
Comparison between Genetic Algorithms and Particle
Swarm Optimization

Russell C. Eberhart and Yuhui Shi

Department of Electrical Engineering
Indiana University Purdue University Indianapolis

723 W. Michigan St., SL160
Indianapolis, IN 46202

eberhart,shi@engr.iupui.edu

Abstract
This paper compares two evolutionary computation paradigms: genetic algorithms and particle
swarm optimization. The operators of each paradigm are reviewed, focusing on how each affects
search behavior in the problem space. The goals of the paper are to provide additional insights
into how each paradigm works, and to suggest ways in which performance might be improved
by incorporating features from one paradigm into the other.

Introduction
Four well-known paradigms currently exist in evolutionary computation: genetic
algorithms [5], evolutionary programming [4], evolution strategies [9], and genetic
programming [8]. A new evolutionary computation technique, called particle swarm
optimization (PSO), inspired by social behavior simulation, was originally designed
and developed by Eberhart and Kennedy [2,3,6,7]. In PSO, instead of using more
traditional genetic operators, each particle (individual) adjusts its “flying” according to
its own flying experience and its companions’ flying experience.

This paper compares genetic algorithms and particle swarm optimization. Operators
that are used by each paradigm are reviewed. The focus is on how each operator affects
the paradigm’s behavior in the problem space.

There are, of course, many ways to implement a genetic algorithm (GA). Regardless of
the specific implementation, it is generally agreed that GAs utilize one form or another
of three operators: selection, crossover, and mutation. We will examine
implementations of these operators, and compare them with PSO operators. In this
paper, it can be assumed that, in most cases, a basic, binary version of a GA is being
referred to, such as the “plain vanilla” GA in [2] or the elementary GA 1-1 in [1].

The authors readily concede that few applications use these basic GA configurations,
and a number of modifications to these configurations are also examined. It should be
noted that it is not the goal of this paper to compare GAs and PSO in order to declare
one or the other as somehow better. Rather, the goals are to provide insights into how
GAs and PSO work, and to suggest ways in which performance might be enhanced by
incorporating features from one paradigm into the other.

mailto:eberhart@tech.iupui.edu

Analysis
In PSO, a particle is analogous to a population member (chromosome) in a GA. Like a
GA chromosome, a particle represents a candidate solution to the problem being
addressed. Each particle is treated as a point in the D-dimensional problem space. The
ith particle is represented as XI = (xi1,xi2, … , xiD). The best previous position (the
position giving the best fitness value) of the ith particle is recorded and represented as
PI = (pi1,pi2, … , piD). The index of the best particle among all the particles in the
population is represented by the symbol g. The rate of the position change (velocity)
for particle i is represented as VI = (vi1,vi2, … , viD). The particles are manipulated
according to the following equations:

vid = w * vid + c1 * rand() * (pid – xid) + c2 * Rand() * (pgd –xid) (1)
xid = xid + vid (2)

By adding the inertia weight w into PSO, a new version of PSO is introduced in [10].
The inertia weight w is employed to control the impact of the previous history of
velocities on the current velocity, thereby influencing the trade-off between global
(wide-ranging) and local (fine-grained) exploration abilities of the “flying points.” A
larger inertia weight facilitates global exploration (searching new areas) while a
smaller inertia weight tends to facilitate local exploration to fine-tune the current
search area. Suitable selection of the inertia weight provides a balance between global
and local exploration abilities and thus requires fewer iterations on average to find the
optimum [10]. (In some ways, the name damping weight might be more descriptive,
but the term inertia weight is used in this paper.)

In a GA, each of the three main classes of operations (selection, crossover, and
mutation) can be implemented in a number of ways. PSO does not label its operations
in the same way as GAs, but analogies exist. These analogies depend, of course, on the
implementation of the GA operation. Complicating any comparisons is the fact that the
effects of the various operations often vary over the course of a run. (A run is defined
as the total number of generations of the GA prior to termination. Termination usually
occurs either because a prescribed fitness level has been achieved by at least one
member of the population, or because the maximum number of generations allowed
has been reached.)

Effects of GA crossover, for example, usually vary significantly during a run. At the
beginning, the population members are usually randomized, so that crossover can have
significant effects, moving a chromosome a relatively large distance in problem space.
Toward the end of a run, a population has often converged, meaning that many, if not
most, chromosomes have similar structures. Crossover then usually has less effect, and
the resulting movements are relatively smaller. Adding another layer of complexity is
the fact that the probability of crossover is sometimes varied during a run, often
starting out at with a relatively large probability, and ending with a smaller one.

