

Nonlinear Control

Lecture1: Introduction & Phase Plane Analysis

Adeleh Arabzadeh

Islamic Azad University Sirjan Branch

Reference Books

- ► Text Book: Nonlinear Systems, H. K. Khalil, 3rd edition, Prentice-Hall, 2002
- ▶ Other reference Books:
- Applied Nonlinear Control, J. J. E. Slotine, and W. Li, Prentice-Hall, 1991
- ► Nonlinear System Analysis, M. Vidyasagar, 2nd edition, Prentice-Hall, 1993
- ► Nonlinear Control Systems, A. Isidori, 3rd edition Springer-Verlag, 1995

Introduction

Motivations

- ▶ A system is called linear if its behavior set satisfies linear superposition laws: .i.e. $\forall z_1, z_2 \in \mathcal{B}$ and constant $c \in \mathcal{R} \leadsto z_1 + z_2 \in \mathcal{B}, cz_1 \in \mathcal{B}$
- A nonlinear system is simply a system which is not linear.
- Powerful tools founded based on superposition principle make analyzing the linear systems simple.
- All practical systems posses nonlinear dynamics.
- ► Sometimes it is possible to describe the operation of physical systems by linear model around its operating points
- Linearized system can provide us an approximate behavior of the nonlinear system
- But in analyzing the overall system behavior, often linearized model inadequate or inaccurate.

- ▶ Linearization is an approximation in the neighborhood of an operating system → it can only predict local behavior of nonlinear system. (No info regarding nonlocal or global behavior of system)
- ▶ Due to richer dynamics of nonlinear systems comparing to the linear ones, there are some <u>essentially nonlinear phenomena</u> that can take place only in presence of nonlinearity
- ► Essentially nonlinear phenomena
 - ▶ Finite escape time: The state of linear system goes to infinity as $t \to \infty$; nonlinear system's state can go to infinity in *finite time*.
 - Multiple isolated equilibria: linear system can have only one isolated equilibrium point which attracts the states irrespective on the initial state; nonlinear system can have more than one isolated equilibrium point, the state may converge to each depending on the initial states.
 - ▶ Limit cycle: There is no robust oscillation in linear systems. To oscillate there should be a pair of eigenvalues on the imaginary axis which due to presence of perturbations it is almost impossible in practice; For nonlinear systems, there are some oscillations named <u>limit cycle</u> with fixed amplitude and frequency.

Essentially nonlinear phenomena

- ► Subharmonic,harmonic or almost periodic oscillations: A stable linear system under a periodic input ~> output with the same frequency; A nonlinear system under a periodic input ~> can oscillate with submultiple or multiple frequency of input or almost-periodic oscillation.
- ► Chaos: A nonlinear system may have a different steady-state behavior which is not equilibrium point, periodic oscillation or almost-periodic oscillation. This chaotic motions exhibit random, despite of deterministic nature of the system.
- Multiple modes of behavior: A nonlinear system may exhibit multiple modes of behavior based on type of excitation:
 - an unforced system may have one limit cycle.
 - Periodic excitation may exhibit harmonic, subharmonic, or chaotic behavior based on amplitude and frequency of input.
 - if amplitude or frequency is smoothly changed, it may exhibit discontinuous jump of the modes as well.

- ▶ Linear systems: can be described by a set of ordinary differential equations and usually the closed-form expressions for their solutions are derivable. Nonlinear systems: In general this is not possible → It is desired to make a prediction of system behavior even in absence of closed-form solution. This type of analysis is called qualitative analysis.
- ▶ Despite of linear systems, no tool or methodology in nonlinear system analysis is universally applicable → their analysis requires a wide verity of tools and higher level of mathematic knowledge
- ➤ : stability analysis and stabilizablity of such systems and getting familiar with associated control techniques is the basic requirement of graduate studies in control engineering.
- ► The aim of this course are
 - developing a basic understanding of nonlinear control system theory and its applications.
 - introducing tools such as Lyapunov's method analyze the system stability
 - Presenting techniques such as feedback linearization to control nonlinear systems.

► At this course we consider dynamical systems modeled by a finite number of coupled first-order ordinary differential equations:

$$\dot{x} = f(t, x, u) \tag{1}$$

where $x = [x_1, \dots, x_n]^T$: state vector, $u = [u_1, \dots, u_p]^T$: input vector, and $f(.) = [f_1(.), \dots, f_n(.)]^T$: a vector of nonlinear functions.

- ► Euq. (1) is called *state equation*.
- Another equation named output equation:

$$y = h(t, x, u) \tag{2}$$

where $y = [y_1, \dots, y_q]^T$: output vector.

- ► Equ (2) is employed for particular interest in analysis such as
 - variables which can be measured physically
 - variables which are required to behave in a desirable manner
- ► Equs (1) and (2) together are called state-space model.

