|_ocal search algorithms

outline

* Hill — climbing
« Simulated annealing

« Genetic algorithms

Local search algorithms

« Some types of search problems can be formulated in terms of
optimization

— Path is irrelevant; the goal state itself is a solution

— state space = set of “complete” configueations

— In such cases, can use iterative improvement algorithms; keep a
single “current” state, try to improve it.

— We have an objective function that tells us about the quality
of a possible solution

« we want to find a good solution by minimizing or maximizing
the value of this function

Example: Travelling salesman problem

 Find the shortest tour connecting a given set of cities
 State space: all possible tours
* Objective function: length of tour

Eample: n-queens

Put n queens on an n x n board with no two queens on the
same row, column, or diagonal

State space: all possible n-queen configurations
What’s the objective function?
— Number of pairwise conflicts

Hill-climbing(gradient ascent/descent)

* Idea: keep a single‘“‘current”state and try to improve it.

e “Like climbing mount Everest in thick fog with amnesia”

function HILL-CLIMBING(problem) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node
neighbor, a node

current < MAKE-NODE(INITIAL-STATE[problem))

loop do
neighbor < a highest-valued successor of current
if VALUE[neighbor] < VALUE[current] then return STATE[current]
current <— neighbor

end

choose first better successor, randomly choose among better successors

Eample: n-queens

Put n queens on an n x n board with no two queens on the
same row, column, or diagonal

State space: all possible n-queen configurations
objective function: Number of pairwise conflicts

What’s a possible local improvement strategy?
— Move one queen within its column to reduce conflicts

= =

Example: Traveling Salesman Problem

Find the shortest tour connectingn cities
State space: all possible tours
Objective function:length of tour

What’s a possible local improvement strategy?
— Start with any complete tour, perform pairwise exchanges

A @ ®s A® B

ABDEC ABCED

Hill-climbing search

 Is it complete/optimal?
— No — can get stuck in local optima
— Example: local optimum for the 8-queens problem

Hill-climbing search

lobal maximum

c:hjesti*ie function

shoulder

N

local maximum

"flat" local maximum

current
state

* How to escape local maxima?
— Random restart hill-climbing

 What about “shoulders”?

 What about “plateaux’?

»state space

Simulated annealing

Idea: escape local maxima by allowing some "bad"moves but
gradually decrease their siza and frequency

If temperature decreases slowly enough, then simulated annealing
search will find a global optimum.

function SIMULATED-ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
schedule, a mapping from time to “temperature”
local variables: current, a node

next, a node
T, a “temperature” controlling prob. of downward steps

current «— MAKE-NODE(INITIAL-STATE[problem))
for < 1 to oc do

T« schedule|{]

if 7= 0 then return current

nert < a randomly selected successor of current

AE « VALUE[nezt] — VALUE[current]

if AE > 0 then current «— next

else current « next only with probability e /7

|_ocal beam search

 Start with k randomly generated states

e At each iteration, all the successors of all k states are
generated

 |If any one is a goal state, stop; else select the k best successors
from the complete list and repeat

O OO0
UHO N0 WO
O 0 O

Greedy search Beam search

Genetic algorithms

= stochastic local beam search + generate successors from pairs of states

24748552

24 31%

32752411

23 29%

24415124

ki

20 26%

32543213

11 14%

Fitness Selection

32752411

24748552

>~

32752411

>~

24415124

Pairs

32748552

327481p2

24752411

24752411

32752124

322124

24415411

Cross=0Over

2441541[7]

Example: n-queens

 (as require states encoded as string
« Crossover helps iff substrings are meaningful compunents

« Example: string for first state= 67247588

Genetic algorithms

function GENETIC-ALGORITHMI pﬂpﬂfahbfl FITNESS-FN) returns an individual
input: population, a set of individuals
FITNESS-FN. a function that measures the fitness of an individual

repeat
new population « empty set
loop for i from 1 to SIZE(population) do

x « RANDOM_SELECTION(population, FITNESS FN)
¥« RANDOM_SELECTION(population, FITNESS FN)

child « REPRODUCE(x,0)
if (small random probability) then child « MUTATE(child)
add childto new population
population < new _population
until some individual is fit enough or enough time has elapsed
return the best individual in population, according to FITNESS-FN

Project???

Solving 8-queens problem by genetic algorithm (4 group)
Solving 8-puzzle problem by genetic algorithm (4 group)
Solving 8-queens problem by A* search (4 group)
solving 8-puzzle problem by A* search (4 group)

explain GAs completely by giving an example (1 group)

End of chapter 4

