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Introduction




Motivations

» A system is called linear if its behavior set satisfies linear superposition
laws: .ie. Vz1, e B andconstantce R~ z1+ 0B, c1e b

> A is simply a system which is not linear.

» Powerful tools founded based on superposition principle make analyzing
the linear systems simple.

» All practical systems posses nonlinear dynamics.

» Sometimes it is possible to describe the operation of physical systems by
linear model around its operating points

» Linearized system can provide us an approximate behavior of the
nonlinear system

» But in analyzing the overall system behavior, often linearized model
inadequate or inaccurate.




» Linearization is an approximation in the neighborhood of an operating
system ~~ it can only predict local behavior of nonlinear system. (No info
regarding nonlocal or global behavior of system)

» Due to richer dynamics of nonlinear systems comparing to the linear ones,
there are some essentially nonlinear phenomena that can take place only
in presence of nonlinearity

» Essentially nonlinear phenomena

» Finite escape time: The state of linear system goes to infinity as t — o¢;
nonllnear system s state can go to infinity in finite time.
> tiple isolated equilibria: linear system can have only one isolated

eqml br|um polnt WhIEh attracts the states irrespective on the initial state;
nonlinear system can have more than one isolated equilibrium point, the
state may converge to each depending on the initial states.

» Limit cycle: There is no robust oscillation in linear systems. To oscillate
there should be a pair of eigenvalues on the imaginary axis which due to
presence of perturbations it is almost impossible in practice; For nonlinear
systems, there are some oscillations named limit cycle with fixed amplitude
and frequency.




Essentially nonlinear phenomena

» Subharmonic,harmonic or almost periodic oscillations: A stable linear
system under a periodic input ~~ output with the same frequency;
A nonlinear system under a periodic input ~~ can oscillate with
submultiple or multiple frequency of input or almost-periodic oscillation.

» Chaos: A nonlinear system may have a different steady-state behavior
which is not equilibrium point, periodic oscillation or almost-periodic
oscillation. This chaotic motions exhibit random, despite of deterministic
nature of the system.

> Multiple modes of behavior: A nonlinear system may exhibit multiple
modes of behavior based on type of excitation:

» an unforced system may have one limit cycle.

» Periodic excitation may exhibit harmonic, subharmonic,or chaotic behavior
based on amplitude and frequency of input.

» if amplitude or frequency is smoothly changed, it may exhibit discontinuous
jump of the modes as well.




Linear systems: can be described by a set of ordinary differential
equations and usually the closed-form expressions for their solutions are
derivable. Nonlinear systems: In general this is not possible ~~ It is
desired to make a prediction of system behavior even in absence of
closed-form solution. This type of analysis is called qualitative analysis.

Despite of linear systems, no tool or methodology in nonlinear system
analysis is universally applicable ~~ their analysis requires a wide verity of
tools and higher level of mathematic knowledge

.. stability analysis and stabilizablity of such systems and getting familiar
with associated control techniques is the basic requirement of graduate
studies in control engineering.

The aim of this course are

» developing a basic understanding of nonlinear control system theory and its
applications.

» introducing tools such as Lyapunov's method analyze the system stability

» Presenting techniques such as feedback linearization to control nonlinear
systems.




At this course we consider dynamical systems modeled by a finite
number of coupled first-order ordinary differential equations:

x =f(t,x,u) (1)
_ T . o T .
where x = [xq,..., Xp]' : state vector, u = [uy....,up|": input
vector, and f(.) = [f1(.),..., fa(.)]T: a vector of nonlinear functions.

Euq. (1) is called state equation.

Another equation named output equation:

y = h(t.x, u) (2)

]T: output vector.
Equ (2) is employed for particular interest in analysis such as

» variables which can be measured physically
» variables which are required to behave in a desirable manner

Equs (1) and (2) together are called state-space model.




