the update is the best way to ensure the user is performing updates
on the most current version of the record. It’s also the best way to create truly frustrated users who
would rather do anything other than use the application you created. In some cases, you may have to
resort to this approach because the integrity of the data—ensuring that the user makes changes to
only the most current version of a record—is essential. For example, consider what would happen if
someone at your bank showed that you had made a withdrawal from one account, but failed to show
that the withdrawal was used as a deposit to another account. Using only the most current records
will alleviate this sort of problem.

270   PART IV  Overcoming entity errors

As an alternative to losing the user’s updates completely, you can offer to reapply them after the
user reviews the updated record. In this way, the update process is still easier on the user, but it also
ensures that the integrity of the data retains first-class status. The Entity Framework doesn’t provide
any means to perform this sort of update automatically; you must implement the logic within your
code as a separate bit of logic.

Note  This strategy is also called store wins in some texts. Essentially it means that the data
store wins every contention issue when it comes to concurrency.

Performing a partial update
Performing a partial update helps ensure that any new information in a record remains there. For
example, when User A updates the customer’s name and last visit date, and User B updates the
customer’s birth date and last visit date, the customer name and birth date fields aren’t in conflict.
Updating them won’t cause any problem. A partial update would then either accept the first update
to the last visit date and reject the second, or it would give the user the chance to select between the
two entries. The advantage to this approach is that it enables the application to accept as many of the
changes as possible.

The problem with this approach is that the updates aren’t necessarily consistent. The updates
could mix in a way that creates an inconsistency and actually makes the data incorrect. Using all of
the updates from User A would work, and using all of the updates from User B would work, but the
mixture of the two wouldn’t. Consistency errors can occur in a number of different settings, so you
need to make sure that mixing update information from two users won’t cause problems for your
particular database.

Obtaining user input
In some cases, you must ensure that there are as few consistency errors as possible. Even when the
application performs a partial update, you want to be sure that this update doesn’t conflict with exist-
ing data or with data that has changed since the application last read the record. To use this strategy,
you ask the user to approve every change to the database when there’s a concurrency issue. Other-
wise, the database accepts all of the changes without problem. The advantages to this approach are
that the changes aren’t rejected outright and the user’s changes aren’t overwritten; however, the user
is also made aware of how the changes are affecting the information in the record.

Ignoring concurrency issues completely
The Entity Framework ignores concurrency issues by default. However, it assists with them as well, by
only updating columns that have changed in the record. In this situation, if two users make noncon-
flicting changes to a record, then both of those changes will appear, even if you haven’t implemented
any special logic. For example, User A might update the customer’s name field, while User B updates
the customer’s birth date. Both changes will appear when you use the default configuration because

	 Chapter 12  Overcoming concurrency issues    271

the Entity Framework will only update the customer’s name field in the first case (for User A) and
only update the customer’s birth date field in the second case (for User B). The net result is that both
changes appear.

However, you also need to consider the situation where there are conflicting changes. If both User
A and User B update the customer’s last visit field and User B submits the changes last, then the User
B change will be the one that remains, even if the User A change was more accurate. The result of
ignoring concurrency issues is that the data could have integrity issues. Some data might be incorrect,
and you wouldn’t know it without performing a complete audit.

Warning  Ignoring concurrency issues only works with small organizations. As the number
of people accessing the database increases, so does the number of conflicts. An increased
number of conflicts will yield progressively greater integrity issues, eventually making the
database unusable. At some point, the data will become so suspect that no one can rely on
it for anything other than a guideline as to what the actual data should be.

Performing a forced update
There’s a chance that you’ll want to force an update even when there are concurrency issues to ensure
that just one version of the record appears in the database. Using this approach avoids any potential
consistency errors in the record at the expense of changes made by other users. The last application
to make a change to the record always wins. When using this strategy, the record is always fully up-
dated, even if the user hasn’t changed some of the fields, to ensure that the resulting record appears
precisely the same as it did to the end user making the change.

Using this strategy can result in data loss and user arguments. A user could rightfully argue that a
change did appear in the database, even though it was later overwritten. A way around this problem
is to provide alerts to users who have had changes overwritten. The alert should contain information
that was overwritten by the latest record. Implementing this strategy could prove complex because
you’d need to track who’s making each change, and you’d need some way to ensure they receive the
required alerts.

Note  This strategy is also called client wins in some texts. What it means is that the client
application always wins every contention issue when it comes to concurrency.

Implementing optimistic concurrency in an application

There are a number of methods you can use to implement concurrency in an application. For ex-
ample, you can use the simple approach of verifying that the row version hasn’t changed. You can
also verify that specific fields haven’t changed or check the fields that you want to update for changes
before you make the update. Of course, before you can verify anything, you need a test environment

272   PART IV  Overcoming entity errors

in which to do it. The first section that follows shows how to create a test environment. The sections
that follow after the first section tell how to implement and test various levels of optimistic concur-
rency in your application.

Developing the test environment
In order to make it easier to understand how concurrency works, you need a test environment. The
following procedure helps you create a test environment for this chapter. The test environment will
provide two users, User A and User B. By trying out various changes using User A and User B, you can
see how a particular concurrency strategy works. In addition, you can tweak your code to obtain spe-
cific effects as part of a concurrency strategy. For example, you need to determine whether to alert
the user to changes so that the user can make a decision about which update to accept.

Adding a form to create the test environment

1.	 Copy the ModelFirst example you created in Chapter 3, “Choosing a workflow,” to a new
folder, and use this new copy for this example (rather than the copy you created in Chapter 3).

2.	 Open the copied solution in Microsoft Visual Studio.

3.	 Right-click the TestModelFirst entry in Solution Explorer and choose Add | Windows Form.
You’ll see the Add New Item dialog box shown here:

4.	 Type UpdateRecord.CS in the Name field and click Add. Visual Studio adds the new form to
the project.

5.	 Add two buttons (btnUpdate and btnCancel), three labels (lblName, lblPurchaseDate, and
lblAmount), and three text boxes (txtName, txtPurchaseDate, and txtAmount) to the form, as
shown here:

	 Chapter 12  Overcoming concurrency issues    273

6.	 Double-click btnClose to create the btnClose_Click() event handler, and add the following code
to it:

private void btnCancel_Click(object sender, EventArgs e)
{
 // Close the dialog box when finished.
 Close();
}

7.	 Double-click the UpdateRecord form to create the UpdateRecord_Load() event handler, and
add the following code to it:

// Provide tracking variables for each field.
String OldName = "";
DateTime OldPurchaseDate = new DateTime();
Decimal OldAmount = new Decimal();

private void UpdateRecord_Load(object sender, EventArgs e)
{
 // Create the context.
 Rewards2ModelContainer context = new Rewards2ModelContainer();

 // Obtain the purchase records.
 var PurchaseData =
 from PD in context.Purchases
 select PD;

 // Add the data from the first record to the form.
 txtName.Text = PurchaseData.First().Customer.CustomerName;
 txtPurchaseDate.Text =
 PurchaseData.First().PurchaseDate.ToShortDateString();
 txtAmount.Text = PurchaseData.First().Amount.ToString();

 // Save the old values.
 OldName = PurchaseData.First().Customer.CustomerName;
 OldPurchaseDate =
 PurchaseData.First().PurchaseDate;
 OldAmount = PurchaseData.First().Amount;
}

274   PART IV  Overcoming entity errors

Notice that the application tracks the original value of each field. You’ll see how this comes
into play later.

To display the data on screen, the code simply creates a context and retrieves the data from
the first record. It also saves the existing values to the global variables for later use.

8.	 Add the following method to the UpdateRecord.CS file:

private void DisplayData()
{
 // Create the context.
 Rewards2ModelContainer context = new Rewards2ModelContainer();

 // Obtain the purchase records.
 var PurchaseData =
 from PD in context.Purchases
 select PD;

 // Save the new values.
 OldName = PurchaseData.First().Customer.CustomerName;
 OldPurchaseDate =
 PurchaseData.First().PurchaseDate;
 OldAmount = PurchaseData.First().Amount;

 // Display the content of the first record.
 StringBuilder Output = new StringBuilder();
 Output.Append(PurchaseData.First().Customer.CustomerName +
 "\r\n" + PurchaseData.First().PurchaseDate +
 "\r\n" + PurchaseData.First().Amount);
 MessageBox.Show(Output.ToString());
}

When the updating process is complete, you want to display the data on screen. Part of the
update process includes saving the new data values, whatever they might be, to the local vari-
ables. Otherwise, any additional changes the user makes won’t be reflected in the database.
Keeping the local variables updated is a requirement if you want to keep your application in
sync with the database.

9.	 Double-click btnUpdate to create the btnUpdate_Click() event handler, and add the following
code to it:

private void btnUpdate_Click(object sender, EventArgs e)
{
 // Display the data on screen.
 DisplayData();
}

10.	 Select Form1 and add a new button, btnConcurrency, with a Text property value of
&Concurrency.

11.	 Double-click btnConcurrency to create the btnConcurrency_Click() event handler, and add the
following code to it:

	 Chapter 12  Overcoming concurrency issues    275

private void btnConcurrency_Click(object sender, EventArgs e)
{
 // Create the User 1 dialog box and display it.
 UpdateRecord User1 = new UpdateRecord();
 User1.Text = "User 1 Update";
 User1.Show(this);

 // Create the User 2 dialog box and display it.
 UpdateRecord User2 = new UpdateRecord();
 User2.Text = "User 2 Update";
 User2.Show(this);
}

12.	 Click Start or press F5. The application compiles and runs.

13.	 Click Concurrency. You’ll see two dialog boxes appear: User 1 Update and User 2 Update. The
forms will have the appropriate data entered into the controls.

14.	 Click Update. You’ll see a dialog box containing the current content of the database.

15.	 Click OK to close the dialog box.

16.	 Click Cancel on the User 1 Update and User 2 Update dialog boxes. The dialog boxes close.

17.	 End the application.

Testing the default concurrency
You obviously don’t need to implement the default concurrency support; it’s already provided as
part of the Entity Framework. However, you do need to know how it works. Now that you have a test
environment to use, you need to see how default concurrency works. The following procedure helps
you understand the default concurrency so that you can determine when it will work best for your
particular needs.

Seeing the default concurrency at work

1.	 Modify the btnUpdate_Click() event handler so that it includes the following code to perform
updates:

private void btnUpdate_Click(object sender, EventArgs e)
{
 // Create the context.
 Rewards2ModelContainer context = new Rewards2ModelContainer();

 // Perform the required updates.
 if (OldName != txtName.Text)
 context.Purchases.First().Customer.CustomerName = txtName.Text;
 if (OldPurchaseDate.ToShortDateString() != txtPurchaseDate.Text)
 context.Purchases.First().PurchaseDate =
 Convert.ToDateTime(txtPurchaseDate.Text);
 if (OldAmount.ToString() != txtAmount.Text)
 context.Purchases.First().Amount =

276   PART IV  Overcoming entity errors

 Convert.ToDecimal(txtAmount.Text);
 context.SaveChanges();

 // Display the data on screen.
 DisplayData();
}

Notice that the code is designed to update a field only when there’s an actual change to
make. If you update every field every time, even if there isn’t a change, then the Entity
Framework will update the entire record. The last user to make changes will win because the
changes made by that user will overwrite every other change.

2.	 Click Start or press F5. The application compiles and runs.

3.	 Click Concurrency. You’ll see User 1 Update and User 2 Update dialog boxes appear. At this
point, the content of the two dialog boxes is equal.

4.	 Select User 1 Update and change the Amount field to read 6.99. Click Update. You’ll see a
dialog box containing the current content of the database. Notice that the amount is now
6.99, which matches the User 1 Update dialog box. However, the User 2 Update dialog box still
shows 5.99.

5.	 Click OK to close the dialog box.

6.	 Select User 2 update and change the Purchase Date field to read 2/17/2013. Click Update.
You’ll see a dialog box containing the current content of the database. The database now
reflects the individual changes made by User 1 and User 2, as shown here:

Notice that the dialog box now shows the combined changes of the two users. The changes
are melded into a new record that doesn’t have any conflicts. However, neither user’s form
shows the correct information at this point.

7.	 Click OK to close the dialog box.

8.	 Select User 1 Update and change the Purchase Date field to 2/18/2013. Click Update. The
output now contains 6.99 for the amount and 2/18/2013 for the date. The User 2 change has
been overwritten.

9.	 Click OK to close the dialog box.

10.	 Click Cancel on the User 1 Update and User 2 Update dialog boxes. The dialog boxes close.

11.	 End the application.

	 Chapter 12  Overcoming concurrency issues    277

Coding for field changes
You can add code to your application to mitigate some of the issues with concurrency. This approach
doesn’t require any special changes to the model or database. The following procedure shows a
coded approach you can apply to an application to enforce concurrency by interacting with the user.

Using field-level concurrency enforced by coding

1.	 Modify the btnUpdate_Click() event handler so that it includes the following code to perform
updates:

private void btnUpdate_Click(object sender, EventArgs e)
{
 // Create the context.
 Rewards2ModelContainer context = new Rewards2ModelContainer();

 // Obtain the purchase records.
 var PurchaseData =
 from PD in context.Purchases
 select PD;

 // Perform the required updates.
 if (OldName != txtName.Text)
 {
 if (PurchaseData.First().Customer.CustomerName != OldName)
 {
 if (MessageBox.Show(
 "Name field value has changed to " +
 PurchaseData.First().Customer.CustomerName +
 " Make the change anyway?", "Updating Newer Data",
 MessageBoxButtons.YesNo) == DialogResult.Yes)
 context.Purchases.First().Customer.CustomerName =
 txtName.Text;
 }
 else
 context.Purchases.First().Customer.CustomerName = txtName.Text;
 }

 if (OldPurchaseDate.ToShortDateString() != txtPurchaseDate.Text)
 {
 if (!PurchaseData.First().PurchaseDate.Equals(OldPurchaseDate))
 {
 if (MessageBox.Show(
 "Purchase Date field value has changed to " +
 PurchaseData.First().PurchaseDate +
 " Make the change anyway?", "Updating Newer Data",
 MessageBoxButtons.YesNo) == DialogResult.Yes)
 context.Purchases.First().PurchaseDate =
 Convert.ToDateTime(txtPurchaseDate.Text);
 }
 else
 context.Purchases.First().PurchaseDate =
 Convert.ToDateTime(txtPurchaseDate.Text);
 }

278   PART IV  Overcoming entity errors

 if (OldAmount.ToString() != txtAmount.Text)
 {
 if (!PurchaseData.First().Amount.Equals(OldAmount))
 {
 if (MessageBox.Show(
 "Amount field value has changed to " +
 PurchaseData.First().Amount +
 " Make the change anyway?", "Updating Newer Data",
 MessageBoxButtons.YesNo) == DialogResult.Yes)
 context.Purchases.First().Amount =
 Convert.ToDecimal(txtAmount.Text);
 }
 else
 context.Purchases.First().Amount =
 Convert.ToDecimal(txtAmount.Text);
 }

 context.SaveChanges();

 // Display the data on screen.
 DisplayData();
}

Notice that the application now checks the old data against the database before making an
update. When the database doesn’t match the old data, the application asks the user about
making the update. Only when the user clicks Yes is the change made.

2.	 Click Start or press F5. The application compiles and runs.

3.	 Click Concurrency. You’ll see User 1 Update and User 2 Update dialog boxes appear.

4.	 Select User 1 Update and change the Amount field to read 5.99. Click Update. You’ll see a
dialog box containing the current content of the database.

5.	 Click OK to close the dialog box.

6.	 Select User 2 Update and change the Amount field to read 10.99. Click Update. This time you’ll
see the Updating Newer Data dialog box shown here:

The dialog box shows the new value in the database, which doesn’t match the value on the
form. You need to tell the application to make the update anyway.

7.	 Click Yes. You’ll see a dialog box containing the current content of the database, which in-
cludes the updated Amount field value.

	 Chapter 12  Overcoming concurrency issues    279

8.	 Select User 1 Update and change the Amount field to read 6.99. Click Update. You’ll see the
Updating Newer Data dialog box.

9.	 Click No. You’ll see a dialog box containing the current content of the database. However, this
time the Amount field retains the value of 10.99 instead of the new value of 6.99.

10.	 Click OK to close the dialog box.

11.	 Click Cancel on the User 1 Update and User 2 Update dialog boxes. The dialog boxes close.

12.	 End the application.

Using field-specific concurrency
It’s possible to tell the Entity Framework to check on concurrency for you. One way to do this is to set
the Concurrency Mode property for each of the fields you want to verify. This method works great,
even with DBMSs that don’t support a row-version strategy. However, it has two shortcomings you
need to consider:

■■ Any field you don’t set up correctly won’t be checked for concurrency problems.

■■ Using this approach tends to make your application run slower because the resulting query is
larger than if you had used row-version concurrency.

Even so, this approach is relatively straightforward, and you can use it even if your database isn’t
configured for row-version concurrency. All you need to do is modify the model a little and you’re
ready to go. The following procedure shows how to use this approach.

Performing field-specific concurrency

1.	 Open the Rewards2Model.EDMX file found in Solution Explorer.

2.	 Select the CustomerName property in Customers and choose Fixed for the Concurrency Mode
property of the Properties window.

3.	 Select the PurchaseDate property in Purchases and choose Fixed for the Concurrency Mode
property of the Properties window.

4.	 Select the Amount property in Purchases and choose Fixed for the Concurrency Mode prop-
erty of the Properties window.

5.	 Select Form1 and add a new button, btnRowVersion, with a Text property value of &Row
Version.

6.	 Double-click btnRowVersion to create the btnRowVersion_Click() event handler and add the
following code to it:

private void btnRowVersion_Click(object sender, EventArgs e)
{
 // Create contexts for User 1 and User 2.

280   PART IV  Overcoming entity errors

 Rewards2ModelContainer context1 = new Rewards2ModelContainer();
 Rewards2ModelContainer context2 = new Rewards2ModelContainer();

 // Get the record for User 1.
 var User1 = context1.Purchases.First();

 // Get the record for User 2.
 var User2 = context2.Purchases.First();

 // Make a change and save it for User 1.
 User1.Amount = Convert.ToDecimal(7.99);
 context1.SaveChanges();

 // Make a change and save it for User 2.
 User2.Amount = Convert.ToDecimal(10.99);
 context2.SaveChanges();

 // Display a success message.
 MessageBox.Show("Update Succeeded!");
}

When testing this kind of concurrency, make sure each user has a different context to use. No-
tice that the users are changing the same field and that the changes from User 1 appear in the
database before User 2 begins making a change. The important thing is that the change must
be saved to update the concurrency so that User 2 will see a different record.

7.	 Click Start or press F5. The application compiles and runs.

8.	 Click Concurrency. Type 4.99 in the Amount field when you see the two user dialog boxes ap-
pear. This step ensures that User 1 will actually change the value in the database.

9.	 Click Update, and then click Cancel twice to close the two user dialog boxes.

10.	 Click Row Version. You’ll see the DbUpdateConcurrencyException Was Unhandled dialog box
shown here:

	 Chapter 12  Overcoming concurrency issues    281

11.	 End the debugging session. Now that you’ve seen the error, it’s time to do something about it
in the form of exception handling.

12.	 Modify the btnRowVersion_Click() event handler code so it looks like this:

private void btnRowVersion_Click(object sender, EventArgs e)
{
 // Create contexts for User 1 and User 2.
 Rewards2ModelContainer context1 = new Rewards2ModelContainer();
 Rewards2ModelContainer context2 = new Rewards2ModelContainer();

 // Get the record for User 1.
 var User1 = context1.Purchases.First();

 // Get the record for User 2.
 var User2 = context2.Purchases.First();

 // Make a change and save it for User 1.
 User1.Amount = Convert.ToDecimal(7.99);
 context1.SaveChanges();

 try
 {

 // Make a change and save it for User 2.
 User2.Amount = Convert.ToDecimal(10.99);
 context2.SaveChanges();
 }
 catch (DbUpdateConcurrencyException DUCE)
 {
 // Display a message box.
 MessageBox.Show("Initial Attempt Failed!");

 // Obtain the object context.
 var ObjContext = ((IObjectContextAdapter)context2).ObjectContext;

 // Obtain the entry that has failed.
 var Entry = DUCE.Entries.Single();

 // Refresh the object context so that you can perform an update.
 ObjContext.Refresh(RefreshMode.ClientWins, Entry.Entity);

 // Save the changes.
 context2.SaveChanges();
 }

 // Display a success message.
 MessageBox.Show("Update Succeeded!");
}

If you’ve used previous versions of the Entity Framework, the code in this example will look
different from what you may have used before. In order to update the record, you must re-
fresh the object context. The DbUpdateConcurrencyException provides you with the entity that
failed to update. When you call the Refresh() method, you must provide a strategy for updat-

282   PART IV  Overcoming entity errors

ing the database. The final step is to call SaveChanges(). At this point, the update will succeed
with a client-wins approach.

13.	 Click Start or press F5. The application compiles and runs.

14.	 Click Concurrency. Type 4.99 in the Amount field when you see the two user dialog boxes ap-
pear. This step ensures that User 1 will actually change the value in the database.

15.	 Click Update, and then click Cancel twice to close the two user dialog boxes.

16.	 Click Row Version. You’ll see an Initial Update Failed message.

17.	 Click OK. You’ll see an Update Succeeded message.

Using row-version concurrency
SQL Server provides a special rowversion type, which lets you track the version number of data in
each record. By comparing this number to the number that appeared when the data was read, it’s
possible to determine whether a concurrency problem has occurred. Of course, the example database
doesn’t include a field that uses the rowversion type, so the first order of business is to add such a row
to the database (a task you’ll probably have to perform on any databases you currently own as well).
The following procedure tells how to perform this task. Since you need a copy of the database that
doesn’t include the rowversion row for previous examples in the book, the first step is to create an
unmodified copy of the Rewards2 database.

Performing row-version concurrency

1.	 Close all connections in Visual Studio (or close Visual Studio for that matter).

2.	 Create a copy of the Rewards2 database. You’ll need administrator privileges to perform this
task.

3.	 Reopen the ModelFirst example in Visual Studio if necessary.

4.	 Choose View | Server Explorer to open Server Explorer.

5.	 Open the Rewards2 database connection and drill down to the Customers table.

6.	 Right-click the Customers table and choose Open Table Definition from the context menu.
You’ll see a designer open, as shown here:

	 Chapter 12  Overcoming concurrency issues    283

7.	 Place the cursor in the bottom row of the upper half of the designer. Type RowVersion in the
Name field. Select rowversion in the Data Type field. Uncheck the Allow Nulls field. You’ll see a
number of changes made to the SQL script for the table.

8.	 Place the cursor in the lower half of the designer window (failing to do so will generate an
error when you click Update). Click Update. You’ll see a Preview Database Updates dialog box
that tells what changes the script will make to the database.

9.	 Click Update Database. After a few moments, the Database Tools Window will show a success-
ful completion.

10.	 Close the Database Tools Window.

11.	 Perform steps 5 through 10 for the Purchases table. The changes you’ve made don’t appear in
the model, so you still can’t use them as part of an application.

12.	 Open the Rewards2Model.EDMX file found in Solution Explorer.

13.	 Right-click in any clear area of the designer and choose Update Model From Database.

14.	 Select the Refresh tab, drill down to Customers, highlight it, and click Finish. You’ll see the
RowVersion properties added to both the Customers and Purchases entities.

15.	 Select the CustomerName (Customers entity), PurchaseDate (Purchases entity), and Amount
(Purchases entity) properties in turn, and choose None for the Concurrency Mode property in
the Properties window. This step ensures that you’re seeing the effects of row-version concur-
rency.

16.	 Select the RowVersion property in Customers and choose Fixed for the Concurrency Mode
property in the Properties window.

17.	 Select the RowVersion property in Purchases and choose Fixed for the Concurrency Mode
property in the Properties window.

18.	 Click Start or press F5. The application compiles and runs.

284   PART IV  Overcoming entity errors

19.	 Click Concurrency. Type 4.99 in the Amount field when you see the two user dialog boxes ap-
pear. This step ensures that User 1 will actually change the value in the database.

20.	 Click Update, and then click Cancel twice to close the two user dialog boxes.

21.	 Click Row Version. You’ll see an Initial Update Failed message.

22.	 Click OK. You’ll see an Update Succeeded message.

Note  To return to the original database (the one without the two RowVersion fields), simply
rename the Rewards2.MDF file to Rewards2 RowVersion.MDF and the Rewards2 (Copy).MDF
file to Rewards2.MDF. Delete the two RowVersion properties that were added to the model.
Don’t forget to set the Concurrency Mode properties as needed.

Considering pessimistic concurrency issues

Pessimistic concurrency requires that you lock records in the database before you use them. When
you lock a database record for read-only access, other people can also lock that record for read-only
access. However, other people are restricted from locking the reader for update access until all of the
read-only access locks are cleared. When you lock a database record for update access, no one else
can lock it for any purpose. You have exclusive access to the record as long as the lock is in place. The
significant advantage of this strategy is that there’s no chance of a conflict because access is con-
trolled at the database level. However, pessimistic security presents these problems:

■■ Using pessimistic security adds to the complexity of an application because you must manage
the locks.

■■ Because of the housekeeping required to manage the locks, the memory used to hold records
in a locked state, and the inability to reuse other resources, using pessimistic security slows the
application and requires more server resources.

■■ Application performance suffers as the number of users increases because of the likelihood
that two users will require access to a particular record at the same time.

■■ The developer must create custom code to handle database access because the Entity
Framework doesn’t support pessimistic security natively.

■■ There’s no direct LINQ to Entities support for pessimistic security. However, when working with
Entity Framework 5, you can use the UPDLOCK table hint along with the SqlQuery() method to
obtain satisfactory results.

■■ Race conditions (where User A has record 1 locked and User B requires access to it, while User
B has record 2 locked and User A requires access to it) can occur, resulting in deadlock situa-
tions.

	 Chapter 12  Overcoming concurrency issues    285

The standing theory is that you should never need pessimistic security. The suggestion is that you
can create a TIMESTAMP column in the table, or use the newer ROWVERSION data type. Whenever
someone performs a CRUD operation on the record, the timestamp is updated. Before performing
an update, the application checks the timestamp and displays an error message if the timestamp on
the record is newer than the timestamp of the original record. You must then figure out what has
changed and give the user the chance to make a decision about the update (or you must handle the
conflict in some other way). In some applications, this technique is simply not useful, which means you
must implement pessimistic concurrency using some other custom means.

Even though the Entity Framework doesn’t support pessimistic concurrency directly, you still have
options for implementing it using custom code. Following are the two most common techniques for
accomplishing the task:

■■ Providing the support using stored procedures. You enclose the action within a transaction
and rely on the ROWLOCK and HOLDLOCK hints to perform the task. The article at http://
www.sqlteam.com/article/row-locking tells you how to perform this task. Chapter 8, “Interac-
tion with stored procedures,” tells you how to work with stored procedures.

■■ Using specialized LINQ to Entities code with the SqlQuery() or ExecuteStoreQuery() methods
and the UPDLOCK table hint to achieve the desired results. However, this technique is ex-
tremely complex and well outside the scope of this book. You can read about how this tech-
nique works (and why pessimistic concurrency is so hard to achieve with the Entity Framework)
at http://www.ladislavmrnka.com/2012/09/entity-framework-and-pessimistic-concurrency/.

If you absolutely must have pessimistic security for your application, and the two options men-
tioned in this section are either undoable or too complex, you can always use a product such as
Telerik OpenAccess ORM (http://www.telerik.com/products/orm.aspx). You can see the vendor’s com-
parison of OpenAccess ORM to the Entity Framework at http://www.telerik.com/products/orm/getting-
started/openaccess-vs-entity-framework.aspx. However, there’s a more straightforward discussion of
the topic at http://stackoverflow.com/questions/11255583/entity-framework-5-vs-telerik-openaccess-
orm-specifically. The essential trade-off is that you lose some automation and features, like the ability
to use enumerations to gain the use of pessimistic concurrency, when using OpenAccess ORM.

Getting started with the Entity Framework

This chapter has provided a good introduction to database concurrency. It’s important to remember
that concurrency is a complex topic that is still being debated by computer scientists. However, it’s
also important not to feel overwhelmed by the topic—the tools you have available automate most of
the work needed to make concurrency a reality. In fact, if you take one thing away from this chapter,
it’s that most developers can reduce the entire complex set of choices down to a single decision—the
choice between optimistic and pessimistic concurrency. This single choice will make it possible to
create the vast majority of applications in a way that ensures the database interactions meet ACID
requirements.

286   PART IV  Overcoming entity errors

This chapter has also demonstrated some of the most common problems with concurrency.
Something that even the best tools can’t protect you from are environmental factors that conspire to
create concurrency errors in your application. Even though SQL Server, the Entity Framework, and the
.NET Framework will alert you to these errors, you still need to decide how to deal with them. Trying
various strategies with test applications is the best way to start discovering what techniques will work
best for your organization. Now that you have some fundamental tools for experimentation (includ-
ing the sample applications in this chapter), you need to try various scenarios and see how best to
deal with them. It’s essential that you develop a plan for working through concurrency issues as soon
as possible in the development process.

Chapter 13, “Handling performance problems,” discusses the final entity error type in this part of
the book. Most developers wouldn’t view performance issues as an error—strictly speaking. On the
other hand, most users view performance issues as one of the most egregious of application errors.
Perspective is sometimes everything when it comes to judging the enormity of an error. However, it’s
no mystery that performance issues often hide deep-seated application problems. If an application
has to try multiple times to gain a connection to the server, not only does it affect performance, but
it also signifies a problem with the server configuration, network setup, or application design. Chapter
13 discusses matters of application design that you can control and use to create an application with
fewer errors that affect overall performance.

Chapter 12 quick reference

To Do this

Ensure the maximum availability of database resources
and the fastest possible response times

Rely on optimistic concurrency, which is the default
configuration used by both SQL Server and the Entity
Framework.

Ensure maximum reliability and security Rely on pessimistic concurrency, which requires recon-
figuration of your Entity Framework and database setup.
In addition, you must create custom code to perform all
tasks because the Entity Framework doesn’t support pes-
simistic locking directly.

Reduce the risk of inconsistent changes made as the re-
sult of updates to records with a newer version

Reject the changes and provide the user with an updated
copy of the new version of the record as it appears in the
database.

Allow a cooperative environment where concurrency
conflicts are handled

Automatically perform partial updates of fields that have
no conflicts, and then optionally ask the user about the
application of data in conflicting fields.

Allow a cooperative environment that favors data consis-
tency

Ask the user about each field update when a concurrency
issue exists, but automatically accept the updates when
there’s no conflict.

Allow a cooperative environment where concurrency
conflicts aren’t handled

Perform partial updates of fields with new data, and ig-
nore any concurrency issues by overwriting fields with the
latest information provided by the user (this is the default
configuration).

Require that the database accept the latest full record
from the client to avoid consistency issues

Perform a forced update of every field in the record
without asking the user to confirm the changes. You can
optionally inform users whose changes were overwritten
about the changes to avoid potential data loss.

		 287

C H A P T E R 1 3

Handling performance problems

After completing the chapter, you’ll be able to

■■ Describe the sources of Entity Framework performance issues.

■■ Show how to obtain information about performance issues.

■■ Define the elements that define the performance triangle.

■■ Describe how multithreading speeds performance.

Performance is a measure of how well an application works. It describes how fast, secure, and reli-
able an application is and defines whether the application meets user productivity requirements.

There are many misconceptions about performance, and some developers focus exclusively on just
one or two aspects of performance. This chapter focuses on helping you create a well-rounded appli-
cation that performs well in every respect, rather than focusing on just one or two performance ele-
ments. Of course, the question on most readers’ minds is why performance is included in a part about
entity errors. The fact is that an application that doesn’t perform well is subject to a greater range of
errors—everything from missed critical timing to frustrated users hitting keys at random to determine
why the application is making them wait.