PSO does not have a crossover operation. However, the concept of crossover is
represented in PSO because each particle is stochastically accelerated toward its own
previous best position, as well as toward the global best position (of the entire

population) or the neighborhood (local) best position, depending on the version of PSO
being used.

The crossover concept is also apparent in the behavior of particles that appear
approximately midway between “swarms” of particles that are clustering around local
best positions, or, occasionally, between successive global best positions. These
particles seem to be exploring (for a short time, anyway) a region that represents the
geometric mean between two promising regions.

Because of the geometric “feel” of what happens in PSO, it may, in fact, be more
analogous to the recombination operator in evolution strategies [9]. The fact that
recombination occurs on a parameter-by-parameter basis (recombination is limited to
parameter boundaries) further supports this analogy.

The effect of mutation during the run of a GA tends to be opposite to that of crossover
in that mutation tends to have less impact near the beginning of a run, and more near
the end. That is because the initial population is randomized, so flipping a bit here and
there near the beginning may not change things as dramatically as flipping bits near the
end of a run, when the population has converged. If the mutation rate is varied during a
run, it is common to use a relatively small value in the beginning, and increase it
toward the end.

It is theoretically possible for a GA chromosome to reach any point in the problem
space via mutation. It is, however, unlikely, particularly near the end of a run. This is
because a number of mutations may be needed to reach a distant point. Since mutation
rates are typically quite low (0.1–1.0 percent is a common range), several generations
of favorable mutations may be needed. Near the end of a run, however, when the
population has converged and the average fitness value is high, mutation will quite
likely result in a low-fitness chromosome that does not survive the selection process. In
fact, the probability of survival decreases geometrically with generations. So even
though a number of mutations would bring the chromosome into a high-fitness region,
the chromosome never gets there because it doesn’t survive selection.

So, even though a GA is theoretically ergodic (there exists a non-zero probability that a
chromosome can occupy any state), it is not ergodic in a practical sense because of the
multiple steps required. An evolutionary programming (EP) system is truly ergodic,
since there is a finite probability that an individual can reach any point in problem
space with one jump (in one generation).

The behavior of PSO systems seems to fall somewhere between GA and EP systems in
this area. It may be that a PSO particle cannot reach any point in problem space in one
iteration, although this might be possible at the beginning of the run, given sufficiently
large Vmax. But since particles survive intact from one iteration to the next, any
particle can eventually go anywhere, given enough iterations. A stronger case can thus
be made for the ergodicity of PSO than for GAs.

Because each particle has a velocity, PSO mutation-like behavior is directional, with a
kind of momentum built in, especially if usebest is activated on the command line. GA

mutation is generally considered to be omnidirectional in that any bit in an individual
can be flipped. (Some GA mutation operators, such as bit position-based mutation, can
affect the directionality.) EP mutation is also omnidirectional, and includes control of
mutation severity on a parameter-by-parameter basis. The difference between pbest
and the present location has some of this same flavor, but the maximum velocity is the
same for all parameters.

The effect of selection in a GA is to support the survival of the fittest, a concept central
to all evolutionary algorithms. GA selection can be implemented in one of a number of
ways, including roulette wheel selection and tournament selection. Regardless of the
selection method used, an elitist strategy is often used, which results in the
chromosome with the highest fitness value always being copied into the next
generation.

PSO does not utilize selection. All particles continue as members of the population for
the duration of the run. A particle’s path determines its ancestry. PSO is the only
evolutionary algorithm that does not incorporate survival of the fittest, which features
the removal of some candidate population members (individuals with lower fitness are
removed with higher probability).

In the case of a GA, crossover occurs between (usually) randomly selected parents.
The evolution of an individual chromosome typically involves exchanging genetic
material with quite a few other randomly-selected individuals. In PSO, a particle does
not explicitly exchange material with other particles, but its trajectory is influenced by
them. A significant difference is that a given particle is influenced only by its own
previous best position and that of the best position in the neighborhood or in the global
population. In the local version of PSO, a particle is influenced only by one of its
topological neighbors. And the topological geometry of the particle swarm remains
constant throughout the run, so influences do not come from “random strangers.”

