
1

LALR Parsing

• Canonical sets of LR(1) items

• Number of states much larger than in the SLR construction

• LR(1) = Order of thousands for a standard prog. Lang.

• SLR(1) = order of hundreds for a standard prog. Lang.

• LALR(1) (lookahead-LR)

• A tradeoff:
– Collapse states of the LR(1) table that have the same core (the “LR(0)” part of each state)

– LALR never introduces a Shift/Reduce Conflict if LR(1) doesn’t.

– It might introduce a Reduce/Reduce Conflict (that did not exist in the LR(1))…

– Still much better than SLR(1) (larger set of languages)

– … but smaller than LR(1)

• What Yacc and most compilers employ.

2

Conflict Example

S  L=R I0: S’  .S I1:S’  S. I6:S  L=.R I9: S  L=R.

S  R S  .L=R R  .L

L *R S  .R I2:S  L.=R L .*R

L  id L  .*R R  L. L  .id

R  L L  .id

 R  .L I3:S  R.

 I4:L  *.R I7:L  *R.

 Problem R  .L

FOLLOW(R)={=,$} L .*R I8:R  L.

= shift 6 L  .id

reduce by R  L

shift/reduce conflict I5:L  id.

3

Conflict Example2

S  AaAb I0: S’  .S

S  BbBa S  .AaAb

A   S  .BbBa

B   A  .

B  .

Problem

FOLLOW(A)={a,b}

FOLLOW(B)={a,b}

a reduce by A   b reduce by A  
reduce by B   reduce by B  

reduce/reduce conflict reduce/reduce conflict

4

Constructing Canonical LR(1) Parsing Tables

• In SLR method, the state i makes a reduction by A when the current
token is a:

– if the A. in the Ii and a is FOLLOW(A)

• In some situations, A cannot be followed by the terminal a in
a right-sentential form when  and the state i are on the top stack.
This means that making reduction in this case is not correct.

S  AaAb SAaAbAabab SBbBaBbaba

S  BbBa

A   Aab   ab Bba   ba

B   AaAb  Aa  b BbBa  Bb  a

5

LR(1) Item

• To avoid some of invalid reductions, the states need to carry more
information.

• Extra information is put into a state by including a terminal symbol as a
second component in an item.

• A LR(1) item is:
A  .,a where a is the look-head of the LR(1) item

(a is a terminal or end-marker.)

6

LR(1) Item (cont.)

• When  (in the LR(1) item A  .,a) is not empty, the look-head
does not have any affect.

• When  is empty (A  .,a), we do the reduction by A only if
the next input symbol is a (not for any terminal in FOLLOW(A)).

• A state will contain A  .,a1 where {a1,...,an}  FOLLOW(A)

...
 A  .,an

7

Canonical Collection of Sets of LR(1) Items

• The construction of the canonical collection of the sets of LR(1) items
are similar to the construction of the canonical collection of the sets of
LR(0) items, except that closure and goto operations work a little bit
different.

closure(I) is: (where I is a set of LR(1) items)

– every LR(1) item in I is in closure(I)
– if A.B,a in closure(I) and B is a production rule of G;

then B.,b will be in the closure(I) for each terminal b in
FIRST(a) .

8

goto operation

• If I is a set of LR(1) items and X is a grammar symbol
(terminal or non-terminal), then goto(I,X) is defined as
follows:

– If A  .X,a in I
 then every item in closure({A  X.,a}) will be
in goto(I,X).

9

Construction of The Canonical LR(1) Collection

• Algorithm:
C is { closure({S’.S,$}) }

repeat the followings until no more set of LR(1) items can be added to C.

for each I in C and each grammar symbol X

if goto(I,X) is not empty and not in C

add goto(I,X) to C

• goto function is a DFA on the sets in C.

