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Preface to the Third Edition

Papers on convection in porous media continue to be published at the rate that is
now over 200 per year. The indication of the continued importance of the subject,
together with the wide acceptance of the first and second editions of this volume,
has encouraged us to prepare an expanded third edition. We have retained the ba-
sic structure and most of the text of the second edition. We have been somewhat
selective in our choice of references, but nevertheless there are over 1400 new ref-
erences. Again, we have made an effort to highlight new conceptual developments
and engineering applications.

We found that it was possible to fit a lot of the new material under the existing
section headings. However, we now have new sections on bidisperse porous media,
local thermal nonequilibrium, electrodiffusion, transverse heterogeneity in chan-
nels, thermal development of forced convection, effects of temperature-dependent
viscosity, constructal multiscale flow structures, optimal spacings for plates sep-
arated by porous structures, control of convection using vertical vibration, and
bioconvection.

Once again we decided that, except for a brief mention, convection in unsaturated
media had to be beyond the scope of this book. Also, we are aware that there are
some topics in the area of hydrology that could be regarded as coming under the
umbrella of the title of our book but are not treated here.

We are grateful to a large number of people who provided us, prior to publication,
with copies of their chapters of books that survey research on various topics. Other
colleagues have continued to improve our understanding of the subject of this book
in ways too numerous to mention here.

We wish to thank our employers, the University of Auckland and Duke Univer-
sity, for their ongoing support.

Once again we relied on the expertise and hard work of Linda Hayes and Deborah
Fraze for the preparation of the electronic version of our manuscript.

D. A. Nield
A. Bejan



Preface to the Second Edition

Papers on convection in porous media continue to be published at the rate of over
100 per year. This indication of the continued importance of the subject, together
with the wide acceptance of the first edition, has encouraged us to prepare an
expanded second edition. We have retained the basic structure and most of the text
of the first edition. With space considerations in mind, we have been selective in
our choice of references, but nevertheless there are over 600 new references. We
also made an effort to highlight new conceptual developments and engineering
applications.

In the introductory material, we judged that Chapters 2 and 3 needed little
alteration (though there is a new Section 2.6 on other approaches to the topic),
but our improved understanding of the basic modeling of flow through a porous
medium has led to a number of changes in Chapter 1, both within the old sections
and by the addition of a section on turbulence in porous media and a section on
fractured media, deformable media, and complex porous structures.

In Chapter 4, on forced convection, we have added major new sections on com-
pact heat exchangers, on heatlines for visualizing convection, and on constructal
tree networks for the geometric minimization of the resistance to volume-to-point
flows in heterogeneous porous media.

In Chapter 5 (external natural convection) there is a substantial amount of new
material inserted in the existing sections. In Chapters 6 and 7, on internal natural
convection, we now have included descriptions of the effects of a magnetic field
and rotation, and there are new sections on periodic heating and on sources in
confined or partly confined regions; the latter is a reflection of the current interest
in the problem of nuclear waste disposal. In Chapter 8, on mixed convection, there
are no new sections, but in a new subsection we have given some prominence to the
unified theory that has been developed for boundary layer situations. In Chapter 9,
on double-diffusive convection (heat and mass transfer) there is a new section on
convection produced by inclined gradients, a topic that also has been given wider
coverage in the related section in Chapter 7.

In Chapter 10, which deals with convection with change of phase, we have a new
subsection on the solidification of binary alloys, a research area that has blossomed
in the last decade. We also have a new section on spaces filled with fluid and fibers
coated with a phase-change material. In the first edition we had little to say about
two-phase flow, despite its importance in geothermal and other contexts. We now
have included a substantial discussion on this topic, which we have placed at the
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end of Chapter 11 (geophysical aspects). Once again we decided that, except for a
brief mention, convection in unsaturated media had to be beyond the scope of this
book.

D.A.N. again enjoyed the hospitality of the Department of Mechanical Engineer-
ing and Materials Science at Duke University while on Research and Study Leave
from the University of Auckland, and both of those institutions again provided
financial support.

We are grateful for comments from Graham Weir and Roger Young on a draft
of Section 11.9, a topic on which we had much to learn. We also are grateful to
a large number of people who provided us with preprints of their papers prior to
publication. Other colleagues have improved our understanding of the subject of
this book in ways too numerous to mention here.

Once again we relied on the expertise and hard work of Linda Hayes for the
preparation of the electronic version of our manuscript, and again the staff at
the Engineering Library of Duke University made our search of the literature an
enjoyable experience.

D. A. Nield
A. Bejan



Preface to the First Edition

In this book we have tried to provide a user-friendly introduction to the topic of
convection in porous media. We have assumed that the reader is conversant with
the basic elements of fluid mechanics and heat transfer, but otherwise the book is
self-contained. Only routine classic mathematics is employed. We hope that the
book will be useful both as a review (for reference) and as a tutorial work (suitable
as a textbook in a graduate course or seminar).

This book brings into perspective the voluminous research that has been per-
formed during the last two decades. The field recently has exploded because of
worldwide concern with issues such as energy self-sufficiency and pollution of the
environment. Areas of application include the insulation of buildings and equip-
ment, energy storage and recovery, geothermal reservoirs, nuclear waste disposal,
chemical reactor engineering, and the storage of heat-generating materials such
as grain and coal. Geophysical applications range from the flow of groundwater
around hot intrusions to the stability of snow against avalanches.

We believe that this book is timely because the subject is now mature in the
sense that there is a corpus of material that is unlikely to require major revision in
the future. As the reader will find, the relations for heat transfer coefficients and
flow parameters for the case of saturated media are now known well enough for
engineering design purposes. There is a sound basis of underlying theory that has
been validated by experiment. At the same time there are outstanding problems
in the cases of unsaturated media and multiphase flow in heterogeneous media,
which are relevant to such topics as the drying of porous materials and enhanced
oil recovery.

The sheer bulk of the available material has limited the scope of this book. It
has forced us to omit a discussion of convection in unsaturated media and also of
geothermal reservoir modeling; references to reviews of these topics are given. We
also have excluded mention of several hundred additional papers, including some
of our own. We have emphasized reports of experimental work, which are in rela-
tively short supply (and in some areas are still lacking). We have also emphasized
simple analysis where this illuminates the physics involved. The excluded material
includes some good early work, which has now been superseded, and some recent
numerical work involving complex geometry. Also excluded are papers involving
the additional effects of rotation or magnetic fields; we know of no reported ex-
perimental work or significant applications of these extensions. We regret that our
survey could not be exhaustive, but we believe that this book gives a good picture
of the current state of research in this field.



xii Preface to the First Edition

The first three chapters provide the background for the rest of the book. Chap-
ters 4 through 8 form the core material on thermal convection. Our original plan,
which was to separate foundational material from applications, proved to be im-
practical, and these chapters are organized according to geometry and the form of
heating. Chapter 9 deals with combined heat and mass transfer and Chapter 10 with
convection coupled with change of phase. Geophysical themes involve additional
physical processes and have given rise to additional theoretical investigations;
these are discussed in Chapter 11.

* * *

This book was written while D.A.N. was enjoying the hospitality of the Depart-
ment of Mechanical Engineering and Materials Science at Duke University, while
on Research and Study Leave from the University of Auckland. Financial support
for this leave was provided by the University of Auckland, Duke University, and
the United States–New Zealand Cooperative Science Program. We are particularly
grateful to Dean Earl H. Dowell and Prof. Robert M. Hochmuth, both of Duke
University, for their help in making this book project possible.

Linda Hayes did all the work of converting our rough handwritten notes into the
current high-quality version on computer disk. She did this most efficiently and
with tremendous understanding (i.e., patience!) for the many instances in which
we changed our minds and modified the manuscript.

At various stages in the preparation of the manuscript and the figures we were
assisted by Linda Hayes, Kathy Vickers, Jong S. Lim, Jose L. Lage, and Laurens
Howle. Eric Smith and his team at the Engineering Library of Duke University
went to great lengths to make our literature search easier. We are very grateful for
all the assistance we have received.

D. A. Nield
A. Bejan
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B transition number for electrodiffusion, Eq. (3.95)
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� thermal expansion coefficient
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� temperature perturbation amplitude
� exponent in power law variation
� dynamic viscosity

effective viscosity (Brinkman)
	 kinematic viscosity

 density
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m porous medium
p particle
ref reference
s solid
V vertical
w wall
x parameter based on length x
0 reference
∞ far field

Superscripts

′ perturbation

ˆ nondimensional perturbation



1
Mechanics of Fluid Flow through a
Porous Medium

1.1. Introduction

By a porous medium we mean a material consisting of a solid matrix with an
interconnected void. We suppose that the solid matrix is either rigid (the usual
situation) or it undergoes small deformation. The interconnectedness of the void
(the pores) allows the flow of one or more fluids through the material. In the
simplest situation (“single-phase flow”) the void is saturated by a single fluid. In
“two-phase flow” a liquid and a gas share the void space.

In a natural porous medium the distribution of pores with respect to shape and
size is irregular. Examples of natural porous media are beach sand, sandstone,
limestone, rye bread, wood, and the human lung (Fig. 1.1). On the pore scale
(the microscopic scale) the flow quantities (velocity, pressure, etc.) will be clearly
irregular. But in typical experiments the quantities of interest are measured over
areas that cross many pores, and such space-averaged (macroscopic) quantities
change in a regular manner with respect to space and time, and hence are amenable
to theoretical treatment.

How we treat a flow through a porous structure is largely a question of distance—
the distance between the problem solver and the actual flow structure (Bejan et al.,
2004). When the distance is short, the observer sees only one or two channels, or
one or two open or closed cavities. In this case it is possible to use conventional fluid
mechanics and convective heat transfer to describe what happens at every point of
the fluid- and solid-filled spaces. When the distance is large so that there are many
channels and cavities in the problem solver’s field of vision, the complications of
the flow paths rule out the conventional approach. In this limit, volume-averaging
and global measurements (e.g., permeability, conductivity) are useful in describing
the flow and in simplifying the description. As engineers focus more and more
on designed porous media at decreasing pore scales, the problems tend to fall
between the extremes noted above. In this intermediate range, the challenge is not
only to describe coarse porous structures, but also to optimize flow elements and
to assemble them. The resulting flow structures are designed porous media (see
Bejan et al., 2004; Bejan, 2004b).

The usual way of deriving the laws governing the macroscopic variables is to
begin with the standard equations obeyed by the fluid and to obtain the macroscopic
equations by averaging over volumes or areas containing many pores. There are



2 1. Mechanics of Fluid Flow through a Porous Medium

Figure 1.1. Top: Examples of natural porous materials: A) beach sand, B) sandstone, C)
limestone, D) rye bread, E) wood, and F) human lung (Collins, 1961, with permission
from Van Nostrand Reinhold). Bottom: Granular porous materials used in the construc-
tion industry, 0.5-cm-diameter Liapor r© spheres (left), and 1-cm-size crushed limestone
(right) (Bejan, 1984).

two ways to do the averaging: spatial and statistical. In the spatial approach, a
macroscopic variable is defined as an appropriate mean over a sufficiently large
representative elementary volume (r.e.v.); this operation yields the value of that
variable at the centroid of the r.e.v. It is assumed that the result is independent of
the size of the representative elementary volume. The length scale of the r.e.v. is
much larger than the pore scale, but considerably smaller than the length scale of
the macroscopic flow domain (Fig. 1.2).
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Figure 1.2. The representative elementary volume (r.e.v.): the figure illustrates the in-
termediate size relative to the sizes of the flow domain and the pores.

In the statistical approach the averaging is over an ensemble of possible pore
structures that are macroscopically equivalent. A difficulty is that usually the sta-
tistical information about the ensemble has to be based on a single sample, and
this is possible only if statistical homogeneity (stationarity) is assumed.

If one is concerned only with deriving relationships between the space-averaged
quantities and is not concerned about their fluctuation, then the results obtained
by using the two approaches are essentially the same. Thus in this situation one
might as well use the simpler approach, namely the one based on the r.e.v. An
example of its use is given in Section 3.5. This approach is discussed at length by
Bear and Bachmat (1990). In recent years a number of problems have come to the
fore which require a statistical approach [see, for example, Georgiadis and Catton
(1987, 1988) and Georgiadis (1991)].

1.2. Porosity

The porosity � of a porous medium is defined as the fraction of the total volume
of the medium that is occupied by void space. Thus 1 − � is the fraction that is
occupied by solid. For an isotropic medium the “surface porosity” (that is, the
fraction of void area to total area of a typical cross section) will normally be equal
to �.

In defining � in this way we are assuming that all the void space is connected. If
in fact one has to deal with a medium in which some of the pore space is dis-
connected from the remainder, then one has to introduce an “effective porosity,”
defined as the ratio of connected void to total volume.
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For natural media, � does not normally exceed 0.6. For beds of solid spheres of
uniform diameter � can vary between the limits 0.2595 (rhombohedral packing)
and 0.4764 (cubic packing). Nonuniformity of grain size tends to lead to smaller
porosities than for uniform grains, because smaller grains fill the pores formed
by larger grains. For man-made materials such as metallic foams � can approach
the value 1. Table 1.1 shows a compilation of porosities and other properties of
common porous materials.

1.3. Seepage Velocity and the Equation of Continuity

We construct a continuum model for a porous medium, based on the r.e.v. concept.
We introduce a Cartesian reference frame and consider volume elements that are
sufficiently large compared with the pore volumes for reliable volume averages
to be obtained. In other words, the averages are not sensitive to the choice of
volume element. A distinction is made between an average taken with respect to
a volume element Vm of the medium (incorporating both solid and fluid material)
and one taken with respect to a volume element V f consisting of fluid only. For
example, we denote the average of the fluid velocity over Vm by v = (u, v, w).
This quantity has been given various names, by different authors, such as seepage
velocity, filtration velocity, superficial velocity, Darcy velocity, and volumetric
flux density. We prefer the term Darcy velocity since it is short and distinctive.
Taking an average of the fluid velocity over a volume V f we get the intrinsic
average velocity V, which is related to v by the Dupuit-Forchheimer relationship
v = �V.

Once we have a continuum to deal with, we can apply the usual arguments
and derive differential equations expressing conservation laws. For example, the
conservation of mass is expressed by the continuity equation

�
∂
 f

∂t
+ ∇ · (
 f v) = 0 (1.1)

where 
 f is the fluid density. This equation is derived by considering an elementary
unit volume of the medium and equating the rate of increase of the mass of the fluid
within that volume, ∂(�
 f )/∂t , to the net mass flux into the volume, −∇ · (
 f v),
noting that � is independent of t.

1.4. Momentum Equation: Darcy’s Law

We now discuss various forms of the momentum equation which is the porous-
medium analog of the Navier-Stokes equation. For the moment we neglect body
forces such as gravity; the appropriate terms for these can be added easily at a later
stage.
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6 1. Mechanics of Fluid Flow through a Porous Medium

1.4.1. Darcy’s Law: Permeability

Henry Darcy’s (1856) investigations into the hydrology of the water supply of
Dijon and his experiments on steady-state unidirectional flow in a uniform medium
revealed a proportionality between flow rate and the applied pressure difference.
In modern notation this is expressed, in refined form, by

u = − K

�

∂ P

∂x
(1.2)

Here ∂ P/∂x is the pressure gradient in the flow direction and � is the dynamic
viscosity of the fluid. The coefficient K is independent of the nature of the fluid
but it depends on the geometry of the medium. It has dimensions (length)2 and
is called the specific permeability or intrinsic permeability of the medium. In the
case of single phase flow we abbreviate this to permeability. The permeabilities
of common porous materials are summarized in Table 1.1. It should be noted that
in Eq. (1.2) P denotes an intrinsic quantity, and that Darcy’s equation is not a
balance of forces averaged over a r.e.v. Special care needs to be taken when adding
additional terms such as the one expressing a Coriolis force. One needs to take
averages over the fluid phase before introducing a Darcy drag term. (See Section
1.5.1 below.)

In three dimensions, Eq. (1.2) generalizes to

v = �−1K · ∇ P, (1.3)

where now the permeability K is in general a second-order tensor. For the case
of an isotropic medium the permeability is a scalar and Eq. (1.3) simplifies
to

∇ P = − �

K
v. (1.4)

Values of K for natural materials vary widely. Typical values for soils, in terms of the
unit m2, are: clean gravel 10−7–10−9, clean sand 10−9–10−12, peat 10−11–10−13,
stratified clay 10−13–10−16, and unweathered clay 10−16–10−20. Workers con-
cerned with geophysics often use as a unit of permeability the Darcy, which equals
0.987 × 10−12 m2.

Darcy’s law has been verified by the results of many experiments. Theoretical
backing for it has been obtained in various ways, with the aid of either deterministic
or statistical models. It is interesting that Darcy’s original data may have been
affected by the variation of viscosity with temperature (Lage, 1998). A refined
treatment of the mass and momentum conservation equations, based on volume
averaging, has been presented by Altevogt et al. (2003).

1.4.2. Deterministic Models Leading to Darcy’s Law

If K is indeed determined by the geometry of the medium, then clearly it is possible
to calculate K in terms of the geometrical parameters, at least for the case of simple
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geometry. A great deal of effort has been spent on this endeavor, and the results
are well presented by Dullien (1992).

For example, in the case of beds of particles or fibers one can introduce an
effective average particle or fiber diameter Dp. The hydraulic radius theory of
Carman-Kozeny leads to the relationship

K = D2
p2

�3

180(1 − �)2
, (1.5)

where

Dp2 =
∫ ∞

0
D3

ph
(
Dp

)
d Dp

/ ∫ ∞

0
D2

ph
(
Dp

)
d Dp (1.6)

and h(Dp) is the density function for the distribution of diameters Dp. The constant
180 in Eq. (1.5) was obtained by seeking a best fit with experimental results. The
Carman-Kozeny equation gives satisfactory results for media that consist of par-
ticles of approximately spherical shape and whose diameters fall within a narrow
range. The equation is often not valid in the cases of particles that deviate strongly
from the spherical shape, broad particle-size distributions, and consolidated me-
dia. Nevertheless it is widely used since it seems to be the best simple expression
available. A modified Carman-Kozeny theory was proposed by Liu et al. (1994).
A fibrous porous medium was modeled by Davis and James (1996). For randomly
packed monodisperse fibers, the experiments of Rahli et al. (1997) showed that
the Carman-Kozeny “constant” is dependent on porosity and fiber aspect ratio.
The Carman-Kozeny correlation has been applied to compressed expanded natu-
ral graphite, an example of a high porosity and anisotropic consolidated medium,
by Mauran et al. (2001). Li and Park (1998) applied an effective medium approx-
imation to the prediction of the permeability of packed beds with polydisperse
spheres.

1.4.3. Statistical Models Leading to Darcy’s Law

Many authors have used statistical concepts in the provision of theoretical sup-
port for Darcy’s law. Most authors have used constitutive assumptions in order to
obtain closure of the equations, but Whitaker (1986) has derived Darcy’s law, for
the case of an incompressible fluid, without making any constitutive assumption.
This theoretical development is not restricted to either homogeneous or spatially
periodic porous media, but it does assume that there are no abrupt changes in the
structure of the medium.

If the medium has periodic structure, then the homogenization method can be
used to obtain mathematically rigorous results. The method is explained in detail
by Ene and Poliševski (1987), Mei et al. (1996), and Ene (2004). The first authors
derive Darcy’s law without assuming incompressibility, and they go on to prove
that the permeability is a symmetric positive-definite tensor.
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1.5. Extensions of Darcy’s Law

1.5.1. Acceleration and Other Inertial Effects

Following Wooding (1957), many early authors on convection in porous media
used an extension of Eq. (1.4) of the form


 f

[
∂V
∂t

+ (V · ∇)V
]

= −∇ P − �

K
v (1.7)

which, when the Dupuit-Forchheimer relationship is used, becomes


 f

[
�−1 ∂v

∂t
+ �−2(v · ∇)v

]
= −∇ P − �

K
v. (1.8)

This equation was obtained by analogy with the Navier-Stokes equation. Beck
(1972) pointed out that the inclusion of the (v · ∇)v term was inappropriate because
it raised the order (with respect to space derivatives) of the differential equation,
and this was inconsistent with the slip boundary condition (appropriate when
Darcy’s law was employed). More importantly, the inclusion of (v · ∇)v is not a
satisfactory way of expressing the nonlinear drag, which arises from inertial effects,
since (v · ∇)v is identically zero for steady incompressible unidirectional flow no
matter how large the fluid velocity, and this is clearly in contradiction to experience.

There is a further fundamental objection. In the case of a viscous fluid a material
particle retains its momentum, in the absence of applied forces, when it is displaced
from a point A to a neighboring arbitrary point B. But in a porous medium with a
fixed solid matrix this is not so, in general, because some solid material impedes
the motion and causes a change in momentum. The (v · ∇)v term is generally
small in comparison with the quadratic drag term (see Section 1.5.2) and then it
seems best to drop it in numerical work. This term needs to be retained in the
case of highly porous media. Also, at least the irrotational part of the term needs
to be retained in order to account for the phenomenon of choking in high-speed
flow of a compressible fluid (Nield, 1994b). Nield suggested that the rotational
part, proportional to the intrinsic vorticity, be deleted. His argument is based on
the expectation that a medium of low porosity will allow scalar entities like fluid
speed to be freely advected, but will inhibit the advection of vector quantities
like vorticity. It is now suggested that even when vorticity is being continuously
produced (e.g. by buoyancy), one would expect that it would be destroyed by
a momentum dispersion process due to the solid obstructions. The claim that
the (v · ∇)v term is necessary to account for boundary layer development is not
valid; viscous diffusion can account for this. Formal averaging of the Navier-
Stokes equation leads to a (v · ∇)v term, but this is deceptive. Averaging methods
inevitably involve a loss of information with respect to the effects of geometry on
the flow.

With the (v · ∇)v term dropped, Eq. (1.8) becomes


 f

�

∂v
∂t

= −∇ P − �

K
v. (1.9)
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One can now question whether the remaining inertial term (the left-hand side of
this equation) is correct. It has been derived on the assumption that the partial
derivative with respect to time permutes with a volume average, but in general this
is not valid. The inadequacy of Eq. (1.9) can be illustrated by considering an ideal
medium, one in which the pores are identical parallel tubes of uniform circular
cross section of radius a. Equation (1.9) leads to the prediction that in the presence
of a constant pressure gradient any transient will decay like exp[−(��/K
 f )t],
whereas from the exact solution for a circular pipe [see, for example, formula
(4.3.19) of Batchelor (1967)] one concludes that the transient should decay ap-
proximately like exp[−(λ1

2�/a2
 f )t], where λ1 = 2.405 is the smallest positive
root of J0(λ) = 0, and where J0 is the Bessel function of the first kind of order
zero. In general, these two exponential decay terms will not be the same. It appears
that the best that one can do is to replace Eq. (1.9) by


 f ca · ∂v
∂t

= −∇ P − �

K
v, (1.10)

where ca is a constant tensor that depends sensitively on the geometry of the
porous medium and is determined mainly by the nature of the pore tubes of largest
cross sections (since in the narrower pore tubes the transients decay more rapidly).
We propose that ca be called the “acceleration coefficient tensor” of the porous
medium. For the special medium introduced above, in which we have unidirectional
flow, the acceleration coefficient will be a scalar, ca = a2/λ1

2 K . If the Carman–
Kozeny formula (Eq. 1.5) is valid and if Dp2 can be identified with a/� where �
is some constant, then

ca = 180� 2(1 − �)2/λ2
1�3 = 31.1� 2(1 − �)2/�3. (1.11)

Liu and Masliyah (2005) present an equation, obtained by volumetric averaging,
that does indicate a slower decaying speed than that based on the straight passage
model. They also say that the decaying speed is expected to be much faster than
that for a medium free from solids, and it is this characteristic that makes the
flow in a porous medium more hydrodynamically stable than that in an infinitely
permeable medium and delayed turbulence is expected.

In any case, one can usually drop the time derivative term completely because in
general the transients decay rapidly. An exceptional situation is when the kinematic
viscosity 	 = �/
 f of the fluid is small in comparison with K/t0 where t0 is the
characteristic time of the process being investigated. This criterion is rarely met
in studies of convection. Even for a liquid metal (	 ∼ 10−7m2 s−1) and a material
of large permeability (K ∼ 10−7m2) it requires t0 � 1s. However, it is essential
to retain the time-derivative term when modeling certain instability problems: see
Vadasz (1999).

For a porous medium in a frame rotating with angular velocity � with respect
to an inertial frame, in Eq. (1.8) P is replaced by P − 
 f |� × x|2/2, where x is
the position vector, and a term 
 f � × v/� is added on the left-hand side.

If the fluid is electrically conducting, then in Eq. (1.8) P is replaced by P +
|B|2/2�m , where B is the magnetic induction and �m is the magnetic permeability,



10 1. Mechanics of Fluid Flow through a Porous Medium

and a term (B.∇)B/��m is added to the right-hand side. In most practical cases
the effect of a magnetic field on convection will be negligible, for reasons spelled
out in Section 6.21.

The solution of the momentum equation and equation of continuity is commonly
carried out by using the vector operators div and curl to solve in succession for
the rotational and irrotational parts of the velocity field. The accuracy of the nu-
merical solution thus obtained depends on the order of performing the operations.
Wooding (2005) showed that taking a certain linear combination of the two solu-
tions produces a solution of optimal accuracy.

1.5.2. Quadratic Drag: Forchheimer’s Equation

Darcy’s equation (1.3) is linear in the seepage velocity v. It holds when v is
sufficiently small. In practice, “sufficiently small” means that the Reynolds number
Rep of the flow, based on a typical pore or particle diameter, is of order unity or
smaller. As v increases, the transition to nonlinear drag is quite smooth; there is no
sudden transition as Rep is increased in the range 1 to 10. Clearly this transition is
not one from laminar to turbulent flow, since at such comparatively small Reynolds
numbers the flow in the pores is still laminar. Rather, the breakdown in linearity
is due to the fact that the form drag due to solid obstacles is now comparable with
the surface drag due to friction. According to Joseph et al. (1982) the appropriate
modification to Darcy’s equation is to replace Eq. (1.4) by

∇ P = − �

K
v − cF K −1/2
 f |v| v, (1.12)

where cF is a dimensionless form-drag constant. Equation (1.12) is a modification
of an equation associated with the names of Dupuit (1863) and Forchheimer (1901);
see Lage (1998). For simplicity, we shall call Eq. (1.12) the Forchheimer equation
and refer to the last term as the Forchheimer term, but in fact the dependence on

 f K −1/2 is a modern discovery (Ward, 1964). Ward thought that cF might be a
universal constant, with a value of approximately 0.55, but later it was found that
cF does vary with the nature of the porous medium and can be as small as 0.1
in the case of foam metal fibers. Beavers et al. (1973) showed that the bounding
walls could have a substantial effect on the value of cF , and found that their data
correlated fairly well with the expression

cF = 0.55

(
1 − 5.5

d

De

)
, (1.13)

where d is the diameter of their spheres and De is the equivalent diameter of the
bed, defined in terms of the height h and width w of the bed by

De = 2wh

w + h
. (1.14)

The numerical calculations of Coulaud et al. (1988) on flow past circular cylinders
suggest that cF varies as �−1 for � less than 0.61.
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Figure 1.3. The transition from the Darcy regime to the Forchheimer regime in
unidirectional flow through an isothermal saturated porous medium (Ward, 1964).

Equation (1.12) is invariant under a rotation of coordinate frame. Kaviany (1995)
gives a form for the Forchheimer term [see his Eq. (2.57)], which does not have this
property, and he gives no evidence for his claim that his form is more in accordance
with the experimental results.

The transition from the Darcy regime to the Forchheimer regime is illustrated in
Fig. 1.3. The data refer to unidirectional isothermal flow with the seepage velocity
	 in the direction x. Plotted on the ordinate is the “friction factor” fK , which is
based on K 1/2 as length scale. The abscissa belongs to the Reynolds number based
on K 1/2. Figure 1.3 shows that the transition occurs in the ReK range 1–10. At
higher Reynolds numbers, the quadratic drag term dominates on the right-hand
side of Eq. (1.12), and fK becomes the same as cF .

Associated with the transition to pore-scale turbulence, the coefficient cF varies
with velocity. For a limited range, one can take cF to be linear in velocity. That
means that the drag is cubic in velocity. Experiments reported by Lage et al.
(1997) show this behavior. Extensive experimental data for flow in packed beds
were presented by Achenbach (1995). This sort of cubic variation is distinct from
that which occurs for small values of the pore-based Reynolds number. Firdaouss
et al. (1997) showed that, under fairly general assumptions and for periodic porous
media whose period is of the same order as that of the inclusion, the nonlinear
correction to Darcy’s law is cubic with respect to the Darcy number. In this case the
quadratic term vanishes. The case of anisotropic media was discussed by Skjetne
and Auriault (1999a). However, Lage and Antohe (2000) demonstrated that this
mathematically valid cubic extension is irrelevant in practice, and they suggested
an alternative parameter, in place of the Reynolds number, to characterize the
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transition from linearity. A further limit on the applicability of a Forchheimer-type
law was noted by Montillet (2004). The validation of Forchheimer’s law for flow
through porous media with converging boundaries was discussed by Venkataraman
and Rao (2000). An extra term, involving |v|1/2v [effectively the geometric mean
of the two terms on the right-hand side of Eq. (1.12)] was introduced by Hsu and
Cheng (1990). They argued that this modification was necessitated by the need to
allow for the viscous boundary layer effect at intermediate values of the Reynolds
number. The modification is supported by the results of pressure drop experiments
reported by Hsu et al. (1999). However, for practical thermal convection problems
the inclusion of this term in the model leads to relatively little improvement in
explanatory power, and so the term is usually neglected.

The transition from Darcy flow (1.4) to Darcy-Forchheimer flow [Eq. (1.12)]
occurs when ReK is of order 102. This transition is associated with the occurrence
of the first eddies in the fluid flow, for example, the rotating fluid behind an obstacle
or a backward facing step. The order of magnitude ReK ∼ 102 is one in a long
list of constructal theory results that show that the laminar-turbulent transition
is associated with a universal local Reynolds number of order 102 (Bejan, 1984,
p. 213).

To derive ReK ∼ 102 from turbulence, assume that the porous structure is made
of three-dimensional random fibers that are so sparsely distributed that � ≤ 1.
According to Koponen et al. (1998), in this limit the permeability of the structure
is correlated very well by the expression K = 1.39D2/[e10.1(1−�) − 1], where D
is the fiber diameter. In this limit the volume-averaged velocity u� has the same
scale as the velocity of the free stream that bathes every fiber. It is well known
that vortex shedding occurs when ReD = u D/	 ∼ 102 (e.g., Bejan, 2000, p. 155).
By eliminating D between the above expressions for K and ReD , we calculate
ReK = uK 1/2/	 and find that when eddies begin to appear, the ReK value is in the
range 100 to 200 when � is in the range 0.9 to 0.99.

Equation (1.12) is the form of Forchheimer’s equation that we recommend for
use, but for reference we note that Irmay (1958) derived an alternate equation, for
unidirectional flow, of the form

d P

dx
= −��(1 − �)2	

d2
p�3

− �
 f (1 − �)	2

dp�3
(1.15)

where dp is the mean particle diameter and � and � are shape factors that must
be determined empirically. With � = 1.75 and � = 150 this equation is known as
Ergun’s equation. The linear terms in Eq. (1.15) and the unidirectional case of Eq.
(1.12) can be made identical by writing

K = d2
P �3

� (1 − �)2 (1.16)

which is Kozeny’s equation, but it is not possible at the same time to make the
quadratic terms identical, in general. Some authors have forced them to be identical
by taking cF = ��−1/2�−3/2, and they have then used this expression in their
numerical computations. It should be appreciated that this is an ad hoc procedure.
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Either Eqs. (1.12) or (1.15) correlates well with available experimental data (see,
for example, Macdonald et al., 1979). A correlation slightly different from that
of Ergun was presented by Lee and Ogawa (1994). Papathanasiou et al. (2001)
showed that for fibrous material the Ergun equation overpredicts the observed
friction factor when the usual Reynolds number (based on the particle diameter)
is greater than unity, and they proposed an alternative correlation, based directly
on the Forchheimer equation and a Reynolds number based on the square root of
the permeability.

For further discussion of the Forchheimer equation, supporting the viewpoint
taken here, see Barak (1987) and Hassanizadeh and Gray (1988). They emphasize
that the averaging of microscopic drag forces leads to a macroscopic nonlinear
theory for flow, but the average of microscopic inertial terms is negligible in
typical practical circumstances. It seems that the need for fluid to flow around solid
particles leads to a reduction in the coherence of the fluid momentum pattern, so
that on the macroscopic scale there is negligible net transfer of momentum in a
direction transverse to the seepage velocity vector. An analytical development
based on form drag was given by du Plessis (1994). An analysis of the way in
which microscopic phenomena give rise to macroscopic phenomena was presented
by Ma and Ruth (1993).

The ratio of the convective inertia term 
�−2(v · ∇)v to the quadratic drag term
is of order K 1/2/cF �2L , where L is the characteristic length scale. This ratio is
normally small, and hence it is expected that the calculations of the heat transfer
which have been made by several authors, who have included both terms in the
equation of motion, are not significantly affected by the convective inertia term.
This has been confirmed for two cases by Lage (1992) and Manole and Lage
(1993).

A momentum equation with a Forchheimer correction was obtained using the
method of volume averaging by Whitaker (1996). A generalized Forchheimer
equation for two-phase flow based on hybrid mixture theory was proposed by
Bennethum and Giorgi (1997). Other derivations have been given by Giorgi (1997)
(via matched asymptotic expansions), Chen et al. (2001) (via homogenization),
and Levy et al. (1999) (for the case of a thermoelastic medium). A generalized
tensor form applicable to anisotropic permeability was derived by Knupp and
Lage (1995). An alternative derivation for anisotropic media was given by Wang
et al. (1999). An attempt to determine the values of the constants in an Ergun-
type equation by numerical simulation for an array of spheres was reported by
Nakayama et al. (1995). A reformulation of the Forchheimer equation, involving
two Reynolds numbers, was made by Teng and Zhao (2000). Lee and Yang (1997)
investigated Forchheimer drag for flow across a bank of circular cylinders. The
effective inertial coefficient for a heterogenous prorus medium was discussed by
Fourar et al. (2005).

Lage et al. (2005) prefer to work in terms of a form coefficient C related to cF

by C = cF L/K 1/2, where L is a global characteristic length such as the length
of a channel. They introduce a protocol for the determination of K and C , using
Darcy’s law for a porous medium and Newton’s law of flow round a bluff body as
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constitutive equations defining K and C , respectively. Their analysis shows that
the model equation for measuring C requires the separation between the viscous-
drag effect imposed by the porous medium and the viscous effect of the boundary
walls on the measured pressure drop when defining K .

1.5.3. Brinkman’s Equation

An alternative to Darcy’s equation is what is commonly known as Brinkman’s
equation. With inertial terms omitted this takes the form

∇ P = − �

K
v + �̃∇2v. (1.17)

We now have two viscous terms. The first is the usual Darcy term and the second
is analogous to the Laplacian term that appears in the Navier-Stokes equation. The
coefficient �̃ is an effective viscosity. Brinkman set � and �̃ equal to each other,
but in general that is not true.

In recent papers Eq. (1.17) has been referred to as “Brinkman’s extension of
Darcy’s law” but this is a misleading expression. Brinkman (1947a,b) did not just
add another term. Rather, he obtained a relationship between the permeability K
and the porosity � for an assembly of spheres a “self-consistant” procedure, which
is valid only when the porosity is sufficiently large, � > 0.6 according to Lundgren
(1972). This requirement is highly restrictive since, as we have noted earlier, most
naturally occurring porous media have porosities less than 0.6.

When the Brinkman equation is employed as a general momentum equation,
the situation is more complicated. In Eq. (1.17) P is the intrinsic fluid pressure,
so each term in that equation represents a force per unit volume of the fluid. A
detailed averaging process leads to the result that, for an isotropic porous medium,
�̃/� = 1/�T ∗, where T ∗ is a quantity called the tortuosity of the medium (Bear
and Bachmat, 1990, p. 177). Thus �̃/� depends on the geometry of the medium.
This result appears to be consistent with the result of Martys et al. (1994), who
on the basis of a study in which a numerical solution of the Stokes’ equation
was matched with a solution of Brinkman’s equation for a flow near the interface
between a clear fluid and a porous medium, concluded that the value of �̃/�
had to exceed unity, and increased monotonically with decreasing porosity. Liu
and Masliyah (2005) summarize the current understanding by saying that the
numerical simulations have shown that, depending upon the type of porous media,
the effective viscosity may be either smaller or greater then the viscosity of the
fluid. On the one hand, straight volume averaging as presented by Ochoa-Tapia
and Whitaker (1995a) gives �̃/� = 1/�, greater than unity. On the other hand,
analyses such as that by Sáez et al. (1991) give �̃/� close to a tortuosity  , defined
as dx/ds where s(x) is the distance along a curve, a quantity that is less than unity.
Liu and Masliyah (2005) suggest that one can think of the difference between �̃
and � as being due to momentum dispersion. They say that it has been generally
accepted that �̃ is strongly dependent on the type of porous medium as well as the
strength of flow. They note that there are further complications if the medium is
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not isotropic. They also note that it is common practice for �̃ to be taken as equal
for � for high porosity cases.

Experimental checks of Brinkman’s theory have been indirect and few in num-
ber. Lundgren refers to measurements of flows through cubic arrays of spherical
beads on wires, which agree quite well with the Brinkman formula for permeabil-
ity as a function of porosity. Givler and Altobelli (1994) matched theoretical and
observed velocity profiles for a rigid foam of porosity 0.972 and obtained a value
of about 7.5 for �̃/�. In our opinion the Brinkman model is breaking down when
such a large value of �̃/� is needed to match theory and experiment. Some pre-
liminary results of a numerical investigation by Gerritsen et al. (2005) suggest that
the Brinkman equation is indeed not uniformly valid as the porosity tends to unity.

It was pointed out by Tam (1969) that whenever the spatial length scale is much
greater than (�̃K/�)1/2 the ∇2v term in Eq. (1.17) is negligible in comparison
with the term proportional to v, so that Brinkman’s equation reduces to Darcy’s
equation. Levy (1981) showed that the Brinkman model holds only for particles
whose size is of order �3, where � (� 1) is the distance between neighboring
particles; for larger particles the fluid filtration is governed by Darcy’s law and for
smaller particles the flow does not deviate from that for no particles. Durlofsky and
Brady (1987), using a Green’s function approach, concluded that the Brinkman
equation was valid for � > 0.95. Rubinstein (1986) introduced a porous medium
having a very large number of scales, and concluded that it could be valid for � as
small as 0.8.

We conclude that for many practical purposes there is no need to include the
Laplacian term. If it is important that a no-slip boundary condition be satisfied,
then the Laplacian term is indeed required; but its effect is significant only in a
thin boundary layer whose thickness is of order (�̃K/�)1/2, the layer being thin
since the continuum hypothesis requires that K 1/2 � L where L is a characteristic
macroscopic length scale of the problem being considered. When the Brinkman
equation is employed, it usually will be necessary to also account for the effects
of porosity variation near the wall (see Section 1.7).

There are situations in which some authors have found it convenient to use the
Brinkman equation. One such situation is when one wishes to compare flows in
porous media with those in clear fluids. The Brinkman equation has a parameter
K (the permeability) such that the equation reduces to a form of the Navier-Stokes
equation as K → ∞ and to the Darcy equation as K → 0. Another situation is
when one wishes to match solutions in a porous medium and in an adjacent viscous
fluid. But usage of the Brinkman equation in this way is not without difficulty, as
we point out in the following section.

Several recent authors have added a Laplacian term to Eq. (1.12) to form a
“Brinkman-Forchheimer” equation. The validity of this is not completely clear.
As we have just seen, in order for Brinkman’s equation to be valid, the porosity
must be large, and there is some uncertainty about the validity of the Forchheimer
law at such large porosity. A scale analysis by Lage (1993a) revealed the distinct
regimes in which the various terms in the Brinkman-Forchheimer equation were
important or not.
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It is possible to derive a Brinkman-Forchheimer equation by formal averaging,
but only after making a closure that incorporates some empirical material and that
inevitably involves loss of information. Clarifying earlier work by Vafai and Tien
(1981) and Vafai and Tien (1982), Hsu and Chang (1990) obtained an equation
that in our notation can be written


 f

[
1

�

∂v
∂t

+ 1

�
∇

(
v · v

�

)]
= −∇ P + �

� 
 f
∇2v − �

K
v − cF 
 f

K 1/2
|v| v. (1.18)

For an incompressible fluid, ∇ · v = 0, and so �−1∇(�−1v · v) reduces to �−1v ·
∇(v/�), and then Eq. (1.21) becomes an easily recognizable combination of Eqs.
(1.8), (1.12), and (1.17). The position of the factor � in relation to the spatial
derivatives is important if the porous medium is heterogeneous.

If L is the appropriate characteristic length scale, the ratio of the last term in Eq.
(1.17) to the previous term is of the order of magnitude of (�̃/�)K/L2, the Darcy
number. Authors who assume that �̃ = � define the Darcy number to be K/L2.
The value of Da is normally much less than unity, but Weinert and Lage (1994)
reported a sample of a compressed aluminum foam 1-mm thick, for which Da was
about 8. Nield and Lage (1997) have proposed the term “hyperporous medium” for
such a material. The flow in their sample was normal to the smallest dimension,
and so, unlike in Vafai and Kim (1997), the sample was not similar to a thin
screen. When the Brinkman term is comparable with the Darcy term throughout
the medium, the K which appears in Eq. (1.17) can no longer be determined by a
simple Darcy-type experiment.

Further work in the spirit of Brinkman has been carried out. For example,
Howells (1998) treated flow through beds of fixed cylindrical fibers. Efforts to
produce consistency between the Brinkman equation and the lattice Boltzmann
method have been reported by Martys (2001).

In the case when the fluid is a rarefied gas and the Knudsen number (ratio
of the mean free path to a characteristic length) has a large value, velocity slip
occurs in the fluid at the pore boundaries. This phenomenon is characteristic of
a reduction in viscosity. Hence in these circumstances one could expect that the
Darcy and Brinkman drag terms (the viscous terms) would become insignificant
in comparison with the Forchheimer drag term (the form drag term). At very large
values of the Knudsen number a continuum model is not appropriate on the pore
scale, but on the REV scale a continuum model may still be useful.

1.5.4. Non-Newtonian Fluid

Shenoy (1994) has reviewed studies of flow in non-Newtonian fluids in porous
media, with attention concentrated on power-law fluids. He suggested, on the
basis of volumetric averaging, that the Darcy term be replaced by (�∗/K ∗)vn−1v,
the Brinkman term by (�∗/�n)∇{|[0.5� : �]1/2|n−1�} for an Ostwald-deWaele
fluid, and the Forchheimer term be left unchanged (because it is independent of
the viscosity). Here n is the power-law index, �∗ reflects the consistency of the
fluid, K ∗ is a modified permeability, and � is the deformation tensor. We would
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replace �∗ in the Brinkman term by an equivalent coefficient, not necessarily the
same as that in the Darcy term. A similar momentum equation was obtained by
Hayes et al. (1996) using volume averaging.

Some wider aspects have been discussed by Shah and Yortsos (1995). Using
homogenization theory, they show that the macroscopic power law has the same
form as the power law for a single capillary, at low Reynolds numbers (a regime that
is reached at low velocities only if n < 2). However, the power-law permeability
may depend also on the orientation of the pressure gradient. The homogenization
method, together with the theory of isotropic tensor function of tensor arguments,
was used by Auriault et al. (2002b) to treat anisotropic media. An alternative model
was proposed by Liu and Masliyah (1998). Numerical modeling of non-Newtonian
fluids in a three-dimensional periodic array was reported by Inoue and Nakayama
(1998).

1.6. Hydrodynamic Boundary Conditions

In order to be specific, we consider the case where the region y < 0 is occupied by a
porous medium, and there is a boundary at y = 0, relative to Cartesian coordinates
(x, y, z). If the boundary is impermeable, then the usual assumption is that the
normal component of the seepage velocity v = (u, v, w) must vanish there, i.e.,

	 = 0 at y = 0. (1.19)

If Darcy’s law is applicable, then, since that equation is of first-order in the spatial
derivatives, only one condition can be applied at a given boundary. Hence the other
components of the velocity can have arbitrary values at y = 0; i.e., we have slip
at the boundary.

If instead of being impermeable the boundary is free (as in the case of a liquid-
saturated medium exposed to the atmosphere), then the appropriate condition is
that the pressure is constant along the boundary. If Darcy’s law is applicable and
the fluid is incompressible, this implies that

∂v

∂y
= 0 at y = 0. (1.20)

This conclusion follows because at y = 0 we have P = constant for all x
and z, so ∂ P/∂x = ∂ P/∂z = 0, and hence u = w = 0 for all x and z. Hence
∂u/∂x = ∂w/∂z = 0 at y = 0. Since the equation of continuity

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0 (1.21)

holds for y = 0, we deduce the boundary condition (1.20).
If the porous medium is adjacent to clear fluid identical to that which saturates

the porous medium, and if there is unidirectional flow in the x direction (Fig. 1.4),
then according to Beavers and Joseph (1967) the appropriate boundary condition
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Figure 1.4. Velocity profile for unidirectional flow through a fluid channel bounded by
an impermeable wall and a saturated porous medium.

is the empirical relationship

∂u f

∂y
= �B J

K 1/2
(u f − um), (1.22)

where u f is the velocity in the fluid and um is the seepage velocity in the porous
medium. It is understood that in Eq. (1.22) u f and ∂u f /∂y are evaluated at y = 0+

and um is evaluated at some small distance from the plane y = 0, so there is a thin
layer just inside the medium over which the transition in velocity takes place.

The quantity �B J is dimensionless and is independent of the viscosity of the
fluid, but it depends on the material parameters that characterize the structure of
the permeable material within the boundary region. In their experiments Beavers
and Joseph found that �B J had the values 0.78, 1.45, and 4.0 for Foametal having
average pore sizes 0.016, 0.034, and 0.045 inches, respectively, and 0.1 for Aloxite
with average pore size 0.013 or 0.027 inches. More evidence for the correctness
of this boundary condition was produced by Beavers et al. (1970, 1974). Sahraoui
and Kaviany (1992) have shown that the value of �B J depends on the flow di-
rection at the interface, the Reynolds number, the extent of the clear fluid, and
nonuniformities in the arrangement of solid material at the surface.

Some theoretical support for the Beavers-Joseph condition is provided by the
results of Taylor (1971) and Richardson (1971), based on an analogous model
of a porous medium, and by the statistical treatment of Saffman (1971). Saffman
pointed out that the precise form of the Beavers-Joseph condition was special to
the planar geometry considered by Beavers and Joseph, and in general was not in
fact correct to order K . Saffman showed that on the boundary

u f = K 1/2

�B J

∂u f

∂n
+ O(K ), (1.23)

where n refers to the direction normal to the boundary. In Eq. (1.22) um is O(K),
and thus may be neglected if one wishes.
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Jones (1973) assumed that the Beavers-Joseph condition was essentially a re-
lationship involving shear stress rather than just velocity shear, and on this view
Eq. (1.22) would generalize to

∂u f

∂y
+ ∂v f

∂x
= �B J

K 1/2
(u f − um) (1.24)

for the situation when v f was not zero. This seems plausible, but apparently it has
not yet been confirmed. However, Straughan (2004b) has argued that one should
give consideration to the Jones version, because it and not the original Beavers-
Joseph version is properly invariant.

Taylor (1971) observed that the Beavers-Joseph condition can be deduced as a
consequence of the Brinkman equation. This idea was developed in detail by Neale
and Nader (1974), who showed that in the problem of flow in a channel bounded
by a thick porous wall one gets the same solution with the Brinkman equation
as one gets with the Darcy equation together with the Beavers-Joseph condition,
provided that one identifies �B J with (�̃/�)1/2.

Near a rigid boundary the porosity of a bed of particles is often higher than
elsewhere in the bed because the particles cannot pack so effectively right at the
boundary (see Section 1.7). One way of dealing with the channeling effect that can
arise is to model the situation by a thin fluid layer interposed between the boundary
and the porous medium, with Darcy’s equation applied in the medium and with the
Beavers-Joseph condition applied at the interface between the fluid layer and the
porous medium. Nield (1983) applied this procedure to the porous-medium analog
of the Rayleigh-Bénard problem. Alternatively, the Brinkman equation, together
with a formula such as Eq. (1.26), can be employed to model the situation.

Haber and Mauri (1983) proposed that the boundary condition v · n = 0 at the
interface between a porous medium and an impermeable wall should be replaced by

v · n = K 1/2∇t · vt , (1.25)

where v is the velocity inside the porous medium and vt is its tangential
component, and where ∇t is the tangential component of the operator ∇. Haber
and Mauri argue that Eq. (1.25) should be preferred to v · n = 0, since the former
accords better with solutions obtained by solving some model problems using
Brinkman’s equation. For most practical purposes there is little difference between
the two alternatives, since K 1/2 will be small compared to the characteristic length
scale L in most situations.

A difficulty arises when one tries to match the solution of Brinkman’s equation
for a porous medium with the solution of the usual Navier-Stokes equation for an
adjacent clear fluid, as done by Haber and Mauri (1983), Somerton and Catton
(1982), and subsequent authors. In implementing the continuity of the tangential
component of stress they use equations equivalent to the continuity of �∂u/∂y
across the boundary at y = 0. Over the fluid portion of the interface the clear
fluid value of �∂u/∂y matches with the intrinsic value of the same quantity in the
porous medium, but over the solid portion of the interface the matching breaks
down because there in the clear fluid �∂u/∂y has some indeterminate nonzero
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value while the porous medium value has to be zero. Hence the average values of
�∂u/∂y in the clear fluid and in the medium do not match.

Authors who have specified the matching of �∂u/∂y have overdetermined the
system of equations. This leads to overprediction of the extent to which motion
induced in the clear fluid is transmitted to the porous medium. The availability of
the empirical constant �B J in the alternative Beavers-Joseph approach enables one
to deal with the indeterminancy of the tangential stress requirement.

There is a similar difficulty in expressing the continuity of normal stress, which
is the sum of a pressure term and a viscous term. Some authors have argued that
the pressure, being an intrinsic quantity, has to be continuous across the interface.
Since the total normal stress is continuous, that means that the viscous term must
also be continuous. Such authors have overdetermined the system of equations.
It is true that the pressure has to be continuous on the microscopic scale, but on
the macroscopic scale the interface surface is an idealization of a thin layer in
which the pressure can change substantially because of the pressure differential
across solid material. In practice the viscous term may be small compared with
the pressure, and in this case the continuity of total normal stress does reduce
to the approximate continuity of pressure. Also, for an incompressible fluid, the
continuity of normal stress does reduce to continuity of pressure if one takes
the effective Brinkman viscosity equal to the fluid viscosity, as shown by Chen
and Chen (1992). Authors who have formulated a problem in terms of stream
function and vorticity have failed to deal properly with the normal stress bound-
ary condition (Nield, 1997a). For a more soundly based procedure for numerical
simulation and for a further discussion of this matter, the reader is referred to
Gartling et al. (1996).

Ochoa-Tapia and Whitaker (1995a,b) have expressly matched the Darcy and
Stokes equations using the volume-averaging procedure. This approach produces
a jump in the stress (but not in the velocity) and involves a parameter to be fit-
ted experimentally. They also explored the use of a variable porosity model as a
substitute for the jump condition and concluded that the latter approach does not
lead to a successful representation of all the experimental data, but it provides
insight into the complexity of the interface region. Kuznetsov (1996a) applied the
jump condition to flows in parallel-plate and cylindrical channels partially filled
with a porous medium. Kuznetsov (1997b) reported an analytical solution for flow
near an interface. Ochoa-Tapia and Whitaker (1998) included inertia effects in a
momentum jump condition. Questions about mathematical continuity were dis-
cussed by Payne and Straughan (1998). Homogenization of wall-slip gas flow was
treated by Skjetne and Auriault (1999b). Matching using a dissipation function was
proposed by Cieszko and Kubik (1999). Modeling of the interface using a tran-
sition layer was introduced by Murdoch and Soliman (1999) and Goyeau et al.
(2003, 2004). Layton et al. (2003) introduced a finite-element scheme that allows
the simulation of the coupled problem to be uncoupled into steps involving porous
media and fluid flow subproblems. (They also proved the existence of weak solu-
tions for the coupled Darcy and Stokes equations.) Numerical treatments of jump
conditions include those by Silva and de Lemos (2003a) and Costa et al. (2004).
The interfacial region was modeled by Stokes flow in a channel partly filled with
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an array of circular cylinders beside one wall by James and Davis (2001). Their
calculations show that the external flow penetrates the porous medium very little,
even for sparse arrays, with a velocity um about one quarter of that predicted by
the Brinkman model.

Shavit et al. (2002, 2004) have simulated the interface using a Cantor-Taylor
brush configuration to model the porous medium. They also reported the results of
particle image velocimetry measurements that showed that the concept of apparent
viscosity did not provide a satisfactory agreement. They proposed that the standard
Brinkman equation be replaced by a set of three equations.

Salinger et al. (1994a) found that a Darcy-slip finite-element formulation pro-
duced solutions that were more accurate and more economical to compute than
those obtained using a Brinkman formulation. A further study using a finite-
element scheme was reported by Nassehi (1998).

Similar considerations apply at the boundary between two porous media. Con-
servation of mass requires that the normal component of 
 f v, the product of fluid
density and seepage velocity, be continuous across the interface. For media in
which Darcy’s law is applicable only one other hydrodynamic boundary condition
can be imposed and that is that the pressure is continuous across the interface. The
fluid mechanics of the interface region between two porous layers, one modeled by
the Forchheimer equation and the other by the Brinkman equation, were analyzed
by Allan and Hamdan (2002).

A range of hydrodynamic and thermal interfacial conditions between a porous
medium and a fluid layer were analyzed by Alazmi and Vafai (2001). In general it
is the velocity field that is sensitive to variation in boundary conditions, while the
temperature field is less sensitive and the Nusselt number is even less sensitive.
Goharzadeh et al. (2005) performed experiments and observed that the thickness
of the transition zone is order of the grain diameter, and hence much larger than the
square root of the permeability as predicted by some previous theoretical studies.
Min and Kim (2005) have used the special two-dimensional model of Richardson
(1971) as the basis for an extended analysis of thermal convection in a composite
channel.

1.7. Effects of Porosity Variation

In a porous bed filling a channel or pipe with rigid impermeable walls there is
in general an increase in porosity as one approaches the walls, because the solid
particles are unable to pack together as efficiently as elsewhere because of the
presence of the wall. Experiments have shown that the porosity is a damped oscil-
latory function of the distance from the wall, varying from a value near unity at the
wall to nearly core value at about five diameters from the wall. These oscillations
are illustrated by the experimental data (the circles) plotted in Fig. 1.5.

The notion of volume averaging over a r.e.v. breaks down near the wall, and
most investigators have assumed a variation of the form (Fig. 1.5)

� = �∞

[
1 + C exp

(
−N

y

dp

)]
, (1.26)
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Figure 1.5. The variation of porosity near the wall (Cheng et al., 1991, with permission
from Kluwer Academic Publishers).

where y is the distance from the wall, dp is the particle diameter, and C and N are
empirical constants. Recent experiments have indicated that appropriate values are
C = 1.4 and N = 5 or 6 for a medium with �∞ = 0.4.

As a consequence of the porosity increase in the vicinity of the wall, the velocity
of a flow parallel to the wall increases as the wall is approached and goes through a
maximum before it decreases to zero (to satisfy the no-slip condition). In general,
this leads to a net increase in volume flux, i.e., to the phenomenon called the
channeling effect.

As Georgiadis and Catton (1987) have pointed out, there also is a more general
phenomenon that arises because of porosity variation in association with quadratic
drag. To illustrate this, consider the steady fully developed two-dimensional flow
through a channel. The unidirectional nondimensional velocity profile q(y) for
flow parallel to the x axis is the solution of a boundary value problem of the
following form (Brinkman-Forchheimer):

d2q

dy2
= d P

dx
+ K q + � |q| q with q(±1) = 0. (1.27)

The quantities K and � depend on the porosity � [compare the Irmay-Ergun equa-
tion (1.15)]. The solution of Eq. (1.27), with the boundary layer term omitted, is

q = (3�)1/2

�
− K

2�
, (1.28)

where

� = −d P

dx

�

3
+ K 2

12
. (1.29)

The mean flow rate over the channel cross section is given by the spatial average of
Eq. (1.27), and assuming statistical homogeneity this is equivalent to an ensemble
average with � as the variable. It is easily shown that the function q(�) of the
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random variable � is convex in the interval [0,1] if the Ergun relationships hold.
This implies that for the same pressure gradient along the channel the mean flux is
larger when there is a spatial variation of porosity: q̄(�̄) > q (�̄). This means that
if we use the average value �̄ of the porosity, we obtain only a lower bound for
the flow rate through the packed bed. Georgiadis and Catton (1987) found that in
one realistic case q (�̄) could be 9 percent greater than q (�̄). Pressure drop/flow
rate measurements therefore would give an effective value for the permeability
greater than that otherwise expected. Fu and Huang (1999) showed that random
porosity led to a negative correlation between local Nusselt number and nearwall
local porosity.

1.8. Turbulence in Porous Media

The nonlinear spectral analysis of Rudraiah (1988) was based on a Brinkman
model valid for high porosity only, and so is of questionable use for media in
which the solid material inhibits the formation of macroscopic eddies. Masuoka
and Takatsu (1996) used a volume-averaging procedure to produce a zero-equation
model. Nield (1997c) questioned their basic assumption that the Forchheimer flow
resistance and dispersion are caused mainly by turbulent mixing, and that the drag
force caused by the molecular stress can be equated to the Darcy term alone. Takatsu
and Masuoka (1998) and Masuoka and Takatsu (2002) have further developed their
model and have conducted experiments on flow through banks of tubes. They have
persisted with their faulty assumption, based on the assumption that the deviation
from Darcy’s law appears at the same value of the Reynolds number (based on a
characteristic particle diameter) as that at which turbulent vortices appear. Nield
(1997c) pointed out that the experimental work on which Masuoka and Takatsu
relied in fact indicates otherwise. More recent experiments have been conducted
by Seguin et al. (1998).

Travkin and Catton (1994, 1995, 1998, 1999), Gratton et al. (1996), and Catton
and Travkin (1996) have developed general models in which the solid-phase
morphology is emphasized. They have not related their models to critical
experiments, and so it is not clear that this refinement is justified from a prac-
tical point of view.

Lee and Howell (1987) performed extensive numerical calculations, of forced
convective heat transfer from a heated plate, using a volume-averaged �-ε model.
The �-ε model of Antohe and Lage (1997b), which is more general than the
ones introduced by Lee and Howell (1987) and Prescott and Incropera (1995),
is promising from a practical aspect. Their analysis leads to the conclusion that,
for a medium of small permeability, the effect of the solid matrix is to damp the
turbulence, as one would expect. This analysis was further extended by Getachew
et al. (2000). Further work with a �-ε model was reported by L. Chen et al. (1998)
and by Laakkonen (2003). Modeling with one energy equation was performed by
Chung et al. (2003). Numerical modeling of composite porous-medium/clear-fluid
ducts has been reported by Kuznetsov and Xiong (2003), Kuznetsov (2004a) and
Yang and Hwang (2003).
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Kuwahara et al. (1996) performed numerical modeling of the turbulent flow
within the pores of a porous medium using a spatially periodic array, and obtained
some macroscopic characteristics of that flow. Note that this is different from
turbulence on a macroscopic scale, because the period length in the simulations
(something that is representative of the pore scale) provides an artificial upper
bound on the size of the turbulent eddies that can be generated. This was pointed
out by Nield (2001b). Further numerical modeling using periodic arrays was con-
ducted by Kuwahara and Nakayama (1998), Kuwahara et al. (1998), Nakayama
and Kuwahara (1999, 2000) and Nakayama et al. (2004).

In his discussion of transition to turbulence, Lage (1998) has noted the dif-
ference in pressure-drop versus flow-speed relationship between the case of a
porous medium that behaves predominantly like an aggregate of conduits (char-
acterized by a balance between pressure drop and viscous diffusion) and the case
of a medium that behaves like an aggregate of bluff bodies (characterized by a
balance between pressure drop and form drag).

An alternative approach has been extensively developed by de Lemos and co-
workers: de Lemos (2004) (review), de Lemos and Braga (2003), de Lemos and
Mesquita (2003), de Lemos and Pedras (2000, 2001), Rocamora and de Lemos
(2000), de Lemos and Rocamora (2002), de Lemos and Tofaneli (2004), Pedras
and de Lemos (2000, 2001a,b,c, 2003) and Silva and de Lemos (2003b). It is based
on volume averages and a double decomposition concept involving both spatial
deviations and time fluctuations. To a limited extent this approach unifies the work
of Masuoka, Takatsu, Nakayama, and Kuwahara (who applied a time average
followed by a volume average) and Lage and his co-workers and predecessors (who
applied the two averages in the opposite order). Simplified models for turbulence
in porous media, or related systems such as vegetation, have been presented by
Wang and Takle (1995), Nepf (1999), Macedo et al. (2001), Hoffman and van der
Meer (2002), Flick et al. (2003), and Alvarez et al. (2003).

Work on the topic of this section has been reviewed by Lage et al. (2002). A
related paper is the study of hydrodynamic stability of flow in a channel or duct
occupied by a porous medium by Nield (2003). As one would expect from the
conclusions of Antohe and Lage (1997b) cited above, for such flows the critical
Reynolds number for the onset of linear instability is very high. Darcy drag, Forch-
heimer drag, and additional momentum dispersion all contribute to a flattening of
the velocity profile in a channel, and thus to increased stability. Also contributing
to increased stability is the rapid decay with time noted in Section 1.5.1. Work to
date indicates that turbulence changes the values of drag coefficients from their
laminar flow values but does not qualitatively change convective flows in porous
media except when the porosity is high. A further review of turbulence in porous
media is that by Vafai et al. (2005).

Further numerical modeling using periodic arrays was conducted by Kuwa-
hara and Nakayama (1998), Nakayama and Kuwahara (1999, 2000, 2005), and
Nakayama et al. (2004). Studies of turbulence in relation to the interface between
a porous medium and a clear fluid region have been made by de Lemos (2005b),
Assato et al. (2005), and Zhu and Kuznetsov (2005).



1.10. Bidisperse Porous Media 25

1.9. Fractured Media, Deformable Media, and Complex
Porous Structures

The subject of flow in fractured media is an important one in the geological context.
In addition to continuum models, discrete models have been formulated. In these
models, Monte Carlo simulations and various statistical methods are employed,
and the concepts of percolation processes, universal scaling laws, and fractals are
basic tools. These matters are discussed in detail by Barenblatt et al. (1990) and
Sahimi (1993, 1995). The lattice Boltzmann method is widely employed; see, for
example, Maier et al. (1998).

Likewise, little research has been done yet on convection with deformable porous
media, although some thermoelastic aspects of this subject have been studied. For
example, dual-porosity models (involving two overlapping continua) have been
developed by Bai and Roegiers (1994) and Bai et al. (1994a,b, 1996). Another
exception is the discussion of the flow over and through a layer of flexible fibers
by Fowler and Bejan (1995). Some flows in media formed by porous blocks sep-
arated by fissures have been studied by Levy (1990) and Royer et al. (1995), who
employed a homogenization method, and also by Lage (1997). There is one pub-
lished study of convection in a saturated fissured medium, that by Kulacki and
Rajen (1991). This paper contains a useful review, an experimental study of heat
transfer in an idealized fissured medium, and supporting numerical work. They
conclude that one interconnected fissure in every one tenth of the domain is suffi-
cient for an equivalence between a saturated fissure system and a porous medium,
and that the assumption that a fissured system can be treated as a porous medium
leads to an overestimate (i.e., an upper bound) for the heat transfer.

It is likely that in the future an increasing use of numerical simulation will be used
in the study of complex porous structures, such as geological structures. An inter-
esting development is the finite-element program that has been used by Joly et al.
(1996) to study the onset of free convections and the stability of two-dimensional
convective solutions to three-dimensional perturbations. Further numerical studies
have been reported by Ghorayeb and Firoozabadi (2000a,b, 2001) and by Saghir
et al. (2001).

Biological applications have motivated the investigation of other phenomena
related to convection in porous media. Khaled and Vafai (2003) surveyed some
investigations of diffusion processes within the brain, diffusion during tissue gen-
eration, applications of magnetic resonance to the categorization of tissue prop-
erties, blood flow in tumors, blood flow in perfusion tissues, bioheat transfer in
tissues, and bioconvection. Lage et al. (2004a) have used a porous medium model
to investigate the red cell distribution effect on alveolar respiration.

1.10. Bidisperse Porous Media

A bidisperse porous medium (BDPM) is composed of clusters of large particles that
are agglomerations of small particles (Fig. 1). Thus there are macropores between
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the clusters and micropores within them. Applications are found in bidisperse
adsorbent or bidisperse capillary wicks in a heat pipe. Since the bidisperse wick
structure significantly increases the area available for liquid film evaporation, it
has been proposed for use in the evaporator of heat pipes.

A BDPM thus may be looked at as a standard porous medium in which the
solid phase is replaced by another porous medium. We then can talk about the
f-phase (the macropores) and the p-phase (the remainder of the structure). An
alternative way of looking at the structure is to regard it as a porous medium in
which fractures or tunnels have been introduced. One then can think of the f-phase
as being a “fracture phase” and the p-phase as being a “porous phase.”

Extending the Brinkman model for a monodisperse porous medium, Nield and
Kuznetsov (2005c) proposed to model the steady-state momentum transfer in a
BDPM by the following pair of coupled equations for v f and vp.

G =
(

�

K f

)
v f + � (v f − vp) − �̃ f ∇2v f (1.30)

G =
(

�

K p

)
vp + � (vp − v f ) − �̃p∇2vp. (1.31)

Here G is the negative of the applied pressure gradient, � is the fluid viscosity,
K f and K p are the permeabilities of the two phases, and � is the coefficient for
momentum transfer between the two phases. The quantities �̃f and �̃p are the
respective effective viscosities.

For the special case of the Darcy limit one obtains

v f =
(
�/K p + 2�

)
G

�2/K f K p + ��(1/K f + 1/K p)
(1.32)

vp =
(
�/K f + 2�

)
G

�2/K f K p + ��(1/K f + 1/K p)
. (1.33)

In this case the bulk flow thus is given by

G = (�/K )v (1.34)

where

v = �v f + (1 − �)vp (1.35)

K = �K f + (1 − �)K p + 2(�/�)K f K p

1 + (�/�)(K f + K p)
. (1.36)

Thus in this case the effect of the coupling parameter � is merely to modify the
effective permeabilities of the two phases, via the parameter �/�.



2
Heat Transfer through a
Porous Medium

2.1. Energy Equation: Simple Case

In this chapter we focus on the equation that expresses the first law of thermody-
namics in a porous medium. We start with a simple situation in which the medium
is isotropic and where radiative effects, viscous dissipation, and the work done by
pressure changes are negligible. Very shortly we shall assume that there is local
thermal equilibrium so that Ts = T f = T , where Ts and T f are the temperatures
of the solid and fluid phases, respectively. Here we also assume that heat conduc-
tion in the solid and fluid phases takes place in parallel so that there is no net heat
transfer from one phase to the other. More complex situations will be considered in
Section 6.5. The fundamentals of heat transfer in porous media also are presented
in Bejan et al. (2004) and Bejan (2004a).

Taking averages over an elemental volume of the medium we have, for the solid
phase,

(1 − �)(
c)s
∂Ts

∂t
= (1 − �)∇ · (ks∇Ts) + (1 − �)qs

′′′ (2.1)

and for the fluid phase,

�(
cP ) f
∂T f

∂t
+ (
cP ) f v · ∇T f = �∇ · (k f ∇T f ) + �q f

′′′
. (2.2)

Here the subscripts s and f refer to the solid and fluid phases, respectively, c is the
specific heat of the solid, cP is the specific heat at constant pressure of the fluid, k
is the thermal conductivity, and q ′′′[W/m3] is the heat production per unit volume.

In writing Eqs. (2.1) and (2.2) we have assumed that the surface porosity is equal
to the porosity. This is pertinent to the conduction terms. For example, −ks∇Ts is
the conductive heat flux through the solid, and thus ∇ · (ks∇Ts) is the net rate of
heat conduction into a unit volume of the solid. In Eq. (2.1) this appears multiplied
by the factor (1 − �), which is the ratio of the cross-sectional area occupied by solid
to the total cross-sectional area of the medium. The other two terms in Eq. (2.1)
also contain the factor (1 – �) because this is the ratio of volume occupied by solid
to the total volume of the element. In Eq. (2.2) there also appears a convective
term, due to the seepage velocity. We recognize that V · ∇T f is the rate of change
of temperature in the elemental volume due to the convection of fluid into it, so
this, multiplied by (
cP ) f , must be the rate of change of thermal energy, per unit
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volume of fluid, due to the convection. Note further that in writing Eq. (2.2) use
has been made of the Dupuit-Forchheimer relationship v = �V.

Setting Ts = T f = T and adding Eqs. (2.1) and (2.2) we have

(
c)m
∂T

∂t
+ (
c) f v · ∇T = ∇ · (km∇T ) + qm

′′′
, (2.3)

where

(
c)m = (1 − �)(
c)s + �(
cP ) f , (2.4)

km = (1 − �)ks + �k f , (2.5)

qm
′′′ = (1 − �)qs

′′′ + �q f
′′′ (2.6)

are, respectively, the overall heat capacity per unit volume, overall thermal con-
ductivity, and overall heat production per unit volume of the medium.

2.2. Energy Equation: Extensions to More
Complex Situations

2.2.1. Overall Thermal Conductivity of a Porous Medium

In general, the overall thermal conductivity of a porous medium depends in a
complex fashion on the geometry of the medium. As we have just seen, if the
heat conduction in the solid and fluid phases occurs in parallel, then the overall
conductivity kA is the weighted arithmetic mean of the conductivities ks and k f :

kA = (1 − �)ks + �k f . (2.7)

On the other hand, if the structure and orientation of the porous medium is such that
the heat conduction takes place in series, with all of the heat flux passing through
both solid and fluid, then the overall conductivity kH is the weighted harmonic
mean of ks and k f :

1

kH
= 1 − �

ks
+ �

k f
. (2.8)

In general, kA and kH will provide upper and lower bounds, respectively, on the
actual overall conductivity km . We always have kH ≤ kA, with equality if and only
if ks = k f . For practical purposes, a rough and ready estimate for km is provided
by kG , the weighted geometric mean of ks and k f , defined by

kG = k1−�
s k�

f . (2.9)

This provides a good estimate so long as ks and k f are not too different from
each other (Nield, 1991b). More complicated correlation formulas for the conduc-
tivity of packed beds have been proposed. Experiments by Prasad et al. (1989b)
showed that these formulas gave reasonably good results provided that k f was
not significantly greater than ks . The agreement when k f � ks was not good, the
observed conductivity being greater than that predicted. This discrepancy may be
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due to porosity variation near the walls. Since km depends on �, there is an effect
analogous to the hydrodynamic effect already noted in Section 1.7. Some of the
discrepancy may be due to the difficulty of measuring a truly stagnant thermal
conductivity in this case (Nield, 1991b).

In the case when the fluid is a rarefied gas and the Knudsen number has a
large value, temperature slip occurs in the fluid at the pore boundaries. In these
circumstances one could expect that the fluid conductivity would tend to zero as
the Knudsen number increases. Then in the case of external heating the heat would
be conducted almost entirely through the solid matrix. In the case of just internal
heating in the fluid the situation is reversed as the fluid phase becomes thermally
isolated from the solid phase.

Further models for stagnant thermal conductivity have been put forward by
Hsu et al. (1994, 1995), Cheng et al. (1999) and Cheng and Hsu (1998, 1999). In
particular, Cheng et al. (1999) and also Hsu (2000) contain comprehensive reviews
of the subject. Volume averaging was used by Buonanno and Carotenuto (1997) to
calculate the effective conductivity taking into account particle-to-particle contact.
Experimental studies have been made by Imadojemu and Porter (1995) and Tavman
(1996). The former concluded that the thermal diffusivity and conductivity of
the fluid played the major role in determining the effective conductivity of the
medium. Hsu (1999) presented a closure model for transient heat conduction, while
Hsiao and Advani (1999) included the effect of heat dispersion. Hu et al. (2001)
discussed unconsolidated porous media, Paek et al. (2000) dealt with aluminum
foam materials, and Fu et al. (1998) studied cellular ceramics. Carson et al. (2005)
obtained thermal conductivity bounds for isotropic porous materials. A unified
closure model for convective heat and mass transfer has been presented by Hsu
(2005). He notes that r.e.v. averaging leads to the introduction of new unknowns
(dispersion, interfacial tortuosity, and interfacial transfer) whose determination
constitutes the closure problem. More experiments are needed to determine some
of the coefficients that are involved. His closure relation for the interfacial force
contains all the components due to drag, lift, and transient inertia to the first-order
approximation. He concludes that the macroscopic energy equations are expected
to be valid for all values of the time scale and Reynolds number, for the case of
steady flows. Further investigations are needed for unsteady flows.

So far we have been discussing the case of an isotropic medium, for which
the conductivity is a scalar. For an anisotropic medium km will be a second-order
tensor. Lee and Yang (1998) modeled a heterogeneous anisotropic porous medium.

A fundamental issue has been raised by Merrikh et al. (2002, 2005a,b) and
Merrikh and Lage (2005). This is the question of how the internal regularity of
a solid/fluid physical domain affects global flow and heat transfer. These authors
have considered a situation (a regular distribution of rectangular solid obstacles in
a rectangular box) that is sufficiently simple for a comparison to be made between
the results of numerical modeling involving a treatment of the fluid and solid
phases considered separately (“continuum model”) and a standard r.e.v.-averaged
porous medium (“porous continuum model”). The results for the two models can be
substantially different. In other words, the internal regularity can have an important
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effect. The authors considered situations where the obstacles were separated from
the boundary walls, and thus some of the difference is due to a channeling effect.

2.2.2. Effects of Pressure Changes, Viscous Dissipation, and
Absence of Local Thermal Equilibrium

If the work done by pressure changes is not negligible [i.e., the condition
�T (g�/cP f )L � 1 is not met], then a term –�T (∂ P/∂t + v·∇ P) needs to be
added to the left-hand side of Eq. (2.3). Here � is the coefficient of volumetric
thermal expansion, defined by

� = − 1




(
∂


∂T

)
P

. (2.10)

Viscous dissipation is negligible in natural convection if (g�/cP f )L � 1, which
is usually the case. If it is not negligible, another term must be added to the right-
hand side of Eq. (2.3), as noted first by Ene and Sanchez-Palencia (1982). If
Darcy’s law holds, that term is (�/K )v · v in the case of an isotropic medium, and
�v · K−1 · v if the medium is anisotropic. To see this, note that the average of the
rate of doing work by the pressure, on a unit volume of an r.e.v., is given by the
negative of div(P�V) = div(Pv) = v.grad P, since div v = 0. The Forchheimer
drag term, dotted with the velocity vector, contributes to the dissipation, despite
the fact that the viscosity does not enter explicitly. This apparent paradox was
resolved by Nield (2000). The contribution of the Brinkman drag term is currently
a controversial topic. Nield (2004b) proposed that the Brinkman term be treated
in the same way as the Darcy and Forchheimer terms, so that the total viscous
dissipation remains equal to the power of the total drag force. Al-Hadhrami et al.
(2003) prefer a form that remains positive and reduces to that for a fluid clear of
solid material in the case where the Darcy number tends to infinity. Accordingly,
they add the clear fluid term to the Darcy term. Nield (2004b) suggested that the
Brinkman equation may break down in this limit.

Nield (2000) noted that scale analysis, involving the comparison of the magni-
tude of the viscous dissipation term to the thermal diffusion term, shows that vis-
cous dissipation is negligible if N � 1, where N = �U 2L2/K cP km�T = Br/Da,
where the Brinkman number is defined by Br = �U 2/cP km�T = EcPr, where the
Eckert number Ec is defined by Ec = U 2/cP�T . For most situations the Darcy
number K/L2 is small, so viscous dissipation is important at even modest values
of the Brinkman number. For forced convection the choice of the characteristic
velocity is obvious. For natural convection, scale analysis leads to the estimate
U ∼ (km/
cP L)Ra1/2 and the condition that viscous dissipation is negligible be-
comes Ge � 1, where Ge is the Gebhart number defined by Ge = g�L/cP . An
exception is the case of a uniformly laterally heated box, studied by Costa (2005a).
For this case the net global release of kinetic energy by the buoyancy force is zero,
the viscous dissipation is balanced by the pressure work, the characteristic ve-
locity scale is km/
cP L , and the ratio of the viscous dissipation and conduction
terms is of order EcPr/Da, where Ec is now equal to (km/
cP L)2/cP�T . The
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above comments on forced convection are made on the assumption that the Péclet
number Pe = 
cPU L/km is not large. If it is large, then the proper comparison
is one between the magnitudes of the viscous dissipation term and the convective
transport term. This ratio is of order Ec/DaRe, where the Reynolds number Re =

U L/�. Further aspects of the effects of viscous dissipation on the flow in porous
media are discussed in the survey by Magyari et al. (2005b).

If one wishes to allow for heat transfer between solid and fluid (that is, one no
longer has local thermal equilibrium), then one can replace Eqs. (2.1) and (2.2) by

(1 − �)(
c)s
∂Ts

∂t
= (1 − �)∇ · (ks∇Ts) + (1 − �)qs

′′′ + h(T f − Ts), (2.11)

�(
cP ) f
∂T f

∂t
+ (
cP )v · ∇T f = �∇(k f ∇T f ) + (1 − �)q f

′′′ + h(Ts − T f ), (2.12)

where h is a heat transfer coefficient. See also Eqs. (2.11a) and (2.12a) later in this
section. A critical aspect of using this approach lies in the determination of the
appropriate value of h. Experimental values of h are found in an indirect manner;
see, e.g., Polyaev et al. (1996). According to correlations for a porous bed of
particle established in Dixon and Cresswell (1979),

h = a f sh∗, (2.13)

where the specific surface area (surface per unit volume) a f s is given by

a f s = 6(1 − �)/dp, (2.14)

and

1

h∗ = dp

Nu f sk f
+ dp

�ks
(2.15)

where dp is the particle diameter and � = 10 if the porous bed particles are of
spherical form. The fluid-to-solid Nusselt number Nu f s is, for Reynolds numbers
(based on dp) Rep > 100, well correlated by the expression presented in Handley
and Heggs (1968):

Nu f s = (0.255/�) Pr1/3 Re2/3
p , (2.16)

while for low values of Rep the estimates of Nu f s vary between 0.1 and 12.4,
these being based on Miyauchi et al. (1976) and Wakao et al. (1976, 1979). Other
authors have used alternative expressions for h∗ and a f s and some of these were
considered by Alazmi and Vafai (2000), who found that the various models give
closely similar results for forced convection channel flow when the porosity is
high or the pore Reynolds number is large or the particle diameters are small.
Theoretical and experimental results reported by Grangeot et al. (1994) indicate
that h∗ depends weakly on the Péclet number of the flow. This subject is discussed
further in Sections 6.5 and 6.9.2. The topic in the context of turbulence has been
discussed by Saito and de Lemos (2005). An experimental study for a metallic
packed bed was reported by Carrillo (2005). A discussion of further aspects of the
two-medium approach to heat transfer in porous media is given by Quintard et al.
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(1997) and Quintard and Whitaker (2000). Nield (2002a) noted that Eqs. (2.11)
and (2.12) are based on the implicit assumption that the thermal resistances of the
fluid and solid phases are in series. For the case of a layered medium in a parallel
plate channel with fluid/solid interfaces parallel to the x-direction, he suggested
that the appropriate equations in the absence of internal heating are

(1 − �)(
c)s
∂Ts

∂t
= (1 − �)

[
∂

∂x

(
k ′

s

∂Ts

∂x

)
+ ∂

∂y

(
ks

∂Ts

∂y

)]
+ h(T f − Ts),

(2.11a)

�(
cP ) f
∂T f

∂t
+ (
cP )v · ∇T f = �

[
∂

∂x

(
k ′

f

∂T f

∂x

)
+ ∂

∂y

(
k f

∂T f

∂y

)]
+ h(Ts − T f ), (2.12a)

where k ′
f = k ′

s = kH with kH given by Eq. (2.8). Equations (2.11) and (2.12) have
to be solved subject to certain applied thermal boundary conditions. If a boundary is
at uniform temperature, then one has T f = Ts on the boundary. If uniform heat flux
is imposed on the boundary, then there is some ambiguity about the distribution
of flux between the two phases. Nield and Kuznetsov (1999) argued that if the
flux is truly uniform, then it has to be uniform with respect to the two phases,
and hence the flux on the r.e.v. scale has to be distributed between the fluid and
solid phases in the ratio of the surface fractions; for a homogeneous medium that
means in the ratio of the volume fractions, that is in the ratio � : (1 − �). This
distribution allows the conjugate problem considered by them to be treated in a
consistent manner. The consequences of other choices for the distribution were
explored by Kim and Kim (2001) and Alazmi and Vafai (2002). The Nield and
Kuznetsov (1999) approach is equivalent to Model 1D in Alazmi and Vafai (2002)
and is not equivalent to either approach used in Kim and Kim (2001).

The particular case of local thermal nonequilibrium in a steady process is dis-
cussed by Nield (1998a). Petit et al. (1999) have proposed a local nonequilibrium
model for two-phase flow. A numerical study of the interfacial convective heat
transfer coefficient was reported by Kuwahara et al. (2001). An application of the
method of volume averaging to the analysis of heat and mass transfer in tubes was
made by Golfier et al. (2002). An alternative two-equation model for conduction
only was presented by Fourie and Du Plessis (2003a,b). Vadasz (2005) demon-
strated that, for heat conduction problems, local thermal equilibrium applies for
any conditions that are a combination of constant temperature and insulation. He
also questioned whether a linear relationship between the average temperature
difference between the phases and the heat transferred over the fluid–solid surface
was appropriate in connection with conditions of local thermal nonequilibrium.
Rees and Pop (2005) surveyed studies of local thermal nonequilibrium with special
attention to natural and forced convection boundary layers and on internal natu-
ral convection. Their survey complements that by Kuznetsov (1998e) for internal
forced convection.
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2.2.3. Thermal Dispersion

A further complication arises in forced convection or in vigorous natural convec-
tion in a porous medium. There may be significant thermal dispersion, i.e., heat
transfer due to hydrodynamic mixing of the interstitial fluid at the pore scale.
In addition to the molecular diffusion of heat, there is mixing due to the nature
of the porous medium. Some mixing is due to the obstructions; the fact that the
flow channels are tortuous means that fluid elements starting a given distance from
each other and proceeding at the same velocity will not remain at the same distance
apart. Further mixing can arise from the fact that all pores in a porous medium
may not be accessible to a fluid element after it has entered a particular flow
path.

Mixing can also be caused by recirculation caused by local regions of reduced
pressure arising from flow restrictions. Within a flow channel mixing occurs be-
cause fluid particles at different distances from a wall move relative to one an-
other. Mixing also results from the eddies that form if the flow becomes turbulent.
Diffusion in and out of dead-end pores modifies the nature of molecular diffusion.
For details, see Greenkorn (1983, p. 190).

Dispersion is thus a complex phenomenon. Rubin (1974) took dispersion into ac-
count by generalizing Eq. (2.3) so that the term ∇ · (�m∇T ), where �m = km/(
c)m

is the thermal diffusivity of the medium, is replaced by ∇ · E · ∇T where E is a
second-order tensor (the dispersion tensor). In an isotropic medium the dispersion
tensor is axisymmetric and its components can be expressed in the form

Ei j = F1�i j + F2Vi Vj , (2.17)

where Vi (= vi/�) is the i th component of the barycentric (intrinsic) velocity vector,
and F1 and F2 are functions of the pore size and the Péclet and Reynolds numbers
of the flow.

At any point in the flow field it is possible to express E with reference to a
coordinate system in which the first axis coincides with the flow direction; when
this is done we have

E11 = �1U + �m,

E22 = E33 = �2U + �m, (2.18)

Ei j = 0 for i �= j,

where E11 is the longitudinal dispersion coefficient, E22 and E33 are the lateral
dispersion coefficients, and U is the absolute magnitude of the velocity vector.

If the Péclet number of the flow is small, then �1 and �2 are small and the
molecular thermal diffusivity �m is dominant. If the Péclet number of the flow is
large, then �1 and �2 are large and almost constant. It is found experimentally that
�2 = �1/30, approximately.

For an account of the treatment of dispersion in anisotropic media in the con-
text of convection, the reader is referred to Tyvand (1977). In the particular case
when heat conduction is in parallel, Catton et al. (1988) conclude on the basis of
their statistical analysis that the effective thermal conductivity k∗

zz , for mass and
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thermal transport in the z-direction through a bed of uniform spherical beads, is
given by

k∗
zz = (1 − �)ks + �

(
2B

�

)
Pe k f (2.19)

In this expression B is a constant introduced by Ergun (empirically, B = 1.75)
and Pe is the Péclet number defined by Pe = vdp/� f (1 − �), where dp is the
spherical particle diameter and � f is the thermal diffusivity of the fluid, defined
by � f = k f /(
cP ) f .

Thermal dispersion plays a particularly important role in forced convection in
packed columns. The steep radial temperature gradients that exist near the heated
or cooled wall were formerly attributed to channeling effects, but more recent
work has indicated that thermal dispersion is also involved. For a nearly parallel
flow at high Reynolds numbers, the thermal dispersivity tensor reduces to a scalar,
the transverse thermal dispersivity. Cheng and his colleagues [see Hsu and Cheng
(1990) and the references given in Section 4.9] assumed that the local transverse
thermal dispersion conductivity k ′

T is given by

k ′
T

k f
= DT Ped�

u

um
. (2.20)

In this equation Ped is a Péclet number defined by Ped = umdp/� f , in terms of the
mean seepage velocity um , the particle diameter dp, and fluid thermal diffusivity
� f , while DT is a constant and � is a dimensionless dispersive length normalized
with respect to dp. In recent work the dispersive length is modeled by a wall
function of the Van Driest type:

� = 1 − exp(−y/�dp). (2.21)

The empirical constants � and DT depend on the coefficients N and C in the wall
porosity variation formula [Eq. (1.28)]. The best match with experiments is given
by DT = 0.12 and � = 1, if N = 5 and C = 1.4. The theoretical results based on
this ad hoc approach agree with a number of experimental results.

A theoretical backing for this approach has been given by Hsu and Cheng (1990).
This is based on volume averaging of the velocity and temperature deviations in
the pores in a dilute array of spheres, together with a scale analysis. The thermal
diffusivity tensor D is introduced as a multiplying constant which accounts for the
interaction of spheres. For the case of high pore Reynolds number flow, Hsu and
Cheng (1990) found the thermal dispersion conductivity tensor k′ to be given by

k′ = Dk f
1 − �

�
Ped (2.22)

The linear variation with Ped is consistent with most of the existing experimental
correlations for high pore Reynolds number flow. At low pore Reynolds number
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flow they found

k′ = D∗k f
1 − �

�2
Pe2

d (2.23)

where D∗ is another constant tensor. The quadratic dependence on Ped has not yet
been confirmed by experiment.

Kuwahara et al. (1996) and Kuwahara and Nakayama (1999) have studied nu-
merically thermal diffusion for a two-dimensional periodic model. A limitation
of their correlation formulas as the porosity tends to unity was discussed by Yu
(2004) and Nakayama and Kuwahara (2004). A similar model was examined by
Souto and Moyne (1997a,b). The frequency response model was employed by
Muralidhar and Misra (1997) in an experimental study of dispersion coefficients.
The role of thermal dispersion in the thermally developing region of a channel
with a sintered porous metal was studied by Hsieh and Lu (2000). Kuwahara and
Nakayama (2005) have extended their earlier numerical studies to the case of
three-dimensional flow in highly anisotropic porous media. For further informa-
tion about dispersion in porous media the reader is referred to the review by Liu and
Masliyah (2005), which deals with the dispersion of mass, heat and momentum.

2.3. Oberbeck-Boussinesq Approximation

In studies of natural convection we add the gravitational term 
 f g to the right-
hand side of the Darcy equation (1.4) or its appropriate extension. [Note that in
Eq. (1.4) the term ∇ P denotes an intrinsic quantity, so we add the gravitational
force per unit volume of the fluid.] For thermal convection to occur, the density of
the fluid must be a function of the temperature, and hence we need an equation of
state to complement the equations of mass, momentum, and energy. The simplest
equation of state is


 f = 
0 [1 − � (T − T0)] , (2.24)

where 
0 is the fluid density at some reference temperature T0 and � is the coeffi-
cient of thermal expansion.

In order to simplify the subsequent analysis, one employs the Boussinesq
approximation whenever it is valid. Strictly speaking, one should call this the
Oberbeck-Boussinesq approximation, since Oberbeck (1879) has priority over
Boussinesq (1903), as documented by Joseph (1976). The approximation consists
of setting constant all the properties of the medium, except that the vital buoyancy
term involving � is retained in the momentum equation. As a consequence the
equation of continuity reduces to ∇ · v = 0, just as for an incompressible fluid.
The Boussinesq approximation is valid provided that density changes �
 remain
small in comparison with 
0 throughout the flow region and provided that tem-
perature variations are insufficient to cause the various properties of the medium
(fluid and solid) to vary significantly from their mean values. Johannsen (2003)
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discussed the validity of the Boussinesq approximation in the case of a bench mark
problem known as the Elder problem.

2.4. Thermal Boundary Conditions

Once the thermal conductivity in the porous medium has been determined, the
application of thermal boundary conditions is usually straightforward. At the in-
terface between two porous media, or between a porous medium and a clear fluid,
we can impose continuity of the temperature (on the assumption that we have local
thermodynamic equilibrium) and continuity of the normal component of the heat
flux. We note that two conditions are required because the equation of energy (2.3)
contains second-order derivatives.

The heat flux vector is the sum of two terms: a convective term (
cP ) f T v
and a conductive term –k∇T . The normal component of the former is continuous
because both T and the normal component of 
 f v are continuous. It follows that the
normal component of k∇T also must be continuous. At an impermeable boundary
the usual thermal condition appropriate to the external environment can be applied,
e.g., one can prescribe either the temperature or the heat flux, or one can prescribe
a heat transfer coefficient.

Sahraoui and Kaviany (1993, 1994) have discussed the errors arising from the
use of approximations of the effective conductivity near a boundary, due to nonuni-
formity of the distributions of the solid and fluid phases there. They have introduced
a slip coefficient into the thermal boundary condition to adjust for this, for the case
of two-dimensional media.

Ochoa-Tapia and Whitaker (1997, 1998) have developed flux jump conditions
applicable at the boundary of a porous medium and a clear fluid. These are based
on a nonlocal form of the volume-averaged thermal energy equations for fluid and
solid. The conditions involve excess surface thermal energy and an excess nonequi-
librium thermal source. Min and Kim (2005) have used the special two-dimensional
model of Richardson (1971) in order to obtain estimates of the coefficients that
occur in the thermal and hydrodynamic jump conditions.

2.5. Hele-Shaw Analogy

The space between two plane walls a small distance apart constitutes a Hele-
Shaw cell. If the gap is of thickness h and the walls each of thickness d, then the
governing equations for gap-averaged velocity components (parallel to the plane
walls) are identical with those for two-dimensional flow in a porous medium whose
permeability K is equal to h3/[12(h + 2d)], for the case where the heat flow is
parallel to the plane walls (Hartline and Lister, 1977). The Hele-Shaw cell thus
provides a means of modeling thermal convection in a porous medium, as in the
experiments by Elder (1967a).
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For the analogy to hold, the three quantities h/�, Uh2/	�, and Uh2/� f � must all
be small compared with unity. Here U is the velocity scale and � the smallest length
scale of the motion being modeled, while 	 and /� f are the kinematic viscosity
and thermal diffusivity of the fluid. These conditions ensure that there is negligible
advection of vorticity and rapid diffusion of vorticity and heat across the flow.

The experimental temperature profiles found by Vorontsov et al. (1991) were
in good agreement with the theory. Schöpf (1992) has extended the comparison
to the case of a binary mixture. Specific studies of convection in a Hele-Shaw cell
were reported by Cooper et al. (1997), Goldstein et al. (1998), and Gorin et al.
(1998).

The Hele-Shaw cell experiments are especially useful for revealing streamline
patterns when the walls are made of transparent material. The analogy has obvi-
ous limitations. For example, it cannot deal with the effects of lateral dispersion
or instabilities associated with three-dimensional disturbances. The discrepan-
cies associated with these effects have been examined by Kvernvold (1979) and
Kvernvold and Tyvand (1981).

Hsu (2005) has compared the governing equations for the averaged flows and
heat transfer in Hele-Shaw cells with those of porous media and he observed the
following differences: (a) the averaged Hele-Shaw cell is two-dimensional, (b) the
interfacial force in the averaged Hele-Shaw flows is contributed entirely from the
shear force, and (c) there exists no thermal tortuosity for the averaged Hele-Shaw
flows. Thus the Hele-Shaw analogy is good for viscous dominated two-dimensional
flow with negligible thermal tortuosity. However, these simplifications help in
the verification of closure modeling. Furthermore, a three-dimensional numerical
simulation of the convection heat transfer in Hele-Shaw cells may reveal some
detailed physics of heat transfer in porous media that are impossible to tackle due
to the randomness and the complexity of the microscopic solid geometry. Hsu
(2005) illustrates this with results for the case of oscillating flows past a heated
circular cylinder.

2.6. Other Approaches

Direct numerical simulation of heat and fluid flow, using the full Navier-Stokes
equations at the pore scale, for regularly spaced square or circular rods or spheres
has been conducted by Kuwahara et al. (1994). A direct numerical simulation was
applied by He and Georgiadis (1992) to the study of the effect of randomness
on one-dimensional heat conduction. Lattice gas cellular automata simulations
were performed by McCarthy (1994) for flow through arrays of cylinders, and by
Yoshino and Inamura (2003) for flow in a three-dimensional structure. Buikis and
Ulanova (1996) have modeled nonisothermal gas flow through a heterogeneous
medium using a two-media approach. A diffuse approximation has been applied by
Prax et al. (1996) to natural convection. Martins-Costa et al. (1992, 1994), Martins-
Costa and Saldanhar da Gama (1994), and Martins-Costa (1996) have applied the
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continuous theory of mixtures to the modeling and simulation of heat transfer in
various contexts. Modeling of convection in reservoirs having fractal geometry has
been conducted by Fomin et al. (1998). Spaid and Phelan (1997) applied lattice
Boltzmann methods to model microscale flow in fibrous porous media. Some
aspects relevant to biological tissues were discussed by Khanafer et al. (2003)
and Khaled and Vafai (2003). A general discussion of the dynamic modeling of
convective heat transfer in porous media was provided by Hsu (2005). Further
simulation studies with a lattice Boltzmann model, with the viscosity independent
or dependent on the temperature, have been reported by Guo and Zhao (2005a,b).

Radiative heat transfer is beyond the scope of this book, but we mention that a
review of this subject was made by Howell (2000) and a combined radiation and
convection problem was studied by Talukdar et al. (2004).



3
Mass Transfer in a Porous Medium:
Multicomponent and Multiphase Flows

3.1. Multicomponent Flow: Basic Concepts

The term “mass transfer” is used here in a specialized sense, namely the transport
of a substance that is involved as a component (constituent, species) in a fluid
mixture. An example is the transport of salt in saline water. As we shall see below,
convective mass transfer is analogous to convective heat transfer.

Consider a batch of fluid mixture of volume V and mass m. Let the subscript i
refer to the i th component (component i) of the mixture. The total mass is equal
to the sum of the individual masses mi so m = �mi . Hence if the concentration
of component i is defined as

Ci = mi

V
, (3.1)

then the aggregate density 
 of the mixture must be the sum of all the individual
concentrations,


 = �Ci . (3.2)

Clearly the unit of concentration is kg m−3. Instead of Ci the alternative notation

i is appropriate if one thinks of each component spread out over the total volume
V.

When chemical reactions are of interest it is convenient to work in terms of an
alternative description, one involving the concept of mole. By definition, a mole is
the amount of substance that contains as many molecules as there are in 12 grams
of carbon 12. That number of entities is 6.022 × 1023 (Avogadro’s constant). The
molar mass of a substance is the mass of one mole of that substance. Hence if there
are n moles in a mixture of molar mass M and mass m, then

n = m

M
. (3.3)

Similarly the number of moles ni of component i in a mixture is the mass of that
component divided by its molar mass Mi ,

ni = mi

Mi
. (3.4)
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The mass fraction of component i is

�i = mi

m
(3.5)

so clearly ��i = 1. Similarly the mole fraction of component i is

xi = ni

n
(3.6)

and �xi = 1.
To summarize, we have three alternative ways to deal with composition: a di-

mensional concept (concentration) and two dimensionless ratios (mass fraction
and mole fraction). These quantities are related by

Ci = 
 �i = 

Mi

M
xi , (3.7)

where the equivalent molar mass (M) of the mixture is given by

M = �Mi xi . (3.8)

If, for example, the mixture can be modeled as an ideal gas, then its equation
of state is

PV = m Rm T or PV = n RT, (3.9)

where the gas constant of the mixture (Rm) and the universal gas constant (R) are
related by

Rm = n

m
R = R

M
. (3.10)

The partial pressure Pi of component i is the pressure one would measure if
component i alone were to fill the mixture volume V at the same temperature T as
the mixture. Thus

Pi V = mi Rm T or Pi V = ni RT . (3.11)

Summing these equations over i, we obtain Dalton’s law,

P = �Pi , (3.12)

which states that the pressure of a mixture of gases at a specified volume and
temperature is equal to the sum of the partial pressures of the components. Note
that Pi/P = xi , and so using Eqs. (3.7) and (3.8) we can relate Ci to Pi .

The nomenclature we have used in this section applies to a mixture in equi-
librium, that is, to a fluid batch whose composition, pressure, and temperature
do not vary from point to point. In a convection study we are (out of necessity)
involved with a nonequilibrium mixture which we view as a patchwork of small
equilibrium batches: the equilibrium state of each of these batches is assumed to
vary only slightly as one moves from one batch to its neighbors.
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3.2. Mass Conservation in a Mixture

We apply the principle of mass conservation to each component in the mixture.
For the moment we use the notation 
i instead of Ci for the concentration of
component i. In the absence of component generation we must have

∂
i

∂t
+ ∇ · (
i Vi ) = 0, (3.13)

where Vi is the (intrinsic) velocity of particles of component i. Summing over i,
we obtain

∂


∂t
+ ∇ · (�
i Vi ) = 0. (3.14)

This is the same as

∂


∂t
+ ∇ · (
V) = 0 (3.15)

provided that we identify V with the mass-averaged velocity,

V = 1



�
i Vi . (3.16)

Motion of a component relative to this mass-averaged velocity is called diffusion.
Thus Vi – V is the diffusion velocity of component i and

ji = 
i (Vi − V) (3.17)

is the diffusive flux of component i. Equation (3.13) now gives

∂
i

∂t
+ ∇ · (
i V) = −∇ · ji . (3.18)

Reverting to the notation Ci for concentration, and assuming that the mixture is
incompressible, we have

DCi

Dt
= −∇ · ji , (3.19)

where D/Dt = ∂/∂t + V · ∇.
For the case of a two-component mixture, Fick’s law of mass diffusion is

j1 = −D12∇C1, (3.20)

where D12 is the mass diffusivity of component 1 into component 2, and similarly
for j2. In fact, D12 = D21 = D. The diffusivity D, whose units are m2s−1, has a
numerical value which in general depends on the mixture pressure, temperature,
and composition. From Eq. (3.19) and (3.20) we have

DC1

Dt
= ∇ · (D∇C1). (3.21)
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If the migration of the first component is the only one of interest, then the
subscript can be dropped. For a homogeneous situation we have

DC

Dt
= D∇2C. (3.22)

The analogy between this equation and the corresponding energy equation (tem-
perature T, thermal diffusivity �m)

DT

Dt
= �m∇2T (3.23)

is obvious. Fourier’s law of thermal diffusion q = −k∇T , where q is the heat flux
and k is the thermal conductivity, is analogous to Fick’s law of mass diffusion
j = −D∇C .

So far in this chapter we have been concerned with the fluid only, but now we
consider a porous solid matrix saturated by fluid mixture. Within the solid there is
of course neither flow nor any component of the mixture. Multiplying Eq. (3.21)
(with the suffix dropped) by the porosity � we have

�
∂C

∂t
+ �V · ∇C = �∇ · (D∇C).

Recalling the Dupuit-Forchheimer relationship v = �V, we see that this equation
can be written, if � is constant, as

�
∂C

∂t
+ v · ∇C = ∇ · (Dm∇C), (3.24)

where Dm = �D is the mass diffusivity of the porous medium. Some authors
invoke tortuosity and produce a more complicated relationship between Dm and
D. The diffusive mass flux in the porous medium (rate of flow of mass across unit
cross-sectional area of the medium) is

jm = −Dm∇C = �j (3.25)

This is consistent with the surface porosity of the medium being equal to �.
Equation (3.24) also may be derived directly by using as control volume an el-
ement of the medium. If the mass of the substance whose concentration is C is
being generated at a rate ṁ ′′′ per unit volume of the medium, then the term ṁ ′′′

must be added to the right-hand side of Eq. (3.24). The result may be compared
with Eq. (2.3).

3.3. Combined Heat and Mass Transfer

In the most commonly occurring circumstances the transport of heat and mass (e.g.,
salt) are not directly coupled, and both Eqs. (2.3) and (3.24) (which clearly are un-
coupled) hold without change. In double-diffusive (e.g., thermohaline) convection
the coupling takes place because the density 
 of the fluid mixture depends on both
temperature T and concentration C (and also, in general, on the pressure P). For
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sufficiently small isobaric changes in temperature and concentration the mixture
density 
 depends linearly on both T and C, and we have approximately

ρ = ρ0[1 − β(T − T0) − βC (C − C0)], (3.26)

where the subscript zero refers to a reference state, � is the volumetric thermal
expansion coefficient,

� = − 1




(
∂


∂T

)
P,C

, (3.27)

and �C is the volumetric concentration expansion coefficient,

βC = −1

ρ

(
∂ρ

∂C

)
T,P

. (3.28)

Both � and �C are evaluated at the reference state.
In some circumstances there is direct coupling. This is when cross-diffusion

(Soret and Dufour effects) is not negligible. The Soret effect refers to mass flux
produced by a temperature gradient and the Dufour effect refers to heat flux pro-
duced by a concentration gradient. For the case of no heat and mass sources we
have, in place of Eqs. (2.3) and (3.24),

(
c)m

(
c) f

∂T

∂t
+ v · ∇T = ∇ · (DT ∇T + DT C∇C), (3.29)

�
∂C

∂t
+ v · ∇C = ∇ · (DC∇C + DCT ∇T ), (3.30)

where DT (= km/(
c) f ) is the thermal diffusivity, DC (= Dm) is the mass diffu-
sivity, DT C/DT is the Dufour coefficient, and DCT /DC is the Soret coefficient of
the porous medium.

The variation of density with temperature and concentration gives rise to a com-
bined buoyancy force, proportional to �(T − T0) + �C (C − C0). The fact that the
coefficients of Eq. (3.29) differ from those of Eq. (3.30) leads to interesting effects,
such as flows oscillating in time in the presence of steady boundary conditions.

The Soret and Dufour effects are usually minor and can be neglected in simple
models of coupled heat and mass transfer. According to Platten and Legros (1984),
the mass fraction gradient established under the effect of thermal diffusion is
very small. However, it has a disproportionately large influence on hydrodynamic
stability relative to its contribution to the buoyancy of the fluid. They also state that
in most liquid mixtures the Dufour effect is inoperative, but that this may not be
the case in gases. Mojtabi and Charrier-Mojtabi (2000) confirm this by noting that
in liquids the Dufour coefficient is an order of magnitude smaller than the Soret
effect. They conclude that for saturated porous media, the phenomenon of cross
diffusion is further complicated because of the interaction between the fluid and
the porous matrix and because accurate values of the cross-diffusion coefficients
are not available.

The thermodiffusion coefficient DT C and the isothermal diffusion coefficient
DT were separately measured by Platten and Costeseque (2004) for both a porous
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medium and the corresponding liquid clear of solid material. They found that
the measured value of the ratio of these two quantities (what they call the Soret
coefficient) was the same for the clear fluid as for the porous medium to within
experimental error.

The thermodynamic irreversibility of coupled heat and mass transfer in saturated
porous media is treated based on the method of irreversible thermodynamics in
Bejan et al. (2004). Viskanta (2005) has reviewed studies of combustion and heat
transfer in inert porous media.

3.4. Effects of a Chemical Reaction

In recent years it has been realized that it is not always permissible to neglect
the effects of convection in chemical reactors of porous construction. Suppose that
we have a solution of a reagent whose concentration C is defined as above. If m is
the molar mass of the reagent, then its concentration in moles per unit volume of
the fluid mixture is Cm = C/m. Suppose that the rate equation for the reaction is

dCm

dt
= − kCn

m . (3.31)

The integer power n is the order of the reaction. The rate coefficient k is a function
of the absolute temperature T given by the Arrhenius relationship

k = A exp

(
− E

RT

)
, (3.32)

where E is the activation energy of the reaction (energy per mole), R is the universal
gas constant, and A is a constant called the preexponential factor.

Assume further that the solid material of the porous medium is inert, that the
reaction produces a product whose mass can be ignored, and that there is negligible
change in volume. Then the rate of increase of C due to the reaction is m dCm/dt .
It follows that Eq. (3.24) is to be replaced by

�
∂C

∂t
+ v · ∇C = ∇ · (Dm∇C) − �Am1−nCn exp

(
− E

RT

)
. (3.33)

If the consumption of one mole of reagent causes the heat energy to increase by
an amount –�H due to the reaction, then the increase in energy per unit volume
of the fluid mixture is (�H )dCm/dt . Thus in place of Eq. (2.3) we have

(
c)m
∂T

∂t
+ (
c) f v · ∇T

= ∇ · (km∇T ) + ṁ ′′′ − �A(�H )m−nCn exp

(
− E

RT

)
. (3.34)

Equation (3.33), for the case of a first-order reaction (n = 1), is in accord with the
formulation of Kolesnikov (1979). We note that for a zero-order reaction (n = 0)
the thermal equation (3.34) is decoupled from Eq. (3.33) in the sense that Eq. (3.34)
does not depend explicitly on C [though C and T are still related by Eq. (3.33)].
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These equations are appropriate if the reaction is occurring entirely within the
fluid. Now suppose that we have a catalytic reaction taking place only on the
solid surface of the porous matrix. If the surface porosity is equal to the (volume)
porosity �, and if the reaction rate is proportional to the mass of the solid material,
then Eqs. (3.33) and (3.34) should be altered by replacing �A by (1 − �)
s A′

where A′ is a new constant preexponential factor (compare Gatica et al., 1989).
Recent papers on the effects of chemical reactions include those by Balakotaiah

and Portalet (1990a,b), Stroh and Balakotaiah (1991, 1992, 1993), Farr et al.
(1991), Gabito and Balakotaiah (1991), Nandakumar and Weinitschke (1992),
Salinger et al. (1994b), Nguyen and Balakotaiah (1995), Subramanian and
Balakotaiah (1995, 1997), Vafai et al. (1993), Kuznetsov and Vafai (1995b), and
Chao et al. (1996).

3.5. Multiphase Flow

If two or more miscible fluids occupy the void space in a porous medium, then
even if they occupy different regions initially they mix because of diffusive and
other dispersive effects, leading ultimately to a multicomponent mixture such as
what we just have been considering. If immiscible fluids are involved, the situation
is more complicated. Indeed the complexities are such that, insofar as convection
studies are concerned, only the simplest situations have been treated. It invariably
has been assumed that Darcy’s law is valid. Consequently our discussion of the
momentum and energy equations in this section will be comparatively brief. This
will enable us to present a derivation of the basic equations using formal averages.
We follow the presentation of Cheng (1978).

We consider “two-phase” fluid flow in a porous medium. This means that we
actually have three phases: two fluids and the solid matrix. The fluids could well
both be liquids, but to simplify the discussion we suppose that we have a liquid
phase (which we can label by the suffix l) and a gas phase (suffix g). As in previous
chapters the suffix s refers to the solid matrix, which in this section is not necessarily
fixed.

We take a representative elementary volume V occupied by the liquid, gas, and
solid, whose interfaces may move with time, so

V = Vl(t) + Vg(t) + Vs(t). (3.35)

We define the phase average of some quantity ψ� as

〈ψ�〉 ≡ V −1
∫

V
ψ�dV, (3.36)

where ψ� is the value of ψ in the � phase (� = l, g, s) and is taken to be zero in
the other phases. The intrinsic phase average of ψ� is defined as

〈ψ�〉� ≡ V −1
�

∫
V�

ψ�dV, (3.37)
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that is, the integration is carried out over only the � phase. Since ψ� is zero in the
other phases, Eq. (3.37) can be rewritten as

〈ψ�〉� ≡ V −1
�

∫
V

ψ�dV . (3.38)

Comparing Eqs. (3.36) and (3.38) we see that

〈ψ�〉 = ε�〈ψ�〉� (3.39)

where

ε� = V�

V
(3.40)

is the fraction of the total volume occupied by the � phase. In terms of the porosity
� of the medium we have

εl + εg = �, εs = 1 − �. (3.41)

We define deviations (from the respective average values, for the � phase)

ψ̃� ≡ ψ� − 〈ψ�〉�, �̃ � ≡ �� − 〈��〉� (3.42)

and note that in the other phases ψ̃� and�̃ � are zero. It is easily shown that

〈ψ���〉� = 〈ψ�〉�〈��〉� + 〈ψ̃��̃ �〉� (3.43)

and

〈ψ���〉 = ε�〈ψ�〉�〈��〉� + 〈ψ̃��̃ �〉. (3.44)

The following theorems are established by integration over an elementary vol-
ume.

Averaging theorem:

〈∇ψ�〉 = ∇〈ψ�〉 + V −1
∫

A�

ψ�n�d S. (3.45)

Modified averaging theorem:

〈∇ψ�〉 = ε�∇〈ψ�〉� + V −1
∫

A�

ψ̃�n�d S. (3.46)

Transport theorem:

〈∂ψ�

∂t
〉 = ∂

∂t
〈ψ�〉 − V −1

∫
A�

ψw� · n�d S (3.47)

where A� denotes the interfaces between the � phase and the other phases, w�

is the velocity vector of the interface, and n� is the unit normal to the interface
pointing outward from the � phase.
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3.5.1. Conservation of Mass

The microscopic continuity equation for the liquid phase is

∂
l

∂t
+ ∇ · (
l Vl) = 0, (3.48)

which can be integrated over an elementary volume to give〈
∂
l

∂t

〉
+ 〈∇ · (
lVl)〉 = 0, (3.49)

where 
l and Vl are the density and velocity of the liquid. Application of the
transport theorem to the first term and the averaging theorem to the second term
of this equation, with the aid of Eq. (3.44), leads to

∂

∂t
(εl〈
l〉l) + ∇ · (〈
l〉l〈Vl〉 + 〈
̃lṼl〉

+ V −1
∫

Al g


l(Vl − wl g) · nld S + V −1
∫

Als


l(Vl − wls) · nld S = 0 (3.50)

where Alg and Als are the liquid-gas and liquid-solid interfaces that move with
velocities wlg and wls . The first integral in Eq. (3.50) represents mass transfer due
to a change of phase from liquid to gas, and in general this is nonzero; but the
second integral vanishes, since there is no mass transfer across the liquid-solid
interface. The dispersive term 〈
̃lṼl〉 is generally small and we suppose that it can
be neglected. Accordingly, Eq. (3.50) reduces to

∂

∂t
(εl〈
l〉l) + ∇ · (〈
l〉l〈Vl〉) + V −1

∫
Al g


l(Vl − wl g) · nld S = 0 (3.51)

Similarly the macroscopic continuity equations for the gas and for the solid are

∂

∂t
(εg〈
g〉g) + ∇ · (〈
g〉g〈Vg〉) + V −1

∫
Agl


g(Vg − wgl) · ngd S = 0 (3.52)

and

∂

∂t
(εs〈
s〉s) + ∇ · (〈
s〉s〈Vs〉) = 0. (3.53)

The mass gained by change of phase from liquid to gas is equal to the mass lost by
change of phase from gas to liquid. Thus the surface integrals in Eqs. (3.51) and
(3.52) are equal in magnitude but opposite in sign. The integrals thus cancel each
other when Eqs. (3.51)–(3.53) are added to give

∂

∂t

[
εl〈
l〉l + εg〈
g〉g + εs〈
s〉s

]
+ ∇ · (〈
l〉l〈Vl〉l + 〈
g〉g〈Vg〉g + 〈
s〉s〈Vs〉s

) = 0 (3.54)
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Note that, for example, 〈Vl〉 = εl〈Vl〉l since Vl is taken to be zero in the gas and
solid phases. If the volumetric liquid and gas saturation, Sl and Sg , are defined by

Sl = Vl

Vl + Vg
. Sg = Vg

Vl + Vg
(3.55)

so that

Sl + Sg = 1, εl = �Sl , εg = �Sg, and εs = 1 − �, (3.56)

then Eq. (3.54) can be rewritten as

∂

∂t

[
�Sl〈
l〉l + �Sg〈
g〉g + (1 − �)〈
s〉s

]
+ ∇ · (〈
l〉l〈Vl〉l + 〈
g〉g〈Vg〉g + 〈
s〉s〈Vs〉s

) = 0. (3.57)

3.5.2. Conservation of Momentum

The microscopic momentum equation for the liquid phase is

∂

∂t
(
lVl) + ∇ · (
lVlVl) + ∇ Pl − ∇ · τl − 
lf = 0, (3.58)

where Pl , τl , and f are, respectively, the pressure, the viscous stress tensor, and the
body force per unit mass of the liquid. If the body force is entirely gravitational,
then

f = g = −∇�, (3.59)

where � is the gravitational potential. We substitute Eq. (3.59) into Eq. (3.58),
integrate the resulting equation over an elementary volume, apply the transport
theorem to the first term and the averaging theorem to the second, third, and fourth
terms, and use Eq. (3.44). We also make use of the equation of continuity (3.57)
and replace ∇ · τl by �l∇2〈Vl〉. (See Gray and O’Neill, 1976.) We get[

εl〈
l〉l ∂

∂t
〈Vl〉l + εl〈
l〉l〈Vl〉 · ∇〈Vl〉

+ V −1
∫

Alg


lVl(Vl − wlg) · nld S + ∇ · (〈
l〉l〈Ṽl Ṽl〉
)]

+ εl∇〈Pl〉l + εl〈
l〉l∇〈�l〉l (3.60)

+ V −1
∫

Alg

(
P̃l + 〈
l〉l�̃l

)
nld S + V −1

∫
Als

(
P̃l + 〈
l〉l�̃l

)
nld S

− �l∇2〈Vl〉 − V −1
∫

Alg

nl · τld S − V −1
∫

Als

nl · τld S = 0,

where density gradients at the microscopic level have been assumed to be small
compared to the corresponding velocity gradients.
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For an isotropic medium, Gray and O’Neill (1976) argued that

V −1
∫

Alg

nl · ld S + V −1
∫

Als

nl · τld S = �εl B(〈Vs〉s − 〈Vl〉l) (3.61)

and

V −1

∫
Alg

(P̃t + 〈
l〉l�̃l)nld S + V −1
l

∫
Als

(P̃l + 〈
l〉l�̃l)nld S

= F(∇〈Pl〉l + 〈
l〉l∇〈�l〉l), (3.62)

where B and F are constants that depend on the nature of the isotropic medium.
Substituting Eqs. (3.61) and (3.62) into Eq. (3.60) and neglecting the inertia terms
in the square brackets and the term �∇2〈Vl〉 (compare the discussion in Section
1.5) yields

〈Vl〉l − 〈Vs〉S = −ksl K

εl�l
(∇〈Pl〉l + 〈
l〉l∇〈�l〉l), (3.63)

where ksl K ≡ εl(1 + F)/B. Here K denotes the intrinsic permeability of the
porous medium, as defined for one-phase flow. The new quantity ksl is the relative
permeability of the porous medium saturated with liquid. It is a dimensionless
quantity.

Similarly, when inertia terms and the term �g∇2〈Vg〉 are neglected, the mo-
mentum equation for the gas phase is

〈Vg〉g − 〈Vs〉s = −ksg K

εg�g
(∇〈Pg〉g + 〈
g〉g∇〈�g〉g), (3.64)

where ksg denotes the relative permeability of the porous medium saturated with
gas. Equations (3.63) and (3.64) are the Darcy equations for a liquid-gas com-
bination in an isotropic porous medium. A similar expression for an anisotropic
medium has been developed by Gray and O’Neill (1976). A permeability tensor
is involved. They also obtain an expression for flow in an isotropic medium with
nonnegligible inertial effects.

3.5.3. Conservation of Energy

The microscopic energy equation, in terms of enthalpy for the liquid phase, is

∂

∂t
(
l hl) + ∇ · (
l hlVl − kl∇Tl) −

(
∂ Pl

∂t
+ Vl · ∇ Pl

)
= 0, (3.65)

where hl and kl are the enthalpy and thermal conductivity of the liquid. In writing
this equation we have neglected the viscous dissipation, thermal radiation, and
any internal energy generation. Integrating this equation over a representative
elementary volume and applying the transport equations to the first and fourth
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terms, Eqs. (3.44) and (3.45) to the second term, Eq. (3.46) to the third term, and
Eq. (3.44) to the fifth term yields

∂

∂t

(
εl〈
l〉l〈hl〉l

) + ∇ · (〈
l〉l〈hl 〉l〈Vl〉
) − ∇ · (

εl k
∗
l
∇〈Tl〉l

)
−

[
εl

∂

∂t

(〈Pt〉l
) + 〈Vl〉 · ∇〈Pl〉l

]
+ Qlg + Q′

lg + Q′
ls = 0, (3.66)

where k∗
l is the effective thermal conductivity of the liquid in the presence of the

solid matrix. This k∗
l is the sum of the stagnant thermal conductivity k ′

l (due to
molecular diffusion) and the thermal dispersion coefficient k ′′

l (due to mechanical
dispersion), which in turn are defined by

−εl k
′
l∇〈Tl〉l = −〈kl〉l

(
εl∇〈Tl〉l + V −1

∫
Alg

T̃lnld S + V −1
∫

Als

T̃lnld S

)
(3.67a)

and

−∇ · (
εl k ′′

l ∇〈Tl〉l
) = ∇ · (


l h̃lṼl
) − 〈Ṽl · ∇ P̃l〉

+V −1
∫

Alg
P̃lṼl · nld S + V −1

∫
Als

P̃lṼl · nld S.
(3.67b)

The integrals in Eq. (3.67a) account for the change in thermal diffusion due to
the microstructure of the solid matrix. The terms Qlg, Q′

lg , and Q′
ls are given,

respectively, by

Qlg = V −1
∫

Alg

(
l hl − P̃l)(Vl − wlg) · nld S ≈ V −1
∫

Alg


l hl(Vl − wlg) · nld S,

(3.68a)

Q′
lg = V −1

∫
Alg

q · nld S (3.68b)

Q′
ls = V −1

∫
Als

q · nld S = Alshl V
−1(Ts − Tl) (3.68c)

where q in Eqs. (3.68b) and (3.68c) is the conduction heat flux across the interface,
and hl in Eq. (3.68c) is defined as the local volume averaged heat transfer coefficient
at the liquid-solid interface, which depends on the physical properties of the liquid
and its flow rate.

Similarly, the energy equation for the gas phase and for the solid-matrix phase
are, respectively,

∂

∂t

(
εg〈
g〉g〈hg〉g

) + ∇ · (〈
g〉g〈hg〉g〈Vg〉
) − ∇ · (

εgk∗
g∇〈Tg〉g

)
−

(
εg

∂

∂t
〈
g〉g + 〈Vg〉 · ∇〈Pg〉g

)
+ Qgl + Q′

gl + Q′
gs = 0 (3.69)
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and
∂

∂t

(
εs〈
s〉s〈hs〉s

) + ∇ · (〈
s〉s〈hs〉s〈Vs〉
) − ∇ · (

εsk∗
s ∇〈Ts〉s

)
−

(
εs

∂

∂t
〈Ps〉s + 〈Vs〉 · ∇〈Ps〉s

)
+ Q′

sl + Q′
sg = 0, (3.70)

where k∗
g and k∗

s are defined analogously to k∗
l , and similarly for the various Q

terms. Note that

Qgl = −Qlg, Q′
gl = −Q′

lg, Q′
sl = −Q′

ls (3.71)

and

Q′
gs = V −1

∫
Ags

q · ngd S = AgshgV −1
(
Ts − Tg

) = −Q′
sg (3.72)

where hg is the heat transfer coefficient at the gas-solid interface.
The difference between Pg and Pl is called the capillary pressure. In many

circumstances, including most geophysical situations, the capillary pressure can
be neglected, so in this case we have

〈Pl〉l = 〈Pg〉g = 〈Ps〉s = 〈P〉. (3.73)

Furthermore, we can usually assume local thermodynamic equilibrium and so

〈Tl〉l = 〈Tg〉g = 〈Ts〉s = 〈T 〉. (3.74)

Adding Eqs. (3.66), (3.69), and (3.70) in this case, we get

∂

∂t

[
�Sl〈
l〉l〈hl〉l + �Sg〈
g〉g〈hg〉g + (1 − �)〈
s〉s〈hs〉s

]
+ ∇ · [〈
l〉l〈hl〉l〈Vl〉 + 〈
g〉g〈hg〉g〈Vg〉 + 〈
s〉s〈hs〉s〈Vs〉

]
− ∇ · (k∇〈T〉) −

[
∂

∂t
〈P〉 + (〈Vl〉 + 〈Vg〉 + Vs〉) · ∇〈P〉

]
= 0, (3.75)

where k = �(Slk∗
l + Sgk∗

g) + (1 − �)k∗
s is the effective thermal conductivity of the

porous medium saturated with liquid and gas at local thermal equilibrium, with
the heat conduction assumed to be in parallel. (See Section 2.2.1.)

3.5.4. Summary: Relative Permeabilities

The governing equations for two-phase flow, for the case of negligible capillary
pressure and local thermal equilibrium, are Eqs. (3.57), (3.63), (3.64), and (3.75).
Since P and T are independent of phase we can drop the angle brackets in 〈P〉 and
〈T 〉. Also we note that 〈Vl〉 is just vl , the seepage velocity for the liquid phase, etc.
Also, in Eq. (3.57), 〈
l〉〈Vl〉l = ε−1

l 〈
l〉〈Vl〉 = 〈
l〉l〈Vl〉, etc. For a gravitational
body force we have ∇�l = ∇�g = −g. Thus we can rewrite the four governing
equations, with the angle brackets for intrinsic averages dropped, as

∂

∂t

[
�Sl
l + �Sg
g + (1 − �)
s

] + ∇ · (
lvl + 
gvg + 
svs) = 0, (3.76)

vl − εl

εs
vs = −ksl K

�l
(∇ P − 
lg), (3.77)
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vg − εg

εs
vs = −ksg K

�g
(∇ P − 
gg), (3.78)

∂

∂t

[
�Sl
lhl + �Sg
ghg + (1 − �)
shs

] + ∇ · (
lhlvl + 
ghgvg + 
shsvs)

−∇ · (k∇T ) −
[
∂ P

∂t
+ (vl + vg + vg) · ∇ P

]
= 0. (3.79)

We can now extend Eqs. (3.76) and (3.79) by allowing for source terms q ′′′
M (rate

of increase of mass per unit volume of the medium) and q ′′′
E (rate of increase of

energy per unit volume of the medium). At the same time we can introduce AM

and AE , respectively, the mass and energy per unit volume of the medium, and
FM and FE , respectively, the mass flux and energy flux in the medium. These are
given by

AM = �Sl
l + �Sg
g + (1 − �)
s, (3.80)

AE = �Sl
l hl + �Sg
ghg + (1 − �)
shs, (3.81)

FM = 
lvl + 
gvg + 
svs, (3.82)

FE = 
l hlvl + 
ghgvg + 
shsvs − k∇T . (3.83)

We also write
D∗ P

Dt
= ∂ P

∂t
+ (vl + vg + vs) · ∇ P. (3.84)

Thus D∗/Dt is a material derivative based on the sum of vl , vg , and vs , rather
than the mass-weighted average of the velocities. The extended forms of the mass
equation (3.76) and the energy equation (3.79) are

∂ AM

∂t
+ ∇ · FM = q ′′′

M (3.85)

and
∂ AE

∂t
+ ∇ · FE − D∗ P

Dt
= q ′′′

E . (3.86)

We are now confronted with the task of solving the Darcy equations (3.77)
and (3.78), the mass equation (3.85), and the energy equation (3.85) subject to
appropriate initial and boundary conditions. In many practical situations there will
be no source terms (q ′′′

M = q ′′′
E = 0), the solid matrix will be fixed (vs = 0), and the

pressure term D∗ P/Dt will be negligible. Even then the task is not straightforward,
because the relative permeabilities are not constant.

