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Each of the six questions is worth 10 points.

1. A cylindrical pipe is positioned with its axis parallel to the ground. The radius is r
and the axis is at height h above the ground. What is the minimum initial speed a
ball must have in order to be thrown over the pipe? (The ball is thrown from the
ground, A = 0, and has negligible size.) Consider two cases:

(a) The ball is allowed to touch the pipe (you may assume the pipe is frictionless).

(b) The ball is not allowed to touch the pipe.
2. These three sub-questions require only short, one or two sentence, answers.

(a) A container is divided into two equal parts by a partition. One part contains an
ideal gas at temperature T, the other part is a vacuum. The partition is quickly
removed. What is the new equilibrium temperature of the gas in the container?

(b) A semi-infinite wire, carrying a current I, ends on a infinite conducting plane
that is perpendicular to the wire. Find the magnetic field at a distance r from
the wire and a distance d from the plane.

(c) A hockey puck, sliding on a frictionless surface, is attached by a piece of string
(lying on the surface) to a vertical pole. The puck is given a tangential velocity,
and as the string wraps around the pole, the puck spirals in. Explain what, if
anything, is wrong with the following statement: “From conservation of angular
momentum, the speed of the puck will become greater as the distance from the
pole decreases. Hence the kinetic energy increases, and energy is not conserved.”

3. Only a single wire is necessary to make a telegraph connection. Both terminals may
have metalic objects buried in the ground, making the earth the other wire. Assume
that these objects are spheres of radius r buried very deep in the ground (ignore edge
effects due to the finite size of the depth). The distance between the terminals is L.
What is the resistance (due to the earth) between the terminals? Assume that the

resistivity p of the earth is uniform, and that L > r.

4. The semi-infinite circuit shown below is connected to an oscillating emf of the form
Vo coswt. Each inductor has inductance L, and each capacitor has capacitance C.



(a) What is the current (as a function of time) through the leads A, B?
(b) What is the average power delivered by the emf source?

5. A mountain climber wishes to climb a frictionless conical mountain. He wants to do
this by throwing a lasso (a rope with a loop) over the top and climbing up along the
rope (assume the mountain climber is of negligible height, so that the rope lies along
the mountain). At the bottom of the mountain are two stores, one which sells “cheap”
lassos (made of a segment of rope tied to loop of rope of fized length), and the other
which sells “deluxe” lassos (made of one piece of rope with a loop of variable length;
the loop’s length may change without any friction of the rope with itself).

When viewed from the side, this conical mountain has an angle a at its peak. For
what angles a can the climber climb up along the mountain if he uses:

(a) a “cheap” lasso and loops it once around the top of the mountain?
(b) a “deluxe” lasso and loops it once around the top of the mountain?

(c) a “cheap” lasso and loops it N times around the top of the mountain? (Assume
no friction of the rope with itself.)

(d) a “deluxe” lasso and loops it N times around the top of the mountain? (Assume
no friction of the rope with itself.)

6. This problem deals with the terminal velocity of a pencil rolling down an inclined
plane. To avoid cumbersome calculations of moments of inertia, in this problem we
will approximate the pencil as having all its mass M located on the center axis. To
avoid other complications, we will assume that the cross section of the pencil looks
like a wheel with six equally spaced spokes and no rim. The lengths of these spokes
are all . (An uncomfortable pencil to handle, indeed; but a much more comfortable
one to theorize about.)

The angle of inclination of the plane is a. Assume there is infinite friction (no slipping)
between the pencil and the plane, and that the pencil does not bounce when the end
of a “spoke” hits the plane. Assume the plane is very hard so that the “spokes” press
into the plane a negligible amount.

(a) Explain why the speed of the pencil is bounded from above (assuming that
it remains in contact with the plane at all times), i.e., why it reaches some
(average) terminal velocity.

(b) Assume that conditions are set up such that the pencil will eventually reach
some non-zero terminal (average) velocity (while remaining in contact with the
plane at all times). Describe this terminal velocity; you may do this by simply
stating the maximum speed of the axis of the pencil in this “steady” state.



(c)
(d)

(e)

What is the minimum angle of inclination a which allows a non-zero terminal
velocity to exist? (An initial kick to the pencil is allowed.)

What is the maximum angle of inclination « if the pencil is to stay in contact
with the plane at all times?

Do parts (b), (¢), and (d) for a pencil with N equally spaced “spokes”, where
N is very large. In addition to assuming N is very large, you may assume the
angle of inclination a is small, and you may use small angle approximations
(sin@ = 6, etc.) where appropriate.

For very large N, what is the maximum possible terminal velocity if the pencil
is to remain in contact with the plane at all times?
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(a)
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Imagine the ball sitting on top of the pipe. If it is given a tiny push, it will slide off
the pipe and hit the ground with a speed given by %mv2 = mg(r + h). This motion
may be reversed. The ball must therefore be thrown with a speed of just greater than
V2g(r+ h). By conservation of energy, clearly no smaller speed will work.

First Solution: (Based on a solution by Charles Santori and Ron Maimon) Let the
parabolic arc of the ball be tangent to the pipe at an angle 8 from the top of the pipe.
The velocity of the ball there is of the form (vgcos#,vgsinf). The conditions that the
parabola reach its maximum over the center of the pipe (any other situation would require
more energy) are

(vgcosB)t = rsinb, and vg sin § = gt,

for some t. These give
2 gr

vy = .
07 cosh

Let v be the speed at which the ball is thrown from the ground. Then the energy at the

ground is
1 1
—mv? = —m(
2 2

Minimizing this function of cos # yields cos# = 1/+/2, and

gr
cos @

) + mg(h+ rcoséf).

v? = g(2v2r + 2h).

Note that § = 45°, independent of the ratio of h to r .

Second Solution: Let the parabolic arc of the ball have a maximum height / and span a
distance 2d on the ground. If the initial velocity of the ball is (v, v,) and it is in the air

for time 2t, then
1
vt = d, vy, = gt, and §gt2 =1.
Eliminating ¢ gives
2
2
=g(=+2I).
vt =g(5+20)

We want to minimize this, given that the parabola goes over the pipe. The parabola is

given by
l
y= —ﬁiﬁz + 1.

The pipe’s cross section is given by

(y—h)* + 22 =r?,



Solving for the y value of their intersection gives

1
y= o (2lh+d*+ Vil + d2(4lh — 412) + 412r2).

We want the parabola to be tangent to the pipe, i.e., the discriminant here is zero.
Therefore, d? = 21(I— h4+ /(I — h)? — r?). The minus sign is the physically relevant one
(the plus sign corresponds to negative values for 2%). The above expression for v now
yields

v?=g(3l—h— /(- h)?—r?).

Minimizing this function of [ yields [ = h + %r, and
v? = g(2V2r + 2h).

[Note that this is indeed less than the value at [ = h + r, namely v? = g(3r + 2h), a
common, incorrect answer to this problem. Touching the pipe tangentially at the top is a
limiting case of having two tangent points very close together. A possible candidate for
an optimal path not covered in the above solution is one which is tangent to the top of
the pipe, and which has a larger value for d than the one just mentioned. But we know
that v? increases with d, for constant /.]

2. (a) If the partition is removed very quickly, no work is done on the gas. Therefore, the
temperature remains equal to T.

(b) Due to the cylindrical symmetry, the component of B in the tangential direction around

the wire is, from Ampere’s Law, gfﬁ{ JFrom a few applications of the right hand rule, it

is easy to see that the currents in the plane will give only tangential components.

(c) Energy is conserved, but the angular momentum of the puck is not. The force from the
string is not a central force; or rather, the “center” keeps changing. (Angular momentum
is conserved, of course, if the earth is included.)

3. It is given that L > r. Consider a sphere of radius al. (L > al > r) surrounding one of the
metal spheres. Since L >> al. the current flow is approximately spherically symmetric out to
alL. The resistance out to al is computed by considering many spherical shells of thickness
dr in series. The resistance of a shell is pdr/(47r?). Integrating this gives a resistance of

£ (1 — L) out to a radius aL. The other sphere has the same resistance out to a radius aL.
So the total resistance between the two metal spheres is %(% — ﬁ) plus the resistance between

the spheres of radius aL. This latter resistance is less than that of a cylinder of radius a and
length L, which has a resistance of pL/(ra?L?). This is negligible compared to the 1/r term



4.

above, as long as a?L > r. If L is large enough compared to r, then it is possible to pick an
a so that L > aL > a*L > r. Therefore, keeping only the leading term,

_ P
o2mr’

(a) We will use complex impedances to solve this problem, and use the equation analogous

to Ohm’s law: I = Re(V,e'“*/Z), where Z is the complex impedance. Since we have
a semi-infinite circuit here, adding another “box” to the circuit shouldn’t change the

impedance. Therefore,
z-1
7 =iwl + —C

1
Z+ wC

(iwL:I:L\/% —wQ) .

Solving for Z gives
7 =

N | —

There are two cases to consider:

i w>2/VLC:

The impedance is purely imaginary,

_ i a4
Z_Q(wL—i—L w LC)'

The plus sign is selected because for C' — oc, Z must become iwl (alternatively, for
w — oc, Z must go to oc). I = Re(V,e™!/Z) now gives

I(t) = sin wt.

ii. w<2/VLC:

The impedance is

The plus sign is chosen, since the real part of an impedance is positive. [ =
Re(V,e“"/Z) now gives

where tan ¢ = w/\/ 75 — w?.
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(b)

(a)

i w>2/VLC:
JFrom V(t) = V,coswt and the expression for I above, we see that the average
power delivered by the source goes like the average of sinwt coswt, so

(P)=0

(the real part of the impedance is zero).
ii. w<2/VLC:
The average of P = IV is the average of V, coswt times the expression for [ given

above, so we obtain

1 4
P)=-CV*/|— — w2
(P)=3CVo\ TE —v
This is non-zero because the impedance has a real part. The power delivered by the
source would be zero for a finite circuit. In our infinite case, the energy of the source

is dissipated in the form of a wave propagating along the circuit.

This will be a little wordy since we’re going to try to do this without drawing any pictures.
Cut the cone along a straight line emanating from the peak and passing through the knot
of the lasso, and roll the cone flat onto a plane. Call the resulting figure, a sector of a
circle, S. (You may want to stop reading at this point, and try to solve it yourself.)

If the cone is very sharp, then S will look like a thin “pie piece”. If the cone is very wide,
with a shallow slope, then S will look like a pie with a piece taken out of it. Points on
the straight-line boundaries of S are identified. Let P be the location of the lasso’s knot.
Then P appears on each straight-line boundary, at equal distances from the tip of S. Let
B3 be the angle of the sector S.

The path of the lasso’s loop must be a straight line on S. (The rope will take the shortest
distance between two points, since there is no friction, and rolling the cone onto a plane
does not change distances.) Such a straight line between the two identified points P is
possible only if the sector S is smaller than a semicircle, i.e., 3 < 180°.

Let C denote a cross sectional circle a distance d from the top of the conical mountain,
and let R equal the ratio of the circumference of C' to d. Then a semicircle S implies
that R = m. This then implies that the radius of C is equal to d/2. Therefore, a/2 =
sin™1(1/2). So we find that if the climber is to be able to climb up along the mountain,
then

a < 60°.

Having a < 60° guarantees that there is a loop around the cone of shorter length than
the distance straight to the peak and back.

[When viewed from the side, the rope should appear perpendicular to the side of the
mountain at the point opposite the lasso’s knot. A common mistake is to assume that

4



this implies a < 90°. This is not the case because the loop does not lie in a plane. Lying
in a plane, after all, would imply an elliptical loop; but the loop must certainly have a
discontinuous change in slope where the knot is. (For planar, triangular mountains, the
answer is a < 90°.)]

Same strategy. Roll the cone onto a plane. If the mountain very steep, the climber’s
position can fall by means of the loop growing larger; if the mountain has a shallow slope,
the climber’s position can fall by means of the loop growing smaller. The only situation
in which the climber will not fall is the one where the change in the position of the knot
along the mountain is exactly compensated by the change in length of the loop.

In terms of the figure S on a plane, the condition is that if we move P a distance [
up (down) along the mountain, the distance between the identified points P decreases
(increases) by [. We must therefore have 2sin(5/2) = 1. So § = 60°, which corresponds
to

a = 2sin"'(1/6).

There is exactly one angle for which the climber can climb up along the mountain.

Another way to see that § = 60° is to note that the three directions of rope emanating
from the knot must all have the same tension, since the deluxe lasso is one continuous
piece of rope. Therefore they must have 120° angles between themselves. This implies

that 3 = 60°.

Roll the cone N times onto a plane. The resulting figure Sy is a sector of a circle divided
into NV equal sectors, each representing a copy of the cone. Sy must be smaller than a
semicircle, so we must have R < 7/N. Therefore,

2sin~" :
a < 2sin (QN)

Roll the cone N times onto a plane. From the above reasoning, we want Ng = 60°.
Therefore,

1
6N)'

a = 2sin™}(

The main point of this problem is that when the pivot point of the pencil changes (i.e.,
when a new spoke hits the plane), the speed of the axis changes suddenly, and kinetic
energy is lost. Only the velocity component perpendicular to the new spoke survives
from the previous velocity (which was perpendicular to the old spoke). The loss in
kinetic energy is proportional to the square of the velocity right before the change. When
the speed has increased to a magnitude where this loss in kinetic energy equals the gain
from the change in potential energy, the pencil will not go any faster.



(b)

We may as well do the problem for a general number of spokes, N, and then let N = 6.

Let a be the angle of inclination of the plane, v, be the speed of the axis right before a

new spoke hits, and § = 27 /N. Then the speed of the axis right after the new spoke hits

is v, cos 3.

Equating the change in potential energy during an Nth of a rotation and the kineti/c} energy
2

loss due to the changing of the contact spoke gives %mvo(l —cos? 3) = mgr(2sin 5) sin a.

So in the “steady” state, the maximum speed v, of the axis is given by

o 4grsingsina

=
¢ sin? 3

For N =6 and g = 7/3, we have

2 .
v, = ggrsina.
If conditions have been set up (assuming contact is maintained with the plane, as stated
in the problem) such that a non-zero v, exists, it must be this.

If o < 3/2, then right after the pivot point changes, the axis must actually move upward
before falling down along the plane. For a non-zero v, to exist, we must ensure that
the axis is moving fast enough to get over this “bump” (remember that an initial kick
to the pencil is allowed). So (assuming a < (/2) the height the axis must climb is

r(l — Cos(g — a)). The speed at which the axis starts this climb is v, cos 3. Therefore,
we must have %m(vo cos 3)% > mgr(1 — cos(g — a)). Using the expression for v, above,
2sin £ sin acos? 3 Ié;
2
> (1 —cos(z — a)).
sin? 06 ( ( 2 ))

For N =6 and § = 7 /3, we have

—cosa > 1— —sina.
2 6

Squaring and solving for sin a gives

15— 63

i >
S1n & 26

(One may estimate this using sina &~ a to obtain an angle of about 10°.)

The axis of the pencil moves on a circular arc around the pivot point. The force of
gravity along the contact spoke must account for the centripetal acceleration of the axis.



The maximal centripetal acceleration occurs right before the pivot point changes, and
is equal to mv2/r. The minimal force along the spoke from gravity also occurs right
before the pivot point changes, and is mg cos(a + %) Using the expression for v, above,

mv?/r < mgcos(a + %) becomes

sin? 3
tan a S mCOt(ﬂ/?)
For N =6 and g = /3, this gives
3v3

tana < ——.
19

(A small angle approximation shows this to be about 15°.)

For small 8 and a we find, using the expressions in (b), (c), and (d):

The expression for v, becomes

v? = 2grE
o ﬁ
The condition to make it over the “bump” becomes
a 1 B9
— > —(a— )%
5> 3@=3)

For small a and § this implies a > 0 (up to third order corrections).

The condition to stay on the plane becomes
o < B/2,
In other words, if the angle of inclination is increased until the pencil starts to roll on its

own, then it will eventually leave the plane.

Combining the large-N answers to (b) and (d) gives

Uy < VI,

which is independent of N.

This last result can be obtained in a simpler way, which makes it less surprising. An
inverted pendulum’s centripetal acceleration mwv?/r must be accounted for by the weight
mg on the spoke. Therefore v? < gr. The tilt of the plane will change this by factors
essentially equal to 1, for small a.
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Each of the six questions is worth 10 points.

1.

(a)

A ball, By, with (very small) mass mg sits on top of another ball, By, with (very large)
mass m; [see the figure below]. The bottom of By is at a height A above the ground, and
the bottom of B is at a height A + d above the ground. The balls are dropped. How
high does the top ball bounce?

(You may work in the approximation where my is much heavier than m,. Assume that
the balls bounce elastically. And assume, for the sake of having a nice clean problem,
that the balls are initially separated by a small distance, and that the balls bounce
instantaneously.)

n balls, By, ..., B,, with masses my, mg, ..., my,, respectively (m; > mg > -+ > m,),
sit in a vertical stack [see the figure below]. The bottom of Bj is at a height h above
the ground, and the bottom of B,, is at a height h + £ above the ground. The balls are

dropped. In terms of n, how high does the top ball bounce?

(Work in the approximation where my is much heavier than mg, which is much heavier
than mg, etc., and assume that the balls bounce elastically. Also, make the “nice clean
problem” assumptions as in part (a).)

If A = 1 meter, what is the minimum number of balls needed in order for the top one to
bounce to a height of at least 1 kilometer?

(Assume the balls still bounce elastically [which is in reality not likely]. Ignore wind
resistance, etc., and assume that / is negligible here.)



1996 BAUPC

2. Each of the two unrelated parts of this question is worth 5 points:

(a)

Let E be the electric field due to a circular ring of radius R and uniform charge density.
Show that somewhere along the surface of a cylinder of radius R/2, whose axis passes
through the center of the ring and is perpendicular to the plane of the ring [see the figure
below], E is parallel to the axis of the cylinder.

Two cylindrical containers, A and B, have the same shape and contain equal volumes of
water. In addition to the water, B contains an immersed balloon, attached to the bottom
with a string [see the figure below]. (Assume that the mass of the air in the balloon is
negligible.) The following reasoning claims that the pressure in the water at the bottom
of A is the equal to the pressure in the water at the bottom of B. Is this reasoning correct
or incorrect? (Explain why)

Reasoning: The total upward force exerted by the bottom of container A is equal to
the weight of the water in A; likewise for B. But the force exerted by the bottom of A
is equal to the pressure times the area of the bottom; likewise for B. Therefore, since
the areas of the bottoms are the same, and the weights of the water are the same, the
pressures at the bottoms must be the same.
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3. In the figure below, the vertices ABCDFEFGH form a cube. Each of the twelve edges and
each of the twelve diagonals on the surface (two diagonals on each of the six faces) is a 19
resistor. (In other words, if £ is the length of an edge, then every segment of length £ or /24
is a 192 resistor. We have drawn a few of the diagonal resistors in the figure, but we have not
drawn them all, for the sake of having a readable figure.)

Find the resistance between points A and C.



4.
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(a) Two circular rings, in contact with each other, stand in a vertical plane [see the figure
below]. Each has radius R. A small ball, with mass m and negligible size, bounces
elastically back and forth between the rings. (Assume that the rings are held in place, so
that they always remain in contact with each other.) Assume that initial conditions have
been set up so that the ball’s motion forever lies in one parabola. Let this parabola hit
the rings at an angle # from the horizontal.

i.

ii.

Let AP, (6) be the magnitude of the change in the horizontal component of the ball’s
momentum, at each bounce. For what angle # is AP,(#) maximum?

Let S be the speed of the ball just before or after a bounce. And let F,.(6) be the
average (over a long period of time) of the magnitude of the horizontal force needed
to keep the rings in contact with each other (for example, the average tension in
a rope holding the rings together). Consider the two limits: (1) # =~ ¢, and (2)
0 ~ w/2 — ¢, where € is very small.

A. Derive approximate formulas for S, in these two limits.
B. Derive approximate formulas for F',.(6), in these two limits.

(You may use the small-angle approximations sine = ¢, cose & 1 — €2/2, etc. Give
your answers to leading order in ¢.)

(b) Consider the more general case where a ball bounces back and forth between a surface
defined by f(z) (for z > 0) and f(—=z) (for z < 0) [see the figure below]. Again,
assume that initial conditions have been set up so that the ball’s motion forever lies in
one parabola (the ball bounces back and forth between the contact points at (zg, f(z¢))
and (—zq, f(20)), for some zg).

i.

ii.

Let AP,(zo) be the absolute value of the change in the horizontal component of the
ball’'s momentum, at each bounce. For what function f(z) is AP,(z¢) independent
of the contact position zq?
Let F,(z0) be the average of the magnitude of the horizontal force needed to keep
the two halves of the surface together. For what function f(z)is F,(z¢) independent
of the contact position zq?
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5. Consider the following rigid structure: A mass M is located at the vertex of an angle formed
by two sticks [see the figure below], each having length ¢ and negligible mass. The fixed angle
between the sticks is 6.

In this problem you are asked to determine, for small 8, approximately how long this structure
can rock back and forth.

More concretely: hold the structure so that one of the sticks (say, the left one) is vertical.
Then give the mass an infinitesimal push, so that eventually the right stick will hit the ground.
Let this occur at time #g. (Assume that there is sufficient friction between the sticks and the
ground so that the sticks do not slide, and assume that the sticks do not bounce when they hit
the ground.) The left stick will lose contact with the ground, and the system will then pivot
around the right stick; the mass will first rise, and then fall until the left stick hits the ground,
etc. Eventually this rocking motion will cease, and the system will come to a halt. Let this
occur at time 7.

For small 8, calculate, to leading order in 1/, the value of T — t,.
(You may use the small-angle formulas, sin @ ~ # and cosf ~ 1 — 6% /2.)

[Helpful hints in simplifying your answer:
(@) In(l—z)=—(z+2%/2+23/3+2%/4+ ) for -1 <z <1,
(b) 1+1/32+1/52+1/7*+---=n?/8.
You get 7 points for getting a correct expression for T" — ¢y, and 3 points for simplifying it to

show the explicit leading behavior in 1/6; so you may not want to spend too much time on the
simplification.]
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6. A block with mass M (M is very large) initially sits on a frictionless plane, at a distance of 1
meter from the top of the plane [see the figure below]. The angle of inclination of the plane is
f. An elastic band connects the base of the block to the top of the plane. A cylindrical object,
C', with mass m (m is very small), sits on the elastic band where it is connected to the plane.
(The axis of C' is parallel to the ground.)