Because the Entity Framework accomplishes so much work automatically (in the background), it’s
easy to forget that you can tweak it to provide a better-performing application. As part of discov-
ering the Entity Framework and all it can do, you need to know how to determine that there’s a
performance problem, measure the performance problem to determine its extent, and then tune the
application to meet performance requirements. In many cases, you must use multiple techniques to
achieve a desired level of performance and still maintain a well-rounded application (one that doesn’t
focus on one aspect of performance to the detriment of every other area). This chapter provides you
with a good overview of the most common techniques for improving performance.

288   PART IV  Overcoming entity errors

Note  This chapter does focus on the Entity Framework. It’s important to realize that you
have options that you can use to tune performance—other than simply tuning the Entity
Framework. The simple act of adding more memory to a server or workstation can often
resolve speed issues for an application. Using a better firewall can help with security issues,
as can the addition of security-related company policies. Reliability is affected by the use
of higher-quality hardware as much as it is by careful coding. User training and policies
that help users understand how to interact with applications better can improve applica-
tion speed, security, and reliability all at the same time. It’s essential not to be overcome
by a case of tunnel vision when it comes to performance issues. Look at the whole picture
and work through performance issues by considering how the application environment can
change how the application performs. In many cases, you’ll need to combine the informa-
tion found in this chapter with other kinds of performance tuning to achieve great results,
instead of simply obtaining the minimum level of performance that users demand.

Understanding performance issue sources

There are many sources of performance issues on any computer system. For example, not having
enough memory or other resources will most definitely cause an application to run slowly. Users who
don’t understand how to use the application are another source of performance issues. Slow network
connections and overloaded servers are other sources. For that matter, even Mother Nature can
get into the act—for example, when a thunderstorm affects the processing power of your system.
This chapter doesn’t discuss any of these sources of performance issues. Instead, it focuses on Entity
Framework issues. Even so, you need to consider these other sources as you work through problems
with your application, because ignoring them will likely result in less-than-stellar optimizations and a
lot of frustration on your part. The following sections describe major sources of performance issues
when working with the Entity Framework.

Note  This chapter provides a good overview of the most common methods of improving
performance using Language Integrated Query (LINQ) to Entities and Entity SQL. You can
find a more detailed explanation of these techniques, along with some benchmark figures
you can use for comparison purposes, at http://msdn.microsoft.com/data/hh949853.aspx.
A more generalized listing of benchmarks is available at http://blogs.msdn.com/b/adonet/
archive/2012/02/14/sneak-preview-entity-framework-5-0-performance-improvements.aspx.

Considering the layers
An essential issue to consider is that layers slow software down. Something developers fail to consider
is that the Entity Framework performs a considerable number of tasks for you in the background so
that everything just works. The fact is that using the Entity Framework adds three layers to your ap-
plication as a minimum:

http://blogs.msdn.com/b/adonet/archive/2012/02/14/sneak-preview-entity-framework-5-0-performance-improvements.aspx
http://blogs.msdn.com/b/adonet/archive/2012/02/14/sneak-preview-entity-framework-5-0-performance-improvements.aspx

	 Chapter 13  Handling performance problems    289

■■ The query must be translated through either LINQ to Entities or Entity SQL.

■■ The resulting query is translated through the EntityClient.

■■ The EntityClient output is translated through the Entity Framework to ADO.NET.

Note  You can find an explanation of how these various layers work in previous chapters
of the book. The LINQ to Entities explanation appears in the “Introducing LINQ to Entities”
section of Chapter 6, “Manipulating data using LINQ,” while the Entity SQL explanation
appears in the “Understanding Entity SQL” section of Chapter 7, “Manipulating data us-
ing Entity SQL.” Knowing how these layers work will make it easier to understand Entity
Framework performance.

Each of these layers performs an important task in reducing your workload. However, nothing
comes without cost. The price you pay to garner the benefits proffered by the Entity Framework is a
reduction in overall application performance. Most organizations consider the trade-off acceptable as
long as application performance doesn’t suffer too much, but you should keep this in mind. You may
find that using ADO.NET directly in critical sections of your code will enhance application perfor-
mance enough that you can still use the Entity Framework in less critical sections.

Retrieving too many records
A major problem for most developers is trying to create really simple queries that are easy to under-
stand and yet get the job done. The problem is that such simple queries often end up retrieving more
records than the application will ever use. The cost of waiting for the server to deliver the records and
transporting them over the network connection is high. When every application on the network is
attempting to retrieve too many records, the cost is compounded. In fact, asking for too much can
quickly bring a server to its knees.

Optimizing your query reduces the load on the server, transfers data quickly over the network, and
actually reduces the amount of code you need to write because you perform less filtering when the
data arrives at the client. For example, the query

var PurchaseData =
 from PD in context.Purchases
 select PD;

will actually execute more slowly than

var PurchaseData =
 from PD in context.Purchases
 select PD
 where PD.Customer.CustomerName=="Josh Bailey";

even though the first query is simpler. The second query will retrieve fewer records and will require
less filtering to get the job done. In fact, if you can create a truly specific query—one that results in no
excess records—you don’t need to perform any filtering at all.

290   PART IV  Overcoming entity errors

Using the local cache
The Entity Framework provides a local cache that you can use to store queries that you’ve made in the
past. In order to use this feature, you set the EnablePlanCaching property to true. The advantage of
using the local cache is that the client application need only make a request once in order to obtain
data from the server. Future requests for the same data are served from the cache so that the ap-
plication doesn’t even tap the server for information. The result is queries that occur almost instan-
taneously. This feature works exceptionally well for data that doesn’t change often. For example, if
your application needs a list of states or ZIP codes, using caching is a given since this data will never
change.

The negative side of caching is that it can cause problems in situations where data changes
relatively often. At the very least, the user could end up seeing outdated information and then make
decisions based on that information. In addition, caching makes it more likely that the application
will experience concurrency problems (see Chapter 12, “Overcoming concurrency issues,” for details).
Incurring additional concurrency exceptions means that your application will spend more time han-
dling updates, which could end up costing you more time than if you had simply obtained updated
information from the server in the first place.

Note  The cached queries are case sensitive. This means that the Entity Framework views
SELECT VALUE CustomerList as being different than Select Value CustomerList. If you find
that caching doesn’t appear to work, make sure you check the case of the various queries to
ensure that they all use the same casing.

Relying on pregenerated views
Normally, you work with the Entity Data Model Wizard to create and manage entities in your applica-
tion. This wizard creates everything you need in the background, and your application works auto-
matically for you. The Entity Data Model Generator (EDMGen.EXE) tool included with Microsoft Visual
Studio makes it possible for you to perform a few tasks that the wizard can’t perform automatically.
One of the most important additional tasks it can perform is pregenerating the views used with your
application so that the runtime doesn’t need to generate them when the application runs. This feature
works with the EnablePlanCaching property to make queries run faster. The following procedure
describes how to pregenerate a view into an existing project.

Note  As Microsoft continues to improve the performance characteristics of the Entity
Framework, some optimizations have less of an effect. Pregenerating views is one of
the areas in which the noticeable effect is smaller than with early versions of the Entity
Framework unless your application contains a large number of queries or relies on relatively
complex queries. Even so, the performance difference might be worth pursuing for an ap-
plication of any significant complexity.

	 Chapter 13  Handling performance problems    291

Pregenerating a view using EDMGen

1.	 Copy the Entity SQL query version of the ModelFirst example you created in Chapter 7 to a
new folder, and use this new copy for this example (rather than the copy you created in
Chapter 7).

Note  The Entity SQL version of the ModelFirst example in Chapter 7 appears in the
ModelFirst (Display - Entity SQL) folder of the downloadable source code. If you cre-
ated your own version of the example, the folder name will probably be different.

2.	 Open the copied solution in Visual Studio.

3.	 Double-click the Rewards2Model.EDMX file found in Solution Explorer to open it.

4.	 Click in any open area in the designer. The Properties window shows the properties for the
current model.

5.	 Change the Metadata Artifact Processing property value in the Properties window to Copy
To Output Directory, and choose Build | Rebuild Solution. Visual Studio creates the required
.CSDL, .MSL, and .SSDL files for you in the output folder for the application.

6.	 Right-click the Solution ‘Model First’ entry in Solution Explorer and choose Open Folder in File
Explorer from the context menu. You’ll see a copy of Microsoft Windows Explorer opened to
the folder that contains the solution.

7.	 Drill down into the TestModelFirst\bin\Debug folder, copy the .CSDL, .MSL, and .SSDL files,
and paste them into a new folder such as EDM. Using this approach will allow you to work
with the files without having to clutter up the application’s output folder.

8.	 Choose Start | All Programs | Microsoft Visual Studio 2012 | Visual Studio Tools | Developer
Command Prompt for VS2012 to open a developer command prompt. This command prompt
lets you gain access to the EDMGen utility wherever it might appear on your hard drive from
any location on your system.

Note  Attempting to use a standard command prompt will result in failure because
it doesn’t provide access to the EDMGen utility. Make sure you open a Developer
Command Prompt for VS2012 to ensure you can access the utility as needed.

9.	 Type CD \Microsoft Press\Entity Framework Development Step by Step\Chapter 13\
EDM to change directories to the folder containing the .CSDL, .MSL, and .SSDL files. You’re
now in the folder that contains the three files you saved earlier.

10.	 Type EDMGen /mode:ViewGeneration /inssdl:Rewards2Model.ssdl /
incsdl:Rewards2Model.csdl /inmsl:Rewards2Model.msl /p:”..\ModelFirst (Display -

292   PART IV  Overcoming entity errors

Entity SQL)\TestModelFirst\TestModelFirst.csproj” /targetversion:4.5. You use these
command-line arguments to perform the following tasks:

•	 /mode:ViewGeneration  Tells EDMGen that you want to pregenerate the mapping views
using the .CSDL, .MSL, and .SSDL files you supply.

•	 /inssdl:Rewards2Model.ssdl  Provides the path and name of the .SSDL file to use.

•	 /incsdl:Rewards2Model.csdl  Provides the path and name of the .CSDL file to use.

•	 /inmsl:Rewards2Model.msl  Provides the path and name of the .MSL file to use.

•	 /p:”..\ModelFirst (Display - Entity SQL)\TestModelFirst\TestModelFirst.csproj” 

Provides the path and name of the project file for this application. Although the command
will work without this switch, the resulting files won’t include the appropriate namespaces,
which means that you’ll spend extra time trying to use the output in your application.

•	 /targetversion:4.5  Specifies the target version of the .NET Framework to use. The de-
fault version is 4.0. If you try to use the EDMGen utility without this command-line switch,
you’ll receive a warning message as output. The file will still be generated, but you can’t
be sure that it will work appropriately with your application. Using the correct version is
important.

11.	 Press Enter. The EDMGen utility will create the required view file for you and add it to the
project directory for your application, as shown here:

12.	 Close the command prompt.

13.	 Change the Metadata Artifact Processing property value in the Properties window to Embed
In Output Assembly, and choose Build | Rebuild Solution. Visual Studio removes the .CSDL,
.MSL, and .SSDL files for you from the output folder of the application.

14.	 Right-click the TestModelFirst entry in Solution Explorer and choose Add | Existing Item from
the context menu. Drill down into the project folder, and you’ll see the list of files shown here:

	 Chapter 13  Handling performance problems    293

15.	 Select the TestModelFirst.csproj.Views.cs file from the list and click Add. You’ll see the new
file added to Solution Explorer. Opening the file hierarchy displays a number of pregenerated
views, as shown here:

You don’t have to do anything special to use this file. The application will automatically use
it whenever you run it. The presence of this file means that the application doesn’t have to
perform as many query compilation tasks when running the application. Because the example
is small, you likely won’t see any difference when running it with this file in place, but be sure
to generate a file of this type when working with larger applications. The more queries your
application contains (especially complex queries), the more this process helps improve applica-
tion performance.

Relying on precompiled queries
If you’ve worked with previous versions of the Entity Framework, you’ve likely used precompiled
queries to improve performance. Precompiling a query meant that the application didn’t have to
compile it at run time, resulting in a significant performance boost. However, in order to use the
CompiledQuery class, you needed to use the ObjectContext API for your Entity Framework classes,

294   PART IV  Overcoming entity errors

which doesn’t work well with the code-first workflow. Microsoft currently recommends you use the
DbContext API for all workflows because it provides superior functionality.

Fortunately, you no longer have to worry about precompiling queries. Entity Framework 5 per-
forms this task automatically for you in the background. It compiles each query type you create one
time and then caches the query for later use. Each time the query is called, the Entity Framework au-
tomatically uses the precompiled query version in the cache, rather than compiling the query again.

Tip  If you’re working with an older application and really need to know how compiled
queries work, you can find an overview of the topic at http://msdn.microsoft.com/library/
bb896297.aspx. An article at http://msdn.microsoft.com/magazine/ee336024.aspx provides
more detailed information on the topic, along with some useful example code.

Disabling change tracking
The Entity Framework always makes the entries required to track changes in your data, even when
working with a read-only query. If you are only accessing the data to provide it to the user for viewing
purposes, you can achieve a significant performance benefit by turning off change tracking. Here’s an
example of a LINQ to Entities query used earlier in the book with change tracking disabled:

// Obtain the customer list without change tracking.
var CustomerList =
 from cust in context.Customers.AsNoTracking()
 select cust;

It’s also possible to turn off change tracking when working with Entity SQL, but the technique is
slightly different. In this case, you turn it off as part of the ObjectQuery properties, as shown here:

// Create a query object.
ObjectQuery<DbDataRecord> CustomerData =
 context.CreateQuery<DbDataRecord>(EntitySQLCmd);

// Turn off change tracking.
CustomerData.MergeOption = MergeOption.NoTracking;

Choosing between lazy loading and eager loading
You can set the model to allow either lazy loading (the default) or eager loading. Lazy loading only
loads the entity set when you make a query against it. Consequently, when you want to access the
data provided by a navigation property, the application must make another query to obtain that data.
The performance benefit is that you access the data only when needed, so the transfers are smaller.
When using eager loading, a query obtains not only the target entity, but also any entities accessed
through a navigation property. As a result, the data transfer is larger. To configure your application to
use eager loading, click any blank area in the entity designer and then set the Lazy Loading Enabled
property in the Properties window to False.

	 Chapter 13  Handling performance problems    295

Figuring out which form of loading to use can be tricky. The reason that lazy loading is the default
is that many queries use only the data provided by the target entity. In addition, the entity set may be
quite large, so the user would wait a long time for the query to complete. However, this isn’t always
the case. In some situations, you always use the navigation properties, and the returned dataset is
smaller. As a result, you actually see a performance drop by making multiple requests for data from
the server. Here are some guidelines for using eager loading:

■■ The query will use a limited number of navigation properties.

■■ You know precisely what data will be returned from the database.

■■ The data payload is relatively small.

■■ There’s not a large physical distance between the application and the server—long distances
can cause network latency problems.

Viewing performance issues

In order to deal with performance issues, you must be able to see them. For example, sometimes a
query you create in your application may not translate into a SQL statement that executes quickly.
A simple change in your code could translate into tangible performance differences after transla-
tion. The following sections describe some methods for viewing the actual queries you send to the
database manager and demonstrate how they work. In these sections, you’ll also discover methods of
measuring the time required to execute the query.

Direct query viewing
Visual Studio provides the means for seeing how your query appears to Microsoft SQL Server. You can
directly view the query for either LINQ to Entities or Entity SQL queries. However, simply viewing the
query won’t tell you too much. What you really need to see is the execution plan associated with that
query, which means working with SQL Server Management Studio. The following sections demon-
strate both LINQ to Entities and Entity SQL queries, and show you how to generate an execution plan
for them.

Working with LINQ to Entities
When working with LINQ to Entities, Entity Framework 5 defaults to using a DbContext, rather than an
ObjectContext. Many of the examples you see online are for older versions of the Entity Framework,
which did use an ObjectContext. The following procedure shows how to obtain information about the
queries you make and then create an execution plan for them, which you can then use to help tune
the performance of the query.

296   PART IV  Overcoming entity errors

Observing the SQL query using LINQ to Entities

1.	 Copy the LINQ query version of the ModelFirst example you created in Chapter 6 to a new
folder and use this new copy for this example (rather than the copy you created in Chapter 6).

Note  The LINQ version of the ModelFirst example in Chapter 6 appears in the
ModelFirst (LINQ Query) folder of the downloadable source code. If you created
your own version of the example, the folder name will probably be different.

2.	 Open the copied solution in Visual Studio.

3.	 Open Form1.CS and place a breakpoint at this line in the btnQuery_Click() event handler:

StringBuilder Output =
 new StringBuilder("Customer List:");

4.	 Click Start or press F5. The application compiles and runs.

5.	 Click Query. The application stops at the breakpoint.

6.	 Choose Debug | Windows | Locals to display the local objects shown here:

Notice that the CustomerList object contains the actual SQL query used to access the informa-
tion in the database. You can use this information to create a profile of how that query will ac-
tually execute, and then decide how best to modify your query to obtain better performance.

7.	 Right-click the CustomerList entry and choose Edit Value from the context menu. The query
text highlights.

8.	 Select everything but the opening and closing curly brackets and then press Ctrl+C to copy
this information to the clipboard.

9.	 Click Stop Debugging or press Shift+F5. The application stops.

	 Chapter 13  Handling performance problems    297

10.	 Open a copy of SQL Server Management Studio and log in to the database server. This is one
case in which you can’t use Server Explorer to obtain the information you need.

11.	 Drill down into the Databases\Rewards2 folder.

12.	 Right-click Rewards2 and choose New Query from the context menu. SQL Server Manage-
ment Studio creates the new query for you.

13.	 Press Ctrl+V to copy the query string into the editor.

14.	 Click Include Actual Execution Plan or press Ctrl+M to tell SQL Server Management Studio to
generate a query execution plan.

15.	 Click Execute or press F5. Select the Execution Plan tab. You’ll see the output from the query,
along with the execution plan, as shown here:

This is a simple query, so all you see are the SELECT statement and the background task
performed by the server to complete the selection process. Notice that each entry has a Cost
property that tells you the cost of that item to the query as a whole. When looking for areas
of your query to improve, it’s the high-cost items that you should consider modifying first.

16.	 Hover the mouse over the Clustered Index Scan object on the Execution Plan tab. You’ll see
the cost of this part of the query, as shown here:

298   PART IV  Overcoming entity errors

This pop-up window breaks down the cost of the item so that you know precisely how much
time is used in each activity. For example, you know that the estimated I/O cost is 0.003125 ms
(milliseconds).

17.	 Close SQL Server Management Studio. There’s no need to save the query.

Working with Entity SQL
The previous section, “Working with LINQ to Entities,” showed the results of viewing a simple query.
In this case, there was little you could do to tune the query except limit the number of records re-
turned. The following procedure looks at a more complex query and works with Entity SQL instead.

Observing the SQL query using entity SQL

1.	 Open the Entity SQL project you worked with in the “Relying on pregenerated views” section
of the chapter.

2.	 Open Form1.CS and add the following code in bold to the btnQuery7_Click() event handler in
the location shown.

// Create a query object.
ObjectQuery<DbDataRecord> CustomerData =
 context.CreateQuery<DbDataRecord>(EntitySQLCmd);

// Discover the query being sent to the server.
String QueryString = CustomerData.ToTraceString();

The ToTraceString() method returns a string that contains the query being sent to SQL Server.
Because CustomerData is an ObjectQuery, you can use this technique in this situation. This is
the same technique used with older versions of the Entity Framework.

	 Chapter 13  Handling performance problems    299

3.	 Place a breakpoint at this line in the btnQuery7_Click() event handler:

StringBuilder Output =
 new StringBuilder("Purchase Data:");

4.	 Click Start or press F5. The application compiles and runs.

5.	 Click Query 7. The application stops at the breakpoint.

6.	 Choose Debug | Windows | Locals to display the local objects shown here:

Notice that the QueryString contains escape characters that SQL Server won’t accept. How-
ever, it does contain the complete query.

7.	 Click the Text button in the QueryString row. You’ll see a usable version of the query, as shown
here:

300   PART IV  Overcoming entity errors

8.	 Select all of the text in the Text Visualizer dialog box, and then press Ctrl+C to copy this infor-
mation to the clipboard.

9.	 Click Stop Debugging or press Shift+F5. The application stops.

10.	 Open a copy of SQL Server Management Studio and log in to the database server.

11.	 Drill down into the Databases\Rewards2 folder.

12.	 Right-click Rewards2 and choose New Query from the context menu. SQL Server Manage-
ment Studio creates the new query for you.

13.	 Press Ctrl+V to copy the query string into the editor.

14.	 Click Include Actual Execution Plan or press Ctrl+M to tell SQL Server Management Studio to
generate a query execution plan.

15.	 Click Execute or press F5. Select the Execution Plan tab. You’ll see the output from the query,
along with the execution plan, as show here:

This query is quite complex compared to the query in the “Working with LINQ to Entities” sec-
tion. Notice that some of the tasks require quite a lot of time, such as the sort operation (54
percent of the total). It might actually be preferable to sort the output at the client to reduce
the load on the server and to provide perkier performance.

	 Chapter 13  Handling performance problems    301

16.	 Hover the mouse over the various objects in the plan to see how each affects the overall
execution of the query.

17.	 Close SQL Server Management Studio. There’s no need to save the query.

Using third-party products
This chapter shows some quick and easy methods for viewing the queries sent to the server. Of
course, you may need a more substantial solution when working with large numbers of queries or
want more details about the queries. Fortunately, there are many different options for viewing or pro-
filing your application so that you can see precisely how it sends queries to the server. For example, if
you use one of the Visual Studio Ultimate editions, you can use IntelliTrace to profile your application
and see how it interacts with the server. The article at http://msdn.microsoft.com/magazine/ee336126.
aspx describes how to use IntelliTrace to perform this task.

You could also download and rely on the EFTracingProvider (http://code.msdn.microsoft.com/
EFProviderWrappers-c0b88f32) to provide more substantial profiling of your application. This solution
works with all versions of Visual Studio. It’s written in C#, and you can obtain the code for it so that
you can make any tweaks required for your specific situation. The article at http://jkowalski.com/tag/
efproviderwrappers/ tells you all about the EFTracingProvider and why the author developed it (you
may have to rely on the cached version of this article, at https://webcache.googleusercontent.com/
search?q=cache:rrSBLiAIOqgJ:http://jkowalski.com/tag/efproviderwrappers/%2BEFTracingProvider).
Another view of this provider is presented at http://blog.3d-logic.com/2012/03/31/using-tracing-and-
caching-provider-wrappers-with-codefirst/.

The previous two solutions do the job, but you may want a presentation that’s easier to under-
stand and work with. Fortunately, there are two other products you can try. The first is the Entity
Framework Profiler from Hibernating Rhinos (http://www.hibernatingrhinos.com/products/efprof). This
is a real-time visual debugger that you can use to see precisely what is happening with your queries
as the application executes, which means that you get a better picture of how the application actually
works while it runs. In this case, the output is grouped by object context, so that you can see how
each context is doing its work.

The second solution is the Huagati Query Profiler (http://www.huagati.com/l2sprofiler/), which pro-
vides a log-based approach to working with the queries. The focus is on when queries are executed,
so you get a timeline of how your application behaved at any given time during its execution. The
advantage of this approach is that you can work back through the data at various points in time while
modifying your code to improve performance. Unfortunately, this solution currently works only with
SQL Server.

http://msdn.microsoft.com/magazine/ee336126.aspx
http://msdn.microsoft.com/magazine/ee336126.aspx
http://code.msdn.microsoft.com/EFProviderWrappers-c0b88f32
http://code.msdn.microsoft.com/EFProviderWrappers-c0b88f32
http://jkowalski.com/tag/efproviderwrappers/
http://jkowalski.com/tag/efproviderwrappers/
https://webcache.googleusercontent.com/search?q=cache:rrSBLiAIOqgJ:http://jkowalski.com/tag/efproviderwrappers/%2BEFTracingProvider
https://webcache.googleusercontent.com/search?q=cache:rrSBLiAIOqgJ:http://jkowalski.com/tag/efproviderwrappers/%2BEFTracingProvider
http://blog.3d-logic.com/2012/03/31/using-tracing-and-caching-provider-wrappers-with-codefirst/
http://blog.3d-logic.com/2012/03/31/using-tracing-and-caching-provider-wrappers-with-codefirst/

302   PART IV  Overcoming entity errors

Tip  There are a number of other tools that work with profilers or help you create bet-
ter queries. For example, LLBLGen Pro (http://www.llblgen.com/) takes the place of the
model designer provided with Visual Studio to help you create models for a number of
environments using a single designer. You obtain the files required to work with that spe-
cific environment, which can include Entity Framework, NHibernate, LINQ to SQL, and a
special LLBLGen Pro Runtime Framework. This product works with a number of databases
including SQL Server, Access, Oracle, PostgreSQL, Firebird, DB2, MySQL, Sybase, and Sybase
Anywhere. This is a good product to use when you have multiple database managers to
work with.

Another good tool to have in your toolbox is LINQPad (http://www.linqpad.net/). You use
this tool to test your queries before you place them in your application. It’s a good way to
test out what-if scenarios to determine whether one query or another will produce the best
result, without having to go through a long debug cycle. The graphical output of this utility
makes it easy to see precisely how your query will work once you add it to your code.

Defining the performance triangle

There are more than a few developers who equate performance with speed. However, an application
that performs well offers considerably more than raw speed. In order to perform well, an applica-
tion must do more than simply run fast. When you think about it, an application can run incredibly
fast while providing the wrong answer, or it can run incredibly fast while leaving itself open to attack
from outsiders (at which point, it may not run at all). Performance is the combination of a number of
elements to define an application that does a task well. The three common elements that make up
performance are

■■ Speed  The ability of an application to perform a task within a reasonable amount of time to
avoid user frustration.

■■ Security  The ability of an application to protect the data that it manages so that the purity
and consistency of the data are unquestioned.

■■ Reliability  The ability of an application to continue performing its task even under adverse
conditions without data loss or application crashes.

These three elements form a performance triangle. Increasing one aspect decreases the other
two. For example, increased speed often comes at the price of reducing both security features and
additional code required to make an application reliable. Likewise, the most secure application in the
world is the one that offers no access to the data at all. Adding too much redundancy to make an ap-
plication more reliable often comes at the price of both speed (in the form of extra code) and security
(by being too invasive). In short, high performance is the balanced effect of the speed, security, and
reliability. You must have a balance of all three in order to obtain the desired effect.

	 Chapter 13  Handling performance problems    303

The following sections discuss speed, security, and reliability from an Entity Framework perspec-
tive. However, you can apply these principles to other areas of the application environment, so it’s
important to get the big-picture view of these elements as you read. For example, you can overclock
the hardware to obtain additional speed, but only at the cost of making the hardware less reliable and
possibly less secure as well.

Considering the effects of raw speed
Application speed is measured in the number of tasks that the application can perform within a given
time frame. Speed doesn’t consider the idea that the tasks are performed correctly or that the results
are usable—simply that the tasks have been accomplished. It’s important to make the distinction be-
tween speed and other aspects of performance. Focusing on an application’s ability to work fast helps
you see redundancies in application code and ways in which you can create code that works more
efficiently. Later analysis may show that a particular change is unwarranted, unsafe, or unreliable, but
before you can make that determination, you have to experiment with the possibility that the change
will improve application speed.

Warning  It’s never a good idea to tune an application for speed as part of the production
environment. Use a test configuration on a test system to perform this task. Otherwise,
you risk data errors or even data loss. In addition, the application could crash in a manner
that brings down the network or causes other problems. Experimentation is best left to an
environment where you can work through issues safely and with less worry as to the conse-
quences of a change.

As part of testing your application, you need to rely on load-testing software that mimics the ef-
fects of having multiple users pound away at the application. This chapter doesn’t discuss third-party
software you use to perform this task, but you need to provide such software as part of your test
environment. One of the most commonly used testing frameworks is NUnit (http://www.nunit.org/).
You can also use the performance-testing tools included as part of the higher-end versions of Visual
Studio—the article at http://blogs.msdn.com/b/visualstudioalm/archive/2012/06/04/getting-started-
with-load-testing-in-visual-studio-2012.aspx describes this process in detail. Load testing is an essen-
tial part of any speed tuning because it points out changes that absolutely won’t work. For example,
it’s only with load testing that you can find application concurrency issues or determine that a lock is
needed to ensure that a critical section of code that could be accessed by multiple threads works as
designed.

http://blogs.msdn.com/b/visualstudioalm/archive/2012/06/04/getting-started-with-load-testing-in-visual-studio-2012.aspx
http://blogs.msdn.com/b/visualstudioalm/archive/2012/06/04/getting-started-with-load-testing-in-visual-studio-2012.aspx

304   PART IV  Overcoming entity errors

Tip  If you’re really interested in getting everything you can out of Visual Studio and
the performance-testing tools created for it, consider downloading the Visual Studio
Performance Testing Quick Reference Guide, found at http://vsptqrg.codeplex.com/releases/
view/42484. This document is based on real-world discussions of issues that developers
confront when using performance testing to check application speed. You’ll find informa-
tion in it from a variety of sources (including some from within Microsoft itself). The authors
are constantly updating the information, so you won’t need to worry about it becoming
completely outdated.

You may also want to create your own custom performance counters to monitor ap-
plication speed. The article “Load Testing with Custom Performance Counters” (http://
visualstudiomagazine.com/articles/2012/10/01/load-testing.aspx) provides some helpful
code and tips that show how to create and use custom counters with your application. An
important issue to remember is that the very act of adding custom counters will reduce ap-
plication speed a little, so you’re not seeing the true speed of your application.

Speed takes several forms within an Entity Framework application. In some cases, you can miti-
gate the need to ensure that the application is both secure and reliable by ensuring the part of the
application the user sees is fast. With this in mind, consider these areas of application speed from the
user’s perspective:

■■ User interface  The user interface is the most noticeable part of your application. A user
interface that’s responsive makes the user feel better about the application and think that it’s
working faster (even when it isn’t). An informative interface is even better. In more than a few
tests, users felt that an application that provided information about the task the application
was performing was faster than a noninformative application, even when timed tests showed
that the noninformative application was faster. Adding a progress bar to your application goes
a long way toward giving the user the impression of speed.

■■ Partial results display  Displaying the parent records first, and then the details (when pos-
sible), gives an impression of speed.

■■ Local data sources  Using local data sources whenever possible helps give the application a
speed boost because there’s no network latency or busy servers to worry about. Optimizing
your use of local data sources will produce a significant speed performance the user can see.

■■ Optimized queries  The better you can define a query, the less time it takes to obtain the
data represented by that query, and the faster the user sees the results.

■■ Lazy loading  Even when eager loading is guaranteed to make the application faster, lazy
loading often presents the illusion of faster speed because less work is done with each data-
base query. This is one of those situations where you must consider overall application perfor-
mance against user expectations. In some cases, using other techniques to provide a speedier
application will overcome the need to forgo the actual speed advantages of eager loading.

http://visualstudiomagazine.com/articles/2012/10/01/load-testing.aspx
http://visualstudiomagazine.com/articles/2012/10/01/load-testing.aspx

	 Chapter 13  Handling performance problems    305

■■ Paged results  In some cases, creating a query where only a specified range of records is
retrieved will produce the illusion of increased speed. Yes, you’ll hit the database every time
the user requests more records, but the time required to obtain the subset of records will be
less, so the user will see the records faster. When you retrieve all of the records the user needs
at one time, the actual speed of the application is improved, but the user sees it as a delay.
A way around this issue is to provide the user with an informative interface that indicates the
application is performing useful work.

The most important concept to take from this section is that speed is relative to what the user
perceives. In order to create an efficient environment that uses client, server, and network resources
effectively, you must often provide feedback to the user that gives the illusion of speed, even when
the application is working hard in the background and would otherwise present a lag in record pre-
sentation. The trade-off in speed is the actual effective use of resources vs. the need to keep the user
happy.

