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Abstract 
This paper compares two evolutionary computation paradigms: genetic algorithms and particle 
swarm optimization. The operators of each paradigm are reviewed, focusing on how each affects 
search behavior in the problem space. The goals of the paper are to provide additional insights 
into how each paradigm works, and to suggest ways in which performance might be improved 
by incorporating features from one paradigm into the other. 

 
Introduction 
Four well-known paradigms currently exist in evolutionary computation: genetic 
algorithms [5], evolutionary programming [4], evolution strategies [9], and genetic 
programming [8]. A new evolutionary computation technique, called particle swarm 
optimization (PSO), inspired by social behavior simulation, was originally designed 
and developed by Eberhart and Kennedy [2,3,6,7]. In PSO, instead of using more 
traditional genetic operators, each particle (individual) adjusts its “flying” according to 
its own flying experience and its companions’ flying experience. 
 
This paper compares genetic algorithms and particle swarm optimization. Operators 
that are used by each paradigm are reviewed. The focus is on how each operator affects 
the paradigm’s behavior in the problem space. 
 
There are, of course, many ways to implement a genetic algorithm (GA). Regardless of 
the specific implementation, it is generally agreed that GAs utilize one form or another 
of three operators: selection, crossover, and mutation. We will examine 
implementations of these operators, and compare them with PSO operators.  In this 
paper, it can be assumed that, in most cases, a basic, binary version of a GA is being 
referred to, such as the “plain vanilla” GA in [2] or the elementary GA 1-1 in [1].  
 
The authors readily concede that few applications use these basic GA configurations, 
and a number of modifications to these configurations are also examined. It should be 
noted that it is not the goal of this paper to compare GAs and PSO in order to declare 
one or the other as somehow better. Rather, the goals are to provide insights into how 
GAs and PSO work, and to suggest ways in which performance might be enhanced by 
incorporating features from one paradigm into the other. 
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Analysis 
In PSO, a particle is analogous to a population member (chromosome) in a GA. Like a 
GA chromosome, a particle represents a candidate solution to the problem being 
addressed. Each particle is treated as a point in the D-dimensional problem space. The 
ith particle is represented as XI  = (xi1,xi2, … , xiD). The best previous position (the 
position giving the best fitness value) of the ith particle is recorded and represented as 
PI = (pi1,pi2, … , piD). The index of the best particle among all the particles in the 
population is represented by the symbol g. The rate of the position change (velocity) 
for particle i is represented as VI = (vi1,vi2, … , viD). The particles are manipulated 
according to the following equations: 
  
vid = w * vid + c1 * rand( ) * ( pid – xid ) + c2 * Rand( ) * (pgd –xid )          (1) 
xid = xid + vid                                                                                              (2) 
 
By adding the inertia weight w into PSO, a new version of PSO is introduced in [10].   
The inertia weight w is employed to control the impact of the previous history of 
velocities on the current velocity, thereby influencing the trade-off between global 
(wide-ranging) and local (fine-grained) exploration abilities of the “flying points.” A 
larger inertia weight facilitates global exploration (searching new areas) while a 
smaller inertia weight tends to facilitate local exploration to fine-tune the current 
search area. Suitable selection of the inertia weight provides a balance between global 
and local exploration abilities and thus requires fewer iterations on average to find the 
optimum [10]. (In some ways, the name damping weight might be more descriptive, 
but the term inertia weight is used in this paper.) 
 
In a GA, each of the three main classes of operations (selection, crossover, and 
mutation) can be implemented in a number of ways. PSO does not label its operations 
in the same way as GAs, but analogies exist. These analogies depend, of course, on the 
implementation of the GA operation. Complicating any comparisons is the fact that the 
effects of the various operations often vary over the course of a run. (A run is defined 
as the total number of generations of the GA prior to termination. Termination usually 
occurs either because a prescribed fitness level has been achieved by at least one 
member of the population, or because the maximum number of generations allowed 
has been reached.) 
 
Effects of GA crossover, for example, usually vary significantly during a run. At the 
beginning, the population members are usually randomized, so that crossover can have 
significant effects, moving a chromosome a relatively large distance in problem space.  
Toward the end of a run, a population has often converged, meaning that many, if not 
most, chromosomes have similar structures. Crossover then usually has less effect, and 
the resulting movements are relatively smaller. Adding another layer of complexity is 
the fact that the probability of crossover is sometimes varied during a run, often 
starting out at with a relatively large probability, and ending with a smaller one. 
 
PSO does not have a crossover operation. However, the concept of crossover is 
represented in PSO because each particle is stochastically accelerated toward its own 
previous best position, as well as toward the global best position (of the entire 



population) or the neighborhood (local) best position, depending on the version of PSO 
being used. 
 
The crossover concept is also apparent in the behavior of particles that appear 
approximately midway between “swarms” of particles that are clustering around local 
best positions, or, occasionally, between successive global best positions. These 
particles seem to be exploring (for a short time, anyway) a region that represents the 
geometric mean between two promising regions. 
 
Because of the geometric “feel” of what happens in PSO, it may, in fact, be more 
analogous to the recombination operator in evolution strategies [9]. The fact that 
recombination occurs on a parameter-by-parameter basis (recombination is limited to 
parameter boundaries) further supports this analogy. 
 
The effect of mutation during the run of a GA tends to be opposite to that of crossover 
in that mutation tends to have less impact near the beginning of a run, and more near 
the end. That is because the initial population is randomized, so flipping a bit here and 
there near the beginning may not change things as dramatically as flipping bits near the 
end of a run, when the population has converged. If the mutation rate is varied during a 
run, it is common to use a relatively small value in the beginning, and increase it 
toward the end. 
 
