CMSC 754:Spring 2012 Dave Mount

Homework 1: Convex Hulls, Plane Sweep, and More

Handed out Tuesday, Feb 14. Due at the start of class Tuesday, Feb 21. Late homeworks will not be accepted
so turn in whatever you have finished. Unless otherwise specified, you may assume that points are in general
position.

Problem 1. As mentioned in class, the convex hull is a somewhat non-robust shape descriptor, since if
there are any distant outlying points, they will tend to dominate the shape of the hull. A more robust
method is based on the following iterative approach. Given a planar point set P in general position (see
Fig. 1(a)), let Hy be the convex hull of P. Remove the vertices of H; from P and compute the convex
hull of the remaining points, call it H>. Repeat this until no more points remain, letting Hy,. .., Hy
denote the resulting hulls (see Fig. 1(b)). More formally, H; = conv(P \ (U;;ll vert(H;))). The final
result is a collection of nested convex polygons, where the last one may degenerate to a single line
segment or a single point.
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Figure 1: Repeated hulls.

(a) Assuming that the points are in general position in R?, as a function of n, what is the maximum
number of hulls that can be generated by this process? (I am looking for an exact formula, not
an asymptotic one. For every n, there should exist a point set that exactly achieves your bound.)
Briefly justify your answer.

(b) Given a set P of n points in the plane, devise an O(n?) time algorithm to compute this iterated
sequence of hulls. (FYI: O(nlogn) is possible, but quite complicated.)

(¢) Prove the following lemma: Given a planar point set P in general position, let k denote the number
of hulls generated by the repeated hull process. There exists a point ¢ in the plane (it need not be
in P) such that, every closed halfplane whose bounding line ¢ passes through ¢ contains at least
k points of P. (Recall that a closed halfplane is the set of points lying on or to one side of a line.
An example of such a point for k = 4 is shown in Fig. 1(c).)

Problem 2. You are given two sorted sets of numbers A = {ay,...a,} and B = {by,...,b,}. These two
sets define a collection of n? sums, S(A4, B) = {a; + b; | i,j € {1,...,n}}. For simplicity, let us make
the “general position” assumption that S(A, B) consists of exactly n? distinct values.

The interval sum problem is as follows. Given A and B, and given two values s~ < s, return a

count of the number of elements of S(A, B) that lie within the interval [s™, sT|. Present an efficient
algorithm to solve the interval sum problem. Your algorithm should run in O(nlogn) time.

(Hint: This problem can be solved by reducing it to inversion counting, but if you don’t see the
reduction, there are other ways of obtaining the desired running time.)



Problem 3. Suppose that you are given m convex polygons Pi,..., P, in the plane. Let n; denote the
number of vertices on P;, and let (v;1,...,v;,,) denote the vertices of this polygon listed in counter-
clockwise order, starting at the leftmost vertex of P; (that is, the one with the smallest z-coordinate).
Two polygons P; and P; are said to intersect if they contain any point in common (that is, either their
boundaries intersect or one polygon is contained within the other). Present an efficient algorithm that
determines whether any two polygons of the set intersect (see Fig. 2). (The output is either “yes” or
“no.”) Let n = >""", n; denote the total number of vertices. For full credit, you algorithm should run
in O(nlogm) time.
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Figure 2: (a) a set of nonintersecting convex polygons; (b) a set of convex polygons that has some intersecting
pairs.

Problem 4. Given a simple polygon P with n vertices, recall that the addition of any diagonal (an internal
line segment joining two visible vertices of P) splits P into two simple polygons with ny and ng vertices
respectively, where ny + ne =n + 2.

(a) Show that given any simple polygon P with n > 4 there exists a diagonal that splits P such that
min(ny,ng) > [n/3]. (Hint: Consider the dual graph of a triangulation.)

(b) Show that the constant 1/3 is the best possible, in that for any ¢ > 1/3, there exists a polygon
such that any diagonal chosen results in a split such that min(ni,n2) < c¢n. (You can provide a
drawing, but it should be clear how your drawing can be generalized to all sufficiently large values
of n.)

Challenge Problem. Challenge problems count for extra credit points. These additional points are
factored in only after the final cutoffs have been set, and can only increase your final grade.

Consider a polygonal curve P consisting of a sequence of vertices (pi,...,p,). The curve is not
closed, meaning that p; # p,. The curve has the property that each vertex makes left-turn, that is,
orient(p;—1,pi, pi+1) > 0, for 2 < i < n—1 (see Fig. 3). The problem is to design an efficient algorithm
(ideally running in O(n) time) that determines whether P is simple, meaning that no two nonadjacent
edges of P intersect one another (see Fig. 3(a) and (b)).
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Figure 3: Left-turning polygonal curves.



(a) (Basiest) For 2 < i < n—1, define §; be the counterclockwise angle from the directed vector v;_1v;
to 0;0.11. The turning number of P, denoted turn(P), is defined to be (Z;ZQQ 0;)/2m. Derive an
algorithm for testing the simplicity of P, assuming that turn(P) < 1. (That is, the curve cannot
make a spiral.)

(b) (Harder) Derive an algorithm for testing the simplicity of P, assuming that turn(P) = O(1).
(That is, the curve is not allowed to spiral more than a constant number of times.)

(¢) (Hardest) Solve the general problem, without any constraint on the turning number.

Your algorithm should be self-contained, and in particular, it should not invoke any complex data
structures or from the computational geometry literature. (There exist quite complex linear-time
algorithms for determining whether an arbitrary polygonal curve is simple, but the intent here is to
exploit the turning property to avoid the need for such sophisticated methods.)

(Hint: You may find it helpful to check out the definition of “winding number” on Wikipedia. For
my solution, I found it simplified the description of the algorithm to assume that the curve has been
preprocessed in O(n) time into a more convenient form. For example, I assumed that the curve was
translated and rotated so that p; and p, both lie on the x-axis.)

Some tips about writing algorithms: Henceforth, whenever you are asked to present an “algorithm,”
you should present three things: the algorithm, an informal proof of its correctness, and a derivation of
its running time. Remember that your description is intended to be read by a human, not a compiler,
so conciseness and clarity are preferred over technical details. Unless otherwise stated, you may use any
results from class, or results from any standard algorithms text. Nonetheless, be sufficiently complete that
all critical issues are addressed, except for those that are obvious. (See the lecture notes for examples.)

Giving careful and rigorous proofs can be quite cumbersome in geometry, and so you are encouraged to
use intuition and give illustrations whenever appropriate. Beware, however, that a poorly drawn figure can
make certain erroneous hypotheses appear to be “obviously correct.”

Throughout the semester, unless otherwise stated, you may assume that input objects are in general
position. For example, you may assume that no two points have the same z-coordinate, no three points are
collinear, no four points are cocircular. Also, unless otherwise stated, you may assume that any geometric
primitive involving a constant number of objects each of constant complexity can be computed in O(1) time.

A reminder: Remember that you are allowed to discuss general solution strategies with your classmates.
Since exam problems are often modifications of homework problems, it is not a good idea to pass too much
information to your friends, since this will deprive them from the exploration process of winnowing down
the multitude of possible solution strategies to the final one. When it comes to writing your solution, you
must work independently.

