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Why C?

 C is a high-level programming language: C code is easier to 
understand compared to other languages.

 C supports low-level programming: We can access every 
hardware components of the microcontroller with C.

 C has standard libraries for complex tasks: data type 
conversions, standard input/output, long-integer 
arithmetic.

 The Atmel AVR instruction set has been designed to 
support C compilers: C code can be converted efficiently to 
assembly code.
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C Tools
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 Atmel AVR Studio

 An integrated development 
environment for Atmel AVR 
microcontroller:

 Editor, assembler, emulator, 
HEX file downloader and C 
compiler (from version 5.0)

 Available from Atmel 
website:
http://www.atmel.com/tools/ATM
ELAVRSTUDIO5_0.aspx

 Its Free

http://www.atmel.com/tools/ATMELAVRSTUDIO5_0.aspx
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C Tools

 Code Vision AVR 2.05.3

 Simple and Great wizards

 Good libraries

 Easier than AVR Studio

 Lack of Debugger

 Commercial (Not for Us!)
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Development Cycle for C in AVR Studio – Step 1

 New Project  AVR GCC  C Executable Project

 Enter a meaningful name for the project (not the first 
characters you find in keyboard like asdf!)

 Select destination AVR e.g. ATmega32 OK
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Development Cycle for C in AVR Studio

 Step 2: Enter a C program

 Step 3: Compile the C program to produce Hex file 

 Correct possible syntax errors

 Step 4 (Optional): Simulate on Proteus

 Step 5: Download and test the HEX file on Atmel AVR 
microcontroller
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Sample Program – Toggle LED using switches
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Sample Program
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#include <avr/io.h> // avr header file for IO ports

int main(void){

unsigned char i; // temporary variable 

DDRA = 0x00; // set PORTA for input (8 switches)

DDRB = 0xFF; // set PORTB for output (8 LEDs)

PORTB = 0x00; // turn ON all LEDs initially

while(1){

// Read input from PORTA (switches). 

i = PINA;

// Send output to PORTB (LEDs).

PORTB = i;

}

return 1;

}

Toggle 8 LEDs using 8 switches
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Result on STK500
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STK500
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Hardware setup for LED sample program.
Connections to PORTA & PORTB are only for this example.
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Digital IO in ATmega32

 ATmega32 has four 8-bit digital IO ports:

 PORT A,

 PORT B,

 PORT C, and

 PORT D.

 Each port has 8 data pins.

 Every port is bi-directional. 

 Each of the 8 pins can be individually configured as

 input (receiving data into microcontroller), or

 output (sending data from microcontroller).
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PORT names

 To access registers

 PORTx to access port register

 PINx to access port input register

 DDRx to access data direction registers

 x could be A,B,C or D

 To access special bit of registers

 There is no standard method

 Each compiler has its own syntax

 Use bitwise operators which works everywhere

 To make pin5 as output and left others unchanged: 
 DDRC = DDRC | 0b0010000
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I/O Ports

 3 I/O registers per port, bitwise configuration

 DDRx: Data Direction Register (1: out, 0: in)
 Every pin can be configured as input or output

 PORTx: 
 DDR = 0xFF output data

 DDR = 0x00 floating or pullup resistor

 If PORTxn is written logic one when the pin is configured as 
an input pin, the pull-up resistor is activated

 PINx: Port Input (Read Only)
 DDR=0xFF PORTx (with 1 clk latency)

 DDR=0x00 input data
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Examples

 To set Port A pins 0 to 3 for input, pins 4 to 7 for output, 
we write C code:

DDRA = 0b11110000; // configure pins

 To write a binary 0 to output pin 6, binary 1 to other pins 
of Port A, we write C code:

PORTA = 0b10111111; // write output

 To read the input pins of Port A, we write C code:

unsigned char temp; // temporary variable
temp = PINA;     // read input
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SFR Definition

 Where do the C names PINA, PORTA, DDRA come from?
 <avr/iom32.h>

 .\AVR Studio 5.0\AVR ToolChain\avr\include\avr\iom32.h

/* Port D */

#define PIND _SFR_IO8(0x10)

#define DDRD _SFR_IO8(0x11)

#define PORTD _SFR_IO8(0x12)

 Where does iom32.h come from?

