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CHAPTER 

7 
PASSIVE DEVICES 

An important factor in the success of today's RF integrated circuits has been the ability 
to incorporate nwnerous on-chip passive devices, thus reducing the nwnber of off-chjp 
components. Of course, some integrated passive devices, especially in CMOS technology, 
exhibit a lower quality than their external counterparts. But, as seen throughout thjs book, 
we now routinely use hundreds of such devices in RF transceiver design- an impractical 
paradigm if they were placed off-chip. 

This chapter deals with the analysis and design of integrated inductors, transformers, 
varactors, and constant capacitors. The outline of the chapter is shown below. 

Inductors Inductor Structures 

• Basic Structure • Symmetric Inductors 
• Inductance Equations • Effect of Ground Shield 
• Parasitic Capacitances • Stacked Spirals 
• Loss Mechanisms 
• Inductor Modeling 

Transformers 

• Structures 
• Effect of Coupling 

Capacitance 
• Transformer Modeling 

7.1 GENERAL CONSIDERATIONS 

Varactors 

• PN Junctions 
• MOS Varactors 
• Varactor Modeling 

Whj]e analog integrated circuits commonly employ resistors and capacitors, RF design 
demands additional passive devices, e .g., inductors, transformers, transmission lines, 
and varactors . Why do we insist on integrating these devices on the chip? If the entire 
transceiver requires only one or two inductors, why not utilize bond wires or external 
components? Let us ponder these que-stions carefully. 

Modern RF design needs many inductors. To understand this point, consider the s im· 
pie common-source stage shown in Fig. 7 .I (a). This topology suffers from two serious 
drawbacks: (a) the bandwidth at node X is limited to l/[(RoJiro1)Co], and (b) the vol tage 
headroom trades with the voltage gain, 8ml (Rol lroJ) . CMOS technology scaling tends to 
improve the former but at the cost of the latter. For example, i.n 65-nm technology with a 
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(o) (b) 

Figure 7.1 CS stflge with (u) resisti•·e. und (b) inducti••e foods. 

Figure 7.2 Coupling betweeu bond wires. 

1-V supply, the circuit provides a bandwidth of several gigahertz but a voltage gain in the 
range of 3 to 4. 

Now cons ider the inductive ly-loaded stage depicted in Fig. 7.1 (b). Here, Lo resonates 
with Co. al lowing operation at much higher frequencies (albeit in a narrow band). More­
over, since Lo sustains little de voltage drop, the circui t can comfortably operate wi th low 
supply voltages while providing a reasonable voltage gain (e.g., 10). Owing to these two 
key properties. inductors have become popular in RF transceivers. In facL, the ability to 
imegrate inductors has encouraged RF designers to utilize them almost as extensively as 
other devices such as resistors and capacitors. 

In addition to cost penalties. the use of off-chip devices entails other complications. 
First, the bond wires and package pins connecting the cbip to the outside world may 
experience significant coupling (Fig. 7.2), creating crosstalk between different parts of the 
!rallscei ver. 

Identify two undesirable coupling mechanisms if the LO inductor is placed off-chip. 

Solution: 

As ill ustrated in Fig. 7.3. the bond wire leading to the inductor couples to the LNA input 
bond wire. producing LO emission and large de offsets in the baseband. Additionally, the 
coupling from the PA output bond wire may result in severe LO pulling. 
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Bond 
Wire LNA 

Figure 7.3 Hypothetical trtmscei•·er usiug l/11 off-chip iutluctor. 
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Second, external connections introduce parasitics thlll become significant at higher fre­
quencies. For example, a 1-nH bond wi re inductance considerably alters the behavior o r 
gigahertz circuits. Third, it is difficult to real ize differential operation with external loads 
because of the poor control of the length of bond wi res. 

Despite the benefits of integrated components. a critica l challenge in RF microelec­
tronics has been how to design high-performance circuits with relatively poor passive 
devices. For example, on-chip inductors exhibit a lower quality factor than their off-chip 
countcrparl~, leading to higher "phase noise" in oscillators (Chapter 8). The RF des igner 
must therefore seek new oscillator topo logies that produce a low phase noise even with a 
moderate inductor Q. 

M odeling Issues Unlike integrated resistors and para llel -plate capacitors. which can be 
characterized by a few s imple parameters, inductors and some other structures are much 
more difficult to model. In fact, the requi red model ing effort proves a high barrier to entry 
into RF design: one cannot add an inductor to a circuit without an accurate model, and 
the model heavily depends on the geometry, the layout, and the technology's metal layers 
(which is tbe thickest). 

It is for these considerations that we devote this chapter to the analysis and design of 
passive devices. 

7 .2 INDUCTORS 

7 .2.1 Basic Structure 

Integrated inductors are typically realized as metal spirals (Fig. 7.4). Owing to the mutual 
coupling between every two turns, spi rals exhibit a higher inductance than a straight line 
having the same length. To minimize the series resistance and the pamsitic capacitance, the 
spiral is implemented in the top metal layer (which is the thickest). 
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Figure 7.4 Simple spiral i11duc101: 

Example 7.2 

For the three-turn spiral shown in Fig. 7.4, determine the overall inductance. 

Solution: 

We identify the three turns as AB, BC, and CD, denoting their individual inductances by 
L, , L2, and L3, respectively. Also, we represent the mutual inductance between L, and L2 
by M 12. etc. Thus, the total inductance is given by 

(7. 1) 

Equation (7 . 1) suggests that the total inductance rises in proportion to the square of 
the number of turns. In fact, we prove in Problem 7 .I that the inductance expression for an 
N-turn snucture contains N(N + 1)/ 2 tenus . However, two factors limit the growth rate as a 
function of N: (a) due to the geomet1y's planar nature, the inner turns are smaller and hence 
exhibit lower i.nductances, and (b) the mutual coupling factor is only about 0.7 for adjacent 
turns, falling further for non-adjacent turns. For example, in Eq. (7.1 ), L3 is qu ite smaller 
than L1, and M 13 quite smaller than M 12 · We elaborate on these points in Example 7.4. 

A two-dimensional square spiral is fully specified by four quantities (Fig. 7 .5): the 
outer dimension, D0111 , the line width, W, the line spacing, S, and the number of turns, N.1 

L .. .. r.=_ .. =.. ==;] 
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. : 

l...;':..f·--~~-....11· · · . .. .. . __ ,,__ u 
s 

Figure 7.5 Various dimensions of a spiral inducto~: 

1. One ~nay use the inner openjng dimension. Diu· rather chao Doul or N. 
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The inductance primarily depends on the number of turns and the d iameter of each turn, 
but the line width and spacing indirectly affect these two parameters. 

T he line width of a spiral is doubled to reduce its resistance; D0w, S, and N remain constant. 
How does the inductance change? 

Solution: 

As illustrated in Fig. 7 .6, the doubl ing of the width inevi tably decreases the diameter of the 
inner turns, thus lowering their inductance, and the larger spacing between the legs reduces 
thei r mutual coupling. We note that further increase in W may also lead to fewer turns, 
reducing the inductance. 

'--

f-. 

Figure 7.6 Ejj'ecr of doubli11g line width of a spiral. 

Compared with transistors and resistors, inductors typically bave much greater dimen­
sions ("foot prints"), resulting in a large chip area and long interconnects traveling from 
one block to another. It is therefore desirable to minimize the outer dimensions of induc­
tors. For a given inductance, this can be accomplished by (a) decreasing W [Fig. 7.7(a)], 
or (b) increasing N [Fig. 7.7(b)]. In the former case, the line resistance rises, degrading the 
inductor quality. In the latter case, the mutual coupling between the sides of the innermost 
turns reduces the inductance because opposite sides carry currents in opposite directions. 
As shown in Fig. 7 .7(b) , the two opposite legs of the innermost tum produce opposing 
magnetic fields, partially cancelling each other's inductance. 

Figure 7 .8 plots the magnetic coupling factor between two straight metal lines as a function 
of their normalized spacing, SfW. Obtained from electromagnetic field simulations, the 
plots correspond to two cases: each line is 20 j.Llll or I 00 j.Lm long. (The line width is 4j.Lm.) 
What inner diameter do these plots prescribe for spiral inductors? 

(Ccmtinues) 
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Figure 7.7 Ejfecr of (a) reducing the outer dimension 'md the line widrh. or (b) reducing rhe ourer 
dimension and increasing rhe number of tums. 
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Figure 7.8 Coupling factor between nvo straight lines as a function of rheir normalized spacing. 

Solution: 

We wish to min imize the coupling between the opposite sides of the innermost turn. Re l­
evant to typical inductor designs is the plot for a line length of 20 ~m, suggesting that a 
diameter of 5 to 6 times W should be chosen for the inner opening to ensure negligible 
coupling. It is helpful to remember this rule of thumb. 

Even for the ba~ic inductor structure of Fig. 7 .5, we must answer a number of ques­
tions: (I) How are the inductance, the quality factor, and the parasitic capacitance of the 
structure calculated? (2) What trade-offs do we face in the choice of these values? (3) What 
technology and inductor parameters affect the quality factor? These questions are answered 
in the context of inductor modeling in Section 7 .2.6. 
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7 .2.2 Inductor Geometries 

Our qualitative study of the square spiral inductors reveals some degrees of freedom in the 
design, particularly the number of turns and the outer dimension. But there are many other 
inductor geometries tbat funher add to the design space. 

Figure 7.9 shows a collection of inductor structures encountered in RF IC design. We 
investigate the properties of these topologies later in th is chapter, but the reader can ;bserve 
at this point that: (I) the structures in Figs. 7.9(a) and (b) depart from the square shape, 
(2) the spiral in Fig. 7.9(c) is symmetric, (3) the "stacked" geometry in Fig. 7.9(d) employs 
two or more spirals in series, (4) the topology in Fig. 7.9(e) incorporates a grounded 
"shield" under the inductor, and (5) the strucrure in Fig. 7.9(t) places two or more spi­
rals in paral/eU Of course, many of these concepts can be combined, e.g., the parallel 
topology of Fig. 7 .9(f) can also utilize synunetric spirals and a grounded shield. 

(d) 

(a) 

Broken 
S hield 

(b) (c) 

(e) 

Figure 7.9 Various inductor structures: (a) circul(ll; (b) octagonal, (c) symmetric, (d) stacked, 
(e) with grounded shield, (f) parallel spirals. 

Why are there so many different inductor strucrures? These topologies have resulted 
from the vast effort expended on improving the trade-offs in inductor design, specifically 
those between the quality factor and the capacitance or between the inductance and the 
dimensions. 

While providing additional degrees of freedom, the abundance of the inductor geome­
tries also complicates the modeling task, especially if laboratory measurements are 
necessary to fine-tune the theoretical models. How many type.s of inductors and how many 
different values must be studied? Which structures are more promising for a given circuit 
application? Facing practical time limits, des igners often select only a few geometries and 
optimize them for their circui t and frequency of interesr. 

2. The spirals are shorted to one another by vias, although the vias are not necessary. 
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7 .2.3 Inductance Equations 

W.ith numerous inducto.rs used in a typical transceiver, it is desirable to have closed-form 
equations that provide the inductance value in terms of the spiral's geometric properties. 
Indeed, various inductance expressions have been reported in the literature (1 - 3], some 
based on curve fitting and some based on physical properties of inductors. For example, 
an empirical formula that has less than I 0% error for inductors in the range of 5 to 50 nH 
is given in [1 ] and can be reduced to tbe fol lowing form for a square spiral: 

AS/3 
L"" 1.3 X l0- 7 111 

, 
A 1/6wJ.75(W + S)0.25 

WI 

(7.2) 

where A111 is the metal area (the shaded area in Fig. 7.5) and A101 is the total inductor area 
(::::< DL in Fig. 7.5). All units are metric. 

Example 7.5 

Calculate the inductor metal area in tenns of the other geometric properties. 

Solution: 

Consider the structure shown in Fig. 7 .I 0. We say this spiral has three turns because each 
of the four sides contains three complete legs. To determine the metal area, we compute the 
total length, 1101 • of the wire and multiply it by W. The length from A to B is equal to Dow, 
from B to C, equal to D0111 - W, etc. That is, 

lAB = Doul 

Inc = leo = Duut - W 

lve = ieF = Dow - (2W + S) 

lpc = lcH = D0111- (3W + 2S) 

/HI = i/J = D0111 - (4W + 3S) 

IJK = IKL = Dout - (5W + 4S) 

luw = Dout - (6W + 5S). 

Adding these lengths and generalizing the result for N turns, we have 

lw, = 4ND0.,- 2Wfl + 2 + · · · + (2N - 1)] - 2NW 

- 2Sil + 2 + .. · + (2N- 2)]- (2N- l )S 

= 4NDout- 4N2 W - (2N- l )2S. 

(7.3) 

(7.4) 

(7.5) 

(7.6) 

(7.7) 

(7.8) 

(7.9) 

(7.10) 

(7 .11) 

Since /101 » S, we can add oneS to the right-hand side so as to simplify the expression: 

1,0, ::::< 4N[D0 11, - W - (N - J) ( W + S)]. (7.12) 
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Example 7.5 (Continued) 

The metal area is thus given by 

- . 2 2 2· Am - W I4NDout- 4N W- ( N- I ) 5 1 

"'4NW[Dout - W - (N - J)(W + S)]. 

This equation is a lso used for calculating the area capaci tance of the spiral. 
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+ 
Figure 7.10 Spiral inductor for calculation of line length. 
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(7 .13) 

(7 .J 4) 

An interes ting property of inductors is that, for a given wire length, width , and spacing, 
their inductance is a weak function of the number of turns. This can be seen by finding D0111 

from (7.12), noting tbat A101 "" D~., and manipulating (7.2) as follows : 

f:/3 
L "" 1.3 X 10- 7 IOI tr . 

[
I J ·' ;~ + W + (N- l )(W + S) wo.os3(W + S)0 25 

(7 .15) 

We observe that N appears only witbin the square brackets in tbe denominator, in two terms 
varying in opposite directions, with the result raised to the power of I / 3. For example, 
if /101 = 2000 J.Lm, W = 4 J,Lm, and S = 0.5 11--m, then as N varies from 2 to 3 to 4 to 5, 
then inductance rises from 3.96 nH to 4.47 nH to 4.83 nH to 4.96 nH, respectively. In other 
words, a given length of wire yields roughly a constant inductance regardless of bow it .is 
"wound."3 The key point here is that, since this length has a given series resistance (at low 
frequencies), the choice of N only mi ldly affects the Q (but can save area) . 

Figure 7.11 p lots the inductance predicted by the simulator ASITIC (described below) 
as N varies from 2 to 6 and the total wi1·e le ngth remains at 2000 J.Lm.4 We observe that L 
becomes relatively constant for N > 3. Also, the values produced by ASITIC are lower 
than those given by Eq. (7.15). 

3. But the number of turns must be at least 2 to create mutual couplj ng. 
4. The outer d imension varies from 260 ~-tm to I I 0 ~-tm in this experiment. 
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Figure 1 .II flulucumce as tl fimction of the rmmber of rums for a gil'lm line length. 

