
 AVRمیکرو کنترلرهای 
 

 وقفه های ارتباط سریال و خارجی

 دانشکده برق و رباتیک
 دانشگاه صنعتی شاهرود

 
 حسین خسروی

91-1390 

 

 



2 

Interrupt 

 Two way for handling peripheral devices 

 Polling 

 Interrupt 

 Compared to polling, interrupt is a more efficient approach 
for the CPU to handle peripheral devices, e.g.  

 serial port, external switches, timers, PWM and ADC. 

2 



3 

Polling versus Interrupt 

 

 

 

 

 
 

 

 Using polling, the CPU must continually check the device’s status. 

 Using interrupt: 

 A device will send an interrupt signal when needed. 

 In response, the CPU will perform an interrupt service routine, 
and then resume its normal execution. 

Hossein Khosravi Shahrood University of Technology 



4 

Interrupt execution sequence 

1. A device issues an interrupt 

2. CPU finishes the current instruction 

3. CPU acknowledges the interrupt 

4. CPU saves its states and PC onto stack 

5. CPU loads the address of ISR onto PC 

6. CPU executes the ISR 

7. CPU retrieves its states and PC from stack 

8. CPU retrieves its states and PC from stack 

Hossein Khosravi Shahrood University of Technology 



5 

ATmega32 interrupt subsystem 

Hossein Khosravi Shahrood University of Technology 

 The ATmega32 has 21 interrupts: 

 1 reset interrupt 

 3 external interrupts 

 8 timer interrupts 

 3 serial port interrupts 

 1 ADC interrupt 
 

 1 analogue comparator interrupt 

 1 SPI interrupt 

 1 TWI interrupt 

 2 memory interrupts 



6 

ATmega32 interrupt subsystem: Complete list 

Hossein Khosravi Shahrood University of Technology 



7 

Remarks on previous Table 

 Vector No 

 An interrupt with a lower ‘Vector No’ will have a 
higher priority. 

 E.g., INT0 has a higher priority then INT1 and INT2. 

 Program Address 

 The fixed memory location for a given interrupt 
handler. 

 E.g., in response to interrupt INT0, CPU runs 
instruction at $002. 

 Interrupt Vector Name 

 This is the interrupt name, to be used with C macro 
ISR(). 

Hossein Khosravi Shahrood University of Technology 



8 

Remarks 

 When an interrupt occurs, the Global Interrupt Enable I-bit 
is cleared and all interrupts are dis-abled! 

 The user software can write logic one to the I-bit to enable 
nested interrupts.  

 All enabled interrupts can then interrupt the current 
interrupt routine.  

 The I-bit is automatically set when a Return from Interrupt 
instruction – RETI – is executed.  

Hossein Khosravi Shahrood University of Technology 



9 

Program setup for the Reset and Interrupt Vector Addresses 

Address  Labels  Code    Comments 

$000   jmp  RESET   ; Reset Handler 

$002   jmp  EXT_INT0   ; IRQ0 Handler 

$004   jmp  EXT_INT1   ; IRQ1 Handler 

$006   jmp  EXT_INT2   ; IRQ2 Handler 

$008   jmp  TIM2_COMP  ; Timer2 Compare Handler 

$00A   jmp  TIM2_OVF  ; Timer2 Overflow Handler 

... 

$028   jmp  SPM_RDY   ; SPM Ready Handler 

 

$02A  RESET:  ldi  r16,high(RAMEND)  ; Main program start 

$02B   out  SPH,r16   ; Set Stack Pointer to top of RAM 

$02C   ldi  r16,low(RAMEND) 

$02D   out  SPL,r16 

$02E   sei    ; Enable interrupts 

$02F   <instr>  xxx 

... ... ... 

Hossein Khosravi Shahrood University of Technology 



10 

Steps to program an interrupt in C 

 To program an interrupt in C, five steps are required. 

 1. Include header file <avr\interrupt.h>. 

 2. Use C macro ISR() to declare the interrupt handler 
and update IVT. 

 3. Enable the specific interrupt. 

 4. Configure details about the interrupt by setting 
relevant registers. 

 5. Enable the interrupt subsystem globally using sei(). 

Hossein Khosravi Shahrood University of Technology 



11 

Using C macro ISR() 

 The C macro ISR() is used to declare the handler for a given 

interrupt. 