It is observed experimentally that in general the relative permeability for the
liquid phase ksl increases in a nonlinear fashion from 0 to 1 as the liquid saturation
Sl increases from 0 to 1, and the functional relationship is not single valued. The
value observed as Sl increases differs from that observed as Sl decreases, i.e., one
has hysteresis. Also, ksl may not differ from zero until Sl exceeds some nonzero
critical value Sl0. This last behavior is illustrated in Fig. 3.1.

The complications arise because usually one fluid “wets” the solid and adheres
to its surfaces, and each fluid can establish its own channels of flow through the
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Figure 3.1. The general form of the relative permeability curves for two-phase flow
through a porous medium.

medium only to a limited extent. Further, the flow of one fluid can destroy the
connectivity of the pores available for the flow of the other fluid. Another factor
affecting permeability is the difference in viscosity between fluids; one fluid can
act as a lubricant for the other. Also, permeabilities tend to be slightly higher at
higher pressure gradients.

In view of this complexity it is fortunate that experience has shown that the
main qualitative features of convection flows are not sensitive to the precise form
of the relative permeability versus saturation relationship. For several situations,
satisfactory results have been reported when use has been made of a simple linear
relationship, namely,

ksl = Sl , ksg = Sg (= 1 − Sl). (3.87)

For the case when the liquid is oil, Corey et al. (1956) proposed the use of the
semiempirical formulas

ksl = Ŝ4
l and ksg = (1 − Ŝl)

2(1 − Ŝ2
l ), (3.88a)

where

Ŝl = Sl − Sl0

1 − Sl0 − Sg0
. (3.88b)

The Corey formulas also have been used with water and steam.
A general alternative description of two-phase flow has been proposed by

Hassanizadeh and Gray (1993). An experimental study of relative permeabili-
ties and the various flow regimes that arise during steady-state two-phase flow
was reported by Avroam and Payatakes (1995). A new model for multiphase, mul-
ticomponent transport in capillary porous media, in which the multiple phases
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are considered as constituents of a multiphase mixture, has been developed by
Wang and Cheng (1996). This model is mathematically equivalent to the tradi-
tional model but involves a reduced number of model equations. An experimental
and theoretical study of two-phase flow and heat transfer was conducted by Jami-
alahmadi et al. (2005). Some specific situations involving two-phase flows are
discussed in Section 11.9.

3.6. Unsaturated Porous Media

Here we provide introductory references to an important topic that we have not
discussed because of lack of space. The modeling of convection in unsaturated
porous media, with and without boiling or condensation, has been discussed by
Plumb (1991a). The particular topic of drying of porous media has been sur-
veyed by Bories (1991) and Plumb (1991b, 2000). Some additional references to
convection in unsaturated porous media are given in the general review by Tien
and Vafai (1990a). The subject of multiphase flow and heat transfer in porous
media has been reviewed by Wang and Cheng (1997) and Chang and Wang
(2002). These papers reveal that convection in unsaturated media is a difficult
problem.

One difficulty is that because of instabilities the interface between phases is
on the macroscopic scale often far from being a well-defined smooth surface.
A second difficulty is caused by the effects of surface tension. This produces
a pressure difference that is proportional to the interface curvature on the pore
scale, something that is completely different from the interface curvature on the
macroscopic scale. Since the local pressure difference is affected by contact angle,
and this is dependent on a number of things, there is a fundamental difficulty in
calculating the appropriate average pressure difference on the macroscopic scale.
A third difficulty is that hysteresis is commonly associated with the advance and
recession of a phase interface.

Some recent papers involving the drying of porous media include those by
Francis and Wepfer (1996), Daurelle et al.(1998), Lin et al.(1998), Oliveira and
Haghighi (1998), Mhimid et al. (1999, 2000), Zili and Ben Nasrallah (1999),
Coussot (2000), Landman et al. (2001), Natale and Santillan Marcus (2003),
Plourde and Prat (2003), Salagnac et al. (2004), Nganhou (2004), Dayan et al.
(2004), Frei et al. (2004), and Tao et al. (2005).

Recent papers of other aspects of convection in unsaturated media include those
of Yu et al. (1993), Hanamura and Kaviany (1995), Larbi et al.(1995), Zhu and
Vafai (1996), Dickey and Peterson (1997), Gibson and Charmchi (1997), Bouddour
et al. (1998), H. Chen et al. (1998), Figus et al. (1998), Yan et al. (1998), Wang
and Cheng (1998), Moya et al. (1999), Peng et al. (2000), Zhao and Liao (2000),
Liu et al. (2002), Kacur and Van Keer (2003), Shen et al. (2003), Zili-Ghedira
et al. (2003), and Jadhav and Pillai (2003).
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3.7. Electrodiffusion through Porous Media

Diffusion is a slow process. When the diffusing species are electrically charged,
diffusion can be accelerated by applying externally an electric current or by
imposing a gradient of electrical potential. There are many applications at sev-
eral scales, for example, the delivery of drugs by iontophoresis through the human
body and the dechlorination of concrete structures such as bridges contaminated
and corroded by sea water.

The basics of diffusion of ionic species through nonreactive and reactive porous
media were reviewed most recently in the book by Bejan et al. (2004), based on
the work of Frizon et al. (2003) and others. This section is based on the simplest
presentation of electrodiffusion through nonreactive porous media, which was
made based on scale analysis by Lorente and Ollivier (2005).

Instead of the classic Fick diffusion equation (3.22), the presence of electrical
forces requires the use of the more general Nernst-Planck equation

�
∂Ci

∂t
= Di

∂

∂x

(
∂Ci

∂x
+ zi

F

RT
Ci

∂ψ
∂x

)
(3.89)

The subscript i indicates the ionic species that diffuses through the porous medium,
zi is the charge number, F is the Faraday constant, A is the ideal gas constant, T is
the absolute temperature, and ψ is the electric potential created by the ionic species.
In the same equation, Ci is the ionic species concentration and Di is the effective
diffusion coefficient of the species. For simplicity, we consider time-dependent
diffusion in one direction (x).

The problem is closed by solving Eq. (3.89) in conjunction with the current
conservation equation,

F�i zi ji = j (3.90)

where ji is the ionic flux through the porous medium,

ji = −Di

(
∂Ci

∂x
+ zi

F

RT
Ci

∂ψ
∂x

)
(3.91)

and j is the constant current density applied from the outside. The electric potential
gradient follows from Eqs. (3.90) and (3.91):

∂ψ
∂x

= − RT

F

j

F
+ �i zi Di

∂Ci

∂x
�i z2

i Di Ci
. (3.92)

As an example, consider a one-dimensional porous medium (a slab) of thickness
L. Initially the species of interest has Ci = 0 throughout the porous medium (0 <

x < L). At the time t = 0, a new concentration level is imposed on one face,
Ci = �Ci at x = 0, while the x = L face is maintained at Ci = 0.

Lorente and Ollivier (2005) established the scales of diffusion in two limits.
When the dominant driving force is the concentration gradient, the scales are
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those of classic diffusion, and the time of diffusion penetration over the distance
L is

tdiff ∼ �
L2

Di
. (3.93)

When electrical effects dominate, the time of diffusion over L is

tel ∼ �
L F

j
�Ci . (3.94)

The transition between the two regimes is described by the new dimensionless
group

B = F D�Ci

L j
(3.95)

which is the ratio of the two characteristic time scales,

B ∼ tel

tdiff
. (3.96)

Lorente and Ollivier (2005) modeled the same one-dimensional time-dependent
electrodiffusion numerically, in a nondimensionalization based on the correct
scales revealed by scale analysis. Numerical simulations conducted for practi-
cal examples (e.g., the extraction of an ionic species from a contaminated block)
validated the predictions based on scale analysis and confirmed the correctness of
both methods.



4
Forced Convection

The fundamental question in heat transfer engineering is to determine the rela-
tionship between the heat transfer rate and the driving temperature difference.
In nature, many saturated porous media interact thermally with one another and
with solid surfaces that confine them or are embedded in them. In this chapter
we analyze the basic heat transfer question by looking only at forced convection
situations, in which the fluid flow is caused (forced) by an external agent unrelated
to the heating effect. First we discuss the results that have been developed based on
the Darcy flow model and later we address the more recent work on the non-Darcy
effects. We end this chapter with a review of current engineering applications of
the method of forced convection through porous media. Some fundamental aspects
of the subject have been discussed by Lage and Narasimhan (2000) and the topic
has been reviewed by Lauriat and Ghafir (2000).

4.1. Plane Wall with Prescribed Temperature

Perhaps the simplest and most common heat transfer arrangement is the flow paral-
lel to a flat surface that borders the fluid-saturated porous medium. With reference
to the two-dimensional geometry defined in Fig. 4.1, we recognize the equations
governing the conservation of mass, momentum (Darcy flow), and energy in the
flow region of thickness �T :

∂u

∂x
+ ∂v

∂y
= 0, (4.1)

u = − K

�

∂ P

∂ x
, v = − K

�

∂ P

∂y
, (4.2)

u
∂T

∂x
+ v

∂T

∂y
= �m

∂2T

∂y2
. (4.3)

Note the boundary layer-approximated right-hand side of Eq. (4.3), which is based
on the assumption that the region of thickness �T and length x is slender (�T � x).
The fluid mechanics part of the problem statement [namely, Eqs. (4.1) and (4.2)]
is satisfied by the uniform parallel flow

u = U, v = 0, (4.4)

The constant pressure gradient that drives this flow (−d P/dx = �U∞/K ) is
assumed known.
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Figure 4.1. Parallel flow near an isothermal wall (Bejan, 1984).

The heat transfer rate between the surface at temperature Tw and the saturated
porous medium at far-field temperature T∞ can be determined in several ways. The
scale analysis begins with writing �T = Tw − T∞, so that the order-of-magnitude
counterpart of Eq. (4.3) becomes

U∞
�T

x
∼ �m

�T

�2
T

. (4.5)

From this we can determine the thickness of the thermal boundary layer

�T ∼ x Pex
−1/2, (4.6)

in which Pex is the Péclet number based on U∞ and x:

Pex = U∞x

�m
. (4.7)

For the local heat flux q ′′ we note the scale q ′′ ∼ km �T/�T , or the corresponding
local Nusselt number

Nux = q ′′

�T

x

km
∼ Pex

1/2. (4.8)
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Figure 4.1 qualitatively illustrates the main characteristics of the heat transfer
region, namely, the boundary layer thickness that increases as x1/2 and the heat
flux that decays as x−1/2. The exact analytical solution for the same problem can
be derived in closed form by introducing the similarity variables recommended by
the scale analysis presented above:

� = y

x
Pex

1/2, � (�) = T − Tw

T∞ − Tw

. (4.9)

In this notation, the energy equation (4.3) and the boundary conditions of Fig. 4.1
become

�′′ + 1

2
��′ = 0, (4.10)

�(0) = 0, � (∞) = 1. (4.11)

Equation (4.10) can be integrated by separation of variables, and the resulting
expressions for the similarity temperature profile and the surface heat flux are
(Bejan, 1984):

� = erf
(�

2

)
, (4.12)

Nux = q ′′

Tw − T∞

x

km
= 0.564 Pe1/2

x , (4.13)

The overall Nusselt number based on the heat flux q ′′ averaged from x = 0 to a
given plate length x = L is

NuL = q ′′

Tw − T

L

km
= 1.128 Pe1/2

L . (4.14)

Cheng (1977c) found the same Nux result by integrating numerically the equiv-
alent of Eqs. (4.10) and (4.11) for a wider class of problems. The similarity tem-
perature profile (4.12) has been plotted as (1 − �) versus � in Fig. 4.2. The effect
of viscous dissipation has been included in the analysis by Magyari et al. ( 2003b).
An experimental study of forced convection over a horizontal plate in a porous
medium by Afifi and Berbish (1999). Magyari et al. (2001a) presented some ex-
act analytical solutions for forced convection past a plane or axisymmetric body
having a power-law surface distribution.

4.2. Plane Wall with Constant Heat Flux

When the surface heat flux q ′′ is independent of x the temperature difference
Tw − T∞ increases as x in the downstream direction. This can be seen by combining
the heat flux scale q ′′ ∼ km(Tw − T∞)/�T with the �T scale (4.6), which applies to
the constant q ′′ configuration as well. The similarity solution for the temperature
distribution along and near the y = 0 surface was determined numerically by
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Figure 4.2. The temperature distributions in a forced parallel flow near walls with
constant temperature and constant heat flux (Bejan, 1984).

Bejan (1984),

T (x, y) − T∞ = q ′′/km

(−d�q ′′/d�)�=0

(�m x

U

)1/2
�q ′′ (�), (4.15)

in which �q ′′ (�) is the similarity temperature profile displayed in Fig. 4.2. The
similarity variable � is defined on the ordinate of the figure. Since the calculated
slope of the �q ′′ profile at the wall is (−d �q ′′/d�)�=0 = 0.886, the inverse of
the local temperature difference can be nondimensionalized as the local Nusselt
number

Nux = q′′

Tw(x) − T

x

km
= 0.886 Pe1/2

x . (4.16)

The overall Nusselt number that is based on the average wall temperature T w

(specifically, the temperature averaged from x = 0 to x = L) is

NuL = q′′

Tw − T

L

km
= 1.329 Pe1/2

L . (4.17)
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We use this opportunity to communicate the exact solution for the problem of
heat transfer from an embedded wall with uniform heat flux. The closed-form
analytical alternative to the numerical solution (4.15) shown in Fig. 4.2 is

T (x, y) − T∞
q ′′ x/km

Pe1/2
x = 2π−1/2 exp

(
−�2

4

)
− � erfc

(�

2

)
. (4.18)

The right-hand side of Eq. (4.18) now replaces the function �q ′′ /(−d�q ′′/d�)�=0

used earlier in (4.15). This exact solution also reveals the exact values of the
numerical coefficients that appear in Eqs. (4.16) and (4.17), namely 0.886 = π1/2/2
and 1.329 = (3/4)π1/2.

It is worth reviewing the Nusselt number results (4.13), (4.16), and (4.17), in
order to rediscover the order-of-magnitude trend anticipated in Eq. (4.8). All these
results are valid if �T � x , i.e., when the Péclet number is sufficiently large so
that Pe1/2

x � 1. The effect of variation of viscosity with temperature was studied
by Ramirez and Saez (1990) and Ling and Dybbs (1992).

4.3. Sphere and Cylinder: Boundary Layers

A conceptually similar forced-convection boundary layer develops over any other
body that is imbedded in a porous medium with uniform flow. Sketched in Fig. 4.3
is the thermal boundary layer region around a sphere, or around a circular cylinder
that is perpendicular to the uniform flow with volume averaged velocity u. The
sphere or cylinder radius is r0 and the surface temperature is Tw.

The distributions of heat flux around the sphere and cylinder were determined by
Cheng (1982), who assumed that the flow obeys Darcy’s law. With reference to the
angular coordinate � defined in Fig. 4.3, Cheng obtained the following expressions
for the local peripheral Nusselt number:

Sphere:

Nu� = 0.564

(
ur0�

�m

)1/2 (
3

2
�

)1/2

sin2 �

(
1

3
cos3 � − cos � + 2

3

)1/2

.

(4.19)

Figure 4.3. The forced-convection thermal boundary layer around a sphere or perpen-
dicular cylinder embedded in a porous medium.
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Figure 4.4. The distribution of heat flux over a cylinder or sphere with forced-convection
boundary layer.

Cylinder:

Nu� = 0.564

(
u r0 �

�m

)1/2

(2 �)1/2 sin � (1 − cos �)1/2. (4.20)

Worth noting in these expressions is the Péclet number based on the swept arc
r0�, namely Pe� = ur0�/�m . The local Nusselt number is defined as

Nu� = q ′′

Tw − T∞

r0 �

km
. (4.21)

The variation of the local heat flux over the cylinder or sphere circumference is
illustrated in terms of [q ′′r0/km(Tw − T∞)](ur0/�m)−1/2 versus � in Fig. 4.4.

Equations (4.19) and (4.20) are valid when the boundary layers are distinct
(thin), i.e., when the boundary layer thickness r0 Pe1/2

� is smaller than the radius
r0. This requirement can also be written as Pe1/2

� � 1, or Nu� � 1.
The conceptual similarity between the thermal boundary layers of the cylinder

and the sphere (Fig. 4.3) and that of the flat wall (Fig. 4.1) is illustrated further by
the following attempt to correlate the heat transfer results for these three config-
urations. The heat flux averaged over the area of the cylinder and sphere, q ′′, can
be calculated by averaging the local heat flux q ′′ expressed by Eqs. (4.19)–(4.21).
We have done this on this occasion, and the results are:

Sphere: NuD = 1.128 Pe1/2
D , (4.22)

NuD = 1.015 Pe1/2
D . (4.23)Cylinder:

In these expressions, the Nusselt and Péclet numbers are based on the diameter
D = 2r0,

NuD = q ′′

Tw − T

D

km
, PeD = u D

�m
. (4.24)
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Remarkable at this stage is the similarity between the NuD expressions (4.22) and
(4.23), and between this set and the corresponding NuL formula for the isothermal
flat wall, Eq. (4.14). The correlation of these three results is very successful because
in each case the length scale used in the definition of the overall Nusselt number
and the Péclet number is the dimension that is aligned with the direction of flow,
the diameter in Fig. 4.3, and the length L in Fig. 4.1.

In an earlier attempt to correlate the overall heat transfer rates for these three
configurations, as length scale we used Lienhard’s (1973) “swept” length l, namely
l = L for the flat wall and l = πr0 for the cylinder and sphere. We found that this
length scale does not work nearly as well; in other words, the resulting Nul ∼ Pel
expressions change appreciably from one configuration to the next. In defense of
Lienhard’s length scale, however, it must be said that it was originally proposed
for natural convection boundary layers, not forced convection.

The heat transfer by forced convection from a cylinder with elliptic cross section
to the surrounding saturated porous medium was analyzed by Kimura (1988a).
This geometry bridges the gap between the circular cylinder and the plane wall
discussed in Section 4.1. The elliptic cylinder in cross-flow is in itself relevant as
a model for the interaction between a uniform flow and a circular cylinder that
is not perpendicular to the flow direction. The extreme case in which the circular
cylinder is parallel to the flow direction was also analyzed by Kimura (1988b).

Murty et al. (1990) investigated non-Darcy effects and found that heat transfer
from a cylinder was only weakly dependent on Darcy and Forchheimer numbers
for Da < 10−4, Re < 200.

An experimental study of heat transfer from a cylinder embedded in a bed of
spherical particles, with cross-flow of air, was made by Nasr et al. (1994). Agree-
ment with theory based on Darcy’s law and boundary layer approximations was
found to be moderately successful in predicting the data, but improved correlations
were obtained with an equation modified to better account for particle diameter
and conductivity variations.

For axial flow past a cylinder, an experimental study, with water and glass
beads, was carried out by Kimura and Nigorinuma (1991). Their experimental
results agreed well with an analysis, similar to that for the flat plate problem but
with the curvature taken into account.

Heat transfer from a large sphere imbedded in a bed of spherical glass beads was
studied experimentally by Tung and Dhir (1993). They concluded that the total
rate of heat transfer could be predicted from the equation

Nu = Nuconduction + Nuradiation + (
Nu3

natural + Nu3
forced

)1/3
, (4.25)

where

Nuforced = 0 .29 Re0.8Pr1/2, 0.7 ≤ Pr ≤ 5, Re ≤ 2400. (4.26)

where Re is the Reynolds number based on the diameter of the large sphere.
Asymptotic solutions, valid for high or low (respectively) Pe, for the case of

a sphere with either prescribed temperature or prescribed flux, were obtained by
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Romero (1994, 1995a). Analytical solutions for large Péclet numbers for flow about
a cylinder or sphere were reported by Pop and Yan (1998). Numerical simulation
of forced convection past a parabolic cylinder was carried out by Haddad et al.
(2002). MHD and viscous dissipation effects for flow past a cylinder were studied
by El-Amin (2003a).

4.4. Point Source and Line Source: Thermal Wakes

In the region downstream from the hot sphere or cylinder of Fig. 4.3, the heated
fluid forms a thermal wake whose thickness increases as x1/2. This behavior is
illustrated in Fig. 4.5, in which x measures the distance downstream from the heat
source. Seen from the distant wake region, the imbedded sphere appears as a point
source (Fig. 4.5, left), while the cylinder perpendicular to the uniform flow (u, T∞)
looks like a line source (Fig. 4.5, right).

Consider the two-dimensional frame attached to the line source q ′ in Fig. 4.5,
right. The temperature distribution in the wake region, T (x, y), must satisfy the
energy conservation equation

u
∂T

∂x
= �m

∂2T

∂y2
, (4.27)

the boundary conditions T → T∞ as y → ± ∞, and the integral condition

q ′ =
∫ ∞

−∞
(
cP ) f u (T − T∞)dy. (4.28)

Restated in terms of the similarity variable � and the similarity temperature
profile �,

� = y

x
Pe1/2

x , � (�) = T − T∞
q/km

Pe1/2
x , (4.29)

Figure 4.5. The thermal wakes behind a point source (left), and behind a line source
perpendicular to the uniform flow (right).
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in which Pex = ux/�m , the problem statement becomes

− 1

2
(� + ��′) = �′′, (4.30)

� → 0 as � → ±∞ (4.31)∫ ∞

−∞
�d� = 1. (4.32)

The solution can be determined analytically,

� = 1

2π1/2
exp

(
−�2

4

)
. (4.33)

In terms of the physical variables, the solution is

T − T∞ = 0.282
q ′

km

(�m

ux

)1/2
exp

(
− uy2

4�m x

)
. (4.34)

In conclusion, the wake temperature distribution has a Gaussian profile in y. The
width of the wake increases as x1/2, while the temperature excess on the centerline
[T (x, 0) − T∞] decreases as x−1/2.

The corresponding solution for the temperature distribution T (x, r ) in the round
wake behind the point source q of Fig. 4.5, left is

T − T∞ = q

4πkm x
exp

(
− ur2

4�m x

)
, (4.35)

In this case, the excess temperature on the wake centerline decreases as x−1, that
is more rapidly than on the centerline of the two-dimensional wake.

Both solutions, Eqs. (4.34) and (4.35), are valid when the wake region is slender,
in other words when Pex � 1. When this Péclet number condition is not satisfied,
the temperature field around the source is dominated by the effect of thermal
diffusion, not convection. In such cases, the effect of the heat source is felt in all
directions, not only downstream.

In the limit where the flow (u, T∞) is so slow that the convection effect can be
neglected, the temperature distribution can be derived by the classic methods of
pure conduction. A steady-state temperature field can exist only around the point
source,

T (r ) − T = q

4πkmr
. (4.36)

The pure-conduction temperature distribution around the line source remains time-
dependent (all the temperatures rise; e.g., Bejan, 1993, p. 181). When the time t is
sufficiently long so that (x2 + y2)/(4�mt) � 1, the excess temperature around the
line source is well approximated by

T (r, t) − T∞ ∼= q ′

4πkm

[
ln

(
4�mt

�r2

)
− 0.5772

]
. (4.37)
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In this expression, r2 is shorthand for (x2 + y2). We will return to the subject of
buried heat sources in Sections 5.10 and 5.11.

4.5. Confined Flow

We now consider the forced convection heat transfer in a channel or duct packed
with a porous material, Fig. 4.6. In the Darcy flow regime the longitudinal volume-
averaged velocity u is uniform over the channel cross section. For this reason, when
the temperature field is fully developed, the relationship between the wall heat flux
q ′′ and the local temperature difference (Tw − Tb) is analogous to the formula for
fully developed heat transfer to “slug flow” through a channel without a porous
matrix. The temperature Tb is the mean or bulk temperature of the stream that
flows through the channel (e.g., Bejan 1984, p. 83). The Tb definition for slug flow
reduces to

Tb = 1

A

∫
A

T d A, (4.38)

in which A is the area of the channel cross section.
In cases where the confining wall is a tube with the internal diameter D, the

relation for fully developed heat transfer can be expressed as a constant Nusselt
number (Rohsenow and Choi, 1961):

NuD = q′′(x)

Tw − Tb(x)

D

km
= 5.78 (tube, Tw = constant), (4.39)

NuD = q ′′

Tw(x) − Tb(x)

D

km
= 8 (tube, q ′′ = constant). (4.40)

When the porous matrix is sandwiched between two parallel plates with the spacing
D, the corresponding Nusselt numbers are (Rohsenow and Hartnett, 1973)

NuD = q ′′(x)

Tw − Tb(x)

D

km
= 4.93 (parallel plates, Tw = constant), (4.41)

NuD = q ′′

Tw(x) − Tb(x)

D

km
= 6 (parallel plates , q ′′ = constant). (4.42)

Figure 4.6. Heat transfer to the Darcy flow forced through the porous medium confined
by the walls of a channel or duct.
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The forced-convection results [Eqs. (4.39)–(4.42)] are valid when the temper-
ature profile across the channel is fully developed, i.e., sufficiently far from the
entrance x = 0 (Fig. 4.6). The entrance length, or the length needed for the tem-
perature profile to become fully developed, can be estimated by recalling from Eq.
(4.6) that the thermal boundary layer thickness scales is (�m x/u)1/2. By setting
(�m x/u)1/2 ∼ D we obtain the thermal entrance length xT ∼ D2u/�m . Inside the
entrance region 0 < x < xT , the heat transfer is impeded by the forced-convection
thermal boundary layers that line the channel walls, and can be calculated approx-
imately with the formulas presented in Sections 4.1 and 4.2.

One important application of the results for a channel packed with a porous
material is in the area of heat transfer augmentation. The Nusselt numbers for
fully developed heat transfer in a channel without a porous matrix are given by
expressions similar to Eqs. (4.39)–(4.42), except that the saturated porous medium
conductivity km is replaced by the thermal conductivity of the fluid alone, k f . The
relative heat transfer augmentation effect is indicated approximately by the ratio

hx (with porous matrix)

hx (without porous matrix)
∼ km

k f
, (4.43)

in which hx is the local heat transfer coefficient q ′′/(Tw − Tb). In conclusion, a
significant heat transfer augmentation effect can be achieved by using a high-
conductivity matrix material, so that km is considerably greater than k f .

An experimental study of forced convection through microporous enhanced
heat sinks was reported by Lage et al. (2004b). An experimental study of
flow of CO2 at supercritical pressure was carried out by Jiang et al. (2004i,j).
Correlations for forced convection between two parallel plates or in a circular pipe
were obtained by Haji-Sheikh (2004). A numerical study, using a Green’s function
solution method and dealing with the effects due to a temperature change at the wall
and the contributions of frictional heating, was conducted by Haji-Sheikh et al.
(2004a). The role of longitudinal diffusion in fully developed forced convection
slug flow in a channel was studied by Nield and Lage (1998). Forced convection
in a helical pipe was analyzed by Nield and Kuznetsov (2004b). Curvature of the
pipe induces a secondary flow at first order and increases the Nusselt number at
second order, while torsion affects the velocity at second order and does not affect
the Nusslet number at second order. A numerical study of this problem was made
by Cheng and Kuznetzov (2005).

4.6. Transient Effects

Most of the existing work on forced convection in fluid-saturated porous media is
concerned with steady-state conditions. Notable exceptions are the papers on time-
dependent forced convection heat transfer from an isothermal cylinder (Kimura,
1989a) and from a cylinder with uniform heat flux (Kimura, 1988c). Nakayama and
Ebinuma (1990) studied the forced convection heat transfer between a suddenly
heated plate and a non-Darcy flow that starts initially from rest.
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Figure 4.7. Forced-convection thermal boundary layer near a plate embedded in a
porous medium with steady, parallel, and uniform flow.

These three papers show that the simplest and perhaps most important forced
convection configuration has been overlooked. In that configuration, the flow
through the saturated porous medium is steady, parallel, and uniform (Bejan and
Nield, 1991). The flow is driven by a pressure difference that is applied in the
x direction in Fig. 4.7, and can be either a Darcy flow or a non-Darcy flow in
which the quadratic drag (Forchheimer effect) plays a role in the overall flow
resistance. What distinguishes the Bejan and Nield (1991) configuration from
the one analyzed by Nakayama and Ebinuma (1990) is that the flow is and re-
mains steady as the embedded plate is suddenly heated or cooled to a different
temperature.

4.6.1. Scale Analysis

Consider the uniform flow, with volume-averaged velocity u, which is parallel
to the wall y = 0 shown in Fig. 4.7. The initial temperature of the fluid-saturated
porous medium is T∞. Beginning at time t = 0, the temperature of the wall section
0 < x < L is maintained at a different constant temperature, Tw. In time, the flow
in the fluid-saturated porous medium adjusts to this change by developing a near-
wall region wherein the variation from Tw to T∞ is smoothed.

We can develop a feel for the size and history of the near-wall region by exam-
ining the order of magnitude implications of the energy equation for that region,

�
∂T

∂t
+ u

∂T

∂x
= �m

∂2T

∂y2
. (4.44)

The temperature boundary conditions are as indicated in Fig. 4.7, specifically

T = Tw at y = 0 (4.45)

T → T∞ as y → ∞ (4.46)

Implicit in the writing of the energy equation (4.42) is the assumption that the
near-wall region is slender, or boundary layer-like. To this assumption we will
return in Eqs. (4.62)–(4.65).
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One way to perform the scale analysis is by considering the entire boundary
layer region of length L. The thickness of this thermal boundary layer is denoted
by �. If we further write �T = T∞ − Tw, we find the following scales for the three
terms of Eq. (4.42):

�
�T

t
, u

�T

L
, �m

�T

�2
.

thermal longitdinal transverse
inertia convection conduction

(4.47)

At sufficiently short times t, the transverse heating effect is balanced by the thermal
inertia of the saturated porous medium. This balance yields the time-dependent
thickness

�t ∼
(

�mt

�

)1/2

. (4.48)

As t increases, the thermal inertia scale decreases relative to the longitudinal con-
vection scale, and the energy equation becomes ruled by a balance between trans-
verse conduction and longitudinal convection. The steady-state boundary layer
thickness scale in this second regime is

�s ∼
(

�m L

u

)1/2

. (4.49)

The time of transition tc, when the boundary layer region becomes convective, can
be estimated by setting �t ∼ �s :

tc ∼ �L

u
. (4.50)

Not all of the L-long boundary layer is ruled by the balance between conduction
and inertia when t is shorter than Tc. When t is finite, there is always a short enough
leading section of length x in which the energy balance is between transverse
conduction and longitudinal convection. In that section of length x and thickness
�x , the scales of the three terms of Eq. (4.44) are

�
�T

t
, u

�T

x
, �m

�T

�2
x

, (4.51)

showing that u�T/x ∼ �m�T/�2
x , or

�x ∼
(�m x

u

)1/2
(4.52)

when ��T/t < u�T/x , i.e., when

x <
u t

�
. (4.53)

The boundary layer changes from the convective (steady) section represented by
Eq. (4.52) to the conductive (time-dependent) trailing section of Eq. (4.48). The
change occurs at x = xs−t where

xs−t ∼ u t

�
. (4.54)
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4.6.2. Wall with Constant Temperature

The two-section structure of the thermal boundary layer is indicated in Fig. 4.7. Its
existence was also recognized by Ebinuma and Nakayama (1990b) in the context
of transient film condensation on a vertical surface in a porous medium. The chief
benefit of this insight is that it enables us to delineate the regions in which two
analytical solutions are known to apply: first the steady leading section where
according to Eqs. (4.9)–(4.12)

T − Tw

T∞ − Tw

= erf

[
y

2

(
u

�m x

)1/2
]

(x < xs−t ) (4.55)

and farther downstream the time-dependent section where

T − Tw

T∞ − Tw

= erf

[
y

2

(
�

�mt

)1/2
]

(x > xs−t ). (4.56)

The time-dependent section is no longer present when xs−t ∼ L , i.e., when
t ∼ �L/u, in accordance with Eq. (4.50).

We see from the condition (4.52) that the temperature distributions (4.55)
and (4.56) match at x = xs−t . The longitudinal temperature gradient ∂T/∂x
experiences a discontinuity across the x = xs−t cut, but this discontinuity be-
comes less pronounced as t increases, i.e., as the xs−t cut travels downstream.
It also must be said that neither Eq. (4.55) nor (4.56) is exact at x = xs−t , be-
cause at that location none of the three effects competing in Eq. (4.45) can be
neglected.

The instantaneous heat transfer rate (W/m) through the surface of length L can be
deduced by taking the heat transfer rate through the leading (steady-state) section
0 < x < xs−t , cf. Eq. (4.14),

q ′
s = km (T∞ − Tw)

2

π1/2

(
u

�m
xs−t

)1/2

(4.57)

and adding to it the contribution made by the time-dependent trailing section
xs−t < x < L:

q ′
t = (L − xs−t )

km(T∞ − Tw)

(π�mt/�)1/2
. (4.58)

The total heat transfer rate q ′ = q ′
s + q ′

t can be compared with the long-time
(steady-state) heat transfer rate of the L-long plate,

q ′
final = k (T∞ − Tw)

2

π1/2

(
u

�m
L

)1/2

(4.59)

and the resulting expression is

q ′

q ′
final

= 1 + 1 − τ

2τ1/2
. (4.60)
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In this expression τ is the dimensionless time

τ = ut

�L
. (4.61)

According to Eq. (4.50), τ = 1 marks the end of the time interval in which Eq.
(4.60) holds. The beginning of that time interval is dictated by the validity of the
assumption that the leading (steady-state) section of the boundary layer is always
slender, cf. Eq. (4.49), (�m xs−t

u

)1/2
< xs−t . (4.62)

This requirement translates into
uxs−t

�m
> 1 (4.63)

or, in view of Eqs. (4.54) and (4.61),

τ >
1

PeL
, (4.64)

where PeL is the Péclet number based on L ,

PeL = uL

�m
. (4.65)

At times τ shorter than 1/PeL , the leading section is not a forced convection
boundary layer, and the entire L length produces a time-dependent heat transfer
rate of type (4.58):

q ′ = L
km (T∞ − Tw)

(π �mt/�)1/2 . (4.66)

The dimensionless counterpart of this estimate is

q ′

q ′
final

= 1

2 τ1/2
. (4.67)

In summary, the total heat transfer rate is given by three successive expressions,
each for one regime in the evolution of the temperature field near the suddenly
heated plate:

q ′

q ′
final

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2τ1/2
, 0 < τ < Pe−1

L

1 + 1 − τ

2τ1/2
, Pe−1

L < τ < 1

1, τ > 1.

(4.68)

The domain occupied by each regime is indicated on the (PeL , τ) plane of
Fig. 4.8. The approximate solution (4.66) shows that relative to the long-time result
(4.59), the transient heat transfer rate depends on two additional dimensionless
groups, τ and PeL .
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Figure 4.8. The τ-PeL ranges in which the three parts of the solutions (4.66) and (4.68)
are applicable.

4.6.3. Wall with Constant Heat Flux

The thermal boundary layer formed in the vicinity of a plate with sudden heat flux
q ′′ can be described in a way that is analogous to the analysis presented between
Eqs. (4.55) and (4.68). The structure shown in Fig. 4.7 is present here as well,
and Eqs. (4.54) and (4.61) continue to hold. The upstream portion 0 < x < xs−t

closely approximates the steady forced convection boundary layer with uniform
heat flux (Section 4.2). The downstream section xs−t < x < L is dominated by
time-dependent conduction into a semi-infinite medium with uniform heat flux at
the surface.

The history of the L-averaged temperature of the wall or of the L-
averaged wall-medium temperature difference �T approaches [cf. Eq. (4.17)] the
value

�Tfinal = 4

3π1/2

q′′L
km

(
uL

�m

)1/2

. (4.69)

Expressed in dimensionless form, the L-averaged temperature difference is

�T

�T final

∼=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

3

2
τ1/2, 0 < Pe−1

L(
3

3
− τ

2

)
τ1/2, Pe−1

L < τ < 1

1, τ > 1.

(4.70)
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The solutions (4.66) and (4.68) are based on the assumption that PeL � 1. For
example, Eq. (4.66) shows that the heat transfer ratio q ′/q ′

final experiences a change

of relative magnitude O (Pe−1
L ) at τ = Pe−1

L . The same observation applies to the
�T/�Tfinal ratio of Eq.(4.68).

Unsteady forced convection on a flat plate, with the effect of inertia and thermal
dispersion accounted for, was analyzed by Cheng and Lin (2002). The dispersion
accelerates the rate of unsteady heat transfer but does not affect the response time
to reach a steady state.

4.6.4. Other Configurations

Kimura (1989b) has studied transient forced convection about a vertical cylinder.
He obtained analytic solutions for small time (conduction solution) and large time
(boundary layer solution) and numerical results for the general time situation.
Thevenin (1995) performed other calculations.

Al-Nimr et al. (1994a,b) have investigated numerically convection in the en-
trance region of either a tube or an annulus, when a timewise step change of wall
temperature is imposed, for Darcy and non-Darcy models. A conjugate problem
involving concentric annuli was studied numerically by El-Shaarawi et al. (1999).
Alkam and Al-Nimr (1998) performed a numerical simulation of transient forced
convection in a circular pipe partly filled with a porous substrate. Unsteady forced
convection about a sphere was studied numerically by Yan and Pop (1998). H. L. Fu
et al. (2001) studied experimentally heat transfer in a channel subject to oscillating
flow, while Mohamad and Karim (2001) reported experiments in a pipe with core
and sheath occupied by different porous materials.

In a series of papers, Kuznetsov (1994, 1995a,b, 1996b-f, 1998e) has investigated
the effect of local thermal non-equilibrium on heat transfer, for the problem when
a porous bed is initially at a uniform temperature and then suddenly subjected to
a step increase of fluid inlet temperature. The locally averaged fluid velocity v
is assumed to be uniform in space and constant in time. The analytical solution
obtained by Kuznetsov, using a perturbation method based on the assumption
that the fluid-to-solid heat transfer coefficient is large, shows that the temperature
of the fluid (T f ) or solid (Ts) phase takes the form of an advancing front, while
the temperature difference T f − Ts takes the form of an advancing pulse. The
amplitude of that pulse decreases as the pulse propagates downstream. Kuznetsov
treated in turn a one-dimensional semi-infinite region, a one-dimensional finite
region, a two-dimensional rectangular region, a circular tube, a concentric tube
annulus, and a three-dimensional rectangular box. In the one-dimensional semi-
infinite case the wave speed 	wave is related to the fluid flow speed v by

	wave = (
c) f

�(
c) f + (1 − �) (
c)s
v. (4.71)

In the two-dimensional and three-dimensional cases the amplitude of the pulse also
decreases from the central flow region to the walls of the packed bed. Kuznetsov’s
(1996c) paper deals with a one-dimensional slab with a fluid-to-solid heat transfer
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coefficient (something whose value is difficult to determine experimentally) that
varies about a mean value in a random fashion. He calculated the mean and standard
deviation of T f − Ts .

The effects of thermal nonequilibrium have been included in numerical simu-
lations by Sözen and Vafai (1990, 1993), Vafai and Sözen (1990a,b), Amiri and
Vafai (1994), and Amiri et al. (1995), e.g., in connection with the condensing flow
of a gas or longitudinal heat dispersion in a gas flow in a porous bed. They found
that the local thermal equilibrium condition was very sensitive to particle Reynolds
number and Darcy number, but not to thermophysical properties. Amiri and Vafai
(1998) and Wu and Hwang (1998) performed further numerical simulations.

4.7. Effects of Inertia and Thermal Dispersion:
External Flow

When quadratic drag is taken into account, the Darcy equations (4.2) are replaced
by the approximate equations

u + �

v
u2 = − K

�

∂ P

∂x
, v = − K

�

∂ P

∂y
(4.72)

for the case when the primary flow is in the x direction, so 	/u � 1. Here
� = cF K 1/2, where cF was introduced in Eq. (1.12). Eliminating P from these
equations and introducing the stream-function ψ defined by u = ∂ψ/∂y, v =
−∂ψ/∂x so that Eq. (4.1) is satisfied, we obtain

∂2ψ
∂y2

+ �

v

∂

∂y

[(
∂ψ
∂y

)2
]

= 0, (4.73)

and Eq. (4.3) becomes

∂ψ
∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y
= �m

∂2T

∂y2
. (4.74)

If one considers the case where Tw = T∞ + Axλ, U∞ = Bxm , where A, B, λ,
and m are constants, one finds that a similarity solution is possible if and only if
m = 0 and λ = 1/2. One can check that the similarity solution is given by

ψ = (�m U∞ x)1/2 f (�), (4.75)

T − T∞ = (Tw − T ) �(�), (4.76)

� =
(

U∞ x

�m

)1/2 y

x
, (4.77)

provided that f and � satisfy the differential equations

f ′′ + R∗ [( f ′)2] = 0, (4.78)

�′′ = 1

2
( f ′ � − f �′), (4.79)
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where

R∗ = �U∞
	

. (4.80)

The boundary conditions

y = 0 : T = Tw, v = 0, (4.81)

y → ∞ : T = Tw, u = U∞, (4.82)

lead to

�(0) = 1, f (0) = 0, � (∞) = 0, f ′(∞) = 1. (4.83)

The local wall heat flux is

q ′′ = −km

(
∂T

∂y

)
y=0

= −km A

(
B

�m

)1/2

�′(0), (4.84)

where �′(0) = −0.886. We recognize that this is the case of constant wall heat
flux. In nondimensional form this result is precisely the same as Eq. (4.16) and
is independent of the value of R∗. Thus in this case quadratic drag has no effect
on the wall heat flux (for fixed U∞), but it does have the effect of flattening the
dimensionless velocity profile (Lai and Kulacki, 1987).

The effect of thermal dispersion in the same case was discussed by Lai and
Kulacki (1989a). In the present context it is the transverse component that is
important. If one allows for thermal dispersion by adding a term Cudp (where dp

is the mean particle or pore diameter and C is a numerical constant) to �m in the
term �m∂2T/∂y2 in Eq.(4.3), then Eq.(4.16) is replaced by

Nux = 0.886 (1 + C Ped ) Pe1/2
x , (4.85)

where Ped = U∞ dp/�m . Thus thermal dispersion increases the heat transfer be-
cause it increases the effective thermal conductivity in the y direction.

The effect of quadratic drag in the transient situation for the case of constant wall
temperature was examined by Nakayama and Ebinuma (1990), who found that it
had the effect of slowing the rate at which a steady-state solution is approached.
One can deduce from their steady-state formulas that (as for the constant flux
situation) quadratic drag does not affect the Nux (Pex ) relationship, in this book
the formula (4.13).

4.8. Effects of Boundary Friction and Porosity Variation:
Exterior Flow

When one introduces the Brinkman equation in order to satisfy the no-slip condition
on a rigid boundary, one runs into a complex problem. The momentum equation
no longer has a simple solution, and a momentum boundary layer problem must
be treated. For the purposes of this discussion, we follow Lauriat and Vafai (1991)
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and take the boundary layer form of the momentum equation

1

�2

(
u

∂u

∂x
+ v

∂u

∂y

)
= v

K
(U − u) + cF

K 1/2
(U 2 − u2) + v

�

∂2u

∂y2
. (4.86)

For the reasons pointed out in Section 1.5, we drop the left-hand side of this
equation at the outset, and in the last term we replace �−1 by �̃/�. The condition
on a plane wall is now

u = v = 0, T = Tw for x > 0, y = 0. (4.87)

The remaining equations and boundary conditions are unaltered.
The integral method, as used by Kaviany (1987), provides an approximate so-

lution of the system. If the velocity profile is approximated by

u = U∞

[
3

2

y

�
− 1

2

( y

�

)3
]

, (4.88)

one finds that the momentum boundary layer thickness � is given by

�2

K/�
= 140

(35 + 48cF Rep)
(1 − e−� x∗

) (4.89)

where

Rep = U∞K 1/2/v (4.90)

is the pore Reynolds number

� =
(

70

13

1

Rep
+ 96

13
cF

)
�3/2, (4.91)

and

x∗ = x

(K/�)1/2
. (4.92)

The momentum boundary layer thickness � is almost constant when x∗ > 5/� .
Thus the hydrodynamic development length can be taken as

xe = 5

�

(
K

�

)1/2

(4.93)

and the developed momentum boundary layer thickness is given by

� =
[(

140

35 + 48 cF Rep

)
K

�

]1/2

. (4.94)

For the developed region, exact solutions have been obtained by Cheng (1987),
Beckermann and Viskanta (1987), and Vafai and Thiyagaraja (1987). They show
that the velocity is constant outside a boundary layer whose thickness decreases
as cF and/or Rep increases, in accordance with Eq. (4.86).
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Wall effects caused by nonuniform porosity (Section 1.7) have been inves-
tigated experimentally by a number of investigators and theoretically by Vafai
(1984, 1986), Vafai et al. (1985), and Cheng (1987). The degree to which hydro-
dynamic wall effects influence the heat transfer from a heated wall depends on the
Prandtl number Pr of the fluid. The ratio of the thermal boundary layer thickness
�T to the momentum boundary layer thickness � is of order Pr−1. For low Prandtl
number fluids (Pr → 0), � � �T and the temperature distribution, and hence the
heat transfer, is given by the Darcy theory of Sections 4.1 and 4.2. For a more
general case where the inertial effects are taken into account and for a variable
wall temperature in the form Tw = T∞ + Ax p, an exact solution was obtained by
Vafai and Thiyagaraja (1987) for low Prandtl number fluids in terms of gamma
and parabolic cylindrical functions. They found the temperature distribution
to be

T = T∞ + A (p + 1)

× {
2p+1/2 π−1/2 x p exp (− �y2/x) D−(2 p+ 1)[(4�y2/x)1/2]

}
, (4.95)

where � = U∞/8�m . The corresponding local Nusselt number is

Nux =  (p + 1)

 (p + 1/2)
(Rep Pre)

1/2

, Da−1/4
x = (p + 1)

 (p + 1/2)
Pe1/2

x , (4.96)

which reduces to Eq. (4.13) when p = 0.
When the Prandtl number is very large, �T � � and so the thermal boundary

layer lies completely inside the momentum boundary layer. As Pr → ∞ one can
assume that the velocity distribution within the thermal boundary layer is linear
and given by

u = τw y

� f
, (4.97)

where τw is the wall stress which is given by

τw = � f U∞
(K/�)1/2

(
1 + 4

3
cF Rep

)1/2

. (4.98)

This means that the energy equation can be approximated by

y
∂T

∂x
= �m � f

τw

∂2T

∂y2
. (4.99)

We now introduce the similarity variables

� = y

(
1

9�x

)1/3

, � (�) = T − Tw

T∞ − Tw

, (4.100)

where

� = �m� f

τw

= K

Rep Pre

[
�

(
1 + 4

3
cF Rep

)]−1/2

(4.101)
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and where the effective Prandtl number Pre is defined as

Pre = 	

�m
. (4.102)

We then have the differential equation system

�′′ + 3�2�′ = 0, (4.103)

� (0) = 0, � (∞) = 1 , (4.104)

which has the solution (Beckermann and Viskanta, 1987)

� = 1

 (4/3)

∫ �

0
e−�3

d�. (4.105)

Hence the local Nusselt number is

Nux = km (∂T/∂y)y=0

km(Tw − T∞)/x
= 1.12

(
x2

9�

)1/3

= 0.538

[
�

(
1 + 4

3
cF Rep

)]1/6 (
Rep Pre

Dax

)1/3

(4.106)

and the overall Nusselt number over a length L from the leading edge becomes

Nu = 1.68

(
L2

9�

)1/3

. (4.107)

Vafai and Thiyagaraja (1987) have compared these analytical results with numeri-
cal solutions. They found that the low Prandtl number analytical solution accurately
predicts the temperature distribution for a Prandtl number Pre as high as 8, while
the high-Pre analytical solution is valid for Pre as low as 100 and possibly for
somewhat lower values.

The combined effects of inertia and boundary friction were considered by
Kaviany (1987). He expressed his results in terms of a parameter x defined as the
total flow resistance per unit volume (Darcy plus Forchheimer drag) due to the solid
matrix, scaled in terms of 8
U 2

∞/3�x . He concluded that the “Darcian regime”
where Nux varies as Pr1/2

e holds when x > 0.6 Pre and the “non-Darcian regime”
where Nux varies as Pr1/3

e holds when 0.07 < x < 0.6 Pre. When x = 0.07 the
presence of the solid matrix is not significant. Another study is that by Kumari
et al. (1990c).

Vafai et al. (1985) experimentally and numerically investigated the effects of
boundary friction and variable porosity. Their experimental bed consisted of glass
beads of 5 mm and 8 mm diameter saturated with water. They found good agree-
ment between observation of the average Nusselt number and numerical pre-
dictions when the effect of variable porosity was included (but not otherwise).
Cheng (1987) noted that since their experiments were conducted in the range
100 < Rep < 900, thermal dispersion effects should have been important, and in
fact they neglected these. He pointed out that in their numerical work Vafai et al.
(1985) used a value of thermal conductivity about three times larger than was
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warranted, and by doing so they had fortuitously approximated the effect of trans-
verse thermal dispersion.

Further experimental work was undertaken by Renken and Poulikakos (1989).
They reported details of thermal boundary layer thickness, temperature field, and
local Nusselt number. Good agreement was found with the numerical results of
Vafai et al. (1985) with the effects of flow inertia and porosity variation accounted
for.

Some further details on the content of this section can be found in the review
by Lauriat and Vafai (1991). Nakayama et al. (1990a) used novel transformed
variables to produce a local similarity solution for flow over a plate. Vafai and
Kim (1990) have analyzed flow in a composite medium consisting of a fluid layer
overlaying a porous substrate that is attached to the surface of a plate. Luna and
Mendez (2005) have used a Brinkman model to study analytically and numeri-
cally the conjugate problem of forced convection on a plate with finite thermal
conductivity and with constant heat flux at the extreme boundary.

For the case of cross flow across a cylinder, Fand et al. (1993) obtained empirical
correlation expressions for the Nusselt number. For the same geometry, a numerical
study was made by Nasr et al. (1995). They reported that the effect of decreasing
Da was an increase in Nu, but Lage and Nield (1997) pointed out that this is true
only if the Reynolds number Re is held constant. If the pressure gradient is kept
constant, Nu increases with Da. Nasr et al. (1995) also noted that Nu increased with
increase of either Re or effective Prandtl number, and that the effect of quadratic
drag on Nu is via the product DaRe.

Heat transfer around a periodically-heated cylinder was studied experimentally
(with water and glass beads) and numerically by Fujii et al. (1994). They also
modeled the effects of thermal dispersion and thermal nonequilibrium.

Unsteady forced convection, produced by small amplitude variations in the wall
temperature and free stream velocity, along a flat plate was studied by Hossain
et al. (1996)

4.9. Effects of Boundary Friction, Inertia, Porosity
Variation, and Thermal Dispersion: Confined Flow

In porous channels the velocity field generally develops to its steady-state form in
a short distance from the entrance. To see this, let tc be a characteristic time for
development and uc a characteristic velocity. During development the acceleration
term is of the same order of magnitude as the Darcy resistance term, so uc/tc ∼
	uc/K , and so the development length ∼ tcuc ∼ K uc/	, which is normally small.
[Note that, in contrast with the argument used by Vafai and Tien (1981), the present
argument holds whether or not the convective inertial term is negligible.] Further,
the numerical results of Kaviany (1985) for flow between two parallel plates show
that the entrance length decreases linearly as the Darcy number decreases. In this
section we assume that the flow is also fully developed thermally.
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We start by considering a channel between two plane parallel walls a distance
2H apart, the boundaries being at y = H and y = −H . For fully developed flow
the velocity is u(y) in the x-direction. We suppose that the governing equations are

G = �u∗

K
+ cF 
u∗2

K 1/2
− �̃

d2u∗

dy∗2 , (4.108)

u∗ ∂T ∗

∂x∗ = km

(
cP ) f

∂2T ∗

∂y∗2 . (4.109)

Here the asterisks denote dimensional variables, and G is the applied pressure
gradient. Local thermal equilibrium has been assumed, dispersion is neglected,
and it is assumed that the Péclet number is sufficiently large for the axial thermal
conduction to be insignificant. We define the dimensionless variables

x = x∗

H
, y = y∗

H
, u = �̃u∗

G H 2
, (4.110)

and write

M = �̃

�
, Da = K

H 2
, F = cF 
G H 4

K 1/2�2
. (4.111)

Thus M is a viscosity ratio, Da is a Darcy number, and F is a Forchheimer number.
Then Eq. (4.108) becomes

M
d2u

dy2
− u

Da
− Fu2 + 1 = 0. (4.112)

This equation is to be solved subject to the boundary/symmetry conditions

u = 0 at y = 1,
du

dy
= 0 at y = 0. (4.113)

When F is not zero, the solution can be expressed in terms of standard elliptic
functions (Nield et al., 1996). When F = 0, the solution is

u = Da

(
1 − cosh Sy

cosh S

)
, (4.114)

where for convenience we introduce

S = 1

(MDa)1/2
. (4.115)

We also introduce the mean velocity U ∗ and the bulk mean temperature Tm
∗ defined

by

U ∗ = 1

H

∫ H

0
u∗dy∗, Tm

∗ = 1

HU ∗

∫ H

0
u∗T ∗dy∗. (4.116)

We then define further dimensionless variables defined by

û = u∗

U ∗ , T̂ = T ∗ − Tw
∗

Tm
∗ − Tw

∗ , (4.117)
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and the Nusselt number

Nu = 2Hq ′′

km(Tm
∗ − Tw

∗)
. (4.118)

Here Tw
∗ and q ′′ are the temperature and heat flux on the wall.

For the case of uniform heat flux on the boundary, the first law of thermody-
namics leads to

∂T ∗

∂x∗ = dTm
∗

dx∗ = q ′′

(
cP ) f HU ∗ = constant. (4.119)

In this case Eq. (4.109) becomes

d2T̂

dy2
= −1

2
Nu û. (4.120)

The boundary conditions for this equation are

T̂ = 0 at y = 1,
dT̂

dy
= 0 at y = 0. (4.121)

For the Brinkman model, with u given by Eq. (4.114), we have

û = S

S − tanh S

(
1 − cosh Sy

cosh S

)
, (4.122)

T̂ = SNu

S − tanh S

[
1

4
(1 − y2) − cosh S − cosh Sy

2S2 cosh S

]
. (4.123)

The definition of the dimensionless temperature leads to an identity that we call
the integral compatibility condition (Nield and Kuznetsov, 2000), namely∫ 1

0
ûT̂ dy = 1. (4.124)

Substitution from Eqs. (4.122) and (4.123) then leads to

Nu = 12S(S − tanh S)2

2S3 − 15S + 15 tanh S + 3S tanh2 S
, (4.125)

in agreement with an expression obtained by Lauriat and Vafai (1991). As the
Darcy number Da increases from 0 to ∞, i.e., as S decreases from ∞ to 0, the
Nusselt number Nu decreases from the Darcy value 6 [agreeing with Eq. (4.42)]
to the clear fluid value 210/51 = 4.12. Thus the effect of boundary friction is to
decrease the heat transfer by reducing the temperature gradient at the boundary.

For F �= 0, Vafai and Kim (1989) used a boundary-layer approximation in
obtaining a closed form solution. This solution becomes inaccurate for hyper-
porous media, those for which Da > 0.1. For such media, the Brinkman term
is comparable with the Darcy term throughout the flow (and not just near the
walls) and K can no longer be determined by a simple Darcy-type experiment.
A closed form solution of the Brinkmann-Forchheimer equation, valid for all
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Figure 4.9. Effect of the Forchheimer number, F , on the Nusselt number Nu, for a
channel with isoflux boundaries (Nield et al. 1996).

values of Da, was obtained by Nield et al. (1996). Some typical results are given in
Fig. 4.9.

The results of Nield et al. (1996) may be summarized as follows. For each
type of thermal boundary condition, the temperature profile is little changed as a
result of variation of M , Da or F . It is slightly more peaked when Da is small or
when F is large. On the other hand, the Nusselt number is significantly altered,
primarily as a result of the change in velocity profile. The effect of an increase in
F is to produce a more slug-like flow; and because of the way the mean velocity
is defined this decreases (Tw − Tm), and hence increases Nu. In particular, for the
case of isoflux boundaries, the following holds. When simultaneously Da is large
and F is small, the velocity profile is approximately parabolic and the Nusselt
number is near 70/17 (a lower bound). When either Da is sufficiently small or F is
sufficiently large, the velocity profile is approximately uniform (apart from a thin
boundary layer) and the Nusselt number is near 6 (an upper bound). For the case
of isothermal surfaces the story is similar, but the Nusselt numbers are smaller [the
reason for this is spelled out in Nield et al. (1996, p. 211)].

For the case of a circular tube, with H replaced by the radius R of the tube in
the scaling, one finds (Nield et al., 2003b) that the solution can be expressed in
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terms of modified Bessel functions:

û = S [I0(S) − I0(Sr )]

SI0(S) − 2I1(S)
, (4.126)

T̂ = S Nu

SI0(S) − 2I1(s)

[
I0(S)

4
(1 − r2) − I0(S) − I0(Sr )

S2

]
, (4.127)

Nu = 8S[SI0(S) − 2I1(S)]2

(S3 − 24S)[I0(S)]2 + 48I0(S)I1(S) + 8S[I1(S)]2
. (4.128)

When the uniform flux boundary condition is replaced by the uniform temperature
condition, one finds that Eq. (4.120) is replaced by

d2T̂

dy2
= −1

2
Nu ûT̂ . (4.129)

The boundary condition given by Eq. (4.121) still applies. We see that we now have
an eigenvalue problem with Nu as the eigenvalue. Now Eq. (4.124) is satisfied triv-
ially, and instead of this compatibility condition one uses an integral compatibility
condition (previously satisfied trivially), namely

Nu = −2
dT̂

dy
(1). (4.130)

Equation (4.130) enables the amplitude of the eigenfunction to be determined.
For the case of Darcy flow (Da = 0) we have û = 1, T̂ = (π/2) cos(πy/2) and
Nu = π2/2 = 4.93. For other values of Da the value of Nu can be found numer-
ically, most readily by expressing the second-order differential equation as two
first-order equations and then using a shooting method. Details of the method may
be found in Nield and Kuznetsov (2000).

The above results for symmetric heating can be extended to the case of asym-
metric heating, using a result established by Nield (2004c). The result applies
when the heat flux along each boundary is uniform, or the temperature along each
boundary is uniform. With the Nusselt number defined in terms of the mean wall
temperature and the mean wall heat flux, the value of the Nusselt number is inde-
pendent of the asymmetry whenever the velocity profile is symmetric with respect
to the midline of the channel. This means that the above results also apply to the
case of heating asymmetric with respect to the midline.

In the case of a circular tube, Eqs. (4.129), (4.130) are replaced by

d2T̂

dr2
+ 1

r

dT̂

dr
= −Nu ûT̂ , (4.131)

Nu = −2
dT̂

dr
(1). (4.132)

For the case Da = 0 one finds that Nu = λ2 where λ = 2.40483 is the smallest
positive root of the Bessel function J0(x), so that Nu = (2.40483)2 = 5.783, and
T̂ = λJ0(λr )/2J1(λ).
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Variable porosity effects in a channel bounded by two isothermal parallel plates
and in a circular pipe were examined numerically by Poulikakos and Renken
(1987), for the case of a fully developed velocity field. They assumed that the
porosity variation had negligible effects on the thermal conductivity, an assump-
tion that breaks down when there is a large difference between the thermal con-
ductivities of the two phases (David et al., 1991). Poulikakos and Renken (1987)
found that in the fully developed region the effect of channeling was to produce a
Nusselt number increase (above the value based on the Darcy model) of 12 percent
for a parallel plate channel and 22 percent for a circular pipe.

Renken and Poulikakos (1988) performed an experimental investigation for the
parallel plate configuration with the walls maintained at constant temperature,
with particular emphasis on the thermally developing region. They also performed
numerical simulations incorporating the effects of inertia, boundary friction, and
variable porosity. Their experimental and numerical findings agreed on predicting
an enhanced heat transfer over that predicted using the Darcy model.

Poulikakos and Kazmierczak (1987) obtained closed form analytical solutions
of the Brinkman equation for parallel plates and a circular pipe with constant heat
flux on the walls for the case where there is a layer of porous medium adjacent to
the walls and clear fluid interior. They also obtained numerical results when the
walls were at constant temperature. For all values of Da the Nusselt number Nu
goes through a minimum as the relative thickness of the porous region s varies
from 0 to 1. The minimum deepens and is attained at a smaller value of s as Da
increases. A general discussion of Brinkman, Forchheimer, and dispersion effects
was presented by Tien and Hunt (1987). For the Brinkman model and uniform heat
flux boundaries, Nakayama et al. (1988) obtained exact and approximate solutions.
Analytical studies giving results for small or large Darcy numbers for convection
in a circular tube were reported by Hooman and Ranbar-Kani (2003, 2004).

Hunt and Tien (1988a) have performed experiments that document explicitly
the effects of thermal dispersion in fibrous media. They were able to correlate their
Nusselt number data, for high Reynolds number flows, in terms of a parameter
ua L1/2 K 1/4/�m , where ua is the average streamwise Darcy velocity and L is a
characteristic length. Since this parameter does not depend explicitly on the thermal
conductivity, they concluded that dispersion overwhelmed transport from solid
conduction. They were able to explain this behavior using a dispersion conductivity
of the form

kd = 
 cP � K 1/2u, (4.133)

where � is a numerical dispersion coefficient, having the empirically determined
value of 0.025. An analytical study of the effect of transverse thermal dispersion
was reported by Kuznetsov (2000c).

Hunt and Tien (1988b) modeled heat transfer in cylindrical packed beds such as
chemical reactors by employing a Forchheimer-Brinkman equation. They allowed
the diffusivity to vary across the bed. Marpu (1993) found that the inclusion of axial
conduction leads to a significant increase in Nusselt number in the thermally de-
veloping region of pipes for Péclet number less than 100. In similar circumstances,
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the effect of axial dispersion was found by Adnani et al. (1995) to be important
for Péclet number less than 10.

Cheng et al. (1991) have reviewed methods for the determination of effective
radial thermal conductivity and Nusselt number for convection in packed tubes and
channels and have reanalyzed some of the previous experimental data in the light
of their own recent contributions to thermal dispersion theory with variable poros-
ity effects taken into account. They found that for forced convection in a packed
column the average Nusselt number depends not only on the Reynolds number
but also on the dimensionless particle diameter, the dimensionless length of the
tube, the thermal conductivity ratio of the fluid phase to the solid phase, and the
Prandtl number of the fluid. They summarized their conclusions by noting that in
their recent work [Cheng et al. (1988), Cheng and Hsu (1986a,b), Cheng and Zhu
(1987), Cheng and Vortmeyer (1988), and Hsu and Cheng (1988, 1990)] they had
developed a consistent theory for the study of forced convection in a packed col-
umn taking into consideration the wall effects on porosity, permeability, stagnant
thermal conductivity, and thermal dispersion. These effects become important as
the particle/tube diameter ratio is increased. Various empirical parameters in the
theory can be estimated by comparison of theoretical and experimental results for
the pressure drop and heat transfer, but there is at present a need to perform more
experiments on forced convection in packed columns where both temperature dis-
tribution and heat flux are measured to enable a more accurate determination of
the transverse thermal dispersivity.

Chou et al. (1994) performed new experiments and simulations for convection in
cylindrical beds. They concluded that discrepancies in some previous models could
be accounted for by the effect of channeling for the case of low Péclet number
and the effect of thermal dispersion in the case of high Péclet number. Chou
et al. (1992b,c) had reported similar conclusions, on the basis of experiments, for
convection in a square channel.

The effect of suction at permeable walls was investigated by Lan and Khodadadi
(1993). An experimental study of convection with asymmetric heating was reported
by Hwang et al. (1992). Bartlett and Viskanta (1996) obtained analytical solutions
for thermally developing convection in an asymmetrically heated duct filled with
a medium of high thermal conductivity.

Lage et al. (1996) performed a numerical study for a device (designed to pro-
vide uniform operating temperatures) consisting of a microporous layer placed be-
tween two sections of a cold plate. The simulation was based on two-dimensional
equations derived from three-dimensional equations by integration over the small
dimension of the layer.

For convection in cylindrical beds, Kamiuto and Saitoh (1994) investigated
NuP , �, and , where NuP and ReP are Nusselt and Reynolds numbers based on
the particle diameter, while � is the ratio of thermal conductivity of solid to that
of fluid and  is the ratio of bed radius to particle diameter. They found that as
ReP Pr tends to zero, NuP tends to a constant value depending on both � and ,
while for large ReP Pr the value of NuP depends on both ReP Pr and Pr but only
to a small extend on �.
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For pipes packed with spheres, Varahasamy and Fand (1996) have presented
empirical correlation equations representing a body of new experimental data.
Experimental studies involving metal foams have been reported by Calmidi and
Mahajan (2000), Hwang et al. (2002), and Zhao et al. (2004b). Further experi-
mental and theoretical studies of convection in a circular pipe were conducted by
Izadpanah et al. (1998). Extending previous experimental work by Jiang et al.
(1999b), Jiang et al. (2004e,f,h) studied numerically and experimentally the wall
porosity effect for a sintered porous medium. A similar study of nonsintered ma-
terial was reported by Jiang et al. (2004g). Sintered materials also were discussed
by Kim and Kim (2000). Forced convection in microstructures was discussed by
Kim and Kim (1999). Another numerical study in a metallic fibrous material was
reported by Angirasa (2002a), and that was followed with an experimental study
by Angirasa (2000b). An experimental study with aluminum foam in an asymmet-
rically heated channel was made by S. J. Kim et al. (2001).

Entropy generation in a rectangular duct was studied by Demirel and Kahraman
(1999). For a square duct, a numerical study of three-dimensional flow was reported
by Chen and Hadim (1999b).

The effect of viscous dissipation has been studied numerically by Zhang et al.
(1999) for a parallel plate channel and by Yih and Kamioto for a circular pipe.
An analytical study of the effects of both viscous dissipation and flow work in
a channel, for boundary conditions of uniform temperature or uniform heat flux,
was reported by Nield et al. (2004b). These authors specifically satisfied the first
law of thermodynamics when treating the fully developed flow. They also consid-
ered various models for the contribution from the Brinkman term to the viscous
dissipation. Some general matters related to the possibility of fully developed con-
vection were discussed by Nield (2006). An analytical study of heat transfer in
Couette flow was made by Kuznetsov (1998c). An analytical study of a conjugate
problem, with conduction heat transfer inside the channel walls accounted for,
was made by Mahmud and Fraser (2004). Entropy generation in a channel was
studied analytically and numerically by Mahmud and Fraser (2005b). Vafai and
Amiri (1998) briefly surveyed some of the work done on the topics that here are
discussed mainly in Sections 4.9 and 4.10.

Convection in a hyperporous medium saturated by a rarefied gas, with both
velocity-slip and temperature-slip at the boundaries of a parallel-plate channel
or a circular duct, was analyzed by Nield and Kuznetsov (2006). They found
that temperature slip leads to decreased transfer, while the effect of velocity-slip
depends on the geometry and the Darcy number.

4.10. Local Thermal Nonequilibrium

It is now commonplace to employ a two-temperature model to treat forced con-
vection with local thermal nonequilibrium (LTNE). Authors who have done this
include Vafai and Tien (1989), Jiang et al. (1998, 1999, 2001, 2002), You and Song
(1999), Kim et al. (2000), Kim and Jang (2002), Muralidhar and Suzuki (2001), and
Nakayama et al. (2001). Transient and time-periodic convection in a channel has
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been treated analytically by Al-Nimr and Abu-Hijleh (2002), Al-Nimr and Kiwan
(2002), Abu-Hijleh et al. (2004), and Khashan et al. (2005). A further study of tran-
sient convection was conducted by Spiga and Morini (1999). An analysis involving
a perturbation solution was presented by Kuznetsov (1997d). The specific aspect
LTNE involving steady convective processes was analyzed by Nield (1998a). The
modeling of local nonequilibrium in a structured medium was discussed by Nield
(2002), and a conjugate problem was analyzed by Nield and Kuznetsov (1999).
A problem in a channel with one wall heated was analyzed by Zhang and Huang
(2001); see also the note by Magyari and Keller (2002). The departure from lo-
cal thermal equilibrium due to a rapidly changing heat source was analyzed by
Minkowycz et al. (1999). Further analysis was carried out by Lee and Vafai (1999)
and Marafie and Vafai (2001). The particular case of various models for constant
wall heat flux boundary conditions was discussed by Alazmi and Vafai (2002).
The present authors think that the best model is the one where there is uniform
flux over the two phases, as employed by Nield and Kuznetsov (1999). Alazmi
and Vafai (2004) showed that thermal dispersion has the effect of increasing the
sensitivity of LTNE between the two phases. The case of non-Newtonian fluid was
treated numerically by Khashan and Al-Nimr (2005). Most work on LTNE has
been done for confined flows, but Wong et al. (2004) treated finite Péclet number
effects in forced convection past a heated cylinder.

4.11. Partly Porous Configurations

For complicated geometries numerical studies are needed. The use of porous bodies
to enhance heat exchange motivated the early studies of Koh and Colony (1974)
and Koh and Stevans (1975). Huang and Vafai (1993, 1994a–d) and Vafai and
Huang (1994), using a Brinkman-Forchheimer model, have performed studies of
a composite system made of multiple porous blocks adjacent to an external wall
(either protruding or embedded) or along a wall with a surface substrate. Khanafer
and Vafai (2001, 2005) investigated isothermal surface production and regulation
for high heat flux applications using porous inserts. Cui et al. (2001) conducted an
experimental study involving a channel with discrete heat sources.

Convection in a parallel-plate channel partially filled with a porous layer was
studied by Jang and Chen (1992). They found that the Nusselt number is sensitive
to the open space ratio and that the Nusselt number is a minimum at a certain
porous layer thickness, dependent on Darcy number. A similar study was reported
by Tong et al. (1993). Srinivasan et al. (1994) analyzed convection in a spirally
fluted tube using a porous substrate approach. Hadim and Bethancourt (1995)
simulated convection in a channel partly filled with a porous medium and with
discrete heat sources on one wall. Chikh et al. (1995b, 1998) studied convection
in an annulus partly filled with porous material on the inner heated wall and in a
channel with intermittent heated porous disks, while Rachedi and Chikh (2001)
studied a similar problem. Ould-Amer et al (1998) studied numerically the cooling
of heat generating blocks mounted on a wall in a parallel plate channel. Fu et al.
(1996) and Fu and Chen (2002) dealt with the case of a single porous block on
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a heated wall in a channel. Sözen and Kuzay (1996) studied round tubes with
porous inserts. Zhang and Zhao (2000) treated a porous block behind a step in
a channel. Masuoka et al. (2004) studied experimentally and numerically, with
alternative interface conditions considered, the case of a permeable cylinder placed
in a wind tunnel of rectangular cross section. Layeghi and Nouri-Borujerdi (2004)
discussed forced convection from a cylinder or an array of cylinders in the presence
or absence of a porous medium. Huang et al. (2004b) studied numerically the
enhancement of heat transfer from multiple heated blocks in a channel using porous
covers.

Abu-Hijleh (1997, 2000, 2001b, 2002) numerically simulated forced in various
geometries with orthotropic porous inserts, while Abu-Hijleh (2003) treated a
cylinder with permeable fins. A transient problem involving partly filled channels
was studied by Abu-Hijleh and Al-Nimr (2001).

Analytical solutions for some flows through channels with composite materials
were obtained by Al-Hadrami et al. (2001a,b). Pipes with porous substrates were
treated numerically by Alkam and Al-Nimr (1999a,b, 2001), while parallel-plate
channels were similarly treated by Alkam et al. (2001, 2002). A tubeless solar
collector and an unsteady problem involving an annulus were likewise treated by
Al-Nimr and Alkam (1997a, 1998a). Hamdan et al. (2000) treated a parallel-plate
channel with a porous core. W. T. Kim et al. (2003c) studied both a porous core and a
porous sheath in a circular pipe. A Green’s function method was used by Al-Nimr
and Alkam (1998b) to obtain analytical solution for transient flows in parallel-
plate channel. Experimental and numerical investigations of forced convection in
channels containing obstacles were conducted by Young and Vafai (1998, 1999)
and Pavel and Mohamad (2004a–c).

The limitation of the single-domain approach for the computation of convection
in composite channels was exposed by Kuznetsov and Xiong (1999). The effect of
thermal dispersion in a channel was analyzed by Kuznetsov (2001). Kuznetsov and
Xiong (2000) numerically simulated the effect of thermal dispersion in a composite
circular duct.

Kuznetsov (2000a) reviewed a number of analytical studies, including those by
Kuznetsov (1998b, 1999a,c, 2001) for flow induced by pressure gradients, and by
Kuznetsov (1998d, 2000b) and Xiong and Kuznetsov (2000) for Couette flow. The
effect of turbulence on forced convection in a composite tube was discussed by
Kuznetsov et al. (2002, 2003b), Kuznetsov (2004a), and Kuznetsov and Becker
(2004). A numerical study of turbulent heat transfer above a porous wall was con-
ducted by Stalio et al. (2004). Convection past a circular cylinder sheathed with a
porous annulus, placed perpendicular to a tutbulent air flow, was studied numeri-
cally and experimentally by Sobera et al. (2003). Hydrodynamically and thermally
developing convection in a partly filled square duct was studied numerically using
the Brinkman model by Jen and Yan (2005).

A boundary-layer analysis of unconfined forced convection with a plate and a
porous substrate was presented by Nield and Kuznetsov (2003d). A more general
analytical investigation of this situation had been presented earlier by Kuznetsov
(1999b).
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4.12. Transversely Heterogeneous Channels and Pipes

Analytical studies on the effect on forced convection, in channels and ducts, of
the variation in the transverse direction of permeability and thermal conductiv-
ity were initiated by Nield and Kuznetsov (2000), who used the Darcy model
for local thermal equilibrium. Both parallel-plate channels and circular ducts
were considered, and walls at uniform temperature and uniform heat flux, ap-
plied symmetrically, were treated in turn. Both continuous variation and stepwise
variation of permeability and conductivity were treated. For the parallel plate
channel, this work was extended to the Brinkman model by Nield and Kuznetsov
(2003d). For the case of a parallel-plate channel with uniform heat flux boundaries,
Sundaravadivelu and Tso (2003) extended the basic analysis to allow for the effect
of viscosity variations. Asymmetric property variation and asymmetric heating
in a parallel-plate channel were considered by Nield and Kuznetsov (2001a). A
conjugate problem, with either a parallel-plate channel or a circular duct, was
treated by Kuznetsov and Nield (2001). The interaction of thermal nonequilibrium
and heterogeneous conductivity was studied by Nield and Kuznetsov (2001b).
With application to the experimental results reported by Paek et al. (1999b)
in mind, Nield and Kuznetsov (2003a) treated a case of gross heterogeneity
and anisotropy using a layered medium analysis. A conjugate problem, involv-
ing the Brinkman model and with temperature-dependent volumetric heat inside
the solid wall, was treated analytically and numerically by Mahmud and Fraser
(2005a).

For illustration, we present the results obtained by Nield and Kuznetsov (2000)
for the effect of heterogeneity on Nusselt number. We first consider the case where
the permeability and thermal conductivity distributions are given by

K = K0

{
1 + εK

( |y∗|
H

− 1

2

)}
,

k = k0

{
1 + εk

( |y∗|
H

− 1

2

)}
. (4.134a,b)

Here the boundaries are at y∗ = −H and y∗ = H. The mean values of the per-
meability and conductivity are K0 and k0, respectively. The coefficients εK and εk

are each assumed to be small compared with unity. To first order, one finds that
for the case of uniform flux boundaries

Nu = 6

(
1 + 1

4
εK − 1

8
εk

)
. (4.135)

and for the case of uniform temperature boundaries,

Nu = π2

2

{
1 + 2

π2
(εK − εk)

}
. (4.136)
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4.13. Thermal Development

In forced convection in a porous medium, hydrodynamic development is not nor-
mally of importance. This is because the hydrodynamic development length is
readily shown to be of order of magnitude (K/�)1/2 and usually this is very small
compared with the channel width. In contrast, the thermal development length can
be much greater.

For the Darcy model one has slug flow, and for the case of walls at uniform
temperature the classical Graetz solution for thermal development is applicable. An
analysis based on the Brinkman model was reported by Nield et al. (2004a), for both
a parallel-plate channel and a circular tube. The additional effect of a Forchheimer
term has not yet been treated, but one would anticipate that since an increase in
Forchheimer number would produce a more slug-like flow, the effect of quadratic
drag would be similar to that produced by a reduction in Darcy number. The
corresponding case where the walls are at uniform heat flux was treated by Nield
et al. (2003b). The effect of local thermal nonequilibrium was examined by Nield
et al. (2002), and the additional effects of transverse heterogeneity were studied
by Nield and Zuznetsosv (2004a). Thermal development in a channel occupied by
a non-Newtonian power-law fluid was studied by Nield and Kuznetsov (2005a). In
the standard analysis of the Graetz type the axial conduction and viscous dissipation
effects are neglected, but in the studies by Nield et al. (2003a) and Kuznetsov et al.
(2003c) these effects were included, for the cases of a parallel-plate channel and a
circular duct, respectively. For the case of a circular duct, axial conduction effects
and viscous dissipation effects and were studied numerically by Hooman et al.
(2003) and Ranjbar-Kani and Hooman (2004), respectively.

A numerical study of heat transfer in the thermally developing region in an
annulus was reported by Hsieh and Lu (1998). Thermal developing forced convec-
tion inside ducts of various shapes (including elliptical passages) were analyzed
by Haji-Sheikh and Vafai (2004). Haji-Sheikh et al. (2005) illustrated the use
of a combination a Green’s function solution and an extended weighted residuals
method to the study of isosceles triangular passages. They noted that their method-
ology is equally applicable when the boundary conditions are of the first, second,
or third kind.

The general feature of thermal development is that the Nusselt number increases
as one moves from the fully developed region toward the entrance region. It is found
that the rate of increase decreases as the Darcy number increases.

4.14. Surfaces Covered with Porous Layers

The hair growth on the skin of a mammal is an example of a saturated porous
medium where, locally, the solid matrix (hair) is not in thermal equilibrium with
the permeating fluid (air). A theory for the heat transfer by forced convection
through a surface covered with hair has been developed by Bejan (1990a). It was
tested subsequently in the numerical experiments of Lage and Bejan (1990). This
entire body of work was reviewed by Bejan and Lage (1991) and Bejan (1992b).
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The most essential features of the geometry of an actual surface covered with
hair are retained in the model presented in Fig. 4.9. The skin surface is connected
to a large number of perpendicular strands of hair, the density of which is assumed
constant,

n = number of strands of hair

unit area of skin surface
. (4.137)

The hair population density n is related to the porosity of the “hair + air” medium
that resides above the skin,

� = air volume

total volume
= 1 − n As . (4.138)

Each strand of hair is modeled as a cylinder with the cross section As .
Parallel to the skin surface and through the porous structure formed by the

parallel hair strands flows a uniform stream of air of velocity U . This stream is
driven longitudinally by the dynamic pressure rise formed over that portion of the
animal’s body against which the ambient breeze stagnates. The longitudinal length
L swept by the air flow is a measure of the linear size of the animal. The constant
air velocity U is a quantity averaged over the volume occupied by air. It is assumed
that the strand-to-strand distances are small enough so that the air flow behaves
according to the Darcy law, with apparent slip at the skin surface.

At every point in the two-dimensional (x, y) space occupied by the porous
medium described above, we distinguish two temperatures: the temperature of the
solid structure (the local hair strand), Ts , and the temperature of air that surrounds
the strand, Ta . Both Ts and Ta are functions of x and y. The transfer of heat from the
skin to the atmosphere is driven by the overall temperature difference (Tw − T∞),
where Tw is the skin temperature and T∞ the uniform temperature of the ambient
air that enters the porous structure. The temperature of the interstitial air, Ta , is
equal to the constant temperature T∞ in the entry plane x = 0.

For the solid structure, the appropriate energy equation is the classic conduction
equation for a fin (in this case, single strand of hair),

ks As
∂2Ts

∂y2
− h ps (Ts − Ta) = 0, (4.139)

where ps is the perimeter of a strand cross section. The thermal conductivity of
the strand, ks , and the perimeter-averaged heat transfer coefficient, h, are both
constant. The constancy of h is a result of the assumed low Reynolds number of
the air flow that seeps through the hair strands.

The second energy conservation statement refers to the air space alone, in which
(
cP ) and ka are the heat capacity and thermal conductivity of air:


cPU
∂2Ta

∂x2
= ka

∂2Ta

∂y2
+ n h ps (Ts − Ta) . (4.140)

On the left-hand side of this equation, we see only one convection term because
the air-space-averaged velocity U points strictly in the x direction. The first term
on the right-hand side of the equation accounts for air conduction in the transversal
direction (y). By not writing the longitudinal conduction term ka∂

2Ta/∂x2, we are
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Figure 4.10. Two-dimensional model for forced convection through the hair growth
near the skin (after Bejan, 1990a).

assuming that the flow region in which the effect of transversal air conduction is
important is thin.

The last term in Eq. (4.140) accounts for the “volumetric heat source” effect
that is due to the contact between the air stream and the local (warmer) hair strand.
Note the multiplicative role of the strand density n in the makeup of this term: the
product (nps) represents the total contact area between hair and air, expressed per
unit of air volume. The heat source term of Eq. (4.140) is the air-side reflection of
the heat sink term (the second term) encountered in the fin conduction equation
(4.139).

In an air region that is sufficiently close to the skin, the air stream is warmed up
mainly by contact with the skin, i.e., not by the contact with the near-skin area of
the hair strands. Consequently, for this region, in Eq. (4.140) the heat source term
nhps(Ts − Ta) can be neglected. On the other hand, sufficiently far from the skin
most of the heating of the air stream is effected by the hair strands that impede the
flow. In the energy balance of this external flow the vertical conduction term can
be neglected in Eq. (4.140).

For the details of the heat transfer analysis of the two-temperatures porous
medium of Fig. 4.10 the reader is referred to the original paper (Bejan, 1990a).
One interesting conclusion is that the total heat transfer rate through a skin portion
of length L is minimized when the hair strand diameter assumes the optimal value
Dopt given by
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Figure 4.11. The hair strand diameters and body lengths of ten mammals (Bejan and
Lage, 1991).

That lowest heat transfer rate is
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These results are based on several additional assumptions, which include a model
of type (1.5) for the permeability of the hair matrix

K ∼= D2 �3

kz (1 − �)2
, (4.143)

where the constant kz is a number of order 102.
Equation (4.130) shows that the minimum heat transfer rate increases with the

square root of the linear size of the body covered with hair, L1/2. The optimal hair
strand diameter is also proportional to L1/2. This last trend agrees qualitatively
with measurements of the hair sizes of mammals compiled by Sokolov (1982).
Figure 4.11 shows the natural hair strand diameters (D) of ten mammals, with the
length scale of the body of the animal plotted on the abscissa.

More recent studies of surfaces covered with fibers have focused on the genera-
tion of reliable pressure drop and heat transfer information for low Reynolds num-
ber flow through a bundle of perpendicular or inclined cylindrical fibers (Fowler
and Bejan, 1994). There is a general need for data in the low Reynolds number
range, as most of the existing results refer to heat exchanger applications (i.e.,
higher Reynolds numbers). Fowler and Bejan (1995) studied numerically the heat
transfer from a surface covered with flexible fibers, which bend under the influ-
ence of the interstitial flow. Another study showed that when the effect of radiation
is taken into account, it is possible to anticipate analytically the existence of an
optimal packing density (or porosity) for minimal heat transfer across the porous
cover (Bejan, 1992b).

Vafai and Kim (1990) and Huang and Vafai (1993, 1994) have shown that a
porous coating can alter dramatically the friction and heat transfer characteristics of
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a surface. This effect was also documented by Fowler and Bejan (1995). Depending
on its properties and dimensions, the porous layer can act either as an insulator
or as a heat transfer augmentation device. The engineering value of this work is
that it makes it possible to “design” porous coatings such that they control the
performance of the solid substrate.

4.15. Designed Porous Media

A potentially revolutionary application of the formalism of forced convection in
porous media is in the field of heat exchanger simulation and design. Heat exchang-
ers are a century-old technology based on information and concepts stimulated by
the development of large-scale devices (see, for example, Bejan, 1993, chapter 9).
The modern emphasis on heat transfer augmentation, and the more recent push
toward miniaturization in the cooling of electronics, have led to the development
of compact devices with much smaller features than in the past. These devices op-
erate at lower Reynolds numbers, where their compactness and small dimensions
(“pores”) make them candidates for modeling as saturated porous media.

Such modeling promises to revolutionize the nomenclature and numerical sim-
ulation of the flow and heat transfer through heat exchangers. Decreasing dimen-
sions, increasing compactness, and constructal design (Section 4.18) make these
devices appear and function as designed porous media (Bejan, 2004b). This emerg-
ing field is outlined in two new books (Bejan, 2004a; Bejan et al., 2004).

To illustrate this change, consider Zukauskas’ (1987) classic chart for the pres-
sure drop in cross-flow through arrays of staggered cylinders (e.g., Fig. 9.38 in
Bejan, 1993). The four curves drawn on this chart for the transverse pitch/cylinder
diameter ratios 1.25, 1.5, 2, and 2.5 can be made to collapse into a single curve, as
shown in Fig. 4.12 (Bejan and Morega, 1993). The technique consists of treating the
bundle as a fluid saturated porous medium and using the volume-averaged velocity
U , the pore Reynolds number U K 1/2/	 on the abscissa, and the dimensionless
pressure gradient group (�P/L)K 1/2/
U 2 on the ordinate.

The similarities between Figs. 4.12 and 4.3 are worth noting. The effective per-
meability of the bundle of cylinders was estimated using Eq. (4.131) with kz = 100,
and Zukauskas’ chart. Figure 4.12 shows very clearly the transition between Darcy
flow (slope −1) and Forchheimer flow (slope 0). The porous medium presentation
of the array of cylinders leads to a very tight collapse of the curves taken from
Zukauskas’ chart. The figure also shows the pressure drop curve for turbulent flow
through a heat exchanger core formed by a stack of parallel plates. An added ben-
efit of Fig. 4.12 is that it extends the curves reliably into the low Reynolds number
limit (Darcy flow), where classic heat exchanger data are not available.

This method of presentation (Fig. 4.12) deserves to be extended to other heat ex-
changer geometries. Another reason for pursuing this direction is that the heat and
fluid flow process can be simulated numerically more easily if the heat exchanger
is replaced at every point by a porous medium with volume averaged properties.
An example is presented in Fig. 4.13 (Morega et al., 1995). Air flows from left to
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Figure 4.12. Porous medium representation of the classic pressure-drop data for flow
through staggered cylinders and stacks of parallel plates (Bejan and Morega, 1993).

Figure 4.13. The flow through and over a stack of rectangular parallel-plate fins attached
to a base, and modeled as a porous medium (Morega et al., 1995).
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right along a hot horizontal surface (the electronics module) and through an array
of parallel plate fins of rectangular profile (the heat sink). The plate thickness and
plate-to-plate spacing are t/L = 0.05 and d/L = 0.069, where L is the length
of the plate in the flow direction. The Reynolds number ReL is based on L and
the approach velocity. The air flows through and over the heat sink. The corre-
sponding temperature field and the effect of changing the Reynolds number are
illustrated in Morega et al. (1995). One advantage of the numerical model is that
it accounts in a volume-averaged sense for the conduction heat transfer through
each plate, longitudinally and transversally. Another advantage comes from the
relative simplicity and high computational speed, because in the thermal design
and optimization of cooling techniques it is necessary to simulate a large number
of geometric configurations such as Fig. 4.13.

Another important application of porous media concepts in engineering is in
the optimization of the internal spacings of heat exchangers subjected to overall
volume constraints (see Sections 4.19 and 4.20). Packages of electronics cooled
by forced convection are examples of heat exchangers that must function in fixed
volumes. The design objective is to install as many components (i.e., heat genera-
tion rate) as possible, while the maximum temperature that occurs at a point (hot
spot) inside the given volume does not exceed a specified limit. Bejan and Sci-
ubba (1992) showed that a very basic trade-off exists with respect to the number
of installed components, i.e., regarding the size of the pores through which the
coolant flows. This trade-off is evident if we imagine the two extremes: numerous
components (small pores) and few components (large spacings).

When the components and pores are numerous and small, the package functions
as a heat-generating porous medium. When the installed heat generation rate is
fixed, the hot spot temperature increases as the spacings become smaller, because
in this limit the coolant flow is being shut off gradually. In the opposite limit,
the hot spot temperature increases again because the heat transfer contact area
decreases as the component size and spacing become larger. At the intersection of
these two asymptotes we find an optimal spacing (pore size) where the hot spot
temperature is minimal when the heat generation rate and volume are fixed. The
same spacing represents the design with maximal heat generation rate and fixed hot
spot temperature and volume. Bejan and Sciubba (1992), Bejan (1993), and Morega
et al. (1995) developed analytical and numerical results for optimal spacings in
applications with solid components shaped as parallel plates. Optimal spacings for
cylinders in cross-flow were determined analytically and experimentally by Bejan
(1995) and Stanescu et al. (1996). The spacings of heat sinks with square pin fins
and impinging flow were optimized numerically and experimentally by Ledezma
et al. (1996). The latest conceptual developments are outlined in Section 4.19.

The dimensionless results developed for optimal spacings (Sopt ) have generally
the form

Sopt

L
∼ Be−n

L (4.144)

where L is the dimension of the given volume in the flow direction, and BeL is the
dimensionless pressure drop that Bhattacharjee and Grosshandler (1988) termed
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the Bejan number,

BeL = �P · L2

� f � f
. (4.145)

In this definition �P is the pressure difference maintained across the fixed volume.
For example, the exponent n in Eq. (4.144) is equal to 1/4 in the case of laminar flow
through stacks of parallel-plate channels. The Bejan number serves as the forced-
convection analog of the Rayleigh number used in natural convection (Petrescu,
1994).

The optimization of heat transfer processes in porous media, which we just
illustrated, is an important new trend in the wider and rapidly growing field of
thermodynamic optimization (Bejan, 1996a). Noteworthy are two optimal-control
papers of Kuznetsov (1997a,c), in which the heat transfer is maximized during the
forced-convection transient cooling of a saturated porous medium. For example,
Kuznetsov (1997a) achieved heat transfer maximization by optimizing the initial
temperature of the porous medium subject to a fixed amount of energy stored
initially in the system, and a fixed duration of the cooling process.

Other work on heat exchangers as porous media has been reported by Lu et al.
(1998), Jiang et al. (2001), Boomsma et al. (2003) and Mohamad (2003).

4.16. Other Configurations or Effects

4.16.1. Effect of Temperature-dependent Viscosity

The study of the effect of a temperature-dependent viscosity on forced convection
in a parallel-plate channel was initiated by Nield et al. (1999). The original analysis
was restricted to small changes of viscosity, carried out to first order in Nield et al.
(1999) and to second order in Narasimhan et al. (2001b), but the layered medium
analysis of Nield and Kuznetsov (2003b) removed this restriction. For the case of a
fluid whose viscosity decreases as the temperature increases (the usual situation) it
is found that the effect of the variation is to reduce/increase the Nusselt number for
cooled/heated walls. The analysis predicts that for the case of small Darcy number
the effect of viscosity variation is almost independent of the Forchheimer number,
while for the case of large Darcy number the effect of viscosity variation is reduced
as the Forchheimer number increases. Within the limitations of the assumptions
made in the theory, experimental verification was provided by Nield et al. (1999)
and Narasimhan et al. (2001a).

For example, in the case of uniform flux boundaries and Darcy’s law, Nield
et al. (1999) showed that the mean velocity is altered by a factor (1 + N/3) and
the Nusselt number is altered by a factor (1 − 2N/15), where the viscosity variation
number N is defined as

N = q ′′ H
k

1

�0

(
d�

d T

)
0

, (4.146)

where the suffix 0 indicates evaluation at the reference temperature T0.
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The extension to the case where there is a substantial interaction between the
temperature-dependence of viscosity and the quadratic drag effect was carried out
in a sequence of papers by Narasimhan and Lage (2001a,b, 2002, 2003, 2004a).
The effect on pump power gain for channel flows was studied by Narasimhan
and Lage (2004b). In these papers the authors developed what they call a Modi-
fied Hazen-Dupuit-Darcy model which they then validated with experiments with
PAO as the convecting liquid and compressed aluminum-alloy porous foam as the
porous matrix. This work on temperature-dependent viscosity was reviewed by
Narasimhan and Lage (2005).

The effects of a magnetic field and temperature-dependent viscosity on forced
convection past a flat plate, with a variable wall temperature and in the presence
of suction or blowing, was studied numerically by Seddeek (2002, 2005).

4.16.2. Other Flows

Non-Darcy boundary-layer flow over a wedge was studied using three numerical
methods by Hossain et al. (1994). An application to the design of small nuclear
reactors was discussed by Aithal et al. (1994). Convection with Darcy flow past
a slender body was analyzed by Romero (1995b), while Sattar (1993) analyzed
boundary-layer flow with large suction. The effect of blowing or suction on forced
convection about a flat plate was also treated by Yih (1998d,e). The interaction
with radiation in a boundary layer over a flat plate was studied by Mansour (1997).
A porous medium heated by a permeable wall perpendicular to the flow direction
was studied experimentally by Zhao and Song (2001). The boundary layer at a
continuously moving surface was analyzed by Nakayama and Pop (1993). The
effect of liquid evaporation on forced convection was studied numerically by Shih
and Huang (2002).

Convection in an asymmetrically heated sintered porous channel was inves-
tigated by Hwang et al. (1995). Various types of sintered and unsintered heat
sinks were compared experimentally by Tzeng and Ma (2004). Convection in
a sintered porous channel with inlet and outlet slots was studied numerically
by Hadim and North (2005). Sung et al. (1995) investigated flow with an iso-
lated heat source in a partly filled channel. Conjugate forced convection in cross
flow over a cylinder array with volumetric heating in the cylinders was simu-
lated by Wang and Georgiadis (1996). Heat transfer for flow perpendicular to
arrays of cylinders was examined by Wang and Sangani (1997). An internally
finned tube was treated as a porous medium by Shim et al. (2002). Forced con-
vection in a system of wire screen meshes was examined experimentally by
Ozdemir and Ozguc (1997). The effect of anisotropy was examined experimen-
tally by Yang and Lee (1999); numerically by S. Y. Kim et al. (2001), Nakayama
et al. (2002), and Kim and Kuznetsov (2003); and analytically by Degan et al.
(2002) The effect of fins in a heat exchanger was studied numerically by S. J.
Kim et al. (2000, 2002) and Kim and Hyun (2005). An experimental study in-
volving finned metal foam heat sinks was reported by Bhattachrya and Mahajan
(2002). Forced convection in a channel with a localized heat source using fibrous
materials was studied numerically by Angirasa and Peterson (1999). A numerical
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investigation with a random porosity model was made by W. S. Fu et al. (2001).
Experimental studies involving a rectangular duct heated only from the top wall
were conducted by Demirel et al. (1999, 2000). A thermodynamic analysis of heat
transfer in an asymmetrically heated annular packed bed was reported by Demirel
and Kahraman (2000). A laboratory investigation of the cooling effect of a coarse
rock layer and a fine rock layer in permafrost regions was reported by Yu et al.
(2004). Forced convection in a rotating channel was examined experimentally by
Tzeng et al. (2004).

4.16.3. Non-Newtonian Fluids

Boundary-layer flow of a power-law fluid on an isothermal semi-infinite plate
was studied by Wang and Tu (1989). The same problem for an elastic fluid of
constant viscosity was treated by Shenoy (1992). These authors used a modified
Darcy model. A non-Darcy model for a power-law fluid was employed by Shenoy
(1993a) and Hady and Ibrahim (1997) for flow past a flat plate, by Alkam et al.
(1998) for flow in concentric annuli, and by Nakayama and Shenoy (1993b) and
Chen and Hadim (1995, 1998a,b, 1999a ) for flow in a channel. These studies
showed that in the non-Darcy regime the effect of increase of power-law index
n is to increase the thermal boundary-layer thickness and the wall temperature
and to decrease the Nusselt number; in the Darcy regime the changes are small.
As the Prandtl number increases, the Nusselt number increases, especially for
shear-thinning fluids (n < 1). As n decreases, the pressure drop decreases.

An elastic fluid was treated by Shenoy (1993b). A viscoelastic fluid flow over
a nonisothermal stretching sheet was analysed by Prasad et al. (2002). An exper-
imental study for heat transfer to power-law fluids under flow with uniform heat
flux boundary conditions was reported by Rao (2001, 2002).

4.16.4. Bidisperse Porous Media

A bidisperse (or bidispersed—we have opted for the shorter and more commonly
used form) porous medium (BDPM), as defined by Z. Q. Chen et al. (2000), is
composed of clusters of large particles that are agglomerations of small particles.
Thus there are macropores between the clusters and micropores within them.
Applications are found in bidisperse adsorbent or bidisperse capillary wicks in
a heat pipe. Since the bidisperse wick structure significantly increases the area
available for liquid film evaporation, it has been proposed for use in the evaporator
of heat pipes.

A BDPM thus may be looked at as a standard porous medium in which the
solid phase is replaced by another porous medium, whose temperature may be
denoted by Tp if local thermal equilibrium is assumed within each cluster. We can
then talk about the f-phase (the macropores) and the p-phase (the remainder of the
structure). An alternative way of looking at the structure is to regard it as a porous
medium in which fractures or tunnels have been introduced. One can then think of
the f-phase as being a “fracture phase” and the p-phase as being a “porous phase.”
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Questions of interest are how one can determine the effective permeability and
the effective thermal conductivity of a bidisperse porous medium. Fractal models
for each of these have been formulated by Yu and Cheng (2002a,b). In the first
paper, the authors developed two models for the effective thermal conductivity
based on fractal geometry and the electrical analogy. Theoretical predictions based
on these models were compared with those from a previous lumped-parameter
model and with experimental data for the stagnant thermal conductivity reported
by Z. Q. Chen et al. (2000). In this paper a three-dimensional model of touching
spatially periodic cubes, which are approximated by touching porous cubes, was
used; Cheng and Hsu (1999) had previously used a two-dimensional model. On
the basis of their experiments, Z. Q. Chen et al. (2000) concluded that, when the
ratio of solid/fluid thermal conductivity is greater than 100, the effective thermal
conductivity of a bidisperse porous medium is smaller than that of a monodisperse
porous medium saturated with the same fluid, because of the contact resistance at
the microscale and the higher porosity for the bidisperse medium in comparison
with the monodisperse one.

Extending the Brinkman model for a monodisperse porous medium, we propose
to model the steady-state momentum transfer in a BDPM by the following pair of
coupled equations for v∗

f and v∗
p, where the asterisks denote dimensional variables,

G =
(

�

K f

)
v∗

f + � (v∗
f − v∗

p) − �̃ f ∇∗2 v∗
f (4.147)

G =
(

�

K p

)
v∗

p + � (v∗
p − v∗

f ) − �̃p∇∗2 v∗
p. (4.148)

Here G is the negative of the applied pressure gradient, � is the fluid viscosity,
K f and K p are the permeabilities of the two phases, and � is the coefficient
for momentum transfer between the two phases. The quantities �̃ f and �̃p are
the respective effective viscosities. From Eqs. (4.147) and (4.148), v∗

p can be
eliminated to give

�̃ f �̃p∇∗4 v∗
f − [�̃ f (� + �/K p) + �̃p(� + �/K f )]∇∗2 v∗

f

+ [��(1/K f + 1/K p) + �2/K f K p]v∗
f = G(2 + �/K p)

(4.149)

and v∗
p is given by the same equation with subscripts swapped. For the special

case of the Darcy limit one obtains

v∗
f = (�/K p + 2� )G

�2/K f K p + � �(1/K f + 1/K p)
, (4.150)

v∗
p = (�/K f + 2� )G

�2/K f K p + ��(1/K f + 1/K p)
. (4.151)

These equations were obtained by Nield and Kuznetsov (2005a). The bulk flow
thus is given by

G = (�/K )v∗, (4.152)
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where

v∗ = �v∗
f + (1 − �)v∗

p, (4.153)

K = �K f + (1 − �)K p + 2(�/�)K f K p

1 + (�/�)(K f + K p)
. (4.154)

Thus, in this case, the effect of the coupling parameter � merely is to modify the
effective permeabilities of the two phases, via the parameter �/�.

Nield and Kuznetsov (2005b) treated forced convection in a parallel-plate chan-
nel occupied by a BDPM, using a two-temperature model similar to Eqs. (6.54)
and (6.55) in this book. Nield and Kuznetsov (2004c) extended the analysis to the
case of a conjugate problem with plane solid slabs bounding the channel. They
found that the effect of the finite thermal resistance due to the slabs is to reduce
both the heat transfer to the porous medium and the degree of local thermal non-
equilibrium. An increase in the value of the Péclet number leads to decrease in the
rate of exponential decay in the downstream direction, but does not affect the value
of a suitably defined Nusselt number. The case of thermally developing convection
in a BDPM was treated by Kuznetsov and Nield (2005). Heat transfer in a BDPM
has been reviewed by Nield and Kuznetsov (2005).

4.16.5. Oscillatory Flows

For an annulus and a pipe, Guo et al. (1997a,b) treated pulsating flow. For a
completely filled channel, Kim et al. (1994) studied a pulsating flow numerically.
Soundalgekhar et al. (1991) studied flow between two parallel plates, one stationary
and the other oscillating in its own plane. Hadim (1994a) simulated convection in
a channel with localized heat sources.

Sözen and Vafai (1991) analyzed compressible flow through a packed bed with
the inlet temperature or pressure oscillating with time about a nonzero mean.
They found that the oscillation had little effect on the heat storage capacity of the
bed. Paek et al. (1999a) studied the transient cool down of a porous medium by a
pulsating flow. Experiments involving steady and oscillating flows were conducted
by Leong and Jin (2004, 2005).

4.17. Heatlines for Visualizing Convection

The concepts of heatfunction and heatlines were introduced for the purpose of vi-
sualizing the true path of the flow of energy through a convective medium (Kimura
and Bejan, 1983; Bejan, 1984). The heatfunction accounts simultaneously for the
transfer of heat by conduction and convection at every point in the medium. The
heatlines are a generalization of the flux lines used routinely in the field of con-
duction. The concept of heatfunction is a spatial generalization of the concept of
Nusselt number, i.e., a way of indicating the magnitude of the heat transfer rate
through any unit surface drawn through any point on the convective medium.
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Figure 4.14. The heatlines of the boundary layer near a cold isothermal wall (Morega
and Bejan, 1994).

The heatline method was extended to several configurations of convection
through fluid-saturated porous media (Morega and Bejan, 1994). To illustrate the
method, consider the uniform flow with thermal boundary layer, which is shown
in Fig. 4.1. The heatfunction H (x, y) is defined such that it satisfies identically the
energy equation for the thermal boundary layer, Eq. (4.3). The H definition is in
this case

∂ H

∂y
= (
cP )u(T − Tref ), (4.155)

−∂ H

∂x
= (
cP )	(T − Tref ) − km

∂T

∂y
, (4.156)

where the reference temperature Tref is a constant. The flow field (u, 	) and the
temperature field (T ) are furnished by the solutions to the convective heat transfer
problem. It was pointed out in Trevisan and Bejan (1987a) that Tref can have
any value and that a heatline pattern can be drawn for each Tref value. The most
instructive pattern is obtained when Tref is set equal to the lowest temperature that
occurs in the convective medium that is being visualized. This choice was made
in the construction of Figs. 4.14 and 4.15. In both cases the heatfunction can be
obtained analytically. When the wall is colder (Tw) than the approaching flow (T∞)
(Fig. 4.14), the nondimensionalized heatfunction is

H̃ (̃x, ỹ) = x̃1/2

[
� erf

(�

2

)
+ 2

π1/2
exp

(
−�2

4

)]
, (4.157)

where H̃ = H/[km(T∞ − Tw)Pe1/2
l , PeL = U∞L/�m, x̃ = x/L , and � =

y(U∞/�m x)1/2. In these expressions L is the length of the y = 0 boundary. Figure
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Figure 4.15. The heatlines of the boundary layer near a hot isothermal wall (Morega
and Bejan, 1994).

4.14 shows that the H = constant curves visualize several features of convection
near a cold wall. The energy that is eventually absorbed by the wall is brought
into the boundary layer (̃y ∼= 2x̃1/2) by fluid from upstream of the cold section of
the wall. The heatlines that enter the wall are denser near x̃ = 0, i.e., the heat flux
is more intense. Finally, the value of the heatfunction increases along the wall,
because the wall absorbs the heat released by the fluid. The trailing-edge H̃ value
matches the total heat transfer rate through the wall, Eq. (4.14).

Figure 4.15 shows the corresponding pattern of heatlines when the wall is
warmer than the approaching fluid,

H̃ (̃x, ỹ) = x̃ 1/2

[
� erfc

(�

2

)
− 2

π1/2
exp

(
−�2

4

)]
. (4.158)

The heatlines come out of the wall at an angle because, unlike in Fig. 4.14, the
gradient ∂ H/∂y is not zero at the wall. Above the wall, the heatlines are bent even
more by the flow because the effect of transversal conduction becomes weaker.
The higher density of heatlines near x̃ = 0 indicates once again higher heat fluxes.
The H̃ value at the wall decreases in the downstream direction because the wall
loses heat to the boundary layer.

Morega and Bejan (1994) displayed the heatlines for two additional configu-
rations: boundary layers with uniform heat flux and flow through a porous layer
held between parallel isothermal plates. As in Figs. 4.14 and 4.15, the heatlines
for cold walls are unlike the heatlines for configurations with hot walls. In other
words, unlike the patterns of isotherms that are used routinely in convection heat
transfer (e.g., Fig. 7.4), the heatline patterns indicate the true direction of heat flow
and distinguish between cold walls and hot walls.
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Costa (2003) has reported a study of unified streamline, heatline, and massline
methods of visualization of two-dimensional heat and mass transfer in anisotropic
media. His illustrations include a problem involving natural convection in a porous
medium.

Heatlines and masslines are now spreading throughout convection research as
the proper way to visualize heat flow and mass flow. This method of visualization
is particularly well suited for computational work, and should be included in
commercial computational packages. The growing activity based on the heatlines
method is reviewed in Bejan (2004a) and Costa (2005).

4.18. Constructal Tree Networks: Minimal Resistance
in Volume-to-Point Flows

It was discovered recently that by minimizing geometrically the thermal resis-
tance between one point and a finite-size volume (an infinity of points) it is
possible to predict a most common natural structure that previously was consid-
ered nondeterministic: the tree network (Bejan, 1996b, 1997a,b; Ledezma et al.,
1997). Tree network patterns abound in nature, in both animate and inanimate
systems (e.g., botanical trees, lightning, neural dendrites, dendritic crystals). The
key to solving this famous problem was the optimization of the shape of each
finite-size element of the flow volume, such that the flow resistance of the ele-
ment is minimal. The optimal structure of the flow—the tree network—then was
constructed by putting together the shape-optimized building blocks. This con-
struction of multiscale, hierarchical geometry became the starting point of the con-
structal theory of self-optimization and self-organization in Nature (Bejan, 1997c,
2000).

The deterministic power of constructal theory is an invitation to new theoretical
work on natural flow structures that have evaded determinism in the past. This sec-
tion is about one such structure: the dendritic shape of the low-resistance channels
that develop in natural fluid flows between a volume and one point in heteroge-
neous media (Bejan, 1997b,c; Bejan et al., 2004). Examples of volume-to-point
fluid flows are the bronchial trees, the capillary vessels, and the river drainage
basins and deltas.

The deterministic approach outlined in this section is based on the proposition
that a naturally occurring flow structure—its geometric form—is the end result of
a process of geometric optimization. The objective of the optimization process is
to construct the path (or assembly or paths) that provides minimal resistance to
flow, or, in an isolated system, maximizes the rate of approach to equilibrium.

4.18.1. The Fundamental Volume-to-Point Flow Problem

Consider the fundamental problem of minimizing the resistance to fluid flow be-
tween one point and a finite-size volume (an infinity of points). For simplicity
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Figure 4.16. The two-dimensional flow between one point (M) and a finite-size volume
(A).

we assume that the volume is two-dimensional and represented by the area A
(Fig. 4.16). The total mass flow rate ṁ ′ (kg/sm) flows through the point M and
reaches (or originates from) every point that belongs to A. We also assume that the
volumetric mass flow rate ṁ ′′′(kg/sm3) that reaches all the points of A is distributed
uniformly in space, hence ṁ ′ = ṁ ′′′ A.

The space A is filled by a porous medium saturated with a single-phase fluid
with constant properties. The flow is in the Darcy regime. If the permeability of
the porous medium is uniform throughout A, then the pressure field P(x, y) and
the flow pattern can be determined uniquely by solving the Poisson-type problem
associated with the point sink or point source configuration of Fig. 4.16. This
classic problem is not the subject of this section.

Instead, we consider the more general situation where the space A is occupied
by a nonhomogeneous porous medium composed of a material of low permeability
K and a number of layers (e.g., cracks, filled or open) of much higher permeabili-
ties (K1, K2, . . .). The thicknesses (D1, D2, . . .) and lengths (L1, L2, . . .) of these
layers are not specified.

For simplicity we assume that the volume fraction occupied by the high-
permeability layers is small relative to the volume represented by the K material.
There is a very large number of ways in which these layers can be sized, con-
nected, and distributed in order to collect and channel ṁ ′ to the point M. In other
words, there are many designs of composite materials (K , K1, K2, . . .) that can
be installed in A: our objective is to find not only the internal architecture of the
composite that minimizes the overall fluid-flow resistance, but also a strategy for
the geometric optimization of volume-to-point flows in general.

The approach we have chosen is illustrated in Fig. 4.16. We regard A as a
patchwork of rectangular elements of several sizes (A0, A1, A2, . . .). We will show
that the shape (aspect ratio) of each such element can be optimized for minimal flow
resistance. The smallest element (A0) contains only low-permeability material and
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Figure 4.17. The smallest volume element, with volumetric flow through the K porous
medium and “channel” flow along a high-permeability layer (K0).

one high-permeability layer (K0, D0), Fig. 4.17. Each successively larger volume
element (Ai ) is an assembly of elements of the preceding size (Ai−1), which act as
tributaries to the collecting layer (Ki , Di , Li ) that defines the assembly. We will
show that the optimally shaped assemblies can be arranged like building blocks
to collect the volumetric flow ṁ ′′′ and transform it into the single stream ṁ ′ at the
point M.

Before presenting the analysis, it is worth commenting on the reasons for doing
it and how it fits next to the vast amount of work that has been done in the same
field. A general characteristic of the exiting studies is that they begin with the
often tacit assumption that a fluid tree network exists. Geometric details such as
bifurcation (dichotomy) are assumed. No such assumptions are being made in this
section. The problem solved in this section is the minimization of flow resistance
between a finite-size volume and one point. The solution to this problem will show
that certain portions of the optimized volume-to-point path are shaped as a tree
network. In other words, unlike in the existing literature, in the present analysis
the tree and its geometric details are results (predictions), not assumptions. This
is a fundamental difference. It means that the solution to the volume-to-point flow
problem sheds light on the universal design principle that serves as origin for the
formation of fluid tree networks in nature.

4.18.2. The Elemental Volume

In Fig. 4.17 the smallest volume A0 = H0L0 is fixed, but its shape H0/L0 may vary.
The flow, ṁ ′

0 = ṁ ′′′ A0, A0 is collected from the K medium by a layer of much
higher permeability K0 and thickness D0. The flow is driven toward the origin
(0, 0) by the pressure field P(x, y). The rest of the rectangular boundary H0 × L0

is impermeable. Since the flow rate ṁ ′
0 is fixed, to minimize the flow resistance

means to minimize the peak pressure (Ppeak) that occurs at a point inside A0. The
pressure at the origin is zero.
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The analysis is greatly simplified by the assumptions that were mentioned al-
ready (K � K0, D0 � H0), which, as we will show in Eq. (4.156), also mean that
the optimized A0 shape is such that H0 is considerably smaller than L0. According
to these assumptions the flow through the K domain is practically parallel to the
y direction,

P(x, y) ∼= P(y) for H0/2 > |y| > D0/2 (4.159)

while the flow through the K0 layer is aligned with the layer itself P(x, y) ∼= P(x)
for |y| < D0/2. Symmetry and the requirement that Ppeak be minimum dictate
that the A0 element be oriented such that the K0 layer is aligned with the x axis.
The mass flow rate through this layer is ṁ ′(x), with ṁ ′(0) = ṁ ′

0 at the origin (0,
0), and ṁ ′(L0) = 0. The K material is an isotropic porous medium with flow in
the Darcy regime,

v = K

�

(
−∂ P

∂y

)
(4.160)

In this equation v is the volume-averaged velocity in the y direction (Fig. 4.17).
The actual flow is oriented in the opposite direction. The pressure field P(x, y) can
be determined by eliminating v between Eq. (4.151) and the local mass continuity
condition

∂v

∂y
= ṁ ′′′



(4.161)

and applying the boundary conditions ∂ P/∂y = 0 at y = H0/2 and P = P(x, 0)
at y ∼= 0 (recall that D0 � H0):

P(x, y) = ṁ ′′′v
2K

(H0 y − y2) + P(x, 0). (4.162)

Equation (4.162) holds only for y >∼ 0. The corresponding expression for y <∼ 0
is obtained by replacing H0 with –H0 in Eq. (4.162).

The pressure distribution in the K0 material, namely P(x, 0), is obtained simi-
larly by assuming Darcy flow along a D0-thin path near y = 0,

u = K0

�

(
−∂ P

∂x

)
, (4.163)

where u is the average velocity in the x direction. The flow proceeds toward
the origin, as shown in Fig. 4.17. The mass flow rate channeled through the K0

material is ṁ ′(x) = −r D0u. Furthermore, mass conservation requires that the mass
generated in the infinitesimal volume slice (H0dx) contributes to the ṁ ′(x) stream:
ṁ ′′′ H0dx = −dṁ ′. Integrating this equation away from the impermeable plane
x = L0 (where ṁ ′ = 0), and recalling that ṁ ′

0 = ṁ ′′′ H0L0, we obtain

ṁ(x) = ṁ ′′′ H0(L0 − x) = ṁ0

(
1 − x

L0

)
. (4.164)
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Combining these equations we find the pressure distribution along the x axis

P(x, 0) = ṁ ′
0	

D0 K0

(
x − x2

2L0

)
. (4.165)

Equations (4.162) and (4.165) provide a complete description of the P(x, y)
field. The peak pressure occurs in the farthest corner (x = L0, y = H0/2):

Ppeak,0 = ṁ ′
0	

(
H0

8K L0
+ L0

2K0 D0

)
. (4.166)

This pressure can be minimized with respect to the shape of the element (H0/L0)
by noting that L0 = A0/H0 and �0 = D0/H0 � 1. The number �0 is carried in the
analysis as an unspecified parameter. For example, if the D0 layer was originally a
crack caused by the volumetric shrinking (e.g., cooling, drying) of the K medium,
then D0 must be proportional to the thickness H0 of the K medium. The resulting
geometric optimum is described by

H0

L0
= 2(K̃0�0)−1/2 L̃0 = 2−1/2(K̃0�0)1/4 (4.167)

H̃0 = 21/2(K̃0�0)−1/4 �P̃0 = 1

2
(K̃0�0)−1/2 (4.168)

The nondimensionalization used in Eqs. (4.146)–(4.147) and retained throughout
this section is based on using A1/2

0 as length scale and K as permeability scale:

(H̃i , L̃ i ) = (Hi , Li )

A1/2
0

, K̃i = Ki

K
, (4.169)

�P̃i = Ppeak,i

ṁ ′′′ Ai 	/K
, �i = Di

Hi
. (4.170)

At the optimum, the two terms on the right side of Eq. (4.166) are equal. The
shape of the A0 element is such that the pressure drop due to flow through the K
material is equal to the pressure drop due to the flow along the K0 layer. Note also
that the first of Eq. (4.168) confirms the assumptions made about the D0 layer at
the start of this section: high permeability (K̃0 � 1) and small volume fraction
(�0 � 1) mean that the optimized A0 shape is slender, H0 � L0, provided that
K̃0 � �−1

0 .

4.18.3. The First Construct

Consider next the immediately larger volume A1 = H1L1 (Fig. 4.18), which can
contain only elements of the type optimized in the preceding section. The streams
ṁ ′

0 collected by the D0-thin layers are now united into a larger stream ṁ ′
1 that

connects A1 with the point P = 0. The ṁ ′
1 stream is formed in the new layer

(K1, D1, L1).
The problem of optimizing the shape of the A1 rectangle is the same as the A0

problem that we just solved. First, we note that when the number of A0 elements
assembled into A1 is large, the composite material of Fig. 4.18 is analogous to the
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Figure 4.18. The first assembly (A1) of elements of size A0, and the new high-
permeability layer K1.

composite of Fig. 4.17, provided that the permeability K of Fig. 4.17 is replaced
by an equivalent (volume averaged) permeability (Ke1) in Fig. 4.18. The Ke1 value
is obtained by writing that the pressure drop across an A0 element [Eq. (4.168)] is
equal to the pressure drop over the distance H1/2 in the Ke1 medium [this second
pressure drop can be read off Eq. (4.162), after replacing H0 with H1, y with H1/2,
and K with Ke1]. The result is Ke1 = K0�0: this value is then used in place of K0,
in an analysis that repeats the steps executed in Eqs. (4.166)–(4.168) for the A0

optimization problem.
A clearer alternative to this analysis begins with the observation that the peak

pressure (Ppeak.1) in Fig. 4.18 is due to two contributions: the flow through the
upper-right corner element (Ppeak.0) and the flow along the (K1, D1) layer:

Ppeak,1 = ṁ ′′′ A0
	

K

1

2
(K̃0�0)−1/2 + ṁ ′

1	
Li

2K1 D1
. (4.171)

This expression can be rearranged by using the first of Eqs. (4.168) and H1 = 2L0:

Ppeak,1

ṁ ′′′ A1	/K
= 1

4K̃0�0

H1

L1
+ 1

2K̃1�1

L1

H1
. (4.172)

The corner pressure Ppeak,1 can be minimized by selecting the H1 / L1 shape
of the A1 rectangle. The resulting expressions for the optimized geometry
(H1/L1, H̃1, L̃1) are listed in Table 4.1. The minimized peak pressure (�P̃1) is
divided equally between the flow through the corner A0 element and the flow
along the collecting (K1, D1) layer. In other words, as in the case of the A0

element, the geometric optimization of the A1 assembly is ruled by a principle of
equipartition of pressure drop between the two main paths of the assembly (Lewins,
2003).
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Table 4.1. The optimized geometry of the elemental area A0 and the subsequent
assemblies when the channel permeabilities are unrestricted (Note: Ci = Ki �i ).

i Hi/Li H̃i L̃ i ni = Ai/Ai−1 �P̃i

0 2C−1/2
0 21/2C−1/4

0 2−1/2C1/4
0 —

1

2
C−1/2

0

1 (2C0/C1)1/2 21/2C1/4
0 C−1/4

0 C1/2
1 (2C1)1/2 (2C0C1)−1/2

2 (2C1/C2)1/2 2C−1/4
0 C1/2

1 21/2C−1/4
0 C1/2

2 2(C2/C0)1/2 (2C1C2)−1/2

i ≥ 2 (2Ci−1/Ci )1/2 2i/2C−1/4
0 C1/2

i−1 2(i−1)/2C−1/4
0 C1/2

i 2(C1/Ci−2)1/2 (2Ci−1Ci )−1/2

4.18.4. Higher-Order Constructs

The assembly and area shape optimization procedure can be repeated for larger
assemblies (A2, A3, . . .). Each new assembly (Ai ) contains a number (ni ) of as-
semblies of the immediately smaller size (Ai−1), the flow of which is collected
by a new high-permeability layer (Ki , Di , Li ). As in the drawing shown in Fig.
4.17 for A1, it is assumed that the number of constituents ni is sensibly larger than
2. The analysis begins with the statement that the maximum pressure difference
sustained by Ai is equal to the pressure difference across the optimized constituent
(Ai−1) that occupies the farthest corner of Ai , and the pressure drop along the Ki

central layer:

Ppeak,i = Ppeak,i−1 + ṁ ′
i 	

Li

2Ki Di
. (4.173)

The geometric optimization results are summarized in Table 4.1, in which we used
Ci = K̃i �i for the dimensionless flow conductance of each layer. The optimal shape
of each rectangle Hi ×Li is ruled by the pressure-drop equipartition principle noted
in the optimization of the A0 and A1 shapes.

Beginning with the second assembly, the results fall into the pattern represented
by the recurrence formulas listed for i ≥ 2. If these formulas were to be repeated
ad infinitum in both directions—toward large Ai and small Ai —then the pattern
formed by the high-permeability paths (Ki , Di ) would be a fractal. Natural tree-
shaped flows and those predicted by constructal theory are not fractal. In the present
solution to the volume-to-point flow problem, the construction begins with an
element of finite size, A0 and ends when the given volume (A) is covered. Access
to the infinity of points contained by the given volume is not made by making
A0 infinitely small. Instead, all the points of the given volume are reached by a
diffusive flow that bathes A0 volumetrically, because the permeability K of the
material that fills A0 is the lowest of all the permeabilities of the composite porous
medium. Constructal theory is the clearest statement that the geometry of nature is
not fractal (Bejan, 1997c) and the first theory that predicts the multitude of natural
flow structures that could be described as “fractal-like” structures (Poirier, 2003;
Rosa et al., 2004).
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Figure 4.19. Composite medium tree architecture for minimal volume-to-point flow
resistance when C0 = 100 and Ci/Ci−1 = 10 for i = 1, 2, and 3.

Figure 4.19 illustrates the minimal-resistance architecture recommended by the
results of Table 4.1. At each level of assembly, the calculated number of con-
stituents ni was rounded off to the closest even number. The optimal design of
the composite porous medium contains a tree network of high-permeability lay-
ers (K0, K1, K2, . . .), where the interstitial spaces are filled with low-permeability
material (K ). The actual shape of the tree depends on the relative size of the flow
conductance parameters Ci . The conductance increase ratio Ci/Ci−1 is essentially
equal to the permeability ratio Ki/Ki−1, because the volume fraction (�i � 1)
is expected to vary little from one assembly to the next, cf. the comment made
above Eq. (4.167). In other words, the conductance parameters Ci can be specified
independently because the porous-medium characteristics of the materials that fill
the high-permeability channels have not been specified.

Several trends are revealed by constructions such as Fig. 4.19. When the con-
ductance ratio Ci/Ci−1 is large, the number ni is large, the optimal shape of each
assembly is slender (Hi/Li < 1), and the given volume is covered “fast,” i.e., in
a few large steps of assembly and optimization. When the ratio Ci/Ci−1 is large
but decreases from one assembly to the next, the number of constituents decreases
and the shape of each new assembly becomes closer to square.

Combining the limit Ci/Ci−1 → 1 with the ni formula of Table 4.1, we see
that the number two (i.e., dichotomy, bifurcation, pairing) emerges as a result of
geometric optimization of volume-to-point flow. Note that the actual value ni = 2
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is not in agreement with the ni > 2 assumption that was made in Fig. 4.18 and
the analysis that followed. This means that when Ci/Ci−1 ∼ 1 is of order 1, the
analysis must be refined by using, for example, a Fig. 4.18 in which the length of
the (K1, D1) layer is not L1 but (n1/2 − 1)H0 + H0/2. In this new configuration
the right-end tip of the (K1, D1) layer is absent because the flow rate through
it would be zero. To illustrate this feature of the tree network, in Fig. 4.19 the
zero-flow ends of the central layers of all the assemblies have been deleted.

4.18.5. The Constructal Law of Geometry Generation in Nature

The point-to-volume resistance can be minimized further by varying the angle be-
tween tributaries (Di−1) and the main channel (Di ) of each new volume assembly.
This optimization principle is well known in physiology where the work always
begins with the assumption that a tree network of tubes exists. It can be shown nu-
merically that the reductions in flow resistance obtained by optimizing the angles
between channels are small relative to the reductions due to optimizing the shape
of each volume element and assembly of elements. In this section we fixed the an-
gles at 90◦ and focused on the optimization of volume shape. It is the optimization
of shape subject to volume constraint—the consistent use of this principle at every
volume scale—that is responsible for the emergence of a tree network between
the volume and the point. We focused on the optimal shapes of building blocks
because our objective was to discover a single optimization principle that can be
used to explain the origin of tree-shaped networks in natural flow systems. The
objective was to find the physics principle that was missing in the treelike images
generated by assumed fractal algorithms.

