
DISTRIBUTED SYSTEMS
Principles and Paradigms

Second Edition
ANDREW S. TANENBAUM

MAARTEN VAN STEEN

Chapter 3

A. A. Pourhaji Kazem, Fall 2009

Chapter 3
Processes

Thread Usage in Nondistributed
Systems

• To execute a program, an operating system creates a
number of virtual processors, each one for running a
different program.

• Like a process, a thread executes its own piece of code,
independently from other threads.

A. A. Pourhaji Kazem, Fall 2009

Thread Usage in Nondistributed Systems

A. A. Pourhaji Kazem, Fall 2009

Figure 3-1. Context switching as the result of IPC.

Advantages of Multi-threading

• One advantage of multithreading is that it becomes
possible to exploit parallelism when executing the
program on a multiprocessor system.

– In that case, each thread is assigned to a different CPU while
shared data are stored in shared main memory.

A. A. Pourhaji Kazem, Fall 2009

• Multithreading is also useful in the context of large
applications.

– Such applications are often developed as a collection of
cooperating programs, each to be executed by a separate
process.

• Finally, there is also a pure software engineering reason
to use threads: many applications are simply easier to
structure as a collection of cooperating threads.

Thread Implementation

• Threads are often provided in the form of a thread
package.

A. A. Pourhaji Kazem, Fall 2009

• Such a package contains operations to create and
destroy threads as well as operations on
synchronization variables such as mutexes and
condition variables.

Thread Implementation (cont.)

• here are basically two approaches to implement a
thread package:

A. A. Pourhaji Kazem, Fall 2009

– The first approach is to construct a thread library that is
executed entirely in user mode.

– The second approach is to have the kernel be aware of threads
and schedule them.

Thread Implementation (cont.)

• A user-level thread library has a number of advantages
and disadvantages:

– First, it is cheap to create and destroy threads.
– Because all thread administration is kept in the user's address

A. A. Pourhaji Kazem, Fall 2009

– Because all thread administration is kept in the user's address
space, the price of creating a thread is primarily determined by
the cost for allocating memory to set up a thread stack.

– A second advantage of user-level threads is that switching
thread context can often be done in just a few instructions.

– a major drawback of user-level threads is that invocation of a
blocking system call will immediately block the entire process to
which the thread belongs, and thus also all the other threads in
that process.

Thread Implementation (cont.)

• The problems of user-level threads can be mostly
circumvented by implementing threads in the operating
system's kernel.

A. A. Pourhaji Kazem, Fall 2009

• Unfortunately, there is a high price to pay: every thread
operation (creation, deletion, synchronization, etc.), will
have to be carried out by kernel, requiring a system call.

• Switching thread contexts may now become as
expensive as switching process contexts.

Thread Implementation (cont.)

• A solution lies in a hybrid form of user-level and kernel-
level threads, generally referred to as lightweight
processes (LWP).

• An LWP runs in the context of a single (heavy-weight)
process, and there can be several LWPs per process.

A. A. Pourhaji Kazem, Fall 2009

process, and there can be several LWPs per process.

• In addition to having LWPs, a system also offers a user-
level thread package, offering applications the usual
operations for creating and destroying threads.

• The important issue is that the thread package is
implemented entirely in user space. In other words. all
operations on threads are carried out without
intervention of the kernel.

Thread Implementation (cont.)

• There are several advantages to using LWPs in
combination with a user-level thread package:

– First, creating, destroying, and synchronizing threads is
relatively cheap and involves no kernel intervention at all.

A. A. Pourhaji Kazem, Fall 2009

– Second, provided that a process has enough LWPs, a blocking
system call will not suspend the entire process.

– Third, there is no need for an application to know about the
LWPs. All it sees are user-level threads.

Thread Implementation (cont.)

A. A. Pourhaji Kazem, Fall 2009

Figure 3-2. Combining kernel-level lightweight
processes and user-level threads.

Multithreaded Clients

• A Web browser

– As soon as the main HTML file has been fetched, separate
threads can be activated to take care of fetching the other parts.

A. A. Pourhaji Kazem, Fall 2009

– Each thread sets up a separate connection to the server and
pulls in the data.