A number of other expressions have been proposed for the inductance of spirals. For 
example, 

L = J.1.0N
2 
~'"'Ra t (In~ + a3p + a4p 2). (7.16) 

where D"''l! = (D0111 + D;,) /2 in Fig. 7.5 and p is the "fill factor" and equal to (Dow -
D;,)/(D0 111 + D;,) 131. The a coeff'icients are chosen as follows [3]: 

a 1 = 1.27, a 2 = 2.07. CXJ = 0.18, a4 = 0.13forsquareshape 

a 1 = 1.07, a2 = 2.29, a3 = 0 , 014 = 0.19 for octagonal shape. 

Another empirical expression is given by 13 1 

(7.17) 

(7.18) 

L = I 62 X IO-JD - 1.21w -o.I47D2.4NJ78s-o.oJforsquareshape (7.19) 
• QU( (JVg 

L = 1 33 X 10-JD - 1·21 w- 0·163D2·43N175S-0·049 for octaaonal shape. (7.20) · out <Jvg ,:) 

Accuracy Considerations The above inductance equations yield different levels of accu­
racy for different geometries. For example, the measurements on tens of inductors in 131 
reveal that Eqs. (7. 19) and (7.20) incur an error of about 8% for 20% of the inductors 
and an error of about 4% for 50% of the inductors. We must then ask: how much error 
is tolerable in inductance calculations? As observed throughout this book and exempli­
fied by Fig. 7. I (b). inductors must typically resonate with their surrounding capacitances 
at the desired frequency. Since a small error of !!.L/ L shifts the resonance frequency, wo. 
by approximately 6L/(2L) (why?), we must determine the tolerable error in W(). 

The resonance frequency error becomes critical in amplifiers and oscillators, but much 
more so in the latter. This is because, as seen abundantly in Chapter 8, the design of L.C 
oscillators faces tight tradc-offs between the "tuning range" and other parameters. Since 
the tuning r.mge must encompass the error in W(), a large error dictates a wider tuning 
range, thereby degrading other aspects of the oscillator's performance. In pract ice, the tun­
ing range of high-performance L.C oscillators rarely exceeds ±I 0%, requiring that both 
capacitance and inductance errors be only a small fraction of this value, e.g., a few per­
cent. Thus, the foregoing inductance expressions may not provide sufficient accuracy for 
oscillator design. 
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Another issue with respect to inductance equations stems from the geometry limitations 
that they impose. Among the topo logies shown in Fig. 7.9, only a few lend themselves 
to the above formulations. For example. the subtle dill'erences between the structures in 
Figs. 7 .9(b) and (c) ortbe parallel combination of the spirals in Fig. 7.9(1) may yield several 
percent of error in inductance predictions. 

Another difficulty is that the inductance value also depends on the frequency of 
operation-albeit weakly-while most equations reported in the literature predict the 
low-frequency value. We elaborate on this dependence in Section 7 .2.6. 

Field Simula tions With the foregoing sources of error in mind. how do we compute 
the inductance in practice? We may~ begin with the above approximate equations for stan­
dard structures, but must eventually reson to electromagnetic field simulations for standard 
or nonstandard geometries. A field simulator employs finite-element analysis to solve the 
steady-state field equations and compute the electrical propenies of the structure at a given 
frequency. 

A public-domain field simulator developed for analysis of inductors and transformers 
is called "Analysis and Simulation of Spiral Inductors and Transformers" (ASITIC) [4]. 
The tool can analyze a given structure and report. its equivalent circuit components. While 
simple and efficient, ASITIC a.lso appears to exhibit inaccuracies similar to those of the 
above equations [3, 5].5 

Following rough estimates provided by fornllllas and/or ASITIC, we must analyze the 
structure in a more versatile field s imulator. Examples inc lude Agilent's "ADS," Sonnet 
Software's "Sonnet," and Ansoft's "HFSS." Interestingly, these tools yield s lightly different 
values, partly due to the types of approximations that they make. For example, some do 
not accurately account for the thickness of the memllayers. Owing to these discrepancies, 
RF circuits sometimes do not exactly hit the targeted frequencies after the first fabrication, 
requiring s light adjustments and "silicon iterations." As a remedy, we can limit our usage 
to a library of inductors that have been measured and modeled carefully but at the cost of 
flexibility in design and layout. 

7 .2 .4 Parasitic Capacitances 

As a planar structure built upon a substrate. spiral inductors suffer from parasitic capac­
itances. We identify two types. ( I) The metal line forming the inductor exhibit~ parallel­
plate and fringe capacitances to the substrate fFig. 7.12(a)l. If a wider line is chosen to 
reduce its resistance. then tbe parallel-plate component increases. (2) The adjacent turns 
also bear a fringe capacitance. which equivalently appears in parallel with each segment 
!Fig. 7. 12(b)). 

Let us first examine the effect of the capacitance to the substrate. Since in most cir­
cui ts, one terminal of the inductor is at ac ground. we construct the uniformly-distributed 
equivalent circuit shown in Fig. 7.13, where each segment has an inductance of L, . Our 
objective is to obtain a /wnped model for this network. To simplify the analysis. we make 
two assumptions: ( I) each two inductor scgmcnLs have a mutua l coupl ing of M. and (2) 

5. In foct, Eqs. (7. 19) and (7.20) have been developed based on AS ITIC simuta1ions. 
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(a) 

Fringe f Capacitance 

I 
Parallel-Plate 

= Capacitance 

(b) 

Figure 7.12 (a) Bollom-p/ate and (b) interwinding capacitances of an inductor and their models. 

Figure 7.13 Model of an inductor's distributed wpacitcmce to ground. 

the coupling is strong e nough that M can be assumed approximately equal to L11 • While not 
quite valid, the-se assumptions lead to a relatively accurate result. 

The voltage across each i.nductor segment arises from the current flowing through that 
segment and the currents flowing through the other segments. That is, 

u- 1 K 

V, = jwL111, + L_ jwl,.M + L jt.af ,.M. (7.21) 

m= l 

If M "'=' L", then 
K 

V, = jw L lmLm. (7.22) 
m= l 

Since this sunm1ation is independent of n, we note that all inductor segments sustain equal 
voltages [6]. T he voltage at node n is therefore given by (n/ K) V1, yielding an e lectric 
energy stored in the corresponding node capacitance equal to 

I ( n )2 , 
Eu = IC" K Vj . (7.23) 

Summing the e nergies stored on all of the unit capacitances, we have 

K 

1 " ( n )2 2 Ewt = - Cu L..- - V1 2 K 
n= J 

(7.24) 

I (K + 1)(2K + I) , - c v--2" 6K J· 
(7 .25) 

Sec. 7.2. lnducwrs 441 

If K ~ oo and C, ~ 0 such that KC, is equal to the total wire capacitance, C101 , then [6] 

I Cwt , 
Etot = 23Vj, (7.26) 

revealing that the equ ivalent lumped capacitance of the spiral is given by Cwtf3 (if one end 
is grounded). 

Let us now study the turn-to-turn (imerwinding) capacitance. Using the model shown 
in Fig. 7 .14, where C 1 = C2 = · · · = CK = Cp, we recognize that Eq. (7.22) still applies 
for it is independent of capacitances. Thus, each capacitor sustains a voltage equal to V1 j K , 
storing an electric energy of 

E, = ~cF Gv,r 
T he total stored energy is given by 

Ewt = KEu 

l ? 
= - CpVj. 

2K 

(7.27) 

(7 .28) 

(7.29) 

Interestingly, E101 falls to zero asK -l> oo and Cp -l> 0. This is because, for a large number 
of turns, the potential difference between adjacent turns becomes very small , yielding a 
small electric energy s tored on the Cp's. 

L, L2 3 Ln Ln.1 LK-1 LK 

v 1 

c1 c. Cn-1 c. Cn+1 CK-1 CK = 

Figure 7.14 Model of em inductor's lllm·to·turn capaciumces. 

In practice, we can util ize Eq. (7.29) to estimate the equi valent lumped capacitance for 
a finite number of turns. The following example illustrates this point. 

Estimate the equivalent turn-to-turn capaci tance of the three-turn spiral shown in 
Fig. 7 .15(a). 

Solution: 

An accurate calculation would " unwind" the structure, modeling each leg of each turn by 
an inductance and placing the capacitances between adjacen t legs [Fig. 7.15(b)]. Unfortu­
nately, owing to the unequal lengths of the legs, th is model entails unequal inductances and 
capacitances, making the analysis difficul t. To arrive at a uniformly-dislribuled model, we 
select the value of Cj equal to the average of Ct , ... , Cg, and Lj equal to the total inductance 

(Ccmtinues) 
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Example 7.8 (Cominued) 

Solution: 

From Eq. (7 .36), we have 

= R~L,(l- L,C1w2) 

R~(l- LtCtw2)2 + Lfw2 · 
(7.39) 

This expression simplifies to L 1 at frequencies well below fsR but falls to zero at reso­
nance! The actual inductance, however, varies only sl ightly with frequency. This defin ition 
of inductance is therefore meaningless. Nonetheless, it~ value at low frequencies proves 
helpful in estimating the inductance. 

7 .2.5 Loss Mechanisms 

The quality factor, Q, of inductors plays a critical role in various RF cixcuits. For example, 
the phase noise of osci llators is proportional to I 1 Q2 (Chapter 8), and the voltage gain of 
" tuned amplifiers" [e.g., the CS stage in Fig. 7.1(b)] is proportional to Q. In typical CMOS 
technologies and for frequencies up to 5 GHz, a Q of 5 is considered moderate and a Q 
of 10, relatively high. 

We define the Q carefully in Section 7 .2.6, but for now we consider Q as a measure 
of how much energy is los! in an inductor when it carries a sinusoidal curren t. Since only 
resistive components dissipate energy, the loss mechanisms of inductors relate to various 
re-sistances within or around the structure that carry current when the inductor does. 

ln this section, we study these loss mechanisms. As we wilJ see, it is difficult to 
formulate the losses analytically; we must therefore resort to s imulations and even mea­
surements to construct accurate inductor models. Nonetheless, our understanding of the 
loss mechanisms helps us develop guidelines for inductor modeling and design. 

Metal Resistance Suppose the metal line formi ng an inductor exhibits a series resistance, 
Rs (Fig. 7 .17). The Q may be defined a~ the ratio of the desirable impedance, L 1 wo. and the 
undesirable impedance, Rs: 

Q = LtWO 
Rs 

(7.40) 

For example, a 5-nH inductor operating at 5 GHz with an Rs of 15.7 Q has a Q of 10. 

Figure 7.17 MeTal resisTance in a spiral iruluuor. 
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Assuming a sheet resistance of 22 mQ/0 for the metal, W = 4 ~m, and S = 0.51l.m, 
determine if the above set of values is feasible. 

Solution: 

Recall from our estimates in Section 7.2.3, a 2000-llm long, 4-~m wide wire that is wound 
into N = 5 turns with S = 0.5 ~m provides an inductance of about 4.96 nH. Such a wire 
consist~ of 2000/ 4 = 500 squares and hence has a resistance of 500 X 22 mQ/0 = 11 Q. 
It thus appears that a Q of I 0 at 5 GHz is feas ible. 

Unfortunately, the above example portrays an optimistic picture: the Q is limhed not 
only by the (low-frequency) series resistance but also by several other mechanisms. That is, 
the overall Q may fall quite short of 10. As a rule of thumb, we strive to design induc­
tors such that the low-frequency metal resistance yields a Q about twice the desired value, 
anticipating that other mechanisms drop the Q by a factor of 2. 

How do we reduce the metal de resistance for a given inductance? As explained in 
Section 7 .2.3, the total length of the metal wire and the inductance are inextricably related, 
i.e., for a given W, S, and wire length, the inductance is a weak function of N . Thus, wi th W 
and S known, a desired inductance value translates to a certain length and hence a certain 
de resistance almost regardless of the choice of N. Figure 7.18 plots the wixe resistance of 
a 5-nH inductor with N = 2 to 6, W = 4t1m, and S = 0.5 ~m. In a manner s imilar to the 
flattening effect in Fig. 7 .II , Rs falls to a relatively constant value for N > 3. 

16 
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14 
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Figure 7.18 Metal resistance of an inductor as aftmction of number of tums. 

From the above discussions, we conclude that the only parameter among D0 ,11 , S, N, and 
W that significantly affects the resistance is W. Of course, a wider metal line exhibi ts less 
resistance but a larger capacitance to the substrate. Spiral inductors therefore suffer from 
a trade-off between their Q and their parasitic capacitance. Tb.e c ixcuit design limitations 
imposed by this capaci tance are examined in Chapters 5 and 8. 

As explained in Example 7.3, a wider metal line yields a smaller inductance value 
if S, Dour. and N remain constant. ln other words, to retain the same inductance whi le 
W increase-s, we must inevitably increase Dour (or N), thereby increasing the length and 
counteracting the resistance reduction afforded by a wider I i.ne. To illustrate tb.is effect, 
we can design spirals having a g iven inductance but di fferent line widths and examine the 
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Figure 7.19 Metal resistance of an inductor as a function of line width for dijferemnumber of turns. 

resistance. Figure 7.19 p lots Rs a~ a function of W for an inductance of 2 nH and with four 
or five turns. We observe that Rs falls considerably as W goes from 311-m to about 5 11-m but 
begins to flatten thereafter. In other words, choosing W > S11m in this example negligibly 
reduces the resistance but increases the parasitic capacitance proportionalJ y. 

In summary, for a given inductance value, the choice of N has little effect on Rs, and a 
larger W reduces Rs to some extent but at the cost of higher capaci tance. These limitations 
manifest themselves particularly at lower frequencies, as shown by the following example. 

We wish to design a spiral inductor for a 900-MHz GSM system. Is the 5-nH structure 
considered in Example 7.9 suited to this application? What other choices do we have? 

Solution: 

Since Q = L 1 wo/ Rs, if the frequency falls from 5 GHz to 900 MHz, the Q declines from 
10 to l.S.6 Thus, a value of 5 nH is inadequate for usage at 900 MHz. 

Let us attempt to raise the inductance, hoping that, in Q = L, wof Rs, L, can increase 

at a higher rate than can Rs. Indeed, we observe from Eq. (7.15) that L, <X 1~/r\ whereas 
Rs <X 1101 • For example, if lw = S mm, N = 10, W = 611m, and S = 0.511111, then Eq. (7 .15) 
yields L "'=' 35 nH. For a sheet resistance of 22 mn;o . Rs = (SOOO IJ.m/6 11m) X 
22 mn;o = 29.3 n. Thus, the Q (due to the de res istance) reaches 6.75 at 900 MHz. 
Note, however, that this structure occupies a large area. The reader can readily show that 
the outer dimension of this spiral is approximately equal to 265 11m. 

