DISTRIBUTED SYSTEMS

Principles and Paradigms
Second Edition
ANDREW S. TANENBAUM
MAARTEN VAN STEEN

Chapter 6
Synchronization

A. A. Pourhaji Kazem, Spring 2009

Clock Synchronization

Computer on 2144 2145 2146 2147 <4— Time according
which compiler ¢\ : ! ! to local clock
runs output.o created

Computer on 2142 2143 2144 2145 <«— Time according
which editor | ¢ | | to local clock

runs
output.c created

Figure 6-1. When each machine has its own clock, an
event that occurred after another event may
nevertheless be assigned an earlier time.

A. A. Pourhaji Kazem, Spring 2009

Physical Clocks (1)

Earth's orbit

A transit of the sun
occurs when the
sun reaches the
highest point of

the day

At the transit of the sun

n days later, the earth

has rotated fewer
than 360°

Earth on day O at the
transit of the sun

To distant galaxy

To distant galaxy

Earth on day n at the
transit of the sun

Figure 6-2. Computation of the mean solar day.

A. A. Pourhaji Kazem, Spring 2009

Physical Clocks (2)

0O 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 2
I e e e S S S E B S B E B S R R N E—

So|ar 0 1 2 3 4 5 6 7
seconds | —1

T @

9 11 12 1314 15 16 17 18 19 2122 23 24 25
i | | | | | H | | | |

\u||||||/i'|IiI‘|

Leap seconds introduced into UTC to
get it in synch with TAl

Figure 6-3. TAl seconds are of constant length, unlike solar
seconds. Leap seconds are introduced when necessary to
keep in phase with the sun.

A. A. Pourhaji Kazem, Spring 2009

Global Positioning System

A
Height

Point to be
ignored

(14,14)

(-6,6)
(\Z// T]

r=10

Figure 6-4. Computing a position in a two-dimensional space.

A. A. Pourhaji Kazem, Spring 2009

Global Positioning System (cont.)

Real world facts that complicate GPS

1. It takes a while before data on a
satellite’s position reaches the

receiver.

2. The receiver’'s clock is generally not
In synch with that of a satellite.

A. A. Pourhaji Kazem, Spring 2009

Global Positioning System (cont.)

d; = 'VI'EI; = x;}i;l—(y,- = }’r}z"'{Ef = Er):

A =T — T;) + A,

d; = c(Typne — 1)

Clock Synchronization Algorithms

dC s 1
Clock time, C C!t dC = 9
s @
rg-? {.@C} (_@ <1
Q:," QQ’ 0\0,01{7' dt
%\9\§"
dc

l-ps——=sl+p UTC, t

T dt

Figure 6-5. The relation between clock time and UTC
when clocks tick at different rates.

A. A. Pourhaji Kazem, Spring 2009

Network Time Protocol

Figure 6-6. Getting the current time from a time server.

A. A. Pourhaji Kazem, Spring 2009

The Berkeley Algorithm

Time daemon
3:00 /300

3:00 @
| \3:00
Figure 6-7. (a) The time

daemon asks all the other
machines for their clock

values.
2:50 3:25
(a)

A. A. Pourhaji Kazem, Spring 2009

The Berkeley Algorithm (cont.)

3:00 0
w0 (Dl
(. w+25
Figure 6-7.

(b) The machines answer. @ @

2:50 3:25
(b)

The Berkeley Algorithm (cont.)

Figure 6-7. (c) The time
daemon tells everyone how
to adjust their clock.

3:05

+5

Lo

T N\
7_‘_|_$

Clock Synchronization in Wireless
Networks

Message preparation

\ Time spent in NIC
/ Delivery time

to app. —

Figure 6-8. (a) The usual B
critical path in determining K

network delays.

Critical path
> Tk — Tyr)

M (a)

Offset[p.q]=

A. A. Pourhaji Kazem, Spring 2009

Clock Synchronization in Wireless
Networks (cont.)

Message preparation
\ Time spent in NIC

/ Delivery time
to app. —

Figure 6-8. (b) The E

critical path in the k s
case of RBS. - t :‘

< >
Offset [p.q 1(1) = cu+P Critical path

(b)

A. A. Pourhaji Kazem, Spring 2009

Lamport’s Logical Clocks

To synchronize logical clocks, Lamport
defined a relation called happens-before.

The "happens-before" relation — can be

observed directly in two situations:

— If aandb are events in the same process, andcurs before
b, thena — b s true.

— If ais the event of a message being sent by one proceds, and

IS the event of the message being received by another process
thena— b

A. A. Pourhaji Kazem, Spring 2009

Lamport’s Logical Clocks (cont.)