In summary, we solved in general terms the fundamental fluid mechanics prob-
lem of minimizing the flow resistance between one point and a finite-size volume.
A single optimization principle—the optimization of the shape of each volume
element such that its flow resistance is minimized—is responsible for all the ge-
ometric features of the point-to-volume flow path. One of these features is the
geometric structure—the tree network—formed by the portions with higher per-
meabilities (K0, K1, . . .). The interstices of the network, i.e., the infinity of points
of the given volume, are filled with material of the lowest permeability (K ) and
are touched by a flow that diffuses through the K material.

The most important conclusion is that the larger picture, the optimal overall
performance, structure, and working mechanism can be described in a purely
deterministic fashion; that is, if the resistance-minimization principle is recognized
as law. This law can be stated as follows (Bejan, 1996b, 1997a):

For a finite-size system to persist in time (to live), it must evolve in such a way that
it provides easier access (less resistance) to the imposed currents that flow through
it.

This statement has two parts. First, it recognizes the natural tendency of imposed
global currents to construct paths (shapes, structures) for better access through con-
strained open systems. The second part accounts for the evolution of the structure,
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which occurs in an identifiable direction that can be aligned with time itself. Small
size and shapeless flow (diffusion) are followed in time by larger sizes and orga-
nized flows (streams). The optimized complexity continues to increase in time.
Optimized complexity must not be confused with maximized complexity.

How important is the constructal approach to the minimal-resistance design,
i.e., this single geometric optimization principle that allows us to anticipate the
tree architecture seen in so many natural systems? In contemporary physics a
significant research volume is being devoted to the search for universal design
principles that may explain organization in animate and inanimate systems. In
this search, the tree network is recognized as the symbol of the challenge that
physicists and biologists face (Kauffman, 1993, pp. 13 and 14): “Imagine a set
of identical round-topped hills, each subjected to rain. Each hill will develop a
particular pattern of rivulets which branch and converge to drain the hill. Thus the
particular branching pattern will be unique to each hill, a consequence of particular
contingencies in rock placement, wind direction, and other factors. The particular
history of the evolving patterns of rivulets will be unique to each hill. But viewed
from above, the statistical features of the branching patterns may be very similar.
Therefore, we might hope to develop a theory of the statistical features of such
branching patterns, if not of the particular pattern on one hill.”

The constructal approach outlined in this section is an answer to the challenge
articulated so well by Kauffman. It introduces an engineering flavor in the current
debate on natural organization, which until now has been carried out in physics and
biology. By training, engineers begin the design of a device by first understanding
its purposes. The size of the device is always finite, never infinitesimal. The device
must function (i.e., fulfill its purpose) subject to certain constraints. Finally, to
analyze (describe) the device is not sufficient: to optimize it, to construct it, and to
make it work are the ultimate objectives. All these features—purpose, finite size,
constraints, optimization, and construction—can be seen in the network construc-
tions reported in this section. The resulting tree networks are entirely deterministic,
and consequently they represent an alternative worthy of consideration in fields
outside engineering. The progress in this direction is summarized in a new book
(Bejan, 1997c).

The short discussion here is confined to hydrodynamic aspects. For conduction,
convection, turbulence, and other flows with structure, the reader is referred to
the new books that review the growing interest in constructal theory (Bejan, 2000;
Rosa et al., 2004; Bejan et al., 2004). For example, constructal trees were designed
for chemically reactive porous media by Azoumah et al. (2004), and constructal
theory was used to predict the basic features and dimensions of Bénard convection
and nucleate boiling (Nelson and Bejan, 1998).

The place of the constructal law as a self-standing law in thermodynamics is
firmly established (Bejan and Lorente, 2004). The constructal law is distinct from
the second law. For example, with respect to the time evolution of an isolated
thermodynamic system, the second law states that the system will proceed toward
a state of equilibrium (“nothing moves,” maximum entropy at constant energy). In
this second-law description, the system is a black box, without configuration.
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With regard to the same isolated system, the constructal law states that the cur-
rents that flow in order to bring the system to equilibrium will seek and develop
paths of maximum access. In this way, the system develops its flow configura-
tion, which endows the system with the ability to approach its equilibrium the
fastest.

The constructal law is the law of geometry generation, whereas the second law
is the law of entropy generation. The constructal law can be stated in several
equivalent ways: a principle of flow access maximization (or efficiency increase),
as in the original statement quoted above, a principle of flow compactness max-
imization (miniaturization), and a principle of flow territory maximization, as in
the spreading of river deltas, living species, and empires (Bejan and Lorente,
2004).

In sum, constructal theory originates from the engineering of porous and com-
plex flow structures and now unites engineering, physics, biology, and social or-
ganization (Poirier, 2003; Rosa et al., 2004).

4.19. Constructal Multiscale Flow Structures

The tree-shaped flow structures of Section 4.18 are examples of “designed” porous
structures with multiple length scales, which are organized hierarchically and
distributed nonuniformly. Another class of designed porous media stems from
an early result of constructal theory: the prediction of optimal spacings for the
internal flow structure of volumes that must transfer heat and mass to the maximum
(Bejan, 2000; Section 4.15). Optimal spacings have been determined for several
configurations, for example, arrays of parallel plates (e.g., Fig. 4.20). In each
configuration, the reported optimal spacing is a single value, that is, a single length
scale that is distributed uniformly through the available volume.

Is the stack of Fig. 4.20 the best way to pack heat transfer into a fixed vol-
ume? It is, but only when a single length scale is to be used, that is, if the struc-
ture is to be uniform. The structure of Fig. 4.20 is uniform, because it does not
change from x = 0 to x = L0. At the most, the geometries of single-spacing
structures vary periodically, as in the case of arrays of cylinders and staggered
plates.

Bejan and Fautrelle (2003) showed that the structure of Fig. 4.20 can be improved
if more length scales (D0, D1, D2, . . .) are available. The technique consists of
placing more heat transfer in regions of the volume HL0 where the boundary layers
are thinner. Those regions are situated immediately downstream of the entrance
plane x = 0. Regions that do not work in a heat transfer sense either must be put
to work or eliminated. In Fig. 4.20, the wedges of fluid contained between the
tips of opposing boundary layers are not involved in transferring heat. They can
be involved if heat-generating blades of shorter lengths (L1) are installed on their
planes of symmetry. This new design is shown in Fig. 4.21.

Each new L1 blade is coated by Blasius boundary layers with the thickness
�(x) ∼= 5x(U x/	)−1/2. Because � increases as x1/2, the boundary layers of the L1
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Figure 4.20. Optimal package of parallel plates with one spacing (Bejan and Fautrelle,
2003).

blade merge with the boundary layers of the L0 blades at a downstream position that
is approximately equal to L0/4. The approximation is due to the assumption that
the presence of the L1 boundary layers does not significantly affect the downstream
development (x > L0/4) of the L0 boundary layers. This assumption is made for
the sake of simplicity. The order-of-magnitude correctness of this assumption
comes from geometry: the edges of the L1 and L0 boundary layers must intersect
at a distance of order

L1
∼= 1

4
L0. (4.174)

Note that by choosing L1 such that the boundary layers that coat the L1 blade
merge with surrounding boundary layers at the downstream end of the L1 blade,
we once more invoke the maximum packing principle of constructal theory. We
are being consistent as constructal designers, and because of this every structure
with merging boundary layers will be optimal, no matter how complicated.

The wedges of isothermal fluid (T0) remaining between adjacent L0 and L1

blades can be populated with a new generation of even shorter blades, L2
∼= L1/4.

Two such blades are shown in the upper-left corner of Fig. 4.21. The length scales
become smaller (L0, L1, L2), but the shape of the boundary layer region is the
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Figure 4.21. Optimal multiscale package of parallel plates (Bejan and Fautrelle, 2003).

same for all the blades, because the blades are all swept by the same flow (U ). The
merging and expiring boundary layers are arranged according to the algorithm

Li
∼= 1

4
Li−1, Di

∼= 1

2
Di−1 (i = 1, 2, . . . , m), (4.175)

where we show that m is finite, not infinite. In other words, as in all the constructal
tree structures, the image generated by the algorithm is not a fractal [cf. Bejan
(1997c, p. 765)]. The sequence of decreasing length scales is finite, and the smallest
size (Dm, Lm) is known, as shown in Bejan and Fautrelle (2003) and Bejan et al.
(2004). The global thermal conductance of the multiscale package is

q ′

k �T
∼= 0.36

H

L0
Be1/2

(
1 + m

2

)1/2
(4.176)
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where q ′ is the total heat transfer rate installed in the package (W/m, per unit length
in the direction perpendicular to Fig. 4.21), k is the fluid thermal conductivity, and
� T is the temperature difference between the plates (assumed isothermal) and
the fluid inlet. The dimensionless pressure and difference is

Be = �P L2
0

��
, (4.177)

where � and � are the fluid viscosity and thermal diffusivity.
Bejan and Fautrelle (2003) also showed that the optimized complexity increases

with the imposed pressure difference (Be),

2m
(

1 + m

2

)1/4 ∼= 0.17 Be1/4. (4.178)

As Be increases, the multiscale structure becomes more complex and finer. The
monotonic effect of m is accompanied by diminishing returns: each smaller length
scale (m) contributes to global performance less than the preceding length scale
(m −1). The validity of the novel design concept sketched in Fig. 4.21 was demon-
strated through direct numerical simulations and optimization for multiscale par-
allel plates (Bello-Ochende and Bejan, 2004) and multiscale parallel cylinders
in cross-flow (Bello-Ochende and Bejan, 2005a). A related natural convection
situation was treated by Bello-Ochende and Bejan (2005b).

Forced convection was used in Bejan and Fautrelle (2003) only for illustration,
that is, as a language in which to describe the new concept. A completely analogous
multiscale structure can be deduced for laminar natural convection. The complete
analogy that exists between optimal spacings in forced and natural convection was
described by Petrescu (1994). In brief, if the structure of Fig. 4.20 is rotated by 90◦

counterclockwise and if the flow is driven upward by the buoyancy effect, then the
role of the overall pressure difference �P is played by the difference between two
hydrostatic pressure heads, one for the fluid column of height L0 and temperature
T0 and the other for the L0 fluid column of temperature Tw. If the Boussinesq
approximation applies, the effective �P due to buoyancy is

�P = 
g��T L0, (4.179)

where � is the coefficient of volumetric thermal expansion and g is the gravitational
acceleration aligned vertically downward (against x in Fig. 4.20). By substituting
the �P expression (4.179) into the Be definition (4.177) we find that the dimen-
sionless group that replaces Be in natural convection is the Rayleigh number Ra
= g��T L3

0/(�	). Other than the Be → Ra transformation, all the features that are
due to the generation of multiscale blade structure for natural convection should
mirror, at least qualitatively, the features described for forced convection in this
section. The validity of the constructal multiscale concept for volumes packed with
natural convection is demonstrated numerically in da Silva and Bejan (2005).

Finally, the hierarchical multiscale flow architecture constructed in this sec-
tion is a theoretical comment on fractal geometry. Fractal structures are gener-
ated by assuming (postulating) certain algorithms. In much of the current fractal
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literature, the algorithms are selected such that the resulting structures resemble
flow structures observed in nature. For this reason, fractal geometry is descrip-
tive, not predictive (Bejan, 1997c; Bradshaw, 2001). Fractal geometry is not a
theory.

4.20. Optimal Spacings for Plates Separated
by Porous Structures

Taking the concept of Fig. 4.20 even closer to traditional porous media, consider the
optimization of spacings between plates that sandwich a porous medium (Bejan,
2004a). For example, the channels may be occupied by a metallic foam such that the
saturated porous medium has a thermal conductivity (km) and a thermal diffusivity
(�m) that are much higher than their pure fluid properties (k f , � f ). We consider
both natural convection and forced convection with Boussinesq incompressible
fluid and assume that the structures are fine enough that Darcy flow prevails in all
cases. The analysis is another application of the intersection of asymptotes method
(Lewins, 2003).

The natural convection configuration is shown in Fig. 4.22. This time each
D-thin space is filled with the assumed fluid-saturated porous structure. The width
in the direction perpendicular to Fig. 4.22 is W . The effective pressure difference

Figure 4.22. Volume filled with vertical heat-generating plates separated by a fluid-
saturated porous medium, and the effect of the channel spacing on the global thermal
conductance (Bejan, 2004a).
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that drives the flow is due to buoyancy:

�P = 
 Hg�(Tw − T0). (4.180)

This �P estimate is valid in the limit where the spacing D is sufficiently small
so that the temperature in the channel porous medium is essentially the same as
the plate temperature Tw. In this limit, the heat current extracted by the flow from
the H × L volume is q = ṁcP (Tw − T0), with ṁ = 
 U LW and Darcy’s law,
U = K�P/�H , where K is the permeability of the structure. In conclusion, the
total heat transfer rate in the small-D limit is independent of the spacing D,

q = 
cP (Tw − T0)LW (K�P)/�H. (4.181)

In the opposite limit, D is large so that the natural convection boundary layers
that line the H -tall plates are distinct. The heat transfer rate from one boundary
layer is h H W (Tw − T0), where h H/k = 0.888 Ra−1/2

H , and RaH is the Rayleigh
number for Darcy flow, RaH = K g�H (Tw − T0)/�m	. The number of boundary
layers in the H × L volume is 2L/D. In conclusion, the total heat transfer rate
decreases as D increases,

q = 1.78(L/D)Wk(Tw − T0)Ra1/2
H . (4.182)

For maximal thermal conductance q/(Tw − T0), the spacing D must be smaller
than the estimate obtained by intersecting asymptotes (4.181) and (4.182)

Dopt/H<∼ 1.78 Ra−1/2
H . (4.183)

The simplest design that has the highest possible conductance is the design with
the fewest plates (i.e., the one with the largest Dopt ); hence Dopt/H ∼= 1.78 Ra−1/2

H
for the recommended design. Contrary to Fig. 4.22, however, q does not remain
constant if D decreases indefinitely. There exists a small enough D below which
the passages are so tight (tighter than the pores) that the flow is snuffed out. An
estimate for how large D should be so that Eq. (4.183) is valid is obtained by
requiring that the Dopt value for natural convection when the channels are filled
only with fluid, Dopt/H ∼= 2.3[g�H 3(Tw − T0)/� f 	]−1/4 must be smaller than
the Dopt value of Eq. (4.171). We find that this is true when

H 2

K

�

� f
> RaH , (4.184)

in which, normally, �/� f � 1 and H 2/K � 1.
The forced convection configuration can be optimized similarly (Bejan, 2004a).

The flow is driven by the imposed �P through parallel-plate channels of length L
and width W . It is found that the forced-convection asymptotes have the same be-
havior as in Fig. 4.22. The highest conductance occurs to the left of the intersection
of the two asymptotes, when

Dopt/L<∼ 2.26 Be−1/2
p (4.185)

and where Bep is the porous medium Bejan number, Bep = (�P K )/��m. This
forced-convection optimization is valid when the Dopt estimate for the channel
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with pure fluid is smaller than the Dopt value provided by Eq. (4.185) when

L2

K

�

� f
> Bep. (4.186)

In summary, Eqs. (4.183) and (4.185) provide estimates for the optimal spacings
when the channels between heat-generating plates are filled with a fluid-saturated
porous structure. The relevant dimensionless groups are RaH , Bep, K/H 2, K/L2,
and �m/� f . The symmetry between Eqs. (4.183) and (4.185) and between
Eqs. (4.184) and (4.186) reinforces Petrescu’s (1994) argument that the role of
the Bejan number in forced convection is analogous to that of the Rayleigh num-
ber in natural convection.

These results are most fundamental and are based on a simple model and a
simple analysis: Darcy flow and the intersection of asymptotes method. The same
idea of geometry optimization deserves to be pursued in future studies of “designed
porous media,” based on more refined models and more accurate methods of flow
simulation.



5
External Natural Convection

Numerical calculation from the full differential equations for convection in an
unbounded region is expensive, and hence approximate solutions are important.
For small values of the Rayleigh number Ra, perturbation methods are appropriate.
At large values of Ra thermal boundary layers are formed, and boundary layer
theory is the obvious method of investigation. This approach forms the subject of
much of this chapter. We follow to a large extent the discussion by Cheng (1985a),
supplemented by recent surveys by Pop and Ingham (2000, 2001) and Pop (2004).

5.1. Vertical Plate

We concentrate our attention on convection in a porous medium adjacent to a
heated vertical flat plate, on which a thin thermal boundary layer is formed when
Ra takes large values. Using the standard order-of-magnitude estimation, the two-
dimensional boundary layer equations take the form

∂u

∂x
+ ∂v

∂y
= 0, (5.1)

u = − K

�

[
∂ P ′

∂x
− 
g�(T − T∞)

]
, (5.2)

∂ P ′

∂y
= 0, (5.3)

�
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= �m

∂2T

∂y2
. (5.4)

Here the subscript ∞ denotes the reference value at a large distance from the
heated boundary and P ′ denotes the difference between the actual static pres-
sure and the local hydrostatic pressure. It has been assumed that the Oberbeck-
Boussinesq approximation and Darcy’s law are valid. For later convenience of
comparison, the x axis has been taken in the direction of the main flow (in this
case vertically upwards, Fig. 5.1, left) and the y axis normal to the boundary sur-
face and into the porous medium. Near the boundary, the normal component of
seepage velocity (	) is small compared with the other velocity component (u), and
derivatives with respect to y of a quantity are large compared with derivatives of
that quantity with respect to x . Accordingly no term in 	 appears in Eq. (5.3) and
the term in ∂2T /∂x2 has been omitted from Eq. (5.4).
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Figure 5.1. Dimensionless temperature and vertical velocity versus the similarity vari-
able for natural convection adjacent to a vertical heated surface (Cheng and Minkowycz,
1977).

Eliminating P ′ between Eqs. (5.2) and (5.3) and introducing the stream-function
ψ defined by

u = ∂ψ
∂y

, v = −∂ψ
∂x

, (5.5)

we reduce Eqs. (5.1)–(5.4) to the pair

∂2ψ
∂y2

= g�K

	

∂T

∂y
, (5.6)

∂2T

∂y2
= 1

�m

(
�

∂T

∂t
+ ∂ψ

∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y

)
. (5.7)

This pair of equations must be solved subject to the appropriate boundary
conditions.

5.1.1. Power Law Wall Temperature: Similarity Solution

We now concentrate our attention on the situation when the wall temperature Tw

is a power function of distance along the plate, because in this case a similarity
solution can be obtained. Accordingly, we take

Tw = T∞ + Axλ, x ≥ 0. (5.8)

For x < 0 we suppose that either there is no plate or that Tw = T∞ on the plate.
The set of boundary conditions then is

y = 0 : v = 0, T = T∞ + Axλ, x ≥ 0, (5.9)

y → ∞ : u = 0, T = T∞. (5.10)
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One can easily check that a steady-state solution of Eqs. (5.6)–(5.10) is given
by

ψ = �m(Rax )1/2 f (�), (5.11)

T − T∞
Tw − T∞

= �(�), (5.12)

where

� = y

x
Ra1/2

x , (5.13)

Rax = g�K (Tw − T∞)x

	�m
, (5.14)

provided that the functions f (�), and �(�) satisfy the ordinary differential equations

f ′′ − �′ = 0, (5.15)

�′′ + (1 + λ)

2
f �′ − λ f ′� = 0, (5.16)

and the boundary conditions

f (0) = 0, �(0) = 1, (5.17)

f ′(∞) = 0, �(0) = 0. (5.18)

In terms of the similarity variable �, the seepage velocity components are

u = ur f ′(�), (5.19)

	 = 1

2

[
�m g�K (Tw − T∞

	x

]1/2

[(1 − λ)� f ′ − (1 + λ) f ], (5.20)

where the characteristic velocity ur is defined by

ur = g�K (Tw − T∞)

	
. (5.21)

Integrating Eq. (5.15) and using Eq. (5.18) we get

f ′ = �. (5.22)

This implies that the normalized vertical velocity u/ur and the normalized tem-
perature � are the same function of �. Their common graph is shown in Fig. 5.1.
Another implication is that in this context, Eqs. (5.2) and (5.3) formally may be
replaced by

u = g�K

	
(T − T∞). (5.23)

From Eq. (5.13) we see that the boundary layer thickness � is given by

�

x
= �T

Ra1/2
x

, (5.24)

where �T is the value of � at the edge of the boundary layer, conventionally
defined as that place where � has a value 0.01. Values of �T , for various values of
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Table 5.1. Values of �T and –�′(0) for various values of λ for the heated
vertical plate problem (after Cheng and Minkowycz, 1977)

λ �T –�′(0) Nu/Ra
1/2

– 1/3 7.2 0
– 1/4 6.9 0.162 0.842

0 6.3 0.444 0.888 isothermal
1/4 5.7 0.630 1.006
1/3 5.5 0.678 1.044 uniform flux
1/2 5.3 0.761 1.118
3/4 4.9 0.892 1.271
1 4.6 1.001 1.416

λ, are given in Table 5.1. For the case of constant wall temperature (λ = 0), � is
proportional to x1/2.

The local surface heat flux at the heated plate is

q ′′ = −km

(
∂T

∂ y

)
y=0

= km A3/2

(
g�K

	�m

)1/2

x (3λ−1)/2[−�′(0)]. (5.25)

Clearly λ = 1/3 corresponds to uniform heat flux. In dimensionless form, Eq.
(5.25) is

Nux

Ra1/2
x

= −�′(0), (5.26)

where the local Nusselt number is defined by Nux = hx/k and where h is the local
heat transfer coefficient q ′′/(Tw − T∞). The values of [−�′(0)] also are listed in
Table 5.1. In particular, we note that [−�′(0)] = 0.444 when λ = 0.

The total heat transfer rate through a plate of height L , expressed per unit length
in the direction perpendicular to the plane (x, y), is

Lq ′′ = q ′ =
∫ L

0
q ′′(x)dx = km A3/2

(
g�K

	�m

)1/2 (
2

1 + 3λ

)
L (1+3λ)/2[−�′(0)].

(5.27)
This result can be rewritten as

Nu

Ra
1/2 = 2(1 + λ)3/2

1 + 3λ
[−�′(0)], (5.28)

where Nu and Ra are based on the L-averaged temperature difference

Nu = q ′

km(Tw − T∞)
, Ra = g�K L(Tw − T∞)

	�m
,

(Tw − T∞) = 1

L

∫ L

0
(Tw − T∞)dx . (5.29)

Xu (2004) has treated the same problem by means of homotopy analysis.



5.1. Vertical Plate 125

5.1.2. Vertical Plate with Lateral Mass Flux

If the power law variation of wall temperature persists but now we have an im-
posed lateral mass flux at the wall given by 	 = axn, (x = 0), then a similarity
solution exists for the case n = (λ − 1)/2. Equations (5.11)–(5.18) apply, with the
exception that Eq. (5.17a) is replaced by

f (0) = fw = 2a(�m g�K A/	)−1/2(1 + λ)−1. (5.30)

The thermal boundary layer thickness is still given by Eq. (5.24) but now �T is an
increasing function of the injection parameter fw (Cheng, 1977b). This problem
has applications to injection of hot water in a geothermal reservoir. The practical
case of constant discharge velocity at uniform temperature has been treated by
different methods by Merkin (1978) and Minkowycz and Cheng (1982).

The solution for the related problems where the heat flux (rather than the tem-
perature) is prescribed at the wall can be deduced from the present solution via a
certain change of variables (Cheng, 1977a) or obtained directly. Of course we al-
ready have the solution for constant prescribed heat flux, with the wall temperature
related to the heat flux, via the parameter A with λ = 1/3, through Eqs. (5.8) and
(5.25). From Eq. (5.24) we see that the boundary layer thickness is proportional
to x1/3 in this case.

Similarity solutions for a vertical permeable surface were developed by
Chaudhary et al. (1995a,b) for the class with heat flux proportional to x� and
mass flux proportional to x (�−1)/3, where � is a constant.

5.1.3. Transient Case: Integral Method

For transient natural convection in a porous medium, similarity solutions exist for
only a few unrealistic wall temperature distributions. For more realistic boundary
conditions, approximate solutions can be obtained using an integral method. Inte-
grating Eq. (5.4) across the thermal boundary layer and using Eqs. (5.1) and (5.2),
we obtain

�
∂

∂t

∫ ∞

0
�(x, y, t)dy + g�K

	

∂

∂x

∫ ∞

0
�2(x, y, t)dy = −�m

(
∂�

∂y

)
y=0

. (5.31)

where � = T − T∞. The Karman-Pohlhausen integral method involves assuming
an explicit form of � that satisfies the temperature boundary conditions, namely
� = Tw − T∞ at y = 0 and � → 0 as y → ∞ . The integrals in Eq. (5.31) are then
determined and the resulting equation for the thermal boundary layer thickness �
becomes a first-order partial differential equation of the hyperbolic type which can
be solved by the method of characteristics.

For the case of a step increase in wall temperature, Cheng and Pop (1984) assume
that the temperature distribution is of the form

� = (Tw − T∞)erfc(� ) (5.32)
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where � = y/�(x, t). The results of the method of characteristics show that during
the interval before the steady state is reached one has

� = 2

(
�mt

�

)1/2

, (5.33)

T − T∞
Tw − T∞

= erfc

[
y

2

(
�

�mt

)1/2
]

= 	u

g�K (Tw − T∞)
, (5.34)

q ′′
w = k

(
�

π�mt

)1/2

(Tw − T∞), (5.35)

for t < Tss , with tss = �x2/�m K1Rax (K1 = 2 − 21/2 = 0.5857), denoting the
time at which steady state is reached. This time interval is related to the propaga-
tion of the leading edge effect, which is assumed to travel with the local velocity.
In Eq. (5.34), u is the x component of the seepage velocity.

Equations (5.33)–(5.34) are independent of x and are similar in form to the
solution for the transient heat conduction problem. During the initial stage when the
leading edge effect is not being felt, heat is transferred by transient one-dimensional
heat conduction. After the steady state is reached, we have

�

x
= 2.61

Ra1/2
x

, (5.36)

T − T∞
Tw − T∞

= erfc

(
K 1/2

1 y Ra1/2
x

2x

)
= 	u

g�K (Tw − T∞)
, (5.37)

q ′′
w = k(Tw − T∞)

x
(K1/πRax )1/2, (5.38)

Equation (5.38) can be written in dimensionless form as

Nux

Ra1/2
x

= 0.431, (5.39)

which compares favorably with the exact similarity solution where the constant
is equal to 0.444 (see Table 5.1). Comparison of Eq. (5.36) with Eq. (5.24) for
λ = 0 shows that the integral method considerably underestimates the steady-
state thermal boundary layer thickness. This is due to the error in the assumed
temperature profile in the integral-method formulation.

For flow past a suddenly cooled wall, similarity solutions were obtained by
Ingham and Merkin (1982) for the case of small and large dimensionless times,
and these were joined by a numerical solution. A detailed study of the transient
problem for the case where the wall temperature varies as xλ was made by Ingham
and Brown (1986). They found that for λ < −1/2 no solution of the unsteady
boundary layer equations was possible, and that for −1/2 < λ < 1 the parabolic
partial differential equation governing the flow is singular. For −1/2 < λ < −1/3
the velocity achieves its maximum value within the boundary layer (instead of on
the boundary).
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For the case λ = 0, Haq and Mulligan (1990a) have integrated the unsteady
boundary layer equations numerically. Their results confirm that during the initial
stage, before the effects of the leading edge are influential at a location, heat
transfer is governed by conduction. They show that in a Darcian fluid the local
Nusselt number decreases with time monotonically to its steady-state value. The
effect of inertia was considered by Chen et al. (1987). They found that the effect of
quadratic drag increases the momentum and thermal boundary layer thicknesses
and reduces the heat transfer rate at all times (cf. Section 5.1.7.2).

The situation where the permeability varies linearly along the plate was treated
by Mehta and Sood (1992a). As one would expect, they found that increase in
permeability results in higher rate of heat transfer at the wall and in decreased time
to reach the steady state at any location on the plate.

The case of wall heating at a rate proportional to xλ was examined by Merkin
and Zhang (1992). The similarity equations that hold in the limit of large t were
shown to have a solution only for λ > −1. Numerical solutions were obtained for
a range of possible values of λ.

Harris et al. (1996, 1997a,b) have treated the case of a jump to a uniform
flux situation and the case where the surface temperature or the surface heat flux
suddenly jumps from one uniform value to another. Pop et al. (1998) reviewed work
on transient convection heat transfer in external flow. Techniques for solving the
boundary layer equations that arise in such circumstances were discussed by Harris
and Ingham (2004). Khadrawi and Al-Nimr (2005) have examined the effect of the
local inertial term for a domain partly filled with porous material. The Brinkman
model was employed in the numerical study by K. H. Kim et al. (2004).

5.1.4. Effects of Ambient Thermal Stratification

When the porous medium is finite in the x and y directions, the discharge of the
boundary layer into the rest of the medium leads in time to thermal stratification.
If the temperature profile at “infinity” is as in Fig. 5.2, and if T0 − T∞,0 remains

Figure 5.2. Heat transfer from a vertical isothermal wall to a linearly stratified porous
medium (Bejan, 1984).
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fixed, then as the positive temperature gradient � = dT∞/dx increases, the average
temperature difference between the wall and the porous medium decreases. Thus
we should expect a steady decrease in the total heat transfer rate as � increases.
We apply the integral method to the solution of this problem (Bejan, 1984).

The Darcy law relation (5.6) integrates to give

T = 	

g�K
u + function(x). (5.40)

We assume a vertical velocity profile of the form

u = u0(x) exp

[
− y

�T (x)

]
. (5.41)

Then, using Eq. (5.40) and the temperature boundary conditions

T (x, 0) = T0, T (x, ∞) = T∞,0 + � x, (5.42)

we see that the corresponding temperature profile is

T (x, y) = (T0 − T∞,0 − � x) exp(−y/�T ) + T∞,0 + � x, (5.43)

and the maximum (wall) vertical velocity is

u0 = g�K

	
(T0 − T∞,0 − � x). (5.44)

The integral form of the boundary layer energy equation, obtained by integrating
Eq. (5.4) from y = 0 to y = ∞, is

	(x, ∞)T (x, ∞) + d

dx

∫ ∞

0
uT dy = −�m

(
∂T

∂y

)
y=0

, (5.45)

where T (x, ∞) = T∞,0 + � x , and from the mass conservation equation,

	(x, ∞) = − d

dx

∫ ∞

0
udy. (5.46)

Substituting the assumed u and T profile into the energy integral equation (5.46)
yields

d�∗
dx∗

= 2

�∗(1 − bx∗)
, (5.47)

in terms of the dimensionless quantities

b = � H

T0 − T∞,0
, x∗ = x

H
, �∗ = �T

H

[
g�H 3(T0 − T∞,0)

	�m

]1/2

. (5.48)

Integrating Eq. (5.47), with �∗(0) = 0, we obtain

�∗(x∗) =
[
−4

b
ln(1 − bx∗)

]1/2

. (5.49)
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As b → 0 this gives the expected result �∗ ∼ x1/2
∗ . The average Nusselt number

(over the wall height H) is given by

Nu

Ra1/2
H

=
∫ 1

0

(1 − bx∗)dx∗
[−(4/b) ln(1 − bx∗)]1/2

, (5.50)

where Nu and RaH are based on the maximum (i.e., starting) temperature
difference

Nu = q ′′ H
k(T0 − T∞,0)

, RaH = g�K H

	�m
(T0 − T∞,0). (5.51)

Equation (5.50) is plotted in Fig. 5.2. As expected, Nu/Ra1/2
H decreases monotoni-

cally as b increases. The above approximate integral solution gives Nu/Ra1/2
H = 1

at b = 0, whereas the similarity solution value for this quantity is 0.888, a discrep-
ancy of 12.5 percent.

The same phenomenon was studied numerically, without the boundary layer
approximation, by Angirasa and Peterson (1997b) and Ratish Kumar and Singh
(1998). The case of a power law variation of wall temperature was discussed by
Nakayama and Koyama (1987c) and Lai et al. (1991b). The stratification problem
has also been treated by Tewari and Singh (1992) and (with quadratic drag effects
included) by Singh and Tewari (1993). In their study of an isothermal surface with
stratification on the Brinkman-Forchheimer model, Chen and Lin (1995) found
that a flow reversal is possible in certain circumstances. The same model, with
the effect of variable porosity and thermal dispersion included, was employed by
Hung et al. (1999). The case of variable wall heat flux was analyzed by Hung and
Cheng (1997). An MHD problem was analyzed by Chamkha (1997g).

5.1.5. Conjugate Boundary Layers

When one has a vertical wall between two porous media (or between a porous
medium and a fluid reservoir) and a temperature difference exists between the two
systems, we may have a pair of conjugate boundary layers, one on each side of the
wall, with neither the temperature nor the heat flux specified on the wall but rather
to be found as part of the solution of the problem. Bejan and Anderson (1981)
used the Oseen linearization method to analytically solve the problem of a solid
wall inserted in a porous medium. They found that the coefficient in the Nu/Ra1/2

H
proportionality decreases steadily as the wall thickness parameter � increases,
where � is defined as

� = W

H

km

kw

Ra1/2
H . (5.52)

In this dimensionless group W and H are the width and height of the wall cross
section, km and kw are the conductivities of the porous medium and wall material,
respectively, and RaH is the Rayleigh number based on H and the temperature dif-
ference between the two systems, �T = T∞2 − T∞1. The overall Nusselt number
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Figure 5.3. Heat transfer through a vertical partition inserted in a fluid-saturated porous
medium (Bejan and Anderson, 1981; Bejan, 1984).

Nu is based on the wall-averaged heat flux q̄ ′′ and the overall temperature difference
�T ,

Nu = q̄ ′′ H
km�T

. (5.53)

The variation of Nu/Ra1/2
H with � is shown in Fig. 5.3. In the limit of negligible

wall thermal resistance (� → 0) the overall Nusselt number reduces to

Nu = 0.383 Ra1/2
H . (5.54)

The case of wall between a porous medium and a fluid reservoir was solved by
Bejan and Anderson (1983). Their heat transfer results are reproduced in Fig. 5.4.
The value of dimensionless group

B = kmRa1/2
H

kaRa1/4
Ha

(5.55)

determines whether the conjugate problem is dominated by porous medium con-
vection (small B) or pure fluid convection (large B). Here ka and RaHa represent
the fluid conductivity and Rayleigh number on the side of the pure fluid (which
typically is air).

Pop and Merkin (1995) showed that the boundary-layer equations can be made
dimensionless so that the thermal conductivity ratio is scaled out of the problem,
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Figure 5.4. Heat transfer through the interface between a porous medium and a fluid
reservoir (Bejan and Anderson, 1983; Bejan, 1984).

and thus just one solution of the transformed nonsimilar boundary layer equations
need be computed. This they did by a finite-difference scheme.

The above analysis of Bejan and Anderson is limited to the case of a thin plate.
The thin plate assumption was dropped by Vynnycky and Kimura (1994). They
considered a wall of thickness a and with a segment of height b conducting and the
remainder insulating; the aspect ratio is λ = a/b. They constructed an approximate
one-dimensional solution based on the assumption of a boundary layer of thickness
�. The average boundary heat flux is given by

q ′′ = kw

(Tc − T̄b)

a
= km

T̄h − T∞
�

, (5.56)

where T̄b is the average interface temperature and Tc is the constant temperature
at the far side of the conducting wall. If Ra denotes the Rayleigh number based
on Tc − T∞ and Ra∗ that is based on T̄b − T∞, and �̄b = (T − T∞)/(Tc − T∞), so
that Ra∗ = Ra�̄b, then

�

b
= 1.126(Ra∗)−1/2, (5.57)

from the isothermal entry in Table 5.1. Combining Eqs. (5.56) and (5.57) one has

�c X3 + X2 − 1 = 0 (5.58)

where X = �̄
1/2
b and �c = λRa1/2/1.126k where k = kw/km . The quantity �c may

be regarded as a conjugate Biot number. Conjugate effects are small if �c � 1.
For a given �c, Eq. (5.58) is readily solved to give �̄b and then the average Nusselt
number can be obtained from

Nu = q ′′a
km(Tc − T∞)

= 0.888
T̄b − T∞
Tc − T∞

(Ra∗)1/2 = 0.888�̄
3/2
b Ra1/2. (5.59)

Vynnycky and Kimura (1994) showed that this formula agrees well with numerical
computations in typical cases.
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Kimura et al. (1997) show how the same ideas can be applied to the problem of a
wall between two reservoirs, the extension (to a thick partition) of the work of Bejan
and Anderson (1983). Kimura and Pop (1992b, 1994) treated convection around
a cylinder or a sphere in a similar fashion. A transient one-dimensional model for
conjugate convection from a vertical conducting slab was developed by Vynnycky
and Kimura (1995). They obtained analytical solutions for two parameter regimes,
(i) Ra � 1,  � Ra, and (ii) � 1, Ra � , where = [(
c)m/(
c) f ](�w/�m).
Regime (i) implies that the temperature and velocity within the boundary layer
adjust themselves instantaneously to conditions in the conducting plate and time
dependency arises through variation of the conjugate boundary temperature. The
value of  affects the development but not the steady state. Regime (ii) corresponds
to the case where conduction dominates convection in the early stages of flow
development in the porous medium. Vynnycky and Kimura (1995) also checked
their analytical solutions against numerical solutions.

The case of conjugate natural convection heat transfer between two porous media
at different temperatures separated by a vertical wall was treated by Higuera and
Pop (1997). They obtained asymptotic and numerical solutions. The corresponding
case for a horizontal wall was examined by Higuera (1997). Conjugate convection
from vertical fins was studied numerically by Vaszi et al. (2003). A transient
problem involving a vertical plate subjected to a sudden change in surface heat
flux was analyzed by Shu and Pop (1998). Another transient problem involving
the cooling of a thin vertical plate was analyzed by Méndez et al. (2004). The topic
of conjugate natural convection in porous media was reviewed by Kimura et al.
(1997).

5.1.6. Higher-Order Boundary Layer Theory

The above boundary layer theory arises as a first approximation for large values
of Rayleigh number, when expansions are made in terms of the inverse one-half
power of the Rayleigh number. At this order, the effects of entrainment from the
edge of the boundary layer, the axial heat conduction, and the normal pressure
gradient are all neglected.

The magnitudes of these effects have been investigated using higher-order
asymptotic analysis by Cheng and Chang (1979), Chang and Cheng (1983), Cheng
and Hsu (1984), and Joshi and Gebhart (1984). They found that the ordering of the
eigenfunction terms in the perturbation series was dependent on the wall tempera-
ture parameter λ. They also found that the coefficients of the eigenfunctions cannot
be determined without a detailed analysis of the leading edge effect. Therefore,
they truncated the perturbation series at the term where the leading edge effect first
appeared. They found that the effect of entrainments from the edge of the thermal
boundary layer was of second order while those of axial heat conduction and nor-
mal pressure gradient were of third order. For the case of the isothermal vertical
plate with λ = 0, the second-order corrections for both the Nusselt number and
the vertical velocity are zero and the leading edge effect appears in the third-order
terms. For other values of λ, both the second- and third-order corrections in the
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Figure 5.5. Higher-order theoretical values of local Nusselt number versus local
Rayleigh number for natural convection about a vertical flat plate in a porous medium
(Cheng and Hsu, 1984).

Nusselt number are positive and the leading edge effect appears in the fourth-order
terms.

The slight increase in the surface heat flux in the higher-order theories is mainly
due to the fact that entrainments from the outer flow induce a flow parallel to the
heated surface. The higher-order theory has a profound effect on the velocity pro-
files but has a relatively small effect on the temperature distribution, and hence on
the surface heat flux. Figure 5.5 illustrates the higher-order effects on the local Nus-
selt number Nux . It is evident that for small wall temperature variations (λ = 1/3)
the boundary layer theory is quite accurate even at small Rayleigh numbers.

Pop et al. (1989) have shown that for the case of uniform wall heat flux the
leading edge effects enter the second and subsequent order problems. They cause
an increase of the streamwise vertical velocity near the outer edge of the boundary
layer and a consequent increase in heat transfer rate by an amount comparable with
entrainment effects, the combination producing a 10 percent increase at Rax = 100
and a greater amount at smaller Rax .

5.1.7. Effects of Boundary Friction, Inertia, and Thermal Dispersion

So far in this chapter it has been assumed that Darcy’s law is applicable and the
effects of the no-slip boundary condition, inertial terms, and thermal dispersion
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are negligible. We now show that all of these effects are important only at high
Rayleigh numbers. The effects of boundary friction and inertia tend to decrease
the heat transfer rate while that of thermal dispersion tends to increase the heat
transfer rate.

5.1.7.1. Boundary Friction Effects

To investigate the boundary friction effect Evans and Plumb (1978) made some
numerical calculations using the Brinkman equation. They found that the boundary
effect is negligible if the Darcy number Da (Da = K/L2, where L is the length of
the plate) is less than 10−7. For higher values of Da their numerical results yield
a local Nusselt number slightly smaller than those given by the theory based on
Darcy’s law.

Hsu and Cheng (1985b) and Kim and Vafai (1989) have used the Brinkman
model and the method of matched asymptotic expansions to reexamine the prob-
lem. Two small parameters that are related to the thermal and viscous effects govern
the problem. For the case of constant wall temperature these are εT = Ra−1/2 and
εv = Da1/2, where Ra is the Rayleigh number based on plate length L and tem-
perature difference Tw − T∞, and Da is the Darcy number K/L2�. For the case of
constant wall heat flux, εT = Ra−1/3, where Ra is now the Rayleigh number based
on L and the heat flux q

′′
w; here we concentrate on the case of constant Tw. Cases

(a) εv � εT and (b) εv � εT must be treated separately.
In geophysical and engineering applications it is usually case (a) that applies.

Dimensional analysis shows that three layers are involved: the inner momentum
boundary layer with a constant thickness of O(ε	), the middle thermal layer with
a thickness of O(εT ), which is inversely proportional to the imposed temperature
difference, and the outer potential region of O(1). The asymptotic analysis of Hsu
and Cheng (1985b) gives the local Nusselt number in the form

Nux = C1Ra1/2
x − C2Rax Da1/2

x , (5.60)

where Dax = K/x2 is the local Darcy number, and the constants C1 and C2 are
related to the dimensionless temperature gradients at the wall appearing in the
first-order and second-order problems. The values of these constants depend on
the wall temperature. Equation (5.60) can be rewritten as

Nux/Ra1/2
x = C1 − C3 Pnx , (5.61)

where C3 = C2/C1 and Pnx is the local no-slip parameter given by

Pnx = Ra1/2
x Da1/2

x =
[

g�K 2(Tw − T∞)1/2

	�m x

]
. (5.62)

Equation (5.61) is plotted in Fig. 5.6. It is clear that the deviation from
Darcy’s law becomes appreciable at high local Rayleigh numbers only for high
local Darcy numbers (i.e., near the leading edge) and for large wall temperature



5.1. Vertical Plate 135

Figure 5.6. Boundary effects on the local Nusselt number for natural convection about
a vertical surface in a porous medium (Hsu and Cheng, 1985b, with permission from
Pergamon Press).

variations. This conclusion is in accordance with the numerical results of Evans
and Plumb (1978) and is confirmed by further calculations by Hong et al.
(1987).

For case (b) where εv � εT , Kim and Vafai (1989) find that the local Nusselt
number Nux is given by

Nux = 0.5027 Da−1/4
x Ra1/4

x = 0.5027(Ra f �)1/4, (5.63)

where Ra f is the standard Rayleigh number for a viscous fluid (independent of
permeability), as expected for a very sparse medium. Numerical studies using the
Brinkman model were conducted by Beg et al. (1998) and Gorla et al. (1999b).
The last study included the effect of temperature-dependent viscosity applied to
the plume above a horizontal line source (either isolated or on an adiabatic vertical
wall) as well as to a vertical wall with uniform heat flux.

5.1.7.2. Inertial Effects

Forchheimer’s equation with a quadratic drag term was introduced into the bound-
ary layer theory by Plumb and Huenefeld (1981). Equation (5.23) is replaced
by

u + �

	
u2 = g�K

	
(T − T∞), (5.64)
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Figure 5.7. Non-Darcy inertial effects on the local Nusselt number for natural convec-
tion about a vertical surface in a porous medium (Cheng, 1985a, with permission from
Hemisphere Publishing Corporation).

in which the coefficient � has the units [m] and represents the group cF K 1/2 seen
earlier on the right-hand side of Eq. (1.12). In place of Eq. (5.15) one now has

f ′′ + Gr∗( f
′2)′ − �′ = 0, (5.65)

where

Gr∗ = g�� K (Tw − T∞)

	2
. (5.66)

It is clear that a similarity solution exists if and only if the Grashof number Gr∗

is a constant, which requires that Tw is constant. Plumb and Huenefeld’s results
are displayed in Fig. 5.7, which as expected shows that the effect of quadratic
drag is to slow down the buoyancy-induced flow and so retard the heat transfer
rate.

The alternative analysis of Bejan and Poulikakos (1984) is based on the ob-
servation that at sufficiently large Rayleigh numbers, and hence large velocities,
the quadratic term on the left-hand side of Eq. (5.60) will dominate the linear
term. Scale analysis then indicates that the boundary layer thickness � is of the
order

� ∼ HRa−1/4
∞ , (5.67)

where H is a characteristic length scale and the “large Reynolds number limit”
Rayleigh number Ra∞ is defined as

Ra∞ = g�K
2
(Tw − T∞)

� �2
m

. (5.68)
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The introduction of the nondimensional variables

x∗ = x

H
, y∗ = y

H
Ra1/4

∞ ,

u∗ = u H

�mRa1/2
∞

, 	∗ = 	H

�mRa1/4
∞

,

� = T − T∞
Tw − T∞

,

(5.69)

yields

u∗
∂�

∂x∗
+ 	∗

∂�

∂y∗
= ∂2�

∂y2∗
, (5.70)

G
∂u∗
∂y∗

+ ∂(u2
∗)

∂y∗
= ∂�

∂y∗
, (5.71)

where G is the new dimensionless group

G = 	[�g�K (Tw − T∞)]−1/2 = (Gr∗)−1/2. (5.72)

The Forchheimer regime corresponds to G → 0. Then Eq. (5.71) and the outer
condition � → 0 as y → ∞ yields

u∗ = �1/2. (5.73)

The appropriate similarity variable is

� = y∗
x1/2

∗
. (5.74)

The dimensionless streamfunction ψ defined by u∗ = ∂ψ/∂y∗, 	∗ = −∂ψ/∂x∗ is
now given by

ψ = x1/2
∗ F(�), (5.75)

where

F(�) =
∫ �

0
�1/2d�. (5.76)

The boundary layer equations reduce to the system

�1/2 = F ′, −1

2
F�′ = �′′, (5.77)

with the conditions

�(0) = 1, F(0) = 0, and � → 0 as � → ∞. (5.78)

This system is readily integrated using a shooting technique. One finds that
�′(0) = −0.494, and so the local Nusselt number becomes

Nux = q ′′x
(Tw − T∞)km

= 0.494Ra1/4
∞x . (5.79)
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On the right-hand side, Ra∞x is obtained from expression (5.68) for Ra∞ by
replacing H by x . This formula for Nux differs radically from its Darcy counterpart,
listed in Table 5.1, Nux = 0.444Ra1/2

x .
The case of uniform heat flux can be treated similarly. One now finds that the

boundary layer thickness is

� ∼ HRa−1/5
∞x , (5.80)

where Ra∗
∞ is the flux-based Rayleigh number for the large Reynolds number limit,

Ra∗
∞ = g�K H 3q ′′

� �2
mkm

. (5.81)

The corresponding local Nusselt number is

Nux = q ′′x
(Tw − T∞)km

= 0.804 Ra1/5
∞∗x (5.82)

For intermediate values of the Forchheimer parameter, similarity solutions do
not exist, but nonsimilarity results have been obtained by Bejan and Poulikakos
(1984), Kumari et al. (1985) (including the effect of wall mass flux), Hong et al.
(1985), Chen and Ho (1986), Hong et al. (1987) (including the effects of nonuni-
form porosity and dispersion), and Kaviany and Mittal (1987) (for the case of
high permeability media). The combination of effects of inertia and suction on
the wall was analyzed by Banu and Rees (2000) and by Al-Odat (2004a) for an
unsteady situation. The combined effect of inertia and spanwise pressure gradient
was examined by Rees and Hossain (1999). In this case the resulting flow is three-
dimensional but self-similar, and the boundary layer equations are supplemented
by an algebraic equation governing the magnitude of the spanwise velocity field. It
was found that the inertial effects serve to inhibit the spanwise flow near a heated
surface.

5.1.7.3. Thermal Dispersion Effects

Following Cheng (1985a) one can introduce the effects of thermal dispersion by
expressing the heat transfer per unit volume, by conduction and dispersion, in the
form

∂

∂x

(
(km + k ′

x )
∂T

∂x

)
+ ∂

∂y

(
(km + k ′

y)
) ∂T

∂y
.

With x denoting the streamwise direction, kx
′ and ky

′ are the longitudinal and
transverse thermal dispersion coefficients, respectively. Cheng (1981a) assumed
that the dispersion coefficients were proportional to the velocity components and
to the Forchheimer coefficient � , so

k ′
x = aL

�

	
|u| , k ′

y = aT
�

	
|	| , (5.83a)
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where aL and aT are constants found by matching with experimental data. With
this formulation, Cheng found that the effect of thermal dispersion was to decrease
the surface heat flux.

On the other hand, Plumb (1983) assumed that the longitudinal coefficient was
negligible and the transverse coefficient was proportional to the streamwise veloc-
ity component,

k ′
x = 0, k ′

y = C
cP ud. (5.83b)

In the k ′
y expression, d is the grain diameter and C is a constant found by matching

experimental heat transfer data. In this formulation the surface heat flux is given by

q ′′
w = −

[
(k + k ′

y)
∂T

∂y

]
y=0

= −[k + C
cP u(x, 0)d]
∂T

∂y
(x, 0). (5.84a)

The second term inside the square brackets of the last term is always positive
since u(x, 0) is positive. In dimensionless form this equation is

Nux

Ra1/2
x

= −[1 + CRad f ′(0)]�′(0) (5.84b)

where

� = T − T∞
Tw − T∞

, f ′(�)
u

ur
, Rad = g�K (Tw − T∞)d

	�m
. (5.85)

The dimensionless velocity slip on the wall f ′(0) and the dimensionless temper-
ature gradient at the wall �′(0) are functions of Gr∗ and CRad . Plumb’s numerical
results are shown in Figs. 5.8 and 5.9. They show that both inertial and dispersion
effects tend to decrease the temperature gradient at the wall but the combined
effects either may increase or decrease the Nusselt number.

Hong and Tien (1987) included the effect of a Brinkman term to account for the
no-slip boundary condition. As expected, this substantially reduces the dispersion
effect near the wall.

5.1.8. Experimental Investigations

Evans and Plumb (1978) investigated natural convection about a plate embedded in
a medium composed of glass beads with diameters ranging from 0.85 to 1.68 mm.
Their experimental data, which is shown in Figs. 5.10 and 5.11, is in good agree-
ment with the theory for Rax < 400. When Rax > 400, temperature fluctuations
were observed and the Nusselt number values became scattered.

Similar experiments were undertaken by Cheng et al. (1981) with glass beads
of 3 mm diameter in water. They observed that temperature fluctuations began in
the flow field when the non-Darcy Grashof number Gr∗ attained a value of about
0.017. They attributed the fluctuations to the onset of non-Darcian flow. After the
onset of temperature fluctuations the experimentally determined Nusselt number
began to level off and deviate from that predicted by the similarity solution
based on Darcy’s law. The decrease in Nux was found to be substantially larger



140 5. External Natural Convection

Figure 5.8. Combined effects of inertia and thermal dispersion on dimensionless tem-
perature profiles for natural convection adjacent to a vertical heated surface (Plumb,
1983).

than that predicted by Plumb and Huenefeld’s (1981) theory. Cheng (1981a)
originally attributed the decrease in Nux to the effect of thermal dispersion, but in
Cheng (1985a) he announced that this attribution was erroneous. The discrepancy
remains ill understood.

Figure 5.9. Combined effects of inertia and thermal dispersion on the local Nusselt
number for natural convection adjacent to a vertical heated surface (Plumb, 1983).
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Figure 5.10. Dimensionless temperature profiles for natural convection about an
isothermal vertical heated surface (Evans and Plumb, 1978).

Huenefeld and Plumb (1981) performed experiments on convection about a
vertical surface with uniform heat flux, the medium being glass beads saturated with
water. They observed that temperature fluctuations occurred when the non-Darcy
Grashof number Gr∗ attained a value of about 0.03. Their results are illustrated in

Figure 5.11. Local Nusselt number versus local Rayleigh number for natural convection
about an isothermal vertical heated surface (Evans and Plumb, 1978).
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Figure 5.12. Local Nusselt number versus local Rayleigh number for a vertical surface
with uniform heat flux (Huenefeld and Plumb, 1981).

Fig. 5.12. The experimental data for the larger beads (diameter 5 mm) are above the
predicted values from the Darcy theory, while those of the smaller beads (diameter
1.5 mm) are below the predicted values.

Kaviany and Mittal (1987) performed experiments with high permeability
polyurethane foams saturated with air. Except when the permeability was rel-
atively low, they found good agreement between their results and calculations
made using a Brinkman-Forchheimer formulation. In their experiments inertial
effects were not significant because the Rayleigh numbers were not very high.

Imadojemi and Johnson (1991) reported results of experiments with water-
saturated glass beads or irregular shaped gravel. They found that they were unable
to obtain an effective correlation of the form Nu = A Ran . Rather, they found
that A and n varied with the medium and with the heat flux. The mass transfer
coefficients found experiementally by Rahman et al. (2000) were found to agree
closely with those predicted using a Brinkman model. Rahman and Badr (2002)
repeated this experimental work for the case of a vertical wavy surface.

5.1.9. Further Extensions of the Theory

5.1.9.1. Particular Analytical Solutions

The homotopy analysis method has been used by Liao and Pop (2004) to obtain
explicit analytical solutions of similarity boundary-layer equations. The case of a
vertical plate with wall temperature (relative to ambient) varying as x−1/3 (i.e., the
case m = −1/3) yields a hyperbolic tangent solution that was shown by Magyari
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et al. (2003c) to belong to a one-parameter family of multiple solutions that can
be expressed in terms of Airy functions. Magyari and Keller (2004b) obtained
exact analytical solutions for the cases m = 1 and m = −1/3 for the backward
boundary layer that arises over a cooled (but upward projecting) vertical plate.
Some existence and uniqueness results pertaining to the classic boundary equa-
tions were reported by Belhachmi et al. (2000, 2001). Belhachmi et al. (2003)
suggested two complementary numerical methods to compute similarity solu-
tions. Magyari and Keller (2000) obtained some special exact analytical solutions
for the extended problem where there is variable lateral mass flux. Further spe-
cial analytical solutions, for unsteady convection for the cases of exponential and
power-law time-dependence of the surface temperature, were obtained by Magyari
et al. (2004).

5.1.9.2. Non-Newtonian Fluids

Non-Newtonian fluid flow has been treated by H. T. Chen and Chen (1988a),
Haq and Mulligan (1990b), Pascal (1990), Shenoy (1992, 1993a), Hossain and
Nakayama (1994), Beithou et al. (2001), El-Hakiem and El-Amin (2001b), El-
Amin (2003a), El-Amin et al. (2003), Kim (2001a,b), and Hassanien et al. (2004,
2005). Of these papers, those by Kim (2001a) and El-Amin (2003a) included the
effect of a magnetic field.

5.1.9.3. Local Thermal Nonequilibrium

The classic Cheng-Minkowycz theory was extended to a two-temperature model
by Rees and Pop (2000c), using a model introduced by Rees and Pop (1999). The
effect of local thermal nonequilibrium (LTNE) was found to modify substantially
the behavior of the flow relative to the leading edge, where the boundary layer
is composed of two distinct asymptotic regions. At increasing distances from
the leading edge the difference between the temperatures of the solid and fluid
phases decreases to zero, i.e., thermal equilibrium is attained. Mohamad (2001)
independently treated the same problem. In commenting on this paper Rees and Pop
(2002) emphasized the importance of undertaking a detailed asymptotic analysis of
the leading edge region in order to obtain boundary conditions for the solid-phase
temperature field that are capable of describing accurately its behaviour outside
the computational domain.

Rees (2003) solved numerically the full equations of motion, and thus investi-
gated in detail how the elliptical terms in the governing equations are manifested.
In general it is found that at any point in the flow the temperature of the solid phase
is higher than that of the fluid phase, and thus the thermal field of the solid phase is
of greater extent than that of the fluid phase. The extension to the Brinkman model
was made by Haddad et al. (2004), while Haddad et al. (2005) reconsidered flow
with the Darcy model. Rees et al. (2003a) considered forced convection past a
heated horizontal circular cylinder. Rees and Pop (2005) reviewed work on LTNE
in porous media convection.



144 5. External Natural Convection

5.1.9.4. Volumetric Heating due to Viscous Dissipation, Radiation or Otherwise

Volumetric heating due to the effect of viscous dissipation was analyzed by Magyari
and Keller (2003a–c). In their first two papers they observed that the opposing effect
of viscous dissipation allows for a parallel boundary-layer flow along a cold vertical
plate. In their third paper they considered a quasiparallel flow involving a constant
transverse velocity directed perpendicularly toward the wall. They observed that
even in the case where the wall temperature equals the ambient temperature ther-
mal convection is induced by the heat released by the viscous dissipation. They
examined in detail the resulting self-sustaining wall jets. The development of the
asymptotic viscous profile that results was studied by Rees, Magyari, and Keller
(2003b). The vortex instability of the asymptotic dissipation profile was analyzed
by Rees et al. (2005a). The case of an exponential wall temperature was studied
by Magyari and Rees (2005). The general effect of viscous dissipation, which
reduces heat transfer, was investigated by Murthy and Singh (1997a), who also
took thermal dispersion effects into account. The effect of variable permeability
was added by Hassanien et al. (2005). A survey of work on the effect of viscous
dissipation was made by Magyari et al. (2005b).

Volumetric heating due to the absorption of radiation was studied by Chamkha
(1997a), Takhar et al. (1998), Mohammadien et al. (1998), Mohammadien and El-
Amin (2000), Raptis (1998), Raptis and Perdikis (2004), Hossain and Pop (2001),
El-Hakiem (2001a), El-Hakiem and El-Amin (2001a), Chamkha et al. (2001),
Mansour and El-Shaer (2001), Mansour and Gorla (2000a,c), and Israel-Cookey
et al. (2003). Some more general aspects of volumetric heating were considered by
Chamkha (1997d), Bakier et al. (1997), Postelnicu and Pop (1999), and Postelnicu
et al. (2000).

5.1.9.5. Anisotropy and Heterogeneity

Anisotropic permeability effects have been analyzed by Ene (1991) and Rees
and Storesletten (1995). The latter found that the boundary-layer thickness was
altered and a spanwise fluid drift induced by the anisotropy. As Storesletten and
Rees (1998) demonstrated, anisotropic thermal diffusivity produces no such drift.
An analytical and numerical study of the effect of anisotropic permeability was
reported by Vasseur and Degan (1998).

The effect of variable permeability, enhanced within a region of constant thick-
ness, was treated analytically and numerically by Rees and Pop (2000a). They
found that near the leading edge the flow is enhanced and the rate of heat transfer
is much higher than in the uniform permeability case. Further downstream the
region of varying permeability is well within the boundary layer, and in this case
the flow and heat transfer is only slightly different from that in the uniform case.
Convection over a wall covered with a porous substrate was analyzed by Chen and
Chen (1996). Convection from an isothermal plate in a porous medium layered in a
parallel fashion, with discrete changes in either the permeability or the diffusivity
of the medium, was studied by Rees (1999). He supplemented his numerical work
with an asymptotic analysis of the flow in the far-downstream limit.
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5.1.9.6. Wavy Surface

The case of a wavy surface has been analyzed by Rees and Pop (1994a, 1995a,b,
1997). In the last paper they considered the full governing equations and derived the
boundary layer equations in a systematic way. They found that, for a wide range of
values of the distance from the leading edge, the boundary layer equations for the
three-dimensional flow field are satisfied by a two-dimensional similarity solution.

5.1.9.7. Time-dependent Gravity or Time-dependent Heating

The effect of g-jitter was analyzed by Rees and Pop (2000b, 2003) for the cases
of small and large amplitudes. Their numerical and asymptotic solutions show
that the g-jitter effect is eventually confined to a thin layer embedded within the
main boundary layer, but it becomes weak at increasing distances from the leading
edge. The case of time-periodic surface temperature oscillating about a constant
mean was studied by Jaiswal and Soundalgekar (2001). The more general case
of oscillation about a mean that varies as the nth power of the distance from
the leading edge was analyzed by Hossain et al. (2000). They considered low-
and high-frequency limits separately and compared these with a full numerical
solution, for n ≤ 1. They noted that when n = 1 the flow is self-similar for any
prescribed frequency of modulation. Temperature oscillations also were studied
using a Forchheimer model by El-Amin (2004b). A vertical wall with suction
varying in the horizontal direction and with a pulsating wall temperature was
studied by Chaudhary and Sharma (2003). A nonequilibrium model was used by
Saeid and Mohamad (2005a) in their numerical study of the effect of a sinusoidal
plate temperature oscillation with respect to time about a nonzero mean.

5.1.9.8. Newtonian Thermal Boundary Condition

The case of surface heating with a boundary condition of the third kind was studied
by Lesnic et al. (1999) and Pop et al. (2000). They obtained fully numerical,
asymptotic, and matching solutions.

5.1.9.9. Other Aspects

A comprehensive listing of similarity solutions, including some for special tran-
sient situations, was presented by Johnson and Cheng (1978). The cases of arbi-
trary wall temperature and arbitrary heat flux have been treated using a Merk series
technique by Gorla and Zinalabedini (1987) and Gorla and Tornabene (1988).

Merkin and Needham (1987) have discussed the situation where the wall is of
finite height and the boundary layers on each side of the wall merge to form a
buoyant wake. Singh et al. (1988) have studied the problem when the prescribed
wall temperature is oscillating with time about a nonzero mean. Zaturska and
Banks (1987) have shown that the boundary layer flow is stable spatially.

The asymptotic linear stability analysis of Lewis et al. (1995) complements the
direct numerical simulation of Rees (1993) in showing that the flow is stable at
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locations sufficiently close to the leading edge. In the asymptotic regime also the
wave disturbances decay, but the rate of decay decreases as the distance down-
stream of the leading edge increases.

The effect of temperature-dependent viscosity has been examined theoretically
by Jang and Leu (1992), for a steady flow, and by Mehta and Sood (1992b) and
Rao and Pop (1994), for a transient flow.

For the case of prescribed heat flux, Kou and Huang (1996a,b) have shown
how three cases are related by a certain transformation, and Wright et al. (1996)
have treated another special case. Ramanaiah and Malarvizhi (1994) have shown
how three situations are related. Nakayama and Hossain (1994) have shown that
both local similarity and integral methods perform excellently for a nonisothermal
plate. A perturbation approach to the nonuniform heat flux situation was used by
Seetharamu and Dutta (1990) and Dutta and Seetharamu (1993). Bradean et al.
(1996, 1997a) have given an analytical and numerical treatment for a periodically
heated and cooled vertical or horizontal plate. For a vertical plate, a row of counter-
rotating cells forms close to the surface, but when the Rayleigh number increases
above about 40 the cellular flow separates from the plate. For a horizontal plate
the separation does not occur.

Merkin and Needham (1987) have discussed the situation where the wall is of
finite height and the boundary layers on each side of the wall merge to form a
buoyant wake. Singh, Misra, and Narayan (1988) have studied the problem when
the prescribed wall temperature is oscillating with time about a nonzero mean.

Seetharamu and Dutta (1990) used a perturbation approach to treat the case
of arbitrary wall temperature. Herwig and Koch (1990) examined the asymp-
totic situation when the porosity tends to unity. Ramaniah and Malarvizhi (1991)
presented some exact solutions for certain cases. Chandrasekhara et al. (1992)
and Chandrasekhara and Nagaraju (1993) have treated a medium with variable
porosity, with surface mass transfer or radiation. Pop and Herwig (1992) pre-
sented an asymptotic approach to the case where fluid properties vary, while
Na and Pop (1996) presented a new accurate numerical solution of the Cheng-
Minkowycz equation equivalent to (5.15)–(5.18). Rees (1997b) discussed the case
of parallel layering, with respect to either permeability or thermal diffusivity,
of the medium. The numerical solution of the nonsimilar boundary layer equa-
tions was supplemented by an asymptotic analysis of the flow in the far down-
stream limit. Rees (1997b) examined the three-dimensional boundary layer on a
vertical plate where the surface temperature varies sinusoidally in the horizon-
tal direction. The effect of an exothermic reaction was studied by Minto et al.
(1998).

The study of the influence of higher-order effects on convection in a wedge
bounded by a uniformly heated plane and one cold or insulated by Storesletten
and Rees (1998) revealed that generally instability occurs too close to the lead-
ing edge for the basic flow to be represented adequately either by the leading
order boundary layer theory used in previous papers or even by the most accu-
rate higher-order theory obtained using matched expansions. This is a chastening
result.
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The effect of lateral mass flux was studied analytically and numerically by
Dessaux (1998). Unsteady convection was studied by Al-Nimr and Massoud
(1998), and also with the effect of a magnetic field by Helmy (1998). Convec-
tion along a vertical porous surface consisting of a bank of parallel plates with
constant gaps was studied experimentally by Takatsu et al. (1997).

5.2. Horizontal Plate

For high Rayleigh number natural convection flow near the edge of an upward-
facing heated plate a similarity solution was obtained by Cheng and Chang (1976),
for the case of a power law wall temperature distribution given by Eq. (5.8). This
leads to the formulas

�

x
= �T

Ra1/3
x

, (5.86)

Nux

Ra1/3
x

= −�′(0), (5.87)

Nu

Ra
1/3 = 3(1 + λ)4/3

(1 + 4λ)
[−�′(0)], (5.88)

for the thermal boundary layer thickness �, the local Nusselt number Nux , and the
overall Nusselt number Nu. Table 5.2 lists values of �T and [–�′(0)] for selected
values of λ. It should be noted that in practice the assumption of quiescent flow
outside the boundary layer on an upward-facing heated plate is unlikely to be
justified, and such a boundary layer is better modeled as a mixed convection
problem.

One would expect a natural convection boundary layer to form on a cooled plate
facing upward, or on a warm plate facing downward. This situation was analyzed
by Kimura et al. (1985). Relative to a frame with x axis horizontal and y axis
vertically upward, we suppose that the plate is at –l ≤ x ≤ l, y = 0 and is at
constant temperature Tw, (Tw < T∞). The plate length is 2l.

Table 5.2. Values of �T and–�′(0) for various
values of λ for an upward-facing heated
horizontal plate (Cheng and Chang, 1976)

λ �T −�′(0)

0 5.5 0.420
1/2 5.0 0.816
1 4.5 1.099

3/2 4.0 1.351
2 3.7 1.571
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The mass and energy equations (5.1) and (5.4) still stand, but now the Darcy
equations are

u = − K

�

∂ P ′

∂x
, (5.89)

v = − K

�

[
∂ P ′

∂y
+ 
g�(T∞ − T )

]
. (5.90)

Eliminating P ′ we get

∂u

∂y
= g�K

	

∂

∂x
(T∞ − T ). (5.91)

The boundary conditions are

y = 0 : v = 0 and T = Tw,

y → ∞ : u = 0, T = T∞ and
∂T

∂y
= 0. (5.92)

The appropriate Rayleigh number is based on the plate half-length l,

Ra = g�Kl(T∞ − Tw)

	�m
. (5.93)

Scaling analysis indicates that the boundary layer thickness must be of order

� ∼ l Ra−1/3 (5.94)

The Nusselt number defined by

Nu = q ′

km(T∞ − Tw)
(5.95)

in which q’[W/m] is the heat transfer rate into the whole plate, is of order

Nu ∼ Ra1/3. (5.96)

This is in contrast to the Nu ∼ Ra1/2 relationships for a vertical plate. Kimura
et al. (1985) solved the boundary layer equations approximately using an integral
method. Their numerical results shown in Fig. 5.13 confirm the theoretical trend
(5.92).

Ramaniah and Malarvizhi (1991) noted a case in which an exact solution could
be obtained. Wang et al. (2003c) reported an explicit, totally analytic and uniformly
valid solution of the Cheng-Chang equation that agreed well with numerical results.
Modifications of the Cheng and Chang (1976) analysis include those made by
Chen and Chen (1987) for a non-Newtonian power-law fluid, by Lin and Gebhart
(1986) for a fluid whose density has a maximum as the temperature is varied,
by Minkowycz et al. (1985b) for the effect of surface mass flux and by Vedha-
Nayagam et al. (1987) for the effects of surface mass transfer and variation of
porosity. The combination of power-law fluid and thermal radiation was considered
by Mohammadein and El-Amin (2001).



5.2. Horizontal Plate 149

Figure 5.13. Nusselt number versus Rayleigh number for convection on a cooled
horizontal plate of finite length facing upward (Kimura et al., 1985).

Ingham et al. (1985a) have studied the transient problem of a suddenly cooled
plate. Harris et al. (2000) studied analytically and numerically the transient con-
vection induced by a sudden change in surface heat flux.

Merkin and Zhang (1990a) showed that for the case of wall temperature propor-
tional to xm a solution of the similarity equations is possible only for m > −2/5.
For a non-Newtonian power law fluid, Mehta and Rao (1994) treated the case
of a power law wall temperature and Chamkha (1997c) studied the case of uni-
form wall heat flux, while the effect of surface mass flux was added by Gorla and
Kumari (2003). Pop and Gorla (1991) studied a heated horizontal surface, the fluid
being a gas whose thermal conductivity and dynamic viscosity are proportional
to temperature. They obtained a similarity solution for the case of constant wall
temperature. The effect of temperature-dependent viscosity also was studied by
Kumari (2001a,b), and by Postelnicu et al. (2001) for the case of internal heating
already treated by Postelnicu and Pop (1999). Similarity solutions for convection
adjacent to a horizontal surface with an axisymmetric temperature distribution were
given by Cheng and Chau (1977), and El-Amin et al. (2004) added the effects of a
magnetic field and lateral mass flux. Lesnic et al. (2000, 2004) studied analytically
and numerically the case of a thermal boundary condition of mixed type (Newto-
nian heat transfer). The case of wall temperature varying as a quadratic function of
position was studied, as a steady or unsteady problem, by Lesnic and Pop (1998a).

The singularity at the edge of a downward-facing heated plate was analyzed
by Higuera and Weidman (1995) and the appropriate boundary condition de-
duced. They considered both constant temperature and constant flux boundary
conditions and they treated a circular disk as well as an infinite strip. They also
gave solutions for a slightly inclined plate maintained at constant temperature.
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Convection below a downward facing heated horizontal surface also was treated
numerically by Angirasa and Peterson (1998b). Convection from a heated upward-
facing finite horizontal surface was studied numerically by Angirasa and Peterson
(1998a). Two-dimensional flows were found for 40 ≤Ra ≤ 600, and the correlation
Nu = 3.092 Ra0.272 was obtained. At higher Rayleigh numbers the flow becomes
three-dimensional with multiple plume formation and growth.

Rees and Bassom (1994) found that waves grow beyond a nondimensional
distance 28.90 from the leading edge, whereas vortices grow only beyond 33.47.
This stability analysis was based on a parallel flow approximation. Because of the
inadequacy of this approximation, Rees and Bassom (1993) performed numerical
simulations of the full time-dependent nonlinear equations of motion. They found
that small-amplitude disturbances placed in the steady boundary layer propagated
upstream much faster than they were advected downstream. With the local growth
rate depending on the distance downstream, there is a smooth spatial transition
to convection. For the problem where the temperature of the horizontal surface is
instantaneously raised above the ambient, they found a particularly violent fluid
motion near the leading edge. A strong thermal plume is generated, which is
eventually advected downstream. The flow does not settle down to a steady or
time-periodic state. The evolving flow field exhibits a wide range of dynamic
behavior including cell merging, the ejection of hot fluid from the boundary layer,
and short periods of relatively intense fluid motion accompanied by boundary-layer
thinning and short wavelength waves.

Rees (1996a) showed that when the effects of inertia are sufficiently large, the
leading order boundary layer theory is modified, and he solved numerically the re-
sulting nonsimilar boundary layer equations. He showed that near the leading edge
inertia effects then dominate, but Darcy flow is reestablished further downstream.
The effects of inertia in the case of a power-law distribution of temperature were
analyzed by Hossain and Rees (1997).

The Brinkman model was employed by Rees and Vafai (1999). They showed
that for a constant temperature surface, both the Darcy and Rayleigh numbers can
be scaled out of the boundary layer equations leaving no parameters to vary. They
studied these equations using both numeric and asymptotic methods. They found
that near the leading edge the boundary layer has a double-layer structure: a near-
wall layer where the temperature adjusts from the wall temperature to the ambient
and where Brinkman effects dominate and an outer layer of uniform thickness that
is a momentum adjustment layer. Further downstream, these layers merge, but the
boundary layer eventually regains a two-layer structure; in this case a growing
outer layer exists, which is identical to the Darcy flow case for the leading order
term and an inner layer of constant thickness resides near the surface where the
Brinkman term is important.

Convection induced by a horizontal wavy surface was analyzed by Rees and
Pop (1994b). They focused their attention on the case where the waves have an
O(Ra−1/3) amplitude, where Ra is based on the wavelength and is assumed large.
They found that a thin near-wall boundary layer develops within the basic boundary
layer as the downstream distance is increased and they gave an asymptotic analysis
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that determines the structure of this layer. They found that when the wave amplitude
is greater than approximately 0.95 Ra−1/3, localized regions of reversed flow occur
at the heated surface.

The case of a sinusoidally (lengthwise) heated and cooled horizontal surface
was studied by Bradean et al. (1995a), when at large distances from the plate there
is either constant temperature or zero heat flux. Bradean et al. (1996, 1997a) ex-
amined cases of unsteady convection from a horizontal (or vertical) surface that is
suddenly heated and cooled sinusoidally along its length. They obtained an ana-
lytical solution valid for small times and any value of Ra, and a numerical solution
matching this to the steady-state solution (when this exists). The flow pattern is
that of a row of counterrotating cells situated close to the surface. When the surface
is vertical and for Ra > 40 (approximately), two recirculating regions develop at
small times at the point of collision of two boundary layers that flow along the
surface. However, for 40 < Ra < 150 the steady-state solution is unstable and at
very large time the solution is periodic in time. When the surface is horizontal,
the collision of convective boundary layers occurs without separation. As time
increases, the height of the cellular flow pattern increases and then decreases to its
steady-state value. The heat penetrates infinitely into the porous medium and the
steady state is approached later in time as the distance from the surface increases.

Numerical and similarity solutions for the boundary layer near a horizontal sur-
face with nonuniform temperature and mass injection or withdrawal were reported
by Chaudhary et al. (1996). In their study the temperature and mass flux varied
as x� and x (�−2)/3, respectively, where � is a constant. The conjugate problem of
boundary layer natural convection and conduction inside a horizontal plate of finite
thickness was solved numerically by Lesnic et al. (1995). The conjugate problem
for convection above a cooled or heated finite plate was studied numerically by
Vaszi et al. (2001a, 2002a).

5.3. Inclined Plate

Again we take the x axis along the plate and the y axis normal to the plate. In the
boundary layer regime ∂T/∂x � ∂T/∂y, and the equation obtained by eliminating
the pressure between the two components of the Darcy equation, reduces to

∂2ψ
∂y2

= gx �K

	

∂T

∂y
, (5.97)

where gx is the component of g parallel to the plate. This is just Eq. (5.6) with g
replaced by gx . With this modification, the analysis of Section 5.1 applies to the
inclined plate problem unless the plate is almost horizontal, in which case gx is
small compared with the normal component gy .

The case of small inclination to the horizontal was analyzed by Ingham et al.
(1985b) and Rees and Riley (1985). Higher-order boundary layer effects, for the
case of uniform wall heat flux, were incorporated by Ingham and Pop (1988).
Jang and Chang (1988d) performed numerical calculations for the case of a power
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Figure 5.14. Local Nusselt number versus local Rayleigh number for a downward-
facing heated inclined plate (Lee, 1983; Cheng, 1985a, with permission from Hemi-
sphere Publishing Corporation).

function distribution of wall temperature. They found that, as the inclination to the
horizontal increases, both the velocity and temperature boundary layer thicknesses
decrease, and the rate of surface heat transfer increases. Jang and Chang (1989)
have analyzed the case of double diffusion and density maximum.

In their experiments on natural convection from an upward-facing inclined
isothermal plate to surrounding water-filled glass beads, Cheng and Ali (1981)
found that large amplitude temperature fluctuations exist in the flow field at high
Rayleigh numbers, presumably because of the onset of vortex instability. Cheng
(1985a) also reported on experiments by himself, R. M. Fand, and H. M. Lee
for a downward-facing isothermal plate with inclinations of 29◦ and 45◦. Their
results are presented in Fig. 5.14, which shows a leveling off of the local Nusselt
number Nux from the Ra1/2

x dependence at high values of the local Rayleigh
number Rax . It is not certain whether this deviation is due to the boundary fric-
tion effect, the inertial effect, or inaccuracy in the experimental determination
of Nux .

The effect of lateral surface mass flux, with a power law variation of lateral
surface velocity and wall temperature, was studied by Dwiek et al. (1994). The
use of a novel inclination parameter enabled Pop and Na (1997) to describe all
cases of horizontal, inclined, and vertical plates by a single set of transformed
boundary layer equations. Hossain and Pop (1997) studied the effect of radiation.
Shu and Pop (1997) obtained a numerical solution for a wall plume arising from
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a line source embedded in a tilted adiabatic plane. MHD convection with thermal
stratification was studied by Chamkha (1997e) and Takhar et al. (2003). The effects
of variable porosity and solar radiation were discussed by Chamkha et al. (2002).
The effects of lateral mass flux and variable permeability were analyzed by Rabadi
and Hamdan (2000). Conjugate convection from a slightly inclined plate was
studied analytically and numerically by Vaszi et al. (2001b). Lesnic et al. (2004)
studied analytically and numerically the case of a thermal boundary condition of
mixed type (Newtonian heat transfer) on a nearly horizontal surface.

The linear stability of a thermal boundary layer with suction in an anisotropic
porous medium was discussed by Rees and Storesletten (2002). The effects of
inertia and nonparallel flow were incorporated in the analysis of Zhao and Chen
(2002). These effects stabilize the flow.

5.4. Vortex Instability

For an inclined or a horizontal upward-facing heated surface embedded in a porous
medium, instability leading to the formation of vortices (with axes aligned with
the flow direction) may occur downstream as the result of the top-heavy situation.
Hsu et al. (1978) and Hsu and Cheng (1979) have applied linear stability analysis
for the case of a power law variation of wall temperature, on the assumption
that the basic state is the steady two-dimensional boundary layer flow discussed
above. They showed that the length scale of vortex disturbances is less than that
for the undisturbed thermal boundary layer, and as a result certain terms in the
three-dimensional disturbance equations are negligible.

The simplified equations for the perturbation amplitudes were solved on the
basis of local similarity assumptions (the disturbances being allowed to have a
weak dependence in the streamwise direction). It was found that the critical value
for the onset of vortex instability in natural convection about an inclined isothermal
surface with inclination �0 to the vertical is given by

Rax,a tan2 �0 = 120.7, (5.98)

where

Rax,a = g�K (Tw − T∞)(cos �0)x

	�m
. (5.99)

It follows that the larger the inclination angle with respect to the vertical, the more
susceptible the flow to vortex instability, and in the limit of zero inclination angle
(vertical heated surface) the flow is stable to this type of disturbance.

For the case of a horizontal heated plate, a similar analysis shows that the
critical value is Rax = 33.4, where Rax is defined as in Eq. (5.14). More precise
calculations, including pressure and salinity effects, and including the effect of
the normal component of the buoyancy force in the main flow, were made by
Jang and Chang (1987, 1988a). Chang and Jang (1989a,b) have examined the non-
Darcy effects. The effect of inertia is to destabilize the flow to the vortex mode
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of disturbance, while the other non-Darcy terms lead to a stabilizing effect. The
effect of inertia was also considered by Lee et al. (2000) in their study involving
an inclined plate. Jang and Chen (1993a,b, 1994) studied the effect of dispersion
(which stabilizes the vortex mode) and the channeling effect of variable porosity
(which destabilizes it). The effect of variable viscosity was studied by Jang and Leu
(1993) and Leu and Jang (1993). Nield (1994c) pointed out that their implication
that this property variation produced a destabilizing effect was invalid. Jang and Lie
(1992) and Lie and Jang (1993) treated a mixed convection flow. For a horizontal
plate, Hassanien et al. (2004b,c) considered the effect of variable permeability for
the case of variable wall temperature, and the effect of inertia in the case of surface
mass flux.

The above studies have been made on the assumption of parallel flow. Bassom
and Rees (1995) pointed out the inadequacy of this approach and reexamined the
problem using asymptotic techniques that use the distance downstream as a large
parameter. The parallel-flow theories predict that at each downstream location there
are two possible wavenumbers for neutral stability, and one of these is crucially
dependent on nonparallelism within the flow. The nonparallel situation and inertial
effects have been treated analytically and numerically by Zhao and Chen (2002,
2003) for the case of horizontal and inclined pates. They found that the nonparallel
flow model predicts a more stable flow than the parallel flow model. They also
noted that as the inclination relative to the horizontal increases, or the inertia effect
as measured by a Forchheimer number increases, the surface heat transfer rate
decreases and the flow becomes more stable.

Comprehensive and critical reviews of thermal boundary layer instabilities were
made by Rees (1998, 2002c). In the first study he pointed out an inconsistency in the
analysis of Jang and Chang (1988a, 1989) and Jang and Lie (1992) that negates their
claim that their analysis is valid for a wide range of inclinations; rather, it applies
for a near-horizontal surface only. Rees (1998) also noted that the analysis of Jang
and Chen (1993a,b) involves a nongeneric formula for permeability variation. The
basic difficulty is that a contradiction is entertained by asserting simultaneously
that x, the nondimensional streamwise distance, is asymptotically large (so that
the boundary layer approximation is valid) and that finite values of x are to be
computed as a result of approximating the stability equations, and in general this
critical value of x is far too small for the boundary layer approximation to be valid.

One way out of the impass is to carry out fully elliptic simulations. This was
the avenue taken by Rees and Bassom (1993) in their description of wave in-
stabilities in a horizontal layer. The second way out is to consider heated sur-
faces that are very close to the vertical but which remain upward facing. In such
cases the critical distance recedes to large distances from the leading edge, and
therefore instability arises naturally in a regime where the boundary layer ap-
proximation is valid. This was the avenue taken by Rees (2001, 2002a) in his
study of the linear and nonlinear evolution of vortex instabilities in near-vertical
surfaces. Rees found that even under these favorable circumstances the concept
of neutral stability is difficult to define. The reason is that the evolution of vor-
tices is governed by a parabolic partial differential equation system rather than
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an ordinary differential equation system. As a result the point at which insta-
bility is “neutral” depends on whether instability is defined as the value of x at
which the thermal energy has a local minimum a x increase, or where the sur-
face rate of heat transfer or the maximum disturbance temperature have minima.
Whenever vortices grow, they attain a maximum strength and then decay again,
and there is an optimum disturbance amplitude that yields the largest possible
response downstream. When applied to developing flows such as boundary layers
these three criteria yield different results. In addition of the wavelength of the
vortex, the location of the initiating disturbance and its shape also alter the critical
value of x.

The linear and nonlinear evolution of vortex instabilities in near-vertical surfaces
was studied by Rees (2001, 2002a). He found that the strength of the resulting
convection depends not only on the wavelength of the vortex disturbance but also
on the amplitude of the disturbance and its point of introduction into the boundary
layer. Whenever vortices grow, they attain a maximum strength and then decay
again. There is an optimum disturbance amplitude that yields the largest possible
response downstream. The later study by Rees (2004b) involved the destabilizing
of an evolving vortex using subharmonic disturbances. He found that the onset
of the destabilization is fairly sudden, but its location depends on the size of the
disturbance. Rees also looked at the evolution of isolated thermal vortices. He
found then that developing vortices induce a succession of vortices outboard of
the current local pattern until the whole spanwise domain is filled with a distinctive
wedge shaped pattern.

5.5. Horizontal Cylinder

5.5.1. Flow at High Rayleigh Number

We now consider steady natural convection about an isothermal cylinder, at tem-
perature Tw and with radius r0, embedded in a porous medium at temperature
T∞. We choose a curvilinear orthogonal system of coordinates, with x measured
along the cylinder from the lower stagnation point (in a plane of cross section), y
measured radially (normal to the cylinder), and � the angle that the y axis makes
with the downward vertical. This system is presented in Fig. 5.15.

If curvature effects and the normal component of the gravitational force are
neglected, the governing boundary layer equations are

∂2ψ
∂y2

= g�K

	
sin �

∂

∂y
(T − T∞) (5.100)

�m
∂2T

∂y2
= ∂ψ

∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y
. (5.101)

It is easily checked that the solution of Eqs. (5.100) and (5.101), subject to the
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Figure 5.15. Local Nusselt number variation for high Rayleigh number natural convec-
tion over a horizontal cylinder and a sphere.

boundary conditions (5.9) and (5.10) with λ = 0, are given by

ψ =
[

g�K

	
(Tw − T∞)�mr0

]1/2

(1 − cos �)1/2 f (�), (5.102)

T − T∞ = (Tw − T∞)�(�), (5.103)

� =
[

g�K (Tw − T∞)

	�mr0

]1/2 y sin �

(1 − cos �)1/2
, (5.104)

where f and � satisfy Eqs. (5.15)–(5.18) with λ = 0. Accordingly, the local surface
heat flux is

q ′′
w = −km

(
∂T

∂y

)
=0

= 0.444km(Tw − T∞)3/2

(
g�K

	�mr0

)1/2 sin �

(1 − cos �)1/2
,

(5.105)

which can be expressed in dimensionless form as

Nu�

Ra1/2
D

= 0.628
sin �

(1 − cos �)1/2
, (5.106)
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where

Nu� = q
′′
w D

km(Tw − T∞)
(5.107)

and

RaD = g�K (Tw − T∞)D

	�m
, (5.108)

with D denoting the diameter of the cylinder. This result is plotted in Fig. 5.15.
The average surface heat flux is

q̄ ′′ = 1

π

∫ π

0
q ′′

w(�)d� = 0.565 km(Tw − T∞)3/2

(
g�K

	�m D

)1/2

, (5.109)

which in dimensionless form is

Nu

Ra1/2
D

= 0.565, (5.110)

where

Nu = q
′′
D

k
(Tw − T∞). (5.111)

The present problem is a special case of convection about a general two-
dimensional heated body analyzed by Merkin (1978). The generalization to a
non-Newtonian power law fluid was made by Chen and Chen (1988b) and for the
Forchheimer model by Kumari and Jayanthi (2004).

The conjugate steady convection from a horizontal circular cylinder with a
heated core was investigated by Kimura and Pop (1992b). The method of matched
asymptotic expansions was applied by Pop et al. (1993a) to the transient problem
with uniform temperature. They found that vortices then form at both sides of
the cylinder. An extension of this work to a cylinder of arbitrary cross section
was reported by Tyvand (1995). For the circular cylinder, a numerical treatment
was reported by Bradean et al. (1997b), and further work on transient convection
was discussed by Bradean et al. (1998a). They found that as convection becomes
more dominant, a single hot cell forms vertically above the cylinder and then
rapidly moves away. Free convection about a cylinder of elliptic cross section was
treated by Pop et al. (1992b). Transient convection about a cylinder with constant
surface flux heating was dealt with by Pop et al. (1996). A problem involving
unsteady convection driven by an nth-order irreversible reaction was examined by
Nguyen et al. (1996). Natural and forced convection around line sources of heat and
heated cylinders was analyzed by Kurdyumov and Liñán (2001). Convection near
the stagnation point of a two-dimensional cylinder, with the surface temperature
oscillating about a mean above ambient, was analyzed by Merkin and Pop (2000).

Empirical heat transfer correlation equations, with viscous dissipation taken into
account, were reported by Fand et al. (1994).
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5.5.2. Flow at Low and Intermediate Rayleigh Number

The experimental results obtained by Fand et al. (1986) on heat transfer in a porous
medium consisting of randomly packed glass spheres saturated by either water or
silicone oil suggested the division of the Rayleigh number range into a low Ra
(and hence low Reynolds number Re) Darcy range and a high Ra Forchheimer
range. Fand et al. (1986) proposed the following correlation formulas:

For (0.001 < Remax = 3),

Nu Pr 0.0877 = 0.618Ra0.698 + 8.54 × 106Ge sech Ra, (5.112)

while for (3 < Remax = 100),

Nu Pr 0.0877 = 0.766Ra0.374

(
C1 D

C2

)0.173

. (5.113)

In these correlations,

Remax = D	max

V
, Nu = h D

km
, Pr = �cP

km
, Ge = g�D

cP
,

Ra = g�K D (Tw − T∞)

	�m
(5.114)

where D is the diameter of the cylinder, 	max is the maximum velocity, h is the
heat transfer coefficient, and C1 and C2 are the dimensional constants appearing
in Forchheimer’s equation expressed in the form

−d P

dx
= C1�u + C2
u2 (5.115)

The correlation formulas (5.112) and (5.113) may be compared with the Darcy
model boundary layer formula

Nu = 0.565Ra1/2 (5.116)

and the Forchheimer model boundary layer formula found by Ingham and quoted
by Ingham and Pop (1987c),

Nu ∝ Ra1/4

(
	D�

�m K

)1/2

. (5.117)

The effect of d/D, the ratio of particle diameter to cylinder diameter, was
investigated experimentally by Fand and Yamamoto (1990). They noted that the
reduction in the heat transfer coefficient due to wall porosity variation increases
with d/D.

Ingham and Pop (1987c) have performed finite-difference calculations for
streamlines, isotherms, and Nusselt numbers for Ra up to 400. Their results for an
average Nusselt number Nu defined by

Nu = − 1

2π

∫ 2π

0

∂�

∂r

∣∣∣∣
r=1

d� (5.118)
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Figure 5.16. The variation of the mean Nusselt number with Rayleigh number. ——,
numerical solution; – – – –, boundary layer solution; − · − · − · −, small Rayleigh
number solution; •, �, +, experimental results using spheres of diameter 2, 3, and 4
mm, respectively (Ingham and Pop, 1987c, with permission from Cambridge University
Press).

are given in Fig. 5.16. The dimensionless temperature difference is defined as
� = (T − T∞)/(Tw − T∞).

5.6. Sphere

5.6.1. Flow at High Rayleigh Number

With the x and y axes chosen in a vertical diametral plane of the sphere, and with x
measured along the sphere from the lower stagnation point and y measured radially
outward from the surface (Fig. 5.15), the governing boundary layer equations
are

1

r

∂2ψ
∂y2

= g�K sin �

	

∂

∂y
(T − T∞), (5.119)

�m
∂2T

∂y2
= 1

r

(
∂ψ
∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y

)
. (5.120)

The streamfunction ψ is defined by

ru = ∂ψ
∂y

, rv = −∂ψ
∂x

, (5.121)

where r = r0 sin � and r0 is the radius of the sphere. Again, the boundary conditions
are given by Eqs. (5.9) and (5.10), with λ = 0. The problem admits the similar
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solution (Cheng, 1985a)

ψ = �m

[
g�K (Tw − T∞)r3

0

	�m

(
cos3 �

3
− cos � + 2

3

)]1/2

f (�), (5.122)

T − T∞
Tw − T∞

= �(�), (5.123)

� = y

r0

[
g�K (Tw − T∞)r0

	�m

]1/2 sin2 �

[(cos3 �)/3 − cos � + 2/3]1/2
, (5.124)

where f and � atisfy Eqs. (5.15)–(5.18) with λ = 0. Accordingly the local surface
heat flux is given by

q ′′
w = 0.444km(Tw − T∞)3/2

(
g�K

	�mr0

)1/2 sin2 �

[(cos3 �)/3 − cos � + 2/3]1/2

(5.125)

which in dimensionless form is

Nu�

Ra1/2
D

= 0.628
sin2 �

[(cos3 �)/3 − cos � + 2/3]1/2
. (5.126)

This result is plotted in Fig. 5.15, which shows that the local heat transfer rate
for a sphere is higher than that for a horizontal cylinder except near the upper
stagnation point. The average surface heat flux is

q̄ ′′ = 1

4πr2
0

∫ π

0
2πr2

0 q ′′
w(�) sin �d� (5.127)

= 0.888

31/2
km(Tw − T∞)3/2

(
g�K

	�mr0

)1/2

,

which in dimensionless form reduces to

Nu

Ra1/2
D

= 0.724. (5.128)

This problem is a special case of the natural convection about a general axisym-
metric heated body embedded in a porous medium, analyzed by Merkin (1979).
The extension to include the effect of normal pressure gradients on convection
in a Darcian fluid about a horizontal cylinder and a sphere has been provided by
Nilson (1981). The extension to a non-Newtonian power law theory was made by
Chen and Chen (1988b).

Conjugate steady convection from a solid sphere with a heated core of uniform
temperature was investigated by Kimura and Pop (1994). The transient problem,
where either the temperature or the heat flux of the sphere is suddenly raised and
subsequently maintained at a constant value, was treated numerically for both
small and large values of the Rayleigh number by Yan et al. (1997).

The analogous problem of convective mass transfer from a sphere was studied
experimentally by Rahman (1999). MHD convection over a permeable sphere with
internal heat generation was analyzed by Yih (2000a).
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5.6.2. Flow at Low Rayleigh Number

This topic was first studied by Yamamoto (1974). When Ra is small, we can
use a series expansion in powers of Ra. Using a spherical polar coordinate
system (r, �, �, and a Stokes streamfunction ψ), we can write the governing
equations in nondimensional form for the case of constant surface temperature
Tw,

1

sin �

∂2ψ
∂r2

+ 1

r2

∂

∂�

(
1

sin �

∂ψ
∂�

)
= Ra

(
cos �

∂�

∂r
+ r sin �

∂�

∂r

)
. (5.129)

∂ψ
∂�

∂�

∂r
− ∂ψ

∂r

∂�

∂�
= sin �

∂

∂r

(
r2 ∂�

∂r

)
+ ∂

∂�

(
sin �

∂�

∂�

)
. (5.130)

In these equations we have used the definitions

� = T − T∞
Tw − T∞

, Ra = g�K a(Tw − T∞)

	�m
, (5.131)

and r is the nondimensional radial coordinate scaled with a, the radius of the
sphere. The boundary and symmetry conditions are

r = 1 : � = 1,
∂ψ
∂�

= 0,

r → ∞ : � = 0,
∂ψ
∂�

= 0,
∂ψ
∂r

= 0,

� = 0, π :
∂�

∂�
= 0,

∂ψ
∂r

= 0,
∂

∂�

(
1

sin �

∂ψ
∂�

)
= 0.

(5.132)

The solution is obtained by writing

(ψ, �) = (ψ0, �0) + Ra(ψ1, �1) + Ra2(ψ2, �2) + . . . , (5.133)

substituting and solving in turn the problems of order 0, 1, 2, . . . in Ra. One finds
that

ψ0 = 0, �0 = 1

r
, (5.134)

ψ1 = 1

2
(r − r−1) sin2 �, �1 = 1

4
(2r−1 − 3r−2 + r−3) cos �, (5.135)

ψ2 = 1

24
(4r − 9 + 6r−1 − r2) sin2 � cos �, (5.136)

�2 = − 13

180
r−1 + 11

240
r−3 ln r + 31

224
r−3 − 13

144
r−4

+ 27

1120
r−5 +

(
5

48
r−1 − 3

8
r−2 + 11

80
r−3 ln r (5.137)

+223

672
r−3 − 1

12
r−4 + 5

224
r−5

)
cos 2�.
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Table 5.3. The overall Nusselt number for an isothermal
sphere embedded in a porous medium (Pop and Ingham, 1990)

1
2 RaD Boundary layer solution Numerical solution

1 0.5124 2.1095
10 1.6024 2.8483
20 2.2915 3.2734
40 3.2407 3.9241
70 4.2870 5.0030

100 5.1240 5.8511
150 6.2756 7.0304
200 7.2464 8.2454

Working from the second-order approximation ψ = Ra ψ1 + Ra2 ψ2, Ene and
Poliševski (1987) found that, whereas for Ra < 3 the streamline pattern was uni-
cellular, for Ra > 3 a second cell appears below the sphere. This is apparently
an artifact of their solution, resulting from the nonconvergence of the series for
Ra > 3. No second cell was found by Pop and Ingham (1990).

For convection around a sphere that is suddenly heated and subsequently main-
tained at a constant heat flux or constant temperature, asymptotic solutions were
obtained by Sano and Okihara (1994), Sano (1996), and Ganapathy (1997).

5.6.3. Flow at Intermediate Rayleigh Number

In addition to obtaining a second-order boundary layer theory for large Ra, Pop and
Ingham (1990) used a finite-difference scheme to obtain numerical results for finite
values of Ra. Their results are shown in Table 5.3 and Fig. 5.17. They expressed
their heat transfer results in terms of a mean Nusselt surface Nu defined by

Nu = −1

2

∫ π

0

(
∂�

∂r

)
r=1

sin �d�, (5.138)

5.7. Vertical Cylinder

For the problem of natural convection about a vertical cylinder with radius r0, power
law wall temperature, and embedded in a porous medium, similarity solutions do
not exist. An approximate solution was obtained by Minkowycz and Cheng (1976).
For a given value of the power law exponent λ, Eq. (5.8), they found that the ratio
of local surface heat flux of a cylinder (q ′′

c ) to that of a flat plate (q ′′) is a nearly
linear function of a curvature parameter � ,

q ′′
c

q ′′ = 1 + C ′�, (5.139)
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Figure 5.17. The streamlines in the vicinity of a sphere: (a) Ra = 1, (b) Ra = 10,
(c) Ra = 100, and (d) asymptotic solution (Pop and Ingham, 1990, with permission
from Hemisphere Publishing Corporation).

where

� = 2x

r0Ra1/2
x

, (5.140)

where x denotes the vertical coordinate along the axis of the cylinder and q ′′

is given by Eq. (5.25). The values of the positive constant C ′ are given in
Table 5.4.

The ratio of average heat fluxes q̄ ′′
c /q̄ ′′ turns out to be independent of λ, and is

given approximately by

q̄ ′′
c

q̄ ′′ = 1 + 0.26�L , (5.141)

where �L = 2L/r0Ra1/2
L , and L is the height of the cylinder. The average heat flux

for the vertical plate (q̄ ′′) is given by Eq. (5.27).
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Table 5.4. Values of the constant C ′ in
Eq. (5.139) for various values of the
power law exponent λ (Cheng, 1984a)

λ C ′

0 0.30
1/4 0.23
1/3 0.21
1/2 0.20
3/4 0.17
1 0.15

A detailed solution was obtained by Merkin (1986). Magyari and Keller (2004a)
showed that the flow induced by a nonisothermal vertical cylinder approaches the
shape of Schlichting’s round jet as the porous radius tends to zero. The effects of
surface suction or blowing were examined by Huang and Chen (1985); suction
increases the rate of heat transfer. The transient problem has been analyzed by
Kimura (1989b).

Asymptotic analyses and numerical calculations for this problem were reported
by Bassom and Rees (1996). They showed that when λ < 1, the asymptotic flow-
field for the leading edge of the cylinder takes on a multiple layer structure. How-
ever, for λ > 1, only a simple single layer is present far downstream, but a multiple
layer structure exists close to the leading edge of the cylinder.

The effects of surface suction or blowing were examined by Huang and Chen
(1985); suction increases the rate of heat transfer. Inertial effects and those of
suction were analyzed by Hossain and Nakayama (1993). The case of suction with
a non-Newtonian fluid (for a vertical plate or a vertical cylinder) was investigated
by Pascal and Pascal (1997). The transient problem has been analyzed by Kimura
(1989b), while Libera and Poulikakos (1990) and Pop and Na (2000) have treated
a conjugate problem. The effect of thermal stratification was added by Chen and
Horng (1999) and Takhar et al. (2002). An analogous mass transfer problem was
studied experimentally by Rahman et al. (2000). The effect of local thermal non-
equilibrium was investigated by Rees et al. (2003a). The effect of radiation was
studied numerically by Yih (1999e).

5.8. Cone

We consider an inverted cone with semiangle � and take axes in the manner
indicated in Fig. 5.18. The boundary layer develops over the heated frustum x = x0.
In terms of the streamfunction ψ defined by

u = 1

r

∂ψ
∂y

, v = −1

r

∂ψ
∂x

, (5.142)
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Figure 5.18. Coordinate system for the boundary layer on a heated frustum of a cone
(Cheng et al., 1985).

the boundary layer equations are

1

r

∂2ψ
∂y2

= g�K

	

∂T

∂y
, (5.143)

1

r

(
∂ψ
∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y

)
= �m

∂2T

∂y2
. (5.144)

For a thin boundary layer we have approximately r = x sin � . We suppose that
either a power law of temperature or a power law of heat flux is prescribed on the
frustum. Accordingly, the boundary conditions are

y → ∞ : u = 0, T = T∞,

y = 0, x0 ≤ x < ∞ : u = 0, and either T = Tw = T∞ + (x − x0)λ (5.145)

or − km
∂T

∂y

∣∣∣∣
y=0

= q ′′
w = A(x − x0)λ

For the case of a full cone (x0 = 0) a similarity solution exists. In the case of
prescribed Tw, we let

ψ = �mrRa1/2
x f (�), (5.146)

T − T∞ = (Tw − T∞)�(�), (5.147)

� = y

x
Ra1/2

x , (5.148)
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where

Rax = g�K cos � (Tw − T∞)x

	�m
. (5.149)

The dimensionless momentum and energy equations are

f ′ = �, (5.150)

�′′ +
(

λ + 3

2

)
f �′ − λ f ′� = 0, (5.151)

with boundary conditions

f (0) = 0, �(0) = 1, �(∞) = 0. (5.152)

The local Nusselt number is given by

Nux = Ra1/2
x [−�′(0)], (5.153)

for which computed values of �′(0) are given in Table 5.5.
The case of a cone with prescribed uniform heat flux q ′′

w is handled similarly.
We begin with the dimensionless variables

ψ = �mr R̂a
1/3

f (�̂), (5.154)

T − T∞ = q ′′
wx

km
R̂a

−1/3
x �̂(�̂). (5.155)

�̂ = y

x
R̂a

1/3
x , (5.156)

where the Rayleigh number is based on heat flux,

R̂ax = g�K cos �q ′′
wx2

	�mkm
. (5.157)

The governing equations become

f̂ = �̂, (5.158)

�̂′′ +
(

λ + 5

2

)
f̂ ′�̂′ −

(
2λ + 1

3

)
f̂ ′�̂ = 0, (5.159)

Table 5.5. Values of �′(0) and �̂(0) for calculating the
local Nusselt number on a vertical cone embedded in
a porous medium (Cheng et al., 1985)

λ �′(0) �̂(0)

0 −0.769 1.056
1/3 −0.921 0.992
1/2 −0.992 0.965
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subject to

f̂ ′(0) = 0, �̂′(0) = −1, �̂(∞) = 0. (5.160)

The local Nusselt number solution to this problem is

Nux = R̂a
1/3

[�̂(0)]−1. (5.161)

with the computed values of �̂(0) given in Table 5.5. The local Nusselt number
is defined in the usual way: Nux = q ′′x/km(Tw − T∞). Note that in the present
(constant q ′′) configuration the cone temperature Tw is a function of x .

No similarity solution exists for the truncated cone, but Cheng et al. (1985) ob-
tained results using the local nonsimilarity method. Pop and Cheng (1986) included
the curvature effects that become important when the cone is slender. Vasantha
et al. (1986) treated non-Darcy effects for a slender frustum and Nakayama
et al. (1988a) also have considered inertial effects.

A cone with a point heat source at the apex was considered by Afzal and Salam
(1990). Pop and Na (1994, 1995) studied convection on an isothermal wavy cone
or frustum of a wavy cone, for large Ra, under the assumption that the wavy surface
has amplitude and wavelength of order one. They presented results for the effect
of the sinusoidal surface on the wall heat flux.

Rees and Bassom (1991) examined convection in a wedge-shaped region
bounded by two semi-infinite surfaces, one heated isothermally and the other
insulated. For the particular cases (i) a vertical heated surface with a wedge angle
of π, and (ii) a horizontal upward-facing surface with a wedge angle of 3π/2, the
equations on the Darcy model reduce to the classic ordinary differential equations.

Non-Darcy hydromagnetic convection over a cone or wedge was studied by
Chamkha (1996). Variable viscosity and thermal conductivity effects on convection
from a cone or wedge were studied numerically by Hassanien et al. (2003b). For
convection over a cone, the effect of uniform lateral mass flux was studied by
Yih (1997, 1998b) for the case of Newtonian or non-Newtonian fluids, and with a
Forchheimer effect by Kumari and Jayanthi (2005) for a non-Newtonian fluid.

5.9. General Two-Dimensional or Axisymmetric Surface

Nakayama and Koyama (1987a) have shown how it is possible to obtain similarity
solutions to the boundary layer equations for flow about heated two-dimensional
or axisymmetric bodies of arbitrary shape provided that the wall temperature is
a power function of a variable � , which is a certain function of the streamwise
coordinate x . Then the governing equations reduce to those for a vertical flat plate.
They thus generalized Merkin’s (1979) results for the isothermal case.

A simple analysis of convection about a slender body of revolution with its axis
vertical was given by Lai et al. (1990c). In terms of cylindrical polar coordinates
with x in the axial direction and r in the radial direction, the governing boundary
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layer equations are

∂

∂r

(
1

r

∂ψ
∂r

)
= g�K

	

∂T

∂r
, (5.162)

∂ψ
∂r

∂T

∂x
− ∂ψ

∂x

∂T

∂r
= �m

∂

∂r

(
r
∂T

∂r

)
. (5.163)

The boundary conditions at the body surface [r = R(x)] and far from the surface
(r → ∞) are, respectively,

T = Tw(x) = T∞ + Axλ, v = 0, (5.164)

T = T∞, u = 0. (5.165)

Suitable similarity variables are defined by

� = Rax

( r

x

)2
, (5.166)

ψ = �m x f (�), (5.167)

T − T∞ = (Tw − T∞)�(�), (5.168)

where

Rax = g�K (Tw − T∞)x

	�m
. (5.169)

If we set � = anc, where anc is a numerically small constant, we have prescribed
the surface of a slender body, given by

r =
(

	�manc

g�K A

)1/2

x (1−λ)/2. (5.170)

This represents a cylinder when λ = 1, a paraboloid when λ = 0 and a cone when
λ = −1. The resulting equations are

2 f ′ = �, (5.171)

2��′′ + (2 + f )�′ − λ f ′� = 0 (5.172)

with boundary conditions

� = anc : � = 1, f + (λ − 1)� f ′ = 0, (5.173)

� → ∞ : � = 0, f ′ = 0. (5.174)

These equations can be easily solved numerically and the local Nusselt number is
then given by

Nu

Ra1/2 = −2a1/2
nc �′(anc). (5.175)

Inertial effects were examined by Ingham (1986) and Nakayama et al. (1989,
1990b). The effects of a stratified medium were discussed by Nakayama and
Koyama (1989) and those of viscous dissipation by Nakayama and Pop (1989).
Convection from a nonisothermal axisymmetric surface was analyzed by Mehta
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and Sood (1994). Flow of non-Newtonian power law fluids over nonisothermal
bodies of arbitrary shape was studied by Nakayama and Koyama (1991) and by
Wang et al. (2002) for the case of permeable bodies. Certain wall temperature
distributions lead to similarity solutions. A general transformation procedure, for
the transient problem and the Forchheimer model, was presented by Nakayama
et al. (1991). With this the local similarity assumption was adapted to produce
solutions for a range of geometries. Power law fluid flow, with or without yield
stress, also was discussed by Yang and Wang (1996). Similarity solutions for
convection due to internal heating were obtained by Bagai (2003, 2004) for the
cases of constant or variable viscosity.

5.10. Horizontal Line Heat Source

5.10.1. Flow at High Rayleigh Number

5.10.1.1. Darcy Model

At high Rayleigh number the flow about a horizontal line source of heat takes the
form of a vertical plume. For steady flow the governing boundary layer equations
are again Eqs. (5.6) and (5.7). The boundary conditions (5.10) still apply, but
Eq. (5.9) is replaced by the symmetry conditions

y = 0 :
∂2ψ
∂y2

= ∂T

∂y
= 0. (5.176)

We now have a homogeneous system of equations, and a nontrivial solution
exists only if a certain constraint holds. In the present problem this arises from the
global conservation of energy and takes the form

q ′ = 
∞cP

∫ ∞

−∞

∂ψ
∂y

(T − T∞)dy, (5.177)

where q ′ is the prescribed heat flux per unit length and cP is the specific heat
of the convected fluid at constant pressure. Consistent with the boundary layer
approximation, the axial heat conduction term is omitted from Eq. (5.173).

It is easily checked that the solution of the present problem is (Wooding, 1963)

ψ = �mR̂a
1/3
x f (�), (5.178)

T − T∞ = q ′


∞cP �m
R̂a

−1/3
x �(�), (5.179)

� = y

x
R̂a

1/3
x , (5.180)

where

R̂ax = g�K q ′x/��2
mcP . (5.181)
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The functions f and � satisfy the differential equations

f ′ − � = 0, (5.182)

�′′ + 1

3
( f �)′ = 0, (5.183)

the boundary conditions

f (0) = �′(0) = 0, (5.184)

f ′(±∞) = �(±∞) = 0, (5.185)

and the constraint ∫ ∞

−∞
f ′(�)�(�)d� = 1. (5.186)

The nontrivial solution of Eqs. (5.182)–(5.186) is

ψ = �mR̂a
1/3
x B tanh

(
B�

6

)
, (5.187)

T − T∞ = q ′


∞cP �m
R̂a

−1/3
x

B2

6
sech2

(
B�

6

)
, (5.188)

where B = (9/2)1/3 = 1.651. The dimensionless temperature profile �(�) is illus-
trated in Fig. 5.19.

The problem of a line source situated at the vertex of a solid wedge, together
with higher-order boundary layer effects, was analyzed by Afzal (1985). The effect
of material anisotropy on convection induced by point or line sources was studied
by Rees et al. (2002). They showed that the path of the plume centerline is strongly
affected by the anisotropy and the presence of impermeable bounding surfaces.
A line source situated in an anisotropic medium also was studied by Degan and
Vasseur (2003). They noted that the minimum (maximum) intensity of the plume
is attained if the medium is oriented with its principal axis with high permeability
parallel (perpendicular) to the vertical.

5.10.1.2. Forchheimer Model

When quadratic drag is taken into account, Eq. (5.23) is replaced by

u + �

v
u2 = �K

	
(T − T∞), (5.189)

where u = ∂ψ/∂y. Following Ingham (1988), we introduce nondimensional
quantities defined by

x = Xl, y = Yl

(
Fo

R̂a

)1/5

, (5.190)
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Figure 5.19. Dimensionless temperature profiles for plume rise above a horizontal line
source of heat in a porous medium (Lee, 1983; Cheng, 1985a, with permission from
Hemisphere Publishing Corporation).

ψ = �m

(
R̂a

Fo

)1/5

�, T − T∞ = � a2
m

g�Kl2

(
R̂a

Fo

)4/5

�, (5.191)

R̂a = g�Klq ′

	�mkm
, Fo = � �m

	l
, (5.192)

where l is a characteristic length scale. Substitution into Eq. (5.189) and the steady-
state form of Eq. (5.7) gives (

∂ψ
∂Y

)2

= �, (5.193)

∂ψ
∂Y

∂�

∂ X
− ∂ψ

∂ X

∂�

∂Y
= ∂2�

∂Y 2
, (5.194)

when a term R̂a
−2/5

Fo−3/5∂�/∂Y in Eq. (5.193) has been neglected. Since the
boundary layer thickness is of order l(Fo/R̂a)1/5, we are requiring that R̂a Fo−1 � 1
and R̂a2/5Fo3/5 � 1. The boundary conditions and the source energy constraint
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are

Y = 0 :
∂2�

∂Y 2
= 0,

∂�

∂Y
= 0,

Y → ∞ :
∂�

∂Y
→ 0, � → 0,∫ ∞

−∞

∂�

∂Y
�dY = 1.

(5.195)

We now introduce the similarity transformation

� = X2/5 f (�), � = X−2/5g(�), � = Y/X3/5, (5.196)

and then the system (5.193)–(5.195) becomes

( f ′)2 = g, (5.197)

g′′ = −2

5
( f ′g + f g′), (5.198)

g′(0) = 0, f ′(∞) = 0,

∫ ∞

−∞
f ′gd� = 1. (5.199)

These equations have the analytical solution

f = C tanh
C

10
�, g = C4

100
sech4 C

10
�, (5.200)

where C = (8 × 103/2/3)1/4 = 3.03. Comparison of Eq. (5.200) with Eq. (5.188)
shows that a sech2 function is replaced by a sech4 function and this means that the
Forchheimer model leads to a more sharply peaked temperature profile than does
the Darcy model.

This conclusion is in accordance with the experiments reported by Cheng
(1985a), carried out by himself, R. M. Fand, and D. K. Chui, on the plume rise
from a horizontal line source of heat embedded in 3-mm diameter glass beads
saturated with silicone oil. Their results are presented in Figures 5.19 and 5.20.
The work of Ingham (1988) was extended by Rees and Hossain (2001) to interme-
diate distances from the source by computing the smooth transition between the
inertia-dominated and the inertia-free regimes.

An experimental and analytic study of the buoyant plume above a concentrated
heat source in a stratified porous medium was made by Masuoka et al. (1986).
In experiments with a two-layer system two kinds of glass spheres of different
diameter were employed, with water as the saturating fluid. They found that their
similarity solution broke down near the interface.

The effect of dispersion was added by Lai (1991b). The wall plume was studied
by Leu and Jang (1994) using a Brinkmann-Forchheimer model. The wall plume
has a lower peak velocity and a higher maximum temperature than the correspond-
ing free plume. The case of a non-Newtonian power law fluid was examined by
Nakayama (1993b).

Masuoka et al. (1995b) reported an experimental and analytical study of the
effects of a horizontal porous layer on the development of the buoyant plume
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Figure 5.20. Dimensionless temperature versus local Rayleigh number for plume rise
above a horizontal line source of heat in a porous medium (Lee, 1983; Cheng, 1985a,
with permission from Hemisphere Publishing Corporation).

arising from a line heat source in an infinite fluid space. They observed an ex-
pansion of the plume at the lower interface and a contraction at the upper inter-
face of the permeable layer. Their theoretical model incorporated the Beavers-
Joseph slip boundary condition and they interpreted the fairly good agreement
between their experimental and numerical results as confirming the validity of that
condition.

5.10.2. Flow at Low Rayleigh Number

Following Nield and White (1982) we introduce polar coordinates (r, �) with origin
at the source and the plane � = 0 horizontal. The seepage velocity is (vr , v�). The
equations for mass conservation, Darcy flow, and transient energy conservation
are

∂

∂r
(rvr ) + ∂v�

∂�
= 0, (5.201)

vr = − K

�

(
∂ P

∂r
+ 
g sin �

)
, (5.202)

v� = − K

�

(
1

r

∂ P

∂�
+ 
g cos �

)
, (5.203)

1

�m

(
�

∂T

∂t
+ vr

∂T

∂r
+ v�

r

∂T

∂�

)
= ∂2T

∂r2
+ 1

r

∂T

∂r
+ 1

r2

∂2T

∂�2
. (5.204)
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Introducing the streamfunction ψ(r, �) by

	r = 1

r

∂ψ
∂�

, v� = −∂ψ
∂r

(5.205)

and eliminating the pressure between the two Darcy equations, we obtain, in nondi-
mensional form,

r∗
∂2ψ∗
∂r2∗

+ ∂ψ∗
∂r∗

+ 1

r∗

∂2ψ∗
∂�2

= R̂a

(
sin �

∂T∗
∂�

− r∗ cos �
∂T∗
∂r∗

)
. (5.206)

∂T∗
∂t∗

+ 1

r∗

(
∂ψ∗
∂�

∂T∗
∂r∗

− ∂ψ∗
∂r∗

∂T

∂�

)
= ∂2T∗

∂r2∗
+ 1

r∗

∂T∗
∂r∗

+ 1

r2∗

∂2T∗
∂�2

, (5.207)

where

t∗ = t�m

K �
, r∗ = r

K 1/2
, T∗ = (T − T∞)km

q ′ , ψ∗ = ψ
�m

, (5.208)

R̂a = g�K 3/2q ′

	�mkm
. (5.209)

The initial conditions, boundary conditions, and energy balance constraint are

t = 0 : vr = v� = 0, T = T∞, (5.210)

r → ∞ : vr = v� = 0, T = T∞, (5.211)

� = ±π

2
: v� = ∂vr

∂�
= ∂T

∂�
= 0, (5.212)

lim
r→0

[
−km(2πr )

∂T

∂r

]
= q ′. (5.213)

The last equation implies that T is of order ln r as r → 0, and Eq. (5.204) then
implies that 	r is of order r−1 ln r and v� is of order r−1. The above conditions are
readily put in nondimensional form.

For sufficiently small values of Ra we can expand ψ∗ and T∗ as power series in
Ra,

(ψ∗, T∗) = (ψ∗0
, T∗0 ) + Ra (ψ∗1

, T∗1 ) + Ra2(ψ∗2
, T∗2 ) + · · · . (5.214)

When we substitute the above equations, collect the terms of the same power of Ra,
and solve in terms the problems of order 0, 1, 2, . . . in Ra, we find the zero-order
conduction solution

ψ∗0
= 0, T∗0 = − 1

4π
Ei(−�2), (5.215)

with

� = r∗
2t1/2

∗
, (5.216)
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and then the first-order solution

ψ∗1
= t1/2

∗
4π

cos �

[
exp(−�2) − 1

�
+ �Ei(−�2)

]
, (5.217)

T∗1 = t1/2
∗

sin �

16π2

{
(ln �)[(� − 2)� − �3]+� (ln �)2+�

2 − �

2
+�3 3 − �

2
+. . .

}
,

(5.218)

where � = 0.5772 . . . is Euler’s constant. In Fig. 5.21 a set of streamlines
ψ∗/t1/2

∗ have been plotted. We see that the flow pattern for small Rayleigh num-
bers consists of an expanding vortex whose radius increases with time as t1/2

∗
and whose core is situated at � = 0.567 in the horizontal plane containing the
source.

Since the momentum equation is linear, we can superpose solutions for sources
and use the method of images to deduce the flow field due to the presence of a
line source near an insulated vertical wall. We assume that the insulated vertical
wall is given by the y axis of a Cartesian system and the line source is located
at x = d, y = 0. The flow field is equivalent to that produced by a pair of line
sources, of equal strength, positioned at x = ± d, y = 0. The expression for ψ∗1 is

Figure 5.21. Streamlines drawn at constant increments of ψ∗1/t1/2
∗ , for transient natural

convection around a horizontal line heat source (Nield and White, 1982).
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Figure 5.22. Streamlines drawn at constant increments of ψ∗1, for transient natural
convection around a pair of line heat sources of equal strength, at (1,0) and (–1,0) at
time τ∗ = 1 (Nield and White, 1982).

now

ψ∗1
= τ1/2

4π
(S+ + S−), (5.219)

where

S± = 2τ1/2(X ± 1)

(X ± 1)2 + Y 2

{
exp

[
− (X ± 1)2 + Y 2

4τ

]
− 1

}
− X ± 1

2τ1/2

∫ ∞

[(X±1)2+Y 2]/4τ

exp(−�)

�
d�, (5.220)

where τ = t�m/d, X = x/d, Y = y/d . From this expression the streamlines were
plotted in Fig. 5.22. Since the energy equation is nonlinear, it is not possible to
superpose the solutions for T∗1.

5.11. Point Heat Source

5.11.1. Flow at High Rayleigh Number

Following Wooding (1963) and Bejan (1984), we consider the slender plume
above a point source of constant strength, placed at an impermeable horizontal
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boundary. We take cylindrical polar coordinates (r, �, z) with the origin at the
source and the z axis vertically upward. The problem has axial symmetry, and
the seepage velocity (vr , 0, vz) is given in terms of a Stokes streamfunction �

by

vr = 1

r

∂ψ
∂z

, vz = −1

r

∂ψ
∂r

. (5.221)

The boundary layer equations for momentum and energy and the boundary con-
ditions are

1

r

∂2ψ
∂r2

= −g�K

	

∂T

∂r
, (5.222)

∂ψ
∂z

∂T

∂r
− ∂ψ

∂r

∂T

∂z
= �m

∂

∂r

(
r
∂T

∂r

)
, (5.223)

r = 0 :
∂ψ
∂z

= ∂T

∂r
= 0, (5.224)

r → ∞ :
∂ψ
∂r

= 0, T = T∞, (5.225)

z = 0 :
∂ψ
∂r

= 0. (5.226)

If q [W] is the strength of the source, energy conservation requires that

q =
∫ ∞

0

∞cPvz(T − T∞)2πrdr. (5.227)

These equations admit the similarity solution

� = −�m z f (�), (5.228)

T − T∞ = q

kmr
R̃a

−1/2
�(�), (5.229)

� = R̃a
1/2 r

z
, (5.230)

where R̃a is the Rayleigh number based on source strength,

R̃a = g�K q

	�mkm
. (5.231)

The functions f and � satisfy the differential equations

f ′′ − �′ = 0, (5.232)

�2�′′ + �( f − 1)�′ + (1 − f + � f ′)� = 0, (5.233)

the boundary conditions

f (0) = �(0) = 0, (5.234)

f ′′(∞) = f ′(∞) = �(∞) = 0, (5.235)
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and the constraint ∫ ∞

0

f ′�
�

d� = 1

2π
. (5.236)

When the boundary conditions (5.231) are utilized, Eq. (5.228) integrates to
give f ′ = �, and so Eq. (5.229) becomes

d

d�

(
f ′′ − f ′

�
+ f f ′

�

)
= 0. (5.237)

Integrating this equation and invoking Eq. (5.230), we have

f f ′ = f ′ − � f ′′. (5.238)

The solution satisfying the boundary conditions is

f = (C�)2

1 + (C�/2)2
, (5.239)

and the constraint (5.236) requires that C = π−1/2/4 = 0.141. Wooding (1985)
has extended the boundary layer equations to account for large density differences,
dispersion, and convection in the presence of tidal oscillations.

Lai (1990b) showed that a similarity solution could be found for the case of a
power law variation of centerline temperature. The problem was treated using the
Forchheimer model by Degan and Vasseur (1995). As one would expect, inertial
effects tend to reduce the buoyancy-induced flow. Inertial effects, together with
those of thermal dispersion, also were discussed by Leu and Jang (1995). The case
of a non-Newtonian power law fluid was examined by Nakayama (1993a). Higuera
and Weidman (1998) noted that the case of natural convection far downstream of
a heat source on a solid wall led to a parameter free differential equation problem.

5.11.2. Flow at Low Rayleigh Number

We now consider a point heat source of strength q [W] in an unbounded domain.
We introduce spherical polar coordinates (r, �, �), with � the “colatitude” and � the
”longitude,” and with the line � = 0 vertically upward. We have an axisymmetric
problem with no dependence on �. The equations for mass conservation, Darcy
flow, and transient energy conservation are

∂

∂r
(r2vr sin �) + ∂

∂�
(rv� sin �) = 0, (5.240)

vr = − K

�

(
∂ P

∂r
+ 
g cos �

)
, (5.241)

v� = − K
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)
, (5.242)
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)
.

(5.243)
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Introducing the Stokes streamfunction �(r, �) by

vr = 1

r2 sin �

∂�

∂�
, v� = − 1

r sin �

∂�

∂r
, (5.244)

and eliminating the pressure between the two Darcy equations, we get, in nondi-
mensional variables,

1
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1
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)
+ 1

sin �
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(5.245)
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, (5.246)

where

t∗ = t�m

K �
, r∗ = r

K 1/2
, T∗ = (T − T∞)km K 1/2

q

�∗ = �

�m K 1/2
, R̃a = g�K q

	�mkm
.

(5.247)

The initial conditions for this transient problem are

t = 0 : vr = v� = 0, T = T∞.

The appropriate boundary conditions are

r → ∞ : vr = v� = 0, T = T∞,

� = 0, π : v� = ∂vr

∂�
= ∂T

∂�
= 0,

(5.248)

together with the fact that vr , v� , and T are of order 1/r as r → 0. This is required
by the balance of terms in the above differential equations, together with the energy
balance constraint

lim
r→0

[
−km(4πr2)

∂T

∂r

]
= q. (5.249)

The above conditions are readily put in nondimensional form. For sufficiently
small values of R̃a we can expand �∗ and T∗ as power series in R̃a,

(�∗, T∗) = (�∗0 , T∗0 ) + R̃a(�∗1 , T∗1 ) + · · · . (5.250)

We can then substitute into the above equations and equate terms in like powers
of R̃a, thus obtaining subproblems at order R̃a0, R̃a1, R̃a2, . . .. The zero-order
problem yields the conduction solution

T∗0 = 1

4πr
erfc �, (5.251)

�∗0 = 0, (5.252)
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Figure 5.23. Transient natural convection flow pattern about a point heat source. The
lines correspond to equal increments of ψ∗1

/t1/2
∗ (Bejan, 1978, 1984).

where � = r∗/2t1/2
∗ . The first-order problem yields (Bejan, 1978)

�1∗ = 1

8π
t1/2
∗ sin2 �

(
2� erfc � + 1

�
erf � − 2

π1/2
e−�2

)
, (5.253)

T∗1 = cos �

64π2t1/2
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(
1

�
− 4

3π1/2
+ 6

5π1/2
�2 − 16

45π
�3 − 152

315π1/2
�4 + . . .

