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Abstract  

In this paper, chaotic particle swarm optimization (CPSO) is applied to synchronization of modified modeling of the heart in 

presence of parameters uncertainties. Particle swarm optimization is an evolutionary algorithm which is introduced by 

Kennedy and Eberhart. This algorithm is inspired by birds flocking. Optimization algorithms can be applied to control by 

defining an appropriate cost function that guarantees stability of system. In presence of environment noise and parameter 

uncertainty, robustness plays a crucial role in succeed of controller. Since PSO needs only rudimentary information about the 

system, it can be a suitable algorithm for this case. Simulation results confirm that the proposed controller can handle the 

uncertainty and environment noise without any extra information about them. Also, in this paper we show that conductive 

system of the heart can be stimulated to action as a network of elements and these elements show the oscillatory behavior 

then can be modeled as nonlinear oscillators, and provides the mathematical model of the heart rhythm by considering 

different states of Vanderpol nonlinear oscillators.  

   Proposed oscillator model is designed in order to reproduce time series of action potential of natural pacemakers cardiac, 

such as SA or AV nodes. So model of heart is presented by a system of differential equations. Finally, synchronized the 

model is by applying CPSO and proposed appropriate control signal. 

 

Keywords: Chaotic particle swarm optimization, Model of heart, Nonlinear oscillators, Vander pol equations, Action potential, 

Control signal, Synchronization. 

 

 

1. Introduction  

 

Synchronization in chaotic dynamic systems attains a 

great deal of interest among scientists from various fields 

[1–7]. Applications of chaotic systems synchronization 

are very important in nonlinear fields such as secret 

communication and chemical reaction synchronization. 

Several methods have been applied to synchronize 

chaotic systems. A number of methods based on master–

slave pattern have been proposed [5,6]. The 

synchronization of near-identical chaotic systems with 

unknown parameters is investigated by Mu and Pei [8].In 

presence of environmental disturbance, measurement 

noise, or parameter uncertainties the problem becomes 

more challenging. In [9] integral sliding-mode technique 

is applied to design a controller to synchronize the 

behavior of two different chaotic systems, in which some 

random uncertainties with determined bounds are 

considered in the parameters. The method presented in 

that paper is based on minimizing the summation of the 

norm of synchronization error in discrete model of the 

system via CPSO. 

   Normal rhythm can be regular or irregular through time 

and place. Each type of dynamic behaviors related to 

medical systems may be related to the performance of 

both normal physiological and pathological groups.  

   Rhythmic variations in blood pressure, heart pulse and 

other cardiovascular measures, indicate importance of 

understanding the dynamic aspects of cardiovascular 

rhythms. Cardiac conduction system can be considered 

as a network of elements self stimulates, such as: SA 

node (the first pacemaker), AV node and His-Purkinje 

system. Because these elements show oscillation 

behavior, they can be modeled as a nonlinear oscillators. 

   There are different methods for evaluation of cardiac 

function by measuring certain signals. Strip (ECG) 

measures the electrical activity of the heart. Electrical 

signals associated with cardiac function, which 

represents electric current in different regions of the 

heart are recorded waveform [10]. 

   Mathematical modeling of heart rhythm is the goal of 

many research efforts. Since the qualitative features of 

the excitation potential of heart is very close to the 

dynamic behavior of the classical oscillator Vanderpol 

[11], so this oscillator can be considered as starting point 

for this modeling. 

   For modeling, cardiac pacemaker the Vander pol 

oscillator, is offered to be considered as followed 
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Where ,,da  are system parameters, that depends on 

their amounts, the heart dynamics may be chaotic or 

nonchaotic. 

   In this paper, we propose a CPSO based controller to 

synchronize two different chaotic systems, in presence of 

completely unknown parameter uncertainty. To achieve 

acceptable robustness, the parameters of controller 

adapts according to PSO rule to minimize an appropriate 

cost function which guaranteesthe stability of system. 

Since PSO algorithm is not significantly sensitive to the 

dynamics of model, it can handle unknown parameter 

uncertainties by online adapting the controller‟s gains to 

pursue its goal to minimize the cost function. In this 

paper, the robustness of controller is confirmed by 

simulation. As a case study the method presented has 

been applied to a nonlinear oscillators of heart system as 

the master and the slave systems, respectively. 