At t = 0, the block is allowed to slide down the plane, and C is allowed to roll down the elastic
band.

Assume: (1) the elastic band stretches uniformly, (2) M is large enough, and the elastic band
is weak enough, so that the band has no effect on the motion of the block; the only purpose of
the elastic band in this problem is to provide a surface for C' to roll on (and the band, since it
is stretching, may drag C along a bit), (3) there is sufficient friction between C' and the elastic
band so that C rolls on the band without slipping, and (4) m is small enough so that C' has no
effect on the stretching of the band.

Let C have radius r and moment of inertia I = pmr?.

(a) (2 points) Show that if p = 0 (i.e., I = 0), then C will always remain 1 meter away from
the block.
(b) (8 points) Show that if p > 0 (i.e., I > 0), then
i. the ratio of C’s distance travelled along the plane to the block’s distance travelled
along the plane approaches 1, as t — oc;

ii. asa function of ¢, the relative speed of the block and C' behaves like G(p)t_(l_p)/(l‘*p)7
as t — oc, where G/(p) is a function of p which you are not required to determine.
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Just before By hits the ground, both balls are moving downward with a velocity obtained
via mv?/2 = mgh; thus v = /2gh. Just after By hits the ground, it moves upward
with a speed v, while Bj is still moving downward with speed v. The relative speed is
therefore 2v. Hence, after the balls bounce off each other, the relative speed is still 2v
(as can be seen by working in the frame of reference where B; is motionless, and using
my1 3> mg). Since the speed of B; essentially stays equal to v, the upward speed of B,
is therefore 2v + v = 3v. By conservation of energy, it will therefore rise to a height of
H =d+ (3v)?/(2g), or

H=d+ 9h. (1)

Just before By hits the ground, all of the balls are moving downward with a velocity
obtained via mv?/2 = mgh; thus v = \/2gh.
Let us inductively determine the speed of each ball after it bounces off the one below it.
If B; achieves a speed of v; after bouncing off B;_q, then what is the speed of B;4; after
it bounces off B;? Well, the relative speed of B;11 and B; (right before they bounce) is
v+ v;. This is also the relative speed after they bounce. The final upward speed of B¢
is therefore (v + v;) + v;, so

Viy1 = 2v; + . (2)

Since v; = v, we obtain v; = 3v (in agreement with part (a)), vs = Tv, v4 = 15v, etc. In
general,
v, = (2" = 1o, (3)

which is easily seen to satisfy eq. (2), with the initial value v; = v.

JFrom conservation of energy, B,, will bounce to a height of H = [+ (2" — 1)?v?/(2g), or
H =1+ (2" —1)*h. (4)

If A is 1 meter, and we want this height to equal 1000 meters, then (assuming / is not
very large) we need 2" — 1 > 4/1000. Five balls won’t quite do the trick, but six will,
and in this case the height is almost four kilometers.

[Escape velocity from the earth is reached when n = 14. Of course, the elasticity assump-
tion is absurd in this case, as is the notion that one may find 14 balls with the property
that my > my > -+ > my4.]

It is fairly easy to see that at a point P far away from the ring the electric field must
point slightly away from the axis (assuming that the ring is positively charged). This is
because the distances from different points on the ring to P differ only by small second-
order effects (on the order of the ratio of R? to the square of the distance from the ring to
P), whereas the radial components of the different contributions to the field at P differ
by first-order effects of this ratio.



Now, if we can demonstrate the fact that the field points inward toward the axis at
some point on the cylinder, then we can simply invoke continuity of the field (since it
points outward far away) to say that at some point the field lies along the cylinder.
This demonstration can be done with a messy calculation for points in the plane of the
ring, but it’s easier to just use Gauss’ Law: The total flux through the cylinder must
be zero; therefore, given that it points outward somewhere (and that it obviously points
outward at the ends of an imaginary cylindrical Gaussian surface), it must point inward
somewhere.

(b) The reasoning is incorrect; the total force exerted by the bottom of B is not equal to
the pressure times the area of the bottom. The bottom is exerting a force on the string
(downward). Thus the pressure is actually a bit higher, since the sum of all the forces
exerted by the bottom must indeed be the weight of the water.

[This is consistent with the fact that a little piece of area on the bottom of B has to
support a taller column of water than one on the bottom of A. But just giving this
column-of-water reasoning only says that the given reasoning is incorrect; it doesn’t
explain why it is incorrect.]

3. First Solution: The key is to realize that if a voltage difference is applied between points A
and C, then points B, D, F', and H are all at the same potential (each one is, by symmetry, at
a potential equal to the average of the potentials at A and C). Therefore, we can bring these
four points together, without changing the resistance between A and C'. We may then put
the whole network in a plane, with A, C', G, and F as the vertices of a square, and one point
(representing B, D, I', and H) in the middle. Each side of this square is a 19 resistor, and
there are also four 1€2 resistors going from each of A, C, G, and F to the point in the middle.
(The four remaining resistors out of the original twenty-four connect the identified points B,

D, F,and H.)

We therefore equivalently have a square of 1€2 resistors, and a resistor of iQ going from each
vertex to a point in the middle. We may then identify the midpoint of AC with the point
in the middle (since they are at the same potential); likewise for the midpoint of EG. This
process essentially adds on a resistor of %Q from each of A, C, GG, and FE to the center, while
eliminating sides AC and FG of the square. So now we effectively have a 1Q resistor between
A and F, a 1€ resistor between C' and G, and %Q resistors from each of A, C', GG, and F to
the middle. It is easy to see that this yields a resistance of %Q between A and C.

Second Solution (due to Kiran Kedlaya): Let A be at a voltage of +1, and C be at a voltage of
—1 (we may pick these to have magnitude 1, without loss of generality). Then by symmetry,
the voltages of B, D. F’, and H are all 0. Also, the voltages of I and G are 4z and —z,
respectively, where z is to be determined.

Now, the current along any of the resistors is simply equal to the voltage difference of the



4.

endpoints (using [ = V/R, with R = 1Q2). So the sum of the currents going into, say, ' (which
come from the six points A, F, H, B, D, and G) is

Ige=(1-2)+(0-2)+(0—-2)+(0—2)+(0—2)+ (-2 —2)=1-Txz. (5)

But this sum must be 0. Hence z = %

It is then easy to see, by the same reasoning, that the current flowing out of A (or into C) is
_ 48
Since the voltage difference between A and C' is 2, and the current between them is %, the

resistance between them must be %Q.

(a) 1. Let us find the velocity (vg,v,) of the ball just after it bounces off the left ring. If
the ball takes a time ¢ to hit the other ring, then we must have

2v, = gt. (6)

Also, if the bounces on the rings occur at an angle of § from the horizontal, then the
horizontal distance between contact points is 2R(1 — cos#). Hence,

vyt = 2R(1 — cosb). (7)

Eliminating ¢ from the previous two equations, and using v, = v, tan#, gives

(ve, vy) = VGR <\/C0t 6(1 — cos @), \/tane(l — COSH)) . (8)

Now, AP, = 2mu,, so to maximize AF,, we want to maximize cot (1 — cos#).
Setting the derivative of this equal to zero yields

cos®f —2cosf+ 1 =0. (9)

An obvious root is cos§ = 1. The two other roots are then cos§ = (—14+/5)/2. The
root of 1is not the one we want, since AP, « v, — 0asf — 0 (since 1—cosé =~ 6% /2,
and cotf ~ 1/6). So the maximum must occur at

(10)

(This happens to be the inverse of the golden ratio. 6 is about 52°.)

ii. A. Using eq. (8), along with tane ~ ¢ and cose = 1 — ¢?/2 for small ¢, we have:



o If § = ¢, with e — 0, then

(v 0,) = \JgR/2 (1%, 2. (11)

To leading order in ¢, the speed therefore goes like S = /g Re/2, which goes

to zero, as € — 0.
o If 0 =m/2—¢, with e > 0, then

(v vy) = VR (2, 71/3). (12)

To leading order in ¢, the speed therefore goes like S = \/gR/¢, which goes
to infinity, as € — 0.

B. Force is the change in momentum per time, so the average horizontal force, F,,
needed to keep the rings together, is I/, = AP, /T where T the time between
bounces. Since AP, = 2mv, and T = 2v,/g, we see that F, = AP,)T =
mgv,/v,. Hence,

F, = mgcoth. (13)

Therefore
o If § = ¢, with e — 0, then

I, = mgcotexmg/e. (14)
o If 0 =m/2— ¢, with e > 0, then
F, = mgcot(n/2 — €) = mge. (15)

In the first limit, even though the speed of the ball approaches zero, the average
horizontal force becomes infinite as # — 0, because the bounces are so frequent.
In the second limit, the speed of the ball approaches infinity, but the average
horizontal force goes to zero as § — 7/2.

[Using the same reasoning, we see that the average vertical forceis F' = AP, /T =
mgvy, /v, = mg. This does not depend on the angle, which is the expected res-
ult; the rings are simply keeping the ball up above the ground, which requires
an average force equal and opposite to the gravitational force, mg.]

(b) i. This question is equivalent to: for what f(z) is v, independent of z¢7 If we look at
a contact point on the right half, we see that
Uz

— = —f'(z0). (16)

Uy



The distance to the following bounce at —z¢ is —2z¢ = vyt = v,(2v,/g). Therefore,
UpUy = —gTo. (17)

Combining the previous two equations gives

vy = —\/gxo f'(20). (18)

For this to be independent of g we must have
f(@) = aln(a) +5, (19)

where a and b are arbitrary constants (with a > 0).
ii. As in part (i) of part (a), we have F, = mguv,/v,. Using eq. (16), we obtain

F = —mgf'(z¢). For this to be independent of o we must have
f(z)=cx+d, (20)
where ¢ and d are arbitrary constants (with ¢ > 0).

5. First, note that it is believable that the system will eventually come to halt, because it loses
energy at each pivot point change. At each change, only the component of the mass’s velocity
that is perpendicular to the new pivot stick survives. The new speed is therefore cos @ times
the old speed. The energy thus decreases by a factor of cos? § at each pivot point change.

Let the angle between the pivot stick and the vertical be ¢. The component of gravity acting
on the mass in the tangential direction around the pivot point is gsin¢ = g¢, for small ¢.
I = ma gives ¢ = (g/£)¢. The solution to this differential equation is (with v = +/¢/¢)

B(t) = Ae" + Be ", (21)

where A and B are constants determined by the initial conditions. If given initial conditions
are ¢(0) = ¢o and ¢(0) = wp, then it is easy to solve for A and B, and we obtain

o(t) = <L02: “O) e + (LOQ; “O) e, (22)
Note that ¢(t) = 0 when

1 YPo — wo
= —In |22,
' 27n<7¢o+wo) (23)

We will find the total time of the movement by adding up the times between successive changes
in pivot points. More specifically, if ¢y is the first time the pivot point changes, t; is the second
time the pivot point changes, etc., then the total time is

T—to=> tn—tni. (24)
n=1

5



The quantity ¢, — ,—1 is given by twice the ¢ in eq. (23) (because the mass must rise to the
point where its speed is zero, and then fall back down), with ¢9 = +6/2 and wq equal to the
angular velocity right after the nth change of pivot point. This angular velocity right after
the nth change of pivot point is simply cos™ 8 times the angular velocity right before the first
change in pivot point. The latter can be found by equating the kinetic energy right before the
first change in pivot point to the loss in potential energy from the initial balancing point (and
using cos 3 &~ 1 — 32/2); we obtain w = Fv6/2, just before .

Therefore, the angular speed right after the nth pivot point change is equal to F(cos™ 8)v6/2,
and eq. (23) gives
1 1+ cos™ 6
bty —tp 1 =—In| ——— . 25
! 7n<1—cos“0) (25)
The total time, T' — tg, is thus

<1 14 cos™ 8
T —ty= —In|{———]. 2
0 712::17 n(l—cos”@) (26)

Now let’s try to simplify this, to show the leading behavior in 1/6.

With z = cos 8, we have, using the two hints,

Tty = ﬁl (Z In(142") = > In(1- xn))
I \n=1 n=1
9 o o xnk
Ll
o Lk
_ 2 Z 1 = - (doing the n sum first). (27)
Tioaakl-z

We can now use the approximation z¥ = cos® 8 ~ (1 — 6%2/2)% ~ 1 — k6?/2, but we must
be careful to use this only in its range of validity, k6?/2 < 1, i.e., k < 6?/2. We'll use the
approximation for the range of k up to M = /6%, with n < 1. In what follows, we will assume
that @ is small enough so that we may choose 7 to satisfy § < n < 1. Note that we then have
M>1.

We may write T — £ as

2 M 1 1-k82/2) 2 & 1 af
T—toz—Z—(7)+— y oo (28)
7 eaa k6?/2 7k odd. M kl-a



6.

The second term is less than

oc k

2 Z x _ 1 M

7k0dd7MM(1—mM) ' M(1—zM)1 — 22
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The first term is approximately equal to

4
vy 02

Mo 4 1
kzoc:ldk_2 - Wk%dk_2

71'2

= 3 (30)

Since we have chosen 7 to satisfy # < n < 1, the first term above dominates, and we obtain

¢ [ 2
T—ton |2 2. 1
o=+ (3] @1

(a) If the moment of inertia of C' is zero, then there can be no torque on C' (because otherwise
there would be infinite angular acceleration). Hence the rubber band can apply no force
to C. Therefore, C' moves under the influence of only gravity, just like the block. So they
have the same speed at all times (since they started out at the same speed).

(b)

i. Let’s first define a few variables. These are all functions of ¢, but we won’t bother

writing the ¢ dependence.

A.
B.
C.

T mE o

Let f be the fraction of the distance C’s position is along the rubber band.
Let Vg be the speed of the block (then Vg = tgsinf = g,t).
Let vy, be the speed of the band at its point of contact with C'. (then v, = fVp =

Jget.
Let V' be the speed of C.

Let w be the angular velocity of C.
Let a be the acceleration of C'.
Let a be the angular acceleration of C.

Let I be the force the band applies to C', defined so that upward along the plane
is positive.



ii.

Then, since V = v + rw, we have
V = fgot + rw. (32)

Looking at the net force on C along the plane, we have mg, — F = ma. Looking
at the torque on C, we have rF = pmr?a. Eliminating I’ gives g, — pra = a.
Integrating this from time zero to time ¢ gives (since w and V are zero at t = 0)

V = get — prw. (33)
Adding eq. (33) plus p times eq. (32) gives

=)

o (34)

V — get <
So the ratio of C’s speed to the block’s speed is (1 + pf)/(1+ p). Now, let fu
be the limiting value of f, as ¢t — oc. Then for large ¢, ratio of C’s speed to the
block’s speed is the constant (1 + pfs)/(1+ p). Therefore, for large ¢, the ratio of
the distances travelled must be this same ratio, i.e.,

_1+rfe

fo =2 (35)

The solution to this equation is f.. = 1.
Using the fact that the position of the block is 1+ gt?/2, we have, by definition of
I

/Vd.t = f(1+ got*/2). (36)

Differentiating this equation gives
V= fget + (1+ got?/2) " (37)

This says nothing more than that C’s speed comes partly from the stretching of the
band (the fgot piece) and partly from the movement relative to the band (the term
with f’). For large t, we may drop the f’ term on the right, compared to the g,t2 f’/2
term. Then, using eq. (34), eq. (37) becomes

1
1=f+ #f’t. (38)
If we let the leading behavior of f be f ~ 1 — ¢t7%, the previous equation gives
a=2/(1+p). Thus,

fal— 2040, (39)



The relative speed of the block and C'is Viet = VB =V = got — got(1+ pf)/(1+ p).
Using the form of f in eq. (39) gives

Ve = 2P =350, (40)

C1+4p

A few examples:

A.

If p =0, then V. = 0, as we found in part (a).

B. If p =1/2, then Vi ~ t_1/3, and goes to zero as t — oc.
C.
D. If p = 2 (for example, a spool of thread that hangs down below the rubber

If p =1, then V¢ approaches a constant as t — oc.

band), then Vi ~ t'/3, and goes to infinity as t — oc; but this relative speed
becomes negligible compared to the block’s speed g4t, as t — oc; so f does
indeed approach 1, as we found in part (i).
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Each of the six questions is worth 10 points.

1. These two unrelated problems are each worth 5 points.

(a) A block of ice containing a small air bubble floats in a pond. The ice melts.
Does the water level go up, go down, or stay the same? Explain.

Answer the same question for the situation where the air bubble is replaced by
a small piece of lead.

(b) Two protons are held at opposite corners of a square, and two positrons are
held at the other corners. The square has sides of length £ = 1073 m.
The particles are released. Give an approxim-
ate value (one significant figure is sufficient) for
N the speeds of the particles when they are very far
+ 7 N apart.
) Notes: The mass of a positron is m ~ 9.1-1073!
\ e kg, and the mass of a proton is M =~ 1.7 - 10727
; kg. Coulomb’s Law says that the force between
AN any two of these particles, separated by r meters,
is equal to 2.3-1072%/r% Newtons.

.0
RN

2. Let Ry»o be the region of space where y > 0. Let R, contain a constant magnetic
field B = B3 (see the figure below; B points out of the page).
, A particle with charge ¢ and mass m travels along
ONNOL: IO © the y-axis and enters R~ with speed vy.
Assume that in R, the particle is subject to a
friction force, ﬁf, proportional to its velocity, i.e.,
@ . @ @ F} = —av. (You may ignore gravity.)
Assume this friction force is large enough so that
the particle will remain inside R, at all times.
x The particle will then spiral in toward the point P.
What are the coordinates of the point P?




3. A stick of length £ and uniform mass density per unit length leans against a frictionless
wall. The ground is also frictionless.

The stick is initially held motionless, with its bottom end an
infinitesimal distance from the wall. The stick is then released,
whereupon the bottom end begins to slide away from the wall,
and the top end begins to slide down the wall.

A long time after the stick is released, what is the horizontal
component of the velocity of its center of mass?

4. This problem deals with rigid ‘stick-like’ objects of length 2r, masses M;, and mo-
ments of inertia pM;r?, where p is a numerical constant.

Al

The center of mass of each stick is located at the center of the
stick. (All the sticks have the same r, p, and relative mass
distribution. Only the masses differ.) Assume M; > M; >
]\43 > e,

The sticks are placed on a horizontal frictionless surface. The
ends overlap a negligible distance, and the ends are a negligible
distance apart.

The first (heaviest) stick is given an instantaneous blow (as
shown) which causes it to translate and rotate. (The blow
comes from the side of stick #1 on which stick #2 lies [the
right side, as shown in the figure].) Depending on the value of
p, the first stick may strike the second stick, which will then
strike the third stick, and so on. Assume all collisions among
the sticks are elastic.

Depending on the value of p, the speed of the nth stick will
either (1) approach zero, (2) approach infinity, or (3) be inde-
pendent of n, as n — oc.

What is the special value of p corresponding to the third of these three scenarios?
Give an example of a stick having this value of p.

Note: You may work in the approximation where M is infinitely heavier than M,
which is infinitely heavier than Mj3, etc.



5.

(a) (2 points) A fixed cone stands on its tip, with its axis in the vertical direction.
\

- When viewed from the side, the cone subtends an

angle of 26. A particle of negligible size slides on
the inside surface of the cone. This surface is fric-
tionless.

Assume conditions have been set up so that the
particle moves in a circle at a height A above the
tip.

What is the frequency, w, of this circular motion?

‘ 2
(b) (8 points) Assume now that the surface has friction, and a small ring of radius
r rolls on the surface without slipping.

Assume conditions have been set up so that (1) the
point of contact between the ring and the cone moves
in a circle at a height h above the tip, and (2) the
plane of the ring is at all times perpendicular to the
line joining the point of contact and the tip of the
cone.

What is the frequency, w, of this circular motion?
How does it compare to the answer in part (a)?

Note: You may work in the approximation where r is much smaller than the
radius of the circular motion, h tané.



6. A block with very large mass M slides on a frictionless surface towards a fixed wall.
— The block’s speed is V;. The block strikes a particle

7, with very small mass m (and negligible size), which
—> is initially at rest at a distance L from the wall. The
particle bounces elastically off the block and slides to

® the wall, where it bounces elastically and then slides

back toward the block. The particle continues to
bounce elastically back and forth between the block
and the wall.

(a) (7 points) How close does the block come to the wall?

(b) (3 points) How many times does the particle bounce off the block, by the time
the block makes its closest approach to the wall?

Note: In both parts (a) and (b), you may assume M >> m, and you need only obtain
approzimate answers, valid to leading order in m /M. (In other words, pick quantities
of, sayy, M = 10 kg, m =1 g, L =1 m, and V) = 1 m/s, and obtain approximate
answers to the above two questions.)
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Solutions

1. (a) In case of the air bubble the level will stay the same, since the volume of the
displaced water is exactly equal to the "extra” volume of water that came from
the molten block.

In case of the frozen in piece of lead, the level of water will decrease, because
the volume of the water displaced due to the lead piece exceeds the volume of
the piece.

(b) Since the positrons are a lot lighter than the protons, it makes sense to divide
the problem in two parts.

First, the positrons fly away while the protons stay in place. The energy con-
servation requires that

1 1 1 1 mv62+
4x§M—+—+

it AT mtt e M

where a = 2.3 x 10728 m, or

Vet = %(4+ 1/v2) ~ 1100m/s (2)

After that, the protons fly away:

v, =\ a/V2MI ~ 9.8m/s. (3)

2. The forces on the particle are the friction force and the magnetic force, so F =
—at + g x B. The particle will remain in the z-y plane, so ¥ has no component in
the Z direction. The cross product takes a simple form, and we have

F, = —ov;+ qBuv,,
F, = -—av, — qBuv,. (4)
Equivalently,

d’z dx dy

— = —a— +gB—,
i “u T

d*y dy dx

— = —a—= —gB—. 5
e “at (5)



Integrating these equations from the time the particle enters R, ¢ to the time it comes
to rest, we obtain

mAv, = —alAzx+ qBAy,
mAv, = —alAy-—¢BAz, (6)

We want to find the coordinates of P, namely (Az, Ay).

