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Abstract— Particle swarm optimization (PSO) as a novel 
computational intelligence technique, has succeeded in 
many continuous problems. But in discrete or binary 
version there are still some difficulties. In this paper a novel 
binary PSO is proposed. This algorithm proposes a new 
definition for the velocity vector of binary PSO. It will be 
shown that this algorithm is a better interpretation of 
continuous PSO into discrete PSO than the older versions. 
Also a number of benchmark optimization problems are 
solved using this concept and quite satisfactory results are 
obtained. 

Keywords: Binary Particle Swarm Optimization, Discrete 
Optimization, Computational Intelligence 

I. INTRODUCTION 
Particle swarm optimization (PSO) was originally 

designed and introduced by Eberhart and Kennedy [1-3] 
in 1995. The PSO is a population based search algorithm 
based on the simulation of the social behavior of birds, 
bees or a school of fishes. This algorithm originally 
intends to graphically simulate the graceful and 
unpredictable choreography of a bird folk. Each individual 
within the swarm is represented by a vector in 
multidimensional search space. This vector has also one 
assigned vector which determines the next movement of 
the particle and is called the velocity vector. 

The PSO algorithm also determines how to update the 
velocity of a particle. Each particle updates its velocity 
based on current velocity and the best position it has 
explored so far; and also based on the global best position 
explored by swarm [5, 6 and 8]. 

The PSO process then is iterated a fixed number of 
times or until a minimum error based on desired 
performance index is achieved. It has been shown that this 
simple model can deal with difficult optimization 
problems efficiently. 

The PSO was originally developed for continuous 
valued spaces but many problems are, however, defined 
for discrete valued spaces where the domain of the 
variables is finite. Classical examples of such problems 
are: integer programming, scheduling and routing [5]. In 
1997, Kennedy and Eberhart introduced a discrete binary 
version of PSO for discrete optimization problems [4]. In 
binary PSO, each particle represents its position in binary 
values which are 0 or 1. Each particle’s value can then be 
changed (or better say mutate) from one to zero or vice 
versa. In binary PSO the velocity of a particle defined as 
the probability that a particle might change its state to one. 
This algorithm will be discussed in more detail in next 
sections. Also, the difficulties of binary PSO will be 
shown in this paper, and then a novel binary PSO 
algorithm will be proposed. In novel binary PSO proposed 

here, the velocity of a particle is its probability to change 
its state from its previous state to its complement value, 
rather than the probability of change to 1. In this new 
definition the velocity of particle and also its parameters 
has the same role as in continuous version of the PSO. 
This algorithm will be discussed. Also simulation results 
are presented to support the idea later in this paper. 

There are also other versions of binary PSO. In [6] 
authors add birth and mortality to the ordinary PSO. 
AMPSO is a version of binary PSO, which employs a 
trigonometric function as a bit string generator [9]. 
Boolean algebra can also be used for binary PSO [10]. 

Binary PSO has been used in many applications like 
Iterated Prisoner’s Dilemma [11], choosing optimum input 
subset for SVM [12], design of dual-band dual-polarized 
planar antenna [10].  

This paper is organized as follows: in section II we will 
consider continuous PSO algorithm and also binary PSO 
algorithms. Then we will introduce its shortcomings. In 
section III we will introduce modified PSO and discuss on 
the logics behind it. In section IV we will examine the 
algorithm on a number of test problems and we will show 
that results obtained are quite satisfactory. 

II. THE PARTICLE SWARM OPTIMIZATION 
A detailed description of PSO algorithm is presented in 

[1-3]. Here we will give a short description of the 
continuous and binary PSO proposed by Kennedy and 
Eberhart. 