Considering the effects of security
The most secure application in the world is the one that no one can access—that has no connectivity
with anything. Of course, this truly secure application is completely useless. Even if it could perform
useful work, the lack of interactivity would make it pretty much a closed system that no one would
ever know about. In order to provide useful functionality, an application must provide some level of
access, which means that it must also incur some level of security threat. The irony of this situation
appears to escape most developers, who somehow think it’s possible to secure an application in a
way that makes it truly safe. Of course, there are shades of security. Opening an application to every
potential attack ever created isn’t a very good idea either. Doing so would also tend to make the ap-
plication pretty much useless because it could never produce desirable or stable output (despite the
hyper-interactivity it would provide). Consequently, application security lies in some level of con-
trolled access.

The Entity Framework presents a few special security issues that you should consider when
creating an application. For example, SQL injection attacks (see http://msdn.microsoft.com/library/
ms161953(v=sql.105).aspx for a description of a SQL injection attack) can severely compromise your
system. The way to overcome this problem is to avoid using dynamic SQL queries. This doesn’t mean
you can’t use variables with LINQ to Entities. In this case, the variable is replaced with a value before
the query is submitted to the server, so there isn’t any chance of a SQL injection attack. The same
can’t be said for Entity SQL. With enough time and knowledge of the model, an attacker can inject
code into an Entity SQL query. However, this second route to a SQL injection attack is significantly
harder.

Another serious problem is a connection piggyback, where an attacker uses a connection opened
for other purposes to access the database. Whenever you make a query using a direct database con-
nection, the attacker has the level of access provided by that identity. The attacker isn’t limited to
issuing commands—it’s possible to perform every task that the identity has permission to accomplish.
The best way to avoid this problem is to limit the rights of the identity you use to make the queries to
those required to accomplish the given task.

http://msdn.microsoft.com/library/ms161953(v=sql.105).aspx
http://msdn.microsoft.com/library/ms161953(v=sql.105).aspx

306   PART IV  Overcoming entity errors

Neither of these problems is limited to the Entity Framework—the Entity Framework shares them
with many other applications. The way you write the application, the interface you provide for it, and
the rights you assign to the user all determine the level of exposure that the application provides to
the local system, the network, the hosting server, and the target database. The following sections
examine several areas of security you need to consider when creating your application.

Considering the connection
It’s essential to consider the security of any connection you create. There are a number of ways in
which an attacker can gain access to the connection information. The following list provides guide-
lines on keeping your connection safe:

■■ Use trusted data source providers  The data provider is in the position to do considerable
harm to the application and the data it manages. A data provider performs the following
tasks, any of which can lead to a security breach:

•	 Receives the connection string from the Entity Framework and uses it to create the connec-
tion

•	 Handles user credentials used to access the server

•	 Translates the command tree into something that the data source can understand

•	 Assembles and returns datasets to the caller

■■ Encrypt your data connection  The Entity Framework doesn’t provide any support for data
encryption. Any connection that occurs over a public network should use data encryption to
protect data from prying eyes. You can read more about data encryption at http://technet.
microsoft.com/library/ms189067.aspx.

■■ Secure the connection string  The connection string provides a substantial amount of informa-
tion about the server and the requirements to access it. If you don’t want others to gain access
to your server, the first step is ensuring you don’t give them the information required to do so.
The following methods will help you secure the connection string.

•	 Use Windows Authentication to access the server so that you don’t need to supply a name
and password as part of the connection string.

•	 Use protected configuration to encrypt sensitive parts of the connection strings—making
them inaccessible to outsiders. Although this technique was originally designed for ASP.
NET developers, you can use it with any application. Read more about this technique at
http://msdn.microsoft.com/library/53tyfkaw.aspx.

•	 Store the connection strings in an encrypted configuration file, rather than embedding
them within your application. If you embed the connection strings in your application,
someone can disassemble the application and read the connection string directly from it.
The Entity Data Model Wizard stores the connection string in the application’s .CONFIG file
by default, so you need to secure this file before releasing the application in a production
environment.

	 Chapter 13  Handling performance problems    307

•	 Never use dynamically created connection strings unless absolutely necessary, because
they’re subject to injection attacks. To reduce the potential for an injection attack, use an
EntityConnectionStringBuilder (see http://msdn.microsoft.com/library/system.data.entityclient.
entityconnectionstringbuilder.aspx for details) to create the connection string. The article
at http://msdn.microsoft.com/library/bb738533.aspx tells how to use an EntityConnection-
StringBuilder to create a connection string.

Keeping memory secure
The Entity Framework relies heavily on memory to perform tasks. Because attackers can use a number
of methods to examine memory, you must be careful to create applications that use memory safely.
The following list presents a number of potential issues with memory security that you need to ad-
dress in your application.

■■ Remain within the current security context  Crossing the line between security contexts repre-
sents a huge potential security risk. Sometimes this issue can occur in odd ways. For example,
in a multithreaded application, one thread may have access to the connection, while another
doesn’t. If the application stores the connection in a globally accessible area, the untrusted
thread could gain access to it. The connection should remain within the confines of the trusted
thread to keep it safe.

■■ Assume login information and passwords are visible in a memory dump  Whenever you
request login information or passwords from the user, the objects holding that information
remain available until the garbage collector reclaims their resources. If an attacker can cause
an application crash, the memory dump that results from the crash will contain the login in-
formation or password. The best way to avoid this problem is to use Windows Authentication
whenever possible.

■■ Restrict large result sets  A large result set can actually overwhelm the application and cause
it to crash. An attacker could force a crash by requesting an abnormally large result set. Make
sure that the application automatically filters or otherwise restricts result sets to a size that the
client can handle. Otherwise, when the application crashes, the attacker can read sensitive ap-
plication information from the memory dump.

■■ Avoid returning IQueryable results to untrusted callers  An untrusted caller could use the
IQueryable methods to obtain access to sensitive data or increase the size of the result set
enough to cause an application crash. In addition, the caller could modify the IQueryable
result in ways that cause an exception, and the exception could contain sensitive information.

■■ Don’t share an ObjectContext between application domains  It’s important to maintain the
integrity of the ObjectContext by keeping it within the current application domain. If you let
other application domains use the ObjectContext, it could expose information that the appli-
cation domain couldn’t normally access. For example, if a parent application within a firewall
spawns a child application that resides outside a firewall and then shares the ObjectContext
with that child, the ObjectContext is vulnerable to outside parties. You can read more about
application domains at http://msdn.microsoft.com/library/2bh4z9hs.aspx.

http://msdn.microsoft.com/library/system.data.entityclient.entityconnectionstringbuilder.aspx
http://msdn.microsoft.com/library/system.data.entityclient.entityconnectionstringbuilder.aspx

308   PART IV  Overcoming entity errors

■■ Prevent type safety violations  Any time an application causes a type safety violation, the in-
tegrity of the data is at stake. This means that someone could gain unwanted access to under-
lying data or interact with it in ways you hadn’t envisioned. For that matter, the attacker could
change the data in a way that will cause the application to crash and expose the contents of
memory in the resulting memory dump.

Interacting with users
Users will always present security challenges. There’s nothing you can do to change basic human
nature, which means that you must interact with users carefully. The following list provides guidelines
on creating a safer environment to work with users when employing the Entity Framework in your
application:

■■ Work with trusted users  Any time you create an EntityConnection, the user can poten-
tially modify the connection parameters or use the underlying connection to access the
server. When you must work with untrusted users, make sure the user has no access to the
EntityConnection.

■■ Secure the data source  Giving users a limited number of permissions in the data source is one
of the better ways to enhance overall application security. The data source controls access to
the data, so you can use it to control precisely what the user sees and how the user can inter-
act with the data.

■■ Run the application with minimum permissions  Users have a habit of overwhelming local
security and then using the ill-gotten permissions to perform tasks that you hadn’t expected.
In order to ensure that all of the other security features you have in place remain intact, you
must limit the user’s ability to make changes by running the application with the minimum
required permissions.

■■ Restrict untrusted applications  The Entity Framework doesn’t check security restrictions. This
means it will execute any application code that the user supplies. The best way to keep this
from happening is to disallow unauthorized application installations.

■■ Handle exceptions  It’s amazing to see the amount and types of information presented by the
exception dialog boxes. If an application presents one of these dialog boxes to an untrusted
user, the user could rely on the information obtained to thwart other security measures and
eventually gain access to the application.

Maintaining configuration integrity
The way in which you configure the application for use makes a big difference in how secure it
remains. Maintaining the application configuration as you intend it to be prevents the user from
performing acts you hadn’t envisioned. The following list describes ways in which you can keep the
application configuration secure:

	 Chapter 13  Handling performance problems    309

■■ Restrict configuration file access  You need to restrict access to all of the configuration files
associated with .NET, including EnterpriseSec.CONFIG, Security.CONFIG, Machine.CONFIG, and
<application name>.EXE.CONFIG.

■■ Restrict entity file access  The various Entity Framework files (.EDMX, .CSDL, .SSDL, and .MSL)
describe the database model in detail. Your application only requires read access to these files
at run time, so you should secure these files to keep them safe from prying eyes.

■■ Keep logging for debugging only  When you deploy an application, make sure you turn log-
ging off. Otherwise, the application could expose all sorts of unwanted information in the
form of log entries. Make absolutely certain that a release configuration of your application
doesn’t provide any logs that an attacker can use to surmise the inner workings of your ap-
plication.

■■ Use only trusted MetadataWorkspace objects  The MetadataWorkspace object (see http://
msdn.microsoft.com/library/system.data.metadata.edm.metadataworkspace.aspx for details)
provides a complete picture of the Entity Framework configuration for an application. Accept-
ing such an object from an untrusted source opens the application to attack. The recommen-
dation is to build such an object internally as needed.

Note  You may wonder where these untrusted sources come from. An untrusted source
is any data source that you don’t personally manage and don’t personally know is secure.
There are some data sources that are obviously untrusted. For example, when your orga-
nization uses a third-party web service as a data source, you must trust that data source
as untrusted. Any objects created to manage that data source are therefore untrusted as
well. Data that comes from a partner is also untrusted. This sort of data may fall into a po-
litical gray area, but from a security perspective the data source is untrusted because you
can’t vouch for it unless you personally manage it. Likewise, even the data that comes from
subsidiaries of your own organization is untrusted. You have no way to verify that the data
is properly secured and managed. This viewpoint sounds extremely paranoid, but it’s the
paranoid developer who produces the most secure code.

Considering how raw speed and security affect reliability
Reliability is one topic that’s hard to pin down in some respects because it means something differ-
ent to each individual. There’s also some overlap between reliability and both speed and security.
For example, when you make an application faster, the user is less likely to become frustrated. Users
who aren’t frustrated with the application tend to make fewer mistakes, which improves application
reliability indirectly. Likewise, when you handle errors to improve security by keeping the information
presented by an exception dialog box out of user hands, you also increase reliability by making it pos-
sible to recover from an error. There are, in fact, many areas of overlap. However, from the perspec-
tive of this book, reliability is the ability of an application to interact with both user and database in a
consistent, efficient, and predictable manner, while protecting the data from harm.

310   PART IV  Overcoming entity errors

Countering reliability criticisms of the Entity Framework
You’ll encounter some negative feedback from others for using the Entity Framework to create
applications from a reliability perspective, especially when working with large enterprise appli-
cations. The following list describes the most common of these reliability issues and helps you
understand why they’re important.

■■ The Entity Framework is a Black Box  Some developers need to feel completely in con-
trol of the application development cycle. However, there aren’t any modern program-
ming languages that don’t employ black boxes. Classes, methods, events, and properties
all represent kinds of black boxes. If you truly want full control, you need to write your
application in machine code. The Entity Framework makes the work environment more
reliable by making it possible for the developer to focus on what needs to be done, rather
than how to accomplish it. Creating a simpler programming environment tends to reduce
developer error, which is a prime source of reliability errors in applications.

■■ There are too many options to consider  The flexibility provided by the Entity Framework
does create an environment where you need to think through the development process
and use the options best suited to your needs. However, this flexibility also means that
you can fine-tune the application and make it possible to create the specific output you
want. The fact that the Entity Framework is flexible makes it possible for developers to get
what they want without creating error-laden workarounds.

■■ Frameworks tend to produce noisy applications  It’s true, custom code can create ap-
plications that are more efficient and easier to trace than frameworks can, because you
can tune the code specifically for that application. However, frameworks tend to perform
tasks consistently, which means that you can be sure a certain call will always result in the
same actions in the background. Custom-built code creates inconsistencies that often
lead to reliability problems.

■■ Custom code is easier to troubleshoot because the developer understands it  Yes, the de-
veloper does understand the inner workings of any custom framework written exclusively
by that developer. However, large applications are created by teams, not by individuals.
The team must understand the framework in order to use it, which means having great
documentation for everyone to use. The Entity Framework is already documented well
enough that everyone in a team can understand how it works—what namespaces, classes,
methods, events, and properties it provides. In addition, using the Entity Framework
means that you’re using code that has been tested by thousands of developers—not just
your in-house staff. In short, the chances are that the Entity Framework will be more easily
understood by your team, and therefore the team will make fewer mistakes when using it.

There are a number of reliability issues you can’t control directly, but must either handle indirectly
or consider a fail-gracefully strategy when you encounter them. For example, if the user’s machine
fails due to a hardware issue in the middle of a transaction, there isn’t much you can do about it

	 Chapter 13  Handling performance problems    311

except to ensure the transaction is rolled back at the server. The most important thing to remember
is that a transaction doesn’t actually occur until the application calls SaveChanges(). Before that time,
any changes the user makes are locally stored, so when the machine fails, all you’ve really lost is the
set of changes that haven’t been saved as of yet.

One reliability technique that most developers use when working with databases is to ensure that
every set of related queries is wrapped in a transaction so that it’s possible to roll back the changes
when a particular change fails. For example, if someone transfers money from one account to an-
other, it’s a two-step process. First, the money is withdrawn from the first account. Second, the money
is deposited into the second account. Allowing the first operation to succeed and then allowing the
second operation to fail means that the customer would suffer a monetary loss. Fortunately, you
don’t have to specifically create transactions when using the Entity Framework. The Entity Framework
automatically wraps any changes within a transaction when you call SaveChanges(). If any of the
changes fail, all of the changes in the transaction are rolled back. For this reason, you want to be sure
to call SaveChanges() whenever you’ve completed a unit of work. Using the unit-of-work approach
means that the number of changes that will be rolled back after a failed change are fewer, and it’s
easier to diagnose and potentially recover from the error.

Note  The same sorts of issues that apply to the underlying Entity Framework for both
speed and security also apply to reliability. For example, you want to be sure that the pro-
vider you use is from a known good source and that the provider has been thoroughly
tested. You don’t want to use a beta provider in a production environment. In addition, you
want to consider the sorts of users that will interact with the application—trusted users are
less likely to provide input that will cause unreliable application performance.

Reliability also comes from testing the application thoroughly at various levels. Many of the pro-
cedures in this book have emphasized the usefulness of testing individual queries and checking the
results before using them. You need to extend this process even further and ensure that you check all
of the code for potential errors both locally and when interacting with other code. The Entity Frame-
work doesn’t provide some magical means of ferretting out bad code. If anything, the automation
could potentially hide some errors from view—at least until you find them during the testing process.

The most difficult yet important reliability consideration comes from the user interface. It’s es-
sential to design the user interface in a manner that allows the user freedom in making queries, yet
reduces the probability that the user will make unusable queries. This is especially important when
working with untrusted users who might be more interested in crashing the application than work-
ing with it. For example, instead of using text boxes, rely on other controls that provide specific input
to the application so that the acceptable entries are quantified at the outset, and you have a better
chance of recognizing unusable patterns. When you must rely on text input, validate the input to
verify that it doesn’t pose potential problems, such as those that occur with a SQL injection attack.
Even when working with trusted users, it’s essential to check input to ensure the user doesn’t become
frustrated during the session and purposely make mistakes that could cause errors.

312   PART IV  Overcoming entity errors

As with every other aspect of development, you must assume that the application will fail at times,
and that you’ll need to either recover from the failure or fail gracefully, rather than allow the applica-
tion to crash. The Entity Framework makes it possible for you to create consistent applications quickly,
but it doesn’t provide anything special in the way of automatic error handling. When there’s a chance
for failure, assume the worst and handle every situation as if the worst has already occurred. Make
sure you add any redundancies required to create a robust application.

Using multithreading as an aid to speed

Multithreading makes it possible to offload a processing task while the main thread continues doing
something else. Using multithreading carefully can make the user interface feel significantly faster
and definitely be more responsive, which results in less user frustration and fewer reliability issues.
The procedure that follows uses the simple LINQ to Entities example you’ve been working with and
turns it into a multithreaded version.

Creating a multithreaded query

1.	 Open the LINQ to Entities project you worked with in the “Working with LINQ to Entities” sec-
tion of the chapter.

2.	 Begin by adding the following using statement to the beginning of Form1.CS:

using System.Threading;

3.	 Add the following delegate after the current btnQuery_Click() event handler:

// This delegate defines the method used to retrieve data from the thread.
public delegate void ContextCallback(IQueryable<Customers> CustomerList);

This example uses a callback method to return data from the thread you’ll create to actually
execute the query. The callback accepts an IQueryable collection of Customers as input.

4.	 Add a new button to Form1. Name the button btnThreaded and set its Text property to
&Threaded.

5.	 Double-click btnThreaded to create a new click event handler.

6.	 Type the following code for the btnThreaded_Click() event handler, along with code needed to
define a delegate and private list of customers returned by the query:

// This delegate defines the method used to retrieve data from the thread.
public delegate void ContextCallback(IQueryable<Customers> CustomerList);

private void btnThreaded_Click(object sender, EventArgs e)
{
 // Create an instance of the thread class.
 MultiThreadedQuery MTQ = new MultiThreadedQuery(
 new ContextCallback(ResultsCallback));

	 Chapter 13  Handling performance problems    313

 // Create a thread to perform the task.
 Thread MyThread = new Thread(MTQ.GetCustomers);

 // Start the thread.
 MyThread.Start();
}

The example begins by creating an instance of a thread class that you haven’t designed yet
(but will in a moment). Part of this class defines a callback that’s used to return the data from
the query to the caller. The next step is to create a thread, MyThread, and call Start(). At this
point, the application can perform some other task while waiting for the query to complete.

7.	 Create the following event handler to handle the results of the query:

public static void ResultsCallback(IQueryable<Customers> CustomerList)
{
 // Process each customer in the list.
 StringBuilder Output =
 new StringBuilder("Customer List:");
 foreach (var Customer in CustomerList)
 {
 // Create a customer entry for each customer.
 Output.Append("\r\n" + Customer.CustomerName +
 " has made purchases on: ");

 // Process each purchase for that particular customer.
 foreach (var Purchase in Customer.Purchases)
 Output.Append("\r\n\t" + Purchase.PurchaseDate);
 }

 // Display the result on screen.
 MessageBox.Show(Output.ToString());
}

This event handler is called the moment the query completes. It receives a list of customers
from the thread that executes the query. The code should look familiar because you’ve used it
several times already to display results on screen.

8.	 Create the following worker class to perform the actual query. This class should appear in
Form1.CS, but should be outside of the Form1 class (yet inside the TestModelFirst namespace).

public class MultiThreadedQuery
{
 // The context used to access the data source.
 private Rewards2ModelContainer context;

 // A list of customers retrieved from the database.
 private IQueryable<Customers> CustomerList;

 // This delegate is used to call the callback method when the task is
 // complete.
 private readonly Form1.ContextCallback _Callback;

314   PART IV  Overcoming entity errors

 public MultiThreadedQuery(Form1.ContextCallback CallbackDelegate)
 {
 // Assign a method to the callback delegate.
 _Callback = CallbackDelegate;
 }

 public void GetCustomers()
 {
 // Make sure the context points to the data source.
 if (context == null)
 context = new Rewards2ModelContainer();

 // You must lock this section of code to ensure it's thread safe.
 lock (context)
 {
 // Obtain the customer list.
 CustomerList =
 from cust in context.Customers
 select cust;

 // Return the result to the caller, when there is a caller.
 if (_Callback != null)
 _Callback(CustomerList);
 }
 }
}

The code begins by creating some variables, which include a Rewards2ModelContainer con-
text, a list of customers to return to the caller, and a variable used to hold a series of event
handlers to call after a query completes. The constructor for this class assigns the address of
an event handler to _Callback, which is later used to fire an event signifying that the query has
completed.

The GetCustomers() method is the focus of this class. It begins by obtaining a context when
the current context object is null. It then places a lock() on the context. If you don’t perform
this act, another thread could call this method and cause a host of problems for the applica-
tion. The lock() makes the application thread safe. The code then performs the query and
returns the list of customers to the caller by firing an event.

9.	 Click Start or press F5. The application compiles and runs.

10.	 Click Threaded. You’ll see the result shown here:

	 Chapter 13  Handling performance problems    315

11.	 Click Threaded. You’ll see the same results as before. The fact that you can click this button
again without first closing the dialog box tells you that the application is indeed multithread-
ed. Attempting to click Query twice without first closing the dialog box wouldn’t work.

Getting started with the Entity Framework

This chapter has helped you understand the subject of performance better. At this point, you should
have a better idea of why performance issues can cause application errors of all sorts. Applications
that perform well tend to be more efficient and require fewer organization resources. Consequently,
a little time spent tuning an application and its environment pays dividends far beyond simple added
speed and fewer user complaints. Crafting an application that performs well saves you time, effort,
and frustration in the long run as well.

The trick to creating applications that perform well is to look at the big picture to discover ele-
ments that may not work up to specification, and then view the details of those elements to deter-
mine areas where you can make improvements. This chapter discusses Entity Framework perfor-
mance. However, simply viewing the Entity Framework isn’t enough. As part of your continuing efforts
to improve application performance, create a picture of the application and its environment as a
whole. Make sure you include things like infrastructure, hardware, and user training in your assess-
ment of application performance.

Chapter 14, “Creating custom entities,” begins a new part in the book—one that focuses on
advanced management techniques. Managing the Entity Framework means working outside the
automation so that you have control over the Entity Framework, rather than allowing it to control
you. There’s no doubt that the automation works incredibly well and that you should use it as often as
possible, but there are times when you need to overrule the automation in order to garner a de-
sired result. Chapter 14 discusses the issue of creating custom entities to meet needs that the Entity
Framework automation isn’t quite designed to handle. It’s true that you won’t often need to perform
this task (especially given the new features that Microsoft continuously adds), but knowing how to
build custom entities will save you considerable time later.

316   PART IV  Overcoming entity errors

Chapter 13 quick reference

To Do this

Enhance performance beyond the optimizations available
in the Entity Framework

Remove layers by working with a lower-level technology
such as ADO.NET. The trade-off is additional develop-
ment time and increased complexity, which can translate
to security and reliability issues.

Reduce the amount of work performed by both server
and client in obtaining data

Make your queries as specific as possible using the where
clause. Anything you do to reduce the number of re-
cords retrieved from the server reduces both server and
network resource requirements, as well as client-side
processing.

Reduce the need to obtain data from the server Ensure that your queries are configured to use caching by
setting the EnablePlanCaching property to true.

Develop views with better performance profiles Use pregenerated views as often as possible to ensure the
application works with views as efficiently as possible.

Pregenerate application views Use the EDMGen command-line utility provided with
Visual Studio 2012. Make sure you open a Developer
Command Prompt for VS2012 command prompt to ac-
cess this tool.

Eliminate the need to compile queries during run time Use precompiled queries so that the application doesn’t
need to parse the query at run time to create a command
tree.

Improve the performance of read-only queries Turn off change tracking so that the application doesn’t
have to manage the overhead of tracking changes that
won’t occur because the query is read-only.

Reduce delays that occur when large numbers records
referenced by multiple navigation properties

Use lazy loading by setting the Lazy Loading Enabled
property of the model to True.

Reduce the effects of network latency on small data pay-
loads

Use eager loading by setting the Lazy Loading Enabled
property of the model to False.

Create a balanced application Ensure that you keep both application and application
environment in mind as you work through performance
issues. In addition, maintain a balanced view of speed,
security, and reliability issues.

Provide a speedier application Consider the user’s perception of speed, as well as the
need for actual speed. Use tricks such as an informative
interface to make up for lags in obtaining information
from the server.

Provide a secure application Ensure you exercise best practices when writing your
application, including limiting user rights to those that
the user must absolutely have to accomplish the task. If
necessary, provide multiple accounts for various needs so
that each task is given only the required level of access.

Provide a reliable application Use techniques that tend to produce consistent results
in a manner that both user and database understand.
Making the application efficient tends to produce fewer
user-related and time-related errors. Creating a predict-
able application means that the user can better anticipate
how to interact with the application to produce a desired
result.

Improve the user experience by returning control to the
application faster

Rely on multithreaded queries.

		 317

PART V

Advanced management
techniques

At some point, you’ll have a mostly finished model put together, a database to go with it, and the
starting of some amazing code. At this point, you need to start managing the intricacies of your

project, or else you’ll find that it doesn’t quite work as you expected it to work when you’re done. This
part of the book focuses on the management techniques you most commonly use to create Entity
Framework applications.

Chapter 14, “Creating custom entities,” begins the process by helping you understand and use
custom entities. A custom entity is one for which no standard .NET type exists. You use custom
entities with any custom objects that you create to describe specialized data or elements of the real
world that aren’t modeled well by existing .NET types. Many texts refer to these objects as Plain Old
CLR Objects (POCOs). Custom entities aren’t necessarily hand coded. The various tools provided with
Microsoft Visual Studio can make using POCO entities relatively straightforward and fast, so this chap-
ter helps you use the automation whenever possible.

In Chapter 15, “Mapping data types to properties,” you discover techniques for mapping data
types to Entity Framework properties. It’s an essential part of working with complex data. The chapter
begins by looking at some ways in which you can map standard types. You’ll also see how to map
enumerated, geography, and geometry spatial data types.

The last chapter of the book, Chapter 16, “Performing advanced management tasks,” focuses more
on administration. For example, you learn how to create multiple diagrams for the same model so
that you can see the model in different ways. This chapter also shows how to import multiple stored
procedures in batch mode, rather than one at a time. One of the more complex tasks that a developer
can perform is mapping a stored procedure that returns multiple result sets—this chapter tells you
how. The last part of this chapter takes one more look at Entity Framework performance enhance-
ments from an administrative perspective.

		 319

C H A P T E R 1 4

Creating custom entities

After completing the chapter, you’ll be able to

■■ Describe and use classes.

■■ Describe and use event handlers.

■■ Describe and use methods.

■■ Describe and use properties.

So far, this book has relied fully on automatic generation of all entity information. Yes, you’ve poked
and prodded it a bit, but essentially, the examples have used whatever the Entity Framework

provided. Unfortunately, despite advances in the way the Entity Framework works, there are still times
when you need to create custom entities to address special application needs. The two most common
times you’ll need to create special entities are

■■ When updating data classes from an existing application to use the Entity Framework.

■■ When you need better control over how data classes are generated to ensure you meet orga-
nizational requirements (those provided by your own workgroup, department, or enterprise),
standards requirements (those created by outside groups or organizations), or legal require-
ments (those created by the government).

In general, you can use your custom data classes with the Entity Framework without modification
as long as the entity types, complex types, and properties in the custom data class match the names
you provide for the entity types, complex types, and properties in the conceptual model. This means
you can use POCOs, such as domain objects, with the data model. POCO data classes tend to be
persistence ignorant. However, once mapped to entities, they can still perform the same Create, Read,
Update, and Delete (CRUD) operations as any other Entity Framework entity.

The easiest way to think about a POCO class is as any class that is supported as an entity by the
Entity Framework that doesn’t inherit from EntityObject. POCO support is necessary to support a
broad range of programming styles. For example, you must have POCO support in order to sup-
port the Domain-Driven Design (DDD) and agile programming styles. The lack of POCO support also
makes it hard to transition between technologies, such as moving from an Object-Relational Mapping
(ORM) tool such as NHibernate (see http://nhforge.org/ for details) to the Entity Framework.

In addition, you require POCO classes to support things like unit testing. The problem with using
standard entities is that it’s hard to break them up into small pieces for testing purposes. In addition,

320   PART V  Advanced management techniques

the entities interact directly with the database, so it’s hard to create unit tests where such interac-
tion is simulated. With this in mind, this entire chapter takes a step-by-step approach to working with
POCO classes in a manner that works best with the Entity Framework and allows you to optimize your
use of automation.

Note  This chapter doesn’t actually discuss DDD or agile programming. These topics require
one or possibly more books for a full treatment, and even an entire chapter wouldn’t really
suffice for much of an introduction. However, it’s important to at least know about these pro-
gramming strategies. You can learn more about DDD at http://msdn.microsoft.com/magazine/
dd419654.aspx and agile programming at http://agileprogramming.org/. Both of these phi-
losophies are important in today’s programming environment to help improve developer
productivity, so it’s good that the Entity Framework can support them. The techniques in this
chapter aren’t specific to either of these philosophies, but rather are general enough to apply
to either (along with a number of other POCO strategies that developers use).

Developing POCO classes

Some developers might confuse using POCO classes with code-first techniques. The fact is that
they’re entirely different. When working with POCO classes, the classes remain absolutely free of
encumbrances from the Entity Framework. In fact, the classes have no idea that the Entity Framework
even exists. You can actually start out with a model-first implementation and convert it to a POCO
implementation, which is the focus of the example described in the following sections.

Configuring the model
At this point, you’ve manually added classes to the example that match the model. However, the
Entity Framework is still configured to automatically generate code every time you make a change.
In order to complete the process of converting to POCO classes, you must configure the model to
use the POCO classes and not automatically generate code. The following procedure tells you how to
perform this task.

Configuring a model for use with POCO classes

1.	 Copy the LINQ query version of the ModelFirst example you created in Chapter 6, “Manipulat-
ing data using LINQ,” to a new folder, and use this new copy for this example (rather than the
copy you created in Chapter 6).

Note  The LINQ version of the ModelFirst example in Chapter 6 appears in the
ModelFirst (LINQ Query) folder of the downloadable source code. If you created
your own version of the example, the folder name will probably be different.

	 Chapter 14  Creating custom entities    321

2.	 Open the Rewards2Model.EDMX file by double-clicking its entry in Solution Explorer.

3.	 Click in any open area of the designer window. Set the Code Generation Strategy property to
None as shown here:

This action doesn’t get rid of the template-generated classes—the ones created using the
ADO.NET Entity Data Model template. It simply ensures that the model won’t generate classes
automatically as part of any build process.

4.	 Right-click the Customers.CS file found under the Rewards2Model.EDMX\Rewards2Model.
tt entry in Solution Explorer, and choose Delete from the context menu. You’ll see a warning
message about the deletion being permanent.

5.	 Click OK. Microsoft Visual Studio removes the file.

Warning  Attempting to delete the files using Microsoft Windows Explorer will cause
problems because the .CSPROJ file isn’t updated. This file will instruct Visual Studio
to continue looking for the files you’ve deleted.

6.	 Repeat steps 4 and 5 for the Purchases.CS and Rewards2Model.Context.CS files. At this point,
attempting to compile the application will display a number of error messages due to missing
references. This is normal, and you shouldn’t worry about it.

7.	 Choose Save All or press Ctrl+Shift+S to save the changes you’ve made.

322   PART V  Advanced management techniques

Adding the classes
Before you can do anything else, you need to create classes that will support the model. The classes
won’t derive from EntityObject, nor are they even aware of the model, but they’ll support it just the
same. The way this magic happens is in the technique used to create the classes. The class names and
properties must match. All of the classes and properties in the model must also appear in your classes,
including the navigational properties. The following procedure describes how to create the classes
used as a POCO replacement for the classes that the Entity Framework would normally generate auto-
matically for you. (This procedure assumes you’ve completed the steps in the “Configuring the model”
section of the chapter.)

