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Abstract
We make the case for a sensor network model in which

each mote stores sensor data locally, and provides a database
query interface to the data. Unlike TinyDB and Cougar, in
which a sink node provides a database-like front end for fil-
tering the current sensor values from a data collection net-
work, we propose that each sensor device should run its
own database system. We present Antelope, a database man-
agement system for resource-constrained sensors. Antelope
provides a dynamic database system that enables run-time
creation and deletion of databases and indexes. Antelope
uses energy-efficient indexing techniques that significantly
improve the performance of queries. The energy cost of a
query that selects 100 tuples is less than the cost of a sin-
gle packet transmission. Moving forward, we believe that
database techniques will be increasingly important in many
emerging applications.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless communication; H.2.4
[Database Management]: Systems

General Terms
Design, Experimentation, Measurement, Performance

Keywords
Antelope, Database, Energy Efficiency, Sensor Network

1 Introduction
Over the last years, low-power flash memory has both

rapidly decreased in cost and rapidly increased in storage ca-
pacity. For sensor nodes, today’s flash memories can, for
most practical purposes, be considered infinite: nodes will
run out of battery before running out of storage space. We
argue that this opens for a new sensor network model, where
nodes store their data in a local flash storage and provide
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energy-efficient means to query the data. For many emerg-
ing applications, such as daylight harvesting [18] and energy
accounting [29], the processed data from individual sensors
is more interesting than each individual data value. Such ap-
plications benefit from being able to query data directly from
the storage in each node instead of needing to transmit every
sensor value to the sink.

We make the case for a sensor network model where each
node runs a database management system (DBMS), provid-
ing a rich query interface to the flash storage of the node.
With potentially very large databases on every node, efficient
querying mechanisms that can operate over large data sets
are needed. The sensor data must be stored in an energy ef-
ficient manner while dealing with flash memory semantics.
Also, severe resource constraints on mote platforms require
simple mechanisms that simultaneously provide high perfor-
mance and energy efficiency.

As a realization of the sensor database model, we present
Antelope, a complete DBMS for resource-constrained sen-
sor devices, and a new flash indexing method called Max-
Heap. Antelope, which to the best of our knowledge is the
first DBMS for resource-constrained sensor nodes, provides
energy-efficient querying, high-level data modeling, while
being index independent. MaxHeap indexing enables fast
insertions and queries over large data sets while having a
low energy cost. Antelope hides the low-level I/O details
of flash storage, which have thus far often been exposed to
application developers. Moreover, Antelope uses LogicVM,
a novel virtual machine architecture that analyzes and exe-
cutes propositional logic expressed in a bytecode format. By
compiling queries and executing them in the virtual machine,
the performance of relational selection queries increases by
an order of magnitude compared to repeated parsing.

Early systems such as TinyDB [20] and Cougar [2] pro-
vide a database-like front-end to the sensor network, but
only act as filters for data collection networks and not
as databases: no data is stored in or retrieved from any
database. Such systems use a dedicated sink node that trans-
lates queries into data collection and filter commands that are
sent to nodes in the network.

We make two research contributions with this paper. First,
we present Antelope and show through a series of micro-
benchmarks that the energy-efficient indexing methods in
Antelope can provide query performance that is up to 300
times faster than an unindexed search. Second, we evaluate



Antelope from a macro perspective in a network environ-
ment, demonstrating that having a database in every sensor
can result in significant improvements in energy efficiency
by reducing the need for continuous data collection. This
shows that the use of a database not only has qualitative ben-
efits but also quantitative performance advantages in terms
of power consumption.

Being designed for sensing devices, Antelope differs from
traditional database systems in two ways. First, Antelope is
designed under the unique set of constraints of these devices.
Antelope offers a database architecture for dynamic database
creation, insertion, and querying while operating under se-
vere energy constraints. Second, the programming model of
Antelope is designed to integrate smoothly with typical op-
erating system architectures for sensor networks, with par-
ticular emphasis on cooperative scheduling and split-phase
programming. Antelope processes queries iteratively tuple-
by-tuple, and yields control to the calling process between
each processed tuple. This design allows Antelope to exe-
cute with a dynamic RAM footprint of less than 0.4 kB, and
a static RAM footprint of 3.4 kB.

2 Background
We believe that traditional sensor network data architec-

tures do not take full advantage of the current progression
of technology and do not meet the challenges in emerging
applications, particularly in the energy area [18, 29]. In the
following, we explain the background to this view, which
motivates the sensor database model.

2.1 Sensor Data Network Architectures
The sensor networks deployed thus far can be roughly di-

vided into three classes: data collection networks, data log-
ging networks, and data mule networks.

Data collection networks. Data collection networks are
the prototypical sensor network architecture. In a data col-
lection network, all nodes transmit their sensor readings
to one or more data sinks, using a best-effort data collec-
tion protocol such as CTP or the Contiki Collect protocol.
Data collection networks may support data aggregation, even
though this has proved difficult to use in practice [13]. The
TinyDB approach [20] is a special case of the data collec-
tion architecture. In TinyDB, the data stream from the sen-
sor network is abstracted behind a database query interface
that controls how data is collected from the network. Queries
are posed in an SQL-like language through a gateway node,
which sends instructions to the network nodes about how
they should send their current sensor readings. The gateway
node can also issue data aggregation within the network.

Data logging networks. In a data logging network, all
sensors log all sensed data to secondary storage, from which
it later is retrieved in bulk. An example of this approach is
the Golden Gate bridge network, which consisted of 40 sen-
sors that monitored bridge conditions. Periodically, the data
was retrieved using Flush, a bulk data transfer protocol [16].
Data logging networks are used when it is necessary to re-
trieve the complete data set, which is the case in many scien-
tific deployments [31].

Data mule networks. Data mule networks, or disruption
tolerant networks, ameliorate the problems of having an in-

complete network infrastructure, as can be the case in re-
mote areas or in disaster zones [10]. To transmit sensor sam-
ples to a sink node, the data must opportunistically be routed
through so-called data mules. A data mule is a physical car-
rier of the data that at some point moves into an area where
there is a network infrastructure that can carry the data to
the collection point. An example of a disruption tolerant net-
work is the ZebraNet deployment [17]. The premise for us-
ing such networks is that the data is insensitive to delay.

2.2 Energy Cost
Communication is costly in sensor networks. The radio

transceiver has a comparatively high power consumption. To
reduce the energy consumption of the radio, a radio duty cy-
cling mechanism must be used. With duty cycling, the ra-
dio is turned off as much as possible, while being on often
enough for the node to be able to participate in multi-hop
network communication. By contrast, flash memory chips
can stay in low-power sleep mode as long as no I/O occurs,
and do therefore not need to be duty cycled.

To quantify the trade-off in energy consumption between
storage and communication, we measure the energy con-
sumption of transmitting and receiving a packet, as well as
reading and writing to flash on a Tmote Sky. We use Con-
tiki’s default ContikiMAC radio duty cycling mechanism [8],
and measure the energy consumption by using an oscillo-
scope to measure the voltage across a 100 Ω resistor con-
nected in series with an external power supply. We measure
the cost of transmitting a 100-byte packet to a neighbor, re-
ceiving a 100-byte packet from the same neighbor, writing
100 bytes to the flash memory, and reading 100 bytes from
the flash memory. The measured current draw of the opera-
tions is shown in Figure 1.