A. Continuous particle swarm optimization 
Assume that our search space is d-dimensional, and the 

i-th particle of the swarm can be represented by a d-
dimensional position vector 1 2( , ,..., )i i i idX x x x= . The 
velocity of the particle is denoted by 

1 2( , ,..., )i i i idV v v v= . Also consider best visited position 
for the particle is 1 2( , ,..., )ibest i i idP p p p= and also the 
best position explored so far is 

1 2( , ,..., )gbest g g gdP p p p= . So the position of the 
particle and its velocity is being updated using following 
equations: 

1 1

2 2

( 1) . ( ) ( ( ))
( ( ))

i i i i

g i

v t w v t c p x t
c p x t

ϕ
ϕ

+ = + −
+ −

                          (1) 

( 1) ( ) ( 1)i i ix t x t v t+ = + +                                           (2) 
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Where 1c  and 2c  are positive constants, and 1ϕ  and 

2ϕ  are two random variables with uniform distribution 
between 0  and 1 . In this equation, W  is the inertia 
weight which shows the effect of previous velocity vector 
on the new vector. An upper bound is placed on the 
velocity in all dimensions maxV . This limitation prevents 
the particle from moving too rapidly from one region in 
search space to another. This value is usually initialized as 
a function of the range of the problem. For example if the 
range of all ijx  is [ 50,50]−  then maxV  is proportional to 
50. 

ibestP  for each particle is updated in each iteration 
when a better position for the particle or for the whole 
swarm is obtained. The feature that drives PSO is social 
interaction. Individuals (particles) within the swarm learn 
from each other, and based on the knowledge obtained 
then move to become similar to their “better” previously 
obtained position and also to their “better” neighbors. 
Individual within a neighborhood communicate with one 
other. Based on the communication of a particle within the 
swarm different neighborhood topologies are defined. One 
of these topologies which is considered here, is the star 
topology. In this topology each particle can communicate 
with every other individual, forming a fully connected 
social network. In this case each particle is attracted 
toward the best particle (best problem solution) found by 
any member of the entire swarm. Each particle therefore 
imitates the overall best particle. So the gbestP  is updated 
when a new best position within the whole swarm is 
found. 

The algorithm for the PSO can be summarized as 
follows: 

1. Initialize the swarm iX , the position of particles 
are randomly initialized within the hypercube of 
feasible space. 

2. Evaluate the performance F  of each particle, 
using its current position ( )iX t . 

3. Compare the performance of each individual to its 
best performance so far: if ( ( )) ( )i ibestF X t F P< : 

( ) ( ( ))ibest iF P F X t=  

( )ibest iP X t=  
4. Compare the performance of each particle to the 

global best particle: if ( ( )) ( )i gbestF X t F P< : 

( ) ( ( ))gbest iF P F X t=  

( )gbest iP X t=  

5. Change the velocity of the particle according to 
(1). 

6. Move each particle to a new position using 
equation (2). 

7. Go to step 2, and repeat until convergence. 

B. Binary particle swarm optimization 
Kennedy and Eberhart proposed a discrete binary 

version of PSO for binary problems [4]. In their model a 
particle will decide on "yes" or " no", "true" or "false", 
"include" or "not to include" etc. also this binary values 

can be a representation of a real value in binary search 
space. 

In the binary PSO, the particle’s personal best and 
global best is updated as in continuous version. The major 
difference between binary PSO with continuous version is 
that velocities of the particles are rather defined in terms 
of probabilities that a bit will change to one. Using this 
definition a velocity must be restricted within the range 
[0,1] . So a map is introduced to map all real valued 
numbers of velocity to the range [0,1]  [4]. The 
normalization function used here is a sigmoid function as: 

'
( )

1( ) ( ( ))
1

ij ij v tij
v t sig v t

e −= =
+

                               (3) 

Also the equation (1) is used to update the velocity 
vector of the particle. And the new position of the particle 
is obtained using the equation below: 

1 ( ( 1))
( 1)

0
ij ij

ij
if r sig v t

x t
otherwise

< ++ = 


                  (4) 

Where ijr is a uniform random number in the range 
[0,1] . 

C. Main problems with binary PSO 
Here two main problems and concerns about binary 

PSO is discussed the first is the parameters of binary PSO 
and the second is the problem with memory of binary 
PSO. 

1) Parameters of the binary PSO 
It is not just the interpretation of the velocity and 

particle trajectories that changes for the binary PSO. The 
meaning and behavior of the velocity clamping and the 
inertia weight differ substantially from the real-valued 
PSO. In fact, the effects of these parameters are the 
opposite of those for the real valued PSO. In fact, the 
effects of these parameters are the opposite of those for 
the real-valued PSO [5]. 