► Most of our analysis are dealing with unforced state equations where u does not present explicitly in Equ (1):

$$\dot{x} = f(t, x)$$

- ▶ In unforced state equations, input to the system is **NOT** necessarily zero.
- ▶ Input can be a function of time: $u = \gamma(t)$, a feedback function of state: $u = \gamma(x)$, or both $u = \gamma(t, x)$ where is substituted in Equ (1).
- ► Autonomous or Time-invariant Systems:

$$\dot{x} = f(x) \tag{3}$$

- function of f does not explicitly depend on t.
- Autonomous systems are invariant to shift in time origin, i.e. changing t to $\tau = t a$ does not change f.
- The system which is not autonomous is called nonautonomous or time-varying.

- ▶ Equilibrium Point $x = x^*$
 - x* in state space is equilibrium point if whenever the state starts at x*, it will remain at x* for all future time.
 - for autonomous systems (3), the equilibrium points are the real roots of equation: f(x) = 0.
 - ▶ Equilibrium point can be
 - Isolated: There are no other equilibrium points in its vicinity.
 - ► a continuum of equilibrium points

Pendulum

Employing Newton's second law of motion, equation of pendulum motion is:

$$ml\ddot{\theta} = -mg\sin\theta - kl\dot{\theta}$$

1: length of pendulum rod;

m: mass of pendulum bob;

k: coefficient of friction;

 θ : angle subtended by rod and vertical ax

► To obtain state space model, let $x_1 = \theta$, $x_2 = \dot{\theta}$:

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -\frac{g}{l} sinx_1 - \frac{k}{m} x_2$$

Pendulum.

Pendulum

▶ To find equilibrium point: $\dot{x}_1 = \dot{x}_2 = 0$

$$0 = x_2$$

$$0 = -\frac{g}{l} sinx_1 - \frac{k}{m} x_2$$

- ▶ The Equilibrium points are at $(n\pi, 0)$ for $n = 0, \pm 1, \pm 2, ...$
 - ▶ Pendulum has two equilibrium points: (0,0) and $(\pi,0)$,
 - Other equilibrium points are repetitions of these two which correspond to number of pendulum full swings before it rests
- ▶ Physically we can see that the pendulum rests at (0,0), but hardly maintain rest at $(\pi,0)$

Tunnel Diode Circuit

- ▶ The tunnel diode is characterized by $i_R = h(v_R)$
- ► The energy-storing elements are C and L which assumed are linear and time-invariant $i_C = C \frac{dv_C}{dt}$, $v_L = L \frac{di_L}{dt}$.
- ► Employing Kirchhoff's current law: $i_C + i_R i_I = 0$
- ► Employing Kirchhoff's voltage law: $v_C - E + Ri_I + v_I = 0$
- ▶ for state space model, let $x_1 = v_C$, $x_2 = i_L$ u = E as a constant input:

$$\dot{x}_1 = \frac{1}{C}[-h(x_1) + x_2]$$

$$\dot{x}_2 = \frac{1}{L}[-x_1 - Rx_2 + u]$$

(a) Tunnel diode circuit

(b) tunnel diode v_R - i_R characteristic.

Tunnel Diode Circuit

▶ To find equilibrium point: $\dot{x}_1 = \dot{x}_2 = 0$

$$0 = \frac{1}{C}[-h(x_1) + x_2]$$
$$0 = \frac{1}{L}[-x_1 - Rx_2 + u]$$

Equilibrium points depends on E and R

$$x_2 = h(x_1) = \frac{E}{R} - \frac{1}{R}x_1$$

Equilibrium points of the tunnel diode circuit.

- For certain E and R, it may have 3 points (Q_1, Q_2, Q_3) .
- ▶ if E^{\uparrow} , and same $R \rightsquigarrow$ only Q_3 exists.
- ▶ if $E \downarrow$, and same $R \leadsto$ only Q_1 exists.

- Phase Plane Analysis: is a graphical method for studying <u>second-order</u> systems by
 - providing motion trajectories corresponding to various initial conditions.
 - then examine the qualitative features of the trajectories.
 - finally obtaining information regarding the stability and other motion patterns of the system.
- ▶ It was introduced by mathematicians such as Henri Poincare in 19th century.

Motivations

- ► Importance of Knowing Phase Plane Analysis:
 - Since it is on <u>second-order</u>, the solution trajectories can be represented by carves in plane → provides easy visualization of the system qualitative behavior.
 - Without solving the nonlinear equations analytically, one can study the behavior of the nonlinear system from various initial conditions.
 - It is not restricted to small or smooth nonlinearities and applies equally well to strong and hard nonlinearities.
 - ► There are lots of practical systems which can be approximated by second-order systems, and apply phase plane analysis.
- ▶ Disadvantage of Phase Plane Method: It is restricted to at most second-order and graphical study of higher-order is computationally and geometrically complex.