Another approach to reducing the wire resistance is to place two or more metal layers 
in parallel, as suggested by Fig. 7 .9(1). For example, adding a metal-7 and a metal-S spiral 
to a metal-9 structure lowers the resistance by about a factor of 2 because metals 7 and S are 

6. Nore rhar rhe actual Q may be even lower due ro orher losses. 
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typically half as thick as metal 9. However, the closer proximity of metal 7 to the substrate 
slightly raises the parasitic capacitance. 

A student reasons that p lacing m spiral inductors in parallel may in fact degrade the Q 
because it leads to an m-fold decrease in the inductance but not an m-fold decrease in 
resistance. Explain the flaw in the student's argumen t. 

Solution: 

Since the vertical spacing between the spirals is much less than their lateral dimensions, 
each two experience a strong mutual coupl ing (Fig. 7.20). If L1 = lJ). = L3 =Land M "'=' L, 
then the overall inductance remains equal to L (why?). 

M 

Figure 7.20 Effect of placing tightlv-coupled inductors in pam/lei. 

Which approach provides a more favorable resistance-capacitance trade-off: widening 
the metal line of a s ingle layer or placing multiple layers in parallel? We surmise the latter; 
after all, if W is doubled, the capacitance of a single spiral increases by at least a factor 
of 2, but if metal-? and metal-S structures are placed in parallel with a metal-9 spiral , 
the capacitance may rise by only 50%. For example, the metal-9-substrate and metal-7-
substrate capacitances are around 4 af111m2 and 6 af/11m2, respectively. The following 
example demonstrates this point. 

Example 7.12 

Design the inductor of Example 7.10 wi th W =311m, S = 0.51-lm, and N = 10, using 
metals 7. S, and 9 in parallel. 

Solution: 

Since W is reduced from 611m to 311m, the tem1 (W + S)0·25 in the denominator of 
Eq. (7.15) falls by a factor of 1.17, requiring a similar drop in f;j/ in the numerator so as to 
obtain L "'=' 35 nH. Iteration yields /101 "'=' 6800 11m. The length and the outer d imension arc 
smaller because the narrower metal line allows a tighter compaction of the turns. With three 
metal layers in parallel, we assume a sheet resistance of approximately II mn;o, obtain­
ing Rs = 25 n and hence a Q of 7.9 (due to the de resistance). The parallel combination 
therefore yields a higher Q. 

( Ccmlinues) 
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It is instructive to compare the capacitances of the metal-9 spiral in Exam­
ple 7.10 and the above multi-layer structure. For the former, the total metal area is 
/101 • W = 48, 000 f.l,m2 , yielding a capacitance of (4 afjf.l,m2 ) X 48, 000 f.l,m2 = 192 tF? 
For the latter, the area is equal to 20,400 11m2 and the capacitance is 122.4 tF. 

Skin Effect At high frequencies, the current through a conductor prefers to flow at 
the surface. If the overall current is viewed as many parallel current components, these 
componenrs tend to repel each other, migrating away so as to create maximum distance 
between them. This trend is illustrated in Fig. 7.21. Flowing through a smaller cross section 
area, the high-frequency current thus faces a greater resistance. The actual distribution 
of the current follows an exponential decay from the surface of the conductor inward, 
J (s) = Joexp(- x/8), where Jo denotes the current density (in Aj m2) at the surface, and 
/J is the "skin depth." The value of ll is given by 

I 
0 = -;:::::=~ -/rrfl.ui, 

(7.41) 

where f denotes the frequency, J.L the permeabi lity, and 0' the conductivity. For example, 
8 "" 1.4 f.l,m at I 0 GHz for aluminum. The extra resistance of a conductor due to the skin 
effect is equal to 

I 
Rskin = - . (7.42) 

()'/) 

Parallel spirals can reduce th is resistance if the skin depth exceeds the swn of the metal 
wire thicknesses. 

/~ 
I I ~ 

(b) 

Figure 7.21 Currem distribution in a conductor at (a) low and (b) high frequencies. 

In spiral inductors, the proximi ty of adjacent turns results in a complex current distri­
bution. As iJlustrated in Fig. 7.22(a), the current may concentrate near the edge of the wire. 
To understand this "current crowding" effect, consider the more detailed diagram shown 
in Fig. 7.22(b), where each turn carries a current of / (1) [7, 8). The current in one turn 
creates a time-varying magnetic field, B, that penetrates the other turns, generating loops of 
current8 Called "eddy currents," these components add to / (t) at one edge of the wire and 

7. The equivalent (lumped) capacitance of the inductol' is less t:han this value (Section 7.2.4). 
8. Faraday's law states that the voltage induced in a conducting circuit is proponjonal to the time-derivative of 
Lhe magnetic field. 

Sec. 7.2. Inductors 

(a) 

Magnetic Field 
Produced by I 

(b) 

····eddy Current 
Produced by B 

Figure 7.22 (a) Current distribution in adjacentwms, (b) detuiled view of(a). 
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subtract from / (I) at the other edge. Since the induced voltage increases with frequency, 
the eddy currents and hence the nonuniform distribution become more prominent at higher 
frequencie-s. 

Based on these observations. [7, 8) derive the following expression for the resistance 
of a spiral inductor: 

Reff;::;: Ro [1 + -
1 ( J_ )

2

] , 
10 \.Jcru (7.43) 

where Ro is the de resistance and the frequency }~rir denotes the onset of current crowding 
and is given by 

3.1 W+S 
fc11r"" -- wz Ro . 

2rr J.L 

ln this equation, Ro represents the de sheet resistance of the metal. 

Example 7.13 

(7 .44) 

Calculate the series resistance of the 30-nH inductors studied in Examples 7.9 and 7.12 at 
900 MHz. Assume /A. = 4rr X J o-7 H/m. 

Solution: 

For the s ingle-layer spiral, Ro = 22 mn;o, W = 6~J,.m, S = 0.5~J,.m, and hence .f~rir = 
1.56GHz. Thus, Reff= L03Ro = 30.3 n. For the multilayer spiral, Ro = 11 ms-2/0, 
W = 3 f.l,m, S = 0.5 f.l,m. and hence .r;:rir = J .68 GHz. We therefore have Reff = 
1.03R0 = 26 n. 

Current crowding also alters the inductance and capacitance of spiral geometries. Since 
the current is pushed to the edge of the wire, the equivalent diameter of each tum change-s 
slightly, yielding an inductance different from the low-frequency value. Similarly, as illus­
trated in Fig. 7.23(a), if a conductor carries currents only near the edges, then its middle 
section can be "carved out" without altering the currents and vol tages, sugges ting that the 
capacitance of this section, Cm , is immateriaL From another perspective, C111 manifests 
itself only if it carries displacement current, which is not possible if the middle section has 
no current. Based on this observation, [7, 8] approximate the total capacitance, C10,, to vary 
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No Current Flow 

Figure 7.2:3 Reduction of capacitance to the substrate as a result of currelll crowdi11g. 

inversely proportional to the wi1·e resistance: 

Ro 
Cror ::,; -R Co, 

eff 

where Co denotes the low-frequency capacitance. 

(7.45) 

Capacitive Coupling to Substrate We have seen in our studies that spirals exhibit capac­
itance to the substrate. As the voltage at each point on the spiral rises and falls with 
time, it creates a displacement current that flows through this capacitance and the substrate 
(Fig. 7.24). Since the substrate resistivity is neither zero nor infinity, this flow of current 
translates to loss in each cycle of the operation, lowering the Q. 

Figure 7.24 Subsu·are loss due to capacili••e coup/i11g. 

Example 7.14 

Use a distributed model of a spiral inductor to estimate the power lost in the substrate. 

Solution: 

We model the structure by K sections as shown in Fig. 7.25(a). Here, each section consists 
of an inductance equal to L10rfK, a capacitance equal to C101/K, and a substrate resistance 
equal to KRsub· (The other loss mechanisms are ignored here.) The factor of K in KRsub 
is justified as follows: as we increase K for a given inductor geometry (i.e., as the dis­
tributed model approaches the actual structure), each section represents a smaller segment 
of the spiral and hence a smaller cross section area looking into the substrate [Fig. 7.25(b)]. 
Consequently, the equivalent resistance increases proportionally. 
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Example 7.14 (Continued) 

Substrate ~ 

(a) (b) 

Figure 7.25 (a) Distribured model of capaciri••e coupling ro the subsrrate, (b) diagram showi11g 
an in.finiresimal secrion. 

If we assume perfect coupling between every two inductor segments, then the voltage 
drop across each segment is given by Eq. (7.22): 

K 

V11 = L jwl,L,,, 
m = L 

(7.46) 

where 1111 denotes the current flowing through segment L111 • Interestingly, due to the 
uniformly-distributed approximation, all segments sustain equal voltages regardless of the 
capacitance and resistance d istribution. Thus. the voltage at node number 11 is given by 
(n/ K) V1 and the current A owing through the corresponding RC branch by 

11 v, 
lu,, = K ( ) - I · Crot 

KRsub + jKw 

(7.47) 

Since the average power dissipated in the resistor KRsub is equal to 11,,,12 Rsub• the /Olaf lost 
power in the spiral is obtained as 

K 

Prot= L ll,,,I
1
KRsub 

n-1 

K 2 
= L V1 KRsub 

, = 1 K2R2 + (Ctot ) 
sub K W 

= 
VlKRsub K(K + 1)(2K + I) 

---~~--~2 6K2 
K2R2 + (Cwr ) 

Sllb K w 

Letting K go to infinity, we have 

Rsub 

(7.48) 

(7.49) 

(7.50) 

(7.51) 
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The foregoing example provide-s insight into the power loss due to capacitive cou­
pling to the substrate. The distributed model of the substrate, however, is not accurate. As 
depicted in Fig. 7 .26(a), since the connection of the substrate to ground is physically far, 
some of the displacement current flows lalera/ly in the substrate. Lateral substrate currents 
are more pronounced between adjacent turns [Fig. 7.26(b)] because their voltage differ­
ence, V1 - V2, is larger than the incremental drops in Fig. 7.26(a), V, + 1 - Vn . The key 
point here is that the inductor-substrate interaction can be quanti lied accurately only if a 
three-dimensional model is used, but a rare case in practice. 

Substrate 

(a) (b) 

Figure 7.26 Lareral currenr flow in the substrate (a} under a branch, and (b) from one branch to 
anorher. 

Magnetic Coupling to the Substrate The magnetic coupling from an inductor to the 
substrate can be understood with the aid of ba~ic electromagnetic Jaws: (I) Ampere's law 
states that a current flowing through a conductor generates a magnetic field around the con­
ductor; (2) Faraday's law states that a time-varying magnetic field induces a voltage, and 
hence a current if the voltage appears across a conducting material; (3) Lenz's law states 
that the current induced by a magnetic lield generates another magnetic field opposing the 
first field. 

Ampere's and Faraday's laws readi ly reveal that, as the current through an inductor 
varies with time, it creates an eddy current in the substrate (Fig. 7 .27). Lenz's law implies 
that the current flows in the opposite direction. Of course, if the substrate resistance were 
inlinity, no current would flow and no loss would occur. 

The induction of eddy currents in the substrate can also be viewed as transformer cou­
pling. As illustrated in Fig. 7.28(a), the inductor and the substrate act as the primary and 

Eddy 

Current.::!l!F=;;~=w;:=~C-w,, 

Figure 7.27 Magneric coupling to the substrate. 
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(a) (b) 

Figure 7.28 (a) Modeling of magnetic coupling by transformers, (b) lumped model of(a). 

the secondary, respectively. Figure 7.28(b) depicts a lumped model of the overall system, 
with L1 representing the spiral, M the magnetic coupling, and L2 and Rsub the substrate. 
It follows that 

Thus, 

For s = jw, 

- -

V;n = L1sf;11 + Ms/2 

-Rsub/2 = /2~S + Msl;n. 

M2w2Rsub 
R2 + L2w2 

sub 2 

(7.52) 

(7.53) 

(7.54) 

(7.55) 

implying that Rsub is transformed by a factor of M2w2 j(R;ub + ~w2) and the inductance is 
reduced by an amount equal to M2w2L2/(R;,

1
b + L~w2 ). 

Example 7.15 

A student concludes that both the electric coupling and the magnetic coupling to the sub­
strate are eliminated if a grounded conductive plate is placed under the spiral (Fig. 7.29). 
Explain the pros and cons of this approach. 

Eddy 
Current 

Conductive 
Shield 

Figure 7.29 Inductor with a cominuous shield. 

(Continues) 
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Solution: 

This method indeed reduces the path resistance seen by both displacement and eddy cur­
rents. Unfortunately, however, Eq. (7.55) reveals that the equivalent inductance also falls 
with Rsub. For R sub = 0, 

(7.56) 

S ince the vertical spacing between the spiral and the conductive plate ("" 51J.m) is much 
smaller than their lateral dimensions, we have M "" L2 "" Lt, obtaining a very small value 
for Leq· In other words, even though the substrate losses are reduced, the drastic fall in the 
equivalent inductance sti ll yields a low Q because of the spiral's resistance. 

It is instructive to consider a few special cases ofEq. (7.54). If L 1 = ~ = M, then 

V;n 
-
1
. = LtsiiRsub , 
Ill 

(7.57) 

indicating that Rsub simply appears in parallel with L t , lowering the Q. 

Example 7.16 

Sketch the Q of a given inductor as a function of frequency. 

Solution: 

At low frequencies, the Q is given by the de resistance of the spiral, Rs. As the frequency 
increases, Q = Ltwf Rs rises li nearly up to a point where skin effect becomes significant 
[Fig. 7.30(a)J, The Q then increases in proportion to ./f. At higher frequencies, L 1 w >> Rs, 
and Eq. (7.57) reveals that Rsub shunts the inductor, limiting the Q to 

Q ~ R .wb 
LtW, 

which falls with frequency. Figure 7.30(b) sketches the behavior. 

low 
Frequencies 

L, ¢ 

Rs 

High 
Frequencies 

L, 

Very High 
Frequencies 

L, 

Rs 
¢ 

Raub 

R akin Rp;in 

(a) 

Q 

(7.58) 

(b) 

Figure 7.30 (a) Inductor model rejlecting loss at differellt frequencies, (b) corresponding Q 
belull'ior. 
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As another special case, suppose Rsub « IL2sl. We can then factor L2s out in Eq. (7.54) 
and approximate the result as 

(7.59) 

T hus, as predicted in Example 7.15, the i.nductance is reduced by an amount equal to 
M2 /L2. Moreover, the substrate resistance is transformed by a factor of M2 fL~ and appears 
in series wi th the net inductance. 

7 .2.6 Inductor Modeling 

Our study of various effects in spiral inductors has prepared us for developing a circuit 
model that can be used in simulations. Ideally, we wish to obtain a model that retains our 
physical insights and is both simple and accurate. In practice, some compromise must be 
made. 

It is important to note that (I) both the spiral and the substrate act as three-dimensional 
distributed structures and can only be approximated by a two-dimensional lumped model; 
(2) due to skin effect, current-crowding effects, and eddy currents, some of the inductor 
parameters vary with frequency, making it difficult to fit the model in a broad bandwidth. 