The initial velocity is @ = (0, vg, 0), and the final velocity is ¢ = (0,0, 0), so Av, =0
and Av, = —vg. Solving egs. (6) for Az and Ay gives

qBmug Qmuy
Az = ——, Ay= ——-. 7
T (B ' aT g (¢B)? @)
A There is an equivalent geometrical solution. Consider a small

interval of time dt. The particle will change its position by
dr = vdt. Over the same time period, the speed will change by

dr av, dv, = ~-vdt opposite to the direction of motion, and by dv,, =

dv av %vdt in the direction normal to it. Note that the components
of the velocity change are proportional to the displacement.

R Similar set of vectors can be drawn for any small df. Summing

them up, and knowing the total change in the particle speed
(—vo), we can draw the final diagram. Since the proportionality
is conserved in vector addition, the total displacement R (and,
of course, its components) can be easily found.

. The key to this problem is to realize that the stick will lose contact with the wall
before it hits the ground. The first thing we must do is calculate exactly where this
loss of contact occurs.

Let r = £/2, for convenience. It is easy to see that while the stick is in contact with
the wall, the center of mass of the stick will move in a circle of radius r. Let # be the
angle between the wall and the radius from the corner to the CM of the stick. (This
is also the angle between the stick and the wall.)

We will solve the problem by assuming that the CM always moves in a circle, and
then determining the point at which the horizontal CM speed starts to decrease (i.e.,
the point at which the normal force from the wall becomes negative [which it of course
can’t do)).



By conservation of energy, the kinetic energy of the stick is equal to the loss in
potential energy, which is mgr(1 — cos#), where 6 is defined above. This kinetic
energy may be broken up into the CM translational energy plus the rotation energy.
The CM translational energy is simply mr292/2 (since the CM travels in a circle).
The rotational energy is 192/2. (The same G applies here as in the CM translational
motion, because # is the angle between the stick and the vertical.) Letting I =
pmr?, to be general (p = 1/3 for our stick), we have, by conservation of energy,
(1+ p)mr292/2 = mgr(1l — cos#). Therefore, the speed of the CM, v = ré, is

2gr
v:,/l_*_p (1 —cosb). (8)

The horizontal speed is therefore

2
Uy = Mlirp (1 —cosf)cosb. (9)

Taking the derivative of \/(1 — cos#) cosf, we see that the speed is maximum at
cosf = 2/3. (This is independent of p.)

Therefore the stick loses contact with the wall when
cosf =2/3. (10)

Using this value of 8 in eq. (9) gives a horizontal speed of (letting p = 1/3)

Uy = %\/297" = é\/gﬁ (11)

This is the horizontal speed just after the stick loses contact with the wall, and thus
is the horizontal speed from then on, because the floor exerts no horizontal force.

. Consider the collision between two sticks. Let the speed of the end of the heavy one
be V. Since this stick is essentially infinitely heavy, we may consider it to be an
infinitely heavy ball, moving at speed V. (The translational degree of freedom of the
heavy stick is irrelevant, as far as the light stick is concerned.)

In the same spirit as the (easier) problem of the collision between two balls of greatly
disparate masses, we will work out this problem in the rest frame of the infinitely
heavy ball right before the collision. (The problem can be done in the lab frame, but
our method here is a little less messy.) The situation reduces to a stick of mass m,
length 2r, moment of inertia pmr?, and speed V. approaching a fixed wall To find



the behavior of the stick after the collision, we will use (1) conservation of energy, and
(2) conservation of angular momentum around the contact point.

Let u be the speed of the center of mass of the stick after the collision. Let w be its
angular velocity after the collision.

Since the wall is infinitely heavy, it will acquire zero kinetic energy. So conservation

of F gives
lmV2 = lmuQ + l(,0m7“2)<,u2. (12)
2 2 2
The initial angular momentum around the contact point is L = mrV', so conservation
of L gives (breaking L after the collision up into the L of the CM plus the L relative
to the CM)

mrV = mru+ (pmr?)w. (13)
Solving eqs. (12) and (13) for u and rw in terms of V' gives

1
U= V—p, and rw=YV .
1+p T+p

(14)

(The other solution, # = V and rw = 0 represents the case where the stick misses the

wall.)

Going back to the lab frame (i.e., subtracting V' from the speed u) we see that the
collision gives the the lighter stick a CM speed equal to v = 2Vp/(1 + p) in the
same direction as the original V. But the far end of the light stick has a backwards
rotational speed equal to rw = 2V/(1+ p). This rotational speed is greater than the
CM speed, so the far end of the light stick travels at a speed

2(1— p)

Vi=rw—v=V
1+p

(15)

in the direction opposite to the original V.

The same analysis works in the next collision. In other words, the bottom ends of the
sticks move with speeds that form a geometric progression with ratio 2(1—p)/(1+p).
If this ratio is less than 1 (i.e., p > 1/3), then the speeds go to zero, as n — oc. If it
is greater than 1 (i.e., p < 1/3), then the speeds go to infinity, as n — oc. If it equals
1 (i.e., p = 1/3), then the speeds are independent of n, as n — oc.

Therefore,

P=3 (16)

is the desired answer.



5.

A uniform stick has p = 1/3 (usually written in the form I = m¢?/12, where £ = 2r).

Although in the case where p is strictly equal to zero the centers of masses of the

sticks would remain at rest while their rotational speeds would form a geometric

progression with ratio 2, we are not considering this to be the correct answer. Real

objects with finite mass have a finite moment of inertia. A proper physical approach
then would require taking a limit as p — 0, but in that case the limit as n — oc is

infinite.

(a)

The forces on the particle are gravity (mg) and the normal force (N) from the
cone. In our situation, there is no net force in the vertical direction, so

N sinf = myg, (17)

i.e., N = mg/sinfl. Therefore, the inward horizontal force, N cos#, equals
mg/ tanf. Thisforce must account for the centripetal acceleration of the particle
moving in a circle of radius htan . Hence, mg/tanf = m(htan#)w?, and

_ jg_1
w_\/;tanﬁ' (18)

The forces on the ring are gravity (mg), the normal
force (N) from the cone, and a friction force (F)

pointing up along the cone. In our situation, there
is no net force in the vertical direction, so

F Nsin@ + F cosf = mg. (19)

The fact that the inward horizontal force accounts

m
8 for the centripetal acceleration yields

N cos# — Fsinf = m(htan 6)w?. (20)

We must now consider the torque, 7, on the ring. The torque is due solely to
F (because gravity provides no torque, and N points though the center of the
ring, by assumption (2) in the problem). So

T=rkF, (21)

and it points in the direction along the circular motion. Since 7 = df/dt, we
must now find dL/dt.

L is made up of two pieces. One comes from the center of mass motion of
the ring, which revolves around the axis of the cone. This part of L does not



change, so we may neglect it in calculating df/dt. The other piece comes from
the rotation of the ring. Let us call this part L’. It points up along the cone, so
the L' vector traces out a cone in which the tip of L’ moves in a circle of radius

L'sin @. The frequency of this circular motion is of course the same w as above.
Therefore,

(ji—f = dd—Lt/ =wlL'siné (22)
(in the direction of the circular motion).
Thus, 7 = dL/dt gives
rF = wL'siné. (23)

But L' = mr?w’, where ' is the angular speed of the ring. And we know that w’
and w are related by rw’ = (htanf)w (the rolling-without-slipping condition)®.
Therefore L' = mr(htanf)w. Using this in eq. (23) yields

F = mw?*(htan)sin 6. (24)
Egs. (19), (20), and (24) have the three unknowns, N, F’, and w. We can solve
for w by multiplying eq. (19) by cos#, and eq. (20) by siné, and taking the
difference, to obtain

F = mgcos — mw*(h tan 8) sin 6. (25)

Equating this expression for I” with that in eq. (24) gives

_Jg 1
Y=\ 2htane (26)

This frequency is 1/4/2 times the frequency found in part (a).

REMARK: If one considers an object with moment of inertia pmr? (our ring has
p = 1), then one can show by the above reasoning that the “2” in eq. (26) is
simply replaced by (1+ p).

First Solution:

Consider one of the collisions of the block and the particle. Let V and v be
the speeds of the block and particle, respectively, after the collision. Let the
collision occur at a distance £ from the wall. We claim the the quantity £(v—V)
is an invariant (i.e., for each collision, it is the same). The proof is as follows.

! Actually, this isn’t quite true, for the same reason that the earth spins around 366
instead of 365 times in a year. But it’s valid enough, in the limit of small r.



Let us find the position, ¢, of the following collision. The time to the next
collision is given by Vit + vt = 2¢ (because the sum of the distances traveled by
the two objects is 2¢). Therefore, since ¢’ = £ — V't, we have

=tv-=V)/(v+V). (27)

We now invoke the handy fact that in an elastic collision, the relative speed of
the particles before the collision is equal to the relative speed after the collision.
(This is most easily proved by working in the center of mass frame.) Therefore,
letting V'’ and v’ be the speeds of the block and particle, respectively, after the
next collision, we have

v+ V=0 -V (28)

Using this in eq. (27) gives
O -=Vy=tv-V), (29)

as was to be shown.

What is the value of this invariant? After the first collision, the block continues
to move essentially with speed V; (up to corrections of order m/M), and the
particle acquires a speed essentially equal to 2V (up to corrections of order
m/M). (The latter is most easily seen by working in the frame of the heavy
block.) So the invariant £(v — V) is essentially equal to L(2Vy — Vi) = LVj,.
Let L. be the closest distance to the wall. When the block is at this closest
point to the wall, its speed is zero. Therefore, all of the initial kinetic energy
of the block belongs to the particle. Thus, v = Vo/M/m. So at this point our
invariant tells us LVy = L.(Vo/M/m — 0), and so

Lo~ Ly/—. (30)

Second Solution:
Let V() be the speed of the block, and let v(t) be the speed of the particle. Let
z(t) be the distance from the wall to the block.

The block reaches its closest point to the wall when all of its initial kinetic
energy is transferred to the particle, i.e.,

1 1

§mv2 = §MV02. (31)
Hence, v = Vo/M/m at this point. Therefore, if we can find a relation between
v(t) and z(t), we are done.



We claim that for M > m, the product v(t)z(t) is essentially equal to VL.
The proof is as follows.

Consider the later times when the bounces are very frequent, and when v is
very large, so that a large number, dn, of bounces occur during a small period
of time, dt, where z does not change significantly.

Since the particle travels a distance v dt during a time dt, and since the distance
from the block to the wall and back is 2z, we have

vdt
2%

dn = (32)
Each collision between the block and the particle increases the particle’s speed
by essentially 2V (because M >> m, so the block is essentially infinitely heavy).
Therefore, the increase in the speed of the particle during the time dt is
/v dt
dv=2Vdn=Y"% (33)

x

But V = —dz/dt, so we have

vdx
dv=———. 34
v=-2 (34)
Dividing by v and integrating gives In v = — In z 4 (const). Therefore,
ve =C. (35)

Thus, the speed of the particle is inversely proportional to the distance between
the wall and the block.

This is just what we expect if we consider the particle to be a one-dimensional
gas. Indeed, the adiabatic compression of such gas would be governed by an
invariant PV" = const, where

_gg_cy+1_§+1
’Y—CV— Cv = ;

(36)

No|=-

where 7 is the number of degrees of freedom. For the one-dimensional gas, ¢ = 1,
so v = 3 and PV?3 = const. Since PV is proportional to 7', or v2, V is z in the
one-dimensional case, v?z? = const, or vz = C.

We must now determine the constant C' by looking at the first few collisions.
The first collision gives the particle a speed 2V{ (it’s not quite 2Vj, but the

error is of order m/M). After the collision, the block continues to move with
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(essentially) speed Vj, so it is easy to calculate that the second collision occurs
at (roughly) z = L/3.

After the second collision, the particle has speed 4V, while the block continues
to have speed Vj, so we find that the third collision occurs at z = L /5.

After the third collision, the particle has speed 6V,, while the block continues
to have speed Vj, so we find that the fourth collision occurs at z = L/7.

In general, we find that the kth collision occurs at L/(2k — 1). And the particle
had speed 2(k — 1)Vj before the collision, and 2kVj after it. This is valid up to
order m/M corrections, as long as k is not too large.

For large enough M/m, we may make this realm overlap with the above realm
where there is a large number of collisions in a short period of time. So we find
C =vx =~ (2kV)L/(2k — 1) = VuL, since k can be made large if M/m is very
large. Therefore,

ve = VL. (37)
Using v = VyL/z in eq. (31), we find that the closest approach, z., of the block

to the wall is
m
= Ly —.
T, 1/ (38)

Let V' and v be the speeds of the block and particle, respectively.

First Solution:

The decrease in the momentum of the block due to a bounce is equal to the
change in the momentum of the particle from the bounce, which is roughly
equal to 2mv (we are assuming V' small compared to v, which is the case after
the first few collisions). If there are dn bounces in a time dt, then conservation of
momentum during the time dt gives (assuming v stays fairly constant throughout
the small interval dt).

MdV = —2muvdn. (39)

Conservation of energy, MV?/2 + mv%/2 = MV /2, allows us to write v in

terms of V:
[ M V2
=Vor/ —1/1 — —. 4
v ‘0 m V02 ( 0)

Eq. (39) then gives (changing variables to y = V/Vj, and integrating up to the

2Tt should be understood that this and all the other numbers in the next few paragraphs
are approximations which become arbitrarily accurate in the limit M > m.



closest approach to the wall, which corresponds to V =0, and hence y = 0)

1 |M [(° dy /N
— R —_— = — d :_AV- 41
2 m/1 V1-—y? o (41)

(The integrand is actually not valid for V near Vj, i.e. for y near 1, because
eq. (39) is not valid there. But the error there is small compared to the total
number of bounces.)

The integral gives arcsiny, which yields —7/2 when evaluated between 1 and
0. So the total number of bounces is

N~ T M (42)
4\ m

Second Solution:
Let V' and v be the speeds of the block and particle, respectively, after a given
collision. Let V' and «’ be the speeds of the block and particle, respectively,
after the following collision. Conservation of momentum in this second collision
gives

MV —mv=MV'+mv'. (43)
This equation, together with eq. (28), allows us to solve for V/ and v’ in terms
of V and v. In matrix form, we obtain

‘/l M-m —2m v
(V)= (g ) (V). m
M+4m M4m

The eigenvectors, A;, and eigenvalues, A;, of this matrix are

1 M — 21 M .
Ay = s M= - + ! upe e, (45)
=1/ M+m M+m

e, (46)

:M—I—m M+m

1 M-m 2ivMm iy
AQ = i M s AQ

m

where § = arctan(2vVMm/(M + m)) = 2/m/M.
The initial conditions are (V,v) = (V5,0) = (Vo/2)(A1 + Az). Therefore, the
speeds after the nth bounce are given by

v, | 2

S\
( Vn ) = D00ma, 4 anay). (47)
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Writing A\; = €%, Ay = ¢7*%, and using the explicite form of the A;, we have

v, ) Vo ing i cosnf
e _(ezn Al —|— € wm AQ) = ‘/0 M . . (48)
Uy, 2 \/ - sinnf

The block makes its closest approach to the wall when Viy = 0, i.e., when
N6 = 7 /2. Using the definition of 8 gives

No— T 1
2 arctan QMV ]_\fﬂzn
T M
~ T M 49
A\ (49)
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Each of the six questions is worth 10 points.

1. Three identical cylinders are arranged in a triangle as shown, with the bottom two
lying on the ground.

The ground and the cylinders are frictionless. You
apply a force (directed to the right) on the left cylin-
der.

What are the minimum and maximum accelerations
you may give to the system in order for all three cylin-
ders to remain in contact with each other?

Force

2. A charged particle sits at the center of a circular region containing a magnetic field,
B. The field B = B(r) depends only on the radial position r, and it is perpendicular
to the plane of the circle. The total magnetic flux through the circle is zero.

The particle is given a kick. Show that if the particle leaves the circular region, then
at the instant it leaves, its velocity points in the radial direction.

3. Consider the infinite Atwood’s machine shown in the figure.

A string passes over each pulley, with one end attached to a mass
and the other end attached to another pulley. All the masses are
equal to M, and all the pulleys and strings are massless.

The masses are held fixed and then simultaneously released.
What is the acceleration of the top mass?

(You may define this infinite system as follows. Consider it to be
made of N pulleys, with a non-zero mass replacing what would
have been the (N + 1)st pulley. Then take the limit as N — oo.
It is not necessary, however, to use this exact definition.)

4. Each edge of an icosahedron is a 1§ resistor. Find the effective resistance between
two adjacent vertices.

(An icosahedron consists of 20 equilateral triangles. It has 12 vertices and 30 edges,
with 5 edges meeting at each vertex.)



5. Consider the setup of N identical cylindrically symmetric tops in the figure.

The bottom one rests on a frictionless table. Each top is con-
nected to the one above it by a free pivot. The inclination
angles of the tops are the same. The center of mass of each top
is at the midpoint of its symmetry axis.

You wish to set up a very slow circular precession of the tops,
where the CM of each top stays fixed while the ends travel in
circles. The angular speed of the top top is w. Find the angular
speeds of all the other tops as functions of w. (You may work
in the approximation where these speeds are very large.)

6. Two masses, A and B, each have mass M and are attached to the ends of a massless
string.
///// //1//

The string passes over a set of massless pulleys of negligible
size. The masses are at rest at a distance £ from the
pulleys.

| Mass A is then given a very small horizontal kick, so that
it initially swings back and forth with amplitude e (where
ek l).

It turns out that after a very long time, one of the masses
will eventually rise up and hit its pulley.

(a) (3 points) Which mass hits its pulley?
)

(7 points) What is the speed of mass B, right before the hitting of the pulley
occurs?

(Throughout this problem, work in the approximation where € < £.)



1. Apart from gravity, the forces on the cylinders include the applied force of magnitude
F', normal forces between the bottom two cylinders and the ground with magnitudes
Ny and N, and three pairs of forces with magnitudes N,, N, and N, between the
cylinders (as shown on the diagram).

e The low limit on the acceleration is given by the condidtion that the two
bottom cylinders lose contact, i.e., N, = 0. Then, the horizontal component
of the force on the right cylinder is

Ma = Nysin (7/6) = Np/2 (1)
The vertical components of the forces on the top cylinder:
Mg = Nycos (m/6) + N, cos (m/6) (2)
and the left cylinder:
Ngysin(n/6) = No/2 =F — Ma = 2Ma, (3)

Eliminating N, and Ny

Mg = (2Ma + 4Ma)V'3/2 (4)
and amin = %

e When the acceleration is increased beyond a certain value, the top cylinder
will lose contact with the right cylinder. It corresponds to vanishing N;. In
this case for the top cylinder the vertical components of the forces:

Mg = N, cos (7/6) (5)
For horizontal components we get
Ma = Ngsin (w/6) = No/2, (6)
and @maeg = 529/V3 = 9/V3 = 3amin



2. The force on the particle in the magnetic field is mi = gr X B. In cylindrical co-
ordinates, where r = 7t, ¥ = 7 + 760, and ¥ = 7t + 2700 + 100 — r0%#, at any given
time the tangential projection of the force on the particle is

m(27-0 + rf) = ¢i-B (7)
By multiplying both sides of the equation by r, we get
2mri6 + 126 = qriB, (8)
or, extracting the full time differential on the left,

md(r20) _ 4B (r)rdr

dt dt (9)

which could also be seen as the rate of change of angular momentum of the par-
ticle L = mr26 being equal to the torque about the center of the circular region.
Integrating (9) over the time it takes for the particle to exit the circular region,

e r=R
r2g|i= =R z/ gBrdr (10)
’ r=0

The right side is ¢/27 times the total flux through the circular region, which is zero,
so 0 at the time the particle leaves the region must be zero. Since the total velocity
of the particle is non-zero (a static magnetic field does not do work), the velocity of
the particle then must point radially outward.



3. First Solution:
Consider the following auxiliary

Problem: Two set-ups are shown in the figure.

M, M,

(The first contains a hanging mass m. The second contains a hanging pulley, over
which two masses, M; and M5, hang.) Both supports have acceleration a; down-
ward. What should m be, in terms of M; and Ms, so that the tension in the top
string is the same in both cases?

Answer: In the first case, we have
mg — T = mas. (11)

In the second case, let a be the acceleration of My relative to the support (with
downward taken to be positive). Then we have

T
Mg -5 = M (as — a),
T
MQQ_E = Ms(as + a). (12)

mg, = T,
T
Mlgl = 5 - Mla,
T
Myg' = 5t Msa (13)



The last two give 4M7yMsg' = (M + M3)T. The first equation then gives

4M; M,

= - < 14
My + M,y ( )

m
Note that the value of a; is irrelevant. (We effectively have a fixed support in a world
where the acceleration from gravity is ¢’.) This problem shows that the two-mass
system in the second case may be equivalently treated as a mass m, as far as the
upper string is concerned. m

Now let’s look at our infinite Atwood machine. Start at the bottom. (Assume the
system has N pulleys, where N — c0.) Let the bottom mass be . Then the above
problem shows that the bottom two masses, M and z, may be treated as an effective

mass f(z), where
4z

T 1+ (¢/M)
We may then treat the combination of the mass f(z) and the next M as an effective

mass f(f(z)). These iterations may be repeated, until we finally have a mass M
and a mass f(M—1)(z) hanging over the top pulley.

f(z) (15)

We must determine the behavior of f¥(z), as N — co. The behavior is obvious by
looking at a plot of f(z) (which we’ll let the reader draw). (Note that z = 3M is
a fixed point of f, i.e., f(3M) = 3M.) It is clear that no matter what = we start
with, the iterations approach 3M (unless, of course, z = 0). So our infinite Atwood
machine is equivalent to (as far as the top mass is concerned) just the two masses
M and 3M.

We then easily find that the acceleration of the top mass is (net downward force)/(total
mass) = 2Mg/(4M) = g/2.

NOTE: As far as the support is concerned, the whole apparatus is equivalent to a
mass 3M. So 3Mg is the weight the support holds up.

Second Solution:

Note that if the gravity in the world were multiplied by a factor 7, then the tension
in all the strings would likewise be multiplied by 1. (The only way to make a tension,
i.e., a force, is to multiply a mass times g.) Conversely, if we put the apparatus on
another planet and discover that all the tensions are multiplied by 7, then we know
the gravity there must be ng.