)
.

(5.254)

Figure 5.23, based on Eq. (5.253), shows that as soon as the heat source is turned on
a vortex ring forms about the source. The radius of the core of the vortex is given by
� = 0.881, i.e., the physical radius grows with time as the group 1.762(�mt/�)1/2.

Unlike the line-source problem of Section 5.9.2, the present point source prob-
lem has a steady-state small R̃a solution with

ψ∗ = r∗
8π

[
sin2 �R̃a+ 1

24π
sin � sin 2�R̃a

2− 5

18432π3
(8 cos4 �−3)R̃a

3 + . . .

]
,

(5.255)

T∗ = 1

4πr∗

[
1 + 1

8π
cos �R̃a + 5

768π2
cos 2�R̃a

2

+ 1

55296π3
cos �(47 cos2 � − 30)R̃a

3 + . . .

]
. (5.256)
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Figure 5.24. Steady temperature distribution around a point heat source; the lines
represent the (4πR∗)� = 1 isotherm, for increasing values of Ra (Bejan, 1978, 1984).

This solution gives valid results for source strength Rayleigh numbers R̃a up to
about 20. The temperature field is illustrated in Fig. 5.24 in which a curve represents
the isothermal surface T∗ = 1/4πR∗, where R∗ is a fixed nondimensional distance
from the origin. The figure shows that the warm region, originally spherical about
the point source, shifts upward and becomes elongated like the flame of a candle
as R̃a increases.

Whereas Bejan (1978) used the source condition (5.249), which requires the
heat flux to be uniformly distributed over an isothermal source, Ene and Poliševski
(1987) took

lim
r→0

∫
sr

(
−km

∂T

∂r

)
d� = q, (5.257)

where Sr is the sphere of radius r . Equation (5.257) implies that ∂T/∂r varies with
� in a special way (determined by the overall problem) as r → 0. It appears to be
the more appropriate condition. Both Eqs. (5.249) and (5.257) are based on the
assumption that the convective heat transport at the source is negligible [compare
Eq. (5.264)].

Hickox (1981) has utilized the fact that the momentum equation is linear in
Ra to investigate certain other geometries by superposing sources. Ganapathy
and Purushothaman (1990) discussed the case of an instantaneous point source.
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The Brinkman term affects the solution at radial distances up to O(K 1/2)
from the source, where at small times it slows the rate of momentum transfer.
Puroshothaman et al. (1990) dealt with a pulsating point heat source. Ganapathy
(1992) treated an instantaneous point source that is enveloped by a solid sphere,
which is itself surrounded by a porous medium.

5.11.3. Flow at Intermediate Rayleigh Number

For the steady situation Hickox and Watts (1980) obtained results for arbitrary
values of R̃a, for both the semi-infinite region considered by Wooding and Bejan
and the infinite region. For the infinite region, with spherical polar coordinates and
the streamfunction defined as in Eq. (5.244), one can put

� = cos �, ψ = �mr f (�), T − T∞ = �m

gK�

g(�)

r
. (5.258)

The problem reduces to the solution of the differential equations

f ′′ = −(�g)′, (5.259)

( f g)′ = g′′ − (�2g′)′, (5.260)

subject to the symmetry and boundary conditions

f (1) = 0, f (−1) = 0, (5.261)

g, g′ bounded as � → ±1, (5.262)

and the constraint ∫ 1

−1
(1 − f ′)gd� = 2πR̃a. (5.263)

The last equation arises from the requirement that the energy flux, integrated over
a sphere centered at the origin, should equal q , so∫ π

0

[
(
cP ) f vr (T − T∞) − km

∂T

∂r

]
2πr2 sin �d� = q. (5.264)

Hickox and Watts (1980) integrated Eqs. (5.259)–(5.263) numerically. They
treated the semi-infinite region in a similar fashion, but using a different simi-
larity transformation. Some representative plots of isotherms and streamlines are
presented in Figs. 5.25 and 5.26.

5.12. Other Configurations

5.12.1. Fins Projecting from a Heated Base

The problem of high Rayleigh number convection about a long vertical thin fin
with a heated base can be treated as a conjugate conduction-convection problem.
Various geometries have been considered. Pop et al. (1985) obtained a similarity



5.12. Other Configurations 183

Figure 5.25. Streamlines and isotherms for a point source at the base of a semi-infinite
region, Ra = 10, ψ′ = ψ/�m K 1/2, T ′ = (T − T∞)g�K 3/2/v�m (Hickox and Watts,
1980).

solution for a vertical plate fin projecting downward from a heated horizontal plane
base at constant temperature for the case of the conductivity-fin thickness product
varying as a power function of distance from a certain specified origin. They also
dealt with the similar problem of a vertical plate extending from a heated horizontal
cylindrical base at constant temperature.

Pop et al. (1986) used a finite-difference numerical method for the former ge-
ometry but with constant conductivity and fin thickness, and Liu and Minkowycz
(1986) investigated the influence of lateral mass flux in this situation. Gill and
Minkowycz (1988) examined the effects of boundary friction and quadratic drag.
Hung et al. (1989) have incorporated non-Darcy effects in their study of a transient
problem. The above studies all have been of a vertical plate fin. The case of a ver-
tical cylindrical fin was analyzed by Liu et al. (1987b); again the effect of lateral
mass flux was included. Convection from a slender needle, for the case where the
axial wall thickness varies as a power function of distance from the leading edge,
was analyzed by Peng et al. (1992).

Conjugate convection about a vertical plate fin was studied by Hung (1991)
using the Brinkman-Forchheimer model. Chen and Chiou (1994) added the ef-
fects of thermal dispersion and nonuniform porosity. Conjugate convection of a
non-Newtonian fluid about a vertical plate was studied by Pop and Nakayama



184 5. External Natural Convection

Figure 5.26. Streamlines and isotherms for a point source in an infinite region, Ra =
10, ψ′ and T ′ defined as in Fig. 5.25 (Hickox and Watts, 1980).

(1994), while the corresponding problem for a vertical cylindrical fin was treated
by Hossain et al. (1995). Further work on conjugate convection from vertical plate
fins was reported by Vaszi et al. (2002b, 2004) and Pop and Nakayama (1999).

5.12.2. Flows in Regions Bounded by Two Planes

The Darcy flow in a corner region bounded by a heated vertical wall and an in-
sulated inclined wall was analyzed by Daniels and Simpkins (1984), while Riley
and Rees (1985) analyzed the non-Darcy flow in the exterior region bounded by
a heated inclined wall and an inclined wall that was either insulated or cooled.
In each of these two papers the heated wall was at constant temperature. Hsu
and Cheng (1985a) analyzed the Darcy flow about an inclined heated wall with
a power law of variation of temperature and an inclined unheated isothermal
wall.
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The particular case of the Darcy flow in the “stably heated” corner between
a cold horizontal wall and a hot vertical wall situated above the horizontal wall
(or between a hot horizontal wall and a cold vertical wall situated below the
horizontal wall) was studied by Kimura and Bejan (1985). Their scale analysis and
numerical solutions showed that the single-cell corner flow becomes increasingly
more localized as the Rayleigh number increases. At the same time the mass flow
rate engaged in natural convection and the conduction-referenced Nusselt number
increase.

Liu et al. (1987a) found a local similarity solution for flow in the corner formed
by two mutually perpendicular vertical plates for the case when both plates are at
the same constant wall temperature. Earlier solutions by Liu and Ismail (1980) and
Liu and Guerra (1985) (the latter with an arbitrary angle between the vertical plates)
had been obtained under an asymptotic suction assumption. Two other problems
involving perpendicular planes were studied by Ingham and Pop (1987a,b). Pop
et al. (1997) performed calculations for convection in a Darcian fluid in a horizontal
L-shaped corner, with a heated isothermal vertical plate joined to a horizontal
surface that is either adiabatic or held at ambient temperature.

5.12.3. Other Situations

The problem of the cooling of a circular plate situated in the bottom plane boundary
of a semi-infinite region was analyzed as a boundary layer problem by McNabb
(1965). The boundary layer flow near the edge of a horizontal circular dish in
an unbounded region was studied by Merkin and Pop (1989). A numerical study
on various models of convection in open-ended cavities was reported by Ettefagh
et al. (1991).

The subject of conjugate natural convection in porous media has been reviewed
by Kimura et al. (1997). They discussed various configurations including slender
bodies, rectangular slabs, horizontal cylinders, and spheres. Three-dimensional
stagnation point convection on a surface on which heat is released by an exother-
mic reaction was analyzed by Pop et al. (2003). The topic of chemically driven
convection in porous media was reviewed by Pop et al. (2002); other relevant
papers include those by Mahmood and Merkin (1998) and Merkin and Mahmood
(1998). The effect of local thermal nonequilibrium or g-jitter on convective stag-
nation point flow was analyzed by Rees and Pop (1999, 2001). Convection from a
cylinder covered with an orthotropic porous layer in cross-flow was investigated
numerically by Abu-Hijleh (2001a)

5.13. Surfaces Covered with Hair

The two-temperatures porous medium model described in Section 4.10 was
also used in the theoretical study of natural convection heat transfer from sur-
faces covered with hair (Bejan, 1990b). With reference to a vertical surface
(Fig. 5.27) the boundary layer equations for energy conservation and Darcy flow are
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Figure 5.27. Vertical skin area, air boundary layer, and hair strands that act as fins
(Bejan, 1990b).

written as


cP

(
U

∂Ta

∂x
+ V

∂Ta

∂y

)
= ka

∂2Ta

∂x2
+ nhps(Ts − Ta), (5.265)

∂V

∂x
= g�K

	�

∂Ta

∂x
. (5.266)

The porosity � appears in the denominator in Eq. (5.266), because in this model
V is the air velocity averaged only over the space occupied by air. The rest of the
notation is defined in Fig. 5.27 and Section 4.10. For example, n is the hair density
(strands/m2).

The boundary layer heat transfer analysis built on this model showed that the
total heat transfer rate through a skin area of height H is minimized when the hair
strand diameter reaches the optimal value

Dopt

H
=

(
1 − �

0.444

)1/2 (
ks

ka

f2

� f1Ra f

)1/4

. (5.267)

The Ra f factor in the denominator is the Rayleigh number for natural convection
in open air, Ra f = g�H 3(Tw − T∞)/	�a . The minimum heat transfer rate that
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corresponds to Dopt is

q ′
min

ka(Tw − T∞)
= 1.776(1 − �)1/2

(
� f1 f2

ks

ka
Ra f

)1/4

. (5.268)

The factors f1 and f2 are both functions of porosity, and result from having modeled
the permeability and strand-air heat transfer coefficient by

K = D2 f1(�), h = ka

D
f2(�). (5.269)

It is important to note that since Ra f is proportional to H 3, Eq. (5.267) states that
the optimal strand diameter is proportional to H 1/4. The theoretical results for a
vertical surface covered with hair were tested in an extensive series of numerical
experiments (Lage and Bejan, 1991).

Analogous conclusions are reached in the case where instead of the vertical
plane of Fig. 5.27, the skin surface has the shape of a long horizontal cylinder of
diameter D0. The optimal hair strand diameter is

Dopt

D0
= 1.881(1 − �)1/2

(
ks

ka

f2

� f1Ra f o

)1/4

, (5.270)

where Ra f o = g�D3
0(Tw − T∞)/	�a . In the case where the body shape approaches

a sphere of diameter D0, the optimal hair strand diameter has a similar form,

Dopt

D0
= 2.351(1 − �)1/2

(
ks

ka

f2

� f1Ra f o

)1/4

. (5.271)

Equations (5.270) and (5.271) show that Dopt increases as D1/4
o . Combined with

Eq. (5.267), they lead to the conclusion that when the heat transfer mechanism is
boundary layer natural convection, the optimal hair strand diameter increases as
the vertical dimension of the body (H, or D0) raised to the power 1/4.



6
Internal Natural Convection: Heating
from Below

6.1. Horton-Rogers-Lapwood Problem

We start with the simplest case, that of zero flow through the fluid-saturated porous
medium. For an equilibrium state the momentum equation is satisfied if

−∇ P + 
 f g = 0. (6.1)

Taking the curl of each term yields

∇
 f × g = 0. (6.2)

If the fluid density 
 f depends only on the temperature T , then this equation
implies that ∇T × g = 0. We conclude that a necessary condition for equilibrium
is that the temperature gradient is vertical (or zero). Intrapore convection may
increase effective conductivity of the medium. We thus have a special interest
in the problem of a horizontal layer of a porous medium uniformly heated from
below. This problem, the porous-medium analog of the Rayleigh-Bénard problem,
was first treated by Horton and Rogers (1945) and independently by Lapwood
(1948).

With reference to Fig. 6.1, we take a Cartesian frame with the z axis verti-
cally upward. We suppose that the layer is confined by boundaries at z = 0 and
z = H , the lower boundary being at uniform temperature T0 + �T and the upper
boundary at temperature T0. We thus have a layer of thickness H and an imposed
adverse temperature gradient �T/H . We suppose that the medium is homoge-
neous and isotropic, that Darcy’s law is valid, and that the Oberbeck-Boussinesq
approximation is applicable, and we also make the other standard assumptions
(local thermal equilibrium, negligible heating from viscous dissipation, negligible
radiative effects, etc.). The appropriate equations are, cf. Eqs. (1.1), (1.10), (2.3),
and (2.20),

∇ · v = 0, (6.3)

ca
0
∂v
∂t

= −∇ P − �

K
v + 
 f g, (6.4)

(
c)m
∂T

∂t
+ (
cP ) f v · ∇T = km∇2T, (6.5)


 f = 
0[1 − �(T − T0)]. (6.6)
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Figure 6.1. The Horton-Rogers-Lapwood problem: infinite horizontal porous layer
heated from below.

The reader is reminded that v is the seepage velocity, P is the pressure, � the
dynamic viscosity, K the permeability, c the specific heat, km the overall thermal
conductivity, and � the thermal volume expansion coefficient.

We observe that Eqs. (6.3)–(6.6) have a basic steady-state solution, which sat-
isfies the boundary conditions T = T0 + �T at z =0 and T = T0 at z = H . That
solution is

vb = 0, (6.7)

Tb = T0 + �T
(

1 − z

H

)
, (6.8)

Pb = P0 − 
0g

[
z + 1

2
��T

(
z2

H
− 2z

)]
. (6.9)

It describes the “conduction state,” one in which the heat transfer is solely by
thermal conduction.

6.2. Linear Stability Analysis

We now examine the stability of this solution and assume that the perturbation
quantities (those with primes) are small. We write

v = vb + v′, T = Tb + T ′, P = Pb + P ′. (6.10)

When we substitute into Eqs. (6.3)–(6.5) and neglect second-order small quan-
tities we obtain the linearized equations [note v’ = (u′, v′, w′)]

∇ · v′ = 0, (6.11)

ca
0
∂v′

∂t
= −∇ P ′ − �

K
v′ − �
0T ′g, (6.12)

(
c)m
∂T ′

∂t
− (
cP ) f

�T

H
w′ = km∇2T ′. (6.13)

Nondimensional variables are introduced by choosing H, � H 2/�m, �m/H, �T ,
and ��m/K as scales for length, time, velocity, temperature, and pressure,
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respectively. Here �m is a thermal diffusivity defined by

�m = km

(
cP ) f
= km

k f
� f , (6.14a)

where � f = k f /(
cP ) f is the thermal diffusivity of the fluid phase. It is convenient
to define the heat capacity ratio

� = (
c)m

(
cP ) f
(6.14b)

and put

x̂ = x
H

, t̂ = �mt

� H 2
, v̂ = H ′

v

�m
,

T̂ = T

�T
, P̂ = K P ′

��m
,

(6.15)

with x̂ = (x, y, z). Substituting Eqs. (6.11)–(6.13) we get

∇ · v̂ = 0, (6.16)

�a
∂ v̂
∂ t̂

= −∇ P̂ − v̂ + RaT̂ k, (6.17)

∂ T̂

∂ t̂
− ŵ = ∇2T̂ , (6.18)

where k is the unit vector in the z direction and

Ra = 
0g�K H�T

��m
, Prm = �


0�m
, �a = ca K

�Prm H 2
. (6.19)

In Eq. (6.19) Ra is the Rayleigh-Darcy number (or Rayleigh number, for short),
Prm is an overall Prandtl number, and �a is a nondimensional acceleration coeffi-
cient. In most practical situations the Darcy number K/H 2 will be small and as a
consequence �a also will be small. Accordingly, we take �a = 0 unless otherwise
specified. Note that the Rayleigh-Darcy number is the product of the Darcy number
and the usual Rayleigh number for a clear viscous fluid.

Operating on Eq. (6.17) twice with curl, using Eq. (6.16) and taking only the z
component of the resulting equation, we obtain

∇2ŵ = Ra∇2
H T̂ , (6.20)

where ∇2
H = ∂2/∂x2 + ∂2/∂y2. Equations (6.18) and (6.20) contain just two de-

pendent variables, ŵ and t̂ . Since the equations are linear, we can separate the
variables. Writing(

ŵ, T̂
) = [W (ẑ) , �(ẑ)] exp

(
st̂ + il x̂ + im ŷ

)
(6.21)

and substituting into Eqs. (6.18) and (6.20), we obtain

(D2 − �2 − s)� = −W, (6.22)

(1 + �as)(D2 − �2)W = −�2Ra � (6.23)
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where

D ≡ d

dẑ
and � = (l2 + m2)1/2. (6.23′)

In these equations � is an overall horizontal wavenumber. This pair of ordinary
differential equations forms a fourth-order system, which must be solved subject
to four appropriate boundary conditions.

Various types of boundaries can be considered. If both boundaries are imper-
meable and are perfect thermal conductors, then we must have w′ = 0 and T ′ = 0
at z = 0 and z = H , and so

W = � = 0 at ẑ = 0 and ẑ = 1. (6.24)

The homogeneous equations (6.22) and (6.24) form an eigenvalue system in
which Ra may be regarded as the eigenvalue. In order for the solution to remain
bounded as x, y ± 8, the wavenumbers l and m must be real, and hence the overall
wavenumber � must be real. In general s can be complex, s = sr + i�. If sr > 0,
then perturbations of the form (6.21) grow with time, i.e., we have instability. The
case sr = 0 corresponds to marginal stability. In general � gives the frequency of
oscillations, but in the present case it is easily proven that � = 0 when sr > 0, so
when the disturbances grow with time they do so monotonically. In other words,
the so-called principle of exchange of stabilities is valid.

For the case of marginal stability we can put s = 0 in Eqs. (6.22) and (6.23),
which become

(D2 − �2)� = −W, (6.25)

(D2 − �2)W = −�2Ra�. (6.26)

Eliminating � we have

(D2 − �2)2W = �2RaW, (6.27)

with

W = D2W = 0 at ẑ = 0 and ẑ = 1. (6.28)

We see immediately that W = sin( jπẑ) is a solution, for j = 1, 2, 3, . . . , if

Ra = ( j2π2 + �2)2

�2
. (6.29)

Clearly Ra is a minimum when j = 1 and � = π, i.e., the critical Rayleigh number
is Rac = 4π2 = 39.48 and the associated critical wavenumber is �c = π. For the
higher-order modes ( j = 2, 3, . . .), Ra j = 4π2 j2 and �cj = jπ. An alternative to
the derivation of critical Rayleigh number is constructal theory (Nelson and Bejan,
1998; Bejan, 2000), which yields Rac = 12π = 37.70 (see Section 6.26).

In conclusion, for Ra < 4π2 the conduction state remains stable. When Ra is
raised above 4π2, instability appears as convection in the form of a cellular motion
with horizontal wavenumber π.
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In this way linear stability theory predicts the size of the convection cells but
it says nothing about their horizontal plan-form, because the eigenvalue problem
is degenerate. The (x, y) dependence can be given by any linear combination of
terms of the form exp (ilx + imy) where l2 + m2 = �2. In particular, dependence
on sin �x corresponds to convection rolls whose axes are parallel to the y axis;
dependence on sin(�x/

√
2) sin(�y/

√
2) corresponds to cells of square plan form,

and dependence on cos �x + 2 cos(�x/2) · cos(
√

3 �y/2) corresponds to cells of
hexagonal plan form. In each case the nondimensional horizontal wavelength is
2π/�c = 2. Since the height of the layer is 1, this wavelength is the width of a pair
of counterrotating rolls of square vertical cross section. Further, linear theory does
not predict whether, in a hexagonal cell, fluid rises in the center and descends near
the sides or vice versa; nonlinear theory is needed to predict which situation will
occur.

Equation (6.29) has been obtained for the case of impermeable conducting
boundaries. For other boundary conditions the eigenvalue problem must in general
be solved numerically, but there is one other case when a numerical calculation is
not necessary. It is made possible by the fact that the critical wavenumber is zero,
and so an expansion in powers of �2 works.

That special case is when both boundaries are perfectly insulating, i.e., the heat
flux is constant on the boundaries. When the boundaries are also impermeable, we
have

W = D� = 0 at ẑ = 0 and ẑ = 1. (6.30)

Writing

(W, �, Ra) = (W0, �0, Ra0) + �2(W1, �1, Ra1) + · · · (6.31)

substituting Eqs. (6.25), (6.26), and (6.30) and equating powers of �2, we obtain
in turn systems of various orders. For the zero-order system we find that

D2W0 = 0, D2�0 + W0 = 0,

W0 = D�0 = 0 at ẑ = 0, 1

This system has the solution W0 = 0, �0 = constant, and without loss of generality
we can take �0 = 1. The order �2 system is

D2W1 = W0 − Ra0�0 = −Ra0, D2�1 + W1 = �0 = 1,

W1 = D�1 = 0 at ẑ = 0, 1.

With the arbitrary factor suitably chosen, these equations yield in succession

W1 = − 1
2 Ra0 (ẑ2 − ẑ)〈

1 + 1
2 Ra0 (ẑ2 − ẑ)

〉 = 0.

This implies that Ra0 = 12. From the order �4 system Ra1 can be calculated. It
turns out to be positive, so it follows that Rac = 12, �c = 0.
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Table 6.1. Values of the critical Rayleigh number Rac and the corresponding critical
wavenumber �c for various boundary conditions (after Nield, 1968). The terms free,
conducting, and insulating are equivalent to constant pressure, constant temperature, and
constant heat flux, respectively.

IMP: impermeable (K = 8) FRE: free (K = 0)
CON: conducting (L = 8) CHF: constant heat flux (L = 0)

Kl Ku Ll Lu Rac �c

IMP IMP CON CON 39.48 = 4π2 3.14 = π

IMP IMP CON CHF 27.10 2.33
IMP IMP CHF CHF 12 0
IMP FRE CON CON 27.10 2.33
IMP FRE CHF CON 17.65 1.75
IMP FRE CON CHF 9.87 = π2 1.57 = π/2
IMP FRE CHF CHF 3 0
FRE FRE CON CON 12 0
FRE FRE CON CHF 3 0
FRE FRE CHF CHF 0 0

More generally, one can impose boundary conditions

DW − Kl W = 0, D� − Ll� at ẑ = 0, (6.32)

DW + Ku W = 0, D� + Lu� = 0 at ẑ = 1.

The subscripts l and u refer to lower and upper boundaries, respectively. Here Ll

and Lu are Biot numbers, taking the limit values 0 for an insulating boundary and 8
for a conducting boundary. The coefficients Kl and Ku take discrete values, 0 for a
boundary at constant pressure (as for the porous medium bounded by fluid), and 8
for an impermeable boundary. Critical values for various combinations are given in
Table 6.1 after Nield (1968), with a correction. [The traditional term “insulating”
refers to perturbations. This is somewhat confusing terminology, so following
Rees (2000) we now refer to this as the constant heat flux condition. Also, strictly
speaking, the constant pressure condition refers to a hydrostatic situation in the
exterior region.] As one would expect, Rac and �c both decrease as the boundary
conditions are relaxed. Calculations for intermediate values of the Biot numbers
Ll and Lu were reported by Wilkes (1995). The onset of gas convection in a moist
porous layer with the top open to the atmosphere was analyzed by Lu et al. (1999).
They found that the critical Rayleigh number was then less than the classical value
of π2. The open-top problem for a vertical fault was analyzed by Malkovsky and
Pek (2004).

Tyvand (2002) demonstrated that the open boundary condition, traditionally
known as the constant temperature boundary condition, corresponds to requiring
that the surrounding fluid is hydrostatic. Just as the kinematic condition on an im-
permeable boundary is n · v = 0, the condition on an open boundary is v × n = 0.
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6.3. Weak Nonlinear Theory: Energy and Heat
Transfer Results

The nonlinear nondimensional perturbation equations are

�a
∂v
∂t

= −∇ P − v + Ra T k, (6.33)

∂T

∂t
− w + v · ∇T = ∇2T (6.34)

in which, for convenience, we have dropped the carets. These equations can be
compared with the linear set (6.17) and (6.18).

We can obtain equations involving energy balances by multiplying Eqs. (6.33)
and (6.34) by v and �. , respectively, and averaging over the fluid layer. We use the
notation

〈 f 〉 =
∫ 1

0
f̄ dz,

where the bar denotes an average over (x, y) values at a given value of z. Using
the fact that all expressions that can be written as a divergence vanish because
of the boundary conditions and because contributions from the sidewalls become
negligible in the limit of an infinitely extended layer, we obtain

1

2
�a

∂

∂t
〈v · v〉 = 〈Ra wT 〉 − 〈v · v〉, (6.35)

1

2

∂

∂t
〈T 2〉 = 〈wT 〉 − 〈|∇T |2〉. (6.36)

For steady or statistically stationary convection the left-hand sides of these two
equations are zero. Then Eq. (6.35) expresses the balance between the work done by
the buoyancy force and the viscous dissipation, while Eq. (6.36) represents a similar
relationship between the convective heat transfer and the entropy production by
convection.

That 〈wT 〉 represents the convective part of the heat transport can be demon-
strated as follows. The horizontal mean of Eq. (6.34) is

∂T

∂t
+ ∂

∂z
(wT ) = ∂2T

∂z2
. (6.37)

For a steady temperature field, integration with respect to z and use of the boundary
conditions gives

∂T

∂z
= wT − 〈wT 〉. (6.38)

Since the normal component of the velocity (w) vanishes at the boundary, the
entire heat flux is transported by conduction at the boundary. Thus the expression

− ∂T

∂z

∣∣∣∣∣
z=1

= 〈wT 〉
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represents the convective contribution to the heat transport. The Nusselt number Nu
is defined as the ratio of the heat transports with and without convection. Therefore
we conclude that

Nu = 1 + 〈wT 〉. (6.39)

From Eq. (6.35) it follows that under stationary conditions 〈wT 〉 = 0 and so Nu =
1. Also, under the same conditions, we see from Eqs. (6.35) and (6.36) that

Ra =
〈|v|2〉 〈|∇T |2〉

〈wT 〉2
. (6.40)

The right-hand side has a positive minimum value, and it follows that steady or
statistically stationary convection can exist only above a certain positive value of
Ra. The right-hand side can be interpreted as a functional of the trial fields v and
T . When this functional is minimized subject to the constraints of the continuity
equation (6.16) and the boundary conditions, the energy stability limit RaE is
obtained. No steady or statistically stationary form of convection is possible for
Ra < RaE ; further details on this are given by Joseph (1976). The Euler equations
corresponding to the variational problem that determine RaE turn out to be math-
ematically identical to the linearized steady version of Eqs. (6.16)–(6.18). Thus
finite amplitude “subcritical instability” is not possible, and the criterion Ra=Rac

provides not only a sufficient condition for instability but also a necessary one.
We also note that the total nondimensional mean temperature gradient ∂Ttotal/∂z

is given by

∂ T̄total

∂z
= −1 + wT − 〈wT 〉 (6.41)

and that it is related to the conduction-referenced Nusselt number,

Nu = −
∣∣∣∣∂ T̄total

∂z

∣∣∣∣
z=0

. (6.42)

We also note that the effect of convection is to increase the temperature gradient
near each boundary and decrease it in the remainder of the layer.

From Eq. (6.34) in the steady case we have∫ 1

0
wT

∂T total

∂z
dz = 〈T ∇2T 〉

and after using Eq. (6.41),

〈wT 〉 + 〈T ∇2T 〉 =
∫ 1

0
(wT )2dz − 〈wT 〉2. (6.43)

If we now substitute for w and T the solutions of the linearized equations, we
obtain an expression for the amplitude A of the disturbances corresponding to the
j th mode,

A = (Ra − Racj )
1/2. (6.44)

At the same time we can compute the Nusselt number from Eq. (6.39).
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Figure 6.2. The theoretical relationship Nu(Ra) given by Eq. (6.45) (Bories, 1987, with
permission from Kluwer Academic Publishers).

If we assume that the various modes contribute independently to the Nusselt
number, we then obtain

Nu = 1 +
∞∑
j=1

k j

(
1 − Racj

Ra

)
, (6.45)

where Racj = 4 j2π2, k j = 2 for Ra > Racj , and k j = 0 for Ra < Racj , for the
case of two-dimensional rolls. As Rudraiah and Srimani (1980) showed, other plan
forms lead to smaller values of k1, and hence may be expected to be less favored at
slightly supercritical Rayleigh numbers. The Nusselt number relationship (6.45)
is plotted in Fig. 6.2. It predicts values of Nu that generally are lower than those
observed. It leads to the asymptotic relationship Nu → (2/3π) Ra1/2 as Ra → ∞
(Nield, 1987b). Similar results for the case of constant flux boundaries rather than
isothermal boundaries were obtained by Salt (1988). As expected, this change
leads to an increase in Nu, the change becoming smaller as Ra increases (because
more and more modes then contribute).

Expression (6.45) may be compared with the result of Palm et al. (1972), who
performed a perturbation expansion in powers of a perturbation parameter � defined
by

� =
(

1 − Rac

Ra

)1/2

.

Their sixth-order result is

Nu = 1 + 2λ

[
� 2 +

(
1 − 17

24
λ

)
� 4 +

(
1 − 17

24
λ + 191

288
λ2

)
� 6

]
, (6.46)

where λ = (1 − � 6)−1. Equation (6.46) predicts well the observed heat transfer for
Ra/Rac < 5.
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Using a variational formulation based on the Malkus hypothesis that the physical
realizable solution is the one that maximizes the heat transport (see also Section
6.24), Busse and Joseph (1972) and Gupta and Joseph (1973) obtained upper
bounds on Nu. These were found to be in good agreement with the experimental
data of Combarnous and Le Fur (1969) and Buretta and Berman (1976) for Ra
values up to 500 (see Section 6.9). Further work on bounds on heat transport was
reported by Doering and Constantin (1998) and Vitanov (2000).

An expansion in powers of (Ra − Rac)1/2 to order 34 was carried out by Grund-
mann and Mojtabi (1995) and Grundmann et al. (1996). They thus computed with
great precision the values of Nu at a few values of Ra.

6.4. Weak Nonlinear Theory: Further Results

We briefly outline the perturbation approach that is applicable to convection in
both clear fluids and in porous media. It has been presented in detail by Busse
(1985). The analysis starts with the series expansions

v = ε[v(0) + εv(1) + ε2v(2) + . . .], (6.47)

Ra = Rac + εRa(1) + ε2Ra(2) + . . . , (6.48)

and analogous expressions for T and P , and involves the successive solutions of
linear equations corresponding to each power of ε. These expressions are sub-
stituted into Eqs. (6.16)–(6.18). Since only steady solutions are examined, the
∂/∂t terms vanish and in the order ε1 problem we have the same equations as for
the linear problem treated in Section 6.2. The general solution to that problem is
expressed as

w(0) = f (z, �)
∑

n

cn exp (ikn · r), (6.49)

where r is the position vector and the horizontal wavenumber vectors kn satisfy
|kn| = � for all n.

In the order ε2 and higher-order problems, inhomogeneous linear equations
arise, and the solvability condition determines the coefficients Ra(n) and provides
constraints on the choice of coefficients cn . In this fashion possible solutions,
representing two-dimensional rolls and hexagons, are determined. There still exist
many such solutions. The stability of each of these is examined by superposing
arbitrary infinitesimal disturbances ṽ, T̃ on the steady solution v, T . By subtracting
the steady equations from the equations for v + ṽ, T + T̃ , the following stability
problem is obtained:

��av = −∇ P̃ + RaT̃ k − ṽ, (6.50a)

�̃T̃ + ṽ · ∇T + v · T̃ = w̃ + ∇2T̃ (6.50b)

∇ · ṽ = 0, (6.50c)

w̃ = T̃ = 0 at ẑ = 0.1. (6.50d)



6.4. Weak Nonlinear Theory: Further Results 199

These equations are based on the observation that since the stability problem is
linear, the time dependence can be assumed to be of the form exp(�̃t). The steady
solution is unstable when an eigenvalue �̃ with a positive real part exists.

The eigenvalue problem (6.50) can be solved by expanding ṽ, T̃ , and �̃ as
power series in ε analogous to Eq. (6.47). By considering coefficients up to �̃(2)

in the series for �̃, one can demonstrate that all steady solutions are unstable with
the exception of two-dimensional rolls. Moreover, it is found that at small but
finite values of Ra − Rac rolls corresponding to a finite range of wave-numbers are
stable.

The main conclusion to be drawn from such results is that a spectrum of different
steady convection modes is physically realizable and the asymptotic state of a
convection layer in general will depend on the initial conditions.

Although two-dimensional rolls are favored when the physical problem has
vertical symmetry about the midplane, it is found that hexagons are favored when
there is a significant amount of asymmetry, whether it is due to different boundary
conditions at top and bottom or due to property variations with temperature or other
heterogeneities. Hexagons also are favored when the basic temperature profile
is not linear, as when convection is produced by a volume distribution of heat
sources rather than by heating from below. Two-dimensional rolls rarely have
been observed in experiments on Rogers-Horton-Lapwood convection, even in
circumstances when they might have been expected [as in one experiment reported
by Lister (1990)].

The direction of motion in a hexagonal cell is influenced by property variations.
Other things being equal, motion at the center of a cell is in the direction of
increasing kinematic viscosity. In liquids the kinematic viscosity decreases as the
temperature increases, so the liquid rises in the center of a cell. In gases the reverse
is the case, so gas sinks in the center of a cell. Further reading on this is provided
by Joseph (1976, p. 112).

We conclude this section with the results of a study of the stability of con-
vection rolls to three-dimensional disturbances made by Joseph and Nield and
reported in Joseph (1976, Chapter XI). The various types of possible disturbances
are graphically labeled as parallel rolls, cross-rolls, sinuous (or zig-zag) rolls, and
varicose rolls. Joseph and Nield found that the sinuous rolls and the cross-rolls
are the ones that effectively restrict the range �1(ε) < �(ε) < �2(ε) for which the
convection rolls of wavenumber �(ε) are stable. For the case of impermeable con-
ducting boundaries, the stability boundary for cross-rolls in the neighborhood of
the critical point (�c, Rac), where �c = π, Rac = 4π2, is given by

Ra

Rac
− 1 = 10

3

(
�

�c
− 1

)2

(6.51)

and that for the sinuous rolls is given by

Ra

Rac
− 1 = 12

191/2

(
1 − �

�c

)1/2

, � < �c . (6.52)
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Figure 6.3. Sketch of parabolic approximations of (�, Ra) projections of nonlinear
neutral curves for roll convection, valid in a neighborhood of (�c, Rac). The neutral
curve for the rest state with a constant temperature gradient is shown as I. Curves II, III,
IV, and V are nonlinear neutral curves for different convection disturbances. Sinuous
and varicose instabilities occur only when � < �c (Joseph, 1976, with permission from
Springer Verlag).

For comparison, the neutral curve for the basic conduction solution is

Ra

Rac
− 1 =

(
�

�c
− 1

)2

. (6.53)

Equation (6.52) determines the lower limit of the range of wavenumbers for stable
rolls and Eq. (6.51) the upper limit for Ra values near Rac (Fig. 6.3).

For larger values of Ra numerical calculations are necessary to determine the
range of wavenumbers for stability. In this way Straus (1974) calculated a balloon-
shaped curve in the (�, Ra) plane. The points situated inside the balloon correspond
to stable rolls (Fig. 6.4).

The stability of two-dimensional convection has been analyzed further by De
la Torre Juárez and Busse (1995) for Ra values up to 20 times the critical. Some
of their results are displayed in Figures 6.5–6.7. In Fig. 6.5, the Nusselt number
is plotted against Ra for fixed � = �c. At Ra = 391 ± 1 the steady solution
becomes unstable and is replaced by an oscillatory solution with a higher Nusselt
number; the frequency also is given in the figure. At Ra = 545 this even solution
becomes unstable. For a given Rayleigh number, the Nusselt number varies with
the wavenumber as shown in Fig. 6.6. The results of stability analysis are shown in
Fig. 6.7. This figure shows that there is an oscillatory instability predicted for small
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Figure 6.4. Regions of stable and unstable two-dimensional rolls. The dashed line is
the neutral stability curve obtained from the linear stability analysis (Straus, 1974, with
permission from Cambridge University Press).
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Figure 6.5. Average value of the Nusselt number of the steady and oscillatory solutions
as a function of the Rayleigh number for a fixed wavenumber � = �c . The unstable
stationary solutions are represented by dots. The frequency of the oscillatory solutions
is denoted by squares (De la Torre Juárez and Busse, 1995, with permission from
Cambridge University Press).
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Figure 6.6. Value of the Nusselt number of the steady solutions as a function of the
wavenumber � for different values of the Rayleigh number (De la Torre Juárez and
Busse, 1995, with permission from Cambridge University Press).
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Figure 6.7. Regions of stability of the steady solutions as a function of the Rayleigh
number and the wavenumber. The neutral curve is the outer solid line; the Eckhaus
instability is plotted as a line with solid circles; the transitions to the different oscillatory
instabilities are plotted as a solid line with squares at high wavenumbers and as a solid
line at low wavenumbers; the stability limits of the stationary oscillatory solutions are
plotted as a solid line with open circles (De la Torre Juárez and Busse, 1995, with
permission from Cambridge University Press).
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wavenumbers � ∼ �c. This oscillatory state has been observed in experiments with
Hele-Shaw cells.

De la Torre Juàrez and Busse also carried out direct numerical integrations in
time of the solutions in the unstable regions. They found that the Eckhaus instability
limiting the band of stable wavenumbers at low supercritical Rayleigh numbers is
replaced by a sideband instability corresponding to odd-parity perturbations as the
Rayleigh number increases. This instability leads to a 3:1 jump in the wavelength.
A third instability of oscillatory character occurs at high wavenumbers, which is
also related to a 3:1 resonance mechanism and tends to change the wavelength by a
finite amount. The fourth instability yields an oscillatory state of even parity for low
wavenumbers and for Rayleigh numbers above Ra = 218. In the region where even
oscillatory solutions exist, they lose stability through the growth of odd oscillatory
modes. In one case the odd modes grow while the existing even oscillatory solution
persists, yielding a noncentrosymmetric state with several temporal frequencies.
In a second case, occurring at Ra above 790, steady convection bifurcates into a
regular oscillatory state where the odd modes dominate the even modes; this is
related to an asymmetry between the rising hot and the falling cold plumes.

Nisse and Néel (2005) have investigated the stability of rolls with intermediate
wavelength (those not unstable to the cross-roll, Eckhaus and zig-zag instabilities).
They proved that such rolls are spectrally stable.

The effect of quadratic drag was studied by Rees (1996b). He found that rolls
with a wavenumber less than the critical value are no longer unconditionally un-
stable. Also the Eckhaus (parallel-roll) and zigzag (sinuous) stability bounds are
less restrictive than in the absence of quadratic drag, but the opposite is true for
the cross-roll instability.

The results discussed so far in this section have been based on the assumption
that the porous medium is bounded by impermeable isothermal (perfectly conduct-
ing) planes. Riahi (1983) has shown that when the boundaries have finite thermal
conductivity, the convection phenomenon is different. He found that cells of square
plan form are preferred in a bounded region  of the (λb, λt ) space, where λb and
λt are the ratios of the thermal conductivities of the lower and upper boundaries
to that of the fluid and two-dimensional rolls are favored only outside .

For the case of uniform heat-flux on the boundaries, Néel and Lyubimov (1995)
have proved the existence of periodic solutions for a class of nonlinear regular
vector fields.

The results in this section bear on the choice of wavenumber to use in numerical
simulations. Since the theory does lead to a unique value and since the Malkus
hypothesis (that the selected wavenumber is that which maximizes heat transfer)
is now known to be unsatisfactory, Nield (1997b) has suggested that in most cases
it is probably satisfactory to take � = �c in the simulations..

Adomian’s decomposition method and weak nonlinear theory were compared
by Vadasz (1999a), who explained the experimental observation of hysteresis from
steady convection to chaos to steady state (see also Auriault, 1999; Vadasz, 1999b).
The Adomian method was further used by Vadasz and Olek (1999a, 2000a) to dis-
cuss convection for low and moderate Prandtl number, and its application to the
solution of the Lorenz equations was investigated by Vadasz and Olek (2000b).
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Weak turbulence in small and moderate Prandtl number convection was reviewed
and elucidated by Vadasz (2003). The computational recovery of the homoclinic or-
bit was discussed by Vadasz and Olek (1999b), while the compatibility of analytical
and computational solutions was discussed by Vadasz (2001b). The question of
whether the transitions involved in porous media natural convection could be
smooth was examined by Vadasz et al. (2005). The results of their examination
suggest that the transitions inevitably are sudden. A comprehensive review of the
subject of weak turbulence and transitions to chaos was made by Vadasz (2000b).

An unconditional stability result for the case of a cubic dependence of density on
temperature, with the Forchheimer equation, was obtained by Carr (2003). Further
work on oscillatory convection regimes was reported by Holzbecker (2001), while
Holzbecher (2004b) treated a mixed boundary condition appropriate for open-
top enclosures. He noted that at 16.51 the critical Rayleigh number is then much
lower than the classical value. Holzbecher (2005a) studied both free and forced
convection for open-top enclosures. Cosymmetric families of steady states and
their collision were investigated by Karasozen and Tsybulin (2004).

A review of some aspects of nonlinear convection was made by Rudraiah et al.
(2003). A comprehensive review of other matters, including methods for calculat-
ing eigenvalues, is contained in the book by Straughan (2004b).

6.5. Effects of Solid-Fluid Heat Transfer

At sufficiently large Rayleigh numbers, and hence sufficiently large velocities, one
can expect that local thermal equilibrium will break down, so that the temperatures
Ts and T f in the solid and fluid phases are no longer identical. Instead of a single
energy equation (2.3) or (6.5) one must revert to the pair of equations (2.1) and
(2.2). Following Bories (1987), we consider the case of constant conductivities ks

and k f and no heat sources, but we modify Eqs. (2.1) and (2.2) by allowing for
heat transfer between the two phases. Accordingly we have

(1 − �)(
c)s
∂T ∗

s

∂t∗ = kes∇∗2
T ∗

s − h(T ∗
s − T ∗

f ), (6.54)

�(
cP ) f

∂T ∗
f

∂t∗ + (
cP ) f v∗ · ∇∗T ∗
f = kef ∇∗2

T ∗
f − h(T ∗

f − T ∗
s ). (6.55)

In these equations asterisks denote dimensional quantities and h is a heat transfer
coefficient, while kes and kef are effective conductivities. In the purely thermal
conduction limit kes = (1 − �)ks and kef = �k f . Equations (6.3), (6.4), and (6.6)
still stand. We choose H for length scale, (
c)m H 2/km for time scale, km /(
cP ) f H
for velocity scale, �T for temperature scale, and �km/K (
cP )m for pressure scale.
Then Eqs. (6.54) and (6.55) take nondimensional forms:

(1 − �M)(1 + �)
∂Ts

∂t
= ∇2Ts − �� (Ts − T f ), (6.56)

�M(1 + �−1)
∂T f

∂t
+ (1 + �−1)v · ∇T f = ∇2T f − � (T f − Ts), (6.57a)
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where

M = (
cP ) f

(
c)m
, � = kef

kes
, � = h H 2

�k f
. (6.57b)

Combarnous (1972) calculated the Nusselt number Nu as a function of Ra, �,
and � . He found that for a given value of �, Nu is an increasing value of � which
tends, when h → ∞, toward the value given in the local equilibrium model. This
trend is expected, because the limit corresponds to perfect transfer between solid
and fluid phase.

When the parameter � defined in Eq. (6.58) is maintained constant, Nu tends
toward the local equilibrium value as � increases, i.e., as the contribution of heat
conduction by the solid phase becomes negligible. When heat conduction through
the solid phase becomes very large, the Nusselt number decreases; in fact, Nu → 1
as � → 0.

The computed temperature distributions show that |Ts - T f | takes relatively large
values in the upper part of the upward current and the lower part of the downward
current. This illustrates the role of the solid phase as a heat exchanger. Another
point follows from the fact that � is the product of a local heat transfer factor
hd 2

p /�k f and (H/dp)2, where dp is the pore scale. When the scale factor H/dp is
large, the porous medium behaves as a thorough blend of solid and fluid phases.
When it is small, the porous medium is effectively more heterogeneous.

Banu and Rees (2002) demonstrated that both the critical Rayleigh number
and the wavenumber are modified by thermal nonequilibrium. For intermediate
values of the interphase heat transfer coefficient, the critical wavenumber is always
greater than π, the classic value. Postelnicu and Rees (2003) incorporated from
drag and boundary effects. For the case of stress-free boundaries they obtained the
expression

Ra = (π2 + �2)2

�2

[
1 + Da(π2 + �2)

] [
(π2 + �2) + � (1 + � )

(π2 + �2 + �� )

]
, (6.58)

where � = ��(1 − �). The critical Rayleigh number is obtained on minimization
with respect to variation of �. Clearly Rac is an increasing function of Da, and for
Da = 0 it is an increasing function of � from the base value 4π2 with the amount
of increase decreasing as � increases.

Boundary effects were also considered by Malashetty et al. (2005b). The situ-
ation where there is heat generation in the solid phase in a square enclosure was
studied numerically by Baytas (2003, 2004). An anisotropic layer was considered
by Malashetty et al. (2005a).

6.6. Non-Darcy, Dispersion, and Viscous Dissipation Effects

Corresponding to the Darcy equation (6.17), the linear Brinkman equation is

�a
∂v
∂t

= −∇ P − v + D̃a∇2v + Ra �k. (6.59)
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Figure 6.8. Critical fluid Rayleigh number Ra f = RaH 2/K versus the Brinkman coef-
ficient B = (�̃/�)K/H 2 = (�̃/�) Da = D̃a. The figure illustrates the transition from
the Darcy limit to the clear fluid limit (Walker and Homsy, 1977).

Here D̃a is a Darcy number defined by

D̃a = �̃

�

K

H 2
= �̃

�

K

d2
p

(
dp

H

)2

(6.60)

and dp is a characteristic length on the pore scale. From the Carman-Kozeny
equation (1.5) we see that K/d 2

p is of the order of unity unless � is close to 1.
Also �̃/� is of the order of unity, while dp/H is small if the porous medium is
properly represented by a continuum. It follows that B is normally very small, and
thus the Brinkman term is important only in boundary layers where ∇2v is large.
In conclusion, in naturally occurring media the net effect of the Brinkman term is
to alter the critical Rayleigh number by a small amount. An apparent exception to
this statement was reported by Lebon and Cloot (1986); they failed to distinguish
between a constant-pressure boundary and a stress-free boundary. Detailed cal-
culations are given by Walker and Homsy (1977), and Fig. 6.8. The Darcy result
holds if the Darcy number Da = K/H 2 < 10−3. For Da > 10, Ra ∼ 1708 Da, the
clear fluid limit. Rees (2002b) performed a perturbation analysis for small Darcy
number (defined to include the viscosity ratio) and obtained the approximation

Rac = 4π2 + 8π2Da1/2 + [8π4 + 12π2 + 4π331/2 tanh(31/2π/2)]Da, (6.60a)

ac = π + πDa1/2 (6.60b)

The Forchheimer equation that replaces Eq. (6.17) is

�a
∂v
∂t

= −∇ P − v − F |v| v + Ra � k, (6.61)

where F is a Forchheimer coefficient defined by

F = cF 
 f K 1/2�m

�H
Q = cF

Pr f

km

k f

(
K
H 2

)1/2

Q. (6.62)
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Table 6.2. Approximate values showing the dependence of Nusselt
number Nu and nondimensional r.m.s. velocity Q on the Rayleigh
number Ra (Nield and Joseph, 1985).

Ra Nu Q

102 3 15
3 × 102 6 40

103 10 100
3 × 103 14 200

104 20 340

In these equations Pr f = �/
 f � f is the Prandtl number of the fluid and Q is a
Péclet number expressing the ratio of a characteristic velocity of the convective
motion to the velocity scale �m/H (with which we are working). In particular, if
we take Q to be the r.m.s. average Q̄, then we can use information given by Palm
et al. (1972) to deduce that (Table 6.2):

Q = [Ra (Nu − 1)]1/2. (6.63)

We can conclude that the Forchheimer term can be significant, even for modest
Rayleigh numbers, for thin layers of media for which Pr f (k f /km) is small. For ex-
ample, if we take the values cF = 0.1, K = 10−3cm2, H = 1 cm, which are appro-
priate for a 1-cm-thick layer of a medium of metallic fibers, and the value Ra = 300
that is typical for a transition to oscillatory convection (Section 6.8), then quadratic
drag is significant if Pr f k f /km is of order 0.1 or smaller. In other situations rather
large Rayleigh numbers are needed before quadratic drag becomes important.

The effect of quadratic drag was shown by Nield and Joseph (1985) to cause
the nose of the bifurcation curve in the (Ra, ε) plane to be sharpened; the standard
pitchfork bifurcation is modified to straight lines intercepting the zero amplitude
axis. Here ε is a measure of the amplitude of the disturbance. He and Georgiadis
(1990) confirmed the sharpening. Rees (1996b) undertook a third-order analysis
that showed that at higher Rayleigh numbers the usual square root behavior is
restored. He also developed a full weakly nonlinear stability analysis and found that
inertia causes some wavenumbers less than the critical value to regain stability, but
the cross-roll instability is more effective and reduces the stable wavenumber range.
The effect of quadratic drag on higher-order transitions was studied numerically
by Strange and Rees (1996). They expressed their results in terms of a parameter
G = F/Q. They found that at Rayleigh numbers below a second critical value a
steady cellular pattern exists, but the amplitude of the motion and the corresponding
rate of heat transfer decrease sharply as G increases. At the second critical Rayleigh
number, whose value increases almost linearly with G, the preferred mode of
convection is time periodic. The mechanism of Kimura et al. (1986), where waves
orbit each cell, also applies when quadratic drag is present.

Néel (1998) considered how a horizontal pressure gradient affects convection
in the presence of inertia and boundary friction effects. Her formulation leads to a
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cubic (rather than quadratic) drag term, and she found that this inertial effect leads
to an increase in the critical Rayleigh number.

We saw in Section 2.2.3 that the effect of thermal dispersion was to increase the
effective conductivity of the porous medium. Instead of Eq. (6.18) we now have

∂T

∂t
− ŵ = ∇ · [(1 + D∗)∇ T̂ ]. (6.64)

where D∗ is the ratio of dispersive to stagnant conductivity. According to the model
for a packed bed of beads adopted by Georgiadis and Catton (1988), D∗ = Di |v|,
where

Di = Cdb

(1 − �)H
. (6.65)

Here db is the mean bead diameter and C is a dispersion coefficient whose value
depends on the type of packing. Georgiadis and Catton performed calculations with
the value C = 0.36, which was chosen to give the best fit to experimental data.

Since the term D∗∇T Di |v| ∇T is of second order, it is clear that dispersion
does not affect the critical Rayleigh number, but it does have nonlinear effects that
decrease the overall Nusselt number significantly for coarse materials (Neichloss
and Degan, 1975). Kvernvold and Tyvand (1980) showed that dispersion expands
the stability balloon of Straus (1974) (Fig. 6.4), i.e., it causes two-dimensional
rolls to remain stable to cross-roll instabilities for Rayleigh numbers larger than
those in the absence of dispersion.

The effect of viscous dissipation and inertia on hexagonal cell formation was
studied by Magyari et al. (2005b). They show that when viscous dissipation is
present, the temperature profile loses its up/down symmetry when convection
occurs, and this causes hexagonal cells rather than parallel rolls to occur in the
case of a layer of infinite horizontal extent. This is because the lack of symmetry
allows two rolls, whose axes are at 60◦ to one another, to interact and reinforce
a roll at 60◦ to each of them, thus providing the hexagonal pattern. Hexagonal
is subcritical, i.e., it appears at Rayleigh numbers below 4π2. However, when
Ra is sufficiently above 4π2 the rolls are reestablished as the preferred pattern
of convection. When the Forchheimer terms are included, the range of Rayleigh
numbers over which hexagons exist and are stable decreases and the hexagons are
eventually extinguished. This result is qualitatively similar to that resulting when
the layer is tilted at increasing angles from the horizontal, although there are two
main orientations of hexagonal solutions in this case. The rolls that form when
hexagons are destabilized are longitudinal rolls that may be regarded as streamwise
vortices like those considered by Rees et al. (2005a).

6.7. Non-Boussinesq Effects

So far we have neglected the work done by pressure changes. When we allow for
this, we replace Eq. (6.5) by

(
c)m
∂T

∂t
+ (
cP ) f v · ∇T + �T

(
∂ P

∂t
+ v · ∇ P

)
= km∇2T, (6.66)
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where the coefficient of thermal expansion � and isothermal compressibility �P

are given by

� = − 1




(
∂


∂T

)
P

, (6.67)

�P = 1




(
∂


∂ P

)
T

. (6.68)

The basic steady-state solution is given by the hydrostatic equations

vb = 0, Tb = T0 + �T
(

1 − z

H

)
,

d Pb

dz
= −
bg, (6.69a,b,c)

d
b

dz
= �Pb
b

d Pb

dz
− �b
b

dTb

dz
= −�Pb
2

b g + �b
b
�T

H
. (6.69d)

The two-dimensional linearized time-independent perturbation equations are

∂u′

∂x
+ ∂w′

∂z
+ w′

(
�b

�T
H

− �Pb
bg

)
= 0, (6.70)


bw
′
(

−cPb
�T

H
+ �bTbg

)
= km

(
∂2T ′

∂x2
+ ∂2T ′

∂z2

)
. (6.71)

∂ P ′

∂x
+ �b

u′

K
= 0, (6.72)

∂ P ′

∂z
+ �b

w′

K
= −
 ′g, (6.73)


 ′ = �Pb
b P ′ − �b
bT ′. (6.74)

In the Boussinesq approximation the term –�b
bT ′ in the equation for 
 ′ is re-
tained, but otherwise �b and �Pb are set equal to zero, while 
b, cPb, Tb, and
�b are regarded as constants. As a second approximation, one also can retain
the term �bTbg in Eq. (6.71), the left-hand side of which can be written as

bcPb(�bTbg/cPb − �T/H )w′.

The end result is that the critical Rayleigh number value is the same as before,
provided that in the definition of Rayleigh number one replaces the applied tem-
perature gradient �T/H by the difference between that and the adiabatic gradient
�bTbg/cPb. Thus the prime effect of compressibility is stabilizing, and the other
non-Boussinesq effects have only a comparatively minor effect on the critical
Rayleigh number. Details for the case when the fluid is water are discussed by
Straus and Schubert (1977) and for the case of an ideal gas by Nield (1982). For
a moist ideal gas of 100% humidity, flow and heat transfer are strongly coupled.
Zhang et al. (1994), using a perturbation analysis, showed that Rac then depends
heavily on the vapor pressure; the moist gas is much less stable than a dry gas,
because of the large latent heat carried by the former. A rarefied gas was consid-
ered by Parthiban and Patil (1996), but their analysis is flawed (see Nield, 2001c).
A finite amplitude analysis was reported by Stauffer et al. (1997). The impact of
thermal expansion on transient convection was studied by Vadasz (2001c,d).

It is usually a straightforward adjustment to allow for the variations of fluid
properties with temperature. This is exemplified by the numerical investigations



210 6. Internal Natural Convection: Heating from Below

of Gartling and Hickox (1985). The effect of viscosity variation was explicitly ex-
amined by Blythe and Simpkins (1981) and Patil and Vaidyanathan (1981). Mor-
land et al. (1977) examined variable property effects in an elastic porous matrix.
Nonlinear stability analysis for the case of temperature-dependent viscosity was
reported by Richardson and Straughan (1993) and Qin and Chadam (1996) incor-
porating Brinkman and inertial terms, respectively. Payne and Straughan (2000b)
addressed the Forchheimer equation and obtained unconditional nonlinear stability
bounds close to the linear stability ones using a viscosity linear in the temperature.
They also extended the analysis to a viscosity quadratic in temperature and to a
penetrative convection situation. For the Forchheimer model nonlinear stability
was analyzed using Lyapunov’s direct method by Capone (2001).

Nield (1996) showed that the effect of temperature-dependent viscosity on the
onset of convection was well taken into account provided the Rayleigh number was
defined in terms of the viscosity at the average temperature. This result is in accord
with concept of effective Rayleigh number Raeff introduced by Nield (1994c); for
this parameter the quantities appearing in the numerator of Ra are replaced by
their arithmetic mean values and those that appear in the denominator are replaced
by their harmonic mean values. A detailed theoretical and numerical study of the
effect of temperature-dependent viscosity was reported by Lin et al. (2003).

6.8. Finite-Amplitude Convection: Numerical Computation
and Higher-Order Transitions

Starting with Holst and Aziz (1972), the governing equations for natural convection
have been solved using a range of numerical techniques (finite differences, finite
element, spectral method). Out of necessity, these calculations must be made in a
finite domain, so a preliminary decision must be made about conditions on lateral
boundaries. It is presumed that these vertical boundaries are placed to coincide at
the cell boundaries, where the normal (i.e., horizontal) component of velocity and
the normal component of heat flux are both zero.

Caltagirone et al. (1981) performed calculations using the spectral method and
obtained the following results:

(a) For Ra < 4π2, the perturbation induced by initial conditions decreased and
the system tended to the pure conduction solution, as expected.

(b) For 4π2 < Ra < 240 to 300 the initial perturbation developed to give a stable
convergent solution that does not depend on the intensity or nature of this per-
turbation. Various stable convective rolls were observed: counterrotating rolls
(two-dimension), superposition of counterrotating rolls (three-dimension),
and polyhedral cells (three-dimension).

(c) For Ra > 240 to 300 a stable regime was not reached.

Transition to the fluctuating convection regime is characterized by an increase
of heat transfer relative to the stable solutions. The oscillations appear to be caused
by the instability of the thermal boundary layers at the horizontal boundaries. The
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existence of the oscillating state had been deduced from a stability analysis of
finite-amplitude two-dimensional solutions by Straus (1974), whose results are
illustrated in Fig. 6.3. It was also demonstrated through numerical calculations by
Horne and O’Sullivan (1974a). The oscillations have been shown by Caltagirone
(1975) and Horne and Caltagirone (1980) to be associated with the continuous
creation and disappearance of cells.

Or (1989) has extended the computations to the situation where the viscosity is
allowed to be temperature dependent. The vertical asymmetry thereby introduced
makes mixed modes significant. Or (1989) also examined stability with respect
to a class of disturbances that have a π/2 phase shift relative to the basic state.
He found little difference in transition parameters for the in-phase and phase-
shifted oscillatory instabilities. It is noteworthy that the temperature dependence
of viscosity provides a mechanism for generating a mean flow.

Further studies of higher-order transitions have been made by Aidun (1987),
Aidun and Steen (1987), Kimura et al. (1986, 1987), Caltagirone et al. (1987),
Steen and Aidun (1988), and Caltagirone and Fabrie (1989). The last study, based
on a pseudospectral method, concluded that in a two-dimensional square cavity the
following sequence occurs: From the second bifurcation, occurring at Ra= 390, the
flow becomes periodic. Between 390 and 600 the phenomenon is single-periodic
and only the frequency f2 incommensurable with f1 introduces a quasiperiodic
regime Q P1. When Ra increases further, the flow again becomes periodic (state
P2) up to Ra = 1000, where the appearance of frequencies f2 and f3 give a second
quasiperiodic regime Q P2.

The second regime Q P2 can be maintained up to Ra = 1500, after which the
single convecting roll splits up into two unsteady convecting rolls by entering
a chaotic restructuring regime. This sequence is subject to hysteresis as Ra is
lowered. The frequency f1 varies as Ra2, f2 as Ra5/2, and f3 as Ra3/2.

The periodic window between Ra = 600 and 1000 corresponds to third-order
locking of the oscillators corresponding to f1 and f2. The oscillators spring up
and develop within the thermal boundary layer near the horizontal walls, and the
evolution with Ra2 of f1 corroborates the fact that the observed instabilities are
due to the loss of stability in the boundary layer. The earlier study by Kimura et al.
(1987) revealed a rather different picture; for example, the second quasiperiodic
regime was not found, and f1 varied as Ra7/8. The work of Kladias and Prasad
(1990) suggests that when non-Darcy effects are taken into account the second
quasiperiodic regime does not exist.

Kladias and Prasad (1989b, 1990) have made numerical studies of oscillatory
convection using a Brinkman-Forchheimer equation. They found that whereas
the channeling effect (due to porosity variation) substantially reduced the critical
Rayleigh number for the onset of steady convection, the opposite occurred with
the critical Rayleigh number for the transition to oscillatory convection. This is
primarily due to the fact that the core of the cavity becomes more or less stagnant,
whereas the thermal activity and fluid motion is concentrated within thin boundary
layers along the walls. While the effects of mean porosity and specific heat ratio
are insignificant for steady convection, they are quite significant in the random
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fluctuating regime. In a square cavity steady convection is characterized by a single
cell, but the flow pattern for fluctuating convection is complex and dependent
on the fluid Prandtl number Pr f . For example, four cells can exist with pairs
on the diagonals alternately attaching and detaching with time. This results in a
large variation in Nusselt number with time. Generally an increase in Pr f (> 10)
increases the amplitude of fluctuation, whereas a decrease in Pr f (< 0.1) results
in a more stable flow. Otero et al. (2004) have studied numerically the case of
infinite Darcy-Prandtl number and high Rayleigh number. Their results include a
derivation of an upper bound on the heat transport: Nu ≤ 0.0297× Ra.

For the special case of constant flux imposed on the horizontal boundaries the
situation is markedly different. The analytical and numerical study of Kimura et al.
(1995) revealed that the unicellular set up when Ra exceeds 12 remains a stable
mode as the aspect ratio A increases, in contrast to the constant-temperature case
where multicellular convection is the preferred mode for A > 21/2. Further, the
unicellular flow remains as Ra increases to 311.53, above which nonoscillatory
longitudinal disturbances can grow. At sufficiently large Ra (above about 640 for
A = 8, with a critical frequency f = 22.7) there is a transition to oscillatory flow,
according to the numerical calculations; linear stability theory predicts a Hopf
bifurcation with transverse disturbances at Ra = 506.07 with frequency f = 22.1.

Vadasz and Olek (1998) have shown that when a Darcy equation with timewise
inertia term is taken, and with suitable scaling, the system of partial differential
equations can be approximated by the same famous system of ordinary equations
treated by Lorenz but with different values of the parameters. Their work described
for centrifugally driven convection extends to the gravitational situation.

Further numerical studies using a unified finite approach exponential-type
scheme have been reported by Llagostera and Figueiredo (1998) and Figueiredo
and Llagostera (1999). Bilgen and Mbaye (2001) have treated a cavity with warm
bottom and warm top and with additional lateral cooling.

This discussion of finite-amplitude convection is continued in Section 6.15.1.

6.9. Experimental Observations

6.9.1. Observations of Flow Patterns and Heat Transfer

Qualitative results for two-dimensional free convection were obtained using the
Hele-Shaw cell analogy by Elder (1967a) and Bories (1970a,b). In a Hele-Shaw
cell the isothermal lines can be observed by interferometry by using the fact that
the refractive index of a liquid is a function of density and so of temperature.
The streamlines can be visualized by strioscopy, i.e., by using light diffracted
from aluminum particles suspended in the liquid. These experiments confirmed
the theoretical value for the critical wavenumber and the fact that the wavenumber
increases with Ra in accordance with calculations based on the Malkus hypothesis.

Direct visualization of three-dimensional flow in a porous medium was made
by Bories and Thirriot (1969). They observed the accumulation of aluminum scat-
tered on a thin liquid layer overlying the medium. The cells appeared to have
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approximately hexagonal cross section (away from the lateral boundaries) with
the fluid rising in the center of each cell. The observations were checked by in situ
temperature recordings. For slightly supercritical Rayleigh number values the di-
mensions of the cells were about the same as those predicted by linear theory.
Howle et al. (1997) reported further visualization studies.

Many authors have performed experimental work in layers bounded by imper-
meable isothermal planes using conventional experimental cells (Schneider, 1963;
Elder 1967a,b; Katto and Masuoka, 1967; Combarnous and Le Fur, 1969; Bories,
1970a; Combarnous, 1970; Yen, 1974; Kaneko et al., 1974; Buretta and Berman,
1976). These have been concerned largely with heat transfer, but some experi-
menters have measured temperatures in the median plane of the layer in order
to observe the boundaries of convective cells. In experiments reported by Com-
barnous and Bories (1975) it was found that the cells were not as regular as those
obtained with a fluid clear of solid material. Again, polygons were observed away
from the lateral boundaries; the cell sizes were consistent with linear theory and the
wavenumber increased slightly with Rayleigh number. This change of wavenum-
ber is consistent with the observations in a Hele-Shaw cell (see two paragraphs
above) but it is in the opposite direction to that found in experiments with a clear
fluid. Nield (1997b) tentatively ascribed the difference as an effect of dispersion.

The experimental heat transfer results of several of these workers, together
with curves showing results from the upper bound analysis of Gupta and Joseph
(1973) and the numerical calculations of Straus (1974) and Combarnous and Bia

Figure 6.9. Compilation of experimental, analytical, and numerical results of Nusselt
number versus Rayleigh number for convective heat transfer in a horizontal layer heated
from below (Cheng, 1978, with permission from Academic Press).
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(1971), are displayed in Fig. 6.9. The theoretical results are in agreement with
experimental results for glass-water, glass-oil, and heptane-sand systems, but con-
siderably overestimate the heat transfer for steel-oil, lead-water, and ethanol-sand
systems. Possible reasons for this discrepancy are discussed below.

We note that the theoretical critical Rayleigh number Rac ≈ 40 (defined as
the Ra value for which Nu departs from the value 1) is confirmed by numerous
experiments. A precise test for Rac was made by Katto and Masuoka (1967), who
used nitrogen as the saturating fluid in order to reduce the temperature difference
required for a large variation in Rayleigh number, and thus reduce the effect of
property variation with temperature. Both the kinematic viscosity and thermal
diffusivity of a gas are almost inversely proportional to the pressure, and so Ra
can be varied through a large range by varying the pressure. Katto and Masuoka
found satisfactory agreement between theory and experiment. Kaneko et al. (1974)
observed Rac ≈ 28 for ethanol-sand systems, but it is likely that the reduction in
Rac was due to a nonlinear basic temperature profile (see Section 6.11). Close
et al. (1985) found that Rac remains near 40 even when the layer depth is as small
as two particle diameters.

When Ra is slightly supercritical, Nu increases linearly with Ra. For some
systems (e.g., glass-water) the range of linearity is quite extensive, and for these
Elder (1967a) proposed the correlation

Nu = Ra

40
. (6.75)

An extensive investigation, using glass beads, lead spheres, and sand as solids and
silicone oil and water as fluids, was carried out by Combarnous and Le Fur (1969).
This study showed that when the Rayleigh number reaches 240–280, there was
a noticeable increase in the slope of the Nu versus Ra curve. Caltagirone et al.
(1971) noted that it was apt to call the new regime the “fluctuating convective
state,” since the temperature field was continually oscillating. This fluctuating
state also was observed in Hele-Shaw cell experiments by Horne and O’Sullivan
(1974a). The transition is in accord with the numerical results discussed in Section
6.8. We recall that the transition is caused by instability of boundary layers at the
horizontal boundaries, and that the fluctuating state is one in which convection
cells continually appear and disappear, the number of cells doubling and halving.

Lein and Tankin (1992a) used the Christiansen filter concept to visualize the
convection in test sections with different aspect ratios. They found that the width-
to-height ratio of the convection cells did not vary with Ra for an impermeable
upper boundary, but it did increase significantly for a permeable upper boundary.

Further experiments were conducted by Kazmierczak and Muley (1994). They
found an increased heat transfer for a “clear top layer” compared with that for a
completely packed layer, the increase being due to channeling and which Nield
(1994a) showed was consistent with predictions based on the model of a clear fluid
layer on top of the porous medium layer (Sec. 6.19.1). They also did experiments
with the bottom wall temperature changed cyclically and found that the modulation
could either increase or decrease the heat transfer.
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Using magnetic resonance imaging, a noninvasive technique that yields quanti-
tative velocity information, Shattuck et al. (1997) examined the onset of convection
in a bed packed with monodisperse spheres in circular rectangular and hexagonal
planforms. Disordered media, prepared by pouring spheres into a container, are
characterized by regions of close packing separated by grain barriers and isolated
defects that lead to locally larger porosity and permeability, and so to spatial vari-
ations in Ra. The authors found that stable localized convective regions exist for
Ra < Rac, and these remain as pinning sites for convection patterns in the ordered
regions as Ra increases above Rac up to 5Rac, the highest value studied in such
media. In ordered media, with deviations from close packing only near the vertical
walls, stable localized convection appears at 0.5Rac in the wall regions. Different
stable patterns are observed in the bulk for the same Ra after each recycling be-
low Rac, even for similar patterns of small rolls in the wall regions. As expected,
roll-like structures are observed that relax rapidly to stable patterns between Rac

and 5Rac, but the observed wavenumber was found to be 0.7π instead of the π

predicted from linear stability theory. As Ra grows above Rac it was found that the
volume of upflowing to the volume of downflowing regions decreases and leads to
a novel time-dependent state, rather than the expected cross-rolls; this state begins
at 6Rac and is observed up to 8Rac, the largest Ra studied, and is probably linked
to departures from the Boussinesq approximation. Further, it was found that the
slope (S) of the Nusselt number curve is 0.7 rather than the predicted value of 2.
[For comparison, Elder (1967a) found S = 1. Howle et al. (1997) found a slope
between 0.53 and 1.35, depending on the medium, while Close et al. (1985) found
that S decreases as d/H increases.] Further experiments involving nuclear mag-
netic resonance plus numerical simulations were reported by Weber et al. (2001),
Kimmich et al. (2001), and Weber and Kimmich (2002).

In related work, Howle et al. (1997) used a modified shadow graphic technique
to observe pattern formation at the onset of convection. They found that for or-
dered porous media, constructed from grids of overlapping bars, convective onset
is characterized by a sharp bifurcation to straight parallel rolls whose orientation
is determined by the number of bar layers, Nb; for odd Nb the roll arc are perpen-
dicular to the direction of the top and bottom bars, but for even Nb they are at 45◦

to the bars. In a disordered system, produced by stacking randomly drilled disks
separated by spaces, a rounded bifurcation to convection, with localized convec-
tion near onset, is observed, and the flow patterns take on one of several different
cellular structures after each recycling through onset. The observations suggest
that the mechanism of Zimmerman et al. (1993) (involving spatial fluctuations in
Ra) and of Braester and Vadasz (1993) (involving continuous spatial variations of
permeability and thermal diffusivity) may both be operating. Howle (2002) has
reviewed work on convection in ordered and disordered porous layers.

6.9.2. Correlations of the Heat Transfer Data

The outstanding question posed by the experimental results is how one can best
explain the spread of points in the Nu versus Ra plot, Fig. 6.6. There are two
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theoretical approaches to the matter. The first explanation, put forward by Com-
barnous (1972), elaborated by Combarnous and Bories (1974) and modified by
Chan and Banerjee (1981), is based on the effect of solid-fluid heat transfer (see
Section 6.5). A drawback to using this approach is that it is difficult to make an
independent assessment of the heat transfer coefficient h. It turns out that this the-
ory predicts some but not all of the observed reduction in Nu values (below those
predicted from the simple Darcy local-thermal equilibrium model).

For this reason Prasad et al. (1985) decided that the solid-fluid heat transfer
model was of limited use. They proposed the use of an effective conductivity:

ke = �k f + (1 − �)km, (6.76)

where (1 − �) is the ratio obtained by dividing the overall pure-conduction heat
transfer estimate by the total heat transfer rate. This procedure, which is based on
the argument that somehow or other the influence of the porous medium conduc-
tivity km decreases and that of the fluid-phase conductivity k f increases, is quite
successful in correlating the data, but it is ad hoc.

The second explanation is that put forward by Somerton (1983), Catton (1985),
and Georgiadis and Catton (1986). These authors showed that the data spread
can be substantially reduced by taking into account the effect of fluid inertia (the
quadratic drag) which inevitably becomes increasingly important as Ra increases.
Jonsson and Catton (1987) presented a power law correlation of Nu in terms of Ra
and Pre, where Pre is an effective Prandtl number that can be defined, in terms of
the quantities that appear in Eq. (6.62), by

Pre = Pr f

cF

k f

km

(
K

H 2

)1/2

. (6.77)

Close (1986) suggested that the data be brought in line with theory by means of
the formula

Nu

Nui
= 1.572 × 10−2 × Ra0.344

f

(
k f

ks

)0.227 (
H

dp

)0.446 (
�

1 − �

)0.496

Pr0.279
f ,

(6.78)

where Nui is given by expression (6.45) and Ra f is a standard (non-Darcy)
Rayleigh number based on the properties of the fluid and a layer thickness dp

(the pore diameter). Formula (6.78) is successful for Nu < 10, but there are dis-
crepancies for Nu > 10. Close noted that the near equality of the exponents of
k f /ks and Pr f in Eq. (6.78) meant that Somerton’s claim that it is neglect of iner-
tial terms rather than solid-fluid heat transfer that causes the spread of data is not
necessarily correct, and it is likely that both are involved.

Wang and Bejan (1987) strengthened the case for the inertial explanation by
introducing the dimensionless group

Prp = Pre
H 2

K
(6.79)
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which arises naturally from the following scale analysis. At large Ra the quadratic
drag term dominates over the linear term in the Forchheimer equation

v + �

	
|v| v = K

�
(−∇ P + 
 f g), (6.80)

where � = cF K 1/2 and 	 = �/
 f . The flow consists of a core counterflow plus
boundary layers as shown in Fig. 6.10. In the core the vertical inertia scales as
� 	2/v and the boundary term scales as (K/�)
g��T , so the momentum balance
requires

�

	
v2 ∼ K

�

g��T . (6.81)

The energy equation (Bejan, 1984) is a balance between upward enthalpy flow
gradient (v�T/H ) and lateral thermal diffusion between the two branches of the
counterflow �m�T/L2, so

v
�T

H
∼ �m

�T

L2
. (6.82)

The balance between vertical enthalpy flow through the core (
	LcP�T ) and
vertical thermal diffusion through the end region of height �H and width L
requires


	LcP T ∼ ke L�T/�H . (6.83)

The scales that emerge as solutions to the system (6.81)–(6.83) are

L ∼ (�m H )1/2

(
�

g�K�T

)1/4

, (6.84)

v ∼
(

g�K�T

�

)1/2

, (6.85)

�H ∼ �m

(
�

g�K�T

)1/2

. (6.86)

We note in passing that these equations imply that L/H varies as Ra−1/4 and v

varies as Ra1/2. The heat transfer rate in the Forchheimer flow limit therefore must
scale as

Nu ∼ H

�H
∼ (Ra Prp)1/2. (6.87)

In contrast, heat flow in the Darcy flow limit scales as

Nu ∼ 1

40
Ra. (6.88)

Thus the transition from Darcy to Forchheimer flow occurs at the intersection of
Eqs. (6.87) and (6.88),

Ra ∼ Prp (6.89)
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Figure 6.10. (a) Convective roll dimensions. (b) The asymptotes of the function Nu(Ra,
Prp) suggested by scale analysis. (c) Heat transfer data, for convective heat transfer in
a horizontal layer heated from below (Wang and Bejan, 1987).

from which we deduce

Nu

Prp
∼ 1

40

Ra

Prp
, 40 < Ra < Prp, (6.90)

Nu

Prp
∼

(
Ra

Prp

)1/2

, Ra > Prp . (6.91)
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An important feature of Eqs. (6.90) and (6.91) is that they are both of the
form Nu/Prp = f (Ra/Prp). This motivates the plotting of Nu/Prp against Ra/Prp

to produce the graph shown in the lower part of Fig. 6.10. The agreement is good,
with the notable exception of Schneider’s (1963) data for Prp = 12 in the top right
corner of the figure. A line through this subset of data has the correct slope but is
clearly too high and possibly the deduced Prp value of 12 is not correct. With this
subset ignored, Wang and Bejan obtained the correlation

Nu =
{(

Ra

40

)n

+ [
c(Ra Prp)1/2

]n
}1/n

. (6.92a)

where n and c are two empirical constants,

n = −1.65 and c = 1896.4. (6.92b)

The simplicity of Eq. (6.92) in comparison with Eq. (6.78) is obvious.
We note that Kladias and Prasad (1989a,b, 1990) published the results of nu-

merical calculations of the Nusselt number in which they have investigated the
effects of Darcy number, Prandtl number, and conductivity ratio. They presented
their results in terms of a fluid Rayleigh number and a fluid Prandtl number. We
find this unhelpful for our present purpose, which is to summarize how the various
effects act in concert rather than in isolation. Kladias and Prasad have made an
important advance by showing that allowance for porosity variations brings the
computed Nusselt numbers in better agreement with experimental observations.
However, their (1989b) claim that Rac increases as Pr decreases was refuted by
Lage et al. (1992), who showed numerically that Rac is independent of Pr, as
the linear stability analysis indicates. [As Rees (2000) pointed out, this result is
obvious when the momentum equation is scaled so that Pr appears only in the
nonlinear terms, but it is not so obvious with other scalings.] Lage et al. proposed
the correlation (accurate to within 2 percent)

Nu − 1

Ra/Rac − 1
= [

(C1 Pr2)−m + C−m
2

]−m
, (6.93a)

where

� = 0.4, C1 = 172 Da−0.516, C2 = 0.295 Da−0.121, m = 0.4, (6.93b)

� = 0.7, C1 = 30 Da−0.501, C2 = 1.21 Da−0.013, m = 0.7. (6.93c)

On the basis of scale analysis, Lage (1993a) obtained the following general scale
for the Nusselt number:

Nu ∼ (L/H )

2

{
�


+ −� + [�2 + 2�2Ra Pr E]1/2

2E

}1/2

, (6.94a)

where

E = 1 + �J A(Pr) Pr +0.143�1/2

Da1/2 (6.94b)

� = �


+ �2 Pr

Da
+ �J A(Pr) Pr �


, (6.94c)
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and the function A(Pr) takes the value 1 for Pr ≥ 1 and Pr−1 for Pr <1, and L and H
are horizontal and vertical length scales, respectively, while  is the characteristic
time and J denote the viscosity ratio �/�e f f . The coefficient 0.143 arises from
the assumption that cF takes a form proposed by Ergun (1952). As Rees (2000)
pointed out, the criterion for the onset of convection depends on Da/� rather than
just Da, and this dependence also may be observed in Eq. (6.94a,b,c). Additional
experimental work has been reported by Ozaki and Inaba (1997).

6.9.3. Further Experimental Observations

Experiments by Lister (1990) in a large porous slab (3 m in diameter, 30 cm thick),
using two quite different media (a matrix of rubberized curled coconut fiber and
clear polymethylmethacrylate beads), have revealed several new phenomena. With
the clear beads it was possible to visually observe the flows at the upper boundary.
The boundary conditions were symmetrical (both impermeable and conducting)
and so rolls were to be expected. Lister found that convection began in a hexagonal
pattern and there was only a slight tendency to form rolls at slightly supercritical
Rayleigh numbers.

Lister suggested that the asymmetry of the onset (one boundary maintained at
a constant temperature, the other slightly heated) and the shape of the apparatus
(hexagonal) could both be involved in the appearance of hexagons rather than rolls.
At higher Rayleigh numbers the pattern of convection became very complex, irreg-
ular, and three-dimensional, without developing any obvious temporal instabilities.
The visualization provided direct confirmation that the horizontal wavenumber
of the convection cells increased with the Rayleigh number, approximately as
(Ra + C)0.5, where C is a constant.

The Nu versus Ra curves obtained with the two media were substantially differ-
ent. This conclusion was unexpected. The only feature that they had in common
was a central section where the slope on a log/log graph was slightly over 0.5.
On the graph for the fiber experiment this section was preceded by a slope close
to 1 and followed by a slope close to 0.33. This last value is about the same as
other experimenters have observed for convection in a clear liquid, so the result
is expected because the fiber-filled medium had a porosity close to 100 percent.
The temperature measured at a point in the fill 25 mm below the top boundary was
unsteady at conditions representative of the upper two segments of the graph.

On the other hand, the Nusselt number for the bead fill jumps upward just above
onset (where Ra = 4π2), rapidly settles to a slope of 0.52, and then gradually
breaks upward again to a slope greater than 1 at the highest values (about 2000)
for Ra reached in the experiment. Lister reported that increases in conductivity and
permeability close to the boundary were not large enough to cause this increase in
slope. He concluded that a new phenomenon, lateral thermal dispersion, appears
to be responsible.

The phenomenon becomes important when the boundary layers become compa-
rable in size with the diffusion length of the lateral dispersion, namely the bead size.
The pores between beads are interlacing channels, i.e., they continually join and
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separate again, occasionally juxtaposing flows that would otherwise be separated
by a substantial thermal-diffusion distance. This greatly enhances interchannel
thermal contact, and the use of beads with an irregular shape (they were slightly
rounded short cylinders of 3 mm diameter and length in Lister’s experiment) means
that there will be some actual flow exchange between channels. In this way the
effective thermal diffusivity can be raised, but only if the flow velocity is suffi-
cient to juxtapose channel streamlines more frequently than they would diffuse
into equilibrium with each other by conduction. This means that lateral thermal
dispersion has no effect on heat transfer at the onset of convection nor when the
pores are sufficiently fine.

6.10. Effect of Net Mass Flow

On the Darcy model, if the basic flow is changed from zero velocity to a uniform
flow in the x direction with speed U, then the eigenvalue problem of linear stability
analysis is not altered if dispersion is negligible, since all the equations involved
are invariant to a change to coordinate axes moving with speed U, a result noted by
Prats (1966). Now some degeneracy is removed in that now longitudinal rolls (i.e.,
rolls with axes parallel to the x axis) are favored over other patterns of convection,
in other words, such disturbances grow faster than other disturbances for the same
Rayleigh number and overall horizontal wavenumber.

On the Forchheimer model the situation is different, as Rees (1998) pointed out.
Now, for the usual boundary conditions

Rac = π2[(1 + F)1/2 + (1 + 2F)1/2]2. (6.95a)

where F is given by Eq. (6.62) with the Péclet number Q based on the throughflow.
The critical wave number is given by

�c = π

(
1 + 2F

1 + F

)1/4

. (6.95b)

Rees noted that this result provides a means of testing the validity of Eq. (1.12) com-
pared with, for example, Eq. (2.57) of Kaviany (1995). Kubitscheck and Weidman
(2003) have analyzed a problem where the bottom wall is heated by forced convec-
tion. Delache et al. (2002) have studied the effect of inertia and transverse aspect
ratio on the pattern of flow. Time-periodic convective patterns have been studied nu-
merically and analytically by Néel (1998) and Dufour and Néel (1998, 2000). Here
various end-wall boundary conditions are imposed and the resulting flow patterns
investigated. They found an entry effect whereby increasing flow rates yield in-
creasing distances before strong travel-wave convection is obtained. A nonlinear in-
stability study using the Brinkman model was performed by Lombardo and Mulone
(2003). An experimental study related to aquifer thermal energy storage was
performed by Nakagano et al. (2002). Numerical simulations related to diagenesis
in layers of sedimentary rock were reported by Raffensperger and Vlassopoulos
(1999), but it appears that they ignored the possibility of longitudinal rolls.
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The effect of net mass flow with mean speed U in the z direction was studied by
Sutton (1970) and Homsy and Sherwood (1976). This effect is more significant,
because this alters the dimensionless temperature gradient from −1 to F(z) where

F(z) = − Pe exp(Pe)

exp(Pe) − 1
, (6.96)

where Pe is the Péclet number for the flow,

Pe = U H

�m
. (6.97)

Equation (6.26) is unchanged, but Eq. (6.25) is replaced by

(D2 − �2 − PeD)�̂ = F(z)Ŵ . (6.98)

Before discussing quantitative results, we consider some qualitative ones. When
Pe is large, the effect of the throughflow is to confine significant thermal gradients
to a thermal boundary layer at the boundary toward which the throughflow is
directed. The effective vertical length scale L is then the small boundary layer
thickness rather than the thickness H of the porous medium, and so the effective
Rayleigh number, which is proportional to L , is much less than the actual Rayleigh
number Ra. Larger values of Ra thus are needed before convection begins. Thus
the effect of large throughflow is stabilizing.

Within the bulk of the medium a large part of the heat transport can be effected
by the throughflow alone, and the value of the temperature gradient at which con-
vection cells are required is increased. The effective Rayleigh number is largely
independent of the boundary conditions at the boundary from which the through-
flow comes.

The situation for small values of Pe is more complex. The case of insulating
boundaries is readily amenable to approximate analysis. On the assumption that the
effect of Pe does not appreciably alter the shape of the eigenfunctions, one can ob-
tain analytical formulas for the critical Rayleigh number for various combinations
of boundary conditions.

For example, for the case in which both boundaries are impermeable and insu-
lating, Nield (1987a) obtained the formula

Rac = 2 Pe2

Pe coth(Pe/2) − 2
. (6.99)

Clearly Rac is an even function of Pe and for positive Pe is an increasing function
of Pe. Hence throughflow is stabilizing for all values of Pe, and the direction of
flow does not matter. For small values of Pe we have

Rac = 12 + 1

5
Pe2. (6.100)

On the other hand, when the lower boundary is impermeable and insulating and
the upper boundary is insulating and free (at constant pressure),

Rac = 2Pe[exp(Pe) − 1]

2Pe + 2 + (Pe)2 exp(Pe)
. (6.101)
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For small values of Pe:

Rac = 3

(
1 − 1

8
Pe

)
(6.102)

showing that the case of downflow (Pe < 0) is stabilizing and that upflow of small
magnitude is destabilizing. A similar picture is painted by the numerical results
for conducting boundaries by Jones and Persichetti (1986).

For symmetrical situations, where the lower and upper boundaries are of the
same type, Rac is an even function of Pe and throughflow is stabilizing by a degree
that is independent of the flow direction. When the boundaries are of different
types, throughflow in one direction is clearly destabilizing for small values of
Pe since dRac/dPe at Pe = 0 is not zero. The destabilization occurs when the
throughflow is away from the more restrictive boundary. The throughflow then
decreases the temperature gradient near the restrictive boundary and increases it in
the rest of the medium. Effectively the applied temperature drop acts across a layer
of smaller thickness, but the stabilizing effect of this change is more than made up
by the destabilization produced by changing the effective boundary condition to
a less restrictive one. A similar phenomenon, arising when the vertical symmetry
is removed by the temperature dependence of viscosity or by some nonuniformity
of the permeability, was found by Artem’eva and Stroganova (1987). Khalili and
Shivakumara (1998, 2003), Shivakumara (1999) and Khalili et al. (2002) have
extended the linear stability theory to consider the effects of internal heat generation
and anisotropy and also boundary and inertial effects. A study of the stability of
the solutions given by linear stability theory, together with a numerical study to
confirm the findings, was conducted by Zhao et al. (1999b).

Wu et al.(1979) have used numerical methods to study the case of maximum
density effects with vertical throughflow, while Quintard and Prouvost (1982) stud-
ied throughflow with viscosity variations that lead to Rayleigh-Taylor instability.
The nonlinear stability analysis of Riahi (1989) for the case of large Pe shows
that subcritical instability exists and this is associated with up-hexagons, which
are stable for amplitude ε satisfying |ε| = 0.35. For |ε| = 0.4, squares too are
stable, and the realized flow pattern depends on initial conditions. A general non-
linear analysis was reported by van Duijn et al. (2002). Their predictions were in
good agreement with the results of laboratory experiment with Hele-Shaw cells of
Wooding et al. (1997a,b).

6.11. Effect of Nonlinear Basic Temperature Profiles

6.11.1. General Theory

Nonlinear basic temperature profiles can arise in various ways, notably by rapid
heating or cooling at a boundary or by a volumetric distribution of heat sources.
When the former is the case, the profile is time-dependent, but one can investigate
instability on the assumption that the profile is quasistatic, i.e., it does not change
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significantly on the timescale of the growth of small disturbances. It is found that
with a curved temperature profile it is possible for the critical Rayleigh number
to be less than that for a linear profile. Indeed, in the case of the parabolic profile
arising from a uniform volume distribution of sources, the critical value Rac can
be arbitrarily small. But when the profiles are restricted to ones in which the
gradient does not change sign, the question of which profile leads to the least
Rac is not trivial. The question can be answered readily for the case of insulating
(constant heat flux) boundaries because then an analytic expression for Rac can be
found.

The problem is to minimize Rac with respect to the class of nondimensional
adverse temperature gradients f (ẑ) satisfying

f (ẑ) ≥ 0, 〈 f (ẑ)〉 = 1. (6.103)

where 〈 f (ẑ)〉 denotes the integral of f (ẑ) with respect to ẑ, from ẑ = 0 to ẑ = 1.
Nield (1975) shows that the problem reduces to maximizing 〈W0�0 f (ẑ)〉 where
W0 and �0 are normalized eigenfunctions. For example, in the case of impermeable
insulating boundaries it is found that W0 = ẑ − ẑ2, �0 = 1, and

Rac = 2

〈(ẑ − ẑ2) f (ẑ)〉 . (6.104)

The expression (ẑ − ẑ2) has its maximum when ẑ = 1/2, and consequently the
function f (ẑ), which minimizes Rac subject to the constraints (6.103), is the Dirac
delta function

f (ẑ) = �

(
ẑ − 1

2

)
.

The corresponding minimum value is Rac = 8. This may be compared with the
value Rac = 12 for the linear temperature profile. More generally, the step-function
temperature profile whose gradient is f (ẑ) = �(ẑ − ε) gives

Rac = 2

ε − ε2
. (6.105)

For piecewise linear temperature profiles whose gradient is of the form

f (ẑ) =
{

ε−1, 0 ≤ ẑ < ε

0, ε < ẑ ≤ 1
(6.106)

one finds that

Rac = 12

3ε − 2ε2
, (6.107)

The case of the linear temperature profile is given by ε = 1, Rac = 12, as expected.
As ε varies the minimum of expression (6.107) is attained at ε = 3/4, and then
Rac = 32/3. Nield (1975) showed that this provides the minimum for Rac subject
to

f (z) ≥ 0, d f/dẑ ≤ 0 (almost everywhere), 〈 f (ẑ)〉 = 1. (6.108)
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An extension of the above theory, incorporating the Brinkman term, was made by
Vasseur and Robillard (1993). An extension to the case of permeable boundaries
was reported by Thangaraj (2000).

6.11.2. Internal Heating

When a volumetric heat source q ′′′ is present, Eq. (6.5) is replaced by

(
c)m
∂T

∂t
+ (
cP ) f v · ∇T = km∇2T + q ′′′. (6.109)

The steady state is given by

vb = 0 and km∇2Tb = −q ′′′. (6.110)

If q ′′′ is constant, then the basic steady-state temperature distribution is parabolic,

Tb = −q ′′′z2

2km
+

(
q ′′′ H
2km

− �T

H

)
z + T0 + �T . (6.111)

In place of Eq. (6.13), one has

(
c)m
∂T ′

∂t
+ (
c) f

∣∣∣∣ q ′′′

2km
(H − 2z) − �T

H

∣∣∣∣ w′ = km∇2T ′. (6.112)

Equations (6.11) and (6.12) still stand. If instead of �T we now choose Ra�T
as temperature scale, then in terms of the new nondimensional variables one has,
for monotonic instability,

∇2ŵ = ∇2
H T̂ , (6.113)

∇2
H

ˆ̂T = [RaI (1 − 2ẑ) − Ra]ŵ, (6.114)

where ˆ̂T = Ra T̂ . The new nondimensional parameter is the internal Rayleigh
number RaI defined by

RaI = H 2q ′′′

2km�T
, Ra = g�K H 2q ′′′

2	�mkm
. (6.115)

We can refer to the original Ra as the external Rayleigh number, to distinguish it
from the internal Rayleigh number RaI .

Equations (6.113) and (6.114), which now contain a nonconstant coefficient,
may be solved numerically by using, for example, the Galerkin method. The sta-
bility boundary in the (Ra, RaI ) plane, Fig. 6.11, was calculated by Gasser and
Kazimi (1976) for the case of impermeable conducting boundaries. When RaI = 0,
the critical value of Ra is 4π2. When Ra = 0, the critical value of RaI is 470. Chang-
ing the thermal boundary condition at the lower boundary has a marked effect on
the critical value of RaI ; Buretta and Berman (1976) gave the estimate 32.8 for the
case of an insulating lower boundary. Within experimental error, this was in agree-
ment with their experiments, which involved a copper sulfate solution saturating
a bed of spherical glass beads.
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Figure 6.11. Critical internal Rayleigh number versus external Rayleigh number for
stabilizing and destabilizing temperature differences (Gasser and Kazimi, 1976).

These experiments by Buretta and Berman revealed an interesting effect. Their
Nu versus Ra diagram showed a bifurcation into two branches with different slopes.
There was also a jump from the lower branch to the upper at some Ra value that
increased with bead size. Subsequent experiments by Hardee and Nilson (1977),
Rhee et al. (1978), and Kulacki and Freeman (1979) failed to reproduce the jump.
The data obtained by Kulacki and Freeman tended to correlate with the lower
branch of Buretta and Berman’s curve, but those of the other experimenters tended
to correlate with the upper branch (Fig. 6.12). It appears that the discrepancy is still
unresolved, but it may be related to the unusual bifurcation structure found by He

Figure 6.12. Comparison of heat transfer results for internal heating (Kulacki and
Freeman, 1979).



6.11. Effect of Nonlinear Basic Temperature Profiles 227

and Georgiadis (1990), which arises from the effect of hydrodynamic dispersion
in the case of uniform volumetric heating.

Various authors have made analytical or numerical extensions of the prob-
lem. Kulacki and Ramchandani (1975) varied the thermal boundary conditions.
Tveitereid (1977) carried out a nonlinear stability analysis. He found that down-
hexagons (downward flow in the centers of the cells) were stable for Ra up to
8 Rac, up-hexagons were stable for all values of Ra, and two-dimensional rolls
were stable for 3Rac < Ra < 7Rac. His computed Nu versus Ra curves correlated
quite well with the upper branch of Buretta and Berman’s curve. Rudraiah et al.
(1980, 1982) carried out calculations of RaI c for various boundary conditions us-
ing the Brinkman equation. A nonlinear (energy) stability analysis was carried
out by Ames and Cobb (1994), who thereby estimated the Ra band for possible
subcritical instabilities.

Somerton et al. (1984) performed calculations that indicated that the wave
number for convection decreases with increasing internal Rayleigh number.
Kaviany (1984a) discussed a transient case when the upper surface temperature is
decreasing linearly with time. Hadim and Burmeister (1988, 1992) have modeled
a solar pond by allowing q ′′′ to vary exponentially with depth, including the effect
of vertical throughflow. Rionera and Straughan (1990) added the effect of grav-
ity varying in the vertical direction. Their analysis, based on the energy method,
revealed the possibility of subcritical convection Stubos and Buchlin (1993) nu-
merically simulated the transient behavior of a liquid-saturated core debris bed
with internal dissipation. Parthiban and Patil (1995) have extended the theory to
the case of inclined gradients (see Section 7.9). A bifurcation study employing the
Brinkman model was carried out by Choi et al. (1998).

The problem with a fluid undergoing a zero-order exothermic reaction was
analyzed by Malashetty et al. (1994): the chemical reaction leads to increased
instability. With determination of the conditions for the spontaneous combustion
of a coal stockpile in mind, Bradshaw et al. (1991) used an approximate analysis to
obtain convection patterns. They found that down-hexagons and two-dimensional
rolls are the stable plan forms, and using a continuation procedure they obtained
a simple criterion for the point of ignition in the layer, one given by a Frank-
Kamenetskii parameter exceeding 5.17.

Lu and Zhang (1997) studied the onset of convection in a mine waste dump,
in which there is active oxidation of pyritic materials, the rock being filled with
moist gas. They took into account the effects of compressibility, latent heat, and a
volumetric heat source varying exponentially with depth. Royer and Flores (1994)
presented a novel way of dealing with Darcy flow in an anisotropic and heteroge-
neous medium. The combination of internal heat sources and vertical throughflow
was treated by Yoon et al. (1998). A study involving external radiative incidence
and imposed downward convection was reported by Liu (2003). A general study
of radiative heat transfer was reported by Park et al. (1996).

The case where the volumetric heating is due to the selective absorption of
radiation was studied by Hill (2003, 2004a,b), employing both linear and nonlinear
stability analysis and also numerically, for each of the Darcy, Forchheimer, and
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Brinkman models. Convection with a non-Newtonian (power law) fluid at a large
internal Rayleigh number was treated numerically by Kim and Hyun (2004).

Transient effects and heat transfer correlations for turbulent heat transfer were
reported by Kim and Kim (2002) and Kim et al. (2002a,b). Jimenez-Islas et al.
(2004) conducted a numerical study of natural convection with grain in cylindrical
silos.

6.11.3. Time-Dependent Heating

The case where the temperature imposed on the lower boundary is timewise pe-
riodic was analyzed by Chhuon and Caltagirone (1979). The thermal boundary
conditions are now T = T0 at z = H and

T = T0 + �T (1 + � sin �∗t) at z = 0. (6.116)

For the basic state the nondimensional equations, expressed in terms of the same
scales as in Section 6.2, are vb = 0 and

∂ T̂b

∂ t̂
= ∂2T̂b

∂ ẑ2
, (6.117)

T̂b = 1 at ẑ = 1, (6.118)

T̂b = 1 + � sin �t̂ at ẑ = 0, (6.119)

� = � H 2

�m
�∗. (6.120)

The solution of the system of equations (6.117)–(6.120) is

T̂b = (1 − ẑ) + ��(ẑ) sin (�t + �(ẑ)) (6.121)

where

�(ẑ) = |q| , �(ẑ) = Arg q,

q(ẑ) = sinh[k(1 + i)(1 − ẑ)]

sinh[k(1 + i)]
, k =

(�

2

)1/2
. (6.122)

If we take perturbations on this steady state and, instead of Eq. (6.23), take

(ŵ, T̂ ) = [W (ẑ, t̂), �(ẑ, t̂)] exp(il x̂ + im ŷ), (6.123)

we obtain

∂�

∂ t̂
= (D2 − �2) � − W

∂ T̂b

∂ ẑ
, (6.124)

�a
∂

∂ t̂
(D2 − �2) W = −Ra�2� − (D2 − �2)W. (6.125)

In the case of impermeable isothermal boundaries the boundary conditions are

W = � = 0 at ẑ = 0 and ẑ = 1. (6.126)
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Figure 6.13. Critical Rayleigh numbers versus amplitude for frequency f = 4.23;
•, ◦ experiment, – – – linear theory, -------- Floquet theory (Chhuon and Caltagirone,
1979).

Chhuon and Caltagirone then set �a = 0, solved the system (6.124–6.126) using the
Galerkin method, and examined the stability of solutions of the resulting ordinary
differential equations using the Floquet theory. In this way they obtained the value
of a critical Rayleigh number Ract as a function of wavenumber �, amplitude �,
and frequency f = 2π/�. They also performed experiments and compared their
observations with their Floquet theory calculations and with calculations based on
linear theory by Caltagirone (1976a), shown in Fig. 6.13.

In comparing the theories there is the problem that for the linear theory the
stability criterion taken was a(t) < 0, a(t) being the amplitude of the temperature
perturbation. Both theories give the frequency range 1 to 100 as that over which
Ract varies significantly, but whereas in the Floquet theory Ract varies only slightly
with f , in the linear theory Ract varies from 40 as f → ∞ to 40/(� + 1) at f = 0.
Both theories predict destabilization from the stationary case. The Floquet theory
breaks down when f → 0, since the critical Rayleigh numbers must necessarily
approach 4π2/(� + 1).

As Fig. 6.13 shows, convective phenomena are observed for Rayleigh numbers
between those given by the two theories. Additional numerical calculations by
Chhuon and Caltagirone showed that during part of the period of oscillation, the
effect of convection is that the initial perturbation is attenuated considerably and
then it increases. At high frequencies both theories agree that the temperature
oscillation has no effect on the stability of the layer.

The Brinkman model was employed by Rudraiah and Malashetty (1990). They
concluded that modulation could advance or delay the onset of convection accord-
ing to whether the variation of top and bottom temperatures were in phase or out of
phase. An extension to the Forchheimer model was made by Malashetty and Wadi
(1999), while Malashetty and Basavaraja (2002) combined an oscillatory wall
temperature with an oscillatory gravitational field. Néel and Nemrouch (2001)
examined the stability of a layer with an open top and a pulsating temperature
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imposed at the upper boundary, using the Darcy model. The case of an oscillatory
thermal condition at the top was also studied numerically by Holzbecher (2004c).

Other authors have been concerned with situations where the imposed surface
temperature varies monotonically with time. Now amplification of disturbances
inevitably occurs at some stage, and the interest is in determining an onset time by
which the growth factor has reached some specified criterion, say 1000. Caltagirone
(1980) investigated the case when the lower surface is subjected to a sudden rise in
temperature. He used linear theory, energy-based theory, and a two-dimensional
numerical model. Kaviany (1984a) made a theoretical and experimental investiga-
tion of a layer with a lower surface temperature increasing linearly with time. His
second paper (Kaviany, 1984b) involved both time-dependent cooling of the upper
surface and uniform internal heating. An alternative treatment of this problem was
reported by Yoon, Choi and Yoo (1992). They predicted an onset time c given by

c = 6.55(DaRa)−2/3, (6.127)

where Da= K/� H2, and found that the experimental data of Kaviany (1984b) indi-
cated that the convection is detectable at time 4c. A study of the most unstable dis-
turbance corresponding to momentary instability, based on an optimization over the
range of possible initial perturbations, was made by Green (1990). A prediction of
the time required for the onset of convection in a porous medium saturated with oil
with a layer of gas underlying the oil was made by Rashidi et al. (2000). The study of
the onset of transient convection by Tan et al. (2003) is flawed [see Nield (2004a)].
Propagation theory was employed by Kim et al. (2004) to study the onset of convec-
tion in a transient situation with a suddenly applied constant heat flux at the bottom
of the layer. A further theoretical study was reported by Kim and Kim (2005). Lin-
ear and global stability analyses of the extension of the Caltagirone (1980) problem
to the case of an anisotropic medium were made by Ennis-King et al. (2005), for
both thin and thick slabs. For a thick slab they found that the increase of c as �
(the ratio of vertical permeability to horizontal permeability) decreases is given
approximately by (1 + √

� )4/16� 2. Their study is applicable to the geological
storage of carbon dioxide, for which the timescale can vary from less than a year
(for high-permeability formations) to decades or centuries (for low-permeability
ones). Geological details are provided by Ennis-King and Paterson (2005).

The possibility of feedback control of the conduction state was demonstrated
theoretically by Tang and Bau (1993). The temperature perturbation � at some hor-
izontal cross-section is monitored. The controller momentarily modifies the pertur-
bation temperature distribution of the heated base in proportion to a linear combi-
nation of �0 and its time-derivative. Thus the controller slightly reduces/increases
the bottom temperature at locations where the fluid tends to ascend/descend. Once
the disturbance has disappeared, the bottom temperature is restored to its nominal
value. This simple procedure suppresses the first even mode and so delays the onset
of convection until the first odd mode is unstable, giving a fourfold increase in the
critical Rayleigh number. More general issues were discussed by Bau (1993).

The effects of a sinusoidal temperature distribution, as a wave with wavelength
that of the incipient Bénard cells superimposed on the hot temperature of the lower
plate, were studied numerically by Mamou et al. (1996). For a given value of Ra,
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the cells move with the imposed wave if the velocity of the latter remains below
a critical value, but at higher velocity the cell motion is irregular and fluctuates.
Ganapathy and Purushothaman (1992) had analyzed previously a similar problem
with a moving thermal boundary condition at the upper surface. The effects of
adding small-amplitude traveling thermal waves, of the same amplitude and phase
at the top and bottom boundaries, were examined by Banu and Rees (2001). At
sufficiently low Rayleigh numbers Ra the induced flow follows the motion of the
thermal wave, but at higher Ra this form of convection breaks down and there
follows a regime where the flow travels more slowly on the average and does not
retain the forcing periodicity. At much higher Ra (or for large wave speeds at
moderate Ra) two very different timescales appear in the numerical simulations.
Hossain and Rees (2003) treated the variant problem where the sidewalls have the
same cold temperature as the upper surface. Now the flow becomes weaker as the
Darcy number decreases from the pure fluid limit toward the Darcy flow limit, and
the number of cells that form in the cavity varies primarily with the aspect ratio
and is always even due to the symmetry imposed by the cold sidewalls.

The onset of convection induced by volumetric heating, with the source strength
varying exponentially with depth and also varying with time, was analyzed by Nield
(1995); he added a term

q ′′′e�(z/H−1)[1 + εei�(t−t ′′)] (6.128)

to the right hand side of Eq.(6.5), and showed that, for the case of conducting
boundaries, instability occurs when

Ra + RaI f (�)[4π2ε(16π2 + �2)−1/2 − 1] > 4π2, (6.129)

where f (�) = 2(1 − e−�)/(4π2 + �2), RaI is given by Eq.(6.115), and � is given
by Eq. (6.120), the most unstable conduction-state temperature profile occurring
at the end of the cooling phase of a cycle if � is positive. Nield also gave results for
other thermal boundary conditions. He also investigated the case of square-wave
periodic heating, both for a steady state and the transient situation after the heating
is suddenly switched on. He showed that the square-wave time-periodic source
leads to a more unstable situation than a sinusoidal time-periodic source of the
same amplitude, and that transient on-off heating leads to greater instability than
the corresponding steady state.

6.11.4. Penetrative Convection or Icy Water

Mamou et al. (1999) used linear stability analysis with the Brinkman model to
study the onset of convection in a rectangular porous cavity saturated by icy wa-
ter. They also obtained numerical results for finite-amplitude convection. These
results indicate that subcritical convection is possible when the upper stable layer
extends over more than one half of the cavity depth and demonstrate the existence
of multiple solutions for a certain parameter range. Penetrative convection in a
horizontally isotropic porous layer was investigated by Carr and de Putter (2003)
using alternatively an internal heat sink model or a quadratic temperature law.
They performed linear and nonlinear stability analyses and showed that their two
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models led to the same predicted instability boundaries. Carr and Straughan (2003)
numerically calculated the onset of convection in two-layer system with icy water
underlying a porous medium with patterned ground in mind. Straughan (2004a)
studied an interesting resonant situation. He showed that there is a parametric
range in which the convection may switch from the lower part of the layer to being
prominent in the upper part of the layer. Mahidjiba et al. (2000b,c, 2002, 2003)
applied linear stability analysis to an anisotropic porous medium saturated with
icy water. They introduced an inversion parameter � and an orientation � of the
principal axes. They found that the presence of a stable layer near the upper bound-
ary for � < 2 changes drastically the critical Rayleigh number, and an asymptotic
situation is reached when � ≤ 1. For that asymptotic solution, and with � = 0◦

or 90◦, the incipient flow field consists of primary convective cells near the lower
boundary with superposed layers of secondary cells. For 0◦ < � < 90◦, primary
and secondary cells coalesce to form obliquely elongated cells.

6.12. Effects of Anisotropy

The material in this section and the next is based on the review by McKibbin (1985).
The criterion for the onset of convection in a layer with anisotropic permeability and
which has impermeable upper and lower boundaries was obtained by Castinel and
Combarnous (1975). They also reported results from experiments using glass fiber
materials saturated with water. The experimental values of Rac agreed reasonably
well with the predictions.

Epherre (1975) allowed both permeability and thermal conductivity to be
anisotropic. If one defines Ra in terms of the vertical permeability KV and the
vertical thermal conductivity kV of the medium, so that

Ra = g�KV H�T

	�V
, (6.130)

where �V = kV /(
cP ) f , then the critical value of Ra for the onset of two-
dimensional convection (rolls) of cell width/depth ratio L is

Rac(L) = π2(� + L2)(� + L2)

� L2
, (6.131)

where � = K H/KV and � = kH/kV . The subscript H refers to quantities measured
in the horizontal direction. As L varies, the minimum value of Ra is attained when
L = Lc = (��)1/4,

Rac,min = π2

[
1 +

(
�

�

)1/2
]2

. (6.132)

These analyses were extended by Kvernvold and Tyvand (1979) to steady finite-
amplitude convection. They found that for two-dimensional flow the Nusselt num-
ber Nu depends on � and � only in the ratio �/�. They also found that if Nu is
graphed as a function of Ra/Rac, the various curves start out from the point (1,1)
at the same slope, which is equal to 2.0 (Fig. 6.14). Nield (1997b) pointed out
that Eq. (6.132) is equivalent to RaEc = 4π2, where RaE is an equivalent Rayleigh
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Figure 6.14. Nusselt number versus Ra/Rac,min for various anisotropy ratios �, �

(McKibbin, 1985; after Kvernvold and Tyvand, 1979).

number defined as in Eq. (6.121) but with K/�m replaced by the square harmonic-
mean square-root of Kv/�v and K H/�H , and in Fig. 6.14 the quantity Ra/Rac,min

is equivalent to RaE/4π2.
Wooding (1978) noted that in a geothermal system with a ground structure

composed of many successively laid down strata of different permeabilities, the
overall horizontal permeability may be up to ten times as large as the vertical
component. He extended the linear analysis to three-dimensional convection in
a layer in which the permeability is anisotropic and also may vary with depth.
He treated both impermeable and free (constant-pressure) upper boundaries. As
expected, the free boundaries yield a smaller Rac than the impermeable boundaries,
but the difference becomes small when � = K H/KV becomes large because then
vertical flow is more difficult than horizontal flow.

A study of the fraction r of the total flow that recirculates within an anisotropic
layer at the onset of convection was conducted by McKibbin et al. (1984). It was
extended by McKibbin (1986a) to include a condition of the form P + λ∂ P/∂n =
0 at the upper boundary, where λ is a parameter taking the limiting values 0 for a
constant-pressure boundary and ∞ for an impermeable boundary. He found that
there is always some recirculation of the fluid within the porous layer provided that
λ is finite (Fig. 6.15a). In the case λ = 0 there is a stagnation point on the surface
as well as in the interior of the layer (Fig. 6.15b). McKibbin calculated Rac,min ,
Lc, �∗, and r for various values of λ, as functions of �/�. The results show that the
recirculation diminishes as �/� → 0 and there is full recirculation as �/� → ∞.
Here �∗ is the slope coefficient which appears in the heat transfer relationship (for
slightly supercritical conditions)

Nu = 1 + �∗

(
Ra

Rac
− 1

)
. (6.133)
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Figure 6.15. Streamline patterns at the onset of convection in an anisotropic layer with
a kinematic boundary condition of the form P + λ ∂ P/∂n = 0 at the upper surface, for
the case � = 2, � = 1, and L = 1. (a) λ = 1, recirculating fraction of flow = 0.869; (b)
λ = 0, recirculating fraction of flow = 0.290. The stagnation point is marked with an
asterisk (McKibbin, 1985; after McKibbin, 1986a).

The effects of dispersion, in addition to anisotropic permeability, were studied
by Tyvand (1977, 1981). He found that the combined effects of anisotropy and
dispersion may be much stronger than the separate effects.

Tyvand and Storesletten (1991) have analyzed the situation when the anisotropic
permeability is transversely isotropic but the orientation of the longitudinal prin-
cipal axes is arbitrary. The flow patterns now have either a tilted plane of motion
or tilted cell walls if the transverse permeability is larger or smaller than the longi-
tudinal permeability. Storesletten (1993) treated a corresponding problem where
there is anisotropic thermal diffusivity. Zhang et al. (1993) studied numerically
convection in a rectangular cavity with inclined principal axes of permeability.

A nonlinear stability analysis of the situation of Tyvand and Storesletten (1991),
but with a quadratic density law, was conducted by Straughan and Walker (1996a).
They obtained the dramatic result that, in contrast to the Boussinesq situation,
the effect of anisotropy is to make the bifurcation into convection occur via an
oscillatory instability.

The effect of anisotropy of the dispersive part of the effective thermal con-
ductivity tensor, with a Forchheimer term included in the momentum equation,
was investigated using numerical simulation by Howle and Georgiadis (1994),
for two-dimensional steady cellular convection. They used the formula of Lage
et al. (1992), Eq. (6.93), to determine experimental values of Rac and then plotted
Nu versus Ra/Rac, thereby greatly reducing the divergence of experimental results
found for the usual Nu versus Ra plot. They found that dispersion increased the net
heat transfer after a Rayleigh number ∼ 100–200, and as the degree of anisotropy
is increased, the wall averaged Nusselt number is decreased.

Joly and Bernard (1995) have computed values of Rac for an anisotropic porous
medium bounded by anisotropic impermeable domains. Qin and Kaloni (1994)
computed Rac values for the case of anisotropic permeability on the Brinkman
model. A numerical study of the effects of anisotropic permeability and layering
in seafloor hydrothermal systems was made by Rosenberg et al. (1993).
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Linear stability analysis was applied to a conjugate problem with solid boundary
plates by Gustafson and Howle (1999), and the results compared favorably with
experiment. Mahidjiba et al. (2000c) applied linear and weak nonlinear analysis to
a layer of finite lateral extent, and Mamou et al. (1998a) treated a layer for the case
of constant heat flux on the boundaries. The effects of anisotropy on convection in
both horizontal and inclined layers were studied by Storesletten (2004). The effects
of nonuniform thermal gradient and transient effects were studied by Degan and
Vasseur (2003), who studied a layer heated from the bottom with a constant heat
flux and with the other surfaces insulated. The effect of radiative transfer was
studied by Devi et al. (2002).

Anisotropy effects in general have been reviewed by Storesletten (1998). The
later survey by Storesletten (2004) discussed various models for the anisotropy.
It was noted that for horizontal layers, anisotropy affects the critical Rayleigh
number and the critical wavenumber, but even the inclusion of three-dimensional
anisotropy does not lead to any essentially new flow patterns at the onset of con-
vection, provided that one of the principal axes of anisotropy is normal to the
layer. When none of the principal axes are vertical, then new flow patterns, either
with tilted plane of motion or with tilted as well a curved lateral walls, appear.
For inclined layers, anisotropy has a strong influence on the preferred flow struc-
ture at the onset of convection. When the permeability is transversely isotropic,
there are two cases. A permeability minimum in the longitudinal direction leads
to longitudinal rolls for all inclinations. A permeability maximum in the longitu-
dinal direction leads to transverse rolls when the inclination is less than a critical
value and longitudinal rolls when the inclination is greater than that critical value.
In the general case with anisotropy both in permeability and thermal diffusivity,
either longitudinal rolls are favored for all inclinations or there is a transition from
transverse rolls at lower inclinations to longitudinal rolls at higher inclinations via
oblique rolls.

6.13. Effects of Heterogeneity

6.13.1. General Considerations

Extending previous work by Donaldson (1962), McKibbin (1983) calculated the
criterion for the onset of convection and estimates of preferred cell width and heat
transfer for two-dimensional convection in a system consisting of a permeable
layer overlying an impermeable layer, the base of the impermeable layer being
isothermal. McKibbin’s results showed that, compared with a homogeneous per-
meable system of the same total depth, the presence of the impermeable layer
increases the overall temperature difference required for instability, as well as re-
ducing the subsequent heat flux when convection occurs. The critical value of a
Rayleigh number based on the parameters of the permeable stratum is decreased
by the presence of the impermeable layer, because of the relaxation of the thermal
boundary condition at the base of the permeable stratum.
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The marginal stability for a layer in which the thermal conductivity and the
reciprocal of the permeability both vary linearly with depth (to an arbitrary extent)
was studied by Green and Freehill (1969). Ribando and Torrance (1976) carried
out numerical calculations of finite-amplitude convection for an exponential
variation with depth of the ratio �/K of viscosity to permeability. As expected,
the strongest convection takes place in regions of small �/K . A more general
formulation of the onset problem where both the group �/K and the thermal
diffusivity vary with depth was made by Rubin (1981). A further study is that by
Malkovski and Pek (1999).

6.13.2. Layered Porous Media

Studies of convection in general layered systems have been made by several inves-
tigators. The most comprehensive are those by McKibbin and O’Sullivan (1980,
1981), who studied both the onset of convection and subsequent heat transfer for
a multilayered system bounded below by an isothermal impermeable surface and
above by an isothermal surface that was either impermeable or at constant pressure.
Two-dimensional flow patterns and associated values of Rac, cell width, and initial
slope �∗ of the Nusselt number graph were calculated for two- and three-layer sys-
tems over a range of layer thickness and permeability ratios. The results show that
significant permeability differences are required to force the layered system into
an onset mode different from that for a homogeneous system. They also show that
increasing contrasts ultimately lead to transition from “large-scale” convection
(occurring through the entire system) to “local” convection confined mainly to
fewer layers. Another conclusion is that �∗ depends strongly on the cell width
(Fig. 6.16). An experimental study, using a Hele-Shaw cell modeling a three-
layered system, by Ekholm (1983) yielded results in qualitative agreement with the
theory of McKibbin and O’Sullivan (1980). The assumption of two-dimensionality
used by many authors was examined by Rees and Riley (1990), who found criteria
governing when the preferred flow patterns are three-dimensional and presented
detailed results of the ranges of stable wavenumbers.

Gjerde and Tyvand (1984) studied a layer with permeability K (z) of the form
K (z) = KV /(1 + a sin Nπz), where KV , a, and N are constants. They found that
local convection never occurs in this smoothly stratified model.

Masuoka et al. (1988) made a numerical and theoretical examination of convec-
tion in layers with peripheral gaps. Hickox and Chu (1990) numerically simulated
a geothermal system using a model involving three horizontal layers of finite hor-
izontal extent. Delmas and Arquis (1995) reported an experimental and numerical
investigation of convection in a layer with solid conductive inclusions.

For permeability fields that are anisotropic, layered, or both, Rosenberg
and Spera (1990) performed time-dependent numerical simulations in a two-
dimensional square box. They found that the time to steady state was proportional
to the square-root of the kinetic energy. Their heat transfer results were consistent
with previous results.

Masuoka et al. (1991, 1994, 1995a) made experimental and theoretical studies
of the use of a thermal screen, consisting of a row of heat pipes with a very
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Figure 6.16. Variation of Rac and �∗ with system width L for two-layer systems. The
lower layer occupies a fraction r1 of the total depth, and the permeability contrast
between upper and lower layers is K2/K1. (a), (b) Closed top, K2/K1 = 0.1, (c), (d)
open top, K2/K1 = 10 (McKibbin, 1985; after McKibbin and O’Sullivan, 1981).

high effective thermal conductivity placed part way up the layer, in improving the
insulation effect of a porous layer. The screen suppresses the onset of convection
by making the temperature field more uniform.

Leong and Lai (2001) investigated the feasibility of using a lumped system
approach using an effective Rayleigh number, on the basis of numerical calcula-
tions with two layers. Their results were generally anticipated by Nield (1994c).
A similar study for a layered vertical porous annulus was made by Ngo and Lai
(2000). Leong and Lai (2004) studied two or four layers in a rectangular cavity
whose aspect ratio was either 0.2 or 5.0. They found that the convection is always
initiated in the more permeable sublayer, and this convection penetrates to the less
permeable sublayer as the Rayleigh number is further increased.
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6.13.3. Analogy between Layering and Anisotropy

Wooding (1978) noted that there is a correspondence between layering and
anisotropy in porous media. In a system in which the permeability K varies with
the vertical coordinate z, the average horizontal and vertical permeabilities, in a
layer of thickness H , are given by

K H = 1

H

∫ H

0
K (z)dz, K V = H/

∫ H

0

dz

K (z)
(6.134)

and so, since the arithmetic mean exceeds the harmonic mean,

� = K H

K V
> 1. (6.135)

A similar result applies for thermal conductivity. It implies that layering implies
anisotropy with � > 1, � > 1. The result holds whether the layering is continuous
or not, but the question is whether or not a transition to local convection will cause
the analogy to break down. McKibbin and Tyvand (1982) explored this question.
They concluded that the analogy is likely to be reliable in a continuously layered
system, and also in a discretely layered system provided that the contrast between
the layers is not too great.

McKibbin and Tyvand (1983, 1984) studied systems in which every second layer
is very thin. If these thin layers have very small permeability (i.e., the layers are
“sheets”), convection is large scale except when the sheets are almost impermeable.
If the thin layers have very high permeability (i.e., the layers are “cracks”), then
local convection is almost absent, so the analogy is more likely to be reliable
for modeling. However, there is one feature of the crack problem that has no
counterpart in the anisotropic model: there is a strong horizontal flow in the cracks
(Fig. 6.17) and this affects the analogy.

6.13.4. Heterogeneity in the Horizontal Direction

The configuration where the porous medium consists of a number of homogeneous
vertical slabs or columns of different materials is more difficult to study in com-
parison with the horizontally layered problem, and so far few studies have been
published. McKibbin (1986b) calculated critical Rayleigh numbers, streamlines,
and the variation of heat flux across the surface for a few examples involving in-
homogeneity of permeability and thermal conductivity. His results are shown in
Figs. 6.18–6.20. Here Rai denotes the Rayleigh number for material i ,

Rai = g�Ki H�T

	�mi
. (6.136)

L is the horizontal to vertical aspect ratio of the entire system and ri is the fraction
of the total width occupied by material i .

Figure 6.18 shows that as the permeability contrast increases, so does Ra1c,
indicating, as expected, that a larger overall temperature gradient is required to
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Figure 6.17. Streamlines at onset of convection in a system with thin, very permeable
layers (cracks). The ratio of the thickness of each crack to that of the intervening material
layers is 0.02 and the equivalent induced anisotropy in each case is � = 10 (McKibbin
and Tyvand, 1984, with permission from Pergamon Press).

destabilize the conductive state of the system. One example of the streamline
flow pattern is illustrated in Fig. 6.19a. Here the small amount of flow in the
less permeable layer is reflected in the small and almost even increase in heat
transfer at the surface due to convection. At the same time, the stronger flow in the
more permeable section has a marked effect on the surface heat flux. Figure 6.19b
illustrates a small thermal conductivity contrast. The strength of flow is slightly
greater in the less conductive region. The jump in heat flux is due to the greater
conductivity of material 2.

In the case of a thin, more permeable stratum cutting an otherwise homogeneous
medium, as the thin stratum becomes more permeable there is a sudden transition
from approximately square flow cells to a flow pattern where a very strong flow
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Figure 6.18. The critical Rayleigh number R1c = Ra1c/4π2 for a two-layer system with
L = 1, r1 = 0.1 (0.1) 0.9, and 0.01 = K2/K1 = 1.0 (McKibbin, 1986b, with permis-
sion from Kluwer Academic Publishers).

Figure 6.19. Streamline patterns at the onset of convection and typical Nusselt number at
the surface, for slightly supercritical flow. In each case the overall aspect ratio L = 1. The
subscripts 1 and 2 indicate regions numbered from left to right. R = Ra/4π2, where Ra is
the Rayleigh number. (a) Permeability ratio K2/K1 = 0.1, R1c = 3.132, R2c = 0.313;
(b) Thermal conductivity ratio k2/k1 = 1.2, R1c = 1.084, R2c = 0.903 (McKibbin,
1986b, with permission from Kluwer Academic Publishers).
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Figure 6.20. Streamline patterns and Nusselt number at the surface for the case
of a centrally placed narrow stratum, permeability ratio K2/K1 = 100, and K3 =
K1. (a) r2 = 0.1, R1c = 0.267, R2c = 26.7; (b) r2 = 0.04, R1c = 0.665, R2c = 66.5,
where R = Ra/4π2 (McKibbin, 1986b, with permission from Kluwer Academic
Publishers).

takes place up (or down) the permeable fault. For a narrower fault the permeability
contrast needed for transition is greater. An example is shown in Fig. 6.20. The
contrast between the flow patterns and the surface heat flux patterns is remarkable.
This is different from the case of horizontal layering, where the spatial distribution
of surface heat flux remains basically the same for all configurations, even though
permeability and/or conductivity contrasts are great (McKibbin and Tyvand,
1984).