   In section 2, we describe the chaotic particle swarm 

optimization (CPSO) algorithm and synchronization 

method, In section 3, we present modelling of the heart. 

In section 4, designing proper control signal, Section 5, 

contains implementation of the method and simulation 

and Section 6 is the conclusions. 

2. The chaotic particle swarm optimization 
(CPSO) algorithm and synchronization 
method 

2.1. Particle swarm optimization algorithm 

For non linear system optimisation, this technique 

involves simulating social behaviour among particles 

that fly through a multidimensional search space, where 

each particle represents a single intersection of all search 

dimensions. Particles would evaluate their positions or 

fitness levels with respect to the objective function in 

each of the iterations. In addition, particles in local 

neighbourhoods share memories of their „„best‟‟ 

positions, and then use those memories to adjust their 

own velocities for subsequent positions. In the PSO 

algorithm the ith particle 
iX  is defined as a potential 

solution in D-dimensional space, where  
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Each particle also maintains a memory of its previous 

best position 

),....,,(
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and velocity  
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along each dimension. Following each iteration, the 

particle vector 

 

 nPPPP ,....,, 21  

 

is adjusted with regard to the best fitness in the local 

neighbourhood. This adjustment will be implemented 

using the „„gbest‟‟ and the „„pbest‟‟ factors leading to the 

best fitness for the population. Velocity adjustment along 

each dimension is described by Equation (2), where a 

new position for the particle can be determined [12]: 
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where w  is the inertia weight factor; 1c , 2c are the 

acceleration constants, rand (0,1) and rand (0,1) are 

random numbers; 
gbestix  is the best particle among all 

particles in the population and 
pbestix  is the best historical 

position for particle ix . The constants 1c  and 2c  

represent the weighting of the stochastic acceleration 

terms that pull each particle ix  towards 
gbestix  and 

pbestix  

positions. 

   According to existing literature 1c  and 2c  are often set 

to be 2.05 [13,14]. In order to reduce the number of 

iterations required to reach the optimal solution, a 

suitable selection of inertia weight ( w ) is introduced to 

provide a balance between global and local explorations. 

The inertia weight normally decreases linearly from 0.9 

to 0.4 during the optimization process. The inertia weight 

can be set according to the Eqation (3) [12]. 
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where maxiter  is the maximum number of iterations 

(generations), and iter is the current number of iterations. 

In this study, the population size is considered 250 and 

60max iter . 
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2.2. Chaotic PSO algorithm 

One of the major drawbacks of the PSO algorithm is its 

premature convergence, especially for search spaces with 

several local optima. In order to overcome this problem, 

some researchers proposed to introduce chaotic maps 

with certainty, ergodicity and pseudo-randomness 

property into PSO algorithm so as to improve the global 

convergence [15]. Moreover, in [16] and [17] is stated 

that ( due to the non-repetition of chaos ) chaos-based 

optimization algorithms can carry out overall searches at 

higher speeds than stochastic ergodic searches that 

depend on probabilities. The ways in which the chaos 

entries into PSO algorithms are different but in this study 

we consider the most diffused one: in detail, we assume 

that chaotic maps are adopted to select the numerical 

values for the parameters of the particle‟s velocity (2). 

Different numerical studies have been conducted for 

choosing the better chaotic maps. In order to enrich the 

searching behavior and to avoid being trapped into local 

optimum, A well-known loranz equations is employed 

for the hybrid PSO. The loranz equations is defined as 

follows. 
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Where  
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2.3. Description of the synchronization method 

 
   The synchronization of chaos is process in which two 

or more identical or nonidentical chaotic systems, a 

distinct feature of motion set through a foreign force to 

achieve a set of common behaviors. 

   The most common configuration for synchronous 

systems is considered as two subsystems are coupled, the 

one as slave system and the other as the master system.  

   Purpose of synchronous this is that slave system follow 

dynamics of master system. Chaotic systems, according 

to the type and intensity of the coupling between the two 

systems is established, with different methods are 

synchronous with each other. 

   For clarification, the following relationship between 

slave and master systems, respectively, as we think  

 

),()( tuftu u  

),()( tvftv v  

where 
nRu  ,

nRv  the system state variables uf , 

and vf  are chaotic nonlinear functions. These two 

systems can, by applying an appropriate control signal, 

and the special relationship between their trajectories, be 

synchronous. 