Example 7.17 

If RF design mostly deals with narrowband systems, why is a broadband model necessary? 

Solution: 

From a practical point of view, it is desirable to develop a broadband model for a given 
inductor structure so that it can be used by multiple designers and at different frequencies 
without repeating the modeling effort each time. Moreover, RF systems such as ultra­
wideband (UWB) and cognitive radios do operate across a wide bandwidth, requiring 
broadband models. 

Let us begin with a model representing metal losses. As shown in Fig. 7.31(a), a series 
resistance can embody both low-frequency and skin resistance. With a constant Rs, the 
model is valid for a l imited frequency range. As explained in Chapter 2, the loss can alter­
natively be modeled by a parallel resistance [Fig. 7.31 (b)] but still for a narrow range if R, 
is constant. 

L, 

(a) (b) 

Figure 7.31 Modeling loss by (a) series or (b) pumllel resistors. 
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An interesting observation allows us to combi.ne the models of Figs. 7.3l(a) and (b), 
thus broadening the valid bandwidth. The following example serves as the starting point. 

Example 7.18 

If the inductance and resistance values in Fig. 7.31 are independent of frequency, how do 
the two models predict the behavior of the Q? 

Solution: 

In Fig . 7 .3l(a), Q = L1w/Rs, whereas in Fig . 7.3l(b), Q = Rp/(L1w); i.e., the two models 
predict opposite trends wi th frequency. (We also encountered this effect in Example 7 .16.) 

The above observation suggests that we can tailor the frequency dependence of the 
Q by merging the two models . Depicted in Fig. 7.32(a), such a model partitions the loss 
between a series resistance and a parallel resistance. A simple approach assigns half of the 
loss to each at the center frequency of the band: 

' LtW 
Rs = 2Q (7.60) 

R~ = 2QLtw. (7.61) 

In Problem 7.2, we prove that the overall Q of the circuit, defined as /m{Ztl/ Re{Zt}, 
is equal to 

Lt wR~ 
Q= 2 ~ ' ' ' . L1w· + R5 (R5 + R,) 

(7.62) 

Note that this definition of Q is meaningful here because the circuit does not resonate at any 

frequency. As shown in Fig. 7 .32(b), the Q reaches a peak of2j R~f R~ at wo = j R~R;,; L1• 

The choice of R~ and R~ can therefore yield an accurate variation for a certain frequency 
range. 

(a) 

R' p 

0 

(J) 

(b) 

Figure 7.32 (a) Modeling loss by both series and parallel resistors, (b) resulting Q behavi01: 
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(a) (b) 
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• 
Ra 
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(c) 

Figure 7.33 (a) Broadband model of inductor, (b) view of a conductor as conce111ric cylinders, 
(c) broculband skin effect model. 

A more general model of skin effect has been proposed by (9] and is illustrated in 
Fig. 7 .33. Suppose a model must be valid only at de and a high frequency. Then, as shown 
in Fig. 7.33(a), we select a seri es resistance, Rs1, equal to that due to skin effect and shunt 
the combination of Rst and Lt with a large inductor, ~ - We then add Rs2 in series to model 
the low-frequency resistance of the wire. At high frequencies, L2 is open and Rst + Rs2 
embodies the overall loss; at low frequencies, the network reduces to Rs2-

The above principle can be extended to broadband modeling of skin effect. Depicted in 
Fig. 7.33(b) for a cylindrical wire, the approach i.n [9] views the l ine as a set of concentric 
cylinders, each having some low-frequency resistance and inductance, arriving at the circuit 
in Fig. 7.33(c) for one section of the distributed model. Here, the branch consisting of Rj 
and Lj represen ts the impedance of cylinder number j . At low frequencies, the current is 
uniformly distributed through the conductor and the model reduces to Rt1IR2 ll · · ·IIR, [9]. 
As the frequency increases, the current moves away from tbe inner cylinders, as modeled 
by the rising impedance of the inductors in each branch. In [9], a constant ratio Rj/ Rj+ 1 is 
maintained to simplify the model. We return to the use of this model for inductors later in 
this section. 

We now add the effect of capacitive coupling to the substrate. Figure 7 .34(a) shows 
a one-dimensional uniformly-distributed model where the total inductance and series 
resistance are decomposed into n equal segments, i.e., Lt + L2 + · · · + L, = L101 and 
Rs1 + Rs2 + · · · + Rs, = Rs,101 •

9 The nodes in the substrate are connected to one another 
by R.wbt • ... , R.wb.n - l and to ground by Rc;t, .. . , Rc;, . The total capacitance between the 
spiral and the substrate is decomposed into Csubl, . . . , Csubn· 

Continuing our model development, we include the magnetic coupling to the substrate. 
As depicted in Fig. 7.34(b), each inductor segment is coupled to the substrate through a 
transformer. Proper choice of the mutual coupl ing and Rsubm allows accurate representation 
of this type of loss. In this model, the capacitance between the substrate node-s is also 
included. 

While capturing the physical properties of inductors, the model shown in Fig. 7 .34(b) 
proves too complex for practical use . The principal issue is that the numerous parameters 
make it difficu lt to fi t the model to measured data. We must therefore seek more compact 
models that more easily lend themselves to parameter extraction and fitting. In the first 

9. A more accurate model would include murual coupling such that Lwr = L1 + · · · + Ln + nM. 
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Ln Rsn 

.. ~ 
Rsub,n- 1 

Ln Rsn 
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• • • Rsubm 

Csubn 
Rsub,n-1 

Figure 7.34 Disiribmed indue/or model with (a) capad1ive and (b) magnelic coupling 10 subsfr(l{e. 

vvv 

R' p 

(a) 

. -·c I 2 

o C 1r--~--IL1 ~~ l o 

c,fi R, R,nc, 
(b) 

Figure 7.35 (a) Compac/ induCior model, (b) al/em(l{ive 1opology. 

step, we turn to lwnped models. As a simple example, we return to the parallel-series 
combination of Fig. 7.32(a) and add capacitances to the substrate [Fig. 7.35(a)]. We surmise 
that R~ and R~ can represent all of the losses even though they do not physically reflect the 
substrate loss. We also recall from Section 7 .2.4 that an equivalent lumped capaci tance, CF, 
appears berween the two terminals. With constant element values, this model is accurate 
for a bandwidth of about ± 20% around the center frequency. 

An interesting dilemma arises in the above lumped model. We may choose C1 and C2 
to be equal to half of the total capacitance to the substrate, but our analysis in Section 7 .2.4 
suggests that, if one terminal is grounded, the equivalent capacitance is one-third of the 
total amount. This is a shortcoming of the lumped model. 

Sec. 7.2. Inductors 459 

Another model that has proved relatively accurate is shown in Fig. 7.35(b). Here, 
R, and R2 play a similar role to that of Rp in Fig. 7 .35(a). Note that neither model explicitly 
includes the magnetic coupling to the substrate. The a~sumption is that the three resistances 
suffice to represent all of the losses across a reasonable bandwidth (e.g., ±20% around the 
frequency at which the component values are calculated). A more broadband model is 
described in [10]. 

Definitions of Q In this book, we have encountered several definitions of the Q of an 
inductor: 

(7.63) 

(7.64) 

(7.65) 

ln basic physics, the Q of a lossy osciJlatory system is defined as 

Q 
_ 

2 
Energy Stored 

4 - 7f • 
Energy Dissipated per Cycle 

(7.66) 

Additionally, for a second-order tank, the Q can be defined in terms of the resonance 
frequency, wo, and the - 3-dB bandwidth, wow, as 

wo Qs = - . 
wow 

(7.67) 

To make matters more complicated, we can also define the Q of an open-loop system at a 
frequency wo as 

(7.68) 

where cf> denotes the phase of the system's transfer function (Chapter 8). 
Which one of the above definitions is relevant to RF design? We recall from Chapter 2 

that Q, and Q2 model the loss by a single resistance and are equivalent for a narrow band­
width. Also, from Example 7.7, we d.iscard Q3 because it fails where it matters most: in 
most RF circuits, inductors operate in resonance (with their own and other c ircuit capac­
itances), exhibiting Q3 = 0. The remaining three, namely, Q4, Qs. and Q6, are equivalent 
for a second-order tank i.n the vicinity of the resonance frequency. 

Before narrowing down the definitions of Q further, we must recognize that, in general, 
the analysis of a circuit does not require a knowledge of the Q's of its constituent devices. 
For example, the inductor model shown in Fig. 7.34(b) represents the properties of the 
device completely. Thus, the concept of Q has been invented primarily to provide in tuition, 
allowing analysis by inspection as well as the use of certain rules of thumb. 

ln this book, we mostly deal with only one of the above definitions, Q2. We reduce 
any resonant network to a parallel RLC tank, lumping all of the loss in a s ingle parallel 
resistor Rp. and define Q2 = Rr/(LWQ). This readily yields the voltage gain of the s tage 
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shown in Fig. 7 .1(b) as -g111(ro i iR,) at resonance. Moreover, if we wish to compute the Q 
of a given inductor design at difj'erent frequencies, then we add or subtract enough parallel 
capacitance to create resonance at each frequency and determine Q2 accordingly. 

It is interesting to note the following equivalencies for a second-order parallel tank: for 
Q2 and Q3, we have 

Peak Magnetic Energy 
Q2 =2rr =---~~--~~~ 

Energy Lost per Cycle 

Peak Magnetic Energy - Peak Electric Energy 
~=~ . 

Energy Lost per Cycle 

7 .2. 7 Alternative Inductor Structures 

(7.69) 

(7.70) 

As illustrated conceptually in Fig. 7 .9, many variants of spiral inductors can be envisioned 
that can potentially raise the Q, lower the parasitic capacitances, or reduce the lateral 
dimensions. For example, the parallel combination of spirals proves beneficial in reducing 
the metal resistance. In this section, we deal wi th several inductor geometries. 

Symmetric Inductors Differential circuits can employ a single symmetric inductor rather 
than two (asymmetric) spirals (Fig. 7.36). In addition to saving area, a differential geometry 
(driven by differential signals) also exhibi ts a higher Q [II]. To understand this property, 
let us use the model of Fig. 7.35(b) with single-ended and differential stimuli (Fig. 7 .37). 
If in Fig. 7.37(a), we neglect C3 and assume C1 has a low impedance, then the resistance 
shunting the inductor at high frequencies is approximately equal toR, . That is, the ci rcui t 
is reduced to that in Fig. 7.37(b). 

Now, consider the differential arrangement shown in Fig. 7.37(c). The circuit can be 
decomposed in to two symmetric half circuits, revealing that R, (or R2) appears in parallel 
with an inductance of L/ 2 [Fig. 7.37(d)] and hence affects the Q to a lesser extent [ II ]. 
In Problem 7.4, we use Eq. (7.62) to compare the Q's in the rwo cases. For frequencies 
above 5 GHz, differential spirals provide a Q of 8 or higher and single-ended structures a 
Q of about 5 to 6. 

Figure 7.36 Use of symmetric i11ductor in a differential circuit. 
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L Rs ,. 
L Rs 

''·: ff 
Ca I R1 :he, ~ 

(a) (b) 

L Rs 
L Rs Rs L 

·':. ff 
Ca I R1 

2 2 2 2 

''" + -
2 

~ 

(c) (d) 

Figure 7.37 (a) Inductor driven by a single-ended input, (b) simplified model of (a), (c) symmetric 
inductor driven by differential inputs, (d) simplified model of (c). 

The principal drawback of symmetric inductors is their large interwinding capacitance, 
a point of contrast to the trend predicted by Eq. (7.29). Consider the arrangement shown 
in Fig. 7 .38(a), where the inductor is driven by differential voltages and viewed as four 
segments in series. Modeling each segment by an inductor and including the fringe capac­
itance between the segments, we obtain the network depicted in Fig. 7.38(b). Note that 
symmetry creates a virtual ground at node 3. This model implie.s that C 1 and C2 sustain 
large voltages, e.g. , as much as V;11 / 2 if we assume a linear voltage profile from node 1 to 
node 5 [Fig. 7 .38(c)]. 

2 4 

3 

(a) 

(b) 

_ Vin 

2 

v,. 0-__ 
+ 2~ 4 5 

1 2 ~- V;n 
: 2 

(c) 

Figure 7.38 (a) Symmetric inductor. (b) equivalent circuit, (c) ••oltage profile along the inductor. 
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Example 7.19 

Estimate the equivalent lumped interwinding capacitance of the three-tum spiral s hown in 
Fig. 7 .39(a). 

2 6 

4 

5 3 

1 7 

+V:; C ~ ~V;n 
2 9- -9 2 - -- . 

(a) 

V;n; 
+ -· 

2 ; 

1 

~-----, 
3 

2 

Ca 

(b) 

(c) 

- vin 

2 

6 7 

Figure 7.39 (a) Three-wm symmetric inductor, (b) equivalent circuit, (c) volwge profile along 
the lodde1: 

Solution: 

We unwind the structure as depicted in Fig. 7.39(b), assuming, as an approximation, that 
all unit inductances arc equal and so arc all unit capacitances. We further assume a linear 
voltage profile from one end to the other I Fig. 7 .39(c)l. Thus, C1 sustains a voltage of 
4V;n/6 and so does C3. Similarly, each of C2 and C4 has a voltage of 2V;,/6. The total 
electric energy stored on the four capacitors is therefore equal to 

where C = C; = · · · = C4. Denoting C; + · · · + C4 by C101 • we have 

5 Cwr 2 E,, = --V 0 9 4 Ul' 

and hence an equivalent lumped capacitance of 

5 
Ceq = lSCror · 

(7.71) 

(7.72) 

(7.73) 
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Example 7.19 (Continued) 

Compared with its counterpart in a single-ended inductor, Eq. (7 .32), this value is higher 
by a factor of I 61Jj 9 "" 18. In fact, the equivalent intcrwinding capacitance of a differential 
inductor is typically quite larger than the capacitance to the substrate, dominating the self­
resonance frequency. 

How do we reduce the interwinding capaci tance? We can increase the line-to-line spac­
ing, S, but, for a given outer d imension, this results in smaller inner turns and hence a lower 
inductance. In fact, Eq. (7.1 5) reveals that L falls asS increases and /"" remains constant, 
yielding a lower Q. As a rule of thumb, we choose a spacing of approximately three times 
the minimum allowable value.'° Further increase of S lowers the fringe capacitance only 
slightly but degrades the Q. 

Owing to their h.igher Q, differential inductors are common in oscillator design, where 
the Q matters most. They are typically constructed as octagons (a synm1etric version of 
that in Fig. 7.9(b )] because, for a given inductance, an octagonal shape has a shorter length 
and hence less series resistance than does a square geometry. (Perpendicular sides provide 
little mutual coupl ing.) For other differential circuit~. such structures can be used, but 
at the cost of routing complexi ty. Figure 7.40 illustrates this point for a cascade of rwo 
stages. With single-ended spirals on each side, the lines traveling to the next stage can 
pass be!Ween the inductors [Fig. 7.40(a)]. Of course, some spacing is necessary between 
the lines and the inductors so as to minimize unwanted coupl ing . On the other hand, with 
the differential structure, the li nes must travel either through the inductor or around it 
[Fig. 7.40(b)], creating greater coupling than in the former case. 

