
1

Compiler Design (40-414)Compiler Design (40-414)

 Main Text Book:Main Text Book:
Compilers: Principles, Techniques & Tools, 2Compilers: Principles, Techniques & Tools, 2ndnd ed., ed.,
Aho, Lam, Sethi, and Ullman, 2007Aho, Lam, Sethi, and Ullman, 2007

 Evaluation:Evaluation:
 Midterm Exam 35%
 Final Exam 35%
 Assignments 10%
 Project 20%

2

Compiler learningCompiler learning

 Isn’t it an old discipline?Isn’t it an old discipline?
 Yes, it is a well-established discipline
 Algorithms, methods and techniques were

developed in early stages of computer science
 There are many compilers around, and
 many tools to generate them automatically

 So, why we need to learn it?So, why we need to learn it?
 Although you may never write a full compiler
 But the techniques we learn is useful in many tasks

like:
 writing an interpreter for a scripting language,
 validation checking for forms, and
 so on

3

TerminologyTerminology

 Compiler:Compiler:
 a program that translates an executable program

in a source language (usually high level)
into an equivalent executable program in a
target language (usually low level)

 Interpreter:Interpreter:
 a program that reads an executable program and

produces the results of running that program
 usually, this involves executing the source

program in some fashion
 Our course is mainly about compilers but many of Our course is mainly about compilers but many of

the same issues arise in interpretersthe same issues arise in interpreters

4

A CompilerA Compiler

Compiler
Source
Program

Target
Program

Errors

Target ProgtamInput Output

5

An InterpreterAn Interpreter

Interpreter

Input

Output

 Translates line by lineTranslates line by line
 Executes each translated line immediatelyExecutes each translated line immediately
 Execution is slower because translation is repeatedExecution is slower because translation is repeated
 But, usually give better error diagnostics than a compilerBut, usually give better error diagnostics than a compiler

Source
Program

6

A Hybrid CompilerA Hybrid Compiler

Translator
Source
Program

Intermediate
Program

Errors

Virtual Machine
Input Output

7

Classifications of CompilersClassifications of Compilers

 There are different types of Compilers:There are different types of Compilers:

Single Pass

Multiple Pass

Construction

Absolute (e.g., *.com)

Relocateable (e.g., *.exe)

Type of
produced code

8

The Many The Many PhasesPhases of a Compiler of a Compiler
Source Program

Lexical analyzer1

Syntax Analyzer2

 Semantic Analyzer3

Intermediate
Code Generator4

Code Optimizer5

Code Generator

Target Program

Symbol-table
Manager

Error Handler

 Analyses

Peephole Optimization7

1, 2, 3, 4, 5 : Front-End
6, 7 : Back-End

6
 Syntheses

9

Front-end, Back-end divisionFront-end, Back-end division

 Front end maps legal code into IRFront end maps legal code into IR
 Back end maps IR onto target machineBack end maps IR onto target machine
 Simplifies retargetingSimplifies retargeting
 Allows multiple front endsAllows multiple front ends

Front end
Source
code

Machine
code

errors

IR
Back end

10

Front endFront end

 Scanner:Scanner:
 Maps characters into tokens – the basic unit of syntax

 x = x + y becomes <id, x> = <id, x> + <id, y>
 Typical tokens: number, id, +, -, *, /, do, end
 Eliminate white space (tabs, blanks, comments)

 A key issue is speed so instead of using a tool like LEX it A key issue is speed so instead of using a tool like LEX it
sometimes needed to write your own scannersometimes needed to write your own scanner

Scanner
Source
code

Parse Tree

errors

tokens
Parser

11

Front endFront end

 Parser:Parser:
 Recognize context-free syntax
 Guide context-sensitive analysis
 Construct IR
 Produce meaningful error messages
 Attempt error correction

 There are parser generators like YACC which automates There are parser generators like YACC which automates
much of the workmuch of the work

Scanner
Source
code

Parse Tree

errors

tokens
Parser

12

Front endFront end

 Context free grammars are used to represent Context free grammars are used to represent
programming language syntaxes:programming language syntaxes:

<expr> ::= <expr> <op> <term> | <expr> ::= <expr> <op> <term> |
<term><term>

<term> ::= <number> | <id><term> ::= <number> | <id>
<op> ::= + | -<op> ::= + | -

13

Front endFront end

 A parser tries to map a A parser tries to map a
program to the syntactic program to the syntactic
elements defined in the elements defined in the
grammargrammar

 A parse can be represented A parse can be represented
by a tree called a parse or by a tree called a parse or
syntax treesyntax tree

14

Front endFront end

 A parse tree can be A parse tree can be
represented more compactly represented more compactly
referred to as Abstract Syntax referred to as Abstract Syntax
Tree (AST)Tree (AST)

