AVR (5o i 9,50

Jbw bla)

&Q)Séﬁ L we] K

LY RY Y PWRgT SOV LW K
(G ywS (ypon>

11a.-4)

An application of serial communications

An STK500 board is programmed to control a pan-tilt video

camera, via a serial connection. In this lecture, you’ll learn to
create such a program.

null-modem connection

pan-tilt
programmable
video camera

TXD = Port D.1
RXD =Port D.0

video link: [avr]/ecte333/pan_tilt_camera.mp4
[avr] = http://www.elec.uow.edu.au/avr

Hossein Khosravi @ Shahrood University of Technology

Serial communications — The basics

» Computers transfer data in two ways: parallel and serial.

Parallel: Several data bits are transferred
simultaneously, e.g. to printers and hard disks.

Serial: A single data bit is transferred at one time.

» Advantages of serial communications: longer distances,
easier to synchronize, fewer 10 pins, and lower cost.

» Serial communications often require

Shift registers: convert a byte to serial bits and vice
versa.

Modems: modulate/demodulate serial bits to/from
audio tones.

Hossein Khosravi u Shahrood University of Technology

Synchronous versus asynchronous

» Synchronous serial communications

The clocks of the sender and receiver are synchronized (shared).

A block of characters, enclosed by synchronizing bytes, is sent at
a time.

Faster transfer and less overhead.

Examples: serial peripheral interface (SPI1) by Motorola, binary
synchronous communication (BISYNC) by IBM.

» Asynchronous serial communications

The transmitter and receiver do not share a common clock.
One character (8 or 7 bits) is sent at a time, enclosed between a
start bit and one or two stop bits. A parity bit may be included.
Examples:

RS232 (part of) by Electronic Industry Alliance.
USART of ATmegal6

Hossein Khosravi u Shahrood University of Technology

Synchronous versus asynchronous

Start Bit

Parity Bit 1 or 2 Stop Bits

\ /<D0§D1§D2§D3§D4§D5§D6

BN

F 3

1 Asynchronous Byte

Asynchronous Serial Data Format

Sync Sync Header
. Char | Char . Byte

Byte Char1 Char2

Header Data Data

Data Checké Check? Sync
. Charn. Byte . Byte . Char

 Sync
- Char

F 3

Hossein Khosravi

1 Synchronous Data Block

Synchronous Serial Data Format

Rt

Shahrood University of Technology

k J

Data framing examples

oo e e e o e e e

BISYNC Control Characters
SYN (16h): synchronisation

Data Framing in Synchronous BISYNC :
1
| STX (02h): start of text
:
1
1
1

ETX (03h): end of text
BCC: block checksum char

SYN|SYN|STX DATA FIELD ETX|BCC|PAD

PAD (FFh): end of frame block

____________________ 1

Data Framing in Asynchronous Transmission]
/ parity

. '1!0'0!'0'!0'0'!'!1!'0'0! ' !

start bit/ LSB MSB stop bits

Sending character “A” (41h = 0100 0001)
8-bit data, 1 start bit, 2 stop bits, even-parity

Hossein Khosravi u Shahrood University of Technology

Serial communications terminology

» Baud rate: the number of bits sent per second (bps). Strictly
speaking, baud rate is the number of signal changes per second.

» Parity bit: a single bit used for error checking that is sent
together with data bits to make the total number of 1’s

even (for even parity) or
odd (for odd parity).

» Start bit: to indicate the start of a character. Its typical value is 0.

» Stop bit: to indicate the end of a character. Its typical value is 1.

Hossein Khosravi u Shahrood University of Technology

The RS232 standard

» The RS232 is a widely used standard for serial interfacing.
» The latest revision is RS232E (July 1991).

» The RS232 standard covers four main aspects:

Electrical: voltage level, rise and fall time, data rate,
distance.

Functional: function of each signal

Mechanical: number of pins, shape & dimension of
connectors.