An approximate analysis of convective heat transport in vertical slabs or columns
of different permeabilities was made by Nield (1987b). He took advantage of the
fact that, when Darcy’s law is applicable, one can superpose solutions of the
eigenvalue problem for a single slab to obtain a feasible solution of the equations
for the overall problem with the slabs placed side by side. This is, of course, an
artificial flow since extra constraints have been imposed on the eigenvalue problem.
In general, the actual flow will be one in which the convection induced in one slab
will penetrate into adjacent slabs; one would expect that the actual flow would
be more efficient at transporting heat than the artificial flow. This procedure leads
to a lower bound for the true overall heat flux and an upper bound on a critical
Rayleigh number.

Nield discussed some sample situations and also established a general result.
If the heat transfer is given by Nu = g(Ra), then for sufficiently large val-
ues of Ra the second derivative g′′(Ra) is usually negative. It then follows that
if Ra is supercritical everywhere, then for small and gradual variations in Ra
with horizontal position the effect of inhomogeneity is to decrease the heat flux
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by a factor

1 +
[

g′′(Ra)

2g(Ra)

]
�2

Ra (6.137)

relative to that for an equivalent homogeneous layer with the same Rayleigh num-
ber average Ra. In the above expression, �2

Ra is the variance of the Rayleigh number
distribution. In particular, if we take g(Ra) = �Ra�, where 0 < � < 1, then the
reduction factor is

1 − 1

2
�(1 − �)

�2
Ra

Ra2
. (6.138)

Gounot and Caltagirone (1989) analyzed the effect of periodic variations in
permeability. They showed that short-scale fluctuations had the same effect on
stability as anisotropy. As expected, the variability causes the critical Rayleigh
number based on the mean permeability to be raised and the Nusselt numbers to
be lowered relative to the homogeneous values.

Vadasz (1990) used weakly nonlinear theory to obtain an analytic solution of
the bifurcation problem for a heterogeneous medium for the case of heat leak-
age through the sidewalls. He showed that if the effective conductivity function
km(x, y, z) is not of the form f (z)h(x, y), then horizontal temperature gradi-
ents (and hence natural convection) always must be present. A comprehensive
study of convection in a layer with small spatial variations of permeability and
effective conductivity was made by Braester and Vadasz (1993). For certain con-
ductivity functions a motionless state is possible, and the stability of this was
examined using weak nonlinear theory. A smooth transition through the critical
Rayleigh number was found. Heterogeneity of permeability plays a relatively pas-
sive role compared with heterogeneity of thermal conductivity. For a certain range
of supercritical Ra, symmetry of conductivity function produces symmetry of
flow.

Convective stability for a horizontal layer containing a vertical porous segment
having different properties was studied by Wang (1994). Convection in a rect-
angular box with a fissure protruding part way down from the top was treated
numerically by Debeda et al. (1995).

6.14. Effects of Nonuniform Heating

O’Sullivan and McKibbin (1986) have performed a perturbation analysis and nu-
merical calculations to investigate the effect of small nonuniformities in heating
on convection in a horizontal layer. They found that O(ε3) variations in heat-
ing of the bottom generally produce variations of the same order in convection
amplitude. However, if the distribution of the heating nonuniformity happens to
have a wavelength equal to the wavelength of the preferred convection mode, then
O(ε3) variations in heating produce an O(ε) effect on the amplitude of convec-
tion at Rayleigh numbers within O(ε2) of the critical Rayleigh number Rac. This
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Figure 6.21. Effect of nonuniform heating on heat transfer. The calculations refer to
a two-dimensional square container (length-to-height ratio = 1) with impermeable top
and bottom and with insulated sidewalls. The dimensionless temperature distribution
on the bottom is assumed to be T (x, 0) = 1 + �1 cos πx, (0 ≤ x ≤ 1). (O’Sullivan and
McKibbin, 1986).

produces a smoothing of the Nu versus Ra curve in the vicinity of the critical
Rayleigh number, as shown in Fig. 6.21.

Rees and Riley (1989a,b) and Rees (1990), using weakly nonlinear theory, have
considered in turn the consequences of excitation of near-resonant wavelength,
nonresonant wavelength, and long-wavelength forms. When the modulations on
the upper and lower boundaries are in phase, at the near-resonant wavelength,
steady rolls with spatially deformed axes or spatially varying wavenumbers evolve.
Rolls with a spatially varying wavenumber also evolve when the modulations are
π out of phase. For a wide range of nonresonant wavelengths, a three-dimensional
motion with a rectangular planform results from a resonant interaction between a
pair of oblique rolls and the boundary forcing. Symmetric modulations of large
wavelength can result in patterns of transverse and longitudinal rolls that do not
necessarily have the same periodicity as the thermal forcing, but the most unstable
transverse roll does have the same periodicity. For certain ranges of values of
modulation wavelength the first mode to appear as Ra is increased is a rectangular
cell of large-aspect-ratio plan form. This mode is a linear superposition of two
rolls equally aligned at a small angle away from the direction of the longitudinal
roll.

The effect of slightly nonuniform heating at the bottom of a parallelopipedic
box on the onset of convection was analyzed by Néel (1992). Depending on the
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symmetry or otherwise of the heating, the nonuniformity can change the predicted
pattern of steady convection for a particular choice of aspect ratios or even result
in oscillatory convection.

A perturbation method was employed by Riahi (1993a) to study three-
dimensional convection resulting when a nonuniform temperature with amplitude
L∗ is prescribed at the lower wall. When the wavelength �bn of the nth mode of
modulation is equal to the critical wavelength �c for all n, regular or nonregular
solutions in the form of multimodal pattern convection can become preferred in
some range of L∗, provided the wave-vectors of such pattern are contained in the
set of wave vectors representing the boundary temperature. There can be critical
values L∗

c of L∗ below which the preferred pattern is different from the one for
L∗ > L∗

c. For �bn equal to a constant different from �c, some three-dimensional
solution in the form of multimodal convection can be preferred, even if the bound-
ary modulation is one-dimensional, provided that the wavelength of the modu-
lation is not too small. There are qualitatively similar results when the location
(rather than the temperature) of the bottom boundary (and hence the depth) is
modulated.

Riahi (1996) then extended his analysis to the case of a continuous finite band-
width of modes. He found that the results were qualitatively similar to those for
the discrete case. He also noted that large-scale flow structures are quite differ-
ent from the small-scale flow structures in a number of cases and in particular
they can exhibit kinks and can be nonmodal in nature. The resulting flow patterns
can be affected accordingly, and they can provide quite unusual and nonregular
three-dimensional preferred patterns. In particular, they are multiples of irregular
rectangular patterns and they can be nonperiodic.

Rees and Riley (1986) conducted a two-dimensional simulation of convection
in a symmetric layer with wavy boundaries. In this case the onset of convection
is abrupt and is delayed by the presence of the nonuniformity. However, the onset
of time-periodic flow takes place at much smaller Rayleigh numbers than those
corresponding to the uniform layer. The mechanism generating unsteady flow is
no longer a thermal boundary layer instability but rather a cyclical interchange
between two distinct modes that support each other via the imperfection, and its
onset is not a Hopf bifurcation. At relatively high amplitudes of the wavy surface,
the basic flow may bifurcate directly to unsteady flow. Also, Riahi (1999), Ratish
Kumar et al. (1997, 1998), Ratish Kumar (2000), Ratish Kumar and Shalini (2003,
2004c) have studied convection in a cavity with a wavy surface. The undulations
generally lead to a reduced heat transfer.

Yoo and Schultz (2003) analyzed the small Rayleigh number convection in a
layer whose lower and upper walls have sinusoidal temperature distributions with
a phase difference. They found that for a given wavenumber, an out-of-phase
configuration yields minimum heat transfer on the walls, and that maxiumum heat
transfer occurs at the wavenumber value 2.286 with an in-phase configuration.
Capone and Rionero (2003) considered the nonlinear stability of a vertical steady
flow driven by a horizontal periodic temperature gradient.
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6.15. Rectangular Box or Channel

6.15.1. Linear Stability Analysis, Bifurcation Theory, and Numerical Studies

In a horizontal layer, with vertical heating, the lateral boundaries of the convec-
tion cells are vertical and there is no heat transfer across them. This means that,
assuming that slip is allowed on a rigid wall, an impermeable insulating barrier
can be placed at a cell boundary without altering the flow. Consequently, Rac re-
mains at 4π2 (for the case of impermeable conducting horizontal boundaries) if
the nondimensional width and breadth (Lx/H = h1 and L y/H = h2, for the box
0 = x = Lx , 0 = y = L y, 0 = z = H ) of a rectangular box are integral multiples
of 2p/πc. For other values of width and breadth the value of Rac is raised above
4π2. This is because the minimization of (π2 + �2)2/�2, where �2 = l2 + m2, is
now over discrete values of the wavenumbers l and m rather than over continuous
values. Eigenmodes are represented by the stream functions

�pqr = sin p π
x̂

h1
sin qπ

ŷ

h2
sin rπẑ (6.139)

for integers p, q, and r. The corresponding Rayleigh numbers are

Rapqr = π2

(
b + r2

b

)2

, (6.140)

where

b =
[(

p

h1

)2

+
(

q

h2

)2
]1/2

. (6.141)

Thus the critical Rayleigh number is given by

Rac = π2 min
(p,q,r )

(
b + r2

b

)2

= π2 min
(p,q)

(
b + 1

b

)2

. (6.142)

The minimization problem over the sets of nonnegative integers p and q for a set
of values h1 and h2 has been solved by Beck (1972) and the results are displayed
in Figs. 6.22 and 6.23. Figure 6.22 shows that the value of Rac rapidly approaches
4π2 as either h1 or h2 becomes large, so that the lateral walls have little effect on the
critical Rayleigh number except in tall boxes with narrow bases, for which h1 � 1
and h2 � 1. The preferred cellular mode (p, q) as a function of (h1, h2) is shown
in Fig. 6.23. Note the symmetry with respect to the line h1 = h2. The modal
exchange between the rolls (p, 0) and (p + 1, 0) occurs at h1 = [p(p + 1)]1/2.
Two-dimensional rolls are preferred when the height is not the smallest dimension
(i.e., when h1 < 1 or h2 < 1) and that a roll that has the closest approximation to
a square cross section is preferred.

Using techniques of bifurcation theory, Riley and Winters (1989) have inves-
tigated the mechanics of modal exchanges as Ra and h1 ≡ h vary, for a two-
dimensional cavity. They use a synthesis of degree theory, symmetry arguments,
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Figure 6.22. Variation of the critical Rayleigh number Rac in an enclosed three-
dimensional porous medium as a function of h1 and h2 (Beck, 1972).

Figure 6.23. Preferred cellular mode (p, q) as a function of h1 and h2 in a three-
dimensional box filled with a porous medium (Beck, 1972).
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and continuation methods. They show that as h increases for fixed Ra, primary
bifurcations (from conduction states) occur and then secondary bifurcations. At a
secondary bifurcation, a previously unstable mode can regain stability. Thus the
behavior of physical bifurcations is intimately connected with that of unphysical
ones, and the stability boundary for one-cell flows turns out to be quite complicated.
Impey et al. (1990) extended the work of Riley and Winters (1989) to include the
effects of small tilt and small side-wall heat flux.

Beck’s work has been extended to other types of boundary conditions. Tewari and
Torrance (1981) considered the case of a permeable upper boundary; their results
are as expected. A general feature is that when both breadth and width become
small, �c becomes large and Rac ∼ �2

c . In this case the perturbation quantities w and
� vary only slowly with the vertical coordinate z, and the horizontal components
are negligible. When the lateral boundaries are not insulating, new features appear.
Chelghoum et al. (1987) found that if lateral boundaries are conducting rather than
insulating, Rac is raised and two-dimensional rolls [modes of type (p, 0) and (0, q)]
are eliminated in favor of modes of type (p, 1) and (1, q), and when h1 and h2 are
not small, the modal picture is complicated.

Convection in rectangular boxes has been the topic of many numerical studies.
Some of this work has been referred to in Section 6.8. For the two-dimensional
case, Horne and O’Sullivan (1978a) and Horne and Caltagirone (1980) reported
studies of oscillatory convection, while Schubert and Straus (1982), for a square
cavity, found a succession of transitions as Ra is increased.

The three-dimensional case has been studied by Horne (1979), Straus and
Schubert (1979, 1981), and Caltagirone et al. (1981). A noteworthy discovery
was that different steady structures develop with time, the final form depend-
ing on the initial conditions. An analytical study by Steen (1983) has comple-
mented and corrected results of the numerical studies. The top and bottom of
the box are taken to be isothermal and the sides insulated. Steen showed that for
a cubic box convection first occurs at Ra = 4π2, and then a two-dimensional
roll cell grows to a finite-amplitude pattern with Ra increasing. Immediately
above criticality it is the only stable pattern; the three-dimensional state found by
Zebib and Kassoy (1978) is unstable. Another three-dimensional pattern comes
into existence as a linear mode grows at Ra = 4.5π2. It remains unstable from birth
until Ra = 4.87π2, when it gains stability and begins to compete with the two-
dimensional pattern. These two- and three-dimensional patterns remain the only
stable states up to a value of Ra (about 1.5 Rac) when other modes become impor-
tant. Steen calculated that, provided all disturbances of unit norm are equally likely,
there is a 21 percent chance that the three-dimensional pattern will be selected at
Ra = 50.

Other work on pattern selection and bifurcation in rectangular boxes has
been reported by Steen (1986), Kordylewski and Borkowska-Pawlak (1983),
Borkowska-Pawlak and Kordylewski (1982,1985), Kordylewski et al. (1987), Vin-
court (1989a,b), and Néel (1990a,b). The study by Riley and Winters (1991) fo-
cused on the destabilization, through Hopf bifurcations (leading to time-periodic
convection), of the various stable convective flow patterns. There is a complex
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evolution of the Hopf bifurcation along the unicellular branch as the aspect ra-
tio h increases. Steady unicellular flow is stable for a range of Ra values that
is (4π2, 390.7) at h = 1 and becomes increasingly narrow and finally disap-
pears when h exceeds 2.691. Riley and Winters also obtained an upper stability
bound for steady multicellular flows. They found that stable m cells exist only for
h < 2.691m.

An argument of Howard type, based on the Bénard-Rayleigh instability in
boundary layers at the top and bottom surfaces, leads to the asymptotic scaling
laws Nu ∼ Ra and f ∼ Ra2 for the mean Nusselt number and the characteristic
frequency f . For convection in a square, Graham and Steen (1994) computation-
ally studied the regime from Ra = 600 to 1250. They found that as Ra increases a
series of traveling waves with spatial wavenumber n appear, each born at a Hopf
bifurcation. Modal interactions of these lead to quasiperiodic mixed modes (whose
complicated behavior was studied by Graham and Steen (1992)). The Ra range
studied is characterized by thermal plumes and overall follows the asymptotic scal-
ing behavior, but the plumes drive resonant instabilities that lead to windows of
quasiperiodic, subharmonic, or weakly chaotic behavior. The plume formation is
disrupted in these windows, causing deviations from the simple scaling behavior.
The instability is essentially a phase modulation of the plume formation process.
Graham and Steen argue that each instability corresponds to a parametric reso-
nance between the timescale for plume formation and the characteristic convection
timescale of the flow. A computational comparison between classic Galerkin and
approximate inertial manifold methods was made by Graham et al. (1993). Ex-
tensions of this work involving Gevrey regularity were conducted by Ly and Titi
(1999) and Oliver and Titi (2000). A stability analysis based on a generalized in-
tegral transform technique involving transitions in the number of cells was carried
out by Alves, Cotta, and Pontes (2002).

Rees and Tyvand (2004a,b) considered convection in cavities with conducting
boundaries. In this case linear stability analysis leads to a Helmholtz equation that
governs the critical Rayleigh number and makes it independent of the orientation of
the porous cavity. They numerically solved the eigenvalue equation for cavities of
various shapes. Rees and Tyvand (2004c) found that for a two-dimensional cavity
with one lateral wall thermally conducting and the other thermally insulating and
open, the mode of onset of convection is oscillatory in time, corresponding to a
disturbance traveling as a wave through the box from the impermeable wall to the
open wall.

General surveys of this subject have been done by Rees (2000), Tyvand (2002),
and Straughan (2004b). Straughan (2001a) has discussed the calculations of eigen-
values associated with porous convection. In particular, Tyvand (2002) considered
a two-dimensional rectangular container with closed and conducting top and bot-
tom and with various combinations of kinematic and thermal boundary conditions
on the left- and right-hand walls. His results for the values of the critical Rayleigh
number are presented in Table 6.3. The corresponding streamline patterns may be
found in Tyvand (2002). For a three-dimensional box with general lateral boundary
conditions no simple analytical solution is possible.
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Table 6.3. Values of the critical Rayleigh number Rac for various lateral boundary
conditions, for the onset of convection in a rectangle of height H and width L .The top
and bottom are assumed impermeable and conducting (after Tyvand, 2002).

IMP: impermeable (closed) FRE: free (open)
CON: conducting INS: insulating

Left-hand wall Right-hand wall Rac

IMP/INS IMP/INS π2 min [(nH/L) + (L/nH )]2

FRE/CON FRE/CON π2 min [(nH/L) + (L/nH )]2

IMP/CON IMP/CON 4π2 [1 + H 2/L2]
FRE/INS FRE/INS 4π2 [1 + H 2/L2]
IMP/INS FRE/CON π2 min [(nH/2L) + (2L/nH )]2

IMP/INS IMP/CON 4π2 [1 + H 2/4L2]
FRE/CON IMP/CON 4π2 [1 + H 2/4L2]
FRE/CON FRE/INS 4π2 [1 + H 2/4L2]
IMP/INS FRE/INS 4π2 [1 + H 2/4L2]
FRE/INS IMP/CON unknown

Following earlier work by Schubert and Straus (1979) and Horne and O’Sullivan
(1978a), three-dimensional convection in a cube was treated by Kimura et al.
(1989). They found a transition from a symmetric steady state (S) to a partially
nonsymmetric steady state (S′, vertical symmetry only) at Ra about 550. At Ra
of 575 the flow became oscillatory (P(1)) with a single frequency that increased
with Ra. It became quasiperiodic at a value of Ra between 650 and 680, returned
to a simple periodic state in a narrow range about Ra = 725, and then became
quasiperiodic again. Thus the three-dimensional situation was similar to the two-
dimensional one, except for the higher critical Ra at the onset of oscillations (575
vs. 390) and a corresponding higher frequency (175 vs 82.5) and except for the
transition S → S′; however, this was dependent on step size and it was possible
that it might not occur prior to S → P(1) for sufficiently small steps in Ra.They also
noted that the (time-averaged) Nusselt number for the three-dimensional flows was
generally greater than that for the two-dimensional flows.

The transition from steady to oscillatory convection in a cube was found by
Graham and Steen (1991) to occur at Ra = 584 and to involve a traveling wave
instability in which seven pairs of thermal blobs circulate around the cube. They
also observed a correspondence between the three-dimensional convection and
two-dimensional flow in a box of square planform but with aspect ratio 2−1/2.

Further numerical calculations for convection in a cube were performed by
Stamps et al. (1990), For the case of insulated vertical sides, they found simply
periodic oscillations with frequency f ∝ Ra3.6 appearing for Ra between 550 and
560 and irregular fluctuations once Ra exceeded a value between 625 and 640.
When heat is transferred through the vertical sides of the cube, three different
flow patterns could occur, depending on Ra and the rate of heat transfer. Sezai
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(2005) used the Brinkman-Forchheimer model in his treatment of a cube with
impermeable adiabatic walls. He carried out computations for Ra up to 1000. He
observed a total of ten steady-flow patterns, of which five show oscillatory behavior
for some Rayleigh-number range.

The general topic of oscillatory convection in a porous medium has been re-
viewed by Kimura (1998). Analysis of the onset of convection in a sector-shaped
box [analogous to that of Beck (1972) for a rectangular box] was reported by
Wang (1997). The case of a box with a rigid top or a constant pressure top and
with constant flux bottom heating was analyzed by Wang (1999b, 2002).

6.15.2. Thin Box or Slot

Geological faults can be modeled by boxes that are short in one horizontal di-
mension but long in the other two dimensions. Convection in such boxes has been
studied by Lowell and Shyu (1978), Lowell and Hernandez (1982), Kassoy and
Zebib (1978), and Murphy (1979). Lowell and Shyu (1978) were concerned with
the effect of a pair of conducting lateral boundaries (the other pair being insu-
lated). Lowell and Hernandez (1982) used finite-difference techniques to inves-
tigate finite-amplitude convection. They found that in containers with prescribed
wall temperatures the flow was weakly three-dimensional but with the general
appearance of two-dimensional transverse rolls. In containers bounded by imper-
meable blocks of finite thermal conductivity, a flow pattern similar to that for
containers with prescribed wall temperatures tended to be set up, but asymmetri-
cal initial perturbations tended to give rise to slowly evolving flows. Kassoy and
Zebib (1978) studied the development of an isothermal slug flow entering the
fault at large depth. An entry solution and the subsequent approach to the fully
developed slows were obtained for the case of large Rayleigh number.

Convection in a thin vertical slot has been analyzed by Kassoy and Cotte (1985),
Weidmann and Kassoy (1986), and Wang et al. (1987). They found that the ap-
pearance of slender fingerlike convection cells is characteristic of motion in this
configuration, and the streamline pattern is extremely sensitive to the value of Ra.
For the case of large wavenumber and insulated sidewalls, Lewis et al. (1997)
present asymptotic analyses for weakly nonlinear and highly nonlinear convec-
tion. They found that three separate nonlinear regimes appear as the Rayleigh
number increases but convection remains unicellular. On the other hand, for the
case of perfectly conducting boundaries and with a linearly decreasing tempera-
ture profile imposed at the sidewalls, Rees and Lage (1996) found that for all cell
ratios the onset problem is degenerate in the sense that any combinations of an
odd mode and an even mode is destabilized simultaneously at the critical Rayleigh
number This degeneracy persists even into the nonlinear regime. For the case of
particular linear distributions of temperature on the vertical walls, Storesletten and
Pop (1996) obtained an analytical solution. Some implications for hydrothermal
circulation for hydrothermal circulation along mid-ocean ridges or for the thermal
regime in crystalline basements and for heat recovery experiments were discussed
by Rabinowicz et al. (1999) and Tournier et al. (2000).
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6.15.3. Additional Effects

The effect of large-scale dependence of fluid density on heat transfer has been nu-
merically investigated by Marpu and Satyamurty (1989). Nilsen and Storesletten
(1990) have analyzed two-dimensional convection in horizontal rectangular chan-
nels with the lateral walls (as well as the horizontal boundaries) permeable and
conducting. They have treated both isotropic and anisotropic media. They showed
that Rac depends on the anisotropy-aspect ratios � and � defined by

� = K H

KV

(
H

L

)2

, � = �m H

�mV

(
H

L

)2

, (6.143)

where K H , and KV are the horizontal and vertical permeabilities, �m H and �mV

are the horizontal and vertical thermal diffusivities, and L and H are the horizontal
and vertical dimensions of the channel.

For the case � = �, which includes the isotropic situation,

Rac = 4π2(1 + �). (6.144)

This may be compared with the result Rac = 4π2 for insulating walls; as expected,
the effect of conductivity of the walls is stabilizing. There are two possible cell
patterns, each with symmetrical streamlines. For n = 2, 3, 4, . . . , they consist of
n and n + 1 cells, respectively, if

(n − 1)2 − 1 < �−1 ≤ n2 − 1. (6.145)

The conclusion of weakly nonlinear stability analysis is that both structures are
stable against two-dimensional perturbations. Compositions of this pair of flow
patterns are possible, so the flow is not uniquely determined by the boundary
conditions.

The situation is similar for the case � �= �, but now there is only a single steady
flow pattern (stable against two-dimensional disturbances) which consists of n
cells if � < � and n + 1 cells if � > �, where

(n − 1)2 − 1 < (��)−1/2 < n2 − 1. (6.146)

The problem of convection induced by internal heat generation in a box was
given a theoretical and experimental treatment by Beukema and Bruin (1983).

The theory in this section has been based on the assumption that the sidewalls
are perfectly insulating. Vadasz et al. (1993) showed that for perfectly conducting
sidewalls convection occurs regardless of the Rayleigh number and regardless of
whether the fluid is heated from below, except for a particular sidewall temperature
variation. When there is no temperature difference between the sidewalls, and with
heating from below, a subcritical flow results mainly near the sidewalls and this
amplifies and extends over the entire domain under supercritical conditions. The
authors treated cases with heating from above as well as heating from below.

Weak nonlinear theory was applied by Vadasz and Braester (1992) to the case of
imperfectly insulated sidewalls. There is now a smooth transition of the amplitude
of convection with increase of Ra from subcritical values, but a three branch
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bifurcation develops at higher Ra values, with two branches stable. For slightly
supercritical Ra, the amplitude and direction of the convection currents are uniquely
determined by the heat leakage through the lateral walls. In this situation there is
weak convection at relatively low Rayleigh numbers and this grows sharply in
strength near the classical critical Rayleigh number; a second stable flow exists
within the weakly nonlinear regime if the Rayleigh number is sufficiently large.

Convection in a square box with a wavy bottom was studied numerically by
Murthy et al. (1997). They found flow separation and attachment on the walls of
the box for Ra around 50 and above, with the manifestation of cycles of unicellular
and bicellular clockwise and counterclockwise flows. The counterflow on the wavy
wall hinders heat transfer into the system by an amount that increases with wave
amplitude or wave number.

The effect of harmonic oscillation of the gravitational acceleration was studied
numerically by Khallouf et al. (1996). Numerical studies involving a transient
situation or an oscillating boundary were reported by Jue (2001a,b).

6.16. Cylinder or Annulus

6.16.1. Vertical Cylinder or Annulus

Following Wooding (1959), for the case of a thin circular cylinder one can assume
that � and w are independent of z, and then Eq. (6.17) gives

d P

dẑ
= Ra T̂ − ŵ = C, (6.147)

where C is a “separation of variables” constant that can be taken as zero. For
marginal stability, Eq. (6.18) reduces to

∇2
H T̂ = −ŵ. (6.148)

Eliminating ŵ from Eqs. (6.145) and (6.146) gives

∇2
H T̂ + Ra T̂ = 0. (6.149)

The solutions of this equation, which are periodic functions of � and are finite at
r̂ = 0, where (r̂ , �) are polar coordinates, have the form

T̂n = Cn Jn(λr̂ ) cos n� (n = 0, 1, 2, . . .), (6.150)

where λ = Ra1/2 and Jn is the Bessel function of order n. The eigenvalues for this
problem are determined by the temperature boundary conditions. For example, if
we have an insulated surface at r̂ = r0/H , so that ∂ T̂ /∂ r̂ = 0, then

J ′
n

(
λ

ro

H

)
= 0. (6.151)

The smallest possible value of λ is attained when n = 1 (corresponding to flow
antisymmetric with respect to a diameter) and the critical Rayleigh number is

Rac = λ2
1

H 2

r2
o

= 3.390
H 2

r2
o

. (6.152)
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Figure 6.24. Critical Rayleigh number and the preferred convective modes (m, p) at
the onset of convection in a vertical cylinder. The temperature perturbation is of the
form � = �(z Jm(Zmpr/� ) cos m�, where Zmp is the pth zero of Jm′(x). The dashed line
indicates the value for an infinite horizontal layer with isothermal boundaries, the lower
impermeable and the upper permeable (Bau and Torrance, 1982b).

This can be written as R̃ac = 3.390, where

R̃a = Ra
r2

o

H 2
= g�Kr2

o �T

H	�m
. (6.153)

Further analysis of convection in a vertical cylinder was reported by Zebib (1978)
and Bories and Deltour (1980) (who considered the effects of finite conduction in
the surrounding medium) for the case of impermeable boundaries and by Bau and
Torrance (1982b) for the case of a permeable upper boundary. The variation of Rac

versus aspect (radius to height) ratio � for the latter case is shown in Fig. 6.24.
The preferred mode is asymmetric except for a limited range of � . Experiments by
Bau and Torrance (1982b) for situations with � in the range 0.2–0.3 confirmed the
prediction that the mode of onset of convection was asymmetric. Their heat transfer
data for moderately supercritical convection was in accord with their calculations.
When Ra reached a value 5.5 Rac, there was a transition to oscillatory convection
(like that occurring in a horizontal layer).

Convection in the annulus between vertical coaxial cylinders was analyzed by
Bau and Torrance (1981). Again the preferred mode of convection is asymmetric.
Experiments with this geometry, with constant heat flux on the inner cylinder and
constant temperature on the outer and with a permeable, constant pressure upper
surface, were reported by Reda (1983). The measured distribution of temperature
was in accord with numerical predictions. These results are pertinent to the design
of nuclear waste repositories.

A numerical and experimental study of two-dimensional convection was
reported by Charrier-Mojtabi et al. (1991). The experiments, in which the
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Christiansen effect was employed for visualization, were in good agreement with
the numerical results.

The onset of convection in a cylindrical enclosure with constant flux bottom
heating and either an impermeable or permeable top was analyzed by Wang (1998b,
1999c). Convection in a cylindrical enclosure filled by a heat generating porous
medium was studied numerically by Das et al. (2003). Tyvand (2002) noted that
the lateral boundary conditions employed in the papers by Zebib (1978), Bau and
Torrance (1982b), and Wang (1998b) are identical and that the transformation
(Ra/4π2, πx, πy) → (Ra/27.21, 2.33x, 2.33y) allows one to deduce the results of
the second and third papers from the results of the first. The same transformation
allows the results of Tewari and Torrance (1981) to be deduced from those of Beck
(1972). Tyvand (2002) also studied convection in a vertical hexagonal cylinder with
impermeable boundaries, a conducting top and bottom, and insulating lateral walls.

6.16.2. Horizontal Cylinder or Annulus

Lyubimov (1975) considered Rayleigh-Benard convection in a circular horizontal
porous cylinder but he did continue the analysis to identify preferred modes and
the critical Rayleigh number. Storesletten and Tveitereid (1987) analyzed two-
dimensional convective motion in a circular horizontal cylinder. They calculated
Rac to be 46.265, where Ra is now defined as

Ra = g��T Kro

	�m
, (6.154)

where r0 is the radius of the cylinder and �T is the temperature difference across
the vertical diameter. At moderately supercritical Rayleigh numbers they found two
steady flow patterns consisting of two or three cells, respectively, both structures
being stable. The first mode involves two counterrotating cells with strictly vertical
motions (upward or downward) in the middle. The second mode consists of three
cells: one dominating central roll occupying most of the area flanked by two smaller
rolls. In their numerical study, Robillard et al. (1993) obtained 46.6 as the critical
value. The situation for a cylinder of length L with insulated ends was studied by
Storesletten and Tveitereid (1991). For L > 0.86, a unique three-dimensional flow
appears at the onset of convection, while for L < 0.86 the flow is two-dimensional
with two or three rolls, each flow being stable, but with thermal forcing the flow
is uniquely determined. The effect of weak rotation was studied by Zhao et al.
(1996).

A bifurcation study of two-dimensional convection was made by Bratsun and
Lyubimov (1995). The degeneracy (infinite number of solutions) is removed when
fluid seeps through the boundaries either vertically or horizontally. At large Ra a
quasiperiodic solution branches from a limit cycle for both types of seepage. The
reduction of heat transfer in horizontal eccentric annuli, involving a transition from
tetracellular to bicellular flow patterns, was studied numerically by Barbosa Mota
and Saatdjian (1997). A numerical treatment of a horizontal annulus filled with an
anisotropic porous medium was reported by Aboubi et al. (1998). Convection in
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a thin horizontal shell of finite length with impermeable walls was examined by
Tyvand (2002), who also considered a similar problem with a thin spherical shell.

6.17. Internal Heating in Other Geometries

In Section 6.11.2 we discussed internal heating in an infinite horizontal layer. We
now discuss internal heating in other geometrical configurations.

Blythe et al. (1985a) analyzed two-dimensional convection driven by uniformly
distributed heat sources within a rectangular cavity whose vertical side walls are
isothermal and whose horizontal boundaries are adiabatic. In the limit of large
internal Rayleigh number RaI [defined in Eq. (6.114)] they found that boundary
layers of thickness of order Ra−1/3

I formed on the side walls, the internal core being
stratified in the vertical direction. Further work on this geometry is the numerical
studies by Haajizadeh et al. (1984) and Prasad (1987). The latter obtained heat
transfer results for RaI up to 104 and for aspect ratios A in the range 0.5 to 20.
These authors reported unicellular flow for the entire range of RaI and A and
stratification in the upper layers of the cavity. Prasad (1987) also examined the
effect of changing the boundary conditions on the horizontal walls from adiabatic
to isothermally cooled.

Banu et al. (1998) noted that in the situation described by Blythe et al. (1985a)
the upper part of the cavity is unstably stratified and so the flow described by
Blythe et al. is unlikely to be realized in practice. The numerical study of Banu
et al. (1998) showed that incipient unsteady flow occurs at values of RaI that are
highly dependent on the aspect ratio of the cavity. The convective instabilities of
the time-dependent motion are confined to the top of the cavity and for tall thin
cavities the critical RaI is proportional to the inverse third power of the aspect
ratio. For a shallow cavity the flow may become chaotic and it loses left/right
symmetry. In this situation downward-pointing plumes are generated whenever
there is sufficient room near the top of the cavity and subsequently travel toward
the nearer side wall.

Vasseur et al. (1984) discussed convection in the annular space between hori-
zontal concentric cylinders. Their calculations showed that at small RaI values a
more or less parabolic temperature profile is established across the annulus, re-
sulting in two counterrotating vortices (both with axes centered on the horizontal
mid-plane) in each half-cavity. Under the effect of weak and moderate convection,
the maximum temperature within the porous medium can be considerably higher
than that induced by pure conduction. At large RaI values, the flow structure con-
sists of a thermally stratified core and two boundary layers, with a thickness and
heat transfer rate of the order of Ra−1/3

I and Ra1/3
I , respectively. Now the inner

radius replaces H in the definition of RaI .
Numerical studies of two-dimensional convection in a horizontal annulus with

flow across a permeable outer or inner boundary were reported by Burns and
Stewart (1992) and Stewart and Burns (1992), while the case where both boundaries
are permeable was treated by Stewart et al. (1994).
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Convection in a vertical cylinder of finite height was studied by Stewart and
Dona (1988). They took the bottom to be adiabatic and the remaining boundaries
isothermal. Their numerical results for height (H ) to radius (R) ratio 2 showed
compression of isotherms near the top and side of the cylinder as RaI increased.
They defined RaI with R2 H replacing H 3 in Eq. (6.115). They found that single-
cell flow occurred until RaI was about 7000. At higher RaI a smaller reverse
flow region formed near the top and axis, and the transition was accompanied
by the position of maximum temperature moving off the axis. Dona and Stewart
(1989) treated the same problem, but including the effects of quadratic drag and
the variation of density and viscosity with temperature for RaI values up to 7000.
For such values the property variations have a significant effect, but the effect of
quadratic drag is small.

Prasad and Chui (1989) made a numerical study of convection in a vertical
cylinder with the vertical wall isothermal and the horizontal boundaries either
adiabatic or isothermally cooled. When the horizontal walls are insulated, the flow
in the cavity is unicellular and the temperature field in the upper region is highly
stratified. However, if the top boundary is cooled, there may exist a multicellular
flow and an unstable thermal stratification in the upper region of the cylinder. Under
the influence of weak convection, the maximum temperature in the cavity can be
considerably higher than that induced by pure conduction (as in the horizontal
annulus problem mentioned above). The local heat flux on the wall is generally a
strong function of RaI , the aspect ratio, and the wall boundary conditions.

The effect of water density maximum on heat transfer in a vertical cylinder,
with adiabatic bottom and isothermal sides and top, was modeled numerically by
Weiss et al. (1991). A linear stability analysis of convection in a vertical annulus
was presented by Saravanan and Kandaswamy (2003a).

Weinitschke et al. (1990) and Islam and Nandakumar (1990) have conducted
studies of two-dimensional bifurcation phenomena in rectangular ducts with uni-
form heat generation. Multiple steady states appear as the internal Rayleigh number
is increased up to several thousand. In the second paper the evaluation with time
of these multiple states is examined. The solution structure is complicated. The
effect of tilt was treated by Ryland and Nandakumar (1992). A bifurcation study
of convection generated by an exothermic chemical reaction was made by Islam
(1993). Heat and mass transfer in a semi-infinite cylindrical enclosure, with per-
meable or impermeable boundaries, were treated by Van Dyne and Stewart (1994).
A numerical study using the Brinkman model for eccentric or oval enclosures was
reported by Das et al. (2003).

A problem related to astrophysics was studied by Zhang et al. (2005). This
problem is concerned with pore water convection within carbonaceous chondrite
parent bodies. These are modeled as spherical bodies within which the gravitational
field is radial and varies with radial distance and the viscosity is allowed to vary
with temperature. The linear stability analysis leads to the determining of a critical
Rayleigh number as a function of the central temperature. Zhang et al. (2005)
found that the nonlinearity from the viscosity-temperature dependence removed a
degeneracy in the azimuthal variation of the mode of convection.
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6.18. Localized Heating

Numerical calculations are called for in more complex situations, as when only
part of the bottom boundary of a container is heated. The prototypical problem is
convection in a rectangular cavity of height H and width 2L , of which the central
section (of the bottom) of width 2D is heated. One can define the aspect ratio of
the half cavity A and the heated length fraction s by

A = L

H
, s = D

L
. (6.155)

The boundaries are assumed to be impermeable. Various thermal boundary con-
ditions can be considered in turn (see Table 6.4). If, for example, one considers
the boundary conditions of Prasad and Kulacki (1986), and the nondimensional
variables are taken to be

X = x

H
, Y = y

H
, � = T − Tc

Th − Tc
, � = ψ

�m
,  = �mt

� H 2
. (6.156)

then one has to solve
1

A2

∂2�

∂ X2
+ ∂2�

∂Y 2
= Ra

∂�

∂ X
, (6.157)

∂�

∂
+ ∂�
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∂Y
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∂ X
= ∂2�

∂ X2
+ A2 ∂2�

∂Y 2
(6.158)

subject to appropriate initial conditions (for the nonsteady problem) and the bound-
ary conditions

� = 1 for 0 ≤ |X | < s, Y = 0,

∂�

∂Y
= 0 for s < |X | ≤ 1, Y = 0,

� = 0 for Y = 1,

∂�

∂ X
= 0 for X = −1 or 1. (6.159)

Table 6.4. Thermal boundary conditions for localized heating in a rectangular cavity.

Central bottom Outer bottom Sides Top

Elder (1967a,b) T = Th T = Tc T = Tc T = Tc

Horne and O’Sullivan
(1974a, 1978b)

T = Th T = Tc
∂T

∂n
= 0 T = Tc

Prasad and Kulacki
(1986, 1987)

Robillard et al.
(1988)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ T = Th
∂T

∂n
= 0

∂T

∂n
= 0 T = Tc

Rajen and Kulacki
(1987)

∂T

∂n
= − q ′′

km

∂T

∂n
= 0

∂T

∂n
= 0 T = Tc

El-Khatib and
Prasad (1987)

T = Th T = Tc

T = Tc+
y

H
(Tt − Tc)

T = Tt
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This system is readily solved using finite differences. Because of the symmetry of
the problem, computations need be made for only the right half of the domain.

The pioneering numerical and experimental study by Elder (1967a) for steady
convection demonstrated that more than one cell exists in the half cavity for s = 1.5
and the Nusselt number is a function of s and the number of cells. Elder (1967b)
also studied the transient problem. He noted (see Fig. 6.25) an alternation between
periods of slow gradual adjustment and periods of rapid change of flow patterns.

The numerical results of Horne and O’Sullivan (1974a) for time-dependent
boundary conditions indicate that when the lower boundary is partially heated, the
system is self-restricting and it settles down into a steady multicellular flow or
a periodic oscillatory flow, depending on Ra and the amount of boundary that
is heated. At high Ra oscillatory flow is the norm. Typical flow patterns are
shown in Fig. 6.26. Approximately mushroom-shaped isotherms predominate. The
effects of temperature-dependent viscosity and thermal expansion coefficient on
the temperature and flow fields were studied by Horne and O’Sullivan (1978b).
They found that in some cases the acceleration of the flow in certain areas, due to
a decrease in viscosity, causes localized thermal instabilities.

Further numerical calculations were reported by Prasad and Kulacki (1986,
1987). For the case D/H > 1, they noted the appearance at small Ra of a circulation
near the heated segment and the development of further cells as Ra increases.
Further increase of Ra does not increase the number of cells, but it strengthens
existing cells and leads to the formation of boundary layers. The outermost cell
extends to the side wall. Within the inner cells plumes are formed at large Ra,
the isotherms taking the characteristic mushroom shape (as with uniform heating).
Because Prasad and Kulacki considered only the steady problem, they did not
observe any oscillatory behavior.

Prasad and Kulacki (1986, 1987) also made calculations of heat transfer rates.
As expected, the local Nusselt number has peaks where hot fluid rises. The peak
value increases with the size of heat source until a new cell is formed. The overall
Nusselt number based on the heated segment (Nus) decreases with s (for fixed
Ra > 1000) until s = 0.4 and then remains steady, the steadiness indicating that
the heat transfer rate is then proportional to the area of the heat source. The overall
Nusselt number based on the entire cavity width (NuL ) increases monotonically
with s. Both overall Nusselt numbers increase with Ra, the rate of increase being
approximately uniform (on a log-log scale) when Ra > 100, the boundary layer
regime. In this regime the slope of the ln(NuL ) versus ln(Ra) curve increases
gradually with s. When s is close to 1, the overall Nusselt numbers increase
rapidly with Ra in the vicinity of Ra = 40, as expected.

El-Khatib and Prasad (1987) extended the calculations to include the effects of
linear thermal stratification, expressed by the parameter

S = Tt − Tc

Th − Tc
. (6.160)

See the last line of Table 6.3 for definitions of Tt , Tc, and Th . El-Khatib and Prasad
did calculations for A = 1, s = 0.5, 0 = S = 10, and Ra up to 1000. They found
that an increase in S for a fixed Ra reduces the convective velocities, and hence the
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Figure 6.25. Streamlines and isotherms for a localized heater problem at various times;
Ra = 400, A = 2, s = 0.5 (Elder, 1967b, with permission from Cambridge University
Press).

energy lost by the heat source. In fact, for sufficiently large S at least part of the
heated segment may gain energy. A similar situation pertains to the top surface.
For S > 1 the energy gained by the upper surface is almost independent of Ra.

Rajen and Kulacki (1987) reported experimental and numerical results for A =
16 or 4.8, and s = 1, 1/2, or 1/12, with the boundary conditions given in Table 6.3.



260 6. Internal Natural Convection: Heating from Below

Figure 6.26. Plots of computed isotherms during a single oscillation for a localized heat-
ing problem; Ra = 750, A = 1, s = 0.5 (Horne and O’Sullivan, 1974a, with permission
from Cambridge University Press).
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Their observations of Nusselt number values were in very good agreement with
the predicted values.

Robillard et al. (1988) performed calculations for the case when the heat source
is not symmetrically positioned. Merkin and Zhang (1990b) treated numerically
a similar situation. A variant of the Elder short heater problem with a spatially
sinusoidal distribution along the hot plate was studied numerically by Saeid (2005).

6.19. Superposed Fluid and Porous Layers

Convection in a system consisting of a horizontal layer of porous medium and
a superposed clear fluid layer has been modeled in two alternative ways. In the
two-domain approach the porous medium and clear fluid are considered separately
and the pair of solutions is coupled using matching conditions at the interface. In
the single-domain approach the fluid is considered as a special case of a porous
medium, the latter being modeled using a Brinkman-Forchheimer equation. The
second approach is subject to the caveat about use of the Brinkman equation
mentioned in Section 1.6, but in most situations discussed in this section the two
approaches are expected to yield qualitatively equivalent results for the global
temperature and velocity fields. An exception is when the depth of the porous
layer is not large in comparison with the particle/pore diameter.

6.19.1. Onset of Convection

6.19.1.1. Formulation

We start by considering a porous layer of depth dm superposed by clear fluid of
depth d f , the base of the porous medium being at temperature Tl and the top of

Figure 6.27. Composite fluid-layer porous-layer systems.
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the clear fluid region at temperature Tu (Fig. 6.27a). We suppose that flow in the
porous medium is governed by Darcy’s equation and that in the clear fluid by the
Navier-Stokes equation. The combined system has a basic steady-state conduction
solution given by

V = 0, T = Tb ≡ Tu − � f (z − dm − d f ), P = Pb for the fluid, (6.161)

vm = 0, Tm = Tbm ≡ Tl − �m z, Pm = Pbm for the porous layer. (6.162)

Here � f and �m are the temperature gradients. Continuity of temperature and heat
flux at the interface requires that

Tu + � f d f = Tl − �mdm = Ti and k f � f = km�m, (6.163a,b)

where Ti is the interface temperature, and hence

� f = km(Tl − Tu)

kmd f + k f dm
, �m = k f (Tl − Tu)

kmd f + k f dm
. (6.164a,b)

In terms of perturbations from the conduction state, T ′ = T − Tb, P ′ = P − Pb,
etc., the linearized perturbation equations in time-independent form are

∇ · V′ = 0, (6.165a)
1


0
∇ P ′ = 	∇2V′ + g�T ′k, (6.165b)

� f w
′ + � f ∇2T ′ = 0, (6.165c)

∇ · v′
m = 0, (6.166a)

1


0
∇ P ′

m = − v

K
v′

m + g�T ′
mk, (6.166b)

�mw′
m + �m∇2T ′

m = 0. (6.166c)

In the fluid layer appropriate nondimensional variables are

x̂ = (x − dmk)

d f
, V̂ = d f v′

� f
, P̂ = d2

f P ′

�� f
, T̂ = T ′

� f d f
. (6.167)

Substituting Eq. (6.163) and dropping the carets we have for the fluid layer

∇ · V = 0, (6.168a)

∇ P = ∇2V + Ra f T k, (6.168b)

w + ∇2T = 0, (6.168c)

where

Ra f = g�� f d4
f

	� f
. (6.169)

Eliminating P , we reduce the equations for the fluid layer to

∇4w + Ra ∇2
H T = 0, (6.170a)

w + ∇2T = 0. (6.170b)
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Here ∇2
H denotes the horizontal Laplacian as in Eq. (6.20). Similarly, for the porous

medium, we put

x̂m = x

dm
, v̂m = dmv′

�m
, P̂m = K P ′

m

��m
, T̂m = T ′

m

�mdm
. (6.171)

Substituting Eq. (6.162), dropping the carets, and eliminating Pm , we have for the
porous medium

∇2
mwm − Ram∇2

Hm Tm = 0, (6.172a)

wm + ∇2
m Tm = 0, (6.172b)

where

Ram = g��m K d2
m

	�m
. (6.173)

We now separate the variables by letting{
w

T

}
=

{
W (z)
�(z)

}
f (x, y),

{
wm

Tm

}
=

{
wm(zm)
�m(zm)

}
fm(xm, ym), (6.174)

where

∇2
H f + �2 f = 0, ∇2

Hm fm + �2
m fm = 0. (6.175)

Since the dimensional horizontal wavenumber must be the same for the fluid
layer and the porous medium if matching is to be achieved, the nondimen-
sional horizontal wavenumbers � and �m are related by �/d f = �m/dm , and
so

�m = d̂�, where d̂ = dm/d f . (6.176)

The reader should not be confused by the use (in this section only) of the symbol
�m for both thermal diffusivity and horizontal wavenumber. He or she should note
that Chen and Chen (1988, 1989) have used d̂ to denote d f /dm . Equations (6.164)
and (6.166) yield

(D2 − �2)2W − Ra f �2� = 0, (6.177a)

(D2 − �2)� + W = 0 (6.177b)

and

(D2
m − �2

m)Wm + Ram�2
m�m = 0, (6.178a)

(D2
m − �2

m)�m + Wm = 0, (6.178b)

where D = d/dz and Dm = d/dzm . We match the solutions of Eqs. (6.177)
and (6.178) at the fluid/porous-medium interface by invoking the continuity of
temperature, heat flux, normal velocity (note that it is the Darcy velocity and
not the intrinsic velocity which is involved), and normal stress. The Beavers-
Joseph condition supplies the fifth matching condition. Thus we have at zm = 1
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(or z = 0),

T = εT Tm,
∂T

∂z
= ∂Tm

∂zm
, εT w = wm, (6.179a,b,c)

εT d̂3Da

(
3∇2

H

∂w

∂z
+ ∂3w

∂z3

)
= −∂wm

∂zm
, (6.179d)

εT d̂

(
∂w

∂z
− �

∂2w

∂z2

)
= −∂wm

∂zm
, (6.179e)

where εT = �mdm/� f d f = k f dm/kmd f = d̂/k̂,

Da = K

d2
m

, � = d̂
Da1/2

�B J
, d̂ = dm

d f
, k̂ = km

k f
. (6.180)

Equation (6.179d) is derived from the condition

−P + 2�
∂w

∂z
= −Pm (6.181)

and Eq. (6.179e) is derived from the Beavers-Joseph condition

∂u

∂z
= �B J

K 1/2
(u − um). (6.182)

The remaining boundary conditions come from the external conditions. For exam-
ple, if the fluid-layer/porous-medium system is bounded above and below by rigid
conducting boundaries, then one has

w = ∂w

∂z
= T = 0 at z = 1,

wm = Tm = 0 at zm = 0.

(6.183a,b,c)

The tenth-order system (6.176) and (6.178) now can be solved subject to the ten
constraints (6.179) and (6.180). Note that the fluid Rayleigh number Ra f and the
Rayleigh-Darcy number Ram are related by

Ram = d̂ε2
T Da Ra f = d̂4k̂−2 Da Ra f . (6.184)

Hence the critical Rayleigh-Darcy number Ram can be found as a function of four
parameters, d̂, k̂, Da, and �B J , or, alternatively, d̂, εT , Da, and �.

6.19.1.2. Results

As in Section 6.2, the case of constant heat flux boundaries yields a closed form for
the stability criterion. The critical wavenumber is zero and the stability criterion
for the case of a free top and an impermeable bottom is given by (Nield, 1977)

εT
{
3 + 24� + Da d̂2

[
84 + 384d̂ + 300εT d̂ + 720�d̂(1 + εT )

]}
Ra f c

+ d̂2
[
320 + 960� + Da d̂2(960 + 240d̂)

+ ε−1
T (300 + 720� + 720 Da d̂2)

]
Ramc

= [
960 + 2880� + 2880 Da d̂2(1 + d̂)

]
(εT + d̂2).

(6.185)
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If we let d̂ → ∞ with εT , Da, and � finite, Eq. (6.185) gives Ramc → 12, the
expected value for a porous medium between two impermeable boundaries.

A similar analysis has been performed for a system consisting of a porous
medium layer of thickness 2dm sandwiched between two fluid layers, each of
thickness d f , Fig. 6.24b. The following stability criteria have been obtained.

Rigid top and rigid bottom (Nield, 1983):

εT [8 + 18� + (15 + 45�) εT ] Ra f c +
{

120(1 + �) d̂2 + 180d̂ + 60
d̂

εT

+ 1

Da

[(
30 + 120�

d̂

)
+

(
15 + 45�

d̂εT

)]}
(6.186)

Ramc = 360(1 + �)(εT + d̂2).

Free top and free bottom (Pillatsis et al. 1987):

εT
[
192 + 360�(1 + 2d̂) + 720 Da d̂3 + 300d̂

]
Ra f c

+ d̂2

{
480 +

(
60

Da d̂4

)
[5 + 8d̂ + 12�(1 + 2d̂) + 24d̂3 Da]

}
Ramc

= 1440(εT + d̂2). (6.187)

As d̂ → 0 (with � → 0), Eqs. (6.186) and (6.187) yield Ra f c = 45 and 7.5, the
critical Rayleigh numbers for a fluid layer of depth 2d f between rigid-rigid and
free-free boundaries, respectively. As d̂ → ∞ they yield Ramc = 3, the critical
Rayleigh-Darcy number for a porous layer of depth 2dm between impermeable
boundaries. These results are as expected. Figure 6.28 shows the results of calcu-
lations based on Eqs. (6.186) and (6.187).

For isothermal boundaries the critical wavenumber is no longer zero, and nu-
merical calculations are needed. Pillatsis et al. (1987) and Taslim and Narusawa
(1989) have employed power series in z to obtain the stability criterion. They
treated the fluid/porous-medium, the fluid/porous-medium/fluid, and the porous-
medium/fluid/porous-medium situations. The results are in accord with expecta-
tions. A rigid boundary at the solid-fluid interface suppresses the onset of con-
vection compared with a free boundary. The presence of a fluid layer increases
instability in the porous medium and �mc decreases as the effect of the fluid layer
becomes more significant, as it does when the fluid layer thickens. The parameter
�B J has a significant effect only when the Darcy number is large. The effect of the
Jones modification to the Beavers-Joseph condition is minimal.

Nield (1994a) has shown that the above theory is consistent with observations
of increased heat transfer due to channeling reported by Kazmierzak and Muley
(1994). Further calculations by Chen and Chen (1988) show that the marginal
stability curves are bimodal for a fluid/porous-medium system with d f /dm small
(Fig. 6.29). The critical wavenumber jumps from a small to a large value as d f /dm

increases from 0.12 to 0.13. Chen and Chen noted that the change correlated
with a switch from porous-layer-dominated convection to fluid-layer-dominated
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Figure 6.28. Critical Rayleigh number for a porous layer sandwiched between two fluid
layers (Fig. 6.24b) for the constant flux case. (A) d̂ = dm/d f = 500, (B) d̂ = 100, (C)
d̂ = 10; k f /km = 1 and � = 0.05 for all curves; --------- rigid boundaries, – – – free
boundaries, – · – Ramc = 3 corresponding to the case of a porous layer alone. The
vertical bars denote the range of Ramc when the conductivity ratio k f /km is varied from
10 to 0.1 (Pillatsis et al., 1987).

convection. Numerical calculations for supercritical convection by Kim and Choi
(1996) are in good agreement with the predictions from linear stability theory.

The experiments of Chen and Chen (1989) generally confirmed the theoreti-
cal predictions. They employed a rectangular enclosure with 3-mm glass beads
and a glycerin-water solution of varying concentrations to produce a system with
0 ≤ d f /dm ≤ 1. They observed that Ramc does decrease significantly as d f /dm

increases. They also estimated the size of convective cells from temperature mea-
surements. They found that the cells were three-dimensional and that the critical
wavenumber increased eightfold when d f /dm was increased from 0.1 to 0.2.

Somerton and Catton (1982) used the Brinkman equation. Their results are con-
fined to high Darcy numbers, K/(d f + dm)2 > 37 × 10−4, and thick fluid layers,
d f /dm = 0.43. Vasseur et al. (1989) also employed the Brinkman equation in their
study of a shallow cavity with constant heat flux on the external boundaries. An
extra isothermal condition at the interface mentioned in their paper was in fact not
used in the calculations.

A nonlinear computational study, using a Brinkman-Forchheimer equation, was
made by Chen and Chen (1992). The effect of rotation on the onset of convection
was analyzed by Jou et al. (1996). The effect of vertical throughflow was treated
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Figure 6.29. Marginal stability curves for a fluid-superposed porous layer heated from
below for isothermal rigid boundaries, with the thermal conductivity ratio k f /km = 0.7,
Da = 4 × 10−6, and �B J = 0.1, for various values of the depth ratio d f /dm (Chen and
Chen, 1988).

by Chen (1991). The effect of anisotropy was studied by Chen et al. (1991) and
Chen and Hsu (1991) and that of viscosity variation by Chen and Lu (1992b).
A fluid layer sandwiched between two porous layers of different permeabilities
was analyzed by Balasubramanian and Thangaraj (1998). The case where the
bottom boundary is heated by a constant flux was analyzed by Wang (1999a),
who found that the critical Rayleigh number for the porous layer increases with
the thickness of the solid layer, a result opposite to that when the heating is at
constant temperature. Reacting fluid and porous layers were analyzed by McKay
(1998a). The effect of property variation was incorporated by Straughan (2002). A
comparison of the one and two domains approaches to handling the interface was
made by Valencia-López and Ochoa-Tapia (2001). Significant differences between
the predicted overall average Nusselt numbers were found when the Rayleigh and
Darcy numbers were large enough. The characteristic based split algorithm was
used in the numerical study of interface problems by Massarotti et al. (2001).

6.19.2. Flow Patterns and Heat Transfer

Heat transfer rates for a fluid-layer/porous-layer system were calculated by
Somerton and Catton (see Catton, 1985) using the power integral method. Both
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streamlines and heat transfer rates were calculated by numerical integration of the
time-dependent equations by Poulikakos et al. (1986) and Poulikakos (1987a).
Laboratory experiments, in a cylindrical cavity heated from below, have been re-
ported by Catton (1985), Prasad et al. (1989a), and Prasad and Tian (1990). Prasad
and his colleagues performed both heat transfer and flow visualization experi-
ments, the latter with transparent acrylic beads and a liquid matched for index of
refraction. There is qualitative agreement between calculations and observations.
For example, in a cell of aspect ratio and d f /dm = 1 there is a transition from
a two-cell pattern to a four-cell pattern with an increase in Rayleigh number or
Darcy number. In the two-cell pattern the flow extends well into the porous layer,
while in the four-cell pattern the flow is concentrated in the fluid layer.

Once convection starts, the Nusselt number Nu always increases with Rayleigh
number for fixed �, where �denotes the fraction of the depth occupied by the porous
medium. For small particle size � and/or small Rayleigh number, Nu decreases
monotonically with �; otherwise the dependence of Nu on � is complex. The
complexity is related to the variation in the number of convection cells that occur.
In general, Nu depends on at least six parameters: Ra, Pr, �, km/k f , �, and A.

Further experiments, involving visualization as well as heat transfer studies,
were made by Prasad et al. (1991). They found that flow channels through large
voids produce highly asymmetric and complicated flow structures. Also, Nu first
decreases from the fluid heat transfer rates with an increase in � and reaches
a minimum at �min . Any further increase in porous layer height beyond �min

augments the heat transfer rate and the Nu curves show peaks. Prasad (1993)
observed the effects of varying thermal conductivity and Prandtl number.

Even more complicated is the situation when one has volumetric heating of the
porous medium as well as an applied vertical temperature gradient. This situation
was studied numerically, using the Brinkman equation, by Somerton and Catton
(1982) and Poulikakos (1987a,b); the latter also included the Forchheimer term.
Poulikakos studied convection in a rectangular cavity whose bottom was either
isothermal or adiabatic. For the aspect ratio H/L = 0.5, he noted a transition from
two to four cells as RaI and Da increase. Related experiments were reported by
Catton (1985) and others. Further experimental and numerical work was conducted
by Schulenberg and Müller (1984). Serkitjis (1995) conducted experimental (and
numerical) work on convection in a layer of polystyrene pellets, of spherical or
cylindrical shape, below a layer of air. He found that the occurrence of natural
convection in the air space has only a marginal effect on heat transfer in the porous
medium. A numerical study of transient convection in a rectangular cavity was
reported by Chang and Yang (1995).

The subject of this section has been extensively reviewed by Prasad (1991).
Further complexity arises if chemical reactions are involved. Examples are found
in the papers by Hunt and Tien (1990) and Viljoen et al. (1990).

6.19.3. Other Configurations and Effects

A hydrothermal crystal growth system was modeled by Chen et al. (1999),
on the assumption that the growth process is quasisteady. The flow through a



6.20. Layer Saturated with Water Near 4◦C 269

fluid-sediment interface in a benthic chamber was computed by Basu and Khalili
(1999). The addition of vertical through flow was studied by Khalili et al. (2003).
Convective instability in a layer saturated with oil and a layer of gas underlying it
was analyzed by Kim et al. (2003a).

The effect of gravity modulation was added by Malashetty and Padmavathi
(1997). Convection in a square cavity partly filled with a heat-generating porous
medium was studied analytically and numerically by G. B. Kim et al. (2001).
Convection induced by the selective absorption of radiation was analyzed by Chang
(2004). Penetrative convection resulting from internal heating was studied by Carr
(2004). It was found that a heat source in the fluid layer has a destabilizing effect
on the porous medium but one in the fluid has a stabilizing effect on the fluid, while
the effects on their respective layers depends strongly on the overall temperature
difference and the strength and type of heating in the opposite layer. It also was
found that the initiating cell pattern is not necessarily the strongest one. A horizontal
plane Couette flow problem was analyzed by Chang (2005).

A surface tension (Marangoni) effect on the onset of convection was analyzed
by Nield (1998c). A similar situation was treated by Hennenberg et al. (1997),
Rudraiah and Prasad (1998), Straughan (2001b), Desaive et al. (2001), and Saghir
et al. (2002, 2005b) using the Brinkman model. The last authors reported numerical
studies for the combined buoyancy and surface tension situation. Kozak et al.
(2004) included the effect of evaporation at the free surface. Straughan (2004b)
pointed out that the results of Chen and Chen (1988) lend much support for the
two layer model of Nield (1998c).

6.20. Layer Saturated with Water Near 4◦C

Poulikakos (1985b) reported a theoretical investigation of a horizontal porous
layer saturated with water near 4◦C, when the temperature of the top surface is
suddenly lowered. The onset of convection has been studied using linear stability
analysis (Sun et al., 1970) and time-dependent numerical solutions of the complete
governing equations (Blake et al., 1984). In both studies, the condition for the onset
of convection is reported graphically or numerically for a series of discrete cases.
The numerical results of Blake et al. (1984) for layers with Tc = 0◦C on the top
and 5◦C = Th = 8◦C on the bottom can be used to derive (Bejan, 1987)

gK H

	�m
> 1.25 × 105 exp[exp(3.8 − 0.446Th)] (6.188)

as an empirical dimensionless criterion for the onset of convection. In this criterion
the bottom temperature Th is expressed in degrees Celsius.

Finite-amplitude heat and fluid flow results for Rayleigh numbers g� K (Th −
Tc)2 H/	�m of up to 104 (i.e., about 50 times greater than critical) also have
been reported by Blake et al. (1984). In the construction of this Rayleigh num-
ber � is the coefficient in the parabolic model for the density of cold water,

 = 
re f [1 − � (T − 3.98◦C)2], namely, � = 8 × 10−6(◦C)−2.
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Nonlinear changes in viscosity (as well as density) were treated numerically
by Holzbecher (1997). He found that a variety of flow patterns (e.g., two or four
cells in a two-dimensional square domain) are possible, depending on the choice
of maximum and minimum temperatures.

6.21. Effects of a Magnetic Field

Despite the absence of experimental work and a lack of practical applications,
several theoretical papers, including those by Patil and Rudraiah (1973), Rudraiah
and Vortmeyer (1978), and Rudraiah (1984) have been published on magnetohy-
drodynamic convection in a horizontal layer. The simplest case is that of an applied
vertical magnetic field and electrically conducting boundaries. Oscillatory convec-
tion is a possibility under certain circumstances, but this is ruled out if the thermal
diffusivity is smaller than the magnetic resistivity, and this condition is met by a
large margin under most terrestrial conditions. On the Darcy model, for the case of
thermally conducting impermeable boundaries, the Rayleigh number at the onset
of nonoscillatory instability for disturbances of dimensionless wavenumber a is
given by

Ra = (π2 + �2)(π2 + �2 + Qπ2)

�2
, (6.189)

where

Q = � B2 K

�
. (6.190)

Here B is the magnetic induction and � is the electrical conductivity. The
parameter Q has been called the Chandrasekhar-Darcy number; it is the Darcy
number K/H 2 times the usual Chandrasekhar number, which in turn is the square
of the Hartmann number. Some workers use a Hartmann-Darcy number equal to
Q1/2. It is clear that the effect of the magnetic field is stabilizing. The critical
Rayleigh number again is found by taking a minimum as a varies. Because of the
practical difficulties of achieving a large magnetic field, Q is almost always much
less than unity, and so the effect of the magnetic field is negligible. Bergman and
Fearn (1994) discussed an exceptional situation, namely convection in a mushy
zone at the Earth’s inner-outer core boundary. They concluded that the magnetic
field may be strong enough to act against the tendency for convection to be in the
form of chimneys.

The problem for the case of the Brinkman model and isoflux boundaries was
treated by Alchaar et al. (1995a). In this paper and in Bian et al. (1996a) the
effect of a horizontal magnetic field was studied, but these treatments are incom-
plete because only two-dimensional disturbances were considered and so the most
unstable disturbance may have been overlooked.

Further studies of MHD convection have been reported by Goel and Agrawal
(1998) for a viscoelastic dusty fluid, by Sunil and Singh (2000) for a
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Rivlin-Ericksen fluid, and by Sunil et al. (2003a) for throughflow and rotation ef-
fects. Sekar and Vaidyanathan (1993), Vaidyanathan et al. (2002a–c), Ramanathan
and Surenda (2003), Ramanathan and Suresh (2004), and Sunil et al. (2004a) have
treated ferroconvection with a magnetic-field-dependent viscosity for an isotropic
or anisotropic medium with and without rotation. A nonlinear stability problem
for a ferromagnetic fluid was treated by Qin and Chadam (1995). The effect of
dust particles on ferroconvection was added by Sunil et al. (2004c, 2005b).

6.22. Effects of Rotation

The subject of flow in rotating porous media has been reviewed in detail by Vadasz
(1997a, 1998b, 2000a, 2002), whose treatment is followed here. On the Darcy
model, constant density flow in a homogeneous porous medium is irrotational, and
so the effect of rotation on forced convection is normally unimportant. For natural
convection the situation is different. For a homogeneous medium the momentum
equation (with Forchheimer and Brinkman terms omitted) can be written in the
dimensionless form

Da

� Pr

∂v

∂t
= −∇ p − RaT ∇(eg.X) + Ra�T e� × (e� × X) + 1

Ek
e� × v. (6.191)

Here eg and e� are unit vectors in the direction of gravity and rotation, respectively,
and X is the position vector. The new parameters are the rotational Rayleigh
number Ra� and the Ekman-Darcy number Ek defined by

Ra� =
(

�2 H

g

)
Ra, Ek = ��

2�
 K
, (6.192)

where � is the dimensional angular velocity of the coordinate frame with respect
to which motion is measured. Normally Ek � 1 and then the Coriolis term is neg-
ligible, but it can cause secondary flow in an inhomogeneous medium. Generally
the Coriolis effect is analogous to that of anisotropy (Palm and Tyvand, 1984). The
appearance of the porosity in the expression for Ek should be noted, because some
authors have overlooked this factor. This error was pointed out by Nield (1999),
who also discussed the analogy between (i) Darcy flow in an isotropic porous
medium with a magnetic or rotation effect present, and (ii) flow in a medium with
anisotropic permeability.

For the case Ra/Ra� � 1, i.e. when the centrifugal force dominates over gravity,
Vadasz (1992, 1994b) considered a two-dimensional problem for a rectangular
domain with heating from below and rotation about a vertical boundary. He first
showed that for small height-to-breadth aspect ratio H/L , the Nusselt number is
given approximately by

Nu = 1

24
(H/L) Ra�. (6.193)
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He then relaxed this condition, reduced the problem to that of solving an ordinary
differential equation, and found that Nu increases faster with Ra� than Eq.(6.191)
would indicate.

The Coriolis effect on the Horton-Rogers-Lapwood problem has been investi-
gated by several authors. On the Darcy model, one finds that the critical Rayleigh
number is given by

Rac = π2[(1 + Ek−2)1/2 + 1]2. (6.194)

Using the Brinkman model, Friedrich (1983) performed a linear stability analysis
and a nonlinear numerical study. On this model, convection sets in as an oscil-
latory instability for a certain range of parameter values. Patil and Vaidyanathan
(1983) dealt with the influence of variable viscosity on linear stability. A nonlin-
ear energy stability analysis was performed by Qin and Kaloni (1995). A study
of the heat transfer produced in nonlinear convection was made by Riahi (1994),
following the procedure of Gupta and Joseph (1973). In terms of a Taylor-Darcy
number Ta defined by Ta = 4/Ek2, he found the following results. For Ta � O(1),
the rotational effect is not significant. For O(1) � Ta � O(Ra1/2 log Ra), the
Nusselt number Nu decreases with increasing Ta for a given Ra. For O(Ra1/2

log Ra) � Ta � O(Ra), Nu is proportional to (Ra/Ta) log (Ra/Ta). For Ta =
O(Ra), Nu becomes O(1) and the convection is inhibited entirely by rotation for
Ta > Ra/π2.

The weak nonlinear analysis of Vadasz (1998b) showed that, in contrast to the
clear fluid case, overstable convection is possible for all values of Pr (not just
Pr < 1) and that the critical wavenumber in the plane containing the streamlines
for stationary convection is dependent on rotation. It also showed that the effect of
viscosity is destabilizing for high rotation rates. As expected, there is a pitchfork
bifurcation for stationary convection and a Hopf bifurcation for overstable convec-
tion and rotation retards heat transfer (except for a narrow range of small values
of �Pr/Da, where rotation enhances the heat transfer associated with overstable
convection). Bounds on convective heat transfer in a rotating porous layer were
obtained by Wei (2004). A sharp nonlinear threshold for instability was obtained
by Straughan (2001c). Bresch and Sy (2003) presented some general mathematical
results for convection in rotating porous media.

A study of Coriolis effects on the filtration law in rotating porous media was made
by Auriault et al. (2002a). Alex and Patil (2000a) analyzed an anisotropic medium.
Desaive et al. (2002) included a study of Kuppers-Lortz instability for the case
of Coriolis effects. Vadasz and Govender (2001) and Govender (2003a,c) treated
in turn the Coriolis effect for monotonic convection and oscillating convection
induced by gravity and centrifugal forces, each in a rotating porous layer distant
from the axis of rotation.

Various non-Newtonian fluid have been considered. A Rivlin-Ericksen fluid was
analyzed by Krishna (2001). A micropolar fluid was treated by Sharma and Kumar
(1998). An electrically conducting couple-stress fluid was studied by Sunil et al.
(2002).
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6.23. Other Types of Fluids

The onset of convection in a horizontal layer of a medium saturated with a microp-
olar fluid was studied by Sharma and Gupta (1995). Coupling between thermal and
micropolar effects may introduce oscillatory motions. A nonlinear analysis with a
micropolar medium was reported by Siddheshwar and Krishna (2003). A similar
problem for a ferromagnetic fluid was studied by Vaidyanathan et al. (1991). The
corresponding problem with a non-Newtonian power-law fluid, with constant-flux
boundary conditions, was treated analytically and numerically by Amari et al.
(1994). The effect of suspended particles was treated by Mackie (2000). Visco-
elastic fluids were studied by Prakash and Kumar (1999a), Sri Krishna (2001),
and Yoon et al. (2003, 2004), and also by Prakash and Kumar (1999a,b) for the
case of variable gravity, Sharma and Kango (1999) for the MHD case, by Kumar
(1999) with the addition of suspended particles, while Kim et al. (2003b) con-
ducted a nonlinear analysis. Other papers involving non-Newtonian fluids have
been mentioned in the previous section.

6.24. Effects of Vertical Vibration and Variable Gravity

The subject of thermovibrational convection is of current interest in connection
with the study of the behavior of materials in a microgravity environment as
on a spacecraft, where residual accelerations (g-jitter) may have undesirable ef-
fects. The term thermovibrational convection refers to the appearance of a mean
flow in a fluid-filled cavity having temperature heterogeneities. In this case, by
proper selection of frequency and amplitude of vibration one may observe signif-
icant modifications in the stability threshold of convective motions. Historically,
there have been two schools of thought on treating this type of problem. The first
group apply linear stability analysis to the system of hydrodynamic equations in
its original form, and thus obtain a set of coupled linear differential equations
with periodic coefficients. The second group apply the time-averaging method
and now a periodic coefficient does not appear explicitly in the governing equa-
tions. In this approach, which is valid for the case of high frequency and small
amplitude, the temperature, pressure, and velocity fields may be decomposed into
two parts, the first of which varies slowly with time, while the second part varies
rapidly with time and has a zero mean over a vibrational period. This method
leads to substantial simplifications in the mathematical formulation and even in
some cases provides us with analytical relationships for the onset of convection. It
enables a more in-depth analysis of the control parameters and consequently a bet-
ter understanding of vibrational effect. The validity of a time-averaged method
has been proved mathematically as well as experimentally, c.f. Gershuni and
Lyubimov (1998). Several theoretical papers, including those of Zenkovskaya
(1992), Zenkovskaya and Rogovenko (1999), and Bardan and Mojtabi (2000),
have been published on thermovibrational convection in porous media by applying
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this method. The simplest case is that of an infinite horizontal porous layer
with height H that undergoes a vertical vibration of sinusoidal form, which is
characterized by amplitude (b) and frequency (�). As a first step, the simul-
taneous effects of vibration and gravitational acceleration may be considered;
the vibration vector is parallel to the gravitational acceleration. The bound-
aries of the layer are kept at constant but different temperatures. Adopting the
Darcy model, the Rayleigh number at the onset of stationary convection, can be
expressed as:

Ra = (π2 + �2)2

�2
+ Rav

�2

�2 + π2
, (6.195)

where

Rav = (RRa)2

2B�∗2
. (6.196)

and � is the dimensionless wave number.
Here R is an acceleration ratio (b�2/g), B may be considered as a sort of inverse

Darcy-Prandtl number (B = a∗K/ε	� H 2), and �∗ is the dimensionless frequency.
The stability diagram in the Rac-R plane reveals that vibration increases the stability
threshold and reduces the critical wave number. Another interesting result obtained
from Eq.(6.195) is that under microgravity conditions the layer is linearly/infinitely
stable. It was shown mathematically by Zenkovskaya (1992) that the transition to-
ward an oscillatory convection in this case is not possible. This problem was also
treated by Razi et al. (2002) by using the direct method. In these papers, the authors
showed that the stability analysis led to a Mathieu equation. An analogy between
the stability behaviors of the thermofluid problem with that of an inverted pendulum
under the effect of vertical vibration was made, cf. Razi et al. (2005). It may be re-
called that vertical vibration may stabilize an inverted pendulum, which is in an un-
stable position. Based on a scale analysis reasoning, the domain of validity of time-
averaged method was found. Razi et al. explained why the transient term should
be kept in the momentum equation at high frequency. In addition, they argued that
the time-averaged method only gives the harmonic response and they predicted the
existence of a subharmonic response. Thus these studies bridged the gap between
the two schools of thought on thermovibrational problems. The outcome of these
analyses can be interpreted in the context of constructal theory (Bejan, 2000) as
follows: among the many combinations between frequency and amplitude of vibra-
tion it is the high-frequency and small amplitude that provide the stabilizing effect.

The finite amplitude case was studied by Bardan and Mojtabi (2000), Mojtabi
(2002), Bardan et al. (2004), and Razi et al. (2005). Their weakly nonlinear analysis
shows that the bifurcation at the transition point is of the supercritical pitchfork
type. Mojtabi et al. (2004) examined the case of variable directions of vibration
in the limiting case of high-frequency and small amplitude. They concluded that
when the direction of vibration is perpendicular to the temperature gradient, the
vibration has a destabilizing effect. They also predicted the onset of convection in
microgravity conditions.
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The alternative school of thought is represented by the papers by Malashetty
and Padmavathi (1998) (who included non-Darcy effects) and Govender (2004b,
2005c–f). The latter presented the results of both linear and weak nonlinear analysis
with emphasis on the transition from synchronous to subharmonic motions, and
he treated the cases of low frequency and a layer heated from above.

Herron (2001) analyzed the onset of convection in a porous medium heated
internally and with the gravitational field varying with distance through the layer.
He proved that oscillatory is not possible as long as the gravity field and the
integral of the heat sources have the same sign. Kim et al. (2005) studied the
transient convection resulting from a sudden imposition of gravity.

6.25. Bioconvection

Bioconvection is concerned with pattern formation in suspensions of micro-
organisms, such as bacteria and algae, due to up-swimming of the microorganisms.
The microorganisms are denser than water and on the average they swim upward.
When they congregate the system becomes top-heavy and instability as convec-
tion may result. Microorganisms respond to various stimuli. Gravitaxis refers to
swimming in the opposite sense as gravity. Gyrotaxis is swimming directed by the
balance between the torque due to gravity acting on a bottom-heavy cell and the
torque due to viscous forces arising from local shear flows. Oxytaxis corresponds
to swimming up an oxygen concentration gradient.

Kuznetsov and co-workers have analyzed various aspects of bioconvection in a
porous medium, sufficiently sparse so that the microorganisms can swim freely.
Gravitaxis was considered by Kuznetsov and Jiang (2001, 2003) and Kuznetsov
and Avramenko (2003a) with and without cell deposition and declogging. Further
studies of gravitaxis were conducted by Nguyen et al. (2004) and Nguyen-Quang
et al. (2005). A falling plume involving the bioconvection of oxytactic bacteria was
treated by Kuznetsov et al. (2003a, 2004). The oxytactic situation with superposed
fluid and porous layers was studied by Avramenko and Kuznetsov (2005). A falling
plume was also studied numerically by Becker et al. (2004). Gyrotaxis was studied
by Kuznetsov and Avramenko (2002, 2003b, 2005), Nield et al. (2004c), and
Avramenko and Kuznetsov (2004). Work on bioconvection in porous media was
reviewed by Kuznetsov (2005).

6.26. Constructal Theory of Bénard Convection

In this section we take a closer look at the phenomenon of convection in a porous
layer heated from below. Our objective is to show that most of the features of the
flow can be determined based on a simple method: the intersection of asymptotes
(Nelson and Bejan, 1998). This method was originally used for the optimization
of spacings for compact cooling channels for electronics (Bejan, 1984); see also
Lewins (2003) and Bejan et al. (2004).
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Figure 6.30. Horizontal porous layer saturated with fluid and heated from below (Nelson
and Bejan, 1998).

Assume that the system of Fig. 6.30 is a porous layer saturated with fluid and
that if present the flow is two-dimensional and in the Darcy regime. The height H
is fixed and the horizontal dimensions of the layer are infinite in both directions.
The fluid has nearly constant properties such that its density-temperature relation
is described well by the Boussinesq linearization. The volume averaged equations
that govern the conservation of mass, momentum and energy are

∂u

∂x
+ ∂v

∂y
= 0 (6.195)

∂u

∂y
− ∂v

∂x
= − K g�

	

∂T

∂x
(6.196)

u
∂T

∂x
+ v

∂T

∂y
= �m

(
∂2T

∂x2
+ ∂2T

∂y2

)
(6.197)

The horizontal length scale of the flow pattern (2Lr ), or the geometric
aspect ratio of one roll, is unknown. The method consists of analyzing two
extreme flow configurations—many counterflows vs. few plumes—and intersect-
ing these asymptotes for the purpose of maximizing the global thermal conductance
of the flow system, i.e., by invoking the constructal law, Bejan (1997c, 2000).

6.26.1. The Many Counterflows Regime

In the limit Lr → 0 each roll is a very slender vertical counterflow, Fig. 6.31.
Because of symmetry, the outer planes of this structure (x = ±Lr ) are adiabatic:
they represent the center planes of the streams that travel over the distance H . The
scale analysis of the H × (2Lr ) region indicates that in the Lr/H → 0 limit the
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Figure 6.31. The extreme in which the flow consists of many vertical and slender
counterflows (Nelson and Bejan, 1998).

horizontal velocity component u vanishes. This scale analysis is not shown because
it is well known as the defining statement of fully developed flow. Equations
(6.195)–(6.197) reduce to

∂v

∂x
= kg�

	

∂t

∂x
, (6.198)

v
∂t

∂y
= �m

∂2t

∂x2
, (6.199)

which can be solved exactly for v and T. The boundary conditions are ∂T/∂x = 0
at x = ±Lr , and the requirement that the extreme (corner) temperatures of the
counterflow region are dictated by the top and bottom walls, T (−Lr , H ) = Tc and
T (Lr , 0) = Th . The solution is given by

v(x) = �m

2H

[
RaH −

(
πH

2Lr

)2
]

sin

(
πx

2Lr

)
(6.200)

T (x, y) = 	

K g�
v(x) + 	

K g�

(
2

y

H
− 1

) �m

2H

[
RaH −

(
πH

2Lr

)2
]

,

+ (Th − Tc)
(

1 − y

H

)
, (6.201)

where the porous-medium Rayleigh number RaH = K g�H (Th − Tc)/(�m	) is a
specified constant. The right side of Fig. 6.31 shows the temperature distribution
along the vertical boundaries of the flow region (x = ±Lr ): the vertical temperature
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Figure 6.32. The intersection of asymptotes method: the geometric maximization of
the thermal conductance of a fluid-saturated porous layer heated from below (Nelson
and Bejan, 1998).

gradient ∂T/∂y is independent of altitude. The transversal (horizontal) temperature
difference (�Tt ) is also a constant,

�Tt = T (x = Lr ) − T (x = −Lr ) = 	

K g�

�m

H

[
RaH −

(
πH

2Lr

)2
]

. (6.202)

The counterflow convects heat upward at the rate q′, which can be calculated
using Eqs. (6.200) and (6.201):

q ′ =
L∫

−L

(
cP ) f vT dx (6.203)

The average heat flux convected in the vertical direction, q ′′ = q ′/(2Lr ), can be
expressed as an overall thermal conductance

q ′′

�T
= km

8HRaH

[
RaH −

(
πH

2Lr

)2
]2

. (6.204)

This result is valid provided the vertical temperature gradient does not exceed the
externally imposed gradient, (–∂T/∂y) < �T/H . This condition translates into

Lr

H
>

π

2
Ra−1/2

H , (6.205)

which in combination with the assumed limit Lr/H → 0 means that the domain
of validity of Eq. (6.204) widens when RaH increases. In this domain the thermal
conductance q ′′/�T decreases monotonically as Lr decreases, cf. Fig. 6.32.
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Figure 6.33. The extreme in which the flow consists of a few isolated plumes (Nelson
and Bejan, 1998).

6.26.2. The Few Plumes Regime

As Lr increases, the number of rolls decreases and the vertical counterflow is
replaced by a horizontal counterflow in which the thermal resistance between Th

and Tc is dominated by two horizontal boundary layers, as in Fig. 6.33. Let � be the
scale of the thickness of the horizontal boundary layer. The thermal conductance
q ′′/�T can be deduced from the heat transfer solution for natural convection
boundary layer flow over a hot isothermal horizontal surface facing upward or a
cold surface facing downward. The similarity solution for the horizontal surface
with power-law temperature variation (Cheng and Chang, 1976) can be used to
develop an analytical result, as we show at the end of this section.

A simpler analytical solution can be developed in a few steps using the integral
method. Consider the slender flow region �× (2Lr ), where � � 2Lr , and integrate
Eqs. (6.195) to (6.197) from y = 0 to y → ∞, that is, into the region just above
the boundary layer. The surface temperature is Th , and the temperature outside
the boundary layer is T∞ (constant). The origin x = 0 is set at the tip of the wall
section of length 2Lr . The integrals of Eqs. (6.195) and (6.197) yield

d

dx

∞∫
0

u (T − T∞) dy = −�m

(
∂T

∂y

)
y=0

(6.206)

The integral of Eq. (6.196), in which we neglect ∂v/∂x in accordance with bound-
ary layer theory, leads to

u0(x) = K g�

	

d

dx

∫ ∞

0
T dy, (6.207)

where u0 is the velocity along the surface, u0 = u(x ,0). Reasonable shapes for the
u and T profiles are the exponentials

u(x, y)

u0(x)
= exp

[
− y

�(x)

]
= T (x, y) − T∞

Th − T∞
(6.208)
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which transform Eqs. (6.206) and (6.207) into

d

dx
(u0�) = 2�m

�
(6.209)

u0 = K g�

	
(Th − T∞)

d�

dx
(6.210)

These equations can be solved for u0(x) and �(x),

�(x) =
[

9�m	

K g� (Th − T∞)

]1/3

x2/3 . (6.211)

The solution for u0(x) is of the type u0 ∼ x−1/3, which means that the horizontal
velocities are large at the start of the boundary layer and decrease as x increases.
This is consistent with the geometry of the H× 2Lr roll sketched in Fig. 6.33,
where the flow generated by one horizontal boundary layer turns the corner and
flows vertically as a relatively narrow plume (narrow relative to 2Lr ), to start with
high velocity (u0) a new boundary layer along the opposite horizontal wall.

The thermal resistance of the geometry of Fig. 6.33 is determined by estimating
the local heat flux k(Th − T∞)/�(x) and averaging it over the total length 2Lr :

q ′′ =
(

3

4

)1/3 km�T

H

(
Th − T∞

�T

)4/3

Ra1/3
H

(
H

Lr

)2/3

. (6.212)

The symmetry of the sandwich of boundary layers requires Th − T∞ = (1/2)�T ,
such that

q ′′

�T
= 31/3k

4H
Ra1/3

p

(
H

Lr

)2/3

. (6.213)

The goodness of this result can be tested against the similarity solution for a
hot horizontal surface that faces upward in a porous medium and has an excess
temperature that increases as xλ. The only difference is that the role that was played
by (Th − T∞) in the preceding analysis is now played by the excess temperature
averaged over the surface length 2Lr . If we use λ = 1/2, which corresponds to
uniform heat flux, then it can be shown that the solution of Cheng and Chang
(1976) leads to the same formula as Eq. (6.213), except that the factor 31/3 =
1.442 is replaced by 0.816(3/2)4/3 = 1.401. Equation (6.213) is valid when the
specified RaH is such that the horizontal boundary layers do not touch. We write
this geometric condition as �(x = 2Lr ) < H/2 and, using Eq. (6.211), we obtain

Lr

H
<

1

24
Ra1/2

H . (6.214)

Since in this analysis Lr/H was assumed to be very large, we conclude that
the Lr/H domain in which Eq. (6.213) is valid becomes wider as the specified
RaH increases. The important feature of the “few rolls” limit is that the thermal
conductance decreases as the horizontal dimension Lr increases. This second
asymptotic trend has been added to Fig. 6.32.
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6.26.3. The Intersection of Asymptotes

Figure 6.32 presents a bird’s-eye view of the effect of flow shape on thermal
conductance. Even though we did not draw completely q′′/�T as a function of
Lr , the two asymptotes tell us that the thermal conductance is maximum at an
optimal Lr value that is close to their intersection. There is a family of such
curves, one curve for each RaH . The q′′/�T peak of the curve rises and the Lr

domain of validity around the peak becomes wider as RaH increases. Looking in
the direction of small RaH values we see that the domain vanishes (and the cellular
flow disappears) when the following requirement is violated

1

24
H Ra1/2

H − π

2
H Ra−1/2

H ≥ 0. (6.215)

This inequality means that the flow exists when RaH ≥ 12π = 37.70. This con-
clusion is extraordinary: it agrees with the stability criterion for the onset of two-
dimensional convection, Eq. (6.29), namely RaH > 4π2 = 39.5, which was de-
rived based on a lengthier analysis and the assumption that a flow structure exists:
the initial disturbances (Horton and Rogers, 1945; Lapwood, 1948).

We obtain the optimal shape of the flow, 2Lr,opt/H , by intersecting the asymp-
totes (6.204) and (6.213):

π2

(
H

2Lr,opt
Ra−1/2

H

)2

+ 25/631/6

(
H

2Lr,opt
Ra−1

H

)1/3

= 1 . (6.216)

Over most of the RaH domain where Eq. (6.215) is valid, Eq. (6.216) is approxi-
mated well by its high RaH asymptote:

2Lr,opt

H
∼= π Ra−1/2

H . (6.217)

The maximum thermal conductance is obtained by substituting the Lr,opt value
in either Eq. (6.213) or Eq. (6.204). This estimate is an upper bound, because the
intersection is above the peak of the curve. In the high-RaH limit (6.217) this upper
bound assumes the analytical form(

q ′′

�T

)
max

H

km
≤ 31/3

24/3π2/3
Ra2/3

H . (6.218)

Toward lower RaH values the slope of the (q ′′/�T )max curve increases such that
the exponent of RaH approaches 1. This behavior is in excellent agreement with
the large volume of experimental data collected for Bénard convection in saturated
porous media (Cheng, 1978). The less-than −1 exponent of RaH in the empirical
Nu(RaH ) curve, and the fact that this exponent decreases as RaH increases, has
attracted considerable attention from researchers during the last two decades, as
we showed earlier in this chapter.



7
Internal Natural Convection: Heating
from the Side

Enclosures heated from the side are most representative of porous systems that
function while oriented vertically, as in the insulations for buildings, industrial
cold-storage installations, and cryogenics. As in the earlier chapters, we begin
with the most fundamental aspects of the convection heat transfer process when
the flow is steady and in the Darcy regime. Later, we examine the special features
of flows that deviate from the Darcy regime, flows that are time dependent, and
flows that are confined in geometries more complicated than the two-dimensional
rectangular space shown in Fig. 7.1. Some of the topics of this chapter have been
reviewed by Oosthuizen (2000).

7.1. Darcy Flow between Isothermal Side Walls

7.1.1. Heat Transfer Regimes

Consider the basic scales of the clockwise convection pattern maintained by the
side-to-side heating of the porous medium defined in Fig. 7.1. In accordance with
the homogeneous porous medium model, we begin with the equations for the
conservation of mass, Darcy flow, and the conservation of energy in the H × L
space:

∂u

∂x
+ ∂v

∂y
= 0, (7.1)

u = − K

�

∂ P

∂x
, (7.2)

v = − K

�

(
∂ P

∂y
+ 
g

)
, (7.3)

u
∂T

∂x
+ v

∂T

∂y
= �m

(
∂2T

∂x2
+ ∂2T

∂y2

)
. (7.4)

Note that in contrast to the system used in Section 5.1, the y axis is now ver-
tically upward. By eliminating the pressure P between Eqs. (7.2) and (7.3)
and by invoking the Boussinesq approximation 
 ∼= 
0[1 − �(T − T0)] in the
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Figure 7.1. Two-dimensional rectangular porous layer held between differently heated
side walls (Bejan, 1984).

body force term 
g of Eq. (7.3), we obtain a single equation for momentum
conservation:

∂u

∂y
− ∂v

∂x
= − K g�

v

∂T

∂x
. (7.5)

In this equation 	 is the kinematic viscosity �/
0, which is assumed constant along
with the other properties, the permeability K, the coefficient of volumetric thermal
expansion �, and the porous-medium thermal diffusivity �m = km/(
cP ) f .

The three equations (7.1), (7.4), and (7.5) hold in the entire domain H ∞ L
subject to the boundary conditions indicated in the figure. The four walls are
impermeable and the side-to-side temperature difference is Th − Tc = �T . Of
special interest are the scales of the vertical boundary layers of thickness � and
height H. In each � × H region, the order-of-magnitude equivalents of Eqs. (7.1),
(7.4), and (7.5) are

mass: u

�
∼ y

H
, (7.6)

energy:
(

u
�T

�
, v

�T

H

)
∼

(
�m

�T

�2
, �m

�T

H 2

)
, (7.7)

momentum:
( u

H
,

	

�

)
∼ K g�

v

�T

�
. (7.8)
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To begin with, the mass balance (7.6) shows that the two scales on the left-hand
side of Eq. (7.7) are of the same order, namely 	�T/H . On the right-hand side of
Eq. (7.7), the second scale can be neglected in favor of the first, because the � × H
region is a boundary layer (i.e., slender),

� � H. (7.9)

In this way, the energy conservation statement (7.7) reduces to a balance between
the two most important effects, the conduction heating from the side, and the
convection in the vertical direction,

v
�T

H
∼ �m

�T

�2

longitudinal lateral
convection conduction

(7.10)

Turning our attention to the momentum scales (7.8), we see that the mass balance
(7.6) implies that the ratio between (u/H ) and (	/�) is of the order (�/H )2 � 1.
We then neglect the first term on the left-hand side of Eq. (7.8) and find that the
momentum balance reduces to

v

�
∼ K g�

v

�T

�
, (7.11)

Equations (7.10), (7.11), and (7.6) imply that the scales of the vertical boundary
layer (Bejan, 1985) are

v ∼ K g�

v
�T ∼ �m

H
Ra, (7.12)

� ∼ HRa−1/2, (7.13)

u ∼ �m

H
Ra1/2, (7.14)

where Ra is the Rayleigh number based on height,

Ra = g�K H�T

v�m
. (7.15)

The total heat transfer rate from one side wall to the other is simply

q ′ ∼ km H
�T

�
∼ km�T Ra1/2. (7.16)

This heat transfer rate is expressed per unit length in the direction perpendicular
to the plane H × L . It can be nondimensionalized as the overall Nusselt number

Nu = q ′

q ′
c

∼ km�T Ra1/2

km H�T/L
∼ L

H
Ra1/2, (7.17)

in which qc = km H�T/L is the true heat transfer rate in the pure-conduction limit
(i.e., in the absence of convection).
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Figure 7.2. The four heat transfer regimes for natural convection in a two-dimensional
porous layer heated from the side (Bejan, 1984).

Two requirements must be met if the results (7.12)–(7.17) are to be valid. First,
the vertical boundary layers must be slender, which in view of Eqs. (7.9) and (7.13)
means

Ra � 1. (7.18)

Second, the vertical boundary layers must be distinct, i.e., thinner than the layer
itself, � � L . This second requirement can be rewritten [cf. Eq. (7.13)] as

Ra1/2 � H

L
. (7.19)

The domain Ra, H/L in which the vertical boundary layers are distinct is indicated
to the right of the rising dash line in Fig. 7.2.

The fluid completes its clockwise circulation in Fig. 7.1 by flowing along the
horizontal boundaries. Whether or not these horizontal jets are distinct (thinner
than H) can be determined using the scaling results (7.12)–(7.14). The volumetric
flow rate of the horizontal jet is the same as that of the vertical boundary layer,
namely 	�. The two horizontal jets form a counterflow that carries energy by
convection from left to right in Fig. 7.1, at the rate

q ′
(→)

∼ v�(
cP ) f �T . (7.20)

The heat transfer rate by thermal diffusion between these two jets, from top to
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bottom in Fig. 7.2, is

q ′
(↓) ∼ km L

�T

H
. (7.21)

One horizontal jet travels the entire length of the porous layer (L) without
experiencing a significant change in its temperature when the vertical conduction
rate (7.21) is small relative to the horizontal convection rate (7.20). The inequality
q ′

(↓) � q ′
(→) yields

H

L
� Ra−1/2 (7.22)

as the criterion for the existence of distinct horizontal layers. The parametric
domain in which Eq. (7.22) is valid is indicated to the right of the descending dash
line in Fig. 7.2. The structure of the horizontal layers contains additional features
that have been analyzed systematically by Daniels et al. (1982).

Figure 7.2 summarizes the four regimes that characterize the heat transfer
through a porous layer heated from the side. The results derived in this section
recommend the adoption of the following heat transfer scales:

I. Pure conduction (no distinct boundary layers):

Nu ∼= 1, q ′ ∼= km H
�T

L
. (7.23)

II. Tall layers (distinct horizontal boundary layers only):

Nu >̃ 1, q ′ >̃ km H
�T

L
. (7.24)

III. High-Ra convection (distinct vertical and horizontal boundary layers):

Nu ∼ L

H
Ra1/2, q ′ ∼ km H

�T

H
. (7.25)

IV. Shallow layers (distinct vertical boundary layers only):

Nu <̃
L

H
Ra1/2, q ′ <̃ km H

�T

�
. (7.26)

In the remainder of this section we focus on regimes III and IV, in which the heat
transfer rate can be significantly greater than the heat transfer rate associated with
pure conduction. A more detailed classification of the natural convection regimes
that can be present in a porous layer heated from the side was developed by Blythe
et al. (1983).

7.1.2. Boundary Layer Regime

Weber (1975b) developed an analytical solution for the boundary layer regime by
applying the Oseen linearization method. The focus of the analysis is the vertical
boundary layer region along the left wall in Fig. 7.1, for which the momentum and
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energy equations are

∂2ψ∗
∂x2∗

= ∂T∗
∂x∗

, (7.27)

∂ψ∗
∂x∗

∂T∗
∂y∗

− ∂ψ∗
∂y∗

∂T∗
∂x∗

= ∂2T∗
∂x2∗

. (7.28)

These equations involve the streamfunction ψ now defined by u = −∂ψ/∂y and
v = ∂ψ/∂x and the dimensionless variables

x∗ = x

H
Ra1/2, y∗ = y

H
, (7.29)

ψ∗ = ψ
�mRa1/2 , T∗ = T − (Th + Tc)/2

Th − Tc
. (7.30)

The solution begins with treating ∂ψ∗/∂y∗ (the entrainment velocity) and
∂T∗/∂y∗ as functions of y∗ only. This leads to the exponential profiles

ψ∗ = ψ∞(1 − e−λx∗ ), (7.31)

T∗ = T∞ +
(

1

2
− T

)
e−λx∗ , (7.32)

in which the core temperature T8, the core streamfunction ψ8, and the boundary
layer thickness 1/λ are unknown functions of y∗. These unknowns are determined
from three conditions, the equations obtained by integrating Eqs. (7.27) and (7.28)
across the boundary layer,

λψ∞ = 1

2
− T∞, (7.33)

d

dy∗

[
1

2λ

(
1

2
− T∞

)2
]

+ ψ
dT∞
dy∗

= λ

(
1

2
− T∞

)
, (7.34)

and the centrosymmetry of the entire flow pattern. The latter implies that ψ8 must be
an even function of z = y∗ − 1/2 and that T8 must be an odd function of altitude z.
Note that z is measured away from the horizontal midplane of the rectangular
space. The solution is expressed by

ψ∗ = C(1 − q2)

{
1 − exp

[
− x∗

2C(1 + q)

]}
, (7.35)

T∗ = 1

2

{
q + (1 − q) exp

[
− x∗

2C(1 + q)

]}
, (7.36)

where q is an implicit odd function of z:

z = C2

(
q − 1

3
q3

)
. (7.37)
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Figure 7.3. The streamlines near the heated wall in the boundary layer regime (Bejan,
1984).

Weber (1975b) determined the constant C by invoking the impermeable top and
bottom conditions ψ∗ = 0 at z = ±1/2 and obtained C = 31/2/2 = 0.866. The
patterns of streamlines and isotherms that correspond to this solution were drawn
later by Bejan (1984) and are reproduced in Figs. 7.3 and 7.4. These figures show
a vertical boundary layer flow that discharges itself horizontally into a thermally
stratified core region. The total heat transfer rate between the two side walls can
be expressed as the conduction-referenced Nusselt number defined in Eq. (7.17),
now given by

Nu = 0.577
L

H
Ra1/2. (7.38)

The agreement between Weber’s solution (7.38) and the order of magnitude pre-
diction (7.17) is evident. Figure 7.5 shows a comparison between Eq. (7.38) and
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Figure 7.4. The isotherms near the heated wall in the boundary layer regime (Bejan,
1984).

experimental and numerical data collected from three sources (Schneider, 1963;
Klarsfeld, 1970; Bankvall, 1974). The proportionality between Nu and (L/H )Ra1/2

anticipated from Eqs. (7.17) and (7.38) appears to be correct in the high
Rayleigh number limit. It is important to also note that the boundary layer theory
(7.38) consistently overpredicts the Nusselt number, especially at high Rayleigh
numbers.

Bejan (1979) showed that the discrepancy between theory and empirical results
can be attributed to the way in which the constant C was determined for the solutions
(7.35)–(7.37). His alternative was to simultaneously invoke the impermeable and
adiabatic wall conditions at z = ±1/2. This was approximately accomplished by
setting the total vertical energy flow rate (convection + conduction) equal to zero
at the top and the bottom of the porous layer. The C value that results from this
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Figure 7.5. Theoretical, numerical, and experimental results for the heat transfer rate
through a porous layer heated from the side (Bejan, 1984).

condition is given implicitly by

C = (1 − q2
e )−2/3 Ra−1/6

(
H

L

)−1/3

(7.39)

in which qe is itself a function of C,

1

2
= C2

(
qe − 1

3
q3

e

)
. (7.40)

Figure 7.6 shows the emergence of Ra(H/L)2 as a new dimensionless group that
differentiates between various boundary layer regimes. The constant C approaches
Weber’s value 31/2/2 as this new group approaches infinity. The same figure shows
that the Nusselt number is generally below the value calculated with Eq. (7.38),
where 0.577 = 3−1/2. An alternative presentation of this heat transfer information
is given in Fig. 7.7, which shows that in the boundary layer regime Nu depends not
only on Ra(L/H )2, cf. Eq. (7.17), but also on the aspect ratio H/L . This secondary
effect is a reflection of the new group Ra(H/L)2 identified in Fig. 7.6.

An integral boundary layer solution that incorporates the same zero vertical
energy flow condition was reported by Simpkins and Blythe (1980). The structure
of the vertical boundary layer region near the top and bottom corners—neglected in
the work reviewed here—was analyzed by Blythe et al. (1982). A numerical study
of high Ra convection, yielding correlations for the heat transfer rate, was reported
by Shiralkar et al. (1983). For tall cavities, Rao and Glakpe (1992) proposed a
correlation of the form Nu = 1 + a(Ra)L/H , for H/L > Hm(Ra), where a(Ra)
and Hm (Ra) are quantities determined numerically. Ansari and Daniels (1993,
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Figure 7.6. The effect of the group Ra(H/L)2 on the solution for boundary layer natural
convection in a porous layer heated from the side (Bejan, 1979).

1994) treated flow in tall cavities, taking into account the nonlinear flow that
occurs near each end of the cavity. Their second study, which was concerned with
the case of Ra and aspect ratio large and of the same order, led to the prediction
of a position of minimum heat transfer across the cavity. A further study using a
boundary domain integral method was reported by Jecl and Skerget (2000).

Masuoka et al. (1981) performed experiments with glass beads and water, the
results of which were in agreement with a boundary layer analysis extended to take
account of the vertical temperature gradient in the core and the apparent wall-film
thermal resistance which is caused by a local increase in porosity near the wall.

7.1.3. Shallow Layer

Like the high-Ra regime III described in the preceding subsection, the natural
convection in shallow layers (regime IV, Fig. 7.2) also can be characterized by heat
transfer rates that are considerably greater than the heat transfer rate in the absence
of a buoyancy effect. Regime IV differs from regime III in that the horizontal
boundary layers are not distinct. The main characteristics of natural convection in
a shallow layer are presented in Fig. 7.8: the vertical end layers are distinct and
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Figure 7.7. The heat transfer rate in the boundary layer regime (Nu > 1) in a porous
layer heated from the side (Bejan, 1979).

a significant temperature drop is registered across the “core,” that is, along the
horizontal counterflow that occupies most of the length L.

The first studies of natural convection in shallow porous layers were published
independently by Bejan and Tien (1978) and Walker and Homsy (1978). These
studies showed that in the core region the circulation consists of a purely horizontal
counterflow:

u = −�m

H
Ra

H

L
K1

(
y ∗ −1

2

)
(7.41)

v = 0, (7.42)

in which y∗ = y/H . As shown in the lower part of Fig. 7.8, the core temperature
varies linearly in the horizontal direction, while the degree of vertical thermal
stratification is independent of x,

T − Tc

Th − Tc
= K1

x

L
+ K2 + Ra

(
H

L

)2

K 2
1

(
y2
∗

4
− y3

∗
6

)
. (7.43)



294 7. Internal Natural Convection: Heating from the Side

Figure 7.8. The structure of a horizontal porous layer subjected to an end-to-end tem-
perature difference (Bejan and Tien, 1978).

The conduction-referenced Nusselt number for the total heat transfer rate from Th

to Tc is

Nu = q ′

km�T/L
= K1 + 1

120
K 3

1

(
Ra

H

L

)2

. (7.44)

Parameters K1 and K2 follow from matching the core flows (7.41)–(7.43) to the
vertical boundary layer flows in the two end regions. Bejan and Tien (1978) deter-
mined the function K1(H/L , Ra) parametrically by matching the core solution to
integral solutions for the end regions. Their result is given implicitly by the system
of equations

1

120
�eRa2 K 3

1

(
H

L

)3

= 1 − K1, (7.45)

1

2
K1

H

L
�e (�−2

e − 1) = 1 − K1, (7.46)

in which �e is the ratio end-region thickness/H. The Nusselt number based on this
K1 function and Eq. (7.44) has been plotted in Fig. 7.9, next to the numerical
results published subsequently by Hickox and Gartling (1981), who also reported
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Figure 7.9. The heat transfer rate in a shallow porous layer with different and temper-
atures (Bejan, 1984).

representative patterns of streamlines and isotherms. Additional patterns can be
seen in the paper by Daniels et al. (1986). In the infinitely shallow layer limit
H/L → 0, the horizontal counterflow accounts for the entire temperature drop
from Th to Tc and K1 approaches 1. In the same limit Nu also approaches 1, cf.
Eq. (7.44), with K1 = 1:

Nu = 1 + 1

120

(
Ra

H

L

)2

,

(
H

L
→ 0

)
. (7.47)

It is important to note that the shallow-layer solution of Fig. 7.9 and Eqs. (7.44)–
(7.47) approaches a proportionality of type Nu ∼ (L/H )Ra1/2 as Ra increases,
which is in agreement with the scaling law (7.17). That proportionality (Bejan and
Tien, 1978),

Nu = 0.508
L

H
Ra1/2 (Ra → ∞), (7.48)

is nearly identical to Weber’s (1975b) solution (7.38) for the high-Ra regime.
In conclusion, the Nu(Ra, H/L) solution represented by Eqs. (7.44)–(7.48) and
Fig. 7.9 is adequate for heat transfer calculations in both shallow and tall layers, at
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Figure 7.10. The effect of the height of the enclosure on the heat transfer rate through
a porous layer heated from the side.

low and high Rayleigh numbers. This conclusion is stressed further in Fig. 7.10,
which shows the full effect of the aspect ratio when the Rayleigh number based on
the horizontal dimension RaL = g�K L�T/	�m is fixed (Bejan, 1980). The heat
transfer rate reaches a maximum when the rectangular domain is nearly square.

This conclusion is relevant to the design of vertical double walls filled with
fibrous or granular insulation held between internal horizontal partitions with the
spacing H. In this design, the wall-to-wall spacing L is fixed while the number and
positions of the horizontal partitions can change. The conclusion that the maximum
heat transfer rate occurs when H is of order L also holds when the enclosure does
not contain a porous matrix. In that case, the vertical spacing between partitions
that corresponds to the maximum heat transfer rate is given approximately by
H/L ∼ 0.1 − 1 (Bejan, 1980).

Blythe et al. (1985b) and Daniels, Simpkins, and Blythe (1989) have analyzed
the merged-layer regime which is defined by L/H → ∞ at fixed R2 = Ra H 2/L2.
In this limit the boundary layers on the horizontal walls merge and completely fill
the cavity. The regime is characterized by a nonparallel core flow that provides the
dominant structure over a wide range of R2 values. The use of R2 leads to the heat
transfer correlation shown in Fig. 7.11.

7.1.4. Stability of Flow

Gill (1969) showed that linear stability analysis using the Darcy equation with no
inertial terms leads to the prediction that the basic flow produced by differential
heating of the walls of a vertical slab of infinite height is stable. Georgiadis and
Catton (1985) claimed that instability was predicted when one included the time-
wise acceleration term in the momentum equation, but Rees (1988) showed that
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Figure 7.11. Variation of Nu2 = NuH 2/L2 versus R−1/2
2 = Ra−1/2 L/H . The solid

line defines the merged-layer solution. Dashed lines show the asymptotic solutions
(a) Nu2 ∼ 0.515R1/2

2 , (b) Nu2 ∼ R2
2/120, and (c) Nu2 ≈ R2

2/120 (1 − 3�1 R2) where
�1 ≈ −0.07. Results from numberical solutions by Hickox and Gartling (1981) and
Prasad and Kulacki (1984b) are shown for various values of Ra and L/H : � L/H =
2; �L/H = 5; and � L/H = 10 (Daniels et al., 1989).

their analysis contained an error. The nonlinear analysis of Straughan (1988) pre-
dicts that the basic flow is stable provided that the initial disturbance is smaller
than a certain threshold that is proportional to the inverse of the Rayleigh number.

The situation is dramatically changed when boundary friction is accounted for
by means of the Brinkman equation. Kwok and Chen (1987) performed a linear
stability analysis that led to predicted values Rac = 308.0, �c = 2.6 if viscosity
variations are ignored, and Rac = 98.3, �c = 1.6 if viscosity variations are taken
into account. In their experiment they observed a value 66.2 for the critical Rayleigh
number Rac, which is based on the width L. They did not measure the critical ver-
tical wavenumber �c. The instability appears to be related to the fact that the basic
vertical velocity profile is no longer linear. The disagreement between predicted
and observed values of Rac presumably is due to the effect of porosity variation.
A nonlinear analysis on the Brinkman model was performed by Qin and Kaloni
(1993) for rigid or stress-free boundaries.

Riley (1988) has studied the effect of spatially periodic boundary imperfections.
He found that out-of-phase imperfections enhance the heat transfer significantly.
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The stability problem that arises for a rotating medium occupying a vertical slot,
for which there is a horizontal body force due to the centrifugal acceleration and
a positive temperature gradient in the same direction, was studied analytically by
Vadasz (1994a). Convection in the form of superposed convection cells appears
when a centrifugal Rayleigh number exceeds a certain value. Govender and Vadasz
(1995) have shown that there is an analogy between this problem and natural
convection in an inclined layer subject only to gravity. The results of experiments
in a Hele-Shaw cell by Vadasz and Heerah (1996) showed qualitative agreement
with the theory.

Rees and Lage (1996) considered a rectangular container where the imperme-
able bounding walls are held at a temperature that is a linearly decreasing function
of height, the local temperature drop across the container being zero. They con-
sidered containers of finite aspect ratio and those of asymptotically large aspect
ratio. For both cases, they found that modes bifurcate in pairs as the linear stability
equations admit an infinite set of double eigenvalues. They analyzed the weakly
nonlinear evolution of the primary pair of eigenmodes and found that the resulting
steady-state flow is dependent on the form of the initial disturbance. For asymp-
totically tall boxes, their numerical and asymptotic analysis produced no evidence
of persistently unsteady flow.

Kimura (1992) numerically studied convection in a square cavity with the upper
half of a vertical wall cooled and the lower half heated, so that a cold current
descends and fans out over a rising hot current. The unstable layer so formed
appears to be associated with the onset of oscillations at Ra = 200. The effects
of temperature-dependent thermal diffusivity and viscosity were included in a
nonlinear stability analysis by Flavin and Rionero (1999).

7.1.5. Conjugate Convection

Conjugate convection in a rectangular cavity surrounded by walls of high relative
thermal conductivity was examined by Chang and Lin (1994a). They reported
that wall heat conduction effects decrease the heat transfer rate. The heat transfer
through a vertical partition separating porous-porous or porous-fluid reservoirs
at different temperatures was studied by Kimura (2003) on the basis of a simple
one-dimensional vertically averaged model on the assumption that there is a linear
increase in temperature in both of the reservoirs and the partition. He obtained
results that are in general agreement with experiment. The steady-state heat transfer
characteristics of a thin vertical strip with internal heat generation placed in a
porous medium was studied by Méndez et al. (2002). A conjugate convection
problem involving a thin vertical strip of finite length, placed in a porous medium,
was studied by Martı́nez-Suástegui et al. (2003) using numerical and asymptotic
techniques. A conjugate convection problem in a square cavity with horizontal
conductive walls of finite thickness was studied numerically by Baytas et al. (2001).
Mohamad and Rees (2004) have examined numerically conjugate convection in a
porous medium attached to a wall held at a constant temperature.
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7.1.6. Non-Newtonian Fluid

Convection in a rectangular cavity filled by a non-Newtonian power law fluid was
studied theoretically and numerically by Getachew et al. (1996). They employed
scaling arguments to delineate heat transfer regimes analogous to those discussed
in Section 7.1.1 and verified their results using numerical calculations. A numer-
ical study on the Brinkman-Forchheimer model was carried out by Hadim and
Chen (1995). A further numerical study, using the boundary element method, was
reported by Jecl and Skerget (2003). A numerical study of flow involving a couple-
stress fluid was published by Umavarthi and Malashetty (1999), but the authors
did not explain how the couple-stress is maintained on the scale of a representative
elementary volume.

7.1.7. Other Situations

Convective heat transfer through porous insulation in a vertical slot with leakage
of mass at the walls was analyzed by Burns et al. (1977). The effects of pres-
sure stratification on multiphase transport across a vertical slot were studied by
Tien and Vafai (1990b). The sidewall heating in shallow cavities with icy water
was treated by Leppinen and Rees (2004). They considered a case in which the
density maximum occurs somewhere between the sidewalls, and they treated the
situation using asymptotic analysis valid in the limit of vanishing aspect ratio and
Rayleigh number of O(1). In this case the flow is divided into two counterrotating
cells whose size depends on the temperature giving the density maximum and the
temperatures of the sidewalls. A study of entropy production for an MHD situation
was made by Mahmud and Fraser (2004b). Thermal convection in a vertical slot
with a spatially periodic thermal boundary condition was analyzed by Yoo (2003).
Numerical studies of various problems involving lateral heating of square cavities
were reported by Nithiarasu et al. (1999a,b, 2002).

7.2. Side Walls with Uniform Flux and Other
Thermal Conditions

In the field of thermal insulation engineering, a more appropriate description for
the side heating of the porous layer is the model where the heat flux q ′′ is distributed
uniformly along the two side walls. In the high Rayleigh number regime (regime
III, Fig. 7.2) the overall Nusselt number is given by (Bejan, 1983b)

Nu = q ′′ H
km H�T /L

= 1

2

(
L

H

)4/5

Ra2/5
∗ , (7.49)

In this Nu definition �T is the height-averaged temperature difference that de-
velops between the two side walls, (Th − Tc), while Ra∗ is the Rayleigh number



300 7. Internal Natural Convection: Heating from the Side

based on heat flux,

Ra∗ = g�K H 2q ′′

	�mkm
. (7.50)

Formula (7.49) is based on a matched boundary layer analysis that combines
Weber’s (1975b) approach with the zero energy flow condition for the top and
bottom boundaries of the enclosure (Bejan, 1979). The solution obtained also
showed that

(i) the vertical boundary layers have a constant thickness of order H Ra−1/3
∗ ;

(ii) the core region is motionless and linearly stratified, with a vertical tem-
perature gradient equal to (q ′′/km)Ra−1/5

∗ (H/L)2/5;
(iii) the temperature of each side wall increases linearly with altitude at the

same rate as the core temperature, and so the local temperature difference
between the side walls is independent of altitude; and

(iv) in any horizontal cut through the layer, there exists an exact balance
between the net upflow of enthalpy and the net downward heat conduction.

The conditions that delineate the parametric domain in which Eq. (7.49) and re-
gime III are valid are Ra−1/3

∗ < H/L < Ra1/3
∗ . This solution and the special flow fea-

tures revealed by it are supported by numerical experiments performed in the range
100 = Ra = 5000 and 1 = H/L = 10, which also are reported in Bejan (1983b).

The heat transfer by Darcy natural convection in a two-dimensional porous
layer with uniform flux along one side and uniform temperature along the other
side was investigated numerically by Prasad and Kulacki (1984a). Their set of
thermal boundary conditions is a cross between those of Weber (1975b) and Bejan
(1983b). The corresponding heat transfer process in a vertical cylindrical annulus
with uniform heat flux on the inner wall and uniform temperature on the outer wall
was studied experimentally by Prasad et al. (1986) and numerically by Prasad
(1986). Dawood and Burns (1992) used a multigrid method to deal with three-
dimensional convective heat transfer in a rectangular parallelepiped. Convection
in a square cavity with one sidewall heated and the other cooled, with the heated
wall assumed to have a spatial sinusoidal temperature variation about a constant
mean value, was treated numerically by Saeid and Mohamad (2005b.)

An analytical and numerical study of the multiplicity of steady states that can
arise in a shallow cavity was made by Kalla et al. (1999). The linear stability of
the natural convection that arises in either a tall or shallow cavity was analyzed
by Prud’homme and Bougherara (2001) and Prud’homme et al. (2003). Inverse
problems, requiring the determination of an unknown sidewall flux, were treated
by Prud’homme and Jasmin (2001) and Prud’homme and Nguyen (2001).

7.3. Other Configurations and Effects of Property Variation

7.3.1. Internal Partitions

The effect of horizontal and vertical internal partitions on natural convection in
a porous layer with isothermal side walls was investigated numerically by Bejan
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Figure 7.12. Streamlines and isotherms in a porous layer with a horizontal diathermal
partition (Ra = 400, H/L = 2) (Bejan, 1983a).

(1983a). As an example, Fig. 7.12 shows the effect of a horizontal partition on the
flow and temperature fields in regime III. In Fig. 7.12a the partition is absent and
natural circulation is clearly in the boundary layer regime. When the horizontal
midlevel partition is complete, the heat transfer rate decreases in predictable fashion
as the height of each vertical boundary layer drops from H in Fig. 7.12a to H/2
in Fig. 7.12c. With the horizontal partition in place, the Nusselt number continues
to scale as in Eq. (7.17); however, this time H/2 replaces H, and the Rayleigh
number is based on H/2.

The insulation effect of a complete midplane vertical partition is illustrated
in Fig. 7.13. The partition reduces the overall heat transfer rate by more than
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Figure 7.13. The reduction in overall heat transfer rate caused by a vertical diathermal
partition (Bejan, 1983a).

50 percent as the Rayleigh number increases and vertical boundary layers form
along all the vertical boundaries. This change can be expected in an order-of-
magnitude sense: relative to the original system (without partitions), which has
only two vertical boundary layers as thermal resistances between Th and Tc, the
partitioned system (Nu	 in Fig. 7.13) has a total of four thermal resistances. The two
additional resistances are associated with the conjugate boundary layers that form
on the two sides of the partition. The thermal insulation effect associated solely
with the conjugate boundary layers has been documented in Bejan and Anderson
(1981) and in Section 5.1.5 of this book. Mbaye and Bilgen (1992, 1993) have
studied numerically steady convection in a solar collector system that involves a
porous wall.

7.3.2. Effects of Heterogeneity and Anisotropy

The preceding results apply to situations in which the saturated porous medium
can be modeled as homogeneous. Poulikakos and Bejan (1983a) showed that
the nonuniformity of permeability and thermal diffusivity can have a dominating
effect on the overall heat transfer rate. For example, if the properties vary so much
that the porous layer can be modeled as a vertical sandwich of vertical sublayers
of different permeability and diffusivity (Fig. 7.14a), an important parameter is
the ratio of the peripheral sublayer thickness (d1) to the thermal boundary layer
thickness (�1) based on the properties of the d1 sublayer. Note that according to
Eq. (7.14), �1 scales as HRa−1/2

1 , where Ra1 = g�K1 H (Th − Tc)/	�m,1 and the
subscript 1 represents the properties of the d1 sublayer.
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Figure 7.14. Layered porous media heated from the side: vertical sublayers (a), hori-
zontal sublayers (b).

If the sublayer situated next to the right wall (dN ) has the same properties as
the d1 sublayer, and if �1 < d1 and �N < dN , then the overall heat transfer rate can
be estimated with the methods of Section 7.1 provided both Nu and Ra are based
on the properties of the peripheral layers. An example of this kind is illustrated
numerically in Fig. 7.15, where there are only three sublayers (N = 3), and the

Figure 7.15. Streamlines and isotherms in a sandwich of three vertical porous layers
heated from the side (Ra1 = 200, H/L = 2, K2/K1 = 5, K1 = K3, N = 3, and �m,1 =
�m,2 = �m,3 ) (Poulikakos and Bejan, 1983a).
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Figure 7.16. Streamlines and isotherms in a sandwich of two horizontal porous layers
heated from the side (Ra1 = 150, H/L = 0.5, K2/K1 = 5, N = 2, and �m,1 = �m,2 )
(Poulikakos and Bejan, 1983a).

permeability of the core is five times greater than the permeability of the peripheral
sublayers. The permeable core seems to “attract” the flow; this property renders
the streamlines and isotherms almost horizontal and results in a vertically stratified
core.

When the porous-medium inhomogeneity is such that the H × L system re-
sembles a sandwich of N horizontal sublayers (Fig. 7.14b), the overall Nusselt
number in the convection dominated regime is approximated by the correlation
(Poulikakos and Bejan, 1983a)

Nu ∼ 2−3/2Ra1/2
1

L

H

N∑
i=1

ki

k1

(
Ki di �m,1

K1d1�m,i

)1/2

, (7.51)

where both Nu and Ra1 are based on the properties of the bottom sublayer (d1). This
correlation was tested numerically in systems that contain two sublayers (N = 2).
A sample of the computed streamlines and isotherms is presented in Fig. 7.16,
for a case in which the upper half of the system is five times more permeable
than the lower half. This is why the upper half contains most of the circulation.
The discontinuity exhibited by the permeability K across the horizontal midplane



7.3. Other Configurations and Effects of Property Variation 305

causes cusps in the streamlines and the isotherms. The effect of nonuniformities in
the thermal diffusivity of the porous medium in the two configurations of Fig. 7.14
also has been documented by Poulikakos and Bejan (1983a). A boundary layer
analysis for a medium vertically layered in permeability was reported by Masuoka
(1986).

In all the geometries discussed so far in this chapter, the walls that surrounded
the saturated porous medium were modeled as impermeable. As a departure from
the classic problem sketched in Fig. 7.8, the heat transfer through a shallow porous
layer with both end surfaces permeable was predicted by Bejan and Tien (1978).
Their theory was validated by subsequent laboratory measurements and numerical
solutions conducted for Ra values up to 120 (Haajizadeh and Tien, 1983).

Lai and Kulacki (1988c) discussed convection in a rectangular cavity with a
vertical permeable interface between two porous media of permeabilities K1, K2

and thermal conductivity k1, k2, respectively. The first medium was bounded by a
heated face at constant heat flux and the second was bounded by a cooled isother-
mal face. The results of their calculations are generally in line with our expec-
tations based on the material discussed in Section 6.13, but their finding of the
existence of a second recirculating cell when K1/K2 < 1, k1/k2 < 1 is very sur-
prising. A similar situation was treated numerically by Merrikh and Mohamad
(2002).

Ni and Beckermann (1991a) have computed the flow in an anisotropic medium
occupying a square enclosure. The horizontal permeability is denoted by Kx and
the vertical permeability by Ky , and kx , ky are the corresponding thermal conduc-
tivities. Relative to the situation when the medium is isotropic with permeability
Kx and thermal conductivity kx , large Ky/Kx causes channeling along the vertical
(isothermal) walls, a high flow intensity, and consequently a higher heat transfer
rate Nu across the enclosure. Similarly, small Ky/kx causes channeling along the
horizontal (adiabatic) boundaries and a smaller Nu. Large ky/kx causes a higher
flow intensity and a smaller Nu but small ky/kx has very little effect on the heat
transfer pattern.

Non-Boussinesq variable-property effects were studied numerically by Peirotti
et al. (1987) for the case of water or air. They found that these had a considerable
impact on Nu. Kimura et al. (1993) presented an analysis, based on a perturbation
method for small Ra, a rectangular cavity with anisotropy of permeability and
thermal diffusivity. A numerical study for a rectangular cavity with a wall conduc-
tion effect and for anisotropic permeability and thermal diffusivity was performed
by Chang and Lin (1994b). Degan et al. (1995) have treated analytically and nu-
merically a rectangular cavity, heated and cooled with constant heat flux from the
sides, with principal axes for permeability oblique to gravity and those for ther-
mal conductivity aligned with gravity. They found that a maximum (minimum)
heat transfer rate is obtained if the high permeability axis is parallel (perpendic-
ular) to gravity, and that a large thermal conductivity ratio causes a higher flow
intensity but a lower heat transfer. Degan and Vasseur (1996, 1997) and Degan
et al. (1998a,b) presented a boundary layer analysis for the high Ra version of this
problem and a numerical study on the Brinkman model. Egorov and Polezhaev
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(1993) made a comprehensive theoretical (Darcy model) and experimental study
for the anisotropic permeability problem. They found good agreement between
their numerical results and experimental data for multilayer insulation. Vasseur
and Robillard (1998) have reviewed the anisotropy aspects. The case of icy water
was studied by Zheng et al. (2001). Further theoretical work, supplemented by
experiments with a Hele-Shaw cell, was reported by Kimura and Okajima (2000)
and Kimura et al. (2000).

7.3.3. Cylindrical or Annular Enclosure

Related to the two-dimensional convection phenomenon discussed so far in this
chapter is the heat transfer through a porous medium confined by a horizontal cylin-
drical surface (Fig. 7.17a). The disk-shaped ends of the system are maintained at
different temperatures. A parametric solution for heat transfer in this geometry was
reported by Bejan and Tien (1978). The corresponding phenomenon in the porous
medium between two horizontal concentric cylinders with different temperatures
(Fig. 7.17b), was analyzed by Bejan and Tien (1979).

