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PASSIVE DEVICES

An important factor in the success of today’s RF integrated circuits has been the ability
to incorporate numerous on-chip passive devices, thus reducing the number of off-chip
components. Of course, some integrated passive devices, especially in CMOS technology,
exhibit a lower quality than their external counterparts. But, as seen throughout this book,
we now routinely use hundreds of such devices in RF transceiver design—an impractical
paradigm 1f they were placed off-chip.

This chapter deals with the analysis and design of integrated inductors, transformers,
varactors, and constant capacitors. The outline of the chapter is shown below.

Inductors Inductor Structures Transformers Varactors
= Basic Structure = Symmetric Inductors = Structures = PN Junctions
® Inductance Equations = Effect of Ground Shield = Effect of Coupling = MOS Varactors
= Parasitic Capacitances » Stacked Spirals Capacitance ® Varactor Modeling
* Loss Mechanisms = Transformer Modeling

® Inductor Modeling

7.1 GENERAL CONSIDERATIONS

While analog integrated circuits commonly employ resistors and capacitors, RF design
demands additional passive devices, e.g.. inductors, transformers, transmission lines,
and varactors. Why do we insist on integrating these devices on the chip? If the entire
transceiver requires only one or two inductors, why not utilize bond wires or external
components? Let us ponder these questions carefully.

Modern RF design needs many inductors. To understand this point, consider the sim-
ple common-source stage shown in Fig. 7.1(a). This topology suffers from two serious
drawbacks: (a) the bandwidth at node X 1s limited to 1/[(Rp||ro /Cp], and (b) the voltage
headroom trades with the voltage gain, g, (Rp||rg)). CMOS technology scaling tends to
improve the former but at the cost of the latter. For example, in 65-nm technology with a
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Figure 7.1 CS stage with (a) resistive, and (b) inductive loads.

-

Figure 7.2 Coupling berween bond wires.

1-V supply, the circuit provides a bandwidth of several gigahertz but a voltage gain in the
range of 3 o 4.

Now consider the inductively-loaded stage depicted in Fig. 7.1(b). Here, Ly resonates
with Cp, allowing operation at much higher frequencies (albeit in a narrow band). More-
over, since Lp sustains little de voltage drop, the circuit can comfortably operate with low
supply voltages while providing a reasonable voltage gain (e.g., 10). Owing to these two
key properties, inductors have become popular in RF transceivers. In fact, the ability to
integrate inductors has encouraged RF designers to utilize them almost as extensively as
other devices such as resistors and capacitors.

In addition to cost penalties. the use of off-chip devices entails other complications.
First, the bond wires and package pins connecting the chip to the outside world may
experience significant coupling (Fig. 7.2), creating crosstalk between different parts of the
lransceiver.

Example 7.1

Identify two undesirable coupling mechanisms if the LO inductor is placed off-chip.

Solution:

As illustrated in Fig. 7.3, the bond wire leading to the inductor couples to the LNA input
bond wire, producing LO emission and large de offsets in the baseband. Additionally, the
coupling from the PA output bond wire may result in severe LO pulling,
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Example 7.1 (Continued)

Figure 7.3 Hypothetical transceiver using an off-chip inductor.

Second. external connections introduce parasitics that become significant at higher fre-
quencies. For example, a I-nH bond wire inductance considerably alters the behavior of
gigahertz circuits. Third. it is difficult to realize differential operation with external loads
because of the poor control of the length of bond wires.

Despite the benefits of integrated components, a critical challenge in RF microelec-
tronics has been how to design high-performance circuits with relatively poor passive
devices. For example, on-chip inductors exhibit a lower quality factor than their off-chip
counterparts, leading to higher “phase noise” in oscillators (Chapter 8). The RF designer
must therefore seek new oscillator topologies that produce a low phase noise even with a
moderate inductor (.

Modeling Issues Unlike integrated resistors and parallel-plate capacitors, which can be
characterized by a few simple parameters, inductors and some other structures are much
more difficult to model. In fact, the required modeling effort proves a high barrier to entry
into RF design: one cannot add an inductor to a circuil without an accurate model, and
the model heavily depends on the geometry, the layout, and the technology’s metal layers
{(which is the thickest).

It is for these considerations that we devote this chapter to the analysis and design of
passive devices.

7.2 INDUCTORS

7.2.1 Basic Structure

Integrated inductors are typically realized as metal spirals (Fig. 7.4). Owing to the mutual
coupling between every two turns, spirals exhibit a higher inductance than a straight line
having the same length. To minimize the series resistance and the parasitic capacitance, the
spiral is implemented in the top metal layer (which is the thickest).
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The inductance primarily depends on the number of turns and the diameter of each turn,
but the line width and spacing indirectly atfect these two parameters.

il Lh' Example 7.3

—E The line width of a spiral is doubled to reduce its resistance; D, §, and N remain constant,
. B How does the inductance change?
A D Solution:
Figure 7.4 Simple spiral inductor. As illustrated in Fig. 7.6, the doubling of the width inevitably decreases the diameter of the

inner turns, thus lowering their inductance. and the larger spacing between the legs reduces

Example 7.2 their mutual coupling. We note that further increase in W may also lead to fewer turns,

. ! . . . reducing the inductance.
For the three-turn spiral shown in Fig, 7.4, determine the overall inductance,
Doyt Dyt

Solution: - - - -
We identify the three turns as AB, BC, and CD, denoting their individual inductances by
Ly, Ly, and L3, respectively. Also, we represent the mutual inductance between L and L
by M2, ete. Thus, the total inductance is given by
Ligp=L +Ly+ Ly +Mpz + Mz + Mxn. (7.1)
Equation (7.1) suggests that the total inductance rises in proportion to the square of —
the number of turns, In fact, we prove in Problem 7.1 that the inductance expression for an | -
N-turn structure contains N(V -+ 1) /2 terms. However, two factors limit the growth rate as a ""w*"" ""“'w_""‘
function of N: (a) due to the geometry’s planar nature, the inner turns are smaller and hence L %
exhibit lower inductances, and (b) the mutual coupling factor is only about 0.7 for adjacent Figure 7.6 Effect of doubling line width of a spiral.
turns, falling further for non-adjacent turns. For example, in Eq. (7.1). Ly is guite smaller
than L, and M3 quite smaller than M ;2. We elaborate on these points in Example 7.4.
A fwu-diﬁmenﬂinnal e b SP'fﬂJ is fully Ispemﬁe;.i by four quantities (Fig. 7.5): {h‘? Compared with transistors and resistors, inductors typically have much greater dimen-
outer dimension, Dy, the line width, W, the line spacing, S, and the number of turns, N, sions (“fool prints™), resulting in a large chip area and long interconnects traveling from
i one block to another. It is therefore desirable to mimimize the outer dimensions of induc-
e g tors. For a given inductance, this can be accomplished by {a) decreasing W |Fig. 7.7(a)].
b or (b) increasing N [Fig. 7.7(b)]. In the former case, the line resistance rises, degrading the
t inductor quality. In the latter case, the mutual coupling between the sides of the innermost
L8 turns reduces the inductance because opposite sides carry currents in opposite directions.
D;, Dot As shown in Fig. 7.7(b). the two opposite legs of the innermost turn produce opposing
+ __'El magnetic fields, partially cancelling each other’s inductance.
: 1 T
Becrs D i T Example 7.4

Figure 7.8 plots the magnetic coupling factor between two straight metal lines as a function
of their normalized spacing, S/W. Obtained from electromagnetic field simulations, the
plots correspond to two cases: each line is 20 pm or 100 pm long. (The line width is 4 pm.)
What inner diameter do these plots prescribe for spiral inductors?

Figure 7.5 Vurious dimensions of a spiral inductor,

. Oine may use the inner ning dimension, £, rather than riv. ’
Cine may use the inner opening ension, I3, rather than [, o {Coniinues)
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Figure 7.7 Effect of {a) reducing the outer dimension and the line width, or (b) reducing the outer
dimension and increasing the number of turns.

Example 7.4 (Continued)

Line Length = 100um

Line Length = 20 um

A I O O | FOT =%
'1 2 3 4 5 6 g
w

Figure 7.8 Coupling factor between two straight lines as a function of their normalized spacing.

Solution:

We wish to minimize the coupling between the opposite sides of the innermost turn. Rel-
evant to typical inductor designs is the plot for a line length of 20 pum, suggesting that a
diameter of 5 to 6 times W should be chosen for the inner opening to ensure negligible
coupling. It is helpful to remember this rule of thumb.

Even for the basic inductor structure of Fig. 7.5, we must answer a number of ques-
tions: (1) How are the inductance, the quality factor, and the parasitic capacitance of the
structure calculated? (2) What trade-offs do we face in the choice of these values? (3) What
technology and inductor parameters affect the quality factor? These questions are answered
in the context of inductor modeling in Section 7.2.6.
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7.2.2 Inductor Geometries

Our qualitative study of the square spiral inductors reveals some degrees of freedom in the
design, particularly the number of turns and the outer dimension. But there are many other
inductor geometries that further add to the design space.

Figure 7.9 shows a collection of inductor structures encountered in RF 1C design. We
investigate the properties of these topologies later in this chapter, but the reader can observe
at this point that: (1) the structures in Figs. 7.9(a) and (b) depart from the square shape,
{2) the spiral in Fig. 7.9(c) is symmetric, (3) the “stacked™ geometry in Fig. 7.9(d) employs
two or more spirals in series, (4) the topology in Fig. 7.9(e) incorporates a grounded
“shield” under the inductor. and (5) the structure in Fig. 7.9(f) places two or more spi-
rals in parallel.? Of course, many of these concepts can be combined, e.g., the parallel
topology of Fig. 7.9(f) can also utilize symmetric spirals and a grounded shield.

fa) ih) i€l

() (e} i)

Figure 7.9 Various inductor structures: (a) circular, (b) octagonal, (¢} symmetric, (d) stacked,
(e} with grounded shield, () parallel spirals.

Why are there so many different inductor structures? These topologies have resulted
from the vast effort expended on improving the trade-offs in inductor design. specifically
those between the quality factor and the capacitance or between the inductance and the
dimensions.

While providing additional degrees of freedom, the abundance of the inductor geome-
tries also complicates the modeling task, especially if laboratory measuremenis are
necessary to fine-tune the theoretical models. How many types of inductors and how many
different values must be studied? Which structures are more promising for a given circuit
application? Facing practical time limits, designers often select only a few geometries and
optimize them for their circuit and frequency of interest.

2. The spirals are shorted to one another by vias, although the vias are not necessary.
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7.2.3 Inductance Equations

With numerous inductors used in a typical transceiver. it is desirable to have closed-form
equations that provide the inductance value in terms of the spiral’s geometric properties.
Indeed, various inductance expressions have been reported in the literature [1-3], some
based on curve fitting and some based on physical properties of inductors. For example,
an empirical formula that has less than 10% error for inductors in the range of 5 to 50 nH
is given in [ 1] and can be reduced o the following form for a square spiral:

AS,."S

m

Lat13x107! (7.2)

A:ﬂﬂf’w]_?i (W ik S}U_Eﬁ g

where A, is the metal area (the shaded area in Fig. 7.5) and A, is the total inductor area
(/= D2 _in Fig. 7.5). All units are metric.

el

Example 7.5

Calculate the inductor metal area in terms of the other geometric properties.

Solution:

Consider the structure shown in Fig. 7.10. We say this spiral has three turns because each
of the four sides contains three complete legs. To determine the metal area, we compute the
total length, I, of the wire and multiply it by W. The length from A to B is equal to D,
from B to C, equal to D, — W, ete. That is,

Iap = Dot (7.3)
Ipc =lep = Doy — W (7.4)
Ipg = lgFr = Dyyy — (2W + §) (71.5)
IrG = lgg = Dy — (3W + 285) (7.6)
Iy = iy = Dy — (AW + 35) (7.7)
lig = Ikp = Dy — (SW + 45) (7.8)
liar = Dyur — (6W + 58). (7.9)

Adding these lengths and generalizing the result for N turns, we have

Y L VI e ) N - (7.10)
= 4ND,,; — 4N°W — (2N — 1)2S. (7.11)

Since [;,; 3= §, we can add one § 1o the right-hand side so as to simplify the expression:

lior % AN[Dyyy — W — (N — 1)(W + §)]. (7.12)
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Example 7.5 (Continued)

The metal area is thus given by

A = WIAND,,; — 4NZW — (2N — 1)35] (7.13)
2 ANW[Dpur — W — (N — IN(W + 5)]. (7.14)

This equation s also used for calculating the area capacilance of the spiral.

c D

[
J M
[

1 El |

w_[B Al
+-||

Dot

Figure 7.10 Spiral inductor for calculation of line length,

An interesting property of inductors is that, for a given wire length, width, and spacing,
their inductance is a weak function of the number of turns. This can be seen by finding D,
from (7.12), noting that A, & D2, ., and manipulating (7.2) as follows:

g
L 1ax107! L 7 . (7.15)
Lo *
[ﬁ + W+ (N— (W + S}} WOV o+ 5y

We observe that N appears only within the square brackels in the denominator, in two terms
varying in opposite directions, with the result raised to the power of 1/3. For example,
if lipy = 2000pm, W=4pm, and §= 0.5 pm, then as N varies from 2 to 3 to 4 to 5,
then inductance rises from 3.96nH to 4.47 nH to 4.83 nH to 4.96 nH, respectively. In other
waords, a given length of wire yields roughly a constant inductance regardless of how it is
“wound.” The key point here is that, since this length has a given series resistance (at low
frequencies), the choice of N only mildly affects the  (but can save area).

Figure 7.11 plots the inductance predicted by the simulator ASITIC (described below)
as N varies from 2 to 6 and the total wire length remains at 2000 pm.* We observe that L
becomes relatively constant for N = 3, Also, the values produced by ASITIC are lower
than those given by Eq. (7.15).

3. But the number of turns must be at least 2 to create mutual coupling.
4. The outer dimension varies from 260 [Lm o L1 JLm in this experiment.
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Figure 7.11 Inductance as a function of the number of turns for a given line length.