Let the tension in the string above the first pulley be T. Then the tension in the
string above the second pulley is 7'/2 (since the pulleys are massless). Let the
acceleration of the second pulley be apo. Then the second pulley effectively lives in



a world where the gravity is g — a,p. If we imagine holding the string above the
second pulley and accelerating downward at a,e (so that our hand is at the origin
of the new world), then we really haven’t changed anything, so the tension in this
string in the new world is still 7'/2.

But in this infinite setup, the system of all the pulleys except the top one is the
same as the original system of all the pulleys. Therefore, by the arguments in the

first paragraph, we must have
T T/2
r__Te (16)
g g — ap2
Hence, a,2 = g/2. (Likewise, the relative acceleration of the second and third pulleys
is g/4, etc.) But aps is also the acceleration of the top mass. So our answer is g/2.

Note that 7' = 0 also makes eq. (16) true. But this corresponds to putting a mass
of zero at the end of a finite pulley system.



4. This problem is just another variation of the popular resistor cube problem, offered,
among other places, in BAUPC’96.

There are two solutions; the second is by far more general and will work with any
symmetric polyhedron (or a resistor graph).

(a) A straightforward solution

The trick is to simplify the diagram by connecting with a wire points which
have equal potential anyway. Let’s assume that the leads are connected to
vertices 1 and 2. Then due to symmetry consideration the following sets of
points will have equal potentials:

e 3.6,9 11

e 4.5

e 7.8



The diagram reduces to:

=

10

12

2

Thicker pen used for resistances of 1/2 Ohm.

Further simplification is achieved by shorting the middle points of 1 — 2 and
10 — 12 resistors to the equipotential line 3,6 — 9,11. Now the resistance
between 1 and 2 can be calculated as (right to left, in Ohm)

Ri—2/2 = (((1/2][1/2) +1/2)||1/2[[1/2) + 1/2)[[1/2]]1/2 = 11/60,  (17)
where a||b =ab/(a + b)
Resistance between the points 1 and 2 is 11/30 Ohm.

A more elegant solution
Consider the following current configuration. Current I is being fed into vortex
1. The other 11 vortices are connected to an external circuit in such a way that
each of them drains the same current, i.e., I/(12 — 1). Symmetry arguments
tell us that all of the 5 resistors (edges), emanating at vortex 1 will be carrying
the same current, namely /5. The voltage across the resistor 1 — 2 will then
be I/5 x 10hm.

Now let’s consider a second configuration. This time, vortex 2 is drawing
current I, and each of the other vortices (1,3 — 12) is connected to an external
circuit in such a way that the current flowing into each of them is I/(12 — 1)
The next step is to superimpose the two configurations. It is possible to do
because the resistors are linear, i.e., V' = const X I. For each resistor, the total
current flowing is the sum of the currents in the two configurations. Same
holds for the voltage drops. The currents flowing to the outside circuits from
vertices 3— 12 are zero, and so the connections to those circuits can be severed.
The current flowing through vertices 1 and 2 are equal in magnitude and are
I+1/(12—1). The voltage drop across resistor 1 —2is V =2 x I/5 x 10hm.
The resistance measured between points 1 and 2 is then

21/5

12/111

R= Ohm = 11/300hm (18)



Note that the numerator is equal to the total number of vortices minus one,
and the denominator is equal to the total number of resistors (edges), the latter
being equal to the

1
3 number ofvortices X number of resistors eminating from each vortex
(19)
We leave it to the reader to verify the formula for other symmetric polyhedra.



5. Let the angular speeds of the tops be w;, starting with the top one (so w; = w).
Let I be the moment of inertia of each top around its symmetry axis. Let 2 be the
angular speed of precession.

We will use 7 = dL/dt on each top. We therefore must determine dI/dt and the
torque 7 for each top.

o dL/dt:
If the w;’s are large enough (as we are assuming), then the angular momentum
of the sth top will have magnitude essentially equal to L; = Iw;, and L; will
point along the symmetry axis. (In other words, we can neglect the angular

momentum due to the slow angular velocity of precession. We will see below
that Q o< 1/w.)
The tip of I_/; will trace out a circle of radius L; sin @, with angular speed 2.
Therefore,
dL;
dt
and dL;/dt points tangentially around the circle.

= QL;sinf = QIw; sin 6, (20)

—

o T
None of the N tops are accelerating in the vertical direction. Therefore, the
forces on the bottom top are NMg upward (to balance the weight of all the
tops) at its lower end, and (N — 1)Mg downward (to keep up the other N — 1
tops) at its upper end. The torque on the bottom top (around its CM) therefore
has magnitude (2N — 1) M gr sin 0, where r is half the length of a top. It points
perpendicular to the page.

It is easy to see that the torque on the second-to-bottom top has magnitude
(2N — 3)Mgr sinf, and so on, until the torque on the top top is Mgr siné.

So the torque on the ith top has magnitude (2 — 1) Mgr sin 6.
Equating 7 with dL; /dt gives
(26 —1)Mgrsinf = Qlw; sin 6. (21)

Therefore,
wi = (2i — Dwy = (2 — Nw. (22)

NOTE: As a double-check, the reader can verify that these w;’s make 7 = dI_;/dt
true, where 7 and L are the total torque and angular momentum about the CM of
the entire system.



6.

(a) Let r be the distance from A to the pulley, and let 8 be the angle of the string

to A (w.r.t. to the vertical). Let T' be the tension in the string (7' will depend
on r and ). Then F = ma, along the direction of the string, on masses A and
B gives, respectively,

T —mgcosl = mré? — mfr,
T—mg = mi. (23)

These combine to give 27 = rf2 — g(1 — cos #). Using the small angle approxi-
mation for cos @, we have

o 1
2 = 1% — 5g92. (24)

Consider two cases of the motion.

o Immediately after A is given the kick:
At this time, r is essentially not changing. Hence, the motion is approxi-
mately that of a pendulum of length £. Therefore, # and 6 take the form

0~ < sinwt, and 0~ 2 cos wt, (25)
T T

where w = /g/r, and r = £. Plugging these expressions into eq. (24),
and using w? = g/r, gives
2 2
. g¢ 2 ge . 2
27 = ~7 cos wt — oy Sin wt. (26)
The sin? wt and cos? wt terms average to 1/2 over a few periods. Therefore,
the average value of 7, over a few periods, is
2
.. €g
r=—. 27

This is positive. Hence, mass B initially starts to climb.

e After B has risen a significant distance:
In this case, r will be changing, so the motion won’t look exactly like that
of a pendulum.! However, it turns out that # is still given by eq. (27),

(except that both e and r will have changed; we will show how e changes,
in part (b)). Let us see why this is true.

'We will find in part (b) that after a while, 7 is roughly the same size as the speed
of the pendulum when it passes through 8 = 0. So the motion is not like a that of a

pendulum.
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Eq. (24) is still valid when 7 # 0. The quantities that require some care
are the 0 and 0 in eq. (25). It is not obvious that these expressions are
valid, since the motion doesn’t resemble that of a pendulum. However,
these forms of @ and 6 are still true, for the following reason.

At a given time, let 7 = v. Consider a frame moving at downward at
constant speed v. In this frame, the motion of A looks like that of a
pendulum. The acceleration due to gravity in this frame is still g. And
most importantly, the fractional change in 7, over one period, is very small
(because 7 is very small, as we shall see). Hence, the motion looks like
that of a pendulum with definite frequency w = /g/r. And since the
frame moves at constant speed, # in this frame equals 7 is the lab frame.
So eq. (27) is still valid. Hence, 7 is always positive, and so r increases.
Therefore, mass B is the one that hits its pulley.

(b) From eq. (27), the initial acceleration of B is a; = €2g/8¢2. If this were the
acceleration at all times, then the speed of B when it hits the pulley would be
V2ail = \/e2g/4L. This, however, is not correct, because as time goes by both
€ and £ in eq. (27) change, thereby making 7 change as B rises. To determine
how 7 behaves, it will suffice to determine how e depends on 7.

Claim: The amplitude € scales with  according to € oc /%,

Proof: We will find € as a function of r by looking at the kinetic energy of A
at 6 =0.

The kinetic energy of A, at @ = 0, decreases in time. This is most easily seen
by noting that B picks up KE, since it begins to move upward; therefore A
must lose KE. (Consider an instant when § = 0. The total potential energy
of the system is the same as when it started. Therefore, the KE gained by B
equals the KE lost by A.)

This relationship between the KE’s of A and B, at 8 = 0, may be expressed as
d (1 . 1 d (1
N L
= (2mr h—o + 5T 7 \ g™’ (28)

Now, d (%miﬂ) is the work done on B, which is dWp = (T — mg)dr. From
egs. (23) and (27), we find

dWp mge>
=T —mg=—2—, 29
dr mg 872 (29)
where we have taken an average over a few periods to obtain the second equal-

ity.

11



Also, eq. (25) gives 67_, = (ew/r)?, with w = \/g/7. So eq. (28) becomes

d [ mge? dWp mge>
JE— = —2 = — .
dr < 2r ) dr 4p2 (30)

Taking the derivative and simplifying yields

lde r

- = 31

edr 4 (31)
Integrating and then exponentiating gives €, = e(r) = Cr'/%. We therefore
find that under this very slow change in r, the amplitude € scales like 71/4. m

The initial condition €¢; = €, gives

6= (%)” " (32)

The acceleration in eq. (27) then becomes

. €2 1
j= (8—\2) - (33)

Multiplying by 7 and integrating gives
72 €g e2g 1

ik (m) N e

where the constant of integration on the right-hand side was determined using
the condition that 7 = 0 when r = /.

Finally, plugging in r = 2/ gives

P = 622—5 (1 _ %) (35)

NoTE: This 7 is the same order of magnitude as the angular speed of the
‘pendulum’ at € = 0, namely r0 = €,w,, because this is (up to factors of order

1) equal to epwy = €4/g/%.

12



The Boston Area Undergraduate
Physics Competition

April 17, 1999

Name:

School:

Year:

Address:

e-mail:

Phone:

Do not turn this page until you are told to do so.

You have four (4) hours to complete this exam.

Please provide the information requested on this cover sheet. At the end
of the exam, hand in this cover sheet with your solutions. You may keep the

exam questions.

Show all relevant work in your exam books. Please write neatly. Partial
credit will be given for significant progress made toward a correct solution.

You must be enrolled in a full-time undergraduate program to be eligible
for prizes.



1999
Boston Area Undergraduate
Physics Competition

April 17, 1999
Time: 4 hours

Each of the six questions is worth 10 points.

1. (a) Consider a solid sphere of uniform charge density. What is the ratio of the
electrostatic potential at the surface to that at the center?

(b) Consider a solid cube of uniform charge density. What is the ratio of the
electrostatic potential at a corner to that at the center?

(Take the potential to be zero at infinity, as usual.)

2. A wheel with spokes rolls on the ground. A stationary camera takes a picture of the
wheel. Due to the nonzero exposure time of the camera, the spokes will generally
appear blurred. At what location (locations) in the picture does (do) a spoke (the
spokes) not appear blurred?

3. A motorcyclist wishes to travel in a circle of radius R. The coefficient of static
friction between the tires and the (horizontal) ground is constant. The motorcycle
starts at rest. What is the minimum distance the motorcycle must travel in order to
achieve its maximum allowable speed (that is, the speed above which it must skid
out of the circular path)?

4. (a) A fox chases a rabbit. Both run at the same speed v. At all times, the fox
runs directly toward the instantaneous position of the rabbit, and the rabbit
runs at an angle « relative to the direction directly away from the fox. Their
initial separation is /.

When and where does the fox catch the rabbit (if it does)? If it never does,
what is their eventual separation?

(b) Consider the same situation, except now let the rabbit always move in the
straight line of its initial direction in part (a).

When and where does the fox catch the rabbit (if it does)? If it never does,
what is their eventual separation?

5. Assume that a cloud consists of tiny water droplets suspended in air (uniformly
distributed, and at rest), and consider a raindrop falling through them. After a long
time, the raindrop moves with constant acceleration. Find this acceleration.

(Assume that when the raindrop hits a water droplet, the droplet’s water gets added
to the raindrop. Also, assume that the raindrop is spherical at all times. Ignore air
resistance on the raindrop.)



6. A mass m is attached to one end of a spring of zero equilibrium length, the other
end of which is fixed. The spring constant is K. Initial conditions are set up so
that the mass moves around in a circle of radius L on a frictionless horizontal table.
(By “zero equilibrium length”, we mean that the equilibrium length is negligible
compared to L.)

At a given time, a vertical pole (of ra-
dius a, with ¢ < L) is fixed onto the
table next to the center of the circle, as
shown. The spring winds around, and
the mass eventually hits the pole. As-
sume that the pole is sticky, so that any
part of the spring touching the pole does
not slip. How long does it take for the
mass to hit the pole?

(Work in the approximation where a <
L.)

2
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Solutions

1. (a) Let the sphere have radius R and charge ). Then the potential at the surface is
V(R) = =. 1
(R) =% (1)

The magnitude of the field at radius r inside the sphere is (from Gauss’ law)

Q(r’/R%) _@r
Integrating this from » = R down to r = 0 gives a change in potential of AV = Q/2R.
Therefore, the potential at the center is

3
v =24 2% @
and the desired ratio is
ViR 2 W
V(0) 3

(b) Let p be the charge density of the cube. Let V" be the potential at the corner of
a cube of side £. Let V" be the potential at the center of a cube of side /. By
dimensional analysis,

Vi o = pt? (5)
Therefore,!
Vi = vy (6
But by superposition, we have
WCQH — 8‘/’[(2/0;" (7)

because the center of the larger cube lies at a corner of the eight smaller cubes of which

it is made. Therefore,
cor

V'ZCOI‘ £/2 1
cen cor 9" (8)
Vi 8Viy 2
2. The contact point on the ground does not look blurred, because it is instantaneously at
rest. However, although this is the only point on the wheel that is at rest, there will be
other locations in the picture where the spokes do not appear blurred.

The characteristic of a point in the picture where a spoke does not appear blurred is that
the point lies on the spoke during the entire duration of the camera’s exposure. (The point

'In other words, imagine expanding a cube with side £/2 to one with side £. If we consider
corresponding pieces of the two cubes, then the larger piece has 2> = 8 times the charge of

the smaller. But corresponding distances are twice as big in the large cube as in the small
cor

cube. Therefore, the larger piece contributes 8/2 = 4 times as much to V" as the smaller piece

contributes to V,7;.



need not, however, correspond to the same point on the spoke.) At a certain time, consider
a spoke in the lower half of the wheel. A short time later, the spoke will have moved, but
it will intersect its original position. The spoke will not appear blurred at this intersection
point. We must therefore find the locus of these intersections.

Let R be the radius of the wheel. Consider a spoke that makes an angle 6 with the vertical.
Let the wheel roll through an angle df; then the center moves a distance R df. The spoke’s
motion is a combination of a translation through a distance R d#, and a rotation through
an angle df (about its top end).

Let r be the radial position of the intersection of the initial and final positions of the spoke.
Then from the figure we have
(Rdf)cos@ =rdb. 9)

Therefore, r = Rcosf. This is easily seen to describe a circle whose diameter is the (lower)
vertical radius of the wheel.

. First solution (slick method):

Let 8 be the angle the force vector makes with the tangential direction. Let F' be the
maximum possible magnitude of the force of friction (it happens to be F' = umg, but we
won’t need this). The minimum-distance scenario is obtained when F'sin 3 accounts for the
radial acceleration, and the remaining F cos # accounts for the tangential acceleration. In

other words,

’n’L’U2

Fsing = & and F cos 8 = mo. (10)

Taking the derivative of the first equation gives F' cos BB = 2muv /R. Dividing this by the
second equation gives § = 2v/ R. But v = Rf, where 0 is the angular distance traveled
around the circle. Therefore, § = 26, and integration gives

B=20. (11)

When the maximum speed is achieved, the value of 4 must be 7/2. This value corresponds

to

o=7- (12)

Hence, the motorcycle must travel a distance mR/4, or one-eighth of the way around the
circle.

Second solution (straightforward method):

In the minimum-distance scenario, the magnitude of the total force must be its maximum
possible value, namely umg (the exact form of this is not important). Since the radial force
is F, = mv?/R, the tangential F = ma equation is

F = \/ (mag)? — (%) =m. (13)

Multiplying through by dz, and then rewriting dz/dt as v (where dz = Rdf is the distance
along the circle), we obtain?

v dv

dr = = (14)
(n9)> — (%)

2This is simply the work-energy result, because the work is F;dz, and the change in kinetic
energy is d(mwv?/2) = mw dv.




4.

Letting z = v2/ugR gives

Rdz
dr = ———. 15
2v/1 — 22 (15)

The maximum allowable speed, V, is obtained from umg = mV?/R. Therefore, V2 = ugR,
and the corresponding value of z is 1. The desired distance, X, is then

X L' Rdz
P AP
0 0 2v/1—22
R w/2
= —/ do (letting z = sin @)
2 Jo
TR

= - (16)

(a) The relative speed of the fox and rabbit, along the line connecting them, is always

vrel = U — v cos a. Therefore, the total time needed to decrease their separation from
¢ to zero is

T:m. (17)

This is valid unless o = 0, in which case the fox never catches the rabbit.
The location of their meeting is a little trickier to obtain. We offer two methods.
First solution (slick method):

Imagine that the rabbit chases another rabbit, which chases another rabbit, etc. Each
animal runs at an angle « relative to the direction directly away from the animal
chasing it. The initial positions of all the animals lie on a circle, which is easily seen
to have radius /2

R = # . (18)

sin(a/2)

The center of the circle is the point, P, which is the vertex of the isosceles triangle with
vertex angle a, and with the initial fox and rabbit positions as the other two vertices.

By symmetry, the positions of the animals at all times must lie on a circle with center
P. Therefore, P is the desired point where they meet. The hypothetical animals
simply spiral in to P.

REMARK: An equivalent solution is the following. At all times, the rabbit’s velocity vector is
obtained by rotating the fox’s velocity vector by a. In integrated form, the previous sentence
says that the rabbit’s net displacement vector is obtained by rotating the fox’s net displacement
vector by a. The meeting point, P, is therefore the vertex of the above-mentioned isosceles
triangle.

Second solution (messier method):

This solution is a little messy, and not too enlightening, so we won’t include every
detail.

The speed of the rabbit in the direction orthogonal to the line connecting the two
animals is vsina. Therefore, during a time dt, the direction of the fox’s motion
changes by an angle df = vsinadt/¢;, where ¢, is the separation at time ¢. Hence, the
change in the fox’s velocity has magnitude |dv| = vdf = v(vsinadt/l;). The vector
dv is orthogonal to v; therefore, to get the z-component of dv, we need to multiply



|dv| by vy/v. Similar reasoning holds for the y-component of dv, so we arrive at the
two equations,

. 'U/Uy Sin &
Vg = )
b
. VU, Sin o
Uy = 7 . (19)
t

Now, we know that ¢, = (¢ — v(1 — cos a)t). Multiplying the above two equations by
¢;, and integrating from the initial to final times (the left sides require integration by
parts), yields

vz 0l +v(l —cosa)X = wvsinal,

vyl +v(l —cosa)Y = —wsinaX, (20)
where (X,Y) is the total displacement vector, and (vg,0,vz,0) is the initial velocity

vector. Putting all the X and Y terms on the right sides, and squaring and adding
the equations, gives

2o? = (X2 +Y?)(v? sin® o + v%(1 — cos a)?). (21)

Therefore, the net displacement is

R=VX21Y?= ! _ 2 (22)

2(1 —cosa)  sin(a/2)

To find the exact location, we can, with out loss of generality, set v; o = 0, in which
case we find Y/X = (1 — cosa)/sina = tan(a/2). This agrees with the result of the
first solution.

First solution (slick method):

Let A(t) and B(t) be the positions of the fox and rabbit, respectively. Let C(t) be the
foot of the perpendicular dropped from A to the line of the rabbit’s path. Let oy be
the angle, as a function of time, at which the rabbit moves relative to the direction
directly away from the fox (so ap = «, and @ = 0).

The speed at which the distance AB decreases is equal to v — v cos ;. And the speed
at which the distance C'B increases is equal to v — v cos a;. Therefore, the sum of the
distances AB and C'B does not change. Initially, the sum is £ + £ cos . In the end, it
is 2d, where d is the desired eventual separation. Therefore,

/(1 + cos )

d=
2

(23)
Second solution (straightforward method):

Let a; be defined as in the first solution, and let #; be the separation at time ¢. The
speed of the rabbit in the direction orthogonal to the line connecting the two animals
is vsinay. The separation is 4, so the angle a; changes at a rate

v sin ay

b

oy =

(24)

And 4, changes at a rate ‘
ly = —v(l —cosay). (25)



Taking the quotient of the above two equations, and separating variables, gives

ét Oét(]. — COS Oét)

L 26
4y sin oy (26)

The right side may be rewritten as a; sina;/(1 + cos ay), and so integration gives
In(¢;) = —In(1 + cosay) + C, (27)

where C' is a constant of integration. Exponentiating gives ¢;(1 + cosay) = B. The
initial conditions demand that B = ¢5(1 + cos o) = ¢(1 + cos v). Therefore,

2(1 + cos @)
by =—~— """ 2
T (14 cosay) (28)

Setting ¢t = oo, and using ay = 0, gives the final result

2(1 + cos )

by = 5

(29)
REMARK: The solution of part b) is valid for all a except a=n. If a=n, the rabbit runs
directly towards fox and they will indeed meet halfway in time £/2v.

5. Let p be the mass density of the raindrop, and let A be the average mass density in space of
the water droplets. Let r(t), M (t), and v(t) be the radius, mass, and speed of the raindrop,
respectively.

The mass of the raindrop is M = (4/3)7r3p. Therefore,
M = dnrip = 3M L. (30)
T

Another expression for M is obtained by noting that the change in M is due to the acquisi-
tion of water droplets. The raindrop sweeps out volume at a rate given by its cross-sectional
area times its velocity. Therefore,

M = nr?u). (31)

The force of Mg on the droplet equals the rate of change of its momentum, namely dp/dt =
d(Mwv)/dt = Mv + Mv. Therefore,

Mg = Mv + Mb. (32)

We now have three equations involving the three unknowns, r, M, and v.