Multithreaded Servers

• Although there are important benefits to multithreaded
clients, as we have seen, the main use of multithreading
in distributed systems is found at the server side.

A. A. Pourhaji Kazem, Fall 2009

• Practice shows that multithreading not only simplifies
server code considerably, but also makes it much easier
to develop servers that exploit parallelism to attain high
performance, even on uniprocessor systems.

Multithreaded Servers (cont.)

A. A. Pourhaji Kazem, Fall 2009

Figure 3-3. A multithreaded server organized in a
dispatcher/worker model.

Multithreaded Servers (cont.)

A. A. Pourhaji Kazem, Fall 2009

Figure 3-4. Three ways to construct a server.

Virtualization

• In practice, every (distributed) computer system offers a
programming interface to higher level software.

• There are many different types of interfaces, ranging

A. A. Pourhaji Kazem, Fall 2009

• There are many different types of interfaces, ranging
from the basic instruction set as offered by a CPU to the
vast collection of application programming interfaces
that are shipped with many current middleware systems.

• Virtualization deals with extending or replacing an
existing interface so as to mimic the behavior of another
system.

Virtualization (cont.)

• One of the most important reasons for introducing
virtualization in the 1970s, was to allow legacy
software to run on expensive mainframe hardware.

A. A. Pourhaji Kazem, Fall 2009

• A legacy system is an old computer system or
application program which continues to be used
because the user (typically an organization) does not
want to replace or redesign it.

The Role of Virtualization in
Distributed Systems

A. A. Pourhaji Kazem, Fall 2009

Figure 3-5. (a) General organization between a program,
interface, and system. (b) General organization of virtualizing

system A on top of system B.

Architectures of Virtual Machines

Interfaces at different levels
• An interface between the hardware and

software consisting of machine instructions
– that can be invoked by any program.

• An interface between the hardware and

A. A. Pourhaji Kazem, Fall 2009

• An interface between the hardware and
software, consisting of machine instructions

– that can be invoked only by privileged programs,
such as an operating system.

Architectures of Virtual Machines (cont.)

Interfaces at different levels
• An interface consisting of system calls as

offered by an operating system.
• An interface consisting of library calls

– generally forming what is known as an application

A. A. Pourhaji Kazem, Fall 2009

– generally forming what is known as an application
programming interface (API).

– In many cases, the aforementioned system calls
are hidden by an API.

Architectures of Virtual Machines (cont.)

A. A. Pourhaji Kazem, Fall 2009

Figure 3-6. Various interfaces offered by computer systems.

Types of Virtualization

Virtualization can take place in two different ways:

• First, we can build a runtime system that
essentially provides an abstract instruction set
that is to be used for executing applications.

A. A. Pourhaji Kazem, Fall 2009

that is to be used for executing applications.

• This type of virtualization leads to what Smith
and Nair (2005) call a process virtual
machine, stressing that virtualization is done
essentially only for a single process.

Types of Virtualization (cont.)

• An alternative approach toward virtualization is to
provide a system that is essentially implemented as a
layer completely shielding the original hardware, but
offering the complete instruction set of that same (or
other hardware) as an interface.

A. A. Pourhaji Kazem, Fall 2009

other hardware) as an interface.

• As a result, it is now possible to have multiple, and
different operating systems run independently and
concurrently on the same platform. The layer is
generally referred to as a virtual machine monitor
(VMM).

Architectures of Virtual Machines

A. A. Pourhaji Kazem, Fall 2009

Figure 3-7. (a) A process virtual machine, with multiple
instances of (application, runtime) combinations.

Architectures of Virtual Machines (cont.)

A. A. Pourhaji Kazem, Fall 2009

Figure 3-7. (b) A virtual machine monitor, with multiple instances
of (applications, operating system) combinations.

Networked User Interfaces

Mainly two ways for a client to connect to a server:

• For each remote service the client m/c will have a
separate counterpart that can contact the service over
the network application specific protocol required

A. A. Pourhaji Kazem, Fall 2009

• Direct access to remote services by only offering a
convenient user interface (client m/c = terminal with no
local storage)

Networked User Interfaces (cont.)