10

A Short Notation for The Sets of LR(1) Items

• A set of LR(1) items containing the following items
A  .,a1

 ...
A  .,an

can be written as

 A  ., {a1, a2, ..., an}

11

Canonical LR(1) Collection -- Example

S  AaAb I0: S’  .S ,$ I1: S’  S. ,$

S  BbBa S  .AaAb ,$

A   S  .BbBa ,$ I2: S  A.aAb ,$

B   A  . ,a

B  . ,b I3: S  B.bBa ,$

I4: S  Aa.Ab ,$ I6: S  AaA.b ,$ I8: S  AaAb. ,$

 A  . ,b

I5: S  Bb.Ba ,$ I7: S  BbB.a ,$ I9: S  BbBa. ,$

 B  . ,a

S

A

B

a

b

A

B

a

b

to I4

to I5

12

Canonical LR(1) Collection – Example2

S’  S

1) S  L=R

2) S  R

3) L *R

4) L  id

5) R  L

I0:S’  .S,$

 S  .L=R,$

 S  .R,$

 L  .*R,{$,=}

 L  .id, {$,=}

 R  .L,$

I1:S’  S.,$

I2:S  L.=R,$
 R  L.,$

I3:S  R.,$

I4:L  *.R, {$,=}

 R  .L, {$,=}

 L .*R, {$,=}

 L  .id, {$,=}

I5:L  id., {$,=}

I6:S  L=.R,$
 R  .L,$
 L  .*R,$
 L  .id,$

I7:L  *R., {$,=}

I8: R  L., {$,=}

I9:S  L=R.,$

I10:R  L.,$

I11:L  *.R,$
 R  .L,$
 L .*R,$
 L  .id,$

I12:L  id.,$

I13:L  *R.,$

to I6

to I7

to I8

to I4

to I5

to I10

to I11

to I12

to I9

to I10

to I11

to I12

to I13

id

S

L

L
L

R

R

R

id

id
id

R

L

*

*

*

*

I4 and I11

I5 and I12

I7 and I13

I8 and I10

13

Construction of LR(1) Parsing Tables

1. Construct the canonical collection of sets of LR(1) items for G’.
C{I0,...,In}

2. Create the parsing action table as follows•
If a is a terminal, A.a,b in Ii and goto(Ii,a)=Ij then action[i,a] is shift j.

•
If A.,a is in Ii , then action[i,a] is reduce A where AS’.

•
If S’S.,$ is in Ii , then action[i,$] is accept.

• If any conflicting actions generated by these rules, the grammar is not LR(1).

3. Create the parsing goto table
• for all non-terminals A, if goto(Ii,A)=Ij then goto[i,A]=j

4. All entries not defined by (2) and (3) are errors.

5. Initial state of the parser contains S’.S,$

14

LR(1) Parsing Tables – (for Example2)
id * = $ S L R

0 s5 s4 1 2 3

1 acc

2 s6 r5

3 r2

4 s5 s4 8 7

5 r4 r4

6 s12 s11 10 9

7 r3 r3

8 r5 r5

9 r1

10 r5

11 s12 s11 10 13

12 r4

13 r3

no shift/reduce or
no reduce/reduce conflict


so, it is a LR(1) grammar

15

LALR Parsing Tables

• LALR stands for LookAhead LR.

• LALR parsers are often used in practice because LALR parsing tables
are smaller than LR(1) parsing tables.

• The number of states in SLR and LALR parsing tables for a grammar G
are equal.

• But LALR parsers recognize more grammars than SLR parsers.

• yacc creates a LALR parser for the given grammar.

• A state of LALR parser will be again a set of LR(1) items.

16

Creating LALR Parsing Tables

Canonical LR(1) Parser  LALR Parser

 shrink # of states

• This shrink process may introduce a reduce/reduce conflict in the
resulting LALR parser (so the grammar is NOT LALR)

• But, this shrik process does not produce a shift/reduce conflict.

17

The Core of A Set of LR(1) Items

• The core of a set of LR(1) items is the set of its first component.

Ex: S  L.=R,$  S  L.=R Core
R  L.,$ R  L.

• We will find the states (sets of LR(1) items) in a canonical LR(1) parser with same
cores. Then we will merge them as a single state.

I1:L  id.,= A new state: I12: L  id.,=

  L  id.,$

I2:L  id.,$ have same core, merge them

• We will do this for all states of a canonical LR(1) parser to get the states of the LALR
parser.

• In fact, the number of the states of the LALR parser for a grammar will be equal to the
number of states of the SLR parser for that grammar.

18

Creation of LALR Parsing Tables

• Create the canonical LR(1) collection of the sets of LR(1) items for
the given grammar.