Occasionally student have told me that, in the process of trying to learn more about a problem, they
have searched the Web. It sometimes happens that, as a result, they discover a fact that gives away the
solution or provides a major boost. While I would encourage you to try to solve the problems on your own
using just the material covered in class, I have no problem with using the Web if you get stuck. My only
requirement is that you cite any resources that you used. I will not deduct points for help discovered on the
Web, but it is your responsibility to express the solution in your own words and to fully understand it.
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Homework 2: Linear Programming, Trapezoidal Maps, and More

Handed out Tuesday, Mar 6. Due at the start of class Thursday, Mar 15. Late homeworks will not be
accepted so turn in whatever you have finished. Unless otherwise specified, you may assume that points are
in general position, and if you are asked to present an O(f(n)) time algorithm, you may present a randomized
algorithm whose expected running time is O(f(n)).

Problem 1. You are given two sets of points, red and blue, in the plane. Let R = {ry,...,r,} be the
red points and B = {by,...,b,} be the blue points. The problem is to determine a pair of parallel,
nonvertical lines /i and ¢p such that all the points of R lie on or above /g, all the points of B lie on
or below /g, and the signed vertical distance from ¢ to ¢p is as small as possible. (Note that if the
points of R are above all the points of B, then /i will be above /5, and this signed distance will be
negative.) Present an O(n) time algorithm to solve this problem.

Figure 1: Problem 1.

Problem 2. You are given two convex polygons P~ and PT, where P~ is enclosed within P*. Let n be the
total number of vertices between these two polygons. Present an efficient (ideally O(n) time) algorithm
that computes a convex polygon @@ whose boundary is nested between P~ and Pt (see Fig. 2). Your
polygon @ should have the smallest number of sides possible. Let Q* be the polygon nested between
P~ and PT' with the smallest number of sides. Prove that, if Q* has k sides, then the polygon that
your algorithm produces has at most ¢ - k sides, for some constant ¢ (which does not depend on n).

.P+

Hint: Obtaining the exact minimum number of sides is possible, but quite difficult. All the simple
algorithms I can think of achieve ¢ < 2, and you will receive full credit if your algorithm does at least
this well. The best that can be achieved using a simple approach produces a polygon with at most
k + 1 sides.

Figure 2: Problem 2.

Problem 3. The objective of this problem is to explore some properties of trapezoidal maps, which will be
useful in the next problem.



Throughout this problem S = {s1,...,s,} is a set of n nonintersecting, nonvertical line segments in
the plane. Let T'(S) denote the trapezoidal map of these segments. We say that a trapezoid A € T'(.S)
is incident on a segment s € S if s borders A from above or below, or if one of s’s endpoints bounds
A from the left or the right (see Fig. 3(a)). For s € S, define deg(s) to be the number of trapezoids of
T'(S) that are incident on s (in Fig. 3(a), deg(s) = 7).

o Independent set of segments
"Trapezoids incident on s and incident trapezoids

Figure 3: Problem 3.

(a) Given any set S of n segments, prove that there exists a constant ¢, such that, for all sufficiently
large n, ) . g deg(s) < cn.

(b) Let ¢ be the constant derived in your solution to (a). We say that a segment s € S is long if
deg(s) > 2¢, and otherwise we say that s is short. Let S” C S be the set of short segments of S.
Prove that there exists a constant ¢’ (which may depend on ¢) such that, for all sufficiently large
n, |8 > n/c.

(c) We say that two segments s;,s; € S are adjacent if there exists a trapezoid A € T'(S) that is
incident on both s; and s;. Define an independent set of S to be a subset of S whose elements
are pairwise non-adjacent (see Fig. 3(b)). Given the previous constants ¢ and ¢’, prove that there
exists a constant ¢’ > 1 (depending on ¢ and ¢’) such that, for all sufficiently large n, S contains
an independent set of size at least n/c¢”. (Hint: It suffices to consider just the short segments.)

Problem 4. Consider the set S of n segments from Problem 1 and let T'(.S) denote the resulting trapezoidal
map. The objective of this problem is to explore an alternative method for constructing a point-location
data structure for T'(S). From Problem 1, we know that, for all sufficiently large n (that is, for all
n > ng, for some constant ng) it is possible to compute an independent set of short segments I C S
whose size is at least n/c”, for some constant ¢”.

Let Sy = S. For j =0,1,2,..., repeat the following until |S;| < ng. Let I; be the independent set of

Problem 1 for the set S;. Set S;11 =5, \ I;. (The first few phases are shown in Fig. 4.) Let k be the
value of j when the process stops.

(a) Briefly justify each of the following claims:

(i) For 0 <j <k, |S;] <n(l—1/c")’ (The number of segments decreases geometrically)
(ii) k= O(logn) (The number of levels is logarithmic)
(iii) Z?:o |S;| = O(n) (The total space is linear)
(b) Describe a point-location data structure that determines which trapezoid of T'(.S) contains a given

query point q. Your data structure will have k + 1 levels, for 0 < j < k. The job of level j is to
determine which trapezoid of T'(S;) contains g. This level may recursively invoke the search on
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Figure 4: Problem 4.

deeper levels (e.g., level j + 1), to achieve its objective. Explain both how to build the structure
and how to use the structure to answer queries.

(Hint: It is not necessary to describe your algorithm to the same high degree of detail that we
did for the history DAG in class. In particular, you may assume that the following primitive is
available to you. Let T and T” be two collections of trapezoids that cover the same region of
space, each containing O(1) trapezoids. In constant time, it is possible to build a search structure
which, assuming we know which trapezoid of T contains a query point ¢, in constant time we can
determine which trapezoid of T” contains q.)

(¢) Prove that your data structure uses O(n) space and can answer point-location queries in O(logn)
time.

Challenge Problem. Challenge problems count for extra credit points. These additional points are
factored in only after the final cutoffs have been set, and can only increase your final grade.

Let P be a simple polygon with n sides. We say that two vertices v; and v; of P are monotonically
reachable if there is an z-monotone path from v; to v;. (Fig. 5 shows a number of vertices of P that
have z-monotone paths between them.) Present an O(nlogn) time algorithm that computes a count
of the total number of monotonically reachable pairs.

Figure 5: Challenge Problem. (Monotonically reachable pairs for the vertices shown are {vi,vs}, {v1,v4},
{1, 07}, {va, va}, {2, 07}, {vs,va}, {vs, vr}, {vs, v7}, {vs,v7})

(Hint: This is not that hard. My algorithm starts by computing a trapezoidal decomposition or actually
any triangulation. After this, it runs in O(n) time.)
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Homework 3: Voronoi/Delaunay and Arrangements

Handed out Thu, Apr 12. Due at the start of class Tue, Apr 24. Late homeworks will not be accepted so
turn in whatever you have finished. Unless otherwise specified, you may assume that points are in general
position, and if you are asked to present an O(f(n)) time algorithm, you may present a randomized algorithm
whose expected running time is O(f(n)).

Problem 1. Let P = (py,pa,...,pn) be the vertices of a convex polygon, given in counterclockwise order.
The purpose of this problem is to develop a randomized incremental Delaunay triangulation algorithm
that runs in O(n) expected time.

Unlike the algorithm presented in class, we do not put all the sites within a large bounding triangle.
We start with the triangle defined by three random sites from P. The remaining sites are inserted in
random order. Each new site p is connected to the convex hull by adding its two two tangent edges,
thus creating a new triangle. As in the standard randomized algorithm, an incircle test is performed
on this triangle to determine whether it is locally Delaunay. If it fails, an edge flip is performed.
We continue performing incircle tests and edge flips until all the newly created triangles are locally
Delaunay (see the figure below).

insert p;

incircle test and edge flips

(a) Show that the expected number of edge-flips performed with each insertion is O(1).

