
AVRمیکرو کنترلرهای

Cبرنامه نویسی به زبان

دانشکده برق و رباتیک
دانشگاه صنعتی شاهرود

حسین خسروی

91-1390

2

Why C?

 C is a high-level programming language: C code is easier to
understand compared to other languages.

 C supports low-level programming: We can access every
hardware components of the microcontroller with C.

 C has standard libraries for complex tasks: data type
conversions, standard input/output, long-integer
arithmetic.

 The Atmel AVR instruction set has been designed to
support C compilers: C code can be converted efficiently to
assembly code.

Hossein Khosravi Shahrood University of Technology

3

C Tools

Hossein Khosravi Shahrood University of Technology

 Atmel AVR Studio

 An integrated development
environment for Atmel AVR
microcontroller:

 Editor, assembler, emulator,
HEX file downloader and C
compiler (from version 5.0)

 Available from Atmel
website:
http://www.atmel.com/tools/ATM
ELAVRSTUDIO5_0.aspx

 Its Free

http://www.atmel.com/tools/ATMELAVRSTUDIO5_0.aspx

4

C Tools

 Code Vision AVR 2.05.3

 Simple and Great wizards

 Good libraries

 Easier than AVR Studio

 Lack of Debugger

 Commercial (Not for Us!)

Hossein Khosravi Shahrood University of Technology

5

Development Cycle for C in AVR Studio – Step 1

 New Project  AVR GCC  C Executable Project

 Enter a meaningful name for the project (not the first
characters you find in keyboard like asdf!)

 Select destination AVR e.g. ATmega32 OK

Hossein Khosravi Shahrood University of Technology

6

Development Cycle for C in AVR Studio

 Step 2: Enter a C program

 Step 3: Compile the C program to produce Hex file

 Correct possible syntax errors

 Step 4 (Optional): Simulate on Proteus

 Step 5: Download and test the HEX file on Atmel AVR
microcontroller

Hossein Khosravi Shahrood University of Technology

7

Sample Program – Toggle LED using switches

Hossein Khosravi Shahrood University of Technology

8

Sample Program

Hossein Khosravi Shahrood University of Technology

#include <avr/io.h> // avr header file for IO ports

int main(void){

unsigned char i; // temporary variable

DDRA = 0x00; // set PORTA for input (8 switches)

DDRB = 0xFF; // set PORTB for output (8 LEDs)

PORTB = 0x00; // turn ON all LEDs initially

while(1){

// Read input from PORTA (switches).

i = PINA;

// Send output to PORTB (LEDs).

PORTB = i;

}

return 1;

}

Toggle 8 LEDs using 8 switches

9

Result on STK500

Hossein Khosravi Shahrood University of Technology

10

STK500

Hossein Khosravi Shahrood University of Technology

Hardware setup for LED sample program.
Connections to PORTA & PORTB are only for this example.

11

Digital IO in ATmega32

 ATmega32 has four 8-bit digital IO ports:

 PORT A,

 PORT B,

 PORT C, and

 PORT D.

 Each port has 8 data pins.

 Every port is bi-directional.

 Each of the 8 pins can be individually configured as

 input (receiving data into microcontroller), or

 output (sending data from microcontroller).

Hossein Khosravi Shahrood University of Technology

12

PORT names

 To access registers

 PORTx to access port register

 PINx to access port input register

 DDRx to access data direction registers

 x could be A,B,C or D

 To access special bit of registers

 There is no standard method

 Each compiler has its own syntax

 Use bitwise operators which works everywhere

 To make pin5 as output and left others unchanged:
 DDRC = DDRC | 0b0010000

Hossein Khosravi Shahrood University of Technology

13

I/O Ports

 3 I/O registers per port, bitwise configuration

 DDRx: Data Direction Register (1: out, 0: in)
 Every pin can be configured as input or output

 PORTx:
 DDR = 0xFF output data

 DDR = 0x00 floating or pullup resistor

 If PORTxn is written logic one when the pin is configured as
an input pin, the pull-up resistor is activated

 PINx: Port Input (Read Only)
 DDR=0xFF PORTx (with 1 clk latency)

 DDR=0x00 input data

Hossein Khosravi Shahrood University of Technology

14

Examples

 To set Port A pins 0 to 3 for input, pins 4 to 7 for output,
we write C code:

DDRA = 0b11110000; // configure pins

 To write a binary 0 to output pin 6, binary 1 to other pins
of Port A, we write C code:

PORTA = 0b10111111; // write output

 To read the input pins of Port A, we write C code:

unsigned char temp; // temporary variable
temp = PINA; // read input

Hossein Khosravi Shahrood University of Technology

15

SFR Definition

 Where do the C names PINA, PORTA, DDRA come from?
 <avr/iom32.h>

 .\AVR Studio 5.0\AVR ToolChain\avr\include\avr\iom32.h

/* Port D */

#define PIND _SFR_IO8(0x10)

#define DDRD _SFR_IO8(0x11)

#define PORTD _SFR_IO8(0x12)

 Where does iom32.h come from?