A. A. Pourhaji Kazem, Fall 2009

Figure 3-8. (a) A networked application with its own protocol. e.g.,
PDA synchronizes shared agenda with a remote (handled by

application level protocol

Networked User Interfaces (cont.)

A. A. Pourhaji Kazem, Fall 2009

Figure 3-8. (b) A general solution to allow access
to remote applications.

Client-Side Software for Distribution
Transparency

• A client is more than a user interface
• Access transparency

– Client generates a stub based on an interface provided by theserver
(hides the m/c architecture and communication)

• Location, migration, relocation transparency

A. A. Pourhaji Kazem, Fall 2009

• Location, migration, relocation transparency
• Concurrency transparency

– Usually handled by (intermediate) server

• Failure transparency
– Client middleware

• Replication transparency
– Client proxy

Client-Side Software for Distribution
Transparency

A. A. Pourhaji Kazem, Fall 2009

Figure 3-10. Transparent replication of a server
using a client-side solution.

Servers Design Issues – Types of
Servers

• Iterative serverAccess transparency
– The server itself handles the request, and if necessary,

returns a response to the requesting client

A. A. Pourhaji Kazem, Fall 2009

• Concurrent server
– Does not handle the request itself. Instead it generates a

thread or process to handle the request and to return the
required response

Servers Design Issues – Types of
Servers

• Server interruption
– A client (user) exits the application at any time and restarts

it again as if nothing has happened

A. A. Pourhaji Kazem, Fall 2009

– Sending out of band data (mandatory urgent data) using a
different connection between a client and a server

– Using the same connection to send out of band data and
normal data

Types of Servers

• Stateless server
– Does not keep information of the client states,

changes its own state without informing the clients
, web server

– Someweb serverkeepssomeinformation about

A. A. Pourhaji Kazem, Fall 2009

– Someweb serverkeepssomeinformation about
the client using cookies

• Stateful server
– Maintains information about the states of the

clients, file server

General Design Issues

• Server endpoints: clients contact point at
the server

– a) Client-to-server binding using a daemon as in
DCE

A. A. Pourhaji Kazem, Fall 2009

– Daemon: a client first contacts a daemon for end
point information

– b) Client-to-server binding using a superserver as
in UNIX

– Superserver: client requested server creates
another server for the service

General Design Issues (cont.)

A. A. Pourhaji Kazem, Fall 2009

Figure 3-11. (a) Client-to-server binding using a daemon.

General Design Issues (cont.)

A. A. Pourhaji Kazem, Fall 2009

Figure 3-11. (b) Client-to-server binding using a superserver.

Server Clusters

A. A. Pourhaji Kazem, Fall 2009

Figure 3-12. The general organization of a
three-tiered server cluster.

Server Clusters (cont.)

A. A. Pourhaji Kazem, Fall 2009

Figure 3-13. The principle of TCP handoff.

Distributed Servers

• Dynamically changing set of machines, varying
access points, appearing to the outside world as
a single, powerful Machine

• Robust, high-performance, stable server

A. A. Pourhaji Kazem, Fall 2009

• Robust, high-performance, stable server
– Several access points are provided so that the cluster can

still be used when an access point fails

– High performance mainframes with very high mean time
to failure

– By grouping simpler machines transparently into a cluster
instead of relying on the availability of a singe machine

– By offering a stable address to a distributed server

Distributed Servers

A. A. Pourhaji Kazem, Fall 2009

Figure 3-14. Route optimization in a distributed server.

Code Migration

• Passing programs, sometimes even while they
are being executed

• Traditionally code migrations in DS was process
migration an entire process was moved from

A. A. Pourhaji Kazem, Fall 2009

migration an entire process was moved from
one m/c to another for load balancing

• However, in many modern DSs, optimization of
computing power is a less pressing issue than
minimizing communication costs

Why code migration?