• Find each core; find all sets having that same core; replace those sets
having same cores with a single set which is their union.

C={I0,...,In}  C’={J1,...,Jm}where m  n
• Create the parsing tables (action and goto tables) same as the

construction of the parsing tables of LR(1) parser.
– Note that: If J=I1  ...  Ik since I1,...,Ik have same cores

 cores of goto(I1,X),...,goto(I2,X) must be same.
– So, goto(J,X)=K where K is the union of all sets of items having same cores as goto(I1,X).

• If no conflict is introduced, the grammar is LALR(1) grammar.
(We may only introduce reduce/reduce conflicts; we cannot introduce
a shift/reduce conflict)

19

Shift/Reduce Conflict

• We say that we cannot introduce a shift/reduce conflict during the
shrink process for the creation of the states of a LALR parser.

• Assume that we can introduce a shift/reduce conflict. In this case, a
state of LALR parser must have:

 A  .,a and B  .a,b

• This means that a state of the canonical LR(1) parser must have:
A  .,a and B  .a,c

But, this state has also a shift/reduce conflict. i.e. The original canonical
LR(1) parser has a conflict.

(Reason for this, the shift operation does not depend on lookaheads)

20

Reduce/Reduce Conflict

• But, we may introduce a reduce/reduce conflict during the shrink
process for the creation of the states of a LALR parser.

 I1 : A  .,a I2: A  .,b

 B  .,b B  .,c

 
 I12: A  ., {a,b}  reduce/reduce conflict

 B  .,{b,c}

21

Canonical LALR(1) Collection – Example2

S’  S

1) S  L=R

2) S  R

3) L *R

4) L  id

5) R  L

I0:S’  .S,$

 S  .L=R,$

 S  .R,$

 L  .*R,{$,=}

 L  .id, {$,=}

 R  .L,$

I1:S’  S.,$

I2:S  L.=R,$
 R  L.,$

I3:S  R.,$

I411:L  *.R,{$,=}

 R  .L, {$,=}

 L .*R, {$,=}

 L  .id, {$,=}

I512:L  id., {$,=}

I6:S  L=.R,$
 R  .L,$
 L  .*R,$
 L  .id,$

I713:L  *R., {$,=}

I810: R  L., {$,=}

I9:S  L=R.,$

to I6

to I713

to I810

to I411

to I512

to I810

to I411

to I512

to I9

S

L

L
L

R

R

id

id
id

R

*

*

*

Same Cores
 I4 and I11

 I5 and I12

 I7 and I13

 I8 and I10

22

LALR(1) Parsing Tables – (for Example2)
id * = $ S L R

0 s5 s4 1 2 3

1 acc

2 s6 r5

3 r2

4 s5 s4 8 7

5 r4 r4

6 s12 s11 10 9

7 r3 r3

8 r5 r5

9 r1

no shift/reduce or
no reduce/reduce conflict


so, it is a LALR(1) grammar

23

Using Ambiguous Grammars

• All grammars used in the construction of LR-parsing tables must be
un-ambiguous.

• Can we create LR-parsing tables for ambiguous grammars ?
– Yes, but they will have conflicts.
– We can resolve these conflicts in favor of one of them to disambiguate the grammar.
– At the end, we will have again an unambiguous grammar.

• Why we want to use an ambiguous grammar?
– Some of the ambiguous grammars are much natural, and a corresponding unambiguous

grammar can be very complex.
– Usage of an ambiguous grammar may eliminate unnecessary reductions.

• Ex.
E  E+T | T

E  E+E | E*E | (E) | id  T  T*F | F

F  (E) | id

24

Sets of LR(0) Items for Ambiguous Grammar

I0: E’  .E
 E  .E+E
 E  .E*E
 E  .(E)
 E  .id

I1: E’  E.
 E  E .+E
 E  E .*E

I2: E  (.E)
 E  .E+E
 E  .E*E
 E  .(E)
 E  .id

I3: E  id.

I4: E  E +.E
 E  .E+E
 E  .E*E
 E  .(E)
 E  .id

I5: E  E *.E
 E  .E+E
 E  .E*E
 E  .(E)
 E  .id

I6: E  (E.)
 E  E.+E
 E  E.*E

I7: E  E+E.
 E  E.+E
 E  E.*E

I8: E  E*E.
 E  E.+E
 E  E.*E

I9: E  (E).

