Logic and propositional logic

Chapter 7, Part 1

Outline

- Knowledge-based agents
- Wumpus world
- Logic in general

Knowledge bases

- Knowledge base (*KB*) = set of sentences in a formal language
- Declarative approach to building an agent (or other system):
 Tell it what it needs to know
 Then it can *ask* itself what to do answers should follow from the *KB*
- Agents can be viewed at the *knowledge level*
 - *i.e., what they know, regardless of how implemented*
- Or at the *implementation level*
 - *i.e.*, data structure in KB and algorithm that manipulate them

A simple knowledge-based agent

```
function KB-AGENT( percept) returns an action

static: KB, a knowledge base

t, a counter, initially 0, indicating time

TELL(KB, MAKE-PERCEPT-SENTENCE( percept, t))

action \leftarrow Ask(KB, MAKE-ACTION-QUERY(t))

TELL(KB, MAKE-ACTION-SENTENCE( action, t))

t \leftarrow t + 1

return action
```

- The agent must be able to:
 - Represent states, actions, etc.
 - Incorporate new percepts
 - Update internal representations of the world
 - Deduce hidden properties of the world
 - Deduce appropriate actions

Wumpus World PEAS description

• Performance measure

- gold+1000,death-1000
- -1per step,-10 for using the arrow

• Environment

- Squares adjacent to wumpus are smelly
- Squares adjacent to pit are breezy
- Glitter iff gold is in the same square
- Shooting kills wumpus if you are facing it
- Shooting uses up the only arrow
- Grabbing picks up gold if in same square
- Releasing drops the gold in same square
- Actuators : Left turn, Right turn, Forward, Grab, Release, Shoot
- Sensors : Breeze, Glitter, Smell

Wumpus world characterization

Observable?? No—only local perception Deterministic?? Yes—outcomes exactly specified Episodic?? No—sequential at the level of actions Static?? Yes—Wumpus and Pits do not move Discrete?? Yes Single-agent??Yes—Wumpus is essentially a natural feature

4

- A = Agent
- B = Breeze
- G = Glitter, gold
- OK = Safe square
- P = Pit
- S = Stench
- V = visited
- W= Wumpus

- A = Agent
- B = Breeze
- G = Glitter, gold
- OK = Safe square
- P = Pit
- S = Stench
- V = visited
- W= Wumpus

- A = Agent
- B = Breeze
- G = Glitter, gold
- OK = Safe square
- P = Pit
- S = Stench
- V = visited
- W= Wumpus

P?		
в ок	Ρ?	
A A		
ок	ок	
Α		

- A = Agent
- B = Breeze
- G = Glitter, gold
- OK = Safe square
- P = Pit
- S = Stench
- V = visited
- W= Wumpus

- A = Agent
- B = Breeze
- G = Glitter, gold
- OK = Safe square
- P = Pit
- S = Stench
- V = visited
- W= Wumpus

- A = Agent
- B = Breeze
- G = Glitter, gold
- OK = Safe square
- P = Pit
- S = Stench
- V = visited
- W= Wumpus

- A = Agent
- B = Breeze
- G = Glitter, gold
- OK = Safe square
- P = Pit
- S = Stench
- V = visited
- W= Wumpus

- A = Agent
- B = Breeze
- G = Glitter, gold
- OK = Safe square
- P = Pit
- S = Stench
- V = visited
- W= Wumpus

01		
UK		
$\overline{\}$		
×	BGS OK	
A 	—> A	
В	р	
- A		
		ок ВGS ок А А В ОК А Р

Logic in general

- Logics are formal languages for representing information such that conclusions can be drawn
- Syntax defines the sentences in the language
- Semantics define the "meaning" of sentences;
 - i.e., define truth of a sentence in a world
 - E.g.,the language of arithmetic x+2≥y is a sentence; x2+y> is not a sentence x+2≥y is true iff the number x+2 is no less than the number y x+2≥y is true in a world where x=7,y=1 x+2≥y is false in a world where x=0,y=6

Propositional logic: Syntax

- Atomic sentence:
 - A proposition symbol representing a true or false statement
- Negation:
 - If P is a sentence, \neg P is a sentence
- Conjunction:
 - If P and Q are sentences, $P \land Q$ is a sentence
- Disjunction:
 - If P and Q are sentences, PvQ is a sentence
- Implication:
 - If P and Q are sentences, sentences, $P \Rightarrow Q$ is a sentence
- Biconditional:
 - If P and Q are sentences, $P \Leftrightarrow Q$ is a sentence
- \neg , \land , \lor , \Rightarrow , \Leftrightarrow are called *logical connectives*

