
AVRمیکرو کنترلرهای 

ارتباط سریال

دانشکده برق و رباتیک
دانشگاه صنعتی شاهرود

حسین خسروی

91-1390



2

An application of serial communications

Hossein Khosravi Shahrood University of Technology

An STK500 board is programmed to control a pan-tilt video 

camera, via a serial connection. In this lecture, you’ll learn to 

create such a program.

video link: [avr]/ecte333/pan_tilt_camera.mp4
[avr] = http://www.elec.uow.edu.au/avr



3

Serial communications ─ The basics

 Computers transfer data in two ways: parallel and serial.

 Parallel: Several data bits are transferred 
simultaneously, e.g. to printers and hard disks.

 Serial: A single data bit is transferred at one time.

 Advantages of serial communications: longer distances, 
easier to synchronize, fewer IO pins, and lower cost.

 Serial communications often require

 Shift registers: convert a byte to serial bits and vice 
versa.

 Modems: modulate/demodulate serial bits to/from 
audio tones.

Hossein Khosravi Shahrood University of Technology



4

Synchronous versus asynchronous

 Synchronous serial communications
 The clocks of the sender and receiver are synchronized (shared).

 A block of characters, enclosed by synchronizing bytes, is sent at 
a time.

 Faster transfer and less overhead.

 Examples: serial peripheral interface (SPI) by Motorola, binary 
synchronous communication (BISYNC) by IBM.

 Asynchronous serial communications
 The transmitter and receiver do not share a common clock.

 One character (8 or 7 bits) is sent at a time, enclosed between a 
start bit and one or two stop bits. A parity bit may be included.

 Examples: 
RS232 (part of) by Electronic Industry Alliance.
USART of ATmega16

Hossein Khosravi Shahrood University of Technology



5

Synchronous versus asynchronous

Hossein Khosravi Shahrood University of Technology

Asynchronous Serial Data Format

Synchronous Serial Data Format



6

Data framing examples

Hossein Khosravi Shahrood University of Technology



7

Serial communications terminology

 Baud rate: the number of bits sent per second (bps). Strictly 
speaking, baud rate is the number of signal changes per second.

 Parity bit: a single bit used for error checking that is sent 
together with data bits to make the total number of 1’s

 even (for even parity) or

 odd (for odd parity).

 Start bit: to indicate the start of a character. Its typical value is 0.

 Stop bit: to indicate the end of a character. Its typical value is 1.

Hossein Khosravi Shahrood University of Technology



8

The RS232 standard

 The RS232 is a widely used standard for serial interfacing.

 The latest revision is RS232E (July 1991).

 The RS232 standard covers four main aspects:

 Electrical: voltage level, rise and fall time, data rate, 
distance.

 Functional: function of each signal

 Mechanical: number of pins, shape & dimension of 
connectors.

 Procedural: sequence of events for transmitting data.

Hossein Khosravi Shahrood University of Technology



9

The RS232 standard

 RS232 was set by the Electronics Industries 

Association (EIA) in 1960

 The standard was set long before the advent of the 
TTL logic family, its input and output voltage levels are 
not TTL compatible

 In RS232, a 1 is represented by -3 ~ -25 V, while a 0
bit is +3 ~ +25 V, making -3 to +3 undefined

 RS232 restricts baud rate to 20 Kbps and cable length 
to 15m. In practice, it can support up to 56 Kbps & 
30m of shielded cables.

Hossein Khosravi Shahrood University of Technology



10

The RS232 standard

 It defines 25-pin D connectors. In many cases, 9-pin 
connectors are also used.

 There are two important terms in the RS232

 Data Terminal Equipment (DTE) refers to terminal and 
computers that send and receive data

 Data Communication Equipment (DCE) refers to 
communication equipment, such as modems

 These definitions are needed to explain the pin 
functions.