In continuous version of PSO large numbers for 
maximum velocity of the particle encourage exploration. 
But in binary PSO small numbers for maxV  promotes 
exploration, even if a good solution is found. And if 

max 0V = , then the search changes into a pure random 
search. Large values for maxV  limit exploration. For 
example if max 4V = , then max( ) 0.982sig V =  is the 
probability of ijx  to change to bit 1. 

There is also some difficulties with choosing proper 
value for inertia weight w . For binary PSO, values of 

1w <  prevents convergence. For values of 1 1w− < < , 
ijV  becomes 0 over time. For which (0) 0.5sig =  so for 

1w <  we have lim ( ( )) 0.5ij
t

sig v t
→∞

= . If 1w >  velocity 

increases over time and lim ( ( )) 1ij
t

sig v t
→∞

=  so all bits 

change to 1. If 1w < −  then lim ( ( )) 0ij
t

sig v t
→∞

=  so the 

probability that bits change to bit 0 increases. 
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As discussed in [5] the inertia weight and its effect is a 
problem. Also two approaches are suggested there: 

First is to remove the momentum term. According to 
[5], as the change in particle's position is randomly 
influenced by ijr , so the momentum term might not be 
needed. This approach is unexplored approach although it 
is used in [7], but no comparisons are provided there. 

The second approach is to use a random number for w 
in the range: ( 1, 1)− . 

In fact inertia weight has some valuable information 
about previously found directions found. Removing this 
term can't give any improvement to the binary PSO and 
the previous direction will be lost in this manner. Also 
using a random number for w  in the range ( 1, 1)−  or any 
range like this can't be a good solution. It is desired that 
the algorithm is quite insensible to the values selected for 
w . Also using negative values for w  makes no sense 
because this term provides the effect of previous 
directions in the next direction of the particle. Using a 
negative value for this parameter is not logical. 

2) Memory of the binary PSO 
Considering equation (4) the next value for the bit is 

quite independent of the current value of that bit and the 
value is solely updated using the velocity vector. In 
continuous version of PSO the update rule uses current 
position of the swarm and the velocity vector just 
determines the movement of the particle in the space. 

III. THE NOVEL BINARY PARTICLE SWARM 
OPTIMIZATION 

Here, the ibestP  and gbestP  of the swarm is updated as 
in continuous or binary version. The major difference 
between this algorithm and other version of binary PSO is 
the interpretation of velocity. Here, as in continuous 
version of PSO, velocity of a particle is the rate at which 
the particle changes its bit’s value. Two vectors for each 
particle are introduced as 0

iV and 1
iV . 0

iV  is the 
probability of the bits of the particle to change to zero 
while 1

iV  is the probability that bits of particle change to 
one. Since in update equation of these velocities, which 
will be introduced later, the inertia term is used, these 
velocities are not complement. So the probability of 
change in j-th bit of i-th particle is simply defined as 
follows: 

1

0

, 0

, 1

ij ijc
ij

ij ij

V if x
V

V if x

 == 
=

                                             (5) 

In this way the velocity of particle is simply calculated. 
Also the update algorithm for 1

iV  and 0
iV  is as follows: 

consider the best position visited so far for a particle is 
ibestP  and the global best position for the particle is 

gbestP . Also consider that the j-th bit of i-th best particle 
is one. So to guide the bit j-th of i-th particle to its best 
position, the velocity of change to one ( 1

iV ) for that 

particle increases and the velocity of change to zero ( 0
iV ) 

is decreases. Using this concept following rules can be 
extracted: 

1 0
,1 1 1 ,1 1 11j

ij ijibestIf P Then d c r and d c r= = = −  

0 1
,1 1 1 ,1 1 10j

ij ijibestIf P Then d c r and d c r= = = −  

1 0
,2 2 2 ,2 2 21j

ij ijgbestIf P Then d c r and d c r= = = −  

0 1
,2 2 2 ,2 2 20j

ij ijgbestIf P Then d c r and d c r= = = −  

Where 1 0,ij ijd d  are two temporary values. 1r  and 2r are 
two random variable in the range of (0,1)  which are 
updated each iteration. Also 1c , 2c  are two fixed 
variables which are determined by user. then: 

1 1 1 1
,1 ,2ij ij ij ijV w V d d= + +                                               (6) 