Concept of Phase Plane

▶ Phase plane method is applied to autonomous 2nd order system described as follows:

$$\dot{x}_1 = f_1(x_1, x_2) \tag{1}$$

$$\dot{x}_2 = f_2(x_1, x_2)$$
 (2)

- $\blacktriangleright f_1, f_2: \mathcal{R}^2 \to \mathcal{R}.$
- System response $(x(t) = (x_1(t), x_2(t)))$ to initial condition $x_0 = (x_{10}, x_{20})$ is a mapping from \mathcal{R} to \mathcal{R}^2 .
- ▶ The $x_1 x_2$ plane is called **State plane** or **Phase plane**
- ▶ The locus in the $x_1 x_2$ plane of the solution x(t) for all $t \ge 0$ is a curve named **trajectory** or **orbit** that passes through the point x_0
- ► The family of phase plane trajectories corresponding to various initial conditions is called Phase protrait of the system.

How to Construct Phase Plane Trajectories?

- Despite of exiting several routines to generate the phase portraits by computer, it is useful to learn roughly sketch the portraits or quickly verify the computer outputs.
- Some methods named: Isocline, Vector field diagram, delta method, Pell's method, etc
- Vector Field Diagram:
 - Revisiting (1) and (2): $\dot{x} = f(x) = \begin{bmatrix} f_1(x) \\ f_2(x) \end{bmatrix}, \dot{x} = (\dot{x}_1, \ \dot{x}_2)$
 - ▶ To each vector (x_1, x_2) , a corresponding vector $(f_1(x_1, x_2), f_2(x_1, x_2))$ known as a **vector field** is associated.
 - Example: If $f(x) = (2x_1^2, x_2)$, for x = (1, 1), next point is (1, 1) + (2, 1) = (3, 2)

Vector Field Diagram

- By repeating this for sufficient point in the state space, a vector field diagram is obtained.
- Noting that $\frac{dx_2}{dx_1} = \frac{f_2}{f_1} \rightarrow$ vector field at a point is tangent to trajectory through that point.
 - ▶ : starting from x₀ and by using the vector field with sufficient points, the trajectory can be constructed.
- ► Example: Pendulum without friction

Vector field diagram of the pendulum equation without friction.

Isocline Method

- ▶ The term isocline derives from the Greek words for "same slope."
- \blacktriangleright Consider again Eqs (1) and (2), the slope of the trajectory at point x:

$$S(x) = \frac{dx_2}{dx_1} = \frac{f_2(x_1, x_2)}{f_1(x_1, x_2)}$$

- ▶ An isocline with slope α is defined as $S(x) = \alpha$
- ▶ ∴ all the points on the curve $f_2(x_1, x_2) = \alpha f_1(x_1, x_2)$ have the same tangent slope α .
- Note that the "time" is eliminated here \Rightarrow The responses $x_1(t)$ and $x_2(t)$ cannot be obtained directly.
- Only qualitative behavior can be concluded, such as stable or oscillatory response.

Isocline Method

- ▶ The algorithm of constructing the phase portrait by isocline method:
 - 1. Plot the curve $S(x) = \alpha$ in state-space (phase plane)
 - 2. Draw small line with slope α . Note that the direction of the line depends on the sign of f_1 and f_2 at that point.

3. Repeat the process for sufficient number of α s.t. the phase plane is full of isoclines.

Example: Pendulum without Friction

- ► Consider the dynamics $\dot{x}_1 = x_2$, $\dot{x}_2 = -\sin x_1$ $\therefore S(x) = \frac{-\sin x_1}{x_2} = c$
- ▶ Isoclines: $x_2 = \frac{-1}{c} sin x_1$
- Trajectories for different init. conditions can be obtained by using the given algorithm
- ▶ The response for $x_0 = (\frac{\pi}{2}, 0)$ is depicted in Fig.
- ▶ The closed curve trajectory confirms marginal stability of the system.

Example: Pendulum with Friction

Dynamics of pendulum with friction:

$$\dot{x}_1 = x_2, \quad \dot{x}_2 = -0.5x_2 - \sin x_1 \quad :S(x) = \frac{-0.5 - \sin x_1}{x_2} = c$$

- ▶ Isoclines: $x_2 = \frac{-1}{0.5+c} sin x_1$
- Similar Isoclines but with different slopes
- ▶ Trajectory is drawn for $x_0 = (\frac{\pi}{2}, 0)$
- ► The trajectory shrinks like an spiral converging to the origin

Qualitative Behavior of Linear Systems

Qualitative Behavior of Linear Systems

- ► First we analyze the phase plane of linear systems since the behavior of nonlinear systems around equilibrium points is similar of linear ones
- ► For LTI system:

$$\dot{x} = Ax$$
, $A \in \mathcal{R}^{2\times 2}$, x_0 : initial state $\times x(t) = Me^{J_r t} M^{-1} x_0$
 J_r : Jordan block of A , M : Matrix of eigenvectors $M^{-1}AM = J_r$

