Chapter 4: Motion in Two and Three Dimensions

\checkmark Position and Displacement
\checkmark Velocity
\checkmark Acceleration
\checkmark Finding Displacement and Velocity from Acceleration
\checkmark Projectile Motion
\checkmark Uniform Circular Motion
\checkmark Relative Motion

Chapter 4: Motion in Two and Three Dimensions

Session 8:

\checkmark Uniform Circular Motion
\checkmark Relative Motion
\checkmark Examples

Uniform Circular Motion

* A particle is in uniform circular motion if it travels around a circle or a circular arc at constant (uniform) speed.
* The particle is accelerating because the velocity changes in direction.

Centripetal Acceleration

$$
T=\frac{2 \pi r}{v}
$$

Uniform Circular Motion

$$
\left\{\begin{array} { l }
{ \vec { \mathbf { r } } = x _ { p } \hat { \mathbf { i } } + y _ { p } \hat { \mathbf { j } } } \\
{ x _ { p } = r \operatorname { c o s } \theta } \\
{ y _ { p } = r \operatorname { s i n } \theta }
\end{array} \quad \left\{\begin{array}{c}
\vec{v}=v_{x} \hat{\mathbf{i}}+v_{y} \hat{\mathbf{j}}=(-v \sin \theta) \hat{\mathbf{i}}+(v \cos \theta) \hat{\mathbf{j}} \\
\vec{v}=\left(-\frac{v y_{p}}{r}\right) \hat{\mathbf{i}}+\left(\frac{v x_{p}}{r}\right) \hat{\mathbf{j}}
\end{array}\right.\right.
$$

$$
\vec{a}=\frac{d \vec{v}}{d t}=\left(-\frac{v}{r} \frac{d y_{p}}{d t} \hat{\mathbf{i}}+\left(\frac{v}{r} \frac{d x_{p}}{d t}\right) \hat{\mathbf{j}}\right.
$$

$$
\Longrightarrow \vec{a}=\left(-\frac{v v_{y}}{r}\right) \hat{\mathbf{i}}+\left(\frac{v v_{x}}{r}\right) \hat{\mathbf{j}}=\left(-\frac{v^{2}}{r} \cos \theta\right) \hat{\mathbf{i}}+\left(-\frac{v^{2}}{r} \sin \theta\right) \hat{\mathbf{j}}
$$

$$
|\vec{a}|=\sqrt{a_{x}^{2}+a_{y}^{2}}=\frac{v^{2}}{r}
$$

$$
\tan \phi=\frac{a_{y}}{a_{x}}=\frac{-\frac{v^{2}}{r} \sin \theta}{-\frac{v^{2}}{r} \cos \theta}=\tan \theta
$$

Ex 9:

What is the magnitude of the centripetal acceleration of an object on Earth's equator due to the rotation of Earth?

$$
\begin{gathered}
R=6370 \mathrm{~km}=6.37 \times 10^{6} \mathrm{~m} \quad T=24 \mathrm{~h}=86400 \mathrm{~s}=8.64 \times 10^{4} \mathrm{~s} \\
T=\frac{2 \pi R}{v} \longrightarrow v=\frac{2 \pi R}{T}=\frac{2 \pi\left(6.37 \times 10^{6}\right)}{\left(8.64 \times 10^{4}\right)} \simeq 463(\mathrm{~m} / \mathrm{s})
\end{gathered}
$$

$$
a_{C}=\frac{v^{2}}{R}
$$

$$
a_{C}=\frac{(463)^{2}}{6.37 \times 10^{6}} \simeq 34 \times 10^{-3}\left(\mathrm{~m} / \mathrm{s}^{2}\right)
$$

Circular Motion, General

Tangential Acceleration:

- The centripetal acceleration comes from a change in the direction of the velocity vector.
- The tangential acceleration causes the change in the speed of the particle.