» Most of our analysis are dealing with unforced state equations where u
does not present explicitly in Equ (1):

x = f(t,x)

» In unforced state equations, input to the system is NOT necessarily zero.
» Input can be a function of time: v = ~(t), a feedback function of state:
u = 7(x), or both u = ~(t, x) where is substituted in Equ (1).

» Autonomous or Time-invariant Systems:

x = f(x) (3)

» function of f does not explicitly depend on t.

» Autonomous systems are invariant to shift in time origin, i.e. changing t to
7 =t — a does not change f.

» The system which is not autonomous is called nonautonomous or
time-varying.




» Equilibrium Point x = x*

>

x* in state space is equilibrium point if whenever the state starts at x*, it
will remain at x* for all future time.
for autonomous systems (3), the equilibrium points are the real roots of
equation: f(x) =0.
Equilibrium point can be

» Isolated: There are no other equilibrium points in its vicinity.

» a continuum of equilibrium points
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Pendulum

» Employing Newton's second law of motion, equation

pendulum motion is:
mlf = —mg sin @ — k¥

[: length of pendulum rod;

m: mass of pendulum bob;

k: coefficient of friction;

f: angle subtended by rod and vertical a

» To obtain state space model,
let x1 =60, xp = 6:

5{1:}{2

Xp = ——5INXy — —Xo
[ m

of

\
6 -
; N
1
m

Pendulum.
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Pendulum

» To find equilibrium point: x; = x =0

0 = X2
_ k
0 = —=sinxy ——Xxy
/ m
» The Equilibrium points are at (nr,0) for n =0, £1,+2, ...

» Pendulum has two equilibrium points: (0,0) and (,0),
» Other equilibrium points are repetitions of these two which correspond to
number of pendulum full swings before it rests

» Physically we can see that the pendulum rests at (0,0), but hardly
maintain rest at (7, 0)
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Tunnel Diode Circuit

» The tunnel diode is characterized by ip = h(ve)

» The energy-storing elements are

C and L which assumed are linear and ey
time-invariant Ic = C%, V| = | di

dt - k& + .+
» Employing Kirchhoff's current law: g
ic+ip—ip =0

{a) Tunnel diode circuit

» Employing Kirchhoff's voltage law:
vi —E+Rip+vi=0

» for state space model, let x1 = v, x2 = i| 1 -
u = E as a constant input: =
) 1 0 i Tiliat
X1 = E[—h(xl) + Xg] b)
(b} tunnel diede vg = ig characteristic.
_ 1
Xp = I[—;~c:1 — Rxo + U]
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Tunnel Diode Circuit

» To find equilibrium point: X1 = x =0

0.2 4 (o L% 10

N

— -~ /0,

1
0 = —[-h
~[-h(x1) + %)
0 = %[_Xl — Rxp + u]
» Equilibrium points depends on E ol 2
and R 'L_:'_':.'." .
E 1
X2 = h(X]_) = E — EX]_ i

» For certain E and R, it may have 3

points (@1, @2, Q3).
» if E] , and same R ~~ only Q3 exists.
» if E| , and same R ~~ only @ exists.

Equilibrium points of the tunnel diode circuit
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Phase Plane




» Phase Plane Analysis: is a graphical
method for studying second-order systems
by

» providing motion trajectories
corresponding to various initial
conditions.

» then examine the qualitative features of
the trajectories.

» finally obtaining information regarding
the stability and other motion patterns
of the system.

» |t was introduced by mathematicians such
as Henri Poincare in 19th century.
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Motivations

» Importance of Knowing Phase Plane Analysis:

» Since it is on second-order, the solution trajectories can be
represented by carves in plane ~~ provides easy visualization of the
system qualitative behavior.

» Without solving the nonlinear equations analytically, one can study
the behavior of the nonlinear system from various initial conditions.

» It is not restricted to small or smooth nonlinearities and applies
equally well to strong and hard nonlinearities.

» There are lots of practical systems which can be approximated by
second-order systems, and apply phase plane analysis.