.L .L 

T T 

(a) (b) 

Figure 7.40 Routing of signals to next stage in a circuit using (a) single-ended inductors, (b) a 
symmeTric inductor. 

L 0. But, in some technologies long lines require a wider spacing than short lines, in which case the minimum 
S may be I co 1.5 ~-t.m. 
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Example 7.20 

If used as the load of differential circuits, single-ended inductors can be laid out with "mir­
ror symmetry" [Fig. 7.41 (a)] or "step symmetry" [Fig. 7.41 (b)]. Discuss the pros and cons 
of each layout style. 

-,:: Voo 
T Voo - - - -- - - -

L1 

• • t • ~ t L2 L1 ~ • • • t t L2 - - - -- - - -

(a) (b) 

Figure 7.41 Load inductors in a dif!eremialpC~ir with (a) mirror symmetry ll/Ul (b) step symmetry. 

Solution: 

The circui t of Fig. 7.4l (a) is relatively symmetric but suffers from undesirable mutual 
coupling between L1 and L?_ . Since the differential currents produced by M 1 and M2 A ow 
in opposite di rections in the spirals, the equivalent inductance seen between X and Y is 
equal to 

(7.74) 

where M denotes the mutual coupling between L1 and L2. With a small spacing 
between the spirals, the mutual coupling factor, k, may reach roughly 0.25, yielding 
M = k../L1 L2 = 0.25L if L1 = L2 = L. In other words, 1-,q is 25% less than L1 + L2, exhibi t­
ing a lower Q. For k to fall to a few percent, the spacing between L1 and L2 must exceed 
approximately one-half of the outer dimension of each. 

In the topology of Fig. 7 .41 (b), the direction of currents results in 

(7.75) 

increasing the Q. However, the circui t is less symmetric. Thus, if symmetry is cri tical re.g., 
in the LO buffer of a direct-conversion receiver (Chapter 4)], then we choose the former 
with some spacing between L1 and L2. Otherwise, we opt for the Iauer. 

Another important difference between two single-ended inductors and one d ifferential 
inductor is the amount of signal coupling that they infl ict or incur. Consider the topology 
of Fig. 7 .42(a) and a point P on its axis of symmetry. Using the r ight-hand rule, we observe 
that the magnetic field due to L1 points into the page at P and that due to L2 out of the page. 
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p p 

Magnetic 

L1 L2 

~ 

(a) (b) 

Figure 7.42 Magnetic coupling along the axis of symmetry with (a) single-ended inductors and 
(b) a symmetric inductor. 

T he two fields therefore cancel along the axis of symmetry. By contrast, the differential 
spiral in Fig. 7.42(b) produces a s ingle magnetic field at P and hence coupling to other 
devices even on the line of symmetry." This issue is particularly problematic in oscillators : 
to achieve a high Q, we wish to use symmetric inductors but at the cost of making the 
circuit more sensitive to injection-pulli.ng by the power amplifier. 

Example 7.21 

The topology of Fig. 7.43 may be considered a candidate for small coupling. Explain the 
pros and cons of this structure. 

P ! 

/ / 
• 'N 

• 
/ "' / - -

Figure 7.43 Inductor with reduced magnetic coupling along axis of swnmetrv. 

Solution: 

T his geometry in fact consists of two single-ended inductors because node N is a virtual 
ground. The magnetic fields of the two halves indeed cancel on the ax is of symmetry. 

(Conrinues) 

I I. One can also view the single spiral as a loop antenna. 
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Example 7.21 (Continued) 

The structure is more symmetric than the single-ended spirals wi th step symmetry in 
Fig. 7.42(a). Unfortunately, the Q of this topology is lower than that of a differential induc­
tor because each half experiences its own substrate loss; i.e., the doubling of the substrate 
shunt resistance observed in Fig. 7.37 does not occur here. A variant of this structure is 
described in [ 12]. 

Inductors with Ground Shield In our early study of substrate loss in Section 7 .2.5, we 
contemplated the use of a grounded shield below the inductor. The goal was to allow the 
displacement current to ftow through a low resistance to ground, thus avoiding the loss due 
to electric coupling to the substrate. But we observed that eddy currents in a continuous 
shield drastically reduce the inductance and the Q. 

We now observe that the shield can provide a low-resistance termination for e lectric 
field lines even if it is not continuous. As illustrated in Fig. 7 .44 [13], a "patterned" shield, 
i.e. , a plane broken periodically in the direction perpendicular to the ftow of eddy currents, 
receives most of the electric field lines wi thout reducing the inductance. A small fraction 
of the field Jines sneak through the gaps in the shield and terminate on the lossy substrate. 
Thus, the width of the gaps must be minimized. 

Broken 
Shield 

Figure 7.44 fndtlcTor wiTh paltemed ground shield. 

Jt is important to note that the patterned ground shield only reduces the effect of capaci­
tive coupling to the substrate. The eddy currents resulting from magnetic coupl ing continue 
to flow through the substrate as Faraday and Lenz have prescribed. 

Example 7.22 

A student designing a patterned ground shield decides that minimizing the gap width is not 
a good idea because it increases the capacitance between each two sections of the shield, 
potentially allowing large eddy currents to flow through the shield. Is the student correct? 

Solution: 

While it is true that the gap capacitance incrca~es, we must note that all of the gap capac­
itances appear in series with the path of eddy currents. The overall equivalent capacitance 
is therefore very small and the impedance presented to eddy currents quite high. 
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The use of a patterned shield may increase the Q by '10 to 15% [ 13], but this improve­
ment depends on many factors and has thus been inconsistent in different reports [ 14]. The 
factors include single-ended versus differential operation, the thickne.ss of the metal , and 
the resistivity of the substrate. The improvement comes at the cost of higher capacitance. 
For example, if tbe inductor i.s realized in metal 9 and the shield in metall, then the capaci­
tance rises by about 15%. One can uti lize a patterned n+ region in the substrate a~ the shield 
to avoid this capacitance increase, but the measurement results have not been consistent. 

The other difficulty with patterned shields is the additional complexity that they intro­
duce in modeling and layout. Tbe capacitance to the smeld and the various losses now 
requLre much Jengtmer electromagnetic simulations. 

Stacked Inductors At frequencies up to about 5 GHz, inductor values encountered in 
practice fall in the range of five to several tens of nanohenries. If realized as a single spiral, 
such inductors occupy a large area and lead to long in terconnects between the circuit blocks. 
Tms issue can be resolved by exploiting the thi1·d dimension, i.e., by stacking spirals. Illus­
trated in Fig. 7 .45, the idea is to place two or more spirals in series, obtaining a mgher 
inductance not only due to the series connection but also as a result of strong mutual 
coupling. For example, the total inductance in Fig. 7.45 is given by 

L10 1 =Lt +~ + 2M. (7.76) 

Since the lateral dimensions of Lt and L2 are much greater than thei1· vertical sepm·ation, 
L1 and L2 exhibit almost perfect coupling, i.e. , M ""L, = ~ and L101 ""4L,. Similarly, n 
stacked spirals operating in series raise the total inductance by approximately a factor of n2 

MetalS 

Figure 7.45 STacked spirals. 

Example 7.23 

The five-tum 4.96-nH inductor obtained from Eq. (7.15) in Section 7 .2.3 has an outer 
dimension of 

D = lrot + W + (N- I )(W + S) 
ouT 4N 

= 122~-Lm. 

(7.77) 

(7.78) 

Using Eq. (7. J 5) for the inductance of one spiral, determine the required outer dimension 
of a four-turn stacked structure having the same WandS. Assume two spirals arc stacked. 

(ConTinues) 
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Example 7.23 (Coutiuued) 

Solution: 

Each spiral must provide an inductance of 4.96 nH/4 = 1.24 nH. Iteration with N = 4, 
W = 4 ~J.. m, and S = 0.51J..m in Eq. (7.15) yields 1101 ~ 780 11-m and hence Dow = 66.25 11--m. 
Stacking thus reduces the outer dimension by nearly a factor of 2 in this case. 

~c2 

~------S-u_b_s_t~-1-e-----~ 
Metal S 

T
c2 

MetalS ~ 

~------S-u_b_s-tr-a-te----~~ 
(o) (b) 

Figure 7.46 l:.quil•alem capacitance for a stack of (a) metal-9 and mew/-8, or (b) metal-9 and 
mew/-5 spirals. 

l n reality, the multiplication factor of stacked square inductors is less than n2 because 
the legs of one inductor that are perpendicular to the legs of the other provide no mutual 
coupl ing. For example, a stack of two raises the inductance by about a factor of 3.5 [6]. 
The factor is closer to n2 for octagonal spirals and almost equal to n2 for c ircular structures. 

ln addi tion to the capaci tance to the s ubstrate and the interwinding capaci tance, stacked 
inductors also contain one between the spirals [Fig. 7.46(a)] . 

Example 7.24 

In most circuits, one terminal of the inductor(s) is at ac ground. Which terminal of the 
structure in Fig. 7 .46(a) should be grounded? 

Solution: 

Since L2 sees a much larger capaci tance to the substrate than L1 does, the terminal of L2 
should be grounded. This is a critical point in the use of stacked inductors . 

Using an energy-based analysis simi lar to that in Section 7 .2.4, [6] proves that the 
equivalent Jumped capacitance of the inductor shown in Fig. 7.46(a) is equal to 

(7 .79) 
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if the free terminal of Lz is at ac ground.12 Interestingly, the inter-spiral capacitance has a 
larger weighting factor than the capacitance to the substrate does. For this reason, if Lz is 
moved to lower metal layers [Fig. 7 .46(b)], Ceq falls even though C2 rises. Note that the 
total inductance remains approximately constant so long as the lateral dimensions are much 
greater than the vertical spacing between L1 and [Jl. 

Example 7.25 

Compare the equivalen t lumped capacitance of single- layer and stacked 4.96-nH induc­
tors studied in Example 7 .23. Assume the lower spiral is realized in metal 5 and use the 
capacitance values shown in Table 7.1. 

Table 7 .J Table of metal cupocit,mces ( aF/IJ. m2 ) . 

Metal 8 Metal 7 Metal 6 Metal 5 Substrate 

Metal 9 52 16 12 9.5 4.4 

Metal S 52 24 16 5.4 

Metal 7 88 28 6.1 

Meta16 88 7.1 

Metal S 8.6 

Solution: 

For a s ingle metal-9layer, the total area is equal to 2000 IJ..m X 4[lm = 8000 ~J.,m2 • yie lding 
a total capacitance of 35.2 tF to the substrate. As suggested by Eq. (7.26), the equivalent 
lumped capacitance is 1/3 of this value, 11.73 fF. For the stacked structure, each spiral has 
an area of780 IJ..m X 4~J.,m = 3120 ~J.,m2. Thus, C1 = 29.64 fF and C2 = 26.83 fF, resul ting 
m 

Ceq= 12.l fF. (7 .80) 

The choice of stacking therefore trans lates to comparable capacitances.'3 If Lz is moved 
down to metal 4 or 3, the capacitance of the stacked structure falls more. 

For n stacked spirals, it can be proved that 

n- 1 

4 L Cm + Csub 

c = --'"'-=- •--...,.---eq 3n2 

where C111 denotes each inter-spiral capacitance [6]. 

12. If the free tenninal of L1 is grounded, the equivalent capacitance is quite larger. 
13. We hove neglected the fringe components for simplici1y. 

(7.81) 
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How does stacking affect the Q? We may surmise that the "resistance-free" coupling, 
M, among the spirals ra.ises the inductance without increasing the resistance. However, 
M also exists among the turns of a single, large spiral. More fundamentally, for a given 
inductance, the total wire's length is relatively constant and independent of how the wire 
is wound. For example, the single-spiral 4 .96-nH inductor studied above has a total length 
of 2000 tJ,m and the double-spiral stacked structure in Example 7.23, 1560 tJ,m. But, with 
a more real isti c multipljcation factor of 3.5 for the inductance of two stacked spirals, the 
total length grows to about 1800 tJ,m. We now observe that since the top metal layer is 
typically th icker than the lower layers, stacking tends to increase the series resistance and 
hence decrease the Q. The issue can be remedied by placing two or more lower spirals in 
parallel. Figure 7 .47 shows an example where a metal-9 spiral is in series with the parallel 
combination of metal-6 and metal-5 spirals. Of course, complex current crowding effects 
at high frequencies require careful electromagnetic field simulations to determine the Q. 

MetalS 

Metal6 
MetalS 

Figure 7.47 Stacked inductor using two pam/tel spirals in metal 6 and metal 5. 

7.3 TRANSFORMERS 

.Integrated transformers can perform a number of useful functions i.n RF design: 
(l) impedance matching, (2) feedback or feedforward with positive or negative polarity, 
(3) single-ended to differential conversion or vice versa, and (4) ac coupling between 
stages. T hey are, however, more difficult to model and design than are inductors. 

A well-designed transformer must exhibit the following: (I) low series resistance in the 
primary and secondary windings, (2) high magnetic coupling between the primary and the 
secondary, (3) low capacitive coupling between the primary and the secondary, and ( 4) low 
parasitic capaci tances to the substrate. Some of the trade-offs are thus s imilar to those of 
inductors. 

7 .3.1 Transformer Structures 

An integrated transformer generally comprises two spiral inductors with strong magnetic 
coupling. To arrive at "planar" s tructure, we begin with a synunetric inductor and break 
it at its point of synunetry (Fig. 7 .48). Segments AB and CD now act as mutually-coupled 
inductors. We consider th is structure a 1-to-1 transformer because the primary and the 
secondary are identical. 
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D 

A A 

Figure 7.48 Trtm~{ormer derived from a symmetric inductor. 

What is the relationship between the inductance of the symmetric spiral of Fig. 7 .48 and 
the inductances of the resulting transformer? 

Solution: 

We have 
LAC= LAB+ Lev+ 2M, (7.82) 

where each L refers to the inductance between its end points and M to the mutual coupling 
between LAB and Loc. Since LAB= Leo. 

LAc= 2LAB +2M. (7.83) 

If Lt~c and Mare known, we can determine the inductance of the primary and the secondary. 

The transformer structure of Fig. 7.48 suffers from low magnetic coupling, an asym­
metric primary, and an asymmetri c secondary. To remedy the former, the number of turns 
can be increased [Fig. 7 .49(a)] but at the cost of higher capacitive coupl ing. To remedy the 
latter, two symmetric spirals can be embedded as shown in Fig. 7.49(b) but with a sl ight 

(a) (b) 

Figure 7.49 Transformers (a) derived from a tltree·tum symmetric inductor. (b) formed as two 
embedded symmetric spirals. 
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difference between the primary and secondary inductances. The coupling factor in all of the 
above structures is typically less than 0.8. We study the consequences of this imperfection 
in the following example. 