Procedural: sequence of events for transmitting data.

Hossein Khosravi u Shahrood University of Technology

The RS232 standard

» RS232 was set by the Electronics Industries
Association (EIA) in 1960

» The standard was set long before the advent of the

TTL logic family, its input and output voltage levels are
not TTL compatible

In RS232, a 1 is represented by -3~ -25V, whilea 0
bit is +3 ~ +25 V, making -3 to +3 undefined

» RS232 restricts baud rate to 20 Kbps and cable length

to 15m. In practice, it can support up to 56 Kbps &
30m of shielded cables.

Hossein Khosravi u Shahrood University of Technology

The RS232 standard

» It defines 25-pin D connectors. In many cases, 9-pin
connectors are also used.

RS232 Connector DB-9 RS232 Connector DB-25

) 4 2 345678 910111213

‘l J

‘e[Q) VEER
o @ o O
)

1

L 6 7 89 141516 17181920 21222324 25

» There are two important terms in the RS232

Data Terminal Equipment (DTE) refers to terminal and
computers that send and receive data

Data Communication Equipment (DCE) refers to
communication equipment, such as modems

These definitions are needed to explain the pin

functions. @
Hossein Khosravi Shahrood University of Technology

IBM PC 9-pin connector

O 00 N o uu A W N =

Hossein Khosravi

RXD
TXD
DTR
GND
DSR
RTS
CTS
RI

Data Carrier Detect: DCE has detected a carrier tone
Received Data: incoming data from DCE

Transmit Data: outgoing data to DCE

Data Terminal Ready: DTE is connected and turned on
Ground

Data Set Ready: DCE is connected and turned on
Request To Send: DTE has data to send

Clear To Send: DCE can receive data

Ring Indicator: synchronized with the phone’s ringing tone

1/ /2 3, 48

6 78 9 Shahrood University of Technology

RS232 Pins

» DTR (data terminal ready)

) When terminal is turned on, it sends out signal DTR to
indicate that it is ready for communication

» DSR (data set ready)

] When DCE is turned on and has gone through the self-test, it
assert DSR to indicate that it is ready to communicate

» RTS (request to send)

) When the DTE device has byte to transmit, it assert RTS to
signal the modem that it has a byte of data to transmit

» CTS (clear to send)

] When the modem has room for storing the data it is to
receive, it sends out signal CTS to DTE to indicate that it can
receive the data now

Hossein Khosravi @ Shahrood University of Technology

RS232 Pins

» DCD (data carrier detect)

) The modem asserts signal DCD to inform the DTE that a
valid carrier has been detected and that contact
between it and the other modem is established

» Rl (ring indicator)

1 An output from the modem and an input to a PC
indicates that the telephone is ringing

1 It goes on and off in synchronous with the ringing
sound

Hossein Khosravi @ Shahrood University of Technology

Modem connection

Computer A Modem A Modem B Computer B
DTE DCE DCE DTE
CD |« cD CcD »CD
RXD}+ RXD RXD » RXD
TXD TXD TXD |« TXD

’ i DTR [¢ DTR
DTR DTR Phone Line
GND GND) A . GND GND
DSR [« DSR DSR + DSR
RTS RTS RTS |« RTS
CTS |«——|CTS CTS |———|CTS
Rl |« RI Rl |[—— Rl

» RS232 was originally used with modems to connect two
PCs over the public phone lines.

Y

When computer A has data to send, it assert its RTS pin.

Y

Modem A will assert its CTS when it is ready to receive.

Y

Computer A transmits data through its TXD.

Hossein Khosravi u Shahrood University of Technology

Null-modem connection

DTE

Simplest cable

CcD
RXD Y
TXD
DTR
DSR

GND

RTS

CTS
RI

CD

RXD
TXD
DTR
DSR

GND
RTS

CTS

RI

DTE

DTE

Full handshaking cable

CD
RXD
TXD
DTR

DSR,_> /L..
D

GND

RTS
CTS
RI

CD
RXD
TXD
DTR
DSR
GND
RTS

CTS
RI

DTE

» RS232 is now mainly used to connect a microcontroller with PC or
peripheral devices (e.g. camera, GPS receiver, infrared range finder).