Hossein Khosravi Shahrood University of Technology

RS232 Connector DB-9 RS232 Connector DB-25



11

IBM PC 9-pin connector

Hossein Khosravi Shahrood University of Technology

Pin Name Description

1 𝐃𝐂𝐃 Data Carrier Detect: DCE has detected a carrier tone

2 RXD Received Data: incoming data from DCE

3 TXD Transmit Data: outgoing data to DCE

4 DTR Data Terminal Ready: DTE is connected and turned on

5 GND Ground

6 𝐃𝐒𝐑 Data Set Ready: DCE is connected and turned on

7 𝐑𝐓𝐒 Request To Send: DTE has data to send

8 𝐂𝐓𝐒 Clear To Send: DCE can receive data

9 RI Ring Indicator: synchronized with the phone’s ringing tone



12

RS232 Pins

 DTR (data terminal ready)
 When terminal is turned on, it sends out signal DTR to 

indicate that it is ready for communication

 DSR (data set ready)
 When DCE is turned on and has gone through the self-test, it 

assert DSR to indicate that it is ready to communicate

 RTS (request to send) 
 When the DTE device has byte to transmit, it assert RTS to 

signal the modem that it has a byte of data to transmit

 CTS (clear to send)
 When the modem has room for storing the data it is to 

receive, it sends out signal CTS to DTE to indicate that it can 
receive the data now

Hossein Khosravi Shahrood University of Technology



13

RS232 Pins

 DCD (data carrier detect)

 The modem asserts signal DCD to inform the DTE that a 
valid carrier has been detected and that contact 
between it and the other modem is established

 RI (ring indicator)

 An output from the modem and an input to a PC 
indicates that the telephone is ringing 

 It goes on and off in synchronous with the ringing 
sound

Hossein Khosravi Shahrood University of Technology



14

Modem connection

 RS232 was originally used with modems to connect two 
PCs over the public phone lines.

 When computer A has data to send, it assert its RTS pin.

 Modem A will assert its CTS when it is ready to receive.

 Computer A transmits data through its TXD.

Hossein Khosravi Shahrood University of Technology



15

Null-modem connection

Hossein Khosravi Shahrood University of Technology

 RS232 is now mainly used to connect a microcontroller with PC or 
peripheral devices (e.g. camera, GPS receiver, infrared range finder).

 This connection configuration is known as null-modem.

 Key idea:

 Connect pin TXD of a DTE with pin RXD of the other DTE.

 Wire other pins to support flow control.



16

Serial communications — An example

Hossein Khosravi Shahrood University of Technology

 The sensor sends data via serial interface to Bluetooth 
transmitter.

 A Bluetooth receiver connected to a PC is configured as a 
serial port.



17

Serial communications in ATmega32

 ATmega32 provides three subsystems for serial 
communications.

 Universal Synchronous & Asynchronous Serial Receiver & 
Transmitter (USART)

 Serial Peripheral Interface (SPI)

 Two-wire Serial Interface (TWI) also called Inter-Integrated 
Circuit (I2C)

 USART:

 Supports full-duplex mode between a receiver and 
transmitter.

 Typically used in asynchronous communication.

 Start bit and stop bit are used for each byte of data.

 We focus on this subsystem in this lecture.

Hossein Khosravi Shahrood University of Technology



18

Serial communications in ATmega32

 Serial Peripheral Interface (SPI)

 The receiver and transmitter share a common clock line.

 Supports higher data rates.

 The transmitter is designated as the master, the receiver as 
the slave.

 Example of devices using SPI: liquid crystal display, analogue 
to digital converter.

 Two-wire Serial Interface (TWI):

 Network several devices such as microcontrollers and 
display boards, using a two-wire bus.

 Up to 128 devices are supported.

 Each device has a unique address and can exchange data 
with other devices in a small network.

Hossein Khosravi Shahrood University of Technology



19

Serial USART ─ An overview

 USART of the ATmega16 supports

 baud rates from 960bps up to 57.6kbps,

 character size: 5 to 9 bits,

 1 start bit,

 1 or 2 stop bits,

 parity bit

 (optional: even or odd parity).

Hossein Khosravi Shahrood University of Technology



20

Serial USART ─ Block diagram

Hossein Khosravi Shahrood University of Technology

a) TxD and RxD
pins to

other device

b) Registers to
configure/monitor

USART

c) Register UBRR
to set baud rate

d) Register UDR
to store the

sent/received 
byte



21

Serial USART ─ Hardware elements

 USART Clock Generator:

 to provide clock source.

 to set baud rate using UBRR register.

 USART Transmitter:

 to send a character through TxD pin.

 to handle start/stop bit framing, parity bit, shift register.

