

| CORRO              | SION ATLAS                                                                                                                                                                                                                                                                                  | Contributed By: Isabel Diaz-Tang<br>Case History 01.01.01.001                                                                                                                         |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Material           | Carbon steel (AISI-SAE 1025)                                                                                                                                                                                                                                                                |                                                                                                                                                                                       |
| System             | Saturated steam line in autoclave for tires retreading                                                                                                                                                                                                                                      |                                                                                                                                                                                       |
| Part               | Saturated steam pipe                                                                                                                                                                                                                                                                        |                                                                                                                                                                                       |
| Phenomenon         | High-temperature corrosion                                                                                                                                                                                                                                                                  |                                                                                                                                                                                       |
|                    |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                       |
| Appearance         | Uniform attack (external side), thick layer of corrosion                                                                                                                                                                                                                                    | products                                                                                                                                                                              |
| Time in Service    | 1 year                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                       |
| Environment        | Autoclave operation conditions: 90 psi (max. working p                                                                                                                                                                                                                                      | pressure), 154°C (309.2°F), saturated steam                                                                                                                                           |
| Cause              | Unsuitable material for the operation conditions, leading<br>thick, nonadherent layer of corrosion products. The rec-<br>steel according to ASTM A106, but the used material<br>The inner walls of the autoclave also showed signs of u<br>serious on the pipe after just 1 year of service | g to uniform corrosion with formation of a<br>commended material for the pipe was carbon<br>does not correspond to those specifications<br>uniform corrosion, but the damage was more |
| Remedy             | Replacement of the pipe with a new one, for example, a<br>Specification for Seamless Carbon Steel Pipe for High                                                                                                                                                                             | made of carbon steel ASTM A106 (Standard<br>Temperature Service), or similar                                                                                                          |
| Additional Referen | ices Pertaining to Case Study                                                                                                                                                                                                                                                               |                                                                                                                                                                                       |

| CORRO              | SION ATLAS Contributed By: Bensabeth Merco<br>Case History 01.01.01                                                                                              | chan<br>.002 |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Material           | CS                                                                                                                                                               |              |
| System             | Steam headers                                                                                                                                                    |              |
| Part               | Y-strainer                                                                                                                                                       |              |
| Phenomenon         | General corrosion                                                                                                                                                |              |
|                    |                                                                                                                                                                  |              |
| Appearance         | Corrosion product around the strainer of the valve with black and brown product in layers                                                                        |              |
| Time in Service    | 6 months                                                                                                                                                         |              |
| Environment        | Pressure: 10 bar(g)<br>Temperature: 186°C<br>Impurities                                                                                                          |              |
| Cause              | High carryover in boiler, high levels of oxygen                                                                                                                  |              |
| Remedy             | Improve the separator of the steam and condensate the boiler by adding cyclone separators and injection of sulfite in parts per million to inhibit the corrosion |              |
| Additional Referen | nces Pertaining to Case Study                                                                                                                                    |              |
|                    |                                                                                                                                                                  |              |
|                    |                                                                                                                                                                  |              |
|                    |                                                                                                                                                                  |              |
|                    |                                                                                                                                                                  |              |
|                    |                                                                                                                                                                  |              |
|                    |                                                                                                                                                                  |              |
| Additional Referen | nces Pertaining to Case Study                                                                                                                                    |              |



| CORRO             | <b>OSION ATLAS</b><br>Contributed By: Bensabeth Merchan<br>Case History 01.01.12.002                                                                                                                                      |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Material          | Carbon steel                                                                                                                                                                                                              |
| System            | Shell and tube heat exchanger                                                                                                                                                                                             |
| Part              | Tube                                                                                                                                                                                                                      |
| Phenomenon        | Localized corrosion                                                                                                                                                                                                       |
|                   |                                                                                                                                                                                                                           |
| Appearance        | Rupture of the tubes close to the welded points. Small accumulation of iron oxide inside the tube.<br>Product accumulation on the outside of the tubes<br>Cracks around the supports of the tube and shell heat exchanger |
| Time in Service   | 5 years                                                                                                                                                                                                                   |
| Environment       | pH < 5 outside the tube $pH$ (5, 7) inside the tube<br>Pressure: approx. 5 bar(g)<br>Temperature: $120-200^{\circ}C$<br>Moisture content: approx. 5%<br>Steam and condensate fluid                                        |
| Cause             | Mechanical failure and caustic                                                                                                                                                                                            |
| Remedy            | Replacing CS tubes for SS316 and improving the steam quality                                                                                                                                                              |
| Additional Refere | nces Pertaining to Case Study                                                                                                                                                                                             |



| CORRO                | <b>DSION ATLAS</b><br>Contributed By: Bensabeth Merchan<br>Case History 01.01.15.001                                                                                                                                                                                                                                                               |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Material             | Carbon steel/SS shield                                                                                                                                                                                                                                                                                                                             |
| System               | Economizer                                                                                                                                                                                                                                                                                                                                         |
| Part                 | Tube bundle                                                                                                                                                                                                                                                                                                                                        |
| Phenomenon           | Under deposit corrosion and erosion                                                                                                                                                                                                                                                                                                                |
|                      |                                                                                                                                                                                                                                                                                                                                                    |
| Appearance<br>Before | The SS shield has worn dramatically at the 2 o'clock and 10 o'clock positions where the surface appears irregular. Some plates have been completed eroded. Ash is observed in some areas between the fins along with iron oxide. Pinholes were showing at the same positions with a great accumulation of ash Ash has built up in between the fins |
| Time in Service      | 3 years                                                                                                                                                                                                                                                                                                                                            |
| Environment          | Acidic, erosive. Unburned coal and flying ash<br>High pressure, high temperature<br>Composition of the flue gas: ash, COX, OX, SOX                                                                                                                                                                                                                 |
| Cause                | Ash/coal particle average velocity: 11 m/s, max. up to 25 m/s                                                                                                                                                                                                                                                                                      |
| Remedy               | Redesign the economizer spacing to reduce the flue gas velocity 14 m/s and adding a Tungsten carbide coating 0.1 mm on the first row                                                                                                                                                                                                               |
| Additional Refere    | ences Pertaining to Case Study                                                                                                                                                                                                                                                                                                                     |



| CORRO              | SION ATLAS                                                                                           | Contributed By: Bensabeth Merchan<br>Case History 01.01.15.002 |
|--------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| Material           | Carbon steel                                                                                         |                                                                |
| System             | Boiler furnace                                                                                       |                                                                |
| Part               | Tubes—furnace side                                                                                   |                                                                |
| Phenomenon         | Iron oxide caused by uniform corrosion in the tubes                                                  |                                                                |
|                    |                                                                                                      |                                                                |
| Appearance         | Black sludge 3 to 5-mm-thick covering sections of the t<br>CS section are exposed without any sludge | ube bank in the furnace side of the boiler                     |
| Time in Service    | 15 years                                                                                             |                                                                |
| Environment        | Fly ash<br>Air<br>Moisture<br>Organic oil<br>High temperature<br>High pressure                       |                                                                |
| Cause              | Lack of sootblowers and problems with full combustions                                               | S                                                              |
| Remedy             | Cleaning the tubes and adding sootblowers                                                            |                                                                |
| Additional Referen | nces Pertaining to Case Study                                                                        |                                                                |

| CORRO                                                   | SION ATLAS Contributed By: Bensabeth Merchan<br>Case History 01.01.15.003                                    |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Material                                                | CS                                                                                                           |
| System                                                  | Boiler steam generation                                                                                      |
| Part                                                    | Tubes from the generating banks                                                                              |
| Phenomenon                                              | Under deposit/scale corrosion                                                                                |
|                                                         |                                                                                                              |
| Appearance                                              | Iron oxide with a corrosion deposit layering up inside the boiler tubes                                      |
| Time in Service                                         | 12 months                                                                                                    |
| Environment                                             | Carryover and impurities. High levels of silica promoting deposition on the tube where the temperature drops |
| Cause                                                   | Inappropriate water treatment                                                                                |
| Remedy                                                  | Improve the softener's performance to maintain the hardness within the recommended range                     |
| Additional<br>References<br>Pertaining to<br>Case Study | ASME guidelines                                                                                              |



## CORROSION ATLAS Contributed By: Annelise Zeeman Case History 01.01.18.001 Material Low carbon steel UNS K03101 Ferritic weld metal System Boiler steam drum Part Shell plate previously repaired in a position between tube holes Thickness of the cracked vessel 37.3 mm Tube diameter of 76.2 mm Phenomenon Caustic stress corrosion cracking



| Appearance                                              | Transgranular stress corrosion cracks in the weld repaired shell, close to tube holes                                                                                              |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Time in Service                                         | Months after repair                                                                                                                                                                |
| Environment                                             | Steam                                                                                                                                                                              |
| Cause                                                   | Concentration of caustic products from water treatment associated to high temperature, and a nonheat-treated condition of the weld repair, evident by the high hardness (280 HV10) |
| Remedy                                                  | Better control of water treatment<br>Any weld repair requires heat treatment                                                                                                       |
| Additional<br>References<br>Pertaining to<br>Case Study | Materials Life Database                                                                                                                                                            |