The energy consumption of the measurements in Figure 1
is shown in Figure 2. We see that the energy cost of the
communication operations is an order of magnitude higher
than the storage operations: the energy consumption of a 100
byte transmission is 20 times higher than writing 100 bytes
to flash. Given that transmitting a message across a multi-
hop network requires multiple transmissions and receptions,
and that lost packets must be retransmitted, the overall cost
of a transmission across the network is further increased.

2.3 Application Directions
Early work on sensor networks assumed that the networks

would be homogeneous, so that sensor data could be ag-
gregated across multiple sensors. For example, a network
deployed in a field could be queried for its average tem-
perature, and could aggregate the answers from all sensors.
But deployment experiences show that such aggregation is
rarely used in practice. Instead, the identity and position
of each device is important [31]. In many cases, each de-
vice has a unique task, such as monitoring individual home
appliances [29] or monitoring the light in individual win-
dows [18]. In such applications, aggregate data from indi-
vidual sensors, such as the average light in a window or the
maximum sound from a home appliance, is interesting, but
not aggregate data across multiple sensors. For these appli-
cations, network-level data aggregation architectures, such
as TinyDB and Cougar, lack the necessary functionality.
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Figure 1. The current draw for transmitting a 100 byte message under perfect radio conditions, for receiving a 100 byte
message, for writing 100 bytes to flash memory, and for reading 100 bytes from flash. The shark fin-like patterns are
due to capacitor buffers in the Tmote Sky designed to smooth out current spikes. The time is measured in milliseconds.
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Figure 2. The energy consumption of the operations in
Figure 1, obtained by integrating the curves.

Many emerging applications produce data that potentially
can violate the privacy of people. For example, the data from
electrical power sensors in devices, which is collected for
the purpose of saving energy, can also reveal sensitive infor-
mation about the owner’s behavior. A recent study showed
that the data from fine-grained power metering of house-
hold appliances could be used to count the people in a home
and to track their activities down to the level of determin-
ing their breakfast preferences [22]. It is therefore crucial
that only the absolutely necessary data leaves each device,
and that it reaches authorized users only. In many cases, the
data is needed only in aggregate form, such as the average
power consumption over each hour or the peak power con-
sumption for each day. Collecting each sensor sample from
each device—as in the traditional data collection model—
will possibly violate privacy. Even if the data is encrypted,
the mere presence of a transmission may reveal privacy-
infringing information [28].

2.4 Technology Directions
Energy and power are limited. In most applications of

wireless sensing technology, power, energy, or both are limit-
ing factors. In battery-operated systems, the energy stored in
the batteries is limited. The energy consumption of each de-
vice is crucial since it determines the lifetime of the network.
In systems powered by energy scavenging, the power source
typically has a low power output. Thus, even if the energy
supply is abundant, the power consumption is constrained.
Even in devices that are perpetually powered, such as elec-
trical power meters for the smart grid, power consumption
is a limiting factor. First, the power consumption of a de-
vice determines the physical size and cost of its power trans-
former. Second, because the purpose of adding millions of
energy meters to the smart grid is to save energy, the power
consumption of each device must be low enough to avoid
outweighing the energy savings from the use of the devices.

Bandwidth is limited. Communication bandwidth is
closely related to the power consumption of the radio
transceiver. A higher communication bandwidth requires
higher modulation and demodulation speed, more fine-
grained crystal clock stabilizers, and on-chip buses with
higher clock speed, all of which increases transceiver power
consumption. Even though the constant factors can be re-
duced, the fundamental trade-off between bandwidth and
power consumption is likely to always be present.

Storage is unlimited. While the power, energy, and band-
width continue to be limiting factors, the trend in storage
is rapidly increasing size at decreasing cost. Because stor-
age is a passive component, its size does not affect its power
consumption. For wireless sensing devices, the storage size
of modern flash-based storage devices is so large that for all
practical purposes it can be considered unlimited: the storage
will be more than enough to last its entire projected lifetime.
For battery-operated systems, the storage easily outlives the
battery lifetime. Consider a home appliance that monitors its
power consumption. Every second, the device reads its cur-
rent power consumption and stores it as 8-byte value onto its
local flash memory. After 10 years of continuous operation,
the power data has used less than 2.5 GB of memory, which
fits safely onto a 4 GB SD card, which in early 2011 could
be purchased for $7.

3 The Sensor Database Model
In the sensor database model, each sensor node holds a

database that can be dynamically queried and to which data
can be inserted at run-time. The database may be used, for
example, to store sensor data, so that each sensor can retain
its complete history of sensor readings; to hold run-time in-
formation, such as routing tables for large networks that are
dynamically queried by the system itself; or to maintain a
history of performance statistics, which can later be queried
for purposes of network debugging or performance tuning.

3.1 Applications
In the sensor network community, there are numerous

examples of storage-centric sensornet applications that can
benefit from using the sensor database model. Tradition-
ally, such applications have been implemented using low-
level abstractions such as files [5, 30] and indexing primi-
tives [21, 23]. Hence, the functionality for managing and
querying data has required a new design and implementa-
tion for each application, thereby contributing to the widely
perceived difficulty of programming sensor networks.



The sensor database model is particularly useful for sen-
sor networks whose data is either periodically queried or
downloaded in bulk. One example are query-based electric-
ity metering applications, which are part of the Advanced
Metering Infrastructure (AMI). Another example is appli-
cations that require reliable distributed storage to mitigate
connectivity problems [27]. The sensor database model can
use the capabilities of emerging query mechanisms, such as
the IETF CoAP and Web services [24], by providing a high-
level query language for archival data, managed and indexed
opaquely to the application.

3.2 Challenges
The database model requires an efficient database man-

agement system in every sensor, presenting a set of chal-
lenges. Existing systems have been designed for platforms
with entirely different requirements with respect to energy
consumption and system resources.

Energy-efficient querying and storage. Sensors are long-
lived and can store potentially large amounts of data. Query-
ing must be energy-efficient and quick over large data sets,
yet operate within the resource constraints of mote platforms.
Moreover, data can be stored frequently, sometimes many
times per second. This entails that the energy consumption
of the storage chip must be low.

Physical storage semantics. Flash memory complicates
the management of physical storage by prohibiting in-place
updates. Storage structures designed for magnetic disks are
in most cases unusable in flash memory. Unlike magnetic
disks, flash memories only allow bits to be programmed from
1 to 0. To reset a bit to 1, a large sector of consecutive bits
must be erased—often involving multiple kB. Beside this
constraint, there are different variants of flash memory that
impose further constraints: NAND flash is page-oriented,
whereas NOR flash is byte-oriented. NAND flash typically
enables a larger storage capacity and more energy-efficient
I/O, but has more restrictive I/O semantics [11].

4 Antelope
Antelope is a database management system (DBMS) for

resource-constrained sensor devices. It provides a set of re-
lational database operations that enable dynamic creation of
databases and complex data querying. To be able to effi-
ciently execute queries over large data sets, Antelope con-
tains a flexible data indexing mechanism that includes three
different index algorithms. To be portable across different
platforms, and to avoid the complexity of dealing with flash
wear levelling and different storage chip configurations, An-
telope leverages the storage abstraction provided by the Cof-
fee file system [30].