0 0 0
&1 m, [F £
3] {78 20
18 541 __m, |30
54 Eltl)
30 40 50
36 48 60
22 561< Ms |70
48 64 80
54 ™. |72 90
60 80 100
@)

Figure 6-9. (a) Three processes, each with its own clock.
The clocks run at different rates.

A. A. Pourhaji Kazem, Spring 2009

Lamport’s Logical Clocks (cont.)

P, P, Py
0 0 0
‘6| m, |8 10
3| ie 20
18 54 m, [30
54 Elat
30 | P2 adjusts | 40 90
36 | its clock |48 60
....... SO
2 (61 ™s |70
48 69 80
o™ |77 %
76| Py adjusts 85 100

its clock
(b)

Figure 6-9. (b) Lamport’s algorithm corrects the clocks.

A. A. Pourhaji Kazem, Spring 2009

Lamport’s Logical Clocks (cont.)

Application layer

Message is delivered to application

Adjust local clock
and timestamp message

Adjust local clock Middleware layer

Middleware sends message

e —

Message is received

Network layer

Figure 6-10. The positioning of Lamport’s logical
clocks in distributed systems.

A. A. Pourhaji Kazem, Spring 2009

Lamport’s Logical Clocks (cont.)

Updating counter C; for process P,

1.

2.

Before executing an event P; executes
C—C +1.

When process P; sends a message m to P;, It
sets m’s tlmestamp ts (m) equal to C, after havmg
executed the previous step.

Upon the receipt of a message m, process P;
adjusts its own local counter as

C; < max{C, , ts (m)}, after which it then executes
the first step and delivers the message to the
application.

A. A. Pourhaji Kazem, Spring 2009

Vector Clocks

P, P, P
0 0 0
L m [E £
3] 15| me 5%
k0 il [30
24 32 M4 40
30 40| >[50
36 48 60
"""" e PRl
4 61X . |70
48 69 80
7o ™S |77 90
70 85 100

Figure 6-12. Concurrent message transmission
using logical clocks.

A. A. Pourhaji Kazem, Spring 2009

Vector Clocks (cont.)

Vector clocks are constructed by letting each
process P, maintain a vector VC; with the
following two properties:

1. VC;[1]Iis the number of events that have
occurred so far at P.. In other words, VC, [1] s
the local logical clock at process P; .

2. ItVC;[]] = kthen P; knows that k events have
occurred at P,. It is thus P;'s knowledge of the
local time at P; .

A. A. Pourhaji Kazem, Spring 2009

Vector Clocks (cont.)

Steps carried out to accomplish property 2 of

1.

2.

previous slide:

Before executing an event P; executes
VC[1]<—VC |i]+1
When process P; sends a message m to P;, It

sets m’s (vector) timestamp ts (m) equal to VC,
after having executed the previous step.

Upon the receipt of a message m, process P,
adjusts its own vector by setting

VG, [k] — max{VC, [k], ts (m)[k]} for each k, after
WhICh It executes the first step and delivers the
message to the application.

A. A. Pourhaji Kazem, Spring 2009

Enforcing Causal Communication

VCO= (1,0,0) VCO= (1:1:-0)

VC, = (1,1,0)

Figure 6-13. Enforcing causal communication.

A. A. Pourhaji Kazem, Spring 2009

Mutual Exclusion
A Centralized Algorithm

O @

Request
/ Queue is
empt
Coordinator Py

(@)

Figure 6-14. (a) Process 1 asks the coordinator for permission to
access a hared resource. Permission is granted.

A. A. Pourhaji Kazem, Spring 2009

Mutual Exclusion
A Centralized Algorithm (cont.)

@ O

Request

f’ No reply
Olr

(b)

Figure 6-14. (b) Process 2 then asks permission to access the
same resource. The coordinator does not reply.

A. A. Pourhaji Kazem, Spring 2009

Mutual Exclusion
A Centralized Algorithm (cont.)

OXOXO

Release
OK

(C)

Figure 6-14. (c) When process 1 releases the resource, it tells the
coordinator, which then replies to 2.

A. A. Pourhaji Kazem, Spring 2009

Mutual Exclusion
A Distributed Algorithm

Three different cases:

1.

If the receliver is not accessing the resource and
does not want to access It, it sends back an OK
message to the sender.

If the receliver already has access to the
resource, it simply does not reply. Instead, it
gueues the request.

If the receiver wants to access the resource as
well but has not yet done so, it compares the
timestamp of the incoming message with the one
contained in the message that it has sent
everyone. The lowest one wins.