Contributed By: Mascha van Hofweegen and Frank de Vos **CORROSION ATLAS** Case History 01.01.18.002 Material Carbon steel Hot water system (hot water (120°C) through shell and tube heat exchangers, with steam inside the System pipes and hot water on the outside) Part Heat exchanger Phenomenon Stress corrosion 200 µm Appearance Leakage at the weld from the pipe at the baffle plate Time in Service 4 years Environment Demin water by reverse osmosis with sodium hydroxide dosage. pH 10.6, conductivity 117  $\mu$ S/cm,  $Cl^- < 0.5$  mg/l, p-alkalinity 0.4 meq/l, m-alkalinity 0.6 meq/l Cause The cracks indicate leaching corrosion. The corrosion could have taken place because the pipes were not rolled and sodium hydroxide was dosed in demin water. When a pipe is rolled the crevices between the pipe and the baffle plate are removed and accumulation of caustic in these crevices will not be possible Remedy The pipes in the new heat exchangers are all rolled in and the dosing of the sodium hydroxide solution and the pH control are improved (maintain pH around 9.5) **Additional References** 



| CORRO              | SION ATLAS                                                                                                  | Contributed By: Bensabeth Merchan<br>Case History 01.01.27.001                                      |
|--------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Material           | Carbon steel                                                                                                |                                                                                                     |
| System             | Steam generation                                                                                            |                                                                                                     |
| Part               | Boiler's tubes                                                                                              |                                                                                                     |
| Phenomenon         | Silicate scales and iron oxide                                                                              |                                                                                                     |
|                    |                                                                                                             |                                                                                                     |
| Appearance         | Brown and reddish layers corrosion building up<br>Substrate cover in the majority of the surface            | inside the tubes                                                                                    |
| Time in Service    | 3 years                                                                                                     |                                                                                                     |
| Environment        | pH: >8<10<br>Temperature: approx. 150°C<br>Pressure: 18 bar(g)<br>Fluid inside the tubes: softened water    |                                                                                                     |
| Cause              | Inappropriate water treatment                                                                               |                                                                                                     |
| Remedy             | Adding of hydrochloric acid (HCl) and ammoni<br>the tubes<br>Monitor the system to understand the chemistry | um bifluoride (ABF) chemical cleaning to clean up<br>of the water and make the improvement required |
| Additional Referen | nces Pertaining to Case Study                                                                               |                                                                                                     |
|                    |                                                                                                             |                                                                                                     |

| CORROS               | SION ATLAS                                                                                 | Contributed By: Mascha van Hofweegen and Frank de Vos<br>Case History 01.01.30.001 |
|----------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Material             | Carbon steel                                                                               |                                                                                    |
| System               | Water-tube boiler                                                                          |                                                                                    |
| Part                 | Part from the membrane wall                                                                |                                                                                    |
| Phenomenon           | Creep caused by overheating                                                                |                                                                                    |
|                      | 200 μm                                                                                     |                                                                                    |
| Appearance           | Local bulging of tube                                                                      |                                                                                    |
| Time in Service      | More than 20 years                                                                         |                                                                                    |
| Environment          | Conditioned boiler water                                                                   |                                                                                    |
| Cause                | Poor water circulation owing to blockage in<br>condensate (organic material, iron, and har | 1 headers caused by deposition of impurities from the<br>dness)                    |
| Remedy               | Chemical cleaning of the boiler, improvem                                                  | ent of condensate quality, and optimizing heat distribution                        |
| Additional Reference | ces                                                                                        |                                                                                    |
|                      |                                                                                            |                                                                                    |



**CORROSION ATLAS** 

Contributed By: Bensabeth Merchan

Case History 01.02.01.001

| Material             | Carbon steel                                                                                                                      |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| System               | Steam trap                                                                                                                        |
| Part                 | Shell                                                                                                                             |
| Phenomenon           | Pitting corrosion activated by oxygen and impurities                                                                              |
|                      |                                                                                                                                   |
| Appearance           | Pinhole on the condensate side of the steam trap, around the pinhole there was erosion and color changed around the area affected |
| Time in Service      | 2 years                                                                                                                           |
| Environment          | Saturated steam line<br>pH: >8<10<br>Pressure: 10 bar(g)                                                                          |
| Cause                | Carbonated in the water turning into CO <sub>2</sub> during condensation gas stream                                               |
| Remedy               | Improve the steam quality and water quality                                                                                       |
| Additional Reference | ces Pertaining to Case Study                                                                                                      |

| CORRO              | SION ATLAS                                                                                                          | Contributed By: Bensabeth Merchan<br>Case History 01.02.01.002 |
|--------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| Material           | Carbon steel                                                                                                        |                                                                |
| System             | Counter-flow heat exchanger                                                                                         |                                                                |
| Part               | Condensate outlet of the shell of the heat exchanger                                                                |                                                                |
| Phenomenon         | Pitting corrosion caused by oxygen and carbonic acid                                                                |                                                                |
| Appearance         | Pinholes in the header and wall thickness lost, iron oxid<br>Product running of the steem how leaving residual mark | le on the surface of the shell                                 |
| Time in Service    | 5 years                                                                                                             |                                                                |
| Environment        | pH: <10>8<br>Pressure: 10 bar(g)<br>Impurities<br>Two fluid flow                                                    |                                                                |
| Cause              | Oxygen, carbonic acid in the steam                                                                                  |                                                                |
| Remedy             | Improving the process design to guarantee the flow dire steam header boxes for SS316                                | ction of the condensate. Change the CS                         |
| Additional Referen | nces Pertaining to Case Study                                                                                       |                                                                |
|                    |                                                                                                                     |                                                                |



Contributed By: Mascha van Hofweegen and Frank de Vos **CORROSION ATLAS** Case History 01.02.32.001 Material Carbon steel System Air heater with condensate Part Heat exchanger for heating the process air with condensate after a flash tank Phenomenon Erosion corrosion Gaps have been found at the water inlet of different tubes of the heat exchanger. Appearance The wall thickness of the tubes is locally decreased and a gap is formed in the pipe Time in Service After 1 year Environment Steam and water Cause This type of damage indicates that the flow velocity was too high. The damage was fatal in such a short time because the velocity was more than 10 times (almost 20 times) the maximum allowed velocity of 2 m/s Because of the high flow velocity, the steel was locally worn away. The water quality has none or a secondary influence on this process Remedy Minimizing the amount of flash steam through pressure stabilization and maintaining the velocity of the heat exchanger at 2 m/s through putting an appropriate controllable valve, 6.5 bar. **Additional References** 

| CORRO              | SION ATLAS<br>Contributed By: Mascha van Hofweegen and Frank de Vos<br>Case History 01.02.33.001                                                                                                                                                              |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Material           | Carbon steel                                                                                                                                                                                                                                                  |
| System             | Steam condensate system                                                                                                                                                                                                                                       |
| Part               | Upper part of horizontal condensate pipe                                                                                                                                                                                                                      |
| Phenomenon         | Cavitation erosion                                                                                                                                                                                                                                            |
|                    |                                                                                                                                                                                                                                                               |
| Appearance         | Attack with sharp edges, concentrated at the upper side of the pipe, and preferential attack of the weld                                                                                                                                                      |
| Time in Service    | A few years                                                                                                                                                                                                                                                   |
| Environment        | Oxygen free and low carbonic acid steam condensate                                                                                                                                                                                                            |
| Cause              | A condensate/steam mixture from a leaking steam trap was fed in upstream at the upper side of the line. The entrained steam imploded in the relatively colder condensate present in the line, thereby causing cavitation with preferential attack to the weld |
| Remedy             | Improved maintenance of steam traps                                                                                                                                                                                                                           |
| Additional Referen | nces                                                                                                                                                                                                                                                          |



| CORRO                                                   | SION ATLAS                                                                                       | Contributed By: Sanja Martinez                      |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------|
|                                                         |                                                                                                  | Case Thistory 01.01.25.001                          |
| Material                                                | Seamless API 5L X52 Gr.B pipe of homogenous ferrite-p inclusions                                 | earlite microstructure containing MnS               |
| System                                                  | Piping at a hydrocarbons exploitation field                                                      |                                                     |
| Part                                                    | Thermally insulated hot water pipeline                                                           |                                                     |
| Phenomenon                                              | Corrosion under insulation, corrosion at arc strike welding                                      | defect                                              |
|                                                         |                                                                                                  |                                                     |
| Appearance                                              | Uniform corrosion under insulation, perforation at the locat<br>weld HAZ area                    | tion of the weld arc strike outside of the          |
| Time in Service                                         | 30 years                                                                                         |                                                     |
| Environment                                             | Degraded, minimum pigmented alkyd paint covered by the                                           | rmal insulation containing 1040 ppm Cl <sup>-</sup> |
| Cause                                                   | Arc strikes serving as a corrosion nucleation site due to hea<br>like imperfections in that area | t-affected zone in base metal and crevice           |
| Remedy                                                  | Replacement of perforated pipe segments. Avoiding and/or strikes on new construction             | removing (grinding, repairing) of arc               |
| Additional<br>References<br>Pertaining to<br>Case Study | B. Boling, Understanding arc strikes, Inspection Trends, 16                                      | 5, 3 (2013) 22–25.                                  |
|                                                         |                                                                                                  |                                                     |

