
A Novel Binary Particle Swarm Optimization
Mojtaba Ahmadieh Khanesar, Member, IEEE, Mohammad Teshnehlab and Mahdi Aliyari Shoorehdeli

K. N. Toosi University of Technology
Electrical Engineering Faculty

Control Department
Tehran, Iran

Email: ahmadieh@ieee.org

Abstract— Particle swarm optimization (PSO) as a novel
computational intelligence technique, has succeeded in
many continuous problems. But in discrete or binary
version there are still some difficulties. In this paper a novel
binary PSO is proposed. This algorithm proposes a new
definition for the velocity vector of binary PSO. It will be
shown that this algorithm is a better interpretation of
continuous PSO into discrete PSO than the older versions.
Also a number of benchmark optimization problems are
solved using this concept and quite satisfactory results are
obtained.

Keywords: Binary Particle Swarm Optimization, Discrete
Optimization, Computational Intelligence

I. INTRODUCTION
Particle swarm optimization (PSO) was originally

designed and introduced by Eberhart and Kennedy [1-3]
in 1995. The PSO is a population based search algorithm
based on the simulation of the social behavior of birds,
bees or a school of fishes. This algorithm originally
intends to graphically simulate the graceful and
unpredictable choreography of a bird folk. Each individual
within the swarm is represented by a vector in
multidimensional search space. This vector has also one
assigned vector which determines the next movement of
the particle and is called the velocity vector.

The PSO algorithm also determines how to update the
velocity of a particle. Each particle updates its velocity
based on current velocity and the best position it has
explored so far; and also based on the global best position
explored by swarm [5, 6 and 8].

The PSO process then is iterated a fixed number of
times or until a minimum error based on desired
performance index is achieved. It has been shown that this
simple model can deal with difficult optimization
problems efficiently.

The PSO was originally developed for continuous
valued spaces but many problems are, however, defined
for discrete valued spaces where the domain of the
variables is finite. Classical examples of such problems
are: integer programming, scheduling and routing [5]. In
1997, Kennedy and Eberhart introduced a discrete binary
version of PSO for discrete optimization problems [4]. In
binary PSO, each particle represents its position in binary
values which are 0 or 1. Each particle’s value can then be
changed (or better say mutate) from one to zero or vice
versa. In binary PSO the velocity of a particle defined as
the probability that a particle might change its state to one.
This algorithm will be discussed in more detail in next
sections. Also, the difficulties of binary PSO will be
shown in this paper, and then a novel binary PSO
algorithm will be proposed. In novel binary PSO proposed

here, the velocity of a particle is its probability to change
its state from its previous state to its complement value,
rather than the probability of change to 1. In this new
definition the velocity of particle and also its parameters
has the same role as in continuous version of the PSO.
This algorithm will be discussed. Also simulation results
are presented to support the idea later in this paper.

There are also other versions of binary PSO. In [6]
authors add birth and mortality to the ordinary PSO.
AMPSO is a version of binary PSO, which employs a
trigonometric function as a bit string generator [9].
Boolean algebra can also be used for binary PSO [10].

Binary PSO has been used in many applications like
Iterated Prisoner’s Dilemma [11], choosing optimum input
subset for SVM [12], design of dual-band dual-polarized
planar antenna [10].

This paper is organized as follows: in section II we will
consider continuous PSO algorithm and also binary PSO
algorithms. Then we will introduce its shortcomings. In
section III we will introduce modified PSO and discuss on
the logics behind it. In section IV we will examine the
algorithm on a number of test problems and we will show
that results obtained are quite satisfactory.

II. THE PARTICLE SWARM OPTIMIZATION
A detailed description of PSO algorithm is presented in

[1-3]. Here we will give a short description of the
continuous and binary PSO proposed by Kennedy and
Eberhart.