Creating the Customers and Purchases classes

1.	 Open the Rewards2Model.EDMX file by double-clicking its entry in Solution Explorer (if neces-
sary). It’s helpful to have the model open as you create the required classes. You’ll need to
create two classes for this example—one for each entity, as shown here:

2.	 Right-click the TestModelFirst entry in Solution Explorer and choose Add | New Item from the
context menu. You’ll see the Add New Item dialog box shown here:

	 Chapter 14  Creating custom entities    323

3.	 Select the Class template as shown, and type MyCustomers.CS in the Name field. Click Add.
Visual Studio creates a new class file for you.

4.	 Type the following code into the Customers class:

namespace TestModelFirst
{
 using System;
 using System.Collections.Generic;

 public class Customers
 {
 public Customers()
 {
 // Automatically obtain a list of purchases from the database.
 this.Purchases = new HashSet<Purchases>();
 }

 // Declare the table properties.
 public int Id { get; set; }
 public string CustomerName { get; set; }

 // Declare the navigational property.
 public virtual ICollection<Purchases> Purchases { get; set; }
 }
}

The example code creates a simple set of properties that mimic those used by the model. In
order for the code to work at all, you must define properties that match those for both the
table and the navigational properties in the model.

Notice that the Purchases property is defined as ICollection<Purchases>. This declaration en-
sures you receive a list of purchases to work with from the Purchases table.

324   PART V  Advanced management techniques

The declaration of Purchases as virtual forces the Entity Framework to create a DynamicProxy
class for this property to enable change tracking. Otherwise, you’d need to call Detect
Changes() every time you wanted to perform an update to ensure that Purchases contains
the current update, delete, and add changes for the database. Essentially, Purchases obtains
the features of an EntityObject, without actually using the EntityObject class. The constructor
initializes Purchases to hold a collection of HashSet<Purchases> objects, which are then filled
from the table in the database. In addition, you must perform this instantiation to avoid a
null-value exception when there are no purchases associated with a customer.

Note  The POCO classes you create can always have more properties than the model
contains. The only requirement is that every property in the model be represented
by a property in the class. These additional properties could be used for tasks such
as maintaining business logic. The classes can also contain methods and events—
there’s no limit on the extra elements you provide, but you must minimally mimic
the model.

5.	 Repeat steps 3 through 5 for the Purchases class (using the MyPurchases.CS file). However,
you need to type the following code for the Purchases class instead of the code shown for the
Customers class:

namespace TestModelFirst
{
 using System;
 using System.Collections.Generic;

 public class Purchases
 {
 // Declare the table properties.
 public int Id { get; set; }
 public System.DateTime PurchaseDate { get; set; }
 public decimal Amount { get; set; }
 public int CustomersId { get; set; }

 // Declare the navigational property.
 public virtual Customers Customer { get; set; }
 }
}

Again, this class defines the table and navigational properties. However, because Customer is a
single object of type Customers, you don’t need to perform all of the fancy footwork required
to make the Purchases navigational property work. You can simply declare it as shown.

6.	 Choose Save All or press Ctrl+Shift+S to save the changes you’ve made.

	 Chapter 14  Creating custom entities    325

Creating an ObjectContext class to interact with the
POCO classes
At this point, you have a model and a set of classes—neither is aware of the other. While it’s desirable
for the classes to know nothing about the Entity Framework, the Entity Framework must know about
the classes in order to perform any useful work. As a consequence, you need to build an ObjectCon-
text class to provide the required connectivity. The following procedure shows how to create the
required class to provide the connectivity the Entity Framework requires. (This procedure assumes
you’ve completed the steps in the “Adding the classes” section of the chapter.)

Defining an ObjectContext class to manage the POCO

1.	 Right-click the TestModelFirst entry in Solution Explorer and choose Add | New Item from the
context menu. You’ll see the Add New Item dialog box.

2.	 Select the Class template as shown, and type OCSimplePOCO.CS in the Name field. Click Add.
Visual Studio creates a new class file for you.

3.	 Type the following code into the OCSimplePOCO class:

namespace TestModelFirst
{
 using System.Data.Objects;

 class Rewards2ModelContainer : ObjectContext
 {
 // Define internal variables for managing the POCO objects.
 private ObjectSet<Customers> _Customers;
 private ObjectSet<Purchases> _Purchases;

 public Rewards2ModelContainer() :
 base("name=Rewards2ModelContainer", "Rewards2ModelContainer")
 {
 // Instantiate the internal variables.
 _Customers = CreateObjectSet<Customers>();
 _Purchases = CreateObjectSet<Purchases>();
 }

 public ObjectSet<Customers> Customers
 {
 get
 {
 // Return the previously created customer data.
 return _Customers;
 }
 }

 public ObjectSet<Purchases> Purchases
 {
 get
 {
 // Return the previously created purchase data.

326   PART V  Advanced management techniques

 return _Purchases;
 }
 }
 }
}

This is an extremely simplified version of the code you could build to provide full ObjectCon-
text support. However, it does serve to demonstrate what is possible. The code begins with a
constructor that instantiates two private variables: _Customers and _Purchases. These two vari-
ables provide a context for interacting with the database. The two properties in the example
provide read-only access to these private variables. It doesn’t look like enough linkage to the
do the job, but you’ll be surprised when you try it out.

This example provides simplified access to the database in the interest of simplicity. However,
you can extend the Rewards2Container to provide complete CRUD operation functional-
ity. In the meantime, you do need to comment out the code used to add new records in the
example from Chapter 3, “Choosing a workflow.”

4.	 Comment out the following lines in the btnAdd_Click() event handler:

context.Customers.Add(NewCustomer);
context.Purchases.Add(NewPurchase);
context.SaveChanges();

5.	 Choose Save All or press Ctrl+Shift+S to save the changes you’ve made.

Testing the POCO application
You’ve now configured the model, added the necessary POCO classes, and created a class to manage
the POCO classes so the Entity Framework can interact with them. The following procedure demon-
strates the functionality of the resulting application.

Testing an application that uses POCOs

1.	 Open Form1.CS and place a breakpoint at this line in the btnQuery_Click() event handler:

StringBuilder Output =
 new StringBuilder("Customer List:");

2.	 Click Start or press F5. The application compiles and runs.

3.	 Click Query. The application stops at the breakpoint.

4.	 Choose Debug | Windows | Locals to display the local objects shown here:

	 Chapter 14  Creating custom entities    327

The CustomerList object contains a DynamicProxy object for each customer, as expected. Each
of these entries is assigned a hash value to ensure it retains a unique position within the col-
lection. You can see the CustomerName and Id values for the first of these entries. In addition,
the Purchases navigational property is there, and it contains a collection of the correct type.
However, the collection says there are zero entries, so let’s see what happens next.

5.	 Click Continue. You’ll see the result shown here:

The problem is that there’s nothing to show for each of the customers. When using POCOs,
you must provide some means for retrieving the purchases, because there’s no EntityObject to
provide the required code.

6.	 Click OK to close the dialog box. Close the application.

7.	 Modify the query to tell it to obtain the list of purchases, like this:

// Obtain the customer list.
var CustomerList =
 from cust in context.Customers.Include("Purchases")
 select cust;

8.	 Click Start or press F5. The application compiles and runs.

9.	 Click Query. The application stops at the breakpoint.

10.	 Choose Debug | Windows | Locals to display the local objects. Notice that this time there are
purchases in the list.

328   PART V  Advanced management techniques

11.	 Click Continue. You’ll see the result shown here:

12.	 Click OK to close the dialog box. Close the application.

Creating a DbContext class to interact with the POCO classes
Microsoft actually recommends that your connectivity class inherit from DbContext, instead of Object-
Context. In fact, the setup that the book has used so far automatically generates POCO classes to go
with a DbContext management class. Unfortunately, if you edit those POCO classes, the automation
will overwrite them. This section shows how to manually create POCO classes that you can modify as
needed to meet specific needs.

Note  The reason this chapter shows both ObjectContext and DbContext is that many orga-
nizations will have existing code that will use ObjectContext. It’s essential to know how to
work with both classes.

A good rule of thumb to follow is to use DbContext when creating new projects. Microsoft isn’t
going to phase ObjectContext out any time soon, but DbContext offers functionality that ObjectCon-
text doesn’t provide. In addition, using DbContext is much simpler than using ObjectContext (see the
discussion at http://blogs.msdn.com/b/efdesign/archive/2010/06/21/productivity-improvements-for-
the-entity-framework.aspx for details). However, even when you contemplate these advantages, you
need to also consider whether the third-party products you use rely on ObjectContext or DbContext
to perform their work (some companies have opted to use ObjectContext to support people who are
using older versions of the Entity Framework). The following procedure shows how to create a class
that interacts with POCO classes and inherits from DbContext.

Defining a DbContext class to manage the POCOs

1.	 Configure the model to work with POCOs using the steps found in the “Configuring the
model” section of the chapter. Don’t reuse the ObjectContext example.

2.	 Create POCO classes to use with this example using the steps found in the “Adding the classes”
section of the chapter.

	 Chapter 14  Creating custom entities    329

3.	 Right-click the TestModelFirst entry in Solution Explorer and choose Add | New Item from the
context menu. You’ll see the Add New Item dialog box.

4.	 Select the Class template as shown, and type DCSimplePOCO.CS in the Name field. Click Add.
Visual Studio creates a new class file for you.

5.	 Type the following code into the DCSimplePOCO class:

namespace TestModelFirst
{
 using System;
 using System.Data.Entity;
 using System.Data.Entity.Infrastructure;

 public partial class Rewards2ModelContainer : DbContext
 {
 public Rewards2ModelContainer()
 : base("name=Rewards2ModelContainer")
 {
 }

 // Create properties to access the POCO classes.
 public DbSet<Customers> Customers { get; set; }
 public DbSet<Purchases> Purchases { get; set; }
 }
}

The first thing you’ll notice is that this code is considerably shorter than the ObjectContext
version. You’ll also find out that it’s a lot more functional. Using DbContext adds a layer to the
overall framework, but in doing so you greatly reduce the work you need to perform. All that
you really need to do is provide a constructor with the name of the container you want to cre-
ate and then provide DbSet properties for each of the POCO classes.

When working with DbContext, you also don’t need to comment out the code for the
btnAdd_Click() event handler. The proper methods are already in place for adding records us-
ing the Add() method.

6.	 Open Form1.CS and place a breakpoint at this line in the btnQuery_Click() event handler:

StringBuilder Output =
 new StringBuilder("Customer List:");

7.	 Click Start or press F5. The application compiles and runs.

8.	 Click Query. The application stops at the breakpoint.

9.	 Choose Debug | Windows | Locals to display the local objects. Notice that all of the data you
need is already in place in the CustomerList variable.

10.	 Click Continue. You’ll see the output you expected with both the customer and associated
purchase data.

11.	 Click OK to close the dialog box. Close the application.

330   PART V  Advanced management techniques

Creating the classes in a different project
Any large organization is going to have multiple applications that depend on the same Entity
Framework model. Trying to keep all of those applications synchronized when each of them creates
a separate version of the model would be a nightmare. The best way to perform the task in larger
enterprise settings is to use a separate project to hold the model and reference the class from that
project. The following sections look at two methods for accomplishing this task.

Using automatic generation
In many cases, you really want to generate POCO classes automatically and have Visual Studio main-
tain them automatically using the techniques discussed to this point in the book. Fortunately, the
automatic method is relatively straightforward. There are a few twists, but nothing you haven’t dealt
with when creating other application types. The following procedure shows how to create a model in
a separate project and access it from an application. The automatically generated model uses POCO
classes and a DbContext to manage them. However, the POCO classes are automatically generated,
which means you can’t modify them manually.

Creating an external model automatically

1.	 Open Visual Studio and choose File | New | Project. You’ll see the New Project dialog box.

2.	 Select the Windows Forms Application template, type AutoGenerate in the Name field,
provide a path in the Location field, check Create Directory For Solution, and click OK. Visual
Studio creates a new Windows Forms project for you.

3.	 Right-click the Solution entry in Solution Explorer and choose Add | New Project. You’ll see the
New Project dialog box.

4.	 Select the Windows folder. Within the Windows folder, select the Class Library template, type
Rewards2Model in the Name field, and click OK. Visual Studio creates a class library project
for you.

5.	 Close Class1.CS. Right-click its entry in Solution Explorer and choose Delete from the context
menu. Click OK when asked whether you’d really like to delete the file.

6.	 Right-click Rewards2Model in Solution Explorer and choose Add | New Item from the context
menu. You’ll see the Add New Item dialog box shown here:

	 Chapter 14  Creating custom entities    331

7.	 Select the ADO.NET Entity Data Model template, type Rewards2Model in the Name field,
and click Add. Visual Studio starts the Entity Data Model Wizard as shown here:

8.	 Click Next. The wizard asks you to provide details about the connection. This means selecting
a database connection (which you should have set up in Visual Studio during earlier examples)
and providing a name for referring to that connection.

332   PART V  Advanced management techniques

9.	 Choose the Rewards2 database connection in the drop-down list box (if you don’t have a
connection to use, click New Connection and create one to the Rewards2 database), type
Rewards2ModelContainer in the field used to provide a connection name at the bottom of
the dialog box, and click Next. The wizard asks you to select the objects you want to import
into the model, as shown here:

10.	 Click Tables. The wizard automatically selects both the Customers and Purchases tables for
you.

11.	 Click Finish. You’ll see an entity diagram appear that contains the entities that you’ve been
working with up until now.

At this point, the model is usable, even though it exists in a separate project. However, you now
need to access that model from within the example application. The following steps will help you
configure the application for use with the external model.

Configuring the application for use with the external model

1.	 Right-click the References folder in Solution Explorer for the AutoGenerate project and choose
Add Reference. You’ll see the Reference Manager dialog box.

2.	 Select the Solution folder and check Rewards2Model, as shown here:

	 Chapter 14  Creating custom entities    333

3.	 Select the Browse folder and use it to locate the SeparateProject\packages\EntityFrame-
work.5.0.0\lib\net45 folder. Within this folder is an EntityFramework.DLL file that you need to
select, as shown here:

4.	 Click OK. Visual Studio adds the required references. In addition to these references, you must
also use the same connection string as provided by the Rewards2Model class. In order to do
this, you simply copy the string from one project to the other.

5.	 Open the App.CONFIG file for the Rewards2Model project. Locate the <connectionStrings> tag
and highlight the entire tag (both the opening and closing tag, plus the <add> tag it con-
tains). Press Ctrl+C to copy this information to the clipboard.

6.	 Open the App.CONFIG file for the AutoGenerate project. Place the cursor immediately before
the closing </configuration> tag and press Ctrl+V to copy the <connectionStrings> tag. At this
point, you’re ready to test the model.

7.	 Add a new button to Form1. Name the button btnQuery and set its Text property to &Query.

8.	 Double-click btnQuery to create a new click event handler.

334   PART V  Advanced management techniques

9.	 Type the following code for the btnQuery_Click() event handler:

private void btnQuery_Click(object sender, EventArgs e)
{
 // Create the context.
 Rewards2ModelContainer context = new Rewards2ModelContainer();

 // Obtain the customer list.
 var CustomerList =
 from cust in context.Customers
 select cust;

 // Process each customer in the list.
 StringBuilder Output =
 new StringBuilder("Customer List:");
 foreach (var Customer in CustomerList)
 {
 // Create a customer entry for each customer.
 Output.Append("\r\n" + Customer.CustomerName +
 " has made purchases on: ");

 // Process each purchase for that particular customer.
 foreach (var Purchase in Customer.Purchases)
 Output.Append("\r\n\t" + Purchase.PurchaseDate);
 }

 // Display the result on screen.
 MessageBox.Show(Output.ToString());
}

10.	 Add the following using statement to the beginning of the file:

using Rewards2Model;

11.	 Click Start or press F5. The application compiles and runs.

12.	 Click Query. You’ll see the expected result in the dialog box (the same result shown for the
other examples in this chapter).

Using manual generation
There are many situations in which you won’t want to use automatic code generation, but will still
want to put your code in a separate project. Of course, the most common time you’ll want to take
this approach is when the code already exists before you begin using the Entity Framework. As with
automatic code generation in a separate project, you’ll often see this technique used in the environ-
ments of larger organizations, where multiple applications will require access to the same model. The
following procedure shows how to create the model code in a separate project.

Creating an external model manually

1.	 Open Visual Studio and choose File | New | Project. You’ll see the New Project dialog box.

	 Chapter 14  Creating custom entities    335

2.	 Select the Windows Forms Application template, type ManuallyGenerate in the Name field,
provide a path in the Location field, check Create Directory For Solution, and click OK. Visual
Studio creates a new Windows Forms project for you.

3.	 Right-click the Solution entry in Solution Explorer and choose Add | New Project. You’ll see the
New Project dialog box.

4.	 Select the Windows folder. Within the Windows folder, select the Class Library template, type
Rewards2Model in the Name field, and click OK. Visual Studio creates a class library project
for you.

5.	 Right-click the References folder for the Rewards2Model project and choose Manage NuGet
Packages from the context menu. Select the Online\All folder in the resulting dialog box so
that you see the various packages available from online sources. You’ll see the Rewards2Model
- Manage NuGet Packages dialog box shown here:

6.	 Click Install. If you see a licensing agreement dialog box, simply click I Accept to accept the
licensing terms and to continue the installation process.

7.	 Click Close to close the Rewards2Model - Manage NuGet Packages dialog box.

8.	 Close Class1.CS. Right-click its entry in Solution Explorer and choose Delete from the context
menu. Click OK when asked whether you’d really like to delete the file.

9.	 Create POCO classes to use with this example using the steps found in the “Adding the
classes” section of the chapter. However, create these classes within the Rewards2Model proj-
ect, rather than the ManuallyGenerate project. In addition, you place the classes within the
Rewards2Model namespace.

10.	 Right-click the Rewards2Model entry in Solution Explorer and choose Add | New Item from
the context menu. You’ll see the Add New Item dialog box.

336   PART V  Advanced management techniques

11.	 Select the Class template as shown, and type DCSimplePOCO.CS in the Name field. Click Add.
Visual Studio creates a new class file for you.

12.	 Type the following code into the DCSimplePOCO class:

namespace Rewards2Model
{
 using System;
 using System.Data.Entity;
 using System.Data.Entity.Infrastructure;

 public partial class Rewards2ModelContainer : DbContext
 {
 public Rewards2ModelContainer()
 : base("name=Rewards2ConnectionString")
 {
 }

 // Create properties to access the POCO classes.
 public DbSet<Customers> Customers { get; set; }
 public DbSet<Purchases> Purchases { get; set; }
 }
}

This code is essentially the same as the code you used in the “Creating a DbContext class to
interact with the POCO classes” section of the chapter. The main difference is that it appears in
a different namespace.

However, notice that the base() method accepts a string that provides access to a container
name or a connection string. There’s no connection string in App.CONFIG. As a consequence,
the code won’t work. The next several steps will address this issue.

13.	 Open the App.CONFIG file for the Rewards2Model project and type the following code:

<connectionStrings>
 <add name="Rewards2ConnectionString"
 providerName="System.Data.SqlClient"
 connectionString="Server=.\SQLEXPRESS;
 Database=Rewards2;
 Trusted_Connection=True"/>
</connectionStrings>

Notice that this is a simple connection string and not any sort of entity connection. In this
case, you’re using a code-first approach to create a connection, which means the application
isn’t using .SSDL, .CSDL, or .MSL files. The Entity Framework takes care of all of these require-
ments for you in the background. In this case, you provide a name for the connection string,
the name of a provider, and the connection string itself. This connection string points to the
Rewards2 database in the local copy of SQL Server Express.

14.	 Perform the steps shown in the “Configuring the application for use with the external model”
procedure found in the “Using automatic generation” section to configure the application for
use with the manually generated model. Of course, you’ll use the ManuallyGenerate project,

	 Chapter 14  Creating custom entities    337

rather than the AutoGenerate project. In addition, you must provide the Include() method as
part of your query, as shown here, or the Entity Framework won’t load the purchases informa-
tion:

// Obtain the customer list.
var CustomerList =
 from cust in context.Customers.Include("Purchases")
 select cust;

Creating and using event handlers

In some situations, you want to know when a particular event occurs when working with the Entity
Framework. For example, you may want to know when the Entity Framework is about to save changes
to the database to ensure the changes are correct, or simply to display status information to the user
about the changes. Events typically occur in two situations:

■■ When standard Entity Framework events are fired. These events, ObjectMaterialized and
SavingChanges, are part of the ObjectContext object underlying the DbContext object.

■■ When a POCO class includes custom events that are used to handle business logic or to signify
task status.

Of course, you can probably make a case for other scenarios in which events could occur, but these
are the most typical. The following sections explore these two typical event-handling situations.

Handling ObjectContext events
Beneath every DbContext object lies an ObjectContext object that you can access when needed. The
situations in which such access is required are few, but important. One of the most important reasons
to access the ObjectContext is to gain access to the ObjectMaterialized and SavingChanges events
so that you can provide a handler for them. The following procedure shows how to create an event
handler for ObjectMaterialized so that you can display a status message to the user. However, working
with SavingChanges follows the same pattern as this example does.

Handling default Entity Framework events

1.	 Create a copy of the ModelFirst (DbContext) example described in the “Creating a DbContext
class to interact with the POCO classes” section of this chapter. Use this new copy in place of
the original for this example.

2.	 Open the DCSimplePOCO.CS file. You handle Entity Framework events in the class used to
provide the interface between the Entity Framework and the POCO classes.

3.	 Add the following using statements to the others provided with the class:

using System.Data.Objects;

338   PART V  Advanced management techniques

using System.Windows.Forms;

4.	 Add the following code (in bold) to the class constructor:

public Rewards2ModelContainer()
 : base("name=Rewards2ModelContainer")
{
 // Add an event handler for the ObjectMaterialized event.
 ((IObjectContextAdapter)this).ObjectContext.ObjectMaterialized +=
 this.ObjectContext_OnObjectMaterialized;
}

Notice the technique used to provide access to the ObjectContext underlying the
DbContext object. You work with the current instance of the object and coerce it to an
IObjectContextAdapter type. This cast allows access to the ObjectContext, which provides ac-
cess to the ObjectMaterialized event. Of course, ObjectContext_OnObjectMaterialized() is the
event handler. In this case, the event handler simply displays a status message.

5.	 Add the following event handler to the Rewards2ModelContainer class:

// Define an event handler for the ObjectMaterialized event.
public void ObjectContext_OnObjectMaterialized(
 object sender, ObjectMaterializedEventArgs e)
{
 // Verify the type is correct.
 if (sender.GetType() == typeof(ObjectContext))

 // Display messages only for customers.
 if (e.Entity.GetType().BaseType == typeof(Customers))

 // Display a status message.
 MessageBox.Show(((ObjectContext)sender).DefaultContainerName +
 " has materialized " + e.Entity.ToString() + " for " +
 ((Customers)e.Entity).CustomerName + ".");
}

Both sender and e provide useful information, so the example shows both. The sender is an
ObjectContext, so you can discover information such as the container’s name.

The e is the actual entity created from the POCO class. Remember that these objects are cre-
ated as dynamic proxies. In order to determine the actual type of the object, you must access
the BaseType property as shown.

In order to work with the Entity, you must cast the e.Entity property as the proper type first,
and then access the individual properties as shown. The output is simply a message box telling
you that a particular customer entry has been materialized.

6.	 Click Start or press F5. The application compiles and runs.

7.	 Click Query. You’ll see the materialized object information shown here for each customer.
After the individual customers are displayed, you’ll see the expected query output.

	 Chapter 14  Creating custom entities    339

Creating and handling custom events
You can use custom events in all sorts of ways with your application. In this example, the purpose is
simple: to register the occurrence of a specific event. Whenever the CustomerName field is accessed,
the Customers object will fire an event telling about the kind of access and which customer was ac-
cessed. An event like this could be used in all sorts of ways, such as informing an administrator about
potentially unauthorized access to sensitive information. The following procedure shows you a gen-
eralized technique for adding custom events to your application (with an emphasis on the particular
event that occurs in this case).

Developing and using a custom status event

1.	 Create a copy the ModelFirst (DbContext) example described in the “Creating a DbContext
class to interact with the POCO classes” section of this chapter. Use this new copy in place of
the original for this example.

2.	 Open the MyCustomers.CS file. The custom events you create appear within the POCO class
files for the most part. However, you could realistically create them anywhere.

3.	 Create a delegate and event within the Customers class using the following code:

// Define a delegate to signify that a customer has been created.
public delegate void NameAccess(object sender, NameArgs e);

// Define an event.
public event NameAccess NameAccessed;

Notice that the delegate relies on a custom event arguments class. You’ll create this class later
in the procedure. In most cases, you want to create one or more custom event arguments
instead of shoehorning an existing event arguments class—except when the existing class is a
precise fit (there aren’t any precise fits in this case).

4.	 Redefine the CustomerName property as shown here:

private String _CustomerName;
public string CustomerName
{
 get
 {
 // Tell everyone there has been name access.
 if (this.NameAccessed != null)

340   PART V  Advanced management techniques

 this.NameAccessed(this,
 new NameArgs { Name = this._CustomerName, IsGet = true });

 // Return the default value.
 return _CustomerName;
 }

 set
 {
 // Tell everyone there has been name access.
 if (this.NameAccessed != null)
 this.NameAccessed(this,
 new NameArgs { Name = this._CustomerName, IsGet = false });

 // Set the default value.
 _CustomerName = value;
 }
}

This code simply fires the event each time the CustomerName property is accessed in some
way. The NameArgs Name property contains the name of the customer that’s affected by the
change, and the IsGet property is true when the change is a get, rather than a set. The two
properties tell you how the property has changed so that you can better gauge what sort of
access is being performed. You could extend the NameArgs class to include additional infor-
mation.

5.	 Add a new class immediately after the Customers class, as shown here:

// A custom event arguments class used to define access target and type.
public class NameArgs : EventArgs
{
 // Defines the customer's name.
 public string Name { get; set; }

 // Determines whether this is a get or a set.
 public bool IsGet { get; set; }
}

6.	 Open the DCSimplePOCO.CS file. You handle Entity Framework events in the class used to
provide the interface between the Entity Framework and the POCO classes.

7.	 Add the following using statement to the others provided with the class:

// Added for the event handler.
using System.Windows.Forms;

8.	 Add the following code (in bold) to the class constructor:

public Rewards2ModelContainer()
 : base("name=Rewards2ModelContainer")
{

	 Chapter 14  Creating custom entities    341

 // Add an event handler for each customer.
 foreach (var Customer in this.Customers)
 Customer.NameAccessed += Customer_NameAccessed;
}

One of the mistakes that would be easy to make is to forget that you’re working with a DbSet
object that contains multiple customers. In order to ensure that every customer change is re-
corded, you must attach the event handler to each customer separately, as shown in the code.
This might seem like a painful way to do things at first, but it’s actually quite useful. Using this
approach, you can filter the records and attach event handlers only to those that meet certain
criteria.

9.	 Add the following event handler to the Rewards2ModelContainer class.

// Provide an event handler for the event.
void Customer_NameAccessed(object sender, NameArgs e)
{
 if (e.IsGet)
 MessageBox.Show(e.Name + " Retreived!");
 else
 MessageBox.Show(e.Name + " Changed!");
}

This event handler simply tells you which event has happened and on which record. In this
case, sender isn’t very helpful because it contains the dynamic proxy. The values within the
proxy haven’t been filled out yet, because the event is fired before the property returns a
value. Consequently, you really do need to use NameArgs to access the information.

10.	 Click Start or press F5. The application compiles and runs.

11.	 Click Query. You’ll see the access information shown here for each customer. After the indi-
vidual customers are displayed, you’ll see the expected query output.

Creating custom methods

Your POCO classes could contain custom methods for any number of reasons. One common reason to
include a method is to output formatted data. This ensures that the output meets company require-
ments and also reduces the time each developer spends providing formatted output. The following
procedure shows how to create a custom method that outputs the customer data in a formatted
manner.

342   PART V  Advanced management techniques

Developing and using a custom method

1.	 Create a copy of the ModelFirst (DbContext) example described in the “Creating a DbContext
class to interact with the POCO classes” section of this chapter. Use this new copy in place of
the original for this example.

2.	 Open the MyCustomers.CS file.

3.	 Add the following method to the Customers class to allow for formatted output:

// Declare a custom method.
public string ToFormattedString()
{
 // Create a StringBuilder to hold the formatted string.
 StringBuilder Output = new StringBuilder();

 // Add the customer's name.
 Output.Append(this.CustomerName +
 " has made purchases on: ");

 // Add each purchase on a separate line.
 foreach (Purchases Purchase in this.Purchases)
 Output.Append("\r\n\t" + Purchase.PurchaseDate);

 // Return the formatted string.
 return Output.ToString();
}

This method essentially draws the formatting code out of the event handler you’ve been
working with up to this point. Placing the formatted output in the POCO class reduces the
work needed to create formatted output later.

4.	 Add a new button to Form1. Name the button btnQuery2 and set its Text property to
Query &2.

5.	 Double-click btnQuery2 to create a new click event handler.

6.	 Type the following code for the btnQuery2_Click() event handler:

private void bntQuery2_Click(object sender, EventArgs e)
{
 // Create the context.
 Rewards2ModelContainer context = new Rewards2ModelContainer();

 // Obtain the customer list.
 var CustomerList =
 from cust in context.Customers
 select cust;

 // Process each customer in the list.
 StringBuilder Output =
 new StringBuilder("Customer List:");

 // Create a customer entry for each customer.

	 Chapter 14  Creating custom entities    343

 foreach (var Customer in CustomerList)
 Output.Append("\r\n" + Customer.ToFormattedString());

 // Display the result on screen.
 MessageBox.Show(Output.ToString());
}

Using the new ToFormattedString() method does make the event handler code shorter, sim-
pler, and easier to understand. Of course, it also hides implementation details.

7.	 Click Start or press F5. The application compiles and runs.

8.	 Click Query 2. You’ll see the output you expected with both the customer and associated
purchase data.

9.	 Click OK to close the dialog box. Close the application.

Creating custom properties

Properties take many forms in database applications. The database contains raw data. In the inter-
ests of using less space, making the database more reliable, and enhancing application performance,
many Database Administrators (DBAs) only include raw data. If you want a calculated value, you need
to use the raw data as a starting point and perform the calculation. In the following example, the class
performs the calculation for you. All you need to do is access the custom property that contains it.
The following procedure shows a technique for creating and using custom properties with your POCO
class. This example continues using the example from the “Creating custom methods” section of the
chapter.

Developing and using a custom calculated property

1.	 Add the following property to the Customers class to calculate the total purchase amount for
each customer:

// Declare a custom property.
public Decimal PurchaseTotal
{
 get
 {
 // Create a variable to hold the total.
 Decimal Total = 0;

 // Calculate the purchase total.
 foreach (Purchases Purchase in this.Purchases)
 Total += Purchase.Amount;

 // Return the total to the caller.
 return Total;
 }
}

344   PART V  Advanced management techniques

Notice that this property is read-only. Most calculated properties take the same form because
you won’t save the information to the database. The information is calculated each time the
records are loaded to ensure you get the correct result.

2.	 Add a new button to Form1. Name the button btnQuery3 and set its Text property to Query
&3.

3.	 Double-click btnQuery3 to create a new click event handler.

4.	 Type the following code for the btnQuery3_Click() event handler:

private void btnQuery3_Click(object sender, EventArgs e)
{
 // Create the context.
 Rewards2ModelContainer context = new Rewards2ModelContainer();

 // Obtain the customer list.
 var CustomerList =
 from cust in context.Customers
 select cust;

 // Process each customer in the list.
 StringBuilder Output =
 new StringBuilder("Customer List:");

 foreach (var Customer in CustomerList)
 {
 // Create a customer entry for each customer.
 Output.Append("\r\n" + Customer.CustomerName +
 " has made these purchases: ");

 // Process each purchase for that particular customer.
 foreach (var Purchase in Customer.Purchases)
 Output.Append("\r\n\t" + Purchase.PurchaseDate +
 " for $" + Purchase.Amount.ToString());

 // Add the purchase total.
 Output.Append("\r\nwith a total of: $" + Customer.PurchaseTotal);
 }

 // Display the result on screen.
 MessageBox.Show(Output.ToString());
}

This event handler adds some information about the customer to the output. In this case, you
see each purchase amount and then the total of the purchases on a separate line.