Antelope consists of eight components, as shown in Fig-
ure 3: the query processor, which parses AQL queries; the
privacy control, which ensures that the query is allowed; the
LogicVM, which executes the queries; the database kernel,
which holds the database logic and coordinates query execu-
tion; the index abstraction, which holds the indexing logic;
the indexer process, which builds indexes from existing data;
the storage abstraction, which contains all storage logic; and
the result transformer, which presents the results of a query
in a way that makes it easy to use by programs.

Query Result

Flash Chip

Figure 3. The architecture of Antelope.
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Figure 4. An example relation that contains samples
taken from a set of sensors at different points in time.

4.1 Terminology
Antelope uses the standard terminology from the rela-

tional database field [3]. Under this terminology, a tuple is
a set of attribute values, where each value belongs to an at-
tribute. Each attribute has a domain that specifies the data
type of the attribute values. A collection of tuples that have
the same attributes is called a relation. In a relation, each tu-
ple has a primary key that uniquely identifies the tuple in the
relation. The number of tuples in a relation is called the car-
dinality of the relation. Informally, a relation is sometimes
called a table, an attribute a column, and a tuple a row. An
example relation containing samples collected from different
sensors is depicted in Figure 4.

4.2 Query Language
The query language of Antelope is called AQL and is

used both to build and to query databases. The typical way
of using Antelope in a sensor device is first to define a
database consisting of one or more relations. Data can be
modeled using the well-founded design principles for rela-
tional databases, such as normalizing the data and planning
for what kind of queries that the system should be able to
handle efficiently.

Table 1 gives an overview of the operations available in
AQL. Users define databases by using a set of catalog op-
erations provided by the language. The database can then
be queried by using a set of relational operations. Several
of these operations share syntactic elements with SQL, but
there is also a considerable difference caused by the dif-
ferent goals of the languages. SQL targets a broad range
of database systems, including high-end systems with sev-
eral orders of magnitude larger resources than sensor de-
vices. AQL, by contrast, is designed for systems with mod-
est hardware resources. Hence, complex SQL functionality
such as procedural extensions, triggers, and transactions are



Table 1. Antelope database operations

Operation Purpose

INSERT Insert a tuple into a relation.

REMOVE Remove tuples matching a condition.

SELECT Select tuples and project attributes.

JOIN Join two relations on a condition.

CREATE RELATION Create an empty relation.

REMOVE RELATION Remove a relation and all its associated indexes.

CREATE ATTRIBUTE Add an attribute to a relation.

CREATE INDEX Create an attribute index.

REMOVE INDEX Remove an attribute index.

1 CREATE RELATION sensor;

2
3 CREATE ATTRIBUTE id DOMAIN INT IN sensor;

4 CREATE ATTRIBUTE name DOMAIN STRING(20) IN

sensor;

5 CREATE ATTRIBUTE position DOMAIN LONG IN sensor;

6
7 CREATE INDEX sensor.id TYPE INLINE;

8 CREATE INDEX sensor.position TYPE MAXHEAP;

Example 4.1: A database in Antelope is created by issuing a
series of catalog operations. We first create the relation, then
its attributes, and lastly its indexes.

precluded. Furthermore, AQL is not a strict subset of SQL,
which can chiefly be noticed in the separation of the JOIN

and SELECT operations, enabling a simpler implementation
of Antelope.

4.2.1 Defining and Populating a Database
A relation is defined by using a set of catalog operations.

The definition consists of a set of attributes and their cor-
responding domains, a set of constraints on the tuples that
will subsequently be inserted into the relation, and a set of
indexes associated with attributes of the relation. For each
CREATE operation, there is a corresponding REMOVE op-
eration. To reduce the complexity in handling the physical
representation of data, Antelope restricts the creation and re-
moval of attributes to before the first tuple is inserted. In-
dexes, however, are stored separately on a per-attribute basis
and can therefore be created and removed dynamically.

An example of how a relation can be specified is shown
in Example 4.1. On line 1, the relation itself is created. This
procedure involves the physical storage layer, into which
Antelope puts the relational metadata structure that will be
loaded into RAM every time the system accesses the rela-
tion for the first time after booting. On lines 3-5, we create
three attributes in the relation. The domain can be specified
as INT, LONG, or STRING. Attributes of the STRING
domain must be specified with an argument that denotes the
maximum length of the string, as can be seen on line 4 where
the name attribute can have string values of at most 20 char-
acters. Lastly, on line 7-8, we create two indexes to enable
fast retrieval of tuples whose attribute values match a certain
search criterion.

Once a relation has been defined, it is ready to be pop-
ulated with data tuples. When inserting a tuple, Antelope

first verifies that all its attribute values pertain to the domain
of the corresponding attribute. The abstract representation
in AQL is thereafter transformed into its physical represen-
tation, which is a compact byte-array record of the attribute
values. If the attribute is indexed, the Antelope calls the ab-
stract function for index insertion, which forwards the call
to the actual index component chosen for the attribute. In
the final step, the tuple is passed to the storage abstraction,
which writes it to persistent storage.

4.2.2 Querying a Database
Database operations such as SELECT, JOIN, and RE-

MOVE are executed in two parts: I) a preparation part, in
which the processing is set up, and II) an iteration part, in
which the resulting set of tuples is processed both by Ante-
lope and by the user. The minimum amount of processing
involves reading the tuple from storage into a RAM buffer.
Usually, however, one can either print the tuple on the serial
port, send it over radio, or compute statistics over attribute
values. By default, the query result is assigned to a virtual
result relation, whose tuples are not stored, but instead de-
livered one-by-one in a RAM buffer. If subsequent queries
on the result are needed, the user can assign the result into a
new persistent relation.

The Select Operation. The SELECT operation allows the
user to select a subset of the tuples in a relation. The se-
lection is decided by a given predicate. In addition, the at-
tribute set of the result relation can be projected. Attribute
values can be aggregated over all tuples that match the selec-
tion predicate. The aggregation functions comprise COUNT,
MAX, MEAN, MIN, and SUM, each of which is updated for
each processed tuple after Antelope has confirmed that the
tuple satisfies the SELECT predicate. In this case, the result
relation will contain a single tuple for the aggregated values.
An example of a SELECT query that combines relational se-
lection and aggregation follows.

SELECT MEAN(humidity), MAX(humidity) FROM samples WHERE

year = 2010 AND month >= 6 AND month <= 8;

In this query, we retrieve the mean and maximum temper-
ature in the summer of 2010. Antelope evaluates the query,
using any indexes available, and delivers the result to the user
upon demand. By contrast, conventional sensornets have to
transmit all values periodically to a sink—possibly over mul-
tiple hops—to reflect this functionality.