» Disadvantage of Phase Plane Method: It is restricted to at most
second-order and graphical study of higher-order is computationally
and geometrically complex.
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Concept of Phase Plane

» Phase plane method is applied to autonomous 2nd order system
described as follows:

kl = fl(Xl.Xg) (1)
o = fhx,x) (2)

» fi. h:R?* = R.

» System response (x(t) = (x1(t). x2(t))) to initial condition
Xo = (X10. Xo0) is a mapping from R to R2.

» The x;{ — xo plane is called State plane or Phase plane

» The locus in the x; — x» plane of the solution x(t) for all t > 0 is a
curve named trajectory or orbit that passes through the point xg

» The family of phase plane trajectories corresponding to various initial
conditions is called Phase protrait of the system.
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How to Construct Phase Plane Trajectories?

» Despite of exiting several routines to
generate the phase portraits by computer, it
is useful to learn roughly sketch the portraits
or quickly verify the computer outputs.

» Some methods named: Isocline, Vector field
diagram, delta method, Pell's method, etc 5
» Vector Field Diagram: ) = (2
» Revisiting (1) and (2):

T -

k= (x) = Hi] ~ (i1, %) .

*1

ll\

» To each vector (x1,xz), a corresponding Vector field representation,
vector (fi(x1,%2), fa(x1,%2)) known as a
vector field is associated.
» Example: If f(x) = (2x3, xp), for
= (1,1), next point is
(1,1) +(2,1) =(3,2)




Vector Field Diagram

» By repeating this for sufficient point
in the state space, a vector field

diagram is obtained.

» Noting that gj;—f — %—w vector field at

a point Is tangent to trajectory
through that point.

» . starting from xp and by using the
vector field with sufficient points,
the trajectory can be constructed.

» Example: Pendulum without friction

)fl = X7

Xp = —10sinxy

Vector field diagram of the pendulum equation without fri

cticn
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Isocline Method

>

>

The term isocline derives from the Greek words for " same slope.”

Consider again Eqgs (1) and (2), the slope of the trajectory at point x:

1.X2)
1.X2)
)

. all the points on the curve f(xq, x2) = afi(x1, x2) have the same
tangent slope «.

dXz fg(X

S p— p—
(X) Xm fl(x
S(x

An isocline with slope « is defined as 8!

Note that the "time" is eliminated here = The responses x1(t) and x(t)
cannot be obtained directly.

Only qualitative behavior can be concluded, such as stable or oscillatory
response.

21




|socline Method

» The algorithm of constructing the phase portrait by isocline method:

1. Plot the curve S(x) = « in state-space (phase plane)
2. Draw small line with slope a. Note that the direction of the line depends on
the sign of f; and £, at that point.

f1>0 f,'<o

Isocline with positive slope.

3. Repeat the process for sufficient number of «a s.t. the phase plane is full of
isoclines.

22




Example: Pendulum without Friction
» Consider the dynamics x; = xp, Xp = —sinxy .".S(x) = =S . &
» lsoclines: Xy = _Tlsinxl

» Trajectories for different init. conditions can be obtained by using the
given algorithm

™

> The response for xp = (5. 0) is depicted in Fig.

» The closed curve traiectorv confirms marginal stabilitv of the system.

Graphical construction of the phase portrait of the pendulum
equation (without friction) by the isocline method.
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Example: Pendulum with Friction

» Dynamics of pendulum with friction:

X1 =xp, Xp=—0.5x —sinx; .".S(x) = _0'5;25’"’(1 =c

0.5+c
» Similar Isoclines but with different slopes

» |soclines: xp = sinxq

> Trajectory is drawn for xp = (5. 0)
» The trajectory shrinks like an spiral converging to the origin

(3=}
|

I
I

Graphical construction of the phase portrait of the pend
equation (with friction) by the isocline method.
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Qualitative Behavior of

Linear Systems




Qualitative Behavior of Linear Systems

» First we analyze the phase plane of linear systems since the behavior of
nonlinear systems around equilibrium points is similar of linear ones