0 0 0 0
,1 ,2ij ij ij ijV w V d d= + +                                               (7) 

Where w  is the inertia term. In fact in this algorithm if 
the j-th bit in the global best variable is zero or if the j-th 
bit in the corresponding personal best variable is zero the 
velocity ( 0

ijV ) is increased. And the probability of 
changing to one is also decreases with the same rate. In 
addition, if the j-th bit in the global best variable is one 

1
ijV  is increased and 0

ijV  decreases. In this approach 
previously found direction of change to one or change to 
zero for a bit is maintained and used so particles make use 
of previously found direction. After updating velocity of 
particles, 0

iV  and 1
iV , the velocity of change is obtained 

as in (5). 
A normalization process is also done. Using sigmoid 

function as introduced in (3). And then the next particles 
state is computed as follows: 

'

'

( ) ,
( 1)

( ) ,

ij ij ij
ij

ij ij ij

x t if r V
x t

x t if r V

 <+ = 
>

                            (8) 

Where ijx  is the 2`s complement of ijx . That is, if 

0ijx =  then 1ijx =  and if 1ijx =  then 0ijx = . And 

ijr  is a uniform random number between 0 and 1. 

The meaning of the parameters used in velocity 
equation, are exactly like those for the continuous PSO. 
The inertia weight used here maintains the previous 
direction of bits of particle to the personal best bit or 
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global best bit whether it is 1 or 0. Also the meaning of 
velocity is the same as meaning of the velocity in 
continuous version of PSO which is the rate of change in 
particle's position. Also as in continuous PSO if the 
maximum velocity value considered is large, random 
search will happen. Small values for maximum velocity 
cause the particle to move less. Here also the previous 
states of the bits of the particles are taking into account. 
Using the equation (7) the previous value of the particle is 
taken into account, while in binary PSO just velocity 
determined the next value of particle. So, better 
performance and better learning from experiments in this 
algorithm is achieved. Experimental results in the next 
section support these complain. 

The algorithm proposed here for the binary PSO can be 
summarized as follows: 

1. Initialize the swarm iX , the position of particles 
are randomly initialized within the hypercube. 
Elements of iX  are randomly selected from 
binary values 0 and 1. 

2. Evaluate the performance F  of each particle, 
using its current position ( )iX t . 

3. Compare the performance of each individual to its 
best performance so far: if ( ( )) ( )i ibestF X t F P< : 

( ) ( ( ))ibest iF P F X t=  

( )ibest iP X t=  
4. Compare the performance of each particle to the 

global best particle: if ( ( )) ( )i gbestF X t F P< : 

( ) ( ( ))gbest iF P F X t=  

( )gbest iP X t=  

5. Change the velocity of the particle, 0
iV and 1

iV  
according to (6,7). 

6. Calculate the velocity of change of the bits, c
iV  as 

in (5). 
7. Generate the random variable ijr  in the range: 

(0,1) . Move each particle to a new position using 
equation (8). 

8. Go to step 2, and repeat until convergence. 

IV. EXPERIMENTAL RESULTS 
In this section we will compare the performance of 

proposed binary PSO and the binary PSO proposed by 
Kennedy and Eberhart in [4] and the binary PSO used in 
[7]. In our experiments we investigated methods on the 
minimization of test functions set which is proposed in 
[4]. The functions used here are: Sphere, Rosenbrock, 
Griewangk and Rastrigin which are represented in 
equations (9-12) respectively. The global minimum of all 
of these functions is zero. The expression of these test 
functions are as follows: 

2
1

1
( )

N
i

i
f x x

=
= ∑                                                        (9) 

( )1 2 2 2
2 1

1
( ) 100( ) ( 1)

N
i i i

i
f x x x x

−
+

=
= − + −∑            (10) 

2
3

1 1

1( ) cos 1
4000

NN
i

i
i i

x
f x x

i= =
= − +∑ ∏                     (11) 

( )2
4

1
( ) 10 cos(2 ) 10

N
i i

i
f x x xπ

=
= − +∑                    (12) 

These functions have been used by many researchers as 
benchmarks for evaluating and comparing different 
optimization algorithms. In all of these functions N is the 
dimension of our search space. In our experiments the 
range of the particles were set to[ 50,50]−  and 20 bits are 
used to represent binary values for the real numbers. Also 
population size is 100 and the number of iteration 
assumed to be 1000. The different values assumed in tests 
for N are 3,5,10 , where N is the dimension of solution 
space. 

