DISTRIBUTED SYSTEMS

Principles and Paradigms
Second Edition
ANDREW S. TANENBAUM
MAARTEN VAN STEEN

Chapter 6
Synchronization

A. A. Pourhaji Kazem, Spring 2009



Clock Synchronization

Computer on 2144 2145 2146 2147 <4— Time according
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Figure 6-1. When each machine has its own clock, an
event that occurred after another event may
nevertheless be assigned an earlier time.
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Physical Clocks (1)
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Figure 6-2. Computation of the mean solar day.
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Physical Clocks (2)

0O 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 2
I e e e S S S E B S B E B S R R N E—

So|ar 0 1 2 3 4 5 6 7
seconds | —1

T @

9 11 12 1314 15 16 17 18 19 2122 23 24 25
i | | | | | H | | | |

\u||||||/i'|IiI‘|

Leap seconds introduced into UTC to
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Figure 6-3. TAl seconds are of constant length, unlike solar
seconds. Leap seconds are introduced when necessary to
keep in phase with the sun.
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Global Positioning System
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Figure 6-4. Computing a position in a two-dimensional space.
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Global Positioning System (cont.)

Real world facts that complicate GPS

1. It takes a while before data on a
satellite’s  position reaches the

receiver.

2. The receiver’'s clock is generally not
In synch with that of a satellite.
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Global Positioning System (cont.)
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Clock Synchronization Algorithms
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Figure 6-5. The relation between clock time and UTC
when clocks tick at different rates.
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Network Time Protocol

Figure 6-6. Getting the current time from a time server.
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The Berkeley Algorithm

Time daemon
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Figure 6-7. (a) The time
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machines for their clock

values.
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The Berkeley Algorithm (cont.)
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The Berkeley Algorithm (cont.)

Figure 6-7. (c) The time
daemon tells everyone how
to adjust their clock.
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Clock Synchronization in Wireless
Networks
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Clock Synchronization in Wireless
Networks (cont.)
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Lamport’s Logical Clocks

To synchronize logical clocks, Lamport
defined a relation called happens-before.

The "happens-before" relation — can be

observed directly in two situations:

— If aandb are events in the same process, andcurs before
b, thena — b s true.

— If ais the event of a message being sent by one proceds, and

IS the event of the message being received by another process
thena— b

A. A. Pourhaji Kazem, Spring 2009



Lamport’s Logical Clocks (cont.)
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Figure 6-9. (a) Three processes, each with its own clock.
The clocks run at different rates.
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Lamport’s Logical Clocks (cont.)
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Figure 6-9. (b) Lamport’s algorithm corrects the clocks.
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Lamport’s Logical Clocks (cont.)

Application layer
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Figure 6-10. The positioning of Lamport’s logical
clocks in distributed systems.
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Lamport’s Logical Clocks (cont.)

Updating counter C; for process P,

1.

2.

Before executing an event P; executes
C—C +1.

When process P; sends a message m to P;, It
sets m’s tlmestamp ts (m) equal to C, after havmg
executed the previous step.

Upon the receipt of a message m, process P;
adjusts its own local counter as

C; < max{C, , ts (m)}, after which it then executes
the first step and delivers the message to the
application.
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Vector Clocks
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Figure 6-12. Concurrent message transmission
using logical clocks.
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Vector Clocks (cont.)

Vector clocks are constructed by letting each
process P, maintain a vector VC; with the
following two properties:

1. VC;[1]Iis the number of events that have
occurred so far at P.. In other words, VC, [ 1] s
the local logical clock at process P; .

2. ItVC;[]] = kthen P; knows that k events have
occurred at P,. It is thus P;'s knowledge of the
local time at P; .
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Vector Clocks (cont.)

Steps carried out to accomplish property 2 of

1.

2.

previous slide:

Before executing an event P; executes
VC[1]<—VC |i]+1
When process P; sends a message m to P;, It

sets m’s (vector) timestamp ts (m) equal to VC,
after having executed the previous step.