» For LTI system:
X =Ax, A€ R?*?2, xq:initial state~=x(t) = Mel*M~1x
Jy: Jordan block of A, M : Matrix of eigenvectors M—1AM = J,

» Depending on the eigenvalues of A, J, has one of the following forms:

_ e | B A\ O
A; o real & distinct ~~ J, = 0 ]
. N\ k
Aj o real & multiple ~ J, = 0 ) ] . k=0.1,
o —f3
Aj . complex ~~ J, = 3 1 ]
g«

» T he system behavior is different at each case
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Case 1: \{ # A\ #0

» In this case M = [v; w»| where v; and v, are real eigenvectors associated
with A1 and A\

» To transform the system into two decoupled first-order diff equations, let

7 =M 1x:
21 = M2z

2’2 = /\222

» The solution for initial states (zp1. zo2):

A1t Aat

Zl(f] = Zip€ Zg(f):ZQ{]E'
eliminating tzy = szml. C = 250/ (z10)2/M (3)

» Phase portrait is obtained by changing C € R and plotting (3).
» [ he phase portrait depends on the sign of A\{ and A,.

27




Case 1.1: My < A1 <0

» t — oo = the terms e and et tend to zero

» Trajectories from entire state-space tend to
origin ~~ stable

node.

» Mt — 0 faster ~= \p is fast eignevalue and

v2 is fast eigenvector.

Ao /A;—1
» Slope of the curves: d? Cif { 2/A1-1)

> Ay < A1 < 0~=A3/A1 > 1, so slope is
» zeroasz; — 0
» infinity as z; — oc.
. The trajectories are

» tangent to z; axis, as they approach to origin
» parallel to 7, axis, as they are far from origin.

'._\ II | y
—— \x—“:}-’:_a-}—_v.é 3
i -
_.r .; I| |: 'l
! h
|

/ |
.'ll | | [ '. '|I

Phase portrait of a stable node in madal coo
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Case 1.1; )\2 < /\1 =0

» Since zp approaches to zero faster than zq, trajectories are sliding
along z; axis
» In X plane also trajectories are:

» tangent to the slow eigenvector v; for near origin
» parallel to the fast eigenvector v, for far from origin

[ | A

Fe
/ /// /

Phase portrait of a stable node.
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Case 1.2: Ay > A1 >0

> t — oo = the terms e’? and e*2? grow exponentially, so

» The shape of the traJectorles are the same, with opposite directions
lled unstable node

‘I'\i"‘
|

» [ he equilibrii

Phase portrait of an unstable node.

30




Case 1.3: M <0< N\

» t —>00 = e — 0, but eM! — 00,50
» )\, : stable eigenvalue, v»: stable eigenvector
» . : unstable eigenvalue, vi: unstable eigenvector

A2

» Trajectories are negative exponentials since % Is negative.

» Trajectories are
» decreasing in z, direction, but increasing in z; direction

» tangent to z; as |zl — ~c and tanegent to z> as |z;| — O
:zlr

/I Il "

/ ’I! ; l \| \
Va8 \
e o \ \\
e = 7
NEUR s
N ARRARIR o

\u | ' ./' I‘/

DA

Phase portrait of a saddle point in modal coordin:
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Case 1.3 o< 0< Ay

» The exceptions of this hyperbolic shape:

» two trajectories along z;-axis — 0 as t — 0, called stable trajectories
» two trajectories along z3-axis — oc as t — 0, called unstable trajectories

» This equilibrium point is called saddle point

» Similarly in X plane, stable trajectories are along vo, but unstable
trajectories are along the vy

» For \{ < 0 < A the direction of the trajectories are changed.

Phase portrait of a saddle point.




Case 2: Complex Eigenvalues, A\j, = a %
Z1 = az1— Bz
Zy = [z1+az

» The solution is oscillatory — polar coordinates
_ [,2, 52 _ tan—1(Z
(r=4/z +z5. #=tan""(32))

= ar—r(t) = ne™
0 = [~=0(t) =by+ Bt
» This results in Z plane is a logarithmic spiral where o determines the form

of the trajectories:
» o < 0:ast— oo~r — 0and angle @ is rotating. The spiral converges to

origin — Stable Focus.

