Chapter 4: Electric Potential

\checkmark Electric Potential and Electrical Potential Energy
\checkmark Potential of a Point Charge
\checkmark Electric Potential for Multiple Charges
\checkmark Electric Potential for a Continuous Charge Distribution
\checkmark V Due to a Charged Conductor

Session 9:

\checkmark Electric Potential and Electrical Potential Energy
\checkmark Potential of a Point Charge
\checkmark Electric Potential for Multiple Charges
\checkmark Examples

Electrical Potential Energy

$$
\frac{W}{q_{0}}=-\int_{a}^{b} \vec{E} \cdot d \vec{s}=V_{b}-V_{a}=V_{b a}=\frac{\Delta U}{q_{0}} \Rightarrow \Delta U=q_{0} \Delta V=-W_{E}
$$

$$
\left(V_{a}=V_{o}=0\right)
$$

$$
V(\mathrm{r})=-\int_{0}^{r} \vec{E} \cdot d \vec{S}
$$

$$
\begin{aligned}
& \overrightarrow{F_{E}}=q_{0} \vec{E} \\
& \vec{F}_{\text {apply }}=-q_{0} \vec{E} \\
& W=\int_{a}^{b} \vec{F}_{a p p l} \cdot d \vec{s}=\int_{a}^{b}-q_{0} \vec{E} \cdot d \vec{s}=-q_{0} \int_{a}^{b} \vec{E} \cdot d \vec{s}
\end{aligned}
$$

Electric Potential

The potential energy per unit charge is the electric potential.

- The potential is characteristic of the field only.
- The potential energy is characteristic of the charge-field system.
- The potential is independent of the value of $\boldsymbol{q}_{\mathbf{o}}$.
- The potential has a value at every point in an electric field.

The electric potential is

$$
V=\frac{U}{q_{0}}
$$

- Unit: 1 V $\equiv 1 \mathrm{~J} / \mathrm{C}$
$-1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J}$

Potential Difference in a Uniform Field

$$
V_{B}-V_{A}=\Delta V=-\int_{A}^{B} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{s}}=-E \int_{A}^{B} d \mathbf{s}=-E d
$$

$$
\Delta V=-E d
$$

The electric field vector points from higher potential toward lower potential.

$$
|E|=\frac{\Delta V}{d}
$$

$|E|=\frac{12}{3 \times 10^{-3}}=4 \times 10^{3}(\mathrm{~V} / \mathrm{m})$

Ex 1. A proton is released from rest at point A in a uniform electric field that has a magnitude of $8.0 \times 10^{4} \mathrm{~V} / \mathrm{m}$. The proton undergoes a displacement of magnitude $d=0.50 \mathrm{~m}$ to point B in the direction of E. Find the speed of the proton after completing the displacement.

Conservation of Energy : $\Delta K+\Delta U=0$

$$
\begin{aligned}
& \left(\frac{1}{2} m v^{2}-0\right)+e \Delta V=0 \\
& \frac{1}{2} m v^{2}+e(-E d)=0
\end{aligned}
$$

$$
v=\sqrt{\frac{2 e E d}{m}}=\sqrt{\frac{2\left(1.6 \times 10^{-19}\right)\left(8 \times 10^{4}\right)(0.5)}{1.67 \times 10^{-27}}}=2.8 \times 10^{6}(\mathrm{~m} / \mathrm{s})
$$

Equipotential Surfaces

The name equipotential surface is given to any surface consisting of a continuous distribution of points having the same electric potential.

Potential of a Point Charge

$$
\begin{gathered}
V_{b}-V_{a}=-\int_{a}^{b} \vec{E} \cdot d \vec{s}=-\int_{a}^{b} E d s(\cos 0)=-\int_{a}^{b} E d s \\
V_{b}=0(a t \infty) \text { and } V_{a}=V(a t R) \\
E=\frac{q}{4 \pi \varepsilon_{0} r^{2}} \\
0-V=-\int_{R}^{\infty} \frac{q}{4 \pi \varepsilon_{0} r^{2}} d r=\frac{q}{4 \pi \varepsilon_{0}}\left[\frac{1}{r}\right]_{R}^{\infty}=0-\frac{q}{4 \pi \varepsilon_{0}} \frac{1}{R} \\
V(\mathrm{r})=\frac{q}{4 \pi \varepsilon_{0} r}
\end{gathered}
$$

Electric Potential for Multiple Charges

\nLeftarrow The electric potential due to several point charges is the sum of the potentials due to each individual charge.
\square This is another example of the superposition principle.
\square The sum is the algebraic sum
ㅁ $V=0$ at $r=\infty$

$$
V=V_{1}+V_{2}+\ldots=\frac{1}{4 \pi \varepsilon_{0}} \sum_{i=1}^{n} \frac{q_{i}}{r_{i}}
$$

Ex 2. Charges $q_{1}=+q$ and $q_{2}=-q$ are located on the z axis as shown in Figure (electric dipole). Find the electric potential at the point P .

$$
\begin{aligned}
& V=V_{+}+V_{-}=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{q}{r_{(+)}}+\frac{-q}{r_{(-)}}\right) \\
& V=V_{+}+V_{-}=\frac{q}{4 \pi \varepsilon_{0}}\left(\frac{r_{(-)}-r_{(+)}}{r_{(+)} r_{(-)}}\right) \\
& r_{(-)}-r_{(+)} \approx d \cos \theta \text { and } r_{(+)} r_{(-)} \approx r^{2} \\
& V=\frac{q}{4 \pi \varepsilon_{0}} \frac{d \cos \theta}{r^{2}} \\
& V \pi \varepsilon_{0} \frac{p \cos \theta}{r^{2}}
\end{aligned}
$$

Potential Energy of Multiple Charges

$$
\begin{gathered}
U_{f}-U_{i}=q_{2}\left(V_{f}-V_{i}\right) \\
V_{i}=0(\text { at } \infty) \text { and } V_{f}=\frac{q_{1}}{4 \pi \varepsilon_{0} r} \\
U=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r}
\end{gathered}
$$

q_{1}

Two-particle system

If the two charges are the same sign, U is positive and work must be done to bring the charges together. If the two charges have opposite signs, U is negative and work is done to keep the charges apart.

$$
\begin{gathered}
W_{1}=0 \\
W_{2}=q_{2}[V_{1}\left(\mathrm{r}_{2}\right)-\overbrace{V_{1}(\infty)}^{0}]=\frac{1}{4 \pi \varepsilon_{0}} q_{2}\left(\frac{q_{1}}{r_{12}}\right) \\
W_{3}=q_{3} V_{1,2}\left(\mathrm{r}_{3}\right)=\frac{1}{4 \pi \varepsilon_{0}} q_{3}\left(\frac{q_{1}}{r_{13}}+\frac{q_{2}}{r_{23}}\right) \\
W=W_{1}+W_{2}+W_{3}=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{q_{1} q_{2}}{r_{12}}+\frac{q_{1} q_{3}}{r_{13}}+\frac{q_{2} q_{3}}{r_{23}}\right)
\end{gathered}
$$