5.	 Click Start or press F5. The application compiles and runs.

6.	 Click Query 3. You’ll see the output shown here:

	 Chapter 14  Creating custom entities    345

7.	 Click OK to close the dialog box. Close the application.

Getting started with the Entity Framework

This chapter has demonstrated techniques for including POCO classes in your Entity Framework ap-
plication. For the most part, these techniques are generalized so that developers from a wide range
of disciplines can use them. The important concept to take away from this chapter is that your entity
classes need not actually inherit from EntityObject to work with the Entity Framework. Yes, there are
significant benefits to inheriting from EntityObject, including the use of automation to maintain your
application, but it isn’t absolutely essential.

This chapter has discussed a relatively complex topic. What you’ll want to do is to perform a little
more research if you’re not familiar with some of the technologies involved, such as DDD and agile.
It’s also a great idea to work with the examples and spend time viewing how they work with the
debugger. Try variations of the examples on your own until you know that you fully understand the
concepts presented in the chapter. Most importantly, start thinking about how you can apply what
you’ve learned in the chapter to actual working applications that you maintain. It may be that you’ll
be able to use the Entity Framework in ways that you hadn’t envisioned at the outset because of the
POCO support it provides.

Chapter 15, “Mapping data types to properties,” moves on to the topic of mapping data types
to properties. In this chapter, you discover techniques you can use to make data types that the .NET
Framework doesn’t support natively work with the Entity Framework. Manually mapping data types to
the Entity Framework is another task that you commonly perform when working with POCO classes.
However, it’s also something you may have to do even when using standard Entity objects because
some database projects require these custom complex types to describe a particular kind of object
fully.

346   PART V  Advanced management techniques

Chapter 14 quick reference

To Do this

Ensure your application has maximum
compatibility with older versions of the
Entity Framework

Create a management class that inherits from ObjectContext. Using
ObjectContext also makes it possible to use a number of third-party li-
braries that don’t support DbContext. In addition, most online examples
rely on ObjectContext, rather than DbContext, so using ObjectContext
allows you to receive more sources of information.

Ensure your application reduces complexity
and obtains the latest functionality pro-
vided by the Entity Framework

Create a management class that inherits from DbContext. Using
DbContext means that your code will be easier to follow and far simpler
to create. In addition, DbContext performs many tasks automatically for
you behind the scenes.

Create POCO classes that offer the maxi-
mum performance and are easy to manage

Manually create the classes so that the class names and properties pre-
cisely match the model you plan to use. While this option does offer
opportunities for performance optimization and better documentation,
it’s also more error prone.

Save time and create POCO classes that are
generally error free the first time

Use an automatic generation tool to create the POCO classes. This chap-
ter shows how to use a template-driven tool that creates acceptable
code for most needs.

Create new projects that use the same
model in an enterprise environment

Use automatic code generation techniques and place the result in a
separate project so that each of the applications can access the model
separately.

Use existing code within an enterprise en-
vironment

Rely on manual code generation techniques and place the result in a
separate project so that each of the applications can access the model
separately.

Handle Entity Framework–specific events Access the ObjectContext object underlying the DbContext object and
use it to define an event handler for either the ObjectMaterialized or
SavingChanges event.

Create and use custom events Add the delegate and event to your POCO class. Add the event handler
code to the class used to provide an ObjectContext or DbContext for the
POCO class.

Create and use custom methods Simply add the method to the POCO class best suited to meet the re-
quirement. You access the method as you would any other .NET method.

Create and use custom properties Determine the property type and add it to the POCO class best suited to
meet the requirement. Remember that most calculated properties are
read-only because the information isn’t saved anywhere. You access the
property as you would any other .NET property.

		 347

C H A P T E R 1 5

Mapping data types to properties

After completing the chapter, you’ll be able to

■■ Define and configure typical automation mapping configuration options.

■■ Specify and map the standard data types.

■■ Specify and map enumerated data types.

■■ Specify and map complex data types.

■■ Specify and map geography and geometry spatial data types.

Entity Framework automation generally does a great job of mapping types in your database to
types that the .NET Framework can understand. In fact, you’ve seen this automation at work in

many of the chapters of this book so far. Most applications will make use of the automatic mappings
that the Entity Framework provides.

There are situations where you want to provide custom mapping of standard data types, or you
need to provide the Entity Framework with the information required to properly map data types. An
example of the first situation is when you want to use a code-first workflow with an existing database
that already has a schema defined or when working with Plain Old CLR Object (POCO) classes. Not
only will you need to define a custom connection string (as shown in the “Using manual generation”
section of Chapter 14, “Creating custom entities”), but you’ll very likely need to create a custom data
mapping to accommodate both the existing classes and the existing database schema. An example of
the second situation is when you use an enumerated type or create a complex custom type (or rely on
a complex custom type that already exists). This chapter explores both situations using enumerated
data types and the geography and geometry spatial types.

Part of the problem for most developers is determining precisely when to employ custom map-
ping techniques. There are many situations where you really do want to use the automation simply to
make the application-programming environment a little simpler. However, it’s equally important not
to pound your head against the proverbial wall trying to make the automation do something it can’t.
This chapter helps you understand when to use custom mapping, as well as how and why to use it.

348   PART V  Advanced management techniques

Defining custom mapping
There are some misconceptions as to what custom mapping is all about. For example, when
you use the Entity Data Model Designer to add support for an enumeration, as you did in the
“Working with enumerations” section of Chapter 2, “Looking more closely at queries,” you
aren’t really performing custom mapping. Some texts may talk about it as custom mapping,
but what you’re really doing in this case is configuring the automation, which is an entirely
different task. Configuring the automation is the step after relying on the automation alone to
discover the data types and map them automatically for you. However, you’re still relying on
the automation to perform its task.

Custom mapping is the act of coding a mapping solution. In other words, you take control
over the mapping process away from the Entity Framework. You draw the Entity Framework
a map using code and describe precisely how to represent the data types in the database to
the .NET application. Of course, full control over the mapping process comes with additional
coding, a higher chance for errors, additional debugging, and potential reliability problems. It’s
important to create custom mapping solutions carefully and to test them thoroughly before
you deploy them to the production environment.

Understanding mapping automation configuration

The book has shown you a number of methods for configuring the Entity Framework automation
so that it performs tasks in a reliable manner that specifically meets your needs. For example, you
can use enumerations to ensure that a user can’t provide inaccurate data to the database when the
values for the field in question are known during design time. In the “Making views writable” section
of Chapter 9, “Interaction with views,” you relied on the automation to make it possible to insert data
into a table using a view. The point is that you can use the automation in all sorts of ways to create a
customized model. With this in mind, the following sections provide an overview of some of the ways
in which you can use the automation to solve specific types of mapping issues.

Note  This chapter doesn’t discuss the complex topic of inheritance relationships, where one
entity inherits from another. In this case, you’d see the base class used for inheritance pur-
poses in the Base Type property for that particular entity. The base class is normally defined
as abstract. You can learn more about the mechanics of performing this task at http://msdn.
microsoft.com/library/bb738479.aspx. Another good article on the topic appears at http://
blogs.microsoft.co.il/blogs/gilf/archive/2010/01/22/table-per-type-inheritance-in-entity-
framework.aspx. Chapter 16, “Performing advanced management tasks,” will also touch on
the topic from a design perspective.

http://msdn.microsoft.com/library/bb738479.aspx
http://msdn.microsoft.com/library/bb738479.aspx
http://blogs.microsoft.co.il/blogs/gilf/archive/2010/01/22/table-per-type-inheritance-in-entity-framework.aspx
http://blogs.microsoft.co.il/blogs/gilf/archive/2010/01/22/table-per-type-inheritance-in-entity-framework.aspx
http://blogs.microsoft.co.il/blogs/gilf/archive/2010/01/22/table-per-type-inheritance-in-entity-framework.aspx

	 Chapter 15  Mapping data types to properties    349

Configuring properties
There are many situations in which you can achieve a desired result by modifying a model property.
In some cases, the change immediately affects the application. For example, change the visibility of
a getter or setter, and the application will automatically reflect the change. In other cases, you must
update the database (by right-clicking the model and choosing Generate Database From Model from
the context menu) to see the change you’ve made. For example, changing the Max Length property
won’t make the application behave differently until you make that change to the database itself.

Configuring model properties

1.	 Copy the LINQ query version of the ModelFirst example you created in Chapter 6, “Manipulat-
ing data using LINQ,” to a new folder, and use this new copy for this example (rather than the
copy you created in Chapter 6).

Note  The LINQ version of the ModelFirst example in Chapter 6 appears in the
ModelFirst (LINQ Query) folder of the downloadable source code. If you created your
own version of the example, the folder name will probably be different.

2.	 Open the Rewards2Model.EDMX file by double-clicking its entry in Solution Explorer.

3.	 Choose View | Other Windows | Entity Data Model Browser. You’ll see the Model Browser
window shown here:

350   PART V  Advanced management techniques

The vast majority of property changes you make will appear as part of the model structure,
which is Rewards2Model in this case. Each entity type is placed in a different folder to make it
easier to find a particular type when working with a complex model. Selecting various folders,
entities, and properties, and viewing their properties in the Properties window, will help you
get a better idea of what sort of configuration changes are available.

4.	 Drill down to the Rewards2Model\Entity Types\Customers\CustomerName property and high-
light it.

5.	 Choose View | Properties Window. You’ll see the Properties window shown here:

You have already seen the Concurrency Mode property used in the “Using field-specific con-
currency” section of Chapter 12, “Overcoming concurrency issues.” A number of the examples
have also explored the Entity Key and StoreGeneratedPattern properties. The Default Value
property makes it possible for you to assign a default value to any given field, which reduces
the risk of exceptions when a user doesn’t supply a value for fields that have the Nullable
property set to False, as shown here. In some cases, setting the Type property can help you
reduce the risk of errors and make it easier to code a solution. You’ll see this type of change
used later in the chapter.

6.	 Set the Getter property to Private. This will make it impossible to access the value. You could
use this setting to hide information from the viewer in a way that works at one of the lowest
levels of the application.

7.	 Choose Build | Build Solution. The application won’t build.

8.	 Choose View | Error List. You’ll see a message telling you that the application can’t use this
property because it’s inaccessible, as shown here:

	 Chapter 15  Mapping data types to properties    351

9.	 Set the Getter property to Public.

10.	 Choose Build | Build Solution. The application builds as it did before. The changes you make to
the model reflect how and when the user interacts with the database. For example, you could
choose to make the Setter property of the Id field private to keep the user from attempting to
change the generated identifier value (not that the database would allow this change anyway,
but it would reduce the probability of an exception).

Changing property mapping
You’ve already seen one case of property mapping in the book—when you worked with an enumer-
ated type in the “Working with enumerations” section of Chapter 2. In that case, you converted an
Int32 property, FavoriteColor, to an enumerated type using the automation provided by this lat-
est version of the Entity Framework (before this version, working with enumerated types required
more than a little effort on the part of the developer). Chapter 2 didn’t show the effect of using
an enumerated type on the mapping. Open the GetUserFavorites example from Chapter 2 again.
Open the UserFavoritesModel.EDMX file by double-clicking its entry in Solution Explorer. Select the
FavoriteColor property and choose View | Other Windows | Entity Data Model Mapping Details. You’ll
see the Mapping Details window shown here:

Even though the property mapping is accomplished through the designer, in this case, it shows up
as part of the Mapping Details dialog box. The Mapping Details dialog box tells you that the mapping
is a particular kind of enumeration that’s supplied as part of the XML in the UserFavoritesModel.EDMX
file. You’ll see later that the mapping can start out as part of an application code file.

352   PART V  Advanced management techniques

In some cases, you don’t want to map a particular column to a property. The column appears as
part of the model because it’s part of the database, but you don’t actually need the property as part
of the application. In fact, including the property might be detrimental for a variety of reasons, such
as maintaining application security. In this case, you can click the drop-down list box in the Value /
Property column for the particular field you want to remove from the result set and click <Delete>.
Microsoft Visual Studio will remove the mapping, and that particular field will be inaccessible.

Filtering the data
It’s possible to filter data as part of the model. Using this approach means the application sees less
data without using any filtering as part of the query. You use this approach when the application
only requires a subset of the information from the database during normal operation. For example,
a user may only need to see customer records that have a specific characteristic. Downloading all of
the records from the database wastes resources and makes the application slower, so this form of
model-based filtering enhances overall application speed. Reducing the availability of records the
user doesn’t need to see also enhances overall application security. The following procedure describes
how to filter data at the model level.

Configuring a model to use filtering

1.	 Copy the LINQ query version of the ModelFirst example you created in Chapter 6 to a new
folder, and use this new copy for this example (rather than the copy you created in Chapter 6).

2.	 Open the Rewards2Model.EDMX file by double-clicking its entry in Solution Explorer. You’ll see
the model appear on screen.

3.	 Select the Customers entity.

4.	 Choose View | Other Windows | Entity Data Model Mapping Details. You’ll see the Mapping
Details window shown here:

Notice that the <Add A Condition> entry is highlighted. This is the entry you use to add a
filter to the model.

	 Chapter 15  Mapping data types to properties    353

Note  Filtering works in a peculiar way at this level. You can check for null values
or you can check for specific values. For example, you could check for all of the en-
tries for Josh Bailey or you could check for null values in the CustomerName field.
It isn’t possible to filter on key fields. For example, you couldn’t filter on Id. In addi-
tion, filtering is limited to certain data types. Filtering on a DateTime field such as
PurchaseDate or a Decimal field such as Amount isn’t possible. However, you can
filter on other field types, such as strings and Int32 values. In many cases, you simply
need to experiment to find the best way to filter the data from the database.

5.	 Click the down-pointing arrow next to <Add A Condition> and select CustomerName from
the list. You’ll see When CustomerName added to the condition list.

6.	 Type Josh Bailey in the Value / Property column. When you filter on a specific condition, as is
the case in this example, you can’t use that field as part of the mapped result. The assumption
is that you already know the value of the field.

7.	 Highlight the CustomerName entry in the model and press Delete. Not only does this remove
the property from the designer, but it also removes the mapping for it from the Mapping
Details window (note that the Value / Property column is now blank—indicating that the Cus-
tomerName field isn’t mapped). The Mapping Details window should now look like the one
shown here:

It’s important to realize that the CustomerName field is no longer mapped. This means you
can’t use it as part of a query or within the application output. The reason for this change
is that CustomerName is now a constant: Josh Bailey. Because of this change, you must also
modify the example code.

8.	 Open Form1.CS and comment out the code for the btnAdd_Click() event handler.

9.	 Comment out the following lines for the btnQuery_Click() event handler:

//// Create a customer entry for each customer.
//Output.Append("\r\n" + Customer.CustomerName +
// " has made purchases on: ");

354   PART V  Advanced management techniques

Because there are no customer entries, except for those from Josh Bailey, you could further
simplify the code to work exclusively with the Purchase table data. For the sake of simplicity,
this is the only change you really need to consider.

10.	 Click Start or press F5. The application compiles and runs.

11.	 Click Query. You’ll see the result shown here:

Notice that there are no customer entries this time. The only customer is Josh Bailey. However,
the output does show all three of Josh Bailey’s purchases.

Working with standard data types

You can perform a variety of manual mapping tasks, especially when working with POCO classes. The
Entity Framework does an admirable job of mapping your classes for you. However, in some cases,
you must perform some manual mapping to obtain the desired result. The following sections discuss
how to manually map standard types between Microsoft SQL Server and the .NET Framework.

Considering the standard data type mapping scenarios
It would be nice if you could start every database application with a new database where naming isn’t
too important and you don’t have to worry about a host of organization conventions. The reality is
that the world is filled with legacy databases that often rely on older naming strategies and a wealth
of incompatible structures. Organizations do create database-naming and structural policies that
might not fit Microsoft’s way of viewing things. In addition, you might have to make all of this work
with POCO classes that also don’t fit well with the database you’re working with at any given time.

A typical scenario to consider is the organization that’s either absorbed by another organization or
is attempting to absorb a new purchase. In either case, both organizations have databases, and both
organizations have to merge into a single entity. However, getting the databases to work together
can be daunting, and moving the data from one organization to the other might be out of the ques-
tion. In short, you need some means of performing custom mapping so that the Entity Framework
and your POCO classes work as they should, yet the existing data remains intact.

	 Chapter 15  Mapping data types to properties    355

It’s also possible that you need to make your application work with databases that aren’t even
under your control. You might need to interact with databases owned by business partners or even
entities that you purchase database information from. In many cases, these sorts of interactions are
now addressed through the use of web services, but you may still find situations where you need to
address them as part of your application using specialized code you create. Custom mapping is a
requirement in such a situation because you can be certain that the host organization is going to be
unwilling to make any changes to their database-naming conventions or structure.

Custom mapping goes beyond simple interface needs. You may have noticed that Microsoft makes
certain assumptions about the database, especially when you employ a code-first workflow. For
security and speed reasons, you may choose not to allow the database to accept an unlimited number
of characters in a given field. To ensure database reliability, you might choose to avoid using identity
fields and specifically assign identifier information instead. There are many situations where custom
mapping of standard data types is an essential part of creating the application because you require
more control over how the data is managed by the database.

Creating the Rewards3 database
This chapter makes some changes to the Rewards2 database structure. To ensure that your previous
applications continue to work, it’s important to create a new database you can play around with in
this chapter. Of course, you don’t necessarily want to re-create the database from scratch either. With
this in mind, the following procedure shows how to copy the Rewards2 database and access it as the
Rewards3 database. The remaining examples in this chapter will use the Rewards3 database to make
any structural changes.

Warning  While you can use the existing Rewards2 database for the examples in this chap-
ter, doing so will make the previous examples in the book unworkable. If you make the
changes in this chapter to the Rewards2 database, it’s important to realize that the process
is one-way and you won’t be able to reverse the changes with ease.

Copying the Rewards2 database

1.	 Open the folder containing your databases using Microsoft Windows Explorer.

2.	 Create copies of Rewards2.MDF and Rewards2_log.LDF, and rename them Rewards3.MDF and
Rewards3_log.LDF.

3.	 Open SQL Server Management Studio and log in as normal.

4.	 Right-click Databases in Object Explorer and choose Attach from the context menu. You’ll see
the Attach Databases dialog box.

5.	 Click Add. You’ll see the Locate Database Files dialog box shown here:

356   PART V  Advanced management techniques

6.	 Highlight Rewards3.mdf and click OK. You’ll see the entries listed in the Attach Databases
dialog box as Rewards2, not Rewards3. This is normal.

7.	 Change the Attach As column entry in the Databases To Attach list to read Rewards3.

8.	 Click the ellipses next to the Rewards2.mdf entry in the “Rewards2” Database Details list. You’ll
see a Locate Database Files dialog box. However, in this case, the dialog box contains both
.MDF (database) and .LDF (log) file entries.

9.	 Highlight the Rewards3.mdf file and click OK.

10.	 Check the log file entry. The Rewards2_log.ldf file entry should automatically change to
Rewards3_log.ldf. If not, perform steps 8 and 9 again to change the log file entry. Your Attach
Databases dialog box should look like the one shown here:

	 Chapter 15  Mapping data types to properties    357

11.	 Click OK. SQL Server Management Studio will create an attachment to the Rewards3 data-
base. If you receive an error message, it means that you didn’t configure something correctly
in the Attach Databases dialog box. Make sure you check the Attach As field, as well as both
database file entries.

12.	 Verify that the task completed successfully by expanding the Databases folder in Object
Explorer. You should see the new database, as shown here:

13.	 Close SQL Server Management Studio.

358   PART V  Advanced management techniques

Performing standard data type mapping
At this point, you have a new database to use for experimenting with data type mapping. This is
essentially a copy of the Rewards2 database that you’ll manipulate in various ways. The following pro-
cedure helps you better understand how custom mapping can work and benefit you in your develop-
ment efforts.

Creating a custom data type mapping

1.	 Copy the ManuallyGenerate example you created in Chapter 14 to a new folder and use this
new copy for this example (rather than the copy you created in Chapter 14). Remember that
the ManuallyGenerate example relies on two projects to interact with a database using the
Entity Framework and POCO classes, which is a perfect way to see how these mapping strate-
gies can work.

2.	 Open the example application in Visual Studio and use Server Explorer to create a connection
to the Rewards3 database you created in the “Creating the Rewards3 database” section of the
chapter. (Simply right-click Data Connections and choose Add Connection from the context
menu—follow the steps in the wizard to create the connection.)

3.	 Drill down into the new connection. You’ll see entries in the Views, Stored Procedures, and
Functions folders, as shown here:

4.	 Right-click each of the entries, such as ViewClients, in turn and choose Delete from the context
menu to remove them. Click Update Database when you see the Preview Database Updates
dialog box. Visual Studio will make the required changes to the database each time. The
reason you want to remove these entries is to make it easier to change the database structure
without having to rewrite every view, stored procedure, and function.

	 Chapter 15  Mapping data types to properties    359

5.	 Open the Tables folder in Server Explorer, right-click the Customers entry, and choose Open
Table Definition from the context menu. You’ll see a Table Definition designer like the one
shown here:

6.	 Change CustomerName to Cust_Name. This change will cause the application to malfunction.

7.	 Click Update in the upper-left corner of the designer window. Visual Studio displays a Preview
Database Updates dialog box.

8.	 Click Update Database in the Preview Database Updates dialog box. Visual Studio will make
the requested structural change and then show a Data Tools Operations dialog box that con-
tains the result of running the update script.

9.	 Close the Data Tools Operations dialog box.

10.	 Click Start or press F5. The application compiles and runs.

11.	 Click Query. You’ll see the exception dialog box shown here:

12.	 Click View Detail. You’ll see the View Detail dialog box.

360   PART V  Advanced management techniques

13.	 Expand the details and look at the InnerException property. You’ll see that this property cor-
rectly identifies the change in the field name as the problem.

14.	 Click OK to close the View Detail dialog box and stop the program execution.

15.	 Double-click the DCSimplePOCO.CS entry in Solution Explorer to open the file.

16.	 Add the following using statements to the Rewards2Model namespace (even though
you’re using the Reward3 database, you’re updating the existing code, which relies on the
Rewards2Model namespace):

// Added for manual data mapping.
using System.Data.Entity;
using System.Data.Entity.ModelConfiguration;
using System.ComponentModel.DataAnnotations.Schema;

You normally need to add all of these using statements to create even simple manual mapping
functionality for your application.

17.	 Add the following method override to the Rewards2ModelContainer class:

// Perform some manual mapping of the data.
protected override void OnModelCreating(DbModelBuilder MB)
{
 // Load the custom configuration.
 MB.Configurations.Add(new CustomerMap());
}

A custom mapping configuration requires that you create a special class to hold the informa-
tion. The OnModelCreating() event handler is called just once every time the application starts
and creates its first query. The configuration you create is loaded and cached for later use.

18.	 Create the following class within the Rewards2Model namespace in the DCSimplePOCO.CS file:

public class CustomerMap : EntityTypeConfiguration<Customers>
{
 public CustomerMap()
 {
 // Specify the name of the table to use.
 this.ToTable("Customers");

 // Define the key for this table.
 this.HasKey(key => key.Id);

 // Specify the mapping for each of the table properties.
 this.Property(prop => prop.Id)
 .HasColumnName("Id")
 .HasColumnType("int")
 .HasDatabaseGeneratedOption(DatabaseGeneratedOption.Identity)
 .IsRequired();

 this.Property(prop => prop.CustomerName)
 .HasColumnName("Cust_Name")
 .HasColumnType("nvarchar")

	 Chapter 15  Mapping data types to properties    361

 .IsRequired();
 }
}

The configuration you create can contain all sorts of information. This class shows the con-
figuration for the database as you configured it. The class begins by specifying the name of
the table you want to use and identifies the primary key for that table. Notice that the key is
identified using a lambda expression that identifies the name of the field in the POCO class,
not in the database table itself.

The properties come next. Notice how each property is defined by a succession of method
calls that further define its functionality. The most important feature here is the lambda
expression that identifies the POCO class property and the mapping to a database table field
using the HasColumnName() method. There are a number of methods not shown here. You
can see a full list at http://msdn.microsoft.com/library/gg696686.aspx.

19.	 Click Start or press F5. The application compiles and runs.

20.	 Click Query. You’ll see the expected output. It’s possible to reconfigure the tables in any way
you want and still have the application work when you create a custom mapping of this sort.

Working with enumerated data types

Enumerated types have all sorts of benefits when working with properties that have a fixed number
of responses. The security and reliability of an application both increase when you use enumerations,
because enumerations make it much harder for the user to make mistakes, and issues such as injec-
tion attacks are nonexistent. The following procedure shows one method for adding an enumerated
type to the Rewards3 database. In this case, the database adds a field that describes the kind of user
entry: standard customer, customer with a high discount, employee, or management.

Creating a custom enumeration mapping

1.	 Open the Tables folder in Server Explorer, right-click the Customers entry, and choose Open
Table Definition from the context menu to open the Table Definition designer (if necessary).

2.	 Type Cust_Type in the first blank row in the upper half of the designer window.

3.	 Set the Cust_Type Data Type field entry to int.

4.	 Type 0 in the Default field. These three entries make it possible to add a new field to the data-
base that will work with the enumerated type.

5.	 Click Update in the upper-left corner of the designer window. Visual Studio displays a Preview
Database Updates dialog box.

362   PART V  Advanced management techniques

6.	 Click Update Database in the Preview Database Updates dialog box. Visual Studio will make
the requested structural change and then show a Data Tools Operations dialog box that con-
tains the result of running the update script.

7.	 Close the Data Tools Operations dialog box.

8.	 Double-click the MyCustomers.CS entry in Solution Explorer to open the file.

9.	 Add the following enumeration to the Rewards2Model namespace:

// Define the kind of customer that has made the purchase.
public enum CustomerTypeEnum
{
 Standard,
 SpecialDiscount,
 Employee,
 Manager
}

As you can see, this enumeration simply defines the four kinds of customers that can make
purchases.

10.	 Add the following property to the Customers class:

public CustomerTypeEnum CustomerType { get; set; }

This property forces the use of the enumeration within the code and therefore by the user as
well. Of course, now you need to map this property to the database table.

11.	 Double-click the DCSimplePOCO.CS entry in Solution Explorer to open the file (if necessary).

12.	 Add the following property to the other property entries in the CustomerMap() constructor:

this.Property(prop => prop.CustomerType)
 .HasColumnName("Cust_Type")
 .HasColumnType("int")
 .IsOptional();

Notice that this entry uses IsOptional(). That doesn’t seem like an appropriate call given that
the field can’t be null in the database table. When a field has a default value, as this one does,
you can map it using IsOptional() to allow the caller to rely on the default value, rather than
supplying a specific value. Of course, you’ll want to see whether the mapping actually works,
so it’s time to change the query a little.

13.	 Open the Form1.CS file.

14.	 Modify the query so that it appears like the query shown below (with the new code in bold):

foreach (var Customer in CustomerList)
{
 // Create a customer entry for each customer.
 Output.Append("\r\n" + Customer.CustomerName +
 " (" + Customer.CustomerType +

	 Chapter 15  Mapping data types to properties    363

 ") has made purchases on: ");

 // Process each purchase for that particular customer.
 foreach (var Purchase in Customer.Purchases)
 Output.Append("\r\n\t" + Purchase.PurchaseDate);
}

15.	 Click Start or press F5. The application compiles and runs.

16.	 Click Query. You’ll see the output shown here:

Both customers are standard customers because you haven’t set the values for either one of
them. As a result, the database assumes a value of 0, which is the Standard entry in the enu-
meration.

Working with complex data types

Sometimes you need to handle data as a complex type in your application, even if it appears in
separate fields in the database. Complex data type mapping is only a little more difficult than other
sorts of mapping that you have performed so far. The following procedure describes how to add the
complex type fields to the database, create the complex type in code, and then perform the required
mapping.

Creating a custom complex data type mapping

1.	 Open the Tables folder in Server Explorer, right-click the Customers entry, and choose Open
Table Definition from the context menu to open the Table Definition designer (if necessary).

2.	 Type Cust_ZIP in the first blank row in the upper half of the designer window.

3.	 Set the Cust_ZIP Data Type field entry to nvarchar(10).

4.	 Check the Allow Nulls field entry for Cust_ZIP.

5.	 Type Cust_Telephone in the first blank row in the upper half of the designer window.

6.	 Set the Cust_Telephone Data Type field entry to nvarchar(13).

364   PART V  Advanced management techniques

7.	 Check the Allow Nulls field entry for Cust_Telephone.

8.	 Click Update in the upper-left corner of the designer window. Visual Studio displays a Preview
Database Updates dialog box.

9.	 Click Update Database in the Preview Database Updates dialog box. Visual Studio will make
the requested structural change and then show a Data Tools Operations dialog box that con-
tains the result of running the update script.

10.	 Close the Data Tools Operations dialog box. Of course, now there are null values in the data-
base that you’ll want to fill with data.

11.	 Right-click the Customers entry in Server Explorer and choose Show Table Data. You’ll see a
Data editor containing the data found in the table.

12.	 Type some appropriate values for the two customer entries. Here are the values used for this
example:

13.	 Double-click the MyCustomers.CS entry in Solution Explorer to open the file (if necessary).

14.	 Add the following using statement to the Rewards2Model namespace:

// Added for complex data type support.
using System.ComponentModel.DataAnnotations.Schema;

Warning  A considerable number of sites online use the wrong namespace for the
using statement. You must use the one shown or you won’t gain access to the re-
quired attributes.

15.	 Add the following class to the Rewards2Model namespace:

[ComplexType]
public class Location
{
 // Create the two properties of this type.
 public string ZIPCode { get; set; }
 public string Telephone { get; set; }
}

	 Chapter 15  Mapping data types to properties    365

To ensure the Entity Framework recognizes your class as a complex type, make sure you add
the [ComplexType] attribute as shown. This complex type contains just two properties: ZIP-
Code and Telephone.

16.	 Add the following property to the Customers class:

public Location CustomerLocation { get; set; }

17.	 Double-click the DCSimplePOCO.CS entry in Solution Explorer to open the file (if necessary).

18.	 Add the following property entries to the other property entries in the CustomerMap() con-
structor:

this.Property(prop => prop.CustomerLocation.Telephone)
 .HasColumnName("Cust_Telephone")
 .HasColumnType("nvarchar")
 .HasMaxLength(13)
 .IsOptional();

this.Property(prop => prop.CustomerLocation.ZIPCode)
 .HasColumnName("Cust_ZIP")
 .HasColumnType("nvarchar")
 .HasMaxLength(10)
 .IsOptional();

Notice that you must map the two database fields separately. Also, since these two fields have
length limits, you must provide them using the HasMaxLength() method. In other words, to
create nvarchar(13) using the mapping features, you must combine the HasColumnType() and
the HasMaxLength() properties. Trying to combine the two criteria into a single method call
won’t work.

19.	 Open the Form1.CS file.

20.	 Modify the query so that it appears like the query shown below (with the new code in bold):

foreach (var Customer in CustomerList)
{
 // Create a customer entry for each customer.
 Output.Append("\r\n" + Customer.CustomerName +
 " (" + Customer.CustomerType +
 ")\r\nZIP: " + Customer.CustomerLocation.ZIPCode +
 "\r\nTelephone: " + Customer.CustomerLocation.Telephone +
 "\r\nhas made purchases on: ");

 // Process each purchase for that particular customer.
 foreach (var Purchase in Customer.Purchases)
 Output.Append("\r\n\t" + Purchase.PurchaseDate);
}

21.	 Click Start or press F5. The application compiles and runs.

22.	 Click Query. You’ll see the output shown here:

366   PART V  Advanced management techniques

Working with geography and geometry spatial data types

Many organizations now require the use of Global Positioning System (GPS) data as part of their da-
tabase. Fortunately, working with this sort of data (or any other geometric data for that matter) isn’t a
problem with the Entity Framework. You simply create a mapping for it, as you would any other data
type in your application. The “Performing standard data type mapping” section earlier in the chapter
shows the technique you’d use to create the mapping in this case.