## **CORROSION ATLAS**

Contributed By: Annelise Zeeman

Case History 01.06.18.001

| Material                                                | Gray cast iron<br>UNS F11701<br>Graphite in flakes in a ferritic—pearlitic matrix                                           |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
|                                                         |                                                                                                                             |
| System                                                  | Engine water cooling system                                                                                                 |
| Part                                                    | Cylinder case<br>Diameter: 1500 mm<br>Thickness: 10.5 mm                                                                    |
| Phenomenon                                              | General corrosion from the water side, associated to graphite to matrix interface corrosion that created a notch morphology |
|                                                         |                                                                                                                             |
| Appearance                                              | Brittle fracture by graphite decohesion and cleavage of the corroded case                                                   |
| Time in Service                                         | 10 years                                                                                                                    |
| Environment                                             | Cooling water                                                                                                               |
| Cause                                                   | Overloading of the case due to the thickness loss associated to notch effect of the corrosion                               |
| Remedy                                                  | Protection of the case from the general corrosion                                                                           |
| Additional<br>References<br>Pertaining to<br>Case Study | Materials Life Database                                                                                                     |



| СОККО                                                                   | CORROSION ATLAS                                                                                                                                                                                                                                          |                                                      |
|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Material                                                                | Carbon steel                                                                                                                                                                                                                                             |                                                      |
|                                                                         |                                                                                                                                                                                                                                                          |                                                      |
| System                                                                  | Spray-type deaerator                                                                                                                                                                                                                                     |                                                      |
| Part                                                                    | Shell                                                                                                                                                                                                                                                    |                                                      |
| Phenomenon                                                              | Oxygen water treatment                                                                                                                                                                                                                                   |                                                      |
|                                                                         |                                                                                                                                                                                                                                                          |                                                      |
| Appearance                                                              | Hematite and magnetite deposited under the co                                                                                                                                                                                                            | pating, presenting dark lines. Orange lines resemble |
|                                                                         | iron oxide and potentially a waterline in the dru                                                                                                                                                                                                        |                                                      |
| Time in Service                                                         | iron oxide and potentially a waterline in the dru<br>15 years                                                                                                                                                                                            |                                                      |
| Time in Service<br>Environment                                          | pH: <8>10<br>Pressure: approx. 5 bar(g)<br>Temperature: 120–200°C                                                                                                                                                                                        |                                                      |
| Time in Service<br>Environment<br>Cause                                 | iron oxide and potentially a waterline in the dru<br>15 years<br>pH: <8>10<br>Pressure: approx. 5 bar(g)<br>Temperature: 120–200°C<br>Localized corrosion investigated by oxygen and                                                                     | under corrosion deposit                              |
| Time in Service<br>Environment<br>Cause<br>Remedy                       | iron oxide and potentially a waterline in the dru<br>15 years<br>pH: <8>10<br>Pressure: approx. 5 bar(g)<br>Temperature: 120–200°C<br>Localized corrosion investigated by oxygen and<br>Coating and improving internals                                  | under corrosion deposit                              |
| Time in Service<br>Environment<br>Cause<br>Remedy<br>Additional Referen | iron oxide and potentially a waterline in the dru<br>15 years<br>pH: <8>10<br>Pressure: approx. 5 bar(g)<br>Temperature: 120–200°C<br>Localized corrosion investigated by oxygen and<br>Coating and improving internals<br>nces Pertaining to Case Study | under corrosion deposit                              |
| Time in Service<br>Environment<br>Cause<br>Remedy<br>Additional Referen | iron oxide and potentially a waterline in the dru<br>15 years<br>pH: <8>10<br>Pressure: approx. 5 bar(g)<br>Temperature: 120–200°C<br>Localized corrosion investigated by oxygen and<br>Coating and improving internals<br>nces Pertaining to Case Study | under corrosion deposit                              |
| Time in Service<br>Environment<br>Cause<br>Remedy<br>Additional Referen | iron oxide and potentially a waterline in the dru<br>15 years<br>pH: <8>10<br>Pressure: approx. 5 bar(g)<br>Temperature: 120–200°C<br>Localized corrosion investigated by oxygen and<br>Coating and improving internals<br>nces Pertaining to Case Study | under corrosion deposit                              |
| Time in Service<br>Environment<br>Cause<br>Remedy<br>Additional Referen | iron oxide and potentially a waterline in the dru<br>15 years<br>pH: <8>10<br>Pressure: approx. 5 bar(g)<br>Temperature: 120–200°C<br>Localized corrosion investigated by oxygen and<br>Coating and improving internals<br>nces Pertaining to Case Study | under corrosion deposit                              |

| CORRO                                                   | SION ATLAS                                                                                    | Contributed By: Bensabeth Merchan<br>Case History 01.08.01.002 |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| Material                                                | Carbon steel                                                                                  |                                                                |
| System                                                  | Feedwater tank for a boiler                                                                   |                                                                |
| Part                                                    | Shell                                                                                         |                                                                |
| Phenomenon                                              | Uniform corrosion accelerated by iron content in                                              | the feedwater walls                                            |
|                                                         |                                                                                               |                                                                |
| Appearance                                              | Iron oxide build up on all the walls of the tank. I<br>Some of the area exposed the substrate | Large amounts of corrosion deposits on the bottom.             |
| Time in Service                                         | 2 years                                                                                       |                                                                |
| Environment                                             | Temperature measured °C: <60<br>Pick temperature estimated °C: <80                            |                                                                |
| Cause                                                   | The original coating was not appropriate and high                                             | h iron content in the feed of the tank                         |
| Remedy                                                  | Selection of the ceramic epoxy coating instead of                                             | the original Dulux Aperior N1                                  |
| Additional<br>References<br>Pertaining to<br>Case Study | Dulux coating technical specification                                                         |                                                                |



| CORRO              | SION ATLAS                                                                                        | Contributed By: Bensabeth Merchan<br>Case History 01.08.01.003 |
|--------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| Material           | CS                                                                                                |                                                                |
| System             | Decanters effluent treatment                                                                      |                                                                |
| Part               | Bearings                                                                                          |                                                                |
| Phenomenon         | General and localized corrosion                                                                   |                                                                |
|                    |                                                                                                   |                                                                |
| Appearance         | Corrosion build up product like iron oxide around the bearing                                     | s and shaft of the pumps                                       |
| Time in Service    | 5 months                                                                                          |                                                                |
| Environment        | Effluent water<br>Operation pressure: 270 kpa<br>Temperature: 50°C                                |                                                                |
| Cause              | Feeding the decanter<br>The lubrications system was found with a lot of effluent water<br>setting | due to high flows during a standstill                          |
| Remedy             | Replacing bearing, primary and secondary cycle gear                                               |                                                                |
| Additional Referen | ces Pertaining to Case Study                                                                      |                                                                |

| CORRO              | SION ATLAS<br>Contributed By: Bensabeth Merchan<br>Case History 01.08.01.004                                              |
|--------------------|---------------------------------------------------------------------------------------------------------------------------|
| Material           | CS                                                                                                                        |
| System             | Deaerator                                                                                                                 |
| Part               | Walls                                                                                                                     |
| Phenomenon         | Oxygen corrosion, pitting, and uniform corrosion                                                                          |
|                    |                                                                                                                           |
| Appearance         | Blister in the protective coating with iron oxide around some of the pitting. Went deep in the surface                    |
| Time in Service    | 8 years                                                                                                                   |
| Environment        | Condensable gases, soften water design pressure 350 Kpa, design working temperature 200°C                                 |
| Cause              | Insufficient separation, high concentration of oxygen in feedwater                                                        |
| Remedy             | Addition of sulfite in parts per million to control the amount of oxygen below 7 ppb, improve the deaerator's performance |
| Additional Referen | nces Pertaining to Case Study                                                                                             |



| CORRO              | SION ATLAS                                         | Contributed By: Bensabeth Merchan<br>Case History 01.08.04.001 |
|--------------------|----------------------------------------------------|----------------------------------------------------------------|
| Material           | Cast iron                                          |                                                                |
| System             | Feedwater                                          |                                                                |
| Part               | Mechanical seal, impeller                          |                                                                |
| Phenomenon         | Bottom of the line                                 |                                                                |
|                    |                                                    |                                                                |
| Appearance         | Iron oxide product bottom of the mechanical seal   |                                                                |
| Time in Service    | 2 years                                            |                                                                |
| Environment        | Water<br>pH: 7–9<br>Carbonates<br>500 Kpa          |                                                                |
| Cause              | Low pH in the feedwater repetitive times           |                                                                |
| Remedy             | Replacement of the impeller and mechanical seal of | controlling pH                                                 |
| Additional Referen | ces Pertaining to Case Study                       |                                                                |

| CORRO              | SION ATLAS                   | Contributed By: Bensabeth Merchan<br>Case History 01.08.04.002 |
|--------------------|------------------------------|----------------------------------------------------------------|
| Material           | Carbon steel                 |                                                                |
| System             | Ion exchanger                |                                                                |
| Part               | Shell                        |                                                                |
| Phenomenon         | Uniform corrosion            |                                                                |
|                    |                              |                                                                |
| Appearance         |                              |                                                                |
| Time in Service    |                              |                                                                |
| Environment        | Acidic                       |                                                                |
| Cause              | Uniform corrosion            |                                                                |
| Remedy             | Refurbishment                |                                                                |
| Additional Referen | ces Pertaining to Case Study |                                                                |
|                    |                              |                                                                |
|                    |                              |                                                                |
|                    |                              |                                                                |
|                    |                              |                                                                |
|                    |                              |                                                                |
|                    |                              |                                                                |