The Join Operation. When a query involves two relations,
the relational JOIN operation is useful. Consider the query
below, in which we wish to count the amount of contacts that
we had in April 2011 with a device having the IPv6 address
aaaa::1.

contacts <- JOIN device, rendezvous ON device_id PROJECT

address, year, mon;

SELECT COUNT(*) FROM contacts WHERE year = 2011 AND mon

= 4 AND address = ’aaaa::1’;

A relational join is a heavy operation: it merges subsets
of two relations given some condition. Although JOIN does
not involve logical processing of each tuple, there is a need
to consider the tuples of two relations. Hence, the time com-
plexity can potentially be as high as O(|L||R|), where L de-
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notes the left relation and R denotes the right relation. In-
deed, this is the complexity of a simple join algorithm—
nested loop join—which for each tuple in the left relation
has to scan all the tuples in the right relation.

Conventional join algorithms in the literature—such as
sort-merge join and block-nested-loop join—require a rela-
tively large memory space for intermediate storage of tuples.
By contrast, the performance of the JOIN operation in Ante-
lope is constrained by the limited space for buffering in sen-
sor devices. Thus, we choose to allow joins only if the join
attribute is indexed on the right relation. When executing the
JOIN, Antelope iterates over each tuple in the left relation.
It retrieves the value of the join attribute in the tuple, and
searches the index of the corresponding attribute in the right
relation for this value. The index module returns an iterator
over all matching tuples, which are processed and included
in the resulting joined relation.

The Remove Operation. Data tuples can be deleted through
the REMOVE operation. This operation takes a condition of
the same syntax as is used by SELECT, and removes all tu-
ples matching the condition. Internally, Antelope translates
this operation to a SELECT query, with an inverse condition,
and assigns the result into a temporary relation. The old re-
lation is then removed, and the temporary relation takes the
name of the old relation. Hence, the cost of the REMOVE is
comparable to that of a SELECT with assignment, given an
equal number of tuples to process.

4.3 Database Kernel
The architecture of Antelope revolves around the

Database Kernel. This component evaluates all relational
database operations of AQL. The Database Kernel is typi-
cally invoked by the query execution module after the AQL
parser has translated the operations from textual representa-
tion to a more computationally efficient abstract data repre-
sentation. It enables execution of multiple queries simulta-
neously by providing a query handle object to the user who
issued the query.

The Database Kernel is designed on the well-established
Iterator model [14] because it requires only one tuple at a
time to be stored in memory, and because it has properties

that makes it suitable for cooperative scheduling. Each query
that requires extensive processing can be paused between
each processed tuple, allowing the application to relinquish
control back to the scheduler. Figure 5 shows a typical work-
flow during a database query, in which the application re-
trieves each processed tuple, and can optionally yield control
to the operating system scheduler. This processing model is
suitable for embedded systems, which often use cooperative
scheduling or split-phase programming paradigms.

4.4 LogicVM
LogicVM is a virtual machine that evaluates propositional

logic. Primarily, the purpose of LogicVM is to enhance the
performance of relational SELECT operations. The logic is
expressed compactly in bytecode format using Polish nota-
tion (also known as prefix notation). The Polish notation fa-
cilitates recursive execution over the stack for each instance
of the virtual machine. This execution model is similar to the
one used by the Forth programming language, which uses
a reverse Polish notation. In contrast with Forth, however,
LogicVM evaluates compiled logic statements, possibly con-
taining arithmetic, and yields a Boolean result.

4.4.1 Bytecode Language
LogicVM is able to evaluate a set of operators belonging

to either of three classes: logical connectives (∧, ∨, ¬), rela-
tional operators (≤, <, ≥, >, =, 6=), and arithmetic operators
(+, −, ×, ÷). The logical connectives take operands that are
either relational operators or logical connectives. The rela-
tional operators accept operands that are arithmetical expres-
sions; values of integer, string, or float type; and variables.
The variables reflect the attributes of the relations.

4.4.2 Execution
By using a stack-based execution model it becomes pos-

sible for each instance of the machine to allocate precisely
the memory it needs on the stack, rather than using dynamic
heap allocation or over-provisioned static allocation entailed
by imperative models. Another motivation for this choice
is that the stack-based execution model is simple to imple-
ment using relatively few processor instructions: the com-
piled code size for LogicVM is less than 3 kB for 16-bit
MSP430 processors.

The execution stack is created by the AQL parser using
an API exported by the LogicVM. Before building the exe-
cution stack, the AQL parser registers the variables that are
referenced by the logical expression. After the parser has
finished building the execution stack, the Database Kernel
executes the SELECT operation, and, for each retrieved tu-
ple, replaces all variable values and executes the LogicVM
again. The Boolean result of the execution of a virtual ma-
chine instance decides whether the Database Kernel includes
the tuple in the result relation.

4.4.3 Attribute Range Inference
To increase the query processing performance, we intro-

duce a logic analysis algorithm in LogicVM. This algorithm
is able to infer the acceptable ranges for all attributes in a log-
ical expression. The Database Kernel uses this information
to delimit the set of tuples to search through in order to sat-
isfy a query. The information produced by this algorithm—a
set of ranges—is supplied to any index algorithm employed



for the attributes of the expression, allowing complex queries
to be executed efficiently. Unlike equality search and explicit
range search, for which such analysis is trivial, a SELECT

query in AQL might contain a more complicated logical ex-
pression; e.g., (a > 1000∧a < 2000)∧ (b+a = 1500).

Such expressions implicitly state a range of possible val-
ues for each of the attributes inside them. For each attribute
in the expression, LogicVM is able to significantly narrow
down the range within in which all values that satisfy the ex-
pression can be found. This problem is closely related to the
Boolean satisfiability problem (SAT), which is NP-complete.
By limiting expressions to a few AQL clauses, however, the
algorithm operates in a time that constitutes a minority of
the total tuple processing time, as evidenced by our mea-
surements in Section 6.2.1.

LogicVM conducts the range inference directly on VM
bytecode. It can thus use the same recursive algorithm as
is used when executing a logical expression. The inference
algorithm returns a set of acceptable ranges for the attributes
of each subclause. The inference starts from the deepest level
of the expression, and merges the resulting ranges until the
reaching the top level of the expression. The method to use
for range merging depends on whether the logical connective
in the clause is ∧ or ∨. For the former, the sets are merged by
creating an intersection of them, whereas for the latter, they
are merged by creating a union.

For example, if we wish to find the acceptable ranges for
α and β in the condition α > 10∧α ≤ 20∧β > 100, we triv-
ially conclude that β ∈ {101, ...,βmax}. We then process the
subclause α≤ 20, with the result α∈ {αmin, ...,20}. In the fi-
nal subclause, α > 10, we obtain α ∈ {11, ...,αmax}. Hence,
α ∈ {αmin, ...,20}∩{11, ...,αmax}= {11, ...,20}. The maxi-
mum and minimum values of these sets for α and β can then
be used by the Database Kernel to determine which values to
search for in any existent index on the attributes.

4.5 Energy-Efficient Data Indexing
An index is an auxiliary data structure whose primary

purpose is to optimize the execution of database queries by
delimiting the set of tuples that must be processed. The
database administrator chooses which attributes should be
indexed based on the expected usage of the database. An
index stores a key-value pair, in which the key specifies an
attribute value, and the value denotes a tuple ID of the tuple
that contains that attribute value.