A number of other expressions have been proposed for the inductance of spirals. For
example,
N2D et a2
L= W(]n—‘ + a3p +-:r4p!). (7.16)
o

where Dge = (Dpye + Diy)/2 in Fig, 7.5 and p is the “fill factor™ and equal 10 (D —
Din) /(Do + Din) 13]. The & coefficients are chosen as follows [3]:

1.27, @2 = 2.07, w3 = (L18, ay = 0.13 for square shape (7.17)
1.07, s = 2,29, wy = 0, a4 = (.19 for octagonal shape. (7.18)

o)

)

Another empirical expression is given by [3]

L=1.62x 107D, }? W—“'”?Di;;ﬁl'ms_ﬂm for square shape (7.19)
L=133X If}'jﬂ‘;'l,'zlW_'“'mjﬂﬁ;fh“'”fi_ﬂ'm” for octagonal shape.  (7.20)

Accuracy Considerations The above inductance equations yield different levels of accu-
racy for different geometries. For example, the measurements on tens of inductors in [3]
reveal that Egs. (7.19) and (7.20) incur an error of about 8% for 20% of the inductors
and an error of about 4% for 50% of the inductors. We must then ask: how much error
is tolerable in inductance calculations? As observed throughout this book and exempli-
fied by Fig. 7.1(b). inductors must typically resonate with their surrounding capacitances
al the desired frequency. Since a small error of AL/L shifts the resonance frequency, ey,
by approximately AL/(2L) (why?), we must determine the tolerable error in ay.

The resonance frequency error becomes critical in amplifiers and oscillators, but much
more so in the latter. This is because, as seen abundantly in Chapter 8, the design of LC
oscillators faces tight trade-offs between the “tuning range™ and other parameters. Since
the wning range must encompass the error in ey, a large error dictates a wider tuning
range, thereby degrading other aspects of the oscillator’s performance. In practice, the tun-
ing range of high-performance LC oscillators rarely exceeds £10%. requiring that both
capacitance and inductance errors be only a small fraction of this value, e.g.. a few per-
cent. Thus, the foregoing inductance expressions may not provide sufficient accuracy for
oscillator design.
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Another issue with respect to inductance equations stems from the geometry limitations
that they impose. Among the topologies shown in Fig. 7.9, only a few lend themselves
to the above formulations. For example, the subtle differences between the structures in
Figs. 7.9(b) and (c) or the parallel combination of the spirals in Fig. 7.9(f) may yield several
percent of error in inductance predictions.

Another difficulty is that the inductance value also depends on the frequency of
operation—albeit weakly—while most equations reported in the literature predict the
low-frequency value. We elaborate on this dependence in Section 7.2.6.

Field Simulations With the foregoing sources of error in mind, how do we compute
the inductance in practice? We may begin with the above approximate equations for stan-
dard structures, but must eventually resort to electromagnetic field simulations for standard
or nonstandard geometries. A field simulator employs finite-element analysis to solve the
steady-state field equations and compute the electrical properties of the structure at a given
frequency.

A public-domain field simulator developed for analysis of inductors and transformers
is called “Analysis and Simulation of Spiral Inductors and Transformers™ (ASITIC) [4].
The tool can analyze a given structure and report its equivalent circuit components. While
simple and efficient, ASITIC also appears 1o exhibit inaccuracies similar to those of the
above equations [3, 5].°

Following rough estimates provided by formulas and/or ASITIC, we must analyze the
structure in a more versatile field simulator. Examples include Agilent's “ADS,” Sonnet
Soltware’s “Sonnet,” and Ansoft’s “HFSS.” Interestingly, these tools yield slightly different
values, partly due to the types of approximations that they make. For example, some do
not accurately account for the thickness of the metal layers. Owing to these discrepancies,
RF circuits sometimes do not exactly hit the targeted frequencies afier the first fabrication,
requiring slight adjustments and “silicon iterations.” As a remedy, we can limit our usage
to a library of inductors that have been measured and modeled carefully but at the cost of
flexibility in design and layout.

7.2.4 Parasitic Capacitances

As a planar structure built upon a substrate, spiral inductors suffer from parasitic capac-
itances. We identify two types. (1) The metal line forming the inductor exhibits parallel-
plate and fringe capacitances to the substrate [Fig. 7.12(a)]. If a wider line is chosen to
reduce its resistance, then the parallel-plate component increases. (2) The adjacent urns
also bear a fringe capacitance, which equivalently appears in parallel with each segment
[Fig. 7.12(b)].

Let us first examine the effect of the capacitance to the substrale. Since in most cir-
cuits, one terminal of the inductor is at ac ground, we construct the uniformly-distributed
equivalent circuit shown in Fig. 7.13, where each segment has an inductance of L,. Our
objective is 1o obtain a lumped model for this network. To simplify the analysis, we make
two assumptions: (1) each two inductor segments have a mutual coupling of M, and (2)

5. In fact, Egs. (7.19) and (7.20) have been developed based on ASITIC simulations.
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Figure 7.12 (a) Boitom-plate and (b} interwinding capacitances of an inductor and their models.

Ln-1 L1 L1

Figure 7.13 Model of an inductor’s distributed capacitance to ground.

the coupling is strong enough that M can be assumed approximately equal to L,,. While not
quite valid, these assumptions lead to a relatively accurate result.

The voltage across each inductor segment arises from the current flowing through that
scgment and the currents flowing through the other segments. That 1s,

n=1 K
Vo = jolyly + ) jolaM + Y jol,M. (7.21)
m=1 m=n+|
If M = L,, then
V, = jw Z F 24 (7.22)

Since this summation is independent of n, we note that all inductor segments sustain equal
voltages |6]. The voltage at node n is therefore given by (n/K)V;, yvielding an electric
energy stored in the corresponding node capacitance equal to

| ny2
E, = 5Cu (E) V2, (7.23)

Summing the energies stored on all of the unit capacitances, we have

K

1 ny?

Bu=5Cu ) (2) Vi (1.24)
n=1

1K+ DEK+ 1),

= G L V2, (7.25)
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If K — 2o and C,, — 0 such that KC,, is equal to the total wire capacitance, Cy,;, then [6]

o _1Cu
“fol T o

Vi
23

1 (7.26)
revealing that the equivalent lumped capacitance of the spiral is given by Cyr/3 (if one end
is grounded).

Let us now study the turn-to-turn (interwinding) capacitance. Using the model shown
in Fig. 7.14, where C) = C> = ... = Cg = Cp, we recognize that Eq. (7.22) still applies
for it is independent of capacitances. Thus, each capacitor sustains a voltage equal to Vy /K,
storing an electric energy of

I 1 \*
E,==Cp|=V] . i
i 7 F (K I) ( J'

The total stored energy is given by
Eiwr = KE,, (7.28)
l

= —C V" 729
Sk CF (/.29)

Interestungly, E;,; falls to zero as K — oo and Cp — (). This 15 because, for a large number
of turns, the potential difference between adjacent turns becomes very small, yielding a
small electric energy stored on the Cg's.

1 Lo, La 4 Lot bn 544 Lna L Lk
& En e o e el e e S e
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- c, Cy Cr Ch Cra Cyi Cx "

Figure 7.14 Model of an inductor's turn-to-turn capacitances.

In practice, we can utilize Eq. (7.29) to estimate the equivalent lumped capacitance for
a finite number of turns. The following example illustrates this point.

Example 7.6

Estimate the equivalent turn-to-turn capacitance of the three-turn spiral shown in
Fig. 7.15(a).

Solution:

An accurate calculation would “unwind™ the structure, modeling each leg of each turn by
an inductance and placing the capacitances between adjacent legs [Fig. 7.15(b)|. Unfortu-
nately, owing to the unequal lengths of the legs, this model entails unequal inductances and
capacitances, making the analysis difficult, To arrive at a uniformly-distributed model, we
select the value of C; equal to the average of Cy, ..., Cy, and L; equal to the total inductance

{Continues)
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Example 7.6 (Continued)
divided by 12. Thus, Eq. (7.29) applies and

1
Ceq = ECF (7.30)
1C, + O
= — 7.31
g 3 (7.31)
Cl+--+Cy
= g T
64 (1.32)

In general, for an N-turn spiral,

C [
1 10
7 6
32
1
a 5
8 9
12 13]
)
Cs Cy
- il cs il
1
. il * il ’H&‘ "’GL\ .
3 5 7 9 3
T ——H8 60— B
v 03 2'5?-5\ ; 4 G(GP i 8 mﬂw 12?}
3 " I = I
[ Cs

(b}

Figure 7.15 (a) Spiral inductor for calculation of turn-to-turn capacitances, (b) circuit model.

The frequency at which an inductor resonates with its own capacitances is called the
“self-resonance frequency™ (fsg). In essence, the inductor behaves as a capacitor at fre-
quencies above fsp. For this reason, fgp serves as a measure of the maximum frequency at
which a given inductor can be used.

Example 7.7

In analogy with ¢ = Lw/Rs for an inductor L having a series resistance Ks, the Q of an
impedance Z| is sometimes defined as

o= Im{Z,}

 Relz))

(7.34)
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Example 7.7 (Continued)

Compute this @ for the parallel inductor model shown in Fig. 7.16(a).

_Im{Zind
Re{ Zj,
[ 011 R,z Sh
z, '[
° ) -
fsn f
(a) (b}
Figure 7.16 (a) Simple tank and (b) behavior of one definition of Q.
Solution:
We have RL
o pl1S
4109) RPL|C[$2 + Lis + Rp' {isel
At 5 = juw,
: [R,(1 — L C @) — jLiw|jR,Liw
Zi(jw) = —L——— 0-21]:’,”2'. (7.36)
Rﬁ{l = LiCiw")* + Ljw
It follows that
R,(1 — L ‘
g = Rl ~ LC1w7) (7.37)
Llﬂ.'l
R 2
- - (7.38)
le wSR

where wsg = 2mfsg = 1/+/L;C). At frequencies well below wsg, we have Q@ =~ R, /(L w),
which agrees with our definition in Chapter 2. On the other hand, as the frequency
approaches fsg, @ falls to zero [Fig. 7.16(b)]—as if the tank were useless! This defini-
tion implies that a general impedance (including additional capacitances due to transistors,
etc.) exhibits a Q of zero at resonance. Of course, the tank of Fig. 7.16(a) simply reduces to
resistor R, at fog, providing a Q of R, /(Ljwsg) rather than zero. Owing to its meaningless
behavior around resonance, the Q definition given by Eq. (7.34) proves irrelevant to circuit
design. We return to this point in Section 7.2.6.

Example 7.8

In analogy with L; = impedance/w = (Ljw)/w, the equivalent inductance of a structure is
sometimes defined as Im{Z;(jw)}/w. Study this inductance definition for the parallel tank
of Fig. 7.16(a) as a function of frequency.

(Centinues)
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Example 7.8 (Continued)

Solution:
From Eq. (7.36), we have

m{Zje)) KL~ LG

: (7.39)
w Rl — LiC0?) + Lie?

This expression simplifies to L; at frequencies well below fsz but falls to zero at reso-
nance! The actual inductance, however, varies only slightly with frequency. This definition
of inductance is therefore meaningless. Nonetheless, its value at low frequencies proves
helpful in estimating the inductance.

7.2.5 Loss Mechanisms

The quality factor, O, of inductors plays a critical role in various RF circuits. For example,
the phase noise of oscillators is proportional to 1/ 0’ (Chapter 8), and the voltage gain of
“tuned amplifiers” |e.g., the CS stage in Fig. 7.1(b)] is proportional to Q. In typical CMOS
technologies and for frequencies up to 5GHz, a ¢ of 5 is considered moderate and a O
of 10, relatively high.

We define the @ carefully in Section 7.2.6, but for now we consider (J as a measure
of how much energy is lost in an inductor when it carries a sinusoidal current. Since only
resistive components dissipate energy, the loss mechanisms of inductors relate to various
resistances within or around the structure that carry current when the inductor does.

In this section, we study these loss mechanisms, As we will see, it is difficult to
formulate the losses analytically; we must therefore resort to simulations and even mea-
surements (o construct accurate inductor models. Nonetheless, our understanding of the
loss mechanisms helps us develop guidelines for inductor modeling and design.

Metal Resistance Suppose the metal line forming an inductor exhibits a series resistance,
K (Fig. 7.17). The Q may be defined as the ratio of the desirable impedance, Loy, and the
undesirable impedance, Rs:

_ Liay

_ , 4
Q Rs (7.40)

For example. a 5-nH inductor operating at 5 GHz with an Ry of 15.7 £2 has a Q of 10.

—Wh— B
e

A=

Figure 7.17 Metal resistance in a spirel inductor.
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Example 7.9

Assuming a sheet resistance of 22mQ /O] for the metal, W=4pm, and §= 0.5 Lm,
determine if the above set of values is feasible.

Solution:

Recall from our estimates in Section 7.2.3, a 2000-p.m long, 4-pm wide wire that is wound
into N =35 turns with § = 0.5 pm provides an inductance of about 496 nH. Such a wire
consists of 2000/4 = 500 squares and hence has a resistance of 500 x 22 mQ /[0 = 11 Q.
It thus appears that a @ of 10 at 5 GHz is feasible.

Unfortunately, the above example portrays an optimistic picture: the @ is limited not
only by the (low-frequency) series resistance but also by several other mechanisms. That s,
the overall Q may fall quite short of 10. As a rule of thumb, we strive to design induc-
tors such that the low-frequency metal resistance vields a @ about twice the desired value.
anticipating that other mechanisms drop the Q by a factor of 2.

How do we reduce the metal de resistance for a given inductance? As explained in
Section 7.2.3, the total length of the metal wire and the inductance are inextricably related,
i.e., for a given W, 8. and wire length, the inductance is a weak function of N. Thus, with W
and 5 known, a desired inductance value translates to a certain length and hence a certain
de resistance almost regardless of the choice of N. Figure 7.18 plots the wire resistance of
a 5-nH inductor with N =2 to 6, W=4pm, and § = 0.5 pum. In a manner similar to the
flattening effect in Fig. 7.11, Ry falls to a relatively constant value for N = 3.

16 -
15 -
14

Rs (£2)

13 -

Figure 7.18 Metal resistance of an inductor as a function of number of turns.