▶ Depending on the eigenvalues of A, J_r has one of the following forms:

$$\lambda_i$$
: real & distinct $\leadsto J_r = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$
 λ_i : real & multiple $\leadsto J_r = \begin{bmatrix} \lambda & k \\ 0 & \lambda \end{bmatrix}, \ k = 0, 1,$
 λ_i : complex $\leadsto J_r = \begin{bmatrix} \alpha & -\beta \\ \beta & \alpha \end{bmatrix}$

The system behavior is different at each case

Case 1: $\lambda_1 \neq \lambda_2 \neq 0$

- ▶ In this case $M = [v_1 \ v_2]$ where v_1 and v_2 are real eigenvectors associated with λ_1 and λ_2
- ► To transform the system into two decoupled first-order diff equations, let $z = M^{-1}x$:

$$\dot{z}_1 = \lambda_1 z_1
\dot{z}_2 = \lambda_2 z_2$$

▶ The solution for initial states (z_{01}, z_{02}) :

$$z_1(t) = z_{10}e^{\lambda_1 t}, \quad z_2(t) = z_{20}e^{\lambda_2 t}$$

eliminating $t \rightsquigarrow z_2 = Cz_1^{\lambda_2/\lambda_1}, \quad C = z_{20}/(z_{10})^{\lambda_2/\lambda_1}$ (3)

- ▶ Phase portrait is obtained by changing $C \in \mathcal{R}$ and plotting (3).
- ▶ The phase portrait depends on the sign of λ_1 and λ_2 .

Case 1.1: $\lambda_2 < \lambda_1 < 0$

- ▶ $t \to \infty$ ⇒ the terms $e^{\lambda_1 t}$ and $e^{\lambda_2 t}$ tend to zero
 - Trajectories from entire state-space tend to origin

 → the equilibrium point x = 0 is stable node.
- $e^{\lambda_2 t} \rightarrow 0$ faster $\rightsquigarrow \lambda_2$ is fast eigenvalue and v_2 is fast eigenvector.
- ► Slope of the curves: $\frac{dz_2}{dz_1} = C \frac{\lambda_2}{\lambda_1} z_1^{(\lambda_2/\lambda_1 1)}$
- $\blacktriangleright \lambda_2 < \lambda_1 < 0 \longrightarrow \lambda_2/\lambda_1 > 1$, so slope is
 - ▶ **zero** as $z_1 \longrightarrow 0$
 - ▶ infinity as $z_1 \longrightarrow \infty$.
- ▶ ∴ The trajectories are
 - ▶ tangent to z₁ axis, as they approach to origin
 - ▶ parallel to z_2 axis, as they are far from origin.

Case 1.1: $\lambda_2 < \lambda_1 < 0$

- ▶ Since z_2 approaches to zero faster than z_1 , trajectories are sliding along z_1 axis
- ► In X plane also trajectories are:
 - ▶ tangent to the slow eigenvector v₁ for near origin
 - parallel to the fast eigenvector v₂ for far from origin

Case 1.2: $\lambda_2 > \lambda_1 > 0$

- ▶ $t \to \infty$ ⇒ the terms $e^{\lambda_1 t}$ and $e^{\lambda_2 t}$ grow exponentially, so
 - ► The shape of the trajectories are the same, with opposite directions
 - ► The equilibrium point is socalled unstable node

Case 1.3: $\lambda_2 < 0 < \lambda_1$

- $ightharpoonup t o \infty \Rightarrow e^{\lambda_2 t} \longrightarrow 0$, but $e^{\lambda_1 t} \longrightarrow \infty$, so
 - \triangleright λ_2 : stable eigenvalue, ν_2 : stable eigenvector
 - $ightharpoonup \lambda_1$: unstable eigenvector
- ▶ Trajectories are negative exponentials since $\frac{\lambda_2}{\lambda_1}$ is negative.
- ▶ Trajectories are
 - decreasing in z_2 direction, but increasing in z_1 direction
 - ▶ tangent to z_1 as $|z_1| \to \infty$ and tangent to z_2 as $|z_1| \to 0$

Case 1.3: $\lambda_2 < 0 < \lambda_1$

- ► The exceptions of this hyperbolic shape:
 - two trajectories along z_2 -axis $\rightarrow 0$ as $t \rightarrow 0$, called stable trajectories
 - ▶ two trajectories along z_1 -axis $\to \infty$ as $t \to 0$, called unstable trajectories
- ► This equilibrium point is called saddle point
- ▶ Similarly in X plane, stable trajectories are along v_2 , but unstable trajectories are along the v_1
- ▶ For $\lambda_1 < 0 < \lambda_2$ the direction of the trajectories are changed.