It is theoretically possible for a GA chromosome to reach any point in the problem 
space via mutation. It is, however, unlikely, particularly near the end of a run. This is 
because a number of mutations may be needed to reach a distant point. Since mutation 
rates are typically quite low (0.1–1.0 percent is a common range), several generations 
of favorable mutations may be needed. Near the end of a run, however, when the 
population has converged and the average fitness value is high, mutation will quite 
likely result in a low-fitness chromosome that does not survive the selection process. In 
fact, the probability of survival decreases geometrically with generations. So even 
though a number of mutations would bring the chromosome into a high-fitness region, 
the chromosome never gets there because it doesn’t survive selection. 
 
So, even though a GA is theoretically ergodic (there exists a non-zero probability that a 
chromosome can occupy any state), it is not ergodic in a practical sense because of the 
multiple steps required. An evolutionary programming (EP) system is truly ergodic, 
since there is a finite probability that an individual can reach any point in problem 
space with one jump (in one generation). 
 
The behavior of PSO systems seems to fall somewhere between GA and EP systems in 
this area.  It may be that a PSO particle cannot reach any point in problem space in one 
iteration, although this might be possible at the beginning of the run, given sufficiently 
large Vmax.  But since particles survive intact from one iteration to the next, any 
particle can eventually go anywhere, given enough iterations. A stronger case can thus 
be made for the ergodicity of PSO than for GAs. 
 
Because each particle has a velocity, PSO mutation-like behavior is directional, with a 
kind of momentum built in, especially if usebest is activated on the command line. GA  



mutation is generally considered to be omnidirectional in that any bit in an individual 
can be flipped.  (Some GA mutation operators, such as bit position-based mutation, can 
affect the directionality.) EP mutation is also omnidirectional, and includes control of 
mutation severity on a parameter-by-parameter basis. The difference between pbest 
and the present location has some of this same flavor, but the maximum velocity is the 
same for all parameters. 
 
The effect of selection in a GA is to support the survival of the fittest, a concept central 
to all evolutionary algorithms. GA selection can be implemented in one of a number of 
ways, including roulette wheel selection and tournament selection. Regardless of the 
selection method used, an elitist strategy is often used, which results in the 
chromosome with the highest fitness value always being copied into the next 
generation. 
 
PSO does not utilize selection. All particles continue as members of the population for 
the duration of the run. A particle’s path determines its ancestry. PSO is the only 
evolutionary algorithm that does not incorporate survival of the fittest, which features 
the removal of some candidate population members (individuals with lower fitness are 
removed with higher probability). 
 
In the case of a GA, crossover occurs between (usually) randomly selected parents.  
The evolution of an individual chromosome typically involves exchanging genetic 
material with quite a few other randomly-selected individuals. In PSO, a particle does 
not explicitly exchange material with other particles, but its trajectory is influenced by 
them. A significant difference is that a given particle is influenced only by its own 
previous best position and that of the best position in the neighborhood or in the global 
population.  In the local version of PSO, a particle is influenced only by one of its 
topological neighbors. And the topological geometry of the particle swarm remains 
constant throughout the run, so influences do not come from “random strangers.” 
 
Recent work with PSO indicates that by properly setting the inertia weight w, the value 
of Vmax can be set to the dynamic range of each parameter, and the global maximum 
can be found more quickly, on average. Even better performance can be achieved by 
reducing the value of w during a run [11]. The inertia weight thus appears to have 
characteristics that are reminiscent of the temperature parameter in simulated 
annealing. A high value of w at the beginning of the run facilitates global search, while 
a small w tends to localize the search. Since this is “work in progress,” it is unknown 
how universal this approach will be for other problems. 
 
Discussion 
A number of ideas have come out of this comparison of GAs and PSO. In fact, it was 
this kind of thinking that led to the development of the inertia weight which is now part 
of PSO and is used routinely by the authors. 

It is possible to conceive of several ways in which the elitist concept of GAs could be 
incorporated into PSO. In one sense, it’s already there, particularly in the global 
version of PSO. Also, there is a parameter called use-better (which can be selected at 



runtime in PSO) that causes a particle to continue in the direction in which it has been 
going if the current fitness is higher that that of the previous iteration. One way to 
explicitly implement an elitist strategy would be to carry a “global best” particle 
(perhaps with a stochastic velocity) into the next iteration; some particle, perhaps the 
one with the lowest fitness, could be eliminated from the population. 
 
Another approach worthy of investigation is the incorporation of a Gaussian 
distribution into the stochastic velocity changes in PSO reflecting the way mutation is 
done in EP. The variance parameter might then play a role similar to that of the current 
inertia weight. 
 
Finally, the assignment of a maximum velocity on a parameter-by-parameter basis is 
worthy of consideration. This is analogous to controlling the severity of mutation in 
GA or EP. 
 
Conclusions 
In this paper, we have analyzed the operators of GAs and PSO. It is hoped that the 
reader has gained some insights into how these paradigms work, and how the 
performance of one might be improved by incorporating features of the other. 
 
The distinctions between the four main branches of evolutionary computation continue 
to blur.  New approaches continue to be developed. Emphasis should be placed on new 
hybrid implementations. Standard benchmarking functions can be used to make 
comparisons, as can practical applications. It is hoped that the understanding of how 
these paradigms work will continue to be studied and improved. 
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