From the above discussions, we conclude that the only parameter among D, 5. N. and
W that significantly affects the resistance is W. Of course, a wider metal line exhibits less
resistance but a larger capacitance to the substrate. Spiral inductors therefore suffer from
a trade-off between their @ and their parasitic capacitance. The circuit design limitations
imposed by this capacitance are examined in Chapters 5 and 8.

As explained in Example 7.3, a wider metal line vields a smaller inductance value
if 8. D,y and N remain constant. In other words, to retain the same inductance while
W increases, we must inevitably increase D, (or ), thereby increasing the length and
counteracting the resistance reduction afforded by a wider line. To illustrate this effect,
we can design spirals having a given inductance but different line widths and examine the
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Figure 7.19 Meral resistance of an inductor as a function of line width for different number of turns.

resistance. Figure 7.19 plots Ry as a function of W for an inductance of 2 nH and with four
or five turns. We observe that Ry falls considerably as W goes from 3 pm to about 5 pum but
begins to flatten thereafter. In other words, choosing W = 5 pm in this example negligibly
reduces the resistance but increases the parasitic capacitance proportionally.

In summary, for a given inductance value, the choice of N has little effect on R, and a
larger W reduces Ry to some extent but at the cost of higher capacitance. These limitations
manifest themselves particularly at lower frequencies, as shown by the following example.

Example 7.10

We wish to design a spiral inductor for a 900-MHz GSM system. Is the 5-nH structure
considered in Example 7.9 suited to this application? What other choices do we have?

Solution:

Since @ = L wy/Rs, if the frequency falls from 5 GHz to 900 MHz. the Q declines from
10 to 1.8.° Thus, a value of 5nH is inadequate for usage at 900 MHz.

Let us attempt to raise the inductance, hoping that, in Q = Lywqg/Rs. L| can increase
at a higher rate than can Rs. Indeed, we observe from Eq. (7.15) that L; .r'fjf', whereas
Ry o< Iy, For example, if {;,; =8 mm, N = 10, W =6 pm, and § = 0.5 pum, then Eq. (7.15)
yvields L = 35nH. For a sheet resistance of 22 mQ /], Ry = (8000 pm/6 pm) X
22 m2 /[0 =293 Q. Thus, the Q (due to the dc resistance) reaches 6.75 at 900 MHz.
Note, however, that this structure occupies a large area. The reader can readily show that
the outer dimension of this spiral is approximately equal to 265 pm.

Another approach to reducing the wire resistance 1s to place two or more metal layers
in parallel, as suggested by Fig. 7.9(f). For example. adding a metal-7 and a metal-8 spiral
to a metal-9 structure lowers the resistance by about a factor of 2 because metals 7 and 8 are

6. Note that the actaal O may be even lower due o other losses.
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typically half as thick as metal 9, However, the closer proximity of metal 7 to the substrate
shightly raises the parasitic capacitance.

Example 7.11

A student reasons that placing m spiral inductors in parallel may in fact degrade the O
because it leads to an m-fold decrease in the inductance but not an m-fold decrease in
resistance. Explain the flaw in the student’s argument.

Solution:
Since the vertical spacing between the spirals is much less than their lateral dimensions,

each two experience a strong mutual coupling (Fig. 7.20). WLy =l =Ly=Land M = L,
then the overall inductance remains equal to L (why?).

Ly
T—
Ay

s/

Figure 7.20 Effect of placing tightlv-coupled inductors in parallel.

Which approach provides a more favorable resistance-capacitance trade-off: widening
the metal line of a single layer or placing multiple layers in parallel? We surmise the latter:
after all, if W is doubled, the capacitance of a single spiral increases by at least a factor
of 2, but if metal-7 and metal-8 structures are placed in parallel with a metal-9 spiral,
the capacitance may rise by only 50%. For example, the metal-9-substrate and metal-7-
substrate capacitances are around 4 affum” and 6 af/uum?, respectively. The following
example demonstrates this point.

Example 7.12

Design the inductor of Example 7.10 with W =3pum, § =0.5um, and N = 10, using
metals 7, 8, and 9 in parallel.

Solution:

Since W is reduced from 6 pum to 3pm, the term (W + $% in the denominator of
Eq. (7.15) falls by a factor of 1.17, requiring a similar drop in [/, in the numerator so as to
obtain L = 35 nH. Iteration yields [, = 6800 pum. The length and the outer dimension are
smaller because the narrower metal line allows a tighter compaction of the turns. With three
metal layers in parallel, we assume a sheet resistance of approximately 11 mg2 /L], obtain-
ing Ry =25 © and hence a @ of 7.9 (due to the dc resistance). The parallel combination
therefore yields a higher Q.

(Comtines)
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Example 7.12  (Continued)

It is instructive to compare the capacitances of the metal-9 spiral in Exam-
ple 7.10 and the above multi-layer structure. For the former, the total metal area is
lror - W =48, 000 p.mz. yielding a capacitance of (4 af/pm?) x 48, 000 u,mz =1921F’
For the latter, the area is equal to 20,400 jum? and the capacitance is 122.4 fF,

Skin Effect At high frequencies, the current through a conductor prefers to flow at
the surface. If the overall current is viewed as many parallel current components, these
components tend to repel each other, migrating away so as (o create maximum distance
between them. This trend is illustrated in Fig. 7.21. Flowing through a smaller cross section
arca, the high-frequency current thus faces a greater resistance. The actual distribution
of the current follows an exponential decay from the surface of the conductor inward,
J(5) = Jogexp(—x/8), where Jy denotes the current density (in A;’mj) at the surface, and
4 1s the “skin depth.” The value of 8 is given by
I
) s (7.41)
where f denotes the frequency, i the permeability, and o the conductivity. For example,
4 = l.4pum at 10GHz for aluminum. The extra resistance of a conductor due to the skin
effect is equal to

1
Rj‘kin o (?42}
ah

Parallel spirals can reduce this resistance if the skin depth exceeds the sum of the metal

7727
Z :??

(a) (b)

Figure 7.21 Current distribution in a conductor at {a) low and (b) high frequencies.

In spiral inductors, the proximity of adjacent turns results in a complex current distri-
bution. As illustrated in Fig, 7.22(a), the current may concentrate near the edge of the wire.
To understand this “current crowding”™ effect, consider the more detailed diagram shown
in Fig. 7.22(b), where each turn carries a current of /(1) [7, 8]. The current in one turn
creates a time-varying magnetic field, B, that penetrates the other turns, generating loops of
current.” Called “eddy currents,” these components add to 7(f) at one edge of the wire and

7. The equivalent (lumped) capacitance of the inductor is less than this value (Section 7.2.4).
8. Faraday’s law states that the voltage induced in a conducting circuit is proportional to the time derivative of
the magnetic field.
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Figure 7.22 (a) Current distribution in adjacent turns, (b) detailed view of (a).

subtract from I(f) at the other edge. Since the induced voltage increases with frequency,
the eddy currents and hence the nonuniform distribution become more prominent at higher
frequencies.

Based on these observations, [7, 8] derive the following expression for the resistance

of a spiral inductor:
1 ( F\?
Rer = Rp |1+ — | — i {7.43)
10\ forir

where Rp 1s the de resistance and the frequency [, denotes the onset of current crowding
and is given by
3.1 W+ S
o N —— Rr. 7.44
f rir 2.?1',DL W2 O ( )

In this equation, R represents the de sheet resistance of the metal.

Calculate the series resistance of the 30-nH inductors studied in Examples 7.9 and 7.12 at
900 MHz. Assume = 4m X 10”7 H/m.

Solution:

For the single-layer spiral, R =22 mQ/O. W=6pm, §=0.5pm, and hence f..; =
1.56 GHz. Thus, R = 1.03Ry; =30.3%. For the multilayer spiral, Rn= llmﬂfl:i,
W=3um. S§=05um. and hence f.;; =1.68GHz. We therefore have Ry =
1.03R; = 2622,

Current crowding also alters the inductance and capacitance of spiral geometries. Since
the current is pushed to the edge of the wire, the equivalent diameter of each turn changes
slightly, vielding an inductance different from the low-frequency value. Similarly, as illus-
trated in Fig. 7.23(a), if a conductor carnies currents only near the edges, then its middle
section can be “carved out”™ without altering the currents and voltages, suggesting that the
capacitance of this section, C,,, is immaterial. From another perspective, C,, manifests
itself only if it carries displacement current, which is not possible if the middle section has
no current. Based on this observation, [7, 8] approximate the total capacitance, Cy,;, 10 vary
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No Current Flow

Figure 7.23 Reduction of capacitance to the substrate as a vesult of current crowding.

inversely proportional to the wire resistance:

Rtr

Cror 7=

Co. (7.45)

eft
where Cj; denotes the low-frequency capacitance.

Capacitive Coupling to Substrate We have seen in our studies that spirals exhibit capac-
itance to the substrate. As the voltage at each point on the spiral rises and falls with
time, it creates a displacement current that flows through this capacitance and the substrate
(Fig. 7.24). Since the substrate resistivity is neither zero nor infinity, this low of current
translates to loss in each cycle of the operation, lowering the Q.

Figure 7.24 Substrate loss due o capacitive coupling.

Example 7.14

Use a distributed model of a spiral inductor to estimate the power lost in the substrate.

Solution:

We model the structure by K sections as shown in Fig. 7.25(a). Here, each section consists
of an inductance equal to L,/ K, a capacitance equal to Cp,; /K, and a substrate resistance
equal to KRy,p. (The other loss mechanisms are ignored here.) The factor of K in KRy,
is justified as follows: as we increase K for a given inductor geometry (i.e., as the dis-
tributed model approaches the actual structure), each section represents a smaller segment
of the spiral and hence a smaller cross section area looking into the substrate [Fig. 7.25(b)|.
Consequently, the equivalent resistance increases proportionally,
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Example 7.14 (Continued)

fa) {hj}
Figure 7.25 f[a) Distributed model of capacitive coupling to the substrate, (b) diagram showing
an infinitesinal section.

If we assume perfect coupling between every two inductor segments, then the voltage
drop across each segment is given by Eq. (7.22):

K
Vo= Y jolnln, (7.46)
m=1
where I, denotes the current flowing through segment L. Interestingly, due to the
uniformly-distributed approximation, all segments sustain equal voltages regardless of the
capacitance and resistance distribution. Thus, the voltage at node number n is given by
(n/K)V; and the current flowing through the corresponding RC branch by
Vi

n
K C =Pt
KRoup + (j ;;’ w)

Since the average power dissipated in the resistor KR, is equal to |[,, , 2R ;. the total lost
power in the spiral is obtained as

(7.47)

K
P =Y Munl*KRyup (7.48)
=1
K 2 2
VKR
- I ;“’ — ;_ﬂ (7.49)
= tat
: KzRfub i ( K w)
VKR, K(K + 1)2K + 1
— | ik _ ( }( } ; {?.5[})
Ciot \* 6K
K2R ot ( 7 m)
Letting K go to infinity, we have
l'"r|2 Rub
Py = (7.51)

RE, AT h) = 3

For example, if R? , & (Ci,w?) 7", then Py, ~ ViR Cl w?/3. Conversely, if R? , >
(C20*) ™", then Py = V2 /(3R yup).
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The foregoing example provides insight into the power loss due to capacitive cou-
pling to the substrate. The distributed model of the substrate, however, is not accurate. As
depicted in Fig. 7.26(a), since the connection of the substrate to ground is physically far,
some of the displacement current flows laterally in the substrate. Lateral substrate currents
are more pronounced between adjacent turns [Fig. 7.26(b)| because their voltage differ-
ence, Vi — Vs, is larger than the incremental drops in Fig. 7.26(a), V,,-1 — V). The key
point here is that the inductor-substrate interaction can be guantified accurately only if a
three-dimensional model 1s used, but a rare case in practice.

""r.n i"-n+1 i'"m-z /
Vy v,

S
A ) |

I-
E

s il PPl 5

(a) (b)

Figure 7.26 Lateral current flow in the substrate {a) under a branch, and (b) from one branch to
another.

Magnetic Coupling to the Substrate The magnetic coupling from an inductor to the
substrate can be understood with the aid of basic electromagnetic laws: (1) Ampere’s law
states that a current flowing through a conductor generates a magnetic field around the con-
ductor: (2) Faraday’s law states that a time-varying magnetic field induces a voltage, and
hence a current if the voltage appears across a conducting material; (3) Lenz’s law states
that the current induced by a magnetic field generates another magnetic field opposing the
first field.

Ampere’s and Faraday's laws readily reveal that, as the current through an inductor
varies with time, it creates an eddy current in the substrate (Fig. 7.27). Lenz’s law implies
that the current flows in the opposite direction. OF course, if the substrale resistance were
infinity, no current would flow and no loss would oceur.

The induction of eddy currents in the substrate can also be viewed as transformer cou-
pling. As illustrated in Fig. 7.28(a), the inductor and the substrate act as the primary and

Magnetic
Eddy Field
Current

Figure 7.27 Magnetic coupling to the substrare.
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(a) )
Figure 7.28 (a) Madeling of magnetic coupling by transformers, (b} fumped model of (a ).
the secondary, respectively. Figure 7.28(b) depicts a lumped model of the overall system,

with L, representing the spiral, M the magnetic coupling, and Ly and Ry, the substrate.
It follows that

Vi = Lisly; + Msh {(7.52)
—Ryplr = hlas + Msly,. (7.53)
Thus,
Vin M52
—= =gy {7.54)
Iin Ry + Las
For s = jw,
Vie  M2w’Ry, M*wLs
Yo MeRib (L; - %) o, (755)
nt R;rrb + LELU‘ R.m.!:' + L’lwh

-

implying that R, is transformed by a factor of M=w? Ryt ngz} and the inductance is

reduced by an amount equal to ME&JEL'_!I,"' [Rfﬂb + .‘L%m2 ).

Example 7.15

A student concludes that both the electric coupling and the magnetic coupling to the sub-
strate are eliminated if a grounded conductive plate is placed under the spiral (Fig. 7.29).
Explain the pros and cons of this approach.

Displacement
j .
_b/ ﬁnnﬂuﬂ|“
Eddy

Shield
Current

Figure 7.29 Inductor with a continuous shield.