A. Continuous particle swarm optimization
Assume that our search space is d-dimensional, and the

i-th particle of the swarm can be represented by a d-
dimensional position vector 1 2(, ,...,)i i i idX x x x= . The
velocity of the particle is denoted by

1 2(, ,...,)i i i idV v v v= . Also consider best visited position
for the particle is 1 2(, ,...,)ibest i i idP p p p= and also the
best position explored so far is

1 2(, ,...,)gbest g g gdP p p p= . So the position of the
particle and its velocity is being updated using following
equations:

1 1

2 2

(1) . () (())
(())

i i i i

g i

v t w v t c p x t
c p x t

ϕ
ϕ

+ = + −
+ −

 (1)

(1) () (1)i i ix t x t v t+ = + + (2)

Proceedings of the 15th Mediterranean Conference on
Control & Automation, July 27 - 29, 2007, Athens - Greece

T33-001

Where 1c and 2c are positive constants, and 1ϕ and

2ϕ are two random variables with uniform distribution
between 0 and 1 . In this equation, W is the inertia
weight which shows the effect of previous velocity vector
on the new vector. An upper bound is placed on the
velocity in all dimensions maxV . This limitation prevents
the particle from moving too rapidly from one region in
search space to another. This value is usually initialized as
a function of the range of the problem. For example if the
range of all ijx is [50,50]− then maxV is proportional to
50.

ibestP for each particle is updated in each iteration
when a better position for the particle or for the whole
swarm is obtained. The feature that drives PSO is social
interaction. Individuals (particles) within the swarm learn
from each other, and based on the knowledge obtained
then move to become similar to their “better” previously
obtained position and also to their “better” neighbors.
Individual within a neighborhood communicate with one
other. Based on the communication of a particle within the
swarm different neighborhood topologies are defined. One
of these topologies which is considered here, is the star
topology. In this topology each particle can communicate
with every other individual, forming a fully connected
social network. In this case each particle is attracted
toward the best particle (best problem solution) found by
any member of the entire swarm. Each particle therefore
imitates the overall best particle. So the gbestP is updated
when a new best position within the whole swarm is
found.

The algorithm for the PSO can be summarized as
follows:

1. Initialize the swarm iX , the position of particles
are randomly initialized within the hypercube of
feasible space.

2. Evaluate the performance F of each particle,
using its current position ()iX t .

3. Compare the performance of each individual to its
best performance so far: if (()) ()i ibestF X t F P< :

() (())ibest iF P F X t=

()ibest iP X t=
4. Compare the performance of each particle to the

global best particle: if (()) ()i gbestF X t F P< :

() (())gbest iF P F X t=

()gbest iP X t=

5. Change the velocity of the particle according to
(1).

6. Move each particle to a new position using
equation (2).

7. Go to step 2, and repeat until convergence.

B. Binary particle swarm optimization
Kennedy and Eberhart proposed a discrete binary

version of PSO for binary problems [4]. In their model a
particle will decide on "yes" or " no", "true" or "false",
"include" or "not to include" etc. also this binary values

can be a representation of a real value in binary search
space.

In the binary PSO, the particle’s personal best and
global best is updated as in continuous version. The major
difference between binary PSO with continuous version is
that velocities of the particles are rather defined in terms
of probabilities that a bit will change to one. Using this
definition a velocity must be restricted within the range
[0,1] . So a map is introduced to map all real valued
numbers of velocity to the range [0,1] [4]. The
normalization function used here is a sigmoid function as:

'
()

1() (())
1

ij ij v tij
v t sig v t

e −= =
+

 (3)

Also the equation (1) is used to update the velocity
vector of the particle. And the new position of the particle
is obtained using the equation below:

1 ((1))
(1)

0
ij ij

ij
if r sig v t

x t
otherwise

< ++ = 


 (4)

Where ijr is a uniform random number in the range
[0,1] .

C. Main problems with binary PSO
Here two main problems and concerns about binary

PSO is discussed the first is the parameters of binary PSO
and the second is the problem with memory of binary
PSO.

1) Parameters of the binary PSO
It is not just the interpretation of the velocity and

particle trajectories that changes for the binary PSO. The
meaning and behavior of the velocity clamping and the
inertia weight differ substantially from the real-valued
PSO. In fact, the effects of these parameters are the
opposite of those for the real valued PSO. In fact, the
effects of these parameters are the opposite of those for
the real-valued PSO [5].