Recent work with PSO indicates that by properly setting the inertia weight w, the value
of Vmax can be set to the dynamic range of each parameter, and the global maximum
can be found more quickly, on average. Even better performance can be achieved by
reducing the value of w during a run [11]. The inertia weight thus appears to have
characteristics that are reminiscent of the temperature parameter in simulated
annealing. A high value of w at the beginning of the run facilitates global search, while
a small w tends to localize the search. Since this is “work in progress,” it is unknown
how universal this approach will be for other problems.

Discussion
A number of ideas have come out of this comparison of GAs and PSO. In fact, it was
this kind of thinking that led to the development of the inertia weight which is now part
of PSO and is used routinely by the authors.

It is possible to conceive of several ways in which the elitist concept of GAs could be
incorporated into PSO. In one sense, it’s already there, particularly in the global
version of PSO. Also, there is a parameter called use-better (which can be selected at

runtime in PSO) that causes a particle to continue in the direction in which it has been
going if the current fitness is higher that that of the previous iteration. One way to
explicitly implement an elitist strategy would be to carry a “global best” particle
(perhaps with a stochastic velocity) into the next iteration; some particle, perhaps the
one with the lowest fitness, could be eliminated from the population.

Another approach worthy of investigation is the incorporation of a Gaussian
distribution into the stochastic velocity changes in PSO reflecting the way mutation is
done in EP. The variance parameter might then play a role similar to that of the current
inertia weight.

Finally, the assignment of a maximum velocity on a parameter-by-parameter basis is
worthy of consideration. This is analogous to controlling the severity of mutation in
GA or EP.

Conclusions
In this paper, we have analyzed the operators of GAs and PSO. It is hoped that the
reader has gained some insights into how these paradigms work, and how the
performance of one might be improved by incorporating features of the other.

The distinctions between the four main branches of evolutionary computation continue
to blur. New approaches continue to be developed. Emphasis should be placed on new
hybrid implementations. Standard benchmarking functions can be used to make
comparisons, as can practical applications. It is hoped that the understanding of how
these paradigms work will continue to be studied and improved.

References
1. Davis, L., Ed. (1991), Handbook of Genetic Algorithms, New York, NY: Van

Nostrand Reinhold.
2. Eberhart, R. C., Dobbins, R. W., and Simpson, P. K. (1996), Computational

Intelligence PC Tools, Boston: Academic Press.
3. Eberhart, R. C., and Kennedy, J. (1995), A new optimizer using particle swarm

theory, Proc. Sixth International Symposium on Micro Machine and Human
Science (Nagoya, Japan), IEEE Service Center, Piscataway, NJ, 39-43.

4. Fogel, L. J. (1994), Evolutionary programming in perspective: the top-down view,
in Computational Intelligence: Imitating Life, J.M. Zurada, R. J. Marks II, and C.
J. Robinson, Eds., IEEE Press, Piscataway, NJ.

5. Goldberg, D. E. (1989), Genetic Algorithms in Search, Optimization, and Machine
Learning, Reading MA: Addison-Wesley.

6. Kennedy, J., and Eberhart, R. C. (1995), Particle swarm optimization, Proc. IEEE
International Conference on Neural Networks (Perth, Australia), IEEE Service
Center, Piscataway, NJ, IV: 1942-1948.

7. Kennedy, J. (1997), The particle swarm: social adaptation of knowledge, Proc.
IEEE International Conference on Evolutionary Computation (Indianapolis,
Indiana), IEEE Service Center, Piscataway, NJ, 303-308.

8. Koza, J. R. (1992), Genetic Programming: On the Programming of Computers by
Means of Natural Selection, Cambridge, MA: MIT Press.

9. Rechenberg, I. (1994), Evolution strategy, in Computational Intelligence:
Imitating Life, J. M. Zurada, R. J. Marks II, and C. Robinson, Eds., IEEE Press,
Piscataway, NJ.

10. Shi, Y. H., Eberhart, R. C., (1998), A modified particle swarm optimizer, Proc. of
1998 IEEE International Conference on Evolutionary Computation, Anchorage,
AK, in press.

11. Shi, Y. H., Eberhart, R. C., (1998), Parameter selection in particle swarm
optimization, Proc. EP98: The 7th Ann. Conf. on Evolutionary Programming, San
Diego, CA, in press.