Upon the receipt of a message m, process P,
adjusts its own vector by setting

VG, [k ] — max{VC, [k], ts (m)[k ]} for each k, after
WhICh It executes the first step and delivers the
message to the application.
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Enforcing Causal Communication

VCO= (1,0,0) VCO= (1:1:-0)

VC, = (1,1,0)

Figure 6-13. Enforcing causal communication.
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Mutual Exclusion
A Centralized Algorithm
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Figure 6-14. (a) Process 1 asks the coordinator for permission to
access a hared resource. Permission is granted.
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Mutual Exclusion
A Centralized Algorithm (cont.)
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Figure 6-14. (b) Process 2 then asks permission to access the
same resource. The coordinator does not reply.
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Mutual Exclusion
A Centralized Algorithm (cont.)

OXOXO

Release
OK

(C)

Figure 6-14. (c) When process 1 releases the resource, it tells the
coordinator, which then replies to 2.
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Mutual Exclusion
A Distributed Algorithm

Three different cases:

1.

If the receliver is not accessing the resource and
does not want to access It, it sends back an OK
message to the sender.

If the receliver already has access to the
resource, it simply does not reply. Instead, it
gueues the request.

If the receiver wants to access the resource as
well but has not yet done so, it compares the
timestamp of the incoming message with the one
contained in the message that it has sent
everyone. The lowest one wins.
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Mutual Exclusion
A Distributed Algorithm (cont.)

12

Figure 6-15. (a) Two processes want to access a
shared resource at the same moment.
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Mutual Exclusion
A Distributed Algorithm (cont.)

Accesses
resource

(b)

Figure 6-15. (b) Process 0O has the lowest
timestamp, so it wins.
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Mutual Exclusion
A Distributed Algorithm (cont.)

OK
@ Accesses
resource
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Figure 6-15. (c) When process 0 is done,
it sends an OK also, so 2 can now go ahead.
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Mutual Exclusion
A Token Ring Algorithm

TYPYYYPY

(@) (b)

Figure 6-16. (a) An unordered group of processes on a network.
(b) A logical ring constructed in software.
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A Comparison of the Four Algorithms

Messages per

Delay before entry

Algorithm entry/exit (in message times) Problems
Centralized 3 2 Coordinator crash
Decentralized | 3mk, k=1,2,... 2m Starvation, low efficiency
Distributed 2(n-1) 2(n-1) Crash of any process
Token ring 110 Oton-1 Lost token, process crash

Figure 6-17. A comparison of three mutual exclusion algorithms.
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Global Positioning Of Nodes

‘
Figure 6-18. Computing a node’s position in a

two-dimensional space.
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Global Positioning Of Nodes (Cont.)
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Figure 6-19. Inconsistent distance measurements
In a one-dimensional space.
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Election Algorithms

The Bully Algorithm

1. P sends an ELECTION message to all
processes with higher numbers.

2. If no one responds, P wins the election
and becomes coordinator.

3. If one of the higher-ups answers, it takes
over. P’s job is done.
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The Bully Algorithm
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Figure 6-20. The bully election algorithm. (a) Process 4 holds an
election. (b) Processes 5 and 6 respond, telling 4 to stop.
(c) Now 5 and 6 each hold an election.
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The Bully Algorithm (Cont.)

©,
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Figure 6-20. The bully election algorithm. (d) Process 6 tells 5 to
stop. (e) Process 6 wins and tells everyone.



A Ring Algorithm
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Figure 6-21. Election algorithm using a ring.
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Elections In Wireless Environments

=

j

Capacity

Figure 6-22. Election algorithm in a wireless network, with node a
as the source. (a) Initial network. (b)—(e) The build-tree phase

A. A. Pourhaji Kazem, Spring 2009



Elections in Wireless Environments (Cont.)
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Figure 6-22. Election algorithm in a wireless network, with node a
as the source. (a) Initial network. (b)—(e) The build-tree phase
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Elections in Wireless Environments (Cont.)

broadcast
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Figure 6-22. (e) The build-tree phase.
(f) Reporting of best node to source.

A. A. Pourhaji Kazem, Spring 2009



Elections in Large-Scale Systems

Requirements for superpeer selection:

1. Normal nodes should have low-latency access to
superpeers.

2. Superpeers should be evenly distributed across
the overlay network.

3. There should be a predefined portion of
superpeers relative to the total number of nodes
In the overlay network.

4. Each superpeer should not need to serve more
than a fixed number of normal nodes.
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Elections in Large-Scale Systems (Cont.)
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Figure 6-23. Moving tokens in a two-dimensional
space using repulsion forces.
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