Example 7.27 

Consider the circuit shown in Fig. 7.50, where Cp models the equivalen t lumped capaci­
tance between the primary and the secondary. Determine the transfer function V0 , 1/V;11 and 
discuss the effect of the sub-unity magnetic coupling factor. 

CF 

,, /2 
M Vout •• 

Vln l, l2 RL 

': ': ': ': 

Figure 7.50 Simple mmsformer model. 

Solution: 

The transformer action gives 

V,:,, = Lls/1 + Ms[z 

Vow= Lzs/2 + Ms/1. 

Finding h from Eq. (7.84) and substituting the result in Eq. (7.85), we have 

Vow M(V;, - Msh) 
lz = - - ___:....:::......,.....___::::. 

L2s LtLzs 

Also, a KCL at the output node yields 

Vout 
(Vin - V0.,,)Cps- /z = RL . 

Replacing h from (7.86) and simplifying the result, we obtain 

Vout L1Lz(l - ~)Cps2 
+ M 

V;" (s) = Ltf-z(l- M2 )cps2 + LJLz (I - M2 )s + Lt 
LtLz RL L1L2 

(7.84) 

(7.85) 

(7.86) 

(7.87) 

(7.88) 

It is instructive to examine this transfer function in a few special cases. First, if Cp = 0, 

Vout - - -----.,----
V;II _L_1L?_. ( 1 _ _ M_

2
_ )s + L

1
' 

RL L1L2 

(7.89) 
M 
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Example 7.27 (Continued) 

suggesting that, since k = MjJLtL2 < 1, the transformer exhibits a low-pass response 
with a real pole located at 

(7.90) 
Wp = Lo (I - M2 ) . 

• L1L2 

For example. if k = 0.7, then wp = - l.96RL!Lz. This pole must lie well above the 
frequency of operation. 

Second, if Cp > 0 but M = Lt = L2, then V0111/ V;11 = M I L1 = I regardless of the val­
ues of Cp and RL. Thus, Cp manifests itself because of the sub-unity k. Since typically 
L1 = Lz = L. we can express the poles of Eq. (7.88) as 

(7.91) 

Equation (7.88) implies that it is beneficial to reduce L1 and L2 while k remains 
constant; as L1 and Lz (and M = k../LJLz) approach zero, 

Vow M 
- (s)"" - , 
V;, L1 

(7.92) 

a frequency-independent quantity equal to kif L1 = L2. However, reduction of L1 and L2 
also lowers the input impedance, 2;11 , in Fig. 7.50. For example, if Cp = 0, we have from 
Eq. (7.54), 

M2s2 
Z· = L1s - (7 93) 111 

RL + L2s . 
Thus, the number of primary and secondary turns must be chosen so that 2;11 is adequately 
high in the frequency range of interest. 

Is it possible to construct planar transformers having a turns ratio greater than un ity? 
Figure 7.51 (a) shows an example, where AB ha~ approximately one turn and CD approx­
imately two. We note, however, that the mutual coupling between AB and the inner 
turn of CD is relatively weak due to the smaller diameter of the latter. Figure 7.5l(b) 
depicts another 1-t.o-2 example with a stronger coupling factor. In practice, the primary 
and secondary may require a larger number of turns so as to provide a reasonable input 
impedance. 

Figure 7.52 shows two other examples of planar transformers. Here, two asymmetric 
spirals are interwound to achieve a high coupling factor. The geometry of Fig. 7.52(a) can 
be viewed as two parallel conductors that are wound into turns. Owing to the difference 
between their lengths, tbe primary and secondary exhibi t unequal inductances and hence 
a nonunity turns ratio [16). The structure of Fig. 7.52(b), on the other hand, provides an 
exact turns ratio of unity [ 16). 

Transformers can also be implemented as three-dimensional structures. Similar to the 
stacked inductors studied in Section 7.2.7, a transformer can employ stacked spirals for the 
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(a) (b) 

Figure 7.51 One-ro-rwo rnmsformers (a) derived from a symmerric inducror. (b) formed as rwo 
symmelric induc/ors. 

A 

s.l D 8 

o -

AC I.E:!J c 
(a) (b) 

Figure 7.52 (a) Transformerformed as rwo wires wound rogerher, (b) alrernarh•e versionwirh equal 
primary and secondary lengrhs. 

(a) (b) (c) 

Figure 7.53 (a) One-ro-one sracked tmnsjormer. (b) one-ro-rwo tnmsjormer. (c) swggering of turns 
lo reduce coupling capacilcmce. 

primary and the secondru·y [6]. Figure 7 .53(a) shows a l-to-1 example. It is important to 
recognize tbe following attributes: (1) tbe alignment of the primary and secondary turns 
results in a s lightly higher magnetic coupling factor here than in the planar transformers of 
Figs. 7.49 and 7.51; (2) unlike the p lanar structures, the primary and the secondary can be 
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symmetric and identical (except for differences in their capacitances); (3) the overal l area 
occupied by 30 transformers is less than that of their planar counterpart~. 

Another advantage of stacked transformers is that they can readi ly provide a turns 
ratio higher than unity [6]. Illustrated in Fig. 7.53(b), the idea is to incorporate multiple 
spirals i.n series to form the primary or the secondary. Thus, a technology having nine 
metal layers can afford l -to-8 transformers! As shown in [6], stacked transformers indeed 
provide significant voltage or current gain at gigahertz frequencies. This "free" gain can be 
utilized between stages in a chain. 

Stacked transformers must, however, deal with two issues. First, the lower spi1·als suffer 
from a bigher resistance due to the thinner metal layers. Second, the capacitance between 
the primary and secondary is larger bere than in planar transformers (why?). To reduce tilis 
capacitance, the primary and secondary turns can be "staggered," thus minimizing their 
overlap (Fig. 7.53(c)] (6]. But this requires a relatively large spacing between the adjacent 
turns of each inductor, reducing the inductance. 

7 .3.2 Effect of Coupling Capacitance 

The coupling capacitance between the primary and secondary yields different types of 
behavior witb negative and positive mutual (magnetic) coupling factors. To understand 
this point, we return to the transfer function in Eq. (7.88) and note that, for s = jw, the 
numerator reduces to 

N(jw) = - Lti4 (1 - M
2 

) CFw2 + M. 
L1L2 

(7.94) 

The first term is always negative, but the polari ty of the second term depends on the 
direction chosen for mutual coupling. Thus, if M > 0, then N(jw) falls to zero at 

Wz = 
M 

(7.95) 

i.e., the frequency response exb.ibits a notch at Wz. On tbe other hand, if M < 0, no 
such notch exis ts and the transformer can operate at higher frequencies. We therefore 
say "noninverting" transformers suffer from a lower speed than do "inverting" transfor­
mers [16]. 

The above phenomenon can also be explained intuitively: the feedforward signal 
through CF can cancel the signal coupled from L1 to Lz. Specifically, the voltage across 
L2 in Fig. 7 .50 contains two terms, namely, L-zjw/2 and Mjw/1. If, at some frequency, his 
entirely provided by CF, the former term can cancel the latter, yielding a zero output voltage. 

7 .3.3 Transformer Modeling 

An integrated transformer can be viewed as two inductors having magnetic and capac­
itive coupling. The inductor models described in Section 7.2.6 therefore directly apply 
here. Figure 7 .54 sbows an example, wbere tbe primary and secondary are represented 
by the compact inductor model of Fig. 7.35(b), with the mutual coupling M and coupling 
capacitor Cp added. More details on transformer modeling can be found in (16) and (17]. 
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Figure 7.54 Transformer model. 

Due to the complexity of this model, it is difficult to find the value of each component from 
measurements or field simulations that provide only S- or Y-parameters for the entire struc­
ture. In practice, some effort is expended on this type of modeling to develop insight into 
the transformer's limitations, bm an accurate representation may require that the designer 
directly use the S- or Y-parameters in c ircuit simulations. Unfortunately, circuit simulators 
sometimes face convergence difficulties with these parameters . 

7.4 TRANSMISSION LINES 

Integrated transmission li nes (T-lines) are occasionally used in RF design. It is instructive to 
consider a few examples ofT-line applications. Suppose a long wire carries a high-frequency 
signal from one circuit block to another (Fig. 7 .55). The wire suffers from inductance, 
capacitance, and resistance. If the width of the wire is increased so as to reduce the induc­
tance and series resistance, then the capacitance to the substrate rises . These parasitics may 
considerably degrade the s ignal as the frequency exceeds several gigahertz. 

IIY 

Block 
B 

Block 
A X 

Figure 7.55 Two circuit blocks connected by along wire. 

For the wire shown in Fig. 7 .55, we also say the current " return path" is poorly-defined. 
Explain this attribute and its consequences. 

Solution: 

In the ideal situation , the signal current flowing through the wire from block A to block B 
returns throug h a ground plane [Fig. 7.56(a)]. In reality. however. due to the wire parasitics 
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and the nonideal ground connection between the two blocks, some of the signal current 
flows through the substrate [Fig. 7.56(b)]. The complexity of the return path makes it dif­
ficult to accurately predict the behavior of the wire at high frequencies. Also, the coupling 
to the substrate creates leakage of the s ignal to other part~ of the chip. 

,.-----. ,, 
~ND-Block 

A 

'----' -,, 
(a) 

Substrate 

(b) 

Figure 7.56 (a) Current retum path through a ground plane, (b) poor definition of current retum 
path. 

If the long wire in Fig. 7.55 is replaced with aT-line and the input port of block B is 
modified to match the T-line, then the above issues are alleviated. As iJiustrated in Fig. 7 .57, 
the line inductance and capacitance no longer degrade the signal, and the T-line ground 
plane not only provides a low-impedance path for the returning current but minimizes the 
in teraction of the signal wi th the subs trate. The li ne resistance can also be lowered but wi th 
a trade-off (Section 7.4.1). 

Block Block 
A jt Zo t B 

Zo Rr= Zo .. 
= 

Figure 7.57 Two circuit blocks connected by aT-line. 

As another example ofT-line applications, recall from Chapter 2 that aT-line having a 
short-ci rcuit termination acts as an inductor if it is much shorter than a wavelength. Thus, 
T-lines can serve a~ inductive loads (Fig. 7 .58). 

Figure 7.58 T-line sen1i11g as" load inducto~: 
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Identify the return path for the s ignal current that flows through the T-line in Fig. 7.58. 

Solution: 

Since the s ignal current reaches the Voo line. a bypass capacitor must be placed between 
Voo and ground. Illustrated in rig. 7.59, such an arrangement must minimize the parasitic 
inductance and resistance in the return path. ote that low-impedance return paths and 
hence byp~ capacitor, arc ncce:.sary in any high-frequency single-ended stage. 

Voo --
tJ 
~ 

vlno--1 u~ 
~ 

Fi~ure 7.59 Rewm '"''" amund a T-line in a CS s{(lge. 

How does the Q o fT- line inductors compare with that of spiral structures? For frequen ­
cies as high as several tens of gigahertz, the latter provide a higher Q because of the mutual 
coupling among their turns. For higher frequencies, it is expected that the former become 
superior, bur actual measured data supporting th is prediction are not available-at least in 
CMOS technology. 

T-lines can <&lso transform impedances. As mentioned in Chapter 2, a llne of length d 
that is terminated with a load impedance of ZL exhibits an input impedance of 

_z::.L _+_,;c...'Z..:.o _ta_n..::(fJ_d)..:. 
Zin(d) = Zo + j ZL tan(fJd)' 

(7.96) 

where f3 = 2Jr / A and Zo is the characteristic impedance of the line. For example, if d = A/4. 
then lin = lJIZL. i.e .. a capacitive load can be transformed to an inductive component. Of 
course. the required quaner-wave length becomes practical in integrated circuits only at 
millimeter-wave frequencies . 

7 .4.1 T-Line Structures 

Among various T-line structures developed in the field of microwaves. only a few lend 
themselves to integration. When choosing a geometTy, the RF IC designer is concerned 
with the following parameters: loss, characteristic impedance, velocity, and size. 

Before studying T-line structures, let us briefly look at the back end of CMOS pro­
cesses. As exemplified by Fig. 7.60, a typical process provides a silicided polysilicon layer 
and about nine metal layers. The high sheet resistance, Rs/1• of poly (10 to 20 Q jO) makes 
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M9 

f. r= 7 
M8 

M1 

Poly 

Figure 7.60 Typical back end ufa CMOS process. 
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it a poor conductor. Each of the lower metal layers has a th ickness of approximately 0.3~-Lm 
and an R,1, of 60 to 70 mn;o. The top layer has a thickness of about 0.7 to 0.8~-Lm and 
an Rs1, of 25 to 30 mQ jO. Between each two consecutive metal layers lie 1wo dielectric 
layers: a 0.7-j.LITI layer withE, ~ 3.5 and a 0. 1 -~-Lm layer wi th f ,. "" 7. 

Micros tr ip A natural candidate for integrated T-lines is the "microstrip'' structure. 
Depicted in Fig. 7 .61 , it consists of a signal line real ized in the topmost meta l layer and 
a ground plane in a lower metal layer. An importan t attribute of this topology is that it can 
have minimal interaction between the s ignal line and the substrate. This is accomplished 
if the ground plane is wide enough to contain most of the electric field lines emanating 
from the s ignal wire. As a compromise between field confinement and the dimensions of 
the T-Jine, we choose We"" 3Ws. 

: Ws 

FiJ,'llre 7.61 Micro~·lrifJ slrucwre. 

Numerous equations have been developed in the field of microwaves to express the 
characteristic impedance of microstrips. For example, if the signal line has a thickness of 
1 and a height of h with respect to the ground plane. then 

377 h I 
lo = .f€,. Ws 1 + J.735e;0.0724(W,/h) -0.836' 

(7.97) 



480 Chap. 7. Passive Devices 

where 

I ( 21?) We = Ws + rr I + In -
1 

. (7.98) 

For example, if h = 7~J,m, 1 = 0.81J.m, Er = 4, and Ws = 41J.m, then Zo ~ 86 n. Unfortu­
nately, these equations suffer from errors as large as I 0%. In practice, electromagnetic field 
simulations including the back end details are nece-ssary to compute Zo. 

Example 7.30 

A short microstrip is used as an inductor resonating wi th the transistor capacitances in a 
circuit. Detennine the error in the resonance frequency, Wres, if the line's characteristic 
impedance has a J 0% error. 

Solution: 

From Eq. (7.96), aT-line with ZL = 0 and 2rrd «A provides an input impedance of 

Z;" = jlo tan ({3d) 

~jZo (2rrn 
. Zod 

~}())- , 
v 

(7.99) 

(7. 1 00) 

(7.101) 

i.e., an inductance of L,q = Zodfv = L11d, where v denotes the wave veloci ty and Lu the 
inductance per uni t length. Since wres is inversely proportional to )"L;, a 10% error in Leq 
translates to about a 5% error in Wres · 

The loss of microstrips arises from the resistance of both the signal line and the ground 
plane. In modern CMOS technologies, metal I is in fact thinner than the higher layers, 
introducing a ground plane loss comparable to the signal line loss. 