 <avr/io.h>
#if defined (__AVR_ATmega32__)

#include <avr/iom32.h>
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AVR header file

 To access all AVR microcontroller registers, your program 
must include the header file <io.h>
 #include <avr/io.h>

 Depending on which device selected in your project, file 
‘io.h’ will automatically redirect to a specific header file.

 Example

 For ATmega32, the specific header file is <avr/iom32.h>

 The header file lists the C names for all registers in 
ATmega32, and their memory locations.

 We always use the C names in our code.
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I/O Ports
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PINC is read only
So this is useless

PORTC is input so PINC is 
not related to PORTC
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I/O ports (simple view)

DDRx

PORTx

PINx

direction

DDRx value

Output value / 

pullup

PORTx value

(out/) input value
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General I/O Port Configuration
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PUD: Pull-Up Disable

WDx: Write DDRx

RDx: Read DDRx

WPx: Write PORTx

RRx: Read PORTx Register

RPx: Read PINx

Note:

WPx, WDx, RRx, RPx, and RDx 
are common to all pins within 
the same port. clkI/O, SLEEP, 
and PUD are common to all 
ports.

These are internal to AVR 
and we don’t have access to 
them and never use them 
except PUD (SFIOR D2)
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Review of C Programming

 Most students in this class learnt C programming in their 
first year. 

 Is it learned or passed?

 Here, we review briefly major aspects of the C 
programming language.

 Structure of a C program

 Data types and operators

 Flow control in C

 C functions

 In all lectures, C code examples will be used extensively.
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Structure of a C program

 A C program typically has two main sections.

 include section: to insert header files.

 main() section: code that runs when the program starts.

 In the example below, <avr/io.h> is a header file that contains all register 
definitions for the AVR microcontroller.
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#include <avr/io.h> // avr header file for IO ports
int main(void){

unsigned char i; // temporary variable 
DDRA = 0x00; // set PORTA for input
DDRB = 0xFF; // set PORTB for output
PORTB = 0x00; // turn ON all LEDs initially
while(1){

// Read input from PORTA (switches). 
i = PINA;
// Send output to PORTB (LEDS).
PORTB = i;

}
return 1;

}
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C Comments

 Comments are text that the compiler ignores.

 For a single-line comment, use double back slashes
DDRA = 0x00; // set PORTA for input

 For a multi-line comment, use the pair /* and */
/* File: led.c

Description: Simple C program for the ATMEL 

AVR(ATmega32 chip)

It lets user turn on LEDs by pressing the switches 

on the STK500 board

Author: Hossein Khosravi (1390/12/11)

*/

 Always use comments to make program easy to 
understand.

Hossein Khosravi Shahrood University of Technology



23

C statements and blocks

 C Statements

 C statements control the program flow.

 They consist of keywords, expressions and other statements.

 A statement ends with semicolon (;) .
 DDRB = 0xFF; // set PORTB for output

 C Blocks

 A C block is a group of statements enclosed by braces {}.

 Usually, a C block is run depending on some logical conditions.
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while (1){

// Read input from PORTA - switches

i = PINA;

// Send output to PORTB - LEDs

PORTB = i;

}
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Data types and operators

 The main data types in C are
char: 8-bit integer

int: 16-bit integer

long int: 32-bit integer

float: 32-bit floating point

 The above data types can be modified by keyword unsigned
char a; // a value range -128, …, 0, …, 127

unsigned char b; // b value range 0, 1, 2, …, 255

unsigned long int c; // c value range 0,…, 232 – 1

unsigned float f;// illegal. float is always signed

 Some examples of variable assignment
a = 0xA0; // a stores hexadecimal value of A0

b = '1'; // b stores ASCII code of character '1'

c = 2000ul; // c stores an unsigned long 2000
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C Operators

 C has a rich set of operators

 Arithmetic operators

 Relational operators

 Logical operators

 Bit-wise operators

 Data access operators

 Miscellaneous operators

Hossein Khosravi Shahrood University of Technology
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Arithmetic Operators