» o > 0: as t — oo~r — oo and angle @ is rotating. The spiral diverges
away from origin — Unstable Focus.

» o = 0: Trajectories are circles with radius rp = Center

33




Case 2: Complex Eigenvalues, \1o = a £ /3

-

Z2 A

by
7\, (@~ (=

(a) (b) (c)

y// g
|

=

//f;\\ '?

\\
4

Typical trajectories in the case of complex eigenvalues.
() a<0;(b)a>0; (c) = 0.

X2 ? Xo A X2 A
) =
&g% | ;2?7 i
X 1 X é/ /// X
(a) (b) (c)

Phase portraits for (a) a stable focus; (b) an unstable focus; (c)
a center.
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Case 3: Nonzero Multiple Eigenvalues A\ = Ay = A # 0

» Let z = M~ 1x

Z1 = A+ kn 22=M\»
At

the solution is :z;(t) = e (z10 + kzaot). 2o(t) = zppeM~

e xin(2)]
7i = 75 + —In
Z0 A \ 2

» Phase portrait are depicted for k =0 and k =

» When the eignevectors are different ~~k = 0:
» similar to Case 1, for A < 0 is stable, A > 0 is unstable.

» Decaying rate is the same for both modes (A; = A\>) ~~ trajectories are lines

\

\
(a) (b)

Phase portraits for the case of nonzero multiple eigenvalues when
k=0 (D) A <0:(BYAS0

35




Case 3: Nonzero Multiple Eigenvalues Ay = X\ = A # 0

» There is no fast-slow asymptote.

» k =1 is more complex, but it is still similar to Case 1:

2+ 22‘\

@

!%;
e

7.

—
o0

N
—_—
o
~—

Phase portraits for the case of nonzero multiple eigenvalues when
k=1:(a) A< 0; (b) A> 0.
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Case 4.1: One eigenvalue is zero Ay =0. Ay #0

» A is singular in this case

» Every vector in null space of A is an
equilibrium point
» There is a line (subspace) of equilibrium

DOINTS

| X,
> M= [Vl V2] ; Vi Voo COrrespondin g NS
elgenveCtorsy V]_ E .«"‘\l" (A) . ' ’.a'/';.'" / .v’:’ /J,‘-"’ v
' : b &l
7 = 0, =Nz TEF]77 T
solution: z(t) = 2z, 2(t) = z00e™* "4/ /|//
) I, (:I,ll) ‘I
» Phase portrait depends on sign of A;: e porraits for (a) A =00 ha <0 (8) s =0, >0

» X2 < 0: Trajectories converge to
equilibrium line

» X2 > 0: Trajectories diverge from
equilibrium line




Case 4.2: Both eigenvalues zero Ay = A\» =0

» Let z = M 1x 721 = z0. 72=0

solution: z1(t) = Zzi0 + zo0t. 22(t) = 220
» 71 linearly increases/decreases base on the sign of 7
» 7o axis is equilibrium subspace in Z-plane
» Dotted line is equilibrium subspace

» The difference between Case 4.1 and 4.2: all trajectories start off the
equilibrium set move parallel to it.

Phase portraits when Ay = Az = 0.
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As Summary:

» Six types of equilibrium points can be identified:

» stable/unstable node
» saddle point

» stable/ unstable focus
> center

» Type of equilibrium point depends on sign of the eigenvalues

» |f real part of eignevalues are Positive ~~ unstability
» |f real part of eignevalues are Negative ~~ stability

» All properties for linear systems hold

» Properties for nonlinear systems only hold

39




Local Behavior of Nonlinear

Systems




41

Local Behavior of Nonlinear Systems

» Qualitative behavior of nonlinear systems is obtained locally by
linearization around the equilibrium points

» Type of the perturbations and reaction of the system to them determines
the degree of validity of this analysis

> A simple example: Consider the linear perturbation case
A — A+ AA, where AA € R?*? : small perturbation

» Eigenvalues of a matrix continuously depend on its parameters

» Positive (Negative) eigenvalues of A remain positive (negative) under small
perturbations.