(b) Whenever a new site is added, we need to determine where along the current convex hull it is to
be added. Explain how to do this in O(1) expected time. You are allowed preprocess the sites in
O(n) time.

Hint: Your answer to (b) needs to be clear about the data structures involved and how much time
is needed to perform each access. You may assume you have access to a black-box procedure that
returns a random permutation of the integers from 1 to n in O(n) time. It may be easier to consider
the problem in reverse, namely start with all the vertices of P and remove them one-by-one in random
order.

Problem 2. We start with two (seemingly unrelated) definitions. A triangulation of a set of points in the
plane is acute if the angles of all its triangles are strictly acute, that is, less than 7/2. (See the figure
below (a) for an example of a triangulation that is not acute.) The Voronoi diagram of a set of points
in the plane is said to be medial if each edge of the diagram contains in its interior the midpoint of the
two defining sites for the edge. (See the figure below (b) for an example of a Voronoi diagram that is
not medial.)

(a) Prove that any acute triangulation of a set of points in the plane is a Delaunay triangulation, that
is, it satisfies the empty circumcircle property.

(b) Prove that if the Voronoi diagram of a set of points in the plane is medial, then the corresponding
Delaunay triangulation is acute.
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Hint: The following basic geometric fact may be useful. Let pg be a chord of a circle and let » and

s be two points lying on the circle, one on either side of pg. Then Zprq + Zpsq = w. (See the figure
above (c).)

VD is not medial

-

Problem 3. The following exercise is motivated by a problem in statistical estimation. You are given a set
of n points P in the plane and an integer k, where 3 < k < n. Define a k-corridor to be the closed
region of the plane bounded by two parallel lines that contains at least k points of P. The height of a
corridor is the vertical distance h between these lines (see the figure below).

. . o P

(a) Explain how to model the k-corridor problem in the dual setting. (Explain what a k-corridor of
vertical height h corresponds to in the dual plane.)

(b) Present an O(n?logn) time algorithm for computing the minimum height k-corridor, which is
given P and k as inputs. (Hint: Use plane sweep in the dual arrangement.)

Problem 4. Let P be a set of n points in the plane. Define a quadrilateral to be a four-sided simple polygon.

(a) Present an O(n?) time algorithm that computes the minimum area quadrilateral whose vertices
are drawn from P. (Hint: A quadrilateral consists of two triangles joined to opposite sides of a
line segment ab, where a,b € P.)

(b) Part (a) places no constraints on the quadrilateral. A natural variant would be to compute the
minimum area convez quadrilateral (but I do not know of an efficient solution to this problem).
Instead, consider the following problem. Devise an O(n®logn) time algorithm that counts the
number of convex quadrilaterals whose vertices are drawn from P. (Hint: Oabed is a convex
quadrilateral if and only if line segments @¢ and bd intersect. One approach is to enumerate all
pairs a,c € P and then count the pairs of points b,d € P that satisfy this condition. This can be
reduced to inversion counting in the dual.)

Challenge Problem. Challenge problems count for extra credit points. These additional points are
factored in only after the final cutoffs have been set, and can only increase your final grade.

You are given a collection of n lines L = {¢;,...,¢,} in the plane, where, for
1 <i < n, {; is represented by the pair (a;,b;) and is given by the equation
l; :y = a;x — b;. You are also given a circle whose center is at a given point

¢ = (¢z,¢y) and whose radius is given as r > 0. Give an O(nlogn) time
algorithm that counts the number of intersections of these lines that lie within
the circle.
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Homework 4: Geometric Searching and Approximations

Handed out Thu, April 26. Due at the start of class Thu, May 10. Late homeworks will not be accepted so
turn in whatever you have finished. Unless otherwise specified, you may assume that points are in general
position, and if you are asked to present an O(f(n)) time algorithm, you may present a randomized algorithm
whose expected running time is O(f(n)).

Problem 1. In Homework 1, we saw how to compute a sequence of layers of convex hulls for a point set P.
Use this structure to develop a data structure for answering halfplane range reporting queries for the
set P. (Given a closed halfplane h, report all the points of P that lie within h).

Your data structure should use space O(n) and should be able to answer a query in O((k 4 1)logn)
time, where k is the number of points inside the query range. (Hint: The following utility may be
helpful. Given an m-sided convex polygon H, preprocess H to answer the following queries in O(logm)
time. Given a halfplane h determine either that h does not intersect H, or if it does, return any vertex
of H that lies within h.)

Problem 2. The objective of this problem is to investigate the VC-dimension of some range spaces. Recall
that a range space ¥ is a pair (X, R), where X is a (finite or infinite) set, called points, and R is a
(finite or infinite) family of subsets of X, called ranges. (Please refer to Lecture 17 for the definition
of range space, shattering, and VC-dimension.)

For each of the following range spaces, derive its VC-dimension and prove your result. (Note that in
order to show that the VC-dimension is k, you need to give an example of a k-element subset that is
shattered and prove that no set of size k + 1 can be shattered.) Throughout, you may assume that
points are in general position.

Example: Consider the range space ¥ = (R?, H) where H consists of all closed horizontal halfspaces,
that is, halfplanes of the form y > yg or y < yo. We claim that VC(X) = 2.

VC(X) > 2: Consider the points a = (0,—1) and b = (0,1). Theranges y > 2,y >0,y <0 and y < 2
generate the subsets {0, {a}, {b}, {a,b}}, respectively. Therefore, there is a set of size two that is
shattered.

VC(X) < 3: Consider any three element set {a,b,c} in the plane. Let us assume that these points
have been given in increasing order of their y-coordinates. Observe that any horizontal halfplane
that contains b, must either contain a or c¢. Therefore, no 3-element point set can be shattered.

(a) ¥ = (R% R), where R is the set of all closed axis-aligned rectangles.
(b) X5 = (R%S), where S is the set of all closed axis-aligned squares.
(c) ¥p = (R%, D), where D is the set of all closed circular disks in the plane.

Problem 3. The purpose of this problem is to consider a simple approximation algorithm to an important
problem that arises in clustering. You are given n points P in the plane. Given any integer k, 1 < k < n,
define by (P) to be the Euclidean ball of minimum radius that encloses k points of P (see Fig. 1). (Note
that the center of by (P) may be anywhere in R?, not necessarily at a point of P). Let 7 (P) denote the
radius of this ball. The objective of this problem is to derive an algorithm that computes a factor-2
approximation, that is, it computes a ball of radius at most 2r;(P) that contains at least k& points of

P.
The approximation algorithm is based on computing a small number of candidate centers QQ =
{q1,..-,qm} , such that at least one of these candidate centers is guaranteed to lie within by (P).



exact solution approximation

Figure 1: Problem 3.

For each candidate center ¢;, we will determine the radius of the smallest ball centered at ¢; that
contains k points, and return the smallest such ball.

The candidate centers are constructed as follows. First, sort the points by their z-coordinates, letting
x1 <... <z, be the resulting set. Let k' = [(k — 1)/2]. Let X be the set that results by taking every
k’-th point in the sequence, that is X = {xy, 2o, ..., 2.5 }, where z = |n/k’|. Do the same for the
y-coordinates by letting Y denote the result of taking every k’-th point of the y-coordinates in sorted
order. Finally, let Q = X x Y, be the set of points that result by taking any xz-coordinate from X and
any y-coordinate from Y.