Case 2: Complex Eigenvalues, $\lambda_{1,2} = \alpha \pm j\beta$

$$\dot{z}_1 = \alpha z_1 - \beta z_2
\dot{z}_2 = \beta z_1 + \alpha z_2$$

► The solution is oscillatory ⇒ polar coordinates

$$(r = \sqrt{z_1^2 + z_2^2}, \ \theta = \tan^{-1}(\frac{z_2}{z_1}))$$

$$\dot{r} = \alpha r \rightsquigarrow r(t) = r_0 e^{\alpha t}$$

 $\dot{\theta} = \beta \rightsquigarrow \theta(t) = \theta_0 + \beta t$

- ▶ This results in Z plane is a logarithmic spiral where α determines the form of the trajectories:
 - ▶ α < 0 : as $t \to \infty \leadsto r \to 0$ and angle θ is rotating. The spiral converges to origin \Longrightarrow Stable Focus.
 - ▶ $\alpha > 0$: as $t \to \infty \leadsto r \to \infty$ and angle θ is rotating. The spiral diverges away from origin \Longrightarrow Unstable Focus.
 - $\sim \alpha = 0$: Trajectories are circles with radius $r_0 \Longrightarrow Center$

Case 2: Complex Eigenvalues, $\lambda_{1,2} = \alpha \pm j\beta$

Typical trajectories in the case of complex eigenvalues. (a) $\alpha<0$; (b) $\alpha>0$; (c) $\alpha=0$.

Case 3: Nonzero Multiple Eigenvalues $\lambda_1 = \lambda_2 = \lambda \neq 0$

Let
$$z = M^{-1}x$$
: $\dot{z}_1 = \lambda z_1 + kz_2, \quad \dot{z}_2 = \lambda z_2$
the solution is $z_1(t) = e^{\lambda t}(z_{10} + kz_{20}t), \quad z_2(t) = z_{20}e^{\lambda t} \rightsquigarrow z_1 = z_2 \left[\frac{z_{10}}{z_{20}} + \frac{k}{\lambda} ln \left(\frac{z_2}{z_{20}} \right) \right]$

- ▶ Phase portrait are depicted for k = 0 and k = 1.
- ▶ When the eignevectors are different $\rightsquigarrow k = 0$:
 - similar to Case 1, for $\lambda < 0$ is stable, $\lambda > 0$ is unstable.
 - ▶ Decaying rate is the same for both modes $(\lambda_1 = \lambda_2) \rightsquigarrow$ trajectories are lines

Case 3: Nonzero Multiple Eigenvalues $\lambda_1 = \lambda_2 = \lambda \neq 0$

- ► There is no fast-slow asymptote.
- \triangleright k=1 is more complex, but it is still similar to Case 1:

Case 4.1: One eigenvalue is zero $\lambda_1 = 0, \quad \lambda_2 \neq 0$

- ► A is singular in this case
- Every vector in null space of A is an equilibrium point
- There is a line (subspace) of equilibrium points
- ▶ $M = [v_1 \ v_2], \ v_1, \ v_2$: corresponding eigenvectors, $v_1 \in \mathcal{N}(A)$.

$$\dot{z}_1 = 0, \ \dot{z}_2 = \lambda_2 z_2$$

solution: $z_1(t) = z_{10}, \ z_2(t) = z_{20} e^{\lambda_2 t}$

▶ Phase portrait depends on sign of λ_2 :

- $\lambda_2 < 0$: Trajectories converge to equilibrium line
- $\lambda_2 > 0$: Trajectories diverge from equilibrium line

Case 4.2: Both eigenvalues zero $\lambda_1 = \lambda_2 = 0$

Let
$$z = M^{-1}x$$
 $\dot{z}_1 = z_2, \ \dot{z}_2 = 0$ solution: $z_1(t) = z_{10} + z_{20}t, \ z_2(t) = z_{20}$

- $ightharpoonup z_1$ linearly increases/decreases base on the sign of z_{20}
- $ightharpoonup z_2$ axis is equilibrium subspace in Z-plane
- ▶ Dotted line is equilibrium subspace
- ▶ The difference between Case 4.1 and 4.2: all trajectories start off the equilibrium set move parallel to it.

As Summary:

- Six types of equilibrium points can be identified:
 - stable/unstable node
 - ► saddle point
 - stable/ unstable focus
 - center
- ► Type of equilibrium point depends on sign of the eigenvalues
 - ▶ If real part of eignevalues are Positive → unstability
 - ▶ If real part of eignevalues are Negative → stability
- ► All properties for linear systems hold globally
- ► Properties for nonlinear systems only hold locally

Local Behavior of Nonlinear Systems

Local Behavior of Nonlinear Systems

- Qualitative behavior of nonlinear systems is obtained locally by linearization around the equilibrium points
- ► Type of the perturbations and reaction of the system to them determines the degree of validity of this analysis
- ▶ A simple example: Consider the linear perturbation case $A \longrightarrow A + \Delta A$, where $\Delta A \in \mathbb{R}^{2 \times 2}$: small perturbation
- ► Eigenvalues of a matrix continuously depend on its parameters
 - Positive (Negative) eigenvalues of A remain positive (negative) under small perturbations.
 - ▶ For eigenvalues on the $j\omega$ axis no matter how small perturbation is, it changes the sign of eigenvalue.
- ▶ Therefore
 - node or saddle point or focus equilibrium point remains the same under small perturbations
 - ► This analysis is not valid for a center equilibrium point