Operator Name Example Description

* Multiplication x * y Multiply x times y

/ Division x / y Divide x by y

% Modulo x % y Remainder of x divided by y

+ Addition x + y Add x and y

- Subtraction x – y Subtract y from x

++ Increment
x++

++x

Increment x by 1 after using it

Increment x by 1 before using it

-- Decrement
x--

--x

Decrement x by 1 after using it

Decrement x by 1 before using it

- Negation -x Negate x
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Relational operators

Operator Name Example Description

> Greater than x > 5 1 if x is greater than 5, 0 otherwise

>=

Greater than 

or

equal to

x >=5
1 is x is greater than or equal to 5, 0 

otherwise

< Less than x < y 1 if x is smaller than y, 0 otherwise

<=
Less than or

equal to
x <= y

1 is x is smaller than or equal to y, 0 

otherwise

== Equal to x == y 1 is x is equal to y, 0 otherwise

!= Not equal to x != 4 1 is x is not equal to 4, 0 otherwise

Hossein Khosravi Shahrood University of Technology
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Logical operators

Hossein Khosravi Shahrood University of Technology

 These operate on logical variables/constants.

Operator Name Example Description

! Logical NOT !x 1 if x is 0, otherwise 0

&& Logical AND x && y 1 if both x and y are 1, otherwise 0

|| Logical OR x || y 0 if both x and y are 0, otherwise 1
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Bit-wise operators

 These operate on individual bits of a variable/constant.
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Operator Name Example Description

~
Bit-wise

complement
~x Toggle every bit from 0 to 1, or 1 to 0

& Bitwise AND x & y Bitwise AND of x and y

| Bitwise OR x | y Bitwise OR of x and y

^ Bitwise XOR x ^ y Bitwise XOR of x and y

<< Shift left x << 3 Shift bits in x three positions to the left

>> Shift right x >> 1 Shift bits in x one position to the right
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Data-access operators

 These operate on arrays, structures or pointers.

 We’ll learn more about these operators later.
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Operato

r
Name

Exampl

e
Description

[] Array element x[2] Third element of array x

. Member selection x.age Field ‘age’ of structure variable x

-> Member selection p->age Field ‘age’ of structure pointer p

* Indirection *p
Content of memory location pointed 

by p

& Address of &x
Address of the memory location where

variable x is stored
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Miscellaneous operators

Operat

or
Name Example Description

() Function _delay_ms(250)
Call a function to create 

delay of 250ms

(type) Type cast
char x = 3;

(int) x

x is 8-bit integer

x is converted to 16-bit 

integer

?
Conditional

evaluation

char x;

y=(x>5)?10:20;

This is equivalent to

if (x > 5)

y = 10;

else

y = 20;

Hossein Khosravi Shahrood University of Technology
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Flow control in C

 By default, C statements are executed sequentially.

 To change the program flow, there are six types of 
statements

 if-else statement

 switch statement

 while statement

 for statement

 do statement

 goto statement

Hossein Khosravi Shahrood University of Technology

Conditional

Iterative

Should be avoided!
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“if-else” statement
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 General syntax

if (expression)

statement_1;

else

statement_2;

 Example code
char a, b, sum;

a = 4; b = -5;

sum = a + b;

if (sum < 0)

printf(“sum is negative”);

else if (sum > 0)

printf(“sum is positive”);

else

printf(“sum is zero”);
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“switch” statement

 General syntax

switch (expression)
{
case constant_1:
statement_1;
break;

case constant_2:
statement_2;
break;

…
case constant_n:
statement_n; 
break;

default:
default_statement;
break;

}

Hossein Khosravi Shahrood University of Technology

Use break to separate 
different cases.
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“switch” statement ─ Example

 Bit pattern for digit ‘1’: 0 0 0 0 0 1 1 0

 Bit pattern for digit ‘2’: 0 1 0 1 1 0 1 1

Hossein Khosravi Shahrood University of Technology

Find the bit pattern to display a digit on the 7-segment LED
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“switch” statement ─ Example
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unsigned char digit = 2;
unsigned char led_pattern;
switch (digit)
{
case '0':

led_pattern = 0b00111111;
break;

case '1':
led_pattern = 0b00000110;
break;

case '2':
led_pattern = 0b01011011;
break;
//you can complete more cases here...

default:
break;

}
PORTB = led_pattern; // send to PORTB and 7-segment LED
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“while” statement

 General syntax

while (expression){
statements;

}

 Example code: Compute the sum of 1 + 2+ …+ 100

int sum, i;
i = 1; sum = 0;
while (i <= 100){
sum = sum + i;
i = i + 1;

}
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“for” statement

 General syntax

for (expression1; expression2; expression3)
{
statements;
}

 expression1 is run before the loop starts.
 expression2 is evaluated before each iteration.
 expression3 is run after each iteration.