(a) Prove that there exists a point ¢ € @) such that ¢ € bi(P). (Hint: Show that any ball that fails
to contain a point of @) can contain at most 2k’ points of P.)

(b) For each ¢; € @, let r; denote the radius of the smallest ball centered at g; that contains at least k
points of P. Let ryi, = min; r; and let by, denote the associated ball. Prove that ryi, < 2ri(P).
(This establishes the fact that by, is a factor-2 approximation to by (P).)

(c) Show that the algorithm’s overall running time is O(nlogn +n?3/k?). For what choices of k is the

running time O(nlogn)?

Problem 4. At the start of the semester, we discussed how to efficiently compute statistics for a set of
quadratic size in linear, or roughly linear time. For the last homework problem of the semester, we’ll
consider an approximation problem of this same ilk.

Given two disjoint point sets P and @, each containing n points in the R%, and a fixed approximation
parameter ¢ > 0, present an O(nlogn) time algorithm that computes an e-approximation to the
average interpoint distance between these sets. More formally, define

1 P
o(P, —‘3Z§:M%%

In O(nlogn) time compute an value g(P7 Q) such that the relative error between §(P, Q) and this
approximate value is at most e, that is,

3(P.Q) - 8(P,Q)
Q)

Justify your algorithm’s correctness. Express the hidden constant factor in the running time as a
function of € and dimension d. (Hint: You will need to explain how to modify the WSPD construction
to this context.)

Challenge Problem 1. Challenge problems count for extra credit points. These additional points are
factored in only after the final cutoffs have been set, and can only increase your final grade.



Modify your solution to Problem 1, so the running time is O(k + logn) with at most O(nlogn) total
space.

Hint: Apply fractional cascading to the following query problem. You are given a collection of m
pairwise disjoint z-monotone polygonal chains that extend from xz = —oco to © = +o00. Let n denote
the total number of vertices in all these chains. Preprocess these chains so that, given any query point
q in the plane, it is possible to report all chain edges that are intersected by a ray shot vertically
downwards from ¢. The query time should be O(k 4 logn), where k is the number of edges hit by the
ray.

Note that a straightforward application of fractional cascading leads to O(nlogn) space. If you are
clever, it is possible to reduce the space to O(n).

Challenge Problem 2. For many clustering problems, squared distances may more relevant than stan-
dard distances. Given two n-element point sets P and @ in R?, define

52(P,Q) = %ZZ(dist(pi,qj))Q.
i=1 j—=1

Present an O(n) time algorithm that computes §?) (P, Q) exactly. (To keep the formulas simple, T will
be satisfied if you do this R?.)

Hint: This does not require clever algorithm design, just algebra.
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Sample Problems for the Midterm Exam

The following problems have been collected from old homeworks and exams. They do not reflect
the actual length or difficulty of the midterm exam. The exam will be closed-book and closed-notes.
You may use one sheet of notes (front and back). Unless otherwise stated, you may assume general
position. If you are asked to present an O(f(n)) time algorithm, you may present a randomized
algorithm whose expected running time is O(f(n)). For each algorithm you give, derive its running
time and justify its correctness.

Problem 1. Give a short answer to each question (a few sentences suffice).

(a)

In the analysis of the randomized incremental point location we argued that the expected
depth of a random query point is at most 12Inn. Based on your knowledge of the proof,
where does the factor 12 arise? (Hint: It arises from two factors. You can explain either
for partial credit.)

In the primal plane, there is a triangle whose vertices are the three points p, ¢, and r and
there is a line ¢ that intersects this triangle. What can you infer about the relationship
among the corresponding dual lines p*, ¢*, r*, and the dual point £*7 Explain.

Recall the orientation primitive Orient(a,b,c), which given three points in the plane,
returns a positive value if the sequence (a,b,c) is ordered counterclockwise, zero if the
points are collinear, and negative if clockwise. Show how to use this primitive (one
or more times) to determine whether a point d lies within the interior of the triangle
defined by the points a, b, and c¢. (You may assume that a, b, and ¢ are oriented
counterclockwise.)

Figure 1: Problems 1(d) and 1(e).

Any triangulation of any n-sided simple polygon has exactly n — 2 triangles. Suppose
that the polygon has h polygonal holes each having k sides. (In Fig. 1, n = 12, h = 3,
and k = 4). As a function of n, h and k, how many triangles will such a triangulation
have?

You are given a set of n disjoint line segments in the plane that have I intersection
points (In Fig. 1, n = 4 and I = 3). Suppose that you build a trapezoidal map of the
segments, but whenever two segments intersect, there are two bullet paths shot (up and
down) from such a point. As a function of n and I, how many trapezoids are there in a
trapezoidal map? Explain briefly. (Give an exact, not asymptotic, answer.)



Problem 2. The following problem is a two-dimensional version of the hidden-surface algorithm
called depth sorting in computer graphics. Given a set of n line segments in the plane, such
that no two segments intersect, order these segments so that any ray parallel to the z-axis,
directed from left to right, intersects these segments in increasing order (see Fig. 2). As part
of your answer, prove that such an ordering always exists. Give an algorithm for computing
such an ordering in O(nlogn) time. Explain briefly.

~(1,2,5,6,9,12)

Figure 2: Problem 2.

Problem 3. For this problem give an exact bound for full credit and an asymptotic (big-Oh)
bound for partial credit. Assume general position.

(a) You are given a convex polygon P in the plane having np sides and an z-monotone
polygonal chain @ having ng sides (see Fig. 3(a)). What is the maximum number of
intersections that might occur between the edges of these two polygons?

(b) Same as (a), but P and @ are both polygonal chains that are monotone with respect to
the z-axis (see Fig. 3(b)).

Figure 3: Problem 3.

(c) Same as (b), but P and @ are both monotone polygonal chains, but they may be
monotone with respect to two different directions.

Problem 4. Consider the following randomized incremental algorithm, which computes the small-
est rectangle (with sides parallel to the axes) bounding a set of points in the plane. This
rectangle is represented by its lower-left point low and the upper-right point high.

(1) Let P = {p1,p2,...,pn} be a random permutation of the points.
(2) Let low[x] = high[x] = pi[z]. Let low[y] = high[y] = p1]y].
(3) For i =2 through n do:

(a) if p;i[z] < low[z| then (x) low[x] = p;[x].

(b) if pi[y] < low[y] then (x) low[y] = pily].

(c) if p;[x] > high[z] then (x) high[z] = p;[z].



(d) if pi[y] > highly] then (x) high[y] = p;[y].

Clearly this algorithm runs in O(n) time. Prove that the total number of times that “then”
clauses of statements 3(a)—(d) (each indicated with a (x)) are executed is O(logn) on average.
(We are averaging over all possible random permutations of the points.) To simplify your
analysis you may assume that no two points have the same z- or y-coordinates.

Problem 5. You are given a set of n vertical line segments in the plane. Present an efficient an
algorithm to determine whether there exists a line that intersects all of these segments. An
example is shown in the figure below. (Hint: O(n) time is possible.) Justify your algorithm’s
correctness and derive its running time.

I [

Figure 4: Problem 5.