Attaining efficient indexing in sensor devices is challeng-
ing, because such an index must have a small memory foot-
print, and an I/O access pattern that aims at reducing energy
consumption and wear on the flash sectors. Indexes designed
for large databases, which typically assume the block-based
I/O pattern of magnetic disks, are precluded because flash
memories restrict modifications of written data. Instead, in-
dexes such as FlashDB [23], Lazy-Adaptive Tree [1], and
MicroHash [32] have been developed for flash memories.
The myriad of possible index algorithms—with each having
different trade-offs as to space complexity, energy consump-
tion, and storage efficiency—motivate us to provide a query
language and an API that decouple the application from the
index implementation.

Table 2. Indexing Methods in Antelope
Method Structure Location Space Search

MaxHeap Dynamic External O(N) O(logN)

Inline Dynamic Inline O(1) O(logN)

Hash Static RAM O(N) O(1)

For this purpose, we need to ensure not only that indexes
can be constructed and destructed dynamically at runtime,
but also that all indexes can be accessed using the same query
interface. This is a beneficial distinction from specialized in-
dex implementations for sensor devices, which require the
application to be tightly coupled with a certain index algo-
rithm. In the following, we explain how we facilitate inclu-
sion of specialized indexes in a way that makes their imple-
mentation details hidden beneath the generic DB interface.

4.5.1 Design Aspects
To decouple index implementations from the Database

Kernel, all indexes implement a generic programming inter-
face. This interface is adapted to the Iterator model, which
is used extensively in the Database Kernel. The interface
comprises the following operations: Create, Load, Destroy,
Insert, Delete, GetIterator, and GetNext.

Table 2 lists the three different index algorithms available
thus far in Antelope. Each of these indexes implement the
indexing API in significantly different ways. The MaxHeap
index is optimized to reduce flash wear and energy consump-
tion. The Inline index is optimized for sensor data series and
other ordered data sets, and is thus suitable for typical sen-
sornet workloads. The Hash index stores small amounts of
key-value pairs in RAM memory, and is ideal for small rela-
tions that are involved in frequent queries.

4.5.2 The MaxHeap Index
The MaxHeap index is a novel general-purpose index

for NOR flash and SD cards, supporting both equality
queries and range queries. State-of-the-art flash indexes
(e.g., FlashDB [23] and Lazy-Adaptive Tree [1]) are typi-
cally designed for NAND flash. Both build on balanced tree
structures, which thus require that inserted elements are oc-
casionally moved around in the flash. Because of NAND
write restrictions, they use log structures [26], which can
impose a large memory footprint when used for flash mem-
ory. The number of indexed keys is thus highly limited on
platforms such as the TelosB, with its 10 kb RAM. When
indexing 30,000 keys with FlashDB, the memory in use al-
ready surpasses this amount of RAM [23]. The MaxHeap
index, by contrast, is designed primarily for memory types
having more relaxed write restrictions compared to NAND
flash, which entails a smaller memory footprint.

The MaxHeap index uses a binary maximum heap struc-
ture, enabling a natural mapping to dynamically expanding
files in the underlying file system. For each indexed attribute,
the index implementation stores two files: a heap descrip-
tor and a bucket set container. The heap descriptor con-
tains nodes describing the range of values contained in each
bucket. The bucket set container holds the buckets, which
store the actual key-value pairs of the index.

When a key-value pair is inserted in the index, it is put
into the bucket that has the most narrow value range includ-



ing the key. Since the heap is a rigid structure, expanding
downwards only, inserted keys should be evenly dispersed
over the heap nodes to maximize space utilization. Keys can,
however, be distributed unevenly over the attribute domain or
be inserted in a problematic order such as an increasing se-
quence. We handle this problem by selecting a bucket based
on the hashed key value, but store the unhashed key. The
key-value pair is stored in the next free position in the se-
lected bucket.

If a bucket becomes full, two new heap nodes are allo-
cated beneath it, splitting the range of the original bucket
in two halves. The keys stored in the parent bucket are re-
tained, but future insertions are made in buckets below it. A
negative side-effect of this design, however, is that queries
usually require processing of multiple buckets; when search-
ing the index for a key, we start from the bottom bucket with
the most narrow range encompassing the key.

The MaxHeap index requires O(n+ 4k) bytes of mem-
ory, where n is the number of nodes in the heap and k is
the number of keys in each node. The number of nodes is
2m−1,m≥ 1, where m is a parameter configured at compile-
time. For instance, to accommodate 30,000 keys, we can set
m = 8 and k = 128, which results in a 854 byte memory foot-
print of the index.

4.5.3 The Inline Index
In sensornet workloads, the order of inserted tuples can

sometimes be constrained to be monotonically increasing.
For instance, a long sequence of sensor samples is typically
indexed by a timestamp attribute. Another case is when the
database manager has control over the insertion order; e.g,
when inserting descriptions of different chips on the node, or
information about different neighbor nodes in a network that
are known before deployment.

We leverage the ordering constraint to create a lightweight
index named the Inline index. By being essentially a wrap-
per for search algorithms, the Inline index operates using no
additional external storage, and has a constant memory foot-
print regardless of the amount of data items indexed. The
Inline index is currently implemented as a variant of binary
search, which finds the beginning and the end of a range
among the full set of tuples in a stored relation. Therefore,
the Inline index circumvents the Database Kernel by access-
ing the storage abstraction layer directly, from which it re-
trieves specific tuples indexed by row number in the physical
storage. Since there is no external or internal index structure,
the Inline index has O(1) space overhead.

Similar to the Inline index, the MicroHash index [32] is
based on the idea of arranging the index according to the time
order of sensor samples. The difference, however, is that Mi-
croHash is specialized toward a certain type of flash and stor-
age structure for sensor data, whereas the Inline index avoids
a considerable implementation complexity by using the stor-
age abstraction shared with the other Antelope components,
and is designed to index arbitrary attributes whose inserted
values satisfy the ordering constraint.

4.5.4 The Hash Index
As an alternative to the two aforementioned index types,

which require access to the underlying flash memory, the
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Figure 6. The storage layout in Antelope leverages the
classical file abstraction, as provided by flash file systems
such as Coffee. By separating the parts of a database to
a high degree, each file can be configured optimally in
Coffee according to its expected I/O access pattern.

Hash index provides fast searches for attribute values by us-
ing hash tables residing in RAM. This index type is ideal
for applications that generate frequent queries on relations
having a low cardinality—the exact limit is configurable at
compile-time, but defaults to 100 tuples or less. If the host
system resets, Antelope will automatically repopulate hash
indexes once the relations that they belong to are first ac-
cessed again.

5 Implementation
We have implemented Antelope in the C programming

language, using a small amount of OS-level services pro-
vided by the Contiki operating system. Porting Antelope to
other operating systems for resource-constrained devices is
mainly a matter of adjusting the storage layer to the new
operating system’s file system. This part of the code base
constitutes less than 10% in metrics such as compiled code
size and source-lines of code (SLOC). The implementation
runs on different Tmote Sky derivatives, which are equipped
with 1 MB ST M25P80 NOR flash memory; and MSB-430
devices, which are equipped with multi-gigabyte SD cards.