   In this case we have 

 

0))(())((lim 21 


tuDtuD
t

      (5) 

 

   Functions 
1D  and 

2D  determine the optimum 

relationship between state variables systems. In fact, they 

specify the type of synchronization. 

 

3. Modelling of the heart  

3.1.  The heart and the record of its electrical 
activity 

The walls of the heart muscle called myocardium, which 

consists of four cavities, such as: right and left atrium 

(Upper part), and right and left ventricles (lower part). 

Blood returning from the systemic circulation goes into 

the right atrium and then right ventricle, and finally into 

the lungs. After being oxygenated, oxygenated blood 

from the lungs goes to the left atrium and left ventricle 

then blood through the aortic valve goes into the aorta and 

then is pumped in systemic circulation. Sinus node (SA 

node) is located in the right atrium the upper vnakavay. 

SA node cells, are self stimulate pacemaker cells, which 

produce an active potential. Activation of the SA node 

through the atria will release, but can not be spread of the 

wall between the atria and ventricles. Atrio ventricular 

node (AV node) is located at boundary between the atria 

and ventricles. In a normal heart, node AV provides the 

only guidance signals of atrial to ventricular. So, in 

unusual conditions, the ventricles can stimulate only 

through pulses that will be spread among them.  

   There are different methods for the assessment of 

cardiac function is done by measuring certain signals, 

including tape (ECG) is the recording of the waves of 

electrical activity of the heart record by putting electrodes 

on the chest and around the heart. Each of the 

components on tape indicates, the electrical activity of the 

heart cells. Stimulates sinus node cause electrical 

stimulation of the atria and creates a P wave, that is the 

wave of atrial depolarization. After the wave of 

ventricular depolarization, the QRS complex series arise, 

and the subsequent wave creates T wave by ventricular 

repolarization. Sometimes another small wave after wave 

of T is seen that is called U wave. The reason of creation 
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of the wave is repolarization papillary muscles in the 

heart. In distance of this waves There is not appropriate 

electrical activity and electrogram draws a horizontal 

straight line that is called the isoelectric line, Figure 1. 

   In general, signal waves are as follow [18]. 

   Wave P: The first wave was recorded in the ECG, and 

indicates right atrial activation after stimulation of the 

sinus node. Typically lasts between 60 and 90 

milliseconds in the adults, its shape is round and has a 

maximum range between 0.25 and 0.30 volts. 

   Interval PR: From beginning of P wave to beginning 

of the QRS complex and lasts 90 ms. 

   Complex QRS: Is composed of three waves and sum 

of total of three waves is indicated depolarization. The 

first negative wave after P wave is Q. The first positive 

wave after P wave is R, and The first negative wave after 

of R, is called S. Because of all three waves may be not 

seen, the sum of these three waves together is called a 

QRS complex. 

   Interval ST: Starts from the end of QRS complex and 

lasts to the begining of the T wave and is part of process 

of the repolarization. 

   Wave T: Indicates ventricular activation and has a 

circular shape with amplitude is 0.60 volts. 

 

 

 

               Figure 1. ECG description.   

3.2. Mathematical model of the heart  

The idea modeling of the heartbeat system with a 

coupled nonlinear oscillators, first was explained in 1928 

by Vander pol and Vander mark. Cardiac conduction 

system may be assumed as a self stimulate pacemaker 

that is composed of two oscillator subsystems. The first 

subsystem is atrial sinus node (SA) that between other 

oscillators of heart has the highest pulse (60-100 impulse 

per minute). The second subsystem consists of AV node. 

(40-60 impulse per minute). Fluctuation of sinus node 

and atrioventricular node (AV) can be nonlinear modeled 

equations of two coupled oscillator Vander pol. 

   Modeling the interaction between the oscillators heart 

model is considered the following equation[19,20,21], 
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Where pairs  21, xx  and  43, xx , respectively, show SA 

and AV oscillators. Frequency of the SA node is denoted 

by 
1c  and frequency of the AV node, is denoted by 

2c .and 
21, RR  express coupling coefficients between two 

nodes. If 0,0 21 RR   indicates that only oscillator SA 

affects on oscillator AV in a physiological way. The 

condition 
2121 ,0, RRRR  , indicates this fact that 

node AV has little effect on the SA  node. coefficients 
1d  

and 
2d  affects on term of nonlinear equation, and cause 

stability of limit cycle in the phase plate  21, xx  that a 

limit cycle is adapted with the behavior of the heart in a 

physiological way.  

