
DISTRIBUTED SYSTEMS
Principles and Paradigms

Second Edition
ANDREW S. TANENBAUM

MAARTEN VAN STEEN

Chapter 2

A. A. Pourhaji Kazem, Fall 2009

Chapter 2
ARCHITECTURES

Architectural Styles

Important styles of architecture for
distributed systems

• Layered architectures
• Object-based architectures

A. A. Pourhaji Kazem, Fall 2009

• Object-based architectures
• Data-centered architectures
• Event-based architectures

Layered Architectures

• The basic idea for the layered style is
simple: components are organized in a
layered fashion where a component at
layer is allowed to call components atiL

A. A. Pourhaji Kazem, Fall 2009

layer is allowed to call components at
the underlying layer

iL

1iL −

Layered Architectures (cont.)

A. A. Pourhaji Kazem, Fall 2009

Figure 2-1. The (a) layered architectural style and …

Object-based Architectures

• Each object corresponds to what we
have defined as a component, and
these components are connected
through a remote procedure call

A. A. Pourhaji Kazem, Fall 2009

through a remote procedure call
mechanism

• The layered and object-based
architectures still form the most
important styles for large software
systems

Object-based Architectures (cont.)

A. A. Pourhaji Kazem, Fall 2009

Figure 2-1. (b) The object-based architectural style.

Data-centered Architectures

• Data-centered architectures evolve
around the idea that processes
communicate through a common
(passive or active) repository

A. A. Pourhaji Kazem, Fall 2009

(passive or active) repository

• (Example): A wealth of networked
applications have been developed that
rely on a shared distributed file system
in which virtually all communication
takes place through files

Event-based Architectures

• In event-based architectures,
processes essentially communicate
through the propagation of events,
which optionally also carry data

A. A. Pourhaji Kazem, Fall 2009

which optionally also carry data

• For distributed systems, event
propagation has generally been
associated with what are known as
publish/subscribe systems

Event-based Architectures (cont.)

A. A. Pourhaji Kazem, Fall 2009

Figure 2-2. (a) The event-based architectural style and …

Shared Data-space Architectures

• Event-based architectures can be
combined with data-centered
architectures, yielding what is also
known as shared data spaces

A. A. Pourhaji Kazem, Fall 2009

known as shared data spaces

• The essence of shared data spaces is
that processes are now also
decoupled in time: they need not both
be active when communication takes
place

Shared Data-space Architectures (cont.)

A. A. Pourhaji Kazem, Fall 2009

Figure 2-2. (b) The shared data-space architectural style.

System Architectures

• Centralized Architectures

• Decentralized Architectures

A. A. Pourhaji Kazem, Fall 2009

• Hybrid Architectures

Centralized Architectures

• In the basic client-server model, processes
in a distributed system are divided into two
(possibly overlapping) groups.

A. A. Pourhaji Kazem, Fall 2009

• A server is a process implementing a
specific service, for example, a file system
service or a database service.

• A client is a process that requests a service
from a server by sending it a request and
subsequently waiting for the server's reply.

Centralized Architectures

A. A. Pourhaji Kazem, Fall 2009

Figure 2-3. General interaction between a client and a server.

Application Layering

Recall previously mentioned layers of
architectural style

• The user-interface level

A. A. Pourhaji Kazem, Fall 2009

• The processing level
• The data level

Application Layering (cont.)

• The user-interface level contains all that
is necessary to directly interface with the
user, such as display management.

A. A. Pourhaji Kazem, Fall 2009

• The processing level typically contains
the applications.

• The data level manages the actual data
that is being acted on.

Application Layering (cont.)

A. A. Pourhaji Kazem, Fall 2009

Figure 2-4. The simplified organization of an Internet search
engine into three different layers.

Multitiered Architectures

The simplest organization is to have only two
types of machines:

• A client machine containing only the

A. A. Pourhaji Kazem, Fall 2009

• A client machine containing only the
programs implementing (part of) the user-
interface level

• A server machine containing the rest,
– the programs implementing the processing and

data level

Multitiered Architectures (cont.)