(Note: We cannot write down the naive conservation-of-energy equation, because mechan-
ical energy is not conserved. The collisions between the raindrop and the droplets are
completely inelastic. The raindrop will, in fact, heat up. See the remark at the end of the
solution.)

The goal is to find © for large t. We will do this by first finding # at large ¢. Eqs. (30) and
(31) give
4p . . 4p..

v=r = 0= (33)



Plugging eqs. (30) and (33) into eq. (32) gives

-\ (4 4
Mg = (3Mf> (—"f) +M (-”;«') . (34)
r A A
Therefore,
9N, 1942 4 dri, (35)
o)

Given that the raindrop falls with constant acceleration at large times, we may write 3
. . 1 5
7 & by, 7 = bgt, and r §bgt , (36)

for large t, where b is a numerical factor to be determined. Plugging eqs. (36) into eq. (35)

gives
1 1
(%) <§bgt2> = 12(bgt)? + 4 <§bgt2> bg. (37)

Therefore, b = \/28p. Hence, # = g\/28p, and eq. (33) gives the acceleration of the
raindrop at large t,

. _ g
=2 38
=1, (33)

independent of p and A.

REMARK: We can calculate how much mechanical energy is lost (and therefore how much the
raindrop heats up) as a function of the height fallen.

The fact that v is proportional to 7 (shown in eq. (33)) means that the volume swept out by the
raindrop is a cone. The center-of-mass of a cone is 1/4 of the way from the base to the apex.
Therefore, if M is the mass of the raindrop after it has fallen a height h, then the loss in mechanical
energy is

h 1
Eiost = MgZ - §MU2- (39)
Using v? = 2(g/7)h, this becomes
3
AFEiy = Eost = 55 Mgh, (40)

28

where AFE;, is the gain in internal thermal energy. The energy required to heat 1g of water by 1
degree is 1 calorie (= 4.18 Joules). Therefore, the energy required to heat 1 kg of water by 1 degree
is & 4200 J. In other words,

AFEin = 4200 M AT, (41)

where mks units are used, and 7' is measured in celsius. (We have assumed that the internal energy is
uniformly distributed throughout the raindrop.) Eqgs. (40) and (41) give the increase in temperature
as a function of h,

3
4200 AT = —gh. 42
00 55" (42)

How far must the raindrop fall before it starts to boil? If we assume that the water droplets’
temperature is near freezing, then the height through which the raindrop must fall to have AT =
100°C is found to be

h = 400 km. (43)

%We may justify the constant-acceleration statement in the following way. For large ¢, let r be
proportional to t*. Then the left side of eq. (35) goes like t*, while the right side goes like $2*72.
If these are to be equal, then we must have oo = 2. Hence, r  t°, and 7 is a constant (for large

).



We have, of course, idealized the problem. But needless to say, there is no need to worry about
getting burned by the rain.

A typical value for h is 10 km, which would raise the temperature by two or three degrees. This
effect, of course, is washed out by many other factors.

. Let 6(t) be the angle through which the spring moves. Let z(t) be the length of the
unwrapped part of the spring. Let v(¢) be the speed of the mass. And let k(t) be the spring
constant of the unwrapped part of the spring. (The manner in which k£ changes will be
derived below.)

Using the approximation ¢ < L, we may say that the mass undergoes approximate circular
motion. (This approximation will break down when x becomes of order a, but the time
during which this is true is negligible compared to the total time.) The instantaneous center
of the circle is the point where the spring touches the pole. F' = ma along the instantaneous

radial direction gives

mU2

= kx. (44)

T

Using this value of v, the frequency of the circular motion is given by

v k
%:5:\/; (45)

The spring constant, k(t), of the unwrapped part of the spring is inversely proportional to its
equilibrium length. (For example, if you cut a spring in half, the resulting springs have twice
the original spring constant). All equilibrium lengths in this problem are infinitesimally
small (compared to L), but the inverse relation between k and equilibrium length still
holds. (If you want, you can think of the equilibrium length as a measure of the total
number of spring atoms that remain in the unwrapped part.)

QL
53

w

Note that the change in angle of the contact point on the pole equals the change in angle
of the mass around the pole (which is §.) Consider a small interval of time during which
the unwrapped part of the spring stretches a small amount and moves through an angle
df. Then a length adf becomes wrapped on the pole. So the fractional decrease in the
equilibrium length of the unwrapped part is (to first order in df) equal to (adf)/xz. From
the above paragraph, the new spring constant is therefore

k adf
knew = 1_071;ﬂ ~ kold <1 + 7) . (46)

Therefore, dk = ka df/z. Dividing by dt gives

- kaw
k=—. 47
. (47)
The final equation we need is the one for energy conservation. At a given instant, consider
the sum of the kinetic energy of the mass, and the potential energy of the unwrapped part of
the spring. At a time dt later, a tiny bit of this energy will be stored in the newly-wrapped
little piece. Letting primes denote quantities at this later time, conservation of energy gives

Lo, 1 o 1, 1 ,p <1 2> <ad9>
- Z = _ Z — — . 4
2kac + 5 MY 2kac + 5 M + Qkx . (48)



The last term is (to lowest order in df) the energy stored in the newly-wrapped part, because
adf is its length. Using eq. (44) to write the v’s in terms of the z’s, this becomes

1
ka? = K¢ + Shwadp. (49)

In other words, —(1/2)kzadf = d(kz?). Dividing by dt gives

1 d(kz?)
—§kxaw = 7
= kz?+ 2kzi
k
- <ﬂ> 22 + 2kzd, (50)
T

where we have used eq. (47). Therefore,

3
T = — o (51)

We must now solve the two couple differential equations, egs. (47) and (51). Dividing the
latter by the former gives

i 3k
=i (52)
Integrating and exponentiating gives
KL4/3
= Ap (53)

where the numerator is obtained from the initial conditions, ¥ = K and x = L. Plugging
eq. (53) into eq. (51), and using w = /k/m , gives

30,K1/2L2/3
2/3; _
Integrating, and using the initial condition = = L, gives
5aK/2L2%/3
2%/3 = 53 _ <W t. (55)
So, finally,
+\3/5
o(t) = L (1 _ ?> , (56)
where

4L [m
T=—-—/=
5aV K (57)

is the time for which z(¢) = 0 and the mass hits the pole.
REMARKS:
(a) Note that the angular momentum of the mass around the center of the pole is not conserved
in this problem, because the force is not a central force.

(b) Integrating eq. (51) up to the point when the mass hit the pole gives —L = —(3/4)af. But af
is the total length wrapped around the pole, which we see is equal to 4L/3.
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1. A thin stick with length L (and uniform mass density) is pivoted at a point P. The
stick is held horizontal and then released. Where should P be located so that the
stick swings down and passes through the vertical position in the minimum time?

2. (a) Two conducting infinite half-planes meet at a right angle. A charge ¢ is brought
in from rest at infinity, to a position (at rest) a distance d from each plane. What
is the work done, Wiy, to bring about this change?

«—Jd—>0

— 0 —>

Figure 1: Problem 2

(b) While the charge ¢ is a distance d from each plane, the planes are changed from
conducting to insulating (that is, the charges on them are no longer free to move).
The charge ¢ is then brought back out to infinity. What is the work done, Wy,
to bring about this change?

(c) What is the potential energy of the system of charges on the insulating planes?

3. Consider a planet which is made of matter with the same average density as the earth.
Assume that the atmospheric pressure on the planet’s surface is the same as on the
earth’s surface. Assume for simplicity that the planet’s atmospheric temperature is
independent of height, and that it is equal to the temperature at the surface of the
earth. And assume that the composition of the atmosphere on the planet is the same
as on the earth.

What should the radius of the planet be, so that a light beam can travel in a circle
around the planet, just above its surface?

Note: You will need to use the fact that the index of refraction depends on the
density of air according to n(p) = 1 + ep, where € is a given constant.

Give your answer in terms of:



Ry, the radius of the earth,

gr, the acceleration at the surface of the earth,

Py, the atmospheric pressure at the surface of the earth,
pe, the atmospheric density at the surface of the earth, and

€.

4. N identical balls lie equally spaced in a semicircle, on a frictionless horizontal table,
as shown. The total mass of these balls is M. Another ball of mass m approaches
the semicircle from the left, with the proper initial conditions so that it bounces
(elastically) off all N balls and finally leaves the semicircle, heading directly to the
left.

00‘.
L[]
L]
L[]
L]
*
total massM ¢,
L]
*
(]
*
L]
L[]
m ..‘
o —> oo

Figure 2: Problem 4

(a) In the limit N — oo (so the mass of each ball in the semicircle, M /N, goes to
zero), find the minimum value of M/m which allows the incoming ball to come
out heading directly to the left.

(b) In the limiting case found in part (a), find the ratio of m’s final speed to initial
speed.

5. A turntable rotates with constant angular speed 2. A ball rolls on it, without slipping.
The ball has uniform mass density, so that its moment of inertia is I = (2/5) M R2.

Show that whatever the (non-slipping) initial conditions are, the ball will move in a
circle (as viewed from the inertial lab frame). What is the frequency of this circular
motion?

6. A rope of mass density o hangs from a spring with spring-constant k. In the equilib-
rium position, the bottom part of the rope lies in a heap on the floor, and a length L
is in the air. The top of the spring is held fixed.

The rope is raised by a very small distance b and then released. What is the amplitude
of oscillations, as a function of time?



v~ e

Figure 3: Problem 6

(Assume the following: (1) L > b, (2) the rope is very thin, so that the size of the
heap on the floor is very small compared to b, (3) the length of the rope in the initial
heap is larger than b, so that some of the rope always remains in contact with the
floor, and (4) there is no friction of the rope with itself inside the heap.)
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Let z be the distance from P to the center of the stick. The moment of inertia of the
stick (around the center of mass) is
L/2 L/2 (cL)L> ML?
Ienv = / = .

2 2
z°dm = zodr = =
L2 ~L/2 12 12

(1)

Using the parallel-axis theorem, the moment of inertia around point P is
I, = MI?

12
The torque, relative to P, is due to gravity effectively acting at the center of mass.
Therefore, when the stick makes an angle 6 with respect to the horizontal, the torque
is T = Mgxcos 6. Hence, 7 = I, gives

+ Mz (2)

Mgz cosf

a=——. 3
Mlgz-Fsz (3)

The stick will fall quickest when the coefficient of cosf is maximum. Taking the
derivative with respect to =, we find that « is maximized when

L

T = Nivh (4)
(a) Add three image charges to create the square of charges shown below. It is easy
to see that the total electric field caused by all four charges is perpendicular to
the two planes. Since this field satisfies the boundary conditions required by the
conducting planes, it must be the same (due to the uniqueness theorem) as the
field produced by the actual charge ¢ and the negative charges that build up on

the planes.

The total potential energy of the entire system of charges is

s q
e (2) (o). o

The potential energy of the actual charge ¢ and the negative charges that build
up on the planes is Vio;/4. (This can be seen by noting that the energy of a
system of charges is equal to the integral of the square of the electric field. And
the actual setup has an electric field in only one quadrant of space.) The work
Win is equal to the potential energy of the actual system of charges. Therefore,

._Vtot_q2<1 1)
W‘_4_d 2+4\/§’ (©)

which is negative, as it should be.
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(b) When the charge ¢ is moved away from the insulating planes, it feels a force as
if it is interacting with the three image charges fixed at their positions. (This is
true because at any point in the upper right quadrant, the electric field due to
the image charges must be precisely equal to the electric field due to the charges
on the insulating plates. This is why we picked these image charges, after all.)
The work Wy, is thus equal to the work done in separating the given charge
from the three image charges. This work is

_ () (4
o = () - (2730)

A :

which is positive, as it should be.

~

(c) The potential energy of the system of charges on the insulating planes is equal
to the total work done on the system, which is

2

@ /1 1)
Win + Wou = — (5 = —= |, 8
+ out d<2 4\/5 ()

which is positive, as it should be.

3. The condition that light is able to take a circular path around the planet is that this
circular path takes the least amount of time, compared to all nearby paths. (This
is Fermat’s principle of least time.) This condition then implies that nearby circular
paths take the same amount of time (to first order in their size difference, at least).

The speed of light in a medium is proportional to the reciprocal of the index of



refraction. Therefore, the condition for the existence of a circular path is'

n(R+h) R
n(R)  R+h’

(9)

Expanding this to first order in h gives R = —n/(dn/dh). But the given information
n = 1 + ep says that dn/dh = edp/dh. Therefore,
n

F= “edp/dh’ (10)

We must therefore find dp/dh. We will need three facts.

(a) The first is
dp _ pu dP

dh ~ Py dh - (1)
This follows from the ideal gas law, PV = nRT. Dividing through by V, we
find P « p. Since the temperature of the planet’s atmosphere is independent of
height, the constant of proportionality is independent of height. And since the
temperature is the same as on the earth’s surface, we have p/P = py/Py, from
which eq. (11) follows.

(b) The second is
dP
P (12)

This follows from the usual consideration of a small column of air (with height dh
and base area A), which has a net force on it equal to —A(dP/dh) dh — (pA dh)g.
Setting this equal to zero yields eq. (12).

(c) The third is

g
= —R. 13
9="% (13)

This follows from the definition ¢ = GM/R?, along with the assumption that
the densities of the earth and the planet are equal. Writing M as the density
times 47 R3/3 gives g o< R, from which eq. (13) follows.

£--(3) ()

Plugging this into eq. (10) gives

These three facts imply

nRy P
R=EE (15)
€gupepR
You can also derive this result by considering the atmosphere to consist of layers with different n’s, and
demanding that there be total internal reflection in a given layer.




Using n = 1 + €p, and also the assumption p = pg, and then solving for R gives

1+ RyP
R= \/% . (16)
€GdEPE
REMARK: The quantity epp is roughly equal to 3 - 10~*. Using this value (its effect

in the numerator of eq. (16) is negligible), along with R, =~ 6.4 -10°m, g, ~ 10 m/s?
Pp = 1-10°kg/ms?, and py ~ 1.2 kg/m3, gives

R~13-10'm~2R,. m (17)

4. (a) Let p = M/N be the mass of each ball in the semicircle. We want the deflection
angle in each collision to be # = n/N. However, if the ratio u/m is too small,
then this angle of deflection is not possible. Let’s be quantitative about this.

Lemma: If a mass m collides with a stationary mass y, then the maximum
angle of deflection is given by
S0 O = L. (18)
Proof: Let V be the initial speed of mass m in the lab frame. Then in the CM
frame, it is easy to see that m and p head toward each other with initial speeds
14 V
U = u—, and vy = | (19)
m+ i m+
Because the collision is elastic, these speeds are also the final speeds in the CM
frame, independent of the final directions of motion (which are of course opposites
of each other.)
To return to the lab frame, we must add on the sideways speed of v, = mV/(m+
) to each particle. Therefore, the final velocity of m in the lab frame is the vector

sum,
mV v
V)= (—) %+ (“—) i (20)
m+ u m+ i

where 1 is the unit vector representing the direction on the CM frame. To
maximize the angle of deflection in the lab frame, we clearly want to have the
situation show below, where the total velocity vector is tangent to the circle. In
this case, we have sinf,x = u/m, as was to be shown.?

2You can also derive this result by going through the straightforward (but tedious) calculation using
conservation of energy and momentum during the collision. You will find that a solution exists (for, say, the
final speed of m) only if sinf < p/m.
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(This result holds for y < m. If 4 > m, then the maximum angle of deflection is
180°.) m

In the problem at hand, we have § = 7/N. Since 6 is small, we may use sinf ~ ¢
to write the sinf < p/m condition as
W M

M/N
0 < — = Ig( /N) = < . (21)
m N m m

(Given m, it is clear that there must be a lower bound on M, because if M is
very small, the mass m will simply plow through the semicircle.)

(b) From the above figure, the final speed after one bounce, in the case of maximum
deflection angle, is

2 _ 4,2
szvivm”zv@—ﬂ), (22)

m—+ [ m

to first order in the small quantity p/m. The same reasoning holds for al-
1 bounces, so the speed decreases by the factor (1 — p/m) after each bounce.
In the special case where u/m = w/N, we see that after the N bounces off all
the balls, the ratio of m’s final speed to initial speed is

N

Vinal _ (1 - 1) ~e . (23)
Vinitial N

It doesn’t get any nicer than that!

(e™™ is roughly equal to 1/23, so only about 4% of the initial speed remains.)

5. The angular velocity of the turntable is Qz. Let the angular velocity of the ball
be w. If the ball is at position r (with respect to the lab frame), then its velocity
(with respect to the lab frame) may be broken up into the velocity of the turntable
(at position r) plus the ball’s velocity relative to the turntable. The non-slipping
condition says that this latter velocity is given by w X (az). (We’ll use “a” to denote
the radius of the sphere.) The ball’s velocity with respect to the lab frame is thus

v=(Qz) Xr+w x (az). (24)
The angular momentum of the ball is

L = [w. (25)



The friction force from the ground is responsible for changing both the momentum
and the angular momentum of the ball. F = dp/dt gives

dv

F=m— 26
m (26)
and 7 = dL/dt (relative to the center of the ball) gives
dL
—az) X F =2 27
(o) < F = 22 (27)

since the force is applied at position —az relative to the ball’s center.

We will now use the previous four equations to demonstrate that the ball undergoes
circular motion. Our goal will be to produce an equation of the form dv/dt = Q'z x v,
since this describes circular motion, with frequency €’ (to be determined).

Plugging the expressions for L and F from eqs. (25) and (26) into eq. (27) gives

. dv dw
(—az) x (mE> = IE
dw am) . dv
Taking the derivative of eq. (24) then gives
dv dr dw
Vo Qax — 4+ 2F A
dt ax gt <@
R amy. dv .
= Qzxv-— ((T)z X E) X (az). (29)

Since the vector dv/dt lies in the horizontal plane, it is easy to work out the cross-
product in the right term (or just use the identity (A xB)xC = (A-C)B—(B-C)A)
to obtain

2
v _ szv—<—“m>d—v

dt I ) dt
dv Q .
For a uniform sphere, I = (2/5)ma?, so we obtain
2
Cfl—;’ - <?Q> X v. (31)

The ball therefore undergoes circular motion, with a frequency equal to 2/7 times the
frequency of the turntable. This result for the frequency does not depend on initial
conditions.



REMARKS: Integrating eq. (31) from the initial time to some later time gives

V- vy = <§Q>zx(r—r0). (32)

This may be written in the more suggestive form,

v = (%Q)ix <r— (rg+%(ixv0))>. (33)

This equation describes circular motion, with the center located at the point
rc =19 + (7/2Q)(z X vy), (34)

and with radius (7/29Q)|z x vo| = Tve/2Q2. (Eq. (33) does indeed describe circular motion,
because it says that v is always perpendicular to r — r.. Hence, the distance to the point r
doesn’t change.)

There are a few special cases to consider:

e If vy = 0 (that is, if the spinning motion of the ball exactly cancels the rotational motion
of the turntable), then the ball will always remain in the same place (of course).

e If the ball is initially not spinning, and just moving along with the turntable, then
vo = Qrp, so the radius of the circle is (7/2)ro.

e If we want the center of the circle be the center of the turntable, then eq. (34) say
that we need (7/2Q)z x vo = —r¢. This implies that vy has magnitude vy = (2/7)Qrg
and points tangentially in the same direction as the turntable moves. (That is, the ball
moves at 2/7 times the velocity of the turntable beneath it.)

The fact that the frequency (2/7)Q is a rational multiple of 2 means that the ball will even-
tually return to the same point on the turntable. In the lab frame, the ball will trace out two
circles in the time it takes the turntable to undergo seven revolutions. And from the point of
view of someone on the turntable, the ball will ‘spiral’ around five times before returning to
the original position.

If we look at a ball with moment of inertia I = pma? (so a uniform sphere has n = 2/5), then
it is easy to show that the “2/7” in the above result gets replaced by “n/(1+n)”. If a ball has
most of its mass concentrated at its center (so that n — 0), then the frequency of the circular
motion goes to 0, and the radius goes to co. W

. We will divide the solution into the calculations of (1) the frequency of oscillation, (2)
the energy loss per oscillation, (3) the amplitude as a function of time.

Frequency of oscillation

In the equilibrium position, the upward force from the spring balances the downward
force from gravity on the part of the rope that is in the air. If the rope is moved a
distance y (with upward taken to be positive), then the force from the spring changes



by —ky, while the gravitational force changes by —(oy)g. The net force is therefore
F = —(k + 0g)y. This force acts on the rope, which has mass M = oL. F = ma
therefore gives (the mass of the rope in the air changes slightly, but this effect is
negligible when dealing with the “m” in F' = ma)

—(k +og)y = (o L)j, (35)

and so the frequency of oscillation is
k+og k g
\/ oL \/M L (36)

REMARKS: A common incorrect answer for the frequency is w = y/k/M. The g/L term
definitely belongs in the correct answer, as can be seen by considering the limit & — 0. (That
is, we have a very weak spring which is stretched, say, a kilometer. And a rope of, say, 1 meter
hangs from the end.) The spring force doesn’t vary much with distance, so it will always
pull up with a force of essentially Mg = (Lo)g. If the rope is moved distance y, then the
gravitational force equals —(L + y)og. The net force is therefore —(og)y. F' = ma then gives
—(og)y = (Lo)j. Hence w = /g/L, which is independent of k (even though the spring force
is not negligible). The rope will simply bounce up and down, with a frequency determined by
its length.