{Continues)
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Example 7.15  (Coniinued)

Solution:

This method indeed reduces the path resistance seen by both displacement and eddy cur-
rents. Unfortunately, however, Eq. (7.55) reveals that the equivalent inductance also falls
with Ryyp. For Ryp = 0,

M?
I
Since the vertical spacing between the spiral and the conductive plate (= 5 pm) is much
smaller than their lateral dimensions, we have M = L, = L;, obtaining a very small value
for L.y In other words, even though the substrate losses are reduced, the drastic fall in the
equivalent inductance still yvields a low Q because of the spiral’s resistance.

qu — L[ - (?-Sﬁ]

It is instructive to consider a few special cases of Eq. (7.54). It L, = L2 = M, then
V'n
.T! = L15||Rsub> (7.57)
i

indicating that R, simply appears in parallel with L., lowering the Q.

Example 7.16

Sketch the @ of a given inductor as a function of frequency.

Solution:

At low frequencies, the 0 is given by the dc resistance of the spiral. Rs. As the frequency
increases. O = Lyjw /Ry rises linearly up to a point where skin effect becomes significant
[Fig. 7.30(a)]. The Q then increases in proportion to /f. At higher frequencies, Ljw 3> Rs,
and Eq. (7.57) reveals that R, shunts the inductor, limiting the ¢ to

Ry

0~ e (7.58)

which falls with frequency. Figure 7.30(b) sketches the behavior.

Low High Very High
Frequencies Frequencies Frequencies - Lo
2 H’B"'Hsldn [=] e
| Ly Ly m
Lym 1
Ly : e i
ED' HS Ep HE $ Hm.b HS-
R
e R skin Raiin
(i) (h)
Figure 7.30 (a) Inductor model reflecting loss at different frequencies, (b} corresponding ©
behavior.

=
i
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As another special case, suppose Ry, << |Las|. We can then factor Las out in Eq. (7.54)
and approximate the result as

Vi M? M?
i — (L_I — )S + —,’R_,m&_ {?59_}

I; 2

2

Thus, as predicted in Example 7.15, the inductance is reduced by an amount equal to
M= /L,. Moreover, the substrate resistance is transformed by a factor of M*/ I.% and appears
in serfes with the net inductance.

7.2.6 Inductor Modeling

Our study of various effects in spiral inductors has prepared us for developing a cireuit
model that can be used in simulations. Ideally, we wish to obtain a model that retains our
physical insights and is both simple and accurate. In practice, some compromise must be
made.

It is important to note that (1) both the spiral and the substrate act as three-dimensional
distributed structures and can only be approximated by a two-dimensional lumped model;
(2) due to skin effect, current-crowding effects, and eddy currents, some of the inductor
parameters vary with frequency, making it difficult to fit the model in a broad bandwidth.

Example 7.17

If RF design mostly deals with narrowband systems, why is a broadband model necessary?

Solution:

From a practical point of view, it is desirable to develop a broadband model for a given
inductor structure so that it can be used by multiple designers and at different frequencies
without repeating the modeling effort each time. Moreover, RF svstems such as ultra-
wideband (UWB) and cognitive radios do operate across a wide bandwidth, requiring
broadband models.

Let us begin with a model representing metal losses. As shown in Fig. 7.31(a), a series
resistance can embody both low-frequency and skin resistance. With a constant Rs, the
maodel is valid for a limited frequency range. As explained in Chapter 2, the loss can alter-
natively be modeled by a parallel resistance [Fig. 7.31(b)] but still for a narrow range if R,
is constant.

L4

o

Ly

Rg

fa) (b)

Figure 7.31 Madeling loss by (a) series or (b) parallel resistors,
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An interesting observation allows us to combine the models of Figs. 7.31(a) and (b),
thus broadening the valid bandwidth. The following example serves as the starting point.

Example 7.18

If the inductance and resistance values in Fig. 7.31 are indepeadml of frequency, how do
the two models predict the behavior of the Q7

Solution:

In Fig. 7.31(a), Q = Lyjw /Ry, whereas in Fig. 7.31(b), 0 = R,,/(L w): i.c., the two models
predict opposite trends with frequency. {We also encountered this effect in Example 7.16.)

The above observation suggests that we can tailor the frequency dependence of the
(@ by merging the two models. Depicted 1n Fig. 7.32(a), such a model partitions the loss
between a series resistance and a parallel resistance. A simple approach assigns half of the
loss to each at the center frequency of the band:

. ij
R, = 7.60
5= 30 (7.60)
R, =20Ljw. (7.61)

In Problem 7.2, we prove that the overall Q of the circuit, defined as Im{Z,}/Re{Z,},
is equal to
I-|QJRP

= — (7.62)
- Liw? + Ry(Rg + R))

Note that this definition of ¢ is meaningful here because the circuit does not resonate at any
frequency. As shown in Fig. 7.32(b), the  reaches a peak of l,lr R;,,J’R;j atwg =,/ R;;R;,ILL

The choice of R:,; and R;T can therefore yield an accurate variation for a certain frequency
range.

eY

VRpRs

Ly
{ah (b

Figure 7.32 {a) Modeling loss by both series and parallel resistors, (b) resulting O behavior:
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Figure 7.33 (a) Broadband model of inductor, (b) view of a conductor as concentric eviinders,
(e} broadband skin effect model.

A more general model of skin effect has been proposed by [9] and is illustrated in
Fig. 7.33. Suppose a model must be valid only at dc and a high frequency. Then, as shown
in Fig. 7.33(a). we select a series resistance, Ry;, equal to that due to skin effect and shunt
the combination of Rg; and L, with a large inductor, L. We then add Rs» in series (o model
the low-frequency resistance of the wire. At high frequencies, Ly 1s open and Rg) + Rso
embodies the overall loss; at low frequencies, the network reduces to Rsa.

The above principle can be extended to broadband modeling of skin effect. Depicted in
Fig. 7.33(b) for a cylindrical wire, the approach in [9] views the line as a sel of concentric
cvlinders, cach having some low-frequency resistance and inductance, arriving at the circuit
in Fig. 7.33(c) for one section of the distributed model. Here, the branch consisting of R;
and L; represents the impedance of cylinder number j. At low frequencies, the current is
uniformly distributed through the conductor and the model reduces to Ry ||R=|| - -- ||R, [9].
As the frequency increases, the current moves away from the inner cylinders, as modeled
by the rising impedance of the inductors in each branch. In [9], a constant ratio R; /R | is
maintained to simplify the model. We return to the use of this model for inductors later in
this section.

We now add the effect of capacitive coupling to the substrate. Figure 7.34(a) shows
a one-dimensional uniformly-distributed model where the total inductance and series
resistance are decomposed into n equal segments, e, Ly +Lr+---+ L, =Ly, and
Rs) + Rg2 + -+ + Ry = Ry 1r.” The nodes in the substrate are connected to one another
by Rubis v oo . Rowb.n—1 and to ground by R, ..., Rgae. The total capacitance between the
spiral and the substrate is decomposed into Cypiy .. -0 Coubn

Continuwing our model development, we include the magnetic coupling to the substrate.
As depicted in Fig. 7.34(b). each inductor segment is coupled to the substrate through a
transformer. Proper choice of the mutual coupling and Ry, allows accurate representation
of this type of loss. In this model, the capacitance between the substrate nodes is also
included.

While capturing the physical properties of inductors, the model shown in Fig. 7.34(b)
proves too complex for practical use. The principal issue is that the numerous parameters
make it difficult to fit the model to measured data. We must therefore seek more compact
models that more easily lend themselves to parameter extraction and fitting. In the first

9. A more accurate model would include mutual coupling such that Leye = Ly + -« + Ly + nM,
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Fisure 7.35 (a)| Compact inductor model, (b) alternative topology.

step, we turn to lumped models. As a simple example, we return to the parallel-series
combination of Fig. 7.32(a) and add capacitances to the substrate [Fig. 7.35(a)]. We surmise
that R':j and R‘;, can represent all of the losses even though they do not physically reflect the
substrate loss. We also recall from Section 7.2.4 that an equivalent lumped capacitance, Cr,
appears between the two terminals. With constant element values, this model is accurate
for a bandwidth of about £20% around the center frequency.

An interesting dilemma arises in the above lumped model. We may choose C and C»
to be equal to half of the total capacitance o the substrate, but our analysis in Section 7.2.4
suggests that, if one terminal 1s grounded, the equivalent capacitance 1s one-third of the
total amount. This is a shortcoming of the lumped model.
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Another model that has proved relatively accurate is shown in Fig. 7.35(b). Here,
R and R; play a similar role to that of R, in Fig. 7.35(a). Note that neither model explicitly
includes the magnetic coupling to the substrate. The assumption is that the three resistances
suffice to represent all of the losses across a reasonable bandwidth (e.g., £20% around the
frequency at which the component values are calculated). A more broadband model is
described 1n [10].

Definitions of In this book, we have encountered several definitions of the @ of an
inductor:

Lo
L i 7.63
(@] Rs (7.63)
R,
S (7.64)
Lew
o= Im{Z} (7.65)
37 Relz) '

In basic physics, the Q of a lossy oscillatory system is defined as

Energy Stored

Q4 =2

2 — A (7.66
Energy Dissipated per Cycle :

Additionally, for a second-order tank, the ¢ can be defined in terms of the resonance
frequency, wy, and the —3-dB bandwidth, wgw, as

£y
LpwW

O5 = (7.67)

To make matters more complicated, we can also define the O of an open-loop system at a
frequency ey as

6y (7.68)

where ¢» denotes the phase of the system’s transfer function (Chapter 8).

Which one of the above definitions is relevant to RF design? We recall from Chapter 2
that @ and (2 model the loss by a single resistance and are equivalent for a narrow band-
width, Also, from Example 7.7, we discard (3 because it fails where it matters most: in
most RF circuits, inductors operate in resonance (with their own and other circuit capac-
itances), exhibiting @3 = 0. The remaining three, namely, (04, Q5, and O, are equivalent
for a second-order tank in the vicinity of the resonance frequency.

Before narrowing down the definitions of O further, we must recognize that, in general.
the analysis of a circuit does not require a knowledge of the O's of its constituent devices.
For example, the inductor model shown in Fig. 7.34(b) represents the properties of the
device completely. Thus, the concept of O has been invented primarily to provide intuition,
allowing analysis by inspection as well as the use of certain rules of thumb.

In this book, we mostly deal with only one of the above definitions, (>. We reduce
any resonant network to a parallel RLC tank, lumping all of the loss in a single parallel
resistor Ry, and define Q2 = Rp/(Lwyg). This readily yields the voltage gain of the stage
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shown in Fig. 7.1(b) as —g,,, (rp||R;,) at resonance. Moreover, if we wish to compute the Q
of a given inductor design at different frequencies, then we add or subtract enough parallel
capaciltance Lo create resonance at each frequency and determine Q> accordingly.

It is interesting to note the following equivalencies for a second-order parallel tank: for
()2 and (23, we have

0595 Peak Magnetic Energy (7.69)
Energy Lost per Cycle

Peak Magnetic Energy — Peak Electric Energy

Q3 =2x (7.70)

Energy Lost per Cycle

7.2.7 Alternative Inductor Structures

As illustrated conceptually in Fig. 7.9, many variants of spiral inductors can be envisioned
that can potentially raise the @, lower the parasitic capacitances, or reduce the lateral
dimensions. For example, the parallel combination of spirals proves beneficial in reducing
the metal resistance. In this section, we deal with several inductor geometries.

Symmetric Inductors Differential circuits can employ a single symmetric inductor rather
than two (asymmetric) spirals (Fig. 7.36). In addition to saving area, a differential geometry
(driven by differential signals) also exhibits a higher @ [11]. To understand this property,
let us use the model of Fig. 7.35(b) with single-ended and differential stimuli (Fig. 7.37).
If in Fig, 7.37(a), we neglect C3 and assume € has a low impedance, then the resistance
shunting the inductor at high frequencies 1s approximately equal to Ry. That is. the circuit
is reduced to that in Fig. 7.37(b).

Now, consider the differential arrangement shown in Fig. 7.37(c). The circuit can be
decomposed into two symmetric half circuits, revealing that Ry (or R2) appears in parallel
with an inductance of L/2 [Fig. 7.37(d)] and hence affects the Q to a lesser extent [11].
In Problem 7.4, we use Eq. (7.62) to compare the Q's in the two cases. For frequencies
above 5 GHz, differential spirals provide a @ of 8 or higher and single-ended structures a
() of about 5 to 6.

Voo

Figure 7.36 Use of symmetric inductor in a differential circuit.
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Figure 7.37 (a) Inductor driven by a single-ended input, (b) simplified model of (a), (c) svmmetric
inductor driven by differential inputs, (d) simplified model of (¢ ).

The principal drawback of symmetric inductors is their large interwinding capacitance.
a point of contrast to the trend predicted by Eq. (7.29). Consider the arrangement shown
in Fig. 7.38(a). where the inductor is driven by differential voltages and viewed as four
segments in series. Modeling each segment by an inductor and including the fringe capac-
itance between the segments, we obtain the network depicted in Fig. 7.38(b). Note that
symmetry creates a virtual ground at node 3. This model implies that C} and > sustain
large voltages, e.g., as much as Vj, /2 if we assume a linear voltage profile from node 1 to
node 5 [Fig. 7.38(c)].

(i) (ch

Figure 7.38 (a) Symmetric inductor, (b) equivalent circuit, (¢) voltage profile along the inductor.
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Example 7.19

Estimate the equivalent lumped interwinding capacitance of the three-turn spiral shown in
Fig. 7.39(a).

C,
: JL A
(1
2 6 L C,
1 3 4 5 7
i > .
4 Wi 1 ~_Yin
2 - s -~ 2
! < -
Cy
F . 9 (h)
1 7
v N
+|ﬁ! ol Vg
2 — - 2
(a)

{c}

Figure 7.39 (a) Three-turn symmelric inductor, (b) equivalent circuit, (¢} voltage profile along
the ladder:

Solution:

We unwind the structure as depicted in Fig. 7.39(b), assuming, as an approximation, that
all unit inductances are equal and so are all unit capacitances. We further assume a linear
voltage profile from one end to the other [Fig. 7.3%¢)|. Thus, Cj sustains a voltage of
4V, /6 and so does C3. Similarly, each of C2 and Cy has a voltage of 2V, /6. The total
electric energy stored on the four capacitors is therefore equal to

E,.=2|1c(2y, 2+lclv-2 (7.71)
tan 2 3 m 2 3 i L] *

where C=C| = -+« = Cyq. Denoting Cy + -+- + Cy by Cyyp. we have
_3Cu

Eror = =—— Vi, 7.72

g g g
and hence an equivalent lumped capacitance of
5

Cog = 18 Cror- (7.73)

Sec. 7.2, Inductors 463

Example 7.19 (Continued)

Compared with its counterpart in a single-ended inductor, Eq. (7.32), this value 15 higher
by a factor of 160/9 2= 18. In fact, the equivalent interwinding capacitance of a differential
inductor is typically quite /arger than the capacitance to the substrate, dominating the self-
resonance frequency.

