Bottom-Up Parsing

O “Shift-Reduce” Parsing

Reduce a string to the start symbol of the grammar.

O At every step a particular substring is matched (in
left-to-right fashion) to the right side of some

production and then it is substituted by the non-
terminal in the left hand side of the production.

abbcde

O

Consider: 3
1S AB aAbcde |)
— aAbe aAde
2-3 A= Abc | b 1ABe ' °
4 B—>d S 1

Rightmost Derivation:
S r%]) aABe r%} aAde r%} aAbcde r%} abbcde

Handles

Handle of a string = substring that matches the RHS of
some production AND whose reduction to the non-terminal
on the LHS is a step along the reverse of some rightmost
derivation.

Formally:

A phrase is a substring of a sentential form derived
from exactly one Non-terminal

Jd A simple phrase is a phrase created in one step
J handle is a simple phrase of a right sentential form
l.e. A — [is a handle of ofx, where x is a string of terminals, if:

%
S => alAx => affx
rm rm

A certain sentential form may have many different handles.

Right sentential forms of a non-ambiguous grammar

have one unique handle [but many substrings that look like handles
potentially !].

Example

Consider:
S — aABe
A— Abc|b
B—>d

S = aABe = aAde = aAbcde = abbcde

It follows that:

(S —) aABe is a handle of aABe
(B —) d is a handle of aAde

(A —) Abc is a handle of aAbcde
(A —) b is a handle of abbcde

Example, II

Grammar:
S — aABe
A—Abc|b

B—d
Consider aAbcde (it is a right sentential form)

Is [A — b, aAbcde] a handle?

if it is then there must be:
S = ... =__aAAbcde = __aAbcde

no way ever to get two consecutive
A’s in this grammar. => Impossible

Example, III

Grammar:
S — aABe
A—Abc|b

B—d
Consider aAbcde (it is a right sentential form)

Is [B — d, aAbcde] a handle?

if it is then there must be:
S = __... = __aAbcBe = __aAbcde

we try to obtain aAbcBe not a right

S = aABe =.. aAbcBe sentential form

Shift Reduce Parsing with a Stack

O The “big” problem : given the sentential form
locate the handle

O General Idea for S-R parsing using a stack:

1. “shift” input symbols into the stack until a
handle is found on top of it.

2. “reduce” the handle to the corresponding non-
terminal.

3. “accept” when the input is consumed and only
the start symbol is on the stack.

4. “error”’ call the error handler

Viable prefix: prefix of a right sentential form that
appears on the stack of a Shift-Reduce parser.

What happens with ambiguous grammars

Consider:
E—->E+E | E*E|
| (E)|id
Derive id+id*id
By two different Rightmost
derivations

Example

STACK INPUT Remark
$ id +id * id$ Shift
$id +id * id$ Reduce by E — id
$E +id *id$ | Shift
SE+ id *id$ | Shift
$E+ id *id$ | ReducebyE — id
$E+E

E—S>E+E
E*E
(E)
id

Both reduce by E — E + E, and
Shift can be performed:
Shift/reduce conflict

Conflicts

O Conflicts [appear in ambiguous grammars]
either “shift/reduce” or “reduce/reduce”

O Another Example:

stmt — if expr then stmt
| if expr then stmt else stmt

| other (any other statement)

Stack Input

if ... then else ... Shift/ Reduce

conflict

More Conflicts

stmt — id (parameter-list)

stmt — expr := expr

parameter-list — parameter-list , parameter | parameter
parameter — id

expr-list — expr-list , expr | expr

expr — id | id (expr-list)

Consider the string A(I,J)

Corresponding token stream is id(id, id)
After three shifts:

Stack = id(id Input =, id)

Reduce/Reduce Conflict ... what to do?
(it really depends on what is A,
an array? or a procedure?

10

Removing Conflicts

O One way is to manipulate grammar.

J cf. what we did in the top-down approach to
transform a grammar so that it is LL(1).

O Nevertheless:

J We will see that shift/reduce and reduce/reduce

conflicts can be best dealt with after they are
discovered.

J This simplifies the design.

11

Operator-Precedence Parsing
O problems encountered so far in shift/reduce parsing:
Q IDENTIFY a handle.

J resolve contflicts (if they occur).

< operator grammars: a class of grammars where handle
identification and conflict resolution is easy.

O Operator Grammars: no production right side is €
or has two adjacent non-terminals.

E-E-E|E+E|E*E|E/E|EAE|-E |(E)]|id

O note: this is typically ambiguous grammar.

1D

O

© O 0O 0O

Basic Technique

For the terminals of the grammar,
define the relations <. .> and .=.

a <. b means that a yields precedence to b
a .=. b means that a has the same precedence as b.

a .> b means hat a takes precedence over b
Eg.*>+or+ < *

Many handles are possible. We will use <. .=.
And .> to find the correct handle (i.e., the one that
respects the precedence).