A basic configuration in the field of thermal insulation engineering is the hori-
zontal annular space filled with fibrous or granular material (Fig. 7.18a). In this con-
figuration the heat transfer occurs between the two concentric cylindrical surfaces
of radii ri and ro, unlike in Fig. 7.17b where the cylindrical surfaces were insulated.
Experimental measurements and numerical solutions for the overall heat transfer
rate in the geometry of Fig. 7.18a have been reported by Caltagirone (1976b),
Burns and Tien (1979), and Facas and Farouk (1983). The data of Caltagirone
(1976b) in the range 1.19 ≤ ro/ri ≤ 4 were correlated by Bejan (1987) on the
basis of the scale-analysis procedure described in Bejan (1984, p. 194):

Nu = q ′

q ′
c

∼= 0.44Ra1/2
ri

ln(ro/ri )

1 + 0.916(ri/ro)1/2
. (7.52)

In the definition of the overall Nusselt number, the denominator is the conduction
heat transfer rate q ′

c = 4πkm(Th − Tc)/ ln(ro/ri ). The Rayleigh number is based

Figure 7.17. Confined porous medium with different end temperature: horizontal cylin-
drical enclosure (a) and horizontal cylindrical enclosure with annular cross section (b).
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Figure 7.18. Radial heat transfer: horizontal cylindrical annulus or spherical annulus
(a) and vertical cylindrical annulus (b).

on the inner radius, Rari = g�Kri (Th − Tc)/	�m . The correlation (7.52) is valid
in the convection dominated regime, i.e., when Nu � 1.

Transitions in the flow field in a horizontal annulus have been analyzed us-
ing a Galerkin method by Rao et al. (1987, 1988). As Ra is increased two-
dimensional modes with one, two, and three cells on each side of the annulus
appear in succession and the average Nusselt number increases with the number
of cells. The extra cells appear near the top of the annulus. Three-dimensional
modes also are possible with secondary flows in which the streamlines form a
coaxial double helix, and these produce enhancement of the overall heat transfer
resulting from a higher maximum local heat transfer rate in the upper part of the
annulus.

Himasekhar and Bau (1988b) made a detailed bifurcation analysis for radii ratio
values, 2, 21/2, 21/4, and 21/8. Barbosa Mota and Saatdjian (1994, 1995) reported
accurate numerical solutions for the Darcy model. For a radius ratio above 1.7
and for Rayleigh numbers above a critical value, they observed a closed hysteresis
curve, indicating two possible solutions (two- or four-cell pattern) depending on
initial conditions. For a radius ratio below 1.7 and as Ra is increased, the number
of cells in the annulus increases without bifurcation and no hysteresis is observed.
For very small radius ratios, steady-state regimes containing 2, 4, 6, and 8 cells are
obtained in succession. For a radius ratio of 2, they found good agreement with
experiment.

Charrier-Mojtabi and Mojtabi (1994, 1998) and Charrier-Mojtabi (1997) have
numerically investigated both two- and three-dimensional flows for the Darcy
model. They found that three-dimensional spiral flows are described in the vicin-
ity of the transition from two-dimensional unicellular flows. They determined
numerically the bifurcation points between two-dimensional unicellular flows and
either two-dimensional multicellular flows or three-dimensional flows. Linear and
nonlinear stability analyses were also performed by Charrier-Mojtabi and Mojtabi
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(1998). These show that subcritical instability becomes increasingly likely as the
radius ratio increases away from the value unity. For the cases of either isothermal
or convective boundary conditions, Rajamani et al. (1995) studied the affects of
both aspect ratio and radius ratio. They found that Nu always increases with radius
ratio and Ra and it exhibits a maximum when the aspect ratio is about unity, the
maximum shifting toward lesser aspect ratios as Ra increases.

For the case of the Darcy model and small dimensionless gap width ε = (ri −
ro)/ri , Mojtabi and Charrier-Mojtabi (1992) obtained an approximate analytical
solution leading to the formula

Nu = 1 + 17

40320
Ra2(ε2 − ε3), (7.53)

where

Ra − g�K (Ti − To)(ri − ro)/	�m . (7.54)

A development up to order ε15 was given by Charrier-Mojtabi and Mojtabi (1998).
Convection in a horizontal annulus with vertical eccentricity has been analyzed by
Bau (1984a,c) for small Ra and by Himasekhar and Bau (1986) for large Ra for the
case of steady two-dimensional flow. At low Ra there is an optimum eccentricity
that minimizes the heat transfer, but generally the heat transfer decreases with
eccentricity, independently of whether the heated inner cylinder is centered below
or above the axis of the cooled outer cylinder. Highly accurate computations for
this problem were reported by Barbosa Mota et al. (1994). A transient convection
problem in an elliptical horizontal annulus was reported by Chen et al. (1990). A
further numerical study of convection in such annuli was reported by Mota et al.
(2000).

The heat transfer through an annular porous insulation oriented vertically
(Fig. 7.18b) was investigated numerically by Havstad and Burns (1982), Hickox
and Gartling (1985), and Prasad and Kulacki (1984c, 1985), and experimentally
by Prasad et al. (1985). Havstad and Burns correlated their results with the five-
constant empirical formula

Nu ∼= 1 + a1

[
ri

ro

(
1 − ri

ro

)]a2

Raa4
ro

(
H

ro

)a5

exp

(
−a3

ri

ro

)
, (7.55)

in which

a1 = 0.2196, a4 = 0.9296,

a2 = 1.334, a5 = 1.168

a3 = 3.702, Raro = g�Kro(Th − Tc)/	�m .

(7.56)

The overall Nusselt number is defined as in Eq. (7.52), Nu = q/qc, where qc =
2πkm H (Th − Tc)/ ln(ro/ri ). The above correlation fits the numerical data in the
range 1 = H/ro = 20, 0 = Rar0 < 150, 0 < ri/ro = 1, and 1 < Nu < 3.

For the convection-dominated regime (high Rayleigh numbers and Nu � 1), the
scale analysis of the boundary layers that form along the two cylindrical surfaces
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of Fig. 7.18b recommends the following correlation (Bejan, 1987):

Nu = c1
ln(ro/ri )

c2 + ro/ri

ro

H
Ra1/2. (7.57)

The Nusselt number is defined as in Eq. (7.52) and the Rayleigh number is
based on height, Ra = g�K H (Th − Tc)/	�m . Experimental and numerical data
are needed in the convection regime (Nu � 1) in order to determine the constants
c1 and c2. Havstad and Burns’ (1982) data cannot be used because they belong to
the intermediate regime 1 < Nu < 3 in which the effect of direct conduction from
Th to Tc is not negligible.

The experimental and numerical study of Reda (1986) treated a two-layered
porous medium in a vertical annulus, with constant heat flux on the inner cylinder
and constant temperature on the outer. Quasisteady convection in a vertical annulus,
with the inner wall heated by a constant heat flux and the other walls adiabatic, was
treated analytically and numerically by Hasnaoui et al. (1995). Also for a vertical
annulus, Marpu (1995), Dharma Rao et al. (1996), and Satya Sai et al. (1997a) re-
ported on numerical studies on the Brinkman-Forchheimer model. An asymptotic
analysis for a shallow vertical annulus was presented by Pop et al. (1998) and Lep-
pinen et al. (2004). Passive heat transfer augmentation in an annulus was studied
by Iyer and Vafai (1999). The effect of local thermal nonequilibrium in convection
in a vertical annulus was studied by Deibler and Bortolozzi (1998) and Bortolozzi
and Deibler (2001). A numerical study of transient convection in a vertical annulus
was reported by Shivakumar et al. (2002). Convection in a vertical annulus with an
isothermal outer boundary and with a mixed inner boundary condition was treated
by Jha (2005). Conjugate convection from a vertical cylindrical fin in a cylindri-
cal enclosure was studied numerically by Naidu et al. (2004b). Convection in an
elliptical vertical annulus was studied numerically by Saatdjian et al. (1999).

Rao and Wang (1991) studied both low and high Ra convection induced by
internal heat generation in a vertical cylinder. Convection at large Ra is character-
ized by a homogeneous upward flow in the central part of the cylinder and a thin
downward boundary layer at the cooled wall, with the effect of curvature of the
boundary being negligible. This means that after introduction of a change of vari-
able the results can be applied to enclosures with other than circular boundaries.
Chang and Hsiao (1993) studied numerically convection in a vertical cylinder filled
with an anisotropic medium with uniform high temperature on all boundaries ex-
cept the cooler bottom. Lyubimov (1993) has summarized earlier Soviet work on
the bifurcation analysis of two-dimensional convection in a cylinder of arbitrary
shape, with the temperature specified on the boundary. The onset of convection in
a vertical cylinder with a conducting wall was analyzed by Haugen and Tyvand
(2003). Transient convection in a vertical cylinder with suddenly imposed or time-
periodic wall heat flux was studied numerically by Slimi et al. (1998) and Amara
et al. (2000). Transient convection in a vertical channel with the effect of radiation
was studied numerically by Slimi et al. (2004).

Conjugate convection in a horizontal annulus was studied by Kimura and Pop
(1991, 1992a). In their first paper they had isothermal boundaries but with a jump
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in heat flux at the fluid-solid interface, while in their second paper they used
a Forchheimer model to study the case of the inner surface maintained at one
temperature and the outer at a lower temperature.

Effects of rotation about the axis of a horizontal annulus were studied by
Robillard and Torrance (1990) and Aboubi et al. (1995a). The former treated weak
rotation, which generates a circulation relative to the solid matrix and thereby re-
duces the overall heat transfer. The latter examined the effect of a centrifugal force
field for the case when the outer boundary is heated by a constant heat flux while
the inner boundary is insulated. They performed a linear stability analysis and
finite amplitude calculations which indicated the existence of multiple solutions
differing by the number of cells involved.

Pan and Lai (1995, 1996) studied convection in a horizontal annulus with two
subannuli for different permeabilities. They corrected (by satisfying the interface
conditions more closely) the work by Muralidhar et al. (1986), thereby produc-
ing better agreement with experimental data. They noted that using a harmonic
average permeability gives a better approximation to Nu than does an arithmetic
average. Convection in a horizontal annulus with azimuthal partitions was studied
numerically by Nishimura et al. (1996). Aboubi et al. (1995b) studied numerically
convection in a horizontal annulus filled with an anisotropic medium, with prin-
cipal axes of permeability inclined to the vertical. Three-dimensional anisotropy
was incorporated into the model studied by Bessonov and Brailovskaya (2001).
Convective flow driven by a constant vertical temperature gradient in a horizontal
annulus was analyzed by Scurtu et al. (2001).

7.3.4. Spherical Enclosure

Another geometry that is relevant to the design of thermal insulations is the porous
medium shaped as a spherical annulus (Fig. 7.18a). Heat is transferred radially
between the two spherical walls that hold the porous material. Numerical heat
transfer results for discrete values of the Rayleigh number and the geometric ratio
ri/ro have been reported graphically by Burns and Tien (1979). From that set, the
data that correspond to the convection dominated regime were correlated based on
scale analysis by Bejan (1987),

Nu = q

qc

∼= 0.756 Ra1/2
ri

1 − ri/ro

1 + 1.422(ri/ro)3/2
. (7.58)

The definitions used in Eq. (7.58) are qc = 4πkm(Th − Tc)/(r−1
i − r−1

o ) and Rari =
g�Kri (Th − Tc)	�m . The correlation (7.58) agrees within two percent with Burns
and Tien’s (1979) data for the convection regime represented by Nu >∼ 1.5.

It is interesting to note that the scaling-correct correlation (7.58) can be restated
in terms of the Rayleigh number based on insulation thickness,

Raro−ri = g�K (ro − ri )(Th − Tc)

	�m
. (7.59)
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The resulting expression that replaces Eq. (7.58) is

Nu ∼= 0.756 Ra1/2
ro−ri

[ri/ro − (ri/ro)2]1/2

1 + 1.422(ri/ro)3/2
. (7.60)

This form can be differentiated to show that when Raro−ri is fixed, the overall heat
transfer rate (Nu) reaches a maximum value when ri/ro = 0.301. The existence of
such a maximum was noted empirically by Burns and Tien (1979). An explanation
for this maximum is provided by the boundary layer scale analysis on which the
correlation (7.58) is based (Bejan, 1987). This maximum is the spherical-annulus
analog of the maximum found in Fig. 7.10 for the heat transfer through a two-
dimensional layer heated from the side. Future studies may show that similar Nu
maxima occur in the cylindrical-annulus configurations of both Fig. 7.18a and
Fig. 7.18b, when the Rayleigh number based on porous layer thickness Raro−ri

is constant. Convection in spherical annular sectors defined by an adiabatic radial
wall was studied numerically by Baytas et al. (2002).

7.3.5. Porous Medium Saturated with Water Near 4◦C

One class of materials that departs from the linear-density model used in the
Boussinesq approximation (7.5) are the porous media saturated with cold water.
The density of water at atmospheric pressure exhibits a maximum near 4◦C. The
natural convection in a cold-water saturated medium confined by the rectangular
enclosure of Fig. 7.1 was described by Poulikakos (1984). As the equation of state
in the Boussinesq approximation he used


m − 
 = �
m(T − Tm)2 (7.61)

with Tm = 3.98◦C and � ∼= 8 × 10−6 K−2 for pure water at atmospheric pressure.
This parabolic density model is valid at temperatures ranging from 0◦C to 10◦C.
Bejan (1987) showed that in the convection-dominated regime the Nusselt number
correlation must have the form

Nu = c3
L/H

Ra−1/2
�h + c4 Ra−1/2

�c

, (7.62)

where the two Rayleigh numbers account for how Th and Tc are positioned relative
to the temperature of the density maximum Tm :

Ra�h = g� K H (Th − Tm)2

	�m
, Ra�c = g� K H (Tm − Tc)2

	�m
. (7.63)

The overall Nusselt number Nu is referenced to the case of pure conduction,
Nu = q ′/q ′

c.
Poulikakos (1984) reported numerical Nu results in tabular form for the

convection-dominated regime, primarily for the case Tc = 0◦C, Th = 7.96◦C. By
relying on these data, Bejan (1987) showed that when Tc and Th are positioned
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symmetrically around Tm (i.e., when Ra�h = Ra�c) the correlation (7.62) reduces
to

Nu ∼= 0.26
L

H
Ra 1/2

�h . (7.64)

In other words, this set of data indicates that in this case the two constants that
appear in the general correlation (7.60) must satisfy the relationship c3

∼= 0.26(1 +
c4) in which, by symmetry, c4 = 1. More experimental data for the high Rayleigh
number range with asymmetric heating (Ra�h �= Ra�c) are needed in order to
determine c3 uniquely. A numerical study of convection in a rectangular cavity
saturated by icy water, with various boundary thermal boundary conditions on the
sidewalls, was reported by Benhadji et al. (2003). The numerical study by Baytas
et al. (2004) treated the case of a square cavity and a more complicated density state
equation. The case where one vertical wall is heated differentially by an isothermal
discrete heater and the other vertical wall is cooled to a constant temperature, with
adiabatic horizontal walls, was studied numerically by Saeid and Pop (2004c).

7.3.6. Attic-Shaped Enclosure

In a saturated porous medium confined by a wedge-shaped impermeable enclosure
cooled along the sloped wall (Fig. 7.19) the convective flow consists of a single cell.
Like all the flows in porous media heated or cooled from the side, this particular
flow exists even in the limit Ra → 0. The flow intensifies as the Rayleigh number
based on height (Ra) increases. The bottom wall is heated, while the vertical wall
is insulated.

The numerical solutions reported by Poulikakos and Bejan (1983b) show the
development of a Bénard-type instability at sufficiently high Rayleigh numbers.

Figure 7.19. The flow pattern in an attic-shaped porous medium cooled the inclined
wall (H/L = 0.5, Ra = 1000) (Poulikakos and Bejan, 1983b).
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This instability is due to the heated bottom wall. In an enclosure with the aspect
ratio H/L = 0.2, the instability occurs in the vicinity of Ra ∼ 620. This critical
Rayleigh number increases as H/L increases. Convection in trapezoidal enclosures
was simulated using parallel computation by Kumar and Kumar (2004).

7.3.7. Other Enclosures

For the case of very small Rayleigh number, Philip (1982a,b, 1988) has obtained
exact solutions for the flow pattern for a variety of two-dimensional (rectangular,
elliptical, triangular, etc.) and axisymmetric (cylindrical, toroidal) cavities, for the
case of uniform horizontal temperature gradient (which is radial for the axisym-
metric situation). These have been obtained under the assumption of negligible
convective heat transfer and so are of limited use on their own. They may be useful
as the first stage in a perturbation analysis. Campos et al. (1990) studied numeri-
cally on the Brinkman model convection in a vertical annular enclosure partly filled
with a vertical annular volume occupied by a porous medium. Asako et al. (1992)
and Yamaguchi et al. (1993) reported numerical solutions with a Darcy model
for three-dimensional convection in a vertical layer with a hexagonal honeycomb
core that is either conducting or adiabatic. Chen and Wang (1993a,b) performed
a convection instability analysis for a porous enclosure with either a horizontal or
vertical baffle projecting part way into the enclosure. Lai (1993a,b, 1994) has per-
formed calculations for the effects of inserting baffles of various sorts (radial and
circumferential in horizontal annuli or pipes). Shin et al. (1994), with the aid of a
transformation to bicylindrical coordinates, studied numerically two-dimensional
convection in a segment of a circle, with the boundary inclined to the vertical.

Convection in a cavity with a dome (circular, elliptical, parabolic, etc.) on top
was treated numerically by Das and Morsi (2003, 2005). Conjugate convection
heat transfer from a vertical cylindrical fin in a cylindrical enclosure was treated
numerically by Naidu et al. (2004a). A numerical solution procedure to study con-
vection in a two-dimensional enclosure of arbitrary geometry was presented by
Singh et al. (2000). Convection in an inclined trapezoidal enclosure with cylindrical
top and bottom surfaces was studied numerically by Baytas and Pop (2001). Nu-
merical investigations of convection in insulating layers in attics were carried out
by Shankar and Hagentoft (2000). Convection in embankments built in permafrost
has been modeled by Goering and Kumar (1996), Goering (2003), Jiang et al.
(2004d), and Sun et al. (2005). Convection in a porous toroidal thermosyphon has
been studied numerically by Jiang and Shoji (2002). Convection in a thin porous
elliptical ring, located in an impermeable rock mass and subject to an inclined
geothermal gradient, was treated by Ramazanov (2000). Fluid flow and heat trans-
fer in partly divided cavities was studied numerically by Jue (2000). Convection
in a reentrant rectopolygonal cavity was studied numerically and experimentally
by Phanikumar and Mahajan (2002). Radiative effects on a MHD flow between
infinite parallel plates with time-dependent suction were studied analytically by
Alagoa et al. (1999). Convection from a wavy wall in a thermally stratified en-
closure was treated numerically by Ratish Kumar and Shalini (2004a). Natural
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convection in a cavity with wavy vertical walls was studied by Misirlioglu et al.
(2005). Convection driven by differential heating of the upper surface of a rectan-
gular cavity was studied numerically and analytically by Daniels and Punpocha
(2004). The case of a square cavity where one vertical wall is heated differentially
by an isothermal discrete heater and the other vertical wall is cooled to a constant
temperature, with adiabatic horizontal walls, was studied numerically by Saeid
and Pop (2005b). A two temperature model was applied by Sanchez et al. (2005)
to a problem with symmetrically connected fluid and porous layers.

7.3.8. Internal Heating

Steady natural convection in a two-dimensional cavity with uniform heat genera-
tion was simulated numerically by Du and Bilgen (1992) for the case of adiabatic
horizontal walls and isothermal vertical walls at different temperatures. A further
numerical treatment was reported by Das and Sahoo (1999). Steady convection
in a rectangular enclosure with the top and one sidewall cold and the other non-
isothermal and with the bottom heated at constant temperature was studied numer-
ically by Hossain and Wilson (2002). Convection in a two-dimensional vertical
cylinder with either (1) insulated top and bottom and cooled lateral walls or (2) all
walls isothermally cooled was given a numerical treatment by Jiménez-Islas et al.
(1999). A transient convection problem with sidewall heating was studied by Jue
(2003). A dual reciprocity boundary element method was applied to a differen-
tially and internally heated rectangular enclosure by Sarler (2000) and Sarler et al.
(2000a,b, 2004a,b). A numerical and experimental study of three-dimensional con-
vection in an anisotropic medium in a rectangular cavity was carried out by Suresh
et al. (2005).

7.4. Penetrative Convection

In this section we turn our attention to buoyancy-driven flows that only partially
penetrate the enclosed porous medium. One basic configuration in which this
flow can occur is shown in Fig. 7.20a. The saturated porous medium is a two-
dimensional layer of height H and length L, confined by a rectangular boundary.
Three of the walls are impermeable and at the same temperature (for example,
Tc), while one of the side walls is permeable and in communication with a fluid
reservoir of a different temperature, Th . In Fig. 7.20b the same layer is oriented
vertically. In both cases, natural convection penetrates the porous medium over a
length dictated by the Rayleigh number alone and not by the geometric ratio of
the layer, H/L (Bejan, 1980, 1981). The remainder of the porous layer contains
essentially stagnant and isothermal fluid.

7.4.1. Lateral Penetration

First consider the horizontal layer of Fig. 7.20a, in which the lateral penetration
distance Lx is unknown. According to Eqs. (7.1), (7.4), and (7.5), the order-of-
magnitude balances for mass, energy, and momentum are
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Figure 7.20. Lateral penetration (a) and vertical penetration (b) of natural convection
into an isothermal porous space with one and permeable.

mass:
u

Lx
∼ v

H
, (7.65)

energy: u
�T

Lx
∼ �m

�T

H 2
, (7.66)

momentum:
u

H
∼ K g�

	

�T

Lx
. (7.67)

In writing balances we have assumed that the penetration length Lx is greater
than the vertical dimension H. The temperature difference �T is shorthand for
Th − Tc.

Equations (7.65)–(7.67) easily can be solved for the unknown scales u, 	, and
Lx . For example, the penetration length is (Bejan, 1981)

Lx ∼ H Ra1/2, (7.68)

in which Ra is the Darcy modified Rayleigh number based on H and �T . The
corresponding heat transfer rate q ′ [W/m] between the lateral fluid reservoir Th

and the Tc boundary of the porous medium scales as

q ′ ∼ (
cP ) f u H�T ∼ km�T Ra1/2. (7.69)

The heat transfer rate q ′ is expressed per unit length in the direction normal to
the plane of Fig. 7.20a. All these results demonstrate that the actual length of the
porous layer (L) has no effect on the flow and the heat transfer rate: Lx as well as
q ′ are set by the Rayleigh number. The far region of length L − Lx is isothermal
and filled with stagnant fluid.

The actual flow and temperature fields associated with the lateral penetration
phenomenon have been determined analytically as a similarity solution (Bejan,
1981). Figure 7.21 shows the dimensionless streamfunction and temperature for
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Figure 7.21. Streamlines and isotherms in the region of lateral penetration into a two-
dimensional porous layer (Bejan, 1981).

only the region of length Lx . The penetration length and heat transfer rate predicted
by this solution are

Lx = 0.158HRa1/2, (7.70)

q ′ = 0.319km�T Ra1/2. (7.71)

The results presented in this subsection are valid when Lx < L and Lx � H ,
which translates into the following Ra range:

1 � Ra <
L

H
. (7.72)

In the same paper, Bejan (1981) also documented the lateral penetration in
an anisotropic porous medium in which the principal thermal conductivities are
different and aligned with the x and y axes, km,x �= km,y . He also showed that a
similar partial penetration phenomenon occurs when the temperature of each of
the two horizontal walls (Fig. 7.20a) varies linearly from Th at one end to Tc at the
other.

7.4.2. Vertical Penetration

In the vertical two-dimensional layer of Fig. 7.20b, it is the bottom or the top
side that is permeable and in communication with a fluid reservoir of different
temperature. In Chapter 6 we saw that in porous layers heated from below or
cooled from above convection is possible only above a critical Rayleigh num-
ber. In the configuration of Fig. 7.20b; however, fluid motion sets in as soon as
the smallest �T is imposed between the permeable horizontal boundary and the
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vertical walls. This motion is driven by the horizontal temperature gradient of order
�T /L .

If we write L y for the unknown distance of vertical penetration and if we assume
that L y � L , we obtain the following order-of-magnitude balances

mass: u

L
∼ v

L y
, (7.73)

energy: u
�T

L
∼ �m

�T

L2
, (7.74)

momentum: v

L
∼ K g�

	

�T

L
, (7.75)

The vertical penetration distance that results from this system of equations is
(Bejan, 1984)

L y ∼ LRaL , (7.76)

in which RaL is the Rayleigh number based on the thickness L : RaL =
g�K L�T/	�m . The scale of the overall heat transfer rate q ′ [W/m] through the
permeable side of the porous layer is

q ′ ∼ (
cP ) f vL�T ∼ km�T Ra L . (7.77)

Once again, the physical extent of the porous layer (H) does not influence the
penetrative flow, as long as H is greater than the penetration distance L y . The latter
is determined solely by the transversal dimension L and the imposed temperature
difference �T . The vertical penetration distance and total heat transfer rate are
proportional to the Rayleigh number based on the thickness L.

The vertical penetration of natural convection also was studied in the cylindrical
geometry of Fig. 7.22, as a model of certain geothermal flows or the flow of air
through the grain stored in a silo (Bejan, 1980). The vertical penetration distance
and the total heat transfer rate q [W] are

L y

ro
= 0.0847 Ra ro , (7.78)

q = 0.255rokm�T Ra ro , (7.79)

where ro is the radius of the cylindrical cavity filled with saturated porous material
and Raro is the Rayleigh number based on radius, Raro = g�Kro�T/	�m . Figure
7.22 shows the streamlines in the region of height L y , which is penetrated by
natural convection. The region of height H − L y , which is situated above this
flow and is not shown in Fig. 7.22, is isothermal and saturated with motionless
fluid.

The results presented in this subsection are valid when the penetrative flow is
slender, L y � (L , ro), and when L y is shorter than the vertical dimension of the
confined porous medium, L y < H . These restrictions limit the Rayleigh number
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Figure 7.22. Streamlines in the region of vertical penetration into a cylindrical space
filled with porous medium (Bejan, 1980).

domain that corresponds to these flows:

1 � Ra (L ,ro) <
H

(L , ro)
. (7.80)

7.4.3. Other Penetrative Flows

Two types of penetrative flows that are related to those of Figs. 7.20a and 7.20b
are presented in Fig. 7.23. Poulikakos and Bejan (1984a) showed that in a porous
medium that is heated and cooled along the same vertical wall the flow penetration
can be either horizontal (Fig. 7.23a) or vertical (Fig. 7.23b). In the case of horizontal
penetration, the penetration distance Lx and the total heat transfer rate q ′ are of
the same order as in Eqs. (7.66) and (7.67). These scales are valid in the range
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Figure 7.23. Incomplete horizontal penetration (a) and vertical penetration (b) in a
porous layer heated and cooled along the same vertical side.

1 � Ra < L/H , the Rayleigh number Ra being based on height. The scales of
vertical penetration in Fig. 7.23b are different,

L y ∼ H

(
L

H

)2/3

Ra−1/3, (7.81)

q ′ ∼ km(Th − Tc)

(
L

H
Ra

)1/3

. (7.82)

in which Ra is again based on H. These scales are valid when Ra > H/L . The two
penetrative flows of Fig. 7.23 occur only when the heated section is situated above
the cooled section of the vertical wall. When the positions of the Th and Tc sections
are reversed, the buoyancy-driven flow fills the entire H × L space (Poulikakos
and Bejan, 1984a).

In a semi-infinite porous medium bounded from below or from above by a hori-
zontal wall with alternating zones of heating and cooling (Fig. 7.24) the buoyancy-
driven flow penetrates to a distance L y into the medium (Poulikakos and Bejan,
1984b). This distance scales as λ Ra1/2

λ , where λ is the spacing between a heated
zone and the adjacent cooled zone, and Raλ = g�Kλ(Th − Tc)/	�m . Figure 7.24
shows a sample of the numerical results that have been developed for the range
1 ≤ Raλ ≤ 100.

7.5. Transient Effects

The work reviewed in the preceding sections dealt with steady-state conditions
in which the flow is slow enough to conform to the Darcy model. In this sec-
tion, we drop the steady-flow restriction and examine the time scales and evolu-
tion of the buoyancy-driven flow. The equations that govern the conservation of
mass, momentum, and energy in Fig. 7.1 are, in order, Eqs. (7.1), (7.5), and, in
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Figure 7.24. Streamlines and isotherms for the vertical penetration of natural convection
in a semi-infinite porous medium bounded by a horizontal wall with alternating hot and
cold spots (Raλ = 100) (Poulikakos and Bejan, 1984b).

place of (7.4),

�
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= �m

(
∂2T

∂x2
+ ∂2T

∂y2

)
. (7.83)

Consider the two-dimensional saturated porous medium shown in Fig. 7.1,
which is initially isothermal at Ta	g = (Th + Tc)/2 and saturated with motion-
less fluid. At the time t = 0, the temperatures of the two side walls are changed
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to Th = Ta	g + �T/2 and Tc = Ta	g − �T/2, while the top and bottom walls
remain insulated. All the walls are impermeable. Of special interest is the time
needed by the flow and heat transfer to reach steady state, i.e., the time interval
after which the flow regimes described in Section 7.1 become valid. This basic
transient convection problem was studied by Poulikakos and Bejan (1983c).

By focusing on the vertical boundary layer that develops along the left-hand
side of the rectangular system of Fig. 7.1, we note that initially the time-dependent
thickness of this boundary layer �(t) grows by pure conduction. With respect to the
region of thickness � and height H, the energy equation (7.83) dictates a balance
between the side heating effect and the thermal inertia of the saturated porous
medium,

�
�T

t
∼ �m

�T

�2
. (7.84)

This balance yields the well-known penetration distance of pure conduction:

� ∼
(

�mt

�

)1/2

. (7.85)

The growth of the conduction layer gives rise to a horizontal temperature gradient
of order ∂T/∂x ∼ �T/�. This development makes the buoyancy term in the mo-
mentum balance (7.5) finite. In fact, the scales of the three terms appearing in Eq.
(7.5) are ( u

H
,
v

�

)
∼ K g�

	

�T

�
. (7.86)

The mass conservation scaling (7.6) shows that the ratio of the two scales on the
left-hand side of Eq. (7.86) is

u/H

v/�
∼

(
�

H

)2

, (7.87)

in other words, that u/H is negligible relative to v/�. In conclusion, the momentum
balance reduces to Eq. (7.11) and the vertical velocity scale turns out to be identical
to the scale listed in Eq. (7.12) for the steady state. An interesting feature of the
transient flow is that the vertical velocity scale is independent of time. The vertical
flow rate however, 	�, grows in time as t1/2.

As soon as fluid motion is present, the energy equation (7.83) is ruled by the
competition among three different scales:

�
�T

t
, v

�T

H
∼ �m

�T

�2
,

Inertia Convection Conduction
(t−1) (t0) (t−1)

(7.88)

The time dependence of each scale also is shown. Since the lateral conduction
effect is always present, the convection scale eventually overtakes inertia on the
left-hand side of Eq. (7.88). The time t when this changeover takes place, i.e.,
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when the vertical boundary layer becomes convective, is given by

�
�T

t
∼ v

�T

H
, (7.89)

which in view of the 	 scale (7.12) yields

t ∼ �

�m
H 2 Ra−1. (7.90)

It is easy to verify that the boundary layer thickness (7.85), which corresponds to
(and after) this time, is the steady-state scale determined earlier in Eq. (7.13). In
conclusion, this transient-convection analysis reconfirms the criterion (7.19) for
distinct vertical boundary layers.

By following the same approach Poulikakos and Bejan (1983c) traced the de-
velopment of the horizontal boundary layers along the top and bottom walls of the
enclosure. They found that the horizontal layers become “developed” earlier than
the vertical layers when the enclosure is tall enough so that

H

L
> Ra1/6. (7.91)

The criterion for distinct horizontal boundary layers turns out to be the same as the
inequality (7.22). In summary, the analysis of the time-dependent development of
natural circulation in the two-dimensional system of Fig. 7.1 provides an alternative
way to construct the four-regime map seen earlier in Fig. 7.2.

A comprehensive study of transient convection between parallel vertical plates
on the Brinkman-Forchheimer model has been carried out by Nakayama et al.
(1993). They obtained asymptotic solutions for small and large times and a bridg-
ing numerical solution for intermediate times. An MHD problem with suction or
injection on one plate was treated by Chamkha (1997b). For convection in a rect-
angular enclosure, Lage (1993b) used scale analysis to obtain general heat transfer
correlations. A further numerical study was reported by Merrikh and Mohamad
(2000). An analytic study using Laplace transforms was conducted by Jha (1997).
The effect of variable porosity was examined by Paul et al. (2001). Saeid and
Pop (2004a,b) considered a transient problem arising from the sudden heating of
one side wall and the sudden cooling of the other, with and without the effect
of viscous dissipation. They found that the heat transfer was reduced as a result
of the dissipation. Convection in a non-Newtonian power-law fluid was studied
numerically by Al-Nimr et al. (2005).

A transient problem for convection between two concentric spheres was studied
by Pop et al. (1993b). They obtained solutions, valid for short time, of the Darcy
and energy equations using the method of matched asymptotic expansions. Nguyen
et al. (1997b) treated a similar problem with a central fluid core surrounded by
a porous shell. They performed numerical calculations on the Brinkman model.
They found remarkable effects along the porous medium-fluid interface, but the
overall heat flux was sensitive only to the ration of thermal conductivity of the
solid matrix to that of the fluid.
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Transient convection in a vertical annulus for various thermal boundary con-
ditions was studied by Al-Nimr and Darabseh (1995) for the Brinkman model.
Transient convection in a horizontal annulus, with the inner and outer cylinders
maintained at uniform temperat ures, was examined by Pop et al. (1992a). They
used the method of matched asymptotic expansions to obtain a solution valid
for short times. Sundfor and Tyvand (1996) studied convection in a horizontal
cylinder with a sudden change in wall temperature. An investigation of the ef-
fect of local thermal nonequilibrium was reported by Ben Nasrallah et al. (1997).
Further numerical studies of the effect of local thermal nonequilibrium were car-
ried out by Khadrawi and Al-Nimr (2003b) and Krishnan et al. (2004). A hybrid
numerical-analytical solution for two-dimensional transient convection in a ver-
tical cavity, based on a generalized transform technique, was presented by Alves
and Cotta (2000). Similar three-dimensional studies were made by Neto et al.
(2002, 2004) and Cotta et al. (2005).

7.6. Departure from Darcy Flow

7.6.1. Inertial Effects

The behavior of the flow and heat transfer process changes substantially as the flow
regime departs from the Darcy limit. The effect of the quadratic drag on the heat
transfer through the most basic configuration that opened this chapter (Fig. 7.1)
was demonstrated by Poulikakos and Bejan (1985). In place of the momentum
equation (7.5) they used the Forchheimer modification of Darcy’s law,

∂

∂y
(Bu) − ∂

∂x
(Bv) = −g�K

	

∂T

∂x
. (7.92)

This follows from Eq. (1.12) by eliminating the pressure between the x and y
momentum equations and by writing

B = 1 + �

v
(u2 + v2)1/2. (7.93)

The Forchheimer term coefficient � has the units [m] and is used as shorthand for
the group cF K 1/2, where cF is defined by Eq. (1.12). The same notation was used
in Eq. (5.60), in the analysis of the flow near a single vertical wall.

Poulikakos and Bejan (1985) analyzed the Darcy-Forchheimer convection phe-
nomenon using three methods: scale analysis, a matched boundary layer analysis,
and case-by-case numerical finite-difference simulations. The main results of the
scale analysis for the convection regime III are summarized in Table 7.1, next to
the scales derived for the Darcy limit in Section 7.1.1. The transition from Darcy
flow to Forchheimer flow, i.e., to a flow in which the second term dominates on
the right-hand side of Eq. (7.93), takes place when the dimensionless number G
is smaller than O(1),

G = 	[�g�K (Th − Tc)]−1/2. (7.94)
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Table 7.1. The scales of the vertical natural convection boundary layer
in a porous layer heated from the side (Poulikakos and Bejan, 1985).

Forchheimer regime Darcy regime
G � 1 G � 1

Boundary layer thickness HRa∞−1/4 HRa−1/2

Vertical velocity
�m

H
Ra1/2

∞
�m

H
Ra

Heat transfer rate km�T Ra1/2
∞ km�T Ra1/2

In the Forchheimer regime G � 1, the appropriate Rayleigh number is the large
Reynolds number limit version encountered already in Eq. (5.64),

Ra∞ = g�K 2(Th − Tc)

� �2
m

. (7.95)

The important heat transfer conclusion of the scale analysis is that the over-
all (conduction-referenced) Nusselt number defined in Eq. (7.17) scales as
(L/H )Ra1/4

8 in the limit in which the effect of inertia dominates. A more ac-
curate estimate was provided by an analytical solution in which Oseen linearized
solutions for the two vertical boundary layers were matched to the same stratified
core (Poulikakos and Bejan, 1985):

Nu = 0.889
L

H
Ra 1/4

∞ , (G � 1). (7.96)

This solution is the Forchheimer regime counterpart of the Oseen linearized so-
lution derived by Weber (1975b) for the Darcy limit, namely Eq. (7.38). By in-
tersecting Eq. (7.96) with Eq. (7.38) we learn that the transition from Darcy flow
to Forchheimer flow occurs when Ra1/2

∞ ∼ Ra, which is another way of saying
G ∼ O(1). In fact the group G defined in Eq. (7.94) is the same as the ratio
Ra1/2

∞ /Ra.
Figure 7.25 shows Poulikakos and Bejan’s (1985) finite-difference calcula-

tions for the overall heat transfer rate in the intermediate regime represented by
0.1 ≤ G ≤ 10. In these calculations, the momentum equation contained the Darcy
and Forchheimer terms shown in Eqs. (7.92)–(7.93). The numerical data agree
well with Weber’s formula in the Darcy limit G → ∞. In the opposite limit, the
numerical data fall slightly below the theoretical asymptote (7.96). This behavior
has been attributed to the fact that the group (H/L) Ra∞−1/4, whose smallness
describes the goodness of the boundary layer approximation built into the analysis
that produced Eq. (7.96), increases steadily as G decreases at constant Ra (note that
in Fig. 7.25 Ra = 4000). In other words, constant-Ra numerical experiments de-
viate steadily from the boundary layer regime as G decreases. Indeed, Poulikakos
and Bejan (1985) found better agreement between their G < 1 numerical data and
Eq. (7.96) when the Rayleigh number was higher, Ra = 5000.



7.6. Departure from Darcy Flow 325

Figure 7.25. Numerical results for the total heat transfer rate through a porous layer
heated from the side, in the intermediate Darcy-Forchheimer range (H/L = 2, Ra =
4000, and 1.6 × 105 ≤ Ra∞ ≤ 1.6 × 109) (Poulikakos and Bejan, 1985).

In a subsequent numerical study, Prasad and Tuntomo (1987) contributed ad-
ditional numerical results for natural convection in the configuration treated by
Poulikakos and Bejan (1985), which confirmed the reported theoretical scaling
trends. Specifically, Prasad and Tuntomo included the Darcy and Forchheimer
terms in the momentum equation and covered the range 1 ≤ H/L ≤ 20, 10 ≤
Ra ≤ 104. They also pointed out that the progress toward the inertia-dominated
regime (G → 0 in Fig. 7.25) is accompanied by a proportional increase in the pore
Reynolds number. This can be shown here by using the volume-averaged vertical
velocity scale listed in Table 7.1, v ∼ (�m/H ) Ra∞1/2. The corresponding pore
velocity scale is vp = v/� ∼ (�m/�H ) Ra1/2

∞ . The pore Reynolds number is

Rep = vp Dp

	
, (7.97)

in which Dp is the pore size. This Reynolds number can be rewritten in terms of
G and the particle size dp by invoking Eqs. (7.94) and (1.13):

Rep ∼ Dp

dp

�1/2

cF

(1 − �)

�5/2G
. (7.98)

Taking � = 150, cF
∼= 0.55, Dp/dp ∼ O(1), and � = 0.7 as representative orders

of magnitude in Eq. (7.96), the pore Reynolds number becomes approximately

ReP ∼ C

G
, (7.99)

where C is a dimensionless coefficient of order 10.
This last Rep expression reconfirms the notion that the effect of inertia becomes

important when Rep ∼ O(10), because G < 1 is the inertia-dominated domain
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revealed by Poulikakos and Bejan’s (1985) theory. The pore Reynolds number
domain Rep > 300, in which the flow becomes turbulent (Dybbs and Edwards,
1984), corresponds to the range G < 0.03 at constant Ra. Prasad and Tuntomo
(1987), however, went too far when they claimed that “the Forchheimer extended
Darcy equation of motion will become invalid when G decreases below 0.1. The
flow is then unsteady and chaotic (p. 311).” Their assertion is incorrect, because
quadratic drag is a macroscopic phenomenon that does not change qualitatively
when the flow in the pores becomes turbulent.

A numerical study of convection in a square cavity using the Forchheimer model
was conducted by Saied and Pop (2005a). They confirmed the expectation that
inertial effects slow down the convection currents and reduce the Nusselt number
for a fixed value of the Rayleigh number.

7.6.2. Boundary Friction, Variable Porosity, Local Thermal Nonequilibrium,
Viscous Dissipation, and Thermal Dispersion Effects

The effects of boundary friction incorporated in the Brinkman model has been
studied by several authors, starting with Chan et al. (1970). For the shallow porous
layer, with isothermal lateral walls and adiabatic top and bottom, the top being ei-
ther rigid or free, Sen (1987) showed that the Brinkman term does not significantly
affect the heat transfer rate until the Darcy number Da = K/H 4 exceeds 10−1/4,
and then the Nusselt number Nu decreases as Da increases. As one would expect,
the reduction is smaller for the case of a free upper surface than that of a rigid
upper surface. Also, for a shallow cavity with various combinations of rigid or
free upper and lower boundaries, Vasseur et al. (1989) studied the case of lateral
heating with uniform heat flux, exploiting the fact that in this situation there is
parallel flow in the core.

For cavities with aspect ratios of order unity, Tong and Subramanian (1985)
performed a boundary layer analysis and Tong and Orangi (1986) carried out
numerical calculations. Vasseur and Robillard (1987) studied the boundary layer
regime for the case of uniform heat flux. The vertical cavity case was treated
numerically by Lauriat and Prasad (1987). Again the chief result is that, because
of the reduction in velocity near the wall, the Nusselt number Nu decreases as Da
increases, the effect increasing as Ra increases. The variation porosity near the
wall partly cancels the boundary friction effect. Numerical studies of this effect
were conducted by Nithiarasu et al. (1997a, 1998) and Marcondes et al. (2001).

The combined effects of boundary friction and quadratic drag were studied
numerically by Beckermann et al. (1986), David et al. (1988, 1991), Lauriat and
Prasad (1989), and Prasad et al. (1992) for rectangular cavities; by Kaviany (1986)
and Murty et al. (1989) for horizontal annuli (concentric and eccentric, respec-
tively); and by David et al. (1989) for vertical annuli. The studies by David et al.
(1988, 1989) included the effect of variable porosity, which increases the rate of
heat transfer. The last paper reported excellent agreement between the numerical
results and experimental data obtained by Prasad et al. (1985) for water-glass
media at high Rayleigh numbers and large particle sizes. Extensive reviews of the
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topic of boundary friction, quadratic drag, and variable porosity were made by
Prasad and Kladias (1991) and Lauriat and Prasad (1991). These authors noted
that there remained a discrepancy between theory and experiment for the case of
media with a highly conductive solid matrix, such as steel beads. The theoretical
values were some 20 to 25 percent too high.

The comparative numerical studies of a heated square cavity on Darcy,
Brinkman, and Brinkman-Forchheimer models by Misra and Sarkhar (1995) con-
firmed that boundary friction and quadratic drag lead to a reduction in heat transfer.
Further numerical studies were conducted by Satya Sai et al. (1997b), Jecl et al.
(2001), and Jecl and Škerget (2004).

The case of local thermal nonequilibrium (together with variable porosity and
thermal dispersion) has been treated by Alazmi and Vafai (2000) Mohamad (2000),
Al-Amiri (2002), and Baytas and Pop (2002). For a square enclosure heated at the
left wall, the maximum difference between the fluid- and solid-phase temperatures
occurs in the bottom left and upper right corners.

Rees (2004a) showed that the effect of viscous dissipation could result in single-
cell convection being replaced by a two-cell flow as the dissipation parameter
increases. At higher values of this parameter the maximum temperature within the
cavity begins to exceed the highest boundary temperature and subsequently the
flow becomes time-periodic.

Thermal dispersion effects were studied numerically by Beji and Gobin (1992)
on the Brinkman-Forchheimer model. These cause a significant increase in the
overall heat transfer, and when they are included a better agreement with the
experimental data is obtained, particularly when the thermal conductivities of
the fluid and the solid matrix are similar.

7.7. Fluid and Porous Regions

Several authors, all using the Brinkman equation, have calculated the flow in a
laterally heated rectangular container partly filled by clear fluid and partly with
a porous medium saturated by that fluid. In most of these studies the porous
medium forms a vertical layer; the interface either can be impermeable to fluid or
impermeable. Sathe et al. (1987) reported experimental results for a box divided
in two with a vertical impermeable partition bounding the porous medium, which
agreed with calculations made by Tong and Subramanian (1986). Sathe and Tong
(1989) compared these results with calculations by Sathe et al. (1988) for the same
problem with a permeable interface and with results for a cavity completely filled
with porous medium and with a partitioned cavity containing solely clear fluid.
Heat transfer is reduced by the presence of porous material having the same thermal
conductivity as the fluid and by the presence of a partition. At low Da (= 10−4) the
first mechanism is more prominent while for high Da the second produces a greater
insulating effect. The differences become accentuated at large Ra. Experiments by
Sathe and Tong (1988) confirmed that partly filling an enclosure with porous
medium may reduce the heat transfer more than totally filling it.
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Figure 7.26. Definition sketch for fluid and porous regions in a vertical cavity.

The case of a rectangular cavity with a porous medium occupying the lower
half, the interface being permeable, was studied numerically by Nishimura et al.
(1986). The results agreed well with previous experiments by those authors. As
one would expect, most of the flow and the heat transfer occurs in the fluid
region.

The most comprehensive study available of flow and temperature fields is that
by Beckermann et al. (1988). They performed calculations and experiments for
the configurations shown in Fig. 7.26. In the experiments the beads were of glass
or aluminum and the fluid was water or glycerin. A sample result is illustrated
in Fig. 7.27. In all cases investigated, the temperature profiles indicated strong
convection in the fluid layer but little in the porous layer. Figure 7.27 illustrates
a situation with large beads of high thermal conductivity. For smaller aluminum
beads (smaller Darcy number) there is less flow in the porous layer. For the case
of glass beads (of small thermal conductivity) the situation is accentuated; for
small beads there is almost no flow in the porous layer but for large beads there
is a substantial amount of flow at the top and bottom of the porous layer, with
the eddy centers in the fluid layer displaced toward the upper right and lower left
corners.

A configuration similar to that of Fig. 7.27 is the vertical slot filled with air
and divided along its vertical midplane by a permeable screen (Z. Zhang et al.,
1991). The screen is a venetian blind system made out of horizontal plane strips
that can be rotated. In the nearly “closed” position, the strips almost touch and the
air flow that leaks through it behaves as in Darcy or Forchheimer flow. On both
sides of the partition the air circulation is driven by the temperature difference
maintained between the two vertical walls of the slender enclosure. Zhang et al.
showed numerically that there exists a ceiling value for the air flow conductance
through the screen: above this value the screen pressure drop does not have a
perceptible effect on the overall heat transfer rate. This ceiling value can be used
for design purposes, e.g., in the calculation of the critical spacing that can be
tolerated between two consecutive strips in the screen.
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Figure 7.27. Experimental and predicted results for the configuration 2 shown
in Fig. 7.26, with water and 6.35-mm aluminum breads: (a) photograph of in-
terference fringe patterns; (b) predicted isotherms (equal increments); and (c)
predicted stremalines (equal increments). S/L = 0.33, Ra f = 3.70 × 106, DaL =
1.534 × 10−5, Pr f = 6.44, and Km/K f = 37.47 (Beckermann et al., 1988, with per-
mission from Cambridge University Press).

Du and Bilgen (1990) performed a numerical study of heat transfer in a vertical
rectangular cavity partially filled with a vertical layer of uniform heat-generating
porous medium and with lateral heating. They varied the aspect ratio of the cavity
and the thickness and position of the porous layer.

Structures with solid walls separating cavities filled with porous materials and
spaces filled with air are being contemplated in the advanced design of cavernous
bricks and walls of buildings (Vasile et al., 1998; Lorente et al., 1996, 1998;
Lorente and Bejan, 2002).
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A numerical treatment of convection in a fluid-filled square cavity with differen-
tially heated vertical walls covered by thin porous layers was studied numerically
by Le Breton et al. (1991). They showed that porous layers having a thickness
of the order of the boundary layer thickness were sufficient to reduce the overall
Nusselt number significantly (by an amount that increased with increase of Ra) and
thicker porous layers produced only a small additional decrease in heat transfer.

Three-dimensional convection in a rectangular enclosure containing a fluid layer
overlying a porous layer was treated numerically on the Brinkman model by
Singh et al. (1993). A comparison study of the Darcy, Brinkman, and Brinkman-
Forchheimer models was carried out by Singh and Thorpe (1995). Convection
in a rectangular cavity with a porous medium occupying half the lateral distance
from heated to cooled wall was studied both theoretically (with an anisotropic
medium incorporated) and experimentally (using perforated plates for the solid
matrix which allowed flow visualization with the aid of dye) by Song and Viskanta
(1994). Convection in a partly filled inclined rectangular enclosure, with uniform
or localized heating of the bottom, was studied by Naylor and Oosthuizen (1995).
They found that flow patterns were sensitive to small angles of inclination to the
horizontal and that dual solutions were possible. Masuoka et al. (1994) investigated
the channeling effect (due to porosity variation) with a model involving a thin fluid
layer adjacent to a vertical porous medium layer. They found that convection was
generally enhanced by the channeling effect, but for weak convection it is reduced
by the thermal resistance near the wall.

A study that involves turbulence is that by L. Chen et al. (1998). They applied
a �-ε model to the fluid part of a partly filled enclosure. They found that when
the flow is turbulent in the fluid region, the heat transfer in the porous region is
dominated by convection and the penetration of the fluid into the porous region is
more intensive than in the case of laminar flow.

A closed-form solution for natural convection in a rectangular cavity including
a layer of porous medium adjacent to the heated side, with uniform heat flux from
the sides, was obtained by Weisman et al. (1999). Mercier et al. (2002) obtained
analytical expressions for a developing flow in similar circumstances. Fully de-
veloped convection in partly filled open-ended vertical channels was analyzed by
Al-Nimr and Haddad (1999a); see also Nield (2001a). MHD convection in such
channels was analyzed by Al-Nimr and Hader (1999b).

Paul and Singh (1998) studied convection in partly filled vertical annuli. An
analytical study of convection in a partly filled vertical channel was performed
by Paul et al. (1998). A numerical study of transient convection in a partly filled
vertical channel was studied numerically by Paul et al. (1999). Transient convection
in various domains partly filled with porous media was investigated analytically
using Laplace transforms by Al-Nimr and Khadrawi (2003). A further study of
convection in partly filled vertical channels was made by Khadrawi and Al-Nimr
(2003a). Pseudosteady-state convection inside a spherical container partly filled
with a porous medium was studied numerically by Zhang et al. (1999). Conjugate
convection in a partly filled horizontal annulus was investigated by Aldoss et al.
(2004). A two temperature model was applied by Sanchez et al. (2005) to a problem
with symmetrically connected fluid and porous layers.
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Figure 7.28. Definition sketch for a tilted box. Oy is horizontal and � measures the
inclination of Ox above the horizontal.

7.8. Sloping Porous Layer or Enclosure

The topic of this section has features discussed in Chapter 6 as well as those noted
in the present chapter. We shall concentrate our attention on convection in the
rectangular box shown in Fig. 7.28. Unless otherwise specified, the plane z = 0 is
heated and the plane z = H is cooled, and the other faces of the box are insulated.
(Thus � = π corresponds to a box heated from above.)

We first consider the extension of the Horton-Rogers-Lapwood problem. The
thermal boundary conditions are as in Section 6.1, namely T = To + �T at z = 0
and T = To at z = H . The differential equations (6.3) – (6.6) have the basic steady-
state solution given by Eqs. (6.8) and (6.9) and [in place of Eq. (6.7)]

vb = g�K�T

	

(
1

2
− z

H

)
sin � i, (7.100)

This describes a unicellular flow with an upward current near the hot plate and a
downward current near the cold plate.

The perturbation equation (6.16) is unchanged, but Eqs. (6.17) and (6.18) are
replaced by

�a
∂v
∂ t̂

= −∇ P̂ − v̂ + Ra T̂ (sin � i + cos � k), (7.101)

∂ T̂

∂ t̂
+ (Ra sin �)

(
1

2
− ẑ

)
∂ T̂

∂ x̂
− ŵ = ∇2T̂ (7.102)

and instead of Eqs. (6.22) and (6.23) we now have[
D2 − a2 − s − ik(Ra sin �)

(
1

2
− ẑ

)]
� = −W, (7.103)

(1 + �as)(D2 − a2)W = −Ra[a2(cos �)� + ik(sin �)D�]. (7.104)
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Eliminating W, one gets

(1 + �as) (D2 − a2) (D2 − a2 − s)� − Ra �2 (cos �)�

−ik Ra sin �

{
(1 + �as)

[(
1

2
− ẑ

)
(D2 − �2)� − 2D�

]
+ D�

}
= 0.

(7.105)

For the case of conducting impermeable boundaries,

� = D2� = 0 at ẑ = 0, and ẑ = 1. (7.106)

The system (7.105) and (7.106) can be solved by the Galerkin method
(Caltagirone and Bories, 1985) but an immediate result can be obtained for the
case k = 0, because then the eigenvalue problem reduces to that for the horizontal
layer but with Ra replaced by Ra cos �. This case corresponds to longitudinal rolls
(with axes up the slope) superposed on the basic flow, i.e., longitudinal helicoidal
cells. A detailed examination shows that the basic unicellular flow is indeed stable
for Ra cos � = 4π2. Caltagirone and Bories found that convection appears in the
form of polyhedral cells for small inclinations � and as longitudinal helicoidal cells
for larger values of �, for the range 4π2 < Ra cos � < 240 to 280. When Ra cos �
exceeds 240 to 280 for small �, one has a transition to a fluctuating regime charac-
terized by the continuous creation and disappearance of cells (as for the horizontal
layer), while for larger � the transition is to oscillating rolls whose boundaries are
no longer parallel planes. Experiments by Bories and Combarnous (1973), with
a medium composed of glass beads and water, produced general agreement with
the theory. The situation is summarized in Fig. 7.29.

Additional experimental results reported by Hollard et al. (1995) were in agree-
ment with the prediction (based on scale analysis) of Bories (1993) that the in-
clination angle � for the transition between polyhedral cells (or transverse rolls)
and longitudinal rolls is given by solving the equation

Ra sin � = 23/2 M(Ra cos � − 4π)1/2, (7.107)

where M = 0.82, 23/2 or 2, for hexagonal cells, transverse roll or square cells,
respectively. Hollard et al. (1995) also investigated the transition between the sta-
tionary and nonstationary flows by means of a spectral analysis of the temperature
field.

In the above discussion we have assumed that the inclination � is fixed prior to
the experiment. When one changes � with Ra held constant one observes hysteresis
with respect to flow pattern transition (Kaneko et al. 1974) but the overall heat
transfer appears to be almost independent of flow pattern. As predicted by the
analysis of Weber (1975a), the Nusselt number correlates well with Ra cos �. End
effects modify the transition criteria, increasing the domain of stability of the basic
flow (Jaffrenou et al., 1974).

Inaba et al. (1988) performed experiments using media of several different
materials for 0◦ ≤ � ≤ 180◦, 5 ≤ L/H ≤ 32.7, and 0.074 ≤ dp/H ≤ 1.0, where
dp is the particle diameter. These and previous experiments indicated the existence
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Figure 7.29. The different types of convective motion experimentally observed in a
tilted porous layer: (A) unicellular flow; (B) polyhedral cells; (C) longitudinal stable
coils; (D) fluctuating regime; and (E) oscillating longitudinal coils (Combarnous and
Bories, 1975, with permission from Academic Press).

of a maximum heat transfer rate at � = 45◦ to 60◦ for Ra = 350. This motivates
the following correlation formulas of Inaba et al. (1988), in which Pr = 	/�m .

For 60 ≤ Ra cos(� − 60◦) ≤ 4.5 × 102, 0◦ ≤ � ≤ 15◦,

Nu = 0.053 Pr0.13

(
dp

H

)−0.20

[Ra cos(� − 60◦)]0.72. (7.108)

For 60 ≤ Ra cos(� − 60◦) ≤ 4.5 × 102, 15◦ ≤ � ≤ 120◦,

Nu = 0.024 Pr0.13

(
L

H

)−0.34

[Ra cos(� − 60◦)]0.52. (7.109)

For 4.5 × 102 ≤ Ra cos � ≤ 3 × 104, 0 ≤ � ≤ 60◦,

Nu = 0.067 Pr0.13

(
dp

H

)−0.65

(Ra cos �)0.52. (7.110)
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For 4.5 × 102 ≤ Ra sin � ≤ 3 × 104, 60◦ ≤ � ≤ 120◦,

Nu = 0.062 Pr0.13

(
L

H

)−0.52

(Ra sin �)0.46. (7.111)

The case of large L/H, W/H was examined numerically by Moya et al. (1987).
They found that for small � multiple solutions were possible. In addition to “natu-
ral” unicellular convection with flow up the heated wall and down the cooled wall,
there also can exist an “antinatural” motion with circulation in the opposite direc-
tion. A bifurcation study by Riley and Winters (1990) shows that the appearance
of the antinatural mode is associated with an isola. The various modal exchanges
that occur as the aspect ratio of the tilted cavity varies were studied by Impey and
Riley (1991).

There are further complications when L/H and W/H are of order unity. Pien
and Sen (1989) showed by numerical calculation that there was hysteresis in the
transition from an up-slope roll pattern to a cross-slope roll pattern as � is varied,
the Nusselt number being affected.

Detailed studies of the onset of convection in an inclined layer heated from
below were reported by Rees and Bassom (1998, 2000). They included a full
numerical solution of the linearized disturbance equations, and the results were
used to motivate various asymptotic analyses. They found that at large Rayleigh
numbers a two-dimensional instability only can arise when the angle that the layer
makes with the horizontal is less than or equal to 31.30◦, while the maximum
inclination below which this instability may be possible is the slightly greater
value 31.49◦, which corresponds to a critical Rayleigh number of 104.30.

So far in our discussion the heated and cooled boundaries have been isothermal.
Problems involving constant-flux heating have also been considered. For 90◦ <

� < 180◦ and the limit L/H → ∞ an analytic parallel-flow solution was obtained
by Vasseur et al. (1987). This solution is a good predictor of Nu for L/H = 4. Sen
et al. (1987, 1988) have investigated the multiple steady states that occur when �
is small and all four faces of a rectangular enclosure are exposed to uniform heat
fluxes, opposite faces being heated and cooled, respectively. Vasseur et al. (1988)
showed that in the case 90◦ < � < 180◦ the maximum temperature within the
porous medium can be considerably higher than that induced by pure conduction.
In this case the convection is considerably decreased when L/H is either very
large or very small. A further study of constant-flux heating was made by Alex
and Patil (2000b), using the Brinkman model.

The effect of the Brinkman boundary friction on heat transfer in an inclined
box or layer was first calculated by Chan et al. (1970) and later by Vasseur et al.
(1990). The additional effects of viscous dissipation were studied analytically by
Malashetty et al. (2001). Flow in between concentric inclined cylinders was studied
numerically and experimentally by Takata et al. (1982) for isothermal heating and
by Wang and Zhang (1990) for constant flux on the inner cylinder.

The problem for a non-Newtonian (power-law) fluid was studied by Bian et al.
(1994a,b). For a Newtonian fluid, the effect of a magnetic field was examined
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by Alchaar et al. (1995b) and Bian et al. (1996b). Because they considered two-
dimensional disturbances only, their treatment may be incomplete.

The quasisteady convection produced by heating one side of a porous slab was
studied by Robillard and Vasseur (1992). The case of a porous layer adjacent to a
wall of finite thickness was investigated by Mbaye et al. (1993). A porous layer
with an off-center diathermal partition was examined by Jang and Chen (1989).
A numerical solution for convection in a cavity with a discrete heat source on
one wall was obtained by Hsiao et al. (1994). An experimental investigation of a
layer bounded by impervious domains of finite thermal conductivity in the pres-
ence of a vertical temperature gradient was conducted by Chevalier et al. (1996).
The expected transition from two-dimensional to three-dimensional convection,
as Ra increases, was found. A further numerical and experimental study of this
configuration was reported by Chevalier et al. (1999).

Convection and dispersion in a reservoir with tilted fractures was studied theo-
retically and experimentally by Luna et al. (2004) under the assumption that the
fluid thermal conductivity is very small compared with the rock conductivity.

A novel approach to convection in anisotropic inclined porous layers, which is
able to deal with nonsymmetric multilayered systems, was presented by Trew and
McKibbin (1994). The method involves the numerical summation of a series. A
further study of the effect of anisotropic permeability on convection flow patterns
was made by Storesletten and Tveitereid (1999). A layer anisotropic with respect
to both permeability and diffusivity was analyzed by Rees and Postelnicu (2001)
and Postelnicu and Rees (2001); the second paper was concerned with small angles
to the horizontal. They found that often there is a smooth rather than an abrupt
transition between longitudinal and transverse rolls as the governing parameters
are varied. The effect of the Forchheimer drag was added by Rees et al. (2005b).
The effect of anisotropy also was studied numerically by Cserepes and Lenkey
(2004) for the case of an unconfined aquifer.

The effects of variable porosity and thermal dispersion were investigated nu-
merically by Hsiao (1998). An analytical and experimental study of low-Rayleigh-
number convection in long tilted fractures, embedded in an impermeable solid
subjected to a vertical temperature gradient, was reported by Medina et al. (2002).
Detailed numerical calculations for steady-state convection in an inclined porous
cavity were made by Baytas and Pop (1999) and calculations of entropy generation
were reported by Baytas (2000) and Baytas and Baytas (2005). MHD problems
were studied numerically by Khanafer and Chamkha (1998) and Khanafer et al.
(2000).

The case of volumetric heating in a porous bed adjacent to a fluid layer in an
inclined enclose was investigated numerically by Chen and Lin (1997). In this
case multiple steady-state solutions are possible. The combined effects of incli-
nation, anisotropy, and internal heat generation on the linear stability of the basic
parallel flow were analyzed by Storesletten and Rees (2004). They found that the
preferred motion at the onset of convection depends strongly on the anisotropy
ratio � = KL/KT . When � < 1 the preferred motion is longitudinal rolls for all
inclinations. When � > 1 transverse rolls are preferred for small inclinations but
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at high inclinations longitudinal rolls are preferred, while at intermediate inclina-
tions the preferred roll orientation varies smoothly between these two extremes.
Convection in tilted cylindrical cavities embedded in rocks subject to a uniform
temperature gradient was studied theoretically by Sanchez et al. (2005).

7.9. Inclined Temperature Gradient

We now discuss an extension to the Horton-Rogers-Lapwood problem. We suppose
that a uniform horizontal temperature gradient �H is imposed on the system, in
addition to the vertical temperature gradient �T/H . The boundary conditions used
in Section 6.1 are now replaced by

T = To + �T − �H x at z = 0, T = To − �H x at z = H. (7.112)

The basic steady-state solution, in nondimensional form, is now given by

ub = �̂H Ra

(
ẑ − 1

2

)
, (7.113)

Tb = To

�T
+ 1 − �̂H x̂ − ẑ − 1

12
�̂2

H Ra (ẑ − 3ẑ2 + 2ẑ3), (7.114)

where

�̂H = �H H

�T
. (7.115)

Equation (6.23) is unchanged, but Eq. (6.22) is replaced by

(D2 − �2 − s − ilub)� + i �̂H

(
l

�2

)
DW − W DTb = 0. (7.116)

The system (6.22), (6.24), and (7.116) can be solved using the Galerkin method.
Some approximate results based on a low-order approximation and with �a as-
sumed negligible were obtained by Nield (1991a). He found that longitudinal
stationary modes (l = 0, s = 0) are the most unstable modes. For the first such
mode the critical values are

�1 = π, Ra1 = 4π2 + Ra2
H

4π2
, (7.117)

where the horizontal Rayleigh number RaH is defined by

RaH = �̂H Ra = g�K 2�H

v�m
. (7.118)

For small �̂H , Eq. (7.117) agrees with the approximation obtained by Weber (1974),
namely

Ra = 4π2(1 + �̂2
H). (7.119)
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For the second mode, the critical values are

�2 = 2π, Ra2 = 16π2 + Ra2
H

16π2
. (7.120)

We see that Ra2 > Ra1 for RaH < 8π2 but Ra2 < Ra1 when RaH > 8π2. Thus
there is a transition from the first mode to the second as RaH increases.

The effect of increasing RaH is stabilizing because it distorts the basic temper-
ature profile away from the linear one and ultimately changes the sign of its slope
in the center of the channel. More accurate results, reported by Nield (1994d),
showed that as RaH increases the critical value of Ra reaches a maximum and
passes through zero. This means that the Hadley flow becomes unstable, even in
the absence of an applied vertical gradient, when the circulation is sufficiently
intense. The flow pattern changes from a single layer of cells to two or more super-
imposed layers of cells (superimposed on the Hadley circulation) as RaH increases.
Yet more accurate results, together with the results of a nonlinear energy stability
analysis, were reported by Kaloni and Qiao (1997). Two very accurate methods
for determining the eigenvalues and eigenfunctions involved with such problems
were discussed by Straughan and Walker (1996b).

Direct numerical simulations of supercritical Hadley circulation, restricted to
transverse secondary flow, were performed by Manole and Lage (1995) and Manole
et al. (1995). The results are in general accord with the linear stability analysis.
Beyond a threshold value of RaH the Hadley circulation evolves to a time-periodic
flow and the vertical heat transfer increases. The secondary flow emerges in the
form of a traveling wave aligned with the Hadley flow direction. At low supercrit-
ical values of Ra, this traveling wave is characterized by the continuous drifting
of two horizontal layers of cells that move in opposite directions. As Ra increases,
the traveling wave becomes characterized by a single layer of cells drifting in the
direction opposite to the applied horizontal temperature gradient. The extension
to the anisotropic case, or to include the effect of internal heat sources, was made
by Parthiban and Patil (1993,1995).

Nield (1990) also investigated the effect of adding a net horizontal mass flux
Q in the x direction. This is destabilizing and at sufficiently large values of Q
instability is possible in the absence of a vertical temperature gradient. Q also
has the effect of smoothing out the transition from one mode to the next. More
accurate results and a supplementary nonlinear analysis were reported by Qiao
and Kaloni (1997). In this connection new computational methods described by
Straughan and Walker (1996b) are useful. The effect of vertical throughflow was
incorporated by Nield (1998b). The effect of a gravitational field varying with
distance in the layer and with the additional effects of vertical through flow, or
volumetric heating with or without anisotropy, was analyzed by Alex et al. (2001),
Alex and Patil (2002a,b), and Parthiban and Patil (1997). Nonlinear instability
studies, for the cases of vertical throughflow and variable gravity, were conducted
by Qiao and Kaloni (1998) and Kaloni and Qiao (2001). Horizonal mass flux and
variable gravity effects were considered by Saravan and Kandaswamy (2003b).
The topic of this section has been reviewed by Lage and Nield (1998).
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7.10. Periodic Heating

Lage and Bejan (1993) showed that when an enclosed saturated porous medium
is heated periodically from the side, the buoyancy-induced circulation resonates
to a well-defined frequency of the pulsating heat input. The resonance is charac-
terized by maximum fluctuations in the total heat transfer rate through the vertical
midplane of the enclosure. Lage and Bejan (1993) demonstrated this principle for
an enclosure filled with a clear fluid and an enclosure filled with a fluid-saturated
porous medium. They showed that the resonance frequency can be anticipated
based on theoretical grounds by matching the period of the pulsating heat input
to the period of the rotation (circulation) of the enclosed fluid. Below we outline
Lage and Bejan’s (1993) scale analysis of the resonance frequency in the Darcy
and Forchheimer flow regimes.

Consider the two-dimensional configuration of Fig. 7.1 and assume that the flow
is in the Darcy regime. The period of the fluid wheel that turns inside the enclosure
is

w ∼ 4H

v
(7.121)

where 	 is the scale of the peripheral velocity of the wheel and 4H is the wheel
perimeter in a square enclosure. The velocity scale is given by Eq. (7.12),

v ∼ �m

H
Ra (7.122)

where Ra = g�K H (T h − Tc)/(v�m) is the Darcy modified Rayleigh number
based on the average side-to-side temperature difference (T h − Tc). The hot-
side temperature (Th) varies in time because the heat flux through that wall is
administered in pulses that vary between q ′′

M (maximum) and zero. The cold-side
temperature (Tc) is fixed.

The v scale can be restated in terms of the flux Rayleigh number Ra∗ =
g�K H 2q ′′

M/(v�mkm) by noting that Ra = Ra∗/Nu, where in accordance with Eq.
(7.49)

Nu = q ′′
M H

k (T h − Tc)
∼ Ra2/5

∗ (7.123)

Combining the relations listed between Eqs. (7.121) and (7.123) we obtain v ∼
(�m/H )Ra3/5

∗ and the critical period for resonance (Lage and Bejan, 1993):

w ∼ 4
H 2

�m
Ra−3/5

∗ (Darcy) (7.124)

At higher Rayleigh numbers, when the Forchheimer term (�/	)v2 is greater
than the Darcy term (	) on the left side of Eq. (7.90), the vertical velocity scale is
(cf. Table 7.1):

v ∼ �m

H
Ra1/2

∞ . (7.125)
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In this expression Ra∞ = g�K H 2(T h − Tc)/(� �2
m) is the Forchheimer-regime

Rayleigh number. Next, we introduce the flux Rayleigh number for the Forch-
heimer regime, Ra∞∗ = g�K H 3q ′′

M/(� �2
mkm), and note that Ra∞ = Ra∞∗/Nu

and Nu ∼ Ra1/5
∞∗. These relations produce the following scaling law for the critical

period (Lage and Bejan, 1993):

w ∼ 4
H 2

�m
Ra−2/5

∞∗ (Forchheimer) (7.126)

Three findings were extended and strengthened by subsequent numerical and
theoretical studies of the resonance phenomenon. Antohe and Lage (1994) gener-
alized the preceding scale analysis and produced a critical-frequency scaling law
that unites the Darcy and Forchheimer limits [Eqs. (7.124) and (7.126)] with the
clear fluid limit, which had been treated separately in Lage and Bejan (1993). The
effect of the pulse amplitude was investigated more recently by Antohe and Lage
(1996), who showed that the convection intensity within the enclosure increases
linearly with the heating amplitude. The convection intensity decreases when the
fluid Prandtl number increases or decreases away from a value of order one (Antohe
and Lage, 1997a).

The corresponding phenomenon in forced convection was analyzed theoretically
and numerically by Morega et al. (1995). Their study covered both the clear fluid
(all Pr values) and saturated porous medium limits of the flow parallel to a plane
surface with pulsating heating. The critical heat pulse period corresponds to the
time scale of one sweep over the surface, i.e., the time of boundary layer renewal.

7.11. Sources in Confined or Partly Confined Regions

The problem of nuclear waste disposal has motivated a large number of studies of
heat sources buried in the ground. An early review of the subject is that by Bau
(1986).

The analyses of Bau (1984b) for small Ra and Farouk and Shayer (1988) for Ra
up to 300 apply to a cylinder in the semi-infinite region bounded by a permeable
plane. This geometry is applicable to the experiments conducted by Fernandez and
Schrock (1982). The numerical work is aided by a preliminary transformation to
bicylindrical coordinates.

Himasekhar and Bau (1987) obtained analytical and numerical solutions for con-
vection induced by isothermal hot or cold pipes buried in a semi-infinite medium
with a horizontal impermeable surface subject to a Robin thermal boundary condi-
tion. They (Himasekhar and Bau, 1988a) also made a theoretical and experimental
study of convection around a uniform-flux cylinder embedded in a box. They
found a transition from a two-dimensional steady flow to a three-dimensional os-
cillatory flow as the Rayleigh number increased. A similar problem with a sheath
of different permeability surrounding the pipe was examined numerically by Ngo
and Lai (2005). Hsiao et al. (1992) studied two-dimensional transient convec-
tion numerically on the Brinkman-Forchheimer model with thermal dispersion
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and nonuniform porosity allowed for. The effects of these two agencies increase
the predicted heat flux, bringing it more in line with experimental data. Murty
et al. (1994) used the Brinkman-Forchheimer model to study numerically convec-
tion around a buried cylinder using a penalty function method. Muralidhar (1992)
summarized some analytical and numerical results for the temperature distribu-
tion around a cylinder (or an array of cylinders), for free or forced convection,
with temperature or heat flux prescribed on the cylinder and Darcy’s law assumed.
Muralidhar (1993) made a numerical study of heat and mass transfer for buried
cylinders with prescribed heat flux and leach rates. He obtained the temperature
and concentration distributions on the surface of the containers under a variety
of conditions. The case of a buried elliptic heat source with a permeable surface
was studied numerically on the Darcy model by Facas (1995b). An ellipse with its
minor axis horizontal yields much higher heat transfer rates than one with its major
axis horizontal. The heat transfer depends little on the burial depth. A numerical
study using the Brinkman-Forchheimer model of steady and transient convection
from a corrugated plate of finite length placed in a square enclosure was performed
by Hsiao and Chen (1994) and Hsiao (1995).

Anderson and Glasser (1990) fitted experimental steady-state temperature mea-
surements in a porous medium containing a buried heater to a theoretical model
vertical cylindrical source of finite height placed in a box with a pyramid lid with
a constant heat transfer coefficient at the upper free surface. They derived a simple
one-dimensional model relating power input to surface temperature irrespective
of the values of permeability, source size, and depth and they showed that this was
useful in monitoring the self-heating in stockpiles of cal, for example, and was
consistent with the experiments.

Numerical modeling on the Brinkman-Forchheimer model of convection around
a horizontal circular cylinder was carried out by Christopher and Wang (1993).
They found that the presence of an impermeable surface above the cylinder sig-
nificantly alters the flow field and reduces the heat transfer from the cylinder,
while recirculating zones may develop above the cylinder, creating regions of low
and high heat transfer rates. As expected, the Forchheimer term reduces the flow
velocity and heat transfer, especially for the case of large Da.

Facas (1994, 1995a) has investigated numerically on the Darcy model convection
around a buried pipe with two horizontal baffles attached and with a permeable
bounding surface. They handled the complicated geometry using a body-fitted
curvilinear coordinate system.

The case of a horizontal line heat source placed in an enclosure of rectangular
cross section was studied numerically on the Darcy model by Desrayaud and Lau-
riat (1991). Their results indicated that the heat fluxes transferred to the walls and
the source temperature vary strongly with the thermal conductivity of the side walls
and the convective boundary condition at the ground. Further, for burial depths
larger than the width of the cavity, the flow may be unstable to small disturbances
and as a result the thermal plume may be deflected toward one of the side walls.

Oosthuizen and Naylor (1996a) studied numerically heat transfer from a cylinder
placed on the vertical centerline of a square enclosure partially filled with a porous
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medium. Oosthuizen and Paul (1992), Oosthuizen (1995), and Oosthuizen and
Naylor (1996b) used a finite element method to study heat transfer from a heated
cylinder buried in a frozen porous medium in a square container, the flow being
steady, two-dimensional, and with Darcy’s law applicable and with either uniform
temperature or heat flux specified on the cylinder and with one or more of the walls
of the enclosure held at some subfreezing point temperature (or temperatures).

7.12. Effects of Rotation

The problem of stability of free convection in a rotating porous slab with lateral
boundaries at different temperatures and rotation about a vertical axis so that
the temperature gradient is collinear with the centrifugal body force was treated
analytically by Vadasz (1994a, 1996a,b), first for a narrow slab adjacent to the
center of rotation and then distant from the center of rotation. In the limit of
infinite distance from the axis of rotation, the problem is analogous to that of
gravitational buoyancy-induced convection with heating from below, the critical
value of the centrifugal Rayleigh number Ra�0 [defined as in Eq. (6.190) being 4π2

for the case of isothermal boundaries]. At finite distance from the axis of rotation,
a second centrifugal Rayleigh number Ra�1 (one proportional to that distance)
enters the analysis. The stability boundary is given by the equation (Ra�1/7.81π2)
+ (Ra�0/4π2) = 1. The convection appears in the form of superimposed rolls.

The case where the axis of rotation is within the slab so that the centrifugal
body force alternates in direction was treated by Vadasz (1996b). He found that
the flow pattern was complex and that the critical centrifugal Rayleigh number
and wavenumber increase significantly as the slab’s cold wall moves significantly
away from the rotation axis. This leads eventually to unconditional stability when
the slab’s hot wall coincides with the rotation axis. Unconditional stability is
maintained when the axis of rotation moves away from the porous domain, so that
the imposed temperature gradient opposes the centrifugal acceleration. Centrifugal
convection with a magnetic fluid was analyzed by Saravanan and Yamaguchi
(2005).

A further extension in which gravity as well as centrifugal forces are taken was
made by Vadasz and Govender (1997). They considered a laterally heated vertical
slab far away from the axis of rotation and calculated critical values of Ra�0 for
various values of a gravitational Rayleigh number Rag .

A related problem involving a slowly rotating (large Ekman number) long box
heated above and rotating about a vertical axis was analyzed by Vadasz (1993). Now
the applied temperature gradient is orthogonal to the centrifugal body force and the
interest is on the Coriolis effect. Vadasz employed an expansion in terms of small
aspect ratio and small reciprocal Ekman number. He showed that secondary flow in
a plane orthogonal to the leading free convection plane resulted. The controlling
parameter is Ra�/Ek. The Coriolis effect in a long box subject to uniform heat
generation was investigated analytically by Vadasz (1995). A nonlinear analysis
using the Adomian decomposion method was employed by Olek (1998).
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Mixed Convection

8.1. External Flow

8.1.1. Inclined or Vertical Plane Wall

We already have discussed one form of mixed convection in a horizontal layer,
namely the onset of convection with throughflow when the heating is from below
(see Section 6.10). In this chapter we discuss some more general aspects of mixed
convection. Since we have dealt with natural convection and forced convection in
some detail, our treatment of mixed convection in a porous medium [first treated
by Wooding (1960)] can be brief. It is guided by the surveys by Lai et al. (1991a)
and Lai (2000). We endorse the statement by Lai (2000) that despite the increased
volume of research in this field, experimental results are still very few. In particular
experimental data on thermal dispersion are very scarce and this is hindering the
study of the functional relationship between effective thermal conductivity and
thermal dispersion.

We start with a treatment of boundary layer flow on heated plane walls inclined
at some nonzero angle to the horizontal. This configuration is illustrated in Fig. 8.1.
The boundary layer equations [compare Eqs. (5.5) and (5.6)] for steady flow are

∂2ψ
∂y2

= ±gx �K

	

∂T

∂y
(8.1)

∂ψ
∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y
= ∂

∂y

(
�m

∂T

∂y

)
. (8.2)

Here ±gx is the component of g in the positive x direction, i.e., the direction of
the stream velocity U∝ at infinity. The + sign corresponds to the case where the
buoyancy force has a component “aiding” the general flow and the – sign to the
“opposing” case. We seek a similarity solution and allow for suction/injection at
the wall. Hence we take as boundary conditions the set

y = 0: T = T∞ ± Axλ, v = −∂ψ
∂x

= axn, (8.3)

y → ∞: T = T∞, u = ∂ψ
∂y

= U∞ = Bxn, (8.4)

where A, a, and B are constants. The exponent m is related to the angle of inclina-
tion �π/2 (to the incident free stream velocity) by the relation � = 2m/(m + 1).
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Figure 8.1. Definition sketch for mixed convection over an inclined surface.

We find that a similarity solution does exist if λ = m and n = (m − 1)/2. The
range of possibilities includes the cases

λ = m = 0, n = −1/2 ( vertical isothermal wall injection ∝ x−1/2),
λ = m = 1/3, n = −1/3 ( wall sat 45◦ inclination, constant heat flux),
λ = m = 1, n = 0 ( stagnation flow normal to vertical wall

( Fig .1.1e), linear temperature variation, uniform
injection).

With the similarity variables

� =
(

U∞x

�m

)1/2

, f (�) = ψ
(�mU∞x)1/2

, �(�) = T − T∞
Tw − T∞

(8.5)

and the wall suction parameter

fw = −2a/(�m B)1/2 , (8.6)

we obtain the system

f ′′ = ±Rax

Pex
�′, (8.7)

�′′ = −λ + 1

2
f �′ + λ f �, (8.8)

�(0) = 1, f (0) = fw, �(∞) = 0, f ′(∞) = 1. (8.9)

The numbers Rax and Pex are defined in Eq. (8.14). The quantity Ra/Pe has
been called the mixed convection parameter by Holzbecher (2004a). For the case
when this parameter is in the range [–3/2, 0] and the plate temperature varies



8.1. External Flow 345

Figure 8.2. Nusselt numbers for aiding and opposing flow with injection and suction
on a vertical flat plate (Lai and Kulacki, 1990d).

inverse-linearly with distance, exact dual solutions were obtained by Magyari
et al. (2001b). Such solutions were first investigated by Merkin (1985). A special
case that leads to a self-similar solution was studied by Magyari et al. (2002).

A positive fw indicates withdrawal of fluid. The case of forced convection cor-
responds to letting Rax → ∞. The case of natural convection requires a different
similarity variable. Lai and Kulacki (1990d) obtained and solved these equations.
Their results for the Nusselt number are shown in Fig. 8.2 for the case λ = 0.
Those for λ = 1/3 and λ = 1 are qualitatively similar; the effect of increasing λ is
to raise the Nusselt number slightly. The case of adiabatic surfaces was analyzed
by Kumari et al. (1988).

The effects of flow inertia and thermal dispersion were studied by Lai and
Kulacki (1988a). Now Eq. (8.1) is replaced by

∂2ψ
∂y2

+ �

	

∂

∂y

(
∂ψ
∂y

)2

= ±gx�K

	

∂T

∂y
, (8.10)

where � = cF K 1/2, and in Eq. (8.2) �m is replaced by �e, the sum of a molecular
diffusivity �0 and a dispersive term �′ = Cudp, where dp is the mean pore diameter
and C is a constant. We treat an isothermal vertical plate and we suppose that there
is no suction. Equations (8.7)–(8.9) thus are replaced by

f ′′ + Fox Rex [( f ′)2]′ = ±Rax

Pex
�′, (8.11)

�′′ + 1

2
f �′ + CPed ( f ′′�′ + f ′�′′) = 0, (8.12)

�(0) = 1, f (0) = 0, �(∞) = 0, f ′(∞) = 1. (8.13)
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Figure 8.3. Nusselt numbers for aiding and opposing flow on a vertical plate with inertia
effects (Lai and Kulacki, 1988a).

where

Fox = cF K 1/2

x
, Rex = U∞x

	
, Pex = U∞x

�m
, Ped = U∞dp

�m
, (8.14)

Rax = gx �K x(Tw − T∞)

	�m
, Rad = gx �K dp(Tw − T∞)

	�m
. (8.15)

The local Nusselt number Nux is given by

Nux

Pex
1/2

=
(

Rax

Pex
1/2

)1/2 {− [
1 + CRad f ′(0)

]
�′(0)

}
. (8.16)

The results of the calculations of Lai and Kulacki (1988a) are shown in Figs. 8.3
and 8.4. The effect of quadratic drag is to reduce the aiding or opposing effect of
buoyancy in increasing Nux /Pex

1/2, while that of thermal dispersion is (as expected)
to increase the heat transfer. Non-Darcy effects also were treated by Gorin et al.
(1988), Kodah and Al-Gasem (1998), Tashtoush and Kodah (1998), Elbashbeshy
and Bazid (2000b) with variable surface heat flux, Elbashbeshy (2003) with suction
or injection, and Murthy et al. (2004a) with suction or injection and the effect of
radiation. The effect of variable permeability was studied by Mohammadein and
El-Shaer (2004).

For a vertical surface, higher-order boundary layer theory (for Darcy flow) has
been developed by Merkin (1980) and Joshi and Gebhart (1985). Merkin pointed
out that in the case of opposing flow there is separation of the boundary layer
downstream of the leading edge. Ranganathan and Viskanta (1984) included the
effects of inertia, porosity variation, and blowing at the surface. They reported the
rather unexpected result that porosity variation affected the Nusselt number by
no more than 1 percent. Chandrasekhara and Namboodiri (1985) have studied the
effect of variation of permeability and conductivity. Lai and Kulacki (1990c) have
examined the effect of viscosity variation with temperature. They found that for
liquids the Nusselt number values are greater than those for the constant viscosity
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Figure 8.4. Nusselt numbers for aiding and opposing flow on a vertical plate with inertia
and dispersion effects (Lai and Kulacki, 1988a).

case and for gases the reverse holds. Ramaniah and Malarvizhi (1990) have ob-
tained a similarity solution for the combination of lateral mass flux and inertia when
the linear Darcy drag term is negligible in comparison with the quadratic drag.

Chen and Chen (1990a) have studied the combined effects of quadratic drag,
boundary friction, thermal dispersion, and nonuniform porosity and the conse-
quent nonuniform conductivity for the case of aiding flow on a vertical surface.
As expected, boundary friction reduces the velocity at the wall, inertia generally
reduces the velocity, thermal dispersion has negligible effect on the velocity, and
nonuniform porosity substantially increases the velocity just out from the wall.
The temperature gradient at the wall is reduced by boundary friction and quadratic
drag and increased by variable porosity; the overall effect is reduction. Conse-
quently, the local Nusselt number is reduced by boundary friction and quadratic
drag and increased by variable porosity; the overall effect is little change. The local
Nusselt number Nux is increased about threefold by thermal dispersion. The effect
of increase of Rax /Pex is to increase Nux and increase the amount of channeling.
The effects of thermal dispersion and stratification were considered by Hassanien
et al. (1998), while Hassanien and Omer (2002) considered the effect of variable
permeability.

The case of a non-Newtonian power-law fluid has been treated by Wang et al.
(1990), Nakayama and Shenoy (1992, 1993a), Gorla and Kumari (1996, 1998,
1999a–c), Kumari and Gorla (1996), Gorla et al. (1997), Mansour and Gorla
(2000b), Ibrahim et al. (2000), and El-Hakiem (2001a,b), while Shenoy (1992)
studied flow of an elastic fluid.

The magnetohydrodynamic case was examined by Aldoss et al. (1995) and
Chamkha (1998). The effect of suction (which increases heat transfer) was treated
by Hooper et al. (1994b) and Weidman and Amberg (1996). Conjugate convection
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was studied by Pop et al. (1995b) and Shu and Pop (1999). Stagnation point flow
with suction or injection was treated by Yih (1999i).

Comprehensive nonsimilarity solutions were presented by Hsieh, Chen, and
Armaly (1993a,b). Jang and Ni (1992) considered convection over an inclined
plate. For a vertical plate, numerical work on non-Darcy models has been reported
by Takhar et al. (1990), Lai and Kulaki (1991a), Yu et al. (1991), Shenoy (1993a),
Chen et al. (1996), and Kodah and Duwairi (1996), and Takhar and Beg (1997).
The numerical studies by Gorla et al. (1996) and Chen (1997a) have discussed
the effect of such things as thermal dispersion, porosity variation, and variable
conductivity. Thermal dispersion and viscous dissipation was discussed by Murthy
and Singh (1997b) and Murthy (1998, 2001). The case of the plate temperature
oscillating with time about a nonzero mean was studied by Vighnesan et al. (2001).
Volumetric heating due to radiation was discussed by Bakier (2001a,b). The case
of a piecewise heated wall was studied by Saeid and Pop (2005c).

Transient convection resulting from a sudden change in wall temperature was
studied by Harris et al. (1998, 1999, 2002). The last paper allowed for a thermal
capacity effect. They made a complete analysis of the steady-state solution (large
times), obtained a series solution for small times, and then linked the two by a nu-
merical solution for intermediate times. Transient convection near stagnation point
flow was treated by Nazar et al. (2003a) and, using a homotopy analysis method
that produces accurate uniformly valid series solutions, by Cheng et al. (2005). A
transient problem involving suction or injection was studied by Al-Odat (2004b).

8.1.2. Horizontal Wall

For horizontal surfaces the situation is similar to that for vertical surfaces but now
Rax /Pex

3/2 replaces Rax /Pex as a measure of buoyancy to nonbuoyancy effects.
Cheng (1977d) provided similarity solutions for the cases of (a) horizontal flat
plate at zero angle of attack with constant heat flux and (b) stagnation point flow
about a horizontal flat plate with wall temperature Tw varying as x2.

Minkowycz et al. (1984) dealt with Tw varying as xλ for arbitrary λ, using
the local nonsimilarity method. Chandrasekhara (1985) extended Cheng’s results
to the case of variable permeability (which increases the heat transfer rate).
Lai and Kulacki (1987, 1989a, 1990b) treated quadratic drag (for uniform Ux

with Tw varying as x1/2), thermal dispersion, and flow-injection/withdrawal,
respectively. As in the case of the vertical wall, Nux is decreased by inertial effects
and substantially increased by thermal dispersion effects; it is also enhanced
by withdrawal of fluid across the surface. Chandrasekhara and Nagaraju (1988)
and Bakier and Gorla (1996) included the effect of radiation. Kumari et al.
(1990a) treated quadratic drag and extended the work of Lai and Kulacki (1987)
to obtain some nonsimilarity solutions. The singularity associated with certain
outer velocity profiles was investigated by Merkin and Pop (1997). Some new
similarity solutions for specific outer velocity and wall temperature distributions
were reported by Magyari et al. (2003a).

Ramaniah et al. (1991) and Elbashbeshy (2001) examined the effect of wall
suction or injection. For the Forchheimer model, Yu et al. (1991) presented a
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universal similarity transformation. For the case of variable wall flux, calcula-
tions on the Brinkman model were performed by Aldoss et al. (1994b), while
Chen (1996) used the Brinkman-Forchheimer model and also included the effects
of porosity variation and thermal dispersion. On the Darcy model and for various
thermal boundary conditions, Aldoss et al. (1993a,b, 1994a) presented nonsimilar-
ity solutions for a comprehensive set of circumstances. A comprehensive analysis
on the Brinkman-Forchheimer model was presented by Chen (1997b). The effect
of velocity-dependent dispersion was studied by Thiele (1997). Nonsimilarity so-
lutions were obtained for the case of variable surface heat flux by Duwairi et al.
(1997) and Chen (1998a) and for the case of variable surface temperature by Chen
(1998b). Non-Newtonian fluids were treated Kumari et al. (1997), Gorla et al.
(1998), and Kumari and Nath (2004a). The effect of radiative flux was added
by Kumari and Nath (2004b). The effect of temperature-dependent viscosity was
discussed by Kumari (2001a). Convection above or below a horizontal plate was
discussed by Lesnic and Pop (1998b).

Renken and Poulikakos (1990) presented experimental results of mixed con-
vection about a horizontal isothermal surface embedded in a water-saturated bed
of glass spheres. They measured the developing thermal boundary layer thickness
and the local surface heat flux.

The onset of vortex instability for horizontal and inclined impermeable surfaces
was studied by Hsu and Cheng (1980a,b). They found that the effect of the external
flow is to suppress the growth of vortex disturbances in both aiding and opposing
flows. For the inclined surfaces, aiding flows are more stable than opposing flows
(for the same value of Rax /Pex ). For the horizontal surfaces, stagnation-point aiding
flows are more stable than parallel aiding flows. A case of unsteady convection near
a stagnation point was analyzed by Nazar and Pop (2004). Jang et al. (1995) showed
that the effect of blowing at the surface is to decrease Nu and make the flow more
susceptible to vortex instability, while suction results in the opposite. The effect of
variable permeability was treated by Hassanien et al. (2003c, 2004a). The effect of
surface mass flux was studied by Murthy and Singh (1997c), together with thermal
dispersion effects, and by Hassanien et al. (2004c) and Hassanien and Omer (2005).

The above theoretical papers have dealt with walls of infinite length. The case
of a wall of finite length was studied analytically and numerically, on the Darcy
model, by Vynnycky and Pop (1997). They observed flow separation for both
heating and cooling.

8.1.3. Cylinder or Sphere

For an isothermal sphere or a horizontal cylinder in the presence of an other-
wise uniform vertically flowing stream, Cheng (1982) obtained boundary layer
equations in the form

1

rn

∂2ψ
∂y2

= g�K

	
sin

(
x

r0

)
∂T

∂y
, (8.17)

1

rn

(
∂ψ
∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y

)
= �m

∂2T

∂y2
, (8.18)
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Figure 8.5. Definition sketch for mixed convection over a horizontal cylinder or a
sphere.

where

u = 1

rn

∂ψ
∂y

, v = − 1

rn

∂ψ
∂x

. (8.19)

In these equations n = 0 for a horizontal cylinder, n = 1 for a sphere, and r =
r0 sin(x/r0) where r0 is the radius of the sphere or cylinder. These apply when x is
measured from the lower stagnation point and y is in the normal (radial) direction.
This configuration is sketched in Fig. 8.5.

The appropriate boundary conditions are

y = 0: T = Tw,
∂ψ
∂x

= 0, (8.20)

y → ∞: T = T∞,
1

rn

∂ψ
∂y

= U (x) = U∞ An sin

(
x

r0

)
, (8.21)

where U (x) is the tangential velocity on the surface (given by potential theory), so
A0 = 2 and A1 = 3/2. The introduction of nondimensional variables defined by

ψ = �r0
n (AnU∞r0/�m) Gn(� ) f (�), (8.22)

� = T − T∞
Tw − T∞

, (8.23)

� = (AnU∞r0/�m)1/2 (y/r0) Hn(� ), (8.24)

where

� = x/r0, G0(� ) = (1 − cos � )1/2, G1(� ) =
(

cos3 �

3
− cos � + 2

3

)1/2

, (8.25)

H0(� ) = sin �/G0(� ), H1(� ) = sin2 �/G1(� )
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reduces the problem to finding the solution of

f ′′ = Ra

Pe
�′, �′′ = −1

2
f �′, (8.26)

f (0) = 0, �(0) = 1, f ′(∞) = 1, �(∞) = 0, (8.27)

which is the set [Eqs. (8.7)–(8.9)] for λ = 0, fw = 0. Here Ra and Pe are based
on r0. Thus the solution for an isothermal sphere or horizontal cylinder can be
deduced from that for a vertical plate.

Following the same approach, Huang et al. (1986) obtained the solution for
the constant heat flux case. Minkowycz et al. (1985a) obtained approximate solu-
tions for a nonisothermal cylinder or sphere using the local nonsimilarity method.
Kumari et al. (1987) made more precise calculations for flow about a sphere. Badr
and Pop (1988) considered aiding and opposing flows over a horizontal isothermal
cylinder using a series expansion plus a finite-difference scheme. They found that
for opposing flows there exists a recirculating flow zone just above the cylinder.
For a similar situation, Badr and Pop (1992) studied the effect of varying the stream
direction.

For horizontal cross flow over a horizontal cylinder below an impermeable
horizontal surface, Oosthuizen (1987) performed a numerical study. He found
that the presence of the surface has a negligible effect on heat transfer when the
depth of the cylinder is greater than three times its diameter. The heat transfer is a
maximum when the depth of the axis is about 0.6 times the diameter. The presence
of the surface increases local heat transfer coefficients on the upper upstream
quarter of the cylinder and decreases it on the upper downstream quarter, while
buoyancy increases it on the upper upstream quarter and decreases it on the lower
downstream quarter. The experiments by Fand and Phan (1987) were confined
to finding correlations for overall Nusselt number data for horizontal cross flow
over a horizontal cylinder.

The problem of longitudinal flow past a vertical cylinder was analyzed by Merkin
and Pop (1987), who found that a solution of the boundary layer equations was
possible only when Ra/Pe = −1.354, and that there is a region of reversed flow
when Ra/Pe < −1. Here the minus sign indicates opposing flow. Reda (1988)
performed experiments and a numerical analysis (without a boundary layer ap-
proximation) for opposing flow along a vertical cylinder of finite length. He
found that buoyancy-induced upflow disappeared when |Ra/Pe| = 0.5. Ingham
and Pop (1986a,b) analyzed the boundary layers for longitudinal flow past a verti-
cal cylinder and horizontal flow past a vertical cylinder. For the case of a permeable
vertical thin cylinder an exact solution was found by Magyari et al. (2005a). A
three-dimensional problem involving the combined effects of wake formation and
buoyancy on convection with cross-flow about a vertical cylinder was numerically
simulated by Li and Kimura (2005).

Inertial effects on heat transfer along a vertical cylinder, with aiding or opposing
flows, were analyzed by Kumari and Nath (1989a). As expected, their results show
that inertial effects reduce heat transfer. Heat transfer still increases with buoy-
ancy increase for aiding flows and decreases for opposing flows. Kumari and Nath
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(1990) have studied inertial effects for aiding flow over a nonisothermal horizontal
cylinder and a sphere. For a vertical cylinder, numerical studies on the Brinkman-
Forchheimer model, with the effects of porosity variation and transverse thermal
dispersion included, were reported by Chen et al. (1992) and for conjugate convec-
tion by Chen and Chen (1991), while nonsimilarity solutions were found by Hooper
et al. (1994a) and Aldoss et al. (1996), the magnetohydrodynamic case was treated
by Aldoss (1996), and Kumari et al. (1993) included the effect of thermal disper-
sion. A problem involving variable surface heat flux was analyzed by Pop and Na
(1998). Further numerical studies by Zhou and Lai (2002) revealed that oscillatory
flows occur for opposing flows at high Grashof number to Reynolds number ratios.
The case of a non-Newtonian fluid was discussed by Mansour et al. (1997).

The double-diffusive and MHD problem for an unsteady (oscillatory or uniform
acceleration) vertical flow over a horizontal cylinder and a sphere was analyzed
by Kumari and Nath (1989b). MHD convection from a horizontal cylinder was
also treated by Aldoss and Ali (1997). A substantial study of convection from
a suddenly heated horizontal cylinder was reported by Bradean et al. (1998b). A
correction to their results was pointed out by Diersch (2000). The Brinkman model
was applied to the case of a horizontal cylinder by Nazar et al. (2003b).

For convection over a sphere, Tung and Dhir (1993) performed experiments
and Nguyen and Paik (1994) carried out further numerical work. The latter con-
sidered variable surface temperature and variable surface heat flux conditions and
they noted that recirculation was possible when the forcing flow opposed the flow
induced by buoyancy, as in the case of cylinders. Unsteady convection around a
sphere at low Péclet numbers for the case of sudden heating was analyzed by Sano
and Makizono (1998). Unsteady mass transport from a sphere at finite Péclet num-
bers was studied by Feng and Michaelides (1999). Transient conjugate convection
from a sphere with pure saline water was treated numerically by Paik et al. (1998).

8.1.4. Other Geometries

Introducing a general transformation, Nakayama and Koyama (1987b) showed
that similarity solutions are possible for two-dimensional or axisymmetric bodies
of arbitrary shape provided the external free-stream velocity varies as the prod-
uct of the streamwise component of the gravitational force and the wall-ambient
temperature difference. Examples are when Tw − T∞ varies as the same power
function as U∞ for a vertical wedge or a vertical cone. In these cases the problem
can be reduced to the vertical plate problem solved by Cheng (1977c).

Invoking the slender body assumption, Lai et al. (1990c) have obtained simi-
larity solutions for two other problems, namely accelerating flow past a vertical
cylinder with a linear temperature variation along the axis and uniform flow over
a paraboloid of revolution at constant temperature. They found that Nux /Pex

1/2

decreases with an increase in the dimensionless radius of a cylinder, but for
paraboloids of revolution this is so only when Rax /Pex is not too large.

Chen and Chen (1990b) have studied the flow past a downward projecting plate
fin in the presence of a vertically upward free stream, incorporating the effects
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of quadratic drag, boundary friction, variable porosity, and thermal dispersion.
A vertical cylindrical fin was investigated by Gill et al. (1992) and Aly et al.
(2003).

For mixed convection in the thermal plume over a horizontal line heat source,
Cheng and Zheng (1986) obtained a local similarity solution. They performed
calculations for the thermal and flow fields and for heat transfer with the effects of
transverse thermal dispersion and quadratic drag included. Further studies of this
problem were reported by Lai (1991c) and Pop et al. (1995a). A line heat source
embedded at the leading edge of a vertical adiabatic surface was examined by Jang
and Shiang (1997). A heat source/sink effect on MHD convection in stagnation
flow on a vertical plate was studied numerically by Yih (1998a).

Vargas et al. (1995) employed three different methods of solution for mixed con-
vection on a wedge in a porous medium with Darcy flow. The methods were local
nonsimilarity, finite elements in a boundary layer formulation, and finite elements
in a formulation without boundary-layer approximations. For wedges with uniform
wall temperature in the range 0.1 ≤ Rax/Pex ≤ 100, the three methods produced
results that are in very good agreement. New solutions were reported for wedges
with half angles of 45◦, 60◦, and 90◦. Convection over a wedge also has been treated
by Kumari and Gorla (1997) for the case of a nonisothermal surface, by Mansour
and Gorla (1998) and Mansour and El-Shaer (2004) for the case of a power law
fluid with radiation, by Gorla and Kumari (2000) for a non-Newtonian fluid and
with variable surface heat flux, and by Hassanien (2003) for variable permeability
and with variable surface heat flux. Studies for the entire regime were carried out
by Ibrahim and Hassanien (2000) for variable permeability and a nonisothermal
surface and by Yih (2001a) with a radiation effect included. Transient convection
resulting from impulsive motion from rest and a suddenly imposed wedge sur-
face temperature was studied numerically by Bhattacharyya et al. (1998). Steady
MHD convection with variable permeability, surface mass transfer, and viscous
dissipation was investigated by Kumari et al. (2001).

Ingham and Pop (1991) treated a cylinder embedded to a wedge. Oosthuizen
(1988b) studied a horizontal plate buried beneath an impermeable horizontal sur-
face. Kimura et al. (1994) investigated heat transfer to ultralarge-scale heat pipes
placed in a geothermal reservoir. Thermal dispersion effects on non-Darcy con-
vection over a cone were studied by Murthy and Singh (2000). MHD convection
from a rotating cone was studied by Chamkha (1999). The effect of radiation on
convection from an isothermal cone was studied by Yih (2001b). The entire regime
for convection about a cone was investigated by Yih (1999g).

A special geometry was considered in the early numerical and experimental
study by Jannot et al. (1973). Heat transfer over a continuously moving plate was
treated numerically by Elbashbeshy and Bazid (2000a).

8.1.5. Unified Theory

We now present the unified theory of Nakayama and Pop (1991) for mixed convec-
tion on the Forchheimer model about plane and axisymmetric bodies of arbitrary
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shape. The boundary layer equations are

1

r∗
∂r∗u

∂x
+ ∂v

∂y
= 0, (8.28)
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K 1/2
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K
u∞ + cF

K 1/2
u∞2 + gx � (T − T∞) , (8.29)

u
∂T

∂x
+ v

∂T

∂y
= �m

∂2T

∂y2
, (8.30)

with the boundary conditions

y = 0: v = 0, T = Tw(x), (8.30a)

y = ∞: u = u∞(x) or T = T∞, (8.30b)

where

r∗ =
{

1, planebody,

r (x), axisymmetric body
(8.31)

and

gx = g

[
1 −

(
dr

dx

)2
]1/2

. (8.32)

For the case of axisymmetric bodies it is assumed that the body radius r (x) is large
relative to the boundary layer thickness, so the transverse radial pressure gradient
is negligible. Horizontal flat surfaces are excluded here; these require separate
treatment.

The convective inertia term has been dropped from Eq. (8.28) because a scaling
argument shows that the influence of this term is felt only very close to the leading
edge, except for flow in highly permeable media. Nakayama (1995, 1998) also
argued that for most porous materials the viscous boundary layer is confined for
almost the entire surface to a thin layer close to the wall, so that the temperature
distribution is essentially free from boundary viscous effects, and hence it is rea-
sonable to drop the Brinkman term. However, Rees (private communication) noted
that the analysis reported in Rees and Vafai (1999) for a uniformly heated horizon-
tal plate indicates that the situation is more complicated, at least at intermediate
values of x, than implied by Nakayama and Pop. Equation (8.28) gives

u = 	

2cF K 1/2

{[
(1 + 2ReK )2 + 4GrK

(
T − T∞
Tw − T∞

)]1/2

− 1

}
, (8.33)

where

ReK (x) = cF K 1/2u∞(x)/	, (8.34)

and

GrK (x) = cF K 3/2gx (x)� [Tw(x) − T∞] /	2. (8.35)
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From Eqs. (8.30a) and (8.33), the wall velocity is

uw = 	

2cF K 1/2

{[
(1 + 2ReK )2 + 4GrK

]1/2 − 1
}

, (8.36)

Nakayama and Pop (1991) argued that it is this velocity, which depends on both
external flow, that essentially determines convective heat transfer from the wall,
and they introduced a modified Péclet number,

Pex
∗ = uwx

�m
= Pex

[
(1 + 2ReK )2 + 4GrK

]1/2 − 1

2ReK
, (8.37)

since the usual Péclet number is defined by

Pex = u∞x

�m
. (8.38)

The energy equation (8.29) yields the scaling

uw

Tw − T∞
x

∼ �m
Tw − T∞

�T
2

, (8.39)

where �T is the thermal boundary layer thickness. Hence one expects that for all
convection modes,

Nux ∼ x

�T
∼ Pe∗1/2

x , (8.40)

where the local Nusselt number is defined as

Nux = q ′′x
km(Tw − T∞)

. (8.41)

Nakayama and Pop (1991) also define

Rax
∗ = K 1/4 [gx �(Tw − T∞)]1/2 x

cF
1/2�m

(8.42)

and then identify the following regimes:

Regime I (Forced convection regime):

Nux
2 ∼ Pe∗

x = Pex for ReK + ReK
2 � GrK . (8.43a)

Regime II (Darcy natural convection regime):

Nux
2 ∼ Pe∗

x = Rax for ReK � GrK � 1. (8.43b)

Regime III (Forchheimer natural convection regime):

Nux
2 ∼ Pe∗

x = Rax for ReK + ReK
2 � GrK and GrK � 1. (8.43c)

Regime IV (Darcy mixed convection regime):

Nux
2 ∼ Pe∗

x = Pex + Rax for ReK ∼ GrK � 1. (8.43d)
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Figure 8.6. Convection flow regime map (Nakayama and Pop, 1991, with permission
from Pergamon Press).

Regime V (Darcy-Forchheimer natural convection regime):

Nux
2 ∼ Pe∗

x = Rax
(1 + 4GrK )1/2 − 1

2GrK
for GrK ∼ 1 and ReK � 1. (8.43e)

Regime VI (Forchheimer mixed convection regime):

Nux
2 ∼ Pe∗

x = (
Pex

2 + Ra∗2
x

)1/2
for GrK ∼ ReK � 1. (8.43f)

The situation is summarized in Fig. 8.6. The three macroscale parameters Pex ,
Rax , Ra∗

x and the two microscale parameters ReK , GrK are related by

Rax

Pex
= GrK

ReK
,

Rax

Ra∗
x

= GrK
1/2. (8.44)

Nakayama and Pop (1991) then introduce the general transformations

f (x, �) = ψ

�mr∗ (
Pe∗

x I
)1/2 , (8.45)

�(x, �) = T − T∞
Tw − T∞

, (8.46)
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x

(
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x

I

)1/2

, (8.47)
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where

I =
∫ x

0 (Tw − T∞)2 uwr∗2dx

(Tw − T∞)2 uwr∗2x
. (8.48)

The momentum and energy equations reduce to

f =
∫ �

0

[
(1 + 2ReK )2 + 4ReK �

]1/2
d� − �[

(1 + 2ReK )2 + 4ReK �
]1/2 − 1

, (8.49)

and

�′′ +
(

1

2
− mT I

)
f �′ − mT I � f ′ = I x

(
f ′ ∂�

∂x
− �′ ∂ f

∂x

)
, (8.50)

where

mT (x) = d ln(Tw − T∞)

d ln x
= x

(Tw − T∞)

dTw

dx
. (8.51)

The transformed boundary conditions are

� = 0: � = 1, (8.52a)
� → ∞: � = 0. (8.52b)

Once the set of equations (8.49) and (8.50) subject to (8.52a) and (8.52b) have
been solved, the local Nusselt number may be evaluated from

Nux = −�′(x, 0)

(
Pex

2

I

)1/2

. (8.53)

Nakayama and Pop (1991) then proceed to consider regimes I through VI in
turn, seeking similarity solutions. In general these exist if and only if Tw − T∞
is a power function of the downstream distance variable � . They recover various
results reported above in Chapter 4 (forced convection; regime I) and Chapter 5
(natural convection; regimes II, III, and V). For their other results, the reader
is referred to the original paper and also the reviews by Nakayama (1995, 1998).
These reviews include related material on the cases of convection over a horizontal
plane, convection from line or point heat sources (Nakayama, 1993b, 1994), and
also a study of forced convection over a plate on the Brinkman-Forchheimer model
(Nakayama et al., 1990a).

8.2. Internal Flow: Horizontal Channel

8.2.1. Horizontal Layer: Uniform Heating

The problem of buoyancy-induced secondary flows in a rectangular duct filled
with a saturated porous medium through which an axial flow is maintained was
examined experimentally by Combarnous and Bia (1971) for the case of a large
horizontal to vertical aspect ratio denoted by A. As predicted by linear stability
theory (see Section 6.10), the axial flow did not affect the critical Rayleigh number
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for the onset of convective secondary flow nor the heat transfer. For Péclet numbers
Pe less than about 0.7, cross rolls rather than longitudinal rolls were usually (but
not always) the observed secondary motion. For larger values of Pe longitudinal
rolls were always observed.

Islam and Nandakumar (1986) made a theoretical investigation of this problem.
They used the Brinkman equation for steady fully developed flow and assumed
negligible axial conduction, a constant rate of heat transfer per unit length, and
an axially uniform heat flux, thus reducing the problem to a two-dimensional one
that they solved numerically. Since axial conduction was neglected, their solutions
are valid for large Pe values only. To save computational effort they assumed
symmetry about the vertical midline of the duct, thus permitting only an even
number of buoyancy-induced rolls. In our opinion this assumption is probably
not justified; for the aspect ratios used (0.6 < A < 3) we would expect that the
physically significant solution would sometimes be a single vortex roll. They
treated two cases: bottom heating and heating all around the periphery. For each
case they found a transition from a two-vortex pattern to a four-vortex pattern as the
Grashof number Gr increased, with both two- and four-vortex solutions existing in
a certain range of Gr. Further investigations by Nandakumar et al. (1987) indicated
that the number of possible solutions depends sensitively on the aspect ratio. Islam
and Nandakumar (1988) extended their analysis by including quadratic drag.

For a rectangular channel, Chou et al. (1992a) reported experimental and nu-
merical work on the Brinkman-Forchheimer model and with variable porosity
and thermal dispersion allowed for, while Chou and Chung (1995) allowed for
the effect of variation of effective thermal conductivity. Hwang and Chao (1992)
investigated numerically the case of finite wall conductivity. Chou et al. (1994)
studied numerically the effect of thermal dispersion in a cylindrical tube. Islam
(1992) investigated numerically the time evolution of the multicellular flows. His
results show the presence of periodic, quasiperiodic, and chaotic behavior for in-
creasingly high Grashof numbers (or Rayleigh numbers). An MHD problem was
studied by Takhar and Ram (1994). Llagostera and Figueiredo (2000) numerically
simulated mixed convection in a two-dimensional horizontal layer with a cavity
of varying depth on the bottom surface and heated from below. Yokoyama et al.
(1999) studied numerically and experimentally convection in a duct whose cross-
section has a sudden expansion with heating on the lower downstream section.
The onset of vortex instability in a layer, heated below with a stepwise change on
the bottom boundary and with thermal dispersion, was studied using propagation
theory by Chung et al. (2002). Unsteady convection involving internal heating and
a moving lid was studied numerically by Khanafer and Chamkha (1999).

8.2.2. Horizontal Layer: Localized Heating

Prasad et al. (1988) and their colleagues have conducted a series of two-
dimensional numerical studies to examine the effects of a horizontal stream on
buoyancy-induced velocity and temperature fields in a horizontal porous layer
discretely heated over a length D at the bottom and isothermally cooled at the
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top. The heated portion consisted of one or more sections of various sizes (non-
dimensional length A = D/H ) and the heating was either isothermal or uniform-
flux. Darcy’s equation was used. The computations were carried out for the range
1 ≤ Ra ≤ 500, 0 ≤ Pe ≤ 50, the Rayleigh and Péclet numbers being based on the
layer height. The domain was taken sufficiently long so that at the exit the flow
could be assumed parallel and axial conduction could be neglected.

The results for the case of a single source of length A = 1 indicate that when
the forced flow is weak (Pe small) a thermal plume rises above the heat source
and a pair of counterrotating cells is generated above the source, the upstream cell
being higher than the downstream one. The temperature field is approximately
symmetric, fore and aft. As Pe is increased the isotherms lose their symmetry, the
strength of the two recirculating cells becomes weaker, and the convective rolls
and plume move downstream, the downstream roll being weaker than the upstream
one. This is so for small values of Ra, but when Ra = 500 there are two pairs of
convective rolls along side each other.

The overall Nusselt number Nu increases monotonically with Pe as long as Ra =
10, the increase being significant when Pe > 1, but for Ra = 100 the Nusselt num-
ber goes through a minimum before increasing when forced convection becomes
dominant. The apparent reason for the decrease initially is because the enhance-
ment in heat transfer by an increase in forced flow is not able to compensate for
the reduction in buoyancy-induced circulation.

Further studies (Lai et al., 1987a) indicated that Nu is increased significantly
if the heat source is located on an otherwise isothermally cooled (rather than
adiabatic) bottom surface, because this results in stronger buoyancy effects, but
the effect is small if either buoyancy or forced convection dominates the other.
Additional investigation (Lai et al., 1987b) revealed that flow structure, temperature
field, and heat transfer coefficients change significantly with the size of the heat
source. If Ra is small, only two recirculating cells are produced, one near the
leading edge and the other at the trailing edge of the heat source. At large Ra,
the number of cells increases with the size of the source. All are destroyed by
sufficient increase in forced flow. The transient problem has been discussed by Lai
and Kulacki (1988b).

The extension to multiple heat sources was undertaken by Lai et al. (1990a).
For the convective regime each source behaves more or less independently and the
contributions to heat transfer are approximately additive. With the introduction
of forced flow interaction occurs. Ultimately as Pe increases the buoyancy cells
weaken and disappear, but at certain intermediate values of Ra and Pe the flow
becomes oscillatory as cells are alternately generated and destroyed. A similar
phenomenon was observed in the case of a long heat source. In general, the de-
pendence of Nu on Ra and Pe for multiple sources is similar to that for a single
source. The minimum in Nu that occurs at intermediate values of Pe is accentuated
for large numbers of heat sources and tends to be associated with the oscillatory
behavior; both effects involve an interaction between forcing flow and buoyancy.

Experiments performed by Lai and Kulacki (1991b) corroborated to a large
extent the numerical results. In particular the observed overall Nusselt number data
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agreed quite well with the predicted values. When an effective thermal conductivity
was introduced, the experimental data were correlated by

NuD

PeD
0.5

=
[

1.895 + 0.200

(
RaD

PeD
1.5

)]0.375

, (8.54)

where the subscript D denotes numbers based on the heater length D. This is very
close to the correlation obtained from the numerical solutions,

NuD

PeD
0.5

=
[

1.917 + 0.210

(
RaD

PeD
1.5

)]0.372

. (8.55)

The experiments also verified the occurrence of oscillatory behavior. This was
observed by recording the fluctuations in temperatures. A precise criterion for
the appearance of oscillatory flow could not be determined, but the data available
show that RaD has to exceed 10. A numerical study of oscillatory convection was
reported by Lai and Kulacki (1991c). The experimental and numerical study by
Yokoyama and Kulacki (1996) of convection in a duct with a sudden expansion just
upstream of the heated region showed that the expansion had very little effect on
the Nusselt number. A problem involving uniform axial heating and peripherally
uniform wall temperature was studied numerically by Chang et al. (2004).

8.2.3. Horizontal Annulus

The problem of mixed convection in a horizontal annulus with isothermal walls,
the inner heated and the outer cooled, was studied by Muralidhar (1989). His
numerical results for radius ratio r0/ri = 2 and Ra = 500, Pe = 10 indicate that
forced convection dominates in an entry length x < (r0 − ri ). Buoyancy increases
the rate at which boundary layers grow and it determines the heat transfer rate
once the annular gap is filled by the boundary layer on each wall.

Vanover and Kulacki (1987) conducted experiments in a porous annulus with
r0/ri = 2, with the inner cylinder heated by constant heat flux and the outer cylinder
isothermally cooled. The medium consisted of 1- and 3-mm glass beads saturated
with water. In terms of Pe and Ra based on the gap width (r0 − ri ) and the tempera-
ture scale q ′′(r0 − ri )/km , their experimental data covered the range Pe < 520 and
Ra < 830. They found that when Ra is large the values of Nu for mixed convection
may be lower than the free convection values. They attributed this to restructuring
of the flow as forced convection begins to play a dominant role. Muralidhar (1989)
did not observe this phenomenon since he dealt only with Pe = 10. Vanover and
Kulacki obtained the following correlations:

Mixed convection (6 < Pe < 82): Nu = 0.619 Pe0.177Ra0.092, (8.56)

Forced convection (Pe > 180): Nu = 0.117 Pe0.657, (8.57)

where the overall Nusselt number is normalized with its conduction value Nuc =
1.44 for an annulus with r0/ri = 2. Convection within a heat-generating horizontal
annulus was studied numerically by Khanafer and Chamkha (2003).
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8.2.4. Horizontal Layer: Lateral Heating

The flow produced by an end-to-end pressure difference and a horizontal temper-
ature gradient in a horizontal channel was studied by Haajizadeh and Tien (1984)
using perturbation analysis and numerical integration. The parameters are the
Rayleigh number Ra, the channel aspect ratio L (length/height), and the dimen-
sionless end-to-end pressure difference P which is equivalent to a Péclet num-
ber. Their results show that in the range Ra2/L3 ≤ 50 and P ≤ 1.5, the heat
transfer enhancement due to the natural convection and the forced flow can be
simply added together. Even a small rate of throughflow has a significant ef-
fect on the temperature distribution and heat transfer across the channel. For
P/Ra ≥ 0.2 the contribution of the natural convection to the Nusselt number is
negligible.

8.3. Internal Flow: Vertical Channel

8.3.1. Vertical Layer: Uniform Heating

Hadim and Govindarajan (1988) calculated solutions of the Brinkman-
Forchheimer equation for an isothermally heated vertical channel and examined
the evolution of mixed convection in the entrance region. Viscous dissipation
effects were analyzed by Ingham et al. (1990), for the cases of symmetric and
asymmetrically heated walls. Further calculations on the Brinkman Forchheimer
model were performed by Kou and Lu (1993a,b) for various cases of thermal
boundary conditions, by Chang and Chang (1996) for the case of a partly filled
channel, by Chen et al. (2000) for the case of uniform heat flux on the walls, and
by Hadim (1994b) for the development of convection in a channel inlet. Umavathi
et al. (2005) included the effect of viscous dissipation in their numerical and
analytic study using the Brinkman-Forchheimer model and with various com-
binations of boundary conditions. They noted that viscous dissipation enhances
the flow reversal in the case of downward flow and counters the flow in the
case of upward flow. An MHD convection problem with heat generation or
absoption was studied numerically by Chamkha (1997f). The effect of local
thermal nonequilibrium was investigated by Saeid (2004).

An experimental study for the case of asymmetric heating of the opposing walls
was conducted by Pu et al. (1999). The results indicated the existence of three
convection regimes: natural convection, 105 < Ra/Pe; mixed convection, 1 <

Ra/Pe < 105; and forced convection, Ra/Pe < 1. Multiple solutions associated
with the case of a linear axial temperature distribution were observed by Mishra
et al. (2002).

A linear stability analysis of the mixed convection flow was reported by Chen
and Chung (1998) and Chen (2004). It was found that the fully developed shear
flow can become unstable under only mild heating conditions in the case of large
Darcy number values (1 and 10−2), and the critical Rayleigh number drops steeply
when the Reynolds number reaches a threshold value that depends on the values
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of the Darcy and Forchheimer numbers. The critical Rayeigh number increases
substantially for Da = 10−4. For the case of an anisotropic channel, a linear stability
analysis was conducted by Bera and Khalili (2002b). The convective cells may
then be unicellular or bicellular.

For an anisotropic channel, aiding mixed convection was studied by Degan and
Vasseur (2002). The effect of viscous dissipation was analyzed by Al-Hadhrami
et al. (2002). For the case of wall temperature decreasing linearly with height,
they found that at any value of the Rayleigh number there were two solutions
mathematically, but only one of them is physically acceptable. The effects of a
porous manifold on thermal stratification in a liquid storage tank, an unsteady
problem, was treated numerically by Yee and Lai (2001). Problems involving
multiple porous blocks were studied by Bae et al. (2004) and Huang et al.
(2004a).

8.3.2. Vertical Layer: Localized Heating

Lai et al. (1988) performed a numerical study of the case when the heat source
is a strip of height H (equal to the layer width) on an otherwise adiabatic vertical
wall. The other wall was isothermally cooled; aiding or opposing Darcy flow was
considered.

In the absence of a forced flow, a convection cell extends from near the bottom
edge of the source to well above the top edge, and the higher the Rayleigh number
Ra the larger is its extent and the stronger the circulation. When the forced flow is
weak, buoyancy forces generally dominate the velocity field, but the acceleration
caused by buoyancy forces deflects the main flow toward the heat source, so the
circulation zone is pushed to the cold wall side. One consequence is that the vertical
velocity in a thin layer on the heated segment increases. The aiding flow reattaches
to the cold wall far downstream.

An increase in Pe moves the convective cell upward and this delays the separation
of the main flow from the cold wall. When Pe becomes large, the strength of the
circulation decreases substantially, the reattachment point moves upstream, and
the center of the cell is pushed toward the cold wall. At a sufficiently high Péclet
number (Pe > 10) the main flow does not separate from the cold wall and the
effects of buoyancy forces become negligible.

The opposite trends are present when the forced flow is downward (opposing).
When the main flow is weak, there is a circulation in the hot wall region and the
main flow is directed toward the cold wall. As Pe increases both the separation and
reattachment points move closer to the heat source, so that circulation is confined
to the neighborhood of the source and the heat transfer is reduced from its free
convection value. As Pe increases further, the circulation disappears and the heat
transfer coefficient increases with Pe.

For both aiding and opposing flows, the average Nusselt number Nu increases
with Ra, it being greater for aiding flows than for opposing flows. It increases
monotonically with Pe for aiding flows, but for opposing flows it decreases with
Pe until a certain value (which increases with Ra and increases from then on). The
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boundary layer formula for an isothermally heated vertical flat plate overpredicts
the values of Nu for a channel if the flow is aiding and underpredicts them if the
flow is opposing, the error being small in the forced convection regime. Further
numerical work was reported by A. Hadim and Chen (1994) and H. A. Hadim
and Chen (1994). A theoretical study of convection in a thin vertical duct with
suddenly applied localized heating on one wall was reported by Pop et al. (2004).

8.3.3. Vertical Annulus: Uniform Heating

Muralidhar (1989) has performed calculations for aiding Darcy flow in a vertical
annulus with height to gap ratio = 10 and r0/ri = 2, for Ra < 100, Pe < 10,
with isothermal heating and cooling on the inner and outer walls, respectively. As
expected, the average Nusselt number Nu increases with Ra and/or Pe. Muralidhar
found a sharp change in Nu as Pe changed from 0 to 1. According to him, the
circulation that exists at Pe = 0 is completely destroyed when Pe > 0, and is
replaced by thin thermal boundary layers that give rise to large heat transfer rates.
Hence, the jump in Nu from Pe = 0 to Pe = 1 is essentially a phenomenon related
to inlet conditions of flow, and the jump can be expected to reduce as the length
of the vertical annulus is reduced.

Parang and Keyhani (1987) solved the Brinkman equation for fully developed
aiding flow in an annulus with prescribed constant heat flux qi

′′ and q0
′′ on the

inner and outer walls, respectively. They found that the Brinkman term has a
negligible effect if Da/� = 10−5. For larger values of Da/� it had a significant
effect, which is more pronounced at the outer wall where the temperature is
raised and the Nusselt number is reduced, the relative change increasing with
Gr/Re.