Problem 6. Given a set of n points in the plane, a triangulation of these points is a planar straight
line graph whose outer face is the convex hull of the point set, and each of whose internal
faces is a triangle. There are many possible triangulations of a set of points. Throughout this
problem you may assume that no three points are collinear.

Figure 5: Problem 6.

(a) Among the n points, suppose that h lie on the convex hull of the point set. As a function
of n and h, what is the number of triangles (internal faces) ¢ in the triangulation. Show
how you derived your answer. (It is a fact, which you do not need to prove, that the
number of triangles depends only on n and h.) You may give an asymptotic answer
for partial credit. (Hint: Remember Euler’s formula, which states that a connected
planar graph with v vertices, e edges, and f faces (including the external face) satisfies
v—e+ f=2)

(b) Describe an O(nlogn) algorithm for constructing any triangulation (your choice) of a
set of n points in the plane. Explain your algorithm and analyze its running time. You
may assume that the result is stored in any reasonable representation.

Problem 7. A simple polygon P is star-shaped if there is a point ¢ in the interior of P such
that for each point p on the boundary of P, the open line segment gp lies entirely within



the interior of P (see Fig. 6). Suppose that P is given as a counterclockwise sequence of its
vertices (v1,v2,...,v,). Show that it is possible to determine whether P is star-shaped in
O(n) time. (Note: You are not given the point ¢.) Prove the correctness of your algorithm.

Figure 6: Problem 7.

Problem 8. You are given two sets of points in the plane, the red set R containing n, points and
the blue set B containing n; points. The total number of points in both sets is n = n, + np.
Give an O(n) time algorithm to determine whether the convex hull of the red set intersects
the convex hull of the blue set. If one hull is nested within the other, then we consider them
to intersect.

Problem 9. Define a strip to be the region bounded by two (nonvertical) parallel lines. The width
of a strip is the vertical distance between the two lines.

(a) Suppose that a strip of vertical width w contains a set of n points in the primal plane
(see Fig. 7). Dualize the points and the two lines. Describe (in words and pictures) the
resulting configuration in the dual plane. Assume the usual dual transformation that
maps point (a,b) to the line y = ax — b, and vice versa.

Figure 7: Problem 9.

(b) Give an O(n) time algorithm, which given a set of n points in the plane, finds the
nonvertical strip of minimum width that encloses all of these points.

Problem 10. Given a set of n points P in the plane, we define a subdivision of the plane into
rectangular regions by the following rule. We assume that all the points are contained within
a bounding rectangle. Imagine that the points are sorted in increasing order of y-coordinate.
For each point in this order, shoot a bullet to the left, to the right and up until it hits
an existing segment, and then add these three bullet-path segments to the subdivision (see

Fig. 8(a)).

(a) Show that the resulting subdivision has size O(n) (including vertices, edges, and faces).

(b) Describe an algorithm to add a new point to the subdivision and restore the proper
subdivision structure. Note that the new point may have an arbitrary y-coordinate, but
the subdivision must be updated as if the points had been inserted in increasing order
of y-coordinate (see Fig. 8(b)).



segments trimmed

............. |..-new pOth

Figure 8: Problem 10.

(c) Prove that if the points are added in random order, then the expected number of struc-
tural changes to the subdivision with each insertion is O(1).

Problem 11. You are given a collection of vertical line segments in the first quadrant of the z,y
plane. Each line segment has one endpoint on the x-axis and the other endpoint has a positive
y-coordinate. Imagine that from the top of each segment a horizontal bullet is shot to the
left. The problem is to determine the index of the segment that is first hit by each of these
bullet paths. If no segment is hit, return the index 0 (see Fig. 9).

The input is a sequence of top endpoints of each segment p; = (x;,;), for 1 < i < n, which
are sorted in increasing order by x-coordinate. The output is the sequence of indices, one for
each segment.

Present an O(n) time algorithm to solve this problem. Explain how your algorithm works
and justify its running time.

e output = (0,0,2,2,0,5,6,5)

Figure 9: Problem 11.

Problem 12. The following problem asks you to solve two basic problems about a simple polygon
in linear time. Ideally, your solution should not make use of any fancy data structures.

(a) You are given a cyclic sequence of vertices forming the boundary of a simple n-sided
polygon P, but you are not told whether the sequence has been given in clockwise or
counterclockwise order. (More formally, if the polygon’s boundary were to be continu-
ously morphed into circle, what would be the orientation of the circle?) Give an O(n)
time algorithm that determines which is the case. You may assume general position.



(b) You are given a simple n-sided polygon P where n > 4. Recall that a diagonal is a line
segment joining two vertices such that the interior of the segment lies entirely within the
polygon’s interior. Give an O(n) time algorithm that finds any diagonal in P.

Problem 13. Given two points p; = (z1,y1) and p2 = (x2,y2) in the plane, we say that po
dominates p1 if 1 < z9 and y; < ya. Given a set of points P = {p1,pa,...,pn}, a point p; is
said to be mazximal if it is not dominated by any other point of P (shown as black points in

Fig. 10(b)).
. .
A . ° .
. o
o o o o
. .
. . . o o .
° . o o ° ° o o
.o’ e o 0o° © 0o 4
. .
. . o o
. . . ° ° o ) -
. hd el °

Figure 10: Problem 13.

Suppose further that the points of P have been generated by a random process, where the -
coordinate and y-coordinate of each point are independently generated random real numbers
in the interval [0, 1].

(a) Assume that the points of P are sorted in increasing order of their z-coordinates. As
a function of n and i, what is the probability that p; is maximal? (Hint: Consider the
points p;, where j > i.)

(b) Prove that the expected number of maximal points in P is O(logn).

Problem 14. Consider an n-sided simple polygon P in the plane. Let us suppose that the leftmost
edge of P is vertical (see Fig. 11(a)). Let e denote this edge. Explain how to construct a
data structure to answer the following queries in O(logn) time with O(n) space. Given a ray
r whose origin lies on e and which is directed into the interior of P, find the first edge of P
that this ray hits. For example, in the figure below the query for ray r should report edge f.
(Hint: Reduce this to a point location query in an appropriate planar subdivision.)

Ip

Figure 11: Problem 14.



Problem 15. You are given a set of n sites P in the plane. Each site of P is the center of a circular
disk of radius 1. The points within each disk are said to be safe. We say that P is safely
connected if, given any p,q € P, it is possible to travel from p to ¢ by a path that travels
only in the safe region. (For example, the disks of Fig. 12(a) are connected, but the disks of
Fig. 12(b) are not.)

Present an O(nlogn) time algorithm to determine whether such a set of sites P is safely
connected. Justify the correctness of your algorithm and derive its running time.

(a) (b)

Figure 12: Problem 15.

Problem 16. In class we argued that the number of parabolic arcs along the beach line in Fortune’s
algorithm is at most 2n — 1. The goal of this problem is to prove this result in a somewhat
more general setting.

Consider the beach line at some stage of the computation, and let {p1,p2,...,p,} denote the

sites that have been processed up to this point in time. Label each arc of the beach line with
its the associated site. Reading the labels from left to right defines a string. (In Fig. 13 below

the string would be pap1papsprP9p10-)

Figure 13: Problem 16.

(a) Prove that for any i, j, the following alternating subsequence cannot appear anywhere
within such a string:

-ePie-DjPieePjenn
(b) Prove that any string of n distinct symbols that does not contain any repeated symbols

(...pip; ...) and does not contain the alternating sequence! of the type given in part (a)
cannot be of length greater than 2n — 1. (Hint: Use induction on n.)