 Example code: Compute the sum of 1 + 2+ …+ 10
int sum;
sum = 0;
for (int i = 1; i <= 10; i++){
sum = sum + i;

}

Hossein Khosravi Shahrood University of Technology



39

“do” statement

 General syntax
do {
statements;

} while (expression);

 Example code: compute the sum of 1 + 2 + … + 10

int sum, i;
i = 1; sum = 0;
do{
sum = sum + i;
i = i + 1;

} while (i <= 10);

Hossein Khosravi Shahrood University of Technology
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“break” statement in loop

 The break statement inside a loop forces early termination 
of the loop.

 What is the value of sum after the following code is 
executed?

int sum, i;
i = 1; sum = 0;
while (i <= 10){
sum = sum + i;
i = i + 1;
if (i > 5)

break;
}
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“continue” statement in loop

 The continue statement skips the subsequent statements 
in the code block and forces the execution of the next 
iteration.

 What is the value of sum after the following code is 
executed?

int sum, i;
i = 1; sum = 0;
while (i <= 10){
i = i + 1;
if (i < 5)

continue;
sum = sum + i;

}

Hossein Khosravi Shahrood University of Technology
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C Arrays

 An array is a list of values that have the same data type.
 In C, array index starts from 0.
 An array can be one-dimensional, two-dimensional or more.

 This code example creates a 2-D array (multiplication table):

int a[8][10];
for (int i = 0; i < 8; i++)

for (int j = 0; j < 10; j++)
a[i][j]= i * j;

 An array can be initialized when it is declared:

int b[3] = {4, 1, 10};
unsigned char keypad_key[3][4] = {{'1', '4', '7', '*'},

{'2', '5', '8', '0'},
{'3', '6', '9', '#'}};
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C functions

 C functions are sub-routines that can be called from the 
main program or other functions.

 A C function can have a list of parameters and produce a 
return value.

 Functions enable modular designs, code reuse, and hiding 
of complex implementation details.

 Let us study C functions through examples.
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Functions ─ Example 1
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// factorial is the name of the custom function
// it accepts an input n of type int, and returns an output of type int

int factorial(int n){
int prod = 1;
for (int i = 1; i <=n; i++)

prod = prod * i;
return prod;    // return the result

}

int main(void){
int n = 5;    // some example value of n
int v;       // variable to storage result
v = factorial(n); //call the function, store return value in v
return 1;

}

Write a function to compute the factorial n! for a given n.
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Functions ─ Example 2
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// factorial is the name of the custom function
// it accepts an input n of type int,
// it stores output at memory location by int pointer p
void factorial(int n, int* p){

int prod = 1;
for (int i = 1; i <=n; i++)

prod = prod * i;
*p = prod;// store output at memory location pointed by p

}

int main(void){
int n = 5;    // some example value of n
int v;       // variable to storage result
factorial(n, &v); // call the function, store return value in v

}

Write a function to compute the factorial n! for a given n.
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Guidelines on C coding and documentation

 Optimize the C code for efficiency and length.

 Delete unnecessary lines of code.

 The C code must be properly formatted.

 Use indentation to show the logical structure of the program.

 Use a blank or comment line to separate code sections.

 Use meaningful variable names and function names.

 Use comments concisely to explain code.

 Specially cite the purpose of the code, author name and 
date of generation
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Summary

 What we learnt in this lecture:
 The tools and the steps for programming the Atmel AVR.

 AVR Studio

 Development Cycle for C Language

 Basics about C programming.

 Programming the digital I/O ports of Atmega32.

 References:
 ATmega32 datasheet

 Lecture notes of Dr. Lam Phung

 University of Wollongong, Australia, 2011 (elec.uow.edu.au)
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