Chapter 2: Electric Field

- ✓ Electric Field Due to a Point Charge
- ✓ Electric Fields Due to Multiple Charges
- ✓ Electric Field Lines
- ✓ Electric Field of a Continuous Charge Distribution

Session 3:

- ✓ Electric Field Due to a Point Charge
- ✓ Electric Fields Due to Multiple Charges
- **✓ Electric Field Lines**
- ✓ Examples

Introduction

- ☐ The electric force is a field force.
- ☐ Field forces can act through space.
- ☐ An electric field is said to exist in the region of space around a charged object.
- ☐ When another charged object, the test charge, enters this electric field, an electric force acts on it.

Electric Field

☐ The electric field is defined as the electric force on the test charge per unit charge.

$$\vec{\mathbf{E}} = \frac{\vec{\mathbf{F}}_e}{q_o}$$

The SI units of \vec{E} are N/C.

$$ec{\mathsf{F}}_{\!\scriptscriptstyle{e}} = q ec{\mathsf{E}}$$

This is valid for a point charge only.

Electric Field Due to a Point Charge

$$\vec{\mathbf{F}}_e = k_e \frac{qq_o}{r^2} \hat{\mathbf{r}}$$

$$\vec{\mathbf{E}} = \frac{\vec{\mathbf{F}}_{e}}{q_{o}} = k_{e} \frac{q}{r^{2}} \hat{\mathbf{r}}$$

-a

Electric Fields Due to Multiple Charges

At any point *P*, the total electric field due to a group of source charges equals the vector sum of the electric fields of all the charges.

Ex 1. Charges $q_1 = +q$ and $q_2 = +q$ are located on the x axis as shown in Figure. Find the electric field at the point P, which is at position (0, z).

$$\vec{\boldsymbol{E}}_{p} = \vec{\boldsymbol{E}}_{1} + \vec{\boldsymbol{E}}_{2}$$

$$\left| \vec{\mathbf{E}}_1 \right| = \left| \vec{\mathbf{E}}_1 \right| = \left| \vec{\mathbf{E}} \right| = k_e \frac{q}{R^2}$$

$$\vec{\mathbf{E}}_{p} = 2 |\vec{\mathbf{E}}| \cos \theta \hat{z}$$

$$\cos \theta = \frac{z}{R}$$

$$\vec{\mathbf{E}}_{p} = \frac{2k_{e}qz}{R^{3}} \hat{z} = \frac{2k_{e}qz}{(z^{2} + (\frac{d}{2})^{2})^{\frac{3}{2}}} \hat{z}$$

Ex 2. Charges $q_1 = +q$ and $q_2 = -q$ are located on the x axis as shown in Figure. Find the electric field at the point P, which is at position (0, z).

$$\vec{\mathbf{E}}_{\rho} = \vec{\mathbf{E}}_{1} + \vec{\mathbf{E}}_{2}$$

$$\left|\vec{\mathbf{E}}_{1}\right| = \left|\vec{\mathbf{E}}_{1}\right| = \left|\vec{\mathbf{E}}\right| = k_{e} \frac{q}{R^{2}}$$

$$\vec{\mathbf{E}}_{\rho} = 2\left|\vec{\mathbf{E}}\right| \sin\theta \ (-\hat{x})$$

$$\sin\theta = \frac{d}{2R}$$

$$\vec{\mathbf{E}}_{p} = \frac{k_{e} q d}{(z^{2} + (\frac{d}{2})^{2})^{\frac{3}{2}}} (-\hat{x}) = \frac{k_{e} p}{(z^{2} + (\frac{d}{2})^{2})^{\frac{3}{2}}} (-\hat{x})$$

Ex 3. Find the electric field of an electric dipole at the point P, which is at position (0, z)

on its axis.

$$\vec{\mathbf{E}}_{p} = \vec{\mathbf{E}}_{+} + \vec{\mathbf{E}}_{-}$$

$$\vec{\mathbf{E}}_{p} = (\hat{z}) \left(\frac{k_{e} q}{(z - \frac{d}{2})^{2}} - \frac{k_{e} q}{(z + \frac{d}{2})^{2}} \right)$$

$$\vec{\mathbf{E}}_{p} = (\hat{z}) \left(\frac{k_{e} \, q(2zd)}{(z^{2} - (\frac{d}{2})^{2})^{2}} \right) = \frac{2k_{e} \, \vec{\mathbf{p}} \, z}{(z^{2} - (\frac{d}{2})^{2})^{2}}$$

$$\vec{\mathbf{p}} = qd(\hat{z})$$

$$z\gg a$$

$$\vec{\mathbf{E}}_{p} \approx \frac{2k_{e}\vec{\mathbf{p}}}{z^{3}}$$

Electric Fields Lines

Point Charge (Electric Monopole)

$$\vec{\mathbf{E}} = k_e \frac{q}{r^2} \hat{\mathbf{r}}$$

Electric Dipole

Dipole in an Electric Field

$$\tau_{net} = F \frac{d}{2} \sin \theta + F \frac{d}{2} \sin \theta = F d \sin \theta$$

$$\tau_{net} = (qE)d\sin\theta = qdE\sin\theta = pE\sin\theta$$

$$\vec{\tau}_{net} = \vec{\mathbf{p}} \times \vec{\mathbf{E}}$$