Propositional logic: Semantics

- A **model** specifies the true/false status of each proposition symbol in the knowledge base
 - E.g., **P** is true, **Q** is true, **R** is false
 - With three symbols, there are 8 possible models, and they can enumerated exhaustively
- Rules for evaluating truth with respect to a model:

$\neg \mathbf{P}$	is true	iff	P	is false		
$\mathbf{P} \wedge \mathbf{Q}$	is true	iff	Р	is true and	Q	is true
$\mathbf{P} \lor \mathbf{Q}$	is true	iff	Р	is true or	Q	is true
$\mathbf{P} \Rightarrow \mathbf{Q}$	is true	iff	Р	is false or	Q	is true
P⇔Q	is true	iff	P⇒Q	is true and	Q⇒P	is true

Truth table

• A **truth table** specifies the truth value of composite sentence for each possible assignments of truth values to its atoms

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

Logical equivalent

- Two sentences are **logically equivalent** iff true in same models:
 - (α∧β)≡(β∧α)
 - $(\alpha \lor \beta) \equiv (\beta \lor \alpha)$
 - $((\alpha \land \beta) \land \gamma) \equiv (\alpha \land (\beta \land \gamma))$
 - $((\alpha \lor \beta) \lor \gamma) \equiv (\alpha \lor (\beta \lor \gamma))$
 - ¬ (¬α)≡α
 - $(\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha)$
 - $(\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta)$
 - $(\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))$
 - $\neg (\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta)$
 - $\neg (\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta)$
 - $(\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma))$
 - $(\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma))$

commutatively of \land commutatively of \lor associativity of \land associativity of \lor double-negation elimination contraposition implication elimination biconditional elimination DeMorgan DeMorgan distributivity of \land over \lor distributivity of \lor over \land

Validity and satisfiability

- A sentence is **valid** if it is true in **all** models,
 - e.g., *True*, $A \lor \neg A$, $A \Rightarrow A$, $(A \land (A \Rightarrow B)) \Rightarrow B$
- A sentence is **satisfiable** if it is true in **some** model
 - e.g., A V B, C
- A sentence is **unsatisfiable** if it is true in **no** models
 - e.g., A ^¬A

Entailment

• Entailment means that one thing follows from another:

 $KB = \alpha$

- Knowledgebase KB entails sentence α if and only if
- α is true in all worlds where KB is true
- E.g., x = 0 entails x * y = 0
- KB $= \alpha$ iff (KB $\Rightarrow \alpha$) is valid
- KB = α iff (KB $\land \neg \alpha$) is unsatisfiable

models

- Logicians typically think in terms of models, which are formally structured worlds with respect to which truth can be evaluated
- We say m is a model of a sentence α if α is true in m
 M(α) is the set of all models of α
 Then KB|=α if and only if M(KB)⊆M(α)

Entailment in the wumpus world

- Situation after detecting nothing in [1,1], moving right , breeze in[2,1]
 Consider possible models for ?s assuming only pits
 2 Declary choices > 8 precible models
 - 3 Boolean choices \Rightarrow 8 possible models

است

α1= [2,1] is safe"???

 $\alpha 1 = [2,1]$ is safe"

KB $|=\alpha 1$, proved by model checking

 $\alpha 2 = [2,2]$ is safe $KB = \alpha 2$

axioms

- An **axiom** is just a sentence asserted to be true about the domain.
- E.g., "Pits cause breezes in adjacent squares"

B1,1 \Leftrightarrow (P1,2 \lor P2,1) B2,1 \Leftrightarrow (P1,1 \lor P2,2 \lor P3,1)

- I.e., "A square is breezy if and only if there is an adjacent pit"
- We need axiom sets for every time step!

inference

- KB α means sentence α can be derived from *KB* by procedure *i* Conjunction Conjunction of *KB* are a haystack; α is a needle.
- Entaiment = needle in haystack;
- Inference = finding it
- Soundness: i is sound if
 - When ever KB α , it is also true that KB $|=\alpha$
- Completeness: i is complete if
 - whenever $KB \models \alpha$, it is also $t_{\vdash}e$ that $KB = \alpha$

End chapter 7, part1