| CORRO              | SION ATLAS<br>Contributed By: Mascha van Hofweegen and Frank de Vos<br>Case History 01.10.17.001                                                                                                                                                                                                                                                             |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Material           | Carbon steel                                                                                                                                                                                                                                                                                                                                                 |
| System             | Wet sprinkler system                                                                                                                                                                                                                                                                                                                                         |
| Part               | Pipes in a sprinkler system                                                                                                                                                                                                                                                                                                                                  |
| Phenomenon         | MIC                                                                                                                                                                                                                                                                                                                                                          |
|                    |                                                                                                                                                                                                                                                                                                                                                              |
| Appearance         | Brown corrosion tubercles and a lot of mud                                                                                                                                                                                                                                                                                                                   |
| Time in Service    | 8 years                                                                                                                                                                                                                                                                                                                                                      |
| Environment        | The sprinkler system is filled with surface water                                                                                                                                                                                                                                                                                                            |
| Cause              | The carbon steel is affected below the waterline near the air containment in the roof net. Surface water contains a lot of microbiology and nutrients, as a result of which MIC was formed in the stagnant water. The growth of microbiology in stagnant waters is very unpredictable, that is why corrosion was only detected when the first leaks occurred |
| Remedy             | Use drinking water instead of surface water in combination with a corrosion inhibitor                                                                                                                                                                                                                                                                        |
| Additional Referen | nces                                                                                                                                                                                                                                                                                                                                                         |

| CORROS               | SION ATLAS<br>Contributed By: Mascha van Hofweegen and Frank de Vos<br>Case History 01.10.17.002                                                                                                                            |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Material             | Carbon steel                                                                                                                                                                                                                |
| System               | Wet sprinkler system in DC                                                                                                                                                                                                  |
| Part                 | Pipes in a sprinkler system                                                                                                                                                                                                 |
| Phenomenon           | MIC                                                                                                                                                                                                                         |
|                      |                                                                                                                                                                                                                             |
| Appearance           | A lot of brown corrosion tubercles and mud                                                                                                                                                                                  |
| Time in Service      | 14 years                                                                                                                                                                                                                    |
| Environment          | The sprinkler system is filled with drinking water                                                                                                                                                                          |
| Cause                | The carbon steel is affected below the waterline near the air containment in the roof net. The drinking water contains an enough microbiology and nutrients, as a result of which MIC may have formed in the standing water |
| Remedy               | Using steel with an inhibitor or nitrogen. Another option is to use stainless steel also with an inhibitor against MIC                                                                                                      |
| Additional Reference | ces                                                                                                                                                                                                                         |
|                      |                                                                                                                                                                                                                             |
|                      |                                                                                                                                                                                                                             |



| CORRO              | SION ATLAS                                                                                                                                    | tributed By: Mascha van Hofweegen and Frank de Vos<br>Case History 01.10.17.003                                   |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Material           | Carbon steel                                                                                                                                  |                                                                                                                   |
| System             | Wet sprinkler system                                                                                                                          |                                                                                                                   |
| Part               | Pipes in a sprinkler system                                                                                                                   |                                                                                                                   |
| Phenomenon         | MIC                                                                                                                                           |                                                                                                                   |
|                    | 13:38:52 13-04-15<br>6.03m                                                                                                                    |                                                                                                                   |
| Appearance         | Brown corrosion tubercles, a lot of mud and t                                                                                                 | ubes                                                                                                              |
| Time in Service    | 24 years                                                                                                                                      |                                                                                                                   |
| Environment        | The wet sprinkler system is filled with surface                                                                                               | water                                                                                                             |
| Cause              | The carbon steel is affected below the waterlir<br>water contains a lot of microbiology and nutri<br>standing water. The microben formed tubs | he near the air containment in the roof net. The surface<br>ents, as a result of which MIC may have formed in the |
| Remedy             | Use drinking water instead of surface water an                                                                                                | d use a corrosion inhibitor                                                                                       |
| Additional Referen | nces                                                                                                                                          |                                                                                                                   |

| Material        |                                                                                                                                                                                |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | Carbon steel                                                                                                                                                                   |
| System          | Saltwater pump                                                                                                                                                                 |
| Part            | Shaft and mechanical seal                                                                                                                                                      |
| Phenomenon      | Pitting, erosion, localized corrosion                                                                                                                                          |
|                 |                                                                                                                                                                                |
| Appearance      | Iron oxide, breakdown of the seal in different layers, coating peeling off and corrosion product around the seal                                                               |
| Time in Service | 3 years                                                                                                                                                                        |
| Environment     | Saltwater, pressure: 7 bar<br>Temperature: 45°C<br>Flow Q: 250 lps<br>TDH: 48 m/h<br>Static lift: not provided                                                                 |
| Cause           | Oxygen and chloride ions                                                                                                                                                       |
| Remedy          | Replace the shell for the CS with Belzona coating to surfaces, Impeller in SS, Anodes fitted, Duples volute bolts<br>Supply of a spare bronze impeller for the saltwater pumps |

Contributed By: Marko Stipanicev and Bing Han **CORROSION ATLAS** Case History 01.11.02.001 Material Carbon steel Electrical submersible pumps (ESP) in upstream well production zone. ESP located at 6000 ft in 7-in System casing. Part Electrical submersible pumps housing, 5.62-in OD Phenomenon Sweet and flow-induced corrosion Appearance Corrosion pattern and metal loss corresponded to flow-induced corrosion. Cavities along the ESP casing with maximum depth of approx. 1 cm, width of 1-10 cm, and length 1-50 cm. Cavities flow in the flow direction Time in 80 days run life Service - Multiphase flow (oil, formation water, and gas) with 44%-50% WC Environment Reservoir conditions: 120°C, 100 bar, 0.36 mol% CO<sub>2</sub>, pH 5.5 Production tubing flow parameters: superficial liquid velocity 1.2–3.3 m/s, superficial gas velocity 0.14–0.30 m/s, share stress 7-35 Pa - ESP location conditions: 84°C, 39.6 bar, superficial liquid velocity of >20 m/s, pH 5.7 - 10-20 mm between casing internal diameter and pump motor housing - No downhole corrosion inhibitor injection Cause Expected CO<sub>2</sub> corrosion of 0.44-0.53 mm/year could not explain the observed damage. The observed type of damage was probably due to turbulent-driven erosion (turbulent eddies) in particular locations. Corrosion pattern and metal loss corresponded to flow-induced corrosion. Investigation pinpointed to an element installed on the housing of UT motor under the pothead, which reduced the clearance between the motor housing and the casing, resulting in the higher local velocity and even turbulence locally Remedy The recommendation was the upgrading of metallurgy to 9Cr1Mo housing and 416SS or 410SS h&b plus thermal spray Monel coating on ESP equipment Additional n/a References Pertaining to **Case Study** 

| CORRO              | SION ATLAS Contributed By: Bensabeth Merchan<br>Case History 01.11.04.001         |
|--------------------|-----------------------------------------------------------------------------------|
| Material           | Structural steel                                                                  |
| System             | External plant section                                                            |
| Part               | Structure, tank                                                                   |
| Phenomenon         | Uniform and acid corrosion                                                        |
|                    |                                                                                   |
| Appearance         | Iron oxide, coating protection worn out, strength and structure lost in the steel |
| Time in Service    | 25 years                                                                          |
| Environment        | pH: <3<br>Temperature and pressure: ambient<br>Moisture: 45%                      |
| Cause              | Acid corrosion                                                                    |
| Remedy             | Replacement of the structural and protection coating                              |
| Additional Referen | nces Pertaining to Case Study                                                     |



| CORROS             | SION ATLAS                                                                     | Contributed By: Bensabeth Merchan<br>Case History 01.11.15.001 |
|--------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------|
| Material           | Carbon steel                                                                   |                                                                |
| System             | Mixed-bed vessel                                                               |                                                                |
| Part               | Shell                                                                          |                                                                |
| Phenomenon         | Under-deposit corrosion                                                        |                                                                |
|                    |                                                                                |                                                                |
| Appearance         | Pitting on the walls of the tank and iron oxide deposit                        |                                                                |
| Time in Service    | 8 years                                                                        |                                                                |
| Environment        | High levels of chlorides above 2000 ppm<br>pH: <5<br>Temperature: approx. 50°C |                                                                |
| Cause              | Acid corrosion                                                                 |                                                                |
| Remedy             | Solid epoxy tank coating replacement for a 304L SS vessel an                   | nd coating                                                     |
| Additional Referen | ces Pertaining to Case Study                                                   |                                                                |

| CORRO              | SION ATLAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Contributed By: Isabel Diaz-Tang<br>Case History 01.11.17.001 |  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--|
| Material           | Low carbon steel (API 5L Grade ×42)                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                               |  |
| System             | Crude oil conveying line                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                               |  |
| Part               | Pipe sections                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                               |  |
| Phenomenon         | Microbiologically influenced corrosion (MIC)                                                                                                                                                                                                                                                                                                                                                                                                                                         | Microbiologically influenced corrosion (MIC)                  |  |
|                    | MEDIDAS NECESARIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AS MEDIDAS NECESARIAS PARA                                    |  |
| Appearance         | Large cavities, perforations in many zones of the pipeline                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                               |  |
| Time in Service    | 21 months                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                               |  |
| Environment        | Crude oil, water, and gases (exact chemical composition of t<br>humid atmosphere                                                                                                                                                                                                                                                                                                                                                                                                     | he fluid is unknown). External side:                          |  |
| Cause              | The first perforation of the pipe was detected after 21 months of service. In the next 3 months 17 perforations were detected in several tubes along the 15 km pipeline. The failure analysis of some failed pipe sections showed typical morphologies of microbiologically influenced corrosion. All cavities and perforations appeared at 6 o'clock position; some rests of sediments were also found. No crude oil, water, or sediment samples were provided for further analysis |                                                               |  |
| Remedy             | Use of new tubes with protection of the inner surface (e.g., l selection of a more suitable material                                                                                                                                                                                                                                                                                                                                                                                 | high-density polyethylene jacket), or                         |  |
| Additional Referen | nces Pertaining to Case Study                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                               |  |