 <avr/io.h>
#if defined (__AVR_ATmega32__)

#include <avr/iom32.h>

Hossein Khosravi Shahrood University of Technology

16

AVR header file

 To access all AVR microcontroller registers, your program
must include the header file <io.h>
 #include <avr/io.h>

 Depending on which device selected in your project, file
‘io.h’ will automatically redirect to a specific header file.

 Example

 For ATmega32, the specific header file is <avr/iom32.h>

 The header file lists the C names for all registers in
ATmega32, and their memory locations.

 We always use the C names in our code.

Hossein Khosravi Shahrood University of Technology

17

I/O Ports

Hossein Khosravi Shahrood University of Technology

PINC is read only
So this is useless

PORTC is input so PINC is
not related to PORTC

18
Hossein Khosravi Shahrood University of Technology

I/O ports (simple view)

DDRx

PORTx

PINx

direction

DDRx value

Output value /

pullup

PORTx value

(out/) input value

19

General I/O Port Configuration

Hossein Khosravi Shahrood University of Technology

PUD: Pull-Up Disable

WDx: Write DDRx

RDx: Read DDRx

WPx: Write PORTx

RRx: Read PORTx Register

RPx: Read PINx

Note:

WPx, WDx, RRx, RPx, and RDx
are common to all pins within
the same port. clkI/O, SLEEP,
and PUD are common to all
ports.

These are internal to AVR
and we don’t have access to
them and never use them
except PUD (SFIOR D2)

20

Review of C Programming

 Most students in this class learnt C programming in their
first year.

 Is it learned or passed?

 Here, we review briefly major aspects of the C
programming language.

 Structure of a C program

 Data types and operators

 Flow control in C

 C functions

 In all lectures, C code examples will be used extensively.

Hossein Khosravi Shahrood University of Technology

21

Structure of a C program

 A C program typically has two main sections.

 include section: to insert header files.

 main() section: code that runs when the program starts.

 In the example below, <avr/io.h> is a header file that contains all register
definitions for the AVR microcontroller.

Hossein Khosravi Shahrood University of Technology

#include <avr/io.h> // avr header file for IO ports
int main(void){

unsigned char i; // temporary variable
DDRA = 0x00; // set PORTA for input
DDRB = 0xFF; // set PORTB for output
PORTB = 0x00; // turn ON all LEDs initially
while(1){

// Read input from PORTA (switches).
i = PINA;
// Send output to PORTB (LEDS).
PORTB = i;

}
return 1;

}

22

C Comments

 Comments are text that the compiler ignores.

 For a single-line comment, use double back slashes
DDRA = 0x00; // set PORTA for input

 For a multi-line comment, use the pair /* and */
/* File: led.c

Description: Simple C program for the ATMEL

AVR(ATmega32 chip)

It lets user turn on LEDs by pressing the switches

on the STK500 board

Author: Hossein Khosravi (1390/12/11)

*/

 Always use comments to make program easy to
understand.

Hossein Khosravi Shahrood University of Technology

23

C statements and blocks

 C Statements

 C statements control the program flow.

 They consist of keywords, expressions and other statements.

 A statement ends with semicolon (;) .
 DDRB = 0xFF; // set PORTB for output

 C Blocks

 A C block is a group of statements enclosed by braces {}.

 Usually, a C block is run depending on some logical conditions.

Hossein Khosravi Shahrood University of Technology

while (1){

// Read input from PORTA - switches

i = PINA;

// Send output to PORTB - LEDs

PORTB = i;

}

24

Data types and operators

 The main data types in C are
char: 8-bit integer

int: 16-bit integer

long int: 32-bit integer

float: 32-bit floating point

 The above data types can be modified by keyword unsigned
char a; // a value range -128, …, 0, …, 127

unsigned char b; // b value range 0, 1, 2, …, 255

unsigned long int c; // c value range 0,…, 232 – 1

unsigned float f;// illegal. float is always signed

 Some examples of variable assignment
a = 0xA0; // a stores hexadecimal value of A0

b = '1'; // b stores ASCII code of character '1'