   As was mentioned earlier, first normal cardiac rhythm 

is produced by SA node (Pacemaker normal) and causes 

stimulate the AV node. However, it was observed that 

the two oscillators for producing ECG signals are not 

very accurate. This is because, the signal of first 

oscillator is related to the activation of SA node and right 

atrium, the signal of second oscillator is of only related 

to the left ventricular depolarization. According to this 

hypothesis, it is possible to produce P curve, but complex 

QRS may not be produced, because this distance is 

mainly due to ventricular repolarization. These 

observations makes us incorporate a third oscillator, 

which represents the spread of a pulse through the heart, 

that indicate His-Purkinje complex in a Physiological 

way. 

   In order to create a general model, we assume that all 

oscillators should be coupled asymmetry. In addition, 

external stimulation is entered into the system with 

regard to the oscillator frequency, Figs 2,3.. 

   This developed model can be shown with a set of 

differential equations as follows 
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Where coefficients 
id  and 

ic  expressed in the prevous 

formula and the coupling coefficients of 
ijR  are between 

pair oscillators. Because even small delays may alter the 

dynamics of the system, differential equations 

incorporating time delay can cause drastic changes and 

creation of chaos in the system that described by the 

regular behavior.  

   Accordingly, proposed mathematical model can change 

to consideration of aspects of delay in coupling.terms. 

Thus, the governing equations is changed as following, 

where )( 


 txx ii
 and  , are time delay. 
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4. Designing proper control signal 

4.1. Problem definition  

Consider the following two systems defined by 

)(XfX   

                                                                                  (9) 

UYgY  )(  

 

where )(Xf  and )(Yg  are nonlinear chaotic 

functions in 
nR . Here the first system is considered as 

master (drive) system and the other one as the slave 

(response) system. Let us suppose that the functions 

)(Xf  and )(Yg  are totally different nonlinear 

functions. Our goal is to design a control law for the 

slave system in such a way that both master and slave 

systems are synchronized.This means that the error state 

vector XYe   converges to zero as time converges 

to infinity. 

In problem of synchronization of system explained in 

Equations (6), First system is considered as master 

system and second system as a slave system. However, 

by applying a suitable control signal on it, which has the 

form 
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   A state variables of system slave will converget to state 

variables of system master after a transient time, Fig 6. 

In fact, the second oscillator has to follow the behavior 

of the first oscillator, which has a dominant frequency. 

 

 

Figure 2. curve of 1x , 3x before of synchronization. 
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Figure 3. curve of 2x , 4x  before of synchronization 

 

Figure 4. curve of 1x , 3x before of synchronization in 

presence of noise. 

 

   Since we want the slave system state variables to 

converge to the master system state variables after a 

transient time, the error of synchronization should be 

considered as follow [22,23,24,25]. 
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Therefor have 
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   The purpose of the synchronization is to vanish the 

error, Figs.9,10. Therefore, control signal is calculated as 

follow 
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With placement, have 
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In this case 
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4.2. Adaptive PSO based robust control 

 
First, suppose that there are no parameter uncertainties in 

the system models. In order to solve synchronization 

problem, we can apply the idea of sliding-mode 

controller stated in [26,27]. Let us define the 

synchronization error as   111 ,, eeee  . Also, let us 

define a time-varying surface )(tS in the state-space 
3R  

by the scalar equation ),( tXs . Consider the variable of 

interest as follows [39]: 
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where 1 and 2  are parameters of sliding surface. 

Using the Filippov‟s construction, error dynamics in 

sliding mode can be written as 0s . Solving this 

equation for the control input, we obtain an expression 

for u  as: 
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When there are no parameter uncertainties in the system 

dynamics, control law (22) with sliding surface defined 

in (13) with 0 , can made the system asymptotically 

stable. In presence of uncertainty, control law (22) 

cannot be applied. In [26], a nonlinear term is added to 

overcome uncertainty. When the uncertainty bounds are 

known, it can be proved that the error signal will 

converge to zero [26]. In the control approach we state 

here, determination of uncertainty bounds is not 

necessary. Our method is based on adapting the 

controller parameters denoted by ( 1 , 2 ), in a way that 

minimizes an appropriate cost function. The cost 

function must be determined such that take its global 

minimum when the error of synchronization vanishes. To 

this aim, these parameters are treated as positions of the 

particles in PSO algorithm. So, the PSO algorithm adapts 

the controller in presence of noises and uncertainties 

which may exist in the system. 

