DISTRIBUTED SYSTEMS

Principles and Paradigms
Second Edition
ANDREW S. TANENBAUM
MAARTEN VAN STEEN

Chapter 5
Naming

A. A. Pourhaji Kazem, Fall 2009

Naming

 Naming and name resolution mechanisms
 Names, ldentifiers, and Addresses
« Flat Naming
e Structured Namin
e Attribute-Based Naming

A. A. Pourhaji Kazem, Fall 2009

What's In a name?

 Any entity within a system needs a name — a string
of bits/characters referring to an entity.

— As entities can be operated upon, we need a way of identifying
It.
« To operate on an entity, we need an access point —
the access point is an address of the entity.

— Entities may have several access points, and hence several
addresses — In just the same way we might have more than one
phone number.

A. A. Pourhaji Kazem, Fall 2009

Addresses

 The address of an entity may change over time;
— A newlP address when you move your laptop.

« Addresses however rarely are the same as the
name of the entity to which they refer.
— Machine: may be reassigne leadin¢ to inappropriat naming.

— If a machine has more than one access point, which name should
be assigned.

e Entity names which are Independent of their
addresses are easier and more flexible to use -
these names are ‘location independent’.

A. A. Pourhaji Kazem, Fall 2009

ldentifiers

« A different type of name Is one which uniquely
identifies an entity;

— An identifier refers to at most one entity.
— An entity is referred to by at most one identifier.
— And identifier always refers to the same entity.

 |dentifiers provide a way of unambiguously referring
to an entity.

— “John Smith” would not be an identifier.
— Atelephone would not be an identifier.

A. A. Pourhaji Kazem, Fall 2009

Naming Types

 Flat Naming

— Systems need to resolve an identifier to the address of its
associated entity — an identifier does not contain any information
on the associated entity location

e Structured Naming

— Organized in a name space — represented by a naming graph in
which a node represents a named entity and the label on an edge
represents the name under which that entity is known

e Attribute-Based Naming
— Entities are described by a collection of (attribute, value) pairs

A. A. Pourhaji Kazem, Fall 2009

Naming Types
How flat names can be resolved?

e« Simple Solutions
— Broadcasting and Multicasting
— Forwardin¢ Pointer:

e Home-based Approaches
 Distributed Has Tables

e Hierarchical Approaches

A. A. Pourhaji Kazem, Fall 2009

Forwarding Pointers

Process P2 Stub cs* refers to
Eliantetuh ca* same server stub as

/ stub cs.
\:ﬁ Process P3

\ - ldentical client stub
Process P1 Server stub ’"‘f; [X

Client stub cs

Process P4 Object
\D/ Local =4

invocation
Interprocess
communication Identical /
server stub

Figure 5-1. The principle of forwarding pointers
using (client stub, server stub) pairs.

A. A. Pourhaji Kazem, Fall 2009

Forwarding Pointers (cont.)

Invocation
request is

sent to object AD\
SN
pL U

Server stub at object's
current process returns
the current location

(@)

Figure 5-2. Redirecting a forwarding pointer by
storing a shortcut in a client stub.

A. A. Pourhaji Kazem, Fall 2009

Forwarding Pointers (cont.)

Server stub is no
longer referenced

by any client stub \t E

B V4 »
Client stub sets
a shortcut

()

Figure 5-2. Redirecting a forwarding pointer by
storing a shortcut in a client stub.

A. A. Pourhaji Kazem, Fall 2009

Home-Based Approaches

Host's home

Ioca'tmn 1. Send pacEet to host at its home

% m. WA

. 2. Relum address]
_ of current location 63
Client's
=% location

™ 3. Tunnel packet to
~ecurrent location

N
N Jr

ﬁ

4. Send successive packets
to current location

Host's present location dfb

<

Figure 5-3. The principle of Mobile IP.

A. A. Pourhaji Kazem, Fall 2009

Distributed Hash Tables

General Mechanism

Figure 5-4.
Resolving key
26 from node 1
and key 12 from
node 28 in a
Chord system.