**CORROSION ATLAS** 

Contributed By: Marko Stipanicev and Øystein Birketveit

Case History 01.11.17.002

| Material                                  | S235JR carbon steel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| System                                    | Oilfield seawater injection system. Risk of microbial corrosion indicated in laboratory studies indicating a need for biocide treatment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Location                                  | Pipe sections downstream chemical injection pump and seawater booster pump and upstream of injection zone. Laboratory study conducted on 60-mm ID pipe steel sections and using carbon steel electrochemical probes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Phenomenon                                | Microbially influenced corrosion (MIC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Appearance                                | Materials exposed to abiotic environment were featured by green rust deposits under which uniform corrosion was revealed. Materials exposed to biotic environment were featured by black slimily deposits consisting of FeS and biological material, under which uniform corrosion was revealed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Time in Service                           | 100 days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Environment                               | Deoxygenated and sulfate-rich North Sea coastal seawater at 15–25°C environments with contrasting presence or absence of microbial flora and associated metabolic activity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Cause                                     | Conducted work has shown that under representative sulfate-rich seawater injection conditions, metabolic activity of sessile sulfide and carbon dioxide—producing bacterial populations dominated by <i>Caminicella</i> generated both an abundant sulfide film on the steel surface layer as well as carbonaceous mineral precipitates on the carbon steel samples. However, the overall impact of the bacterial consortium on the corrosion rate of S235JR carbon steel specimens was minimal. The presence of a microbial flora and associated metabolic activity causing deposits at metal surfaces resulted in similar corrosion rates to that observed in the control (sterile) microbe-free environment over 100 days of exposure. Clearly, the release of biogenic sulfide does not necessarily lead to extensive localized pitting attack. It is apparent that metabolic activities of cells are likely to influence the chemistry of bioinorganic corrosion products and should be considered when evaluating MIC risk |  |
| Remedy                                    | Investigation concluded that biocide treatment is not necessary in short run. However, as the microbiological activity is postulated to accelerate with service time and biofilm abundancy to increase, it is recommended to use glutaraldehyde-based biocide treatment one time per week at 500 ppm concentration and for duration for 2 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Additional<br>References<br>Pertaining to | https://www.sciencedirect.com/science/article/abs/pii/S1567539413000984<br>Stipanicev et al., Corrosion of carbon steel by bacteria from North Sea offshore seawater injection<br>systems: Laboratory investigation, Biocorrosion (2011).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |

| CORRO              | Contributed By: Mascha van Hofweegen and Frank de Vo<br>Case History 01.11.24.00                                                                                                                                                                                                                                                                                                    |  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Material           | Cast iron                                                                                                                                                                                                                                                                                                                                                                           |  |
| System             | Cylinders in paper machine                                                                                                                                                                                                                                                                                                                                                          |  |
| Part               | Cylinder wall around the manhole                                                                                                                                                                                                                                                                                                                                                    |  |
| Phenomenon         | Mechanical stress cracks                                                                                                                                                                                                                                                                                                                                                            |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Appearance         | Crack indications in the support for the manhole clamps                                                                                                                                                                                                                                                                                                                             |  |
| Time in Service    | More than 49 years                                                                                                                                                                                                                                                                                                                                                                  |  |
| Environment        | Crack indications are on the outside where ambient air is present                                                                                                                                                                                                                                                                                                                   |  |
| Cause              | The construction of the manhole in the front plate of the cylinders where a crack indication is found<br>is unfavorable for distributing the mechanical stresses                                                                                                                                                                                                                    |  |
| Remedy             | Because cracks in cast iron cannot be easily repaired, it is advisable to replace the front plates. For the purchase of the new front plates, a different closure and construction of the manhole and the manhole cover must be chosen in consultation with the supplier. It must be investigated in which way the mechanical stresses can best be distributed over the front plate |  |
| Additional Referen | nces                                                                                                                                                                                                                                                                                                                                                                                |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                     |  |



| CORRO              | SION ATLAS                                                                                                                                                                                                                                                                                                                            | Contributed By: Isabel Diaz-Tang<br>Case History 01.13.32.001                                                                                |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Material           | Ductile cast iron                                                                                                                                                                                                                                                                                                                     |                                                                                                                                              |
| System             | Liquid-ring vacuum pump                                                                                                                                                                                                                                                                                                               |                                                                                                                                              |
| Part               | Impeller rotor                                                                                                                                                                                                                                                                                                                        |                                                                                                                                              |
| Phenomenon         | Erosion corrosion                                                                                                                                                                                                                                                                                                                     |                                                                                                                                              |
|                    |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                              |
| Appearance         | Wide pits at impeller rotor blade ends, related to the flow direction<br>in the cavities. Blackish corrosion products layer on the blades                                                                                                                                                                                             | n. Brownish-red corrosion products                                                                                                           |
| Time in Service    | 6 months                                                                                                                                                                                                                                                                                                                              |                                                                                                                                              |
| Environment        | Water vapor and process water (average chemical composition: pH sulfates = $185 \text{ mg/L}$ , total suspended solids = $4 \text{ mg/L}$ )                                                                                                                                                                                           | I = 8, chloride = 45 mg/L,                                                                                                                   |
| Cause              | Loss of vacuum led to the failure analysis. A pump generating hig<br>the system design was installed 6 months prior to the failure, lead<br>the rotor impeller blades, due to too high fluid velocities. The syst<br>dehumidifying soap paste; the rest of the time remained humid (p<br>formation of brownish-red corrosion products | ther vacuum than the expected for<br>ing to erosion corrosion problems at<br>tem was used 12 h a day for<br>process water), which caused the |
| Remedy             | Replacement of the pump (using a pump suitable for the system of different material for the rotor impeller (e.g., stainless steel)                                                                                                                                                                                                    | lesign). Consider the use of a                                                                                                               |
| Additional Referen | nces Pertaining to Case Study                                                                                                                                                                                                                                                                                                         |                                                                                                                                              |

| CORRO              | SION ATLAS<br>Case History 01.13.33.002                                                                                                                                                                                                                                                                                     |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Material           | Gray cast iron                                                                                                                                                                                                                                                                                                              |
| System             | Liquid-ring vacuum pump                                                                                                                                                                                                                                                                                                     |
| Part               | Port plate (side facing the impeller)                                                                                                                                                                                                                                                                                       |
| Phenomenon         | Cavitation                                                                                                                                                                                                                                                                                                                  |
|                    |                                                                                                                                                                                                                                                                                                                             |
| Appearance         | Small pits and cavities                                                                                                                                                                                                                                                                                                     |
| Time in Service    | 6 months                                                                                                                                                                                                                                                                                                                    |
| Environment        | Water vapor and process water (average chemical composition: $pH = 8$ , chlorides = 45 mg/L, sulfates = 185 mg/L, total suspended solids = 4 mg/L)                                                                                                                                                                          |
| Cause              | Loss of vacuum led to the failure analysis. The original pump of the system was replaced by a pump generating higher vacuum, which caused further increase of the temperature of the water forming the ring, diminishing the boiling point of the water, and increasing the risk of cavitation (see also Case 01.13.32.001) |
| Remedy             | Replacement of the pump (using a pump suitable for the system design)                                                                                                                                                                                                                                                       |
| Additional Referen | nces Pertaining to Case Study                                                                                                                                                                                                                                                                                               |