A. A. Pourhaji Kazem, Fall 2009

Figure 2-5. Alternative client-server organizations (a)–(e).

Multitiered Architectures (cont.)

A. A. Pourhaji Kazem, Fall 2009

Figure 2-6. An example of a server acting as client.

Decentralized Architectures

• Vertical Distribution
– The characteristic feature of vertical distribution is

that it is achieved by placing logically different
components on different machines.

A. A. Pourhaji Kazem, Fall 2009

• Horizontal Distribution
– In this type of distribution, a client or server may

be physically split up into logically equivalent
parts, but each part is operating on its own share
of the complete data set, thus balancing the load.

Peer-to-Peer Systems

• Peer-to-peer system is a class of modern
system architectures that support horizontal
distribution.

• From a high-level perspective, the

A. A. Pourhaji Kazem, Fall 2009

• From a high-level perspective, the
processes that constitute a peer-to-peer
system are all equal.

• functions that need to be carried out are
represented by every process that
constitutes the distributed system.

Peer-to-Peer Systems (cont.)

• Structured Peer-to-Peer Systems
– In a structured peer-to-peer architecture, the overlay

network is constructed using a deterministic procedure.

– The most-used procedure is to organize the processes

A. A. Pourhaji Kazem, Fall 2009

– The most-used procedure is to organize the processes
through a distributed hash table (DHT).

• Unstructured Peer-to-Peer Systems
– Unstructured peer-to-peer systems largely rely on

randomized algorithms for constructing an overlay network.

– The main idea is that each node maintains a list of
neighbors, but that this list is constructed in a more or less
random way.

Structured Peer-to-Peer Architectures

A. A. Pourhaji Kazem, Fall 2009

Figure 2-7. The mapping
of data items onto
nodes in Chord.

Structured Peer-to-Peer Architectures (cont.)

A. A. Pourhaji Kazem, Fall 2009

Figure 2-8. (a) The mapping
of data items onto nodes

in CAN.

Structured Peer-to-Peer Architectures (cont.)

A. A. Pourhaji Kazem, Fall 2009

Figure 2-8. (b) Splitting a
region when a node

joins.

Topology Management of Overlay
Networks

A. A. Pourhaji Kazem, Fall 2009

Figure 2-10. A two-layered approach for constructing and
maintaining specific overlay topologies using techniques from

unstructured peer-to-peer systems.

Topology Management of Overlay
Networks (cont.)

A. A. Pourhaji Kazem, Fall 2009

Figure 2-11. Generating a specific overlay network using a two-
layered unstructured peer-to-peer system [adapted with

permission from Jelasity and Babaoglu (2005)].

Superpeers

A. A. Pourhaji Kazem, Fall 2009

Figure 2-12. A hierarchical organization of nodes into a
superpeer network.

Edge-Server Systems

A. A. Pourhaji Kazem, Fall 2009

Figure 2-13. Viewing the Internet as consisting of a
collection of edge servers.

Collaborative Distributed Systems

A. A. Pourhaji Kazem, Fall 2009

Figure 2-14. The principal working of BitTorrent [adapted with
permission from Pouwelse et al. (2004)].

Collaborative Distributed Systems (cont.)

Components of Globule collaborative content
distribution network:

• A component that can redirect client requests
to other servers.

A. A. Pourhaji Kazem, Fall 2009

to other servers.
• A component for analyzing access patterns.
• A component for managing the replication of

Web pages.

Interceptors

A. A. Pourhaji Kazem, Fall 2009

Figure 2-15. Using interceptors to handle
remote-object invocations.

General Approaches to Adaptive
Software

Three basic approaches to adaptive
software:

• Separation of concerns

A. A. Pourhaji Kazem, Fall 2009

• Separation of concerns
• Computational reflection
• Component-based design

The Feedback Control Model

A. A. Pourhaji Kazem, Fall 2009

Figure 2-16. The logical organization of a
feedback control system.

