Code Optimization

Code produced by compilation algorithms can often be improved
(ideally optimized) in terms of run-time speed and the amount of
memory they consume

Compilers that apply code-improving transformations are called
Optimizing Compilers

Machine Independent improvements address the logic of the
program

Machine Dependent improvements utilize special features of the
target instruction set, including registers and special addressing
modes

Optimization Components

Intermediate Code

Machine—Independent
Jphimzations

Optimized

Representation © |phimzer ntermediate
Representation

Code Optimized
Lenecator Target
Code
Machine—Dependent
ptimzations

Organization of a code optimizer

Front-end

Code optimizer

»f Code

Control-flow
analysis

Data-flow

analysis

generator

A\ 4

Transformations

Flow Analysis

Loops represent the most computationally intensive part of a
program. Improvements to loops will produce the most
significant effect

Local Optimizations are performed on basic blocks of code

Global Optimizations are performed on the whole code

Basic Block is a sequence of instructions that is only entered at

the start and exited at the end, with no jumps into or out of the

middle.

hat is, a basic block begins at a procedure or the target of a jump

basic block ends at the start of the next basic block or the end
of the program

Criteria for code-improvement Transformations

1. Transformations must preserve the meaning of
programs

A transformation must, on the average, speed up
programs by a measurable amount

A transformation must be worth the effort

Function Preserving Transformations

1. Common subexpression eliminations

2. Copy propagations

3. Dead and unreachable code elimination

4. Constant Folding

Example: C code

void quicksort(m, n)
intm, n;
{
int I, j;
if (n <= m) return;
/* fragment begins here */
i =m-1;, j =n; v = aln];
while (1) {
do i = i+1; while(a[i] < v);
do j = j-1; while(a[j] > v);
if(i >= j) break;
x = a[i]; al[i] = a[jl; aljl] = x;
}
x = a[i]; a[i] = a[n]; a[n]= x;
/* fragment ends here */
quicksort (m, j), quicksort (i+l1l, n);
}

Augrnented 3AC

An augmented 3 address code language to simplify the code...

Let a be an array of integers starting at byte address a,
a [add] on the left-hand-side of an assignment is the address a +add

[add] on the right-hand-side of an assignment is the value of the
element of the array at address a +add

ince integers are stored in 4 bytes the offset address of an element
afi] is 4*i

01)
02)
03)
04)
05)

06)
07)
08)
09)
10)
11)
12)
13)
14)
15)

u- ".'

tl

if
if
té
x

Example: 3AC

c=m - 1
= n

:= 4 * n

:= af[tl]
=1+ 1

= 4 * i
:= al[t2]
t3 < v goto 5

=3 -1

=4 * 3
= af[t4]
ts > v goto 9
i >= j goto 23
=4 * i

:= af[té]

16)
17)
18)
19)
20)

21)
22)
23)
24)
25)
26)
27)
28)
29)
30)

t7 := 4 * i
t8 := 4 * 3

t9 = al[t8]

alft7] := t9

tl0 := 4 * 3
afelld] := x
goto 5

tll := 4 * i

x = af[tll]
tl2 := 4 * 1
tl3 := 4 * n
tl4 := a[tl3]
alftl2] := tl4
tls := 4 * n
aftls] = x

Basic Blocks

B1
i=m-1
ji=n
tl:=4%*n
v :=altl]

. ,L B2
—)

i=i+1
2:=4%*]i

t3 := a[t2]

if t3 < v goto B2

¥ B3
j=j-1
td:=4%j
t5 = a[t4]

if t5 > v goto B3

L B4

A

if i >=j goto B6

t6:=4*i
X := a[t6]
t7:=4%*i
t8:=4%j
t9 := a[t8]
a[t7] := t9
t10:=4*j
a[tl0] := x

B6

t1l:=4*i

x :=a[tll]
t12:=4*i
t13:=4*n
t14 = a[t13]
a[t12] := t14
t15:=4*n
a[tl5] := x

10

Local Optimizations

Block5 before Block5 after

t6 := 4 * 1 t6 := 4 * 1
x := a[té6] x := a[té6]

t7 = 4 * i t8 := 4 * 3
t8 := 4 * 3 t9 = a[t8]
t9 = al[t8] afté] := t9
aft7] := t9 aft8] := x

tl0 := 4 * 5 goto Block2

aftlo] := x
goto Block2 redundant calculations removed

11

Local Optimizations

Block6 before

tll := 4 * i
x = a[tll]
tl2 := 4 * i
tl3 := 4 * n
tl4 = a[tl3]
aftiz] := ti14
tl5 := 4 * n
alftls] = x