A. A. Pourhaji Kazem, Spring 2009

Mutual Exclusion
A Distributed Algorithm (cont.)

12

Figure 6-15. (a) Two processes want to access a
shared resource at the same moment.

Pourhaji Kazem, Spring 2009

Mutual Exclusion
A Distributed Algorithm (cont.)

Accesses
resource

(b)

Figure 6-15. (b) Process 0O has the lowest
timestamp, so it wins.

Pourhaji Kazem, Spring 2009

Mutual Exclusion
A Distributed Algorithm (cont.)

OK
@ Accesses
resource

(C)

Figure 6-15. (c) When process 0 is done,
it sends an OK also, so 2 can now go ahead.

Pourhaji Kazem, Spring 2009

Mutual Exclusion
A Token Ring Algorithm

TYPYYYPY

(@) (b)

Figure 6-16. (a) An unordered group of processes on a network.
(b) A logical ring constructed in software.

A. A. Pourhaji Kazem, Spring 2009

A Comparison of the Four Algorithms

Messages per

Delay before entry

Algorithm entry/exit (in message times) Problems
Centralized 3 2 Coordinator crash
Decentralized | 3mk, k=1,2,... 2m Starvation, low efficiency
Distributed 2(n-1) 2(n-1) Crash of any process
Token ring 110 Oton-1 Lost token, process crash

Figure 6-17. A comparison of three mutual exclusion algorithms.

A. A. Pourhaji Kazem, Spring 2009

Global Positioning Of Nodes

‘
Figure 6-18. Computing a node’s position in a

two-dimensional space.

A. A. Pourhaji Kazem, Spring 2009

Global Positioning Of Nodes (Cont.)

3.2

Y

2.0

>
3 4
R

Figure 6-19. Inconsistent distance measurements
In a one-dimensional space.

A. A. Pourhaji Kazem, Spring 2009

Election Algorithms

The Bully Algorithm

1. P sends an ELECTION message to all
processes with higher numbers.

2. If no one responds, P wins the election
and becomes coordinator.

3. If one of the higher-ups answers, it takes
over. P’s job is done.

A. A. Pourhaji Kazem, Spring 2009

The Bully Algorithm

& ©

Previous coordinator
has crashed

(a) (b) (c)

Figure 6-20. The bully election algorithm. (a) Process 4 holds an
election. (b) Processes 5 and 6 respond, telling 4 to stop.
(c) Now 5 and 6 each hold an election.

A. A. Pourhaji Kazem, Spring 2009

The Bully Algorithm (Cont.)

©,
®

Figure 6-20. The bully election algorithm. (d) Process 6 tells 5 to
stop. (e) Process 6 wins and tells everyone.

A Ring Algorithm

Previous coordinator
has crashed

\

o

A

Election message

s
2]

[5.6]

2,3]
No response O\@

Figure 6-21. Election algorithm using a ring.

A. A. Pourhaji Kazem, Spring 2009

Elections In Wireless Environments

=

j

Capacity

Figure 6-22. Election algorithm in a wireless network, with node a
as the source. (a) Initial network. (b)—(e) The build-tree phase

A. A. Pourhaji Kazem, Spring 2009

Elections in Wireless Environments (Cont.)

c
(3
b .

0 e receives

a (1) broadcast from
e f
o) (4)
(4) :
j

Figure 6-22. Election algorithm in a wireless network, with node a
as the source. (a) Initial network. (b)—(e) The build-tree phase

A. A. Pourhaji Kazem, Spring 2009

Elections in Wireless Environments (Cont.)

broadcast
from e first

Figure 6-22. (e) The build-tree phase.
(f) Reporting of best node to source.

A. A. Pourhaji Kazem, Spring 2009

Elections in Large-Scale Systems

Requirements for superpeer selection:

1. Normal nodes should have low-latency access to
superpeers.

2. Superpeers should be evenly distributed across
the overlay network.

3. There should be a predefined portion of
superpeers relative to the total number of nodes
In the overlay network.

4. Each superpeer should not need to serve more
than a fixed number of normal nodes.

A. A. Pourhaji Kazem, Spring 2009

Elections in Large-Scale Systems (Cont.)

A
C}\ Token-holding node
Repulsion ..

b

force of A on C “~. (O Normal node

B
i\ Resulting movement by which
the token at C is passed to another node

Node D will become token holder ~—0O D

Figure 6-23. Moving tokens in a two-dimensional
space using repulsion forces.

A. A. Pourhaji Kazem, Spring 2009

