
1

Bottom-Up ParsingBottom-Up Parsing

 ““Shift-Reduce” ParsingShift-Reduce” Parsing
 Reduce a string to the start symbol of the grammar.Reduce a string to the start symbol of the grammar.
 At every step a particular substring is matched (in At every step a particular substring is matched (in

left-to-right fashion) to the right side of some left-to-right fashion) to the right side of some
production and then it is substituted by the non-production and then it is substituted by the non-
terminal in the left hand side of the production. terminal in the left hand side of the production.

Consider:
 S  aABe
 A  Abc | b
 B  d

abbcde
aAbcde
aAde
aABe
S

Rightmost Derivation:
S  aABe  aAde  aAbcde  abbcde

rm
1 4 2 3

1

2-3

4

 2

 3

 4

 1

rm rm rm

2

HandlesHandles

 Handle of a string = substring that matches the RHS of Handle of a string = substring that matches the RHS of
some production AND whose reduction to the non-terminal some production AND whose reduction to the non-terminal
on the LHS is a step along the reverse of some on the LHS is a step along the reverse of some rightmostrightmost
derivation.derivation.

 Formally: Formally:
 A phrase is a substring of a sentential form derived

from exactly one Non-terminal
 A simple phrase is a phrase created in one step
 handle is a simple phrase of a right sentential form

 i.e. i.e. AA   is a handle of x, where x is a string of terminals, if:

S => Ax => x

 A certain sentential form may have many different handles.
 Right sentential forms of a non-ambiguous grammar

have one unique handle [but many substrings that look like handles
potentially !].

*
rm rm

3

ExampleExample

S  aABe  aAde  aAbcde  abbcde

Consider:
 S  aABe
 A  Abc | b
 B  d

It follows that:
(S ) aABe is a handle of aABe
(B ) d is a handle of aAde
(A ) Abc is a handle of aAbcde
(A ) b is a handle of abbcde

rm rm rm rm

4

Example, IIExample, II

Grammar:
 S  aABe
 A  Abc | b
 B  d
Consider aAbcde (it is a right sentential form)

Is [A  b, aAbcde] a handle?

S rm … rm aAAbcde rm aAbcde
if it is then there must be:

no way ever to get two consecutive
A’s in this grammar. => Impossible

5

Example, IIIExample, III

Grammar:
 S  aABe
 A  Abc | b
 B  d
Consider aAbcde (it is a right sentential form)

Is [B  d, aAbcde] a handle?

S rm … rm aAbcBe rm aAbcde
if it is then there must be:

we try to obtain aAbcBe

S rm aABe ?? aAbcBe

not a right
sentential form

6

Shift Reduce Parsing with a StackShift Reduce Parsing with a Stack

 The “big” problem : given the sentential form The “big” problem : given the sentential form
locate the handle locate the handle

 General Idea for S-R parsing using a stack:General Idea for S-R parsing using a stack:
1. “shift” input symbols into the stack until a

handle is found on top of it.
2. “reduce” the handle to the corresponding non-

terminal.
3. “accept” when the input is consumed and only

the start symbol is on the stack.
4. “error” call the error handler

 Viable prefix: prefix of a right sentential form that Viable prefix: prefix of a right sentential form that
appears on the stack of a Shift-Reduce parser.appears on the stack of a Shift-Reduce parser.

7

What happens with ambiguous grammarsWhat happens with ambiguous grammars

Consider:
E  E + E | E * E |
 | (E) | id

Derive id+id*id
By two different Rightmost
derivations

8

ExampleExample

$
$ id
$ E
$ E +
$ E + id
$ E + E

id + id * id$
 + id * id$

+ id * id$
id * id$

* id$

STACK INPUT Remark

Shift

E  E + E
 | E * E
 | (E)
 | id

Reduce by E  id

Shift
Shift

Reduce by E  id

Both reduce by E  E + E, and
Shift can be performed:
Shift/reduce conflict

9

ConflictsConflicts

 Conflicts [appear in ambiguous grammars]Conflicts [appear in ambiguous grammars]
either “shift/reduce” or “reduce/reduce”either “shift/reduce” or “reduce/reduce”

 Another Example:Another Example:

stmt  if expr then stmt

 | if expr then stmt else stmt

 | other (any other statement)

Stack Input
if … then else … Shift/ Reduce

conflict

10

More ConflictsMore Conflicts

stmt  id (parameter-list)

stmt  expr := expr

parameter-list  parameter-list , parameter | parameter

parameter  id

expr-list  expr-list , expr | expr

expr  id | id (expr-list)

Consider the string A(I,J)
Corresponding token stream is id(id, id)
After three shifts:
Stack = id(id Input = , id)

Reduce/Reduce Conflict … what to do?
(it really depends on what is A,
an array? or a procedure?