Finger table

A. A. Pourhaji Kazem, Fall 2009

oV
9
X
A8
Actual node i v
28 . 119
11 RE) 2 |9
39
g } > 4 [14
44 - am e .. L5120
oo S '3) ‘,.
5 14 Y
Resolve k =12 i \
Fae from node 28 ;
126; I 16}
P | L
v \ \
25; 3 (7
24 \ 18} 111
L i S EE
i23; Resolve k = 26 2 2 }g
from node 1 ‘o 5128
L 0;
128 -
2 |28 -
3|28 14
41 .
12 3118
519 // / 4 |20
3 y 13 5 |28
3 17 —16—15; 118
4 2 18
51 4 1]20 318
2 |20 4 |28
3 [28 5 1
4 |28
5 4

Hierarchical Approaches

Hierarchical organization of a location service into domains,
each having an associated root (directory) node

Each root node will have a location record for each entity

. Each record stores a pointer to the directory of the next lower-level
sub-domains where that record’s associated entity is currently located

The root directory

node dir(T) IDpievel

domain T

-

Directory node
dir(S) of domain S

SN A subdomain S
of top-level domain T
/ (S is contained in T)

=l 1

A leaf domain, contained in S

A. A. Pourhaji Kazem, Fall 2009

Hierarchical Approaches (cont.)

An entity may have multiple addresses, for example, if it is
replicated — smallest domain containing all those sub-

domains will have pointers for each sub-domain containing
an address

An example of two addresses in different leaf domains

Field with no data

Field for domain P _
dom(N) with /” “7\/\ Location record

pointerto N ——

———-

Location record
with only one field,
containing an address

Domain D1

Domain D2
A. A. Pourhaji Kazem, Fall 2009

Hierarchical Approaches (cont.)

Node knows
about E, so request
Node has no is forwarded to child
record for E, so @ _
that request is M
forwarded to 7T b @ !
parent ! : _—
'f/’ S '\\\
| ;I
TS /
0O OO0 @
a..l -
sl 1l Domain D
request !

Figure 5-7. Looking up a location in a hierarchically
organized location service.

A. A. Pourhaji Kazem, Fall 2009

Hierarchical Approaches (cont.)

Node knows
Node has no about E, so request
record for E, is no longer forwarded

SO request is
forwarded @ -
to parent

I Domain D
' Insert

' request

(@)

Figure 5-8. (@) An insert request is forwarded to the
first node that knows about entity E.

A. A. Pourhaji Kazem, Fall 2009

Hierarchical Approaches (cont.)

Node creates record
and stores pointer

Node creates
record and
stores address

Figure 5-8. (b) A chain of forwarding pointers
to the leaf node is created.

A. A. Pourhaji Kazem, Fall 2009

Structured Naming

e Structured Naming

— Organized in a name space — represented by a
naming graph in which a node represents a
named entity and the label on an edge
represent the name¢ unde which thai entity Is
known

A. A. Pourhaji Kazem, Fall 2009

Namespaces

A mechanism for storing and retrieving
iInformation about

entities by means of names

L eaf node — a named entity without any outgoing edge

Directory node — has one or more outgoin¢ edge. labelec with
name

Path name — sequence of labels corresponding to the edges in that
path

Absolute path name — if the first name of the naming graph is
root of the naming graph

Relative path name -otherwise

A. A. Pourhaji Kazem, Fall 2009

Name Spaces (cont.)

A general naming graph with a single root node

Directed acyclic graph — can have more than one incoming
edge, but no cycle

Data stored in n1

n3: "max"

n2: "elke"
n4: "steen”

Leaf node O

Directory node

()

home
n1
elkﬂax \teen

nO

twmrc \ mbox

keys

n5 II/keySII
"/home/steen/keys"

keys

O "/home/steen/mbox"

A. A. Pourhaji Kazem, Fall 2009

Name Resolution - Looking Up a Name

 Closure mechanism
— Knowing how and where to start name resolution,
specifically deals with finding the initial node in a name
space
 Linking - using aliases (another name for the
same entity)

— Hard links (in Unix terminology) - allow multiple
absolute path names to refer to the same node in the
graph (previous diagram)

— Symbolic link — represent an entity by leaf node (next
diagram)

A. A. Pourhaji Kazem, Fall 2009

Symbolic link

Data stored in n1 no
n2: "elke" home keys

n3: "max"
n4: "steen” ni n5) "/keys"

elki/max \:,teen

@ n4 _
Leaf node O Data stored in n6
twmrc / mbox
Directory node

"/home/steen/keys"”

Figure 5-11. The concept of a symbolic link
explained in a naming graph.

A. A. Pourhaji Kazem, Fall 2009

Mounting

Mounting

Thus far, we have discussed name resolution
within a single name space

Mounted file system a directory node stores
the identifier of the directory node from a
different node space (foreign name space)

The stored node identifier is called a mount
point, while the directory node In the foreign
name space Is called a mounting point — usually
the root of the foreign name space

A. A. Pourhaji Kazem, Fall 2009

Mounting

 Required Information for mounting a
foreign name space In distributed
system

— ne name of an access protocol

— ne name of the server

— The name of the mounting point in the foreign
name space

A. A. Pourhaji Kazem, Fall 2009

Linking and Mounting (cont.)

