Lexical Analyzer in Perspective

source

—>

program

lexical
analyzer

token

Important Issue:

get next
token

parser

symbol
table

What are Responsibilities of each Box ?

Focus on Lexical Analyzer and Parser

Why to separate Lexical analysis and parsing___

o Simplicity of design
o Improving compiler efficiency

o Enhancing compiler portability

Tokens, Patterns, and Lexemes

o A token is a pair a token name and an optional token
attribute

o A pattern is a description of the form that the
lexemes of a token may take

o A lexeme is a sequence of characters in the source
program that matches the pattern for a token

Example

Token | Informal description Sample lexemes
if Characters i, f if
else Characters e, 1, s, e else
<:, !:

relation | <or>or<=or>=or==or!=

id Letter followed by letter and digits | pi, score, D2
number Any numeric constant 3.14159, 0, 6.02e23

literal Anything but “ sorrounded by “ | “core dumped”

Using Buffer to Enhance Efficiency

/—/%Current token

E| =] [M*| |c|*|*[2]eof

lexeme beginning forward (scans
ahead to find
pattern match)

if forward at end of first half then begin

reload second half ; «<— Block I/O
forward : = forward + 1

end

else if forward at end of second half then begin
reload first half ; « Block I/0
move forward to biginning of first half

end

else forward : = forward + 1 ;

Algorithm: Buffered I/0 with Sentinels

/—/%Current token

E = M| * eo‘(j * | * | 2 | eof eof

lexeme beginning forward (scans
ahead to find
pattern match)

forward : = forward + 1 ;
if forward is at eof then begin
if forward at end of first half then begin
reload second half «— g0k 1/0
forward := forward + 1
end
else if forward at end of second half then begin
reload first half’; Block /O
move forward to biginning of first half
end
else / * eof within buffer signifying end of input * /

terminate lexical analysis
2nd eof = no more input !

end

Chomsky Hierarchy

0 Unrestricted oAR — ayp

1 Context-Sensitive | LHS | < | RHS |
2 Context-Free ILHS |=1

3 Regular IRHS|=1o0r2,

A —a|aB,or
A — a|Ba

Formal Language Operations

OPERATION DEFINITION

union of L and M LUM-={s|sisin L orsisin M}
written LU M

concatenation of L LM ={st|sisin L and tis in M}
and M written LM

Kle.ene closure of L [%= D [

written L* i=0

L* denotes “zero or more concatenations of « L.

positive closure of L e UL
written L* L= 5

L* denotes “one or more concatenations of “ L.

Formal Language Operations
Examples

L={A,B,C,D} D =1{1, 2, 3}

LUD={A,B,C,D,1,2,3}

LD = {A1, A2, A3, B1, B2, B3, C1, C2,C3,D1,D2,D3 }
L2={ AA, AB, AC, AD, BA, BB, BC, BD, CA, ... DD}
LA=12 L% =??

L* = { All possible strings of L plus € }

L'=L*-€

LLuD)=7??

L(LuD)*=7??

Language & Regular Expressions

9 A Regular Expression is a Set of Rules /
Techniques for Constructing Sequences of Symbols
(Strings) From an Alphabet.

O Let X Be an Alphabet, r a Regular Expression
Then L(r) is the Language That is Characterized
by the Rules of r

10

Rules for Specifying Regular Expressions:

fix alphabet X
V € is a regular expression denoting {e }
If aisin X, a is a regular expression that denotes {a}

* Letr and s be regular expressions with languages L(r)
and L(s). Then

(@) (r) [(s)is a regular expression = L(r) U L(s)
(b) (r)(s) is a regular expression = L(r) L(s)

(c) (r)*is a regular expression = (L(r))*

PASCACA M-S

~ (d) (r)is aregular expression = L(r)

All are Left-Associative. Parentheses are dropped as
allowed by precedence rules. 11

EXAMPLES of Regular Expressions

L={A,B,C,D} D =11, 2, 3}

A|B|C|D =L

(A|B|C|D)(A|B|C|D)=L2
(A|B|C|D)*=L*
(A|B|C|D)((A|B|C|D)|(1]2]3))=L(LuUD)

Algebraic Properties of
Regular Expressions

AXIOM DESCRIPTION
r{s=sjr is commutative
r{(s|t)= (r|s)|t is associative
(rs)yt=r(st) concatenation is associative

r(s|t)=rs|rt

(s|t)r=sr|tr concatenation distributes over |

Er=r . . .

re =r € Is the identity element for concatenation
r¥*=(r|e)* relation between * and €

r¥*¥ = r* * is idempotent

13

Token Recognition

How can we use concepts developed so far to assist in
recognizing tokens of a source language ?

Assume Following Tokens:

if, then, else, relop, id, num

Given Tokens, What are Patterns ?

if <« if

then « then

else « else

relop « <|<=|>|>=|=|<>
id <« letter (letter | digit)*
num < digit * (. digit ") ? (E(+ | -) ? digit ") ?

14

Overall

Regular Token Attribute-value
Expression
WS - -
if if -
then then -
else else -
id id pointer to table entry
num num pointer to table entry
< relop LT
<= relop LE
= relop EQ
<> relop NE
> relop GT
>= relop GE

Note: Each token has a unique token identifier to define category of lexemes

Transition diagrams

OTransition diagram for relop

return (relop, LE)

/) \JL

return (relop, NE)

Mh other [/

return (relop, EQ)
@ |

_ other
return (relop, GT)

4 return (relop, LT)

OOO

return (relop, GE)

ool

16

Transition diagrams (cont.)

OTransition diagram for reserved words and identifiers

letter or digit

—>® letter :® other ;@ return (getToken(), installlD())

17

Transition diagrams (cont.)

OTransition diagram for unsigned numbers

digit digit

digit

OROLO=©)
®

18

Transition diagrams (cont.)

OTransition diagram for whitespace

delim

start e delim nther*

19

Lexical Analyzer Generator - Lex

Lex Source

Lexical

program
lex.1

Compiler

lex.yy.c

compiler

Input stream

a.out

lex.yy.c

a.out

Sequence
of tokens

20

[.exical errors

OSome errors are out of power of lexical
analyzer to recognize:

Ui (a == {(x)) ...
OHowever, it may be able to recognize errors
like:
Ud = 2r
OSuch errors are recognized when no pattern
for tokens matches a character sequence

21

EITor recovery

OPanic mode: successive characters are ignored
until we reach to a well formed token

ODelete one character from the remaining input

Olnsert a missing character into the remaining
input

OReplace a character by another character

OTranspose two adjacent characters

OMinimal Distance

2

	Lexical Analyzer in Perspective
	Why to separate Lexical analysis and parsing
	Tokens, Patterns, and Lexemes
	Example
	Using Buffer to Enhance Efficiency
	Algorithm: Buffered I/O with Sentinels
	Chomsky Hierarchy
	Formal Language Operations
	Formal Language Operations Examples
	Language & Regular Expressions
	Rules for Specifying Regular Expressions:
	EXAMPLES of Regular Expressions
	Algebraic Properties of Regular Expressions
	Token Recognition
	Overall
	Transition diagrams
	Transition diagrams (cont.)
	Slide 18
	Slide 19
	Lexical Analyzer Generator - Lex
	Lexical errors
	Error recovery