Storage Layout. Because of the variety of hardware plat-
forms deployed in sensor networks, we have designed An-
telope to be portable over a host of file systems. We there-
fore introduce a storage layer between the database system
and the underlying file system. This layer adapts the stor-
age operations of Antelope to those of the file system. Be-
side generic functionality for managing database metadata
and contents, the storage API directly maps to the Iterator
model used at the higher layer in the Database Kernel.

Our storage abstraction is implemented using the Coffee
file system [30]. Other file systems for resource-constrained
devices having most—if not all—of the functionality re-
quired for Antelope are ELF [5] and TFFS [12], but we have
chosen Coffee because of its constant and small memory
footprint in relation to the file size. A basic storage layout,
involving a single relation and a MaxHeap index, is illus-
trated in Figure 6. In Antelope, we leverage the file system’s
ability to manage many files. By separating data in this way,
we also add opportunities to optimize the access to individ-



ual files because they can be configured according to their
expected I/O workload profile in Coffee.

File System Adjustments. Coffee provides a micro log
structure method for handling modifications to files, but this
functionality is superfluous for an index algorithm designed
specifically for flash memory. The index algorithm might
use a log structure internally, or it might use the flash mem-
ory in a way that eradicates the need for log structures; e.g.,
if it never modifies bits that have been toggled from 1 to 0.
To enhance the performance of the index algorithms we need
to be able to inform Coffee about the I/O access pattern on
a specific file descriptor. Thus, we add a function that can
change the mode of a file descriptor from generic I/O (i.e.,
having Coffee taking care of modifications) to flash-aware
I/O operations. The MaxHeap index uses this mode to avoid
incurring the overhead of Coffee’s micro logs when writing
within heap buckets on NOR flash.

Consistency and Error Recovery. The storage layer is re-
sponsible for checking the integrity of data and reporting any
errors to the Database Kernel. Since the storage layer is im-
plemented for a particular file system, its support for transac-
tions, integrity checking, and error recovery determines how
complex this functionality has to be in the storage layer it-
self. File systems such as TFFS [12] support transactions,
whereas ELF [5] and Coffee [30] do not. Because we use
Coffee in our implementation, we briefly analyze the impli-
cations on the storage layer in the following.

If a software error causes a database operation to become
invalid, or if the host system resets during a database trans-
action, the involved files may include incomplete or invalid
data. Upon restarting the database system, the storage layer
will detect such tuples and mark them as invalid. In the case
of inserting values for indexed attributes, multiple files need
to be modified. If the index insertion fails, the Database Ker-
nel will stop the INSERT operation and report an error. If it
succeeds, but the insertion of the physical tuple representa-
tion into the tuple file fails, the index will refer to an invalid
tuple. While taking up some extra space, such index entries
will be verified for consistency against the tuple file once
processed during a query, and if the results do not match, the
tuple will be excluded from the result.

6 Node-Level Evaluation
The evaluation of Antelope consists of two parts: in this

section, we measure evaluate the system on the node level,
measuring implementation complexity, performance, and lo-
cal energy consumption. In Section 7, we measure the per-
formance in a low-power wireless network environment, us-
ing both simulation and a real network to conduct our eval-
uation. This evaluation covers network aspects, such as the
latency and energy efficiency of database querying over mul-
tiple hops with duty-cycled radios.

We use a combination of testbed experiments and simula-
tion to evaluate Antelope. We use the Tmote Sky mote as our
hardware platform, and the Contiki simulation environment
as our simulation platform. This environment uses MSPsim
to conduct cycle-accurate emulation of Tmote Sky motes,
bit-level accurate emulation of the CC2420 radio transceiver,

Table 3. Implementation complexity
Component ROM (bytes) SLOC

Database Kernel 3570 908

Parsing 3310 641

LogicVM 2798 776

MaxHeap index 2044 556

Storage abstraction 1542 358

Index abstraction 1118 304

Query execution 1006 367

Lexical analysis 790 183

Inline index 620 145

Hash index 512 119

Sum 17302 4357
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Figure 7. Memory footprints of Antelope’s subsystems.

and timing-accurate emulation of the ST M25P80 external
flash chip.

6.1 Implementation Complexity
To measure the implementation complexity, we use

MSPGCC version 3.2.3 to compile Antelope into a set of
ELF files. For each subsystem of Antelope, we measure the
sizes of the code segment, the data segment, and BSS seg-
ment to obtain a profile of the system complexity. Table 3
shows the ROM footprints and SLOC counts of the subsys-
tems. With all functionality included, the total ROM size is
17 kB, which is well below the limit of several of the most
constrained sensor devices, such as the Tmote Sky.

Figure 7 depicts the run-time memory requirements. The
static allocations are 3.4 kB constantly throughout the execu-
tion, whereas the stack usage varies from 0 to 328 bytes for
the total system. Antelope offers a large set of configuration
options through which one can tune the memory footprints;
e.g., by reducing the number of relations that can be cached
in RAM or by decreasing the table size of the Hash index.

Although a substantial part of the complexity pertains to
language parsing and bytecode compilation, we argue that
this functionality is well worth its place in Antelope. Sup-
porting an expressive query language, as opposed to just
providing a programming API, makes it easy to query the
database externally, such as through a multi-hop unicast sent
by the user from a network head-end. If, however, one
wishes to use the database only locally through a constant
set of commands and queries, it is possible to exclude the
query language modules, and program against the API of the
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Database Kernel directly to reduce the firmware size. But
with the trend toward more powerful sensor devices, the need
for such optimization through configuration is diminishing.

6.2 Relational Selection
Optimizing relational selection has been one of the major

efforts in the development of Antelope. Since the SELECT

operation embodies functionality not only for relational se-
lection but also for projection and aggregation, it is usually
the most common query type. In these experiments, we ex-
amine how the performance of SELECT is affected when
varying the cardinality of the selected set of tuples, and when
switching index algorithms. To simplify selections of arbi-
trary numbers of tuples, and to enable comparisons with the
Inline index, we have inserted the tuples in a monotonically
increasing order with respect to the attribute being used in
the selection condition.

6.2.1 Range Search
A class of SELECT queries that we believe will be com-

monly used in sensor databases is the range search. To find,
for instance, all tuples inserted between two dates, the user
supplies SELECT with a condition specifying the range of
acceptable values of a date attribute. LogicVM analyzes this
condition and provides the value range to an index, which
the Database Kernel consults to delimit the set of tuples that
must be scanned to produce the resulting relation.

Figure 8 shows the completion time of range queries of
varying sizes on a relation consisting of 50,000 tuples. Each
tuple is composed of an attribute of the LONG domain (4
bytes.) We measure the completion time required to gener-
ate the result. If we first look at the time consumed when
using no index on the attribute, we find—as expected—that
the time is constant. In this case, all tuples must be evalu-
ated sequentially against the selection condition, regardless
of how few of them will match the condition.