In continuous version of PSO large numbers for
maximum velocity of the particle encourage exploration.
But in binary PSO small numbers for maxV promotes
exploration, even if a good solution is found. And if

max 0V = , then the search changes into a pure random
search. Large values for maxV limit exploration. For
example if max 4V = , then max() 0.982sig V = is the
probability of ijx to change to bit 1.

There is also some difficulties with choosing proper
value for inertia weight w . For binary PSO, values of

1w < prevents convergence. For values of 1 1w− < < ,
ijV becomes 0 over time. For which (0) 0.5sig = so for

1w < we have lim (()) 0.5ij
t

sig v t
→∞

= . If 1w > velocity

increases over time and lim (()) 1ij
t

sig v t
→∞

= so all bits

change to 1. If 1w < − then lim (()) 0ij
t

sig v t
→∞

= so the

probability that bits change to bit 0 increases.

Proceedings of the 15th Mediterranean Conference on
Control & Automation, July 27 - 29, 2007, Athens - Greece

T33-001

As discussed in [5] the inertia weight and its effect is a
problem. Also two approaches are suggested there:

First is to remove the momentum term. According to
[5], as the change in particle's position is randomly
influenced by ijr , so the momentum term might not be
needed. This approach is unexplored approach although it
is used in [7], but no comparisons are provided there.

The second approach is to use a random number for w
in the range: (1, 1)− .

In fact inertia weight has some valuable information
about previously found directions found. Removing this
term can't give any improvement to the binary PSO and
the previous direction will be lost in this manner. Also
using a random number for w in the range (1, 1)− or any
range like this can't be a good solution. It is desired that
the algorithm is quite insensible to the values selected for
w . Also using negative values for w makes no sense
because this term provides the effect of previous
directions in the next direction of the particle. Using a
negative value for this parameter is not logical.

2) Memory of the binary PSO
Considering equation (4) the next value for the bit is

quite independent of the current value of that bit and the
value is solely updated using the velocity vector. In
continuous version of PSO the update rule uses current
position of the swarm and the velocity vector just
determines the movement of the particle in the space.

III. THE NOVEL BINARY PARTICLE SWARM
OPTIMIZATION

Here, the ibestP and gbestP of the swarm is updated as
in continuous or binary version. The major difference
between this algorithm and other version of binary PSO is
the interpretation of velocity. Here, as in continuous
version of PSO, velocity of a particle is the rate at which
the particle changes its bit’s value. Two vectors for each
particle are introduced as 0

iV and 1
iV . 0

iV is the
probability of the bits of the particle to change to zero
while 1

iV is the probability that bits of particle change to
one. Since in update equation of these velocities, which
will be introduced later, the inertia term is used, these
velocities are not complement. So the probability of
change in j-th bit of i-th particle is simply defined as
follows:

1

0

, 0

, 1

ij ijc
ij

ij ij

V if x
V

V if x

 == 
=

 (5)

In this way the velocity of particle is simply calculated.
Also the update algorithm for 1

iV and 0
iV is as follows:

consider the best position visited so far for a particle is
ibestP and the global best position for the particle is

gbestP . Also consider that the j-th bit of i-th best particle
is one. So to guide the bit j-th of i-th particle to its best
position, the velocity of change to one (1

iV) for that

particle increases and the velocity of change to zero (0
iV)

is decreases. Using this concept following rules can be
extracted:

1 0
,1 1 1 ,1 1 11j

ij ijibestIf P Then d c r and d c r= = = −

0 1
,1 1 1 ,1 1 10j

ij ijibestIf P Then d c r and d c r= = = −

1 0
,2 2 2 ,2 2 21j

ij ijgbestIf P Then d c r and d c r= = = −

0 1
,2 2 2 ,2 2 20j

ij ijgbestIf P Then d c r and d c r= = = −

Where 1 0,ij ijd d are two temporary values. 1r and 2r are
two random variable in the range of (0,1) which are
updated each iteration. Also 1c , 2c are two fixed
variables which are determined by user. then:

1 1 1 1
,1 ,2ij ij ij ijV w V d d= + + (6)