11

Removing ConflictsRemoving Conflicts

 One way is to manipulate grammar.One way is to manipulate grammar.
 cf. what we did in the top-down approach to

transform a grammar so that it is LL(1).
 Nevertheless:Nevertheless:

 We will see that shift/reduce and reduce/reduce
conflicts can be best dealt with after they are
discovered.

 This simplifies the design.

12

Operator-Precedence ParsingOperator-Precedence Parsing
 problems encountered so far in shift/reduce parsing:problems encountered so far in shift/reduce parsing:

 IDENTIFY a handle.
 resolve conflicts (if they occur).
 operator grammars: a class of grammars where handle

identification and conflict resolution is easy.

 Operator Grammars: no production right side is Operator Grammars: no production right side is 
or has two adjacent non-terminals.or has two adjacent non-terminals.

 note: this is typically ambiguous grammar.note: this is typically ambiguous grammar.

E  E - E | E + E | E * E | E / E | E ^ E | - E | (E) | id

13

Basic TechniqueBasic Technique

 For the terminals of the grammar,For the terminals of the grammar,
define the relations <. .> and .=.define the relations <. .> and .=.

 a <. b means that a <. b means that aa yields precedence to yields precedence to bb
 a .=. b means that a .=. b means that aa has the same precedence as has the same precedence as bb..
 a .> b means hat a .> b means hat aa takes precedence over takes precedence over bb
 E.g. * .> + or + <. * E.g. * .> + or + <. *

 Many handles are possible. We will use <. .=. Many handles are possible. We will use <. .=.
And .> to find the correct handle (i.e., the one that And .> to find the correct handle (i.e., the one that
respects the precedence).respects the precedence).

14

Using Operator-Precedence RelationsUsing Operator-Precedence Relations

 GOAL: delimit the handle of a right GOAL: delimit the handle of a right
sentential formsentential form

 <. will mark the beginning, .> will mark the <. will mark the beginning, .> will mark the
end and .=. will be in between.end and .=. will be in between.

 Since no two adjacent non-terminals appear in the Since no two adjacent non-terminals appear in the
RHS of any production, the general form sentential RHS of any production, the general form sentential
forms is as: forms is as:
0 a a1 1 1 aa22 2 … aann n, w, where each i is either a
nonterminal or the empty string.

 At each step of the parse, the parser considers the
top most terminal of the parse stack (i.e., either top
or top-1), say a, and the current token, say b, and
looks up their precedence relation, and decides
what to do next:

15

Operator-Precedence ParsingOperator-Precedence Parsing

1.1. If If aa .=. .=. bb, then shift , then shift bb into the parse stack into the parse stack
2.2. If If aa <. <. bb, then shift <. And then shift , then shift <. And then shift bb into the into the

parse stackparse stack
3.3. If If aa .> .> bb, then find the top most <. relation of the , then find the top most <. relation of the

parse stack; the string between this relation (with parse stack; the string between this relation (with
the non-terminal underneath, if there exists) and the non-terminal underneath, if there exists) and
the top of the parse stack is the handle (the handle the top of the parse stack is the handle (the handle
should match (weakly) with the RHS of at least one should match (weakly) with the RHS of at least one
grammar rule); replace the handle with a typical grammar rule); replace the handle with a typical
non-terminalnon-terminal

16

ExampleExample

$
$ <. id
$ E
$ E <. +
$ E <. + <. id
$ E <. + E
$ E <. + E <. *
$ E <. + E <. * <. id
$ E <. + E <. * E
$ E <. + E
$ E

id + id * id$
 + id * id$
+ id * id$

id * id$
* id$
* id$

id$
$
$
$
$
$

STACK INPUT Remark

$ <. id
id >. +
$ <. +
+ <. id
id .> *
+ <. *
* <. id
id .> $
* .> $
+ .> $

accept
Parse Table

+ * () id $

.> <. <. .> <. .>

.> .> <. .> <. .>

<. <. <. .=. <.

.> .> .> .>

<. <. <. <. .=.