1Sequences that contain no forbidden subsequence of alternating symbols are famous in combinatorics. They are
known as Davenport-Schinzel sequences. They have numerous applications in computational geometry, this being
one.
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CMSC 754: Midterm Exam

This exam is closed-book and closed-notes. You may use one sheet of notes, front and back. Write all
answers in the exam booklet. If you have a question, either raise your hand or come to the front of class.
Total point value is 100 points. Good luck!

In all problems, unless otherwise stated, you may assume that points are in general position. You may
make use of any results presented in class and any well known facts from algorithms or data structures.
If you are asked for an O(T'(n)) time algorithm, you may give a randomized algorithm with exzpected time

O(T(n)).

Problem 1. (25 points; 4-6 points each) Give a short answer (a few sentences) to each question.

(a) You wish to use an orientation primitive to determine whether a point d lies within the interior of
a triangle Aabe in the plane. Your friend tells you that it suffices to test whether Orient(a, b, d),
Orient(b, ¢, d) and Orient(c, a, d) are all of the same sign. You realize that you don’t know whether
the vertices a, b, and ¢ are given in clockwise or counterclockwise order. Is your friend’s solution
correct? Explain briefly.

(b) In the algorithm presented in class for decomposing a simple polygon into monotone pieces, what
was the definition of helper(e) and (in a few words) what role did it play in the algorithm?

(¢) A convex polygon P; is enclosed within another convex polygon P,. Suppose you dualize the
vertices of each of these polygons (using the dual transform given in class, where the point (a, b)
is mapped to the dual line y = ax — b). What can be said (if anything) about the relationships
between the resulting two dual sets of lines.

(d) In a Voronoi diagram of a set of sites P = (p1,...,p,) in the plane, you observe that the Voronoi
edge between sites p; and p; is semi-infinite (that is, one end of the edge goes to infinity). What
can be said about the relationship between these two sites and the rest of the point set? Explain.

(e) Give a short proof of the following claim: Given a set of n points in the plane P = (p1,...,p,)
that have been sorted by their x-coordinates, the maximum slope determined by any two points
of the set will be achieved by a pair of consecutive points. Thus, to compute the maximum slope,
it suffices to compute the slopes of {p;, p;+1} for 1 <i < n.

Problem 2. (15 points) You are given three convex polygons in the plane P, @), and M. Let n denote the
total number of vertices in all three polygons. Each is given as a sequence of vertices in counterclockwise
order. Present an O(n) time algorithm to determine whether there exists a line segment pg such that
p € P, g € @, and the midpoint of p and ¢ lies within M (see the figure below).

Q

midpoiht of pg



Problem 3. (20 points)

You are given a simple polygon P with the property that its leftmost and
rightmost edges are vertical. Let (uq,...,u,) denote the sequence of ver-
tices on the polygonal chain joining the two upper endpoints of the leftmost
and rightmost edges, and let (v1,...,v,) denote the sequence of vertices of
the polygonal chain joining the two lower endpoints (see the figure to the
right).

Present an efficient algorithm to determine whether there exists a point p
on the leftmost edge and a point ¢ on the rightmost edge such that the line
segment pg lies entirely within P. (The line segment pg is allowed to pass
through vertices of P, but it cannot intersect the exterior of P.)

Derive your algorithm’s running time and justify its correctness.

Hint: I have intentionally left the running time unspecified. Your score will depend in part on the
asymptotic efficiency of your algorithm.

Problem 4. (20 points)

You are given two convex polygons, each as a counterclockwise sequence of
vertices, P* = (uy,...,u,) and P~ (vy,...,vp), where P~ C PT. Given any
two vertices u; € PT and v; € P~, we say that these vertices are visible if
the line segment between them lies entirely within the region P\ P~. (For
example, in the figure to the right, u; and v; are visible, but u; and vs are not
visible.)

Present an efficient algorithm that computes the closest pair of visible vertices
(vi,u;), 1 <i<mand1l<j<m. (In the figure, the final answer is (us,vg).)
Distance is measured as the Euclidean distance between the points.

Hint: O(n + m) time is possible. Tl give 1/2 partial credit for an O((n +
m)log(n + m)) time solution, and 1/3 partial credit for an output sensitive
algorithm whose running time is O(V'), where V is the number of visible pairs.

Problem 5. (20 points)

You are given a collection of n lines L = {{y,...,¢,} in the plane, where, for
1 < i < n, {; is represented by the pair (a;,b;) and is given by the equation
l; »y = a;x — b;. You are also given a circle whose center is at a given point
¢ = (cq,¢y) and whose radius is given as r > 0. The problem is to count the
number of intersections of these lines that lie within the circle.

For full credit, give an O(nlogn) time algorithm. For 1/4 partial credit, you
may give an O((n + I)logn) time solution, where I is the number of line inter-
sections that occur inside the circle. (For example, in the figure I = 7, since it
does not count intersections outside the circle.)
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Sample Problems for the Final Exam

The following problems have been collected from old homeworks and exams. They do not necessarily
reflect the actual difficulty or coverage of questions on the final exam. The final will be comprehensive, but
will emphasize material since the midterm.

The final exam will be Mon, May 14, 8:00-10:00am. (Set an alarm!) The exam will be closed-book and
closed-notes. You may use two sheets of notes (front and back). In all problems, unless otherwise stated,
you may assume general position, and you may use of any results presented in class or any well-known result
from algorithms and data structures.

Problem 1. Give a short answer (a few sentences) to each question.

(a) A dodecahedron is a convex polyhedron that has 12 faces, each of which is a 5-sided pentagon.
How many vertices and edges does the dodecahedron have? Show how you derived your answer.

(b) A kd-tree of n points in the plane defines a subdivision of the plane into n cells, each of which is
a rectangle. Is this subdivision a cell complex? Explain briefly.

(c¢) Given a kd-tree with n points in the plane, what is the (asymptotic) maximum number of cells
that might be stabbed by an line that is not axis-parallel? Explain briefly.

(d) What is a zone in an arrangement? Given an arrangement A of n lines in the plane and given an
arbitrary line ¢, what is the (asymptotic) maximum complexity (number of edges) of the zone of
¢ relative to A? (No explanation needed.)

(e) Which of the following statements regarding the Delaunay triangulation (DT) of a set of points
in the plane are true? (No explanation needed.) Among all triangulations. . .

(7) ...the DT minimizes the maximum angle.
(éi) ...the DT maximizes the minimum angle.
(79t) ...the DT has the minimum total edge length.
(iv) The largest angle in a DT cannot exceed 90 degrees.
(f) An arrangement of n lines in the plane has exactly n? edges. How many edges are there in an

arrangement of n planes in 3-dimensional space? (Give an exact answer for full credit or an
asymptotically tight answer for partial credit.) Explain briefly.

Problem 2. You are given a set of n triangles in the plane T = {T1,...,T,}, where triangle T; has vertices
(a;, bi, ¢i). Present an algorithm that computes a line £ that stabs the greatest number of triangles of
T. (For example, in Fig. 1 there exists a line that intersects 4 of the 5 triangles.) Your algorithms
should run in O(n?) time and use at most O(n?) space. (Hint: Given any triangle, identify the set of
points in the dual plane corresponding to lines that stab this triangle.)

ap a
-
bACl
bs g
b5 4
€3
as

Figure 1: Problem 2.