We can be a bit more rigorous in deriving the frequency in eq. (36), by writing down the
precise equations of motion for the moving part of the rope. If we let £ = L + y be the length
of rope in the air, then F' = dp/dt gives

d

e ((za)e) = bl + of* = o(L + y)ij + 09° (37)

Fhet =
et dt

On the way up, the net force on the moving part of the rope is Fiet = —(k+ 0g)y, so eq. (37)
gives
—(k+o0g9)y =o(L +y)j+ oy>. (38)

On the way down, the net force on the moving part of the rope is Fet = —(k + 09)y + Faoor,
where Fhoor is the force exerted by the floor to bring to rest the atoms that hit the floor. Mass
hits the floor at a rate o|g|, while moving at speed |g|. The rate of change of momentum of
these atoms (i.e., Fioor) is therefore oy?. Eq. (37) then gives

—(k+og)y =0(L+y)j. (39)

To first order in the small quantity y, both egs. (38) and (39) give the equation of motion in
eq. (35), which was derived using the approximate F' = ma reasoning, with m = ocL. H

Energy loss per oscillation

The position of the rope, relative to the equilibrium position, is essentially equal to

z(t) = A(t) cos(wt). (40)



The energy loss during the downward motion is fairly straightforward. When a piece
of the rope with mass dm hits the floor, it loses a kinetic energy of (1/2)(dm)v?. In
a short time dt, we have dm = |ov dt|. So the loss is |(1/2)ov? dt|. From eq. (40), we
obtain v(t) = —wA(t) sin(wt), so the change in energy during the downward half of

the oscillation is

1 [m/w
ABgown = =5 /0 ow’ A% sin® (wt) dt. (41)

Letting € = wt, and then using

iy ™ 3 ™
/ sin® 0 df) = / (1 — cos? ) sinf df = (— cos + = 9> ‘0 _: (42)
0 0

3

gives (using the fact that A is essentially constant throughout an oscillation)

2
AFE4own = —§Uw2A3. (43)

The energy loss during the upward motion is a little trickier, but the answer turns out
to be the same as for the downward motion. When a piece of the rope with mass dm
abruptly joins the moving part of the rope, there is an inevitable energy loss. This
loss may be calculated as follows. Let a mass dm join the rope at the instant the rope
is moving at speed v. Then it gains a kinetic energy of (1/2)(dm)v?. Tt also gains a
momentum of dP = (dm)v. The work the spring does in bringing it up to this speed
is W = [ Fdz = [ Fvdt. The rope is moving at an essentially constant speed v for
this short period of time. Hence,

W = v/th = v(dP) = (dm)v>. (44)

We therefore conclude that half of this work goes into kinetic energy of the mass,
and half is lost to heat. The loss to heat is thus (1/2)(dm)v? = (1/2)|ov dtjv? =
|(1/2)ov3 dt|, as in the downward case. The total change in energy per oscillation is
therefore

AE = ABgoyn + ABy, = —gawu?’. (45)

REMARK:  The fact that the loss in heat equals the gain in kinetic energy, when an atom
joins the moving part of the rope, is a very general result and can easily been understood by
looking at things in the frame of the moving rope. In this frame, an atom of mass dm in the
heap moves with speed v, and then suddenly comes to rest when it joins the straight part of
the rope. The heat loss in the rope’s frame (which is the same as the heat loss in the lab
frame) is therefore (dm/2)v?, which equals the gain in kinetic energy in the lab frame. The
validity of this general result can be traced to the self-evident fact that the speed of the heap
with respect to the straight part is the same as the speed of the straight part with respect to
the heap. ®



Energy loss per oscillation

The energy of the rope when it has amplitude A is E = Mw?A2%/2, thus dE =
Mw?AdA. The number of oscillations in a time dt is wdt/2m. Therefore, eq. (45)
gives (using M ~ oL)

(0L)w?AdA = —(“’—dt> (éaw%ﬁ)
2w 3
dA 2w
- () an 4
A2 (37TL> (46)

Integrating this from the start to a time ¢, and using A(0) = b, gives

1
At) = T (47)
b1 3nL
REMARK: For large t, this reduces to
3rL
Alt) ~ — 48
)~ (48)

which is independent of the initial amplitude b. The 1/t behavior implies that the total
distance the rope travels barely diverges to infinity, as t — co. In terms of n = wt/2m, the
number of oscillations undergone, eq. (48) may be written as

An)~>=. = (49)
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1. A ball (with moment of inertia I = (2/5)mr?) rolls without slipping on the inside of
a cylinder of radius R. The cylinder spins around its axis (which points horizontally)
with angular acceleration cv. What should « be if you wish for the center of the ball
to remain motionless at an angle 6 up from the bottom of the cylinder (see figure)?

side view

2. A point source emits light (spherically symmetrically) and is located along the axis
of a cone (with vertex angle @), at a distance d from the tip. The inside surface of
the cone is reflective. A receiver is located inside the cone. The receiver consists of
all points inside the cone that are a distance r from the tip. (See the figure below
for a two-dimensional slice of the setup.) What fraction of the light emitted by the
source hits the receiver?

source
]

receiver



3. A block is placed on a plane inclined at angle 8. The coefficient of friction between
the block and plane is p = tanf. The block is given a kick so that it initially
moves with speed V' horizontally (i.e., in the direction perpendicular to the direction
pointing straight down the plane; see the figure below). What is the speed of the
block after a very long time?

4. Find the efficiency of the thermodynamic process shown below. The corners of the
triangle are located at the points (V,2P), (V, P), (2V, P).

Notes: (1) The “efficiency” of a thermodynamic process is defined to be € = (Qj, —
Qout)/Qin, where Qin and Qoyy are the quantities of heat added and removed from
the system, respectively, (2) the gas is assumed to be an ideal gas, the internal

energy of which is %nkT.
P

A
(V.2pP)

(v, P) (2V,P)

Y
~




5. A rubber band with initial length L has one end tied to a wall. At ¢ = 0, the other
end is pulled away from the wall at speed V. (Assume the rubber band stretches
uniformly.) At the same time, an ant located at the end not attached to the wall
begins to crawl toward the wall, with a speed of u relative to the band. Will the
ant reach the wall? If so, how much time will it take?

6. N points in space are connected by a collection of 1§2 resistors. The network of
resistors is arbitrary, except for the fact that it is “connected” (that is, it is possible
to travel between any two points via an unbroken chain of resistors). The number
of resistors emanating from any point can be any number from 1 to N — 1.

Consider two points that are connected by a 1€ resistor. The network produces
an effective resistance between these two points. What is the sum of the effective
resistances across all the 1 resistors in the network?

Note: You will receive 2 points for stating the correct answer (which must be sup-
ported by a few simple examples), and then 8 points for proving the general result.
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Solutions

1. Let the friction force on the ball be F. Then F must cancel the
component of gravity in the tangential direction; thus F' = mgsin6.

The torque on the ball is 7 = Fr. Using F = mgsinf, we get
7 = mgrsinf. This torque must equal I«p, where « is the angu-
lar acceleration of the ball, which is related to the « of the cylinder by
ap = (R/r)a. Thus, 7 = Iy gives

.. (2 S\ (R _ 5gsinf
mgrsin@ = <gmr ) (7a> = =0 (1)

2. When the light bounces off the surface, its reflected angle is equal to
its incident angle. Therefore, we may use the method of images to
determine if a particular ray of light hits the receiver.

If we look at a two-dimensional cross-section of the cone, we see that
when the picture is repeatedly reflected across the edge of the cone,
the receiver turns into a full circle of radius r. The method of images
therefore tells us that in the original three-dimensional case, the given
receiver turns into a full sphere of radius 7, centered at the vertex of
the cone.

The given problem therefore reduces to the problem: What fraction of
light emitted from a source falls on a sphere of radius r centered at a
point a distance d from the source? (Note that the given vertex angle
0 is irrelevant.)



original
cone _.-""

source

From the figure, we see that we need to find the fractional solid angle
subtended by a cone with half-angle /3, where sin § = r/d. Looking at
a sphere of radius R, the area of the spherical “cap” subtended by this
cone can be found by slicing the cap into circular bands. If a describes
the angle away from the top of the cap, then the corresponding circle
has radius 27 (R sin a), so the resulting integral for the area of the cap
is

8
A :/ (2rRsina)(Rdo) = —2rR? cosa‘i = 27R2(1 — cos B). (2)
0

The fraction of the total area is therefore

A 1 1 22
Fraction = R 5(1 —cosf) = 3 (1 - %) . (3)

(If r > d, then the fraction equals 1, of course.)

. The normal force from the plane is N = mg cos 6, so the friction force
is uN = mgsinf. This force acts in the direction opposite to the
motion. There is also the gravitational force of mg sin # pointing down
the plane.



The magnitudes of these two forces are equal, so the acceleration along
the direction of motion equals the negative of the acceleration in the
direction down the plane. Therefore, in a small increment of time, the
speed that the block loses along its direction of motion exactly equals
the speed that it gains in the direction down the plane. Letting v be
the speed of the block, and letting v, be the component of the speed
in the direction down the plane, we therefore have

v+ vy =C, (4)

where C' is a constant. C'is given by its initial value, whichis V40 =V
(where V' is the initial speed of the block). The final value of C' is
Vi 4+ V; = 2V (where V; is the final speed of the block), since the
block is essentially moving straight down the plane after a very long
time. Therefore,

2Vf =V — Vf = V/Q. (5)

. Start with the first law of thermodynamics (energy conservation),
dQ =dU — dW (6)

where d(@) is an infinitesimal amount of heat added to the system, dU
is the change in internal energy, and dW is an infinitesimal amount of
mechanical work done on the system.

Consider going around any closed loop in the state of the system. By
‘state’ we mean pressure p, volume V and temperature 7. In our
system, knowing any 2 of these determines the third; for instance T
is a function of (p,V) which is given by the ideal gas law. U is a
function of the state alone, so adding up the dU changes around the
closed loop must give zero. Therefore for a single traversal of the loop,
AQ = —AW. Mechanical work done is caused by changes in volume,

dW = —pdV, (7)

so the integral of dW around a closed loop is just the negative of the
area enclosed on the (p, V) plane (for a clockwise loop, as we have).
For each traversal of the loop, therefore

Qin — Qout = AQ = —AW = area enclosed in (p,V) = ipoVp. (8)



We have given the constants P and V given in the problem the more
convenient symbols pg and V.

We have found the numerator of the fraction giving the efficiency (if
you used the methods below to find this numerator, that was fine to0o).
Now all that remains is the denominator, Qiy.

We’re given the internal energy U = 2nkT, from which you have to
realise that n is the number of particles not the number of moles of
particles. This is obvious since m is multiplied by k&, Boltzmann’s
constant, rather than R, the gas constant. We have an ideal gas,

pV = NRT or equivalently, pV = nkT, (9)

where N is the number of moles, and n the number of particles (note
this is swapped from the usual notation for n and N). The second
form is the useful one for us, since from it follows that internal energy
can be written

U =3pV. (10)

2

Now for any segment of the path we can find AU, without explicit
reference to 7.

P/po Q
2
Bl
A tpz BII
¢ P
o o
0 : ; : j -
0 1 2 VIVy ! ! going around cycle

We need to consider the complete path, and find the ‘turning points’
where the flow of heat (sign of d@) changes direction (tp; and tps in
the right-hand figure). @i, is then the integral between these turning
points along one route of the path (and Qo is the same integral back
along the other route). We need to find how @) changes in each side of
the triangle, labeled A,B and C (see left-hand figure):



Leg A: no volume change, so AW = 0. Due to a doubling of pressure,
U has changed from 2pgVp to twice that, so AQ = AU — AW =
+32poVo.

Leg C: no pressure change, so the work integral AW = — [pdV
is simply —p AV = poVy. U goes from its value at the end of leg
A back to its original value, so AU = —3pyVj. Together these give
AQ = —3poVp. Checking the signs here was important: the effects
combine to give increased heat output.

From the above consideration of d() in legs A and C, it is clear that
one turning point is tp; as shown.

Leg B: This is not an isothermal change (which would correspond to
a hyperbola defined by pV = const, and would imply that d@Q > 0
everywhere along the leg). It is also tempting to assume that since
AU = 0 along this leg (same start and end T'), one can find AW and
be done with the problem. Not so! Because T' (hence U) is dropping
at the end of the leg while W is also dropping (work is being done by
the system), there is the possibility that d@ changes sign along the
leg, making tps happen some fraction of the way along the leg.

We parametrize the leg by a unitless number z = [1, 2], giving p(z) =
po(3 —z) and V(z) = Vpz. Therefore

v
dQ = dU — dW = 2(pdV +V dP) + pdV = ’%(15 —8a)dz, (11)

where the derivatives dp = —podz and dV = Vydz were used. Clearly
dQ changes sign when 15 — 8z = 0, that is, at x = 15/8. Note that
this turning point is not simply at z = 3/2 (half-way through the leg),
when T reaches its maximum. The location of this turning point can

also be found by considering the criterion for adiabaticity (dQ = 0),
namely dp/dV = —yp/V = =3p/V.

Splitting the leg into parts B’ and B” at this turning point as shown,
we need the heat input in leg B’ only,

z=15/8 Vo [r=15/8
AQ = / dQ = oo (15 — 8z) da. (12)
=1 2 =1
The z-integral gives [15z — 4:52]}5/ 8 = 22 after a little simplification,

so AQ = +§—3p0V0.



Adding AQ from legs A and B gives Qin = (2 + 33)poVo = LpoV0, an
admittedly slightly messy fraction.

Finally the efficiency is

in — 1poVo 16
e Qin = Qo _ opoVo 16 00 o about 16.5% (13)

Qin YpoVo 97

Note that this is very close to the incorrect answer of 1/6 obtained if
tps is assumed to be at the lower right vertex.

. At time ¢, the movable end of the band is a distance ¢(t) = L + V't
from the wall. Let the ant’s distance from the wall be r(t).

Consider the fraction of the ant’s position along the band, F(t) =
r(t)/¢(t). The given question is equivalent to: For what value of ¢
does the fraction, F(t), become zero (if at all)? Let us see how F()
changes with time.

After an infinitesimal time, dt, the ant’s position, r, increases by
(r/€)V dt due to the stretching, and decreases by u dt due to the crawl-
ing. Therefore,

r+ (r/O)Vdt —udt

F =
(t+di) (+ Vit
T udt
= - — — . 14
¢ 14+ Vdt (14)
To first order in dt, this yields
F(t+dt)=F(t) — %dt. (15)

In other words, F'(t) decreases due to the fact that in a time dt the
ant crawls a distance wdt relative to the band, which has a length
approximately £(t). Eq. (15) gives

dF(t) u

LA 16
dt 1 (16)
Using /(t) = L + Vt and integrating eq. (16), we obtain
u V
F(t)=1- ¢ n <1 + Zt) : (17)

where the constant of integration has been chosen to satisfy F(0) = 1.



We now note that for any positive value for u, we can make F(t) =0

by choosing
L

— Z (Vv —
=3 (e 1). (18)
For very large V/u, the time it takes the ant to reach the wall becomes
exponentially large, but it does indeed reach it in a finite time.

For very small V/u, (18) reduces to ¢t =~ L/u (using e* ~ 1 + z), as it
should.

. A few simple examples suggest that the answer to the problem is
(N —1)Q. Let’s prove this in general. (We will use a superposition
argument.)

Consider two points, A and B, that are connected by one of the 12
resistors. If we put a current I in at A, and take a current I out at B,
then the effective resistance between A and B is V/I, where V is the
potential difference between the two points.

The situation where a current I goes in at A and out at B can be
considered as the superposition of two setups: (1) Put a current %I
in at A and take a current %I out at each of the other N — 1 points,
and (2) Take a current 211 out at B and put a current +1 in at
each of the other N — 1 points.

In the first setup, let the current going from A to B be [ 2‘ g In
the second setup, let the current going from A to B be I E 5 (The
superscript here denotes the point at which the current of %I enters
or leaves.) Then in the combined setup, the current going from A to
BisI4{ g+ 1% 5. Since this current passes along a 1 resistor, the
voltage difference between A and B is V = (I4{_, 5 +I5,5)(1Q). The
effective resistance between A and B is therefore

Rap = (LiLp +I5,5)(1Q)/1. (19)

We must now add up these R4p contributions from all of the resistors.
Let the desired sum be S. Then

A
S= (Ii,p+1I5,p)1Q)/I, (20)
A,B
where the sum runs over all pairs of points A, B that are connected
by a resistor. By reversing the roles of A and B, we may also write

S= Z(Ig»A"i_IgﬂA)(lQ)/I' (21)
A,B



Adding the two previous equations gives

25 = (Idp + 15,01 /1+ Y (I 4+ I, p)1Q)/I. (22)
A,B A,B

The first sum is simply the sum of the N currents entering the N
points in all of the IV setups of type “1” above. Since a current of %I
enters each point (by construction), the first sum equals (N —1)(1).
Likewise, the second sum deals with the N currents leaving the NV
points in all of the IV setups of type “2” above, so it also equals
(N —1)(19Q). Eq. (22) therefore gives

S=(N-1)Q. (23)
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Each of the six questions is worth 10 points.

1. Two trapezoidal containers, connected by a tube as shown, hold water.

(a) If the water in container A is heated (causing it to expand), will water flow
through the tube? If so, in which direction?

(b) If the water in container B is heated (causing it to expand), will water flow
through the tube? If so, in which direction?

(Assume that the containers do not expand when heated.)

B

Figure 1: Problem 1, Trapezoidal Containers



2. A mass, which is free to move on a horizontal frictionless plane, is attached to one
end of a massless string which wraps partially around a frictionless vertical pole of
radius 7, as shown on Fig. 2 (top view). You hold on to the other end of the string.
At t = 0, the mass has speed vy in the tangential direction along the dotted circle
of radius R shown.

Your task is to pull on the string so that the mass keeps moving along the dotted
circle. You are required to do this in such a way that the string remains in contact
with the pole at all times.

What is the the speed of the mass as a function of time? Explain what happens in
this system as time goes by. (Ignore any relativistic effects.)

Figure 2: Problem 2, Mass on a String

3. A brick is thrown (from ground level) at an angle 6 with respect to the (horizontal)
ground. Assume that the long face of the brick remains parallel to the ground at all
times, and that there is no deformation in the ground or the brick when the brick
hits the ground.

If the coefficient of friction between the brick and the ground is u, what should 6
be so that the brick travels the maximum total horizontal distance before finally
coming to rest?



4. A sheet of metal lies on a roof which is inclined at an angle 6. The coefficient of
kinetic friction between the sheet and roof is y (where y > tan@).

During the warmth of daytime, the sheet will expand slightly. And then during the
nighttime it will contract. Let the coefficient of thermal expansion of the sheet be «,
and let the difference in temperature between day and night be AT. Let the length
of the sheet (from its upper edge to lower edge) be £.

How far down the roof will the sheet move in one year if # = 30°, u =1, £ = 1m,
AT =10°C, and o = 17-1076 (C°) ! (the « for copper)? Assume uniform contact
with the roof.

(Note: the change in length due to thermal expansion is AL = aLAT.)

5. A charged object generally induces an image charge when placed near a metallic
plate. If the object moves, currents in the metal will lead to damping of its motion.
Consider the following model for the dissipation: The image charge’s motion lags
by time 7 behind the object’s motion.

a at applied force is necessary to sustain the motion of an object with charge
What lied fi i t tain th ti f bject with ch
g moving with constant velocity v parallel to an infinite metal plate, charac-
terized by the time lag 77 Let the distance from the plate be r.

(b) Find the leading contribution (for small v and 7) to the force calculated in part
(a) in the direction of v. What is the damping coefficient  (which is defined
by F = —yv)?

(c) What is the damping coefficient for motion perpendicular to the plate?

6. A small ball is attached to a massless string of length L, the other end of which is
attached to a very thin vertical pole. The ball is thrown so that it initially travels
in a horizontal circle, with the string making an angle 6y with the vertical.

As time goes on, the string will wrap itself around the pole. Assume that (1) the
pole is thin enough so that the length of string in the air decreases very slowly, so
that the ball’s motion may always be approximated as a horizontal circle, and (2)
the pole has enough friction so that the string does not slide on the pole, once it
touches it.

Find the difference in height between the point where the string is attached to the
pole and the point where the ball eventually hits the pole.

Also, find the ratio of the ball’s final speed (right before it hits the pole) to its initial
speed.
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1. (a) If A is heated, then water will flow from B to A. The reason can be seen as
follows. The pressure at depth h is given by P = pgh. When the water in A
expands, the height h increases, but the density p decreases. What happens to the
product ph? The density goes like 1/A, where A is the area of the trapezoidal
cross section. But A = wh, where w is the width at half height. Therefore,
P = pgh «x h/A = 1/w. And since w increases as the water level rises, the
pressure in A decreases, and water flows from B to A.

(b) If B is heated, then water will again flow from B to A. The same reasoning used
above works here, except than now the w in container B decreases, so that the
pressure in B increases, so that the water again flows from B to A.

2. Let F' be the tension in the string. The angle (at the mass) between the string and the
radius of the dotted circle is § = sin™!(r/R). In terms of , the radial and tangential
F' = ma equations are

Fcosf = mv*/R, and
Fsinf = mo. (1)

Solving for F' in the second equation and substituting into the first gives

mocosf  mu?

sin 6

Separating variables and integrating gives

/Udv B tan@/tdt
v v2 N R 0

N i 1 B tan@t
v ov R
1 tan® \ !
— = — - t . 3
Y (vo R ) ®)

Note that v becomes infinite when

R
t=T = . 4
vp tan 6 ()

In other words, you can keep the mass moving in the desired circle only up to time
T. After that, it is impossible. (Of course, it will become impossible, for all practical
purposes, long before v becomes infinite.)

The total distance, d = [wvdt, is infinite, because this integral (barely) diverges (like
a log), as t approaches T



3. Let V be the initial speed. The horizontal speed and initial vertical speed are then
V cosf and V sin6, respectively. You can easily show that the distance traveled in

the air is the standard 2 10 eos
2V = sin 0 cos
Aoy = ——88. (5)
g
To find the distance traveled along the ground, we must determine the horizontal
speed just after the impact has occurred. The normal force, N, from the ground is

what reduces the vertical speed from V sin 6 to zero, during the impact. So we have
/th =mV sin6, (6)

where the integral runs over the time of the impact. But this normal force (when
multiplied by p, to give the horizontal friction force) also produces a sudden decrease
in the horizontal speed, during the time of the impact. So we have

mAv, = —/(MN) dt = —pumV sin 6 = Av, = —pV sin 6. (7)

(We have neglected the effect of the mg gravitational force during the short time of
the impact, since it is much smaller than the N impulsive force.) Therefore, the brick
begins its sliding motion with speed

v="Vcosf — uVsinb. (8)

Note that this is true only if tan6 < 1/u. If 6 is larger than this, then the horizontal
speed simply becomes zero, and the brick moves no further. (Eq. (8) would give a
negative value for v.)