As it is shown in Table (1-8), the results are quite 
satisfactory and much better than the algorithms proposed 
in [4] and [7]. As it was mentioned earlier, the method 
proposed here uses the previous direction found 
effectively and velocity has the same interpretation as the 
continuous PSO, which is the rate of changes. The method 
of selecting inertia weight in binary PSO proposed in [4] 
is still a problem [5]. But removing the inertia weight is 
also undesirable because the previous direction is 
completely losses. In fact the previous velocities of a 
particle contain some information about the direction to 
previous personal best and global bests of the particle and 
surely have some valuable information which can help us 
faster and better find the solution. But in the proposed 
algorithm the effect of previous direction and also the 
effect of previous state of the system is completely taken 
into account. The results obtained here quite support the 
idea. 

V.  CONCLUSION 
In this study a new interpretation for the velocity of 

binary PSO was proposed, which is the rate of change in 
bits of particles. Also the main difficulty of older version 
of binary PSO which is choosing proper value for w  is 
solved. The previous direction and previous state of each 
particle is also taken into account and helped finding good 
solutions for problems. This approach tested and returned 
quite satisfactory results in number of test problems. 

The binary PSO can be used in variety of applications, 
especially when the values of the search space are discrete 
like decision making, solving lot sizing problem, the 
traveling salesman problem, scheduling and routing. 

REFERENCES 
[1] R. Eberhart, and J. Kennedy, A New Optimizer Using Particles 

Swarm Theory, Proc. Sixth International Symposium on Micro 
Machine and Human Science (Nagoya, Japan), IEEE Service 
Center, Piscataway, NJ, pp. 39-43, 1995. 

[2] J. Kennedy, and R. Eberhart, ”Particle Swarm Optimization”, 
IEEE International Conference on Neural Networks (Perth, 

Proceedings of the 15th Mediterranean Conference on
Control & Automation, July 27 - 29, 2007, Athens - Greece

T33-001



Australia), IEEE Service Center, Piscataway, NJ, IV, pp. 1942-
1948, 1995. 

[3] J. Kennedy and R. Eberhart. Swarm Intelligence. Morgan 
Kaufmann Publishers, Inc., San Francisco, CA, 2001. 

[4] Kennedy, J.; Eberhart, R.C. “A discrete binary version of the 
particle swarm algorithm”, IEEE International Conference on 
Systems, Man, and Cybernetics, 1997.  

[5] A. P. Engelbrecht. Fundamentals of Computational Swarm 
Intelligence. Wiley, 2005 

[6] J. Sadri, and Ching Y. Suen, "A Genetic Binary Particle Swarm 
Optimization Model", IEEE Congress on Evolutionary 
Computation, Vancouver, BC, Canada, 2006 

[7] M. Fatih Tasgetiren. & Yun-Chia Liang,  "A Binary Particle 
Swarm Optimization Algorithm for Lot Sizing Problem" ,Journal 
of Economic and Social Research 5 (2), pp. 1-20 

[8] A. P. Engelbrecht, "computational Intelligence", John Wiley and 
Sons, 2002  

[9] Pampara, G. ,Franken, N. ,Engelbrecht, A.P. "Combining particle 
swarm optimisation with angle modulation to solve binary 
problems", IEEE Congress on Evolutionary Computation, 2005 pp 
89-96  

[10] Marandi, A., Afshinmanesh, F., Shahabadi, M., Bahrami, F., 
"Boolean Particle Swarm Optimization and Its Application to the 
Design of a Dual-Band Dual-Polarized Planar Antenna", CEC 
2006, pp. 3212-3218 

[11] Franken, N., Engelbrecht, A.P., "Particle swarm optimization 
approaches to coevolve strategies for the iterated prisoner's 
dilemma",IEEE Transactions on Evolutionary Computation, 2005 
pp.562 - 579 