Y VY

Key idea:
Connect pin TXD of a DTE with pin RXD of the other DTE.

Wire other pins to support flow control.

Hossein Khosravi

o

This connection configuration is known as null-modem.

Shahrood University of Technology

Serial communications — An example

> The sensor sends data via serial interface to Bluetooth

transmitter.

» A Bluetooth receiver connected to a PC is configured as a
serial port.

. wireless
ultrasound serial Bluetooth ::>

distance sensor transmitter

——

E-|LIESI""III'f
IC1
- ™ .
G2
5254
Cistance Sensor |

Hossein Khosravi @

le-
HEEEE

r.h-ﬂSl

111
—~‘mw|4&-

Bluetooth | USB .
receiver
(virtual
serial port)

Shahrood University of Technology

Serial communications in ATmega32

» ATmega32 provides three subsystems for serial
communications.

Universal Synchronous & Asynchronous Serial Receiver &
Transmitter (USART)

Serial Peripheral Interface (SPI)

Two-wire Serial Interface (TWI) also called Inter-Integrated
Circuit (I°C)

» USART:

Supports full-duplex mode between a receiver and
transmitter.

Typically used in asynchronous communication.
Start bit and stop bit are used for each byte of data.
We focus on this subsystem in this lecture.

Hossein Khosravi \') Shahrood University of Technology

Serial communications in ATmega32

» Serial Peripheral Interface (SPI)
The receiver and transmitter share a common clock line.
Supports higher data rates.

The transmitter is designated as the master, the receiver as
the slave.

Example of devices using SPI: liquid crystal display, analogue
to digital converter.

» Two-wire Serial Interface (TWI):

Network several devices such as microcontrollers and
display boards, using a two-wire bus.

Up to 128 devices are supported.

Each device has a unique address and can exchange data
with other devices in a small network.

Hossein Khosravi \') Shahrood University of Technology

Serial USART — An overview

» USART of the ATmegal6 supports
1 baud rates from 960bps up to 57.6kbps,

D 0D D

Hossein Khosravi

character size: 5 to 9 bits,

1 start bit,

1 or 2 stop bits,

parity bit

1 (optional: even or odd parity).

N/
(XCK/T0) PBO] 1 40
(T1) PB1] 2 39
(INT2/AINO) PB2] 3 38
(OCO/AIN1) PB3] 4 37
(8S) PB4] 5 36
(MOSI) PB5 [] 6 35
(MISO) PB6] 7 34
(SCK) PB7] 8 33
RESET] 9 32
vcc] 10 31
GND] 11 30
XTAL2] 12 29
XTAL1 13 28
(RXD) PDO] 14 27
(TXD) PD1] 15 26
(INTO) PD2] 16 25
(INT1) PD3] 17 24
(OC1B) PD4] 18 23
(OC1A) PD5] 19 22
(ICP1) PD6] 20 21

o

guguguuuuuduoouuood

PAO (ADCO)
PA1 (ADC1)
PA2 (ADC2)
PA3 (ADC3)
PA4 (ADC4)
PA5 (ADC5)
PA6 (ADCS)
PA7 (ADC7)
AREF

GND

AVCC

PC7 (TOSC2)
PC6 (TOSC1)
PC5 (TDI)
PC4 (TDO)
PC3 (TMS)
PC2 (TCK)
PC1 (SDA)
PCO (SCL)
PD7 (OC2)