I5

)

E

E

E

E

*

+

+

+

+

*

*

*

(

(

(
(

id

id

id
id

I4

I2

I2

I3

I3

I4

I4

I5

I5

25

SLR-Parsing Tables for Ambiguous Grammar

FOLLOW(E) = { $,+,*,) }

State I7 has shift/reduce conflicts for symbols + and *.

I0 I1 I7I4
E+E

when current token is +
 shift  + is right-associative
 reduce  + is left-associative

when current token is *
 shift  * has higher precedence than +
 reduce  + has higher precedence than *

26

SLR-Parsing Tables for Ambiguous Grammar

FOLLOW(E) = { $,+,*,) }

State I8 has shift/reduce conflicts for symbols + and *.

I0 I1 I8I5
E*E

when current token is *
 shift  * is right-associative
 reduce  * is left-associative

when current token is +
 shift  + has higher precedence than *
 reduce  * has higher precedence than +

27

SLR-Parsing Tables for Ambiguous Grammar

id + * () $ E

0 s3 s2 1

1 s4 s5 acc

2 s3 s2 6

3 r4 r4 r4 r4

4 s3 s2 7

5 s3 s2 8

6 s4 s5 s9

7 r1 s5 r1 r1

8 r2 r2 r2 r2

9 r3 r3 r3 r3

Action Goto

28

Error Recovery in LR Parsing

• An LR parser will detect an error when it consults the parsing action
table and finds an error entry. All empty entries in the action table are
error entries.

• Errors are never detected by consulting the goto table.

• An LR parser will announce error as soon as there is no valid
continuation for the scanned portion of the input.

• A canonical LR parser (LR(1) parser) will never make even a single
reduction before announcing an error.

• The SLR and LALR parsers may make several reductions before
announcing an error.

• But, all LR parsers (LR(1), LALR and SLR parsers) will never shift an
erroneous input symbol onto the stack.

29

Panic Mode Error Recovery in LR Parsing

• Scan down the stack until a state s with a goto on a particular
nonterminal A is found. (Get rid of everything from the stack before
this state s).

• Discard zero or more input symbols until a symbol a is found that can
legitimately follow A.
– The symbol a is simply in FOLLOW(A), but this may not work for all situations.

• The parser stacks the nonterminal A and the state goto[s,A], and it
resumes the normal parsing.

• This nonterminal A is normally is a basic programming block (there can
be more than one choice for A).
– stmt, expr, block, ...

30

Phrase-Level Error Recovery in LR Parsing

• Each empty entry in the action table is marked with a specific error
routine.

• An error routine reflects the error that the user most likely will make in
that case.

• An error routine inserts the symbols into the stack or the input (or it
deletes the symbols from the stack and the input, or it can do both
insertion and deletion).
– missing operand

– unbalanced right parenthesis

	LALR Parsing
	Conflict Example
	Conflict Example2
	Constructing Canonical LR(1) Parsing Tables
	LR(1) Item
	LR(1) Item (cont.)
	Canonical Collection of Sets of LR(1) Items
	goto operation
	Construction of The Canonical LR(1) Collection
	A Short Notation for The Sets of LR(1) Items
	Canonical LR(1) Collection -- Example
	Canonical LR(1) Collection – Example2
	Construction of LR(1) Parsing Tables
	LR(1) Parsing Tables – (for Example2)
	LALR Parsing Tables
	Creating LALR Parsing Tables
	The Core of A Set of LR(1) Items
	Creation of LALR Parsing Tables
	Shift/Reduce Conflict
	Reduce/Reduce Conflict
	Canonical LALR(1) Collection – Example2
	LALR(1) Parsing Tables – (for Example2)
	Using Ambiguous Grammars
	Sets of LR(0) Items for Ambiguous Grammar
	SLR-Parsing Tables for Ambiguous Grammar
	Slide 26
	Slide 27
	Error Recovery in LR Parsing
	Panic Mode Error Recovery in LR Parsing
	Phrase-Level Error Recovery in LR Parsing