Problem 3. Given a set P of n points in the plane and an integer & (1 <k <n — 1), a k-set is defined to
be a subset of P’ C P, where |P’| = k and P’ = PN h for some halfplane h. That is, a k-set is any
set of k points that can be separated from the rest of P by a single line. (In Fig. 2(a) we show two
examples of 3-sets, {a, b, c} and {a,d, h}.)

{a,b,c} {a,d, h}

ao .C.b o < e ° * o
.d .g.e * 0. * . 0o d h
h. .f [ ] o o °

Figure 2: Problem 3.

(a) Given what you know about point-line duality, explain how a k-set manifests itself in the dual
plane, in terms of the arrangement of the dual lines P*.

(b) Present an O(n?logn) time and O(n) space algorithm which, given two planar point sets P and
Q, each of size n, and an integer k, determines whether there is there a halfspace h, such that
|[PNh|=]QNh|=k. (See Fig. 2(b) for the special case k = 3.)

Problem 4. Consider a set P of n points in the plane. The distances between each pair of distinct points
defines a set of (Z) interpoint distances. Present an efficient algorithm to compute an approximation
the second largest interpoint distance.

More formally, your algorithm is given a set P of n points in the plane and a constant approximation
parameter € > 0. Let A denote the true second largest interpoint distance among the points of P.
Your algorithm may output any value A’ where

A

< A< .
T3 S A" < (1+¢9)A

(Hint: Use WSPDs.)

Problem 5. You are given a set P of n points in the plane and a path 7 that visits each point exactly once.
(This path may self-intersect. See Fig. 3.)

Figure 3: Problem 5.

(a) Explain how to build a data structure from P and 7 of space O(n) so that given any query line ¢,
it is possible to determine in O(logn) time whether ¢ intersects the path. (For example, in Fig. 3
the answer for /1 is “yes,” and the answer for {5 is “no.”)



(b) This is a generalization of part (a). Explain how to build a data structure from P and 7 so that
given any line ¢, it is possible to report all the segments of 7 that intersect ¢. The space should
be at most O(nlogn) and the query time should be at most O(klog?n), where k is the number
of segments reported. (Hint: Even if you did not solve (a), you can solve part (b) by applying
the data structure of part (a) as a “black box.”)

n

Problem 6. You are given a set P = {p1,p2,...,pn} of n points in the plane. Consider all the (}) lines
passing through each pair of distinct points p;,p; € P, and let £,y to be the line of this set with the
maximum slope. We are interested in computing £,,.

(a) What is the interpretation of £,,.x in the dual plane?

(b) Give an O(nlogn) algorithm that computes £,,x. Justify your algorithm’s correctness.
Problem 7. In this problem you may assume the follow rather remarkable result, which we will not prove.

Theorem: For any set P of n points in the plane, there exists a spanning tree T" of P, whose edges
are straight line segments, such that any line in the plane, crosses at most O(y/n) edges of T

(a) Prove that the above theorem is tight in the sense that there exists a set of n points in the plane
such that for any spanning tree T' on these points, there exists a line (depending on T') that
intersects at least Q(y/n) edges of T. (Hint: For my proof, I arranged the points in a grid, and
only needed to consider horizontal and vertical lines.)

(b) (Using the above theorem) prove that there exists a path 7 (as opposed to a tree) consisting of
straight line segment that spans all the points of P, such that any line intersects at most O(y/n)
edges of .

(¢) Assuming that n is even, (using the above theorem) prove that there exists a matching M of the
points of P, such that any line intersects at most O(y/n) edges of M. (Recall that a matching is
defined to be a collection of line segments joining pairs of points of P such that each point P is
incident to exactly one segment of the collection.)

Problem 8. Consider the following two geometric graphs defined on a set P of points in the plane. For
each graph, indicate whether it is a subgraph of the Delaunay triangulation. If it is, provide a short
proof. If not, give a small counterexample. (Any counterexample should be in general position.)

(a) Box Graph: Given two points p,q € P, define box(p, ¢) to be the square centered at the midpoint
of pq having two sides parallel to the segment pqg (see part (a) of the figure below). The edge (p, q)
is in the box graph if and only if box(p, ¢) contains no other point of P (see the figure (b)).

(b) Diamond Graph: Given two points p,q € P, define diamond(p, ¢) to be the square having pq as
a diagonal (see (c) below). The edge (p,¢q) is in the diamond graph if and only if diamond(p, q)
contains no other point of P (see (d)).

T’

diamond(p, q)~
()

Figure 4: Problem 8.




Problem 9. The objective of this problem is to compute the discrepancy of a set of points in the plane, but
this time with respect to a different set, namely, the set of axis-parallel rectangles. Let P denote a set
of n points in the unit hypercube U = [0,1]2. Given any axis-parallel rectangle R define u(R) to be
the area of RNU and define pup(R) = |P N R|/|P] to be the fraction of points of P lying within R (see
Fig. 5). Define the discrepancy of P with respect to R to be Ap(R) = |p(R) — pp(R)|, and define the
rectangle discrepancy of P, denoted A(P) to be the maximum (or more accurately, the supremum) of
Ap(R) over all axis-parallel rectangles R in U.

1 . .

Figure 5: Problem 9.

Present an O(n*) time and O(n?) space algorithm for computing rectangle discrepancy of P by an-
swering the following parts. Throughout you may assume that the points of P are in general position,
but the axis-parallel rectangles that are used in the computation of the discrepancy are arbitrary.

(a) Establish a finiteness criterion for this problem by showing that there exists a set of at most
O(n*) rectangles such that A(P) is given by one of these rectangles. Call these the canonical
rectangles for P.

(b) Develop a rectangle range counting data structure of size O(n?) that can be used to compute the
number of points of P lying within any canonical rectangle in O(1) time. (Hint: The answer to the
query will involve both addition and subtraction.) Because the rectangle query is canonical, you
should not assume general position. Your procedure should allow the option of either including
or excluding points on the boundary of the rectangle.

(c) Using your solution to (b), show how to compute the discrepancy for P in O(n*) time and O(n?)
space.

Problem 10. You are given a set P of n points in R? and an approximation factor ¢ > 0. An (exact)
distance query is defined as follows. You are given a real z > 0, and you are to return a count of
all the pairs of points (p,q) € P x P, such that ||pg|| > z. In an e-approzimate distance query, your
count must include all pairs (p, ¢) where ||pq|| > z(1+¢) and it must not include any pairs (p, ¢) where
llpgll < z/(1 4 €). Pairs of points whose distances lie between these two bounds may or may not be
counted, at the discretion of the algorithm.

Explain how to preprocess P into a data structure so that e-approximate distance counting queries
can be answered in O(n/e?) time and O(n/e?) space. (Hint: Use a well-separated pair decomposition.
Explain clearly what separation factor is used and any needed modification to the WSPD construction.)

Problem 11. A number of problems do not, at first, appear to be orthogonal range searching, but they can
be reduced to orthogonal range searching. This may involve performing multiple queries, the use of
multi-level search structures, or transforming objects into higher dimensional spaces.

For each of the following query problems, explain how to answer it by reduction to one or more instances
of orthogonal range searching. In each case, indicate the query time and space of your data structure,
assuming that your structure is based on orthogonal range trees. (You do not need to assume that
fractional cascading is used, but if you do assume this, please state this fact clearly.)