In their experimental and numerical study, Clarksean et al. (1988) considered an
adiabatic inner cylinder and an isothermally heated outer wall, with a radius ratio
of about 12. Their numerical and experimental data showed the Nusselt number
to be proportional to (Ra/Pe)−0.5 in the range 0.05 < Ra/Pe < 0.5, wherein heat
transfer is dominated by forced convection.

Choi and Kulacki (1992b) performed experimental and numerical work (on the
Darcy model) that agreed in showing that Nu increases with either Ra or Pe when
the imposed flow aids the buoyancy-induced flow, while when the imposed flow
is opposing Nu goes through a minimum as Pe increases. They noted that under
certain circumstances Nu for a lower Ra may exceed that for a higher Ra value.
Good agreement was found between predicted and measured Nusselt numbers,
which are correlated by expressing Nu/Pe1/2 in terms of Ra/Pe3/2.

Further numerical work, including non-Darcy effects, was reported by
Kwendakwema and Boehm (1991), Choi and Kulacki (1993), Jiang et al. (1996)
and Kou and Huang (1997) (for various thermal boundary conditions) and also by
Du and Wang (1999). The experimental and numerical work of Jiang et al. (1994),
for an inner wall at constant heat flux and the outer wall adiabatic, was specifically
concerned with the effect of thermal dispersion and variable properties. Choi and
Kulacki (1992a) reviewed work in this area. Density inversion with icy water was
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studied numerically by Char and Lee (1998) using the Brinkman-Forchheimer
model.

8.3.4. Vertical Annulus: Localized Heating

Choi et al. (1989) have made calculations based on the Darcy model for convection
in a vertical porous annulus, when a finite heat source (of height H equal to the
annulus gap) is located on the inner wall. The rest of the inner wall is adiabatic
and the outer wall is cooled at a constant temperature. They found that for both
aiding and opposing flows the strength of the circulation decreases considerably as
the radius ratio � = (r0 − ri )/ri increases (with Ra and Pe fixed). Under the same
circumstances the center of the cell moves toward the cold wall. The variations
in Nu as Ra and Pe change are similar to those for the vertical layer channel. As
� increases, Nu increases toward the asymptotic value appropriate for a vertical
cylinder. The following correlations were found.

Isothermal source, aiding flow:

Nu

Pe0.5 = (
3.373 + � 0.566

) (
0.0676 + 0.0320

Ra

Pe

)0.489

. (8.58)

Isothermal source, opposing flow:

Nu

Pe0.5 = (
2.269 + � 0.511

) (
0.0474 + 0.0469

Ra

Pe

)0.509

. (8.59)

Constant-flux source, aiding flow:

Nu

Pe0.5 = (
7.652 + � 0.892

) (
0.0004 + 0.0005

Ra

Pe2

)0.243

. (8.60)

Constant-flux source, opposing flow:

Nu

Pe0.5 = (
4.541 + � 0.787

) (
0.0017 + 0.0021

Ra

Pe2

)0.253

, (8.61)

where Nu, Ra, and Pe are defined in terms of the annular gap and either the temper-
ature difference (for the isothermal source) or the temperature scale q ′′ H/km (for
the constant-flux source). Nield (1993) noted that the final exponents in (8.31)–
(8.34) are better replaced by 1/2, 1/2, 1/4, 1/4, since Nu should be independent of
Pe as Ra tends to infinity. For the same reason, the final exponents in (8.27) and
(8.28) should be 1/3.

The numerical and experimental study performed by Reda (1988) qualitatively
supports the observations of Choi et al. (1989). In Reda’s experiment the medium
extended vertically from z/�r = 0 to 4 and the heater from z/�r = 1.9 to 3.1,
where �r = r0 − ri , the remainder of the inner wall being insulated, and the
outer wall isothermally cooled. The forced flow was downward. Since the radius
ratio was large (r0/ri approximately equal to 23) the effects of the outer wall on
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the temperature and flow fields were small. Reda found that buoyancy-induced
circulation disappeared when Ra/Pe is approximately equal to 0.5, independent of
the source length or power input.

The effects of quadratic drag and boundary friction were studied by Choi and
Kulacki (1990). Their numerical results show that quadratic drag has a negligible
effect on Nu, but boundary friction significantly changes the flow and temperature
fields near the boundary and in highly porous media, as expected. For aiding flows
the reduction of Nu becomes pronounced as either Ra or Pe increases. For opposing
flows the interaction is complex.



9
Double-Diffusive Convection

In this chapter we turn our attention to processes of combined (simultaneous) heat
and mass transfer that are driven by buoyancy. The density gradients that provide
the driving buoyancy force are induced by the combined effects of temperature and
species concentration nonuniformities present in the fluid-saturated medium. The
present chapter is guided by the review of Trevisan and Bejan (1990), which began
by showing that the conservation statements for mass, momentum, energy, and
chemical species are the equations that have been presented here in Chapters 1–3. In
particular the material in Section 3.3 is relevant. The new feature is that beginning
with Eq. (3.26) the buoyancy effect in the momentum equation is represented
by two terms, one due to temperature gradients and the other to concentration
gradients. Useful review articles on double-diffusive convection include those by
Mojtabi and Charrier-Mojtabi (2000, 2005), Mamou (2002b), and Diersch and
Kolditz (2002).

9.1. Vertical Heat and Mass Transfer

9.1.1. Horton-Rogers-Lapwood Problem

The interesting effects in double-diffusive (or thermohaline, if heat and salt are
involved) convection arise from the fact that heat diffuses more rapidly than a dis-
solved substance. Whereas a stratified layer involving a single-component fluid is
stable if the density decreases upward, a similar layer involving a fluid consisting of
two components, which can diffuse relative to each other, may be dynamically un-
stable. If a fluid packet of such a mixture is displaced vertically, it loses any excess
heat more rapidly than any excess solute. The resulting buoyancy may act either
to increase the displacement of the particle, and thus cause monotonic instability,
or reverse the direction of the displacement and so cause oscillatory instability,
depending on whether the solute gradient is destabilizing and the temperature
gradient is stabilizing or vice versa.

The double-diffusive generalization of the Horton-Rogers-Lapwood problem
was studied by Nield (1968). In terms of the temperature T and the concentration
C, we suppose that the density of the mixture is given by Eq. (3.26),


 f = 
0 [1 − � (T − T0) − �C (C − C0)] . (9.1)
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Figure 9.1. Infinite horizontal porous layer with linear distributions of temperature and
concentration.

In this equation �C = −
 f
−1∂
 f /∂C is a concentration expansion coefficient

analogous to the thermal expansion coefficient � = −
 f
−1∂
 f /∂T . We assume

that �C and � are constants. In most practical situations �C will have a negative
value.

As shown in Fig. 9.1, we suppose that the imposed conditions on C are

C = C0 + �C at z = 0 and C = C0 at z = H. (9.2)

The conservation equation for chemical species is

�
∂C

∂t
+ v · ∇C = Dm∇2C (9.3)

and the steady-state distribution is linear:

Cs = C0 + �C
(

1 − z

H

)
. (9.4)

Proceeding as in Section 6.2, choosing �C as concentration scale and putting
Ĉ = C ′/�C , and writing

Ĉ = � (z) exp (st + il x̂ + im ŷ) , (9.5)

we obtain [
Le−1

(
D2 − �2

) − �

�
s
]

� = −W. (9.6)

In place of Eq. (6.23) we now have, if �a is negligible,(
D2 − �2

)
W = −�2Ra(� + N� ), (9.7)

while Eq. (6.22) remains unchanged, namely(
D2 − �2 − s

)
� = −W. (9.8)

The nondimensional parameters that have appeared are the Rayleigh and Lewis
numbers

Ra = g�K H�T

	�m
, Le = �m

Dm
, (9.9)
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and the buoyancy ratio

N = �C�C

��T
. (9.10)

If both boundaries are impermeable, isothermal (conducting), and isosolutal
(constant C), then Eqs. (9.6)–(9.8) must be solved subject to

W = � = � = 0 at ẑ = 0 and ẑ = 1. (9.11)

Solutions of the form

(W, �, � ) = (W0, �0, �0) sin jπẑ (9.12)

are possible if

J (J + s)(J + �s) = Ra �2(J + �s) + RaD�2(J + s), (9.13)

where

J = j2π2 + �2, � = �

�
Le, RaD = NLeRa = g�C K H�C

	Dm
. (9.14)

At marginal stability, s = i� where � is real, and the real and imaginary parts
of Eq. (9.13) yield

J 2 − ��2 = (Ra + RaD) �2, (9.15)

�[J 2(1 + �) − (�Ra + RaD)�2] = 0. (9.16)

This system implies either � = 0 and

Ra + RaD = J 2

�2
, (9.17)

or

�Ra + RaD = (1 + �)
J 2

�2
, (9.18)

and

�
�2

�2
= J 2

�2
− (Ra + RaD) . (9.19)

Since J 2/�2 has the minimum value 4π2, attained when j = 1 and � = π, we
conclude that the region of stability in the (Ra, RaD) plane is bounded by the lines

Ra + RaD = 4π2, (9.20)

�Ra + RaD = 4π2 (1 + �) , (9.21)

Equation (9.20) represents the boundary for monotonic or stationary instability,
and Eq. (9.21) is the boundary for oscillatory instability with frequency � given
by

�
�2

π2
= 4π2 − (Ra + RaD) . (9.22)
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Figure 9.2. The stability and instability domains for double-diffusive convection in a
horizontal porous layer.

Clearly the right-hand side of Eq. (9.22) must be nonnegative in order to yield a
real value for �.

If � = 1, then the lines (9.20) and (9.21) are parallel, with the former being
nearer the origin. Otherwise they intersect at

Ra = 4π2�

� − 1
, RaD = 4π2�

1 − �
, (9.23)

Illustrated in Fig. 9.2 is the case � > 1, which corresponds to Le > �/�.
The cases of other combinations of boundary conditions can be treated in a

similar manner. If the boundary conditions on the temperature perturbation � are
formally identical with those of the solute concentration perturbation � , then the
monotonic instability boundary is a straight line:

Ra + RaD = Rac. (9.24)

One can interpret Ra as the ratio of the rate of release of thermal energy to the
rate of viscous dissipation of energy and a similar interpretation applies to RaD .
When the thermal and solutal boundary conditions are formally identical, the
eigenfunctions of the purely thermal and purely solutal problems are identical,
and consequently the thermal and solutal effects are additive. When the two sets
of boundary conditions are different, the coupling between the thermal and solutal
agencies is less than perfect and one can expect that the monotonic instability
boundary will be concave toward the origin, since then Ra + RaD = Rac with
equality occurring only when Ra = 0 or RaD = 0.
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When Ra and RaD are both positive the double-diffusive situation is qualita-
tively similar to the single-diffusive one. When Ra and RaD have opposite signs
there appear interesting new phenomena: multiple steady- and unsteady-state so-
lutions, subcritical flows, periodic or chaotic oscillatory flows, traveling waves in
relatively large aspect ratio enclosures, and axisymmetric flow structures. Such
phenomena arise generally because the different diffusivities lead to different time
scales for the heat and solute transfer. But similar phenomena can arise even when
the thermal and solutal diffusivities are nearly equal because of the factor �/�
(often called the normalized porosity). This is because heat is transferred through
both the fluid and solid phases but the solute is necessarily transported through the
fluid phase only since the porous matrix material is typically impermeable.

Experiments with a Hele-Shaw cell by Cooper et al. (1997, 2001) and Pringle
et al. (2002) yielded results in agreement with the theory.

9.1.2. Nonlinear Initial Profiles

Since the diffusion time for a solute is relatively large, it is particularly appro-
priate to discuss the case when the concentration profile is nonlinear, the basic
concentration distribution being given by

Cs = C0 + �C[1 − Fc(ẑ)]. (9.25)

The corresponding nondimensional concentration gradient is fc (ẑ) = F ′
c (ẑ), and

satisfies 〈 f ′
c (ẑ)〉 = 1, where the angle brackets denote the vertical average. Then,

in place of Eq. (9.6) one now has[
Le−1

(
D2 − �2

) − �

�
s
]

� = − fc (ẑ) W. (9.26)

In the case of impermeable conducting boundaries, the Galerkin method of
solution (trial functions of the form sin lπẑ with l = 1, 2, . . .) gives as the first
approximation to the stability boundary for monotonic instability,

Ra + 2RaD 〈 fc(ẑ) sin2 π2 ẑ〉 = 4π2. (9.27)

For example, for the cosine profile with Fc(ẑ) = (1 − cos πẑ)/2, and hence with
fc = (π/2) sin πẑ, we get

Ra + 4

3
RaD = 4π2. (9.28)

Similarly, for the step-function concentration, with Fc(ẑ) = 0 for 0 ≤ ẑ < 1/2

and Fc(ẑ) = 1 for 1/2 < ẑ ≤ 1, so that fc(ẑ) = � (ẑ − 1/2), we have

Ra + RaD = 4π2. (9.29)

The approximation leading to this result requires that |RaD| be small.
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9.1.3. Finite-Amplitude Effects

Experiments in viscous fluids have shown that monotonic instability, associated
with warm salty water above cool fresh water, appears in the form of “fingers”
that grow downward from the upper part of the layer. More generally, fingering
occurs when the faster diffusing component is stabilizing and the slower diffusing
component is destabilizing. This situation is referred to as the fingering regime.
On the other hand, oscillatory instability, associated with warm salty water below
cool fresh water, gives rise to a series of convecting layers that form in turn, each
on top of its predecessor. This situation is referred to as the diffusive regime.

In the case of a porous medium the questions are whether the fingers form
fast enough before they are destroyed by dispersive effects and whether their
width is large enough compared to the grain size for Darcy’s law to be applicable.
Following earlier work by Taunton et al. (1972), these questions were examined
by Green (1984), who, on the basis of his detailed analysis, predicted that fluxes
associated with double-diffusive fingering may well be important but horizontal
dispersion may limit the vertical coherence of the fingers. In their visualization
and flux experiments using a sand-tank model and a salt-sugar system Imhoff and
Green (1988) found that fingering did indeed occur but it was quite unsteady, in
contrast to the quasisteady fingering observed in a viscous fluid (Fig. 9.3). Despite
the unsteadiness, good agreement was attained with the theoretical predictions.
Imhoff and Green (1988) concluded that fingering could play a major role in the
vertical transport of contaminants in groundwater.

That layered double-diffusive convection is possible in a porous medium was
shown by Griffiths (1981). His experiments with a two-layer convecting system
in a Hele-Shaw cell and a porous medium of glass spheres indicated that a thin
“diffusive” interface is maintained against diffusive thickening, despite the lack of
inertial forces. The solute and thermal buoyancy fluxes are approximately in the
ratio r = � Le−1/2. Griffiths explained the behavior of the heat flux in terms of
a coupling between purely thermal convection within each convecting layer and
diffusion through the density interface. Further experiments in a Hele-Shaw cell

Figure 9.3. A series of pictures of finger growth. Dyed sugar solution (light color)
overlies heavier salt solution (Imhoff and Green, 1988, with permission from Cambridge
University Press).
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by Pringle and Glass (2002) explored the influence of concentration at a fixed
buoyancy ratio.

Rudraiah et al. (1982a) applied nonlinear stability analysis to the case of a
porous layer with impermeable, isothermal, and isosolutal boundaries. They
reported Nusselt and Sherwood numbers for Ra values up to 300 and RaD

values up to 70. Their results show that finite-amplitude instability is possible at
subcritical values of Ra.

Brand and Steinberg (1983a,b) and Brand et al. (1983) have obtained ampli-
tude equations appropriate for the onset of monotonic instability and oscillatory
instability and also for points in the vicinity of the lines of monotonic and oscil-
latory instability. Brand et al. (1983) found an experimentally feasible example
of a codimensional-two bifurcation (an intersection of monotonic and oscillatory
instability boundaries). Brand and Steinberg (1983b) predicted that the Nusselt
number and also the “Froude” (Sherwood) number should oscillate with a fre-
quency twice that of the temperature and concentration fields. Small-amplitude
nonlinear solutions in the form of standing and traveling waves and the transi-
tion to finite amplitude overturning convection, as predicted by bifurcation theory,
were studied by Knobloch (1986). Rehberg and Ahlers (1985) reported heat trans-
fer measurements in a normal-fluid He3 − He4 mixture in a porous medium. They
found a bifurcation to steady or oscillatory flow, depending on the mean tempera-
ture, in accordance with theoretical predictions.

Murray and Chen (1989) have extended the linear stability theory, taking into
account effects of temperature-dependent viscosity and volumetric expansion co-
efficients and a nonlinear basic salinity profile. They also performed experiments
with glass beads in a box with rigid isothermal lower and upper boundaries. These
provide a linear basic-state temperature profile but only allow a nonlinear and time-
dependent basic-state salinity profile. With distilled water as the fluid, the convec-
tion pattern consisted of two-dimensional rolls with axes parallel to the shorter
side. In the presence of stabilizing salinity gradients, the onset of convection was
marked by a dramatic increase in heat flux at a critical temperature difference �T .
The convection pattern was three-dimensional, whereas two-dimensional rolls are
observed for single-component convection in the same apparatus. When �T was
then reduced from supercritical to subcritical values the heat flux curve completed
a hysteresis loop.

For the case of uniform flux boundary conditions, Mamou et al. (1994) have
obtained both analytical asymptotic and numerical solutions, the latter for various
aspect ratios of a rectangular box. Both uniform flux and uniform temperature
boundary conditions were considered by Mamou and Vasseur (1999) in their lin-
ear and nonlinear stability, analytical, and numerical studies. They identified four
regimes dependent on the governing parameters: stable diffusive, subcritical con-
vective, oscillatory, and augmenting direct regimes. Their results indicated that
steady convection can arise at Rayleigh numbers below the supercritical value
for linear stability, indicating the development of subcritical flows. They also
demonstrated that in the overstable regime multiple solutions can exist. Also, their
numerical results indicate the possible occurrence of traveling waves in an infinite
horizontal enclosure.
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A nonlinear stability analysis using the Lyapunov direct method was reported
by Lombardo et al. (2001) and Lombardo and Mulone (2002). A numerical study
of the governing and perturbation equations, with emphasis on the transition from
steady to oscillatory flows and with an acceleration parameter taken into consid-
eration, was conducted by Mamou (2003). The numerical and analytic study by
Mbaye and Bilgen (2001) demonstrated the existence of subcritical oscillatory
instabilities. The numerical study by Mohamad et al. (2004) for convection in
a rectangular enclosure examined the effect of varying the lateral aspect ratio.
Schoofs et al. (1999) discussed chaotic thermohaline convection in the context of
low-porosity hydrothermal systems. Schoofs and Spera (2003) in their numerical
study observed that increasing the ratio of chemical buoyancy to thermal buoy-
ancy, with the latter kept fixed, led to a transition from steady to chaotic convection
with a stable limit cycle appearing at the transition. The dynamics of the chaotic
flow is characterized by transitions between layered and nonlayered patterns as
a result of the spontaneous formation and disappearance of gravitationally stable
interfaces. These interfaces temporally divide the domain in layers of distinct so-
lute concentration and lead to a significant reduction of kinetic energy and vertical
heat and solute fluxes. A scale analysis, supported by numerical calculations, was
presented by Bourich et al. (2004c) for the case of bottom heating and a horizontal
solutal gradient. The case of mixed boundary conditions (constant temperature
and constant mass flux, or vice versa) was studied numerically by Mahidjiba et al.
(2000a). They found that when the thermal and solute effects are opposing, the
convection patterns differ markedly from the classic Bénard ones.

The linear stability for triply-diffusive convection was studied by Tracey (1996).
For certain parameter values complicated neutral curves were found, including
a heart-shaped disconnected oscillatory curve, and it was concluded that three
critical Rayleigh numbers were involved. The energy method was used to obtain
an unconditional nonlinear stability boundary and to identify possible regions of
subcritical instability.

9.1.4. Soret Diffusion Effects

In the case of steep temperature gradients the cross coupling between thermal
diffusion and solutal diffusion may no longer be negligible. The tendency of a
solute to diffuse under the influence of a temperature gradient is known as the
Soret effect.

In its simplest expression, the conservation equation for C now becomes

�
∂C

∂t
+ v · ∇C = Dm∇2C + DCT ∇2T, (9.30)

where the Soret coefficient DCT is treatable as a constant. If the Soret parameter
S is defined as

S = −�C DCT

�Dm
, (9.31)
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then the equation for the marginal state of monotonic instability in the absence of
an imposed solutal gradient is

Ra = 4π2

1 + S(1 + Le)
. (9.32)

The corresponding equation for marginal oscillatory instability is

Ra = 4π2(� + �Le)

Le(� + �S)
. (9.33)

The general situation, with both cross-diffusion and double-diffusion (thermal
and solutal gradients imposed), was analyzed by Patil and Rudraiah (1980). Taslim
and Narusawa (1986) showed that there is an analogy between cross-diffusion
(Soret and Dufour effects) and double-diffusion in the sense that the equations can
be put in mathematically identical form.

The linear analysis of Lawson et al. (1976), based on the kinetic theory of
gases and leading to a Soret effect, was put forward to explain the lowering of the
critical Rayleigh number in one gas due to the presence of another. This effect was
observed in a binary mixture of helium and nitrogen by Lawson and Yang (1975).
Lawson et al. (1976) observed that the critical Rayleigh number may be lower
or greater than for a pure fluid layer depending upon whether thermal diffusion
induces the heavier component of the mixture to move toward the cold or hot
boundary, respectively. Brand and Steinberg (1983a) pointed out that with the
Soret effect it is possible to have oscillatory convection induced by heating from
above. Rudraiah and Siddheshwar (1998) presented a weak nonlinear stability
analysis with cross-diffusion taken into account.

The experimental and numerical study of Benano-Melly et al. (2001) was con-
cerned with Soret coefficient measurement in a medium subjected to a horizontal
thermal gradient. The onset of convection in a vertical layer subject to uniform
heat fluxes along the vertical walls was treated analytically and numerically by
Joly et al. (2001). The Soret effect also was included in the numerical study by
Nejad et al. (2001). Sovran et al. (2001) studied analytically and numerically the
onset of Soret-driven convection in an infinite horizontal layer with an applied
vertical temperature gradient. They found that for a layer heated from above, the
motionless solution is infinitely linearly stable in N > 0, while a stationary bifur-
cation occurs in N < 0. For a layer heated from below, the onset of convection is
steady or oscillatory depending on whether N is above or below a certain value that
depends on Le and the normalized porosity. The numerical study of Faruque et al.
(2004) of the situation where fluid properties vary with temperature, composition,
and pressure showed that for lateral heating the Soret effect was weak, but with
bottom heating the Soret effect was more pronounced.

Further studies of Soret convection, building on studies discussed in Section
1.9, were reported by Jiang et al. (2004a–c) and by Saghir et al. (2005a). Attention
has been placed on thermogravitational convection, a topic treated by Estebe and
Schott (1970). This refers to a coupling effect when a fluid mixture saturating a
vertical porous cavity in a gravitational field is exposed to a uniform horizontal
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thermal gradient, and thermodiffusion produces a concentration gradient that leads
to species separation. The porous media situation has been considered by Jamet
et al. (1992) and Marcoux and Charrier-Mojtabi (1998). The numerical results of
Marcoux and Mojtabi show the existence of a maximum separation corresponding
to an optimal Rayleigh number as expected, but there remains a difference between
the numerical results for that optimal value and experimental results of Jamet et al.
(1992). The study by Jiang et al. (2004b) concentrated on the two-dimensional sim-
ulation of thermogravitation convection in a laterally heated vertical column with
space-dependent thermal, molecular, and pressure diffusion coefficients taken as
functions of temperature using the irreversible thermodynamics theory of Shukla
and Firoozabadi. The numerical results reveal that the lighter fluid component
migrates to the hot side of the cavity, and as the permeability increases the com-
ponent separation in the thermal diffusion process first increases, reaches a peak,
and then decreases. Jiang et al. (2004b) reported values of a separation ratio for
a methane and n-butane mixture. Jiang et al. (2004c) explicitly investigated the
effect of heterogenous permeability, something that strongly affects the Soret co-
efficient. Saghir et al. (2005a) have reviewed some aspects of thermodiffusion in
porous media.

Soret-driven convection in a shallow enclosure and with uniform heat (or both
heat and mass) fluxes was studied analytically and numerically by Bourich et al.
(2002, 2004e–f, 2005) and Er-Raki et al. (2005). Depending on the values of Le
and N, subcritical stationary convection may or may not be possible and parallel
convective flow may or may not be possible.

An analytical and numerical study of convection in a horizontal layer with
uniform heat flux applied at the horizontal walls, and with or without constant
mass flux at those walls, was reported by Bahloul et al. (2003) and Boutana et al.
(2004). A structural stability result was reported by Straughan and Hutter (1999).

9.1.5. Flow at High Rayleigh Number

The interaction between the heat transfer and mass transfer processes in the regime
of strong convection was investigated on the basis of a two-dimensional model by
Trevisan and Bejan (1987b). They used scale analysis to back up their numer-
ical work. Figure 9.4 shows the main characteristics of the flow, temperature,
and concentration fields in one of the rolls that form. This particular flow is heat
transfer-driven in the sense that the dominant buoyancy effect is one due to temper-
ature gradients (N = 0). The temperature field (Fig. 9.4b) shows the formation of
thermal boundary layers in the top and bottom end-turn regions of the roll. The con-
centration field is illustrated in Figs. 9.4b–9.4d. The top and bottom concentration
boundary layers become noticeably thinner as Le increases from 1 to 20.

The overall Nusselt numbers Nu and overall Sherwood number Sh are defined by

Nu = q̄ ′′

km�T/H
, Sh = j̄

Dm�C/H
(9.34)
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Figure 9.4. Two-dimensional numerical simulation for heat transfer-driven (N = 0)
convection in a horizontal porous layer (Ra = 200, H/L = 1.89). (a) Streamlines;
(b) isotherms, also isosolutal lines for Le = 1; (c) isosolutal lines for Le = 4; and
(d) isosolutal lines for Le = 20 (Trevisan and Bejan, 1987b).

where q̄ ′′ and j̄ are the heat and mass fluxes averaged over one of the horizontal
boundaries. In heat transfer-driven convection, |N | � 1, it is found that the Nusselt
number scales as

Nu = (
Ra/4π2

)1/2
. (9.35)

In the same regime the mass transfer scales are

Sh ≈ Le1/2
(
Ra/4π2

)7/8
if Le >

(
Ra/4π2

)1/4
, (9.36a)

Sh ≈ Le2
(
Ra/4π2

)1/2
if

(
Ra/4π2

)−1/4
< Le <

(
Ra/4π2

)1/4
, (9.36b)

Sh ≈ 1 if Le <
(
Ra/4π2

)1/4
. (9.36c)

The scales of mass transfer-driven flows, |N | � 1, can be deduced from these by
applying the transformation Ra → RaD , Nu → Sh, Sh → Nu, and Le → Le−1.
The results are

Sh ≈ (
RaD/4π2

)1/2
, (9.37)

and

Nu ≈ Le−1/2
(
RaD/4π2

)7/8
if Le <

(
RaD/4π2

)−1/4
, (9.38a)

Nu ≈ Le−2
(
RaD/4π2

)1/2
if

(
RaD/4π2

)−1/4
< Le <

(
RaD/4π2

)1/4
,

(9.38b)

Nu ≈ 1 if Le >
(
RaD/4π2

)1/4
. (9.38c)

These estimates agree well with the results of direct numerical calculations.
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Rosenberg and Spera (1992) performed numerical simulations for the case of
a fluid heated and salted from below in a square cavity. As the buoyancy ratio N
increases, the dynamics change from a system that evolves to a well-mixed steady
state, to one that is chaotic with large amplitude fluctuations in composition, and
finally to one that evolves to a conductive steady state. Their correlations for Nu
and Sh were in good agreement with the results of Trevisan and Bejan (1987b).

Sheridan et al. (1992) found that their experimentally measured heat transfer
data correlated well with Nu ∼ (Ra Da N )0.294Ja−0.45. Here Ja is the Jakob number,
defined by Ja = cp�T/h f g�m, where h f g is the enthalpy of evaporation and m
is the saturated mass ratio (vapor/gas).

9.1.6. Other Effects

9.1.6.1. Dispersion

If a net horizontal flow is present in the porous layer, it will influence not only the
vertical solutal gradient but also the phenomenon of solute dispersion. Thermal
dispersion also can be affected. In most applications �m is greater than Dm , and as a
consequence the solutal dispersion is more sensitive to the presence of through flow.
The ultimate effect of dispersion is that the concentration distribution becomes
homogeneous.

The stability implications of the anisotropic mass diffusion associated with an
anisotropic dispersion tensor were examined by Rubin (1975) and Rubin and Roth
(1978, 1983). The dispersion anisotropy reduces the solutal stabilizing effect on the
inception of monotonic convection and at the same time enhances the stability of the
flow field with respect to oscillatory disturbances. Monotonic convection appears
as transverse rolls with axes perpendicular to the direction of the horizontal net
flow, while oscillatory motions are associated with longitudinal rolls (axes aligned
with the net flow), the rolls of course being superposed on that net flow.

Certain geological structures contain some pores and fissures of large sizes. In
such cavernous media even very slow volume-averaged flows can deviate locally
from the Darcy flow model. The larger pores bring about an intensification of the
dispersion of solute and heat and because of the high pore Reynolds numbers, Rep,
the effect of turbulence within the pores. Rubin (1976) investigated the departure
from the Darcy flow model and its effect on the onset of convection in a horizontal
layer with horizontal through flow. This study showed that in the case of laminar
flow through the pores (Rep � 1), the net horizontal flow destabilizes the flow
field by enhancing the effect of solutal dispersion. A stabilizing effect is recorded
in the intermediate regime (Rep ≈ 1). In the inertial flow regime (Rep � 1) the
stability characteristics become similar to those of monodiffusive convection, the
net horizontal flow exhibiting a stabilizing effect.

9.1.6.2. Anisotropy and Heterogeneity

The onset of thermohaline convection in a porous layer with varying hydraulic
resistivity (r = �/K ) was investigated by Rubin (1981). If one assumes that the
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dimensionless hydraulic resistivity � = r/r0 varies only in the vertical direction
and only by a relatively small amount, the linear stability analysis yields the mono-
tonic marginal stability condition

Ra + RaD = π2
(
� H

1/2 + � V
1/2

)2
. (9.39)

In this equation �H and �V are the horizontal and vertical mean resistivities

�H =
(∫ 1

0

dẑ

�

)−1

, �V =
∫ 1

0
�dẑ, (9.40)

and so �H ≤ �V . The right-hand side of Eq. (9.39) can be larger or smaller than 4π2

depending on whether Ra is based on �V or �H . A similar conclusion is reached
with respect to the onset of oscillatory motions.

The Galerkin method has been used by Rubin (1982a) in an analysis of the effects
of nonhomogeneous hydraulic resistivity and thermal diffusivity on stability. The
effect of simultaneous vertical anisotropy in permeability (hydraulic resistivity),
thermal diffusivity, and solutal diffusivity was investigated by Tyvand (1980) and
Rubin (1982b).

Chen (1992) and Chen and Lu (1992b) analyzed the effect of anisotropy and
inhomogeneity on salt-finger convection. They concluded that the critical Rayleigh
number for this is invariably higher than that corresponding to the formation of
plumes in the mushy zone during the directional solidification of a binary solution
(see Section 10.2.3). A numerical study of double-diffusive convection in layered
anisotropic porous media was made by Nguyen et al. (1994).

Viscosity variations and their effects on the onset of convection were considered
by Patil and Vaidyanathan (1982), who performed a nonlinear stability analysis us-
ing the Brinkman equation, assuming a cosine variation for the viscosity. The vari-
ation reduces the critical Rayleigh number based on the mean viscosity. Bennacer
(2004) treated analytically and numerically a two-layer (one anisotropic) situation
with vertical through mass flux and horizontal through heat flux.

9.1.6.3. Brinkman Model

The effect of porous-medium coarseness on the onset of convection was docu-
mented by Poulikakos (1986). With the Brinkman equation the critical Rayleigh
number for the onset of monotonic instability is given by

Ra + RaD =
(
�c

2 + π2
)2

�c
2

[(
�2

c + π2
)

D̃a + 1
]
, (9.41)

where the critical dimensionless horizontal wavenumber (�c) is given by

�2
c =

(
π2D̃a + 1

)1/2 (
9π2D̃a + 1

)1/2 − π2D̃a − 1

4D̃a
. (9.42)
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In terms of the effective viscosity �̃ introduced in Eq. (1.17), the Darcy number
D̃a is defined by

D̃a = �̃

�

K

H 2
. (9.43)

Nonlinear energy stability theory was applied to this problem by Guo and Kaloni
(1995b). Fingering convection, with the Forchheimer term as well as the Brinkman
term taken into account, was treated numerically by Chen and Chen (1993). With
Ra fixed, they found a transition from steady to time-periodic (and then to quasi-
periodic) convection as RaD increases. An analytical solution based on a parallel-
flow approximation and supported by numerical calculations was presented by
Amahmid et al. (1999a). They showed that there is a region in the (N , Le) plane
where a convective flow of this type is not possible for any Ra and Da values. A
linear and nonlinear stability analysis leading to calculations of Nusselt numbers,
streamlines, isotherms, and isohalines was presented by Shivakumara and Sumithra
(1999).

9.1.6.4. Additional Effects

The situation in which one of the components undergoes a slow chemical reaction
was analyzed by Patil (1982), while a convective instability that is driven by a
fast chemical reaction was studied by Steinberg and Brand (1983). Further work
involving chemical reactions was carried out by Subramanian (1994), Malashetty
et al. (1994) and Malashetty and Gaikwad (2003). The effect of a third diffusing
component was treated by Rudraiah and Vortmeyer (1982), Poulikakos (1985c),
and Tracey (1998), who obtained some unusual neutral stability curves, includ-
ing a closed approximately heart-shaped oscillatory curve disconnected from the
stationary neutral curve, and thus requiring three critical values of Ra to describe
the linear stability criteria. For certain values of parameters the minima on the
oscillatory and stationary curves occur at the same Rayleigh number but different
wavenumbers. Kalla et al. (2001a) studied a situation involving imposed vertical
heat and mass fluxes and a horizontal heat flux that they treated as a perturbation
leading to asymmetry of the bifurcation diagram. Multiple steady-state solutions,
with different heat and mass transfer rates, were found to coexist. In their analytical
studies Masuda et al. (1999, 2002) found that there is a range of buoyancy ratios
N for which there is an oscillation between two types of solution: temperature
dominated and concentration dominated.

The effect of rotation was included by Chakrabarti and Gupta (1981) and
Rudraiah et al. (1986), for anisotropic media by Patil et al. (1989, 1990), and for
a ferromagnetic fluid by Sekar et al. (1998). The effects of magnetic field and
compressibility were studied by Sunil (1994, 1999, 2001), while Khare and Sahai
(1993) combined the effects of a magnetic field and heterogeneity. Chamkha and
Al-Naser (2002) studied numerically MHD convection in a binary gas. Papers on
MHD convection with a non-Newtonian fluid are those by Sharma and Kumar
(1996), and Sharma and Thakur (2000), Sharma and Sharma (2000), Sharma and
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Kishor (2001), Sharma et al. (2001), and Sunil et al. (2001). Papers involving a
rotating non-Newtonian fluid are those by Sharma et al. (1998, 1999a) and Sharma
and Rana (2001, 2002). Non-Newtonian fluids permeated with suspended parti-
cles have been studied by Sharma et al. (1999b), Sunil et al. (2003b, 2004a,b),
and Sharma and Sharma (2004). A ferromagnetic fluid was treated by Sunil et al.
(2004b, 2005a,c,d).

The effect of vertical through flow was studied by Shivakumara and Khalili
(2001) and that of horizontal through flow by Joulin and Ouarzazi (2000).

Subramanian and Patil (1991) combined anisotropy with cross-diffusion. The
critical conditions for the onset of convection in a doubly diffusive porous layer
with internal heat generation were documented by Selimos and Poulikakos (1985).
The effect of heat generation or absorption was also studied by Chamkha (2002).
Lin (1992) studied numerically a transient problem.

The effect of temporally fluctuating temperature on instability was analyzed
by Ouarzazi and Bois (1994), Quarzazi et al. (1994), McKay (1998b, 2000),
Ramazanov (2001), and Malashetty and Basvaraja (2004). The last study included
the effect of anisotropy. The studies by McKay make use of Floquet theory. He
demonstrated that the resulting instability may be synchronous, subharmonic, or
at a frequency unrelated to the heating frequency.

The effect of vertical vibration was studied analytically and numerically by
Sovran et al. (2000, 2002) and Jounet and Bardan (2001). Depending on the gov-
erning parameters, vibrations are found to delay or advance the onset of convection,
and the resulting convection can be stationary or oscillatory. An intensification of
the heat and mass transfers is observed at low frequency for sufficiently high vi-
bration frequency. The onset of Soret-driven convection with a vertical variation of
gravity was analyzed by Alex and Patil (2001) and Charrier-Mojtabi et al. (2004).
The latter considered also horizontal vibration and reported that for both mono-
tonic and oscillatory convection the vertical vibration has a stabilizing effect while
the horizontal vibration has a destabilizing effect on the onset of convection.

The problem of convection in groundwater below an evaporating salt lake was
studied in detail by Wooding et al. (1997a,b) and Wooding (2005). Now the convec-
tion is driven by the evaporative concentration of salts at the land surface, leading
to an unstable distribution of density, but the evaporative groundwater discharge
dynamically can stabilize this saline boundary layer. The authors investigated the
nature, onset, and development (as fingers or plumes) of the convection. They
reported the result of linear stability analysis, numerical simulation, and labora-
tory experimentation using a Hele-Shaw cell. The results indicate that in typical
environments, convection will predominate in sediments whose permeability ex-
ceeds about 10−14 m2, while below this threshold the boundary layer should be
stabilized, resulting in the accumulation of salts at the land surface. A numeri-
cal model simulating this situation was presented by Simmons et al. (1999). A
related problem involving the evaporation of groundwater was studied analyti-
cally and numerically by Gilman and Bear (1996). The groundwater flow pattern
in the vicinity of a salt lake also has been studied numerically by Holzbecher
(2005b).
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9.2. Horizontal Heat and Mass Transfer

9.2.1. Boundary Layer Flow and External Natural Convection

The most basic geometry for simultaneous heat and mass transfer from the side is
the vertical wall embedded in a saturated porous medium. Specified at the wall are
the uniform temperature T0 and the uniform concentration C0. The temperature
and concentration sufficiently far from the wall are T∞ and C∞.

The Darcy flow driven by buoyancy in the vicinity of the vertical surface can have
one of the four two-layer structures shown in Fig. 9.5. The thicknesses �, �T , and
�C indicate the velocity, thermal, and concentration boundary layers. The relative
size of these three thicknesses is determined by the combination (N, Le).

The heat and mass transfer from the vertical surface was determined first based
on scale analysis (Bejan, 1984, pp. 335–338) and later based on the boundary
layer similarity method (Bejan and Khair, 1985). The results of the scale analysis
are summarized in Table 9.1. Each row in this table corresponds to one of the
quadrants of the (N, Le) domain covered by Fig. 9.5. The v scale represents the
largest vertical velocity, which in Darcy flow occurs right at the wall. By writing
this time q̄ ′′ and j̄ for the heat and mass fluxes averaged over the wall height H,

Figure 9.5. The four regimes of boundary layer heat and mass transfer near a vertical
surface embedded in a porous medium (Bejan and Khair, 1985).
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Table 9.1. The flow, heat, and mass transfer scales for the boundary layer near a vertical
wall embedded in a porous medium (Bejan, 1984; Bejan and Khair, 1985).

Driving Le
mechanism v Nu Sh domain

Heat transfer (�m/H ) Ra Ra1/2 (Ra Le)1/2 Le � 1
(|N | � 1) (�m/H ) Ra Ra1/2 Ra1/2 Le Le � 1
Mass transfer (�m/H ) Ra|N | (Ra|N |)1/2 (Ra|N | Le)1/2 Le � 1
(|N | � 1) (�m/H ) Ra|N | Le−1/2(Ra|N |)1/2 (Ra|N | Le)1/2 Le � 1

the overall Nusselt and Sherwood numbers are defined as

Nu = q̄ ′′

km (T0 − T∞) /H
, Sh = j̄

Dm (C0 − C∞) /H
. (9.44)

The similarity solution to the same problem was obtained by Bejan and Khair
(1985) by selecting the nondimensional similarity profiles recommended by the
scale analysis (Table 9.1):

u = −�m

x
Rax f ′ (�) , (9.45)

v = −�m

2x
Rax

1/2
(

f − �f ′) , (9.46)

� (�) = T − T∞
T0 − T∞

, � = y

x
Ray

1/2, (9.47)

c(�) = C − C∞
C0 − C∞

. (9.48)

In this formulation, x is the distance measured along the wall and the Rayleigh
number is defined by Rax = g� K x(T0 − T∝)/	�m . The equations for momentum,
energy, and chemical species conservation reduce to

f ′′ = −�′ − Nc′, (9.49)

�′′ = 1

2
f �′, (9.50)

c′′ = 1

2
f c′Le, (9.51)

with the boundary conditions f = 0, � = 1, and c = 1 at � = 0, and ( f, �, c) → 0
as � → ∞. Equations (9.49)–(9.51) reinforce the conclusion that the boundary
layer phenomenon depends on two parameters, N and Le.

Figure 9.6 shows a sample of vertical velocity and temperature (or concentra-
tion) profiles for the case Le = 1. The vertical velocity increases and the thermal
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Figure 9.6. The buoyancy ratio effect on the Le= 1 similarity profiles for boundary layer
heat and mass transfer near a vertical wall embedded in a porous medium. a) Velocity
profiles and b) temperature and concentration profiles (Bejan and Khair, 1985).

boundary layer becomes thinner as |N | increases. The same similarity solutions
show that the concentration boundary layer in heat transfer-driven flows (N = 0)
becomes thinner as Le increases, in good agreement with the trend anticipated by
scale analysis.

The effect of wall inclination on the two-layer structure was described by Jang
and Chang (1988b,c). Their study is a generalization of the similarity solution
approach employed by Bejan and Khair (1985). The heat and mass transfer scales
that prevail in the extreme case when the embedded H-long surface is horizontal are
summarized in Table 9.2. A related study was reported by Jang and Ni (1989), who
considered the transient development of velocity, temperature, and concentration
boundary layers near a vertical surface.

The effect of flow injection on the heat and mass transfer from a vertical plate was
investigated by Lai and Kulacki (1991d): see also the comments by Bejan (1992a).
Raptis et al. (1981) showed that an analytical solution is possible in the case of an
infinite vertical wall with uniform suction at the wall-porous-medium interface.
The resulting analytical solution describes flow, temperature, and concentration
fields that are independent of altitude (y). This approach was extended to the
unsteady boundary layer flow problem by Raptis and Tzivanidis (1984). For the
case of a non-Newtonian (power-law fluid), an analytical and numerical treatment
was given by Rastogi and Poulikakos (1995). The case of a thermally stratified
medium was studied numerically by Angirasa et al. (1997).
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Table 9.2. The flow, heat, and mass transfer scales for the boundary layer near a
horizontal wall embedded in a saturated porous medium (Jang and Chang, 1988b).

Driving Le
mechanism u Nu Sh domain

Heat transfer (�m/H ) Ra2/3 Ra1/3 Ra1/3 Le1/2 Le � 1
(|N | � 1) (�m/H ) Ra2/3 Ra1/3 Ra1/3 Le Le � 1
Mass transfer (�m/H )

× (Ra|N |)2/3 Le−1/3 (Ra |N |)−1/3 Le−1/6 (Ra|N | Le)1/3 Le � 1
(|N | � 1) (�m/H )

× (Ra|N |)2/3 Le−1/3 (Ra |N |)−1/3 Le−2/3 (Ra|N | Le)1/3 Le � 1

The physical model treated by Bejan and Khair (1985) was extended to the
case of a boundary of arbitrary shape by Nakayama and Hossain (1995). A further
scale analysis of natural convection boundary layers driven by thermal and mass
diffusion was made by Allain et al. (1992), who also made some corroborating
numerical investigations. They noted the existence of flows that are heat driven
even though the amplitude of the solutal convection is dominant.

An analytical-numerical study of hydrodynamic dispersion in natural convection
heat and mass transfer near vertical surfaces was reported by Telles and Trevisan
(1993). They considered flows due to a combination of temperature and concen-
tration gradients and found that four classes of flows are possible according to the
relative magnitude of the dispersion coefficients.

For convection over a vertical plate, the Forchheimer effect was analyzed by
Murthy and Singh (1999); dispersion effects were studied by Khaled and Chamkha
(2001), Chamkha and Quadri (2003), and El-Amin (2004a); and the effect of double
stratification was discussed by Bansod et al. (2002) and Murthy et al. (2004b).
Using homotopy analysis and the Forchheimer model, an analytic solution was
obtained by Wang et al. (2003a). The effect of thermophoresis particle deposition
was analyzed by Chamkha and Pop (2004). The case of power-law non-Newtonian
fluids was treated numerically by Jumah and Majumdar (2000, 2001).

MHD convection was treated for a vertical plate by Cheng (1999, 2005),
Chamkha and Khaled (2000c,d), Acharya et al. (2000), and Postelnicu (2004)
with Soret and Dufour effects; for a cone or wedge by Chamkha et al. (2000); with
heat generation or absorption effects for a cylinder or a cone by Chamkha and
Quadri (2001, 2002); and for unsteady convection past a vertical plate by Kamel
(2001) and Takhar et al. (2003). MHD convection of a micropolar fluid over a
vertical moving plate was studied by Kim (2004). MHD convection for the case
where the permeability oscillates with time about a nonzero mean was analyzed
by Hassanien and Allah (2002).

Convection over a wavy vertical plate or cone was studied by Cheng (2000c,d)
and Ratish Kumar and Shalini (2004b). Convection from a wavy wall in a ther-
mally stratified enclosure with mass and thermal stratification was treated numer-
ically by Ratish Kumar and Shalini (2005). A cone, truncated or otherwise, with
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variable wall temperature and concentration was analyzed by Yih (1999a,d) and
Cheng (2000a). Convection above a near-horizontal surface and convection along a
vertical permeable cylinder were analyzed by Hossain et al. (1999a,b). A horizon-
tal permeable cylinder was considered by Yih (1999f). Li and Lai (1998), Bansod
(2003), and Bansod et al. (2005) reexamined convection from horizontal plates.
Also for a horizontal plate, Wang et al. (2003b) obtained an analytical solution
for Forchheimer convection with surface mass flux and thermal dispersion ef-
fects. Abel et al. (2001) studied convection with a viscoelastic fluid flowing over
a stretching sheet.

9.2.2. Enclosed Porous Medium

As the simplest configuration of simultaneous heat and mass transfer in an enclosed
porous medium consider the two-dimensional system defined in Fig. 9.7. The
uniform temperature and concentration are maintained at different levels along the
two side walls. The main engineering challenge is the calculation of the overall
heat and mass transfer rates expressed by Eq. (9.44).

Relative to the single-wall problem (Fig. 9.5) the present phenomenon depends
on the geometric aspect ratio L/H as an additional dimensionless group next to N
and Le. These groups account for the many distinct heat and mass transfer regimes
that can exist. Trevisan and Bejan (1985) identified these regimes on the basis
of scale analysis and numerical experiments. Figure 9.8 shows that in the case
of heat transfer-driven flows (|N | � 1) there are five distinct regimes, which are
labeled I–V. The proper Nu and Sh scales are listed directly on the [Le, (L/H )2Ra]
subdomain occupied by each regime.

Figure 9.7. Enclosed porous medium subjected to heat and mass transfer in the hori-
zontal direction.
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Figure 9.8. The heat and mass transfer regimes when the buoyancy effect in the system
of Fig. 9.7 is due mainly to temperature gradients, |N | � 1 (Trevisan and Bejan, 1985).

Five distinct regimes also are possible in the limit of mass transfer driven flows,
|N | � 1. Figure 9.9 shows the corresponding Nusselt and Sherwood number scales
and the position of each regime in the plane [Le, (L/H )2 Ra|N |]. Had we used
the plane [Le−1, (L/H )2 Ra|N | Le] then the symmetry with Fig. 9.8 would have
been apparent. The Nu and Sh scales reported in Figs. 9.8 and 9.9 are correct
within a numerical factor of order 1. Considerably more accurate results have
been developed numerically and reported in Trevisan and Bejan (1985).

The most striking effect of varying the buoyancy ratio N between the extremes
represented by Figs. 9.8 and 9.9 is the suppression of convection in the vicinity
of N = −1. In this special limit, the temperature and concentration buoyancy
effects are comparable in size but have opposite signs. Indeed, the flow disappears
completely if Le = 1 and N = −1. This dramatic effect is illustrated in Fig. 9.10,
which shows how the overall mass transfer rate approaches the pure diffusion level
(Sh = 1) as N passes through the value −1.

When the Lewis number is smaller or greater than 1, the passing of N through
the value −1 is not accompanied by the total disappearance of the flow. This
aspect is illustrated by the sequence of streamlines, isotherms, and concentration
lines displayed in Fig. 9.11. The figure shows that when N is algebraically greater
than approximately −0.85, the natural convection pattern resembles the one that
would be expected in a porous layer in which the opposing buoyancy effect is
not the dominant driving force. The circulation is reversed at N values lower
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Figure 9.9. The heat and mass transfer regimes when the buoyancy effect in the system
of Fig. 9.7 is due mainly to concentration gradients, |N | � 1 (Trevisan and Bejan,
1985).

than approximately −1.5. The flow reversal takes place rather abruptly around
N = −0.9, as is shown in Fig. 9.11b. The core, which exhibited temperature and
concentration stratification at N values sufficiently above and below −0.9, is now
dominated by nearly vertical constant T and C lines. This feature is consistent
with the tendency of both Nu and Sh to approach their pure diffusion limits (e.g.,
Fig. 9.10).

A compact analytical solution that documents the effect of N on both Nu and Sh
was developed in a subsequent paper by Trevisan and Bejan (1986). This solution
is valid strictly for Le = 1 and is based on the constant-flux model according to
which both sidewalls are covered with uniform distributions of heat flux and mass
flux. The overall Nusselt number and Sherwood number expressions for the high
Rayleigh number regime (distinct boundary layers) are

Nu = Sh = 1

2

(
H

L

)1/5

Ra∗2/5(1 + N )2/5, (9.52)

where Ra∗ is the heat-flux Rayleigh number defined by Ra∗ = g�K H 2q ′′/	�mkm .
These theoretical Nu and Sh results agree well with numerical simulations of the
heat and mass transfer phenomenon.
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Figure 9.10. The effect of the buoyancy ratio on the overall mass transfer rate through
the enclosed porous medium shown in Fig. 9.7 (Ra = 200, H/L = 1) (Trevisan and
Bejan, 1985).

Another theoretical result has been developed by Trevisan and Bejan (1986)
for the large Lewis numbers limit in heat transfer driven flows (|N | � 1). In this
limit the concentration boundary layer can be described by means of a similarity
solution, leading to the following expression for the overall Sherwood number:

Sh = 0.665

(
L

H

)1/10

Le1/2Ra3/10
∗ . (9.53)

The mass flux j used in the Sh definition, Sh = j H/Dm�C , is constant, while �C
is the resulting concentration-temperature difference between the two sidewalls.
Equation (9.53) is also in good agreement with numerical experiments.

It has been shown that the constant-flux expressions (9.50) and (9.53) can be
recast in terms of dimensionless groups (Ra, Nu, Sh) that are based on temperature
and concentration differences. This was done in order to obtain approximate theo-
retical results for the configuration of Fig. 9.7, in which the sidewalls have constant
temperature and concentrations (Trevisan and Bejan, 1986). Similarly, appropri-
ately transformed versions of these expressions can be used to anticipate the Nu
and Sh values in enclosures with mixed boundary conditions, that is, constant T
and j, or constant q ′′ and C on the same wall. Numerical simulations of the con-
vective heat and mass transfer across enclosures with mixed boundary conditions
are reported by Trevisan and Bejan (1986).
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Figure 9.11. Streamlines, isotherms, and isosolutal lines for natural convection in the
enclosed porous medium of Fig. 9.7, showing the flow reversal that occurs near N = −1
(Ra = 200, Le = 10, H/L = 1). (a) N = −0.85; (b) N = −0.9; and (c) N = −1.5
(Trevisan and Bejan, 1985).

An analytical and numerical study of convection in vertical slots due to pre-
scribed heat flux at the vertical boundaries was made by Alavyoon (1993), whose
numerical results showed that of any value of Le > 1 there exists a minimum aspect
ratio A below which the concentration field in the core region is rather uniform
and above which it is linearly stratified in the vertical direction. For Le > 1 the
thermal layers at the top and bottom of the enclosure are thinner than their solutal
counterparts. In the boundary layer regime and for sufficiently large A the thick-
nesses of the vertical boundary layers of velocity, concentration, and temperature
were found to be equal. The case of opposing fluxes was studied by Alavyoon
et al. (1994). They found that at sufficiently large values of Ra, Le, and A there
is a domain of N in which one obtains oscillating convection, while outside this
domain the solution approaches steady-state convection.
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Numerical simulations based on an extension to the Brinkman model for the
case of cooperating thermal and solutal buoyancy forces in the domain of positive
N and for Le > 1 were reported by Goyeau et al. (1996a). The Brinkman model
was also employed by Mamou et al. (1998a).

The studies reviewed in this subsection are based on the homogeneous and
isotropic porous-medium model. The effect of medium heterogeneity on the heat
and mass transfer across an enclosure with constant-flux boundary conditions is
documented by Mehta and Nandakumar (1987). They show numerically that the
Nu and Sh values can differ from the values anticipated based on the homogeneous
porous-medium model.

For the case N = −1, a purely diffusive solution exists for suitable geometry
and boundary conditions. Charrier-Mojtabi et al. (1997, 1998) have studied this
case for a rectangular slot with constant temperature imposed on the side walls.
The onset of convection, for which � = Le � occurs when Ra |Le − 1| exceeds
a certain critical value, depending on the aspect ratio A. The critical value is
184.06 for a square cavity (A = 1) and 105.33 for a vertical layer of infinite
extent; the corresponding critical wavenumber has the value 2.51. For A = 1, they
also performed numerical simulations, the results of which confirmed the linear
instability results. They observed that the bifurcation to convection was of the
transcritical type and that the bifurcation diagrams indicated the existence of both
symmetrical and asymmetrical subcritical and supercritical solutions.

A numerical study for a square cavity, comparing the Darcy, Forchheimer, and
Brinkman models, was made by Karimi-Fard et al. (1997). They found that Nu and
Sh increase with Da and decrease with increase of a Forchheimer parameter. The
quadratic drag effects are almost negligible, but the boundary effect is important. A
further numerical study, for the case of opposing buoyancy effects, was reported by
Angirasa and Peterson (1997a). Effects of porosity variation were emphasized in
the numerical study by Nithiarasu et al. (1996). Three-dimensional convection in a
cubic or rectangular enclosure with opposing horizontal gradients of temperature
and concentration was studied numerically by Sezai and Mohamad (1999) and
Mohamad and Sezai (2002). A numerical treatment with a random porosity model
was reported by Fu and Ke (2000).

The various studies for the case N = −1 have demonstrated that there exists a
threshold for the onset of monotonic convection, such that oscillatory convection
occurs in a narrow range of values of Le (close to 1, applicable for many gases)
depending on the normalized porosity. For the case of an infinite layer, the wave-
length at the onset of stationary convection is independent of the Lewis number
but this is not so for overstability. When the Lewis number is close to unity the
system remains conditionally stable provided that the normalized porosity is less
than unity. For a vertical enclosure with constant heat and solute fluxes, the partic-
ular case N = −1 + ε case (where ε is a very small positive number) was studied
by Amahmid et al. (2000). In this situation multiple unicellurar convective flows
are predicted.

A non-Newtonian fluid was studied theoretically and numerically by Getachew
et al. (1998) and by Benhadji and Vasseur (2003). An electrochemical experimental
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method was demonstrated by Chen et al. (1999). An inverse method, leading to
the determination of an unknown solute concentration on one wall given known
conditions for temperature and concentration on the remaining faces, was reported
by Prud’homme and Jiang (2003). A numerical study of the effect of thermal
stratification on convection in a square enclosure was made by Ratish Kumar et al.
(2002).

Analytical and numerical studies of convection in a vertical layer were reported
by Amahmid et al. (1999b,c, 2000, 2001), Bennacer et al. (2001b), Mamou et al.
(1998a) and Mamou (2002a). The effect of evaporation was added by Asbik et al.
(2002) in their numerical treatment. Convection in a square cavity, or a horizontal
layer with the Soret effect included, under crossed heat and mass fluxes was studied
analytically and numerically by Bennacer et al. (2001a, 2003b). Convection in
a vertically layered system, with a porous layer between two clear layer, was
studied by Mharzi et al. (2000). Anisotropic cavities were studied analytically and
numerically by Tobbal and Bennacer (1998). Bera et al. (1998, 2000), and Bera and
Khalili (2002a). Three algebraic analytical solutions were presented by Cai et al.
(2003).

9.2.3. Transient Effects

Another basic configuration in which the net heat and mass transfer occurs in the
horizontal direction is the time-dependent process that evolves from a state in which
two (side-by-side) regions of a porous medium have different temperatures and
species concentrations. In time, the two regions share a counterflow that brings
both regions to a state of thermal and chemical equilibrium. The key question
is how parameters such as N, Le, and the height-length ratio of the two-region
ensemble affect the time scale of the approach to equilibrium. These effects have
been documented both numerically and on the basis of scale analysis by Zhang
and Bejan (1987).

As an example of how two dissimilar adjacent regions come to equilibrium by
convection, Fig. 9.12 shows the evolution of the flow, temperature, and concentra-
tion fields of a relatively high Rayleigh number flow driven by thermal buoyancy
effects (N = 0). As the time increases, the warm fluid (initially on the left-hand
side) migrates into the upper half of the system. The thermal barrier between the
two thermal regions is smoothed gradually by thermal diffusion. Figures 9.12c and
9.12d show that as the Lewis number decreases the sharpness of the concentra-
tion dividing line disappears, as the phenomenon of mass diffusion becomes more
pronounced.

−→
Figure 9.12. The horizontal spreading and layering of thermal and chemical deposits
in a porous medium (N = 0, Ra = 1000, H/L = 1, �/� = 1). (a) Streamlines;
(b) isotherms, or isosolutal lines for Le = 1; (c) isosolutal lines for Le = 0.1; and
(d) isosolutal lines for Le = 0.01 (Zhang and Bejan, 1987).
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In the case of heat transfer driven flows, the time scale associated with the end
of convective mass transfer in the horizontal direction is

t̂ = �

�

(
L

H

)2

Ra−1 if LeRa >
�

�

(
L

H

)2

, (9.54)

t̂ = �

�

(
L

H

)2

Le if LeRa <
�

�

(
L

H

)2

. (9.55)

The dimensionless time t̂ is defined as

t̂ = �mt

� H 2
. (9.56)

Values of t̂ are listed also on the side of each frame of Fig. 9.12. The time criteria
(9.54)–(9.56) have been tested numerically along with the corresponding time
scales for approach to thermal equilibrium in either heat transfer driven or mass
transfer-driven flows.

The transient problem for the case of a vertical plate, with a simultaneous step
change in wall temperature and wall concentration, was treated numerically using
a Brinkman-Forchheimer model by Jang et al. (1991). They found that the time
to reach steady state decreases with increase of Da or magnitude of the buoyancy
ratio N, increases with increase of the inertia coefficient cF , and passes through a
minimum as Le increases through the value 1. Earlier Pop and Herwig (1990) had
shown that when just the concentration was suddenly changed at an isothermal
vertical plate, the local Sherwood number decreases with time and approaches its
steady-state value. Cheng (2000b) analyzed a problem involving transient heat and
mass transport from a vertical plate on which the temperature and concentration
are power functions of the streamwise coordinate.

9.2.4. Stability of Flow

The stability of the steady Darcy flow driven by differential heating of the isother-
mal walls bounding an infinite vertical slab with a stabilizing uniform vertical
salinity gradient was studied independently by Gershuni et al. (1976, 1980) and
Khan and Zebib (1981). Their results show disagreement in some respects. We
believe that Gershuni et al. are correct. The flow is stable if |RaD| is less than
RaD1 = 2.486 and unstable if |RaD| > RaD1. The critical wavenumber �c is zero
for RaD1 < | RaD| < RaD2 where RaD2 ≈ 52 for the case N = 100, � = 1, and
nonzero for |RaD| > RaD2. As |RaD| → ∞; either monotonic or oscillatory insta-
bility can occur depending on the values of N and �. If, as in the case of aqueous
solutions, N and N/� are fairly large and of the same order of magnitude, then
monotonic instability occurs and the critical values are

Rac = 2π1/2

|N − 1| |RaD|3/4 , �c =
(π

2

)1/2 |RaD|1/4 . (9.57)

Mamou et al. (1995a) have demonstrated numerically the existence of multiple
steady states for convection in a rectangular enclosure with vertical walls. Mamou



9.3. Concentrated Heat and Mass Sources 395

et al. (1995b) studied analytically and numerically convection in an inclined slot.
Again multiple solutions were found.

Two-dimensional convection produced by an endothermic chemical reaction
and a constant heat flux was examined by Basu and Islam (1996). They identified
various routes to chaos. The onset of convection in a rectangular cavity with bal-
anced heat and mass fluxes applied to the vertical walls was analyzed by Marcoux
et al. (1999a). An analytical and numerical study of a similar situation was reported
by Mamou et al. (1998d).

9.3. Concentrated Heat and Mass Sources

9.3.1. Point Source

Poulikakos (1985a) considered the transient flow as well as the steady flow near
a point source of heat and mass in the limit of small Rayleigh numbers based on
the heat source strength q[W], R̃a = g�K q/	�mkm . The relative importance of
thermal and solutal buoyancy effects is described by the “source buoyancy ratio”

Ns = �C m/Dm

�q/km
, (9.58)

in which m[kg/s] is the strength of the mass source.
Figure 9.13 shows Poulikakos’ (1985a) pattern of streamlines for the time-

dependent regime. The curves correspond to constant values of the special group

Figure 9.13. The time-dependent flow field around a suddenly placed point source of
heat and mass (A = 1) (Poulikakos, 1985a, with permission from Pergamon Press).
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ψ∗t−1/2
∗ (1 − Ns), in which

ψ∗ = ψ
�m

K −1/2, t∗ = �mt

�K
, (9.59)

and where ψ[m3/s] is the dimensional streamfunction. The radial coordinate � is
defined by

� = r

2

(
�

�mt

)1/2

, (9.60)

showing that the flow region expands as t1/2. Figure 9.13 represents the special
case A = 1, where A is shorthand for

A =
( �

�
Le

)1/2
. (9.61)

Poulikakos (1985a) showed that the A parameter has a striking effect on the flow
field in cases where the two buoyancy effects oppose one another (Ns > 0 in his
terminology). Figure 9.14 illustrates this effect for the case N = 0.5 and A = 0.1;
when A is smaller than 1, the ring flow that surrounds the point source (seen also

Figure 9.14. The effect of a small Lewis number (or small A) on the transient flow near a
point source of heat and mass (N = 0.5, A = 0.1) (Poulikakos, 1985a, with permission
from Pergamon Press).
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Figure 9.15. The steady-state flow near a point source of heat and mass (R̃a = 5,
Le = 1), and the effect of the source buoyancy ratio (Poulikakos, 1985a, with per-
mission from Pergamon Press).

in Fig. 9.13) is engulfed by a far-field unidirectional flow. The lines drawn on
Fig. 9.14 correspond to constant values of the group 2πψ∗t−1/2

∗ .
In the steady state and in the same small-R̃a limit, the flow, temperature, and

concentration fields depend only on R̃a, Ns , and Le. Figure 9.15 shows the mi-
gration of one streamline as the buoyancy ratio Ns increases from −0.5 to 0.5,
that is, as the buoyancy effects shift from a position of cooperation to one of com-
petition. When the buoyancy effects oppose one another, N = 0.5, the vertical
flow field is wider and slower. The curves drawn in Fig. 9.15 correspond to ψ∗ =
RaR∗/8π, where R∗ = R/K 1/2 and R is a reference radial distance. Asymptotic
analytical solutions for the steady-state temperature and concentration fields also
are reported by Poulikakos (1985a). Ganapathy (1994a) treated the same problem
using the Brinkman model. For the case of large Rayleigh numbers, a bound-
ary layer analysis was carried out by Nakayama and Ashizawa (1996). They
showed that for large Le the solute diffuses some distance from the plume cen-
terline and the mass transfer influences both velocity and temperature profiles
over a wide range. For large Le the solute diffuses within a narrow region
along the centerline. A strongly peaked velocity profile then appears for posi-
tive buoyancy ratio N, while a velocity defect emerges along the centerline for
negative N.
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A finite element model for a leaking third species migration from a heat source
buried in a porous medium was demonstrated by Nithiarasu (1999). An inverse
problem, the determination from temperature measurement of an unknown volu-
metric heat source that is a function of the solute concentration, was discussed by
Prud’homme and Jasmin (2003) and Jasmin and Prud’homme (2005). Hill (2005)
has considered the linear and nonlinear stability of a layer in which there is a
concentration-dependent internal volumetric heat source.

9.3.2. Horizontal Line Source

The corresponding heat and mass transfer processes in the vicinity of a horizontal
line source were analyzed by Larson and Poulikakos (1986). The source buoyancy
ratio in this case is

N ′
s = �C m ′/Dm

�q ′/km
, (9.62)

where q ′ [W/m] and m ′ [kg/m/s] are the heat and mass source strengths. All the
features described in the preceding sections also are present in the low Rayleigh
number regime of the line source configuration. The Rayleigh number for the line
source is based on the heat source strength q ′,

R̂a = g�K 3/2q ′

	�mkm
. (9.63)

In addition to developing asymptotic solutions for the transient and steady states,
Larson and Poulikakos (1986) illustrated the effect of a vertical insulated wall
situated in the vicinity of the horizontal line source. An analysis using the Brinkman
model was reported by Ganapathy (1994b).

The high Rayleigh number regime was studied by Lai (1990a). He obtained a
similarity solution and made calculations for a range of Le and N values. For the
special case Le = 1 he obtained a closed form solution analogous to that given by
Eqs. (5.192)–(5.196). The study of Nakayama and Ashizawa (1996) mentioned in
the previous section covered the case of a line source also.

9.4. Other Configurations

The double-diffusive case of natural convection over a sphere was analyzed by
Lai and Kulacki (1990a), while Yücel (1990) has similarly treated the flow over
a vertical cylinder and Lai et al. (1990b) the case of a slender body of revolution.
Non-Darcy effects on flow over a two-dimensional or axisymmetric body were
treated by Kumari et al. (1988a,b), and Kumari and Nath (1989c,d) have dealt
with the case where the wall temperature and concentration vary with time. A nu-
merical study of convection in an axisymmetric body was reported by Nithiarasu et
al. (1997b). Flow over a horizontal cylinder, with the concentration gradient being
produced by transpiration, was studied by Hassan and Mujumdar (1985). Natural
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convection in a horizontal shallow layer induced by a finite source of chemical
constituent was given a numerical treatment by Trevisan and Bejan (1989). Con-
vection in a vertical annulus was studied analytically and numerically by Marcoux
et al. (1999b); numerically by Beji et al. (1999), who analyzed the effect of cur-
vature on the value of N necessary to pass from clockwise to anticlockwise rolls;
and Bennacer (2000). The effect of thermal diffusion for this case was studied
numerically and analytically by Bennacer and Lakhal (2005). An analytical and
numerical study of the separation of the components in a binary mixture in a ver-
tical annulus with uniform heat fluxes at the walls was conducted by Bahloul et
al. (2004b). Convection in a partly porous vertical annulus was studied numeri-
cally by Benzeghiba et al. (2003). A problem involving a vertical enclosure with
two isotropic or anisotropic porous layers was studied numerically by Bennacer et
al. (2003a), while convection in a partly filled rectangular enclosure was studied
numerically by Goyeau and Gobin (1999), Singh et al. (1999), and Younsi et al.
(2001).

The onset of convection in an inclined layer has been studied using linear stability
analysis numerically by Karimi-Fard et al. (1998, 1999), who obtained parameter
ranges for which the first primary bifurcation is a Hopf bifurcation (oscillatory
convection). The same problem was studied numerically by Mamou et al. (1998c)
and Mamou (2004) using a finite element method and by Chamkha and Al-Naser
(2001) using a finite-difference method.

The composite fluid layer over a porous substrate was studied theoretically by
Chen (1990), who extended to a range of Ram [the thermal Rayleigh number in
the porous medium as defined in Eq. (6.167)], the calculations initiated by Chen
and Chen (1988) for the salt-finger situation. For small Ram (= 0.01) there is
a jump in �c as the depth ratio d̂ = d f /dm increases (the jump is fivefold as d̂
increases between 0.2 and 0.3). For large Ram(= 1) there is no sudden jump.
Convection occurs primarily in the fluid layer if d̂ is sufficiently large. When
this is so, multicellular convection occurs for sufficiently large Ram . The cells are
superposed and their number increases with increase of Ram . For d̂ < 0.1, the
critical RaDm (the solutal Rayleigh number for the porous medium layer) and �cm

decrease as d̂ increases, but when multicellular convection occurs the critical RaDm

remains almost constant as d̂ is increased for fixed Ram . Zhao and Chen (2001)
returned to the same problem but used a one-equation model rather than a two-
equation model. They found that the two models predicted quantitative differences
in the critical conditions and flow streamlines at the onset of convection, and they
noted that carefully conducted experiments were needed to determine which model
gave the more realistic results.

Goyeau et al. (1996b) studied numerically for N > 0 the effect of a thin layer of
low permeability medium, which suppresses the convective mass transfer. Further
numerical studies were reported by Gobin et al. (1998, 2005).

Transient double-diffusive convection in a fluid/porous layer composite was
studied by Kazmierczak and Poulikakos (1989, 1991) numerically and then ex-
perimentally. The system considered was one containing a linear stabilizing salt
distribution initially and suddenly heated uniformly from below at constant flux.
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In the experiments it was possible to visually observe the flow in the fluid layer
but not in the porous layer. In all the experiments d̂ = 1, and most of the convec-
tive flow took place in the fluid layer. In general, a series of mixed layers formed
in turn, starting with one just above the porous layer as time increased, as one
would expect if the porous matrix was absent. A corresponding numerical study,
with the system cooled through its top boundary (adjacent to the solid layer), was
conducted by Rastogi and Poulikakos (1993). A numerical study involving two
layers of contrasting permeabilities was conducted by Saghir and Islam (1999).
A transient problem involving double-diffusive convection from a heated cylinder
buried in a saturated porous medium was studied numerically by Chaves et al.
(2005).

An experimental study with a clear liquid layer below a layer at porous medium
was performed by Rastogi and Poulikakos (1997). They took the initial species
concentration of the porous layer to be linear and stable and that in the clear fluid
uniform and the system initially isothermal and then cooled from above.

Sandner (1986) performed experiments, using salt water and glass beads in
a vertical cylindrical porous bed. In his experiments the salt concentration was
initially uniform. When the system was heated at the bottom, a stabilizing salinity
gradient developed, due to the Soret effect. Some related work is discussed in
Section 10.5.

Natural convection in an anisotropic trapezoidal enclosure was studied numeri-
cally by Nguyen et al. (1997a). A forced convection flow around a porous medium
layer placed downstream on a flat plate was studied numerically and experimen-
tally by Lee and Howell (1991). Convection in a parallelogramic enclosure was
studied numerically by Costa (2004). A transient problem, involving a smaller
rectangular cavity containing initially cold fresh fluid located in the corner of a
larger one containing hot salty fluid, was studied numerically by Saghir (1998).

9.5. Inclined and Crossed Gradients

The effects of horizontal gradients on thermosolutal stability, for the particular case
where the horizontal thermal and solutal gradients compensate each other as far as
density is concerned, was studied theoretically by Parvathy and Patil (1989) and
Sarkar and Phillips (1992a,b). The more general case for arbitrary inclined thermal
and solutal gradients was treated by Nield et al. (1993) and independently but in
a less detailed manner by Parthiban and Patil (1994). Even when the gradients are
coplanar the situation is complex. The effect of the horizontal gradients may be to
either increase or decrease the critical vertical Rayleigh number, and the favored
mode may be oscillatory or nonoscillatory and have various inclinations to the
plane of the applied gradients according to the signs of the gradients. The horizontal
gradients can cause instability even in the absence of any vertical gradients. The
noncoplanar case was also treated by Nield et al. (1993). A nonlinear stability
analysis was presented by Guo and Kaloni (1995a). Their main theorem was
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proved for the coplanar case. Kaloni and Qiao (2000) extended this analysis to the
case of horizontal mass flow. A linear instability analysis for the extension where
there is net horizontal mass flow was reported by Manole et al. (1994).

The case of horizontal temperature and vertical solutal gradients was investi-
gated numerically by Mohamad and Bennacer (2001, 2002) and both analytically
and numerically by Kalla et al. (2001b). Bennacer et al. (2004, 2005) analyzed
convection in a two-layer medium with the lower one thermally anisotropic and
submitted to a uniform horizontal heat flux and a vertical mass flux.

Mansour et al. (2004) studied numerically the Soret effect on multiple solutions
in a square cavity with a vertical temperature gradient and a horizontal concentra-
tion gradient. Bourich et al. (2004a) showed that the multiplicity of solutions is
eliminated if the buoyancy ratio N exceeds some critical value that depends on Le
and Ra. A similar problem with a partly heated lower wall was treated by Bourich
et al. (2004b). A vertical slot heated from below and with horizontal concentration
gradients was studied analytically and numerically by Bahloul et al. (2004a).

9.6. Mixed Double-Diffusive Convection

Similarity solutions also can be obtained for the double-diffusive case of Darcy
mixed convection from a vertical plate maintained at constant temperature and con-
centration (Lai, 1991a). The relative importance of buoyancy and forcing effects
is critically dependent on the values of Le and N. Kumari and Nath (1992) stud-
ied convection over a slender vertical cylinder, with the effect of a magnetic field
included. Another study of mixed convection was made by Yücel (1993). Darcy-
Forchheimer convection over a vertical plate was studied by Jumar et al. (2001),
and a similar problem with double dispersion was analyzed by Murthy (2000).
For convection about a vertical cylinder, the entire mixed convection regime was
covered by Yih (1998g). The effect of transpiration on mixed convection past a
vertical permeable plate or vertical cylinder was treated numerically by Yih (1997,
1999h). For thermally assisted flow, suction increases the local surface heat and
mass transfer rates. Mixed convection in an inclined layer has been analyzed by
Rudraiah et al. (1987).

Mixed convection over a vertical plate, a wedge, or a cone with variable wall tem-
perature and concentration was analyzed by Yih (1998c,f, 1999b,c, 2000b). Similar
studies for MHD convection and a vertical plate were reported by Chamkha and
Khaled (1999, 2000a,b) and Chamkha (2000). The effects of variable viscosity and
thermal conductivity on mixed convection over a wedge, for the cases of uniform
heat flux and uniform mass flux, were analyzed by Hassanien et al. (2003a). The
influence of lateral mass flux on mixed convection over inclined surfaces was ana-
lyzed by Singh et al. (2002). Mixed convection over a vertical plate with viscosity
variation was analyzed by Chamkha and Khanafer (1999). The case of a vertical
plate with transverse spatially periodic suction that produces a three-dimensional
flow was analyzed by Sharma (2005).
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A numerical study of mixed convection with opposing flow in a rectangular
cavity with horizontal temperature and concentration gradients was reported by
Younsi et al. (2002a,b), who noted that for a certain combination of Ra, Le, and N
values the flow has a multicellular structure. Mixed convection driven by a moving
lid of a square enclosure was studied numerically by Khanafer and Vafai (2002) for
the case of insulated vertical walls and horizontal at different constant temperature
and concentration.



10
Convection with Change of Phase

In the examples of forced and natural convection discussed until now, the fluid
that flowed through the pores did not experience a change of phase, no matter how
intense the heating or cooling effect. In the present chapter we turn our attention to
situations in which a change of phase occurs, for example, melting or evaporation
upon heating and solidification or condensation upon cooling. These convection
problems constitute a relatively new and active area in the field of convection in
porous media.

10.1. Melting

10.1.1. Enclosure Heated from the Side

The first analysis of melting dominated by natural convection in a porous matrix
saturated with a phase-change material and heated from the side was performed by
Kazmierczak et al. (1986). Their study was based on a simple model in which (a)
the liquid flow was assumed to be slow enough to conform to the Darcy regime,
and (b) the melting front that separates the region saturated with solid from the
region saturated with liquid was modeled as a surface (i.e., as a region of zero
thickness and at the melting point).

These modeling assumptions also have been made in the simplest studies of the
geometry illustrated in Fig. 10.1 (Jany and Bejan, 1988a), in which the porous
medium is confined by an impermeable boundary and is heated through one of
its side walls. On the problem considered by Kazmierczak et al. (1986) we will
focus in Section 10.1.5, because that problem is in one way more general than the
configuration addressed in this section.

Consider the two-dimensional system illustrated schematically in Fig. 10.1.
Initially, the walls are all insulated and the cavity is filled with porous medium
(PM) and phase change material (PCM) in the solid state, both at the fusion
temperature T f . For times t = 0 the left vertical wall is heated and maintained at
constant temperature, Tw, so that Tw > T f . In the domain occupied by liquid PCM
the conservation of mass, momentum, and energy is governed by the equations

∂u

∂x
+ ∂v

∂y
= 0, (10.1)

u = − K

�

∂ P

∂x
, (10.2)
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Figure 10.1. Melting in a two-dimensional porous medium heated from the side (after
Jany and Bejan, 1988a).

v = − K

�

(
∂ P

∂y
+ 
g

[
1 − �(T − T f )

])
, (10.3)

�
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= �m

(
∂2T

∂x2
+ ∂2T

∂y2

)
. (10.4)

Equations (10.1)–(10.2) are based on the following assumptions: (1) two-
dimensional flow, (2) Darcy flow model [see also assumption (a) above], (3) lo-
cal thermodynamic equilibrium between PCM and PM, (4) negligible viscous
dissipation, (5) isotropic PM, and (6) constant thermophysical properties, with
the exception of the assumed linear relation between density and temperature in
the buoyancy term of Eq. (10.3) (the Oberbeck-Boussinesq approximation). The
boundary conditions for Eqs. (10.1)–(10.4) are:

y = 0; y = H : v = 0,
∂T

∂y
= 0, (10.5)

x = 0 : u = 0, T = Tw, (10.6)

x = L : u = 0,
∂T

∂x
= 0, (10.7)

x = s(<L) : u = 0, T = T f , (10.8)

∂s

∂t
= −�mcP

hs f

(
∂T

∂x
− ∂s

∂y

∂T

∂y

)
, (10.9)

where hs f is the latent heat of melting of the phase-change material. Equation
(10.9) represents the energy balance at the interface between the liquid and solid
saturated regions, while neglecting the difference between the densities of liquid
and solid at the melting point.

The melting process was simulated numerically by Jany and Bejan (1988a),
based on the streamfunction formulation u = ∂ψ/∂y, v = −∂ψ/∂x and in terms
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of the following dimensionless variables:

� = T − T f

Tw − T f
, X = x

H
, Y = y

H
, (10.10)

S = s

H
, U = u

H

�m
, V = v

H

�m
, (10.11)

� = �

�m
, Fo = �mt

H 2
. (10.12)

The transformed, dimensionless equations involve the Fourier number Fo, the
aspect ratio L/H , and the Rayleigh and Stefan numbers defined below,

Ra = g�KH (Tw − T f )

	�m
, Ste = cP (Tw − T f )

hs f
(10.13)

They assumed that in the case of small Stefan numbers the interface moves rel-
atively slowly, so that ∂S/∂Fo � U, V . Therefore, it was reasonable to assume
that the liquid flow is not disturbed by the interface motion. Said another way, the
interface motion results from a fully developed state of natural convection in the
liquid. This “quasistationary front” approximation implies a fixed melting domain
[S = S(Y )] during each time interval, hence a stepwise motion of the interface. De-
tails of the finite-difference numerical procedure are presented in Jany and Bejan
(1988a,b).

Figure 10.2 shows the evolution of the melting front in a square cavity. Because
of the quasistationary front assumption, the Stefan and Fourier numbers appear
always as a product, Ste Fo. The two-graph sequence of Fig. 10.2 illustrates the
strong influence of natural convection on the melting velocity and on the melting
front shape. The deviation from the pure heat conduction (vertical interfaces)
increases with the dimensionless time (Ste Fo) and with the Rayleigh number.

The transition from a heat transfer regime dominated by conduction to one
dominated by convection is illustrated in Fig. 10.3. Isotherms are plotted for a
square domain for each of the Rayleigh numbers, 12.5 and 800. The existence of
distinct boundary layers is evident in Fig. 10.3 (right), while the nearly equidistant
isotherms of Fig. 10.3 (left) suggest a heat transfer mechanism dominated by
conduction.

For the same values of Rayleigh number, Fig. 10.4 shows the transition of the
flow field from the conduction-dominated regime to the boundary layer (convec-
tion) regime. The flow pattern is qualitatively similar to what is found in cavities
without porous matrices. However, the velocity and flow rate scales depend greatly
on the properties of the fluid-saturated porous medium. These scales are addressed
in the next subsection.

An important quantitative measure of the intensity of the flow and heat transfer
process is the overall Nusselt number, which is defined as

Nu = q ′

km(Tw − T f )
= −

∫ 1

0

(
∂�

∂ X

)
x=0

dY. (10.14)
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Figure 10.2. The evolution of the melting front (L/H = 1). Top: Ra = 12.5; bottom:
Ra = 800 (Jany and Bejan, 1988a).

The numerator in this definition, q ′, is the heat transfer rate per unit length measured
in the direction perpendicular to the (x, y) plane. The results of this calculation
are shown in Fig. 10.5 as Nu versus the time number Ste Fo for different Rayleigh
numbers and L/H = 1. The “knee” point marked on each curve represents the
first arrival of the liquid-solid interface at the right vertical wall. This figure shows
that the Nusselt number departs significantly from the pure conduction solution
(Ra = 0) as the Rayleigh number increases above approximately 50. At Ra values
of order 200 and higher, the Nu(Ste Fo) curve has a minimum at “short times,”
i.e., before the melting front reaches the right wall.

Another overall measure of the evolution of the melting process is the
melt fraction or the mean horizontal dimensionless position of the melting
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Figure 10.3. Patterns of isotherms in the melting process of Fig. 10.1 (L/H = 1). Left:
Ra = 12.5, Ste Fo = 0.125; right: Ra = 800, Ste Fo = 0.0452 (Jany and Bejan, 1988a).

front:

Sav =
∫ 1

0
S d Y. (10.15)

This quantity is also a measure of the total energy storage and is related to Nu by

d Sav

d(Ste Fo)
= Nu. (10.16)

Numerical Sav results are presented in Fig. 10.6 for a square cavity at five different
Ra values. The melting process is accelerated as Ra increases. On the other hand,
the Sav(Ste Fo) curves collapse onto a single curve as Ste Fo approaches zero.

Figure 10.4. Patterns of streamlines in the melting process of Fig. 10.1 (L/H = 1). Left:
Ra = 12.5, Ste Fo = 0.125; right: Ra = 800, Ste Fo = 0.0452 (Jany and Bejan, 1988a).
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Figure 10.5. The Nusselt number as a function of time and Rayleigh number (L/H = 1)
(Jany and Bejan, 1988a).

Similar results are revealed by calculations involving rectangular cavities.
Figure 10.7 shows the evolution of the melting front in a shallow space (L/H = 4)
for the Ra values 12.5 and 800. For example, it is evident that the Ra = 12.5 solution
represents a case dominated by conduction. Also worth noting is the severe tilting
of the liquid-solid interface during the convection-dominated case Ra = 800.

10.1.2. Scale Analysis

The numerical results have features that are similar to those encountered in the
classical problem of melting in a cavity without a porous matrix (Jany and Bejan,

Figure 10.6. The average melting front location as a function of time and Rayleigh
number (L/H = 1) (Jany and Bejan, 1988a).
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Figure 10.7. The evolution of the melting front in a shallow rectangular porous medium
(L/H = 4). Top: Ra = 12.5; bottom: Ra = 800 (Jany and Bejan, 1988a).

1988b). In the present problem it is convenient to identify first the four regimes I–IV
whose main characteristics are sketched in Fig. 10.8. The “conduction” region (I)
is ruled by pure thermal diffusion and covered by the classical Neumann solution

�(Fo) = 1 − erf(X/2Fo1/2)

erf(C)
, S(Fo) = 2CFo1/2, (10.17)

where C is the root of the equation

Cerf(C)

exp(−C2)
= Ste

π1/2
. (10.18)

The “transition” regime (II) is where the flow carves its own convection-
dominated zone in the upper part of the liquid region, while the lower part remains

Figure 10.8. The four regimes for the scale analysis of melting in a porous medium
heated from the side (Jany and Bejan, 1988a).
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ruled by conduction. The “convection” regime (III) begins when the convection-
dominated zone of the preceding regime fills the entire height H . Finally, the
arrival of the liquid-solid interface at the right vertical wall marks the beginning
of the “variable-height” regime (IV).

The scales of regimes I and II become apparent if we focus on the transition
regime II, where ztr is the height of the convection-dominated upper zone. The
boundary layer thickness scale in this upper zone is (e.g., Bejan, 1984, p. 392)

�T ∼ ztr Ra−1/2
ztr

∼ ztr

(
Ra

ztr

H

)−1/2
. (10.19)

where Raztr = g�K ztr (Tw − T f )/v�m . The convection-dominated zone is such
that at its lower extremity �T is of the same order as the width of the conduction-
dominated zone of height (H − ztr ), in other words,

ztr

(
Ra

ztr

H

)−1/2
∼ H (Ste Fo)1/2, (10.20)

which means that ztr ∼ H Ra Ste Fo.
The scale of the overall Nusselt number is obtained by adding the conduction

heat transfer integrated over the height (H − ztr ) to the convection heat transfer
integrated over the upper portion of height ztr . The result is

Nu ∼ (H − ztr )s−1 +
∫ ztr

0
�−1

T dz ∼ (Ste Fo)−1/2 + Ra(Ste Fo)1/2 (10.21)

or in terms of the average melting front location [Eqs. (10.15) and (10.16)],

Sav ∼ (Ste Fo)1/2 + Ra(Ste Fo)3/2. (10.22)

The transition regime II expires when ztr becomes of order H, i.e., at a time of
order Ste Fo ∼ Ra−1.

The most striking feature of this set of scaling results is the Nu minimum revealed
by Eq. (10.21). Setting ∂Nu/∂(SteFo) = 0, we find that the minimum occurs at a
time of order:

(Ste Fo)min ∼ Ra−1, (10.23)

and that the minimum Nusselt number scale is

Numin ∼ Ra1/2. (10.24)

The Numin scale is supported very well by the heat transfer data of Fig. 10.5, in
which the actual values obey the relationship Numin

∼= 0.54Ra1/2 in the Ra range
200–1200 (Jany and Bejan, 1988a).

In the convection regime III the heat transfer and the melting front progress are
controlled by the two thermal resistances of thickness �T ,

Nu ∼
∫ H

0
�−1

T dz ∼ Ra1/2, (10.25)

Sav ∼ Ra1/2 Ste Fo. (10.26)
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The convection regime begins at a time of order Ste Fo ∼ Ra−1 and expires when
the melting front reaches the right wall (at the “knee” points in Figs. 10.5 and 10.6).
In the entire Ra domain 12.4 – 800, the Nu/Ra1/2 ratio during the convection regime
is roughly equal to 0.5. It is interesting that the value of Nu/Ra1/2 is extremely
close to what we expect in the convection regime in a rectangular porous medium,
namely 0.577 (Weber, 1975b).

The scales of melting and natural convection during the variable-height regime
IV are discussed in Jany and Bejan (1988a).

10.1.3. Effect of Liquid Superheating

In this section we review a theoretical solution to the problem of melting in the
presence of natural convection in a porous medium saturated with a phase-change
material (Bejan, 1989). The porous medium is held in a rectangular enclosure,
which is being heated from the side (Fig. 10.9 or Fig. 10.1). The porous medium
is initially saturated with solid phase-change material; its initial temperature is
uniform and equal to the melting point of the phase-change material. The heating
from the side consists of suddenly raising the side wall temperature and maintaining
it at a constant level above the melting point.

We begin with the analysis of the convection-dominated regime. The main
features of the temperature distribution in the liquid space are the two distinct

Figure 10.9. The boundary layer regime in the melt region of a porous medium heated
from the right (Bejan, 1989).
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boundary layers that line the heated wall and the solid-liquid interface. The core
region of the liquid space is thermally stratified: its temperature is represented by
the unknown function Tc(y). The horizontal boundary layers that line the top and
bottom walls and the details of the flow in the four corners are being neglected.

The analysis consists of first obtaining temperature and flow field solutions for
the two vertical boundary layer regions and then meshing these solutions with a
third (unique) solution for the core region. The key results of the analytical solution
are

�̃ = A(1 − τ)(1 + τ2Ste)−1/2, (10.27)

λ̃ = Aτ(1 + τ2Ste)−1/2, (10.28)

ỹ = A2

4Ste

[
τ(1 + τ Ste)

1 + τ2 Ste
− tan−1(τ Ste1/2)

Ste1/2

]
, (10.29)

where A depends only on the Stefan number,

A = 2 Ste1/2

[
1 − tan−1(Ste1/2)

Ste1/2

]−1/2

. (10.30)

The dimensionless variables �̃, λ̃, and τ represent the thickness of the cold boundary
layer, the thickness of the warm boundary layer, and the temperature in the core
region (cf. Fig. 10.9),

(�̃, λ̃) = (�, λ)

H
Ra1/2, (10.31)

τ = Tc − Tm

�T
, ỹ = y

H
. (10.32)

The left-hand side of Fig. 10.10 shows the solution obtained for the cold bound-
ary layer thickness. The function �̃(ỹ) increases monotonically in the flow direction
(downward); its bottom value �̃(0) is finite. The cold boundary layer thickness in-
creases substantially as the Stefan number increases.

Figure 10.11 illustrates the manner in which the core temperature distribution
responds to changes in the Stefan number. The core temperature distribution is
symmetric about the midheight level only when Ste = 0. The core temperature
decreases at all levels as Ste increases above zero. Said another way, the average
core temperature in the melting and natural convection problem (finite Ste) is
always lower than the average core temperature in the pure natural convection
problem (Ste = 0).

The thickness of the warm boundary layer has been plotted on the right-hand
side of Fig. 10.10. We learn in this way that the warm boundary layer becomes
thinner as the Stefan number increases. The Ste effect on the warm layer, however,
is less pronounced than on the boundary layer that descends along the solid-liquid
interface.

The useful feature of this analytical solution is the ability to predict the rate at
which the melting and natural convection process draws heat from the right wall
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Figure 10.10. The thicknesses of the cold (left) boundary layer and the warm (right)
boundary layer (Bejan, 1989).

of the system. This heat transfer rate through the right-hand side of Fig. 10.9 is

qr
′ = km

∫ H

0

(
∂T

∂x

)
xr =0

dy (10.33)

or, as an overall Nusselt number,

Nur = q ′
r

km�T
= Ra1/2 Fr (Ste) (10.34)

with

Fr =
∫ 1

0

1 − τ

λ̃
d ỹ = Ste3/4[

Ste1/2 − tan−1(Ste1/2)
]1/2

×
{

(Ste − 1)(Ste + 1)1/2 − 2Ste

Ste(Ste + 1)
+ Ste−3/2 ln

[
Ste1/2 + (Ste + 1)1/2

]}
.

(10.35)
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Figure 10.11. The core temperature distribution in the boundary layer regime (Bejan,
1989).

The approximate proportionality Nur ∼ Ra1/2 that is revealed by Eq. (10.34) is
expected from the scale analysis shown in the preceding section. The new aspect un-
veiled by the present solution is the effect of the Stefan number. Representative Fr

values constitute the top curve in Fig. 10.12. These values show that the heat transfer
rate in the quasisteady regime increases gradually as the Stefan number increases.

One quantity of interest on the cold side of the liquid-saturated region is the
overall heat transfer rate into the solid-liquid interface,

q ′ = km

∫ H

0

(
∂T

∂x

)
x=0

dy (10.36)

or the left-hand side Nusselt number

Nu = q ′

km�T
= Ra1/2 F(Ste) (10.37)

with

F =
∫ 1

0

τ

�̃
d ỹ = Ste−3/4[

Ste1/2 − tan−1(Ste1/2)
]1/2

×
{

ln
[
Ste1/2 + (Ste + 1)1/2

] −
(

Ste

Ste + 1

)1/2
}

.

(10.38)

The behavior of F(Ste) is illustrated in Fig. 10.12. We see that the left-hand side
Nusselt number decreases dramatically as the Stefan number increases.

In summary, the effect of increasing the Stefan number is to accentuate the
difference between the heat transfer administered to the right wall (Nur ) and the
heat transfer absorbed by the solid-liquid interface (Nu). The difference between
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Figure 10.12. The effect of liquid superheating on melting in the convection-dominated
regime (Bejan, 1989).

the two heat transfer rates is steadily being spent on raising the temperature of the
newly created liquid up to the average temperature of the liquid-saturated zone.

Another quantity that can be anticipated based on this theory is the average melt-
ing rate. Writing u0 for the local rate at which the solid-liquid interface migrates
to the left in Fig. 10.9 and ũ0 for the nondimensional counterpart,

ũ0 = u0

�m/H
Ra−1/2 = Ste

τ

�̃
(10.39)

leads to

ũ0,a	 = Ste
∫ 1

0

τ

�̃
d ỹ = SteF. (10.40)

The function ũ0,av depends only on the Stefan number, as is shown by Fig. 10.12.
In closing, it is worth commenting on the use of (1 + Ste) as abscissa in

Fig. 10.12. This choice has the effect of making the F and Fr curves appear nearly
straight in the logarithmic plane, improving in this way the accuracy associated
with reading numerical values directly off Fig. 10.12. This observation leads to
two very simple formulas,

Fr
∼= 3−1/2(1 + 1.563 Ste)0.107 (10.41)

F ∼= 3−1/2(1 + 0.822 Ste)−0.715, (10.42)
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Figure 10.13. Combined conduction and convection during the earliest stages of melting
due to heating from the side (Bejan, 1989).

which approach within 0.5 percent the values calculated based on Eqs. (10.35) and
(10.38).

In the very beginning of the melting process the liquid-saturated region is in-
finitely slender and the heat transfer mechanism is that of pure conduction. With
reference to the slender liquid zone sketched in Fig. 10.13, the history of the
thickness X is described by the well-known Neumann solution [Eqs. (10.17) and
(10.18)], which can be written here as

X = 2�(�m f )1/2,
exp(−�2)

erf(�)
= π1/2 �

Ste
. (10.43)

According to the same solution, the excess temperature of the liquid-saturated
porous medium depends on t and x1 (and not on y), where x1 is chosen such that it
increases toward the left in Fig. 10.13 (note that here T = 0 on the melting front),

T = �T

[
1 − 1

erf(�)
erf

x1

2(�mt)1/2

]
. (10.44)

The overall heat transfer rate delivered through the heated wall (q ′
r , or Nur ) is also

well known. For example, in the limit Ste = 0 the overall Nusselt number decays
as

Nur = 2−1/2τ−1/2, τ = �mt

H 2
Ste. (10.45)
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Bejan (1989) showed that it is possible to develop an analytical transition from
the short-times Nusselt number (10.45) to the long-times expression of the quasi-
steady regime (10.34). In other words, it is possible to develop a heat transfer
theory that holds starting with τ = 0 and covers the entire period during which the
heat transfer mechanism is, in order, pure conduction, conduction and convection,
and finally convection.

This theoretical development is based on the observation that even in the limit
τ → 0 when the liquid region approaches zero thickness, there is liquid motion in
the liquid saturated region. The incipient convective heat transfer contribution is

q ′
c =

∫ X

0

c f vT dx = 
c f

g�K�T

	
�T X B, (10.46)

where the function B(Ste) is the integral

B(Ste) =
∫ 1

0

[∫ �

0 erf(m)dm

�erf(�)
− erf(n�)

erf(�)

] [
1 − erf(n�)

erf(�)

]
dn. (10.47)

This function was evaluated numerically. In the conduction regime the effect of
q ′

c on the overall heat transfer rate is purely additive, because the top and bottom
ends of the liquid-zone temperature field (the only patches affected by the flow
are negligible in height when compared with the rest of the system (height H).
Therefore, the instantaneous total heat transfer rate through the right wall is

q ′
r = km H

(
− ∂T

∂x1

)
x1=0

+ q ′
c (10.48)

where the first term on the right-hand side accounts for the dominant conduc-
tion contribution. Employing the Nur notation defined in Eq. (10.34), expression
(10.48) translates into

Nur = G0τ
−1/2 + Gc Ra τ1/2. (10.49)

The functions G0 and Gc depend only on the Stefan number,

G0 = Ste1/2

π1/2erf(�)
, Gc = 2�BSte−1/2, (10.50)

and are presented in Fig. 10.14. The Stefan number has a sizeable effect on both
G0 and Gc. For fixed values of τ and Ra, the effect of increasing the Stefan number
is to diminish the relative importance of the convection contribution to the overall
Nusselt number.

In view of the reasoning on which Eq. (10.49) is based, we must keep in mind
that this Nur expression cannot be used beyond the moment τ when the second
(convection) term begins to outweigh the first (conduction) term. This condition,

G0τ
−1/2 > GcRa τ1/2, (10.51)
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Figure 10.14. The effect of liquid superheating on the combined conduction and con-
vection regime (Bejan, 1989).

yields the following time criterion for the domain of validity of Eq. (10.49),

τRa <
G0

Gc
, (10.52)

The solid lines of Fig. 10.15 show the Nusselt number history predicted by
Eq. (10.49) all the way up to the time limit (10.52). That limit, or the point of
expiration of each solid curve, is indicated by a circle. Plotted on the ordinate is
the group Nur Ra−1/2: this group was chosen in order to achieve a Ra correlation
of the Nusselt number in the convection limit.

The horizontal dash lines of Fig. 10.15 represent the Nusselt number values that
prevail at long times in the boundary layer regime, Eq. (10.34). It is remarkable
that two different and admittedly approximate theories [Eqs. (10.34) and (10.49)]
provide a practically continuous description for the time variation of the overall
Nusselt number. Only when Ste increases above 5 does a mismatch of a few
percentage points develop between the Nur Ra−1/2 values predicted by the two
theories at the transition time (10.52).

10.1.4. Horizontal Liquid Layer

In the convection-dominated regime, the melting front acquires a characteristic
shape, the dominant feature of which is a horizontal layer of melt that grows along
the top boundary of the phase-change system. The slenderness of the horizontal
layer increases with the time and Rayleigh number (Figs. 10.2–10.4, 10.7).

With these images in mind, the liquid-saturated region can be viewed as the
union of two simpler regions, an upper zone that is a horizontal intrusion layer and
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Figure 10.15. The evolution of the Nusselt number during the conduction, mixed, and
convection regimes (Bejan, 1989).

a lower zone that houses a vertical counterflow (as in Fig. 10.9). These two zones
are labeled A2 and A1 in Fig. 10.16.

It is possible to describe the shape and propagation of the horizontal intrusion
layer by means of a similarity solution of the boundary layer type (Bejan et al.,
1990). In addition to the features of the Darcy flow model described in Section
10.1.1, this similarity solution was based on the assumption that the depth of the
intrusion layer (�) is considerably smaller than the distance of horizontal penetra-
tion of the leading edge (L). The melting speed U = d L/dt was assumed small
relative to the horizontal velocity in the liquid-saturated region: this particular
assumption holds in the limit Ste � 1. Finally, it was assumed that the melting
front shape is preserved in time, i.e., in a frame attached to the leading edge of the
intrusion.

The main result of the intrusion layer analysis is the theoretical formula

L

H
= 0.343Ra1/2(Ste Fo)3/4 (10.53)

that describes the evolution of the length of horizontal penetration L(t). This
formula agrees very well with the L(t) read off numerical plots such as those of
Fig. 10.7 (bottom), in the Ra range 200–800.

Another result of the intrusion layer analysis is that the volume (area A2 in
Fig. 10.16) of the upper region of the liquid-saturated porous medium increases
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Figure 10.16. Two-zone model (A1 + A2) for the melt region of a rectangular system
heated from the side (Bejan et al., 1990).

with both Ra and Ste Fo as
A2

H 2
= 0.419 Ra1/2(Ste Fo)5/4. (10.54)

This estimate can be added to the one for area A1, which accounts for the regime
of boundary layer convection in the vertical slot, cf. Eq. (10.34) and Fig. 10.12 at
Ste = 0,

A1

H 2
= 0.577 Ra1/2Ste Fo (10.55)

in order to calculate the total cross-sectional area of the region saturated by liquid:

A2 + A1

H 2
= 0.577 Ra1/2Ste Fo

[
1 + 0.725(Ste Fo)1/4

]
. (10.56)

The relative effect of the horizontal intrusion layer on the size of the melt region
is described by the group (Ste Fo)1/4. When the order of magnitude of the group
(Ste Fo)1/4 is greater than 1, the size of the melt fraction is ruled by the horizontal
intrusion layer. When this group is less than 1 (as in the numerical experiments of
Section 10.1.1), the melt fraction is dominated by the boundary layer convection
that erodes the nearly vertical portion of the two-phase interface (area A1).

10.1.5. Vertical Melting Front in an Infinite Porous Medium

Kazmierczak et al.’s (1986) analysis of melting with natural convection applies
to the configuration shown on the left-hand side of Fig. 10.17. The melting front
is vertical and at the melting point Tm . The coordinate system x − y is attached
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Figure 10.17. The dimensionless streamfunction for boundary layer convection on the
liquid side of a vertical melting front in a porous medium (Kazmierczak et al., 1986,
with permission from Hemisphere Publishing Corporation).

to the melting front: in it, the porous medium flows to the right, with a melting
(or blowing) velocity across the x axis. The melting front is modeled as a vertical
plane.

The geometry of Fig. 10.17 is more general than in the systems analyzed un-
til now, because the temperature of the solid region is below the melting point,
T0 < Tm . On the right-hand side of the melting front, the liquid is superheated,
T∞ > Tm . A vertical boundary layer flow on the liquid side smooths the transition
from Tm to T∞. Because of the presence of solid subcooling, the Stefan number
Ste of Eq. (10.13) is now replaced by the “superheating and subcooling” number

M = c f (T∞ − Tm)

hs f + cs(Tm − T0)
, (10.57)

where c f and cs are the specific heats of the liquid and solid.
The flow and temperature field on the liquid side of the melting front was deter-

mined in the form of a similarity solution. Figure 10.17 shows the dimensionless
streamfunction profile f (�), which is defined by

ψ = �m Ra1/2
x f (�), � = y

x
Ra1/2

x , (10.58)

and Rax = g�K (T∞ − Tm)x/	�m . The streamfunction is defined in the usual way,
by writing u = ∂ψ/∂y and v = −∂ψ/∂x . The figure shows that the number M can
have a sizeable impact on the flow. The limit M = 0 corresponds to the case of
natural convection near a vertical impermeable plate embedded in a fluid-saturated
porous medium (Cheng and Minkowycz, 1977), discussed earlier in Section 5.1.
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The superheating and subcooling parameter M also has an effect on the local heat
transfer flux through the melting front (q ′′

x ) and on the melting rate v(x, y) = 0.
The two are related by

x

�m
v(x, 0) = M Nux , (10.59)

where Nux is the local Nusselt number q ′′
x x/km(T∞ − Tm). It was found that the

Nusselt number varies in such a way that the ratio Nux/Ra1/2
x is a function of M only.

Originally that function was calculated numerically and tabulated in Kazmierczak
et al. (1986). It was shown more recently (Bejan, 1989) that the same numerical
results are correlated within 1 percent by an expression similar to Eqs. (10.41) and
(10.42):

Nux

Ra1/2
x

= 0.444(1 + 0.776M)−0.735. (10.60)

Combining Eqs. (10.59) and (10.60), we note that the melting velocity 	(x, 0)
increases with M and that its rate of increase decreases as M becomes comparable
with 1 or greater.

Kazmierczak et al. (1986) also treated the companion phenomenon of boundary
layer natural convection melting near a perfectly horizontal melting front in an
infinite porous medium. They demonstrated that the same parameter M has a
significant effect on the local heat flux and melting rate.

10.1.6. A More General Model

An alternative to the Darcy flow model (outlined in Section 10.1.1 and used in all the
studies discussed until now) was developed by Beckermann and Viskanta (1988a).
One advantage of this general model is that the resulting governing equations
apply throughout the porous medium, i.e., in both the liquid-saturated region and
the solid region. Because of this feature, the same set of equations can be solved in
the entire domain occupied by the porous medium, even in problems with initial
solid subcooling (i.e., time-dependent conduction in the solid). Another advantage
of this model is that it can account for the inertia and boundary friction effects in
the flow of the liquid through the porous matrix.

The model is based on the volume averaging of the microscopic conservation
equations. In accordance with Fig. 10.18a, the saturated porous medium is de-
scribed by three geometric parameters, two of which are independent:

ε = V f

V
, pore fraction in volume element (previously labeled �) (10.61)

� (t) = V1(t)

V f
, liquid fraction in pore space (10.62)

�(t) = V1(t)

V
ε�, liquid fraction in volume element. (10.63)

Next, the melting “front” actually can have a finite width even when the phase-
change substance has a well-defined melting point Tm , because the phase-change
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Figure 10.18. A more general model for melting in a saturated porous medium: (a)
element used for volume averaging; (b) the coexistence of liquid and solid in the pores
in the phase-change region; and (c) the assumed variation of the liquid fraction with the
local temperature (after Beckermann and Viskanta, 1988a).

region can be inhabited at the same time by solid and liquid in the pores
(Fig. 10.18b). The liquid fraction � varies from 0 to 1 across this region, while the
average temperature of the saturated porous medium in this zone is Tm , Fig. 10.18c.

In addition to these ideas, Beckermann and Viskanta’s (1988a) model is based
on the assumptions that the flow and temperature fields are two-dimensional, the
properties of the solid matrix and the phase-change material (liquid, or solid)
are homogeneous and isotropic, local thermal equilibrium prevails, the porous
matrix and the solid phase-change material are rigid, the liquid is Boussinesq
incompressible and the properties of the liquid and solid phases are constant, the
dispersion fluxes due to velocity fluctuations are negligible, and the solid and
liquid phases of the phase-change material have nearly the same density 
 . Under
these circumstances, the volume-averaged equations for mass and momentum
conservation become

∇ · u = 0, (10.64)



�

∂u
∂t

+ 


�2
(u · ∇)u = −∇ P + �l

�
∇2u −

(�l

K
+ 
cF

K 1/2
|u|

)
u − 
g�(T − Tref )

(10.65)
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where u is the Darcian velocity u = �ul , and ul is the average liquid velocity
through the pore.

The third group on the right-hand side of Eq. (10.65) accounts for the Darcy term
and the Forchheimer inertia correction, in which cF

∼= 0.55 (Ward, 1964). For a
bed of spherical beads of diameter d, the permeability K can be calculated with the
Kozeny-Carman relation (1.16), in which dp = d, and � = �. The permeability is
therefore equal to K (� = ε) in the liquid-saturated region, K (� = 0) = 0 in the
solid region, and takes in-between values in the phase-change region (Fig. 10.18b).

The volume-averaged equation for energy conservation is (Beckermann and
Viskanta, 1988a)


c
∂T

∂t
+ 
cl(u · ∇T ) = ∇ · (kef f ∇T ) − ε
�h

∂�

∂t
, (10.66)

in which cl is the liquid specific heat, �h is the latent heat of melting (labeled hs f

in the preceding sections), and 
c is the average thermal capacity of the saturated
porous medium,


c = ε
 [�cl + (1 − � )cs] + (1 − ε)(
c)m . (10.67)

The subscript ( )m refers to properties of the solid matrix. The effective thermal
conductivity kef f can be estimated using Veinberg’s (1967) model,

kef f + εk1/3
e f f

km − kls

k1/3
ls

− km = 0, (10.68)

where kls is the average conductivity of the phase-change material (liquid and solid
phases):

kls = �k1 + (1 − � )ks . (10.69)

The above model was used by Beckermann and Viskanta (1988a) in the pro-
cess of numerically simulating the evolution of the melting process in the porous
medium geometry shown in Fig. 10.19. The two side walls are maintained at differ-
ent temperatures, Th and Tc. Because of the mixed region recognized in Fig. 10.18b,
the melting front is a region of finite thickness in Fig. 10.19. These numerical sim-
ulations agreed with a companion set of experimental observations in a system
consisting of spherical glass beads (d = 6 mm) and gallium (Tm = 29.78◦C). The
numerical runs were performed for conditions in which the Rayleigh number Ra
varied from 9.22 to 11.52. Because of the low Ra range, the calculated shape of the
melting region was nearly plane and vertical, resembling the melting front shapes
exhibited here in Fig. 10.2 (top). In the same numerical runs, the Darcy term dom-
inated the Forchheimer and Brinkman terms on the right-hand side of Eq. (10.65).

10.1.7. Further Studies

Kazmierczak et al. (1988) analyzed the melting process in a porous medium in
which the frozen phase-change material (PCM) is not the same substance as the
warmer liquid that saturates the melt region. They considered a vertical melting
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Figure 10.19. The finite thickness of the melting front according to the model of Fig.
10.18 (after Beckermann and Viskanta, 1988a).

front and showed the formation of a liquid counterflow along the melting front.
Adjacent to the solid is the liquid formed as the PCM melts: in this first layer
the liquid rises along the solid-liquid interface. The second layer bridges the gap
between the first layer (liquid PCM) and the warmer dissimilar liquid that drives the
melting process. In this outer boundary layer, the dissimilar liquid flows downward.
The corresponding problem in which the heat transfer in the dissimilar fluid is by
forced convection was considered by Kazmierczak et al. (1987).

Zhang (1993) performed a numerical study on the Darcy model of an ice-water
system in a rectangular cavity heated laterally, using the Landau transformation to
immobilize the interface and a finite-difference technique. He reported that local
maximum and minimum average Nusselt numbers occur at heating temperatures of
5◦C and 8◦C, respectively. If the heating temperature is less than 8◦C the melt region
is wider at the bottom than at the top, while the reverse is true for higher heating
temperatures. The numerical study of Sasaguchi (1995) was concerned with a
cavity with one heated sidewall and three insulated walls, a transient problem. The
further numerical study by Zhang et al. (1997) dealt with the case of anisotropic
permeability with the principal axes oriented at an angle � to the gravity vector.
The effect of a magnetic field on melting from a vertical plate was treated by
Tashtoush (2005) using the Forchheimer model.

The research discussed so far in this chapter has dealt with heating from the
side. X. Zhang et al. (1991) have made a theoretical investigation of the melting
of ice in a cavity heated from below. They found that the convection that arises
in the unstable layer can penetrate into the stable region but cannot reach the
melting front, and this results in a flatter solid-liquid interface than that produced
in the absence of a stable layer. They also found that, in transition from onset
to final state the convection pattern passes through several intermediate forms,
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each change being accompanied by a sudden increase (which is followed by a
subsequent decline) in the heat transfer rate and in the displacement velocity of the
solid-liquid interface. Zhang and Nguyen (1990, 1994) have found that melting
from above is more effective than melting from below when the heating temperature
is between 0 and 8◦C; convection arises earlier, the melting process is faster, and
the total melt at steady state is thicker. The time for the onset of convection is a
minimum and the heat transfer rate is a maximum when the upper boundary is at
6◦C, and at this temperature the heat transfer rate is a maximum. Hguyen (sic) and
Zhang (1992) studied the penetrative convection that occurs during the melting of
a layer of ice heated either above or below. They found that convection starts to
play an increasingly important role as the melt thickness attains a certain value
corresponding to the critical Rayleigh number for the onset of convection. The
new convection cells have an approximately square form. As time passes these
cells become more slender and suddenly break up sequentially. The breaking up
process is quite short and is associated with a sharp jump in the curve of Nusselt
number versus time.

The melting of ice has also been considered by Kazmierczak and Poulilkakos
(1988). They dealt with both vertical and horizontal interfaces. Plumb (1994a)
developed a simple model for convective melting of particles in a packed bed with
throughflow and solved it numerically in one dimension to predict melting rates for
a single substance and a system in which the liquid phase at elevated temperature
enters a packed bed of the solid phase at the melting temperature. He found that the
thickness of the melting zone increases with Péclet number and Prandtl number
for systems dominated by convection.

Melting around a horizontal cylinder was studied numerically on the Darcy
model by Christopher and Wang (1994). They found that heat transfer from the
cylinder is minimized at some value of the burial depth that is a function of Ra
and the dimensionless phase change temperature. Chang and Yang (1996) studied
numerically, on the Brinkman-Forchheimer model, the melting of ice in a rect-
angular enclosure. They noted that as time goes on, heat transfer on the hot side
decreases and that on the cold side increases.

Ellinger and Beckerman (1991) reported an experimental study of melting of a
pure substance (n-Octadecane) in a rectangular enclosure that is partially occupied
by horizontal or vertical layers of a relatively high thermal conductivity medium
(glass or aluminum beads). They found that though such a porous layer may cause a
faster movement of the solid-liquid interface, the effect of low permeability causes
a reduction in melting and heat transfer rates compared with the case without the
porous layer. Pak and Plumb (1997) studied numerically and experimentally the
melting of a mixture that consists of melting and nonmelting components, with
heat applied to the bottom of the bed.

Mixed convection with melting from a vertical plate was analyzed by Bakier
(1997) and Gorla et al. (1999a). They noted that the melting phenomenon de-
creases the local Nusselt number at the solid-liquid surface. Horizontal forced and
mixed convection with local thermal nonequilibrium melting was studied experi-
mentally and theoretically by Hao and Tao (2003a,b). The topic of local thermal
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nonequilibrium melting was further addressed by Harris et al. (2001) and Agwu
Nnanna et al. (2004).

A related problem, involving a phase-change front at the interface between a di-
minishing solid volume and an increasing fluid volume, has been treated by Rocha
et al. (2001) and Bejan et al. (2004). This involves a layer of porous medium
impregnated by solid methane hydrate material. The clathrate (endowed with a
lattice) hydrates are solid crystals of water and methane at sufficiently high pres-
sures and low temperatures. When the layer is depressurized suddenly on its lower
plane, the methane hydrate material progressively dissociates into methane gas
plus liquid water.

10.2. Freezing and Solidification

10.2.1. Cooling from the Side

10.2.1.1. Steady State

In a study that deals with both freezing and melting, Oosthuizen (1988a) considered
the steady state in the two-dimensional configuration of Fig. 10.20. The porous
medium is heated from the left and cooled from the right in such a way that the
melting point of the phase-change material falls between the temperatures of the
two side walls, Th > Tm > Tc.

In the steady state, the freezing front takes up a stationary position and the
freezing and melting at the front ceases. This is why in the steady state the latent heat
of the phase-change material (hs f ) does not play a role in the heat transfer process
or in deciding the position and shape of the melting front. The heat transfer from
Th to Tc is one of conjugate convection and conduction: specifically, convection
through the zone saturated with liquid and conduction through the zone with pores
filled by solid phase-change material.

Oosthuizen (1988a) relied on the finite element method in order to simulate
the flow and heat transfer through the entire H × L domain of Fig. 10.20. The
porous medium model was the same as the one outlined in the first part of
Section 10.1.1. The parametric domain covered by this study was 0 = Ra = 500,
0.5 = H/L = 2, and 1 = kF/kU = 3. The thermal conductivities kF and kU refer
to the frozen and the unfrozen zones. They are both of type km , i.e., thermal con-
ductivities of the saturated porous medium. The Rayleigh number is defined as Ra
= g�K H (Th − Tc)/	�m .

Besides Ra, H/L , and KU , the fourth dimensionless group that governs the
steady state is the dimensionless temperature difference ratio,

�c = Tm − Tc

Th − Tc
, (10.70)

which describes the position of Tm relative to Th and Tc. Figure 10.20b shows
the effect of increasing the Rayleigh number when kF = kU and �c = 0.5. In this
case, in the absence of natural convection (Ra = 0) the melting front constitutes the
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Figure 10.20. (a) Steady-state convection and heat transfer in a porous medium with
differentially heated side walls. (b) The effect of Ra on the freezing front (�c = 0.5, kF =
kU ). (c) The effect of kF/kU on the freezing front (�c = 0.5) (Oosthuizen, 1988a).

vertical midplane of the H × L cross section. The melting front becomes tilted,
S-shaped, and displaced to the right as Ra increases. The effect of natural convection
is important when Ra exceeds approximately 30.

The effect of the conductivity ratio kF/kU is illustrated in Fig. 10.20c, again
for the case when Tm falls right in the middle of the temperature interval Tc − Th

(i.e., when �c = 0.5). The figure shows that when the conductivity of the frozen
zone is greater than that of the liquid-saturated zone (kF/kU > 1), the frozen zone
occupies a greater portion of the H × L cross section. The effect of the kF/kU

ratio is felt at both low and high Rayleigh numbers.
The melting-point parameter �c has an interesting effect, which is illustrated in

Fig. 10.21. The ordinate shows the value of the overall Nusselt number, which
is the ratio of the actual heat transfer rate to the pure-conduction estimate,
Nu = q ′/[kU (Th − Tc)/L]. On the abscissa, the �c parameter decreases from
�c = 1 (or Tm = Tc) to �c = 0 (or Tm = Tc). The figure shows that when
kF/kU > 1, there exists an intermediate �c value for which the overall heat trans-
fer rate is minimum. This effect is particularly evident at high Rayleigh numbers,
where convection plays an important role in the unfrozen zone.
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Figure 10.21. The effect of the melting-point parameter �c on the overall heat transfer
rate through the system of Fig. 10.20a (Oosthuizen, 1988a).

10.2.1.2. Other Studies

Weaver and Viskanta (1986) experimented with a cylindrical capsule (7.3 cm di-
ameter, 15.9 cm length) filled with spherical beads and distilled water. Freezing
was initiated by cooling the outer wall of the capsule. Experiments were conducted
using either glass beads or aluminum beads, with the capsule oriented vertically
or horizontally. Weaver and Viskanta (1986) complemented their measurements
with a computational solution in which the heat transfer process was modeled
as one-dimensional pure conduction. The computed thickness of the frozen zone
agreed well with the experimental data for the combination of glass beads and
distilled water, in which the difference between thermal conductivities is small.
The agreement was less adequate when the aluminum beads were used. These
observations lead to the conclusion that the effective porous-medium thermal con-
ductivity model is adequate when the solid matrix and pore material have similar
conductivities and that the local thermal equilibrium model breaks down when the
two conductivities differ greatly.

The breakdown of the local thermal equilibrium assumption was studied fur-
ther by Chellaiah and Viskanta (1987, 1989a). In the first of these experimental
studies, Chellaiah and Viskanta examined photographically the freezing of water
or water-salt solutions around aluminum spheres aligned inside a tube surrounded
by a pool of the same phase-change material. They found that the freezing front
advances faster inside the tube. When water was used, they found that the lead-
ing aluminum sphere is covered at first by a thin layer of ice of constant thick-
ness. This layer was not present when the phase-change material was a water-salt
solution.
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In their second study of freezing of water, Chellaiah and Viskanta (1989a)
showed that the water is supercooled (i.e., its temperature falls below the freezing
point) before freezing is initiated. The degree of supercooling was considerably
smaller than the one observed in the freezing of water in the absence of the porous
matrix (glass, or aluminum beads).

Chellaiah and Viskanta (1989b, 1990) found good agreement between calcula-
tions using the Brinkman-Forchheimer equation and experiments using water and
glass beads in a rectangular enclosure suddenly cooled from the side. They inves-
tigated the effects of imposed temperature difference and the superheat defined by
S = cP (Th − T f )/hs f , where T f is the fusion temperature. For small S the flow
is weak and the interface is almost planar. The larger S convection modifies the
shape of the interface. Further numerical results for lateral transient freezing were
reported by Sasaki et al. (1990). A further numerical and experimental study was
performed by Sasaki and Aiba (1992).

A boundary layer solution, appropriate for high Rayleigh number, for freezing
on the exterior of a vertical cylinder was obtained numerically by Wang et al.
(1990). Transient freezing about a horizontal cylinder was studied numerically by
Bian and Wang (1993). Experiments with an inclined bed of packed spheres were
performed by Yang et al. (1993a,b).

A generalized formulation of the Darcy-Stefan problem, one valid for irregular
geometries with irregular subregions and not requiring the smoothness of the
temperature, was proposed by Rodrigues and Urbano (1999). A comprehensive
theoretical and experimental study of lateral freezing with an aqueous salt solution
as the fluid, and taking into account anisotropy and the formation of dendrite
arrays, was made by Song and Viskanta (2001). They found that the porous matrix
phase affected the freezing of the aqueous salt solution by offering an additional
resistance to the motion of the fluid and migration of separate crystals. The amount
of macrosegregation was found to be mainly controlled by the porous matrix
permeability in the direction of gravity, while macrosegregation was decreased
when the permeabilities of the porous matrix phase and/or dendrite arrays were
decreased.

10.2.2. Cooling from Above

Experiments on layers cooled from above were performed by Sugawara et al.
(1988). They employed water and beads of either glass or steel. Their main inter-
est was in predicting the onset of convection. Experimental and numerical work
was reported by Lein and Tankin (1992b). The experimental work involved vi-
sualization. The authors reported that the convection process is controlled by the
mean Rayleigh number and weakens as the freezing process proceeds. They exam-
ined results for various aspect ratios and they found that these agreed reasonably
well with the formula of Beck (1972), Fig. 6.20. A nonlinear stability analysis
was presented by Karcher and Müller (1995). The analysis shows that due to the
kinematic conditions at the solid/liquid interface, hexagons having upflow in the
center are stable near the onset of convection, but for sufficiently supercritical
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Rayleigh numbers rolls are the only stable mode. The transition from hexagons to
rolls is characterized by a hysteresis loop. A numerical study of a superheated fluid
saturated porous medium in a rectangular cavity, with the bottom and side walls
insulated and the top wall maintained at a constant temperature below the freezing
point, was reported by Zhang and Nguyen (1999). A substantial numerical and
experimental study was reported by Kimura (2005).

10.2.3. Solidification of Binary Alloys

When a binary mixture solidifies from a solid boundary, the planar solidification
front often becomes unstable due to constitutional undercooling and the result is
a mushy layer, separating the completely liquid phase from the completely solid
phase. The mushy layer has been modeled as a reactive porous medium. A feature
of the mushy zone is that it contains columnar solid dendrites, and so the porous
medium is anisotropic. One principal axis for the anisotropic permeability is com-
monly, but not necessarily, approximately aligned with the temperature gradient.

The solidification of aqueous solutions of binary substances (notably ammo-
nium chloride) is analogous in many ways to the solidification of metallic alloys,
so experiments are often done with aqueous solutions. A pioneering study of so-
lidification in a vertical container was carried out by Beckermann and Viskanta
(1988b). Fundamental experimental work on solidification produced by cooling
from the side in a rectangular cavity has been performed by Choi and Viskanta
(1993) and Matsumoto et al. (1993, 1995), while Cao and Poulikakos (1991a,b)
and Choi and Viskanta (1992) observed solidification with cooling from above
and Song et al. (1993) observed cooling from below. Okada et al. (1994) did
experiments on solidification around a horizontal cylinder.

The simplest model for the momentum equation, Darcy’s law, was introduced
in this context by Mehrabian et al. (1970). Subsequent modeling has been based
on either a mixture theory in which the mushy zone is viewed as an overlap-
ping continuum (e.g., Bennon and Incropera, 1987) or on volume averaging (e.g.,
Beckermann and Viskanta, 1988b; Ganesan and Poirier, 1990—the latter were
more explicit about underlying assumptions). The second approach requires more
work, but in relating macroscopic effects to microscopic effects it leads to greater
insight about the physical processes involved. The averaging approach also allows
the incorporation of the effects of thermal or chemical nonequilibrium or a moving
solid matrix (Ni and Beckermann, 1991b). Felicelli et al. (1991) investigated the
effect of spatially varying porosity, but found that that had no significant effect
on the convection pattern. They did find that the effect of remelting in part of
the mushy zone was important. Poirier et al. (1991) showed that for relatively
large solidification rate and/or thermal gradients, the effects of heat of mixing
need to be incorporated in the energy equation. Using the mixture continuum
model modified to include the effect of shrinkage induced flow, Chiang and Tsai
(1992) analyzed solidification in a two-dimensional rectangular cavity with riser.
For the same geometry, Schneider and Beckermann (1995) used numerical simula-
tion to compare two types (Scheil and lever-rule) of microsegregation models; the
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predicted macrosegregation patterns were found to be similar although the pre-
dicted eutectic fraction is significantly higher with the Scheil model. They noted
that the predicted pattern is sensitive to the permeability function assumed in the
model.