A car leaves a stop sign and exhibits a constant acceleration of $0.300 \mathrm{~m} / \mathbf{s}^{\mathbf{2}}$ parallel to the roadway. The car passes over a rise in the roadway such that the top of the rise is shaped like an arc of a circle of radius $500 \mathbf{~ m}$. At the moment the car is at the top of the rise, its velocity vector is horizontal and has a magnitude of $6.00 \mathrm{~m} / \mathrm{s}$. What are the magnitude and direction of the total acceleration vector for the car at this instant?

$$
\begin{aligned}
& a_{C}=\frac{v^{2}}{r} \\
& a_{C}=\frac{(6)^{2}}{500}=0.072\left(\mathrm{~m} / \mathrm{s}^{2}\right) \\
& |\vec{a}|=\sqrt{a_{c}^{2}+a_{t}^{2}} \\
& \phi=\sqrt{(0.072)^{2}+(0.3)^{2}}=0.309\left(\mathrm{~m} / \mathrm{s}^{2}\right) \\
& \phi=\tan ^{-1} \frac{a_{c}}{a_{t}}=\tan ^{-1} \frac{0.072}{0.3}=13.5^{\circ}
\end{aligned}
$$

Relative Motion

Different measurements due to the different frames of reference:

$$
\left\{\begin{array}{l}
x_{p A}=+5 m \\
x_{p B}=+10 m
\end{array}\right.
$$

$$
v_{M A}>v_{M B}
$$

Relative Motion

$$
\begin{gathered}
\overrightarrow{\mathbf{r}}_{P A}=\overrightarrow{\mathbf{r}}_{P B}+\overrightarrow{\mathbf{r}}_{B A} \\
\frac{d}{d t}\left(\overrightarrow{\mathbf{r}}_{P A}\right)=\frac{d}{d t}\left(\overrightarrow{\mathbf{r}}_{P B}\right)+\frac{d}{d t}\left(\overrightarrow{\mathbf{r}}_{B A}\right)
\end{gathered}
$$

$$
\vec{v}_{P A}=\vec{v}_{P B}+\vec{v}_{B A}
$$

Galilean transformation equations.

$$
\frac{d}{d t}\left(\vec{v}_{P A}\right)=\frac{d}{d t}\left(\vec{v}_{P B}\right)+\frac{d}{d t}\left(\vec{v}_{B A}\right)
$$

$$
\vec{a}_{P A}=\vec{a}_{P B}+\vec{a}_{B A}
$$

$$
\text { if } \vec{v}_{B A}=\text { constant } \Rightarrow \vec{a}_{B A}=0
$$

$$
\vec{a}_{P A}=\vec{a}_{P B}
$$

Ex 11: A boat crossing a wide river moves with a speed of $\mathbf{1 0 . 0} \mathbf{~ k m} / \mathrm{h}$ relative to the water. The water in the river has a uniform speed of $5.00 \mathbf{~ k m} / \mathbf{h}$ due east relative to the Earth. If the boat heads due north, determine the velocity of the boat relative to an observer standing on either bank.

$$
\begin{gathered}
\vec{v}_{b E}=\vec{v}_{b r}+\vec{v}_{r E} \\
\left|\vec{v}_{b E}\right|=\sqrt{\left|\vec{v}_{b r}\right|^{2}+\left|\vec{v}_{r E}\right|^{2}} \\
\left\lvert\, \begin{array}{l}
\left|\vec{v}_{b E}\right|=\sqrt{(10)^{2}+(5)^{2}} \simeq 11.2(\mathrm{~km} / \mathrm{h}) \\
\theta=\tan ^{-1} \frac{v_{r E}}{v_{b r}}=\tan ^{-1} \frac{5}{10} \simeq 26.6^{\circ}
\end{array}\right. \\
\left\{\begin{array}{l}
\left|\vec{v}_{b E}\right|=\sqrt{\left|\vec{v}_{b r}\right|^{2}-\left|\vec{v}_{r E}\right|^{2}} \simeq 8.66(\mathrm{~km} / \mathrm{h}) \\
\varphi=\tan ^{-1} \frac{v_{r E}}{v_{b E}}=\tan ^{-1} \frac{5}{8.66}=30^{\circ}
\end{array}\right.
\end{gathered}
$$