• To process data close to where those data reside –
migrate part of the server program to the client

• Improve performance by parallelism – make several
copies of a program and send each off to different sites

A. A. Pourhaji Kazem, Fall 2009

– linear speed up compared to using just a single
program instance

– Mobile agents

• Flexibility – dynamic configuration
– Traditional approach – partition the application into different parts, and decide

in advance where each part should be executed - multitiered client server
applications

– Code migration – dynamically configure distributed systems

Dynamic Configuration Through Code Migration

• The software is readily available to the remote client

• The server provides client implementation only when the
client binds to the server

– The client first fetches the necessary software, and then invokes the

A. A. Pourhaji Kazem, Fall 2009

server

– Needs standard for downloading and initializing protocol

– The client should be able to execute the downloaded code

Dynamic Configuration Through Code Migration

A. A. Pourhaji Kazem, Fall 2009

Figure 3-17. The principle of dynamically configuring a client to
communicate to a server. The client first fetches the

necessary software, and then invokes the server.

Models for Code Migration

• Code – the set of instructions that make
up the executing program

– Resource– referencesto externalresources(files,

A. A. Pourhaji Kazem, Fall 2009

– Resource– referencesto externalresources(files,
printers, devices, etc.) needed by the process

– Execution – stores the current execution state
(private data, the stack, and the program counter)
of a process

Models for Code Migration (cont.)

• Alternatives based on transfer of segments of a process

– Code segment only along with perhaps some initialization data –weak
mobility

• Transferred program always starts from its initial state – simplicity,

A. A. Pourhaji Kazem, Fall 2009

Java applets

• Only target m/c can execute the code – requires portability

– Both code and execution segment – strong mobility

• A running process can be stopped and subsequently transferred to a
different m/c, and resume execution where it left off

• Powerful than weak mobility, but harder to implement

Models for Code Migration

A. A. Pourhaji Kazem, Fall 2009

Figure 3-18. Alternatives for code migration.

Resource Migration

• Segments of a Process
– Code – the set of instructions that make up the executing program

– Resource – references to external resources (files, printers, devices,
etc.) needed by the process

– Execution – stores the current execution state (private data, the stack,
andtheprogramcounter)of aprocess

A. A. Pourhaji Kazem, Fall 2009

andtheprogramcounter)of aprocess

• Thus far, we have discussed only the migration
of code and data segment

– Code segment only along with perhaps some initialization data –weak
mobility

– Both code and execution segment

Migration of Local Resources

• Types of process-to-resource binding – in order
of strength

– By identifier – requires a resource uniquely identified by the identifier
– referring to URL or FTP server address.

– By value – Not a specific resource, but the value provided by the
resourceis important– referringto standardlibrariesin C or Java.

A. A. Pourhaji Kazem, Fall 2009

resourceis important– referringto standardlibrariesin C or Java.

– By type – requires a resource of specific type – references tolocal
devices such as monitors, printers.

• In code migration, we need to change the
process-to-resource binding – we have to bind
the resource-to-target m/c

Migration of Local Resources (cont.)

• Types of resource-to-m/c binding – in order of
increased

• cost
– Unattached – the data files related only with the migrated program

– Fastened– localdatabases,completewebsite

A. A. Pourhaji Kazem, Fall 2009

– Fastened– localdatabases,completewebsite

– Fixed – cannot be moved, local devices or communication

• endpoints

Migration and Local Resources

A. A. Pourhaji Kazem, Fall 2009

Figure 3-19. Actions to be taken with respect to the references to
local resources when migrating code to another machine.

Migration in Heterogeneous Systems

• The migrated system should be executed in different
target platform - execution segment contains data that is
private to the process, its current stack, and the
program counter

• One possible solution – avoid having execution that

A. A. Pourhaji Kazem, Fall 2009

• One possible solution – avoid having execution that
depend on platform specific data such as register
values

• Best solution to handle heterogeneity is to use virtual
Machines

– Process virtual machines – JVM

– Virtual machines monitor – allow the migration of processes along with their
underlying operating system

Migration in Heterogeneous Systems

Three ways to handle migration (which can be combined)

• Pushing memory pages to the new machine and
resending the ones that are later modified during the
migration process.

A. A. Pourhaji Kazem, Fall 2009

migration process.
• Stopping the current virtual machine; migrate memory,

and start the new virtual machine.
• Letting the new virtual machine pull in new pages as

needed, that is, let processes start on the new virtual
machine immediately and copy memory pages on
demand.