How do we reduce the interwinding capacitance? We can increase the line-to-line spac-
ing, S, but, for a given outer dimension, this results in smaller inner turns and hence a lower
inductance. In fact, Eq. (7.15) reveals that L falls as § increases and {,,; remains constant,
vielding a lower (2. As a rule of thumb, we choose a spacing of approximately three times
the minimum allowable value." Further increase of § lowers the fringe capacitance only
slightly but degrades the (.

Owing to their higher @, differential inductors are common in oscillator design, where
the Q matters most. They are typically constructed as octagons (a symmetric version of
that in Fig. 7.9(b}| because, for a given inductance, an octagonal shape has a shorter length
and hence less series resistance than does a square geometry. (Perpendicular sides provide
little mutual coupling.) For other differential circuits, such structures can be used, but
at the cost of routing complexity. Figure 7.40 illustrates this point for a cascade of two
stages. With single-ended spirals on each side, the lines traveling to the next stage can
pass between the inductors [Fig, 7.40(a)]. Of course, some spacing is necessary between
the lines and the inductors so as to minimize unwanted coupling. On the other hand, with
the differential structure, the lines must travel either through the inductor or around it
[Fig. 7.40(b)], creating greater coupling than in the former case.

.
FL
AL

T

[a) {hl

Figure 7.40 Routing of signals to next stage in a circuit using (a) single-ended inductors, (b} a
symmeiric inductor.

1. Bur, in some echnologies long lines require a wider spacing than short lings, in which case the minimum
Smaybelwl.5Lm.
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Example 7.20

If used as the load of differential circuits, single-ended inductors can be laid out with “mir-
ror symmetry” [Fig, 7.41(a)] or “step symmeltry” [Fig, 7.41(b)]. Discuss the pros and cons
of each layout style.

T vﬂ.ﬂ

et
MMl Tedy (! Tedy
F=i s T
N I 1 I
M, M, My M,
& -

Figure 741 Load inductors in a differential pair with (a) mirror symmetry and (b) step symmetry.

Solution:

The circuit of Fig. 7.41(a) is relatively symmetric but suffers from undesirable mutual
coupling between L; and La. Since the differential currents produced by M, and M> flow
in opposite directions in the spirals, the equivalent inductance seen between X and ¥ is
equal to

Log=Li+ Lo — 2M, (7.74)

where M denotes the mutual coupling between L, and L. With a small spacing
between the spirals, the mutual coupling factor, k. may reach roughly 0.25, yielding
M =k LiLa =0.25Lif Ly = Lz = L. In other words, L., 1s 25% less than L, + La, exhibit-
ing a lower Q. For k to fall to a few percent, the spacing between Ly and Ly must exceed
approximately one-half of the outer dimension of each.

In the topology of Fig. 7.41(b), the direction of currents results in

Log=Li+ L +2M, (7.75)

increasing the Q. However, the circuit is less symmetric. Thus, if symmetry is critical [e.g.,
in the LO buffer of a direct-conversion receiver (Chapter 4)], then we choose the former
with some spacing between L, and L». Otherwise. we opt for the latter.

Another important difference between two single-ended inductors and one differential
inductor is the amount of signal coupling that they inflict or incur. Consider the topology
of Fig. 7.42(a) and a point P on its axis of symmetry, Using the right-hand rule, we observe
that the magnetic field due to Ly points into the page at P and that due to Ly out of the page.
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Figure 7.42 Magnetic coupling along the axis of symmetry with (a) single-ended inductors and
(b) o syimmetric inductor.

The two fields therefore cancel along the axis of symmetry. By contrast, the differential
spiral in Fig. 7.42(b) produces a single magnetic field at P and hence coupling to other
devices even on the line of symmetry.'' This issue is particularly problematic in oscillators:
to achieve a high ., we wish to use symmetric inductors but at the cost of making the
circuit more sensitive to injection-pulling by the power amplifier.

Example 7.21

The topology of Fig. 7.43 may be considered a candidate for small coupling. Explain the
pros and cons of this structure.

il

N=7 N\t
Figure 7.43 Inductor with reduced magnetic coupling along axis of svmmetry.

Solution:

This geometry in fact consists of two single-ended inductors because node N is a virtual
ground. The magnetic fields of the two halves indeed cancel on the axis of symmeiry.
{Centinies)

11. One can also view the single spiral as a loop antenna.
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Example 7.21 (Continued)

The structure is more symmetric than the single-ended spirals with step symmetry in
Fig. 7.42(a). Unfortunately, the Q of this topology is lower than that of a differential induc-
tor because each half experiences its own substrate loss; i.e., the doubling of the substrate
shunt resistance observed in Fig. 7.37 does not occur here. A variant of this structure is
described in [12].

Inductors with Ground Shield In our early study of substrate loss in Section 7.2.5, we
contemplated the use of a grounded shield below the inductor. The goal was to allow the
displacement current to flow through a low resistance to ground, thus avoiding the loss due
to electric coupling to the substrate. But we observed that eddy currents in a continuous
shield drastically reduce the inductance and the Q.

We now observe that the shield can provide a low-resistance termination for electric
field lines even if it is not continuous. As illustrated in Fig. 7.44 [13], a “patterned” shield,
i.e.. a plane broken periodically in the direction perpendicular to the flow of eddy currents,
receives most of the electrie field lines without reducing the inductance. A small fraction
of the field lines sneak through the gaps in the shield and terminate on the lossy substrate.
Thus, the width of the gaps must be minimized.

Displacement
Current
Broken
Shield

Figure 7.44 Inductor with patterned ground shield.

It is important to note that the patterned ground shield only reduces the effect of capaci-
nve coupling to the substrate. The eddy currents resulting from magnetic coupling continue
to flow through the substrate as Faraday and Lenz have prescribed.

Example 7.22

A student designing a patterned ground shield decides that minimizing the gap width is not
a good idea because it increases the capacitance between each two sections of the shield,
potentially allowing large eddy currents to flow through the shield. Is the student correct?

Solution:

While it is true that the gap capacitance increases, we must note that all of the gap capac-
itances appear in series with the path of eddy currents. The overall equivalent capacitance
is therefore very small and the impedance presented to eddy currents quite high.
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The use of a patterned shield may increase the @ by 10 to 15% [13], but this improve-
ment depends on many factors and has thus been inconsistent in different reports | 14]. The
factors include single-ended versus differential operation, the thickness of the metal, and
the resistivity of the substrate. The improvement comes at the cost of higher capacitance.
For example, if the inductor is realized in metal 9 and the shield in metal 1, then the capaci-
tance rises by about 15%. One can utilize a patterned n™ region in the substrate as the shield
to avoid this capacitance increase, but the measurement results have not been consistent.

The other difficulty with patterned shields is the additional complexity that they intro-
duce in modeling and layout. The capacitance to the shield and the various losses now
require much lengthier electromagnetic simulations.

Stacked Inductors At frequencies up to about 5 GHz, inductor values encountered in
practice fall in the range of five to several tens of nanchenries. If realized as a single spiral,
such inductors occupy a large area and lead to long interconnects between the circuit blocks.
This issue can be resolved by exploiting the third dimension, i.e., by stacking spirals. 1llus-
trated in Fig. 7.45, the idea is to place two or more spirals in series, oblaining a higher
inductance not only due to the series connectuon but also as a result of strong mutual
coupling. For example, the total inductance in Fig. 7.45 is given by

Lﬂhr = L' + LE + 2&”. {?.?E‘}

Since the lateral dimensions of L, and L> are much greater than their vertical separation,
Ly and L2 exhibit almost perfect coupling, i.e.. M~ L, =L and L;;; =4L,. Similarly, n
stacked spirals operating in series raise the total inductance by approximately a factor of n-,

Metal 9

Metal 8

Figure 7.45 Siacked spirals.

Example 7.23

The five-turn 4.96-nH inductor obtained from Eq. (7.15) in Section 7.2.3 has an outer
dimension of

lto
nm,=ﬁ+w+w—n{w+5} (7.77)
=122 pm. (1.78)

Using Eq. (7.15) for the inductance of one spiral, determine the required outer dimension
of a four-turn stacked structure having the same W and S. Assume two spirals are stacked.

(Comtinues)
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Example 7.23 (Continued)

Solution:

Each spiral must provide an inductance of 4.96 nH/4 = 1.24 nH. Iteration with N = 4,
W=4pm, and § = 0.5 pm in Eq. (7.15) yields {,; = 780 pm and hence Dy, = 66.25 pm.
Stacking thus reduces the outer dimension by nearly a factor of 2 in this case.

Metal 9 Metal 9

Figure 7.46 Eguivaient capacitance for a stack of {a) metal-9 and metal-8, or (b) meral-9 and
metal-5 spirals.

In reality, the multiplication factor of stacked square inductors is less than n” because
the legs of one inductor that are perpendicular to the legs of the other provide no mutual
coupling. For example, a stack of two raises the inductance by about a factor of 3.5 [6].
The factor is closer to n for octagonal spirals and almost equal to n” for circular structures.

In addition to the capacitance to the substrate and the interwinding capacitance, stacked
inductors also contain one befween the spirals [Fig. 7.46(a)].

Example 7.24

In most circuits, one terminal of the inductor(s) is at ac ground. Which terminal of the
structure in Fig. 7.46(a) should be grounded?

Solution:

Since L sees a much larger capacitance to the substrate than L, does, the terminal of L
should be grounded. This is a critical point in the use of stacked inductors.

Using an energy-based analysis similar to that in Section 7.2.4, [6] proves that the
equivalent lumped capacitance of the inductor shown in Fig. 7.46(a) is equal 1o

40+ 6

Ceq 12

(7.79)
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if the free terminal of Ly is at ac ground.'” Interestingly, the inter-spiral capacitance has a
larger weighting factor than the capacitance to the substrate does. For this reason, if Ly is
moved to lower metal layers [Fig. 7.46(b)|. C,, falls even though C> rises. Note that the
total inductance remains approximately constant so long as the lateral dimensions are much
greater than the vertical spacing between L) and La.

Example 7.25

Compare the equivalent lumped capacitance of single-layer and stacked 4.96-nH induc-
tors studied in Example 7.23. Assume the lower spiral is realized in metal 5 and use the
capacitance values shown in Table 7.1.

Table 7.1 Tuble of metal capacitances faF/pum?® ),

Metal 8 | Metal 7 | Metal 6 | Metal 5 | Substrate
Metal 9 52 16 12 9.5 44
Metal & 52 24 16 5.4
Metal 7 88 28 6.1
Metal 6 88 7l
Metal 5 8.6

Solution:

For asingle metal-9 layer, the lotal area is equal to 2000 pm X 4 pm = §000 u.mz, yielding
a total capacitance of 35.2 fF to the substrate. As suggested by Eq. (7.26), the equivalent
lumped capacitance is 1/3 of this value. 11.73fE For the stacked structure, each spiral has
an area of 780 pm X 4 pm = 3120 pm?. Thus. C; = 29.64 fF and C> = 26.83 fF, resulting
in

Cog = 12.11F. (7.80)

The choice of stacking therefore translates to comparable capacitances.” If Ly is moved
down to metal 4 or 3. the capacitance of the stacked structure falls more.

For n stacked spirals, it can be proved that

n—1
43 Cn+ Cop

Gy o : (7.81)

where C,, denotes each inter-spiral capacitance [6].

12, If the free terminal of Ly is grounded, the equivalent capacitance is quite larger.
3. We have neglected the fringe components for simplicity,




470 Chap. 7. Passive Devices

How does stacking affect the 07 We may surmise that the “resistance-free” coupling,
M, among the spirals raises the inductance without increasing the resistance. However,
M also exists among the turns of a single, large spiral. More fundamentally, for a given
inductance, the total wire’s length is relatvely constant and independent of how the wire
is wound. For example, the single-spiral 4.96-nH inductor studied above has a total length
of 2000 wm and the double-spiral stacked structure in Example 7.23, 1560 pm. But, with
a more realistic multiplication factor of 3.5 for the inductance of two stacked spirals, the
total length grows to about 1800 pum. We now observe that since the top metal layer is
typically thicker than the lower layers, stacking tends to increase the series resistance and
hence decrease the . The issue can be remedied by placing two or more lower spirals in
parallel. Figure 7.47 shows an example where a metal-9 spiral is in series with the parallel
combination of metal-6 and metal-5 spirals. Of course, complex current crowding effects
at high frequencies require careful electromagnetic field simulations to determine the Q.

Figure 747 Siacked inductor using two parallel spivals in metal 6 and metal 5.

7.3 TRANSFORMERS

Integrated transformers can perform a number of useful functions in RF design:
(1) impedance matching, (2) feedback or feedforward with positive or negative polarity,
(3) single-ended to differential conversion or vice versa, and (4) ac coupling between
stages. They are. however, more difficult to model and design than are inductors.

A well-designed transformer must exhibit the following: (1) low series resistance in the
primary and secondary windings, (2) high magnetic coupling between the primary and the
secondary, (3) low capacitive coupling between the primary and the secondary, and (4) low
parasitic capacitances to the substrate. Some of the trade-offs are thus similar to those of
inductors.

7.3.1 Transformer Structures

An integrated transformer generally comprises two spiral inductors with strong magnetic
coupling. To arrive at “planar™ structure, we begin with a symmetric inductor and break
it at its point of symmetry (Fig. 7.48). Segments AB and CD now act as mutually-coupled
inductors. We consider this structure a 1-to-1 transformer because the primary and the
seccondary are identical.
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Figure 748 Transformer derived from a svmmetric inductor.