Tbe loss of a T-l i.ne manifests itself as signal attenuation (or bandwidth reduction) if the 
line simply connecrs two blocks. With a typical loss of less than 0.5 dB/mm ar frequencies 
of several tens of gigaherrz, a microstrip serve.s this purpose well . On the other hand, if a 
T-line acts as an inductive load whose Q is critical, then a much lower loss is required. 
We can readily relate the loss and the Q. Suppose aT-line of uni t length exhibits a series 
resistance of R". As shown in Fig. 7 .62, 

Vour RL 
(7. 1 02) -- ~ 

Vy, Rs + Ru + RL 

~ 
Zo 

(7.103) 
2Zo + Ru 
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Figure 7.62 Lossy transmission line. 

We lind the difference between tb is result and the ideal value and then normalize to 1/2: 

(7.104) 

(7.105) 

if R11 « 2Zo. Note that this value is expressed in decibels as 20 log( I - Loss) and the result 
is negative. AT-line of unit length bas a Q of 

Example 7.3l 

Q = L11w 
Ru 

Luw = .,.-:::-..::..,.___ 
2Zo ·Loss 

(7.106) 

(7.107) 

Consider a microstrip line 1000 11m long with Zo = 100 nand L = I nH. If the signal line is 
4~J,.m wide and has a sheet resistance of25 mn;c:, determine the Joss and the Qat 5 GHz. 
Neglect skin effect and the loss of the ground plane. 

Solution: 

The low-frequency resistance of the signal line is equal to 6.25 S'2 , yielding from Eq. (7.104) 
a loss of 0.03 J = - 0.276 dB. The Q is obtained from (7. J 07) as 

Q= 5.03. (7.108) 

In order to reduce the loss of a microstrip, the width of the signal line can be increased 
(requiring a proportional increase in the width of the ground plane). But such an increase 
(l) reduces the inductance per un it length (as if multiple signal l ines were placed in 
parallel), and (2) raises the capacirance to the ground plane. Both effect~ translate ro a 
lower characterisric impedance, Zo = J L11/C". For example, doubling the s ignal line width 
roughly halves Zo.14 Equarion (7.97) also reveals this rough dependence. 

The reduction of the characteristic impedance as a result of widening the signal line 
does make circuit design more d ifficult. As noted in Fig. 7.57, a properly-terminated T-line 

14. Doubling the width does not reduce L11 by a factor of2 because placing two coupled wires in pamllel does 
not halve the inductance. 
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loads the driving stage (block A) with a res istance of .zo. Thus, as Zo decreases, so doe.s the 
gain of block A. In other words, it is the product of the gain of block A and the i.nverse loss 
of the T-line that must be maximized, dictating that the circuit and the line be designed as 
a single entity. 

The resistance of microstrips can also be reduced by stacking metal layers. Illustrated 
in Fig. 7.63, such a geometry alleviates the trade-off between the loss and the characteristic 
impedance. Also, stacking allows a narrower footprint for the T-line, thus simplifying the 
routing and the layout. 

Metal9 

MetalS 

Figure 7.63 Microstrip using parallel metal layers for lower loss. 

Example 7.32 

Transmission lines used to transform impedances are prornbitively long for frequencies up 
to a few tens of gigahertz. However, the relationship v = 1/.JLuCu suggests that. if Cu is 
raised, then the wave velocity can be reduced and so can A = v ff. Explain the practicality 
of this idea. 

Solution: 

The issue is that a higher Cu resu lts in a lower Zo. Thus, the line can be shorter, but it 
demands a greater drive capabi lity. Moreover, impedance transformation becomes more 
difficult. For example, suppose a ')..j4 line is used to raise ZL to Z5 f ZL. This is possible 
only if Zo > ZL. 

Coplanar Lines Another candidate for integrated T-lines is the "coplanar" structure. 
Shown in Fig. 7.64, th.is geometry realizes both the s ignal and the ground lines in one 
plane, e.g., in metal 9. The characteristi c impedance of coplanar lines can be higher than 
that of microstrips because (I) the thickness of the signal and ground lines in Fig. 7.64 is 
quite small, leading to a small capacitance between them, and (2) the spacing between the 
two lines can be large, further decreasing the capaci tance. Of course, asS becomes compa­
rable wi th h, more of the electric field lines emanating from the signal wire terminate on the 
substrate, producing a higher loss. Also, the signal line can be surrounded by ground lines 
on both sides. The characteristics of coplanar lines are usually obtained by electromagnetic 
field simulations. 
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s 

Figure 7.64 Coplanur struclllre. 

The loss reduction techniques described above for microstrips can also be applied to 
coplanar li nes, entailing s imilar trade-offs. However, coplanar lines have a larger footprint 
because of their lateral spread, making layout more difficult. 

Stripline The "stripline" consists of a signal li ne surrounded by ground planes, thus pro­
ducing little field leakage to the environment. As an example, a metal-S signal line can be 
surrounded by metal-1 and metal-9 planes and vias connecting the two planes (Fig. 7.65). 
lf the vias are spaced closely, the signal l ine remains srnelded in all four directions. 

The strip line exhibits a smaller characteristic impedance than microstrip and coplanar 
structures do. It is therefore used only where field confinement is essential. 

Metal 

Metai1 L_ ______________ _, 

Figure 7.65 Stripline StniClure. 

7.5 VARACTORS 

As described in Chapter 8, "varactOrs" are an essential component of LC VCOs. Varactors 
also occasionally serve to tune the resonance frequency of narrowband ampli fiers. 

A varactor is a voltage-dependent capacitor. Two attributes of varactors become critical 
in osci llator design: (1) the capacitance range, i.e., the ratio of the maximum and minimum 
capacitances that the varactor can provide, and (2) the quality factor of the varactor, which 
is limited by the parasitic series resistances within the s tructure. Interestingly, these tvvo 
parameters trade wi th each other in some cases. 

In older generations of RF ICs, varactors were realized as reverse-biased pn junc­
tions . .Illustrated in Fig. 7.66(a) is one example where the p-substrate forms the anode 
and the n + contact, the cathode. (The p + contact provides a low-resistance connection to 
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p-substrate 

(b) 

Figure 7.66 PN junction varactor with (a) one terminal grounded, (b) both terminals floating. 

the substrate.) In this case, the anode is "hard-wired'' to ground, limiting the design flexi­
bility. A "floating" pn junction can be constructed as shown in Fig. 7.66(b), with ann-well 
isolating the diode from the substrate and acting as the cathode. 

Let us examine the capacitance range and Q of pn junctions. At a reverse bias of Vo, 
the junction capacitance, Cj . is given by 

_ Cjo 

Cr ( v ) "" I + ___!!, 
Vo 

(7. 109) 

where CjO is the capacitance at zero bias. Vo the buil t-in potential, and m an exponent 
around 0 .3 in integrated structures. We recognize the weak dependence of Cj upon V D· 

Since Vo ;:,;, 0.7 to 0.8 V and s ince v0 is constrained to less than I V by today's supply 
voltages, the term 1 + Vvf Vo varies between approximately 1 and 2. Furthermore, an m of 
about 0.3 weakens tllis variation, resulting in a capacitance range, Cj.max/Cj.mi1, of roughly 
1.23. In practice, we may allow the varactor to experience some forward bias (0.2 to 0.3 V), 
thus obtaining a somewhat larger range. 

T he Q of a pn-junction varactor is given by the total series resistance of the structure. 
.In the floating diode of Fig. 7.66(b), this resistance is primarily due to the n-weiJ and can be 
minimized by selecting minimum spacing between then+ and p+ contacts . Moreover, as 
shown in Fig. 7 .67, each p + region can be surrounded by an n + ring to lower the resistance 
in two dimensions. 

Unlike inductors, transformers, and T-lines, varactors are quite difficult to simulate and 
model, especially for Q calculations . Consider the displacement current flow depicted in 
Fig. 7.68(a). Due to the two-dimensional nature of the flow, it is difficult to determine or 
compute the equivalent series resistance of the structure. This issue arises partly because 
the sheet resistance of then-well is typically measured by the foundry for contacts having a 
spacing greater than the depth of then-well [Fig. 7 .68(b)]. Since the current path in this case 
is different from that in Fig. 7.68(a), then-well sheet resistance cannot be directly applied 
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Figure 7.67 Use of an 11+ ring to reduce vamcror resistance. 

p-substrate p-substrate 

(a) (b) 

Figure 7.68 Current distribution in a (a) 11aracro•; (b) typicul rest structure. 

to the calculation of the varactor series resistance. For these reasons, the Q of varactors is 
usually obtained by measurement on fabricated structure.s. 15 

In modern RF IC design, MOS varactors have supplanted their p11-junction counter­
parts . A regular MOSFET exhibi ts a voltage-dependent gate capacitance (Fig. 7.69), bm 
the non monotonic behavior limits the design fl exibi lity. For example, a voltage-controlled 
oscillator (YCO) employing such a varactor would generate an output frequency that rises 
and falls as (the average) Vcs goes from negative to positive values. This nonmonotonic 
fTequency tuning behavior becomes problematic in phase-locked loop design (Chapter 9). 

G Accumulation Strong Inversion 

1 
? 

s 

Figure 7.69 Variation of gate capacitance wirh Vas. 

L5. Of cou•·se. semiconductor device simulatol's can be used here if the doping levels and t:he junction depths 
are koown. 
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+ Depletion 

~.-J:~~~~~~::J:Region 

p - substrate 

(b) 

0 

(d ) 

Figure 7.70 (a) MOS ••aracror, (b) operatio11 with negative gate-source voltage, (c) operation with 
positive gate-source voltage, (d) resulti11g CN characteristic. 

A s imple modification of the MOS device avoids the above issues. Called an 
"accumulation-mode MOS varactor" and shown in Fig. 7.70(a), this structure is obtained 
by placing an NMOS transistor ins ide ann-well. If V c < Vs, then the electrons in then-well 
are repelled from the s ilicon/oxide interface and a depletion region is formed [Fig. 7.70(b)]. 
Under this condition, the equivalent capacitance is given by the series combination of the 
oxide and depletion capacitances. As Vc exceeds Vs, the interface attracts electrons from 
then+ source/drain terminals, creating a channel [Fig. 7.70(c)]. The overall capacitance 
therefore rises to that of the oxide, behaving as shown in Fig. 7.70(d). (Since the material 
under the gate is tl-type silicon, the concept of strong inversion does not apply here.) 

The CIV characteristic of MOS varactors has scaled well with CMOS technology gen­
erations, approaching its saturated levels of C11wx and C111;n for V cs ~ ± 0.5 V .in 65-nm 
devices. These varactors therefore operate with low supply voltages better than thei r 
pn-junction counterparts. 

Another advantage of accumulation-mode MOS varactors is that, un like p11 junc­
tions, they can tolerate both positive and negative voltages. In fact, the characteristic of 
Fig. 7.70(d) suggests that MOS varactors should operate with positive and negative biases 
so as to provide maximum tuning range. We pursue th is point in VCO design in Chapter 8. 

Circuit simulations must somehow incorporate the varactor CJV characteristic of 
Fig. 7 .70(d). In practice, this characteristic is measured on fabricated devices and repre­
sented by a table of discrete values. Such a table, however, may introduce discontinuities in 
the derivatives of the characteristic, creating undesirable artifacts (e.g. , a high noise floor) 
in simulations. It is therefore desirable to approximate the CJV plot by a well-behaved 
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function. The hyperbol ic tangent proves useful here for both its saturating behavior and its 
continuous derivatives. Noting that mnh(±oo) = ± 1, we approximate the characteristic of 
Fig. 7.70(d) by 

C <v , ) = Cmw - Cmin • h ( + V GS) + Cmw + Cmin 
var GS 2 t<ln a Vo 2 . (7.110) 

Here, a and Vo allow fitti ng for the intercept and the s lope, respectively, and Cmin and Cmax 

include the gate-drain and gate-source overlap capacitance. 
The above varactor model translates to different characteristics in different c ircuit s im­

ulators! For example, HSPICE predicts a narrower oscillator tuning range than Cadence 
does. Simulation tools that analyze circuits in terms of voltages and currents (e.g., HSPICE) 
interpret the nonlinear capacitance equation correctly. On the other hand, programs that rep­
resent the behavior of capacitors by charge equations (e.g., Cadence's Spectre) require that 
the model be transformed to a Q!V relationship. To this end, we recall the general defini tion 
of capacitance from dQ = C(V)dV and write 

Qvar = J CvardVcs (7.111) 

Cmax - Cmin" l [ h ( + Vcs) ] + Cmax + Cmin V = 2 vo n cos a Vo 2 GS· (7.112) 

ln other words, the varactor is represented as a two-terminal device whose charge and 
voltage are related by Eq. (7.ll2). The simulation tool then computes the current flowing 
through the varactor as 

I 
- dQ,,., 

var - dt · (7.113) 

The Q of MOS varactors is determined by the resistance between the source and drain 
tenninals.'6 As shown in Fig. 7.7l(a), this resistance and the capacitance are d istributed 
from the source to the drain and can be approximated by the lumped model depicted in 
Fig. 7.7l (b). 

p - substrate s 
(b) 

Figure 7.71 (a) E.ffecl of distributed resistance i11 a varactor, (b) lumped model. 

l6. \Ve assume that the gate resistance is minimized by proper layour. 
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Example 7.33 

Determine the equivalen t resistance and capacitance values in the lwnped model of 
Fig. 7.71 (b). 

/x 

:··· ··· ·· . .. ... ... ............ .. ...... .......... ... ... ... .. .... ... ... ... .. ···: 

': L .f!.u ......... '!.~ ......... f!.u ................................................. j 
(a) 

(b) (c) 

Figure 7.72 (a) Distributed model of a varactor. (b) equivalel!l circuit for half of tlw structure. 
(c) canonical T-line stmcture. 

Solution: 

Let us first consider only one-half of the structure as shown in Fig. 7.72(a). Here, the uni t 
capacitances add up to the total distributed capacitance, Cw~> and the unit resistances to 
the total distributed resistance. R101 • We tum the circuit upside down, arriving at the more 
familiar topology illustrated in Fig. 7.72(b). The circuit now resembles a transmission line 
consisting of series resistances and parallel capacitances. For the general T-line shown in 
Fig. 7 .72(c), it can be proved that the input impedance, Zin. is g iven by 1181 

~ I 
lin = V ¥;' tanh(.JZiYj' d), (7.11 4) 

where Z1 and Y1 are specified for unit length and d is the length of the line. From 
Fig. 7.72(b), l 1d = R10r and Y1d = C101s; thus, 

lin= (7.Jl5) 
Rwr 
CwrS tanh(.J Rw1C101s/4) · 

At frequencies well below l j(R101C101 /4), the argwnent of tanh is much less than unity, 
allowing the approximation, 

€3 
tanhE::::: E - -

3 
E 

~ ---..,. 2 . 
E 

+ -
3 

(7.116) 

(7.117) 
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It follows that 
lin~ I +Rrot/2. (7 .118) 

C10rsf2 3 

That is, the lumped model of half of lhe structure consist~ of its distributed capaci­
tance in series wi th one-third of its distributed resistance. Accoun ting for the gray half 
in Fig. 7.72(b), we obtain 

1 Rrot 
Z· ~ -- + -m.ror C 12 . ,l),s 

(7.1 19) 

The principal difficulty in computing the Q of MOS varactors (placed inside an n-well) 
is that the resistance between the source and drain cannot be directly computed (TOm the 
MOS transistor characteristics. As with pn j unctions, lhe Q of MOS varactors is usually 
obtained from experimental measurements. 