When using the MaxHeap index on the attribute, we see
that the performance matches that of using no index when
selecting a large set. The reason for this is that the index ab-

Table 4. Execution profile of SELECT. (% of time)
Activity No index MaxHeap Inline

DBMS
DB Kernel 42.2 12.0 38.3

LogicVM 38.4 0.5 35.9

OS
Flash I/O 15.2 86.3 20.1

File system 4.2 1.2 5.7
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Figure 9. The CDF of the completion time for equality
searches on random attribute values. The Inline index
exhibits lower mean time and lower standard deviation,
but it has the qualitative restriction that data must be or-
dered. By contrast, the MaxHeap index makes no such
restriction and is thus the choice for general purposes.

straction reverts to no indexing if it finds that the result set
is large in relation to an index cost threshold. Once the re-
sult set size decreases to 1%, which equates to 500 tuples of
the original relation, the index operates at full speed, leading
to a sharp decrease in the completion time. When selecting
0.01% of the tuples, the Inline index completes the search in
0.3% of the time required for an unindexed search. As can be
seen in Table 4, the overhead when using this index comes
mostly from an external factor—the device driver for flash
memory uses 86.3% of the total completion time.

Although the Inline index has the same search complex-
ity as the MaxHeap index (i.e., O(logN), it has a signifi-
cantly lower I/O cost since it is essentially a binary search
over the physical storage of the relation. Thus, the overhead
is just 3.6% when selecting the full relation, and it quickly
decreases to sub-second completion times, thereby yielding
the highest performance of the three alternatives.

6.2.2 Equality Search
Beside range queries, it is often desirable to be able to

lookup a single attribute value quickly; i.e., to make an
equality search. This type of lookup is used extensively in
relational joins and in operations that determine the existence
of a certain tuple. Figure 9 depicts the cumulative distribu-
tion function of lookup times when using either the Max-
Heap index or the Inline index.

When indexing the lookup attribute with the Inline index,
the arithmetic mean of the lookup time is 64.8 ms, and the
standard deviation is 1.6. The low standard deviation is a re-
sult of the constant time per iteration step of the binary search
algorithm. The MaxHeap index exhibits a comparable mean
lookup time of 65.8 ms, but it has a considerably higher stan-



dard deviation of 10.5, as indicated by its stair-shaped CDF
in Figure 9. The dispersion stems primarily from the uncer-
tainty as to which level in the heap that the sought value is
located. The height of each step decreases by approximately
50% because the search iterates from the bottom level of the
heap and upwards. Except for the lowest level, which on av-
erage will have the buckets half-full, a random key is twice
as likely to be found in a bucket on depth N +1 than in one
on depth N.

6.3 Relational Join
To understand how JOIN performs given different param-

eters, we conduct a set of experiments in which we vary the
cardinality of the left relation and the right relation. As in
the SELECT experiment, we also examine how a change of
index for the join attribute affects the performance profile.
The result of each run is the mean time required per tuple to
join two relations. The number of tuples in the left relation
and the right relation are in the set {2k : 0 ≤ k ≤ 14}.

Figure 10(a) shows the performance of JOIN when using a
MaxHeap index. The time complexity is O(|L| log |R|), since
we still need to process all the tuples in the left relation, but
use index lookups for matching values in the join attribute of
the right relation. When the right relation has many tuples,
the searching becomes slower irrespective of the cardinality
of the left relation.

In Figure 10(b), we see that the Inline index has a more
stable profile. The number of tuples in the left relation is
the primary factor in the processing time per tuple, whereas
the number of tuples in the right relation has an insignificant
effect. Although the MaxHeap and the Inline indexes have
the same theoretical search complexity, O(logN), the former
has a significantly larger I/O cost because usually it needs
to read multiple full buckets. By contrast, the binary search
algorithm employed by the Inline index is less affected when
the cardinality increases because it only reads single attribute
values at each additional iteration step.

6.4 Energy Efficiency
To understand the energy cost of queries, and how the cost

is affected when varying the cardinality of the result set, we
use Contiki’s Powertrace tool [7]. Powertrace enables us to
measure the average power spent by the system in different
power states, including flash reading and writing. We base
the experiment on the same relation as in Section 6.2.1.

Figure 11 shows the energy cost of the same selection op-
erations as in Figure 8. As indicated by Table 4, the Max-
Heap index is I/O intensive and consequently has a higher
energy cost than the Inline index. The rightmost value of the
X-axis shows the maximum cost per tuple, where we have
only one tuple to use when amortizing the energy cost for
compiling the query into bytecode, reading in the data from
the tuple file, and translating the result.

6.5 Execution Time Efficiency
In this experiment, we devise and execute a micro bench-

mark on the different database operations. Unlike our ex-
periments on SELECT and JOIN, which provided insight into
their performance as a function of cardinality, the objective
here is to show the performance and maximum overhead of
each database operation. Measuring the maximum overhead
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requires that the involved relations contain only a single el-
ement. This restriction precludes any cost amortization on
multiple tuples. We carry out the measurements by running
Antelope on a Texas Instruments MSP430F1611 processor
using a clock frequency of 3.9 MHz.

Figure 12 shows the execution times measured in a scale
of milliseconds. For most operations, the execution time is
predictable. The MaxHeap insertion time depends on the
preconfigured heap depth. Observe that the operations are
affected by the time complexity of the underlying file sys-
tem operations. When using the Coffee file system—which
organizes file data in extents—reading from and writing to a
file is done in O(1) time.

7 Network-Level Evaluation
We now turn to investigating the sensor database model

from a networking perspective, evaluating the performance
of local querying in the Contiki simulation environment, and
evaluating the performance of remote querying in a real low-
power wireless network.

7.1 Local Querying
To evaluate the potential energy savings from using the

database for local querying, we set up a simulation experi-
ment of an application that monitors the average temperature
for each sensor. The network consists of 40 nodes that form
a multi-hop collection network. We use simulation to allow



Left cardinality

Right cardinality

T
im

e
 p

e
r 

tu
p

le
 (

m
s
)

2
0

2
2

2
4

2
6

2
8

2
10

2
12

2
14 2

0
2

3
2

7
2

10
2

13 10

 20

 30

 40

 50

 8
 12
 16
 20
 24
 28
 32
 36
 40
 44

(a) MaxHeap Index

Left cardinality

Right cardinality

T
im

e
 p

e
r 

tu
p

le
 (

m
s
)

2
0

2
2

2
4

2
6

2
8

2
10

2
12

2
14 2

0
2

3
2

7
2

10
2

13 10

 20

 30

 40

 50

 6
 8
 10
 12
 14
 16
 18
 20
 22
 24

(b) Inline Index

Figure 10. The execution time profile of relational JOIN. The cardinalities of the left and the right relations affect the
performance differently depending on the index employed for the JOIN attribute. The axes are plotted on log2 scales.

 0

 1

 2

 3

 4

 5

 6

 1  2  3  4  5  6  7  8

A
v
e

ra
g

e
 p

o
w

e
r 

(m
W

)

Samples / minute

No database
Average 1 minute

Average 5 minutes

Figure 13. The average power consumption as a function
of the sensor sample rate.

parameters to be easily varied, and the environment to be
controlled. We run three different setups: one in which each
sensor transmits their temperature measurement directly to
the sink, which computes the average temperature of each
sensor, and two in which each sensor stores their tempera-
ture readings with Antelope, which is periodically queried
for the average temperature. In the latter cases, we vary the
averaging period between 1 minute and 5 minutes. We vary
the sample rate between 1 sample per minute up to 8 sam-
ples per minute. To this end, we make queries of the follow-
ing form—in which START and END are substituted with
appropriate values to select a certain averaging period.