▶ Multiple Equilibria

- ► Linear systems can have
 - ▶ an isolated equilibrium point or
 - ightharpoonup a continuum of equilibrium points (When det A = 0)
- Unlike linear systems, nonlinear systems can have multiple isolated equilibria.
- Qualitative behavior of second-order nonlinear system can be investigated by
 - generating phase portrait of system globally by computer programs
 - linearize the system around equilibria and study the system behavior near them without drawing the phase portrait
 - ▶ Let (x_{10}, x_{20}) are equilibrium points of

$$\dot{x}_1 = f_1(x_1, x_2)$$

$$\dot{x}_2 = f_2(x_1, x_2)$$

- ▶ f_1 , f_2 are continuously differentiable about (x_{10}, x_{20})
- Since we are interested in trajectories near (x_{10}, x_{20}) , define $x_1 = y_1 + x_{10}$, $x_2 = y_2 + x_{20}$
- y_1, y_2 are small perturbations form equilibrium point.

Qualitative Behavior Near Equilibrium Points

Expanding into its Taylor series

$$\dot{x}_1 = \dot{x}_{10} + \dot{y}_1 = \underbrace{f_1(x_{10}, x_{20})}_{0} + \frac{\partial f_1}{\partial x_1} \bigg|_{(x_{10}, x_{20})} y_1 + \frac{\partial f_1}{\partial x_2} \bigg|_{(x_{10}, x_{20})} y_2 + H.O.T.$$

$$\dot{x}_2 = \dot{x}_{20} + \dot{y}_2 = \underbrace{f_2(x_{10}, x_{20})}_{0} + \frac{\partial f_2}{\partial x_1}\bigg|_{(x_{10}, x_{20})} y_1 + \frac{\partial f_2}{\partial x_2}\bigg|_{(x_{10}, x_{20})} y_2 + H.O.T.$$

► For sufficiently small neighborhood of equilibrium points, H.O.T. are negligible

$$\begin{cases} \dot{y}_1 = a_{11}y_1 + a_{12}y_2 \\ \dot{y}_2 = a_{21}y_1 + a_{22}y_2 \end{cases}, \quad a_{ij} = \frac{\partial f_i}{\partial x} \bigg|_{x_0}, \quad i = 1, 2$$

▶ The equilibrium point of the linear system is $(y_1 = y_2 = 0)$

$$\dot{y} = Ay, \quad A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix} = \frac{\partial f}{\partial x} \Big|_{x_0}$$

Qualitative Behavior Near Equilibrium Points

- ► Matrix $\frac{\partial f}{\partial x}$ is called Jacobian Matrix.
- ► The trajectories of the nonlinear system in a small neighborhood of an equilibrium point are close to the trajectories of its linearization about that point:
- ▶ if the origin of the linearized state equation is a
 - stable (unstable) node, or a stable (unstable) focus or a saddle point,
- then in a small neighborhood of the equilibrium point, the trajectory of the nonlinear system will behave like a
 - stable (unstable) node, or a stable (unstable) focus or a saddle point.

Example: Tunnel Diode Circuit

$$\dot{x}_1 = \frac{1}{C}[-h(x_1) + x_2]$$

$$\dot{x}_2 = \frac{1}{L}[-x_1 - Rx_2 + u]$$

▶ $u=1.2v,~R=1.5K\Omega,~C=2pF,~L=5\mu H$, time in nanosecond, current in mA

$$\dot{x}_1 = 0.5[-h(x_1) + x_2]$$

 $\dot{x}_2 = 0.2[-x_1 - 1.5x_2 + 1.2]$

- ► Suppose $h(x_1) = 17.76x_1 103.79x_1^2 + 229.62x_1^3 226.31x_1^4 + 83.72x_1^5$
- equilibrium points $(\dot{x}_1 = \dot{x}_2 = 0)$: $Q_1 = (0.063, 0.758), \ Q_2 = (0.285, 0.61), \ Q_3 = (0.884, 0.21)$

Example: Tunnel Diode Circuit

- ► The global phase portrait is generated by a computer program is shown in Fig.
- ► Except for two special trajectories which approach Q₂, all trajectories approach either Q₁ or Q₃.
- ▶ Near equilibrium points Q_1 and Q_3 are stable nodes, Q_2 is like saddle point.
- ► The two special trajectories from a curve that divides the plane into two halves with different behavior (separatrix curves).
- ► All trajectories originating from left side of the curve approach to Q₁
- ► All trajectories originating from left side of the curve approach to Q₃

