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Clock Synchronization

A. A. Pourhaji Kazem,   Spring 2009

Figure 6-1. When each machine has its own clock, an 
event that occurred after another event may 

nevertheless be assigned an earlier time.



Physical Clocks (1)
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Figure 6-2. Computation of the mean solar day.



Physical Clocks (2)
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Figure 6-3. TAI seconds are of constant length, unlike solar 
seconds. Leap seconds are introduced when necessary to 

keep in phase with the sun.



Global Positioning System
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Figure 6-4. Computing a position in a two-dimensional space.



Global Positioning System (cont.)

Real world facts that complicate GPS

1. It takes a while before data on a
satellite’s position reaches the
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satellite’s position reaches the
receiver.

2. The receiver’s clock is generally not
in synch with that of a satellite.



Global Positioning System (cont.)
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Clock Synchronization Algorithms
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Figure 6-5. The relation between clock time and UTC 
when clocks tick at different rates.



Network Time Protocol
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Figure 6-6. Getting the current time from a time server.



The Berkeley Algorithm
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Figure 6-7. (a) The time
daemon asks all the other 
machines for their clock
values. 



The Berkeley Algorithm (cont.)
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Figure 6-7. 
(b) The machines answer.



The Berkeley Algorithm (cont.)
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Figure 6-7. (c) The time 
daemon tells everyone how 
to adjust their clock.



Clock Synchronization in Wireless 
Networks
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Figure 6-8. (a) The usual 
critical path in determining 
network delays. 



Clock Synchronization in Wireless 
Networks (cont.)

A. A. Pourhaji Kazem,   Spring 2009

Figure 6-8. (b) The 
critical path in the 
case of RBS.



Lamport’s Logical Clocks

• To synchronize   logical  clocks,  Lamport
defined  a relation  called  happens-before.

• The "happens-before" relation   → can be 
observed directly in two situations:
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observed directly in two situations:
– If a and b are events in the same process, and a occurs before 

b, then a → b is true.

– If a is the event of a message being sent by one process, and b
is the event of the message being received by another process, 
then a → b



Lamport’s Logical Clocks (cont.)
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Figure 6-9. (a) Three processes, each with its own clock. 
The clocks run at different rates. 



Lamport’s Logical Clocks (cont.)
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Figure 6-9. (b) Lamport’s algorithm corrects the clocks.



Lamport’s Logical Clocks (cont.)
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Figure 6-10. The positioning of Lamport’s logical 
clocks in distributed systems.



Lamport’s Logical Clocks (cont.)

Updating counter Ci for process Pi

1. Before executing an event Pi executes 
Ci ← Ci + 1.

2. When process Pi sends a message m to Pj, it 

A. A. Pourhaji Kazem,   Spring 2009

2. When process Pi sends a message m to Pj, it 
sets m’s timestamp ts (m) equal to Ci after having 
executed the previous step.

3. Upon the receipt of a message m, process Pj
adjusts its own local counter as 
Cj ← max{Cj , ts (m)}, after which it then executes 
the first step and delivers the message to the 
application.



Vector Clocks
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Figure 6-12. Concurrent message transmission 
using logical clocks.



Vector Clocks (cont.)

Vector clocks are constructed by letting each 
process Pi maintain a vector VCi with the 
following two properties:

1. VCi [ i ] is the number of events that have 
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1. VCi [ i ] is the number of events that have 
occurred so far at Pi. In other words, VCi [ i ] is 
the local logical clock at process Pi .

2. If VCi [ j ] = k then Pi knows that k events have 
occurred at Pj. It is thus Pi’s knowledge of the 
local time at Pj .



Vector Clocks (cont.)

Steps carried out to accomplish property 2 of 
previous slide:

1. Before executing an event Pi executes 
VCi [ i ] ← VCi [i ] + 1.

2. When process Pi sends a message m to Pj, it 
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2. When process Pi sends a message m to Pj, it 
sets m’s (vector) timestamp ts (m) equal to VCi
after having executed the previous step.