Shahrood University of Technology

Serial USART — Block diagram

c) Register UBRR
to set baud rate

d) Register UDR
to store the

. =

sent/received
byte

I

PIN n
CONTROL [
I

PIN l
CONTROL

s
| } Clock Generator |
| ;I UBRR[H:L]
| | osc
' v
|
I BAUD RATE GENERATOR |
l vy
' ['sYnC Loaic
| /
|
et ———— e —— 1 —————————————————— o
| Transmltta;_:
: TX
: I UDR (Transmit) I CONTROL |
T PARITY |
ol ! GENERATOR
=] B = TRANSMIT SHIFT REGISTER
= "
=l |
g r Receiver |
I cLock | RX |
| RECOVERY [CONTROL |
l |
l DATA
| = RECEIVE SHIFT REGISTER recovery [*
| > |
| y |
i PARITY |
: Iiuon (Recewe)—l CHECKER :
. L T Pt ST |
<

I
I
I
I
I
I
=]
CONTROL
I

a) TxD and RxD
pins to
other device

b) Registers to
configure/monitor
USART

'4

Hossein Khosravi

Shahrood University of Technology

Serial USART — Hardware elements

» USART Clock Generator:
to provide clock source.
to set baud rate using UBRR register.

» USART Transmitter:
to send a character through TxD pin.
to handle start/stop bit framing, parity bit, shift register.

» USART Receiver:
to receive a character through RxD pin.
to perform the reverse operation of the transmitter.

» USART Registers:
to configure, control and monitor the serial USART

Hossein Khosravi u Shahrood University of Technology

Serial USART — Three groups of registers

» USART Baud Rate Registers
UBRRH and UBRRL

» USART Control and Status Registers
UCSRA
UCSRB
UCSRC

» USART Data Registers
UDR

» Understanding these registers is essential in using the
serial port.
Therefore, we’ll study these registers in depth.

Hossein Khosravi u Shahrood University of Technology

USART Baud Rate Registers

» Two 8-bit registers together define the baud rate.

1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0

URSEL-}»0
N P — —
) ~" - '
// register UBRRH register UBRRL
USART Register system clock frequency (Hz
Select: Discussed baud rate ==Y 9 y (Hz)

16(UBRR +1)
_ system clock frequency (Hz) _1
16 xbaud rate

» Example: Find UBRR registers for baud rate of 1200bps,
assuming system clock is 1MHz.
UBRR = 1000000/(16 X 1200) — 1 = 51d = 0033H.
Therefore, UBRRH = O0H and UBRRL = 33H.
C code
UBRRH = 0x00; UBRRL = ©x33;

Hossein Khosravi u Shahrood University of Technology

Later
UBRR

USART Control and Status Register A (UCSRA)

RXC TXC | UDRE FE DOR PE uz2x | MPCM

1 when USART data register is empty

1 when no new data in transmit buffer (ix complete)

1 when receive buffer has unread data (rx complete)

Hossein Khosravi @ Shahrood University of Technology

USART Control and Status Register B (UCSRB)

7

6

5

4

3

2

1

RXCIE

TXCIE

UDRIE

RXEN

TXEN

ucszz2

RXB8

Hossein Khosravi

Shahrood University of Technology

USART Control and Status Register C (UCSRC)

7 6 5 4 3 2 1 0
URSEL|UMSEL| UPM1 | UPMO | USBS |UCS21 | UCSZ0| UCPOL
N N J L _______________________________________
Clock polarity, used with synchronous .

Hossein Khosravi

To select stop bit modes: 0 < 1 stop bit, 1 2 2 stop bits

To select parity mode: 00 no parity, 10 even party, 11 odd parity

To select USART modes: 0 asynchronous, 1 synchronous

Shahrood University of Technology

Setting character size

» Character size (5, 6, 7, 8, 9) is determined by three bits
bit UCSZ2 (in register UCSRB),
bit UCSZ1 and bit UCSZO0 (in register UCSRC).

» Example: For a character size of 8 bits, we set

UCSZ2 =0, UCSZ1 =1, and UCSZ0 = 1.