Block6 after

tll := 4 * i
x ;= a[tll]

tl3 := 4 * n

tl4 := a[tl3]

aftill] := ti4

aftl3] := x

redundant calculations removed

12

Global Optimizations

B1
i=m-1
ji=n
tl:=4%*n
v = a[tl]

“\ ¥ B2
i=i+1
t2:=4%*i
t3 := a[t2]
if t3 < v goto B2

B3

A 4

ji=j-1
t4:=4%]j

t5 := a[t4]

if t5 > v goto B3

B4

A 4

if i >=j goto B6

B5 A B6

X :=13 X =13
aft2] := t5 t14 .= a[tl]
aftd] .= x a[t2] :=t14
goto B2 aftl] :==x

After removing redundant calculations over all blocks

1.

Loop Optimization

Code Motion

Reduction in Strength

Induction Variables elimination

14

Code Motion

Code Motion decreases the amount of code in a
loop

3efore
while (1 <= limit + 2) /*statement does not change limit */

fter
i = limit + 2
while (1 <= t) /*statement does not change limit or t*/

15

Reduction in Strength

In Block2 whenever i increases by 1, t2 increases by 4

In Block3 whenever j decreases by 1, t4 decreases by 4
Addition and Subtraction can be used instead of the more computationally expensive
multiplication (t2 and t4 must be initialized).

Before After
i:=m-1 i:=m-1
j:=n j:=n
tl:=4%n tl:=4%*n
v := aftl] v := a[tl]
12:=4%*j
t4:=4%]j
Block2: Block?2:
i:=it+1 i:=i+1
t2:=4%*j 2:=12+4
t3 := a[t2] t3 := a[t2]
if t3 < v goto B2 if t3 < v goto B2
Block3: Block3:
ji=j-1 ji=j-1
t4:=4%]j t4:=t4-4
t5 := a[t4] t5 := a[t4]

16

Induction Variables elimination

In Block2 whenever i increases by 1, t2 increases by 4,
i and t2 are called induction variables.

In Block3 whenever j decreases by 1, t4 decreases by 4,
j and t4 are induction variables, too.

If there are two or more induction variables in a loop, it may be possible to get rid of
all but one

Before After
Block4: Block4:

if i>= j goto B6 if t2 >=t4 goto B6

17

Loop Optimization

B1
i=m-1
j=n
tl:=4%*n
v :=altl]
t2:=4%*i
t4 =4 %]

\ ¥ B2
t2:=t2+4
t3 := a[t2]
if t3 < v goto B2

B3

A 4

t4:=t4-4
t5 = a[t4]
if t5 > v goto B3

L

B4

A 4

if t2 >=t4 goto B6

B5 A B6

aft2] := t5 t14 .= a[tl]
aftd4] := t3 aft2] :=t14
goto B2 a[tl] ;=13

After reduction in strength and induction-variable elimination

Peephole Optimization

Removing Redundant Load and Stores

3AC

a
d :

Machine
mov
add
mov
mov
sub
mov

b + c;
a - e;

Code

registera b
registera c
a registera
registera a
registera e
d registera

—— redundant if
—— ais no longer used

19

Others

Algebraic Simplification

Xx:=x+0
X:=x*1

Use of Registers to store the most used variables because access time is
much quicker than memory

Use of specialized instructions
mov a
add registera 1
mov a registera

could be just inc a

Using shift to left instead of multiplication by powers of 2
Using shift to right instead of division into powers of 2

20

	Code Optimization
	Optimization Components
	Organization of a code optimizer
	Flow Analysis
	Criteria for code-improvement Transformations
	Function Preserving Transformations
	Example: C code
	Augmented 3AC
	Example: 3AC
	Basic Blocks
	Local Optimizations
	Slide 12
	Global Optimizations
	Loop Optimization
	Code Motion
	Reduction in Strength
	Induction Variables elimination
	Loop Optimization
	Peephole Optimization
	Others

