
DISTRIBUTED SYSTEMS
Principles and Paradigms

Second Edition
ANDREW S. TANENBAUM

MAARTEN VAN STEEN

Chapter 6

A. A. Pourhaji Kazem, Spring 2009

Chapter 6
Synchronization

Clock Synchronization

A. A. Pourhaji Kazem, Spring 2009

Figure 6-1. When each machine has its own clock, an
event that occurred after another event may

nevertheless be assigned an earlier time.

Physical Clocks (1)

A. A. Pourhaji Kazem, Spring 2009

Figure 6-2. Computation of the mean solar day.

Physical Clocks (2)

A. A. Pourhaji Kazem, Spring 2009

Figure 6-3. TAI seconds are of constant length, unlike solar
seconds. Leap seconds are introduced when necessary to

keep in phase with the sun.

Global Positioning System

A. A. Pourhaji Kazem, Spring 2009

Figure 6-4. Computing a position in a two-dimensional space.

Global Positioning System (cont.)

Real world facts that complicate GPS

1. It takes a while before data on a
satellite’s position reaches the

A. A. Pourhaji Kazem, Spring 2009

satellite’s position reaches the
receiver.

2. The receiver’s clock is generally not
in synch with that of a satellite.

Global Positioning System (cont.)

A. A. Pourhaji Kazem, Spring 2009

Clock Synchronization Algorithms

A. A. Pourhaji Kazem, Spring 2009

Figure 6-5. The relation between clock time and UTC
when clocks tick at different rates.

Network Time Protocol

A. A. Pourhaji Kazem, Spring 2009

Figure 6-6. Getting the current time from a time server.

The Berkeley Algorithm

A. A. Pourhaji Kazem, Spring 2009

Figure 6-7. (a) The time
daemon asks all the other
machines for their clock
values.

The Berkeley Algorithm (cont.)

A. A. Pourhaji Kazem, Spring 2009

Figure 6-7.
(b) The machines answer.

The Berkeley Algorithm (cont.)

A. A. Pourhaji Kazem, Spring 2009

Figure 6-7. (c) The time
daemon tells everyone how
to adjust their clock.

Clock Synchronization in Wireless
Networks

A. A. Pourhaji Kazem, Spring 2009

Figure 6-8. (a) The usual
critical path in determining
network delays.

Clock Synchronization in Wireless
Networks (cont.)

A. A. Pourhaji Kazem, Spring 2009

Figure 6-8. (b) The
critical path in the
case of RBS.

Lamport’s Logical Clocks

• To synchronize logical clocks, Lamport
defined a relation called happens-before.

• The "happens-before" relation → can be
observed directly in two situations:

A. A. Pourhaji Kazem, Spring 2009

observed directly in two situations:
– If a and b are events in the same process, and a occurs before

b, then a → b is true.

– If a is the event of a message being sent by one process, and b
is the event of the message being received by another process,
then a → b

Lamport’s Logical Clocks (cont.)

A. A. Pourhaji Kazem, Spring 2009

Figure 6-9. (a) Three processes, each with its own clock.
The clocks run at different rates.

Lamport’s Logical Clocks (cont.)

A. A. Pourhaji Kazem, Spring 2009

Figure 6-9. (b) Lamport’s algorithm corrects the clocks.

Lamport’s Logical Clocks (cont.)

A. A. Pourhaji Kazem, Spring 2009

Figure 6-10. The positioning of Lamport’s logical
clocks in distributed systems.

Lamport’s Logical Clocks (cont.)

Updating counter Ci for process Pi

1. Before executing an event Pi executes
Ci ← Ci + 1.

2. When process Pi sends a message m to Pj, it

A. A. Pourhaji Kazem, Spring 2009

2. When process Pi sends a message m to Pj, it
sets m’s timestamp ts (m) equal to Ci after having
executed the previous step.

3. Upon the receipt of a message m, process Pj
adjusts its own local counter as
Cj ← max{Cj , ts (m)}, after which it then executes
the first step and delivers the message to the
application.

Vector Clocks

A. A. Pourhaji Kazem, Spring 2009

Figure 6-12. Concurrent message transmission
using logical clocks.

Vector Clocks (cont.)

Vector clocks are constructed by letting each
process Pi maintain a vector VCi with the
following two properties:

1. VCi [i] is the number of events that have

A. A. Pourhaji Kazem, Spring 2009

1. VCi [i] is the number of events that have
occurred so far at Pi. In other words, VCi [i] is
the local logical clock at process Pi .

2. If VCi [j] = k then Pi knows that k events have
occurred at Pj. It is thus Pi’s knowledge of the
local time at Pj .

Vector Clocks (cont.)

Steps carried out to accomplish property 2 of
previous slide:

1. Before executing an event Pi executes
VCi [i] ← VCi [i] + 1.

2. When process Pi sends a message m to Pj, it

A. A. Pourhaji Kazem, Spring 2009

2. When process Pi sends a message m to Pj, it
sets m’s (vector) timestamp ts (m) equal to VCi
after having executed the previous step.