 

4.3. Cost function 

As mentioned before, the cost function must be defined 

carefully, because it strongly affects the controller 

performance. We started with the cost function: 
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which T is the simulation time and it is the continuous 

form of the cost function proposed in [28]. But, with this 

cost function, one must run the system several times and 

from exactly the same initial condition which may not be 

appropriate in many practical cases. The position vector 

of the PSO parameters must be updated online while the 

system is running. Before introducing our cost function, 

let us define the following sequence 

 

0, 11  thntt iii                (24) 

 

where h  is a small positive constant and in  denotes a 

non-increasing sequence of natural numbers that finally 

tends to 1, that is 1 ii nn and 1pn  for some p . We 

proposed the cost function as follows 
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where h  is a constant time step size and it  and in  are 

introduced in (24) with additional condition that for 

every i , Tti   where T , where T is the simulation 

time. In fact, the introduced index i  indicates how many 

times the PSO algorithm is updated. In other words, it 

reflects how many times the parameters of controller are 

updated. In addition, updating times in which 

optimization algorithm updates, are defined by it  in 

(24). Therefore, the cost function of PSO defined in (25) 

demonstrates the integral of square of synchronization 

error, in an interval between two sequential updating 

times. The parameter in , which represents the period of 

updating, reduced when the cost function does not 

change for a while. The most crucial part of this 

algorithm is the way that the cost function is defined. 

The cost function must be defined in a way that its 

minimization guarantees the control of the system. As a 

solution, it can be a positive semi definite function of 

synchronization error. We choose the square of the norm 

of error vector. In addition, it must be calculated online 

while the system is running. Therefore, this cost function 

is also a function of time and it may lead to harsh 

changes in control signal and cause chattering in it 

especially in the beginning when the error signal usually 
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changes rapidly. To overcome this problem, we define 

the cost function as the average of square of error vector 

norm in an appropriate interval. This averaging, if the 

time interval of integration does not change 

appropriately, can make the adaptation more reluctant 

and unfortunately, in contrast to beginning time, it can 

have inappropriate effects like chattering when the error 

signals approach zero, especially in presence of time 

varying parameter uncertainties. In other way, this 

averaging fools the PSO algorithm by reporting a smaller 

cost function. To reduce this effect and getting a better 

response, we reduce the length of averaging intervals 

while the system is running. As a summary, the proposed 

cost function has the following properties 

1. It can be calculated online while the system is running. 

2. The cost function calculates the average of square of 

error norm in interval [ it , 1it ]. This can strongly 

prevents from chattering of the response of system. Also, 

it can protect the algorithm from failure near the 

crossover points where the error signal value is small. 

3. As the system tends to converge, the integration 

interval become smaller until it reaches to some 

minimum length. This prevents chattering of response of 

system while its average remains constant near zero. The 

minimum interval length must be considered to allow the 

controller to influence the system behavior. As a result, 

PSO algorithm will be able to analyze the effectiveness 

of controller. 

   So the strategy is to determine the parameters of 

controller such that applying control law (22), minimizes 

the cost function defined in (25). Since the integrand of 

J  defined in (25) is a positive semi-definite function, it 

would be tend to zero in order to minimize the integral 

and it guarantee the stability of system. To minimize the 

cost function, PSO algorithm is applied. The PSO 

parameters update when cost function is calculated while 

the system is running. Therefore, the algorithm updates 

rarely at the beginning of simulation. Although the 

dynamic of control signal defined in (22) is important, 

uncertainties and noises can not perturb the controller 

performance so much. The PSO algorithm tends to 

minimize the cost function defined in (25) and it is not 

depends significantly on the parameters of (22). Thus, 

PSO algorithm can defeat the uncertainty, without any 

additional information about it. 

 

Figure 5. curve of 1x , 3x after of synchronization in 

presence of noise 

 

 
Figure 6. synchronization after applying CPSO 

 

Figure 7. curve of 1x , 3x  before of synchronization in 

presence of certain parameters 
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Figure 8. curve of x1, x3before of synchronization in 

presence of uncertainty parameters . 