+

*

(

)

id

$

.> .> .> .>

1-2 E  E + T | T
3-4 T  T * F | F
5-6 T  (E) | id

17

Producing the parse tableProducing the parse table

 FirstTerm(A) = {a | A FirstTerm(A) = {a | A ++ a a or A or A ++ Ba Ba}}
 LastTerm(A) = {a | A LastTerm(A) = {a | A ++ a or A a or A ++ aB}aB}

 a .=. b iff a .=. b iff  U U  abab or or  U U  aBbaBb

 a <. b iff a <. b iff  U U  aBaB and b and b  FirsTerm(B) FirsTerm(B)

 a .> b iff a .> b iff  U U  BbBb and a and a  LastTerm(B) LastTerm(B)

18

Example:Example:

 FirstTerm (E) = {+, *, id, (}FirstTerm (E) = {+, *, id, (}
 FirstTerm (T) = {*, id, (}FirstTerm (T) = {*, id, (}
 FirstTerm (F) = {id, (}FirstTerm (F) = {id, (}

 LastTerm (E) = {+, *, id,)}LastTerm (E) = {+, *, id,)}
 LastTerm (T) = {*, id,)}LastTerm (T) = {*, id,)}
 LastTerm (F) = {id,)}LastTerm (F) = {id,)}

1-2 E  E + T | T
3-4 T  T * F | F
5-6 T  (E) | id

19

Precedence Functions vs RelationsPrecedence Functions vs Relations

 f(a) < g(b) whenever a <. bf(a) < g(b) whenever a <. b
 f(a) = g(b) whenever a .=. bf(a) = g(b) whenever a .=. b
 f(a) > g(b) whenever a .> bf(a) > g(b) whenever a .> b

+ - * /  () id $

f 2 2 4 4 4 0 6 6 0

g 1 1 3 3 5 5 0 5 0

20

Constructing precedence functionsConstructing precedence functions

g id f id

f * g *

g +

f $

f +

g $

+ * id $

f 2 4 4 0

g 1 3 5 0

21

Handling Errors During ReductionsHandling Errors During Reductions

 Suppose Suppose abEcabEc is poped and there is no production is poped and there is no production
right hand side that matches right hand side that matches abEcabEc

 If there were a rhs If there were a rhs aEcaEc, we might issue message, we might issue message
illegal b on line xillegal b on line x

 If the rhs is If the rhs is abEdcabEdc, we might issue message, we might issue message
missing d on line xmissing d on line x

 If the found rhs is If the found rhs is abcabc, the error message could be, the error message could be
illegal E on line x, illegal E on line x,

where E stands for an appropriate syntactic where E stands for an appropriate syntactic
category represented by non-terminal Ecategory represented by non-terminal E

22

Handling shift/reduce errorsHandling shift/reduce errors

e1: /* called when whole expressione1: /* called when whole expression
is missing */is missing */
insert id onto the inputinsert id onto the input
print “missing operandprint “missing operand

e2: /* called when expression begins e2: /* called when expression begins
with a right parenthesis */with a right parenthesis */
delete) from the inputdelete) from the input
print “unbalanced right parenthesis”print “unbalanced right parenthesis”

e3”: /* called when id or) is followed by id or (*/e3”: /* called when id or) is followed by id or (*/
insert + onto the inputinsert + onto the input
print “missing operatorprint “missing operator

e4: /* called when expression ends with a left parenthesis */e4: /* called when expression ends with a left parenthesis */
pop (from the stackpop (from the stack
print “missing right parenthesis”print “missing right parenthesis”

id () $

e3 e3 .> .>

<.. <. .=. e4

e3 e3 .> .>

<. <. e2 e1

id

(

)

$

23

Extracting Precedence relations from parse tablesExtracting Precedence relations from parse tables

E

1-2 E  E + T | T
3-4 T  T * F | F
5-6 T  (E) | id

+E

T

T

* F

 + <. *

id  * <. id

24

Extracting Precedence relations from parse tablesExtracting Precedence relations from parse tables

E

1-2 E  E + T | T
3-4 T  T * F | F
5-6 T  (E) | id

T

T

* F

 id .> *

T

 * .> *

* F

F

id

25

Pros and ConsPros and Cons

 + simple implementation+ simple implementation
 + small parse table+ small parse table
 - weak (too restrictive for not allowing two - weak (too restrictive for not allowing two

adjacent non-terminalsadjacent non-terminals
 - not very accurate (some syntax errors are not - not very accurate (some syntax errors are not

detected due weak treatment of non-terminals)detected due weak treatment of non-terminals)

 Simple precedence parsing is an improved form of Simple precedence parsing is an improved form of
operator precedence that doesn’t have these operator precedence that doesn’t have these
weaknessesweaknesses

	Bottom-Up Parsing
	Handles
	Example
	Example, II
	Example, III
	Shift Reduce Parsing with a Stack
	What happens with ambiguous grammars
	Slide 8
	Conflicts
	More Conflicts
	Removing Conflicts
	Operator-Precedence Parsing
	Basic Technique
	Using Operator-Precedence Relations
	Slide 15
	Slide 16
	Producing the parse table
	Example:
	Precedence Functions vs Relations
	Constructing precedence functions
	Handling Errors During Reductions
	Handling shift/reduce errors
	Extracting Precedence relations from parse tables
	Slide 24
	Pros and Cons