## Contributed By: Annelise Zeeman **CORROSION ATLAS** Case History 01.16.01.001 Material Gray cast iron UNS F11701 Graphite in flakes in a ferritic-pearlitic matrix System Buried aqueduct Part Several meters long Centrifugally cast pipe Nominal diameter: 1524 mm Actual thickness: 17 mm Phenomenon General corrosion from the water side 17 mm 50 µm 2 mm thinning from the original 19.05 mm Appearance Time in Service 45 years Environment External soil and internal water End of life Cause Not required Remedy Additional Materials Life Database References Pertaining to Case Study

| CORRO              | SION ATLAS<br>Contributed By: Mascha van Hofweegen and Frank de Vos<br>Case History 01.16.24.001                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Material           | Carbon steel                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| System             | Data center                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Part               | Metal parts of the computers                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Phenomenon         | Oxygen corrosion through microcondensation                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Appearance         | Corroding various metal parts of the servers and computer parts                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Time in Service    | 0.5 year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Environment        | Air with traces of chloride and sulfur                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Cause              | The observed corrosion on some metal parts of some computers is most likely due to microcondensation. The combination of large air temperature fluctuations and a high relative humidity of the supply air causes this microcondensation, causing corrosion of the metal parts that are sensitive to this. The traces of chloride and sulfur in the air, and the possible presence of dust/ dirt, may have further affected the process                                                    |
| Remedy             | By placing meters, insight is gained into the air temperature and the relative humidity per room. This provides insight when microcondensation can take place. Working with a narrower bandwidth in terms of temperature. A far-reaching measure is further conditioning of the supply air. That means not only regulating the temperature, but also the relative humidity. Our advice is to control the temperature at $23 \pm 1^{\circ}$ C and the relative humidity between 30% and 60% |
| Additional Referen | nces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |



Contributed By: Annelise Zeeman **CORROSION ATLAS** Case History 01.16.28.001 Material High carbon steel UNS G10700 Strain-hardened (predominantly) pearlitic microstructure System Prestressed concrete strand Part Wire rope 5 mm diameter Hardness 500HV1 Phenomenon Fatigue corrosion Appearance Multiple fractures in the ropes in the region out of the concrete The analysis indicated that the rope broke by corrosion fatigue in 50% of the wires, 27% fatigue, and 23% overloading Time in Service Several years in service Environment Urban atmosphere, wet Cause Synergic effects associated to loads and environment Remedy Corrosion control Additional Materials Life Database References Pertaining to Case Study

| CORRO                                                   | SION ATLAS Contributed By: Gareth Williams and Graham C. Hill Case History: 01.21.17.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Material                                                | Steel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| System                                                  | Very large crude carrier (VLCC) ballast tank and ballast piping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Part                                                    | Tank floor and ballast piping. Epoxy coated carbon steel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Phenomenon                                              | Microbiologically influenced corrosion (MIC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                                         | (A)<br>(B)<br>(5 cm)<br>(5 cm)<br>(C)<br>(C)<br>(C)<br>(C)<br>(C)<br>(C)<br>(C)<br>(C)<br>(C)<br>(C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Appearance                                              | Coating appeared to be in good condition both where exposed and examined under sediments.<br>However, hemi-spherical orange "tubercles" observed on the ballast tank floor (Figure A). Evidence<br>of a rusty, orange corrosion deposit emanating from the tubercles. Removal of tubercles revealed that<br>they covered black deposit and, in numerous cases, pits with a $2-3$ mm depth (Figure B).                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Time in Service                                         | Less than 5 years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Environment                                             | Seawater ballast tank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Cause                                                   | The appearance of the corrosion deposits and pits were typical of MIC caused by Sulfate Reducing Bacteria (SRB). Corrosion deposits associated with the pits were analyzed on-site by acidification and checking for release of hydrogen sulfide using lead II acetate indicator papers; this confirmed a high iron sulfide content, a strong indicator of SRB activity. On-site analysis of deposit samples using Sig Sulfide Tests (ECHA Microbiology Ltd.) detected high numbers of sulfide generating bacteria (including SRB). No Sulfur Oxidising Bacteria (SOB) were detected in subsequent laboratory culture tests. It was concluded that the pitting was caused by the activity of SRB. It is believed that poor surface preparation and/or inadequate application of protective coating was a factor in the incidence of corrosion. |  |
| Remedy                                                  | Corrosion sites were ground out to remove corrosion deposits and repaired by welding and grinding to a smooth finish. In some cases, ballast piping had to be physically removed from the vessel to accommodate this. Affected areas were re-coated following a final finishing grit blast.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Additional<br>References<br>Pertaining to<br>Case Study | <ul> <li>B.J. Little and J.S. Lee (2007). Microbiologically Influenced Corrosion. Wiley-Interscience (ISBN 978-0471-77276-7).</li> <li>G.C. Hill (2003). Microbial Problems in Bilge &amp; Ballast, in Microbes in the Marine Industry, Ed. E.C.Hill, Inst. Marine Engineering Science &amp; Technology (ISBN 1-902536-46-0).</li> <li>P. Bos and J.G. Kuenen (1983). Microbiology of Sulphur Oxidising Bacteria, in Proceedings of Microbial Corrosion, National Physics Laboratory, Teddington and the Metals Society, London.</li> <li>NACE Standard TM0-194-2014. Field Monitoring of Bacterial Growth in Oil and Gas Systems.</li> </ul>                                                                                                                                                                                                  |  |

| CORROSION ATLAS Contributed By: Gareth Williams and Graham Contributed By: Gareth Williams and Graham Contributed By: Case History: 01.21.7 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Material                                                                                                                                    | Steel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| System                                                                                                                                      | Very large crude carrier (VLCC) seawater-lubricated stern tube system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Part                                                                                                                                        | Stern tube and forward and aft flanges. Epoxy-coated carbon steel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Phenomenon                                                                                                                                  | Microbiologically influenced corrosion (MIC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Appearance                                                                                                                                  | Coating covered in orange deposits. Fractures and holes were observed in flange's epoxy coating (Figure A). Chipping away the coating (Figure B) revealed orange deposit covering black deposits. Removing black deposit revealed severe wastage of steel which had a dull grey pitted surface. A viscous brown acidic (pH 2) liquid, believed to be sulfuric acid, exuded from some corrosion sites.                                                                                                                                                                                                                                                                                                                                                                     |
| Time in Service                                                                                                                             | Less than 5 years.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Environment                                                                                                                                 | Filtered seawater flow through system for stern tube lubrication. There were extensive periods of lay up during commissioning of the vessel, during which stagnant conditions are likely to have developed. It is believed anoxic regions would readily develop underneath coating fractures which is where worst corrosion was observed.                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Cause                                                                                                                                       | The appearance of the corrosion was typical of that caused by Sulfate Reducing Bacteria (SRB) but the amount of highly acidic orange deposits (pH 2–5) suggested simultaneous activity of Sulfur Oxidising Bacteria (SOB). Black corrosion deposits associated with the pits were analyzed on-site by acidification and checking for release of hydrogen sulfide using lead II acetate indicator papers; this confirmed high iron sulfide content, a strong indicator of SRB activity. On-site analysis of deposit samples using Sig Sulfide Tests (ECHA Microbiology Ltd.) detected high numbers of sulfide generating bacteria (including SRB). Subsequent laboratory analysis for culturable SOB detected moderately high numbers of aciduric <i>Thiobacillus</i> spp. |
| Remedy                                                                                                                                      | Stern tube was grit blasted, corrosion sites ground out to remove corrosion deposits and repaired by welding<br>and grinding. In some cases polymeric composite filler was used to restore substantial metal loss. The system<br>was re-coated after a final grit blast. Seawater lubrication was replaced with a closed loop fresh water system<br>using ship's distilled water in order to reduce levels of nutrients and sulfate to minimize the opportunity for<br>microbial activity and sulfate reduction. A routine microbiological condition monitoring program was<br>implemented.                                                                                                                                                                               |
| Additional<br>References<br>Pertaining to<br>Case Study                                                                                     | See references for case history 01.21.17.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| CORRO              | SION ATLAS                                                                                                                                                   | Contributed By: Isabel Diaz-Tang<br>Case History 01.21.24.001                          |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Material           | Carbon steel                                                                                                                                                 |                                                                                        |
| System             | Stored steel bars                                                                                                                                            |                                                                                        |
| Part               | 3/8" corrugated bars                                                                                                                                         |                                                                                        |
| Phenomenon         | Atmospheric corrosion in marine environment (uniform cor                                                                                                     | rrosion)                                                                               |
|                    |                                                                                                                                                              | 33                                                                                     |
| Appearance         | Red-brownish layer of corrosion products, with small zones                                                                                                   | s of yellow-brownish corrosion products                                                |
| Time in Service    | 1 year                                                                                                                                                       |                                                                                        |
| Environment        | Marine atmosphere (approximately 1 km away from the sea                                                                                                      | ishore)                                                                                |
| Cause              | Several batches of steel-corrugated bars were stored outdoor<br>the top of the piles of bars. A distance of 1 km of from the<br>attack due to marine aerosol | rs. The most affected bars were located on<br>e seashore is close enough for corrosive |
| Remedy             | Corroded bars treatment: pickling, rinsing, neutralizing, pho<br>dry conditions                                                                              | osphating, drying. Store under roof, and                                               |
| Additional Referen | nces Pertaining to Case Study                                                                                                                                |                                                                                        |