(a) The data consists of a set P of n points in the plane. A query is a rectangle in which two sides
have slope +1 and two sides have slope —1. You are to report the points of P that lie within the
rectangle.

(b) The data is the same as in (a). A query is a triangle whose left side is vertical, whose bottom
edge is horizontal, and whose third side has a slope of —1. You are to report the points of P that
lie within this triangle.

(c) The data consists of a set L of n nonvertical lines in the plane. A query consists of a triple of
numbers (tg,t1,t2). You are to report the lines of L that pass above the point (0, ), below (1,#1),
and above (2,1s).

Figure 6: Problem 11.

Problem 12. Consider a set P of n points in the plane. For k < [n/2], point ¢ (which may or may not
be in P) is called a k-splitter if every line L passing through ¢ has at least k points of P lying on or
above it and at least k points on or below it. (For example the point ¢ in Fig. 7 is a 3-splitter, since
every line passing through ¢ has at least 3 points of P lying on either side. But it is not a 4-splitter
since a horizontal line through ¢ has only 3 points below it.)

Figure 7: Problem 12.

(a) Show that for all (sufficiently large) n there exists a set of n points with no |n/2]-splitter.

(b) Prove that there exists a k-splitter if and only if in the dual line arrangement, levels £ and
L, k41 can be separated by a line.

(c) Prove that any set of n points in the plane has a |n/3]-splitter.
(d) Describe an O(n?) algorithm for computing a [n/3]-splitter for point set P.
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CMSC 754: Final Exam

This exam is closed-book and closed-notes. You may use two sheets of notes, front and back. Write all
answers in the exam booklet. If you have a question, either raise your hand or come to the front of class.
Total point value is 100 points. Good luck!

In all problems, unless otherwise stated, you may assume that points are in general position. You may
make use of any results presented in class and any well known facts from algorithms or data structures.
If you are asked for an O(T(n)) time algorithm, you may give a randomized algorithm with ezpected time

O(T (n)).
Problem 1. (25 points; 4-8 points each) Give a short answer (a few sentences) to each question.

(a) Given a set P of n points in the plane, what is the maximum number of edges in P’s Voronoi
diagram? (For full credit, express your answer up to an additive constant.)

(b) Suppose we were to build a kd-tree for n points in the plane, but rather than alternating splitting
along x and then y, we perform median splits for the z-coordinates for two consecutive levels of
the tree followed by median splits for the y-coordinates for the next two consecutive levels. This
same pattern repeats every four levels. Would asymptotic query time to answer an orthogonal
range search query in the resulting be the same, larger, or smaller compared to a standard kd-tree?
(No explanation required.)

standard kd-tree Problem 1(b) Problem 1(c)

(¢) Same as (b), but suppose that we perform median splits for the z-coordinates for two consecutive
levels followed by a single median split for the y-coordinates. This pattern repeats every three
levels.

(d) True or false: Given a planar point set P, if p and ¢ are the closest points of P then pg is an edge
of P’s Delaunay triangulation?

Problem 2. (20 points) You are given two sets of points P and @ in the plane, each containing n elements.
Given an integer k, 2 < k < n, define a balanced k-corridor to be the closed region of the plane bounded
by two parallel lines that contains exactly k points of P and k points of Q). The height of a corridor is
the vertical distance h between these lines (see the figure below).

° . o .EP
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(a) Explain what a balanced k-corridor of vertical height h corresponds to in the dual plane.

(b) What conditions will be satisfied by a balanced k-corridor of minimum height in the dual setting?
Explain why.

(c) Present an O(n?logn) time algorithm, which given inputs P, Q, and k, computes the minimum
height balanced k-corridor for P and Q. (You will receive more partial credit if you present a
correct algorithm that runs in O(kn?logn) time than an incorrect algorithm.)

Problem 3. (25 points; 4-8 points each) In this problem we will consider limited halfplane range counting,
which means that we are given an upper bound k on the number of points we wish to count. Given a
halfplane h, the query returns a count of the number of points that lie in h, unless that number exceeds
k, in which case we return a special value “too many!” (see the figure below).

ans: 5 ans: “too many” ans: 2

For each of the problems below, explain how to preprocess the input set of size of n points into a data
structure so that queries can be answered in O(logn) time. If there are multiple solutions, choose one
that minimizes the asymptotic space requirements. Briefly justify the space and query time used by
your solution. (I don’t care about preprocessing time.)

You may use any data structure presented in class, either in the lecture notes or in a homework solution,
but be sure to explain any adaptations you may need to make.

(a) Let k be a fized integer constant (independent of n). The input consists of a set P of n points
in the plane. The query is a closed upper halfplane h, that is, h = {(z,y) : y > ax — b}. If
|P N h| < E, then the answer to the query is the count |P N h|. Otherwise, the query returns the
special value “too many!”

(b) Same as problem (a), but now k is an arbitrary integer between 0 and n — 1, which is fized at
preprocessing time. (Express space requirements as a function of both n and k.)

(¢) Same as problem (b), but now k is an arbitrary integer between 0 and n — 1, which is given as
part of the query.

(d) Same as problem (c), but now the slope and y-intercept of the line that defines h are rational
numbers whose numerators and denominators are integers in the range [—100, 4+100].

Hint: The following facts may be useful. Given an arrangement of n lines the plane, the combinatorial
complexity of: (a) any zone is O(n), (b) the kth level of the arrangement is O(nk'/?), (c) the total
complexity of the first k levels is O(nk).

(continued on next page)



Problem 4. (15 points) Given a set of points P in space and a parameter ¢t > 1, called the stretch factor,
a t-spanner is a subgraph G of the complete Euclidean such that the graph distance between any
two points exceeds the Fuclidean distance by a factor of at most ¢. In this problem we will consider
a variant, where, instead of considering Euclidean distances, we will instead use squared FEuclidean
distances.

More formally, consider a connected, undirected graph G whose vertices are the points of P. The
weight w(u,v) of an edge (u,v) in G is the squared Euclidean distance between u and v, which we
denote by ||uv||?. Given any x,y € P, let dg(x,y) denote the cost of a shortest path between x and y
in G, using these weights. G is called a squared t-spanner if dq(x,y) <t - ||vy||? for all z,y € P.

Present an algorithm, which, given an n-element point set P in R? and a spanner factor ¢ > 1, computes
a squared t-spanner for P. Prove that your algorithm’s correctness. As a function of n, t, and dimension
d, how many edges does your spanner contain?

Hint: Algebraic manipulation doesn’t help here. The construction is the same as the WSPD-based
spanner construction given in class, but the separation factor will be different. Be careful in working
through the inequalities. It’s easy to get lost!

Problem 5. (15 points) In Homework 4, we explored a factor-2 approximation algorithm for the following
problem. You are given n points P in the plane. Given any integer k, 1 < k < n, compute the ball
of minimum radius that contains at least k points of P. (Recall that this ball may be centered at any
point of R2.) Recall that by (P) denotes this ball and 74 (P) denotes its radius.

exact solution approximation
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The objective of this problem is to improve this result to an e-approximation. In particular, given P, k
and € > 0, your algorithm should return a ball that contains at least k points of P and whose radius is
no greater than (1+&)r,(P). The running time of your algorithm should be O((1/£?)(nlogn+n?/k?)).

To save time, you need only describe the modifications and additions relative to the solution given in
Homework 4. Justify your algorithm’s correctness, and derive its running time.