Example: Tunnel Diode Circuit

Jacobian matrix

$$\frac{\partial f}{\partial x} = \begin{bmatrix} 0.5\dot{h}(x_1) & 0.5\\ -0.2 & -0.3 \end{bmatrix}$$

$$\dot{h}(x_1) = \frac{dh}{dx_1} = 17.76 - 207.58x_1 + 688.86x_1^2 - 905.24x_1^3 + 418.6x_1^4$$

 \triangleright Evaluate the Jacobian matrix at the equilibriums Q_1 , Q_2 , Q_3 :

$$\begin{aligned} Q_1 &= (0.063, 0.758), \ A_1 = \begin{bmatrix} -3.598 & 0.5 \\ -0.2 & -0.3 \end{bmatrix}, \ \lambda_1 = -3.57, \lambda_2 = -0.33 \ \text{stable node} \\ Q_2 &= (0.285, 0.61), \ A_2 = \begin{bmatrix} 1.82 & 0.5 \\ -0.2 & -0.3 \end{bmatrix}, \ \lambda_1 = 1.77, \lambda_2 = -0.25 \ \text{saddle point} \\ Q_3 &= (0.884, 0.21), \ A_3 = \begin{bmatrix} -1.427 & 0.5 \\ -0.2 & -0.3 \end{bmatrix}, \ \lambda_1 = -1.33, \lambda_2 = -0.4 \ \text{stable node} \end{aligned}$$

▶ ∴ similar results given from global phase portrait.

Qualitative Behavior Near Equilibrium Points

- ▶ In practice, There are only two stable equilibrium points: Q_1 or Q_3 .
- ► Equilibrium point at Q₂ in never observed,
 - ▶ Even if set up the exact initial conditions corresponding t Q_2 , the ever-present physical noise causes the trajectory to diverge from Q_2
- Such circuit is called bistable, since it has two steady-state operating points.

► A system oscillates when it has a nontrivial periodic solution

$$x(t+T) = x(t), \forall t \ge 0, \text{ for some } T > 0$$

- ▶ The word "nontrivial" is used to exclude the constant solutions.
- ► The image of a periodic solution in the phase portrait is a closed trajectory, calling periodic orbit or closed orbit.
- ▶ We have already seen oscillation of linear system with eigenvalues $\pm j\beta$.
- ▶ The origin of the system is a center, and the trajectories are closed
- the solution in Jordan form:

$$z_1(t) = r_0 \cos(\beta t + \theta_0), \quad z_2 = r_0 \sin(\beta t + \theta_0)$$

 $r_0 = \sqrt{z_{10}^2 + z_{20}^2}, \quad \theta_0 = \tan^{-1} \frac{z_{20}}{z_{10}}$

- ▶ r₀: amplitude of oscillation
- Such oscillation where there is a continuum of closed orbits is referred to harmonic oscillator.

► A system oscillates when it has a nontrivial periodic solution

$$x(t+T) = x(t), \forall t \ge 0, \text{ for some } T > 0$$

- ▶ The word "nontrivial" is used to exclude the constant solutions.
- ► The image of a periodic solution in the phase portrait is a closed trajectory, calling periodic orbit or closed orbit.
- ▶ We have already seen oscillation of linear system with eigenvalues $\pm j\beta$.
- ▶ The origin of the system is a center, and the trajectories are closed
- the solution in Jordan form:

$$z_1(t) = r_0 \cos(\beta t + \theta_0), \quad z_2 = r_0 \sin(\beta t + \theta_0)$$

 $r_0 = \sqrt{z_{10}^2 + z_{20}^2}, \quad \theta_0 = \tan^{-1} \frac{z_{20}}{z_{10}}$

- ▶ r₀: amplitude of oscillation
- Such oscillation where there is a continuum of closed orbits is referred to harmonic oscillator.

- ▶ The physical mechanism leading to these oscillations is a periodic exchange of energy stored in the capacitor (electric field) and the inductor (magnetic field).
- ▶ We have seen that such oscillation is not robust → any small perturbations destroy the oscillation.
- ► The linear oscillator is not structurally stable
- The amplitude of the oscillation depends on the initial conditions.
- ► These problems can be eliminated in nonlinear oscillators. A practical nonlinear oscillator can be build such that
 - ► The nonlinear oscillator is structurally stable
 - The amplitude of oscillation (at steady state) is independent of initial conditions.

- On phase plane, a limit cycle is defined as an isolated closed orbit.
- ► For limit cycle the trajectory should be
 - 1. closed: indicating the periodic nature of the motion
 - 2. isolated: indicating limiting nature of the cycle with nearby trajectories converging to/ diverging from it.
- ▶ The mass spring damper does not have limit cycle; they are not isolated.
- ▶ Depends on trajectories motion pattern in vicinity of limit cycles, there are three type of limit cycle:
 - ▶ Stable Limit Cycles: as $t \to \infty$ all trajectories in the vicinity converge to the limit cycle.
 - ▶ Unstable Limit Cycles: as $t \to \infty$ all trajectories in the vicinity diverge from the limit cycle.
 - ▶ Semi-stable Limit Cycles: as $t \to \infty$ some trajectories in the vicinity converge to/ and some diverge from the limit cycle.