» For eigenvalues on the /. axis no matter how small perturbation is, it
changes the sign of eigenvalue.

» Therefore

» node or saddle point or focus equilibrium point remains the same under
small perturbations

» This analysis is not valid for a center equilibrium point




» Multiple Equilibria
» Linear systems can have

» an isolated equilibrium point  or
> a continuum of equilibrium points (When detA = 0)

» Qualitative behavior of second-order nonlinear system can be
investigated by
» generating phase portrait of system globally by computer programs

» linearize the system around equilibria and study the system behavior near
them without drawing the phase portrait

» Let (x10, x20) are equilibrium points of

1 = fi(x,x2) ’

X = fx,x)

» f1, f are continuously differentiable about (x10, x20)

> Since we are interested in trajectories near (xio0, x20), define
X1 =¥1 T X0, X2=)y21 X2

» vy, Vo are small perturbations form equilibrium point.
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Qualitative Behavior Near Equilibrium Points

» Expanding ’ into its Taylor series

_ _ _ df
X1 = X10 + y1 = fi(x10.x20) + =—
0
_ _ _ dfr
Xp = X0 + y2 = fa(X10,X20) + Fxe
L. P S i Xl
0

(x10,%20)

(x10,%20)

y2+ H.O.T.

yo+ H.O.T.

» For sufficiently small neighborhood of equilibrium points, H.O.T. are

negligible
{ Y1 = ai1y1 + awy?
Y2 = az1y1 + axny»

O

f — =
ox

X0

=12

» The equilibrium point of the linear system is (y; = y» = 0)

;= Ay A:[é?u 312]

d21 422

ofh O

ox O
o of

ﬁ I"J}XQ

_ of
- Ox

Xp




Qualitative Behavior Near Equilibrium Points

» Matrix % is called Jacobian Matrix.

» The trajectories of the nonlinear system in a small neighborhood of an
equilibrium point are close to the trajectories of its linearization about
that point:

» if the origin of the linearized state equation is a

» stable (unstable) node, or a stable (unstable) focus or a saddle point,

» then in a small neighborhood of the equilibrium point, the trajectory of
the nonlinear system will behave like a

» stable (unstable) node, or a stable (unstable) focus or a saddle point.
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Example : Tunnel Diode Circuit

X1

X2

Z[-h(x) + ]

%[—xl — Rxy + u]

» u=12v., R=15KQ, C=2pF. L =5uH, time in nanosecond, current

in mA

X1

X2

0.5[—h(x1) + x2]
0.2[—x; — 1.5xp + 1.2

> Suppose h(x1) = 17.76x1 — 103.79x2 + 229.62x3 — 226.31x{ + 83.72x7
» equilibrium points (x; = x = 0):
@1 = (0.063,0.758), @, = (0.285,0.61). Q3 = (0.884,0.21)
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Example : Tunnel Diode Circuit

» The global phase portrait is generated by
a computer program is shown in Fig.

» Except for two special trajectories which
approach @2, all trajectories approach
either Qq or Qj3.

» Near equilibrium points Q1 and Q3 are
stable nodes, @, is like saddle point.

» The two special trajectories from a curve
that divides the plane into two halves with
different behavior (separatrix curves).