Example 7.26

What is the relationship between the inductance of the symmetric spiral of Fig. 7.48 and
the inductances of the resulting transformer?
Solution:

We have
Lac=Lag + Lep + 2M, (7.82)

where each L refers to the inductance between its end points and M to the mutual coupling
between Lag and Lpe. Since Lag = Len,

Lac = 2Lap + 2M. (7.83)

If Ly and M are known, we can determine the inductance of the primary and the secondary.

The transformer structure of Fig. 7.48 suffers from low magnetic coupling, an asym-
metric primary, and an asymmetric secondary. To remedy the former, the number of turns
can be increased [Fig. 7.49(a)] but at the cost of higher capacitive coupling. To remedy the
latter, two symmetric spirals can be embedded as shown n Fig. 7.49(b) but with a shght

c D

A c
[a) i)

A 8

Figure 7.49 Transformers (a) dervived from a three-turn symmetric inductor, (b) formed as two
embedded svmmetric spirals.
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difference between the primary and secondary inductances. The coupling factor in all of the
above structures is typically less than 0.8. We study the consequences of this imperfection
in the following example.

Example 7.27

Consider the circuit shown in Fig. 7.50, where Cr models the equivalent lumped capaci-
tance between the primary and the secondary. Determine the transfer function V. / Vi, and
discuss the effect of the sub-unity magnetic coupling factor.

Vout

Figure 7.50 Simple rransformer model.
Solution:

The transformer action gives

Vin = LisI) + Msl (7.84)

Vour = Lasly + Msl,. (7.85)

Finding Iy from Eq. (7.84) and substituting the result in Eq. (7.85), we have
_ Vour _ M(Vin — Ms!z)'

I ;
* Las LiLas il
Also, a KCL at the output node yields
== Vf,rur
(Vin = Vour)Cps — L = . (7.87)
Ry
Replacing 5 from {7.86) and simplifying the result, we obtain
M>
v L|Lz(l - E)CFE+M
A (5) = ‘ (7.88)

Vin M? o Lyla M '
Lila|1— — e e gL
I 2( Libz)c'ﬁ Ry ( L:LE)‘- I

It is instructive to examine this transfer function in a few special cases. First, if Cp =10,

o # (7.89)
Vi LiLs (I- M? )5+L
R Lila :
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Example 7.27 (Continued)

suggesting that, since k = M//L;L» = 1, the transformer exhibits a low-pass response
with a real pole located at

Wy = R (7.90))
Lg(l— i )
L\L;

For example, if k=0.7, then w, = —1.96K; /Ly. This pole must lie well above the
frequency of operation.

Second, if Cp = O but M = L) = La, then V,,,/Vi, = M/L; = | regardless of the val-
ues of Cp and Ry. Thus, Cp manifests itself because of the sub-unity k. Since typically
Ly = L>; = L. we can express the poles of Eq. (7.88) as

1 4R Cr
e —ii\/l —m . (7.91)

Equation (7.88) implies that it is beneficial to reduce L, and L while £ remains
constant; as Ly and La (and M = k. /L L») approach zero,

V. M
M (5) ~—, (7.92)
VI'J'J' L]

a frequency-independent quantity equal to k if L; = L>. However, reduction of L; and >
also lowers the input impedance, Z;,. in Fig. 7.50. For example, if Cp = 0, we have from
Eq. (7.54), -

M-s-
R + Los’
Thus, the number of primary and secondary turns must be chosen so that 7, is adequately
high in the frequency range of interest.

Is it possible Lo construct planar transformers having a turns ratio greater than unity?
Figure 7.51(a) shows an example, where AB has approximately one turn and CD approx-
imately two. We note, however, that the mutual coupling between AB and the inner
turn of CD is relatively weak due to the smaller diameter of the latter. Figure 7.51(b)
depicts another 1-to-2 example with a stronger coupling factor. In practice, the primary
and secondary may require a larger number of turns so as to provide a reasonable input
impedance.

Figure 7.52 shows two other examples of planar transformers. Here. two asymmetric
spirals are interwound to achieve a high coupling factor. The geometry of Fig. 7.52{(a) can
be viewed as two parallel conductors that are wound into turns, Owing to the difference
between their lengths, the primary and secondary exhibit unequal inductances and hence
a nonunity turns ratio [16]. The structure of Fig. 7.52(b), on the other hand. provides an
exact turns ratio of unity [16].

Transformers can also be implemented as three-dimensional structures. Similar to the
stacked inductors studied in Section 7.2.7, a transformer can employ stacked spirals for the

Ziu =fg8— {?93}
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A cT D
(i) by

Figure 7.51 One-to-twe transformers (a) derived from a svmmetric inductor, (b) formed as two
svmmetric inductors.

(a) (b}

Figure 7.52 [u) Transformer formed as two wires wound togethier, (B) alternative version with eqgual
primary and secondary lengths.

Metal 9

Secondary

(a) (b) (c)

Figure 7.53 (a) One-to-one stacked transformer, (b) one-to-two transformer, (¢) staggering of turns
to reduce coupling capacitance.

primary and the secondary [6]. Figure 7.53(a) shows a 1-to-1 example. It is important to
recognize the following attributes: (1) the alignment of the primary and secondary turns
results in a slightly higher magnetic couphng factor here than in the planar transformers of
Figs. 7.49 and 7.51; (2) unlike the planar structures, the primary and the secondary can be
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symmetric and identical (except for differences in their capacitances); (3) the overall area
occupied by 3D transformers 1s less than that of their planar counterparts.

Another advantage of stacked transformers is that they can readily provide a turns
ratio higher than unity [6]. llustrated in Fig. 7.53(b), the idea is to incorporate multiple
spirals in series to form the primary or the secondary. Thus, a technology having nine
metal layers can afford 1-to-8 transformers! As shown in [6], stacked transformers indeed
provide significant voltage or current gain at gigahertz frequencies. This “free” gain can be
utilized between stages in a chain.

Stacked transformers must, however, deal with two issues. First, the lower spirals suffer
from a higher resistance due to the thinner metal layers. Second, the capacitance between
the primary and secondary is larger here than in planar transformers (why?). To reduce this
capacitance, the primary and secondary turns can be “staggered.” thus minimizing their
overlap |Fig. 7.53(c)| [6]. But this requires a relatively large spacing between the adjacent
turns of each inductor, reducing the inductance.

7.3.2 Effect of Coupling Capacitance

The coupling capacitance between the primary and secondary yields different tyvpes of
behavior with negative and positive mutual (magnetic) coupling factors. To understand
this point, we return to the transfer function in Eq. (7.88) and note that, for s = jw, the
numerator reduces to

7

e

Lila

N(jw)= — LiL> (I = )C_;.—mg + M. (7.94)

The first term is always negative, but the polarity of the second term depends on the
direction chosen for mutual coupling. Thus, it M = 0, then N (jw) falls to zero at

M
w, = _ ‘ (7.95)

C wrfes 2 Ae
L2 LILE F

i.e., the frequency response exhibits a notch at @.. On the other hand, if M =0, no
such notch exists and the transformer can operate at higher frequencies. We therefore
say “noninverting” transformers suffer from a lower speed than do “inverting™ transfor-
mers [ 16].

The above phenomenon can also be explained intuitively: the feedforward signal
through Cr can cancel the signal coupled from L to Ly, Specifically, the voltage across
L» in Fig. 7.50 contains two terms, namely, Laje/> and Mjwl| . If, at some frequency. I> is
entirely provided by Cg, the former term can cancel the latter, yielding a zero output voltage.

7.3.3 Transformer Modeling

An integrated transformer can be viewed as two inductors having magnetic and capac-
itive coupling. The inductor models described in Section 7.2.6 therefore directly apply
here. Figure 7.54 shows an example. where the primary and secondary are represented
by the compact inductor model of Fig. 7.35(b), with the mutual coupling M and coupling
capacitor Cr added. More details on transformer modeling can be found in [16] and [17].




476 Chap. 7. Passive Devices

—

Nw

/e

L =&

|||—|

Figure 7.54 Transformer model.

Due to the complexity of this model. it is difficult to find the value of each component from
measurements or field simulations that provide only S- or ¥-parameters for the entire struc-
ture. In practice, some effort is expended on this type of modeling to develop insight into
the transformer’s limitations, but an accurale representation may require that the designer
directly use the S- or ¥-parameters in circuit simulations. Unfortunately, circuit simulators
sometimes face convergence difficulties with these parameters.,

7.4 TRANSMISSION LINES

Integrated transmission lines (T-lines) are occasionally used in RF design. It is instructive to
consider a few examples of T-line applications. Suppose a long wire carries a high-frequency
signal from one circuit block to another (Fig. 7.55). The wire suffers from inductance,
capacitance, and resistance. If the width of the wire is increased so as to reduce the induc-
tance and series resistance, then the capacitance to the substrate rises. These parasitics may
considerably degrade the signal as the frequency exceeds several gigahertz.

Y

Block

Block
A X

Figure 7.55 Twe circuit blocks connected by a long wire.

Example 7.28

For the wire shown in Fig. 7.55. we also say the current “return path”™ is poorly-defined.
Explain this attribute and its consequences.

Solution:

In the ideal situation, the signal current flowing through the wire from block A to block B
returns through a ground plane [Fig. 7.56(a)]. In reality, however, due to the wire parasitics
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Example 7.28 (Continued)

and the nonideal ground connection between the two blocks. some of the signal current

flows through the substrate [Fig. 7.56(b)]. The complexity of the return path makes it dif-
ficult to accurately predict the behavior of the wire at high frequencies. Also, the coupling
1o the substrate creates leakage of the signal to other parts of the chip.
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Substrate
(a) (b)
Figure 7.56 (a) Current return path through a ground plane, (b) poor definition of current return

path.

If the long wire in Fig. 7.55 is replaced with a T-line and the input port of block B is
maodified to match the T-line. then the above issues are alleviated. Asillustrated in Fig, 7.57.
the line inductance and capacitance no longer degrade the signal, and the T-line ground
plane not only provides a low-impedance path for the returning current but minimizes the
interaction of the signal with the substrate. The line resistance can also be lowered but with
a trade-off (Section 7.4.1).

Block Block
A - T B
|-- = Zy =
%o Ry= 2,

Figure 7.57 Two circuit blocks connected by a T-line.
As another example of T-line applications, recall from Chapter 2 that a T-line having a

short-cireuit termination acts as an induetor if it is much shorter than a wavelength. Thus,
T-lines can serve as inductive loads (Fig. 7.58).

Figure 7.58 T-line serving as a load inductor
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Example 7.29
Identify the return path for the signal current that flows through the T-line in Fig. 7.58.
Solution:

Since the signal current reaches the Vpp line, a bypass capacitor must be placed between
Vpp and ground. lustrated in Fig. 7.59, such an arrangement must minimize the parasitic
inductance and resistance in the return path. Note that low-impedance return paths and

hence bypass capacitors are necessary in any high-frequency single-ended stage.
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Figure 7.59 Retrn pﬂrh'-amm& a Tline in a CS siage.

How does the Q of T-line inductors compare with that of spiral structures? For frequen-
cies as high as several tens of gigahertz, the latter provide a higher Q because of the mutual
coupling among their turns, For higher frequencies, it is expected that the former become
superior, but actual measured data supporting this prediction are not available—at least in
CMOS technology.

T-lines can also transform impedances. As mentioned in Chapter 2, a line of length d
that is terminated with a load impedance of Z; exhibits an input impedance of

ZL +_‘,"Z[_| [.rll'l{ﬂ.[ﬂ
Zild) = - i (7.96
Zy + jZ; tan{Bd) :'

where § = 27 /2 and Zy is the characteristic impedance of the line. For example, if d = 4 /4,
then Z;, = EE, /Z; . e, a capacitive load can be transformed to an inductive component. Of
course, the required quarter-wave length becomes practical in integrated circuits only at
millimeter-wave frequencies.

7.4.1 T-Line Structures

Among various T-line structures developed in the field of microwaves. only a few lend
themselves Lo integration. When choosing a geometry, the RF IC designer is concerned
with the following parameters: loss, charactenistic impedance, velocity, and size.

Before studying T-line structures, let us briefly look at the back end of CMOS pro-
cesses. As exemplified by Fig. 7.60, a typical process provides a silicided polysilicon layer
and about nine metal layers. The high sheet resistance, Ry, of poly (10 to 20 €2 /L7) makes
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Figure 7.60 Tvpical back end of a CMOS process.

it a poor conductor. Each of the lower metal layers has a thickness of approximately 0.3 pm
and an Ry of 60 to 70 m2 /. The top layer has a thickness of about 0.7 to 0.8 pm and
an Ry, of 25 to 30 mQ/C]. Between cach two consecutive metal layers lie iwe dielectric
layers: a 0.7-pum layer with €, = 3.5 and a 0.1-pm layer with €, = 7,

Microstrip A natural candidate for integrated T-lines is the “microstrip” structure.
Depicted in Fig. 7.61, it consists of a signal line realized in the topmost metal layer and
a ground plane in a lower metal layer. An important attribute of this topology is that it can
have minimal interaction between the signal line and the substrate. This is accomplished
if the ground plane is wide enough to contain most of the electric field lines emanating
from the signal wire. As a compromise between field confinement and the dimensions of
the T-line, we choose Wi = 3Ws.

W,
|
Metal 9
Metal 1| GND
- -

We
Figure 7.61 Microstrip structure.

Numerous equations have been developed in the field of microwaves o express the
charactenistic impedance of microstrips. For example, if the signal line has a thickness of
1 and a height of h with respect to the ground plane. then
377 h |
JE Ws 1 + 1.735¢,00724(W, /) —0.836"
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where

f 2h
W.=Ws+ — (I +lnT)‘ (7.98)
T

For example, it h =7 pm, =08 um, e, =4, and Wg =4 pm, then Zy = 86 £2. Unfortu-
nately, these equations suffer from errors as large as 10%. In practice, electromagnetic field
simulations including the back end details are necessary to compute 7.

Example 7.30

A short microstrip is used as an inductor resonating with the transistor capacitances in a
circuit. Determine the error in the resonance frequency. wy,, if the line’s characteristic
impedance has a 10% error.