3. Upon the receipt of a message m, process Pj
adjusts its own vector by setting 
VCj [k ] ← max{VCj [k ], ts (m)[k ]} for each k, after 
which it executes the first step and delivers the 
message to the application.



Enforcing Causal Communication
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Figure 6-13. Enforcing causal communication.



Mutual Exclusion
A Centralized Algorithm
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Figure 6-14. (a) Process 1 asks the coordinator for permission to 
access a hared resource. Permission is granted. 



Mutual Exclusion
A Centralized Algorithm (cont.)
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Figure 6-14. (b) Process 2 then asks permission to access the 
same resource. The coordinator does not reply. 



Mutual Exclusion
A Centralized Algorithm (cont.)
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Figure 6-14. (c) When process 1 releases the resource, it tells the 
coordinator, which then replies to 2.



Mutual Exclusion
A Distributed Algorithm

Three different cases:
1. If the receiver is not accessing the resource and 

does not want to access it, it sends back an OK 
message to the sender.

2. If the receiver already has access to the 
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2. If the receiver already has access to the 
resource, it simply does not reply. Instead, it 
queues the request.

3. If the receiver wants to access the resource as 
well but has not yet done so, it compares the 
timestamp of the incoming message with the one 
contained in the message that it has sent 
everyone. The lowest one wins. 



Mutual Exclusion
A Distributed Algorithm (cont.)
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Figure 6-15. (a) Two processes want to access a 
shared resource at the same moment. 



Mutual Exclusion
A Distributed Algorithm (cont.)

A. A. Pourhaji Kazem,   Spring 2009

Figure 6-15. (b) Process 0 has the lowest 
timestamp, so it wins. 



Mutual Exclusion
A Distributed Algorithm (cont.)
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Figure 6-15. (c) When process 0 is done, 
it sends an OK also, so 2 can now go ahead.



Mutual Exclusion
A Token Ring Algorithm
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Figure 6-16. (a) An unordered group of processes on a network. 
(b) A logical ring constructed in software.



A Comparison of the Four Algorithms
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Figure 6-17. A comparison of three mutual exclusion algorithms.



Global Positioning Of Nodes
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Figure 6-18. Computing a node’s position in a 
two-dimensional space.



Global Positioning Of Nodes (Cont.)
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Figure 6-19. Inconsistent distance measurements
in a one-dimensional space.



Election Algorithms 

The Bully Algorithm
1. P sends an ELECTION message to all 

processes with higher numbers.
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2. If no one responds, P wins the election 
and becomes coordinator.

3. If one of the higher-ups answers, it takes 
over. P’s job is done.



The Bully Algorithm
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Figure 6-20. The bully election algorithm. (a) Process 4 holds an
election. (b) Processes 5 and 6 respond, telling 4 to stop. 

(c) Now 5 and 6 each hold an election.



The Bully Algorithm (Cont.)
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Figure 6-20. The bully election algorithm.  (d) Process 6 tells 5 to 
stop. (e) Process 6 wins and tells everyone.



A Ring Algorithm
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Figure 6-21. Election algorithm using a ring.



Elections in Wireless Environments
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Figure 6-22. Election algorithm in a wireless network, with node a 
as the source. (a) Initial network. (b)–(e) The build-tree phase



Elections in Wireless Environments (Cont.)
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Figure 6-22. Election algorithm in a wireless network, with node a 
as the source. (a) Initial network. (b)–(e) The build-tree phase



Elections in Wireless Environments (Cont.)
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Figure 6-22. (e) The build-tree phase. 
(f) Reporting of best node to source.



Elections in Large-Scale Systems

Requirements for superpeer selection:
1. Normal nodes should have low-latency access to 

superpeers.
2. Superpeers should be evenly distributed across 

the overlay network.
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the overlay network.
3. There should be a predefined portion of 

superpeers relative to the total number of nodes 
in the overlay network.

4. Each superpeer should not need to serve more 
than a fixed number of normal nodes.



Elections in Large-Scale Systems (Cont.)
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Figure 6-23. Moving tokens in a two-dimensional 
space using repulsion forces.