How does the Q of MOS varactors vary with the capacitance? In the characteristic of 
Fig. 7 .70(d), as we begin from Cmin• the capacitance is small and the resistance somewhat 
large (that of n-well). On the other hand, as we approach Cmax. the capacitance ri ses and 
the resistance falls. Consequently, equation Q = 1/ (RCw) suggests that lhe Q may remain 
relatively constant. In practice, however, the Q drops as CGs goe.s from Cmin to C,.ax 
(Fig . 7 .73), indicating that the relative rise in the capacitance is greater than the relati ve 
fall in the resistance. 

a 

0 0 

Figure 7.73 \lari(/{ion of varactor Q with capacitcmce. 

As explained in Chapter 8, it is desirable to maximize the Q of varactors for oscillator 
design. From our foregoing study of MOS varactors, we conclude that the device length 
(the distance between the source and drain) must be minimized. Unfortunately, for a mini­
mum channel le ngth, the overlap capacitance between the gate and source/drain terminals 
becomes a substantial fraction of the overall capacitance, limjting the capacitance range. As 
illustrated in Fig. 7.74, the overlap capacitance (which is relatively voltage- independent) 
shifts the CIV characteristic up, yielding a ratio of (C,a.x + 2WC0 ,)/(C,.;,, + 2WC0 ,), 

where Cmax and C,;11 denote the "intri nsic" values, i.e., those without the overlap effect. 
For a 1n in imum channel length , 2WC0 v may even be larger than C,;11, thus reducing the 
capacitance ratio considerably. 
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_..- Cmax+ 2 WCov 

c""'' 
Without Overlap 

Capacitance Cmin + 2WCov 

Cmi•------+-----

0 

Figure 7.74 Ejfecr of overl"p w pacil,mce on varactor capacirance ra11ge. 

Example 7.34 

AMOS varactor realized in 65-nm technology has an effective length of 50 nm and a C0 v of 
0.09fF/~m. If Cm = 17 fF/11m2 , determine the largest capacitance range that the varactor 
can provide. 

Solution: 

Assuming a width of J 11m for the device, we have 2WC0 v = 0. 18 fF and a gate oxide 
capaci tance of 17 fF/~.rn2 X I 11m X 50 nm = 0 .85 fF. T hus, the minimum capacitance is 
0.18 fF (if the series combination of the oxide and depletion capaci tances is neglected), 
and the maximum capacitance reaches 0.85fF + 0.18fF= 1.03fF. The largest possible 
capacitance ratio is therefore equal to 5.72. In practice, the series combination of the oxide 
and depletion capaci tances is comparable to 2WCov, reducing this ratio to about 2.5. 

I.n order to achieve a larger capacitance range, the length of MOS varactors can be 
increased. In the above example, if the effective channel length grows to I 00 nm, then the 
capacitance ratio reaches (1.7fF + 0.18tF)/(0 .18fF) = 10.4. However, the larger source­
drain resistance results in a lower Q. Since the maximum capacitance goes from 1.03 fF to 
1.88 fF and si.nce the channel resistance is doubled, the Q [ = 1/(RCw)] falls by a factor 
of 3.65. Jn other words, an m-fold increase in the channel length translates to roughly an 
m2-fold drop in the Q. 

The trade-off between the capacitance range and Q of varactors ultimately leads to 
another between the tuning range and phase noise of LC VCOs. We study this issue in 
Chapter 8. At frequencies up to about 10 GHz, a channel length of twice the minimum may 
be chosen so as to widen the capaci tance range while retaining a varactor Q much larger 
than the inductor Q. 

7.6 CONSTANT CAPACITORS 

RF ci1·cuits employ constant capacitors for various purposes, e.g., (I) to adjust the reso­
nance frequency of LC tanks, (2) to provide ac coupling between stages, or (3) to bypass 
the supply rail to ground. The cri tical parameters of capacitors used in RF ICs include the 
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capacitance density (the amount of capacitance per un it area on the chip), the parasitic 
capacitances, and the Q. 

7 .6. 1 MOS Capacitors 

MOSFETs configured as capaci tors offer the highest density in integrated circuits because 
Cox is larger than other capacitances in CMOS processes. However, the use ofMOS capac­
itors entails two issues. FiJSt, to provide the maXcimum capacitance, the device requires a 
Vcs higher than the threshold voltage (Fig. 7.69). A similar "bia~" requirement applies to 
MOS varactors if they are to provide maximum capacitance. Second, the channel resis­
tance limi ts the Q of MOS capaci tors at high frequencies. From Eq. (7.119), we note that 
the channel resistance is div ided by 12 in the Jumped model, yielding 

(7.120) 

Both of the above issues make MOS capaci tors a poor choice for interstage coupling. 
Depicted in Fig. 7 .75(a) is an example, wherein M3 sustains a bias gate-source voltage 
approximately equal to Voo - VcS2 (why?). With typical values of Voo = 1 V and Vcs2 = 
0.5 V, M3 suffers from a small overdrive voltage and hence a high channel resistance. 
Moreover, the nonlinearity of the capacitance of M3 may manifest itself if the circui t senses 
large interferers. For these reasons, MOS capacitors rarely serve as coupling devices. 

Bond Wire 

~---:~~~~~--~r-~o 

-I -~ 
~ ~ 

(a) (b) 

Figure 7.75 MOS capacilor used as (a) coupling device (b) bypass compo11en1. 

One application of MOS capacitors is in supply bypass. As illustrated in Fig. 7.75(b), 
the supply line may include significant bond wire inductance, allowingfeedback from tbe 
second stage to the first at high frequencies. The bypa~s capaci tor, M3, creates a low 
impedance between the supply and the ground, suppressing the feedback. ln this case, 
the Q of M3 is still important: if the equivalent series resistance of the device becomes 
comparable with the reactance of its capacitance, then the bypass impedance may not be 
low enough to suppress the feedback. 

1t is important to note that typical MOS models fail to include the channel resis­
tance, R011 , if the source and the drain are shorted. As illustrated in Fig. 7.75(b) for M3, 
Ron3 is represented as a single lumped component between the two terminals and simply 
''shorted out" by circuit simulators. For this reason, tbe designer must compute R on from 
IN characteristics, divide it by 12, and insert the result in series with the MOS capacitor. 
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Example 7.35 

A MOS capacitor can be constructed as a single transistor of length L [Fig. 7.76(a)] 
or N transistors in paralleL each of length Lf N. Compare the Q's of the two struc­
tures. For simplicity, assume the effective channel lengths arc equal to L and Lf N, 
respectively. 

Solution: 

The structure of Fig. 7.76(a) exhibits a channel resistance of 

I 
Ran.a = ---w..,..-----

J.I."C"xL(Vc;s - VtH) 

(7.121) 

and each finger in Fig. 7.76(b) a channel resistance of 

I 
Ran.u = ----,w,.,.,------

J.I,"Cm L/ N (Vc;s- VtH) 

(7.122) 

S ince N fingers appear in parallel, R011 .b = R011•11/ N = R011.a/N2 That is, the decomposition 
of the device into N parallel fingers reduces the resistance by a factor of N2 . 

(a) 

L . 
N · 

w 
(b) 

Figure 7.76 MOS cupocitor realhed as (o) one long finger. (b) multiple short fingers. 

For frequencies up to a few tens of gigahertz, the above decomposition can yield 
reasonable Q's (e.g., 5 to I 0), allowing the use of MOS capacitors for supply bypa%. 

The reader is cautioned that very large MOS capaci tors suffer from significant gate 
leakage current, especially with a Vc;s as high as Vvv. This current manifests itself if the 
system must e nter a low-power (standby) mode: the leakage persists as long as Vvv is 
applied, draining the battery. 
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Metal9 
c, 

MetalS 
c. 

Metal7 
c, 

Metal6 

c"T 
Substrate 

Figure 7.77 Parallel-plate capaciTor. 

7 .6.2 M etal-Plate Capacitors 

If the Q or linearity of MOS capacitors is inadequate, metal-plate capacitors can be used 
instead. The "parallel-plate" structure employs planes in different metal layers as shown in 
Fig. 7.77. For maximum capacitance density, all metal layers (and even the poly layer) can 
be utilized. 

Example 7.36 

Show the actual connections necessary among the metal layers shown in Fig. 7 .77. 

Solution: 

The even-numbered metal layers must be ti ed to one another and so must the odd-numbered 
layers. As shown in Figure 7.78, these connections are made by vias. In practice, a row 
of vias (into the page) is necessary to connect the layers so as to obtain a small series 
resistance. 

Metal 9 c;:===:::J 
Metal S 

Metal 7 

Metal 6 

Metal S 

Metal4 

Substrate 

Figure 7.78 Detuiled rea/izmion ofparallel·plate capacitor. 

The Q and linearity of well-designed parallel-plate capacitors are typically so high 
that they need not be taken into account. However, even with all metal layers and a poly 
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layer, parallel-plate structures achieve less capac itance density than MOSFETs do. For 
example, with nine metal layers in 65-nm tech nology, the former provides a density of 
about 1.4lF/Ikm2 and the latter, 17 fF/Ikm2 

Parallel-plate geometries also suffer from a para~itic capacitance to the substrate. As 
illustrated in Fig. 7.79, the capacitance between the lowest plate and the substrate, Cp, 
divided by the desired capacitance, CAn = C t + · · · + C9, represents the severity of this 
parasitic. In a typical process, this value reaches 10%, leading to serious difficulti es in 
circ uit design. 

Example 7.37 

Metal:~ A 
c, 

MetalS 

T 

Meta I 1 kE==::;::::::::J 
Cg~ 

Poly 

Substrate 

Figure 7.79 Bouom-plate pamsitic capucitance. 

We wish to employ capacitive coupling at the input of a stage that has an input capacitance 
of C;n (Fig . 7.80). Detennine the additional input capacitance resulti ng from the coupling 
capacitor. Assume Cr = O.!Cc. 

Figure 7.80 Choice of input coupling capacitance l'alue. 

Solution: 

To minimize signal auenuation, Cc must be much greater than C;,, e.g., Cc::::: 5C;,. Thus, 
Cp = 0.5C;11, yielding 

• CcCin 
C;., = + 0.5C;n 

Cc + C;, 
(7 .123) 

4 
= 3Cin· (7 .124) 

That is, the input capaci tance is raised by more than 30%. 

References 495 

Figure 7.81 Fringe capacitor structllre. 

To alleviate the above issue, only a few top metal layers can be utilized. For example, a 
structure consisting of metal 9 through metal 4 has a density of 660 aF/1km2 and a parasitic 
of 18 aF/11m2, i.e., 2.7%. Of course, the lower density translates to a larger area and more 
complex routing of signals. 

An alternative geometry utili zes the lateral electric field between adj acent metal lines to 
achieve a nigh capacitance density. lllustrated in Fig. 7.81, this "fringe" capacitor consists 
of narrow metal lines with the minimum allowable spacing. This structure is described in 
Chapter 8. 
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PROBLEMS 

7.1. Extend Eg. (7 .1) to anN-turn spiral and show that L101 contains N(N + 1)/ 2 tenns. 

7 .2. Prove that the Q of the circuit shown in Fig. 7.32(a) is given by Eq. (7.62). 

7 .3. Prove that for anN-turn spiral inductor, the equivalent interwinding capacitance is 
given by 

Ci + ··· + CN2- i 
Ceq = (N2 - 1)2 (7.125) 

7 .4. Using Eq. (7.62), compare the Q's of the circuits shown in Figs. 7 .37(b) and (d). 

7 .5. Consider the magnetic fields produced by the inductors in Fig. 7 .41. Which topol­
ogy creates less net magnetic field at a point far from the circui t but on its li ne of 
symmetry? 

7.6. Repeat Example 7.13 for a 5-nH inductor using a linewidth of 5 ).Lm, a line spacing 
of 0.5 J.Lm, and fow· turns. Do the results depend much on the outer diameter? 

7.7. For the ci rcuit of Fig. 7.28(a), compute Yii and find the parallel equivalent resistance. 
Is the resu lt the same as that shown in Eq. (7 .55)? 

7 .8. Repeat Example 7. 19 for four turns. Is it possible to find an expression for N turns? 

7.9. Find the input impedance, Z;., in Fig. 7.50. 

7.10. Using the capaci tance data in Table 7.1 , repeat Example 7.25 for an inductor realized 
as a stack of four metal layers. Assume the inductance is about 3.5 times that of one 
spiral. 

7 .ll. Suppose an LC VCO (Chapter 8) employs pn-juncrion varactors. Determine the 
bounds on the control voltage and the output swings if the varactors must remain 
reverse-biased. 

CHAPTER 

8 
OSCILLATORS 

In our study of RF transceivers in Chapter 4 , we noted the ex tensive use of oscillators in 
both the transmi t and receive paths. Interestingly, in most systems, one input of every mixer 
is driven by a periodic signal, hence the need for osci llators. This chapter deals wi th the 
analysis and design of oscillators. T he outli.ne is shown below. 

General Principles 

• Feedback View 
• One-Port View 
• Cross-Coupled 

Oscillator 
• Three-Point 

Oscillators 

Voltage-Controlled 
Oscillators 

• Tuning Limitations 
• Effect of Varactor Q 
• VCOs with Wide 

Tuning Range 

Phase Noise 

• Effect of Phase Noise 
• Analysis Approach I 
• Analysis Approach II 
• Noise of Bias Current 
• VCO Design Procedure 
• Low- Noise VCOs 

8.1 PERFORMANCE PARAMETERS 

Quadrature VCOs 

• Coupling into an Oscillator 
• Basic Topology 
• Properties of Quadrature 

Oscillators 
• Improved Topologies 

An oscillator used in an RF transceiver must satisfy two sets of requirements: (I) system 
specifications, e.g., the frequency of operation and the "purity" of the output, and (2) "inter­
face" specifications, e .g., drive capabil ity or output swing. In this section, we study the 
osci llator performance parameters and their role in the overall system. 

Frequency Range An RF oscillator must be des igned such that its frequency can be var­
ied (tuned) across a certain range. This range includes two components: (1) the system 
specification; for example, a 900-MHz GSM d irect-conversion receiver may tune the LO 
from 935 MHz to 960 MHz; (2) additional margin to cover process and temperature varia­
tions and errors due to modeling inaccuracies. The latter component typically amounts to 
several percent. 
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