0 0 0 0
,1 ,2ij ij ij ijV w V d d= + + (7)

Where w is the inertia term. In fact in this algorithm if
the j-th bit in the global best variable is zero or if the j-th
bit in the corresponding personal best variable is zero the
velocity (0

ijV) is increased. And the probability of
changing to one is also decreases with the same rate. In
addition, if the j-th bit in the global best variable is one

1
ijV is increased and 0

ijV decreases. In this approach
previously found direction of change to one or change to
zero for a bit is maintained and used so particles make use
of previously found direction. After updating velocity of
particles, 0

iV and 1
iV , the velocity of change is obtained

as in (5).
A normalization process is also done. Using sigmoid

function as introduced in (3). And then the next particles
state is computed as follows:

'

'

() ,
(1)

() ,

ij ij ij
ij

ij ij ij

x t if r V
x t

x t if r V

 <+ = 
>

 (8)

Where ijx is the 2`s complement of ijx . That is, if

0ijx = then 1ijx = and if 1ijx = then 0ijx = . And

ijr is a uniform random number between 0 and 1.

The meaning of the parameters used in velocity
equation, are exactly like those for the continuous PSO.
The inertia weight used here maintains the previous
direction of bits of particle to the personal best bit or

Proceedings of the 15th Mediterranean Conference on
Control & Automation, July 27 - 29, 2007, Athens - Greece

T33-001

global best bit whether it is 1 or 0. Also the meaning of
velocity is the same as meaning of the velocity in
continuous version of PSO which is the rate of change in
particle's position. Also as in continuous PSO if the
maximum velocity value considered is large, random
search will happen. Small values for maximum velocity
cause the particle to move less. Here also the previous
states of the bits of the particles are taking into account.
Using the equation (7) the previous value of the particle is
taken into account, while in binary PSO just velocity
determined the next value of particle. So, better
performance and better learning from experiments in this
algorithm is achieved. Experimental results in the next
section support these complain.

The algorithm proposed here for the binary PSO can be
summarized as follows:

1. Initialize the swarm iX , the position of particles
are randomly initialized within the hypercube.
Elements of iX are randomly selected from
binary values 0 and 1.

2. Evaluate the performance F of each particle,
using its current position ()iX t .

3. Compare the performance of each individual to its
best performance so far: if (()) ()i ibestF X t F P< :

() (())ibest iF P F X t=

()ibest iP X t=
4. Compare the performance of each particle to the

global best particle: if (()) ()i gbestF X t F P< :

() (())gbest iF P F X t=

()gbest iP X t=

5. Change the velocity of the particle, 0
iV and 1

iV
according to (6,7).

6. Calculate the velocity of change of the bits, c
iV as

in (5).
7. Generate the random variable ijr in the range:

(0,1) . Move each particle to a new position using
equation (8).

8. Go to step 2, and repeat until convergence.

IV. EXPERIMENTAL RESULTS
In this section we will compare the performance of

proposed binary PSO and the binary PSO proposed by
Kennedy and Eberhart in [4] and the binary PSO used in
[7]. In our experiments we investigated methods on the
minimization of test functions set which is proposed in
[4]. The functions used here are: Sphere, Rosenbrock,
Griewangk and Rastrigin which are represented in
equations (9-12) respectively. The global minimum of all
of these functions is zero. The expression of these test
functions are as follows:

2
1

1
()

N
i

i
f x x

=
= ∑ (9)

()1 2 2 2
2 1

1
() 100() (1)

N
i i i

i
f x x x x

−
+

=
= − + −∑ (10)

2
3

1 1

1() cos 1
4000

NN
i

i
i i

x
f x x

i= =
= − +∑ ∏ (11)

()2
4

1
() 10 cos(2) 10

N
i i

i
f x x xπ

=
= − +∑ (12)

These functions have been used by many researchers as
benchmarks for evaluating and comparing different
optimization algorithms. In all of these functions N is the
dimension of our search space. In our experiments the
range of the particles were set to[50,50]− and 20 bits are
used to represent binary values for the real numbers. Also
population size is 100 and the number of iteration
assumed to be 1000. The different values assumed in tests
for N are 3,5,10 , where N is the dimension of solution
space.