Name server Name server for foreign name space
\ Machine A \ Machine B

remOtE/ Xeys home / \
/ é\\;u ["nfsc:/?ﬂits.cs.vu.nl//home/steen"] / éﬁte@n Q
O OL .

0S

/) Network
Reference to foreign name space

Figure 5-12. Mounting remote name spaces
through a specific access protocol.

A. A. Pourhaji Kazem, Fall 2009

The Implementation of a Name Space

 Implementation by partitioning into layers
— Global layer
— Administrational layer
— Managerial layer

e Global layer

— Highest level of nodes (the roots and other directory
nodes closed to root)

— Rarely change- stable

— May represent organizations, groups of organizations,
for which names are stored in the name space

A. A. Pourhaji Kazem, Fall 2009

The Implementation of a Name Space

 Administrational layer

— Formed by directory nodes managed within a single
organization

— Represents group of entities of same organization or
administrativi unit

— Less stable than global layer

A. A. Pourhaji Kazem, Fall 2009

The Implementation of a Name Space

 Managerial layer

— Includes nodes representing hosts in local area network
are, shared files such as those for libraries and binaries,
and user defined directories and files

— Typically chang:regularly

— Maintained not only by the systemdministrators but
also by end users

 Maintained not only by system administrators
but also by end users

A. A. Pourhaji Kazem, Fall 2009

Name Space Distribution (Example.)

I] \\

com du ; * \ ip

I : ¥ \
l ! : }
I | \\\ ,/’
Adminis-| Y9 pOS N e jack ¢ il eioy y nec ics
trational - %
layer ! fip WWWh
ai/ \‘nnda cSY ¥ .\ ¥ N)
\ /
b /
___________ pc24 ¥ ____________‘__;¢ S
irobot pub
Mana- globe y \
gerial I 4
Zone /
layer \\\ index.txt% Y.

Figure 5-13. An example partitioning of the DNS name space,
Including Internet-accessible files, into three layers.

A. A. Pourhaji Kazem, Fall 2009

Name Space Distribution (cont.)

Item

Global

Administrational

Managerial

Geographical scale of network | Worldwide

Organization

Department

Total number of nodes Few Many Vast numbers
Responsiveness to lookups Seconds Milliseconds Immediate
Update propagation Lazy Immediate Immediate
Number of replicas Many None or few None

Is client-side caching applied? | Yes Yes Sometimes

Figure 5-14. A comparison between name servers for
Implementing nodes from a large-scale name space

partitioned into a global layer, an administrational
layer, and a managerial layer.

A. A. Pourhaji Kazem, Fall 2009

Implementation of Name Resolution

‘1.<nl,vu,cs,ftp> > Root
2. #<nl>, <vu,cs,ftp> HALE SRveEl | \ o
3' <Vu:cslftp> } Name sarver |00 .
< :
Client's 4. #<vu>, <cs,ftp> ninode | L :
name | ‘_’_L.'x \
resolver | 9 <cs,ftp> »| Name server :
« vu node :
6. #<cs>, <ftp> l
______ CS| ...
sl »| Name server §
< wi<iip> cs node

ftp/ \
<nl,vu,cs,ftp> T ¢#<nl,vu,cs,ftp> Kiodies: drs / 5
managed by 5 O O 5

the same server -5 '

Figure 5-15. The principle of iterative name resolution.

A. A. Pourhaji Kazem, Fall 2009

Implementation of Name Resolution (cont.)

Client's
name
resolver

1. <nl,vu,cs,ftp>

8. #<nl,vu,cs,ftp>

Root
name server

7. #<vu,cs,ftp>

Name server
nl node

)2. <vu,cs,ftp>

6. #<cs,ftp><

Name server
vu node

DS. <cs,ftp>

5. #<ftp><

Name server
cS node

>4. <ftp>

<nl,vu,cs,ftp> T l#<n|,vu,cs,ftp>

Figure 5-16. The principle of recursive name resolution.

A. A. Pourhaji Kazem, Fall 2009

Implementation of Name Resolution (cont.)