» All trajectories originating from left side
of the curve approach to (4

» All trajectories originating from left side
of the curve approach to Q3

16 X1 4
SR
=g
12 :?:-::\E‘\\‘::“ 3
2= < =
:»L‘—::?.\}\- S e e
) D -\
0.8 — dis _i—é';'_‘—.;___:"-\? ;
'r::;—!. - 5”—-_::"\:! e llf———
04 é \ e —_—
= S~ { /r;,-f/’;_';_\ _‘Aﬁ;) =
0.0 ——Fdj’?:-"‘"‘& 3 ,\\:( 2
N ~ S\ = 1
e
-04 0.0 0.4 038 1.2 1.6

Phase portrait of the tunnel diode circuit
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Example : Tunnel Diode Circuit

» Jacobian matrix

of [ 05h(x1) 05
ox -0.2 —-03
1 dh 2 3 4
h(x1) = ——=17.76 — 207.58x + 688.86x] — 905.24x] + 418.6]
X1

» Evaluate the Jacobian matrix at the equilibriums Q1, @2, Q3:

Q, = (0.063,0.758), A, — { _3’6538 _0{')53 ] A = —3.57. ), = —0.33 stable node
@, = (0.285,0.61), A, = [ 10822 _0(.}53 , A1 = 1.77, A2 = —0.25 saddle point
Qs = (0.884,0.21), As = [ __15‘3? _”[')53 A = —1.33,\, = —0.4 stable node

» . similar results given from global phase portrait.
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Qualitative Behavior Near Equilibrium Points

» In practice, There are only two stable equilibrium points: Qq or Q3.

» Equilibrium point at Q> in never observed,

» Even if set up the exact initial conditions corresponding t @, the
ever-present physical noise causes the trajectory to diverge from @

» Such circuit is called bistable, since it has two steady-state operating
points.
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Limit Cycle

| 2

| 2

A system oscillates when it has a nontrivial periodic solution
x(t+T) = x(t), ¥t =0, for someT > 0

The word "nontrivial” is used to exclude the constant solutions.

The image of a periodic solution in the phase portrait is a closed
trajectory, calling periodic orbit or closed orbit.

We have already seen oscillation of linear system with eigenvalues +;/3.
The origin of the system is a center, and the trajectories are closed

the solution in Jordan form: |
z1(t) = rycos(Bt+0p), zo = rpsin(Ft+ )
nh = waO—I—ZQ?G. o = tan™ * —

> 10 a_mpli_tude of oscillation_ _ o
Such oscillation where there is a continuum of closed orbits is referred to

harmonic oscillator.
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Limit Cycle

| 2

| 2

A system oscillates when it has a nontrivial periodic solution
x(t+T) = x(t), ¥t =0, for someT > 0

The word "nontrivial” is used to exclude the constant solutions.

The image of a periodic solution in the phase portrait is a closed
trajectory, calling periodic orbit or closed orbit.

We have already seen oscillation of linear system with eigenvalues +;/3.
The origin of the system is a center, and the trajectories are closed

the solution in Jordan form: |
z1(t) = rycos(Bt+0p), zo = rpsin(Ft+ )
nh = waO—I—ZQ?G. o = tan™ * —

> 10 a_mpli_tude of oscillation_ _ o
Such oscillation where there is a continuum of closed orbits is referred to

harmonic oscillator.
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Limit Cycle

» The physical mechanism leading to these oscillations is a periodic exchange of
energy stored in the capacitor (electric field) and the inductor (magnetic field).

» \We have seen that such oscillation is not robust~~ any small perturbations
destroy the oscillation.

» The linear oscillator is not structurally stable
» The amplitude of the oscillation depends on the initial conditions.

» These problems can be eliminated in nonlinear oscillators. A practical nonlinear
oscillator can be build such that

» [ he nonlinear oscillator is structurally stable
.- | |._. . -‘|| _-l .|_. T i |..:_I o ] -.|_ %T;..:' .;‘_.:__. |" Il.' - .';..l i = 1T .'_. ||_|

Oni s
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Limit Cycle

» On phase plane, a limit cycle is defined as an isolated closed orbit.
» For limit cycle the trajectory should be
1. closed: indicating the periodic nature of the motion
2. isolated: indicating limiting nature of the cycle with nearby trajectories

converging to/ diverging from it.
» The mass spring damper does not have limit cycle; they are not isolated.