c = 2000ul; // c stores an unsigned long 2000

Hossein Khosravi Shahrood University of Technology

25

C Operators

 C has a rich set of operators

 Arithmetic operators

 Relational operators

 Logical operators

 Bit-wise operators

 Data access operators

 Miscellaneous operators

Hossein Khosravi Shahrood University of Technology

26

Arithmetic Operators

Operator Name Example Description

* Multiplication x * y Multiply x times y

/ Division x / y Divide x by y

% Modulo x % y Remainder of x divided by y

+ Addition x + y Add x and y

- Subtraction x – y Subtract y from x

++ Increment
x++

++x

Increment x by 1 after using it

Increment x by 1 before using it

-- Decrement
x--

--x

Decrement x by 1 after using it

Decrement x by 1 before using it

- Negation -x Negate x

Hossein Khosravi Shahrood University of Technology

27

Relational operators

Operator Name Example Description

> Greater than x > 5 1 if x is greater than 5, 0 otherwise

>=

Greater than

or

equal to

x >=5
1 is x is greater than or equal to 5, 0

otherwise

< Less than x < y 1 if x is smaller than y, 0 otherwise

<=
Less than or

equal to
x <= y

1 is x is smaller than or equal to y, 0

otherwise

== Equal to x == y 1 is x is equal to y, 0 otherwise

!= Not equal to x != 4 1 is x is not equal to 4, 0 otherwise

Hossein Khosravi Shahrood University of Technology

28

Logical operators

Hossein Khosravi Shahrood University of Technology

 These operate on logical variables/constants.

Operator Name Example Description

! Logical NOT !x 1 if x is 0, otherwise 0

&& Logical AND x && y 1 if both x and y are 1, otherwise 0

|| Logical OR x || y 0 if both x and y are 0, otherwise 1

29

Bit-wise operators

 These operate on individual bits of a variable/constant.

Hossein Khosravi Shahrood University of Technology

Operator Name Example Description

~
Bit-wise

complement
~x Toggle every bit from 0 to 1, or 1 to 0

& Bitwise AND x & y Bitwise AND of x and y

| Bitwise OR x | y Bitwise OR of x and y

^ Bitwise XOR x ^ y Bitwise XOR of x and y

<< Shift left x << 3 Shift bits in x three positions to the left

>> Shift right x >> 1 Shift bits in x one position to the right

30

Data-access operators

 These operate on arrays, structures or pointers.

 We’ll learn more about these operators later.

Hossein Khosravi Shahrood University of Technology

Operato

r
Name

Exampl

e
Description

[] Array element x[2] Third element of array x

. Member selection x.age Field ‘age’ of structure variable x

-> Member selection p->age Field ‘age’ of structure pointer p

* Indirection *p
Content of memory location pointed

by p

& Address of &x
Address of the memory location where

variable x is stored

31

Miscellaneous operators

Operat

or
Name Example Description

() Function _delay_ms(250)
Call a function to create

delay of 250ms

(type) Type cast
char x = 3;

(int) x

x is 8-bit integer

x is converted to 16-bit

integer

?
Conditional

evaluation

char x;

y=(x>5)?10:20;

This is equivalent to

if (x > 5)

y = 10;

else

y = 20;

Hossein Khosravi Shahrood University of Technology

32

Flow control in C

 By default, C statements are executed sequentially.

 To change the program flow, there are six types of
statements

 if-else statement

 switch statement

 while statement

 for statement

 do statement

 goto statement

Hossein Khosravi Shahrood University of Technology

Conditional

Iterative

Should be avoided!

33

“if-else” statement

Hossein Khosravi Shahrood University of Technology

 General syntax

if (expression)

statement_1;

else

statement_2;

 Example code
char a, b, sum;

a = 4; b = -5;

sum = a + b;

if (sum < 0)

printf(“sum is negative”);

else if (sum > 0)

printf(“sum is positive”);

else

printf(“sum is zero”);

34

“switch” statement

 General syntax

switch (expression)
{
case constant_1:
statement_1;
break;

case constant_2:
statement_2;
break;

…
case constant_n:
statement_n;
break;

default:
default_statement;
break;

}

Hossein Khosravi Shahrood University of Technology

Use break to separate
different cases.

35

“switch” statement ─ Example

 Bit pattern for digit ‘1’: 0 0 0 0 0 1 1 0

 Bit pattern for digit ‘2’: 0 1 0 1 1 0 1 1

Hossein Khosravi Shahrood University of Technology

Find the bit pattern to display a digit on the 7-segment LED

36

“switch” statement ─ Example

Hossein Khosravi Shahrood University of Technology

unsigned char digit = 2;
unsigned char led_pattern;
switch (digit)
{
case '0':

led_pattern = 0b00111111;
break;

case '1':
led_pattern = 0b00000110;
break;

case '2':
led_pattern = 0b01011011;
break;
//you can complete more cases here...

default:
break;

}
PORTB = led_pattern; // send to PORTB and 7-segment LED

37

“while” statement

 General syntax

while (expression){
statements;

}

 Example code: Compute the sum of 1 + 2+ …+ 100

int sum, i;
i = 1; sum = 0;
while (i <= 100){
sum = sum + i;
i = i + 1;

}

Hossein Khosravi Shahrood University of Technology

38

“for” statement

 General syntax

for (expression1; expression2; expression3)
{
statements;
}

 expression1 is run before the loop starts.
 expression2 is evaluated before each iteration.
 expression3 is run after each iteration.