Server Should Looks up | Passesto Receives Returns
for node resolve child and caches to requester
CS <ftp> #<ftp> — — #<ftp>
vu <cs,ftp> #<cs> <ftp> #<ftp> #<cs>

#<cs, ftp>
nl <vu,cs,ftp> #<vu> <cs,ftp> #<cs> #<vu>
#<cs,ftp> #<vu,cs>
#<vu,cs,ftp>
root <nl,vu,cs,ftp> | #<nl> <vu,cs,ftp> | #<vu> #<nl>
#<vu,cs> #<nl,vu>
#<vu,cs,fip> | #<nl,vu,cs>
#<nl,vu,cs,ftp>

Figure 5-17. Recursive name resolution of <nl, vu, cs, ftp>. Name
servers cache intermediate results for subsequent lookups.

A. A. Pourhaji Kazem, Fall 2009

Example: The Domain Name System

Recursive name resolution

Name server
nl node

R2

Name server

Client vu node

R3

K AR A

Name server
CcS node

Ilterative name resolution

Long-distance communication

Figure 5-18. The comparison between recursive and iterative
name resolution with respect to communication costs.

A. A. Pourhaji Kazem, Fall 2009

Attribute-Based Naming

Flat and structured names have considered mainly
location independence and human friendliness of

names
There are scenarios where a user can merely
describe (provide attributes) what he/she is looking

for - attribute-based naming
An entity is described by a collection of (attribute, valpajrs

Each attribute describe some aspect of the entity

By specifying which values a specific attribute should haueser
can essentially constrains the set of entities that the iser

Interested In

— The naming system returns one or more entities that matcises t
user’s description

A. A. Pourhaji Kazem, Fall 2009

Hierarchical Implementations: LDAP

e Lightweight Directory Access Protocol (LDAP)

— A simplified protocol to provide directory services in thedrnet.
— Combine structured naming with attribute-based naming

— Widely adopted in many distributed systems, e.g. Micrdsoft
Active Directory Service.

— An application-level protocol that is implemented dirgadin top
of TCP

— Lookup and update operations can simply be passed as asstring

A. A. Pourhaji Kazem, Fall 2009

LDAP (cont.)

« A simple example of an LDAP directory entry using
LDAP naming conventions.

Attribute Abbr. Value
Country C NL
Locality L Amsterdam
Organization O Vrije Universiteit
OrganizationalUnit | OU Comp. Sc.
CommonName CN Main server
Mail _Servers — 187.37,20.3, 130.37.24.8, 137.87.20.10
FTP_Server — 130.37.20.20
WWW _Server — 130.37.20.20

A. A. Pourhaji Kazem, Fall 2009

LDAP (cont.)

Part of a directory information tree.

C=NL

O = Vrije Universiteit

T
7

\/

OU = Comp. Sc.

T

CN = Main server
AP \ -

Host_Name = star / Host_Name = zephyr

A. A. Pourhaji Kazem, Fall 2009

LDAP (cont.)

Two directory entries having Host Name as RDN.

 Difference between DNS and LDAP implementation
— search a directory entry given a set of criteria that
attributes of the searched entries should meet

Attribute Value Attribute Value
Country NL Country NL
Locality Amsterdam Locality Amsterdam
Organization Vrije Universiteit Organization Vrije Universiteit
OrganizationalUnit| Comp. Sc. OrganizationalUnit| Comp. Sc.
CommonName Main server CommonName Main server
Host_Name star Host_Name zephyr
Host_Address 192.31.231.42 Host_Address 137.37.20.10

(b)

A. A. Pourhaji Kazem, Fall 2009

Mapping to Distributed Hash Tables (1)

description {

type = book type
description {

author = Tolkien book

title = LOTR

J author
genre = fantasy

) Tolkien

genre

fantasy

LOTR

(a) (b)

Figure 5-24. (a) A general description of a resource.
(b) Its representation as an AVTree.

A. A. Pourhaji Kazem, Spring 2009

Mapping to Distributed Hash Tables (2)

description {

type = book type
description {
author = Tolkien book
title = *
} i author
genre =
} Tolkien

(@) (b)

Figure 5-25. (a) The resource description of a query.
(b) Its representation as an AVTree.

A. A. Pourhaji Kazem, Spring 2009

Semantic Overlay Networks

Semantic
overlay

— e e

Random
overlay

Protocol for
semantic
overlay

__,,/,":dj» Links to nodes with

\Qt many files in common

A

Random peer

Protocol for
randomized
view

,//:—/; Links to randomly

-\Q chosen other nodes

Figure 5-26. Maintaining a semantic overlay through gossiping.

A. A. Pourhaji Kazem, Spring 2009