Table 66. UCSZ Bits Settings

Ucsz2 UCsz1 UCSZ0 Character Size
0 0 0 5-bit
0 0 1 6-bit
0 1 0 7-bit
0 1 1 8-bit
1 0 0 Reserved
1 0 1 Reserved
1 1 0 Reserved
1 1 1 9-bit

Hossein Khosravi

Shahrood University of Technology

USART Data Register

» Register UDR is the buffer for characters sent or
received through the serial port.

» To start sending a character, we write it to UDR.
unsigned char data;
data = ‘a’;

UDR = data; // start sending character

» To check areceived character, we read it from UDR.
unsigned char data;

data = UDR; // this will clear UDR

Hossein Khosravi u

Shahrood University of Technology

Serial USART — Main tasks

» The main tasks involved in using the serial port are:

) Initializing the serial port.

) Sending a character.

1 Receiving a character.

1 Sending/receiving formatted strings.

Hossein Khosravi @ Shahrood University of Technology

Initializing serial port

Set USART communication parameters
(data bits, stop bit, parity bit)

¥

Set USART for asynchronous mode

k4

Set baud rate

Y

Enable transmitter and receiver

Hossein Khosravi u Shahrood University of Technology

Initializing serial port — Example

Initialize serial port to baud rate 1200 bps, no parity, 1 stop bit, 8

data bits. Assume a clock speed of 1MHz.

void USART init (void) {
// Normal speed, disable multi-processor
UCSRA = 0b00000000;
// Enable Tx and Rx, disable interrupts
UCSRB = 0b00011000;
// Asynchronous mode, no parity, 1 stop bit, 8 data bits
UCSRC = 0b10000110;
// Baud rate 1200bps, assuming 1MHz clock
UBRRL = 0x33;
UBRRH = 0x00;

Hossein Khosravi @ Shahrood University of Technology

Sending a character

No ,
Has UDRE flag been setto 17 gaDtI;EI:!egister Empty
(register UCSRA) in UCSRA
Yes

Write the character to register UDR
for transmission

|

Hossein Khosravi @ Shahrood University of Technology

Sending a character — Example

Write a C function to send a character through the serial port of

ATmega32.

void USART send(unsigned char data) {
// wait until UDRE flag is set to logic 1
while ((UCSRA & (1 << UDRE)) == 0x00){;}

UDR = data; // Write character to UDR for
transmission

» The constant UDRE has been defined in <avr/io.h>

#define UDRE 5

Hossein Khosravi @ Shahrood University of Technology

Receiving a character

No ;

RxC:
Has RXC flag been setto 1?7 Receive Complete
(Register UCSRA) in UCSRA

Yes

Read the received character
from register UDR

o

Hossein Khosravi Shahrood University of Technology

Receiving a character — Example

Write a C function to receive a character through the serial port of

ATmega32.

unsigned char USART receive (void) {
// Wait until RXC flag is set to logic 1
while ((UCSRA & (1 << RXC)) == 0x00) {;}

return UDR; // Read the received character from UDR

» The constant RXC has been defined in <avr/io.h>

#define RXC 7

Hossein Khosravi @ Shahrood University of Technology

Sending/receiving formatted strings

>

In ANSI C, the header file <stdio.h> has two functions for
formatted strings: printf and scanf.

Function printf sends a formatted string to the standard
output device, which is usually the video display.

unsigned char a, b;
a=2; b=3;
printf(“*a = %d, b = %d, sum = %d”, a, b, a+b);

Function scanf reads a formatted string from the standard
input device, which is usually the keyboard.

unsigned char a, b;
scanf (“%d %d”, &a, &b); //get integers a, b from input string

y —
36,
Hossein Khosravi Shahrood University of Technology

Sending/receiving formatted strings

» Being able to send/receive formatted strings through a
serial port is useful in microcontroller applications.

» To do so, we need to configure the serial port as the
standard input and output device.

» General steps:

Write two functions to send and receive a character
through serial port.

