
1

Lexical Analyzer in Perspective

lexical
analyzer parser

symbol
table

source
program

token

get next
token

Important Issue:

 What are Responsibilities of each Box ?

 Focus on Lexical Analyzer and Parser

2

Why to separate Lexical analysis and parsingWhy to separate Lexical analysis and parsing

o Simplicity of design Simplicity of design

o Improving compiler efficiencyImproving compiler efficiency

o Enhancing compiler portabilityEnhancing compiler portability

3

Tokens, Patterns, and LexemesTokens, Patterns, and Lexemes
o A A tokentoken is a pair a token name and an optional token is a pair a token name and an optional token

attributeattribute

o A A patternpattern is a description of the form that the is a description of the form that the
lexemes of a token may takelexemes of a token may take

o A A lexemelexeme is a sequence of characters in the source is a sequence of characters in the source
program that matches the pattern for a tokenprogram that matches the pattern for a token

4

ExampleExample

Token Informal description Sample lexemes

if

else

relation

id

number

literal

Characters i, f

Characters e, l, s, e

< or > or <= or >= or == or !=

Letter followed by letter and digits

Any numeric constant

Anything but “ sorrounded by “

if

else
<=, !=

pi, score, D2

3.14159, 0, 6.02e23

“core dumped”

5

Using Buffer to Enhance Efficiency

*M=E eof2**C

Current token

lexeme beginning forward (scans
ahead to find
pattern match)

if forward at end of first half then begin

 reload second half ;

 forward : = forward + 1

 end

 else if forward at end of second half then begin

 reload first half ;

 move forward to biginning of first half

 end

 else forward : = forward + 1 ;

Block I/O

Block I/O

6

Algorithm: Buffered I/O with Sentinels

eof*M=E eofeof2**C

Current token

lexeme beginning forward (scans
ahead to find
pattern match)

forward : = forward + 1 ;

if forward is at eof then begin

 if forward at end of first half then begin

 reload second half ;

 forward : = forward + 1

 end

 else if forward at end of second half then begin

 reload first half ;

 move forward to biginning of first half

 end

 else / * eof within buffer signifying end of input * /

 terminate lexical analysis

end 2nd eof  no more input !

Block I/O

Block I/O

7

Chomsky HierarchyChomsky Hierarchy

0 Unrestricted0 Unrestricted AA  

1 Context-Sensitive1 Context-Sensitive | LHS | | LHS |  | RHS | | RHS |

2 Context-Free2 Context-Free |LHS | = 1|LHS | = 1

3 Regular3 Regular |RHS| = 1 or 2 , |RHS| = 1 or 2 ,
A A  a | aB, or a | aB, or
A A  a | Ba a | Ba

8

Formal Language Operations

OPERATION DEFINITION

union of L and M
written L  M

concatenation of L
and M written LM

Kleene closure of L
 written L*

positive closure of L
written L+

L  M = {s | s is in L or s is in M}

LM = {st | s is in L and t is in M}

L+=




0i

iL

L* denotes “zero or more concatenations of “ L

L*=




1i

iL

L+ denotes “one or more concatenations of “ L

9

Formal Language Operations
Examples

L = {A, B, C, D } D = {1, 2, 3}

L  D = {A, B, C, D, 1, 2, 3 }

LD = {A1, A2, A3, B1, B2, B3, C1, C2, C3, D1, D2, D3 }

L2 = { AA, AB, AC, AD, BA, BB, BC, BD, CA, … DD}

L4 = L2 L2 = ??

L* = { All possible strings of L plus  }

L+ = L* - 

L (L  D) = ??

 L (L  D)* = ??

10

 A A Regular Expression Regular Expression is a Set of Rules / is a Set of Rules /

Techniques for Constructing Sequences of Symbols Techniques for Constructing Sequences of Symbols

(Strings) From an Alphabet.(Strings) From an Alphabet.