Solution:
From Eq. (7.96), a T-line with Z;, = 0 and 27 d < 4 provides an input impedance of

Zin = JZotan(fd) (7.99)
A j70 (Z:rr g) (7.100)
A jm%, (7.101)

i.e., an inductance of L., = Zyd /v = L,d, where v denotes the wave velocity and L, the

inductance per unit length. Since wy. is inversely proportional to \/L,,. a 10% error in L,
translates to about a 5% error in w;,.

The loss of microstrips arises from the resistance of both the signal line and the ground
plane. In modern CMOS technologies, metal 1 is in fact thinner than the higher layers,
introducing a ground plane loss comparable to the signal line loss.

The loss of a T-line manifests itself as signal attenuation (or bandwidth reduction) if the
line simply connects two blocks. With a typical loss of less than (0.5 dB/mm at frequencies
of several tens of gigahertz, a microstrip serves this purpose well. On the other hand. if a
T-line acts as an inductive load whose @ is critical, then a much lower loss is required.
We can readily relate the loss and the Q. Suppose a T-line of unit length exhibits a series
resistance of R,,. As shown in Fig. 7.62,

Viour o Ry

Vin - Rs + R, + R
- 2
AT Ry

(7.102)

(7.103)
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Rs= 2y

i v.;.ut
vln Y z“’ H“
o RL=2Z,

Figure 7.62 Lossy transmission line.

We find the difference between this result and the ideal value and then normalize 1o 1/2:

4
Loss &8 — — 7.104
SN Zo+ Ry CERY
R, -
=1 i T.103
7 (7.105)

if R, < 27,. Note that this value is expressed in decibels as 20log(1 — Loss) and the result
is negative. A T-line of unit length has a @ of

L
= ;‘” (7.106)
I
Ly )
e T (7.107)

Example 7.31

Consider a microstrip line 1000 wm long with Zy = 100 € and L = | nH. If the signal line is
4 wm wide and has a sheet resistance of 25 m2 /L, determine the loss and the @ at 5 GHz.
Neglect skin effect and the loss of the ground plane.

Solution:

The low-frequency resistance of the signal line is equal to 6.25 2, yielding from Eq. (7.104)
aloss of 0.031 = —0.276 dB. The @ is obtained from (7.107) as

0 =35.03. (7.108)

In order to reduce the loss of a microstrip. the width of the signal line can be increased
(requiring a proportional increase in the width of the ground plane). But such an increase
(1) reduces the inductance per unit length (as if multiple signal lines were placed in
parallel), and (2) raises the capacitance to the ground plane. Both effects translate o a
lower characteristic impedance, Zy = /L, /C,. For example. doubling the signal line width
roughly halves Zy."* Equation (7.97) also reveals this rough dependence.

The reduction of the characteristic impedance as a result of widening the signal line
does make circuit design more difficult. As noted in Fig. 7.57, a properly-terminated T-line

4. Doubling the width does not reduce L, by a factor of 2 because placing two coupled wires in parallel does
not halve the inductance.
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loads the driving stage (block A) with a resistance of Zj. Thus, as Z; decreases, so does the
gain of block A. In other words, it is the product of the gain of block A and the inverse loss
of the T-line that must be maximized, dictating that the circuit and the line be designed as
a single entity.

The resistance of microstrips can also be reduced by stacking metal layers. lllustrated
in Fig. 7.63, such a geometry alleviates the trade-off between the loss and the characteristic
impedance. Also, stacking allows a narrower footprint for the T-line, thus simplifying the
routing and the layout,

@

9

Metal B8
4

Metal 2

Metal 1

Figure 7.63 Microstrip using parallel metal lavers for lower loss.

Example 7.32

Transmission lines used to transform impedances are prohibitively long for frequencies up
to a few tens of gigahertz, However, the relationship v = 1/ /L, C, suggests that, if C, is
raised, then the wave velocity can be reduced and so can A = v/f. Explain the practicality
of this idea.

Solution:

The issue is that a higher C, resulls in a lower Zy. Thus, the line can be shorter, but it
demands a greater drive capability. Moreover, impedance transformation becomes more

difficult. For example, suppose a 4 /4 line is used to raise Z; to Zg /Z; . This is possible
only if Zy = Z;.

Coplanar Lines Another candidate for integrated T-lines is the “coplanar™ structure.
Shown in Fig. 7.64, this geometry realizes both the signal and the ground lines in one
plane. e.g.. in metal 9. The characteristic impedance of coplanar lines can be higher than
that of microstrips because (1) the thickness of the signal and ground lines in Fig. 7.64 is
quite small, leading to a small capacitance between them. and (2) the spacing between the
two lines can be large, further deereasing the capacitance. Of course, as § becomes compa-
rable with i, more of the electric field lines emanating from the signal wire terminate on the
substrate, producing a higher loss. Also, the signal line can be surrounded by ground lines
on both sides. The characteristics of coplanar lines are usually obtained by electromagnetic
field simulations.
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Figure 7.64 Coplanar siruciure.

The loss reduction techmiques described above for microstrips can also be apphed to
coplanar lines, entailing similar trade-offs. However, coplanar lines have a larger footprint
because of their lateral spread, making layout more ditficult.

Stripline The “stripline™ consists of a signal line surrounded by ground planes, thus pro-
ducing little field leakage to the environment. As an example, a metal-5 signal line can be
surrounded by metal-1 and metal-9 planes and vias connecting the two planes (Fig. 7.65).
If the vias are spaced closely, the signal line remains shielded in all four directions.

The stripline exhibits a smaller characteristic impedance than microstrip and coplanar
structures do. It is therefore used only where field confinement is essential.

Metal 9
.
Metal 5
ey
GND
Metal 1 |

Figure 7.65 Stripline structure,

7.5 VARACTORS

As described in Chapter 8, “varactors”™ are an essential component of LC VCOs. Varactors
also occasionally serve to tune the resonance frequency of narrowband amplifiers.

A varactor is a voltage-dependent capacitor. Two attributes of varactors become critical
in oscillator design: (1) the capacitance range, i.e., the ratio of the maximum and minimum
capacitances that the varactor can provide, and (2) the quality factor of the varactor, which
is limited by the parasitic series resistances within the structure. Interestingly, these two
parameters trade with each other in some cases.

In older generations of RF ICs, varactors were realized as reverse-biased pn junc-
tons. Hustrated 1in Fig. 7.66(a) is one example where the p-substrate forms the anode
and the n™ contact. the cathode. (The p+ contact provides a low-resistance connection to
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Figure 7.66 PN junction varactor with (a) one rerminal grounded, (b) both terminals floating.

the substrate.) In this case, the anode is “hard-wired” to ground, limiting the design flexi-
bility, A “floating” pn junction can be constructed as shown in Fig. 7.66(b), with an n-well
isolating the diode from the substrate and acting as the cathode.

Let us examine the capacitance range and Q of pn junctions. At a reverse bias of Vp,
the junction capacitance, Cj, is given by

(7.109)

where Cyp is the capacitance at zero bias, Vy the buill-in potential, and m an exponent
around 0.3 in integrated structures. We recognize the weak dependence of C; upon Vp.
Since Vy == 0.7 to 0.8V and since Vp is constrained to less than |V by today’s supply
voltages, the term 1 + Vi /Vy varies between approximately | and 2. Furthermore, an m of
about 0.3 weakens this variation, resulting in a capacitance range, C max/ Cj min, 0f roughly
1.23. In practice, we may allow the varactor to experience some forward bias (0.2 10 0.3 V),
thus obtaining a somewhat larger range.

The Q of a pn-junction varactor is given by the total series resistance of the structure.
In the floating diode of Fig. 7.66(b), this resistance is primarily due to the n-well and can be
minimized by selecting minimum spacing between the n™ and p™ contacts. Moreover, as
shown in Fig. 7.67, each p™ region can be surrounded by an n™ ring to lower the resistance
in two dimensions.

Unlike inductors, transformers, and T-lines, varactors are quite difficult to simulate and
model, especially for Q calculations. Consider the displacement current flow depicted in
Fig. 7.68(a). Due to the two-dimensional nature of the flow, it is difficult to determine or
compute the equivalent series resistance of the structure. This issue arises partly because
the sheet resistance of the n-well is typically measured by the foundry for contacts having a
spacing greater than the depth of the n-well [Fig. 7.68(b)|. Since the current path in this case
is different from that in Fig, 7.68(a), the n-well sheet resistance cannot be directly applied
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Figure 7.67 Use of ann™ ring to reduce varactor resistance.
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Figure 7.68 Current distribution in a {(a) varactor, (b) typical test siructure.

to the calculation of the varactor series resistance. For these reasons, the Q of varactors is
usually obtained by measurement on fabricated structures."

In modern RF IC design, MOS varactors have supplanted their pn-junction counter-
parts. A regular MOSFET exhibits a voltage-dependent gate capacitance (Fig. 7.69), but
the nonmonotonic behavior limits the design flexibility. For example, a voltage-controlled
oscillator (VCO) employing such a varactor would generate an output frequency that rises
and falls as (the average) Vs goes from negative to positive values. This nonmonotonic
frequency tuning behavior becomes problematic in phase-locked loop design (Chapter 9).

Cas

G Accumulation | Strong Inversion
s

Figure 7.69 Variation of pate capacitance with Vs,

Vas

15, Of course, semiconductor device simulators can be vsed here if the doping levels and the junction depths
are known.
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Figure 7.70 (a) MOS varactor, (b) operation with negative gate-source voltage, (c) operation with
positive gate-source voltage, (d) resulting C/V characteristic.

A simple modification of the MOS device avoids the above issues. Called an
“accumulation-mode MOS varactor™ and shown in Fig. 7.70(a), this structure is obtained
by placing an NMOS transistor inside an n-well. If Vi; < Vs, then the electrons in the n-well
are repelled from the silicon/oxide interface and a depletion region is formed |Fig. 7.70(b)].
Under this condition, the equivalent capacitance is given by the series combination of the
oxide and depletion capacitances. As Vi; exceeds Vs, the interface attracts electrons from
the n™ source/drain terminals, creating a channel [Fig. 7.70(c)]. The overall capacitance
therefore rises to that of the oxide, behaving as shown in Fig. 7.70(d). (Since the material
under the gate is n-type silicon, the concept of strong inversion does not apply here.)

The C/V characteristic of MOS varactors has scaled well with CMOS technology gen-
erations, approaching its saturated levels of Cyp and Cy for Vs = 0.5V in 65-nm
devices. These varactors therefore operate with low supply voltages better than therr
pr-junction counterparts.

Another advantage of accumulation-mode MOS wvaractors is that, unlike pn junc-
tions, they can tolerate both positive and negative voltages. In fact, the characteristic of
Fig. 7.700(d) suggests that MOS varactors should operate with positive and negative biases
s0 as to provide maximum tuning range. We pursue this point in VCO design in Chapter 8.

Circuit simulations must somehow incorporate the varactor C/V characteristic of
Fig. 7.70(d). In practice, this characteristic is measured on fabricated devices and repre-
sented by a table of discrete values. Such a table, however, may introduce discontinuities in
the derivatives of the characteristic, creating undesirable artifacts (e.g.. a high noise floor)
in simulations. It is therefore desirable to approximate the C/V plot by a well-behaved
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function. The hyperbolic tangent proves useful here for both its saturating behavior and its
continuous derivatives. Noting that tanh(zoc) = &£ |, we approximate the characteristic of
Fig. 7.70(d) by

(7.110)

Cmax — Comin Vi | GFSCR: oEF i
Crar(Vgs) = % tanh (a + {;s) i "

Vo

Here, a and Vy allow fitting for the intercept and the slope, respectively, and Cin and Cipay
include the gate-drain and gate-source overlap capacitance.

The above varactor model translates to different characteristics in different circuit sim-
ulators! For example, HSPICE predicts a narrower oscillator tuning range than Cadence
does. Simulation tools that analyze circuits in terms of voltages and currents (e.g.. HSPICE)
interpret the nonlinear capacitance equation correctly, On the other hand, programs that rep-
resent the behavior of capacitors by charge equations (e.g., Cadence’s Spectre) require that
the maodel be transformed to a Q/V relatonship. To this end, we recall the general definition
of capacitance from dQ = C(V)dV and write

Ql'ur‘ = f CrardVis (7.111)

—_ i Iy L T7h + in
- MVG'H cosh | a + Vs + ﬁﬂ;s. (7.112)
2 Vo 2

i“

In other words, the varactor is represented as a two-terminal device whose charge and
voltage are related by Eq. (7.112). The simulation tool then computes the current flowing

through the varactor as

do,
Lyar = —d'f“*. (7.113)

The @ of MOS varactors is determined by the resistance between the source and drain
terminals.'® As shown in Fig. 7.71(a), this resistance and the capacitance are distributed
from the source to the drain and can be approximated by the lumped model depicted in
Fig. 7.71(b).

I _T_ G

/ S Coar

J: f;f&h e R ar
p=-substrate p
o (b)

Figure 7.71 (a) Effect of distributed resistance in a varactor, (b) lumped model.

16, We assume that the gate resistance is minimized by proper layvout.
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Example 7.33

Determine the equivalent resistance and capacitance values in the lumped model of
Fig. 7.71(b}.

Vxé_ zr' c..% C"II C"II

i“ - -

(b)
Figure 7.72 (a) Distributed model of a varacior, (b) equivalent circuit for half of the structure,
(e} canonical T-line structure.

Solution:

Let us first consider only one-half of the structure as shown in Fig. 7.72(a). Here, the unit
capacitances add up to the total distributed capacitance, Cy,;, and the unit resistances to
the total distributed resistance, Ry,;,. We turn the circuit upside down. arriving at the more
familiar topology illustrated in Fig, 7.72(b). The circuit now resembles a transmission line
consisting of series resistances and parallel capacitances. For the general T-line shown in
Fig. 7.72(c). it can be proved that the input impedance, Z;,, is given by [18]

|4 |
Y1 tanh(Z Y1)

where Z; and ¥, are specified for unit length and 4 is the length of the line. From
Fig. 7.72(b), Zid = R,y and Yd = C;s: thus,

R |
i = . (7.115)
* \ Crors tanh (/R Croes/3)

At frequencies well below 1/{R;,,Cy,/4), the argument of tanh is much less than unity,
allowing the approximation,

(7.114)

in

€3
tanhe =~ ¢ — 2 (7.116)

2 ; (7.117)

Sec. 7.5, Varactors 489

Example 7.33 (Continued)

It follows that
1 Ryt /2

A~ +
wa.'j'fz 3
That is. the lumped model of half of the structure consists of its distributed capaci-

tance in series with one-third of its distributed resistance. Accounting for the gray half
in Fig. 7.72(b), we obtain

7, (7.118)

1 e

. .19
leﬂ;s ]. 2 t }

zi'::.ma‘ 5

The principal difficulty in computing the € of MOS varactors (placed inside an n-well)
is that the resistance between the source and drain cannot be directly computed from the
MOS transistor characteristics. As with pn junctions, the (0 of MOS varactors 1s usually
obtained from experimental measurements.