SELECT MAX(temp) FROM data WHERE seq > START AND seq <

END;

All nodes run the Contiki Collect data collection protocol
and the ContikiMAC radio duty cycling mechanism [8], and
measure the power consumption of all nodes by using Pow-
ertrace. Our hypothesis is that communication will dominate
energy consumption and that Antelope will not contribute to
a significant energy overhead.

The result is shown in Figure 13. We see that for the
data collection application, the power consumption increases
with increasing data rate, but drops with the data rates larger
than 4 packets per minute. This is because the network be-
comes congested and drops packets. For the Antelope cases,
which sends the same amount of traffic regardless of the sam-
ple rate, the energy consumption is nearly constant. As ex-
pected, the energy consumption is slightly higher for the case
where Antelope is used, but where the sample rate is equal
to the averaging period. These results show that the database
model can save significant amounts of energy in a low-power
sensor network.

7.2 Remote Querying
To examine the performance and energy consumption of

sensor databases in low-power wireless, we build a small net-
working application, NetDB, using Antelope. The setting of
this experiment is a real network of 20 Tmote Sky nodes
running Contiki. Each node is equipped with a ST M25P80
flash, which has a capacity of 1 MB. As in the previous ex-
periment, the nodes use ContikiMAC, configured with a ra-
dio wake-up rate of 4 Hz.

NetDB consists of a client and a set of servers. The
client runs on a sink node, and has a command-line inter-
face through which an operator can submit queries to any
server. The server forwards incoming queries from the radio
to Antelope, and packs the query result in packets that are
streamed back to the client. NetDB uses the Mesh module in
the Rime communication stack, which provides best-effort,
multi-hop communication. The NetDB server has a firmware
size of 47.1 kB, whereas the NetDB client uses 26.6 kB. The
large difference is attributed to the total size of Antelope and
the Coffee file system, which are not used in the client.

For the experiment, we use a sensor sample relation con-
sisting of two attributes: a timestamp (domain LONG) and a
sensor value (domain INT). Because the timestamp is mono-
tonically increasing, we create an Inline index over this at-
tribute. After populating the databases in each NetDB server
node with 10000 tuples, we start sending queries from the
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Figure 14. The response time in a 20-node low-power
wireless testbed when aggregating different numbers of
tuples remotely.

NetDB client. Similarly to the experiment in Section 7.1,
we use the variables START and END to set the time pe-
riod to select tuples from. We aggregate the values using the
COUNT operator to ensure that the database query returns
the correct number of tuples. The queries are thus of the form

SELECT COUNT(*) FROM samples WHERE time > START AND

time <= END;

Figure 14 depicts the response times from the remote
database system. When aggregating over a subset consist-
ing of 10,000 tuples, the response time is mostly attributed
to the time required to read in all the tuples from flash mem-
ory at the remote host. As we repeat the experiment with
smaller subsets, the response time flattens out below 1 s for
communication over 1 hop, and below 2 s for 2 hops. At
this point, the duty-cycling layer’s wake-up rate becomes the
dominant factor in the response time.

Depending on the type of query and the size of the
database, responses could generate a large amount of pack-
ets. NetDB has a configuration option that restricts the re-
sponse size of queries. If a large response is nevertheless
permitted, we can employ techniques that can reliably trans-
mit bulk data at up to 5.4 kB/s, while having duty cycles of
approximately 65% during the bulk transfer at each node on
the forwarding path [9]. On the Tmote Sky platform, the en-
ergy cost per transmitted kB of data is approximately 8.2 mJ.

8 Related Work
TinyDB [20] and Cougar [2] have previously proposed to

use the database as a model for sensor network data collec-
tion. Both TinyDB and Cougar provide a database front-end
to a sensornet by running a small database-like query engine
at a sink node. Unlike our work, TinyDB and Cougar op-
erate only on the data that is currently being collected from
the sensor network, without providing any means for stor-
ing data in the nodes, nor for querying historical data. By
contrast, we propose that each node in the sensor network
provides a database interface to their stored data and that
each mote runs a database manager for energy-efficient data
querying. Queries are made to individual nodes instead of
to a dedicated sink node. Our work is complementary in the
sense that we focus on data modeling and query processing

of large data quantities within the sensor devices. Acquisi-
tional query processing systems could indeed be extended
with the capability to handle queries over historical data,
through the use of Antelope.

Our work leverages the advances in storage abstractions
for flash-equipped sensor devices. Early on, such storage in-
volved simple data logging, in which it was sufficient to use
block-layered storage. As a need for more advanced storage-
centric applications appeared, the community developed ab-
stractions and systems for storing not only sensor data but
also configuration [4], network environment traces [19], and
routing information [30]. File systems such as ELF [5] and
Coffee [30] provide data naming, wear levelling, and in-
place updates of files. Diverging slightly from this approach,
Capsule comprises a programming-oriented framework for
building other storage abstractions than just files [21]. It pro-
vides a set of building blocks through which one can build
a storage-centric sensornet application. We use the file ab-
straction for the relations and the indexes in Antelope, lever-
aging the file system’s ability to handle wear-levelling and
hide device-specific details.

A parallel track in the research on storage abstractions
deals with the problem of efficient indexing over flash mem-
ory. FlashDB [23], Lazy-Adaptive Tree [1], and Micro-
Hash [32] are designed to offer high performance on par-
ticular storage types. By contrast, we provide a complete
DBMS architecture through which such indexing methods
can be used without making the application dependent on the
choice of index method. We benefit from one of the strengths
of the relational data model: index independence.

Databases for different types of resource-constrained de-
vices have been envisioned in the past decade, but very few
systems have actually been built. Gray named databases for
smart objects as part of “the next database revolution” [15].
Diao et al. have previously considered the use of databases
on sensors, but without any system being built around the
idea [6]. Unlike Diao et al., we present the design, imple-
mentation, and evaluation of a fully functional DBMS for
sensor devices. Pucheral et al. developed PicoDBMS [25]
for smart cards, which is a device class having somewhat
similar resource constraints as sensor devices. Unlike An-
telope, PicoDBMS is designed for EEPROM and does not
support flash memory, which has completely different I/O
properties. Antelope targets a more restrictive environment
regarding storage semantics and memory footprints, result-
ing in a significant divergence in the design of physical stor-
age structures, query processing, and indexing algorithms.

9 Conclusion
We present Antelope, the first DBMS for resource-

constrained sensor devices. Antelope enables a class of sen-
sor network systems where every sensor holds a database.
Each sensor can store any kind of data, including sensor data,
run-time data, or performance data, in its local database. The
database can either be queried remotely or locally through a
process running on the node. We demonstrate that aggregate
queries can reduce network power consumption by reducing
the amount of traffic, compared to a traditional data collec-
tion network.



Moving forward, we believe database techniques to be in-
creasingly important in the progression of sensor network
applications. Energy-efficient storage, indexing, and query-
ing have important roles to play in emerging storage-centric
applications. Antelope addresses these concerns by provid-
ing a database architecture consisting of a small, stack-based
virtual machine, an iterative database kernel suitable for em-
bedded resource-constrained systems, and a set of data in-
dexing algorithms that speed up queries on large data sets
stored in various types of physical storage.
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