5. Implementation of the method and 
Simulation 

 5.1. Implementation of the method 

As mentioned above, the controller consists of a 

Fillippov‟s structure. The parameters of the controller are 

considered as the positions of particle in particle swarm 

optimization algorithm. The adaptive method proposed 

so far can be applied to  

Step 1: The initial positions and velocities of particles 

are determined randomly. In other words, the controller 

launches with randomly defined parameters and 

parameter changes. 

Step 2: The control signal is calculated by Eqation. (22) 

and applied to system while system is running. 

Step 3: The cost function defined in (25) is calculated in 

the time period between the two last subsequent updating 

times for each particle. 

Step 4: When the time reaches the optimization point 

defined by (24), then the best solution of each particle 

(
k

iP ) and the swarm (
k

gX ) are found and saved. 

Otherwise, the algorithm is followed by step 8. 

Step 5: Convergence of algorithm is checked. 

Step 6: The PSO algorithm updates. It means that the 

new positions and velocities of particles are calculated 

by (2). 

Step 7: When the value of cost function does not change, 

the interval of integration in cost function, i.e. the period 

between updating points, is reduced. 

Step 8: Going back to step 2. 

 

5.2. Simulation 

 
In order to verify the performance of the offered control 

algorithm, numerical simulations are performed. The 

equations are solved with Runge–Kutta method of order 

four with maximum step size 0.005. We perform some 

simulations. All parameters are set as stated in sub 

section 4.1. Since in real systems, it is not possible to 

apply an unbounded control law, the control signal is 

assumed to be saturated at u = ±60. 

 

Case study 1: system without uncertainty 

In this case, no uncertainty presents in the system and the 

values of 20pop , 2.221  cc  99.0w  are set 

for the parameters of PSO. where, pop  represents the 

population size of swarm under consideration, 1c  and 

2c  correspond to the cognitive and the social parameters 

respectively. w  is the inertia weight. Simulation results 

are shown in. Figs. 7. These results contain the variation 

of cost function versus time, three error signals and the 

controller output signal. 

 

Case study 2: system with uncertainty 
In this simulation, the parameters of PSO are just the 

same as case 1. But this time the model contains 

parameter uncertainty. In order to show the ability of 

controller, control law (22) is applied to a system which 

its real dynamic follow (10) with following parameters: 

 

)(1.05 11 trR            )(1.05 22 trR   

)(1.03 31 trd              )(1.03 42 trd        (26) 

)(1.05 51 tra               )(1.05 62 tra   

Where )(tri ‟s are normally distributed random 

functions. Simulation results are shown in Fig. 8. These 

results contain the variation of cost function versus time, 

three error signals and the controller output signal. 

 

Case study 3 system with uncertainty and 

measurement noise 

To consider the effect of measurement noise on the 

performance of the controller, a sinusoidal noise with 

random frequency is added to all the states of both 

master and slave systems. The amplitude of noise is set 

equal to 0.02. Simulation results are shown in Fig. 4 and 

Fig. 5. 

 
Figure 9. error of synchronization before of applying CPSO 

alghorithm 
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Figure 10. error of synchronization by applying CPSO 

alghorithm 

6. Conclusion  

An adaptive robust control algorithm was proposed to 

synchronize two different chaotic systems with 

parameter uncertainty in presence of measurement noise. 

The controller was based on Filippov‟s construction and 

its parameters were adapted with PSO algorithm to 

minimize tracking error. The ability to eliminate tracking 

error without any information about uncertainty bounds 

is the advantage of this controller. Besides, this 

controller is robust and it needs only a rough model of 

system and the PSO algorithm can defeat parameter 

uncertainties of the system and the controller endures 

even in presence of measurement noise in both master 

and slave systems. also, we have shown that nonlinear 

oscillators can be used to model the heartbeat activity 

and mathematical modeling of dynamic rhythm was 

provided in different states of single oscillator, two 

oscillator and three oscillators modified. Moreover, by 

applying CPSO algorithm and Synchronization, 

proposed an proper control signal for the model of heart. 

In this model, each oscillator is represented one of the 

heart natural important pacemaker: atrial sinus node 

(node SA ) and atrial ventricular (node AV ) and His-

Purkinje complex. 
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