The differences come with the data itself. SQL Server provides two special data
types—sys.geography and sys.geometry—that you use when working with data of this sort (see
http://msdn.microsoft.com/library/ff848797.aspx for details). The corresponding .NET types,
DbGeography and DbGeometry, appear in the System.Data.Spatial namespace (see http://msdn.
microsoft.com/library/system.data.spatial.aspx for a description of this namespace and associated
classes). The difference between the two classes is that geography types perform tasks using an
ellipsoidal (round earth) coordinate system, while geometry types use a Euclidean (flat) coordinate
system.

Note  Although using geographic and geometric data types doesn’t require any special
mapping, you do need to provide the coordinates in a form that the .NET Framework un-
derstands. The walkthrough at http://blogs.msdn.com/b/adonet/archive/2011/06/30/walk-
through-spatial-june-ctp.aspx provides some additional helpful examples that you might
find useful in working with these data types.

	 Chapter 15  Mapping data types to properties    367

Getting started with the Entity Framework

The main focus of this chapter has been to demonstrate techniques for mapping various database
data types to types that the .NET Framework can understand. What you should take away from this
chapter is that the automation normally performs the task admirably and that you can configure the
automation to adjust for most schema differences without a problem. The techniques described in
this chapter are for those few situations where the automation fails to perform well. Unfortunately,
when the automation fails, it usually does so in a manner that will be frustrating to understand at first.
When you find yourself working just a little too hard to fix a mapping problem with the automation,
that’s when you need to look at the techniques in this chapter.

An important part of understanding the complex material in this chapter is going through each of
the examples at least once. In fact, it’s helpful to go through the examples several times with modi-
fications that you try to see what happens when you perform the tasks in a different way. For many
developers, trying to figure out precisely how mapping works involves hands-on activity that includes
actual coding and working through the code with the debugger to see how the application reacts to
change.

The examples in this chapter are typical demonstrations of situations where you need to per-
form manual data mapping. Of course, the information isn’t all that helpful if you don’t apply it to
your particular situation. Take time to start looking at your data setup and any custom POCO classes
that you’re currently using. Performing this survey while you’re thinking about the need for custom
mapping will likely save you time and frustration later. Document any situations you feel may require
custom mapping—there should be few (if any) of them in a typical setting.

Chapter 16, the last chapter of the book, discusses advanced management techniques. What this
chapter is really about is managing your model so that it performs better in a number of ways. For
example, you can create multiple diagrams for your model so that people viewing the model can
understand it better. You can also import stored procedures in batches, rather than one at a time, as
you’ve done throughout the rest of the book. The goal of this chapter is to help you get the most out
of the functionality that the Entity Framework provides so that you actually end up performing less
work in the long run.

368   PART V  Advanced management techniques

Chapter 15 quick reference

To Do this

Control access to a particular database field Change the access level to the Getter or Setter properties
of the entity property in question.

Remove a particular field from use within the application Right-click its entry in the Mapping Details window and
choose <Delete> from the context menu.

Limit the number of records returned from the database
at the model level

Create a filter in the Mapping Details window. The filter
will extract a specific record value or look for records that
contain a null value in that field. The field becomes inac-
cessible when a specific value is used.

Create custom mapping for data elements that don’t
match the properties in a class

Define a class that describes the required mapping and
then override the OnModelCreating() event handler
to load that class during the first query the applica-
tion makes. The class you create must inherit from the
EntityTypeConfiguration class.

Allow for the use of default values even when a field
won’t allow null values

Rely on the IsOptional() method. When the caller doesn’t
supply a required value, the database automatically uses
the default value so the field won’t be null.

Define a class as a complex data type for the Entity
Framework

Add the [ComplexType] attribute to the class declaration.
The actual complex type declaration, inclusion in the
POCO class, and mapping are no different from a stan-
dard type, except that you must provide one property
declaration for each field in the database.

Specify an nvarchar type with a specific length, such as
nvarchar(10)

Use a combination of the HasColumnType(“nvarchar”)
method and the HasMaxLength(10) method when defin-
ing the mapping between the application and the data-
base. Never try to declare the type and length as a single
entity, because the application won’t compile.

		 369

C H A P T E R 1 6

Performing advanced
management tasks

After completing the chapter, you’ll be able to

■■ Demonstrate how to create and configure a multiple-diagram model.

■■ Describe and demonstrate techniques for performing batch imports of stored procedures and
functions.

■■ Map a stored procedure that returns multiple result sets.

■■ Demonstrate techniques for creating and using entities with inheritance.

■■ Describe context actions for automatically generated classes.

Working with the Entity Framework is a matter of managing data in a specific way. This book has
discussed many techniques for managing your database projects, rather than allowing them

to manage you. This chapter is the culmination of all of the other concepts you have learned so far.
You’ll discover the advanced techniques that will set you apart from other developers. For example,
this chapter discusses the use of multiple diagrams to create models that are easier to understand and
to present to others. Anyone can create a huge model that no one can understand (not even the de-
veloper creating it, at times), but it takes finesse to create a series of seemingly simple diagrams that
make a complex database project easy to understand.

This chapter is also about saving time. Most developers don’t have a lot of time to spare, so per-
forming tasks one at a time when there are techniques for performing multiple tasks at once is just
a waste of time. In this case, you discover how to import multiple stored procedures using a batch
process, rather than importing them one at a time.

The remainder of the chapter provides you with some advanced methods of working with entities.
For example, it’s possible to create entities that rely on inheritance. You can create a single base entity
and inherit from it to create a number of similar entities; for example, you can start with a people
entity and then inherit from it to create customer, employee, and manager entities. This chapter also
provides you with additional techniques for interacting with classes, properties, and methods. Devel-
oping methods to make the automation work better is always a worthy goal, and this chapter adds
several new techniques to your toolbox.

370   PART V  Advanced management techniques

Developing multiple diagrams for a model

Throughout the book, you’ve worked with relatively simple models. Of course, the real world isn’t so
easily modeled. The models you work with in the real world are significantly more complex than those
found in this book. Of course, that means more entities displayed on screen and a greater potential
for confusion. As the model becomes more complex, it becomes more difficult for anyone to figure
out what it does—how the various elements interact.

The Entity Framework is supposed to reduce complexity—to make it easier for developers to cre-
ate robust models that present the database in a way that’s both simple and understandable. With
this in mind, there are times when you need to display the model for your application using multiple
diagrams. Just as an architect relies on multiple pages of blueprints when designing a house, you
can use multiple diagrams to make the model easier to understand. Each diagram models a different
functional area of the database structure.

The following sections describe how to create, configure, and manage multiple diagrams for appli-
cations that rely on the Entity Framework. The basic goal of these sections is to help you understand
the mechanics of working with multiple diagrams. Your organization will need to create a plan for
defining how elements should appear on each diagram to ensure maximum understandability and
flexibility (the “Techniques for organizing model diagrams” sidebar, which follows, can help).

Techniques for organizing model diagrams
There isn’t a certain way to create any particular Entity Framework diagram—no right or wrong
method. The method that people using the diagram understand the best is the method that
you need to use. However, there are some practical methods for organizing diagrams that you
might consider when creating your own diagrams. These techniques were derived from various
real-world sources.

■■ Functional area  Organizing the model by functional area means dividing the database
into tasks performed with a particular kind of data. For example, you might have one
functional area devoted to user settings, another to employee data, and still another to
customer entries. Dividing data by function can be tricky, however, because some data
isn’t really associated with any specific function—rather, it’s used on an organization-wide
level. For example, price information may seem associated with the sales department, but
it could also be used by the shipping department to help determine shipping costs or
with employee data to determine how much to pay in commissions.

■■ Department  Specific data is often associated with a particular department. Even
though the data might be used by other departments, only one department manages
the data. The problem in this situation is that not all data is managed by a particular
department, and some static data isn’t managed by any department at all. You’d need
to consider adding special diagrams for data that doesn’t conveniently fit any particular
department.

	 Chapter 16  Performing advanced management tasks    371

■■ Location  A large organization may spread data across regional boundaries. Placing
each region on its own diagram would make it easier to find based on where the informa-
tion is used. In this case, you’d need some method of handling data that’s used equally by
all locations. It might also be necessary to combine this technique with other techniques
for further dividing information that appears in heavily used locations.

■■ Unit  Many organizations are divided into units. This is different from the department
organization in that each unit might have duplicates of some departments, such as sales
or accounting. An organization might have units that deal with appliances, electronics,
and apparel. The point is that each unit is a separate entity.

■■ Application Element  You may decide to simply give up trying to organize the dia-
grams based on some physical entity and work with the application design itself. For
example, some database elements may only affect the user, while others affect employees
as a whole or customers as a whole. You’ll likely encounter some database elements that
don’t fit neatly into a specific application area, however, and will need to create a more
generalized diagram to hold these entities.

Creating the new diagram
Before you can do anything, you need to create one or more diagrams to use to organize your model.
Working with multiple diagrams is somewhat different from working with a single diagram, but most
principles are the same. For example, you can add entities to any diagram you want, and you can
create associations between entities on any diagram. The following procedure shows how to add a
diagram to one of the existing projects and then move elements around so that you get essentially
the same model, but organized in a different way.

Creating multiple diagrams

1.	 Copy the LINQ query version of the ModelFirst example you created in Chapter 6, “Manipulat-
ing data using LINQ,” to a new folder, and use this new copy for this example (rather than the
copy you created in Chapter 6).

Note  The LINQ version of the ModelFirst example in Chapter 6 appears in the
ModelFirst (LINQ Query) folder of the downloadable source code. If you created
your own version of the example, the folder name will probably be different.

2.	 Open the Rewards2Model.EDMX file by double-clicking its entry in Solution Explorer.

3.	 Choose View | Other Windows | Entity Data Model Browser. You’ll see the Model Browser
window shown here:

372   PART V  Advanced management techniques

Whenever you start a new Entity Framework project using the model-first workflow, you get a
single diagram to start drawing on. This diagram is named Diagram1. Unfortunately, Microsoft
Visual Studio doesn’t ask you for any other name (and none is really needed until you start
creating other diagrams). However, now you need to start thinking about how the model is
organized, despite the fact that the model currently contains just two entries.

4.	 Drill down to the Diagrams\Diagram1 diagram and highlight it.

5.	 Change the Name property value in the Properties window to People.

6.	 Right-click Diagrams and choose Add New Diagram from the context menu. You’ll see a
new diagram added to the Model Browser window. Notice also that you now have two
Rewards2Model.EDMX file entries displayed in Visual Studio—one marked [People] and the
other marked [Actions].

7.	 Highlight the new diagram in the Model Browser and change the Name property value in the
Properties window to Actions.

8.	 Select the Rewards2Model.edmx [People] tab in Visual Studio. Notice that nothing has
changed.

9.	 Right-click Purchases and choose Cut from the context menu. The entity disappears from the
Rewards2Model.edmx [People] tab.

10.	 Select the Rewards2Model.edmx [Actions] tab. Right-click anywhere within the designer and
choose Paste from the context menu. You should now have two tabs, each containing an
entity, as shown here:

	 Chapter 16  Performing advanced management tasks    373

This is a method of separating the entities by functional area. In this case, you have two areas:
one for people and another for actions. If you were to add other kinds of people, these people
could still perform the same actions. For example, you might have an Employees entity that
could still make purchases. The Model Browser window also reflects this change.

Notice that there’s no longer an association line between the two entities. The association still
exists, but now you must modify it by accessing it through the Model Browser window. How-
ever, it’s a good idea to verify that the association still exists.

11.	 Choose View | Other Windows | Entity Data Model Browser. Drill down into the Associations
folder. You’ll see the Model Browser window shown here:

374   PART V  Advanced management techniques

Everything appears to be the same as before, despite that missing line. To satisfy yourself that
you have simply reorganized the one diagram into two, it’s important to test the application
out.

12.	 Click Start or press F5. The application compiles and runs.

13.	 Click Query. You’ll see the expected result. The number of diagrams used and the presentation
of entities on those diagrams don’t affect how the model works.

14.	 Click OK to close the dialog box and then stop the application.

Configuring the diagram appearance
The diagrams you create aren’t just there to meet your needs—they also help you explain your data-
base design to other people. Presentation is everything when it comes to discussing complex topics
with other people who need to know about them, but don’t necessarily have the same knowledge
level as you do. You can, for example, place the entities in a grid to lay them out in a manner that’s
more easily viewed, or you can rely on color to help distinguish entity types. The following sections
describe some techniques you can use to modify the presentation of your model and then export it
for use in presentation materials.

Using a grid
Grids make it possible to precisely align elements on screen. The precise alignment of display ele-
ments will make your model look more professional and prove less distracting to the people viewing
it. It may seem like a small thing, but creating a pleasing appearance doesn’t take that much time,
and it actually makes the model a lot easier to work with later. There are two levels of grid support
provided by the designer—both of which you can access by right-clicking anywhere within the white
space of the designer window and choosing an option from the Grid menu. The following are the two
options:

■■ Show Grid  Displays a series of dots on the design area that you can use to align display
elements.

■■ Snap to Grid  Automatically places any item you add to the model onto one of the grid lines
so that it’s easier to precisely align the elements. This feature is turned on by default.

	 Chapter 16  Performing advanced management tasks    375

Color-coding the entities
As your models become more complex, you’ll want to color code the entities by type. You can accom-
plish this task by selecting an entity and then changing the Fill Color property value in the Properties
window. Clicking the down arrow displays a color selector you can use to choose a predefined color.
You can choose one of the named colors that appear in the color selector, or you can type three color
values in the Fill Color property. The default setting is a custom color of 0, 122, 204. Note that you
must separate the red, green, and blue color values with commas.

Adding type to the display
The default Scalar Property Format value is Display Name, which gives someone an idea of what
purpose a particular property serves, but not the type used to represent it. When working with less-
skilled viewers, the display name is probably fine, and using it will make it less likely that the viewer
will become confused. However, when working with your peers, you need to change the setting to
Display Name and Type so that the audience knows which data type is used for a particular property.
To change this value, right-click anywhere in the white space of the designer and choose Scalar Prop-
erty Format | Display Name And Type from the context menu. Here’s how the Customers entity looks
with type information displayed:

Exporting the diagram as an image
After you have your diagram created precisely as you want to see it in your presentation, you can
export it as an image that you can use anywhere it’s needed. To perform this task, right-click any-
where within the white space in the designer window and choose Diagram | Export As Image from the
context menu. You’ll see an Export Diagram As dialog box similar to this one:

376   PART V  Advanced management techniques

The Save As Type field provides a variety of file formats from which to choose, including .BMP,
.JPG, .GIF, .PNG, and .TIF. Select a file type and then type a name in the File Name field. Click Save, and
you’ll find the diagram on the hard drive in the location you selected. The resulting image will contain
just a little white space around the perimeter of the entities.

Performing batch imports of stored procedures and functions

In previous versions of the Entity Framework, you needed to import stored procedures and functions
one at a time. It was a painful process. You’ve been able to import stored procedures and functions
in batch mode using techniques that have appeared a number of times in the book already (even
though the examples necessitated the import of stored procedures and functions individually, for the
most part). However, because this was an issue for many developers in the past, and many developers
still have questions about it, this section takes a special look at the process in the following procedure.

Using the Update Wizard to batch import stored procedures and functions

1.	 Create your Entity Framework application using any of the techniques described in Chapters 1
through 3 (making sure you add the required Entity Framework support).

2.	 Right-click anywhere in the white space of the Model Designer and choose Update Model
From Database from the context menu. You’ll see the Update Wizard.

3.	 Check the Import Selected Stored Procedures And Functions Into The Entity Model option (if
necessary). You’ll see a list of stored procedures and functions (if the database contains any),
as shown here:

	 Chapter 16  Performing advanced management tasks    377

4.	 Check the Stored Procedures And Functions folder if you want to import all of the stored pro-
cedures and functions found in the database. Otherwise, check individual stored procedures
and functions as needed by your application.

5.	 Click Finish. Visual Studio will import the stored procedures and functions you’ve selected into
the model. Chapters 7 through 10 discuss various issues surrounding the use of stored proce-
dures and functions with the Entity Framework. The batch import process doesn’t change any
of these conditions or results—it simply makes it possible to perform the task in one step.

Mapping a stored procedure that returns multiple result sets

Some stored procedures return multiple result sets. Normally, a developer uses this technique to
reduce the number of round trips made between the client and the server. Returning multiple result
sets can improve overall application speed and reduce the load on the server by returning just what
that application requires, rather than a larger result set that includes both smaller result sets.

A problem with earlier versions of the Entity Framework is that you would see only the first result
set. In fact, Entity Framework 5 still has this problem when you use just the automation to interact
with the result set. However, with Entity Framework 5, you have two ways to overcome the problem.
The following sections describe both techniques.

378   PART V  Advanced management techniques

Note  There isn’t any way to overcome a multiple-result-set problem when using the
database-first workflow. The techniques described in this chapter work only with the mod-
el-first and code-first workflows. When using the database-first workflow, you’ll need to
write code that relies on the code-first approach to work around the problem. This can be
a tricky and error-prone approach that isn’t recommended (and is therefore not covered in
this book).

Creating the stored procedure
Before you can see the problem in working with multiple result sets, you need a stored procedure
that performs the task. As part of testing this stored procedure, you can see that the stored proce-
dure does indeed return multiple result sets, but that the automation only interacts with one of them.
Sections that follow this one contain the two techniques you can use to overcome this problem. The
following procedure helps you create the example application setup and the example stored proce-
dure, and then test the resulting stored procedure to ensure it works as anticipated.

Creating a stored procedure that returns multiple result sets

1.	 Open your copy of Visual Studio. You don’t need to have a project loaded because you’re
going to be interacting with Server Explorer and Microsoft SQL Server.

2.	 Choose View | Server Explorer to open the Server Explorer window if it isn’t already open.
Under Data Connections, you should see closed connections to the databases used in the
book.

3.	 Open the connection to the Rewards2 database by clicking the right-pointing arrow next to it.
You’ll see a list of folders associated with the database, including the Stored Procedures folder.

4.	 Right-click the Stored Procedures folder and choose Add New Stored Procedure from the
context menu. You’ll see a new window appear that has a template for creating a stored pro-
cedure in it.

	 Chapter 16  Performing advanced management tasks    379

5.	 Overwrite the template code with the following code:

CREATE PROCEDURE MultipleResultSet
AS
 SELECT * FROM Customers AS C
 INNER JOIN Purchases AS P
 ON C.Id = P.CustomersId
 WHERE C.CustomerName = 'Josh Bailey';

 SELECT * FROM Customers AS C
 INNER JOIN Purchases AS P
 ON C.Id = P.CustomersId
 WHERE C.CustomerName = 'Christian Hess';
RETURN 0

6.	 Click the Update button that appears on the left side directly above the editor. Visual Studio
prepares the update and displays a Preview Database Updates dialog box showing the
changes that it will make.

7.	 Click Update Database. Visual Studio begins the database update. You can follow the progress
of the update in the Data Tools Operations window. When the process is complete, you’ll see
Data Tools Operations dialog box, containing a success message like the one shown here:

8.	 Close the Data Tools Operations dialog box by clicking the X in the upper-right corner.

9.	 Right-click the Stored Procedures folder and choose Refresh from the context menu. You
should now see the MultipleResultSet stored procedure, as shown here:

380   PART V  Advanced management techniques

10.	 Right-click the MultipleResultSet entry and choose Execute from the context menu. Visual
Studio creates and executes a new SQL query. You’ll see results similar to the ones shown here:

Notice that there are actually three result sets. The first contains all the purchase records for
Josh Bailey, the second all the purchase records for Christian Hess, and the third the return
value of 0. The example purposely includes this third result set because many stored proce-
dures use a return value to indicate the success or failure of the stored procedure. In other
words, the stored procedure might normally return just one result set, but the inclusion of a
return value makes it return multiple result sets.

11.	 Close the stored procedure. You don’t need to save the results.

Using the code-access technique
The code-access technique for working with multiple result sets is the preferred approach because it
doesn’t modify the automation in any way. In addition, this technique works with both the code-first
and model-first workflows. Of course, this technique does require a bit more coding on your part, and
there isn’t any way to add the functionality to the automation—this is a purely manual approach. The
following procedure describes how to use this approach to working with multiple result sets.

	 Chapter 16  Performing advanced management tasks    381

Creating multiple diagrams

1.	 Copy the LINQ query version of the ModelFirst example you created in Chapter 6 to a new
folder and use this new copy for this example (rather than the copy you created in Chapter 6).

2.	 Add a new button to Form1. Name the button btnCoded and set its Text property to &Coded.

3.	 Double-click btnCoded to create a new click event handler.

4.	 Type the following code for the btnCoded_Click() event handler:

private void btnCoded_Click(object sender, EventArgs e)
{
 // Create the context.
 Rewards2ModelContainer context = new Rewards2ModelContainer();

 // Create a command to execute.
 var Cmd = context.Database.Connection.CreateCommand();

 // Set the command to execute.
 Cmd.CommandText = "MultipleResultSet";

 try
 {
 // Open a connection to the database.
 context.Database.Connection.Open();

 // Execute the stored procedure and save the results.
 var Reader = Cmd.ExecuteReader();

 // Access the first result set.
 var Results = ((IObjectContextAdapter)context)
 .ObjectContext
 .Translate<MultipleResultData>(Reader);

 // Process the first result set.
 StringBuilder Output = new StringBuilder("Josh Bailey Purchases: ");
 foreach (var Result in Results)
 {
 Output.Append("\r\n\t" + Result.PurchaseDate +
 " for " + Result.Amount);
 }

 // Access the second result set.
 Reader.NextResult();
 Results = ((IObjectContextAdapter)context)
 .ObjectContext
 .Translate<MultipleResultData>(Reader);

 // Process the second result set.
 Output.Append("\r\nChristian Hess Purchases: ");
 foreach (var Result in Results)
 {
 Output.Append("\r\n\t" + Result.PurchaseDate +
 " for " + Result.Amount);
 }

382   PART V  Advanced management techniques

 // Display the result on screen.
 MessageBox.Show(Output.ToString());
 }
 finally
 {
 // Make certain the database connection is closed.
 context.Database.Connection.Close();
 }
}

The code begins by creating a context, as is normal for most of the examples in the book. It
then uses the context to create a SQL command, Cmd. The command has to describe what
to do using the Cmd.CommandText property. In this case, it runs the MultipleResultSet stored
procedure.

The execution process begins by opening a connection to the database—something the Entity
Framework normally does for you. It then calls Cmd.ExecuteReader() to execute the stored
procedure and place the results in a SqlDataReader object, Reader.

The next step is a little odd looking but a required part of reading the result set. The applica-
tion accesses the ObjectContext object and uses its Translate() method to translate the first
result set in the Reader object to something that the application can understand. You’ll see in
a few steps that the MultipleResultData object simply places the data in a form that the appli-
cation can readily use. The application then uses the results to create output that includes the
purchases that Josh Bailey has made.

In order to get to the next result set, the code calls Reader.NextResult(). It then performs the
translation process all over again and uses the translated results to create output. In this case,
you see the purchase records for Christian Hess. You can continue to perform this loop of
reading the next result set for as many result sets that the Reader can access.

Notice that the last step is to close the database connection by calling context.Database.Con-
nection.Close(). You must perform this step or the database connection could remain open. At
the very least, the application will have a memory leak.

5.	 Add the following using statements to the top of the Form1.CS file:

// Using statements added for processing multiple result sets.
using System.Data.Entity.Infrastructure;
using System.Data.Objects;

6.	 Add the following class to the Form1.CS file:

public class MultipleResultData
{
 public Int32 Cust_Id { get; set; }
 public String CustomerName { get; set; }
 public Int32 Purchase_Id { get; set; }
 public DateTime PurchaseDate {get; set;}

	 Chapter 16  Performing advanced management tasks    383

 public Decimal Amount { get; set; }
 public Int32 CustomersId { get; set; }
}

All this class does is describe the format of the data that comes from the result set; it helps the
Entity Framework translate the information into a form that you can use more easily. If you
were working with a single table that’s already described as part of the model, then you could
use an entity class instead. However, it’s far more likely that you’ll need to create a class such
as this one to help with the translation.

7.	 Click Start or press F5. The application compiles and runs.

8.	 Click Coded. You’ll see the result shown here:

Using the EDMX modification technique
This technique does offer the advantages of automation and reduced coding when working with the
result set. Once the model changes are in place, working with the model is considerably easier than
with the hand-coded approach discussed in the “Using the code-access technique” section of the
chapter. So, from a certain perspective, this approach does provide some usefulness in a large devel-
opment setting where you need to work with less-skilled developers.

However, this isn’t the recommended approach for a number of reasons—the most important of
which is that your changes can be wiped out if someone updates the model from the database. This
technique also works only with the model-first workflow, so it has limitations in development flexibil-
ity. Validation checks won’t work anymore either. Every time you validate the model, you’ll receive an
error message, even though the model will work just fine. (When working with this example, you’ll see
“Error 10021: Duplicated ResultMapping element encountered.” every time you open the model or
validate it). With this in mind, the following procedure shows how to implement the EDMX technique
for working with multiple result sets.

384   PART V  Advanced management techniques

Creating multiple diagrams

1.	 Copy the LINQ query version of the ModelFirst example you created in Chapter 6 to a new
folder and use this new copy for this example (rather than the copy you created in Chapter 6).

2.	 Open the Rewards2Model.EDMX file by double-clicking its entry in Solution Explorer.

3.	 Right-click in any white-space area of the designer and choose Update Model From Database.
You’ll see the Update Wizard dialog box.

4.	 Check the Import Selected Stored Procedures And Functions Into The Entity Model option (if
necessary). You’ll see a list of stored procedures and functions (if the database contains any).

5.	 Check the MultipleResultSet stored procedure found in the Stored Procedures and Functions
folder and click Finish. Visual Studio imports the MultipleResultSet stored procedure. The result
set will contain an Id1 field that will be incompatible with the actual data in the tables, so you
must modify it in some way. The easiest way to deal with the situation is to simply remove the
offending field.

6.	 Choose View | Other Windows | Entity Data Model Browser. You’ll see the Model Browser
window shown here:

7.	 Drill down into the Rewards2Model\Complex Types\MultipleResultSet_Result complex type
folder, right-click Id1, and choose Delete From Model from the context menu.

8.	 Click Save All and then close the Rewards2Model.EDMX file. The information currently placed
in the model won’t work. You need to modify this information so that it will work with a
multiple-results set.

9.	 Right-click the Rewards2Model.EDMX file in Solution Explorer and choose Open With from
the context menu. You’ll see the Open With - Rewards2Model.edmx dialog box shown here:

	 Chapter 16  Performing advanced management tasks    385

10.	 Select the Automatic Editor Selector (XML) entry and click OK. You’ll see the file opened in the
XML editor.

11.	 Choose Edit | Find and Replace | Quick Find. Type MultipleResultSet_Result in the window
that appears. You should see the first occurrence of the result set—the one that defines the
return value from the MultipleResultSet function import. Change this entry so it looks like this:

<FunctionImport Name="MultipleResultSet">
 <ReturnType Type="Collection(Rewards2Model.MultipleResultSet_Result)" />
 <ReturnType Type="Collection(Rewards2Model.MultipleResultSet_Result)" />
</FunctionImport>

You create one <ReturnType> entry for each result set. The two result sets are the same in this
case, so the Type attribute is the same. If you were working with different result set types, then
you would provide each type as needed. The types must appear in the order in which they’re
returned from the stored procedure. Otherwise, the output data won’t make sense (assuming
you don’t see an exception).

12.	 Click Find Next (the right-pointing arrow) or press F3. You’ll find the function import map-
ping entry for MultipleResultSet_Result. The number of complex type entries in the map must
match the number of results sets that the stored procedure will return.

13.	 Change the mapping so it looks like this (with two copies of the same complex type):

<FunctionImportMapping FunctionImportName="MultipleResultSet"
 FunctionName="Rewards2Model.Store.MultipleResultSet">
 <ResultMapping>
 <ComplexTypeMapping TypeName="Rewards2Model.MultipleResultSet_Result">
 <ScalarProperty Name="Id" ColumnName="Id" />
 <ScalarProperty Name="CustomerName" ColumnName="CustomerName" />
 <ScalarProperty Name="PurchaseDate" ColumnName="PurchaseDate" />
 <ScalarProperty Name="Amount" ColumnName="Amount" />

386   PART V  Advanced management techniques

 <ScalarProperty Name="CustomersId" ColumnName="CustomersId" />
 </ComplexTypeMapping>
 </ResultMapping>
 <ResultMapping>
 <ComplexTypeMapping TypeName="Rewards2Model.MultipleResultSet_Result">
 <ScalarProperty Name="Id" ColumnName="Id" />
 <ScalarProperty Name="CustomerName" ColumnName="CustomerName" />
 <ScalarProperty Name="PurchaseDate" ColumnName="PurchaseDate" />
 <ScalarProperty Name="Amount" ColumnName="Amount" />
 <ScalarProperty Name="CustomersId" ColumnName="CustomersId" />
 </ComplexTypeMapping>
 </ResultMapping>
</FunctionImportMapping>

If you were working with different result set types, then the mapping area would reflect those
differences. You must map the data in a way that reflects the actual output of the stored pro-
cedure or your code won’t work.

14.	 Save and close the Rewards2Model.EDMX file.

15.	 Add a new button to Form1. Name the button btnEDMX and set its Text property to &EDMX.

16.	 Double-click btnEDMX to create a new click event handler.

17.	 Type the following code for the btnEDMX_Click() event handler:

private void btnEDMX_Click(object sender, EventArgs e)
{
 // Create the context.
 Rewards2ModelContainer context = new Rewards2ModelContainer();

 // Call the stored procedure.
 var Results = context.MultipleResultSet();

 // Process the first result set.
 StringBuilder Output = new StringBuilder("Josh Bailey Purchases: ");
 foreach (var Result in Results)
 {
 Output.Append("\r\n\t" + Result.PurchaseDate +
 " for " + Result.Amount);
 }

 // Obtain the second result set.
 var Second = Results.GetNextResult<MultipleResultSet_Result>();

 // Process the second result set.
 Output.Append("\r\nChristian Hess Purchases: ");
 foreach (var Result in Second)
 {
 Output.Append("\r\n\t" + Result.PurchaseDate +
 " for " + Result.Amount);
 }

 // Display the result on screen.
 MessageBox.Show(Output.ToString());
}

	 Chapter 16  Performing advanced management tasks    387

When you compare this code to the code used in the “Using the code-access technique” sec-
tion of the chapter, you see that this code is both shorter and simpler. In fact, it looks much
like the code you use for a single result set, except for the call to Results.GetNextResult(). This
call obtains the next result set and places it in Second. You must supply the type of result set
to return as part of the call.

18.	 Click Start or press F5. The application compiles and runs.

19.	 Click EDMX. You’ll see the same results shown for the example in the “Using the code-access
technique” section of the chapter.

Creating entities with inheritance

Inheritance makes it possible to create complex models that better reflect how developers think and
also reduce the work required to interact with those models. Inheritance used with entities serves
the same purpose as inheritance used with classes, so developers already know the basics of how this
feature works. The following sections describe how to work with inheritance as part of creating or
using databases.

Creating the Rewards4 database
The two inheritance examples in this chapter will significantly modify the database used to interact
with them. Only the Purchases table will remain the same, and the new database will contain several
additional tables with different names than before. With this in mind, it’s important to create a new
database. The following procedure helps you create the required database.