 AST can be used as IR AST can be used as IR
between front end and back between front end and back
endend

15

Back endBack end

 Translate IR into target machine codeTranslate IR into target machine code
 Choose instructions for each IR operationChoose instructions for each IR operation
 Decide what to keep in registers at each pointDecide what to keep in registers at each point

Instruction
selectionIR

Machine code

errors

Register
Allocation

16

Back endBack end

 Produce compact fast codeProduce compact fast code
 Use available addressing modesUse available addressing modes

Code
GenerationIR

Machine code

errors

Peephole
Optimization

17

Back endBack end

 Limited resourcesLimited resources
 Optimal allocation is difficultOptimal allocation is difficult

Code
GenerationIR

Machine code

errors

Peephole
Optimization

18

 Three Phases:Three Phases:

 Lexical Analysis:

 Left-to-right Scan to Identify Tokens
token: sequence of chars having a collective meaning

 Syntax Analysis:

 Grouping of Tokens Into Meaningful Collection

 Semantic Analysis:

 Checking to ensure Correctness of Components

The Analysis Task For Compilation

19

Phase 1. Lexical Analysis

Easiest Analysis - Identify tokens which
are the basic building blocks

For
Example:

All are tokens

Blanks, Line breaks, etc. are scanned out

Position := initial + rate * 60 ;
_______ __ _____ _ ___ _ __ _

20

Phase 2. Phase 2. Syntax AnalysisSyntax Analysis
or or ParsingParsing

For previous example,

 we would have

Parse Tree:

identifier

identifier

expression

identifier

expression

number

expression

expression

expression

assignment
statement

position

:=

+

*

60

initial

rate

Nodes of tree are constructed using a grammar for the language

21

Phase 3. Semantic AnalysisPhase 3. Semantic Analysis

 Finds Semantic ErrorsFinds Semantic Errors

 One of the Most ImportantOne of the Most Important Activity in This Phase: Activity in This Phase:

 Type CheckingType Checking - - Legality of OperandsLegality of Operands

position

initial

rate

:=
+

*

60

Syntax Tree

position

initial

rate

:=
+

*

inttoreal

60

Conversion Action

22

Supporting Phases/
Activities for Analysis

 Symbol Table Creation / MaintenanceSymbol Table Creation / Maintenance
 Contains Info (storage, type, scope, args) on

Each “Meaningful” Token, Typically Identifiers
 Data Structure Created / Initialized During

Lexical Analysis
 Utilized / Updated During Later Analysis &

Synthesis

 Error HandlingError Handling
 Detection of Different Errors Which

Correspond to All Phases
 What Happens When an Error Is Found?

23

The Synthesis Task For Compilation
 Intermediate Code GenerationIntermediate Code Generation

 Abstract Machine Version of Code - Independent of
Architecture

 Easy to Produce and Do Final, Machine Dependent
Code Generation

 Code OptimizationCode Optimization
 Find More Efficient Ways to Execute Code
 Replace Code With More Optimal Statements

 Final Code GenerationFinal Code Generation

 Generate Relocatable Machine Dependent Code

 Peephole OptimizationPeephole Optimization
 With a Very Limited View Improves Produced Final

Code

24

Reviewing the Entire ProcessReviewing the Entire Process

Errors

position := initial + rate * 60

lexical analyzer

syntax analyzer

semantic analyzer

intermediate code generator

id1 := id2 + id3 * 60

:=

id1
id2

id3

+
*

60

:=

id1
id2

id3

+
*

inttoreal

60

Symbol
Table

position

initial ….

rate….

25

Reviewing the Entire ProcessReviewing the Entire Process

Errors

intermediate code generator

code optimizer

final code generator

t1 := inttoreal(60)

t2 := id3 * t1

temp3 := id2 + t2

id1 := t3

t1 := id3 * 60.0

id1 := id2 + t1

MOVF id3, R2
MULF #60.0, R2
MOVF id2, R1
ADDF R1, R2
MOVF R1, id1

position

initial ….

rate….

Symbol Table

3 address code

	Compiler Design (40-414)
	Compiler learning
	Terminology
	A Compiler
	An Interpreter
	A Hybrid Compiler
	Classifications of Compilers
	The Many Phases of a Compiler
	Front-end, Back-end division
	Front end
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Back end
	Slide 16
	Slide 17
	The Analysis Task For Compilation
	Phase 1. Lexical Analysis
	Phase 2. Syntax Analysis or Parsing
	Phase 3. Semantic Analysis
	Supporting Phases/ Activities for Analysis
	The Synthesis Task For Compilation
	Reviewing the Entire Process
	Slide 25