As it is shown in Table (1-8), the results are quite
satisfactory and much better than the algorithms proposed
in [4] and [7]. As it was mentioned earlier, the method
proposed here uses the previous direction found
effectively and velocity has the same interpretation as the
continuous PSO, which is the rate of changes. The method
of selecting inertia weight in binary PSO proposed in [4]
is still a problem [5]. But removing the inertia weight is
also undesirable because the previous direction is
completely losses. In fact the previous velocities of a
particle contain some information about the direction to
previous personal best and global bests of the particle and
surely have some valuable information which can help us
faster and better find the solution. But in the proposed
algorithm the effect of previous direction and also the
effect of previous state of the system is completely taken
into account. The results obtained here quite support the
idea.

V. CONCLUSION
In this study a new interpretation for the velocity of

binary PSO was proposed, which is the rate of change in
bits of particles. Also the main difficulty of older version
of binary PSO which is choosing proper value for w is
solved. The previous direction and previous state of each
particle is also taken into account and helped finding good
solutions for problems. This approach tested and returned
quite satisfactory results in number of test problems.

The binary PSO can be used in variety of applications,
especially when the values of the search space are discrete
like decision making, solving lot sizing problem, the
traveling salesman problem, scheduling and routing.

REFERENCES
[1] R. Eberhart, and J. Kennedy, A New Optimizer Using Particles

Swarm Theory, Proc. Sixth International Symposium on Micro
Machine and Human Science (Nagoya, Japan), IEEE Service
Center, Piscataway, NJ, pp. 39-43, 1995.

[2] J. Kennedy, and R. Eberhart, ”Particle Swarm Optimization”,
IEEE International Conference on Neural Networks (Perth,

Proceedings of the 15th Mediterranean Conference on
Control & Automation, July 27 - 29, 2007, Athens - Greece

T33-001

Australia), IEEE Service Center, Piscataway, NJ, IV, pp. 1942-
1948, 1995.

[3] J. Kennedy and R. Eberhart. Swarm Intelligence. Morgan
Kaufmann Publishers, Inc., San Francisco, CA, 2001.

[4] Kennedy, J.; Eberhart, R.C. “A discrete binary version of the
particle swarm algorithm”, IEEE International Conference on
Systems, Man, and Cybernetics, 1997.

[5] A. P. Engelbrecht. Fundamentals of Computational Swarm
Intelligence. Wiley, 2005

[6] J. Sadri, and Ching Y. Suen, "A Genetic Binary Particle Swarm
Optimization Model", IEEE Congress on Evolutionary
Computation, Vancouver, BC, Canada, 2006

[7] M. Fatih Tasgetiren. & Yun-Chia Liang, "A Binary Particle
Swarm Optimization Algorithm for Lot Sizing Problem" ,Journal
of Economic and Social Research 5 (2), pp. 1-20

[8] A. P. Engelbrecht, "computational Intelligence", John Wiley and
Sons, 2002

[9] Pampara, G. ,Franken, N. ,Engelbrecht, A.P. "Combining particle
swarm optimisation with angle modulation to solve binary
problems", IEEE Congress on Evolutionary Computation, 2005 pp
89-96

[10] Marandi, A., Afshinmanesh, F., Shahabadi, M., Bahrami, F.,
"Boolean Particle Swarm Optimization and Its Application to the
Design of a Dual-Band Dual-Polarized Planar Antenna", CEC
2006, pp. 3212-3218

[11] Franken, N., Engelbrecht, A.P., "Particle swarm optimization
approaches to coevolve strategies for the iterated prisoner's
dilemma",IEEE Transactions on Evolutionary Computation, 2005
pp.562 - 579

[12] Chunkai Zhang; Hong Hu, "Using PSO algorithm to evolve an
optimum input subset for a SVM in time series forecasting", IEEE
International Conference on Systems, Man and Cybernetics, 2005
pp. 3793-3796