The friction force from this point on is umg, so the acceleration is a = —ug. The
distance traveled along the ground can easily be shown to be
(V cosf — puV sin )2

2ug '

dground = (9)
We want to find the angle that maximizes the total distance, diotal = dair + dground-
From eqgs. (5) and (9) we have

2
diotal = 2V,ug (4u sinf cos § + (cos § — psin 0)2)
2

%4
= ——(cos@ + pusinf)?. 10
3 ) (10)
Taking the derivative with respect to 6, we see that the maximum total distance is
achieved when
tanf = p. (11)

Note, however, that the above analysis is valid only if tan 6 < 1/u (from the comment
after eq. (8)). We therefore see that if:

e 1 < 1, then the optimal angle is given by tanf = pu. (The brick continues to
slide after the impact.)



e 1 > 1, then the optimal angle is # = 45°. (The brick stops after the impact, and
§ = 45° gives the maximum value for the d,ir expression in eq. (5).)

4. The key point in this problem is that the sheet expands about a certain stationary
point, but contracts around another (so that it ends up moving down the roof like an
inchworm). We must find the locations of these two points.

Let’s consider the expansion first. Let the stationary point be a distance a from the
top and b from the bottom (so a+b = ¢). The lower part of the sheet, of mass m(b/¥¢),
will be moving downward along the roof. Therefore, it will feel a friction force upward,
with magnitude uN = um(b/¢)g cosf. Likewise, the upper part, of mass m(a/¢), will
feel a friction force downward, with magnitude pm(a/¢)g cos 0.

Because the sheet is not accelerating, the difference in these two friction forces must
equal the downward force of gravity along the roof, namely mgsin 8. Therefore,

h—
um( a)gcos&zmgsinﬁ

¢
S (12)
7

Note that this implies b > a. Also note that b — a of course cannot be greater than
£; therefore, if tan @ > u, then there are no solutions for a and b, so the forces cannot
balance, and so the sheet will accelerate down the roof. (This tanf > p result is a
general result, of course, for the equilibrium of an object on an inclined plane.)

When the object contracts, all of the above analysis holds, except that now the roles
of a and b are reversed. The stationary point is now closer to the bottom. With a
and b defined in the same way as above, we find (as you can verify)

{tan 6

a—b= L (13)

Putting eqgs. (12) and (13) together, we see that the stationary points of expansion
(Pe) and contraction (P.) are separated by a distance

{tan 6
d="27 (14)
I
During the expansion, the point P, moves downward a distance
Ctan 6AT
e = ad AT = 2720 (15)
I

and then during the contraction it remains fixed. (Equivalently, the center of the sheet
moves downward by a distance of half this, for both the expansion and contraction.)
Therefore, during one complete cycle (that is, during a span of 24 hours), the sheet
moves downward by the distance € given above.

Plugging in the given numbers, we see that the distance the sheet moves in one year
is given by

(365)(17 - 1076(C°)~1)(1 m)(tan 30°)(10°C)

(365)e = ;

~0.036m =3.6cm. (16)




5. (a) The image charge lags behind the given charge by a distance vr. Therefore,
from the pythagorean theorem, the separation between the two charges is d =
V/(2r)2 + (vr)?. The force necessary to maintain constant motion (parallel to
the plate) is the negative of the Coulomb force between the charges. Hence, the
desired force is

kq? kq?
F=—=——"_--.
d?>  4r? 4 0272
This force points at an angle of # with respect to the normal to the plate, where
0 is given by

(17)

uT
tanf = —. 18
anf = (18)

(b) The component of the above force in the direction of v is
kq? uT
F, = Fsinf = . 19
v St 4r? 4 v272 ( 472 + 027‘2> 19)

To first order in the small quantity vr, we may neglect the v7 terms in the
denominator. Therefore,

kq*vt
Fy~ ———. 20
83 ( )

This is the force necessary to overcome the damping force, F = —yv. So we see
that )

kq T

== 21
{3 ( )

(¢) For motion perpendicular to the plate, the lagging motion of the image charge
implies that the charges will be a distance 2r + vt apart. The force between
them is therefore

kq? N kq? N kq?(r? — roT) B k7q2 kq*vt
(2r +vT)? - 4(r? + roT) - 4rd 42 4r3

(22)

We see that the attractive force is slightly less than it would be if v were zero.
This is due to the damping force, F = —vv, where

B k:q27‘

ey (23)

v

6. Let ¢ and 6 be the length of the string and the angle it makes with the pole, respec-
tively, as functions of time.

The two facts we will need to solve this problem are: (1) the radial F' = ma equation,
and (2) the conservation of energy statement.

Approximating the motion at any time by a horizontal circle (of radius £sin 6), we see
that the vertical force applied by the string is mg, and hence the horizontal force is
mgtan 6. Therefore, the radial F = ma equation is

mv2

{sin 6

= mgtan@. (24)



Conservation of energy says that the change in KE plus the change in PE is zero.
We'll write the change in KE simply as d(mwv?/2) for now. We claim that the change
in PE is given by mgfsin 6 df. This can be seen as follows.

Put a mark on the string a small distance d¢ down from the contact point. After a
short time, this mark will become the contact point. The height of this mark will not
change (to first order, at least) during this process. This is true because initially the
mark is a height ¢cos below the initial contact point. And it is still (to first order)
this far below the initial contact point when the mark becomes the contact point,
because the angle is still very close to 6, so any errors will be of order d¢ df.

The change in height of the ball relative to this mark (whose height is essentially
constant) is due to the ¢ — d¢ length of string in the air “swinging” up through an
angle df. Multiplying by sinf to obtain the vertical component of this arc, we see
that the change in height is ((¢ — d¢)df)sinf. This equals ¢sin 0 df, to first order, as
was to be shown.

Therefore, conservation of energy gives

%d(mzﬂ) + mglsin @ df = 0. (25)

We will now use eqs. (24) and (25) to solve for £ in terms of . Substituting the v?
from eq. (24) into eq. (25) gives

d(¢sinftanf) 4 2¢sinfdf = 0

—  (dlsinftan® + £cos 6 tanf df + £sin O sec? 0) + 2¢sinH df = 0
-2
— ™ sgngan 20
cos 0 cos? 0
. dﬁ__/?)cosGdG _/ df
v sin sin # cos 6
= Inf= —3In(sinf) +1n (COSG) +C
sin
cos 0 sin? 6,
{=A—F h A=1L 26
= A=l e (COS%) 26)

is determined from the initial condition, £ = L when § = 3. Note that this result
implies that # = 7/2 when the ball hits the pole (that is, when ¢ = 0). The last
integral in the fourth line above can be found in various ways. One is to multiply by
cosf/ cos ), and then note that df/ cos? § = d(tan@).

Now let’s find the position where the ball hits the pole. The vertical distance a small
piece of the string covers is dy = df cosf. So the ball hits the pole at a y value
(relative to the top) given by

y—/dﬂ cosQ—A/ (COSG)COSQ, (27)
sin®

where the integral runs from 6y to 7/2, and A is given in eq. (26). We may now
integrate by parts to obtain

% = (COS?9>COS€ /(COSZ> (—sin@)df
sin sin*

5




2
_ cos 0+/c086 a0

sin* § sin® #
_ cos? 0 1 m/2 (28)
N sin*f  2sin®6
0o
Using the value of A given in eq. (26), we obtain
sin? 6, 1 cos? 6, 1
y = L —a -4 - )
cos 6y 2 sin®* 0y  2sin” 6
.4 2 2
_ I sin” 6y _Cf)S4 6o n co.s 290
cos 6y sin“ 6y 2sin” 6y
- 20
= —Lcosby (1 — 51n2 0) . (29)
Since the ball starts at a position y = —Lcosfy, we see that it rises up a distance

Ay = (1/2)Lcosfysin?y during the course of its motion. (This change in height
happens to be maximum when tanfy = v/2, in which case Ay = L/3+/3.)

By conservation of energy, we can find the final speed from

1 1 1
imvfc = §mvz2 —mg <2L cos O sin® 90> (30)
From eq. (24), we have
.2
9 sin“ 0
= . 31
UZ g CoSs 90 ( )
Therefore,
—muy = =m — —mglL cos 0y sin
2 2 g cosfy 2 g 0 0
1 . 9 1
= —mgLsin® 6 — cos By
2 cos O
1 sin 0
= —mgL . 32
ng cos by (32)
Hence,
. 4
9 sin® 6y
=gL—. 33
r=9 cos 6y (33)
Combining egs. (31) and (33), we finally have
Y% —gin fo. (34)

Vi
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Each of the six questions is worth 10 points.

1. A rope with mass M and length L is held in the position shown below, with one
end attached to a support. (Assume that only a negligible length of the rope
starts out below the support.) The rope is released. Find the force that the
support applies to the rope, as a function of time.

hand
0

2. A mass is connected to one end of a massless string, the other end of which is
connected to a very thin frictionless vertical pole. The string is initially wound
completely around the pole (in a very large number of little horizontal circles),
with the mass touching the pole. The mass is released, and the string gradually
unwinds. What angle does the string make with the pole at the moment it
becomes completely unwound?

3. Consider building the following resistor circuit. Start with a square of side length
L. Connect the centers of each side to form another square. Connect the centers
of each side of this square to form yet another square, and so on, to infinity. What
is the resistance between two opposite corners of the original square? (Assume
that all the wires in the circuit have the same cross-section and resistivity.) Give
your answer in terms of the resistance, R, of a length L of the wire.




4. A charged particle travels into a region in which there is a friction force propor-
tional to the particle’s velocity. It travels 10 cm from the point of entry into the
region before coming to rest. If a magnetic field of unknown strength is turned
on in the region, the particle instead moves along a spiral and comes to rest 6 cm
from the point of entry. (This 6 cm is the magnitude of the net displacement, that
is, the straight-line distance.) How far from the point of entry will the particle
come to rest if the magnetic field is doubled?

5. Consider a ball (with moment of inertia I = (2/5) M R?) which bounces elastically
off a surface. Assume that the ball’s speed in the direction perpendicular to the
surface is the same before and after a bounce. Also, assume that the ball is made
of a type of rubber which allows it to not slip on the surface (which has friction)
during the bounce. (This implies that the angular and linear motions may affect
each other.)

The ball is projected from the surface of a plane which is inclined at angle 6.
The initial velocity of the ball is perpendicular to the plane and has magnitude
V. The initial angular velocity is zero. Find the component of the ball’s velocity
along the plane, immediately after the nth bounce.

6. A ball (with moment of inertia I = (2/5)M R?) rolls without slipping on the
inside surface of a fixed cone, whose tip points downward. The half-angle at the
vertex of the cone is 6. Initial conditions have been set up so that the ball travels
around the cone in a horizontal circle of radius ¢, with the contact points (the
points on the ball that touch the cone) tracing out a given circle (not necessarily
a great circle) on the ball.

What should the radius of the circle of these contact points be, if you want the
sphere to travel around the cone as fast as possible? (You may work in the
approximation where R is much less than /. Also, assume that the coefficient of
friction between the ball and the cone is arbitrarily large.)
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1. At time ¢, the free end of the rope is moving at speed gt, and it has fallen a distance
gt?/2. This distance gets “doubled up” below the support. So at time ¢, a length gt2/4
is hanging at rest, and a length L — gt?/4 is moving at speed gt. The momentum
of the entire rope is therefore p = —p(L — gt?/4)(gt), where p = M/L is the mass
density, and the minus sign signifies downward motion.

The forces on the entire rope are Mg = pLg downward, and N (the force from the
support) upward. F' = dp/dt applied to the entire rope therefore gives

d pg*t3
N—pLg = — |—pLgt
pLg dt<pg+ 1
3pg>t?
— N = ”i. (1)

(Note that this equals 3pv?/4.) This result holds until ¢+ = /4L /g, which is the time
it takes the free end to fall a distance 2L. After this time, the force from the support
is simply the weight of the entire rope, Mg.

REMARK: At time ¢, the part of the rope that is hanging at rest has weight p(gt?/4)g =
pg*t? /4. From eq. (1), we see that the support must apply a force that is three times the
weight of this motionless part of the rope. The extra force is necessary because the support
must do more than hold up the motionless part. It must cause the change in momentum of
the atoms in the rope that are abruptly brought to rest from their freefall motion.

2. Because the pole is very thin, we can approximate the motion of the mass at all times
by a circle. Let 6 be the desired angle of the string when it becomes completely
unwound. Then the total change in height of the mass is L cosf. So conservation of

energy gives

mv2

mgL cos 6 = - (2)
The vertical component of the tension in the string is essentially mg, because the
height of the mass changes so slowly (because the pole is so thin). Therefore, the
horizontal component of the tension is mgtanf. The mass travels in a horizontal

circle of radius Lsin#, so the horizontal F' = ma equation gives

mv2

Lsinf’ (3)

mgtanf =

Dividing eq. (3) by eq. (2) gives
tand = v/2. (4)

The numerical value turns out to be 6 ~ 54.7°.



3. Let the desired resistance between opposite corners be xR, where x is a numerical
factor to be determined. Consider all the squares except the largest two. Label this
subset of resistors as S3. S3 is identical to the original circuit, except that it is shrunk
by a factor of 2. Therefore, the resistance between the right and left corners of S5 is
xR/2 (because all the cross sections are the same, and resistance is proportional to
length).

From left-right symmetry, all the points on the vertical bisector of the circuit below
are at the same potential. Therefore, we can separate the top and bottom corners of
S5 from the horizontal lines they touch, as shown.

@

We can then think of S5 as an effective resistor of resistance zR/2, as shown.

A F
B E
C D

We can now simplify this circuit by noting the top-bottom symmetry, which tells us
that we can identify A with C, and also D with F. (Note that we cannot identify B
with A, C; or E with D, F.) We arrive at:




Reducing things a bit more gives:

R
2(V2+1)

~ R/A4 R/4V2 R/4V2 R4
4,C B xR/2 E DF

Reducing one last time, and setting the result equal to xR, gives:

-1
R 1 1
2(v2+1) 22 T

We must now solve for z. Gradual simplification gives:

1

NG
ﬂ+1+ﬂm+1

20— 1 =

— (22— (@2+V2)r+2v2+1) =V2z +1

= (2+V2)22+V2r - (V2+1)=0

1
2
= 2+ (V2-1r——==0
( ) 7
1

— x:§(\f—ﬁ+ 1) ~ 0.659. (6)

4. Integrating F = dp/dt gives
Ap = /th. (7)

Before the magnetic field is turned on, the force on the particle takes the form, F =
—bv. Therefore,

Ap = /(—bv) dt. (8)

But [vdt = Ax, where Ax is the total displacement (which equals 10 cm straight
into the region here). So we have

Apo = —bAXo, (9)

where the subscript denotes the zero-B case.

Let us now turn on the magnetic field. We have F = —bv + gv x B, so

Ap = /(—bv+qv x B) dt
= —bAx+gAx x B. (10)



But the Ap here is the same as the Apg in eq. (9), because the the particle has the
same initial velocity and the same final velocity (namely zero). Therefore, we have
(after dividing through by —b)

Axg = Axp — (¢/b)Axp x B. (11)

The two terms on the righthand side represent orthogonal vectors. Since the sum
of these two orthogonal vectors equals the vector on the lefthand side, and since
|Axp|/|Axg| = 6/10, we see that we have the following 6-8-10 right triangle.

-(g/b)Axg x B 8

AXO

If we now double the magnetic field, we have
AXO = AXQB — (q/b)AXQB x 2B. (12)

The ratio of the magnitudes of the two vectors on the righthand side is twice the ratio
of the two vectors in eq. (11). That is, it is 8/3 instead of 8/6. So we now have the
following right triangle.

-(q/b)Ax,p X 2B 8a
Axg = 10

Axyp 3a

The Pythagorean theorem gives the value of a as 10/v/73. Therefore, the net dis-
placement of the particle is |Axsp| = 3a = 30/4/73 =~ 3.51 cm.

. Let us ignore the tilt of the plane for a moment and determine how the w; and vy
after a bounce are related to the w; and v; before the bounce (where v denotes the
velocity component parallel to the plane). Let the positive directions of velocity and
force be to the right along the plane, and let the positive direction of angular velocity



be counterclockwise. If we integrate (over the small time of a bounce) the friction
force and the resulting torque, we obtain

dp
F = — — Fdt=A
dt / P
L
T = Cth = /Tdt:AL. (13)

But 7 = RF. And since R is constant, we have

AL:/Rth:R/th:RAp. (14)
Therefore,
Iwf —w;) = Rm(vy — v;). (15)
But conservation of energy gives
1 1 1
2 2 _ 2 2
— I(w]% —w?) = m} - vj%) (16)
Dividing this equation by eq. (15) gives!
R(wy + wi) = —(vp + vi). (17)

We can now combine this equation with eq. (15), which can be rewritten (using
I =(2/5)mR?) as

2
5R(wf —w;) = vf — ;. (18)

Given v; and w;, the previous two equations are two linear equations in the two
unknowns, vy and wy. Solving for vy and wy, and then writing the result in matrix

notation, gives
vy 1 3 —4 v _ v
(wa>_7<—10 —3><Rwi>_A<Rwi>' (19)

o 1 (49 0\
A_49<0 49)_1' (20)

Let us now consider the effects of the tilted plane. Since the ball’s speed perpendicular
to the plane is unchanged by each bounce, the ball spends the same amount of time in
the air between any two successive bounces. This time equals T' = 2V/g cos #, because
the component of gravity perpendicular to the plane is g cos . During this time, the
speed along the plane increases by (gsin )T = 2V tanf = Vj.

Note that

'"We have divided out the trivial w; = w; and v; = v; solution, which corresponds to slipping motion
on a frictionless plane. The nontrivial solution we will find shortly is the non-slipping one. Basically, to
conserve energy, there must be no work done by friction. But since work is force times distance, this means
that either the plane is frictionless, or that there is no relative motion between ball’s contact point and the
plane. Since we are given that the plane has friction, the latter (non-slipping) case must be the one we are
concerned with.



Let Q denote the (v, Rw) vector at a given time (where v denotes the velocity compo-
nent parallel to the plane). The ball is initially projected with Q = 0. Therefore, right
before the first bounce, we have QPefore = (14,0) = Vj. (We have used the fact that
w doesn’t change while the ball is in the air.) Right after the first bounce, we have
Qafter — AVy. We then have Qbefore = AV, + Vi, and so Q3fer = A(AV( + V).
Continuing in this manner, we see that

Sefore — (A”*l +---4+A+7I)Vy, and
Qifter = A"+ + A2+ A)Vy. (21)

However, A%? = T, so all the even powers of A equal Z. The value of Q after the nth
bounce is therefore given by
neven = Qafter — (A4 7)V,.

nodd = Q% =

N =3

((n+ 1A+ (n = 1)) Vo, (22)

Using the value of A defined in eq. (19), we find
neven — Un _nfe 2 Vo
Ruw, A W ) 0 /)’
Un _ 1 bn —2 —2n—2 Vo
nodd = <an> - 7(—5n—5 2n -5 )(0)‘ (23)

Therefore, the speed along the plane after the nth bounce equals (using Vy = 2V tan )

10nV tand
Un = (n even),
10n —4)V tanéd
oy = 207 7) an (n odd). (24)
REMARK: Note that after an even number of bounces, eq. (23) gives v = —Rw. This is the

“rolling” condition. That is, the angular speed exactly matches up with the translation speed,
so v and w are unaffected by the bounce. (The vector (1, —1) is an eigenvector of A.) At the
instant that an even-n bounce occurs, the v and w are the same as they would be for a ball
that simply rolls down the plane. At the instant after an odd-n bounce, the v is smaller than
it would be for a rolling ball, but the w is larger. (And right before an odd-n bounce, the v is
larger but the w is smaller.)

. It turns out that the ball can move arbitrarily fast around the cone. As we will see,
the plane of the contact circle (represented by the chord in the figure below) will need
to be tilted downward from the contact point, so that the angular momentum has a
rightward horizontal component when it is at the position shown. In what follows, it
will be convenient to work with the angle ¢ = 90° — 4.



Let’s first look at F' = ma along the plane. Let € be the angular frequency of the
ball’s motion around the cone. Then the ball’s horizontal acceleration is m¢Q? to the
left. So F' = ma along the plane gives (where Fy is the friction force)

mgsin ¢ + Fy = mlQ? cos ¢. (25)

Now let’s look at 7 = dL/dt. To get a handle on how fast the ball is spinning,
consider what the setup looks like in the rotating frame in which the center of the ball
is stationary (so the ball just spins in place as the cone spins around). Since there is
no slipping, the contact points on the ball and the cone must have the same speed.

That is,
QL
wr = QY = w=—, (26)
r
where w is the angular speed of the ball in the rotating frame, and r is the radius of
the contact circle on the ball.? The angular momentum of the ball in the lab frame is

L = Iw (at least for the purposes here?), and it points in the direction shown above.

The L vector precesses around a cone in L-space with the same frequency, €2, as the
ball moves around the cone. Only the horizontal component of L. changes, and it
traces out a circle of radius Ly, = Lsin 3, at frequency 2. Therefore,

. IO%(sin B
‘dt —Lhor (IWSIHQ)Q_T)

and the direction of dL/dt is into the page.

(27)

The torque on the ball (relative to its center) is due to the friction force, Fy. Hence,
|7| = F¢R, and its direction is into the page. Therefore, 7 = dL/dt gives (with

2If the center of the ball travels in a circle of radius £, then the £ here should actually be replaced with
{ + Rsin ¢, which is the radius of the contact circle on the cone. But since we’re assuming that R < ¢, we
can ignore the Rsin ¢ part.

3This L = Iw result isn’t quite correct, because the angular velocity of the ball in the lab frame equals
the angular velocity in the rotating frame (which tilts downwards with the magnitude w we just found)
plus the angular velocity of the rotating frame with respect to the lab frame (which points straight up with
magnitude ). This second part of the angular velocity simply yields an additional vertical component of
the angular momentum. But the vertical component of L doesn’t change with time as the ball moves around
the cone. It is therefore irrelevant, since we will be concerned only with dL/d¢ in what follows.