» Depends on trajectories motion pattern in vicinity of limit cycles, there
are three type of limit cycle:

» Stable Limit Cycles: as t — oo all trajectories in the vicinity converge to
the limit cycle.

» Unstable Limit Cycles: as t — oc all trajectories in the vicinity diverge from
the limit cycle.

» Semi-stable Limit Cycles: as t — oo some trajectories in the vicinity
converge to/ and some diverge from the limit cycle.

52




Limit Cycle

converging
trajectories

ﬁ
N

limit
cycle

(a)

(b)

7

diverging X |
converging divergng
o @ | \ !
limit limit
cycle cycle
(c)

Stable, unstable. and semi-stable limit cycles
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Examplel.a: stable [imit cycle

1= xo—xi(x2+ x5 —1)

%o = —xi —x(xt+ x5 — 1)

» Polar coordinates (x1 := rcos(fl), xo =: rsin(#))
Fo= —r(r*=1)
0 = -1
» If trajectories start on the unit circle (xZ(0) + x3(0) = r? = 1), then

r = 0 = The trajectory will circle the origin of the phase plane with
period of %

» r <1 — r >0 = trajectories converges to the unit circle from inside.

» r >1 — r < 0 = trajectories converges to the unit circle from
outside.

» Unit circle is a stable limit cycle for this system
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Examplel.b: unstable limit cycle
X1 = xo+xi(x2+x5—1)
%o = —x1+x0(xf+x5—1)

» Polar coordinates (x1 := rcos(0), xo =: rsin(f))
= r(r*—1)
h = —1

» If trajectories start on the unit circle (x{(0) +x3(0) = r? = 1), then
r = 0 = The trajectory will circle the origin of the phase plane with
period of ﬁ

» r <1 — r < 0 —=— trajectories diverges from the unit circle from
inside.

» r >1 — r >0 — trajectories diverges from the unit circle from

0ut5|de.

» Unit circle is an unstable limit cycle for this system
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Examplel.c: semi stable limit cycle
X1 = Xo—x1(x2 + x5 — 1)
% = —x1—Xo(xi+ x5 —1)°

» Polar coordinates (xy := rcos(€), xo =: rsin(#))
= —r(r* —1)?
h = —1

» If trajectories start on the unit circle (x{(0) + x2(0) = r? = 1), then
r = 0 = The trajectory will circle the origin of the phase plane with
period of %

» r <1 — r < 0= trajectories diverges from the unit circle from
inside.

» r >1 — r < 0= trajectories converges to the unit circle from

outside.

» Unit circle is a semi-stable limit cycle for this system

56




57

Bendixson's Criterion: Nonexistence Theorem of Limit Cycle

Vf=251 oh

dxy Ixo

Theorem (Bendixson)  For the nonlinear system given no limit cycle can exist
in a region Q of the phase plane in which 9f;/0x, + 0f,jox, does not vanish and
does not change sign.




Limit Cycle

» Example for nonexistence of limit cycle
%1 = g(x) + 4x1x3
Xp = h(Xl) + 4){12){2

b L OB 42 4 x2) > 0 Vx € R?
» No limit cycle exist in R? for this system.

> there is no equivalent theorem for higher order systems.
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Poincare-Bendixson Criterion: Existence Theorem of Limit Cycle

® Existence of Limit Cycles

o Relation between L.C. and Eq.points

Theorem (Poincare) If a limit cycle exists in the second-order autonomous
system (2.1), then N=S+ 1 .

N: The No. of nodes, centers and foci enclosed by a L.C.
S: The No. of saddle points enclosed by a L.C.

The Limit cycle must enclose at least one eq. point

o Eq. point, limit cycle, and trajectory

Theorem (Poincare-Bendixson) If a trajectory of the second-order
autonomous system remains in a finite region K2, then one of the following is true:

{(a) the trajectory goes to an equilibrium point

(h) the irajectory tends to an asymptotically stable limit cycle

(c) the trajectory is itself a limit cycle

99