TABLE I. THE RESULTS OF BEST GLOBAL BEST OF MINIMIZATION OF SPHERE FUNCTION IN 10 TIMES OF THE RUN OF ALGORITHMS

Dimension of the input space The Novel PSO algorithm Binary PSO as in [4] Binary PSO as in [7]
N = 3 96.8212 10−× 0.0561 0.1545
N = 5 61.9213 10−× 7.9578 22.8995
N = 10 0.1121 216.6069 394.7066

TABLE II. THE RESULTS OF BEST MEAN OF PERSONAL BESTS FOR MINIMIZATION OF SPHERE FUNCTION IN 10 TIMES OF THE RUN OF ALGORITHMS

Dimension of the input space The Novel PSO algorithm Binary PSO as in [4] Binary PSO as in [7]
N = 3 82.5739 10−× 9.2145 0.1542
N = 5 45.2909 10−× 171.5407 224.4042
N = 10 1.9819 1532.9 1718.3

TABLE III. THE RESULTS OF BEST GLOBAL BEST OF MINIMIZATION OF ROSENBROCK FUNCTION IN 10 TIMES OF THE RUN OF ALGORITHMS

Dimension of the input space The Novel PSO algorithm Binary PSO as in [4] Binary PSO as in [7]
N = 3 0.0934 0.9384 0.8645
N = 5 2.2470 1406 3746.5
N = 10 32.8310 61.3094 10× 61.52321 10×

TABLE IV. THE RESULTS OF BEST MEAN OF PERSONAL BESTS FOR MINIMIZATION OF ROSENBROCK FUNCTION IN 10 TIMES OF THE RUN OF
ALGORITHMS

Dimension of the input space The Novel algorithm Binary PSO as in [4] Binary PSO as in [7]
N = 3 0.5164 837.6181 2945.8
N = 5 2.5162 304210 600530
N = 10 367.8391 73.6247 10× 75.0179 10×

TABLE V. THE RESULTS OF BEST GLOBAL BEST OF MINIMIZATION OF GRIENWANGK FUNCTION IN 10 TIMES OF THE RUN OF ALGORITHMS

Dimension of the input space The Novel PSO algorithm Binary PSO as in [4] Binary PSO as in [7]
N = 3 92.0860 10−× 0.003 0.0277
N = 5 37.4 10−× 0.2113 0.1503
N = 10 0.0579 0.8282 1.0254

Proceedings of the 15th Mediterranean Conference on
Control & Automation, July 27 - 29, 2007, Athens - Greece

T33-001

TABLE VI. THE RESULTS OF BEST MEAN OF PERSONAL BESTS FOR MINIMIZATION OF GRIEWANGK FUNCTION IN 10 TIMES OF THE RUN OF
ALGORITHMS

Dimension of the input space The Novel PSO algorithm Binary PSO as in [4] Binary PSO as in [7]
N = 3 83.7825 10−× 0.1716 0.2025
N = 5 0.0125 0.5824 0.6574
N = 10 0.3009 1.3864 1.4333

TABLE VII. THE RESULTS OF BEST GLOBAL BEST OF MINIMIZATION OF RASTRIGRIN FUNCTION IN 10 TIMES OF THE RUN OF ALGORITHMS

Dimension of the input space The Novel PSO algorithm Binary PSO as in [4] Binary PSO as in [7]
N = 3 61.3533 10−× 2.6693 3.7127
N = 5 0.0034 25.8756 51.3154
N = 10 10.3925 490.8208 539.3371

TABLE VIII. THE RESULTS OF BEST MEAN OF PERSONAL BESTS FOR MINIMIZATION OF RASTRIGRIN FUNCTION IN 10 TIMES OF THE RUN OF
ALGORITHMS

Dimension of the input space The Novel PSO algorithm Binary PSO as in [4] Binary PSO as in [7]
N = 3 66.5138 10−× 32.0306 46.7851
N = 5 0.3799 215.5889 268.3968
N = 10 39.1396 1664.3 1820.2

Proceedings of the 15th Mediterranean Conference on
Control & Automation, July 27 - 29, 2007, Athens - Greece

T33-001