13

Using Operator-Precedence Relations

O GOAL: delimit the handle of a right
sentential form

O < will mark the beginning, .> will mark the
end and .=. will be in between.

O Since no two adjacent non-terminals appear in the
RHS of any production, the general form sentential
forms is as:

Bo a; 31 @, B ... a, B, where each B;is either a
nonterminal or the empty string.

At each step of the parse, the parser considers the
top most terminal of the parse stack (i.e., either top
or top-1), say a, and the current token, say b, and
looks up their precedence relation, and decides
what to do next:

14

Operator-Precedence Parsing

If a.=. b, then shift b into the parse stack

2. If a<.b, then shift <. And then shift b into the
parse stack

3. If a.> b, then find the top most <. relation of the
parse stack; the string between this relation (with
the non-terminal underneath, if there exists) and
the top of the parse stack is the handle (the handle
should match (weakly) with the RHS of at least one
grammar rule); replace the handle with a typical
non-terminal

15

Example

STACK INPUT Remark
$. id +id * id$ $ <. id
$ <.id +id*id$ | jd>. +
SE +id*id$ | <. + *
$E <.+ id*id$ | +<.id *
$E<.+<.id *id$ | id.>*
$E< +E “id$ | - < x (
E<.+E<.* ldi ikd<' ‘g)
. d .>
E<.+E<.*<.id $ | *>¢ id
£
E . : accept

< I< < l=1<
> | > > >
> | > > >
<< <. <.].=.
Parse Table

12 ESE+T| T
34 TH>T*F|F
56 T— (E) |id

16

Producing the parse table

O FirstTerm(A) = {a | A =+ ac or A =+ Bao}
O LastTerm(A) = {a| A =+ aaorA=+0aB}

O a.=biff 3U — aabf or 3 U — aaBbp
a<.biff 3 U — oaBp and b € FirsTerm(B)

a.>biff 3 U — aBbp and a € LastTerm(B)

17

Example:

O FirstTerm (E) = {+, *, id, (}
O FirstTerm (T) = {*, id, (}
O FirstTerm (F) = {id, (}

LastTerm (E) = {+, *, id,)}
LastTerm (T) = {*, id,)}
LastTerm (F) = {id,)}

12 ESE+T| T
34 T>T*F| F
56 T>(E) |id

18

Precedence Functions vs Relations

2 f(a) <g(
2 f(a) = g(

D) W
D) W

2 f(a) > g(

henevera <.b
henever a .=. b

D) W

henevera.> b

19

Constructing precedence functions

Handling Errors During Reductions

O Suppose abEc is poped and there is no production
right hand side that matches abEc

O If there were a rhs aEc, we might issue message
illegal b on line x

O If the rhs is abEdc, we might issue message
missing d on line x

If the found rhs is abc, the error message could be
illegal E on line x,

where E stands for an appropriate syntactic

category represented by non-terminal E

21

Handling shift/reduce errors

el: /* called when whole expression id () $
is missing */ id |e3]e3]| >| >
insert id onto the input C [<|<]=|e4
print “missing operand) le3les | >|>
e2: /* called when expression begins S << lerfel

with a right parenthesis */
delete) from the input
print “unbalanced right parenthesis”
e3”: /* called when id or) is followed by id or (*/
insert + onto the input
print “missing operator
e4: /* called when expression ends with a left parenthesis */
pop (from the stack
print “missing right parenthesis”

Extracting Precedence relations from parse tables

E
E + T =t
T * F
\id — * < id 12 ESE+T| T

34 TH>T*F|F
56 T— (E) |id

3

Extracting Precedence relations from parse tables

E

T
T * F
:>*.>*
T * F 12 ESE+T| T
/ 34 T>T*F| F
/F 56 T— (E) |id
: = id > *

id
4

Pros and Cons

Q
Q
Q

Q

+ simple implementation
+ small parse table

- weak (too restrictive for not allowing two
adjacent non-terminals

- not very accurate (some syntax errors are not
detected due weak treatment of non-terminals)

Simple precedence parsing is an improved form of
operator precedence that doesn’t have these
weaknesses

)5

	Bottom-Up Parsing
	Handles
	Example
	Example, II
	Example, III
	Shift Reduce Parsing with a Stack
	What happens with ambiguous grammars
	Slide 8
	Conflicts
	More Conflicts
	Removing Conflicts
	Operator-Precedence Parsing
	Basic Technique
	Using Operator-Precedence Relations
	Slide 15
	Slide 16
	Producing the parse table
	Example:
	Precedence Functions vs Relations
	Constructing precedence functions
	Handling Errors During Reductions
	Handling shift/reduce errors
	Extracting Precedence relations from parse tables
	Slide 24
	Pros and Cons