**CORROSION ATLAS** 

Contributed By: Annelise Zeeman

Case History 01.21.38.001

| Material                                                | Carbon steel pipe API 5L grade B<br>UNS G10200<br>Ferritic—pearlitic microstructure<br>Longitudinal seam weld, autogenous                                                                       |  |
|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| System                                                  | Seawater piping in a ship.                                                                                                                                                                      |  |
| Part                                                    | Piping several meters long<br>Pipe outer diameter: 114 mm<br>Pipe thickness: 8 mm                                                                                                               |  |
| Phenomenon                                              | Localized seam weld corrosion due to the galvanic effect between the low hardness ferritic-pearlitic base metal (180 HV 100 g—Vickers microhardness) and the bainitic weld metal (230 HV 100 g) |  |
|                                                         |                                                                                                                                                                                                 |  |
| Appearance                                              | Localized dissolution at the longitudinal seam weld                                                                                                                                             |  |
| Time in Service                                         | 8 years                                                                                                                                                                                         |  |
| Environment                                             | Nontreated seawater                                                                                                                                                                             |  |
| Cause                                                   | Seam welded joint presenting, at the autogenous weld, a nonheat-treated microstructure of higher hardness than the rest of the pipe                                                             |  |
| Remedy                                                  | Adoption of seamless pipes ASTM A106                                                                                                                                                            |  |
| Additional<br>References<br>Pertaining to<br>Case Study | Materials Life Database                                                                                                                                                                         |  |

| CORRO              | SION ATLAS Contributed By: Talal Aljohani and Abdullah I. Almarshad Case History: 01.24.24.001 |
|--------------------|------------------------------------------------------------------------------------------------|
| Material           | Cold rolled carbon steel—Urban site, Riyadh, Saudi Arabia                                      |
| System             | Test rack for atmospheric corrosion                                                            |
| Part               | Sample                                                                                         |
| Phenomenon         | Oxygen attack                                                                                  |
|                    |                                                                                                |
| Appearance         | Uniform corrosion with brown nodules                                                           |
| Time in Service    | One year                                                                                       |
| Environment        | Dry and hot weather; temperature varies from 10 to 43°C                                        |
| Cause              | Atmospheric corrosion instigated by oxygen and hot temperature                                 |
| Remedy             | Coating                                                                                        |
| Additional Referen | nces Pertaining to Case Study                                                                  |



| CORRO              | SION ATLAS                                                  | Contributed By: Talal Aljohani an<br>Ca                                                    | d Abdullah I. Almarshad<br>ase History: 01.24.24.002 |
|--------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------|
| Material           | Cold rolled carbon steel—Marine i                           | ndustrial site, Khobar, Saudi Arabia                                                       |                                                      |
| System             | Test rack for atmospheric corrosion                         | 1                                                                                          |                                                      |
| Part               | Sample                                                      |                                                                                            |                                                      |
| Phenomenon         | Oxygen and acid rain attack                                 |                                                                                            |                                                      |
|                    |                                                             |                                                                                            |                                                      |
| Appearance         | Pitting, rough surface, dark brown                          | spots                                                                                      |                                                      |
| Time in Service    | One year                                                    |                                                                                            |                                                      |
| Environment        | Marine industrial site (CO <sub>2</sub> , H <sub>2</sub> CO | $D_4$ , SO <sub>X</sub> , NO <sub>x</sub> )                                                |                                                      |
| Cause              | Exposed to corrosive environment,                           | i.e., CO <sub>2</sub> , H <sub>2</sub> CO <sub>4</sub> , SO <sub>X</sub> , NO <sub>x</sub> |                                                      |
| Remedy             | Coating or use cathodic protection                          | (CP) system                                                                                |                                                      |
| Additional Referen | nces Pertaining to Case Study                               |                                                                                            |                                                      |

| Material                                              | Cold rolled carbon steel-Marine industrial site, Jubail, Saudi Ara                                                                                                          |
|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| System                                                | Test rack for atmospheric corrosion                                                                                                                                         |
| Part                                                  | Sample                                                                                                                                                                      |
| Phenomenon                                            | Oxygen attack                                                                                                                                                               |
|                                                       |                                                                                                                                                                             |
| Appearance                                            | Pitting, rough surface, dark brown spots                                                                                                                                    |
| Appearance<br>Time in Service                         | Pitting, rough surface, dark brown spots<br>One year                                                                                                                        |
| Appearance<br>Time in Service<br>Environment          | Pitting, rough surface, dark brown spots<br>One year<br>Marine industrial site (CO <sub>2</sub> , H <sub>2</sub> CO <sub>4</sub> , SO <sub>X</sub> , NO <sub>x</sub> )      |
| Appearance<br>Time in Service<br>Environment<br>Cause | Pitting, rough surface, dark brown spots         One year         Marine industrial site (CO2, H2CO4, SOX, NOx)         Exposed to a corrosive environment, i.e., acid rain |



| CORRO                                                   | SION ATLAS<br>Contributed By: Talal Aljohani and Abdullah I. Almarshad<br>Case History: 01.24.24.004           |
|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Material                                                | Cold rolled carbon steel—Marine site, Jubail, Saudi Arabia                                                     |
| System                                                  | Test rack for atmospheric corrosion                                                                            |
| Part                                                    | Sample                                                                                                         |
| Phenomenon                                              | Uniform corrosion, dots, very rough surface, dark brown                                                        |
|                                                         |                                                                                                                |
| Appearance                                              | Pitting corrosion, very rough surface, dark brown                                                              |
| Time in Service                                         | One year                                                                                                       |
| Environment                                             | Marine industrial site (CO <sub>2</sub> , H <sub>2</sub> CO <sub>4</sub> , SO <sub>X</sub> , NO <sub>x</sub> ) |
| Cause                                                   | Exposed to a corrosive environment, i.e., acid rain, very humid environment                                    |
| Remedy                                                  | Coating or use cathodic protection (CP)                                                                        |
| Additional<br>References<br>Pertaining to<br>Case Study |                                                                                                                |

| CORRO                                                   | SION ATLAS Contributed By: Talal Aljohani and Abdullah I. Almarshad Case History: 01.24.24.005 |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Material                                                | Cold rolled carbon steel—Rural site, Bisha, Saudi Arabia                                       |
| System                                                  | Test rack for atmospheric corrosion                                                            |
| Part                                                    | Sample                                                                                         |
| Phenomenon                                              | Oxygen attack                                                                                  |
|                                                         |                                                                                                |
| Appearance                                              | Light uniform corrosion, some dark brown spots                                                 |
| Time in Service                                         | One year                                                                                       |
| Environment                                             | Samples exposed to mild rural site with average temperature around 30°C                        |
| Cause                                                   | Oxygen                                                                                         |
| Remedy                                                  | Coating                                                                                        |
| Additional<br>References<br>Pertaining to<br>Case Study |                                                                                                |



| CORRO                                                   | SION ATLAS Contributed By: Talal Aljohani and Abdullah I. Almarshad Case History: 01.24.24.006 |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Material                                                | Cold rolled carbon steel—Urban site, Abha, Saudi Arabia                                        |
| System                                                  | Test rack for atmospheric corrosion                                                            |
| Part                                                    | Sample                                                                                         |
| Phenomenon                                              | Oxygen attack                                                                                  |
|                                                         |                                                                                                |
| Appearance                                              | Uniform corrosion, dark brown                                                                  |
| Time in Service                                         | One year                                                                                       |
| Environment                                             | Samples exposed to atmospheric wet and dry cycle during the year                               |
| Cause                                                   | Oxygen with presence of 40%–70% of humidity. Temperature varies from 7 to 30°C                 |
| Remedy                                                  | Coating                                                                                        |
| Additional<br>References<br>Pertaining to<br>Case Study |                                                                                                |

| CORRO                                                   | SION ATLAS Contributed By: Talal Aljohani and Abdullah I. Almarshad Case History: 01.24.24.007                      |
|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Material                                                | Cold rolled carbon steel—Marine site, Khafji, Saudi Arabia                                                          |
| System                                                  | Test rack for atmospheric corrosion                                                                                 |
| Part                                                    | Sample                                                                                                              |
| Phenomenon                                              | Oxygen and chloride                                                                                                 |
|                                                         |                                                                                                                     |
| Appearance                                              | Pitting corrosion, rough white and golden surface                                                                   |
| Time in Service                                         | One year                                                                                                            |
| Environment                                             | Marine site                                                                                                         |
| Cause                                                   | Sample exposed to oxygen and chloride in the site. The average of humidity and temperature is 60% and $35^{\circ}C$ |
| Remedy                                                  | Coating or cathodic protection (CP)                                                                                 |
| Additional<br>References<br>Pertaining to<br>Case Study |                                                                                                                     |



| CORRO                                                   | SION ATLAS Contributed By: Talal Aljohani and Abdullah I. Almarshad Case History: 01.24.24.008 |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Material                                                | Cold rolled carbon steel—Urban site, Makkah, Saudi Arabia                                      |
| System                                                  | Test rack for atmospheric corrosion                                                            |
| Part                                                    | Sample                                                                                         |
| Phenomenon                                              | Oxygen and pollutant attack                                                                    |
|                                                         |                                                                                                |
| Appearance                                              | Uniform corrosion, dark brown spots                                                            |
| Time in Service                                         | One year                                                                                       |
| Environment                                             | High pollutants with high temperature in the summer                                            |
| Cause                                                   | Sample exposed to high temperature with presence of quite high automobile pollution            |
| Remedy                                                  | Coating                                                                                        |
| Additional<br>References<br>Pertaining to<br>Case Study |                                                                                                |