Warning  While you can use the existing Rewards2 database for the examples in the
“Creating entities with inheritance” section, doing so will make the previous examples in
the book unworkable. If you make the changes in this chapter to the Rewards2 database,
it’s important to realize that the process is one-way and you won’t be able to reverse the
changes with ease.

Defining a new database connection

1.	 Choose View | Server Explorer to open Server Explorer.

2.	 Right-click Data Connections and choose Create New SQL Server Database from the context
menu. You’ll see the Create New SQL Server Database dialog box shown here:

388   PART V  Advanced management techniques

3.	 Select or type a server name in the Server Name field and type Rewards4 in the New Data-
base Name field. Click OK. Visual Studio creates the new database.

Using inheritance with the model-first workflow
When working with the model-first workflow, you add inheritance through the model itself. The
model provides special functionality that makes it possible to use inheritance and have that inherited
functionality show up in the actual model. The following procedure guides you through the process
of working with a model-first workflow design that implements inheritance. In this scenario, you want
to start tracking purchases made not only by customers, but also by employees and managers.

Using a model-first design that implements inheritance

1.	 Copy the multiple-diagrams version of the ModelFirst example you created in the “Developing
multiple diagrams for a model” section of this chapter to a new folder and use this new copy
for this example (rather than the copy you created earlier).

Note  The multiple-diagrams version of the ModelFirst example appears in the
ModelFirst (Multiple Diagrams) folder of the downloadable source code. If you cre-
ated your own version of the example, the folder name will probably be different.

2.	 Open the App.CONFIG file by double-clicking its entry in Solution Explorer. You need to
modify the name of the database used for this example to ensure you can continue to work
with previous examples. In this case, modify the connectionString attribute of the <add> tag
so that it reads like this:

data source=.\SQLEXPRESS;initial catalog=Rewards4

	 Chapter 16  Performing advanced management tasks    389

This change simply tells the application to use the Rewards4 database.

3.	 Save and close the App.CONFIG file.

4.	 Open the Rewards2Model.EDMX file by double-clicking its entry in Solution Explorer. If you
don’t see the People diagram, choose View | Other Windows | Entity Data Model Browser to
display the Model Browser window, and double-click the People entry in the Diagrams folder
to open it.

5.	 Create a new entity named People by right-clicking the white space in the designer and choos-
ing Add New | Entity from the context menu. You’ll see a new entity displayed on screen.

6.	 Configure the new entity as shown here:

7.	 Change the Abstract property in the Properties window to True. This value prevents anyone
from creating a People object. What you really want is to use the derives objects in the appli-
cation.

8.	 Right-click People and choose Add New | Association from the context menu. You’ll see the
Add Association dialog box shown here:

390   PART V  Advanced management techniques

9.	 Configure the association information in the dialog box so that it matches the association
shown in the figure. The purpose is to create an association with Purchases. At this point, you
have effectively created a copy of Customers.

10.	 Remove the properties from Customers by right-clicking each property in turn and choosing
Delete From Model.

11.	 Double-click the CustomersPurchases association found in the Associations folder of the
Model Browser. The Purchases entity will reappear in the People diagram.

12.	 Click the association line between Customers and Purchases. Press Delete. You’ll see the asso-
ciation removed.

13.	 Right-click Purchases and choose Remove From Diagram from the context menu. Purchases
disappears from the People diagram, but not from the Actions diagram (you can open the
Actions diagram to verify that the Purchases entity is still there).

14.	 Right-click Customers and choose Add New | Inheritance. You’ll see the Add Inheritance dialog
box shown here:

15.	 Ensure that People is the base entity and Customers is the derived entity, as shown in the
screen shot, and click OK.

16.	 Add two properties to Customers: CustomerType (type Int32) and Discount (type Decimal;
Nullable: None; Precision: 18; Scale: 2; and Default Value: 0). Make CustomerType an enumer-
ated value with values of Standard, Discount, and HighDiscount, using the procedure found in
the “Working with enumerations” section of Chapter 2, “Looking more closely at queries.”

17.	 Save the model at this point by clicking Save All to ensure there are no errors in the changes
you’ve made.

18.	 Create an Employees entity that inherits from People and has an EmployeeType enumerated
property that has values of Hourly and Salaried.

	 Chapter 16  Performing advanced management tasks    391

Tip  The Add Entity dialog box contains a Base Type field you can use to specify
that Employees inherits from People. Use this Base Type field whenever you want to
define inheritance for a new entity, rather than adding the inheritance later, as was
done for Customers.

19.	 Create a Managers entity that inherits from People and has a Discount property (type Decimal;
Nullable: None; Precision: 18; Scale: 2; Default Value: .15). Your model should look like the one
shown here:

At this point, you have a new model that’s created as an extension of the old model. There are now
three kinds of people: customers, employees, and managers. Each shares an Id and Name property
in common and each has unique properties that define it. The following procedure generates a new
database based on this updated model.

Upgrading the database model

1.	 Right-click any white space within the model and choose Generate Database From Model
from the context menu. You’ll see the Generate Database Wizard dialog box. Make absolutely
certain that the script shown on the DDL tab says “USE [Rewards4];” as one of the first lines.

2.	 Click Finish. You’ll see a DDL Overwrite Warning dialog box that tells you this process will
overwrite the previous DDL file.

3.	 Click Yes. You’ll see an SSDL/MSL Overwrite Warning dialog box that tells you this process will
change the .SSDL and .MSL files for this example.

4.	 Click Yes. Visual Studio creates a new Rewards2Model.EDMX.SQL file and opens it for you.

392   PART V  Advanced management techniques

5.	 Right-click anywhere within the editor for this file and choose Execute from the context menu.
You’ll see a Connect To Server dialog box.

6.	 Log in to the server as usual and click Connect. SQL Server executes the script and displays
“Command(s) completed successfully.”

7.	 Open Server Explorer. Right-click the Rewards4 connection shown here:

There’s one oddity in this example. Notice that even though the CustomersPurchases association
has been removed, the automation still generated a CustomersId column for the table. Manually edit-
ing the .EDMX file would have solved this issue. However, it’s not a major issue for this example, and
it’s important to know where the automation could fail when updating a model. Be sure to look for
idiosyncrasies such as this one when working on a production system.

At this point, you’ll want to interact with the new database. The code used with previous examples
will require remarkably few changes. The process of working with the new model is slightly different,
but not horribly so. The following procedure shows how to add and query the new model by making
small changes to the existing code.

Adding records and querying the model

1.	 Open the Form1.CS file. Make the following changes (in bold) to the btnAdd_Click() event
handler:

private void btnAdd_Click(object sender, EventArgs e)
{

	 Chapter 16  Performing advanced management tasks    393

 // Create a new purchase.
 Purchases NewPurchase = new Purchases();
 NewPurchase.Amount = new Decimal(5.99);
 NewPurchase.PurchaseDate = DateTime.Now;

 // Create a new customer and add the purchase.
 Customers NewCustomer = new Customers();
 NewCustomer.Name = "Josh Bailey";

 // Create the context.
 Rewards2ModelContainer context = new Rewards2ModelContainer();

 // Add the record and save it.
 context.People.Add(NewCustomer);
 context.Purchases.Add(NewPurchase);
 context.SaveChanges();

 // Display a success message.
 MessageBox.Show("Record Added");
}

The first change was probably expected by you. The new model uses Name, rather than
CustomerName, to identify a particular individual.

The second change is to use the People object, rather than an individual person type, to ac-
cess the people in the database. The Entity Framework treats everyone as a member of People
because that’s the name of the base object. You can cast a particular entry as a specific kind of
People object: Customers, Employees, or Managers.

2.	 Make the changes shown in bold below to the btnQuery_Click() event handler:

private void btnQuery_Click(object sender, EventArgs e)
{
 // Create the context.
 Rewards2ModelContainer context = new Rewards2ModelContainer();

 // Obtain the customer list.
 var CustomerList =
 from cust in context.People
 select cust;

 // Process each customer in the list.
 StringBuilder Output =
 new StringBuilder("Customer List:");
 foreach (var Customer in CustomerList)
 {
 // Create a customer entry for each customer.
 Output.Append("\r\n" + Customer.Name +
 " has made purchases on: ");

 // Process each purchase for that particular customer.
 foreach (var Purchase in Customer.Purchases)
 Output.Append("\r\n\t" + Purchase.PurchaseDate);
 }

394   PART V  Advanced management techniques

 // Display the result on screen.
 MessageBox.Show(Output.ToString());
}

As you can see, the example code requires the same changes as before. Everyone is a People
object now, and customers simply have a Name property, rather than a CustomerName prop-
erty.

3.	 Click Start or press F5. The application compiles and runs.

4.	 Click Add. The application adds a record and displays the Record Added dialog box.

5.	 Click OK to close the dialog box.

6.	 Click Query. You’ll see the expected output—a dialog box showing that Josh Bailey has a
single purchase made just moments ago.

7.	 Click OK to close the dialog box and then stop the application.

The dynamics of this application have changed significantly. For example, the query used to ac-
cess the data is significantly more complex than before because of the effect of inheritance. If you
were to look at the individual tables in the database, you’d see that there’s a single entry in the
People table and a single entry in the People_Customers table. There aren’t any entries in either the
People_Employees or People_Managers table. The Entity Framework makes it extremely easy to inter-
act with a model of this sort without requiring the developer to jump through hoops.

Using inheritance with the code-first workflow
Setting up inheritance in a code-first workflow is about the same as working with inheritance in every
other way. The biggest difference is in mapping your classes to the database. The following procedure
helps you create a code-first version of the example found in the “Using inheritance with the model-
first workflow” section of the chapter.

Creating the code-first inheritance classes

1.	 Copy the ManuallyGenerate example you created in Chapter 14, “Creating custom entities,”
to a new folder, and use this new copy for this example (rather than the copy you created in
Chapter 14).

2.	 Open the App.CONFIG file in the Rewards2Model project by double-clicking its entry in
Solution Explorer. You need to modify the name of the database used for this example to
ensure you can continue to work with previous examples. Change the <add> tag Database
attribute as shown here:

Database=Rewards4;

This change simply tells the application to use the Rewards4 database.

3.	 Save and close the App.CONFIG file.

	 Chapter 16  Performing advanced management tasks    395

4.	 Perform steps 2 and 3 for the App.CONFIG file in the ManuallyGenerate project.

5.	 Right-click the Rewards2Model project and choose Add | Class from the context menu. You’ll
see the Add New Item dialog box shown here:

6.	 Type People.CS in the Name field and click Add. Visual Studio adds the new class to the
project.

7.	 Repeat steps 5 and 6 for Employees.CS and Managers.CS. At this point, you have all the files
you need. Every code file will require some level of change, so move carefully through the
steps that follow.

8.	 Open the file and add an entry for the PeopleId column in the table. Simply add it after the
CustomersId property, like this:

public int PeopleId { get; set; }

9.	 Copy and paste the existing code from MyCustomers.CS to People.CS and modify it so it looks
like this (the modifications don’t actually change the way this code works):

public abstract class People
{
 public People()
 {
 // Automatically obtain a list of purchases from the database.
 this.Purchases = new HashSet<Purchases>();
 }

 // Declare the table properties.
 public int Id { get; set; }
 public string Name { get; set; }

 // Declare the navigational property.

396   PART V  Advanced management techniques

 public virtual ICollection<Purchases> Purchases { get; set; }
}

10.	 Modify the MyCustomers.CS file so it looks like this:

public class Customers : People
{
 // Declare the table properties.
 public CustomerTypeEnum CustomerType { get; set; }
 public Decimal Discount { get; set; }
}

// Define the kinds of customers that the application supports.
public enum CustomerTypeEnum : int
{
 Standard,
 Discount,
 HighDiscount
}

It’s important to note that MyCustomers.CS contains only the properties that are unique to
this object’s table. However, when working with a Customers object, you’ll find that you also
have access to all of the properties found in the People class.

11.	 Modify the Employees.CS file so that it looks like this:

public class Employees : People
{
 // Declare the table properties.
 public EmployeeTypeEnum EmployeeType { get; set; }
}

// Define the kinds of employees supported by the application.
public enum EmployeeTypeEnum : int
{
 Hourly,
 Salaried
}

12.	 Modify the Managers.CS file so it looks like this:

public class Managers : People
{
 // Declare the table properties.
 public Decimal Discount { get; set; }
}

At this point, you have the classes done. There are many texts online that will try to tell you that
the Entity Framework will automatically find the data it needs and that you don’t require mapping
when working with inheritance. You’ll also note that these examples rely on a single table to hold the
data no matter what sort of data is being saved. A production application doesn’t work that way. The
various data elements will appear in separate tables, much as they do for the example shown in the
“Using Inheritance with the model-first workflow” section of the chapter. When your application relies

	 Chapter 16  Performing advanced management tasks    397

on a number of tables to store the individual data elements, you must use mapping. The following
steps describe how to modify the mapping for this example so that it can handle entries of any type.

Updating the DCSimplePOCO.CS file

1.	 Open the DCSimplePOCO.CS file.

2.	 Modify the properties used to access the data (as shown in bold) to accommodate the new
class structure:

// Create properties to access the POCO classes.
public DbSet<People> People { get; set; }
public DbSet<Purchases> Purchases { get; set; }

As with the model-first example, you access all three kinds of people entries using a People
object. The Entity Framework will map between the various types after you provide the re-
quired mapping information.

3.	 Create maps for each of the tables that deal with people entries in the example, as shown
here:

public class PeopleMap : EntityTypeConfiguration<People>
{
 public PeopleMap()
 {
 // Specify the name of the table to use.
 this.ToTable("People");

 // Define the key for this table.
 this.HasKey(key => key.Id);

 // Specify the mapping for each of the table properties.
 this.Property(prop => prop.Id)
 .HasColumnName("Id")
 .HasColumnType("int")
 .HasDatabaseGeneratedOption(DatabaseGeneratedOption.Identity)
 .IsRequired();

 this.Property(prop => prop.Name)
 .HasColumnName("Name")
 .HasColumnType("nvarchar")
 .IsRequired();
 }
}

public class CustomerMap : EntityTypeConfiguration<Customers>
{
 public CustomerMap()
 {
 // Specify the name of the table to use.
 this.ToTable("People_Customers");

 // Define the key for this table.

398   PART V  Advanced management techniques

 this.HasKey(key => key.Id);

 // Specify the mapping for each of the table properties.
 this.Property(prop => prop.Id)
 .HasColumnName("Id")
 .HasColumnType("int")
 .IsRequired();

 this.Property(prop => prop.CustomerType)
 .HasColumnName("CustomerType")
 .HasColumnType("int")
 .IsRequired();

 this.Property(prop => prop.Discount)
 .HasColumnName("Discount")
 .HasColumnType("decimal")
 .IsOptional();
 }
}

public class EmployeeMap : EntityTypeConfiguration<Employees>
{
 public EmployeeMap()
 {
 // Specify the name of the table to use.
 this.ToTable("People_Employees");

 // Define the key for this table.
 this.HasKey(key => key.Id);

 // Specify the mapping for each of the table properties.
 this.Property(prop => prop.Id)
 .HasColumnName("Id")
 .HasColumnType("int")
 .IsRequired();

 this.Property(prop => prop.EmployeeType)
 .HasColumnName("EmployeeType")
 .HasColumnType("int")
 .IsRequired();
 }
}

public class ManagerMap : EntityTypeConfiguration<Managers>
{
 public ManagerMap()
 {
 // Specify the name of the table to use.
 this.ToTable("People_Managers");

 // Define the key for this table.
 this.HasKey(key => key.Id);

 // Specify the mapping for each of the table properties.
 this.Property(prop => prop.Id)
 .HasColumnName("Id")
 .HasColumnType("int")

	 Chapter 16  Performing advanced management tasks    399

 .IsRequired();

 this.Property(prop => prop.Discount)
 .HasColumnName("Discount")
 .HasColumnType("decimal")
 .IsOptional();
 }
}

Each of these maps follows the same pattern described in the “Performing standard data
type mapping” section of Chapter 15, “Mapping data types to properties.” However, unlike
in that example, you absolutely must use mapping in this case because every People object
subtype—Customers, Employees, and Managers—relies on input from two separate tables.
The Entity Framework won’t provide the proper mapping for you without these manually
generated maps.

4.	 Create an OnModelCreating() override in the Rewards2ModelContainer class that looks like
this:

// Perform some manual mapping of the data.
protected override void OnModelCreating(DbModelBuilder MB)
{
 // Load the custom configuration.
 MB.Configurations.Add(new PeopleMap());
 MB.Configurations.Add(new CustomerMap());
 MB.Configurations.Add(new EmployeeMap());
 MB.Configurations.Add(new ManagerMap());
}

As with the maps, these configuration additions follow the same pattern shown in Chapter 15.
It’s essential to add each map to the configuration separately.

At this point, your application is almost ready to test. However, you need to make two
changes to the Form1.CS code.

5.	 Open the Form1.CS file and make the following changes (shown in bold) to the btnQuery_
Click() event handler:

private void btnQuery_Click(object sender, EventArgs e)
{
 // Create the context.
 Rewards2ModelContainer context = new Rewards2ModelContainer();

 // Obtain the customer list.
 var CustomerList =
 from cust in context.People.Include("Purchases")
 select cust;

 // Process each customer in the list.
 StringBuilder Output =
 new StringBuilder("Customer List:");
 foreach (var Customer in CustomerList)
 {
 // Create a customer entry for each customer.

400   PART V  Advanced management techniques

 Output.Append("\r\n" + Customer.Name +
 " has made purchases on: ");

 // Process each purchase for that particular customer.
 foreach (var Purchase in Customer.Purchases)
 Output.Append("\r\n\t" + Purchase.PurchaseDate);
 }

 // Display the result on screen.
 MessageBox.Show(Output.ToString());
}

The changes of Customers to People and CustomerName to Name are the same changes you
made to the model-first example. Interestingly enough, you can process any of the three
People types using this single query.

Tip  If you want to see a specific People type, then add the OfType() method after
the Include() method in the query. Specify the kind of People object you want to see.
For example, if you want to see just Customers, then you use OfType<Customers>().

6.	 Click Start or press F5. The application compiles and runs.

7.	 Click Query. You’ll see the expected output—a dialog box showing that Josh Bailey has a
single purchase.

8.	 Click OK to close the dialog box and then stop the application.

Controlling context actions for automatically
generated classes

There are situations where you want better control over how the Entity Framework deals with your
data. For example, you may not ever want entries actually deleted. You may want them moved to
another table or simply marked as deleted in some way. For that matter, you might not want certain
users to have the ability to add records based on their role within the organization. The following
procedure demonstrates a technique you can use to control the actions of the automatically gener-
ated classes as needed.

Overriding the SaveChanges() method

1.	 Copy the LINQ query version of the ModelFirst example you created in Chapter 6 to a new
folder and use this new copy for this example (rather than the copy you created in Chapter 6).

2.	 Right-click the project entry in Solution Explorer and choose Add | Class from the context
menu. You’ll see the Add New Item dialog box.

	 Chapter 16  Performing advanced management tasks    401

3.	 Type Override.CS in the Name field and click Add. Visual Studio adds the new class to the
project.

4.	 Add these using statements to the top of the file:

// Added to support the override.
using System.Data;
using System.Data.Objects;

5.	 Replace the default class code with the following code:

public partial class Rewards2ModelContainer
{
 public override int SaveChanges()
 {
 // Obtain a list of the added entries.
 var AddedEntries = ChangeTracker.Entries()
 .Where(entity => entity.State == EntityState.Added);

 // Change the state of the added entries so they
 // aren't added to the database.
 foreach (var Entry in AddedEntries)
 {
 Entry.State = EntityState.Unchanged;
 }

 // Perform the normal level of processing.
 return base.SaveChanges();
 }
}

In this case, you intercept the SaveChanges() call and perform some preprocessing with it. The
code uses a query to obtain a list of added entries in the change list. It sets the state of these
entries to EntityState.Unchanged so that the application won’t actually add them to the data-
base. Notice that the last step is to call base.SaveChanges(). You must make this call or your
application will fail to work as anticipated.

6.	 Open the Form1.CS file.

7.	 Change the Amount value to 22.99 and the CustomerName value to John Kane. These changes
will make it easy to determine whether the application works as anticipated.

8.	 Click Start or press F5. The application compiles and runs.

9.	 Click Add. The application adds a record and displays the Record Added dialog box.

10.	 Click OK to close the dialog box.

11.	 Click Query. You’ll see the records for Josh Bailey and Christian Hess, but no entry for John
Kane. The application has prevented the addition.

12.	 Click OK to close the dialog box and then stop the application.

402   PART V  Advanced management techniques

Note  The technique shown in this section works for far more than simply overriding
SaveChanges(). You can use it with any automatically generated class to override the default
behavior, add new methods or properties, or generally change the way in which the ap-
plication works. Using this technique has the advantage of allowing you to tweak the au-
tomatically generated classes without having to rely on manually generating the code. You
get the best of both worlds—automation with nearly full control over the low-level process-
ing of the application.

Getting started with the Entity Framework

If you don’t take anything else away from this chapter, at least take away the knowledge that you
can always create some way to manage your application development process better. The Entity
Framework is a powerful and flexible tool that makes it easy to model even complex database config-
urations. The problem is figuring out how to make your model work with the database. This chapter
has shown several new ways to accomplish that feat. You want to make tasks as easy as possible, so
it’s important to understand how these management techniques can help you.

The examples on inheritance have a lot more to show you than you experienced while working
through them in the chapter. Going through these examples step by step with the debugger is a great
idea. Make sure you look at all of the things you’ve worked through in other areas of the book. For
example, check out the query used to access the data—you’ll be amazed to discover what happens in
the background with these inherited models.

One of the more important things you can do now is to apply what you’ve learned to the real
world—to try using the techniques you’ve encountered in this book with the applications you work
with daily. Of course, you don’t want to start with the most complex application you work with. Al-
ways start employing a new technique with something simple. It’s also a good idea to use a test setup.
You don’t want to trash a production setup by applying techniques incorrectly. This chapter provides
the last bit of knowledge that you need to perform those real-world tasks in a meaningful way—but
remember that you’re still discovering the Entity Framework.

You’ve reached the end of the book, but you haven’t reached the end of your journey. There are
many ways in which you can use the Entity Framework to create robust applications. Of course, you’ll
want to practice the many techniques found in this book and apply them to your own application
requirements. It’s also a good idea to check the blog for this book, at http://blog.johnmuellerbooks.
com/categories/263/entity-framework-development-step-by-step.aspx. As people write to me or I find
interesting Entity Framework topics to discuss, you’ll see posts that will most definitely help you get
more out of this book in general and the Entity Framework in particular. Speaking of writing to me,
make sure you ask me any book-specific questions you might have at John@JohnMuellerBooks.com.
I’m always willing to help readers get more out of my books (after all, that’s why I’ve written them).

	 Chapter 16  Performing advanced management tasks    403

Chapter 16 quick reference

To Do this

Reduce the complexity of a database model Rely on multiple diagrams to represent various database
elements. Each diagram can represent a functional unit or
application interaction with the database.

Add a new diagram to your project Right-click Diagrams in the Model Browser window of
Visual Studio and choose Add New Diagram from the
context menu.

Export your diagram as an image for use in reports and
presentations

Right-click anywhere within the white space in the de-
signer window and choose Diagram | Export As Image
from the context menu. Type a file name, select a file
type, and choose a storage location, and then click Save
in the Export Diagram As dialog box to save the image
to disk.

Import stored procedures or functions in a batch process Right-click anywhere in the white space of the Model
Designer and choose Update Model From Database from
the context menu. Check the Import Selected Stored
Procedures And Functions Into The Entity Model option.
Check the stored procedure and function entries you
want to import in the Update Wizard dialog box and click
Finish.

Provide the means for working with a multiple-results set
for either the code-first or model-first workflow

Rely on the coding technique for interacting with the
multiple-results set.

Enforce the use of automation with a multiple-results set Rely on the EDMX modification technique for interacting
with the multiple-results set.

	 405

as() method,  131
association endpoints,  5
association sets,  6
asterisk (*),  85, 194
Atomicity, Consistency, Isolation, and Durability

(ACID),  265
at (@) sign,  177
Attach Databases dialog box,  355
automatically generated classes

context actions for,  400–402
POCOs,  330–334

Average() method,  130, 131, 132
AveragePurchase function,  215
@Average variable,  140
AVG function,  155

B
base() method,  61, 336
BaseType property,  338, 348
batch imports of stored procedures,  376–377
batch queries,  85
BINARY keyword,  152
binary strings,  152
BindingSource control,  40, 112
Boolean literals,  152, 159
bring-your-own-device (BYOD),  103
btnAdd_Click() event handler,  62, 70, 329
btnConcurrency_Click() event handler,  274
btnDelete_Click() event handler,  209
btnDisplay_Click() event handler,  88
btnEDMX_Click() event handler,  386
btnQuery7_Click() event handler,  298
btnQuery_Click() event handler,  202, 226
btnUpdate_Click() event handler,  209
built-in functions,  85
Button control,  189

Index

Symbols
* (asterisk),  85, 194
@ (at) sign,  177
@CustId value,  206
=> (lambda operator),  86
&& (logical AND) operator,  43
|| (logical OR) operator,  43
@PurchaseId parameter,  208

A
Abstract property,  389
accumulator function,  132
ACID (Atomicity, Consistency, Isolation, and

Durability),  265
Add Association dialog box,  68, 389
AddClient() method,  204, 209
Add Connection dialog box,  64
Add Entity dialog box,  229, 391
Add Inheritance dialog box,  390
Add() method,  23, 63, 71, 329
Add New Item dialog box,  67, 322–323
<add> tag,  241
aggregate functions,  155
Aggregate() method,  130, 132
agile programming,  320
All() method,  129, 132
ALTER keyword,  185, 195, 210
Always Use This Selection check box,  20
Amount property,  68, 279
Anchor property,  112
Any() method,  129, 132
App.CONFIG file,  333
ArgumentException,  242
ascending keyword,  126
AS keyword,  177

buttons, toolbar

406   Index

buttons, toolbar,  41
by keyword,  126
BYOD (bring-your-own-device),  103

C
Cannot Create the Connection! error message,  253
canonical functions,  154
CASE statements,  158–159, 185
ChangeConflictException,  247
CHECKSUM_AGG function,  155
ChooseClients() method,  189
ChooseClients_Result type,  184
Choose Data Source dialog box,  19, 64
client wins,  271
Close() method,  382
Closing() event,  39
CLR (Common Language Runtime),  52, 81, 130, 213
Clustered Index Scan object,  297
code-access technique,  380–383
CodeFirstClasses,  60
code-first workflow

adding Entity Framework 5 support,  59–60
creating code-first context,  61
creating entities with inheritance,  394–400
creating project,  57–58
defining initial classes,  58–59
overview,  51–53, 57
records, adding,  61
technique defined,  7

Code Generation Strategy property,  321
collections

constructor for,  153
functions for,  155

color-coding entities,  375
ComboBox control,  189
CommandText property,  149, 382
Common Language Runtime (CLR),  52, 81, 130, 213
CompiledQuery class,  293
complex type mapping

defined,  216
overview,  363–366
tag for,  217

<ComplexType> tag,  217
composable entity,  210
Concat() method,  129, 132
conceptual layer for TVFs,  217–218
conceptual model,  8–9

Conceptual Schema Definition Language file
(.CSDL),  9–10

concurrency
exceptions,  261–262
optimistic concurrency

developing test environment,  272–275
field-level concurrency code,  277–279
field-specific concurrency,  279–282
ignoring concurrency issues completely, 

270–271
implementing,  271
issues with,  268–269
obtaining user input,  270
partial updates,  270
performing forced updates,  271
rejecting changes,  269–270
row-version concurrency,  282–284
testing,  272–276

overview,  266–268, 285–286
pessimistic concurrency,  284–285

Concurrency Mode property,  279, 350
Connection Properties dialog box,  19–20
connection security,  306–307
connectionString attribute,  388
connection string exceptions

handling,  250–256
overview,  248–249

<connectionStrings> tag,  241
Connect To Server dialog box,  392
ConstraintException,  239, 243
Contains() method,  129, 132
context actions,  400–402
context, defined,  6
Convert() method,  131, 132
Cost property,  297
COUNT_BIG function,  156
COUNT function,  156
Count() method,  23, 45, 130, 131, 133
CreateDatabaseIfNotExists<TContext> class,  81
CREATE keyword,  194, 210
Create New SQL Server Database dialog box, 

387–388
CREATE PROCEDURE statement,  177
CREATEREF operator,  154
CRUD (Create, Read, Update, and Delete),  80, 178,

193, 216, 265, 319
.CSPROJ file,  321
@CustId value,  206

	 design first technique

	 Index   407

custom entities
event handlers

creating custom,  339–341
ObjectContext events,  337–339
overview,  337

methods,  341–343
overview,  319–320, 345
POCO classes

adding classes for model,  322–324
using automatic generation,  330–334
configuring model,  320–321
creating DbContext class to interact with

POCO,  328–329
creating ObjectContext class to manage

POCO,  325–326
using manual generation,  334–337
overview,  320
testing,  326–328

properties,  343–345
Customer class,  59
CustomerList variable,  329
CustomerMap() method,  362
CustomerName property,  279, 340, 394
CustomersId property,  68, 395
_Customers variable,  326

D
Database Administrators (DBAs),  8, 172, 176, 194,

213, 265, 343
Database attribute,  394
Database class,  82
database-first workflow

overview,  54–55, 71–72
records, adding,  73–74
reverse engineering database model,  71–73
technique defined,  7

database management system (DBMS),  4
Database option, Data Source Configuration

Wizard,  107
database owner (DBO),  176
Data Definition Language (DDL) scripts,  21, 84
DataException,  251
Data Manipulation Language (DML),  84
data manipulation tasks,  106
data, modifying using objects

adding forms,  90–91
adding purchases,  92–93

deleting purchases,  95–97
overview,  90
updating purchases,  93–95

Dataset option, Data Source Configuration
Wizard,  108

Data Source Configuration Wizard,  14, 34–35
DataSource property,  111
data sources, local,  304
Data Tools Operations window,  198, 359, 362, 379
data types, mapping

changing property mapping,  351–352
complex data types,  363–366
configuring properties,  349–351
enumerated data types,  361–363
filtering data,  352–354
geometry spatial data types,  366
overview,  347–348, 367
standard data types,  354–361

date or time literal,  164–165
DATETIME keyword,  151, 165
DBAs (Database Administrators),  8, 172, 176, 194,

213, 265, 343
DbCommand class,  157
DBConcurrencyException,  262
DbConnection class,  157
DbContext class,  52, 74, 81, 328–329
DbException,  246
DbExtensions class,  82
DbModelBuilder class,  81
DbModelBuilderVersionAttribute class,  82
DBMS (database management system),  4
DBO (database owner),  176
DbSet class,  81
DbUpdateConcurrencyException,  280, 281
DCSimplePOCO class,  336
DDD (Domain-Driven Design),  319
DDL (Data Definition Language) scripts,  21, 84
DDL Overwrite Warning dialog box,  391
deadlock,  261
decimal literal,  166–168
Decimal type,  152, 184
DefaultIfEmpty() method,  129, 133
DeleteClient() method,  209
DeletedRowInaccessibleException,  244, 262
DEREF operator,  154
derived output type,  122
descending keyword,  126
design first technique,  7

Details option, Data Source Configuration Wizard

408   Index

Details option, Data Source Configuration
Wizard,  110

DetectChanges() method,  324
diagrams

appearance
adding type to display,  375
color-coding entities,  375
overview,  374
using grids,  374

creating multiple for model,  370–371
exporting as image,  375–376

DialogResult property,  91
Discount property,  391
Distinct() method,  129, 133
DML (Data Manipulation Language),  84
Domain-Driven Design (DDD),  319
dot syntax,  85
DropCreateDatabaseAlways<TContext> class,  82
DropCreateDatabaseIfModelChanges<TContext>

class,  82
DropDownStyle property,  39
DuplicateKeyException,  247
DuplicateNameException,  244
DynamicProxies class,  136, 137
DynamicProxy class,  324