Ni and Incropera (1995a,b) produced a new model that retains the computational
convenience of the mixture continuum model while allowing for the inclusion of
important features of the volume-average two-phase model. They relaxed several
assumptions inherent in the original formulation of the two-phase model, making it
possible to account for the effects of solutal undercooling, solidification shrinkage,
and solid movement.

The effect of anisotropy of permeability has been investigated by Sinha et al.
(1992, 1993) and Yoo and Viskanta (1992). A three-phase model, in which the
release of dissolved gas from the alloy is taken into account, was developed by
Kuznetsov and Vafai (1995a).

Prescott and Incropera (1995) introduced the effect of turbulence in the context
of stirring produced by an oscillating magnetic field. Their results indicate that tur-
bulence decreases the propensity for channel development and macrosegregation
by enhancing mixing and reducing the effective Lewis number from a large value to
near unity. For modeling the turbulence, they employed an isotropic low-Reynolds
number k-ε model. The turbulence is produced via a shear-production source term.
They carried out numerical calculations for comparison with experiments with a
lead-tin alloy. The turbulence occurs in the liquid and near the liquidus interface;
it is strongly dampened in the mushy zone. Prescott and Incropera remark that
turbulence can survive in the mush only in regions with porosity about 0.99 or
higher, and there slurry conditions are likely to occur in practice. However, this
assumption may be an artifact of an assumption of the model (Lage, 1996), and
turbulence may penetrate further into the mushy layer than this model predicts.

Compositional convection can occur in a mushy layer cooled from below when
unstable density gradients are formed as a result of rejection of the lighter compo-
nent of the mixture upon solidification. There is an interaction among convection,
heat transfer, and solidification that can lead to the formation of “chimneys,” or lo-
calized channels devoid of solid through which buoyant liquid rises. An analytical
investigation of chimneys was made by Roberts and Loper (1983), who used equa-
tions formulated by Hills et al. (1983). Observations of chimneys led to stability
analyses. Fowler (1985) modeled the mushy layer as a nonreacting porous layer,
while the linear stability analysis of Worster (1992) included the effects of the
interaction of convection and solidification. Linear stability analysis had been ap-
plied previously by Nandapurkar et al. (1989). Worster identified two direct modes
of convective instability: one driven from a narrow compositional boundary layer
about the mush-liquid interface and the other driven from the interior of the mushy
layer. The graph of Rayleigh number versus wavenumber has two minima. The
boundary-layer mode results in fine-scale convection in the melt above the mushy
layer and leaves the interstitial fluid in the mushy layer virtually stagnant. The
mushy-layer model causes perturbations to the solid fraction of the mushy layer
that are indicative of a tendency to form chimneys. Good quantitative agreement
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was found with the experimental results of Tait and Jaupart (1992) for the onset of
the mushy-layer mode of convection. These authors and Tait et al. (1992) discussed
geophysical implications of their experimental results.

The linear stability analysis of Emms and Fowler (1994) involved a time-
dependent basic state that included the effect of finger-type convection in the
liquid. However, their analysis indicated that the onset of convection in the mushy
layer is little affected by vigorous convection in the melt.

Worster’s (1991, 1992) analysis was extended by Chen et al. (1994) to the
case of oscillatory modes. They found that when stabilizing thermal buoyancy is
present in the liquid, the two steady modes of convection can separate by way of
an oscillatory instability. They noted that the oscillatory instability occurred only
when the buoyancy ratio (thermal to solutal) in the liquid region was nonzero,
so they associated the oscillatory instability with the interaction of the double-
diffusive convection in the liquid region with the mushy-layer convective mode.
Their results showed that the steady modes became unstable before the oscillatory
mode. Chen et al. (1994) also performed experiments with ammonium chloride
solution which confirmed that during the progress of solidification the melt in the
mush is in a thermodynamic equilibrium state except at the melt-mush interface
where most of the solidification occurs.

A weakly nonlinear analysis based on the assumption that the mushy layer
is decoupled from the overlying liquid layer and the underlying solid layer was
performed by Amberg and Homsy (1993). They made progress by considering
the case of small growth Péclet number, small departures from the eutectic point,
and infinite Lewis number. Their analysis, which revealed the structure of possible
nonlinear, steady convecting states in the mushy layer, was extended by Anderson
and Worster (1995) to include additional physical effects and interactions in the
mushy layer. They employed a near-eutectic approximation and considered the
limit of large far-field temperature, so that their model involved small deviations
from the classic HRL problem. The effects of asymmetries in the basic state and
the nonuniform permeability lead to transcritically bifurcating convection with
hexagonal planform. They produced a set of amplitude equations that described
the evolution of small-amplitude convecting states associated with direct modes of
instability. Analysis of these revealed that either two-dimensional rolls or hexagons
can be stable, depending on the relative strengths of different physical mechanisms.
They determined how to adjust the control parameters to minimize the degree of
subcriticality of the bifurcation, and hence render the system more stable globally.
Moreover, their work suggested the possibility of an oscillatory mode of instability
despite the lack of any stabilizing thermal buoyancy, in contrast with the results of
Chen et al. (1994).

The linear instability analysis of Anderson and Worster (1996) was designed
to investigate this new oscillatory instability. Their model contained no double-
diffusive effects and no region in which a statically stable density gradient exists.
They considered the limit of large Stefan number, which incorporates a key balance
for the existence of the oscillatory instability. They discovered that the mechanism
underlying the oscillatory instability involves a complex interaction between heat
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transfer, convection, and solidification. Further work on the oscillatory modes
of nonlinear convection has been reported by Riahi (2002b). The modes take
the form of two- and three-dimensional traveling and standing waves. For most
of the parameter range studied, supercritical simple traveling waves are stable.
Riahi (1998a) examined the structure of an unsteady convecting mushy layer. He
identified four regimes corresponding to high or low Prandtl number melt and
strongly or weakly dependent flow. He found that strongly time-dependent flow
can lead to nonvertical chimneys and for weakly time-dependent flow of a low
Prandtl number melt vertical chimneys are possible only when the chimneys have
small radius.

Some of the experimental results reported by Chen (1995) confirm the theoretical
predictions, while others reveal phenomena not observed hitherto.

The effects of rotation about a vertical axis were included in the linear stability
analysis of Lu and Chen (1997). They noted that very high rotation rates were
necessary to significantly increase the critical Rayleigh number, but smaller rates
could change the most critical convection mode. They found their results to be sen-
sitive to the value of a buoyancy ratio defined as �τ/(�s − �τ), where �τ, �s are
the thermal, solutal expansion coefficients, respectively, and  is the slope of the
solidus. The effect of rotation also was studied by Riahi (1993b, 1997), Sayre and
Riahi (1996, 1997) and Riahi and Sayre (1996). The latter investigated nonlinear
natural convection under a high gravity environment, where the rotation axis is
inclined to the high gravity vector. They found that for some particular moderate
rotation range, the vertical velocity in the chimneys decreases rapidly with increas-
ing rotation rate and appears to have opposite signs across some rotation-dependent
vertical level.

The study by Guba (2001) concentrated on the way rotation controls the bifur-
cating convection with various planforms. Govender and Vadasz (2002a,b) have
reported a weak nonlinear analysis of moderate Stefan number stationary convec-
tion in rotating layers. Further linear stability studies have been made by Govender
and Vadasz (2002c) and Govender (2003b, 2005a–c). The results show that gen-
erally the oscillatory mode is the most dangerous mode for intermediate values of
the Stefan number at sufficiently large Taylor number values, while the stationary
mode is the most dangerous for very small and very large values of the Stefan
number. Further finite amplitude studies of convection have been carried out by
Govender (2003d,e, 2004c) to consider factors such as large Stefan number or
small variations in retardability. Other studies by Riahi (2003a,b) on effects of
rotation have dealt with oscillatory modes of convection and with nonlinear steady
convection. Some aspects of the topic were reviewed by Riahi (1998b, 2002a).

A numerical study of the effects of rotation was made by Neilson and Incropera
(1993). They found that slow, steady rotation had insignificant effect on channel
formation, but with intermittent rotation corresponding to successive spin-up and
spin-down of the mold in their numerical study channel nucleation was confined
to the centerline and outer radius of the casting. They attributed the elimination of
channels from the core of the casting to the impulsive change in angular frequency
associated with spin-up and its effect on establishing an Ekman layer along the
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liquidus front, the front being washed by flow within the layer, thereby eliminating
the perturbations responsible for channel nucleation.

A flow-focusing instability, driven by expansion or contraction upon solidifica-
tion, was analyzed by Chiareli and Worster (1995), and comparisons were made
with acid-etching instabilities in porous rocks. They concluded that though the
potential for instability exists, it is unlikely to occur in practice.

For the case of unidirectional solidification, Krane and Incropera (1996) per-
formed a scaling analysis that showed that Darcy’s law was adequate in the mushy
zone except in the region near the liquidus isotherm, and that advection domi-
nates the solute transport throughout the mush, though in the denser regions of the
solid-liquid region the liquid velocities are so small as to have a negligible effect
of macrosegregation.

The review by Worster (1997) contains a summary of a theory of an ideal mushy
layer. When use is made of the linear liquidus relationship

T = TE + (C − CE ), (10.71)

where  is a constant and the subscript E refers to the eutectic point, the equation
of state (9.1) reduces to


 f = 
0 + �∗(C − C0), (10.72)

where

�∗ = −� − �C . (10.73)

Consequently an appropriate Rayleigh number is

Ram = 
0g�∗K0�C

�V
= 
0g� ∗ K0L�C

��m
(10.74)

where K0 is a reference permeability and V is the rate of solidification and the
thermal length scale L is defined by L = �m/V . Convection in the ideal mushy
layer is governed by Ram together with a Stefan number and a compositional ratio.
Experimental results such as those by Bergman et al. (1997) confirm that Ram is
indeed a governing parameter.

Worster’s (1997) review also includes a discussion of explanations of why chim-
neys may or not form. The explanation of Worster and Kerr (1994) is that interfacial
undercooling causes a strengthening of the boundary-layer mode of convection,
which retards growth of the mushy layer, increases its solid fraction, and decreases
the compositional contract across it. These three effects combine to reduce Ram ,
and as time progresses Ram may reach a maximum less than that required for
chimneys to form. Worster (1997) also mentions experiments related to the for-
mation of a mushy zone in sea ice (Wettlaufer et al., 1997), as well as applications
to solidifying magmas and the molten outer core of the Earth. The development
of chimneys has been further studied numerically by Schulze and Worster (1998,
1999) and by Emms (1998). An alternative model for mush-chimney convection
was proposed by Loper and Roberts (2001).
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Further work on plume formation in mushy layers has been reported by Chung
and Chen (2000) and Chung and Worster (2002). The effect of initial solutal
concentration on the evolution of the convection pattern during the solidification
of a binary mixture was examined experimentally by Skudarnov et al. (2002).
An experimental study of the solidification of a ternary alloy was reported by
Thompson et al. (2003). A model for the diffusion-controlled solidification of
ternary alloys was described by Anderson (2003). A morphological instability due
to a forced flow in the melt was analyzed by Feltam and Worster (1999) and Chung
and Chen (2001). An alternative hybrid model of a mushy zone has been proposed
by Mat and Ilegbusi (2002). An experimental study of the suppression of natural
convection by an additive to increase the viscosity of the fluid was reported by
Nishimura and Wakamatsu (2000).

Further complexities of alloy solidification are discussed in the reviews by
Beckermann and Viskanta (1993), Beckermann and Wang (1995), and Prescott
and Incropera (1996). Experimental work has been reported by Solomon and
Hartley (1998). A numerical investigation of the macrosegregation during the thin
strip casting of carbon steel was made by Kuznetsov (1998a). Another convec-
tive instability problem involving solidification was analyzed using linear stability
theory by Hwang (2001). An expository article on the solidification of fluids was
presented by Worster (2000). Adnani and Hsiao (2005) have reviewed transport
phenomena in liquid composites modeling processes and their roles in process
control and optimization.

Roberts et al. (2003) have considered the convective instability of a plane mushy
layer that advances as heat is withdrawn at a uniform rate from the bottom of an
alloy. They assumed that the solid that forms is composed entirely of the denser
constituent, making the residual liquid compositionally buoyant, and thus prone
to convective motion. They focused on the large-scale mush mode of instability,
quantified the minimum critical Rayleigh number, and determined the structure of
the convective modes of motion within the mush and the associated deflections of
the mush-melt and mush-solid boundaries.

A related problem involving dissolution-driven convection was investigated by
Hallworth et al. (2005). They considered experimentally and theoretically the
heating from above of an initially homogeneous layer of solid crystals, saturated
liquid, and glass ballotini. The heat flux causes crystals at the top of the layer
to dissolve, forming liquid that, being more concentrated, drives convection in
the lower layer. Mixing of this concentrated liquid into the lower layer leads
to precipitation, thereby releasing latent heat that raises the temperature of the
lower layer. There results a three-layered system: clear fluid, clear fluid plus close-
packed ballotini, and a mixture of solid crystals, ballotini, and saturated liquid. The
theoretical model used is based on the concept that the heat supplied from above
is used entirely for the dissolution of solid crystals at the upper boundary of the
lower layer. The resulting compositional convection redistributes the dissolved salt
uniformly through the lower layer where it partly recrystallizes to restore chemical
equilibrium. The crystallization leads to a gradual and uniform increase in both
the solid fraction and the temperature of the lower layer.
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Figure 10.22. Definition sketch for boiling produced by heating from below.

10.3. Boiling and Evaporation

10.3.1. Boiling Produced by Heating from Below

When boiling begins in a fluid-saturated porous medium heated from below, a
two-layer system is formed with a liquid region overlying a two-phase region, as
sketched in Fig. 10.22. Experiments by Sondergeld and Turcotte (1977) and Bau
and Torrance (1982a) have shown that the liquid regime temperature profile may
be conductive or convective, but the two-phase region is essentially isothermal
at the saturation temperature. The two-phase region may be liquid-dominated
or vapor-dominated. Heat is transported across the two-phase region by vertical
counterpercolation of liquid and vapor; liquid evaporates on the heating surface
and vapor condenses at the interface between the liquid and two-phase regions.
Experiments have indicated that thermal convection in the liquid region may occur
before the onset of boiling or after the onset of boiling. Visualization experiments
(Sondergeld and Turcotte, 1978) reveal that after the onset of convection the liquid
region streamlines penetrate the two-phase region. The convection in the liquid
region is in the form of polyhedral cells whose dimensions vary with the heat flux.

With the liquid region overlying the two-phase region there are two mechanical
mechanisms for instability: buoyancy and gravitational instability, the latter due to
the heavier liquid region overlying the lighter two-phase region. The gravitational
instability differs from the classical Rayleigh-Taylor instability of superposed flu-
ids because the interface is now permeable and therefore permits both heat and
mass transfer across it. Schubert and Straus (1977) noted that convection also can
be driven by a phase-change instability mechanism. If steam and water stay in
thermal equilibrium, then thermal perturbations lead to pressure variations that
tend to move the fluid against the frictional resistance of the medium. Because of
conservation of mass, horizontal divergence is accompanied by vertical contraction
and phase change takes place so that the vertical forces stay in balance. In a porous
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medium containing saturated liquid or a liquid-vapor mixture, convection occurs
more readily by the phase-change mechanism than it would with ordinary liquid
driven by buoyancy. Phase-change-driven convection is concentrated toward the
bottom of the porous layer and the cells are narrow in comparison with their depth.
The model used by Schubert and Straus (1977) is valid only for a mixture with
small amounts of steam.

Schubert and Straus (1980) also considered the stability of a vapor-dominated
system with a liquid region overlying a dry vapor region. Their analysis predicts
that such systems are stable provided that the permeability is sufficiently small.
The stability arises because when liquid penetrates the interface, that interface
is distorted so the system remains on the Clapeyron curve, and this results in a
pressure gradient that acts to restore equilibrium.

O’Sullivan (1985b) described some numerical experiments modeling a geother-
mal reservoir in which the level of heat input at the base of a layer is varied. As
the heat input is increased the flow changes from conduction to single-phase con-
vection, then to convection with an increasingly larger boiling zone, and finally to
an irregular oscillatory two-phase convection.

The onset of two-dimensional roll convection in the configuration of Fig. 10.22
was studied using linear stability analysis by Ramesh and Torrance (1990). They
assumed that the relative permeabilities of liquid and vapor were linear functions
of the liquid saturation S. Their analysis reveals that the important parameters are
the Rayleigh numbers Ra and Ra2� in the liquid and two-phase regions and the
dimensionless heat flux Qb at the lower boundary. The parameters are defined by

Ra = g�l K H (Ts − T0)

vl�ml
, Ra2� = (1 − 
̄v)K H

vl�ml
,

Qb = q ′′
b H

km(Ts − T0)
,

(10.75)

where qb
′′ is the heat flux at the lower boundary, Ts is the saturation temperature,

T0 is the temperature at the top boundary, 
̄v is the ratio of vapor to liquid densities,
and �̄l is the ratio of liquid to vapor viscosities, while λ (see Fig. 10.23) is defined
to be h f g/[cPl(Ts − T0)], where h f g is the latent heat.

For sufficiently large Qb there is dryout of the liquid phase region in the two-
phase region. For smaller values of Qb there are two S values for each value
of Qb (Fig. 10.23). The smaller value (S < 0.17 for water) corresponds to a
vapor-dominated system and the larger value to a liquid-dominated system. For a
liquid-dominated system, the solution map (for water) is shown in Fig. 10.24. The
picture is approximate because it is based on a single wavenumber, � = π. We are
primarily interested in values Qb = 1 because 1/Qb is the ratio of the mean depth
of the interface to the total depth of the medium.

The onset of boiling is indicated by the curve ABE. For Qb values above this
curve, boiling occurs with a liquid layer overlying a two-phase zone. For Qb val-
ues below ABE boiling does not occur. The onset of convection in the liquid is
denoted by the curve CBD; convection occurs only to the right of this curve. Its
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Figure 10.23. The relationship between bottom heat transfer rate and saturation for the
basic state in a steam-water system (Ramesh and Torrance, 1990, with permission from
Pergamon Press).

Figure 10.24. Map of conductive and convective solutions in (Ra, Qb) parameter space
for liquid-dominated two-phase systems, for the nondimensional wavenumber � = π

(Ramesh and Torrance, 1990, with permission from Pergamon Press).
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nose defines the critical Rayleigh number as Qb varies for � = π. (As Qb and �
both vary, the minimum value of Ra is 14.57, attained at Qb = 1.35, � = 1.9.) In
laboratory experiments boiling occurs when the temperature at the bottom reaches
the saturation temperature Ts . The branch AB corresponds to Qb = 1 and repre-
sents the onset of boiling before the onset of convection, while the branch BE
represents the onset of boiling after convection already exists within a liquid-filled
layer.

We consider experiments conducted on a porous medium with constant proper-
ties by varying the bottom heat flux. At low Ra (as indicated by line 1-1′) the liquid
region is conductive before and after the onset of boiling. This is consistent with
the experiments of Bau and Torrance (1982a) on low permeability porous beds
(K = 11 × 10−12m2). At higher Ra (as indicated by line 2-2′), the liquid region is
conductive before the onset of boiling but becomes convective almost immediately
when boiling starts, which is in agreement with the observations of Sondergeld and
Turcotte (1977), (K = 70 × 10−12m2). For large Ra (as indicated by line 3-3′) the
liquid region becomes convective before the onset of boiling and stays convective
after the onset of boiling, which is consistent with the experiments of Bau and Tor-
rance (1982c) on high permeability beds (K = 1600 × 10−12m2). They observed
that at large heat fluxes the liquid region reverts back to a conductive state, which
is consistent with Fig. 10.24.

For vapor-dominated systems the density difference between the liquid and two-
phase regions is large, and as we noted above we can expect gravitational instability
to dominate over buoyancy effects. If the buoyancy effects are negligible (Ra =
0), the stability diagram shown in Fig. 10.25 is obtained. This applies for water

Figure 10.25. Neutral stability curve for vapor-dominated systems, for Ra = 0, � = π

(Ramesh and Torrance, 1990, with permission from Pergamon Press).
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with T0 = 30◦C, Ts = 100◦C. For � = π the minimum value of Ra2� is 18.95,
occurring for Qb = 1.4.

The minimum value of S on the curve BD in Fig. 10.24 is approximately equal
to 0.98. The maximum value of S on the curve in Fig. 10.25 is about 0.02. We
conclude that if the rest-state value of S lies in the range 0.02 to 0.98, then the rest
state is stable according to linear theory.

However, the numerical study of Ramesh and Torrance (1993) indicates that
finite-amplitude instability is possible in this range. This study involved convection
and boiling in a two-dimensional rectangular region with length-to-height aspect
ratio equal to 2. In order to model experiments in a Hele-Shaw cell, a volumetric
cooling term (to take account of heat losses from the front and back walls of the cell)
was allowed for in equations for the temperature and saturation. The results indi-
cate three solution regimes: conduction-dominated, steady convection-dominated,
and oscillatory convection. In some cases the solutions exhibit a dependence on
initial conditions and perturbations. As Figure 10.26 indicates, the finite amplitude
solutions agree with the linear stability analysis.

Figure 10.26. Comparison of numerical solutions (symbols) and linear stability theory
(solid lines) in Ra - Qb parameter space. I, II, III, and IV denote four solution regimes:
I, a conductive liquid layer—no boiling; II, a convective liquid layer—no boiling; III, a
conductive liquid layer overlying a two-phase layer; IV, a convective liquid layer over-
lying a two-phase layer. The numerically observed solutions are: ∗, steady convective
liquid layer—no boiling, ∇, steady conductive liquid layer over a two-phase layer; �,
steady convective liquid layer overlying a two-phase layer; +, steady or oscillatory
convective liquid layer, overlying a two-phase layer; ×, steady conductive or steady
convective liquid layer overlying a two-phase layer (Ramesh and Torrance, 1993, with
permission from Cambridge University Press).
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Ramesh and Torrance (1993) also reported that their numerical results agree
with prior laboratory experiments, including those of Echaniz (1984) on the os-
cillatory convection, which is observed for high-permeability beds (i.e., high Ra).
Such solutions are generated numerically for high Ra by introducing asymmmetric
perturbations into a one-dimensional initial conduction field (initial symmetric dis-
turbances lead to steady-state solutions). The time period in oscillations decreases
with increase of Qb. Heat transfer rates are drastically increased by the onset of
oscillatory convection. Echaniz (1984) concluded that the oscillations are caused
by thermals (pairs of small vortices) that originate at the heating surface where the
cold fluid descends, grow, and then disappear either at the top boundary or in the
two-phase region.

Ramesh and Torrance (1993) also showed that when steady convection had its
onset after the onset of boiling the preferred computed convective mode is two cells
symmetric about the centerline. The interface moves up as the heat flux is increased
and is depressed in the center (indicating downflow of cold fluid there) and raised
at the sides (or vice versa). The center of the cell lies in the liquid region, where
the buoyancy production term is present. When the onset of convection precedes
that of boiling, the stable two-cell convection pattern is retained after boiling if Ra
is low, but at larger Ra a transition from a two-cell to a four-cell structure occurs,
in qualitative agreement with the experiment of Tewari (1982). [The stable three
cells also observed by Tewari (1982), not replicated in the computations, may
have been due to experimental nonuniformities.] The steady-state heat flux Qtop

for the numerical two-cell solutions was found to vary with heat-flux Rayleigh
number Ra f (= RaQb) according to Qtop ∝ Ra0.6

f , in approximate accord with the
experimental correlation Nu ∝ Ra0.5

f reported by Echaniz (1984).
In connection with the testing of a new two-phase mixture model introduced

by Wang and Beckermann (1993), Wang et al. (1994a,b) have made a numeri-
cal study of boiling in a layer of a capillary porous medium heated from below.
Their numerical procedure employs a fixed grid and avoids tracking explicitly
the moving interface between the liquid and two-phase regions. Also on the new
mixture model, Wang and Beckerman (1995) performed a two-phase boundary
layer analysis and Easterday et al. (1995) studied numerically and experimentally
two-phase flow and heat transfer in a horizontal porous formation with horizontal
water throughflow and partial heating from below. The latter found that the result-
ing two-phase structure and flow patterns are strongly dependent on the water inlet
velocity and the bottom heat flux. They reported qualitative agreement between
numerical and experimental results. Wang et al. (1994a) studied numerically tran-
sient natural convection and boiling in a square cavity heated from below. They
observed boiling-induced natural convection, flow transition from a unicellular to
a bicellular pattern with the onset of boiling, and flow hysteresis as the bottom
heat flux first increases and then decreases. This subject has been reviewed by
Wang (1998a). A numerical study of boiling with mixed convection in a vertical
porous layer was made by Najjari and Ben Nasrallah (2002), while Najjari and Ben
Nasrallah (2005) similarly studied the effect of aspect ratio on natural convection
in a rectangular cavity.
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Stemmelen et al. (1992) noted that large-amplitude oscillations are observed
in a boiling porous medium with high heat fluxes and they presented a sim-
plified linear stability analysis that they carried out to determine the stability
criterion.

For discussion of some wider aspects of boiling and two-phase flow in porous
media, the reader is referred to the reviews by Dhir (1994, 1997).

10.3.2. Film Boiling

It was observed by Parmentier (1979) that because of the nature of the (P, T )
phase diagram, the thin film of water vapor that forms adjacent to a vertical sur-
face is separated from the liquid water by a sharp interface with no mixed region
in between. The assumption that the vapor and liquid form adjacent boundary
layers (as in Fig. 10.26), with a stable smooth interface, is mathematically conve-
nient and has been adopted in most theoretical studies of film boiling. In reality
the interface may be wavy or unsteady, due to the formation and detachment of
bubbles.

If one assumes, following Cheng and Verma (1981), that the Oberbeck-
Boussinesq approximation and Darcy’s law are applicable and variables are de-
fined as in Fig. 10.27, then the governing equations for the region saturated with
superheated vapor (subscript v), y < �v , are

∂uv

∂x
+ ∂	v

∂y
= 0, (10.76)

uv = − K

�
(
v − 
∞)g, (10.77)

uv

∂Tv

∂x
+ 	v

∂T

∂y
= �m

∂2Tv

∂y2
, (10.78)

Figure 10.27. Definition sketch for film boiling.



444 10. Convection with Change of Phase

while those for the region filled with subcooled liquid (subscript l), y > �v , are
∂ul

∂x
+ ∂vl

∂y
= 0, (10.79)

ul = 
g�l∞K (Tl − T∞)

�l
, (10.80)

ul
∂Tl

∂x
+ vl

∂Tl

∂y
= �ml

∂2Tl

∂y2
. (10.81)

The boundary conditions are

y = 0 : vv = 0, Tv = Tw, (10.82)

y → ∞ : ul = 0, Tl = T∞, (10.83)

where the saturation temperature Ts satisfies Tw > Ts = T∞. At the vapor-liquid
interface y = �v , we have

Tv = Ts = Tl , (10.84)


v

(
vv − uv

d�v

dx

)
= 
l

(
vl − ul

d�v

dx

)
= ṁ�, (10.85)

− kmv

∂Tv

∂y
= ṁ�h f v − kml

∂Tl

∂y
, (10.86)

where km is the effective thermal conductivity of the porous medium and h f 	 is
the latent heat of vaporization of the liquid at Ts . Equation (10.86) states that the
energy crossing the interface is partly used to evaporate liquid at a rate ṁ�.

We introduce the streamfunctions ψv, ψl defined by

uv = ∂ψv

∂y
, vv = −∂ψv

∂x
, (10.87)

ul = ∂ψl

∂y
, vl = −∂ψl

∂x
, (10.88)

and the similarity variables defined by

�v = (Raxv)1/2 y/x, �l = (Raxl)
1/2(y − �v)/x, (10.89)

ψv = �mv(Raxv)1/2 fv(�v), ψl = �ml(Raxl)
1/2 fl(�l), (10.90)

Tv − Ts = (Tw − Ts)�v(�v), Tl − Ts = (Ts − T∞)�l(�l), (10.91)

where

Raxv = (
 − 
v)gK x

�v�mv

, Raxl

g�l K (Ts − T∞)x

�l�ml
. (10.92)

We then have

f ′
v = 1, f ′

l = �, (10.93)

2�v
′′ + fv�′

v = 0, 2�l
′′ + fl�

′
l = 0, (10.94)

fv(0) = 0, f ′
l (∞) = 0, (10.95)

�v(0) = 1, �l(∞) = 0 (10.96)
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and at the interface, which is given by y = �v , and therefore by

�v = �v� = Ra1/2
xv �v/x, �l = 0, (10.97)

we have

�v(�v�) = 0, �l(0) = 0, (10.98)

f1(0) = − ṁ�2x1/2


 [�ml
∞g�1 K (Ts − T∞)/�1]1/2
= R

Sc1/2 �v�, (10.99)

Sh�′
v(�v�) = Sc3/2

R
�′

l (0) − �v�

2
. (10.100)

Here

Sc = cPl(Ts − T∞)/h f v, Sh = cPv(Tw − Ts)/h f v (10.101)

are “Jakob numbers” measuring, respectively, the degree of subcooling of the fluid
and the superheating of the vapor, and R is defined by

R = 
v


∞

[
�l�mv(
∞ − 
v)cPl

�v�ml
∞�l h f v

]1/2

. (10.102)

Equation (10.99), which is related to the rate of evaporation, determines �v�.
The remaining equations in fv, �v, fl , and �l constitute a sixth-order eigenvalue
problem. Those in fv, �v have the exact solution

fv = �v, �v = 1 − erf(�v/2)

erf(�v�/2)
(10.103)

while those in fl , �l reduce to the problem discussed in Section 5.1.2 if the values
of �v�, R, and Sc are prescribed.

We define the local Nusselt number Nux in terms of the wall heat flux q ′′
w, so

Nux = q ′′
wx

kmv(Tw − Ts)
, (10.104)

and then

Nux

Ra1/2
xv

= −�′
v(0) = 1

π1/2erf(�v�/2)
. (10.105)

The value of �′
v(0) can be obtained numerically, and results are shown in Fig. 10.27.

In particular we have the asymptotic result

Nux

Ra1/2
xv

→ 0.564 as Sh → ∞. (10.106)

Results for other geometrical configurations are readily attained (Cheng
et al., 1982). For example, for a horizontal cylinder of diameter D, we have
Eq. (5.120), modified by the replacement of the coefficient 0.628 with the expres-
sion 21/2[−�′

v(0)]. Likewise Eq. (5.122), similarly modified, applies for a sphere
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of diameter D. For a cone of half-angle � with axis vertical and vertex downward,

Nux

Ra1/2
xv

= 31/2[−�′
v(0)] (10.107)

where now g cos � replaces g in the definition of Raxv , while for a wedge the same
applies except that the factor 31/2 is absent.

Nakayama et al. (1987) have extended the boundary layer theory to general two-
dimensional and axisymmetric bodies. They show that an accurate approximate
formula is

Nux

(Ra/I )1/2
=

⎧⎪⎨⎪⎩π−1 +
⎡⎣(

2Sh +
(

0.444
Sc

Rn

)2
)1/2

− 0.444
Sc

Rn

⎤⎦−2
⎫⎪⎬⎪⎭

1/2

(10.108)

where

Rn = 
v�mv


l�ml

[
�mlvl(
l − 
v)

�mvvv
v�v(Ts − T∞)

]1/2

, (10.109)

I (x) =
∫ x

0 gxr∗2dx

gxr∗2x
, (10.110)

r∗ =
{

1 for plane flow,

r(x) for axisymmetric flow,
(10.111)

gx = g
[
1 − (

dr
dx

)2
]1/2

. (10.112)

Here r (x) defines the surface, where x is measured along the surface from a stagna-
tion point. Thus, for example, I = 1 for a vertical plate and I = 1/3 for a vertical
cone pointing downward.

Subcooled forced convection film boiling over a vertical plate was analyzed by
Nakayama and Koyama (1988b), and similarity solutions for the vertical plate,
horizontal circular cylinder, and sphere were found by Nakayama and Koyama
(1988a). A theoretical and experimental study of film boiling over a sphere or a
horizontal cylinder was performed by Orozco et al. (1988). Film boiling of a binary
mixture over a vertical plate was studied analytically and experimentally (with good
agreement between the results) by Essome and Orozco (1991). A theoretical study
of mixed convection film boiling of a binary mixture over a horizontal cylinder
was reported by Orozco and Zhu (1993).

10.4. Condensation

Several authors have used a one-dimensional model to analyze condensation in
porous media. For example, Vafai and Sarkar (1986, 1987) have reported a tran-
sient analysis of moisture migration and condensation in porous and partially
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Figure 10.28. Heat transfer results for film boiling (Cheng and Verma, 1981, with
permission from Pergamon Press).

porous enclosures, and Sözen and Vafai (1990) have analyzed the transient forced
convective condensing flow of a gas through a packed bed, with quadratic drag
effects incorporated. A two-dimensional transient model was employed by Vafai
and Whitaker (1986) to study the accumulation and migration of moisture in an
insulation material; this involved a porous slab.

The only problem that has been studied in depth is that of film condensation. This
problem is analogous to that of film boiling, discussed in the previous section. The
roles of the liquid and the vapor are reversed and heating is replaced by cooling,
but the mathematical analysis is the same provided that the liquid/vapor interface
remains sharp, i.e., there is no intervening two-phase region, provided that capillary
effects are negligible. In the literature the analysis has been developed in parallel
with that discussed in Chapter 5. Hence our discussion will be brief.

The original study by Cheng (1981b) for steady condensation outside a wedge or
cone embedded in a porous medium filled with a dry saturated vapor was extended
by Cheng and Chui (1984) to the transient situation. Liu et al. (1984) extended the
analysis to treat general two-dimensional and axisymmetric bodies and to allow
for the effect of lateral mass flux.

White and Tien (1987) employed the Brinkman equation to account for boundary
friction and also the effect of variable porosity at the wall. Lai and Kulacki (1989b)
allowed for the effect of temperature-dependent viscosity; this can significantly
increase the heat transfer rate if the wall temperature is close to the saturation
temperature. Ebinuma and Nakayama (1990a,b, 1997) have included the effect of
quadratic drag for the transient problem (the additional drag increases the time
required to reach the steady state) and the transient problem with lateral mass flux.
Li and Wang (1998) investigated analytically the influence of an effective thermal
conductivity change adjacent to the cooling wall. The effect of a transient suction
effect at the porous layer interface was studied by Ma and Wang (1998). The effect
of suction on condensation on a finite-sized horizontal flat medium was studied
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Figure 10.29. Heat transfer results for film condensation (Majumdar and Tien, 1990).

theoretically by Wang et al. (2003d). A further study incorporating non-Darcian
effects was reported by Masoud et al. (2000).

The effects of surface tension on film condensation were analyzed by Majumdar
and Tien (1990). Now the thermodynamics of phase equilibria requires the exis-
tence of a two-phase zone lying between the liquid and vapor regions. In this zone
solutions of the conservation equations indicate a boundary layer profile for the
capillary pressure. Majumdar and Tien considered various models for the bound-
ary conditions. They concluded that the best results are attained if one assumes that
there is no shear at the interface between liquid and the two-phase zone. Results
obtained using this model are shown in Fig. 10.29. The parameter R� , the Rayleigh
number Ra, and the Jakob number Ja are defined here by

R� = �∗(K �)1/2

�l�m
, Ra = g(
l − 
v)K 3/2

�l�m
,

Ja = cP (Ts − Tw)

h f g
,

(10.113)

where �∗ is the surface tension and the other quantities are as in Section
10.3.2.

Condensation on a vertical surface was investigated experimentally and numer-
ically by Chung et al. (1992). Their numerical model assumed a distinct two-phase
zone existing between liquid and vapor zones and included the effect of vapor flow
in that two-phase zone. Their experiments were performed for steam condensing in
packed beds of glass beads of three different sizes. They reported good agreement
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between numerical and experimental results. They found that the calculated liquid
film thicknesses are of the order of the diameter of the glass beads.

Nakayama (1991) used the Forchheimer model in his analytical treatment of
film condensation in the presence of both gravity and externally forced flow. He
introduced a similarity transformation involving a modified Péclet number based
on the resultant velocity of the condensate. Microscale Grashof and Reynolds
numbers based on the square root of the permeability govern the delineation
of four limiting regions, namely (i) Darcy forced convection, (ii) Forchheimer
forced convection, (iii) Darcy natural convection, and (iv) Forchheimer natural
convection.

An experimental and numerical investigation on the Brinkman model of con-
densation of a downward flowing vapor on a horizontal cylinder embedded in a
vapor-saturated porous medium was carried out by Orozco (1992). Good agree-
ment was found between predicted and measured values of Nu and condensate
thickness.

Renken and Aboye (1993a,b) have reported numerical and experimental stud-
ies of film condensation within thin inclined porous coatings. The experiments
involved a condensate region overlaying metallic permeable coating adhered to an
isothermal copper block. Reduced gravity measurements were obtained by con-
densing saturated steam containing small concentrations of noncondensables on
surfaces with effective body forces between 0.3 and 1 g. They also investigated
the effects of surface subcooling. The presence of the coating enhanced the heat
transfer substantially. The previous work of Renken et al. (1989) involved a nu-
merical study of a porous coating on a vertical surface. The subsequent work by
Renken et al. (1994) involved further numerical investigation on the Brinkman-
Forchheimer model or coatings on inclined surfaces. Experiments on forced con-
vection past porous coatings placed parallel to saturated steam flow were reported
by Renkin and Raich (1996).

Wang and Beckerman (1995) performed a two-phase boundary layer analysis
based on a two-phase mixture model for buoyancy-driven two-phase flow (con-
densing or boiling) in capillary porous media. They used the solution to reveal the
capillary effect.

For film condensation on a vertical plate, Al-Nimr and Alkam (1997a) obtained
closed-form expressions for the condensate film thickness and flow rate and for
the convective heat transfer coefficient. They found that the liquid film thickness
is proportional to x1/4 in a thin porous domain as the permeability tends to infinity,
but it is proportional to x1/2 in a thick porous domain as the permeability tends to
zero. Masoud et al. (2004) extended this analysis to a transient problem.

Char and Lin (2001) and Char et al. (2001) treated conjugate film condensation
in natural and mixed convection between two porous media separated by a vertical
plate. A further conjugate problem was studied by Mosaad (1999). Heat and mass
transfer with condensation in a fibrous insulation slab was studied experimentally
and analytically by Murata (1995). Forced convection film condensation on a
vertical porous-layer-coated surface was studied analytically by Toda et al. (1998)
and by Asbik et al. (2003).
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10.5. Spaces Filled with Fluid and Fibers Coated with a
Phase-Change Material

It has been shown that polyethylene glycols (polyols) can be bonded stably on
fibrous materials and that the resulting composites—the “thermally active” fibers—
exhibit reproducible energy storage and release properties (e.g., Vigo and Bruno,
1987). The energy storage and release is due to the large latent heat of melting
and crystallization of the polyols affixed to the fibers. A fundamental model for
heat transfer through a space filled with polyol-coated fibers surrounded by air
was described by Lim et al. (1993), who also reviewed the applications of this new
class of materials. In this model the fibers and the phase-change material (polyol,
liquid, or solid) constitute the matrix of the porous medium, while air is the fluid
that flows through the interstitial spaces.

It is worth noting that this model differs fundamentally from the one used in
earlier studies of melting and solidification in porous media (e.g., Section 10.1.1).
In the earlier studies the melted phase-change material was the fluid that filled
the pores, and therefore there was no flow through regions saturated with solid
phase-change material. In the model for spaces filled with thermally active fibers,
the fluid (air) flows through the entire matrix regardless of whether the polyol
coatings are liquid or solid.

The model of Lim et al. (1993) is based on the homogeneous porous medium and
local thermal equilibrium assumptions. The composition of the porous medium
is described by the porosity, � (about 80 percent), and the fraction of the matrix
occupied by polyol, ε (about 20 percent). This means that a unit volume is dis-
tributed in the following proportions: � = air, (1 − �) = matrix (fibers and polyol),
(1 − �)ε = polyol, and (1 − �)(1 − ε) = fibers. The average heat capacity of the
porous medium is

(
c)m = �(
cP )a + (1 − �)[ε(
c)P + (1 − ε)(
c) f ], (10.114)

in which the subscripts m, a, p, and f refer to the averaged porous medium, air,
polyol, and fibers.

Lim et al. (1993) applied the model to melting and freezing in three con-
figurations, which were analyzed numerically: one-dimensional conduction,
one-dimensional convection, and two-dimensional natural convection due to heat-
ing or cooling from the side. In each case the focus was on the relation be-
tween the time of complete melting or solidification of the polyol coatings and
the various dimensions and external parameters of the enclosure. For example,
in a two-dimensional space with time-dependent melting by natural convection
(Fig. 10.1) the time-dependent flow and heat transfer is ruled by four independent
groups: Ra = g�K H (Th − Ti )/v�m, H/L , S = (1 − �)ε
 pλ/(
c)m(Th − Ti ) and
�m = (Tm − Ti )/(Th − Ti ) where Th, Ti , Tm and λ are the temperature of the heated
side wall, the uniform initial temperature of the system, the melting temperature,
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Figure 10.30. The effect of Ra and the latent heat on the evolution of the average melting
front position in a space filled with fibers coated by a phase-change material (Lim et
al., 1993).

and the latent heat of melting. Note that in the corresponding configuration of
Section 10.1.1 the phenomenon was described by only two independent groups,
Ra and H/L .

The shape and evolution of the melting front has the same features as in Fig.
10.2. Several effects are presented in condensed form in Fig. 10.30, which shows
the average position of the melting front

M(τH ) = 1

H

∫ H

0

s

L
dy (10.115)

versus the dimensionless time τH = �mt/� H 2, where � is the heat capacity ratio
� = (
c)m/(
CP )a . The dimensions s(y, t), H , and L are defined in Fig. 10.1.
Each of the curves plotted in Fig. 10.30 is terminated at the time when the melting
front has traveled the distance L along the top of the enclosure. The inflection of
each curve is considerably more pronounced than in Fig. 10.6.

The effect of the latent heat parameter S is also shown in Fig. 10.30. A larger
latent heat (larger S) means a longer time until the coating melts on the fibers
located the farthest from the heated wall. The melting times decrease sensibly
as the Rayleigh number becomes greater than approximately 5. The effects of
changing �m and H/L are further documented in Lim et al. (1993).

The solidification process in the same two-dimensional configuration is analo-
gous to the melting process discussed until now. In solidification, the H × L region
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is initially isothermal (Ti ) and all the fibers are coated with liquid polyol, Ti > Tm .
The temperature of one of the side walls is lowered suddenly to Tc, which is lower
than Tm . The movement of the solidification front is similar to that of Fig. 10.2: the
shape of the front can be visualized by imagining the mirror image of Fig. 10.2,
where the role of mirror is played by one of the horizontal walls. Figure 10.30
continues to be valid subject to the new definitions Ra = g�K H (Ti − Tc)/	�m

and �m = (Ti − Tm)/(Ti − Tc).



11
Geophysical Aspects

Most of the studies of convection in porous media published before 1970 were
motivated by geophysical applications and many published since have geophysical
ramifications; see, for example, the reviews by Cheng (1978, 1985b). On the other
hand, geothermal reservoir modeling involves several features that are outside the
scope of this book. Relevant reviews include those by Donaldson (1982), Grant
(1983), O’Sullivan (1985a), Bodvarsson et al. (1986), Bjornsson and Stefansson
(1987), McKibbin (1998, 2005), and O’Sullivan et al. (2000, 2001). In this chapter
we discuss a number of topics that involve additional physical processes or have
led to theoretical developments beyond those that we have already covered.

11.1. Snow

It is not uncommon for an unstable air density gradient to be found in a dry snow
cover, because the base is often warmer than the upper surface. The geothermal
heat flux, the heat release due to seasonal lag, and the release of heat if the soil
freezes are factors that tend to keep the bottom boundary of a snow cover near
0◦C. In contrast, the upper boundary is usually near the ambient air temperature,
which in cold climates can be below 0◦C for long periods of time.

When the unstable air density gradient within the snow becomes sufficiently
great, convection occurs and the rate of transport of both heat and vapor increases
and the snow undergoes metamorphosis. For example, a strong vertical temperature
gradient favors the growth of ice particles. These may grow to 1 or 2 cm in diameter.
As the particles increase in size their number decreases so rapidly that the density
of the snow decreases, relative to that in the absence of a temperature gradient. At
the same time there is a change in the shape of ice crystals. The strength of the
snow against shear stresses is lowered and on sloping terrain this can lead to slab
avalanches.

Thermal convection has been observed in snow both in laboratory experiments
and in the field. These experiments indicate that natural convection should be fairly
common under subarctic conditions.

The particular feature of convection in snow that distinguishes it from con-
vection in other porous media is the fact that the energy balance is significantly
affected by the phase change due to the transport of water vapor from particle
to particle in snow. This has been studied by Palm and Tveitereid (1979). Their



454 11. Geophysical Aspects

analysis was refined by Powers et al. (1985). The latter assume that the Boussinesq
approximation is valid and that the equation of state for vapor at saturation can be
taken as


v = 
0 exp[B(T − T0)]. (11.1)

The heat flux is incremented by Ljv , where L is the latent heat and jv is the diffusive
flux of vapor, given by jv = −Deff∇
v where Deff is an effective mass diffusivity.
At the same time there is an additional energy transport term resulting from the
convection of vapor (for details, see Powers et al., 1985). As a consequence one
ends up with an energy equation in the form

[L
v B + (
cP )a]v · ∇T = ∇ · [
(
km + L Deff
v B

) ∇T ], (11.2)

where the subscript a denotes air and v is the mass-averaged seepage velocity
(which is approximately equal to the air velocity because the density of vapor
is much less than that of air). If the various coefficients in Eq. (11.2) can be
approximated by constant values, this takes the form

v · ∇T = �e∇2T, (11.3)

where

�e = �m

(
1 + �

1 + a�

)
, (11.4)

where in turn

�m = km

(
cP )a
, � =

L Deff
km

(
d
v

dT

)
, a = �

Deff
. (11.5)

We see that the primary effect of the diffusion of water vapor (which arises from
the variation of saturation vapor density with temperature) is to change the value
of the effective thermal diffusivity.

To Eq. (11.3) we can add the equations of continuity, momentum, and state:

∇ · v = 0, (11.6)

−∇ P − �

K
v + 
ag = 0, (11.7)


a = 
0[1 − �(T − T0)], (11.8)

and appropriate boundary conditions to formulate a variant of the Horton-Rogers-
Lapwood problem. Powers et al. (1985) solved this system for the two-dimensional
case using finite differences and calculated the heat transfer for Rayleigh numbers
just above critical. They treated various types of boundary conditions and they
briefly discussed the case of inclined layers.

We note that the effect of water vapor is destabilizing if a > 1 and stabilizing
if a < 1. In practice the value of a can vary widely, but typical values are in the
range of 0.5 to 2. This means that the critical Rayleigh number is in the range 25
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to 35 for the case of an isothermal permeable top and an isothermal impermeable
bottom boundary.

Sommerfeld and Rocchio (1993) reported experiments on the permeability of
snow. They noted that while calculated Rayleigh numbers have exceeded those
thought critical for natural convection in snow, field experiments by Sturm and
Johnson (1991) indicate that extreme thermal gradients are necessary for even
intermittent convection. Sturm and Johnson, however, concluded that convection
occurred almost continuously during two of the three winters during which they
made their experiments.

Comparing the results of a numerical model with a field experiment where air
was forced through a natural snowpack, Albert (1995) concluded that the air-
flow through the pack was sufficient to produce advection-dominated heat transfer
throughout most of the pack. Aspects of the convective instability of air in snow
cover treated as a two-layered system were discussed by Zhekamukhov and Zheka-
mukhova (2002). A nonequilibrium treatment of heat and mass transfer in alpine
snowcovers was reported by Bartelt et al. (2004).

11.2. Patterned Ground

There are many places in arctic or mountainous regions where the surface of the
ground takes the form of a regular pattern of circles, stripes, or polygons. These
are made prominent because of the segregation of stones and fines resulting from
diurnal, seasonal, or other recurrent freeze-thaw cycles in water-saturated soils.
These patterns also are found underwater, in shallow lakes, or near shores. The
diameter of sorted polygons may vary from 0.1 to 10 m. A variety of photographs
is included in the article by Krantz et al. (1988).

When frozen soil thaws, the potential for convection exists because of the density
inversion for water between 0 and 4◦C. More dense water at a few degrees above
its freezing point can overlie less dense water at 0◦C. But convection currents alone
are too weak to move either the stones or the soil.

Ray et al. (1983) provided the following explanation of the formation of pat-
terned ground. Once gravitationally induced convection occurs, it typically forms
hexagonal cells in horizontal ground and roll cells or helical coils in sloped terrain.
These regular cellular flow patterns can then be impressed on the underlying ice
front, because in areas of downflow the warmer descending water causes extra
melting, whereas in areas of upflow the rising cooler water hinders melting of the
ice front. Consequently, the ice level is lowered under descending currents and
raised over ascending currents, relative to the mean level. Thus a pattern of regu-
larly spaced peaks and troughs is formed on the underlying ice front that mirrors
the cellular convection patterns in the thawed layer. This pattern is transferred
to the ground surface through the process of mechanisms such as frost push or
frost pull. The width of the flow cell at the onset of convection then determines
the width W of the observed stone patterns. The height H of the thawed layer at
the onset of convection is assumed to correspond to the sorting depth D. Linear
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instability theory thus predicts the value of W/D. This tallies well with obser-
vations (Gleason et al., 1986). The model also provides an explanation for the
transition from polygons on horizontal ground to stripes on sloped terrain.

The direction of fluid circulation determines whether the stones concentrate over
the ice troughs or peaks. Gleason et al. (1986) report results of weakly nonlinear
stability theory that shows that under most conditions the determining temperature-
dependent property for convection arising from thawing frozen soil is the coef-
ficient of thermal expansion. This decreases from 3.5 × 10−5 per degree Celsius
to zero as the temperature increases from 0 to 4◦C, and this decrease implies cell
circulation with upflow in the cell center and downflow along the polygonal bor-
ders. The underlying ice front then should have isolated ice peaks and continuous
polygonal troughs. If stones tend to concentrate over troughs during sorting, this
would lead to stone-bordered polygons. In fact these are the most frequently ob-
served patterns. If kinematic viscosity were the dominant temperature-dependent
property, then the decrease in kinematic viscosity as the temperature increases
would imply the opposite direction of circulation and this would lead to stone pits.
These are occasionally observed.

Rock conducts heat better than soil does. Thus if in the freeze following the
thaw period wherein the convection was initiated the sorting process moves some
stones over the convection-induced ice troughs, then during the next thaw period
the conductive heat transfer will be largest in precisely those regions. Thus heat
conduction will act to accentuate the previous pattern.

George et al. (1989) state that three conditions are believed to be essential for
the formation of stone polygons: the existence of freeze-thaw cycles within the
soil, the saturation of the soil with water for at least part of the year, and the
presence of an impermeable ice barrier underlying the active layer. Once these
conditions are satisfied, the formation of polygonal ground follows a five-step
process. Stone polygons have been grown in the laboratory by reproducing these
five steps, namely: (1) Permeability enhancement as the result of the formation of
needle ice and frost heaving in the soil. (2) Onset of buoyancy-driven convection
in the water saturated soil. (3) Formation of a tessellated surface in the permafrost.
(4) Genesis of polygonal ground through frost heaving. (5) Perpetuation of the
hexagonal pattern.

Gleason et al. (1986) claimed that the two forms of convection cells that can
occur in sloped terrain have widely different width-to-depth ratios, 2.7 for two-
dimensional rolls (which occur for small downslope flow) and 3.8 for helical coils
(which occur for large downslope flow). They have not published the analysis that
leads to these values. We would expect the values to be practically the same. The
value 2.7 would correspond to an impermeable conducting bottom and a permeable
conducting top surface.

George et al. (1989) also have extended the theoretical analysis of the onset of
convection in several respects. Whereas Ray et al. (1983) approximated the density
versus temperature relationship by a linear expression, George et al. (1989) worked
with a more accurate parabolic expression. George et al. (1989) also allowed for
a permeability that varies linearly with depth and they contributed a nonlinear
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analysis based on the method of energy. They found that their theoretical pre-
dictions of W /D agreed well with field studies when a constant-flux condition is
imposed at the upper boundary and an upwardly stratified permeability is chosen.
Theoretical extensions to include the effects of solar radiation, phase change, cu-
bic density law, and overlying water have been made by McKay (1992, 1996) and
McKay and Straughan (1991, 1993), respectively. In particular, McKay (1992)
presented a linear analysis involving Floquet theory, a nonlinear energy analysis,
and extensive numerical results.

Experimental work together with the results of a theoretical investigation of
heterogeneity effects were reported by Zimmerman et al. (1998). The mathematical
aspects of the pattern formation were emphasized in the review by Straughan
(2004b). The self-organization aspect of the phenomenon was discussed by Kessler
and Werner (2003).

11.3. Thawing Subsea Permafrost

During the ice age (18,000 years ago) the sea level was some 100 m lower than it is
at present and the lower ambient temperatures led to substantial permafrost forming
around arctic shores. With the rise of sea levels the permafrost has responded to the
relatively warm and salty sea, which has created a thawing front and a layer of salty
sediments beneath the sea bed. Those off the coast of Alaska have been extensively
studied. It is believed that convection is taking place in the layer between the sea
bed and the permafrost. (This belief is based on the fact that although conduction
appears to be the dominant heat transfer mechanism, the molecular diffusion of
salt is too slow to explain the observed rate of thawed layer development. Also the
salinity Rayleigh number is supercritical, salinity gradients in the thawed layer are
small except for a boundary layer near the bottom, and the pure water pressure is
different from hydrostatic.) A buoyancy mechanism is provided by the release of
relatively fresh and therefore buoyant water liberated by thawing at the base of the
layer.

The analysis of Swift and Harrison (1984) is of interest because of the way in
which they were able to replace a moving boundary (Stefan) problem with one
essentially on a fixed domain, using the facts that the convection is salt dominated
and the climatic interface advance is slow (2 to 5 cm/year). The argument is as
follows.

On the moving boundary z = D, Stefan conditions hold for the temperature and
salinity fields. At z = D,

LV
d D

dt
= −km

∂T

∂z

∣∣∣∣
D−

and S(D)
d D

dt
= −�s

∂S

∂z

∣∣∣∣
D−

, (11.9a,b)

where S is the salinity, km the thermal conductivity, LV is the latent heat per unit
volume of the salty thawed layer, and �s is the diffusivity of salt. Because salinity is
the driving mechanism, the temperature profile can be assumed linear throughout,
and hence the temperature gradient can be replaced by [T (D) − T0]/D, where T0
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is the sea-bed temperature. The requirement for phase equilibrium is that S(D) is
proportional to −T (D), and so we can write S(D)/Sr = T (D)/T0, where Sr is the
salinity of water that would begin to freeze at temperature T0. Here T (D) < T0 < 0
and so S(D) > Sr . Now dD/dt can be eliminated from Eqs. (11.9a) and (11.9b),
and we end up with the nonlinear boundary condition

∂S

∂z
= km T0

Lv�s D
S

(
S

Sr
− 1

)
at z = D. (11.10)

The other boundary conditions are the usual ones, and the problem is reduced to
a standard linear stability problem on a fixed domain.

Swift and Harrison (1984) went on to solve this problem numerically for solute
Rayleigh numbers 1750 and 17500 (which we recall are well in excess of the
critical value for the onset of convection, which is about 40). Galdi et al. (1987)
reexamined this problem, using both linear and nonlinear analysis. They used an
energy method to determine a critical Rayleigh number below which convection
cannot develop. Payne et al. (1988) also have applied an energy method to this
problem. They assumed that the downward permafrost interface movement is
negligible and they allowed the density to vary quadratically with temperature.

Subsequent studies have shown that salt fingering may play a major role in the
thawing of the permafrost. The salt gradient is produced partly by salts rejected
during sea ice growth producing concentrated brine near the sea bed and partly by
salts rejected during sediment freezing near the sea bed causing the formation of a
concentrated brine layer within the deeper and yet unfrozen sediments. Gosink and
Baker (1990) report theoretical, laboratory, and field investigations. The theoretical
ones are based on timescale balances related to the result of Wooding (1959) that
convective instability in the form of fingering takes place when the magnitude of
the salinity Rayleigh number exceeds a certain critical value (3.390 in the case of
a vertical cylinder, the Rayleigh number being based on the radius of the cylinder;
compare Section 6.16.1). The results of Gosink and Baker suggest that downward
salt fingering will occur at Prudhoe Bay whenever the density gradient in the
thawed subsea sediments exceeds 6.2 < 10−5 g cm−4. The maximum predicted
velocity of fingering is about 2 m/day and this is consistent with estimates made
from measurements of pressure gradients and numerical modeling in the thawing
permafrost. The energy dissipated by viscous force in the thawed layer balances
the energy added to the layer by the salt fingers caused by concentrated brines at
the seabed.

Hutter and Straughan (1997) have employed a realistic equation of state and
have imposed a linear temperature gradient. For this case they have developed
linear and fully nonlinear stability analyses. They found that the refinements to the
equation of state led to a reduction in critical Rayleigh number. An unconditional
nonlinear stability bound (close to that of linear theory) was found by Budu (2001).
A further study was carried out by Hutter and Straughan (1999). Their multiscale
perturbation analysis verified the observed thaw rates with a parabolic-in-time
phase boundary retreat and enabled an investigation of possible currents induced
by the ocean circulation overlying the thawed permafrost layer. Their analysis
indicates that the phase boundary beneath the sea bed and below the thawing



11.4. Magma Production and Magma Chambers 459

layer has a parabolic shape, something that is observed in practice. The topic
of this section has been reviewed by Straughan (2004b), who concludes that the
nonlinear stability thresholds will be extremely close to the linear instability ones
for any practical choice of the density equation of state.

11.4. Magma Production and Magma Chambers

In general the flow of magma can be treated like that of a viscous fluid subject to
the Navier-Stokes equation, but there are two situations where Darcy’s equation
is applicable. The first is when crystallization leads to a porous structure near the
walls of a magma chamber. The second is when a partial melt is formed during
magma genesis and the melt products tend to concentrate along interconnected
grain boundaries. Lowell (1985) has applied double-diffusive stability analysis to
each of these situations.

The partial melt problem involves a layer whose thickness varies with time, and
so the associated boundary condition is of Stefan type. Lowell (1985) obtains as
an approximate expression for the critical thermal Rayleigh number

Rac = 4π2

(
1 − Q2

2π2

)
, (11.11)

where Q is determined as the root of

π1/2 Qerf (Q) exp
(
Q2

) = Ste, (11.12)

where the Stefan (or Jakob) number Ste = �T cP/�Lh . Here �T is the difference
between the basal temperature of the layer and the eutectic temperature (the starting
temperature for the melting process), cP is the specific heat of the solid/melt
mixture, � is the melt fraction (porosity), and Lh the latent heat. In the present
context Q is a small parameter, so the dynamics of the melt front can be decoupled
from the double-diffusive effects. Thus the basic stability results of Nield (1968) are
applicable. The critical thickness can vary from about 800 m to a few centimeters,
depending on the composition of the magma. Lowell concluded that convective
processes will tend to homogenize the melt before it separates from the source
zone, but the vigor of mixing is dependent upon the composition of the source.

Lowell’s (1985) other problem concerns the structure of the porous boundary
layer that forms as a result of side-wall crystallization in a convecting magma
chamber. His examination of the steady-state boundary layer equations shows
that the structure may be one of two types. If upon crystallization at the wall the
residual melt fraction has negative compositional buoyancy or if the negative ther-
mal buoyancy at the cold wall exceeds the positive compositional buoyancy of
the residual melt, then the flow across the whole boundary layer will be down-
ward. Then if the residual melt fraction has negative compositional buoyancy, the
magma chamber will become stratified as the result of the accumulation of a layer of
dense cold liquid on the floor, while if the melt fraction has positive compositional
buoyancy, the boundary layer fluid will tend to be remixed into the interior of
the magma chamber. If, on the other hand, the positive compositional buoyancy
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exceeds the negative thermal buoyancy, counterflowing boundary layers will occur
and the compositional buoyancy liquid will tend to be fractionated towards the top
of the magma chamber.

11.5. Diagenetic Processes

Diagenetic processes involve reactions between pure water and mineral phases
during which unstable minerals are dissolved and more stable phases are precip-
itated, resulting in changes in porosity and permeability. If fluid flow is involved,
then the dissolution and precipitation occur in different parts of the medium. Davis
et al. (1985) have computed the flow pattern and the resulting diagenetic contours
(of v · ∇T ) for convection in a folded porous layer (sand) bounded by an imperme-
able medium (shale) heated from below and held at a constant temperature above.
They assumed that the dip angles are small and the convection is weak, so that the
temperature field can be uncoupled from the fluid flow. Their results are shown
in Fig. 11.1. The direction of circulation, and hence the region of precipitation,
depends on whether the conductivity of the porous medium (km) is less than or
greater than the conductivity of the impermeable medium (ks). If km/ks < 1, the
precipitation of quartz takes place on the lower flanks of the porous layer, because
the solubility increases with temperature, and hence the material is leached from
the porous matrix in regions where the fluid is being heated and precipitated in
regions where it is cooled.

The rate of mass transfer is radically increased if the critical Rayleigh number
is exceeded and multicellular convection occurs. Palm (1990) has modified the
analysis which Palm and Tveitereid (1979) developed for convection in snow (see
Section 11.1) to slightly supercritical two-dimensional flow in a sloping layer in
order to determine the rate of change of mean porosity �̄ (averaged with respect
to the upslope coordinate). Palm (1990) showed that

∂�

∂t
= 4π
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s
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dT
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T

�m
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H 2
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Ra
sin

(
2πz

H

)
, (11.13)

where 
w is the density of water while Cs is the mass fraction of the transported
material in water, in his case silica quartz, and 
s is its density. The other quantities
are as in Section 7.8. We note that the maximal changes in porosity occur at
z = (1/4)H and z = (3/4)H . This work was applied to the sedimentary basin
under the North Sea by Bjørlykke et al. (1988).

The book by Phillips (1991, Ch.7) contains further extensions. Phillips presents
detailed analysis of convective flow at small Rayleigh number in submerged banks
of slowly varying thickness or in compact platforms or reefs. He also treats flow
patterns at intermediate Rayleigh number and scale ratio.

A computation of porosity redistribution resulting form thermal convection in
slanted porous layers was made by Gouze et al. (1994). Implications for hy-
drothermal circulation at midocean ridges, resulting from permeability changes
due to diagenesis in the fractured crust, were studied by Fontaine et al. (2001).
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Figure 11.1. Streamlines in a folded porous layer. In A the thermal conductivity ratio
km/ks is 0.8, where m refers to the porous layer (sandstone) and s to the surrounding
impermeable material (shale). In B the ratio is 1.25. The + signs denote the loci of
maximum precipitation of quartz and the − signs the loci of maximum dissolution
(Davis et al., 1985, with permission from the American Journal of Science).

11.6. Oceanic Crust

11.6.1. Heat Flux Distribution

Measurements of heat flow on the ocean floor near the Galapagos spreading center
have revealed a spatial periodicity with a wavelength of about 7 km, peaks of
12 HFU (where 1 HFU ≡ 1� cal cm−2 s−1 is the “heat flux unit”) and troughs of
2 HFU, i.e., a peak to trough ratio of 6. Ribando et al. (1976) calculated this ratio
for various values of a Rayleigh number Ra based on heat flux, for the cases of
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permeable and impermeable upper boundary, and for exponentially decreasing and
constant permeability. The heat flux distributions for permeable and impermeable
tops are similar and in the parameter range of interest the peak to trough ratio is
not sensitive to whether the permeability is constant or exponentially decreasing,
taking the value 6 for Ra = 100. For a cell depth of 3.5 km this corresponds
to a permeability of 4.5 × 10−12 cm2, in accordance with other estimates of the
permeability of oceanic basalts.

11.6.2. Topographical Forcing

Convection in oceanic crust has motivated studies of convection initiated by to-
pography giving rise to horizontal temperature gradients and also of the extent
to which topography influences the wavelength of convection cells produced by
vertical temperature gradients. Lowell (1980) studied the first aspect. He assumed
that the topography is two-dimensional, of uniform wavelength L and amplitude
d, with d/L � 1, as shown in Fig. 11.2. This allows the temperature boundary
condition to be changed from T = 0 at the surface to

T = d�T

2H
(1 + cos kx) at z = 0, (11.14)

where k = 2π/L . The other boundary conditions are taken as

∂w

∂z
= 0 at z = 0, and w = T = 0 at z = H. (11.15)

The linearized momentum and energy equations for steady flow take the form

∇2w = g�K

	

∂2T

∂x2
, (11.16)

∇2T = �T

H�m
w. (11.17)

Figure 11.2. Definition sketch for low amplitude, wavelike crustal topography.
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This system of equations can be solved iteratively. The first-order solution is

T1 = d�T

2H

[
1 + cos kx

sinh k(h − z)

sinh k H
− z

H

]
, (11.18)

w1 = − g�K d�T

4	H sinh k H
cos kx[(1 + k H tanh kh) sinh k(H − z)

− k(H − z) cosh k(H − z)]. (11.19)

The last equation shows that the fluid descends at topographic troughs and ascends
beneath topographic peaks as expected. The vertical velocity is proportional to the
topographic amplitude d , but the convective heat flux 
cPw1T1 is proportional to
d2. Lowell (1980) also analyzed the case when the topography is covered with a
layer of sediment.

The extent to which boundary topography can control the pattern of convection
in a porous layer was examined by Hartline and Lister (1981). Their experiments
using a Hele-Shaw cell indicate that for supercritical values of Ra the topography
does not control the convection pattern except when the topographic wavelength
is comparable to the depth of water penetration, the nondimensional wavenumber
2πH/L taking values between 2.5 and 4.8. We note that this range brackets π, the
critical wavenumber for a slab with planar, isothermal, and impermeable bound-
aries. Topographies within this range control the circulation pattern perfectly, with
downwelling under troughs and upwelling aligned with peaks. Other topographies
do not force the pattern, although in some cases the convection wavenumber may
be a harmonic of the topographic wavenumber. Unforced convection cells wander
and vary in size. Hartline and Lister (1981) conclude that where the submarine
circulation correlates with bottom topography it may be because the topographic
wavelength is comparable to the depth to which water penetrates the porous crust.

11.7. Geothermal Reservoirs: Injection and Withdrawal

Geothermal reservoir modeling has motivated many numerical studies of problems
involving the withdrawal and injection of fluids. It is often convenient to formu-
late such problems in terms of pressure and temperature. For example, Cheng and
Teckchandani (1977) studied the transient response in a liquid-dominated geother-
mal reservoir resulting from sudden heating and the withdrawal of fluids. They
considered a two-dimensional rectangular reservoir confined by caprock at the top,
heated by bedrock from below, and recharged continuously through vertical bound-
aries from the sides, with withdrawal from either a centrally placed line sink or a
vertical plane sink. The characteristic feature is the contraction of isotherms in the
neighborhood of the sink (see Fig. 11.3). Oscillatory convection starts at Ra = 200,
a lower Rayleigh number than in the absence of cold water recharge from the sides.

In other studies the withdrawal and recharge of fluid has been through a per-
meable top. The numerical results of Horne and O’Sullivan (1974b) showed that
fluid withdrawal can increase or decrease the rate of heat transfer from the bottom
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Figure 11.3. Contraction of isotherms in a geothermal reservoir resulting from fluid
withdrawal from (a) a point sink and (b) a vertical line sink. Here � is the nondimensional
temperature, and D = Ra/�� T (Cheng and Teckchandani, 1977).

(heated) surface depending on its position relative to the heat source. A two-
temperature model was used by Turcotte et al. (1977) to simulate hot springs.
Fluid is assumed to enter an upper permeable boundary at ambient temperature.
That leaving is at a temperature greater than ambient temperature. At large Ra the
significant temperature differences between fluid and solid are restricted to a thin
layer near the upper boundary. Further work on this topic has been reviewed by
Cheng (1978, 1985b).

11.8. Other Aspects of Single-Phase Flow

In the vicinity of the fluid critical point the intensity of natural convective circula-
tion can increase dramatically. Dunn and Hardee (1981) presented laboratory data
that show that in a porous medium heat transfer rates can increase by a factor of
70 in the vicinity of the critical point. They also showed that the conditions for
this type of superconvection are compatible with expected geological conditions
above magma bodies in the Earth’s crust. Numerical experiments on convective
heat transfer at near-critical conditions were reported by Cox and Pruess (1990).
The heat transfer rates obtained in the simulations were considerably smaller than
those reported by Dunn and Hardee (1981). Cox and Pruess suggested that pos-
sible causes of the discrepancy are the effects of pressure variation, channeling,
and vertical asymmetry of the temperature field. Ingebritsen and Hayba (1994)
observed that singularities in the equations of state of water at its critical point
could be avoided by switching to a pressure-enthalpy formulation. Their numer-
ical simulations showed that there was little near-critical enhancement in heat
transfer for systems in which flow is driven by fixed pressure drops. However, in
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density-driven systems there can be an enhancement of heat transfer by a factor
102 or more, with convection occurring in narrow cells, if the permeability is suf-
ficiently high. The restriction to high permeability environments within a fairly
narrow pressure-enthalphy window indicates that superconvection may be quite
rare in natural near-magma systems.

In order to discuss convective flow patterns in ground water near salt domes,
Evans and Nunn (1989) made some calculations of double-diffusive convection.
They did not invoke the Boussinesq approximation. They found that along a salt
flank the flow can be either up or down, the sense of direction depending mainly
on the value of the buoyancy ratio N[defined in Eq. (9.10)] and how sharply the
isotherms are pulled up near the salt dome. These factors depend in turn on the
regional salinity variation, the time since diaparism, and the thermal conductivity
of water-saturated sediments.

A time-dependent numerical model of heat transfer across a thickening con-
ductive boundary layer, between a crystallizing magma chamber and a single-pass
hydrothermal system in the ocean crust, was developed by Lowell and Burnell
(1991) and applied to sea-floor black smokers. General discussions of submarine
hydrothermal systems were presented by Lowell (1991) and Lowell et al. (1995),
Wilcock (1998), and Jupp and Schultz (2000, 2004). High Rayleigh number con-
vection in an open top porous layer (or Hele-Shaw cell) heated from below was
studied by Cherkaoui and Wilcock (1999, 2001).

Convection in a mushy zone at the Earth’s inner-outer core boundary was dis-
cussed by Bergman and Fearn (1994). They concluded that the magnetic field may
be strong enough to act against the tendency for convection to be in the form of
narrow chimneys.

The interaction of thermally driven convective circulation in a steeply dipping
fault zone and groundwater flow through the surrounding rock that is driven by a
regional topographic gradient was examined by López and Smith (1995). Three-
dimensional thermoconvection in an anisotropic inclined sedimentary layer was
numerically simulated by Ormond and Genthon (1993).

Numerical modeling was used by Mullis (1995) to check the usefulness of
the analytical solution given by Eq. (7.100). He found that for a homogeneous
aquifer this solution is a good approximation provided that the inclination of the
layer is replaced by the inclination of the isotherms. He also numerically modeled
convection in wedges and lenses.

A general discussion based on numerical simulation of the patterns of flow
induced by geothermal sources in deep ground was presented by Holzbecher and
Yusa (1995). A geological thermosyphon, where the convection in a closed loop
is coupled to conduction in the surrounding earth, was simulated numerically by
Paterson and Schlanger (1992). They found that at a Rayleigh number above 1,
convection leads to a temperature reduction near the source.

The problem of confinement of nuclear wastes in places like Yucca mountain in
which the temperature and humidity inside emplacement drifts are of interest has
led to new numerical simulations by Webb et al. (2003) and Itamura et al. (2004).
An analytical assessment of the impact of covers on the onset of air convection in
mine wastes was reported by Lu (2001).
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Studies of the successive formation and evolution of layered structures in porous
media resulting from heating a compositionally stable stratified fluid from below
were made by Schoofs et al. (1998, 2000a). Thermochemical convection in and
between intracratonic basins was studied by Schoofs et al. (2000b). The depletion
of a brine layer at the base of ridge-crest hydrothermal systems was simulated by
Schoofs and Hansen (2000). Numerical simulations of midocean ridge hydrother-
mal circulation including the phase separation of sea water were made by Kawada
et al. (2004). A comprehensive study of NaCl-H2O convection in the Earth’s crust
was reported by Geiger et al. (2005) who employed a novel finite element-finite
volume numerical method. They allowed for phase separation. To characterize the
onset of convection with a non-Boussinesq situation they introduced a fluxibility
parameter (a scaled energy flux) and a local Rayleigh number.

Using finite-element numerical modeling, Zhao et al. (1997, 1998a, 1999c,d,
2000a, 2001a,b) have treated a range of situations. Zhao et al. (1998b, 1999a)
studied high Rayleigh number steady-state heat transfer in media heated from
below. The first paper dealt with the effect of geological inhomogeneity with both
heat and mass transfer and the second with the effect of medium thermoelasticity,
mineralization, and deformable media. Zhao et al. (2003a) transformed a magma
solidification problem with a moving boundary into a problem without the moving
boundary but with an equivalent heat source.

Steady-state heat transfer through midcrustal vertical cracks with upward
throughflow in hydrothermal systems was analyzed by Zhao et al. (2002). The
onset of convective flow in three-dimensional fluid-saturated faults was analyzed
by Zhao et al. (2003a,b, 2004a, 2005). Further interesting studies involving lay-
ering or plume separation of thermohaline convection have been carried out by
Oldenburg and Preuss (1998, 1999).

The influence of free convection on soil salinization in arid regions was studied
by Gilman and Bear (1996). A numerical technique useful for such problems was
supplied by Payne and Straughan (2000a). Straughan (2004b) notes that a non-
linear energy theory for this problem is lacking, but Payne et al. (1999) have used
energylike techniques to derives continuous dependence and convergence results
for the basic equations arising from the Gilman and Bear (1996) theory. Numerical
modeling of reaction-induced cavities in a porous rock was conducted by Ormond
and Ortoleva (2000). Solute transport in a peat moss layer produced by buoyancy-
driven flow was discussed by Rappoldt et al. (2003). Thermal convection in faulted
extensional sedimentary basins was simulated by Simms and Garven (2004).

Highly heterogeneous geologic systems recently have received special attention
from Simmons et al. (2001) and Prasad and Simmons (2003). They pointed out
that in many geologic systems, hydraulic properties such as the hydraulic conduc-
tivity of the system under consideration can vary by many orders of magnitude and
sometimes rapidly over small spatial scales. Geologic systems, characterized by
fractured rock environments or lenticular mixes of sand and clay, are common in
many hydrogeologic systems. Such heterogeneity occurs over many spatial scales
and variable density flow phenomena may be triggered, grow, and decay over a
very large mix of different spatial and temporal scales. Dense plume problems in
these geologic environments, in general, are expected to be inherently transient in
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nature and often may involve sharp plume interfaces whose spatiotemporal devel-
opment is very sensitive to initial conditions. Importantly, the onset of instability
in transient, sharp interface problems is controlled by very local conditions in
the vicinity of the evolving boundary layer and not by the global layer properties
or some average property of that macroscopic layer. Simmons et al. (2001) and
Prasad and Simmons (2003) pointed out that any averaging process is likely to
remove the very structural controls and physics that are important in controlling
the onset, growth, and/or decay of instability in a highly heterogeneous system.
These authors, together with Schincariol et al. (1997), reported that in the case of
dense plume migration in highly heterogeneous environments the application of an
average global Rayleigh number based upon average hydraulic conductivity of the
medium was problematic. In these cases, an average Rayleigh number appears to
be unable to predict the onset of instability accurately because the system is char-
acterized by unsteady flows and large amplitude perturbations. For statistically
equivalent geologic systems, and hence average global Ra, dense plume behavior
was observed by Simmons et al. (2001) and Prasad and Simmons (2003) to vary
between highly unstable to highly stable.

A number of factors limit the application the of the Rayleigh number in highly
heterogeneous geologic environments. These include the invalidity of steady-state
flow assumptions and the inability to accurately quantify both time-dependent non-
dimensionalizing length scales and dispersion in plume problems. In real field set-
tings the critical transition regions in flow and transport behavior in groundwater
systems are rarely known, and the idealized boundary conditions assumptions un-
derlying the classic Horton-Rogers-Lapwood problem are not met. Also it is likely
that in the case of transient development of fingers elements of Rayleigh-Taylor
instability are involved and the effect is accentuated when there is heterogeneity.
Thus it is not surprising that the use of a single average Rayleigh number has severe
limitations in the situations investigated by Simmons and his colleagues. However,
we believe that as a criterion for the onset of instability (as distinct from its sub-
sequent development) in the case of moderately heterogeneous media the average
Rayleigh number may do a better job than Simmons and his colleagues have re-
ported. Because they worked in terms of a log permeability field they employed
a poor estimate (too low) of the average permeability. Further work is needed to
examine the consequences of this.

11.9. Two-Phase Flow

11.9.1. Vapor-Liquid Counterflow

For a geothermal field, the solid (rock) is at rest and the gas is the vapor. With
subscript v (for vapor) replacing g, Eqs. (3.77–3.78) reduce to

vl = −k f K

�l
(∇ P − 
lg) (11.20)

vv = −kv K

�v

(∇ P − 
vg) (11.21)
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Here it is assumed that K is constant. Likewise, Eqs. (3.82)–(3.83) reduce to

JM = 
lvl + 
vvv, (11.22)

JE = 
l hlvl + 
vhvvv − k∇T (11.23)

Under the two-phase conditions, the pressure P and temperature T are func-
tionally related through the saturation line relation T = Tsat (P). It is customary to
take the z-axis in the vertically downward direction. In the absence of source terms
and with the pressure term there negligible Eqs. (3.85)–(3.86) give for vertical
flow,

∂ AM

∂t
+ ∂ JM

∂z
= 0, (11.24)

∂ AE

∂t
+ ∂ JE

∂z
= 0, (11.25)

where AM (P, S), AE (P, S), JM (P, ∂ P/∂z, S), and JE (P, ∂ P/∂z, S) and S is the
liquid saturation. The relative permeabilities kl(S) and kv(S) are assumed to be
monotonic increasing and decreasing, respectively, and to satisfy the conditions

kl(S) = 0 for 0 < S < S∗ (11.26)

kv(S) = 0 for S∗ < S < 1, (11.27)

where S∗ and 1 − S∗ denote the residual liquid saturation and vapor saturation,
respectively. From Eqs. (11.20–11.24) it follows that for the case of negligible
conduction,

JM = −F + G M , (11.28)

JE = −hF + G E , (11.29)

where the gravitational terms are

G M =
(


 2
l K kl

�l
+ 
 2

v K kv

�v

)
g, (11.30)

G E =
(


 2
l K klhl

�l
+ 
 2

v K kvhv

�v

)
g, (11.31)

The mass mobility F is given by

F = K

(

l kl

�l
+ 
vkv

�v

)
, (11.32)

and the flowing enthalpy h is given by

h (P, S) = 
l klhl/�l + 
vkvhv/�v


l kl/�l + 
vkv/�v

. (11.33)

Substituting Eqs. (11.28)–(11.29) into Eqs. (11.24)–(11.25) and eliminating
second derivatives of the pressure, one obtains a first-order wave equation of the
form

∂S

∂t
+ c

∂S

∂z
= fl(S, P, ∂ P/∂t, ∂ P/∂z) , (11.34)
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where f1 is a forcing term and the wave-speed c (whose reciprocal is an eigenvalue
of the differential system) is given by

c = 1

ES

[
∂h

∂S
JM − ∂G

∂S

]
, (11.35)

where in turn, for the case of negligible conduction,

G = hG M − G E , (11.36)

ES = ∂ AE

∂S
− h

∂ AM

∂S
. (11.37)

Equation (11.34) may be analyzed by the standard method of characteristics.
Rankine-Hugoniot equations, expressing conservation of mass and energy, relate
the shock velocity to changes in densities and flows:

U = [JM ]

[AM ]
= [JE ]

[AE ]
, (11.38)

where [ ] denotes a jump across the shock. It can be verified that for the case of zero
conduction the second equality in the last equation is equivalent to the continuity
of a volumetric flux vector JQ given by

JQ = − K

�

(
∂ P

∂z
− 
g

)
, (11.39)

where � and 
 are defined by

1

�
= kl

�l
+ kv

�v

,



�
= kl
l

�l
+ kv
v

�v

. (11.40)

On the basis of analysis and numerical simulations, Kissling et al. (1992b)
concluded that although the phases can travel in opposite directions (counterflow),
information travels either up or down, depending on the sign of the wave-speed c.
Wave-speed, saturation, and other quantities are defined on a two-sheeted surface
over the mass-energy flow plane, with the sheets overlapping in the counterflow
region. [For counterflow, there are either two or zero solutions of Eq. (11.34), for
the case of zero conduction.] Most saturations are of the wetting type, i.e. they
leave the environment more saturated after their passage. In fact, when the flow is
horizontal all shocks are wetting, but in passage. In fact, when the flow is horizontal
all shocks are wetting, but in vertical two-phase flow there also exist drying shocks
for sufficiently small mass and energy flows.

A general analytical treatment of three-dimensional flow was given by Weir
(1991). He showed that when both phases were mobile the generalization of
Eq. (11.34) is of the form

∂S

∂t
+ c · ∇S = f, (11.41)

where

c = 1

ES

(
∂h

∂S
JM − ∂G

∂S
k

)
, (11.42)
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where k is the unit vector in the z-direction. Weir (1991) showed that at each point
in space, flows are essentially two-dimensional, in the sense that JM , JE , JQ , and
c all lie in a vertical plane. Here JQ is the vector generalization of the scalar in
Eq. (11.39). Further, gravity establishes a vertical hierarchy; the volumetric, energy,
and mass flux vectors (listed in descending order) can never point below a lower
member of this triple.

For a one-dimensional horizontal two-phase flow, Eqs. (11.41–11.42) give, anal-
ogous to Eqs. (11.34–11.35) with zero gravity,

∂S

∂t
+ c

∂S

∂x
= f1(S, P, ∂ P/∂t, ∂ P/∂x), (11.43)

where

c = − F

ES

∂h

∂S

∂ P

∂x
. (11.44)

Equation (11.44) is formally similar to the Buckley-Leverett equation (of oil re-
covery theory) describing isothermal flow of a two-component single-phase fluid
in a porous medium when capillarity can be ignored. However, in the present
situation the saturation equation (11.44) is strongly coupled to the nonlinear
diffusion equation, for P, obtained by eliminating ∂S/∂t from the conservation
equations:

∂ P

∂t
− D

∂2 P

∂x2
= f2(S, P, ∂S/∂x, ∂ P/∂x), (11.45)

where

D = − ES F
∂ M

∂S

∂ E

∂ P
− ∂ E

∂S

∂ M

∂ P

. (11.46)

Kissling et al. (1992a) solved Eqs. (11.45) and (11.43) in turn under the as-
sumption that pressure disturbances diffuse to steady state faster than saturation
changes convect. They performed numerical simulations for a block of porous ma-
terial with pressure and saturation given constant values at the ends of the block.
When pressure diffusion occurs much faster than saturation convection, the numer-
ical results can be described in terms of either saturation expansion fans or isolated
saturation shocks. When pressure diffusion and saturation convection occur on the
same timescale, initial simple shock profiles evolve into multiple shocks.

In the work discussed so far conduction has been neglected. Weir (1994a) has
shown that this is certainly valid for sufficiently high temperatures and sufficiently
high permeabilities. Young (1993b) has shown that even when conduction has
been included, the geothermal saturation wave-speed is formally identical to the
Buckley-Leverett wave-speed when the latter is written as the saturation derivative
of a volumetric flow.

For the case of two-phase brine mixtures, one has to add an equation expressing
conservation of salt. Young (1993a) presented a model in which the flows are
described by a parabolic equation for the pressure with a derivative coupling to a
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pair of equations for saturation and salt concentration. He showed that the wave-
speed matrix for the hyperbolic part of the coupled system is formally identical to
the corresponding matrix in the polymer flood model for oil recovery. Indeed, for
a class of strongly diffusive hot brine models, the wave phenomena in geothermal
reservoirs can be predicted from the polymer flood model.

The two-phase geothermal theory has been extended by Weir (1994b) to the case
where nonreacting chemical transport (of CO2, for example) is added. He derived a
natural factorization of the system of equations into diffusive and wave equations.
Each wave equation allows for the corresponding variable to be discontinuous or
equivalently for shock propagation to occur. In general, there now are more that
the usual two (vapor and liquid dominated) saturations for a given mass, energy,
and chemical flux in steady flow.

A further extension of the theory to the case of withdrawal of fluid at a constant
rate was made by Young and Weir (1994). They defined a parameter �,

� = �vW

K g
l (
l − 
v)
, (11.47)

where W is the rate of withdrawal (mass per unit area per unit time). They concluded
that for large � fluid withdrawal is a mining process, a vapor-dominated zone
spreads out from the production level, and production enthalpies tend toward steam
values. For small � gravity predominates and buoyancy forces can lead to the
formation of a steam bubble that escapes from the production boundary and rises
toward the surface. Then production enthalpy may remain at the liquid value over
long periods. In addition, certain saturation ranges at the sink may be forbidden as
a consequence of the constant rate boundary condition and then saturation shocks
will form at the production boundary and travel out from the sink. Internally
generated shocks also may occur.

A more general study of vapor-liquid counterflow is that of Satik, Parlar, and
Yortsos (1991). They considered a situation in which the counterflow is inclined
to the vertical and their analysis included capillarity, heat conduction, and Kelvin
effects (the lowering of the vapor pressure due to capillarity). They treated a three-
zone model in which the counterflow zone is sandwiched between two zones
(one containing mainly vapor and one containing mainly liquid) in which there
is no flow. They found that the critical heat flux (above which dryout occurs)
increases with decreasing permeability and that a threshold permeability exists
below which steady states may not exist. In this context, the critical heat flux
is dependent on the pressure and the temperature and so is not precisely de-
fined. As special cases of their general theory, they considered what they called
the “heat pipe” and “geothermal” problems. In the former the flow is driven by
capillary pressure and the Kelvin effects are of significance only over a narrow
boundary layer at the vapor-phase boundary. In the latter the flow is driven by
gravity.

The effect of capillary heterogeneity induced by variation in permeability was
analyzed by Stubos et al. (1993b). They found that the heterogeneity acts as a
spatially varying body force that may enhance or diminish gravity effects on heat
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pipes. A detailed numerical investigation of a transient problem involving a self-
heated porous bed was conducted by Stubos et al. (1997). Another investigation
of a heterogeneous medium, one involving oscillatory instability, was made by Xu
and Lowell (1998).

For the axially symmetric problem of constant-strength heat source embedded
in an infinite homogeneous medium with uniform initial conditions, Doughty and
Pruess (1990, 1992) obtained a similarity solution in terms of the variable r/t1/2.
In their second paper they included an air component and investigated vapor-
pressure lowering, pore-level phase change effects, and an effective continuum
representation of fractured porous media.

A model taking into account latent heat, vertical flow, and heat conduction terms,
and so involving a new parameter representing a combination of those quantities,
was presented by Pestov (1997, 1998).

11.9.2. Heat Pipes

A heat pipe is a system in which a very efficient heat transfer process is effected
by vapor-liquid counterflow and associated evaporation and condensation effects
with transfer of latent heat. Vapor and liquid may flow in opposite directions due
to gravity or capillary action, or both. If heat is injected into such a system, the
liquid phase will vaporize, causing pressurization of the vapor phase and vapor
flow away from the heat source. In cooler regions the vapor condenses and deposits
its latent heat. In the case of a heat pipe depending on capillary action, this sets
up a saturation profile, with liquid-phase saturations increasing away from the
heat source and capillary forces then cause backflow of the liquid toward the heat
source.

For a vertical heat pipe, McGuinness et al. (1993) showed that the steady-state
values of JE and ∂ P/∂z are given by

JE

K

(
�l


l kl
+ �v


vkv

)
= JM

K

(
�l hl


l kl
+ �vhv


vkv

)
− g(hv − hl)(
l − 
v),

(11.48)

∂ P

∂z

(

l kl

�l
+ 
vkv

�v

)
= − JM

K
+

(

 2

l kl

�l
+ 
 2

vkv

�v

)
. (11.49)

If the simplification kl + kv = 1 is assumed (this is a good approximation in many
situations), the value of the wave-speed that appears in Eq. (11.34) is, for the case
JM = 0 (which is appropriate for a heat pipe),

c = A

(
�l k2

v


l
− �vk2

l


v

)
, (11.50)

where A, defined by

A = K (∂kl/∂S)g(∂l − ∂v)

(kl�v + kv�l)(kl�v/
l + kv�i/
l)
, (11.51)
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is always positive. Hence c is normally negative for a steady liquid-dominated
pipe (kv ≈ 0) and normally positive for a steady vapor-dominated pipe (kl ≈ 0).
This fixes the direction of information flow, and hence tells one at which end of
the pipe one should impose flux values in numerical simulations of geothermal
systems and at which end one should specify the saturation and pressure. For
the vapor-dominated solution the pressure and saturation should be fixed at depth
and the heat and mass flux specified at the top. These boundary conditions are
appropriate for a laboratory heat pipe but they are questionable for geothermal
systems.

An extension of this work was made by McGuinness (1996), who pointed out
that the three-zone model used by Satik et al. (1991) limits the possible range of heat
flow values through the heat pipe and also limits solutions to those with a smooth
transition from pure vapor to pure liquid. The single-zone model of McGuinness
allowed these restrictions to be removed. He used a singular perturbation approach
(valid for K> 10−15 m2, so that the heat flow is convection dominated), allowing for
capillary boundary layers in the temperature-saturation phase-plane. He found that
in the geothermal context and with heat flow that is dominated by convection phase-
plane trajectories of temperature versus saturation track zero-capillarity (gravity
driven) solutions (one liquid-dominated and one vapor-dominated) when they exist.
Which of the two solutions is selected depends on the boundary conditions. In the
case of bottom heating it is the liquid-dominated solution that should be selected.
Whereas the work of Satik et al. (1991) suggested that only the vapor-dominated
solution is typically obtained, the results of McGuinness (1996) explain why Bau
and Torrance (1982a) and others obtained only liquid-dominated solutions in their
laboratory experiments. McGuinness (1996) also calculated bounds (maxima) for
the lengths of heat pipes in cases where previous work had predicted unbounded
lengths.

The theory of two-phase convection, and in particular the theory of heat pipes, is
currently controversial. The work of Satik et al. (1991) and Stubos et al. (1993a,b)
was developed in the context of laboratory experiments, and care needs to be
exercised in extending their theory to geothermal systems. For further discussion,
the reader is referred to Young (1996a,b, 1998a,b).

The quadratic drag (Forchhiemer) effect was included in the analysis by Zhu and
Vafai (1999). The dynamics of submarine geothermal heat pipes was investigated
by Bai et al. (2003). A further study of the stability of heat pipes in vapor-dominated
systems was reported by Amili and Yortsos (2003).

11.9.3. Other Aspects

A numerical investigation of two-phase fluid flow and heat transfer in a porous
medium heated from the side was conducted by Waite and Amin (1999). A general
local thermal nonequilibrium model for two-phase flows with phase change in
porous media was proposed by Duval et al. (2004). Two-phase flow in porous-
channel heat sinks was studied by Peterson and Chang (1997, 1998). Buoyancy
effects together with phase change have been discussed by Zhao et al. (1999e,
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2000b). A review of several aspects of liquid and vapor flow in superheated rock
was made by Woods (1999).

11.10. Cracks in Shrinking Solids

The earth’s crust is a cracked porous medium with multiple scales, which result
from erosion and from periodic shrinking due to volumetric cooling and drying.
In spite of the apparent diversity of crack sizes and locations, there is pattern.
For example, wet soil exposed to the sun and the wind becomes drier, shrinks
superficially, and develops a network of cracks. The loop in the network has a
characteristic length scale. The loop is round, more like a hexagon or a square, not
slender. The loop is smaller (i.e., cracks are denser) when the wind blows harder,
that is, when the drying rate is higher.

The characteric scales of cracks in volumetrically shrinking solids were recently
deduced from constructal theory (Bejan et al., 1998; Bejan, 2000). They were
deduced by invoking the constructal law: the maximization of access for the mass
transfer from wet and cracked soil to the ambient. In Bejan et al. (1998), model
was a heat transfer analog in which a one-dimensional solid slab of thickness L is
initially at the high temperature TH and has the property of shrinking on cooling.
The coolant is a single-phase fluid of temperature TL .

The question is how to maximize the thermal contact between the solid and
the fluid or how to minimize the overall cooling time. This objective makes it
necessary to allow the fluid to flow through the solid. In Fig. 11.4 the cracks are
spaced uniformly, but their spacing R is arbitrary. The channel width D increases
in time, as each solid piece R shrinks. The fluid is driven by the pressure difference
�P , which is maintained across the solid thickness L. The imposed �P is an
essential aspect of the channel spacing selection mechanism. For example, in the
air cooling of a hot solid layer the scale of �P is set at (1/2) 
 f U 2

∞, where 
 f

and U∞ are the density and the free-stream velocity, respectively, of the external
air flow.

To examine the effect of the channel spacing R on the time needed for cooling
the solid we consider the asymptotes R → 0 and R → ∞. The approach is known
as the intersection of asymptotes method (Lewins, 2003). When the number of
channels per unit length is large, the spacing R is small and so is the eventual
shrinkage that is experienced by each R element. This means that when R → 0
we can expect D → 0 and laminar flow through each D-thin channel, such that
the channel mass flow rate is ṁ ′ = 
 f DU ∼ 
 f D3 �P/(�L). In the same limit,
R is small enough so that the solid conduction is described by the lumped thermal
capacitance model. The solid piece R has a single temperature T, which decreases
in time from the initial level TH to the inlet temperature of the fluid TL . This
cooling effect is governed by the energy balance 
cRL(dT/dt) = −q ′, where 

and c are the density and the specific heat, respectively, of the solid. The cool-
ing effect (q ′) provided by the flow through the channel is represented well by
q ′ = ṁ ′cp (T − TL ), where cp is the specific heat of the coolant. We obtain the
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L

Figure 11.4. Cracks in a shrinking solid cooled by forced convection (Bejan et al.,
1998).

order-of-magnitude statement 
cRL(�T/t) ∼ ṁ ′cp�T , where �T is the scale
of the instantaneous solid excess temperature T − TL . Finally, by using the scale,
we find the cooling time scale:

t ∼ 
c


 f cp

�RL2

D3�P
(R → 0) (11.52)

In the opposite limit, R is large and the shrinkage (the channel width D) is
potentially very large in proportion to R. The fluid present at one time in the
channel is mainly isothermal at the inlet temperature TL . The cooling of each solid
side of the crack is ruled by one-dimensional thermal diffusion into a semiinfinite
medium. The cooling time in this regime is the same as the time of thermal diffusion

t ∼ R2

�
(R → ∞) (11.53)

where � = k/(
c) and k is the thermal conductivity of the solid.
To summarize, in the limit R → 0, the cooling time is proportional to

R/D3 or R−2 because we expect a proportionality between D and R, namely,



476 11. Geophysical Aspects

D/R ∼ ��T � 1, where �T ∼ TH − TL and � is the coefficient of thermal
contraction of the solid. In the opposite limit, R → ∞, the cooling time is pro-
portional to R2. Put together, these proportionalities suggest that the cooling time
possesses a sharp minimum with respect to R or the channel density. Intersecting
the two asymptotes, we find that the optimal crack distance for fastest cooling

Ropt ∼
[

k

k f

� f 	L2

U 2∞ (��T )3

]1.4

. (11.54)

The optimal crack distance decreases as the external pressure (or flow) is inten-
sified. This is in accord with observations that mud cracks become denser when
the wind speed increases. The Ropt result predicts a higher density of cracks (a
smaller Ropt ) as the solid excess temperature �T increases, again in agreement
with observations.

An important geometric aspect of the Ropt scale is that the optimal distance be-
tween consecutive cracks must increase as L1/2. This is relevant to predicting the
length scale of the lattice of vertical cracks formed in a horizontal two-dimensional
surface cooled (or dried) from above, under the influence of external forced con-
vection. As the air flow direction changes locally from time to time and as the
material (its graininess) is such that cracks may propagate in more than one direc-
tion, we arrive at the problem of cooling a two-dimensional terrain (area A, when
seen from above) with cracks of length L and associated area elements of width
Ropt .

Figure 11.5 shows the two extremes in which L may find itself in relation to
Ropt . First, when L is considerably shorter than Ropt it is impossible to cover the

Figure 11.5. Two extremes in covering a two-dimensional solid (A) with cracks (L)
and optimally shaped volume elements (L × Ropt ) (Bejan et al., 1998).
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area A exclusively with patches of size L × Ropt . The reason is that when two
cracks of length L are joined at an angle, the elemental area ∼ L2 trapped between
them is too small to accommodate the amount of ideally cooled solid material.
When L is considerably longer than Ropt , any lattice of cracks will fail to cover the
area A completely. Now the trapped elemental area (∼ L2) is considerably larger
than the amount of ideally cooled solid (∼ L Ropt ): most of the interior of the area
element of size L2 would require a cooling time that is considerably longer than
the minimum time determined in the preceding analysis.

In conclusion, maximum access for the global heat current is achieved by
covering the A cross section with L × Ropt elements, in which L ∼ Ropt . The
optimal pattern is one with relatively round or square loops, not slender loops.
Combining L ∼ Ropt with the Ropt expression, we find the optimal length scale
of the loop in the network of cracks that will minimize the cooldown time:
Ropt ∼ (� f 	k/k f )1/2/[U∞(��T )3/2]. Once again, in agreement with observa-
tions, the lattice length scale Ropt must decrease as the wind speed and the initial
excess temperature increase.

Further geophysical applications of constructal theory are explored in Bejan
et al. (2005).
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Firdaouss, M., Gurmond, J. L. and Le Quéré, P. 1997 Nonlinear corrections to Darcy’s law
at low Reynolds Number. J. Fluid Mech. 343, 331–350. [1.5.2]

Flavin, J. N. and Rionero, S. 1999 Nonlinear stability for a thermofluid in a vertical porous
slab. Cont. Mech. Thermodyn. 11, 173–179. [7.1.4]

Flick, D., Leslous, A. and Alvarez, G. 2003 Semi-empirical modeling of turbulent fluid
flow and heat transfer in porous media. Int. J. Refrig. 26, 349–359. [1.8]

Fomin, S., Shimizu, A. and Hashida, T. 2002 Mathematical modeling of convection heat
transfer in a geothermal reservoir of fractal geometry. Heat Transfer 2002, Proc. 12th Int.
Heat Transfer Conf., Elsevier, Vol. 2, pp. 809–814. [2.6]

Fontaine, F. J., Rabinowicz, M. and Boulegue J. 2001 Permeability changes due to mineral
diagenesis in fractured crust: implications for hydrothermal circulation at mid-ocean
ridges. Earth Planet. Sci. Lett. 184, 407–425. [11.5]

Forchheimer, P. 1901 Wasserbewegung durch Boden. Zeitschrift des Vereines Deutscher
Ingenieure 45, 1736–1741 and 1781–1788. [1.5.2]

Fourar, M., Lenormand, R., Karimi-Fard, M. and Horne, R. 2005 Inertia effects in high-rate
flow through heterogeneous porous media. Transport Porous Media 60, 353–370. [1.5.2]

Fourie, J. G. and Du Plessis, J. P. 2003a A two-equation model for heat conduction in porous
media. (I. Theory) Transport Porous Media 53, 145–161. [2.2.2]

Fourie, J. G. and Du Plessis, J. P. 2003b A two-equation model for heat conduction in porous
media. (II. Application) Transport Porous Media 53, 163–174. [2.2.2]

Fowler, A. C. 1985 The formation of freckles in binary alloys. IMA J. Appl. Maths. 35,
159–174. [10.2.3]

Fowler, A. J. and Bejan, A. 1994 Forced convection in banks of inclined cylinders at low
Reynolds numbers. Int. J. Heat Fluid Flow 15, 90–99. [4.14]

Fowler, A. J. and Bejan, A. 1995 Forced convection from a surface covered with flexible
fibers. Int. J. Heat Mass Transfer 38, 767–777. [1.9, 4.14]

Francis, N. D. and Wepfer, J. W. 1996 Jet impingement drying of a moist porous solid. Int.
J. Heat Mass Transfer 35, 469–480. [3.6]

Frei, K. M., Cameron, D. and Stuart, P. R. 2004 Novel drying process using forced aeration
through a porous biomass matrix. Drying Tech. 22, 1191–1215. [3.6]

Friedrich, R. 1983 Einfluss der Prandtl-Zahl auf die Zellularkonvektion in einem rotieren-
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H2O fluid convection in the Earths’s crust. J. Geophys. Res. 110, Art. No. B07101. [11.8]

George, J. H., Gunn, R. D., and Straughan, B. 1989 Patterned ground formation and pene-
trative convection in porous media. Geophys. Astrophys. Fluid Dyn. 46, 135–158. [11.2]

Georgiadis, J. G. 1991 Effect of randomness on heat and mass transfer in porous media.
Convective Heat and Mass Transfer in Porous Media (eds. S. Kakaç, et al.), Kluwer
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Jecl, R. and Škerget, L. 2004 Comparison between Forchheimer and the Brinkman model
for natural convection in porous media by the boundary element method. In Applications
of Porous Media (ICAPM 2004), (eds. A. H. Reis and A. F. Miguel), Évora, Portugal, pp.
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103–109. [8.1.3]

Kumari, M. and Nath, G. 1989c Double diffusive unsteady free convection on two-
dimensional and axisymmetric bodies in a porous medium. Int. J. Energy Res. 13,
379–391. [9.4]



548 References

Kumari, M. and Nath, G. 1989d Double diffusive unsteady mixed convection flow over a
vertical plate embedded in a porous medium. Int. J. Energy Res. 13, 419–430. [9.4]

Kumari, M. and Nath, G. 1990 Non-Darcy mixed convection flow over a nonisothermal
cylinder and sphere embedded in a saturated porous medium. ASME J. Heat Transfer
112, 518–523. [8.1.3]

Kumari, M. and Nath, G. 1992 Simultaneous heat and mass transfer under unsteady mixed
convection along a vertical slender cylinder embedded in a porous medium. Wärme-
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[7.1.5]

Mohamad, A, A, and Sezai, I. 2002 Effect of lateral aspect ratio on three-dimensional double
diffusive convection in porous enclosures with opposing temperature and concentration
gradients. Heat Transfer Research 33, 318–325. [9.2.2]

Mohamad, A. A., Bennacer, R. and Azaiez, J. 2004 Double-diffusion natural convection
in a rectangular enclosure filled with binary fluid saturated porous media: the effect of
lateral aspect ratio. Phys. Fluids 16, 184–199. [9.1.3]

Mohammadien, A. A. and El-Amin, M. F. 2000 Thermal dispersion-radiation effects on
non-Darcy natural convection in a fluid saturated porous medium. Transport Porous
Media 40, 153–163. [5.1.9.4]

Mohammadien, A. A. and El-Amin, M. F. 2001 Thermal radiation effects on power-law
fluids over a horizontal plate embedded in a porous medium. Int. Comm. Heat Mass
Transfer 27, 1025–1035. [5.2]

Mohammadien, A. A. and El-Shaer, N. A. 2004 Influence of variable permeability on
combined free and forced convection past a semi-infinite vertical plate in a saturated
porous medium. Heat Mass Transfer 40, 341–346. [8.1.1]

Mohammadein, A. A., Mansour, M. A., Abd el Gaied, S. M. and Gorla, R. S. R. 1998
Radiative effect on natural convection flows in porous media. Transport Porous Media
32, 263–283. [5.1.9.4]

Mojtabi, A. 2002 Influence of vibrations on the onset of thermo-convection in porous
medium. Proc. 1st Int. Conf. Applications of Porous Media, 704–721. [6.24]

Mojtabi, A. and Charrier-Mojtabi, M. C. 1992 Analytic solution of steady natural convection
in an annular porous medium evaluated with a symbolic algebra code. ASME J. Heat
Transfer 114, 1065–1068. [7.3.3]

Mojtabi, A. and Charrier-Mojtabi, M. C. 2000 Double-diffusive convection in porous media.
Handbook of Porous Media (K. Vafai, ed.), Marcel Dekker, New York, pp. 559–603. [3.3,
9]

Mojtabi, A. and Charrier-Mojtabi, M. C. 2005 Double-diffusive convection in porous media.
Handbook of Porous Media (K. Vafai, ed.), 2nd ed., Taylor and Francis, New York,
pp. 269–320. [3.3, 9]

Mojtabi, A., Charrier-Mojtabi, M. C., Maliwan, K. and Pedramrazi, Y. 2004 Active control
of the onset of convection in a porous medium. In Emerging Technologies and Techniques
in Porous Media (D. B. Ingham, A. Bejan, E. Mamut and I. Pop, eds), Kluwer Academic,
Dordrecht, pp. 195–207. [6.24]



References 571

Montillet, A. 2004 Flow through a finite packed bed of spheres: A note on the limit of
applicability of the Forchheimer-type equation. ASME J. Fluids Engng. 126, 139–143.
[1.5.2]

Morega, A. M. and Bejan, A. 1994 Heatline visualization of convection in porous media.
Int. J. Heat Fluid Flow 15, 42–47. [4.17]

Morega, A. M., Bejan, A. and Lee, S. W. 1995 Free stream cooling of a stack of parallel
plates. Int. J. Heat Mass Transfer 38, 519–531. [4.15]

Morland, L. W., Zebib, A. and Kassoy, D. R. 1977 Variable property effects on the onset of
convection in an elastic porous matrix. Phys. Fluids 20, 1255–1259. [6.7]

Mosaad. M. 1999 Natural convection in a porous medium coupled across an impermeable
vertical wall with film condensation. Heat Mass Transfer 35, 177–183. [10.4]

Mota, J. P. B., Esteves, A. A. C., Portugal, C. A. M., Esperança, J. M. S. S. and Saatdjain, E.
2000 Natural convection heat transfer in horizontal eccentric elliptic annuli containing
saturated porous media. Int. J. Heat Mass Transfer 43, 4367–4379. [7.3.3]

Moutsopoulos, K. N. and Koch, D. L. 1999 Hydrodynamic and boundary-layer dispersion
in bidisperse porous media. J. Fluid Mech. 385, 359–379. [4.16.4]

Moya, R. E. S., Prata, A. T. and Cunha Neto, J. A. B. 1999 Experimental analysis of unsteady
heat and moisture transfer around a heated cylinder buried in a porous medium. Int. J.
Heat Mass Transfer 42, 2187–2198. [3.6]

Moya, S. L., Ramos, E. and Sen, M. 1987 Numerical study of natural convection in a tilted
rectangular porous material. Int. J. Heat Mass Transfer 30, 741–756. [7.8]

Mullis, A. M. 1995 Natural convection in porous, permeable media æ sheets, wedges and
lenses. Marine Petrol. Geol. 12, 17–25. [11.8.2]

Muralidhar, K. 1989 Mixed convection flow in a saturated porous annulus. Int. J. Heat Mass
Transfer 32, 881–888. [8.2.3, 8.3.3]

Muralidhar, K. 1992 Study of heat transfer from buried nuclear waste canisters. Int. J. Heat
Mass Transfer 35, 3493–3495. [7.11]

Muralidhar, K. 1993 Near-field solution for heat and mass transfer from buried nuclear
waste canisters. Int. J. Heat Mass Transfer 36, 2665–2674. [7.11]

Muralidhar, K. and Misra, D. 1997 Determination of dispersion coefficients in a porous
medium using the frequency response method. Expt. Heat Transfer 10, 109–118.
[2.2.3]

Muralidhar, K. and Suzuki, K. 2001 Analysis of flow and heat transfer in a regenerator
mesh using a non-Darcy thermally non-equilibrium model. Int. J. Heat Mass Transfer
44, 2493–2504. [4.10]

Muralidhar, K., Baunchalk, R.A. and Kulacki, F.A. 1986 Natural convection in a horizontal
porous annulus with a step distribution in permeability. ASME J. Heat Transfer 108,
889–893. [7.3.3]

Murata, K. 1995 Heat and mass transfer with condensation in a fibrous insulation slab
bounded on one side by a cold surface. Int. J. Heat Mass Transfer 38, 3253–3262. [10.4]

Murdoch, A. and Soliman, A. 1999 On the slip-boundary condition for liquid flow over
planar boundaries. Proc. Roy. Soc. Lond. A 455, 1315–1340. [1.6]

Murphy, H. D. 1979 Convective instabilities in vertical fractures and faults. J. Geophys.
Res. 84, 6234–6245. [6.15.2]

Murray, B. T. and Chen, C. F. 1989 Double-diffusive convection in a porous medium. J.
Fluid Mech. 201, 147–166. [9.1.3]

Murthy, P. V. S. N. 1998 Thermal dispersion and viscous dissipation effects on a non-
Darcy mixed convection in a saturated porous medium. Heat Mass Transfer 33, 295–300.
[8.1.1]



572 References

Murthy, P. V. S. N. 2000 Effect of double dispersion on mixed convection heat and mass
transfer in non-Darcy porous medium. ASME J. Heat Transfer 122, 476–484. [9.2.1]

Murthy, P. V. S. N. 2001 Effect of viscous dissipation on mixed convection in a non-Darcy
porous medium. J. Porous Media 4, 23–32. [8.1.1]

Murthy, P. V. S. N. and Singh, P. 1997a Effects of viscous dissipation on a non-Darcy natural
convection regime. Int. J. Heat Mass Transfer 40, 1251–1260. [5.1.9.4]

Murthy, P. V. S. N. and Singh, P. 1997b Thermal dispersion effects on non-Darcy natural
convection with lateral mass flux. Heat Mass Transfer 33, 1–5. [8.1.1]

Murthy, P. V. S. N. and Singh, P. 1997c Thermal dispersion effects on non-Darcy natural
convection over horizontal plate with surface mass flux. Arch. Appl. Mech. 67, 487–495.
[8.1.2]

Murthy, P. V. S. N. and Singh, P. 1999 Heat and mass transfer by natural convection in a
non-Darcy porous medium. Acta Mech. 138, 243–254. [9.2.1]

Murthy, P. V. S. N. and Singh, P. 2000 Thermal dispersion effects on non-Darcy convection
over a cone. Comp. Math. Appl. 40, 1433–1444. [8.1.4]

Murthy, P. V. S. N., Mukherjeee, S., Srinivasacharya, D. and Krishna, P. V. S. S. S. R. 2004a
Combined radiation and mixed convection from a vertical wall with suction/injection in
a non-Darcy porous medium. Acta Mech. 168, 145–156. [8.1.1]

Murthy, P. V. S. N., Ratish Kumar, B. V. and Singh, P. 1997 Natural convection form
a horizontal wavy surface in a porous enclosure. Numer. Heat Transfer 31, 207–221.
[6.15.3]

Murthy, P. V. S. N., Srinivasacharya, D. and Krishna, P. V. S. S. S. R. 2004b Effect of double
stratification on free convection in a Darcian porous medium. ASME J. Heat Transfer
126, 297–300. [9.2.1]

Murty, V. D., Camden, M. P., Clay, C. L. and Paul, D. B. 1989 Natural convection in porous
media between concentric and eccentric cylinders. AIChE Sympos. Ser. 269, 96–101.
[7.6.2]

Murty, V. D., Camden, M. P., Clay, C. L. and Paul, D. B. 1990 A study of non-Darcian
effects on forced convection heat transfer over a cylinder embedded in a porous medium.
Heat Transfer 1990, Hemisphere, Washington, DC, vol. 5, pp. 201–206. [4.3]

Murty, V. D., Clay, C. L., Camden, M. P. and Paul, D. B. 1994 Natural convection around
a cylinder buried in a porous medium—non-Darcian effects. Appl. Math. Modell. 18,
134–141. [7.11]

Na, T. Y. and Pop, I. 1996 A note to the solution of Cheng-Minkowycz equation aris-
ing in free convection in porous media. Int. Comm. Heat Mass Transfer 23, 697–703.
[5.1.9.9]

Na, T. Y. and Pop, I. 1999 A note to the solution of Cheng-Chang equation arising in free
convection in porous media. Int. Comm. Heat Transfer 26, 145–151. [5.2]

Naidu, S. V., Dharma Rao, V., Sarma, P. K. and Subrahmanyam, T. 2004a Performance
of a circular fin in a cylindrical enclosure. Int. Comm. Heat Transfer 31, 1209–1218.
[7.3.7]

Naidu, S. V., Rao, V. D., Sarma, P. K. and Subrahmanyam, Y. 2004b Performance of a
circular fin in a cylindrical porous enclosure. Int. Comm. Heat Mass Transfer 31, 1209–
1218. [7.3.3]

Najjari, M. and Ben Nasrallah, S. 2002 Numerical study of boiling with mixed convection
in a vertical porous layer. Int. J. Therm. Sci.41, 936–948. [10.3]

Najjari, M. and Ben Nasrallah, S. 2005 Numerical study of the effects of geometric dimen-
sions on a liquid-vapor phase change and free convection in a rectangular porous cavity.
J. Porous Media 8, 1–12. [10.3]



References 573

Nakagano, K., Mochida, T. and Ochifuji, K. 2002 Influence of natural convection on forced
horizontal flow in saturated porous media for aquifer thermal energy storage. Appl. Therm.
Engng. 22, 1299–1311. [6.10]

Nakayama, A. 1991 A general treatment for non-Darcy film condensation within a porous
medium in the presence of gravity and forced flow. Wärme-Stoffübertrag. 27, 119–124.
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Acceleration, 8
Allometry, 90–94, 185–187
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rotation and inclination, 298

Anisotropy, 90, 98, 144, 170, 223, 232–235,
238, 251, 267, 271, 302–306, 335, 381, 430,
432

Annulus, 73, 87, 88, 90, 101, 237, 252–256, 300,
306–311, 323, 330, 360, 363–365

Area-to-point flow, 104–114
Asymmetric heating, 83, 85, 89, 312, 361
Attic-shaped enclosure, 312–313
Averaging, 2–3
Axisymmetric cavities, 313
Axisymmetric surface, 167–169

Beavers-Joseph condition, 17–20, 173,
264–265

Bejan number, 97, 117
porous medium, 119

Bidisperse porous media, 24–26, 99–101
Bifurcation, 195–204, 207, 210–221, 226–227,

234, 242–252, 254, 256, 272, 274–275, 298,
307–309, 334, 373, 375, 380, 391, 399,
433–434

Binary alloys, 431–436
Bioconvection, 275
Boiling, 436–446
Boundary conditions

hydrodynamic, 16–20
newtonian, 145
thermal, 35–36, 194, 249

Boundary friction, 75–86, 133–139,
326–327

Boundary imperfections, 297
Boundary layer, 8, 12, 15, 32, 57–58, 61–64,

67–79, 98, 103, 115–116, 121–187,
210–211, 382–392, 403–430, 459

Brinkman model, 13, 379, passim
Bulk temperature, 66
Buoyancy ratio, 369
Buried heat sources, 339–341

Carman-Kozeny formula, 9
Centrifugally driven convection, 212
Channeling, 19, 22, 30, 84, 85, 154, 211, 214,

265, 330
Channel flow, 66–67
Chemical reaction, 44–45, 237, 256, 268, 380,

395
Coarse porous media, 1, 67
Coated fibers, 449–452
Complex porous structures, 24
Compressibility effect, 209, 227, 380
Condensation, 446–449
Cone, 164–167, 352–353, 385, 401, 446, 447
Conjugate convection, 129–132, 153, 283–284,

298, 309, 313, 330, 347, 352, 427
Constructal law, 112
Constructal theory, 104–120, 192
Constructal theory of Bénard convection,

275–282
Constructal theory of crack formation, 474–477
Constructal theory of laminar-turbulent

transition, 12
Continuity of mass: see Mass conservation
Convection with change of phase, 403–452
Crack formation, 474–477
Crossed gradients, 401
Cylinder

See also Horizontal cylinder; Vertical cylinder
Cylindrical enclosures, 306–310

Darcy number, 16, 30, 74, 79–80, 82, 86, 87, 90,
97, 134, 191, 206, 231, 265, 328, 361, 380

Darcy’s law, 4–16
Deformable media, 24
Designed porous media, 1, 94–97
Diagenetic processes, 460
Dispersion, 32–35, 74–75, 133–139, 205–208,

326–327, 339, 343, 345–348, 352–353, 358,
363, 372, 378, 385–386, 401

Double diffusion, 152, 367–402
Dufour effect, 43, 375, 385
Dupuit-Forchheimer relationship, 4, 8, 28, 42
Drying, 54
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Earth’s core, 270, 435
Elastic matrix, 210
Electrodiffusion, 55–56
Elemental volume, 106–108
Energy equation, 27–35, 49–51
Entropy generation, 86, 114, 335
Ergun’s equation, 12
Evaporating salt lake, 381
Evaporation, 436–446
Experimental investigations, 139–142, 212–221,

passim

Fibers, 449–452
Fick’s law, 41
Finite-amplitude convection, 210–212, 231, 232,

236, 250, 372–374
Fins, 88, 96, 98, 132, 182–184
First construct, 108–110
Fissures, 25, 242, 378
Fluid and porous regions, 73, 79, 87–88, 144,

261–269, 327–330, 399
Fluid flow, 1–26
Forced convection, 57–120
Forchheimer model, 10–13, passim
Fourier number, 405
Fractured media, 24
Freezing, 427–436

Geometry generation in nature, 112–114:
see Constructal theory

Geophysical aspects, 453–477
Geothermal reservoirs, 125, 353, 438, 453,

463–464, 471

Hair, 90–94, 185–187
Heat and mass transfer, 42–44
Heat pipe, 236, 353, 471–473
Heat transfer, 27–38
Heatlines, 101–104
Hele-Shaw analogy, 36–38, 203, 212–214, 223,

236, 298, 306, 371–372, 381, 441, 463, 465
Heterogeneity, 88–89, 90, 144, 235–242,

302–306, 378–379, 380, 391, 457, 466–467,
471

Higher-order transitions, 210–212
Horizontal cylinder, 155–159, 160, 185, 254,

323, 349–352, 398, 426, 430, 431, 445, 446,
449

Horizontal line heat source, 169–176
Horizontal plate, 59, 146, 147–151, 154,

348–349, 353, 354, 386
Horton-Rogers-Lapwood problem, 189–281,

367–380
Hyperporous medium, 16, 81

Icy water, 231–232, 269–270, 299, 306,
311–312, 363

Ideal gas, 40, 209
Inclined gradients, 401
Inclined layer or enclosure, 331–336, 395, 449,

460, 465
Inclined plate, 149, 151–153, 343–349
Inclined temperature gradient, 336–337
Inertia, 8, 74–75, 133–139, 323–327, passim
Integral method, 125–129, 279
Internal heating, 29, 31, 98, 144, 149, 169,

225–228, 230, 231, 255–256, 268, 269, 314,
335, 337, 348, 358

Internal partition, 132, 296, 298, 300–302, 310,
327–328, 335

Intersection of asymptotes method, 275–282
Iontophoresis, 55

Jet: see Line source; Point source; Wake

Layered porous media, 32, 89, 97, 144,
236–238, 305, 309, 335, 372, 374, 379,
392, 455

Line source, 64–66, 135, 153, 157, 169–176,
398–399

Local Reynolds number, 12
Localized heating, 257–261, 330, 358–360,

362–263, 364–365

Magma, 435, 459–460, 464–466
Magnetic field, 9–10, 98, 143, 147, 149,

270–271, 334, 380, 401, 425, 432, 465
Mass conservation, 4, 41–42, 47–49
Mass transfer, 39–56
Melting, 403–427
Micropolar fluid, 272, 273, 385
Mixed convection

double-diffusive, 401–402
external, 343–357
internal, 357–366

Mixtures, 39–40
Momentum equation, 4–7
Multicomponent and multiphase flows, 39–56
Multiscale flow structures, 114–120
Mushy zone, 270, 379, 431–436

Natural convection
external, 121–187
internal, heating from below, 189–282
internal, heating from the side, 283–342

Nernst-Planck equation, 55
Net mass flow, 221–223, 227, 267, 271, 337,

361, 381, 426, 442, 466
Non-Boussinesq effects, 208–210
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Nonequilibrium, thermal, 29–32, 36, 73–74, 79,
86–87, 89, 90, 101, 143, 145, 164, 185,
204–205, 309, 323, 326–327, 361, 431,
455, 473

Nonlinear basic temperature profile, 223–232,
371

Non-Newtonian fluid, 16–17, 87, 90, 99, 143,
148, 157, 160, 164, 167, 169, 172, 178, 183,
228, 272, 273, 299, 322, 334, 347, 349, 352,
353, 380, 381, 384, 385, 391

Nonuniform heating, 242–244
Nusselt number, 58

Oberbeck-Boussinesq approximation, 35, 121,
189, 404, 443

Oceanic crust, 461–463
Optimal enclosure shape, 296
Optimization: see Constructal theory, and

Designed porous media
Oscillatory flows, 101

Parabolic density model, 148, 223–228, 256,
269–270, 311–312, 425

Paraboloid, 168, 352
Partitions: see Internal partitions
Patterned ground, 455–457
Péclet number, 58
Penetrative convection, 210, 231–232, 269,

314–319, 426
Periodic heating, 231, 338–339
Permafrost, 99, 313, 456, 457–459
Permeability, 5–6, passim
Phase change, 403–452
Point source, 64–66, 176–182, 395–398
Porosity, 3–5
Porosity variation, 20–22, 75–86
Porous materials, 5
Porous medium, 1
Pressure changes, 29–32
Properties, 5

Radiation, 38, 93, 98, 146, 153, 164, 269, 309,
346, 457

Rayleigh number, 117, 123, 148
Rectangular box or channel, 29, 73, 242,

245–252, 331–336, 373
Representative elementary volume, 1
Resonance, 338–339
Reynolds number, 12

local, 12
pore, 11

Rotation, 254, 266, 271–272, 310, 341,
380–381, 434

Scale analysis, 55–56, 58, 68–69, 217, 284–287,
408–411, 474–477

Seepage velocity, 4
Similarity solution, 122–124
Single-phase flow, 1, 464–467
Sintered materials, 35, 86, 98
Slenderness, 286
Snow, 453–455
Solidification, 427–436
Soret diffusion, 43–44, 374–376, 380, 385, 392,

400, 401
Sources in confined regions, 339–341
Spacings, 118–120
Sphere, 61–64, 73, 132, 159–162, 182, 185, 187,

349–352, 398, 446
Spherical annulus, 311, 313, 322
Spherical enclosures, 310–311
Stability, 296–298, 395, passim
Stefan number, 405
Stratification, 127–129, 153, 164, 168, 172, 236,

258, 313, 347, 362, 384, 385, 392
Superconvection, 464
Superheating, 411–418
Surface per unit volume, 5
Surface tension, 54, 269, 448
Surfaces covered with porous layers, 90–94,

185–187

Temperature-dependent viscosity, 97–98, 135,
146, 149, 210, 258, 349, 373, 447

Thermal conductivity, 28
Thermal development, 89–90
Thermodynamics, 112–114
Thoughflow: see Net mass flow
Time-dependent gravity and heating, 145,

228–231, 258, 373, 433
Tortuosity, 14
Transient effects, 9, 29, 67–74, 75, 86–88, 97,

101, 125–127, 132, 145–146, 149, 157, 160,
164, 169, 174–176, 178–182, 183, 227–228,
230, 231, 235, 252, 258, 268, 274, 275,
308–309, 314, 319–323, 330, 339–340, 348,
352–353, 359, 381, 384, 392–395, 398,
399–400, 425, 430, 442, 446–449, 463,
467, 472

Trapezoidal enclosure, 313, 400
Tree networks, 104–114
Turbulence, 9, 11, 12, 23–24, 31, 88, 204, 330,

378, 432
Two-phase flow, 1, 13, 45–54, 437–443,

447–449, 467–474

Unsaturated porous media, 54
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Variable gravity, 273–275, 337
Variable porosity, 20, 78, 79, 84–85, 129, 146,

153
Vertical annulus: see Annulus
Vertical channel or slot, 250, 298, 299, 309, 328,

330, 360–363, 390, 401
Vertical cylinder, 162–164, 252–254, 256, 309,

314, 351, 352, 364, 398, 430, 458
Vertical plate, 121–147, 164, 183–185, 343–348,

353, 382–386, 394, 401, 425, 426, 446,
449

Vibration, 273–275, 381
Viscoelastic fluid, 99

Viscous dissipation, 29–32, 59, 64, 86, 90, 144,
157, 168, 195, 205–208, 322, 326–327, 334,
348, 353, 361, 362, 370

Visualization, 101–104
Volume-to-point flow, 104–114
Volumetric heating: see Internal heating
Vortex instability, 144, 152, 153–155, 349, 358

Wake, 64–66, 146, 351
Water near 4◦C: see Icy water
Wavy surface, 142, 145, 150, 167, 244
Weakly nonlinear theory, 195–204, 207, 242,

243, 250–252, 298, 433, 456
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