| CORRO                                                   | SION ATLAS Contributed By: Talal Aljohani and Abdullah I. Almarshad Case History: 01.24.24.009 |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Material                                                | Cold rolled carbon steel—Marine industrial site, Jeddah, Saudi Arabia                          |
| System                                                  | Test rack for atmospheric corrosion                                                            |
| Part                                                    | Sample                                                                                         |
| Phenomenon                                              |                                                                                                |
|                                                         |                                                                                                |
| Appearance                                              | Uniform and localized corrosion, large corrosion layer due to high corrosion rate              |
| Time in Service                                         | One year                                                                                       |
| Environment                                             | High humidity and pollutants level (such as SO2 and chloride ion)                              |
| Cause                                                   | High humidity with the presence of corrosive acid rain                                         |
| Remedy                                                  | Coating or apply cathodic protection (CP)                                                      |
| Additional<br>References<br>Pertaining to<br>Case Study |                                                                                                |



| CORRO                                                   | <b>DSION ATLAS</b><br>Contributed By: Talal Aljohani and Abdullah I. Alm<br>Case History: 01.24. | narshad<br>.24.010 |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------|
| Material                                                | Cold rolled carbon steel—Marine industrial site, Yanbu, Saudi Arabia                             |                    |
| System                                                  | Test rack for atmospheric corrosion                                                              |                    |
| Part                                                    | Sample                                                                                           |                    |
| Phenomenon                                              |                                                                                                  |                    |
|                                                         |                                                                                                  |                    |
| Appearance                                              | Uniform and localized corrosion, golden and dark brown corrosion product                         |                    |
| Time in Service                                         | One year                                                                                         |                    |
| Environment                                             | High humidity and pollutant level (such as SO <sub>2</sub> and chloride ion)                     |                    |
| Cause                                                   | Oxygen and chloride ion attack in the presence of acid rain                                      |                    |
| Remedy                                                  | Coating or cathodic protection (CP)                                                              |                    |
| Additional<br>References<br>Pertaining to<br>Case Study |                                                                                                  |                    |

| CORRO                                                   | SION ATLAS Contributed by: Talai Aljonani and Abdullan I. Almarshac Case History: 01.24.24.01 |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Material                                                | Cold rolled carbon steel—Marine site, Hakhal, Saudi Arabia                                    |
| System                                                  | Test rack for atmospheric corrosion                                                           |
| Part                                                    | Sample                                                                                        |
| Phenomenon                                              | Oxygen and chloride ion attack                                                                |
|                                                         |                                                                                               |
| Appearance                                              | Uniform and localized corrosion                                                               |
| Time in Service                                         | One year                                                                                      |
| Environment                                             | High chloride concentration                                                                   |
| Cause                                                   | Localized corrosion due to the presence of high chloride ion concentration                    |
| Remedy                                                  | Cathodic protection (CP) or coating                                                           |
| Additional<br>References<br>Pertaining to<br>Case Study |                                                                                               |



| CORRO                                                   | SION ATLAS<br>Contributed By: Talal Aljohani and Abdullah I. Almarshac<br>Case History 01.24.24.012 |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Material                                                | Cold rolled carbon steel—Rural site, Gassim, Saudi Arabia                                           |
| System                                                  | Test rack for atmospheric corrosion                                                                 |
| Part                                                    | Sample                                                                                              |
| Phenomenon                                              | Oxygen attack                                                                                       |
|                                                         |                                                                                                     |
| Appearance                                              | Light and uniform dark brown                                                                        |
| Time in Service                                         | One year                                                                                            |
| Environment                                             | Exposed to mild temperature around 30°C in average                                                  |
| Cause                                                   | Light uniform corrosion instigated by oxygen attack                                                 |
| Remedy                                                  | Coating                                                                                             |
| Additional<br>References<br>Pertaining to<br>Case Study |                                                                                                     |

| CORRO                                                   | SION ATLAS Contributed By: Talal Aljohani and Abdullah I. Almarshad Case History 01.24.24.013                                               |  |  |
|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Material                                                | rial Cold rolled carbon steel—Urban site, Hail, Saudi Arabia                                                                                |  |  |
| System                                                  | Test rack for atmospheric corrosion                                                                                                         |  |  |
| Part                                                    | Sample                                                                                                                                      |  |  |
| Phenomenon                                              | Oxygen attack                                                                                                                               |  |  |
|                                                         |                                                                                                                                             |  |  |
| Appearance                                              | Light uniform corrosion as dark brown spots                                                                                                 |  |  |
| Time in Service                                         | One year                                                                                                                                    |  |  |
| Environment                                             | Mild temperature                                                                                                                            |  |  |
| Cause                                                   | The uniform corrosion activated by the variation of temperature between summer and winter. The temperature difference reached $25^{\circ}C$ |  |  |
| Remedy                                                  | Coating                                                                                                                                     |  |  |
| Additional<br>References<br>Pertaining to<br>Case Study |                                                                                                                                             |  |  |



| CORRO                                                   | SION ATLAS<br>Contributed By: Talal Aljohani and Abdullah I. Almarsha<br>Case History: 01.24.24.01  | d<br>4 |  |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------|--|
| Material                                                | Cold rolled carbon steel—Rural site, Muzahniah, Saudi Arabia                                        |        |  |
| System                                                  | Test rack for atmospheric corrosion                                                                 |        |  |
| Part                                                    | Sample                                                                                              |        |  |
| Phenomenon                                              |                                                                                                     |        |  |
|                                                         |                                                                                                     |        |  |
| Appearance                                              | Uniform corrosion, golden brown spots                                                               |        |  |
| Time in Service                                         | One year                                                                                            |        |  |
| Environment                                             | High temperature in the summer around 46°C                                                          |        |  |
| Cause                                                   | Uniform corrosion due to oxygen attack instigated by large variation in temperature during the year |        |  |
| Remedy                                                  | Coating                                                                                             |        |  |
| Additional<br>References<br>Pertaining to<br>Case Study |                                                                                                     |        |  |

## **CORROSION ATLAS**

Contributed By: Annelise Zeeman

Case History 01.25.28.001

| Material                                                | Low alloy steel<br>UNS G41300<br>Martensitic microstructure                                                                                            |  |  |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| System                                                  | High strength drill pipe                                                                                                                               |  |  |
| Part                                                    | Drill pipe API 5D grade S135<br>Nominal diameter: 127 mm<br>Pipe thickness: 12.7 mm                                                                    |  |  |
| Phenomenon                                              | The tool marks at the external diameter of the pipe created localized corrosion in notches and corrosion-fatigue propagation                           |  |  |
| 127 mm                                                  | 12.7 mm                                                                                                                                                |  |  |
| Appearance                                              | Corrosion fatigue cracks are notches created by a tool (with plastic deformation)                                                                      |  |  |
| Time in Service                                         | More than 10 years in service                                                                                                                          |  |  |
| Environment                                             | Drilling environment                                                                                                                                   |  |  |
| Cause                                                   | Synergic effects associated to loads and environment                                                                                                   |  |  |
| Remedy                                                  | The drill pipe was close to the end of its life<br>All other drill pipes from the same column were inspected to identify if they were still acceptable |  |  |
| Additional<br>References<br>Pertaining to<br>Case Study | Materials Life Database                                                                                                                                |  |  |

**CORROSION ATLAS** 

Contributed By: Annelise Zeeman

Case History 01.25.28.002

| Material        | Low alloy steel (Ni-Cr-Mo-V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                 | AISI/SAE 4330V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                 | Martensitic microstructure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Svetem          | Oil and gas well drilling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| System          | Oil and gas well drilling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Part            | Tubular drilling tool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|                 | Nominal diameter: 120.7 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                 | Pipe thickness: 22 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Dhanamanan      | The tool meetre at the internal diameter of the nine source ded or described with the state of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| 1 IICHOIIICHOII | The tool marks at the external diameter of the pipe corroded and created multiple cracks propagating<br>by a corrosion-fatigue mechanism, through thickness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                 | 22 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| 1 A             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                 | sound and |  |  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Appearance      | Fracture with washout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Time in Service | More than 10 years in service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| E               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Environment     | Drilling environment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Cause           | Synergic effects associated to loads and environment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Cause           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Remedy          | The drilling tool was close to the end of its life                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Additional      | Materials Life Database                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| References      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Pertaining to   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Case Study      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |

| CORRO              | SION ATLAS                                                                                                                                                                                                        | Contributed By: Bensabeth Merchan<br>Case History 01.25.28.003 |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| Material           | Carbon steel AS3597–1993 Grade 700                                                                                                                                                                                |                                                                |
| System             | Hammer mill #3                                                                                                                                                                                                    |                                                                |
| Part               | Pellet                                                                                                                                                                                                            |                                                                |
| Phenomenon         | Fatigue cracking                                                                                                                                                                                                  |                                                                |
| Appearance         | Instantaneous Fallure                                                                                                                                                                                             | Mechanical Damage                                              |
| Appearance         |                                                                                                                                                                                                                   |                                                                |
| Time in Service    | Corrosion occurs in 11 months, but the part was designed to last 5 years.                                                                                                                                         |                                                                |
| Environment        |                                                                                                                                                                                                                   |                                                                |
| Cause              | The ingress of a foreign object which had either cracked or introduced a severe stress concentration<br>in the profile cut HAZ. Subsequently fatigue cracking had propagated under normal operating<br>conditions |                                                                |
| Remedy             | Procedures and guarding should be installed to prevent the ingress of foreign objects into the hammer mill                                                                                                        |                                                                |
| Additional Referen | nces Pertaining to Case Study                                                                                                                                                                                     |                                                                |