 Let Let  Be an Alphabet, r a Regular Expression Be an Alphabet, r a Regular Expression

Then L(r) is the Language That is Characterized Then L(r) is the Language That is Characterized

by the Rules of rby the Rules of r

Language & Regular Expressions

11

fix alphabet 

  is a regular expression denoting {}

• If a is in , a is a regular expression that denotes {a}

• Let r and s be regular expressions with languages L(r)
and L(s). Then

 (a) (r) | (s) is a regular expression  L(r)  L(s)

 (b) (r)(s) is a regular expression  L(r) L(s)

 (c) (r)* is a regular expression  (L(r))*

 (d) (r) is a regular expression  L(r)

All are Left-Associative. Parentheses are dropped as
allowed by precedence rules.

p
r
e
c
e
d
e
n
c
e

Rules for Specifying Regular Expressions:Rules for Specifying Regular Expressions:

12

EXAMPLES of Regular Expressions

L = {A, B, C, D } D = {1, 2, 3}

A | B | C | D = L

(A | B | C | D) (A | B | C | D) = L2

(A | B | C | D)* = L*

(A | B | C | D) ((A | B | C | D) | (1 | 2 | 3)) = L (L  D)

13

Algebraic Properties of Algebraic Properties of
Regular ExpressionsRegular Expressions

AXIOM DESCRIPTION

r | s = s | r

r | (s | t) = (r | s) | t

(r s) t = r (s t)

r = r
r = r

r* = (r | )*

r (s | t) = r s | r t
(s | t) r = s r | t r

r** = r*

| is commutative

| is associative

concatenation is associative

concatenation distributes over |

relation between * and 

 Is the identity element for concatenation

* is idempotent

14

Token RecognitionToken Recognition

How can we use concepts developed so far to assist in
recognizing tokens of a source language ?

Assume Following Tokens:

 if, then, else, relop, id, num

Given Tokens, What are Patterns ?

if  if

then  then

else  else

relop  < | <= | > | >= | = | <>

id  letter (letter | digit)*

num  digit + (. digit +) ? (E(+ | -) ? digit +) ?

Grammar:
stmt  |if expr then stmt

|if expr then stmt else stmt
|

expr  term relop term | term
term  id | num

15

OverallOverall

Regular
Expression

Token Attribute-Value

ws
if
then
else

id
num

<
<=
=

< >
>

>=

-
if

then
else
id

num
relop
relop
relop
relop
relop
relop

-
-
-
-

pointer to table entry
pointer to table entry

LT
LE
EQ
NE
GT
GE

Note: Each token has a unique token identifier to define category of lexemes

16

Transition diagramsTransition diagrams
Transition diagram for relopTransition diagram for relop

17

Transition diagrams (cont.)Transition diagrams (cont.)
Transition diagram for reserved words and identifiersTransition diagram for reserved words and identifiers

18

Transition diagrams (cont.)Transition diagrams (cont.)
Transition diagram for unsigned numbersTransition diagram for unsigned numbers

19

Transition diagrams (cont.)Transition diagrams (cont.)
Transition diagram for whitespaceTransition diagram for whitespace

20

Lexical Analyzer Generator - LexLexical Analyzer Generator - Lex

Lexical
Compiler

Lex Source
program
lex.l

lex.yy.c

C
compiler

lex.yy.c a.out

a.outInput stream Sequence
of tokens

21

Lexical errorsLexical errors
Some errors are out of power of lexical Some errors are out of power of lexical

analyzer to recognize:analyzer to recognize:
fi (a == f(x)) …

However, it may be able to recognize errors However, it may be able to recognize errors
like:like:
d = 2r

Such errors are recognized when no pattern Such errors are recognized when no pattern
for tokens matches a character sequencefor tokens matches a character sequence

22

Error recoveryError recovery

Panic mode: successive characters are ignored Panic mode: successive characters are ignored
until we reach to a well formed tokenuntil we reach to a well formed token

Delete one character from the remaining inputDelete one character from the remaining input
Insert a missing character into the remaining Insert a missing character into the remaining

inputinput
Replace a character by another characterReplace a character by another character
Transpose two adjacent charactersTranspose two adjacent characters
Minimal DistanceMinimal Distance

	Lexical Analyzer in Perspective
	Why to separate Lexical analysis and parsing
	Tokens, Patterns, and Lexemes
	Example
	Using Buffer to Enhance Efficiency
	Algorithm: Buffered I/O with Sentinels
	Chomsky Hierarchy
	Formal Language Operations
	Formal Language Operations Examples
	Language & Regular Expressions
	Rules for Specifying Regular Expressions:
	EXAMPLES of Regular Expressions
	Algebraic Properties of Regular Expressions
	Token Recognition
	Overall
	Transition diagrams
	Transition diagrams (cont.)
	Slide 18
	Slide 19
	Lexical Analyzer Generator - Lex
	Lexical errors
	Error recovery