Stable, unstable, and semi-stable limit cycles

Example1.a: stable limit cycle

$$\dot{x}_1 = x_2 - x_1(x_1^2 + x_2^2 - 1)$$

 $\dot{x}_2 = -x_1 - x_2(x_1^2 + x_2^2 - 1)$

▶ Polar coordinates $(x_1 := rcos(\theta), x_2 =: rsin(\theta))$

$$\dot{r} = -r(r^2 - 1)
\dot{\theta} = -1$$

- ▶ If trajectories start on the unit circle $(x_1^2(0) + x_2^2(0) = r^2 = 1)$, then $\dot{r} = 0 \Longrightarrow$ The trajectory will circle the origin of the phase plane with period of $\frac{1}{2\pi}$.
- $ightharpoonup r < 1 \implies \dot{r} > 0 \implies$ trajectories converges to the unit circle from inside.
- ▶ $r > 1 \implies \dot{r} < 0 \implies$ trajectories converges to the unit circle from outside.
- ► Unit circle is a stable limit cycle for this system

Example1.b: unstable limit cycle

$$\dot{x}_1 = x_2 + x_1(x_1^2 + x_2^2 - 1)$$

 $\dot{x}_2 = -x_1 + x_2(x_1^2 + x_2^2 - 1)$

▶ Polar coordinates $(x_1 := rcos(\theta), x_2 =: rsin(\theta))$

$$\dot{r} = r(r^2 - 1)
\dot{\theta} = -1$$

- If trajectories start on the unit circle $(x_1^2(0) + x_2^2(0) = r^2 = 1)$, then $\dot{r} = 0 \Longrightarrow$ The trajectory will circle the origin of the phase plane with period of $\frac{1}{2\pi}$.
- ▶ $r < 1 \implies \dot{r} < 0 \Longrightarrow$ trajectories diverges from the unit circle from inside.
- ▶ $r > 1 \implies \dot{r} > 0 \implies$ trajectories diverges from the unit circle from outside.
- Unit circle is an unstable limit cycle for this system

Example1.c: semi stable limit cycle

$$\dot{x}_1 = x_2 - x_1(x_1^2 + x_2^2 - 1)^2$$

 $\dot{x}_2 = -x_1 - x_2(x_1^2 + x_2^2 - 1)^2$

Polar coordinates $(x_1 := rcos(\theta), x_2 =: rsin(\theta))$ $\dot{r} = -r(r^2 - 1)^2$ $\dot{\theta} = -1$

- ▶ If trajectories start on the unit circle $(x_1^2(0) + x_2^2(0) = r^2 = 1)$, then $\dot{r} = 0 \Longrightarrow$ The trajectory will circle the origin of the phase plane with period of $\frac{1}{2\pi}$.
- $ightharpoonup r < 1 \implies \dot{r} < 0 \Longrightarrow$ trajectories diverges from the unit circle from inside.
- ▶ $r > 1 \implies \dot{r} < 0 \implies$ trajectories converges to the unit circle from outside.
- Unit circle is a semi-stable limit cycle for this system.

Bendixson's Criterion: Nonexistence Theorem of Limit Cycle

$$\dot{x}_1 = f_1(x_1, x_2)$$

$$\dot{x}_2 = f_2(x_1, x_2)$$

$$\nabla f = \frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2}$$

Theorem (Bendixson) For the nonlinear system given no limit cycle can exist in a region Ω of the phase plane in which $\partial f_1/\partial x_1 + \partial f_2/\partial x_2$ does not vanish and does not change sign.

Example for nonexistence of limit cycle

$$\dot{x}_1 = g(x_2) + 4x_1x_2^2$$
$$\dot{x}_2 = h(x_1) + 4x_1^2x_2$$

- $\therefore \frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2} = 4(x_1^2 + x_2^2) > 0 \ \forall x \in \mathbb{R}^2$
- ▶ No limit cycle exist in \mathbb{R}^2 for this system.
- ▶ Note that: there is no equivalent theorem for higher order systems.

Poincare-Bendixson Criterion: Existence Theorem of Limit Cycle

- Existence of Limit Cycles
 - Relation between L.C. and Eq.points

Theorem (Poincare) If a limit cycle exists in the second-order autonomous system (2.1), then N = S + 1.

N: The No. of nodes, centers and foci enclosed by a L.C.

S: The No. of saddle points enclosed by a L.C.

The Limit cycle must enclose at least one eq. point

Eq. point, limit cycle, and trajectory

Theorem (Poincare-Bendixson) If a trajectory of the second-order autonomous system remains in a finite region Ω , then one of the following is true:

- (a) the trajectory goes to an equilibrium point
- (b) the trajectory tends to an asymptotically stable limit cycle
- (c) the trajectory is itself a limit cycle