I = nmR?, where = 2/5 in this problem)

F/R — IQzﬁrsin 15}
— g - IAPLnG (25)
Using this Fy in eq. (25) gives
mgsin ¢ + W = mlQ? cos ¢. (29)
Solving for Q gives .
@ - l (cosfbsiDTiW) . .
We see that it is possible for the ball to move around the cone infinitely fast if
cos ¢ = n:}r;zﬁ . (31)

If we now define v = ¢ — 3 in the above figure, we have /R = sin~y, and = ¢ — 7.
So eq. (31) becomes
cosp= 1O (32)
siny

Using the sum formula for the sine in the numerator, we can rewrite this as

2
tan¢ = §tan¢>

tany = iU
1+n

2
= = cot 0, (33)

where we have used n = 2/5. We finally obtain
T 1

= sin = —
7 V1 + cot? v

1

J1+ Dtanzo

REMARKS:

(1) In the limit 6 ~ 0 (that is, a very thin cone), we obtain /R ~ 1, which makes sense.
The contact circle is essentially a horizontal great circle.
In the limit # ~ 90° (that is, a nearly flat plane), we obtain /R ~ 0. The circle of
contact points is very small, but the ball can still roll around the cone arbitrarily fast
(assuming that there is sufficient friction). This isn’t entirely intuitive.

(2) What value of ¢ allows the largest tilt angle of the contact circle (that is, the largest
B3)? From eq. (31), we see that maximizing (3 is equivalent to maximizing (r/R) cos ¢,



or equivalently (r/R)? cos? ¢. Using the value of r/R from eq. (34), we see that we want
to maximize
cos? ¢

R)?cos® g = ——5———.
(r/R) cos” ¢ 1—|—%Cot2¢

(35)

Taking the derivative with respect to ¢ and going through a bit of algebra, we find that
the maximum is achieved when

7
tan ¢ = \/; —  $=619° (36)
You can then show from eq. (31) that
. 5 )
Silfnax =g = fmax = 3377 (37)

Let’s consider three special cases for the contact circle, namely, a horizontal circle, a
great circle, and a vertical circle.

(a) Horizontal circle: In this case, we have § =0, so eq. (30) gives

gtan ¢

0 =
l

. (38)

In this case, L points vertically, which means that dL/dt is zero, which means that
the torque is zero, which means that the friction force is zero. Therefore, the ball
moves around the cone with the same speed as a particle sliding without friction.
(You can show that such a particle does indeed have Q2 = gtan ¢/£.) The horizontal
contact-point circle (5 = 0) is the cutoff case between the sphere moving faster or
slower than a frictionless particle.

(b) Great circle: In this case, we have r = R and § = —(90°—¢). Hence, sin 8 = — cos ¢,
and eq. (30) gives

9 gtan ¢

Q =T (39)

This reduces to the frictionless-particle case when 7 = 0, as it should.
(¢) Vertical circle: In this case, we have r = Rcos ¢ and § = —90°, so eq. (30) gives

_ gtan¢
T )

Again, this reduces to the frictionless-particle case when n = 0, as it should. But
for ¢ — 90° (thin cone), Q goes to zero, whereas in the other two cases above,
goes to oo.

(40)



2004
Boston Area Undergraduate
Physics Competition

April 24, 2004
Time: 4 hours

Each of the six questions is worth 10 points.

1.

(a)

(5 points) A sled on which you are riding is given an initial push and slides
across frictionless ice. Snow is falling vertically (in the frame of the ice) on
the sled. Assume that the sled travels in tracks which constrain it to move
in a straight line. Which of the following three strategies causes the sled to
move the fastest? The slowest? Explain your reasoning.

i. You sweep the snow off the sled so that it leaves the sled in the direction
perpendicular to the sled’s tracks, as seen by you in the frame of the
sled.

ii. You sweep the snow off the sled so that it leaves the sled in the direction
perpendicular to the sled’s tracks, as seen by someone in the frame of
the ice.

iii. You do nothing.

(5 points) You are standing on the edge of a step on some stairs, facing up
the stairs. You feel yourself starting to fall backwards, so you start swinging
your arms around in vertical circles, like a windmill. This is what people
tend to do in such a situation, but does it actually help you not to fall, or
does it simply make you look silly? Explain your reasoning.

2. A rope rests on two platforms which are both inclined at an angle 6 (which you

are free to pick), as shown. The rope has uniform mass density, and its coefficient
of friction with the platforms is 1. The system has left-right symmetry. What is
the largest possible fraction of the rope that does not touch the platforms? What
angle 0 allows this maximum value?




3. A flat square plate with side length d serves as a detector for the radiation
emitted by a particle. The particle emits the radiation uniformly in all directions.
Consider the line, L, joining points A and C, as shown. C' is one corner of the
square, and A is the point directly above the opposite corner, a distance d above
the square.
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What fraction of the total radiation emitted by the particle is detected by the
detector if the particle is placed on the line L:

(a) at point A,
(b) at point B (halfway between A and C),

(c) at a point infinitesimally close to point C'.

4. The edges of a tetrahedron form an RLC circuit as shown. Two opposite edges
are resistors R, two opposite edges are capacitors C', and two opposite edges are
inductors L. An alternating voltage with amplitude Vj is connected to the circuit
at the ends of one of the resistors. If the frequency takes the form w =1/ VLC,

and if additionally R = /L/C, find the amplitude of the total current through
the circuit.

Vo cos ot




5. A point particle of mass m sits at rest on top of a frictionless hemisphere of mass
M, which rests on a frictionless table, as shown. The particle is given a tiny kick
and slides down the hemisphere. At what angle 6 (measured from the top of the
hemisphere) does the particle lose contact with the hemisphere?

In answering this question for m # M, it is sufficient for you to produce an
equation (please simplify) that 6§ must satisfy. However, for the special case of
m = M, your equation can be solved without too much difficulty; find the angle
in this case.

6. Consider the infinitely tall system of identical massive cylinders and massless
planks shown below. The moment of inertia of the cylinders is I = M R?/2. There
are two cylinders at each level, and the number of levels is infinite. The cylinders
do not slip with respect to the planks, but the bottom plank is free to slide on
a table. If you pull on the bottom plank so that it accelerates horizontally with
acceleration a, what is the horizontal acceleration of the bottom row of cylinders?



1.

(a)

Solutions
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From best to worst, the ordering of the strategies is (ii), (iii), (i). We can
demonstrate this by using conservation of momentum. There are no ex-
ternal horizontal forces on the sled and the snow, so the total momentum
of the sled plus the snow is constant in time.

Strategy (ii) therefore beats strategy (iii), because the snow in (ii) ends
up with no forward momentum, while the snow in (iii) continues to move
forward with the sled. The snow in (ii) therefore has less momentum
than the snow in (iii), so the sled in (ii) must have more momentum than
the sled in (iii).

Strategy (iii) beats strategy (i) for the following reason. When a snowflake
is brushed off the sled in strategy (i), it initially has the same forward
speed as the sled as they both sail across the frictionless ice. But when
the next snowflake hits the sled, the sled slows down. The brushed-off
snowflake therefore now has a larger forward speed than the sled. The
sled therefore moves at a speed that is slower than the speed of the center
of mass of the sled-plus-snowflake system. But this latter speed is simply
the speed of the sled in (iii).

Swinging your arms does indeed help. Consider the angular momentum of
your body relative to your feet. The friction force at your feet provides no
torque relative to your feet, so the only external torque is the torque due
to gravity (which is what is making you fall over). However, for a small
enough period of time, this torque won’t angularly accelerate you much,
so your angular momentum with respect to your feet is approximately
constant.

Now assume that you start swinging your arms around with the orien-
tation such that your hands are moving forward at the lowest point and
backward at the highest point. The right-hand rule then says that your
arms have angular momentum which points to your right. But since your
angular momentum is approximately constant, there must now be some-
thing that has angular momentum pointing to your left. This something
is you. You will therefore rotate “forwards” relative to your feet. In
other words, you won’t fall backwards (assuming that you swing your
arms around fast enough).

Note that it is the change in the angular momentum of your arms that is
relevant. In other words, the swinging only helps you at the start. Once
your arms reach their maximum speed (which in practice happens very
quickly), the swinging doesn’t help you anymore. But hopefully you've
managed to get your center of mass back up above your feet by this time.



2. Let the total mass of the rope be m, and let a fraction f of it hang in the air.
Consider the right half of this section. Its weight, (f/2)mg, must be balanced
by the vertical component, T sin 6, of the tension at the point where it joins
the part of the rope touching the right platform. The tension at that point is
therefore T' = (f/2)mg/ sin 6.

Now consider the part of the rope touching the right platform, which has mass
(1 — f)m/2. The normal force from the platform is N = (1 — f)(mg/2) cos 0,
so the maximal friction force also equals (1 — f)(mg/2) cos 8, because p = 1.
This fiction force must balance the sum of the gravitational force component
along the plane, which is (1 — f)(mg/2)sin6, plus the tension at the lower
end, which we found above. Therefore,

L _1 : fmyg
5(1—f)mgcost9_ 2(1 f)mgsm@—i-zsine_ (1)
This gives
_ P S
;= 1+ F() where F(6) = cosfsinf — sin” 6. (2)

This expression for f is a monotonically increasing function of F'(#), as you can
check. The maximal f is therefore obtained when F'() is as large as possible.
Using the double-angle formulas, we can rewrite F'(0) as

F6) = %(Sm 20 + cos 20 — 1), 3)

The derivative of this is cos 20 — sin 20, which equals zero when tan20 = 1.
Therefore,
Omax = 22.5°. (4)

Eq. (3) then yields F(fmax) = (V2 —1)/2, and so eq. (2) gives

V21
V2+1

3. Let’s consider point B first. This point is the center of a cube of side length d,
one of the faces of which is the detector. Since the radiation from the particle
is isotropic, 1/6 of it passes through each face of the cube. Therefore, 1/6 of
the particle’s radiation is detected by the square when the particle is at point
B.

Now consider point A. This point is the center of a cube of side length 2d.
The detector spans one quarter of one of these faces. Combining this fact with
the above reasoning tells us that (1/4)(1/6) = 1/24 of the particle’s radiation
is detected by the square when the particle is at point A.

fmax = (V2—-1)2=3-2/2~0.172. (5)

Lastly, consider a point (call it D) very close to C. This case is a little tricker.
Point D is the center of a tiny cube which has as its bottom face a tiny square
at the corner of the detector. What areas on this cube correspond to radiation
hitting the detector? From the above reasoning, 1/6 of the particle’s radiation
passes through the bottom face. The other relevant areas on the cube are
shown as the lighter shaded regions below.



tiny cube

\

P R R ——

B - essentially infinite
C edge of detector

The top horizontal boundary of the lightly shaded region corresponds to the
two far edges of the detector, which are essentially infinitely far away. The two
diagonal boundaries correspond to the two edges of the detector that emanate
from point C.! The lightly shaded region covers 3/8 of the area of the two
side faces, as can be seen by flattening out these faces, as shown.

The eight triangles shown in this figure have equal amounts of radiation hitting
them, so the shaded 3/8 of the area corresponds to 3/8 of the radiation passing
through the faces. These two faces represent 1/3 of the cube, so the total
fraction of the particle’s radiation that hits the detector is 1/6 4+ (3/8)(1/3) =
7/24.

4. We may as well consider the tetrahedron to be a planar circuit, as shown in
the diagram below (which looks just like the original 3D diagram). Let the
four loop currents be as shown.

Vo cos ot

!These diagonal boundaries are indeed straight lines, which can be seen by noting that each of
them is determined by the intersection of two planes, one of which is a face of the tiny cube, and
the other of which is the plane determined by an edge of the detector (emanating from point C)
and point D.



Since w = 1/v/LC and R = /L/C, the impedances associated with the resis-
tors, inductors, and capacitors take the form,

Zr = R,
L
Zy = iwl=i\7 =R,
—i | L .

The four loop equations expressing the fact that the voltage drop around a
loop is zero are then

(Il — I4)R + (Il — IQ)(’LR) + (Il — Ig)(—’LR)
IQ(—iR) + (Ig — Ig)R + (IQ — Il)(’iR)
I(iR) 4+ (Is — [)(—iR) + (I3 — L)R = 0,
(Is—L)R = V. (7)
These simplify to

(Ih —Iy) +i(I3— 1) = 0,

(I — ) —il, = 0,
(Ig—[g)—i—’i[l = 0,
(Ih—6L) = W/R. (8)

The second and third equations are equivalent, so we in fact have only three
equations for our four unknown currents (more on this in the remark below).
Multiplying the second equation by ¢ and adding it to the first gives 217 — Iy =
0 = I} = I4/2. Plugging this into the last equation then gives the amplitude
of total current through the circuit as

2V,
Iy = 70 : (9)

The effective impedance of the entire circuit is therefore R/2, so we see that
the upper five lines in the figure effectively act like a resistor of resistance R
in parallel with the bottom resistor R.

REMARK: The above four equations determine the difference Io — I3 to be iV/R,
but they don’t determine /5 and I3 individually. These two currents can indeed take
on any values, as long as their difference is iV5/R. Any equal increase in their values
simply corresponds to dumping more current on the union of the top two loops (the
“2” and “3” loops), which consists of two inductors and two capacitors at resonance

(because w = 1/V/LC).

. Assume that the particle slides off to the right. Let v, and v, be its horizontal
and vertical velocities, with rightward and downward taken to be positive,
respectively. Let V, be the velocity of the hemisphere, with leftward taken to
be positive. Conservation of momentum gives

muy = MV, =  V,= <m> Vg (10)



Consider the moment when the particle is located at an angle 8 down from the
top of the hemisphere. Locally, it is essentially on a plane inclined at angle 6,
so the three velocity components are related by

Uy
Ve + Vi

m
=tand = vy:tan9<1+M) Vg (11)
To see why this is true, look at things in the frame of the hemisphere. In
that frame, the particle moves to the right at speed v, + V;, and downward at
speed vy. Eq. (11) represents the constraint that the particle remains on the
hemisphere, which is inclined at an angle 6 at the given location.

Let us now apply conservation of energy. In terms of 6, the particle has fallen
a distance R(1 — cos#), so conservation of energy gives

1 1
im(vg + Ug) + §MVI2 =mgR(1 — cosb). (12)

Using eqs. (10) and (11), we can solve for v2 to obtain
5 2gR(1 — cos#)

e (1+r)(1+(1+r)tan20> ’

m
h = —. 1
where r Y (13)

This function of 8 starts at zero for 8 = 0 and increases as 6 increases. It
then achieves a maximum value before heading back down to zero at § = 7/2.
However, v, cannot actually decrease, because there is no force available to
pull the particle to the left. So what happens is that v, initially increases
due to the non-zero normal force that exists while contact remains. But then
v, reaches its maximum, which corresponds to the normal force going to zero
and the particle losing contact with the hemisphere. The particle then sails
through the air with constant v,. Our goal, then, is to find the angle 8 for
which the v2 in eq. (13) is maximum. Setting the derivative equal to zero
gives

2tan6
_ 2 ; —_(1 —
0 = (1 + (1 +r)tan 0) sinf — (1 —cosf)(1+ 1) 020
= 0 = <1+(1+T) tan? 0) cos® 0 — 2(1 +7)(1 — cos6)
= 0 = cos®@+ (1+7)(cosf — cos®f) —2(1 +7)(1 — cos )
= 0 = rcos’f—3(1+r)cosf+2(1+7). (14)

This is the desired equation that determines 6. It is a cubic equation, so in
general it can’t be solved so easily for . But in the special case of r = 1, we
have

0 =cos®f — 6cosf + 4. (15)

By inspection, cos @ = 2 is an (unphysical) solution, so we find
(cosf — 2)(cos? 6 +2cos — 2) = 0. (16)
The physical root of the quadratic equation is

cosf =3 —1~0.732 — 0 ~ 42.9°. (17)



Alternate solution: In the reference frame of the hemisphere, the horizontal
speed of the particle v, +V,, = (1 +r)v,. The total speed in this frame equals
this horizontal speed divided by cos 8, so

(14 7r)u,
= /% 18
Y cos 6 (18)
The particle leaves the hemisphere when the normal force goes to zero. The
radial F' = ma equation therefore gives

777/()2

R
You might be concerned that we have neglected the sideways fictitious force
in the accelerating frame of the hemisphere. However, the hemisphere is not
accelerating beginning at the moment when the particle loses contact, because
the normal force has gone to zero. Therefore, eq. (19) looks exactly like it
does for the familiar problem involving a fixed hemisphere; the difference in
the two problems is in the calculation of v.

Using egs. (13) and (18) in eq. (19) gives
m(1+r)? 2gR(1 — cos )

mgcosf = (19)

mgcosf = . (20)
Rcos? 0 (1+r)(1+(1+7“) tan? 0)
Simplifying this yields
<1+(1+r) tan? 0) cos® 6 = 2(1 +7)(1 — cos ), (21)

which is the same as the second line in eq. (14). The solution proceeds as
above.

REMARK: Let’s look at a few special cases of the r = m/M value. In the limit » — 0
(in other words, the hemisphere is essentially bolted down), eq. (14) gives

cosf =2/3 = 0 ~ 48.2°, (22)
a result which may look familiar to you. In the limit » — oo, eq. (14) reduces to
0=cos’f —3cosf + 2 = 0= (cosf — 1)*(cos 6§ + 2). (23)

Therefore, 8 = 0. In other words, the hemisphere immediately gets squeezed out very
fast to the left.

For other values of r, we can solve eq. (14) either by using the formula for the roots of
a cubic equation (very messy), or by simply doing things numerically. A few numerical
results are:

’ r H cosﬁ‘ 0 ‘
0 .667 | 48.2°
1/2 || 706 | 45.1°
1 732 | 42.9°
767 | 39.9°
10 .858 | 30.9°
100 || .947 | 18.8°
1000 || .982 | 10.8°
00 1 0°




6. Both cylinders in a given row move in the same manner, so we may simply
treat them as one cylinder with mass m = 2M. Let the forces that the boards
exert on the cylinders be labelled as shown. “F” is the force from the plank
below a given cylinder, and “G” is the force from the plank above it.

Fn+1
e
P
Gy \Otn an
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Note that by Newton’s third law, we have F, 11 = G,, because the planks are
massless.

Our strategy will be to solve for the linear and angular accelerations of each
cylinder in terms of the accelerations of the cylinder below it. Since we want
to solve for two quantities, we will need to produce two equations relating
the accelerations of two successive cylinders. One equation will come from a
combination of F' = ma, 7 = I, and Newton’s third law. The other will come
from the nonslipping condition.

With the positive directions for a and « defined as in the figure, F' = ma on
the nth cylinder gives
F, — G, =may,, (24)

and 7 = I« on the nth cylinder gives

1 1
(F, +G,)R = §mR2an — Fy + G = gmRan, (25)

Solving the previous two equations for F,, and G,, gives

1 1
F, = 3 (man + 2mRan) ,
1 1
G, = 5 (—man + imRan . (26)
But we know that Fj,+1 = G,. Therefore,
1 1
Ap+1 + §Ran+1 = —an + iROén. (27)

We will now use the fact that the cylinders don’t slip with respect to the
boards. The acceleration of the board above the nth cylinder is a, — Ra,.
But the acceleration of this same board, viewed as the board below the (n+1)st
cylinder, is ap4+1 + Rayy1. Therefore,

ant1 + Rani1 = an — Roy,. (28)



Egs. (27) and (28) are a system of two equations in the two unknowns, a,1
and an41, in terms of a, and «,. Solving for a,1 and ay,4+1 gives

ant1 = —3an+ 2Ray,
Roap+1 = 4a, — 3Ray,. (29)

We can write this in matrix form as

an+1 -3 2 an

(s )= (0 2 (i) =
Qan, -3 2 et ai

() (0 2) (&) @

Consider now the eigenvectors and eigenvalues of the above matrix. The eigen-
vectors are found via?

We therefore have

-3-A 2
4 -3-A

‘—o — A= -3+2V2 (32)
The eigenvectors are then
V+ = (\/ﬁ)’ fOI')\+:—3—|—2\/§,

V. = (_%) for \_ = —3 —2v2. (33)

Note that |[A_| > 1, so A — oo as n — o0o. This means that if the initial
(a1, Rap) vector has any component in the V_ direction, then the (a,, Roy,)
vectors will head to infinity. This violates conservation of energy. Therefore,
the (a1, Ray) vector must be proportional to Vy.> That is, Ray = v/2a1.
Combining this with the fact that the given acceleration, a, of the bottom
board equals a; + Raq, we obtain
a=ai+ \/§a1 - aq

= ﬁ = (\/5 — 1)a. (34)

REMARK: Let us consider the general case where the cylinders have a moment of
inertia of the form I = BMR?. Using the above arguments, you can show that eq.
(30) becomes

( Rast ) B 123( Rt ) ( Ro ) (35)

2+ happens to be the negative of the fmax result found in Problem 2. An interesting fact, but
also a completely random one, I believe.

3This then means that the (an, Ra,,) vectors head to zero as n — oo, because |Ay| < 1. Also,
note that the accelerations change sign from one level to the next, because A4 is negative.




And you can show that the eigenvectors and eigenvalues are

vV, = <\/1B> forA+—ﬁ:,
<V3>, for \_ = YO +1 (36)

As above, we cannot have the exponentially growing solution, so we must have only
the V. solution. We therefore have Ray = a1 /v/3. Combining this with the fact that
the given acceleration, a, of the bottom board equals a; + Ry, we obtain

(l:al-f-% = a1:<14\r/3\/ﬁ)a' (37)

You can verify that all of these results agree with the 8 = 1/2 results obtained above.

V_

Let’s now consider a few special cases of the
N
4=
VB+1

eigenvalue, which gives the ratio of the accelerations in any level to the ones in the
next level down.

(38)

e If 3 = 0 (all the mass of a cylinder is located at the center), then we have
Ay = —1. In other words, the accelerations have the same magnitudes but
different signs from one level to the next. The cylinders simply spin in place
while their centers remain fixed. The centers are indeed fixed, because a; = 0,
from eq. (37).

e If 5 =1 (all the mass of a cylinder is located on the rim), then we have A\, = 0.
In other words, there is no motion above the first level. The lowest cylinder
basically rolls on the bottom side of the (stationary) plank right above it. Its
acceleration is a1 = a/2, from eq. (37).

e If 3 — oo (the cylinders have long massive extensions that extend far out beyond
the rim), then we have A = 1. In other words, all the levels have equal
accelerations. This fact, combined with the Ry = a1/+/8 = 0 result, shows
that there is no rotational motion at any level, and the whole system simply
moves to the right as a rigid object with acceleration a; = a, from eq. (37).
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