 USART Receiver:

 to receive a character through RxD pin.

 to perform the reverse operation of the transmitter.

 USART Registers:

 to configure, control and monitor the serial USART

Hossein Khosravi Shahrood University of Technology



22

Serial USART ─ Three groups of registers

 USART Baud Rate Registers

 UBRRH and UBRRL

 USART Control and Status Registers

 UCSRA

 UCSRB

 UCSRC

 USART Data Registers

 UDR

 Understanding these registers is essential in using the 
serial port.
Therefore, we’ll study these registers in depth.

Hossein Khosravi Shahrood University of Technology



23

USART Baud Rate Registers

 Two 8-bit registers together define the baud rate.

 Example: Find UBRR registers for baud rate of 1200bps, 
assuming system clock is 1MHz.

 UBRR = 1000000/(16 × 1200) ─ 1 = 51d = 0033H.

 Therefore, UBRRH = 00H and UBRRL = 33H.

 C code

 UBRRH = 0x00; UBRRL = 0x33;

Hossein Khosravi Shahrood University of Technology

USART Register 
Select: Discussed 
Later



24

USART Control and Status Register A (UCSRA)

Hossein Khosravi Shahrood University of Technology



25

USART Control and Status Register B (UCSRB)

Hossein Khosravi Shahrood University of Technology



26

USART Control and Status Register C (UCSRC)

Hossein Khosravi Shahrood University of Technology



27

Setting character size

 Character size (5, 6, 7, 8, 9) is determined by three bits

 bit UCSZ2 (in register UCSRB),

 bit UCSZ1 and bit UCSZ0 (in register UCSRC).

 Example: For a character size of 8 bits, we set

 UCSZ2 = 0, UCSZ1 = 1, and UCSZ0 = 1.

Hossein Khosravi Shahrood University of Technology



28

USART Data Register

 Register UDR is the buffer for characters sent or 

received through the serial port.

 To start sending a character, we write it to UDR.

unsigned char data;

data = ‘a’;

UDR = data; // start sending character

 To check a received character, we read it from UDR.

unsigned char data;

data = UDR; // this will clear UDR

Hossein Khosravi Shahrood University of Technology



29

Serial USART ─ Main tasks

 The main tasks involved in using the serial port are:

 Initializing the serial port.

 Sending a character.

 Receiving a character.

 Sending/receiving formatted strings.

Hossein Khosravi Shahrood University of Technology



30

Initializing serial port

Hossein Khosravi Shahrood University of Technology



31

Initializing serial port ─ Example

Hossein Khosravi Shahrood University of Technology

void USART_init(void){

// Normal speed, disable multi-processor

UCSRA = 0b00000000;

// Enable Tx and Rx, disable interrupts

UCSRB = 0b00011000;

// Asynchronous mode, no parity, 1 stop bit, 8 data bits

UCSRC = 0b10000110;

// Baud rate 1200bps, assuming 1MHz clock

UBRRL = 0x33;

UBRRH = 0x00;

}

Initialize serial port to baud rate 1200 bps, no parity, 1 stop bit, 8 

data bits. Assume a clock speed of 1MHz.



32

Sending a character

Hossein Khosravi Shahrood University of Technology

UDRE:
Data Register Empty
in UCSRA



33

Sending a character ─ Example

Hossein Khosravi Shahrood University of Technology

void USART_send(unsigned char data){

// wait until UDRE flag is set to logic 1

while ((UCSRA & (1 << UDRE)) == 0x00){;}

UDR = data; // Write character to UDR for 

transmission

}

Write a C function to send a character through the serial port of

ATmega32.

 The constant UDRE has been defined in <avr/io.h>

#define UDRE 5



34

Receiving a character

Hossein Khosravi Shahrood University of Technology

RxC:
Receive Complete
in UCSRA



35

Receiving a character ─ Example

Hossein Khosravi Shahrood University of Technology

unsigned char USART_receive(void){

// Wait until RXC flag is set to logic 1

while ((UCSRA & (1 << RXC)) == 0x00){;}

return UDR; // Read the received character from UDR

}

Write a C function to receive a character through the serial port of

ATmega32.