3. Upon the receipt of a message m, process Pj
adjusts its own vector by setting
VCj [k] ← max{VCj [k], ts (m)[k]} for each k, after
which it executes the first step and delivers the
message to the application.

Enforcing Causal Communication

A. A. Pourhaji Kazem, Spring 2009

Figure 6-13. Enforcing causal communication.

Mutual Exclusion
A Centralized Algorithm

A. A. Pourhaji Kazem, Spring 2009

Figure 6-14. (a) Process 1 asks the coordinator for permission to
access a hared resource. Permission is granted.

Mutual Exclusion
A Centralized Algorithm (cont.)

A. A. Pourhaji Kazem, Spring 2009

Figure 6-14. (b) Process 2 then asks permission to access the
same resource. The coordinator does not reply.

Mutual Exclusion
A Centralized Algorithm (cont.)

A. A. Pourhaji Kazem, Spring 2009

Figure 6-14. (c) When process 1 releases the resource, it tells the
coordinator, which then replies to 2.

Mutual Exclusion
A Distributed Algorithm

Three different cases:
1. If the receiver is not accessing the resource and

does not want to access it, it sends back an OK
message to the sender.

2. If the receiver already has access to the

A. A. Pourhaji Kazem, Spring 2009

2. If the receiver already has access to the
resource, it simply does not reply. Instead, it
queues the request.

3. If the receiver wants to access the resource as
well but has not yet done so, it compares the
timestamp of the incoming message with the one
contained in the message that it has sent
everyone. The lowest one wins.

Mutual Exclusion
A Distributed Algorithm (cont.)

A. A. Pourhaji Kazem, Spring 2009

Figure 6-15. (a) Two processes want to access a
shared resource at the same moment.

Mutual Exclusion
A Distributed Algorithm (cont.)

A. A. Pourhaji Kazem, Spring 2009

Figure 6-15. (b) Process 0 has the lowest
timestamp, so it wins.

Mutual Exclusion
A Distributed Algorithm (cont.)

A. A. Pourhaji Kazem, Spring 2009

Figure 6-15. (c) When process 0 is done,
it sends an OK also, so 2 can now go ahead.

Mutual Exclusion
A Token Ring Algorithm

A. A. Pourhaji Kazem, Spring 2009

Figure 6-16. (a) An unordered group of processes on a network.
(b) A logical ring constructed in software.

A Comparison of the Four Algorithms

A. A. Pourhaji Kazem, Spring 2009

Figure 6-17. A comparison of three mutual exclusion algorithms.

Global Positioning Of Nodes

A. A. Pourhaji Kazem, Spring 2009

Figure 6-18. Computing a node’s position in a
two-dimensional space.

Global Positioning Of Nodes (Cont.)

A. A. Pourhaji Kazem, Spring 2009

Figure 6-19. Inconsistent distance measurements
in a one-dimensional space.

Election Algorithms

The Bully Algorithm
1. P sends an ELECTION message to all

processes with higher numbers.

A. A. Pourhaji Kazem, Spring 2009

2. If no one responds, P wins the election
and becomes coordinator.

3. If one of the higher-ups answers, it takes
over. P’s job is done.

The Bully Algorithm

A. A. Pourhaji Kazem, Spring 2009

Figure 6-20. The bully election algorithm. (a) Process 4 holds an
election. (b) Processes 5 and 6 respond, telling 4 to stop.

(c) Now 5 and 6 each hold an election.

The Bully Algorithm (Cont.)

A. A. Pourhaji Kazem, Spring 2009

Figure 6-20. The bully election algorithm. (d) Process 6 tells 5 to
stop. (e) Process 6 wins and tells everyone.

A Ring Algorithm

A. A. Pourhaji Kazem, Spring 2009

Figure 6-21. Election algorithm using a ring.

Elections in Wireless Environments

A. A. Pourhaji Kazem, Spring 2009

Figure 6-22. Election algorithm in a wireless network, with node a
as the source. (a) Initial network. (b)–(e) The build-tree phase

Elections in Wireless Environments (Cont.)

A. A. Pourhaji Kazem, Spring 2009

Figure 6-22. Election algorithm in a wireless network, with node a
as the source. (a) Initial network. (b)–(e) The build-tree phase

Elections in Wireless Environments (Cont.)

A. A. Pourhaji Kazem, Spring 2009

Figure 6-22. (e) The build-tree phase.
(f) Reporting of best node to source.

Elections in Large-Scale Systems

Requirements for superpeer selection:
1. Normal nodes should have low-latency access to

superpeers.
2. Superpeers should be evenly distributed across

the overlay network.

A. A. Pourhaji Kazem, Spring 2009

the overlay network.
3. There should be a predefined portion of

superpeers relative to the total number of nodes
in the overlay network.

4. Each superpeer should not need to serve more
than a fixed number of normal nodes.

Elections in Large-Scale Systems (Cont.)

A. A. Pourhaji Kazem, Spring 2009

Figure 6-23. Moving tokens in a two-dimensional
space using repulsion forces.