How does the Q of MOS varactors vary with the capacitance? In the characteristic of
Fig. 7.70(d), as we begin from C,,;,, the capacitance is small and the resistance somewhat
large (that of n-well). On the other hand, as we approach C,,,,, the capacitance rises and
the resistance falls. Consequently, equation @ = 1 /(RCw) suggests that the @ may remain
relatively constant. In practice, however, the O drops as Cgg goes from Cpp 10 Cppgy
{Fig. 7.73), indicating that the relative rise in the capacitance is greater than the relative
fall in the resistance.

CGS Crnax a
len
| Yo | i
0 Vas 0 Vas

Figure 7.73 Variation of varactor ) with capacitaince.

As explained in Chapter 8, 1t 1s desirable to maximize the @ of varactors for oscillator
design. From our foregoing study of MOS varactors, we conclude that the device length
(the distance between the source and drain) must be minimized. Unfortunately, for a mini-
mum channel length, the overlap capacitance between the gale and source/drain terminals
becomes a substantial fraction of the overall capacitance, limiting the capacitance range. As
tllustrated 1in Fig. 7.74, the overlap capacitance {which 1s relatively voltage-independent)
shifts the C/V characteristic up, yielding a ratio of (Cpuy + 2WC0)/(Cpin + 2WC,,.).
where C,,,, and C,,;, denote the “intrinsic” values, i.e., those without the overlap effect.
For a minimum channel length, 2WC,, may even be larger than C,;,, thus reducing the
capacitance ratio considerably.
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Figure 7.74 Effect of overlap capacitance on varactor capacitance range.

Example 7.34

A MOS varactor realized in 65-nm technology has an effective length of 50 nm and a C,,, of
0.09 fEfum. If C, = 17 fF/pum?, determine the largest capacitance range that the varactor
can provide.

Solution:

Assuming a width of | pm for the device, we have EWCW =0.18fF and a gate oxide
capacitance of 17 fF/m? X I pm X 50 nm = 0.85 fE. Thus, the minimum capacitance is
0.18 {F (if the series combination of the oxide and depletion capacitances is neglected),
and the maximum capacitance reaches 0.85fF + 0.18 fF = 1.03fE. The largest possible
capacitance ratio is therefore equal to 5.72. In practice, the series combination of the oxide
and depletion capacitances is comparable to 2ZWC,,,., reducing this ratio to about 2.5,

In order to achieve a larger capacitance range, the length of MOS varactors can be
increased. In the above example. if the effective channel length grows to 100 nm, then the
capacitance ratio reaches (1.7 fF + (L18 fF) /(0. 18 {F) = 10.4. However, the larger source-
drain resistance results in a lower Q. Since the maximum capacitance goes from 1.03 fF to
|.88 fF and since the channel resistance is doubled, the Q | = 1 /(RCw)] falls by a factor
of 3.65. In other words, an m-fold increase in the channel length translates to roughly an
m>-fold drop in the Q.

The trade-off between the capacitance range and @ of varactors ultimately leads to
another between the tuning range and phase noise of LC VCOs. We study this issue in
Chapter 8. At frequencies up to about 10 GHz, a channel length of twice the minimum may
be chosen s0 as to widen the capacitance range while retaining a varactor  much larger
than the inductor .

7.6 CONSTANT CAPACITORS

RF circuits employ constant capacitors for various purposes, e.g., (1) to adjust the reso-
nance frequency of LC tanks, (2) to provide ac coupling between stages, or (3) to bypass
the supply rail to ground. The ¢ritical parameters of capacitors used in RF 1Cs include the
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capacitance density (the amount of capacitance per unit area on the chip). the parasitic
capacitances, and the Q.

7.6.1 MOS Capacitors

MOSFETs configured as capacitors offer the highest density in integrated circuits because
C, 15 larger than other capacitances in CMOS processes. However, the use of MOS capac-
itors entails two issues. First, to provide the maximum capacitance, the device requires a
Vigs higher than the threshold voltage (Fig. 7.69). A similar “bias” requirement applies to
MOS varactors if they are to provide maximum capacitance. Second, the channel resis-
tance limits the O of MOS capacitors at high frequencies. From Eq. (7.119), we note that
the channel resistance is divided by 12 in the lumped model, yielding

12

g= o,
R.'orcrurﬂf'

(7.120)

Both of the above issues make MOS capacitors a poor choice for interstage coupling.
Depicted in Fig. 7.75(a) is an example, wherein M5 sustains a bias gate-source voltage
approximately equal to Vpp — Vigea (why?). With typical values of Vpp = 1 Vand Vg =
0.5V, My suffers from a small overdrive voltage and hence a high channel resistance.
Moreover, the nonlinearity of the capacitance of M3 may manifest itself if the circuit senses
large interferers. For these reasons, MOS capacitors rarely serve as coupling devices.

Bond Wire
Voo Ai— Yoo
My M J— Feedback
# _PEE{:’TE_ L —
_I M-| "'_I M 22 e _I M 1 “L_‘I
= |.||rh "—'h = = FbO-—J- =

fa) (b}

Figure 7.75 MOS capacitor used as (a) coupling device (b} byvpass component.

One application of MOS capacitors is in supply bypass. As illustrated in Fig. 7.75(b},
the supply line may include significant bond wire inductance, allowing feedback from the
second stage to the first at high frequencies. The bypass capacitor, M5, creates a low
impedance between the supply and the ground. suppressing the feedback. In this case,
the Q of M5 is still important: if the equivalent series resistance of the device becomes
comparable with the reactance of its capacitance, then the bypass impedance may not be
low enough to suppress the feedback.

It is important to note that typical MOS models fail to include the channel resis-
tance, R,,, if the source and the drain are shorted. As illustrated in Fig. 7.75(b) for M3,
R.n3 is represented as a single lumped component between the two terminals and simply
“shorted out™ by circuit simulators. For this reason, the designer must compute R, from
IV charactenistics, divide it by 12, and insert the result in series with the MOS capacitor.
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Example 7.35

A MOS capacitor can be constructed as a single transistor of length L [Fig. 7.76(a)]
or N transistors in parallel, each of length L/N. Compare the Q’s of the two struc-
tures. For simplicity, assume the effective channel lengths are equal to L and L/N,
respectively.

Solution:
“The structure of Fig. 7.76(a) exhibits a channel resistance of
1
Rona= W : (7.121)
MnCm-I(Vss = Vin)
and each finger in Fig. 7.76(b) a channel resistance of
1
Rinu— (7.122)

W ; 1
oy CWL,-’_N[VGH = Vry)

Since N fingers appear in parallel, Ron.p = Ronu/N = Ron.a/N j. That is, the decomposition
of the device into N parallel fingers reduces the resistance by a factor of N°.

fa) {h)

Figure 7.76 MOS capacitor realized as (a) one long finger, (b) mudtiple short fingers.

For frequencies up to a few tens of gigaheriz, the above decomposition can yield
reasonable Qs (e.g., 5 to 10), allowing the use of MOS capacitors for supply bypass.

The reader is cautioned that very large MOS capacitors suffer from significant gate
leakage current, especially with a Vi;s as high as Vpp. This current manifests itself if the
system must enter a low-power (standby) mode: the leakage persists as long as Vpp is
applied, draining the battery.
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C= Gi + Gg'l' C;
Metal 9
&y
Metal 8 -#I
L=
Matal 7
Cy
Metal &
C; T
Substrate

Figure 7.77 Farallel-plate capacitor.

7.6.2 Metal-Plate Capacitors

If the @ or linearity of MOS capacitors is inadequate, metal-plate capacitors can be used
instead. The “parallel-plate”™ structure employs planes in different metal layers as shown in
Fig. 7.77. For maximum capacitance density, all metal layers (and even the poly layer) can
be utilized.

Example 7.36
Show the actual connections necessary among the metal layers shown in Fig. 7.77.

Solution:

The even-numbered metal layers must be tied to one another and so must the odd-numbered
layers. As shown in Figure 7.78, these connections are made by vias. In practice, a row
of vias (into the page) is necessary to connect the layers so as to obtain a small series
resistance.

Metal 8
Metal 8
Metal 7
Metal &
Metal §
Metal 4

Substrate

Figure 7.78 Detailed realization of parallel-plate capacitor.

The @ and linearity of well-designed parallel-plate capacitors are typically so high
that they need not be taken into account. However, even with all metal layers and a poly




494 Chap. 7. Passive Devices

layer, parallel-plate structures achieve less capacitance density than MOSFETs do. For
example, with nine metal layers in 65-nm technology, the former provides a density of
about 1.4 fF/pm? and the latter, 17 fF/jum?,

Parallel-plate geometries also suffer from a parasitic capacitance to the substrate. As
illustrated in Fig. 7.79, the capacitance between the lowest plate and the substrate, C,,
divided by the desired capacitance, Cqg = C; + - .- + Cy, represents the severity of this
parasitic. In a typical process, this value reaches 10%, leading to serious difficulties in
circuit design.

B8 ol
Metal 9 i?—
=
Metal 8
T Cag
: A ——&
Metal 1 LI? T Co
C. 5

i ]
Poly @
c

P
Substrate

Figure 7.79 Bottom-plate parasitic capacitance.

Example 7.37

We wish to employ capacitive coupling at the input of a stage that has an input capacitance
of Ciy, (Fig. 7.80). Determine the additional input capacitance resulting from the coupling

capacitor. Assume C, = 0.1C,..
Ce D
f" I Co cil—..

Cin
Figure 7.80 Choice of input coupling capacitance value.

Solution:

To minimize signal attenuation, €, must be much greater than Cy,, e.g., C. = 5C;,. Thus,
C, = 0.5C;,, yielding

’ CcC!n
C. =———— 4+ 0.5C; 7.123
I .C,r_‘ i c]“ in llt }
4
= 3Cin. (7.124)

‘That is, the input capacitance is raised by more than 30%.
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Figure 7.81 Fringe capacitor structure.

To alleviate the above issue, only a few top metal layers can be utilized. For example, a
structure consisting of metal 9 through metal 4 has a density of 660 EJLF'J"|J,rr12 and a parasitic
of 18 aFIumE. 1.e., 2.7%. Of course, the lower density translates to a larger arca and more
complex routing of signals.

An alternative geometry utilizes the lateral electric field between adjacent metal lines to
achieve a high capacitance density. lllustrated in Fig. 7.81, this “fringe” capacitor consists
of narrow metal hines with the minimum allowable spacing. This structure 1s described in
Chapter 8.
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PROBLEMS

7.1. Extend Eq. (7.1) to an N-turn spiral and show that L, contains N(N + 1)/2 terms.
7.2. Prove that the @ of the circuit shown in Fig. 7.32(a) is given by Eq. (7.62).

7.3. Prove that for an N-turn spiral inductor, the equivalent interwinding capacitance is
given by

_CGit -+ Gy

(N2 —1)?

7.4. Using Eq. (7.62), compare the s of the circuits shown in Figs, 7.37(b) and (d).

7.5. Consider the magnetic fields produced by the inductors in Fig. 7.41. Which topol-
ogy creates less net magnetic field at a point far from the eircuit but on its line of
symmetry?

e (7.125)

7.6. Repeat Example 7.13 for a 5-nH inductor using a linewidth of 5 pm, a line spacing
of 0.5 pwm, and four turns. Do the results depend much on the outer diameter?

7.7. Forthe circuit of Fig, 7.28(a), compute ¥, and find the parallel equivalent resistance.
Is the result the same as that shown in Eq. (7.55)7

7.8. Repeat Example 7.19 for four turns. Is it possible to find an expression for N turns?
7.9. Find the input impedance, Zj,, in Fig. 7.5(0.

7.10. Using the capacitance data in Table 7.1, repeat Example 7.25 for an inductor realized
as a stack of four metal layers. Assume the inductance is about 3.5 times that of one
spiral.

7.11. Suppose an LC VCO (Chapter 8) employs pr-junction varactors. Determine the
bounds on the control voltage and the output swings if the varactors must remain
reverse-biased.

CHAPTER

OSCILLATORS

In our study of RF transceivers in Chapter 4, we noted the extensive use of oscillators in
both the transmit and receive paths. Interestingly, in most systems, one input of every mixer
is driven by a periodic signal, hence the need for oscillators. This chapter deals with the
analysis and design of oscillators. The outline is shown below.

Voltage-Controlled
General Principles Decillators Phase Noise Quadrature VCOs

* Feedback View ® Tuning Limitations = Effect of Phase Noise # Coupling into an Oscillator
5 One-Port View = Effect of Varactor Q@ = Analysis Approach | u Basic Topology

# Cross-Coupled  » VCOs with Wide = Analysis Approach Il ® Properties of Quadrature
Oscillator Tuning Range = Noise of Bias Current Oscillators

= Three-Point = VCO Design Procedure = Improved Topologies
Oscillators " Low-Noise VCOs

8.1 PERFORMANCE PARAMETERS

An oscillator used in an RF transceiver must satisfy two sets of requirements: (1) system
specifications, e.g.. the frequency of operation and the “purity” of the output, and (2) “inter-
face™ specifications, e.g., drive capability or output swing. In this section, we study the
oscillator performance parameters and their role in the overall system.

Frequency Range An RF oscillator must be designed such that its frequency can be var-
ied (tuned) across a certain range. This range includes two components: (1) the system
specification; for example. a 900-MHz GSM direct-conversion receiver may tune the LO
from 935 MHz to 960 MHz; (2) additional margin to cover process and temperature varia-
tions and errors due to modeling inaccuracies. The latter component typically amounts to
several percent,
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