[12]  Chunkai Zhang; Hong Hu, "Using PSO algorithm to evolve an 
optimum input subset for a SVM in time series forecasting", IEEE 
International Conference on Systems, Man and Cybernetics, 2005 
pp. 3793-3796 

 

TABLE I.  THE RESULTS OF BEST GLOBAL BEST OF MINIMIZATION OF SPHERE FUNCTION IN 10 TIMES OF THE RUN OF ALGORITHMS 

Dimension of the input space The Novel PSO algorithm  Binary PSO as in [4] Binary PSO as in [7] 
N = 3 96.8212 10−×  0.0561 0.1545  
N = 5 61.9213 10−×  7.9578  22.8995  
N = 10 0.1121 216.6069  394.7066  

 

TABLE II.  THE  RESULTS OF BEST MEAN OF PERSONAL BESTS FOR MINIMIZATION OF SPHERE FUNCTION IN 10 TIMES OF THE RUN OF ALGORITHMS 

Dimension of the input space The Novel PSO algorithm  Binary PSO as in [4] Binary PSO as in [7] 
N = 3 82.5739 10−×  9.2145  0.1542  
N = 5 45.2909 10−×  171.5407  224.4042  
N = 10 1.9819  1532.9  1718.3  

 

TABLE III.   THE  RESULTS OF BEST GLOBAL BEST OF MINIMIZATION OF ROSENBROCK FUNCTION IN 10 TIMES OF THE RUN OF ALGORITHMS 

Dimension of the input space The Novel PSO algorithm  Binary PSO as in [4] Binary PSO as in [7] 
N = 3 0.0934  0.9384  0.8645  
N = 5 2.2470  1406  3746.5  
N = 10 32.8310  61.3094 10×  61.52321 10×  

 

TABLE IV.   THE  RESULTS OF BEST MEAN OF PERSONAL BESTS FOR MINIMIZATION OF ROSENBROCK FUNCTION IN 10 TIMES OF THE RUN OF 
ALGORITHMS 

Dimension of the input space The Novel algorithm Binary PSO as in [4] Binary PSO as in [7] 
N = 3 0.5164  837.6181  2945.8  
N = 5 2.5162  304210  600530  
N = 10 367.8391 73.6247 10×  75.0179 10×  

 

TABLE V.   THE  RESULTS OF BEST GLOBAL BEST OF MINIMIZATION OF GRIENWANGK FUNCTION IN 10 TIMES OF THE RUN OF ALGORITHMS 

Dimension of the input space The Novel PSO algorithm Binary PSO as in [4] Binary PSO as in [7] 
N = 3 92.0860 10−×  0.003  0.0277  
N = 5 37.4 10−×  0.2113  0.1503  
N = 10 0.0579  0.8282  1.0254  
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TABLE VI.  THE  RESULTS OF BEST MEAN OF PERSONAL BESTS FOR MINIMIZATION OF GRIEWANGK FUNCTION IN 10 TIMES OF THE RUN OF 
ALGORITHMS 

Dimension of the input space The Novel PSO algorithm  Binary PSO as in [4] Binary PSO as in [7] 
N = 3 83.7825 10−×  0.1716  0.2025  
N = 5 0.0125  0.5824  0.6574  
N = 10 0.3009  1.3864  1.4333  

TABLE VII.  THE  RESULTS OF BEST GLOBAL BEST OF MINIMIZATION OF RASTRIGRIN FUNCTION IN 10 TIMES OF THE RUN OF ALGORITHMS 

Dimension of the input space The Novel PSO algorithm  Binary PSO as in [4] Binary PSO as in [7] 
N = 3 61.3533 10−×  2.6693  3.7127  
N = 5 0.0034  25.8756  51.3154  
N = 10 10.3925  490.8208  539.3371  

 

TABLE VIII.  THE  RESULTS OF BEST MEAN OF PERSONAL BESTS FOR MINIMIZATION OF RASTRIGRIN FUNCTION IN 10 TIMES OF THE RUN OF 
ALGORITHMS 

Dimension of the input space The Novel PSO algorithm Binary PSO as in [4] Binary PSO as in [7] 
N = 3 66.5138 10−×  32.0306  46.7851  
N = 5 0.3799  215.5889  268.3968  
N = 10 39.1396  1664.3  1820.2  
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