 The constant RXC has been defined in <avr/io.h>

#define RXC 7



36

Sending/receiving formatted strings

 In ANSI C, the header file <stdio.h> has two functions for 
formatted strings: printf and scanf.

 Function printf sends a formatted string to the standard 
output device, which is usually the video display.

unsigned char a, b;

a = 2; b = 3;

printf(“a = %d, b = %d, sum = %d”, a, b, a+b);

 Function scanf reads a formatted string from the standard 
input device, which is usually the keyboard.

unsigned char a, b;

scanf(“%d %d”, &a, &b); //get integers a, b from input string

Hossein Khosravi Shahrood University of Technology



37

Sending/receiving formatted strings

 Being able to send/receive formatted strings through a 
serial port is useful in microcontroller applications.

 To do so, we need to configure the serial port as the 
standard input and output device.

 General steps:

1. Write two functions to send and receive a character 
through serial port.

2. In main program, call fdevopen() to designate the two 
functions as the handlers for standard output and 
standard input device.

3. Use printf/scanf as usual. Formatted strings will be 
sent/received through serial port.

Hossein Khosravi Shahrood University of Technology



38

Sending/receiving formatted strings ─ Example

Hossein Khosravi Shahrood University of Technology

#include <avr/io.h>

#include <stdio.h>

int main(void){

unsigned char a;

//Code to initialise baudrate, TXD, RXD, and so on is not shown here

// Start using printf, scanf as usual

while (1){

}

}

int USART_send(char c, FILE *stream){

while ((UCSRA & (1<<UDRE)) == 0x00){;}

UDR = c; // Write character to UDR for transmission

}

int USART_receive(FILE *stream){

while ((UCSRA & (1<<RXC)) == 0x00){;}

return (UDR); // Read the received character from UDR

}

// Initialise the standard IO handlers

stdout = fdevopen(USART_send, NULL);

stdin = fdevopen(NULL, USART_receive);

printf(“\n\rEnter a = ");

scanf(“%d”, &a); printf(“%d”, a);



39

Example application

 The MCAM100 is a programmable pan-tilt video camera.

 It can be controlled through a serial connection: 8 data bit, 1 
stop bit, no parity bit, baud rate 9600bps.

 Sending character ‘4’ or ‘6’ will turn the camera left or right, 
respectively.

 We’ll write a program to rotate the camera repeatedly.

Hossein Khosravi Shahrood University of Technology



40

camera.c

Hossein Khosravi Shahrood University of Technology

#include <util/delay.h>

#include <avr/io.h>

void USART_init(void){
UCSRA = 0b00000010; // double speed, disable multi-proc
UCSRB = 0b00011000; // Enable Tx and Rx, disable interrupts
UCSRC = 0b10000110; // Asyn mode, no parity, 1 stop bit, 8 data bits
// in double-speed mode, UBRR = Fclock/(8 x baud rate) - 1
UBRRH = 0; UBRRL = 12; // Baud rate 9600bps, assuming 1MHz clock

}
void USART_send(unsigned char data){

while ((UCSRA & (1<<UDRE)) == 0x00){;}
UDR = data; // Write character to UDR for transmission

}
int main(void) {

unsigned char i;
USART_init(); // initialize USART
while (1) {

for (i = 0; i < 10; i++){ // rotate left 10 times
USART_send('4');
_delay_ms(500);

}
for (i = 0; i < 10; i++){ // rotate right 10 times

USART_send('6');
_delay_ms(500);

}
}

}



41

Debugging tool: Hyper Terminal

 Sending and receiving data through serial port are a useful 
debugging technique when writing a microcontroller 
program.

 A tool for monitoring serial data is Hyper Terminal 
program, which is part of the Windows OS (until XP).

 Hyper Terminal can be used to

 establish a serial connection between the PC and the 
microcontroller.

 send a text string to the microcontroller.

 receive a text string sent from the microcontroller.

Hossein Khosravi Shahrood University of Technology



42

Hyper Terminal

Hossein Khosravi Shahrood University of Technology

camera.c:

USART_send('4');

…

USART_send(‘6');



43

Summary

 What we learnt in this lecture:

 Basics of serial communications.

 Serial communications subsystems in ATmega32.

 Using serial port to send/receive characters and 
formatted strings.

Hossein Khosravi Shahrood University of Technology