E
eager loading,  294–295
Edit Columns dialog box,  112
[EdmFunction()] attribute,  143, 218
EDMGen.EXE (Entity Data Model Generator)

tool,  290
EDMX (Entity Data Model XML)

files,  9, 52
mapping stored procedures using,  383–387

EFTracingProvider,  301
ElementAt() method,  96, 132, 133
elements, Entity Framework

conceptual model,  7–8
model mappings,  8–9
overview,  6–7
storage model,  8

ELSE clause,  159, 185
Enabled property,  39
EnablePlanCaching property,  290
EndEdit() method,  243
EnterpriseSec.CONFIG file,  309
entities

color-coding,  375
creating with inheritance

with code-first workflow,  394–400
with model-first workflow,  388–394
overview,  383–388

defined,  4–6
EntityClient provider,  120–122
EntityCollection class,  82–84
EntityCommand class,  122
EntityCommandCompilationException,  259–260
EntityCommandExecutionException,  241
EntityConnection class,  308
EntityConnectionStringBuilder class,  307
EntityConnectionString class,  242
entity container,  6
Entity Data Model Generator (EDMGen.EXE)

tool,  290
Entity Data Model Wizard,  67, 306
Entity Data Model XML.  See EDMX
EntityDataReader class,  122
EntityException,  238, 254
Entity Framework.  See entities

developing simple example
overview,  12
starting Entity Data Model Wizard,  12–16
using Entity Data Model Designer,  16–18
using resulting framework to display

data,  22–25
working with mapping details,  18–21

elements
conceptual model,  7–8
model mappings,  8–9
overview,  6–7
storage model,  8

files
.CSDL file,  9–10
.MSL file,  11–12
overview,  9
.SSDL file,  11

overview,  1
quick reference,  27

Entity Framework Profiler,  301
Entity Key property,  350
Entity object,  10
EntityObject class,  324
Entity property,  338
Entity SQL

calling TVF,  225–227
components

CASE expression,  158–159

	 geometry spatial data types

	 Index   409

functions,  154–156
grouping,  158
literals,  150–153
namespaces,  157
navigation,  158
overview,  149
paging,  157
references,  154
SELECT VALUE and SELECT methods,  149–150
type constructors,  152–153

data flow,  148–149
grouping data,  169–171
literals

adding additional data,  162–164
date or time literal,  164–165
decimal literal,  166–168
ordering data,  168–169
overview,  161
standard,  161–162

overview,  147–148
quick reference,  172–174
role of,  84–87
selecting data,  159–160
viewing queries using,  298–301

EntitySqlException,  241
entity type mapping

defined,  216
mapping TVF,  228–231
tag for,  217

enumerated types
mapping to properties,  361–363
new feature,  32

Enum Type Name field,  32
EqualAll() method,  129, 133
equals keyword,  126
EvaluateException,  244
event handlers

creating,  339–341
custom,  337
ObjectContext events,  337–339

exceptions
concurrency exceptions,  261–262
connection string exceptions

handling,  250–256
overview,  248–249

examining,  258–261
overview,  237–240, 262–263
query exceptions,  256–258
sources

overview,  240

System.Data.Common namespace
exceptions,  246

System.Data.EntityException class,  240–242
System.Data.Linq namespace exceptions,  247
System.Data namespace exceptions,  242–245

EXCEPT keyword,  84
Except() method,  129, 133
Execute Function dialog box,  141
Execute() method,  87
ExecuteReader() method,  149, 382
Execute Stored Procedure dialog box,  186
ExecuteStoreQuery() method,  285
Execution Plan tab,  297
EXISTS keyword,  84
Export Diagram As dialog box,  375–376

F
FavoriteColor class,  32–33
FavoriteColor property,  351
field-level concurrency,  277–279
field-specific concurrency,  279–282
FileLoadException,  252
files, Entity Framework

.CSDL file,  9–10

.MSL file,  11–12
overview,  9
.SSDL file,  11

Fill Color property,  375
finally clause,  239
First() method,  24, 89, 132, 133, 160
FirstOrDefault() method,  132, 133
forced updates,  271
foreach statements,  89, 124, 170
ForeignKeyReferenceAlreadyHasValueException,  247
Foreign Key Relationships dialog box,  65
FROM keyword,  84, 122, 126
FullName property,  251
Function Imports folder,  205
functions

batch imports of,  376–377
Entity SQL,  154–156

G
Generate Database From Model option,  349
Generate Database Wizard dialog box,  19, 391
Generate From Database option,  16
geometry spatial data types,  366

GetCustomers() method

410   Index

GetCustomers() method,  314
GetName() method,  162
GetNextResult() method,  387
Getter property,  350
GetUserFavorites application,  41
globally unique identifiers (GUIDs),  152
GO keyword,  177
GPS (Global Positioning System),  366
grids, in diagrams,  374
GROUP BY clause,  158, 170
GroupBy() method,  130, 133
group functions,  156
GroupJoin() method,  129, 133
group keyword,  126
GUIDs (globally unique identifiers),  152

H
HasColumnType() method,  365
HashSet class,  324
HasMaxLength() method,  365
HIPAA (Health Insurance Portability and

Accountability Act),  269
Huagati Query Profiler,  301

I
ICollection interface,  83, 323
id argument,  86
IDE (integrated development environment),  3
Id property,  17, 153, 197
IEnumerable interface,  125
IEqualityComparer interface,  129
ignoring concurrency issues,  270–271
Import Selected Stored Procedures And Functions

Into The Entity Model option,  376
Include() method,  337, 400
information overload,  44
inheritance in entities

code-first workflow,  394–400
model-first workflow,  388–394
overview,  383–388

IN keyword,  84, 122, 126
InnerException,  255, 360
InRowChangingEventException,  243
Int32 type,  7, 31–32
integrated development environment (IDE),  3
IntelliTrace,  301
INTERSECT keyword,  84

Intersect() method,  129, 133
into keyword,  126
int type,  7
InvalidCommandTreeException,  243
InvalidConstraintException,  244
InvalidExpressionException,  244
InvalidOperationException,  242, 257–258
IOrderedQueryable interface,  203
IQueryable interface,  122, 125, 135–138, 307
IsComposable attribute,  215
IsDBNull() method,  245
IsGet property,  340
is() method,  131

J
join keyword,  126
Join() method,  129, 133
joins, LINQ to Entities,  128–129

K
KEY operator,  154
Key property,  5, 46
keywords, LINQ to Entities,  125–127

L
Label control,  189
lambda expressions,  86
Language Integrated Query.  See LINQ
last in wins,  268
Last() method,  132, 133
LastOrDefault() method,  132, 134
layers, and performance,  288–289
lazy loading

and performance,  294–295
overview,  304

Lazy Loading Enabled property,  294
let keyword,  126
LIMIT keyword,  157
LINQ (Language Integrated Query).  See also LINQ

to Entities
calling TVF,  210, 227–228
compilation

following IQueryable sequence,  135–138
following List sequence,  138–139
overview,  135

creating query using,  88–89

	 Model Browser window

	 Index   411

entity and database functions
accessing unction,  142–145
creating function,  139–142
overview,  139

grouping data using,  46–47
using operators in,  43
overview,  119–120
quick reference,  146
testing for literal values in,  42

LINQPad,  302
LINQ to Entities

EntityClient provider,  120–122
keywords,  125–127
operators

creating set,  129
grouping output,  130
interacting with type,  131
ordering output,  129–130
overview,  127–128
paging output,  132
performing aggregation,  130–131
performing filtering and projection,  128
performing joins,  128–129

overview,  120
queries,  122–125
viewing queries using,  295–298

List class,  59, 139
literals

Entity SQL
adding additional data,  162–164
date or time literal,  164–165
decimal literal,  166–168
defined,  150–153
ordering data,  168–169
overview,  161
standard,  161–162

queries, creating using,  41–42
LLBLGen Pro,  302
Load() method,  38
local cache, and performance,  290
local data sources,  304
Locate Database Files dialog box,  355–356
lock() method,  314
logical AND (&&) operator,  43
logical OR (||) operator,  43
LongCount() method,  130, 134

M
Machine.CONFIG file,  309
management content,  163
Manage NuGet Packages,  60, 335
mapping

data types to properties
changing property mapping,  351–352
complex data types,  363–366
configuring properties,  349–351
enumerated data types,  361–363
filtering data,  352–354
geometry spatial data types,  366
overview,  347–348, 367
scenarios for,  354–355
standard data types,  355–361

stored procedures
using code-access technique,  380–383
creating stored procedure,  378–380
using EDMX modification technique,  383–387
overview,  377–378

MappingException,  241, 259
mapping layer, for TVFs,  216–217
Mapping Specification Language (.MSL) files,  11–12
master/detail form, creating

adding and configuring controls,  110–112
configuring data source,  109–110
creating data source,  106–109
overview,  106
testing result,  112–113

MAX function,  156
Max() method,  45, 130, 131, 134
memory, security for,  307–308
MetadataException,  241, 249
MetadataWorkspace class,  309
method-based expression syntax,  119
methods

custom,  341–343
queries, creating using,  42–43

MigrateDatabaseToLatestVersion<TContext,
TMigrationsConfiguration> class,  82

MIN function,  156
Min() method,  45, 130, 131, 134
MissingPrimaryKeyException,  244
Model1Container class,  22
model, adding TVF

defining using Server Explorer,  219–221
testing,  221–222
updating model,  223–225

Model Browser window,  205, 224

ModelFirst application

412   Index

ModelFirst application,  183
model-first workflow

creating entities with inheritance,  388–394
defining database model,  66–69
overview,  53–54, 66
records, adding,  70–71

model mappings, Entity Framework,  8–9
Modifiers property,  91
MSL (Mapping Specification Language) files,  11–12
multiple diagrams for model

creating diagrams,  371–374
diagram appearance

adding type to display,  375
color-coding entities,  375
using grids,  374

exporting as image,  375–376
overview,  370–371

MultipleResultData class,  382
MultipleResultSet class,  382
Multiplicity property,  83
MULTISET keyword,  153
multithreading,  312–315

N
NameArgs class,  340
named type constructor,  153
Name property,  340
namespaces, Entity SQL,  157
NAVIGATE operator,  154
navigation, Entity SQL,  158
New Project dialog box,  13, 57
NextResult() method,  382
NHibernate,  319
NoNullAllowedException,  244
non-Unicode characters,  150
NotSupportedException,  242
Nullable property,  350
null keyword,  152
numeric literals,  151
NUnit,  303

O
ObjectContext class

using CompiledQuery class,  293
creating to manage POCO,  325–326
events for,  337–339
security,  307

object layer for TVFs,  218
Object Linking and Embedding for Databases

(OLE-DB),  246
ObjectMaterialized event,  337
ObjectNotFoundException,  244
Object-Relational Mapping (ORM),  319
objects.  See also POCOs

base classes,  81–82
EntityCollection object,  82–83
Entity SQL, role of,  84–85
modifying data using

adding forms,  90–91
adding purchases,  92–93
deleting purchases,  95–97
overview,  90
updating purchases,  93–95

object services,  80–81
overview,  79–80
queries using

creating query using Entity SQL,  86–87
creating query using LINQ,  88–89
lambda expressions, role of,  86
overview,  85

Query Builder methods,  97–98
quick reference,  99

ObtainClients() function,  226
OCSimplePOCO class,  325
OdbcException,  246
ODBC (Open Database Connectivity),  55, 246
OfType() method,  131, 134, 400
OleDbException,  246
OLE-DB (Object Linking and Embedding for

Databases),  246
on keyword,  127
OnModelCreating() method,  81, 360, 399
Open Database Connectivity (ODBC),  55, 246
Open Table Definition option,  65
Open With dialog box,  9
OperationAbortedException,  245
operators

LINQ to Entities
aggregation,  130–131
filtering and projection,  128
grouping output,  130
joins,  128–129
ordering output,  129–130
overview,  127–128
paging output,  132
sets,  129
types,  131

	 _Purchases variable

	 Index   413

queries, creating using,  42–43
optimistic concurrency

defined,  261
developing test environment,  272–275
field-level concurrency,  277–279
field-specific concurrency,  279–282
ignoring concurrency issues completely,  270–271
implementing,  271
issues with,  268–269
obtaining user input,  270
partial updates,  270
performing forced updates,  271
rejecting changes,  269–270
row-version concurrency,  282–284
testing,  272–276

OptimisticConcurrencyException,  261, 262
Options dialog box,  37
OracleException,  246
ORDER BY clause,  220
OrderByDescending() method,  129, 134
orderby keyword,  127
OrderBy() method,  129, 134, 203
OrderedData variable,  203
ORM (Object-Relational Mapping),  319
OVER clause,  220–221
Overwrite Warning dialog box,  391

P
paging methods,  132
partial updates,  270
performance

issues with
disabling change tracking,  294
layers,  288–289
lazy loading vs. eager loading,  294–295
using local cache,  290
overview,  288
relying on precompiled queries,  293–294
relying on pregenerated views,  290–293
retrieving too many records,  289

multithreading,  312–315
overview,  287, 315
triangle of

overview,  302–303
reliability,  309–312
security,  305–309
speed,  303–305

viewing issues using third-party products, 
301–302

viewing queries
using Entity SQL,  298–301
using LINQ to Entities,  295–298
overview,  295

pessimistic concurrency,  261, 268, 284–285
POCOs (Plain Old CLR Objects)

adding classes for model,  322–324
using automatic generation,  330–334
code-first workflow,  347
configuring model,  320–321
creating DbContext class to interact with

POCO,  328–329
creating ObjectContext class to manage

POCO,  325–326
using manual generation,  334–337
overview,  320
testing,  326–328

precise output type,  122
Precision property,  68, 230
precompiled queries,  293–294
pregenerated views,  290–293
Preview Database Updates dialog box,  283, 358,

361, 379
properties

custom,  343–345
defined,  5
mapping data types to

changing property mapping,  351–352
complex data types,  363–366
configuring properties,  349–351
enumerated data types,  361–363
filtering data,  352–354
geometry spatial data types,  366
overview,  347–348, 367
standard data types,  354–361

queries, creating using,  42–43
PropertyConstraintException,  239, 243, 245
ProviderIncompatibleException,  241
provider-specific functions,  155
providers, third-party,  55
Purchase class,  59
Purchase Data dialog box,  95
PurchaseDate property,  279
@PurchaseId parameter,  208
Purchases property,  323
_Purchases variable,  326

queries

414   Index

Q
queries

combining and summarizing data,  44–45
creating specific queries

adding button to toolbar,  41
using literals,  41–42
using operators, properties, and

methods,  42–43
overview,  41

defining basic query
creating model,  30–31
creating test application,  36–39
enumerations,  31–33
obtaining application data source,  33–36
overview,  30
running basic query,  39–40

exceptions,  256–258
grouping data,  45–47
LINQ to Entities,  122–125
using objects

creating query using Entity SQL,  86–87
creating query using LINQ,  88–89
lambda expressions, role of,  86
overview,  85

optimized,  304
overview,  29
precompiled,  293–294
quick reference,  48
viewing

using Entity SQL,  298–301
using LINQ to Entities,  295–298
overview,  295

Query Builder methods
defined,  79
objects,  97–98

query expression syntax,  119

R
ReadOnlyException,  245
ReadOnly property,  91
real numbers,  151
Record Added dialog box,  394
record retrieval, and performance,  289
Reference Manager dialog box,  62, 332
references, Entity SQL,  154
REF operator,  154
Refresh() method,  281
rejecting changes,  269–270

reliability, performance triangle,  309–312
Remove() method,  24, 96
result_expression,  159
RETURN statement,  197
ReturnType attribute,  215
Return Type property,  230
Reverse() method,  129, 134
Rewards2 database,  66–67, 109, 196
Rewards2_log.ldf file,  356
Rewards2Model class,  333
Rewards2ModelContainer class,  70, 87, 203, 338, 360
RewardsContext class,  63
RewardsModel.Context.cs file,  74
RowChanging event,  243
ROW keyword,  153
ROW_NUMBER() function,  220
row-version concurrency,  282–284
ROWVERSION data type,  285

S
SaveChanges() method,  24, 40, 63, 71, 164, 245, 311,

401
SavingChanges event,  337
Scalar Property Format value,  375
<ScalarProperty> tag,  217
scalar value,  155
Scale property,  68, 230
Security.CONFIG file,  309
security, performance triangle

of configuration,  308–309
connections,  306–307
for memory,  307–308
overview,  305–306
user interaction,  308

Seed() method,  82
SelectedIndex property,  203
SelectedItem property,  226
select keyword,  122, 127
SelectMany() method,  128, 134
Select() method,  128, 134
SELECT method, Entity SQL,  87, 149–150, 158
SELECT VALUE method, Entity SQL,  149–150, 159
Server Explorer

defining stored procedures using,  179–181
defining TVFs,  219–221
defining views using,  196–198
window for,  63

sets, LINQ to Entities,  129

	 testing

	 Index   415

Setter property,  351
Show Grid option,  374
Show Table Data option,  34, 66
Single() method,  132, 134
SKIP keyword,  157
Skip() method,  132, 134
Snap to Grid option,  374
speed, performance triangle,  303–305
SQL, Entity.  See Entity SQL
SqlException,  246
SqlQuery() method,  284, 285
SQL Server Compact,  54
SQL (Structured Query Language),  7
SSDL/MSL Overwrite Warning dialog box,  391
SSDL (Store Schema Definition Language) files, 

10, 11
standard data types

mapping,  355–361
overview,  354
scenarios for,  354–355

Start() method,  313
STDEV function,  156
STDEVP function,  156
storage layer for TVFs,  215–216
storage model,  8–9
Stored Procedure Mapping option,  207
stored procedures

batch imports of,  376–377
building application using,  188
creating basic example,  188–190
defining using Server Explorer,  179–181
and Entity SQL,  85
mapping

creating stored procedure,  378–380
overview,  377–378
using code-access technique,  380–383
using EDMX modification technique,  383–387

modifying
adding update to the model,  186–187
overview,  184
performing required update,  185
retesting stored procedure,  186

overview,  175–179
quick reference,  192
testing,  181–182
vs. TVFs,  215
updating model,  182–184

Stored Procedures And Functions folder,  377
StoreGeneratedPattern property,  350

Store Schema Definition Language (.SSDL) files, 
10, 11

store wins,  270
StringBuilder class,  204
string literal,  150
StrongTypingException,  245
Structured Query Language (SQL),  7
subqueries,  85
SUM function,  156
Sum() method,  130, 131, 134
switch block,  203
SyntaxErrorException,  245
sys.geography data type,  366
sys.geometry data type,  366
System.Data.Common namespace,  246
System.Data.EntityClient namespace,  122
System.Data.EntityException class,  240–242
System.Data.Entity namespace,  52, 60, 81
System.Data.Linq namespace,  247
System.Data namespace,  242–245
System.Data.Objects.DataClasses namespace,  83
System.Data.Spatial namespace,  366

T
Tables option, Data Source Configuration

Wizard,  109
Table-Valued Function (TVF).  See TVF
Take() method,  132, 134
TakeWhile() method,  132, 135
tasks

creating master/detail form
adding and configuring controls,  110–112
configuring data source,  109–110
creating data source,  106–109
overview,  106
testing result,  112–113

deleting old values,  105
inserting new values,  104–105
overview,  101
quick reference,  114–115
saving changes,  104
viewing data,  102–103

Test Connection option,  20
testing

optimistic concurrency,  272–276
POCOs,  326–328
stored procedures,  181–182
TVFs,  221–222

TestModelFirst.csproj.Views.cs file

416   Index

views,  198–199
TestModelFirst.csproj.Views.cs file,  293
TestModelFirst namespace,  313
ThenByDescending() method,  129, 135
ThenBy() method,  129, 135
third-party providers,  55
TIME keyword,  151
ToArray() method,  38
ToFormattedString() method,  343
ToList() method,  98, 245
toolbar buttons,  41
toolStripButton1_Click() event handler,  41, 43
TOP keyword,  157
ToShortDateString() method,  242
ToString() method,  160
ToTraceString() method,  298
Transact-Structured Query Language (T-SQL),  84
Translate() method,  382
triangle, performance

overview,  302–303
reliability,  309–312
security

of configuration,  308–309
connections,  306–307
for memory,  307–308
overview,  305–306
user interaction,  308

speed,  303–305
try...catch blocks,  238
T-SQL (Transact-Structured Query Language),  84
TVF (Table-Valued Function)

adding to model
defining using Server Explorer,  219–221
overview,  218
testing,  221–222
updating model,  223–225

calling using Entity SQL,  225–227
calling using LINQ,  227–228
conceptual layer,  217–218
mapping layer,  216–217
mapping to entity type collection,  228–231
object layer,  218
overview,  213–214, 232
storage layer,  215–216
vs. stored procedures,  215
vs. views,  214

Type attribute,  385
type constructors, Entity SQL,  152–153
TypeName attribute,  217
types

adding to diagram,  375
LINQ to Entities,  131

U
UAC (user access control),  15
UDF (User-Defined Function),  154, 213
Unicode,  150
UnintentionalCodeFirstException class,  82
UNION keyword,  84
Union() method,  129, 135
UpdateCheck property,  247
UpdateClient() method,  206, 209
Update Completed Successfully message,  198
UpdateException,  245
Update Model From Database option,  200, 223
UpdateRecord form,  273
Update Wizard dialog box,  142–143
Updating Newer Data dialog box,  278
UPDLOCK table,  285
user access control (UAC),  15
User-Defined Function (UDF),  154, 213
userFavoritesBindingNavigator component,  38
userFavoritesBindingSource component,  38
UserFavoritesModel.EDMX file,  351
UserId property,  30
user interface,  304
using statement,  52

V
VAR function,  156
var keyword,  88, 122
VARP function,  156
ViewClients view,  201
View Detail dialog box,  260, 359
VIEW keyword,  210
views

defining using Server Explorer,  196–198
example of,  202–204
making writable,  204–209
overview,  193–195, 210
pregenerated,  290–293
testing,  198–199
vs. TVFs,  214
updating model for,  200–202

	 writable views

	 Index   417

W
WHERE clause,  161, 170
where keyword,  127
Where() method,  128, 135, 209, 245
workflows

choice of, defining,  55–57
code-first workflow

adding Entity Framework 5 support,  59–60
creating code-first context,  61
creating project,  57–58
defining initial classes,  58–59
overview,  51–53, 57
records, adding,  61

database-first workflow
overview,  54–55, 71–72
records, adding,  73–74
reverse engineering database model,  71–73

model-first workflow
defining database model,  66–69
overview,  53–54, 66
records, adding,  70–71

overview,  49–51
quick reference,  75

writable views,  204–209

About the Author

JOHN PAUL MUELLER is a freelance author and technical editor. He has
writing in his blood, having produced 92 books and over 300 articles to date.
The topics range from networking to artificial intelligence and from database
management to heads-down programming. Some of his current books include
Windows command-line references, books on HTML5 and JavaScript, several
books on C#, and an IronPython programmer’s guide. His technical-editing

skills have helped more than 65 authors refine the content of their manuscripts. John
has provided technical-editing services to both Data Based Advisor and Coast Computer
magazines. He’s also contributed articles to magazines such as Software Quality Con-
nection, Mendix.com, DevSource, InformIT, SQL Server Professional, Visual C++ Develop-
er, Hard Core Visual Basic, asp.netPRO, Software Test and Performance, and Visual Basic
Developer. Be sure to read John’s blog at http://blog.johnmuellerbooks.com/.

When John isn’t working at the computer, you can find him outside in the garden, cut-
ting wood, or generally enjoying nature. John also likes making wine and knitting. When
not occupied with anything else, he makes glycerin soap and candles, which comes in
handy for gift baskets. You can reach John on the Internet at John@JohnMuellerBooks.
com. John is also setting up a site at http://www.johnmuellerbooks.com/. Feel free to take
a look and make suggestions on how he can improve it.

 Now that
you’ve
read the
book...

Was it useful?
Did it teach you what you wanted to learn?
Was there room for improvement?

Let us know at http://aka.ms/tellpress

Your feedback goes directly to the staff at Microsoft Press,
and we read every one of your responses. Thanks in advance!

Tell us what you think!

	Chapters at a glance
	Contents
	Introduction
	Part I: Introducing the Entity Framework
	Chapter 1: Getting to know the Entity Framework
	Defining an entity
	Understanding the Entity Framework elements
	Considering the conceptual model
	Considering the storage model
	Considering the model mappings

	Introducing the Entity Framework files
	Viewing the Conceptual Schema Definition Language file
	Viewing the Store Schema Definition Language file
	Viewing the Mapping Specification Language file

	Developing a simple Entity Framework example
	Starting the Entity Data Model Wizard
	Using the Entity Data Model Designer
	Working with the mapping details
	Using the resulting framework to display data

	Getting started with the Entity Framework
	Chapter 1 quick reference

	Chapter 2: Looking more closely at queries
	Defining a basic query
	Creating the model
	Working with enumerations
	Obtaining an application data source
	Creating the test application
	Running the basic query

	Creating specific queries
	Using literals
	Using operators, properties, and methods

	Combining and summarizing data
	Grouping data
	Getting started with the Entity Framework
	Chapter 2 quick reference

	Chapter 3: Choosing a workflow
	Understanding the code-first workflow
	Understanding the model-first workflow
	Understanding the database-first workflow
	Defining the workflow choices
	Creating a code-first example
	Creating a project
	Defining the initial classes
	Adding Entity Framework 5 support
	Creating a code-first context

	Adding a record
	Viewing the results

	Creating a model-first example
	Defining the database model
	Adding a record and viewing the results

	Creating a database-first example
	Reverse engineering the database model
	Adding a record and comparing results

	Getting started with the Entity Framework
	Chapter 3 quick reference

	Part II: Completing basic tasks
	Chapter 4: Generating and using objects
	Understanding the Entity objects
	Considering object services
	Considering the base classes
	Working with an EntityCollection
	Understanding the role of Entity SQL

	Making queries using objects
	Considering the role of lambda expressions
	Creating a basic query using Entity SQL
	Creating a basic query using LINQ

	Modifying data using objects
	Adding the forms
	Adding purchases
	Updating purchases
	Deleting purchases

	Working with Query Builder methods
	Getting started with the Entity Framework
	Chapter 4 quick reference

	Chapter 5: Performing essential tasks
	Defining the essential tasks
	Viewing the data
	Saving changes
	Inserting new values
	Deleting old values

	Creating a master/detail form
	Creating the data source
	Configuring the data source
	Adding and configuring the controls
	Testing the result

	Getting started with the Entity Framework
	Chapter 5 quick reference

	Part III: Manipulating data using the Entity Framework
	Chapter 6: Manipulating data using LINQ
	Introducing LINQ to Entities
	Considering the LINQ to Entities provider
	Developing LINQ to Entities queries
	Defining the LINQ to Entities essential keywords
	Defining the LINQ to Entities operators

	Understanding LINQ compilation
	Following an IQueryable sequence
	Following a List sequence

	Using entity and database functions
	Creating the function
	Accessing the function

	Getting started with the Entity Framework
	Chapter 6 quick reference

	Chapter 7: Manipulating data using Entity SQL
	Understanding Entity SQL
	Considering the Entity SQL data flow
	Defining the Entity SQL components

	Selecting data
	Working with literals in Entity SQL
	Using the standard literals
	Adding some additional data
	Using a date or time literal
	Interacting with a decimal literal

	Ordering data
	Grouping data
	Getting started with the Entity Framework
	Chapter 7 quick reference

	Chapter 8: Interaction with stored procedures
	Understanding stored procedures
	Adding stored procedures to your model
	Defining the stored procedure using Server Explorer
	Testing the stored procedure
	Updating the model
	Modifying a stored procedure

	Building an application using stored procedures
	Creating a basic stored procedure example
	Getting started with the Entity Framework
	Chapter 8 quick reference

	Chapter 9: Interaction with views
	Understanding views
	Adding views to your model
	Defining views using Server Explorer
	Testing the view
	Updating the model

	Creating a basic view example
	Making views writable
	Getting started with the Entity Framework
	Chapter 9 quick reference

	Chapter 10: Interaction with Table-Valued Functions
	Understanding TVFs
	Comparing TVFs to views
	Comparing TVFs to stored procedures
	Defining the storage layer
	Defining the mapping layer
	Defining the conceptual layer
	Defining the object layer

	Adding TVFs to your model
	Defining the TVF using Server Explorer
	Testing the TVF
	Updating the model

	Calling a TVF using Entity SQL
	Calling a TVF using LINQ
	Mapping a TVF to an entity type collection
	Getting started with the Entity Framework
	Chapter 10 quick reference

	Part IV: Overcoming entity errors
	Chapter 11: Dealing with exceptions
	Understanding exceptions
	Considering exception sources
	Dealing with the System.Data.EntityException
	Working through System.Data namespace exceptions
	Working through System.Data.Common namespace exceptions
	Working through System.Data.Linq namespace exceptions

	Handling connection string exceptions
	Seeing the connection string problem
	Creating code for the connection string problem
	Adding another layer of exception handling

	Dealing with query exceptions
	Dealing with other data exception types
	Understanding concurrency exceptions
	Getting started with the Entity Framework
	Chapter 11 quick reference

	Chapter 12: Overcoming concurrency issues
	Visualizing database concurrency issues
	Considering optimistic concurrency problems
	Rejecting the change
	Performing a partial update
	Obtaining user input
	Ignoring concurrency issues completely
	Performing a forced update

	Implementing optimistic concurrency in an application
	Developing the test environment
	Testing the default concurrency
	Coding for field changes
	Using field-specific concurrency
	Using row-version concurrency

	Considering pessimistic concurrency issues
	Getting started with the Entity Framework
	Chapter 12 quick reference

	Chapter 13: Handling performance problems
	Understanding performance issue sources
	Considering the layers
	Retrieving too many records
	Using the local cache
	Relying on pregenerated views
	Relying on precompiled queries
	Disabling change tracking
	Choosing between lazy loading and eager loading

	Viewing performance issues
	Direct query viewing
	Using third-party products

	Defining the performance triangle
	Considering the effects of raw speed
	Considering the effects of security
	Considering how raw speed and security affect reliability

	Using multithreading as an aid to speed
	Getting started with the Entity Framework
	Chapter 13 quick reference

	Part V: Advanced management techniques
	Chapter 14: Creating custom entities
	Developing POCO classes
	Configuring the model
	Adding the classes
	Creating an ObjectContext class to interact with the
POCO classes
	Testing the POCO application
	Creating a DbContext class to interact with the POCO classes
	Creating the classes in a different project

	Creating and using event handlers
	Handling ObjectContext events
	Creating and handling custom events

	Creating custom methods
	Creating custom properties
	Getting started with the Entity Framework
	Chapter 14 quick reference

	Chapter 15: Mapping data types to properties
	Understanding mapping automation configuration
	Configuring properties
	Changing property mapping
	Filtering the data

	Working with standard data types
	Considering the standard data type mapping scenarios
	Creating the Rewards3 database
	Performing standard data type mapping

	Working with enumerated data types
	Working with complex data types
	Working with geography and geometry spatial data types
	Getting started with the Entity Framework
	Chapter 15 quick reference

	Chapter 16: Performing advanced management tasks
	Developing multiple diagrams for a model
	Creating the new diagram
	Configuring the diagram appearance

	Performing batch imports of stored procedures and functions
	Mapping a stored procedure that returns multiple result sets
	Creating the stored procedure
	Using the code-access technique
	Using the EDMX modification technique

	Creating entities with inheritance
	Creating the Rewards4 database
	Using inheritance with the model-first workflow
	Using inheritance with the code-first workflow

	Controlling context actions for automatically generated classes
	Getting started with the Entity Framework
	Chapter 16 quick reference

	Index