 Example code: Compute the sum of 1 + 2+ …+ 10
int sum;
sum = 0;
for (int i = 1; i <= 10; i++){
sum = sum + i;

}

Hossein Khosravi Shahrood University of Technology

39

“do” statement

 General syntax
do {
statements;

} while (expression);

 Example code: compute the sum of 1 + 2 + … + 10

int sum, i;
i = 1; sum = 0;
do{
sum = sum + i;
i = i + 1;

} while (i <= 10);

Hossein Khosravi Shahrood University of Technology

40

“break” statement in loop

 The break statement inside a loop forces early termination
of the loop.

 What is the value of sum after the following code is
executed?

int sum, i;
i = 1; sum = 0;
while (i <= 10){
sum = sum + i;
i = i + 1;
if (i > 5)

break;
}

Hossein Khosravi Shahrood University of Technology

41

“continue” statement in loop

 The continue statement skips the subsequent statements
in the code block and forces the execution of the next
iteration.

 What is the value of sum after the following code is
executed?

int sum, i;
i = 1; sum = 0;
while (i <= 10){
i = i + 1;
if (i < 5)

continue;
sum = sum + i;

}

Hossein Khosravi Shahrood University of Technology

42

C Arrays

 An array is a list of values that have the same data type.
 In C, array index starts from 0.
 An array can be one-dimensional, two-dimensional or more.

 This code example creates a 2-D array (multiplication table):

int a[8][10];
for (int i = 0; i < 8; i++)

for (int j = 0; j < 10; j++)
a[i][j]= i * j;

 An array can be initialized when it is declared:

int b[3] = {4, 1, 10};
unsigned char keypad_key[3][4] = {{'1', '4', '7', '*'},

{'2', '5', '8', '0'},
{'3', '6', '9', '#'}};

Hossein Khosravi Shahrood University of Technology

43

C functions

 C functions are sub-routines that can be called from the
main program or other functions.

 A C function can have a list of parameters and produce a
return value.

 Functions enable modular designs, code reuse, and hiding
of complex implementation details.

 Let us study C functions through examples.

Hossein Khosravi Shahrood University of Technology

44

Functions ─ Example 1

Hossein Khosravi Shahrood University of Technology

// factorial is the name of the custom function
// it accepts an input n of type int, and returns an output of type int

int factorial(int n){
int prod = 1;
for (int i = 1; i <=n; i++)

prod = prod * i;
return prod; // return the result

}

int main(void){
int n = 5; // some example value of n
int v; // variable to storage result
v = factorial(n); //call the function, store return value in v
return 1;

}

Write a function to compute the factorial n! for a given n.

45

Functions ─ Example 2

Hossein Khosravi Shahrood University of Technology

// factorial is the name of the custom function
// it accepts an input n of type int,
// it stores output at memory location by int pointer p
void factorial(int n, int* p){

int prod = 1;
for (int i = 1; i <=n; i++)

prod = prod * i;
*p = prod;// store output at memory location pointed by p

}

int main(void){
int n = 5; // some example value of n
int v; // variable to storage result
factorial(n, &v); // call the function, store return value in v

}

Write a function to compute the factorial n! for a given n.

46

Guidelines on C coding and documentation

 Optimize the C code for efficiency and length.

 Delete unnecessary lines of code.

 The C code must be properly formatted.

 Use indentation to show the logical structure of the program.

 Use a blank or comment line to separate code sections.

 Use meaningful variable names and function names.

 Use comments concisely to explain code.

 Specially cite the purpose of the code, author name and
date of generation

Hossein Khosravi Shahrood University of Technology

47

Summary

 What we learnt in this lecture:
 The tools and the steps for programming the Atmel AVR.

 AVR Studio

 Development Cycle for C Language

 Basics about C programming.

 Programming the digital I/O ports of Atmega32.

 References:
 ATmega32 datasheet

 Lecture notes of Dr. Lam Phung

 University of Wollongong, Australia, 2011 (elec.uow.edu.au)

Hossein Khosravi Shahrood University of Technology