 Its basic syntax is given as 

 

 ISR(interrupt_vector_name){ 

   // … code for interrupt handler here 

 } 

 where interrupt_vector_name is given in Previous Table. 

 

 Example: To process interrupt 'RXD Complete’ and put the 

received character in Port B, we write: 

 

 ISR(USART_RXC_vect){ 

   PORTB = UDR; // put the received char in Port B 

 } 

Hossein Khosravi Shahrood University of Technology 



12 

Serial RXC interrupt 

 Write a C interrupt-driven program to use the serial port 
of ATmega16 at baud rate 1200, no parity, 1 stop bit, 8 
data bits, clock speed 1MHz. Whenever a character is 
received, it should be sent to Port B. 

 

 The serial port on ATmega32 can trigger an RXC interrupt 

whenever a character is received. 

 

 We enable this interrupt by setting a flag in a serial port 

register. 

 

 We then need to write the interrupt handler, to be run 
whenever the interrupt is triggered. 

Hossein Khosravi Shahrood University of Technology 



13 

Serial RXC interrupt: Enabling 

 

 

 

 

 

 

 

 

 For any interrupt, the ATmega32 datasheet can be 
searched to learn how to enable the interrupt. 

 E.g., for serial RXC interrupt, we look at ‘USART’ section. 

Hossein Khosravi Shahrood University of Technology 



14 

Serial RXC interrupt: serial_int.c 

Hossein Khosravi Shahrood University of Technology 



15 

Serial RXC interrupt: Testing 

 To test the serial RXD interrupt example: 

 Connect RXD pin (pin D.0) to RXD pin of RS232 Spare 

(Max232). 

 Connect TXD pin (pin D.1) to TXD pin of RS232 Spare. 

 Connect Port B to LED connector. 

 Compile, download program. 

 Connect RS232 Spare Connector to Serial Port of PC. 

 Configure and run HyperTerminal and use it to send 

characters. 

 

 

 Video demo link: [avr]/ecte333/serial_int.mp4 

 avr = http://www.elec.uow.edu.au/avr 

Hossein Khosravi Shahrood University of Technology 



16 

Serial RXC ─ Polling approach 

 For comparison, the program below uses polling for the 
same effect. 

Hossein Khosravi Shahrood University of Technology 



17 

External interrupts 

 Three external interrupts can 
be triggered. 

 INT0 on pin D.2, 

 INT1 on pin D.3, 

 INT2 on pin B.2. 

 

 Key steps in using external 
interrupts. 

 Enable the interrupt, 

 Specify what types of event 
will trigger the interrupt. 

Hossein Khosravi Shahrood University of Technology 



18 

External interrupts: Enabling 

 To enable an external interrupt, set a flag in General 

Interrupt Control Register (GICR). 

 

 

 

 

 

 

 

 Example: to enable INT1 on pin D.3, we can write 

 GICR = (1 << INT1); 

 

 Note that INT1 and GICR names are already defined in 

<avr/io.h>. 

Hossein Khosravi Shahrood University of Technology 



19 

External interrupts: Specifying events 

 To specify the type of events that triggers an external interrupt, set 
MCU Control Register or MCU Control and Status Register. 

Hossein Khosravi Shahrood University of Technology 



20 

External interrupts: Example 

 Write a C interrupt-driven program to toggle port B 
whenever a switch on the STK500 board is pressed. The 
program should use an external interrupt. 

 

 Let us use interrupt INT1. This interrupt is triggered on pin 

D.3. 

 To enable interrupt INT1 

 GICR = (1 << INT1); 

 To specify that INT1 is triggered on any change in pin D.3 

 MCUCR = (1<<ISC10); 

 We then write interrupt handler and enable interrupt 
subsystem globally as usual. 

Hossein Khosravi Shahrood University of Technology 



21 

External interrupts: ext_int.c 

Hossein Khosravi Shahrood University of Technology 



22 

Example: Pulse Counter 

 

Hossein Khosravi Shahrood University of Technology 



23 

Example: Counter 0-9999 

 

Hossein Khosravi Shahrood University of Technology 