In main program, call fdevopen() to designate the two
functions as the handlers for standard output and
standard input device.

Use printf/scanf as usual. Formatted strings will be
sent/received through serial port.

Hossein Khosravi @ Shahrood University of Technology

Sending/receiving formatted strings — Example

#include <avr/io.h>
#include <stdio.h>

int USART_ send(char c, FILE *stream) {
while ((UCSRA & (1<<UDRE)) == 0x00)({;}
UDR = ¢; // Write character to UDR for transmission

}

int USART receive (FILE *stream) {
while ((UCSRA & (1<<RXC)) == 0x00){;}
return (UDR); // Read the received character from UDR

}

int main(void) {
unsigned char a;
//Code to initialise baudrate, TXD, RXD, and so on is not shown here

// Initialise the standard IO handlers
stdout = fdevopen (USART send, NULL);
stdin = fdevopen (NULL, USART receive);

// Start using printf, scanf as usual
while (1) {

printf (“\n\rEnter a = ") ;
scanf (“%d”, &a); printf(“%d”, a);

}

Example application

» The MCAM100 is a programmable pan-tilt video camera.

» It can be controlled through a serial connection: 8 data bit, 1
stop bit, no parity bit, baud rate 9600bps.

» Sending character ‘4’ or ‘6’ will turn the camera left or right,
respectively.

» We'll write a program to rotate the camera repeatedly.

null-modem connection

pan-tilt
programmable
video camera

TXD = Port D.1
RXD = Port D.0

Hossein Khosravi

Shahrood University of Technology

camera.c

#include <util/delay.h>
#include <avr/io.h>
void USART_init(void){

UCSRA = 0boo000010; // double speed, disable multi-proc
UCSRB = 0b000110600; // Enable Tx and Rx, disable interrupts
UCSRC = 0b10000110; // Asyn mode, no parity, 1 stop bit, 8 data bits

// in double-speed mode, UBRR = Fclock/(8 x baud rate) - 1
UBRRH = @; UBRRL = 12; // Baud rate 9600bps, assuming 1MHz clock

}
void USART_send(unsigned char data){

while ((UCSRA & (1<<UDRE)) == 0x00){;}
UDR = data; // Write character to UDR for transmission
}
int main(void) {
unsigned char 1i;
USART_init(); // initialize USART
while (1) {
for (i = 0; 1 < 10; i++){ // rotate left 10 times
USART_send('4');
_delay ms(500);
}
for (i = 0; 1 < 10; i++){ // rotate right 10 times
USART_send('6');
_delay ms(500);

Debugging tool: Hyper Terminal

» Sending and receiving data through serial port are a useful
debugging technique when writing a microcontroller
program.

» Atool for monitoring serial data is Hyper Terminal
program, which is part of the Windows OS (until XP).

» Hyper Terminal can be used to

establish a serial connection between the PC and the
microcontroller.

send a text string to the microcontroller.
receive a text string sent from the microcontroller.

Hossein Khosravi @ Shahrood University of Technology

Hyper Terminal

Connection Description

. —

New Connection Connect To M
|

'COM3 Properties -)

s

Enter @ name and choose an icon forthe
T&Ct i S

Name:
= Port Setti
Test| ' ings

Enter details for the phone number that you want toj
lcon: |

Country/region: | Iran (35)

,k—_, Bits per second: [9600 v]
Phone number:] Data bits: [8 'J

T ™ , -
USART send('4')

: =i
B Test - HyperTe

1

| File Edit View
D& & 3

fuit] »

bhbbbbbibba6666666666_

< | . J
Connected 0:01:23 Auto detect 9600 8-N-1

SCROLL CAPS 'NUM | Capture

Hossein Khosravi Shahrood University of Technology

Summary

» What we learnt in this lecture:
Basics of serial communications.
Serial communications subsystems in ATmega32.

Using serial port to send/receive characters and
formatted strings.

Hossein Khosravi \u) Shahrood University of Technology

