Chapter 9: Center of Mass and Linear Momentum

\checkmark Center of Mass
\checkmark Newton's Second Law for a System of Particles
\checkmark Linear Momentum
\checkmark Impulse
\checkmark Collision

Chapter 9: Center of Mass and Linear Momentum

Session 17:

\checkmark Center of Mass
\checkmark Examples

Introduction

* Chapters 2-8: we use the particle model (A particle is a point-like object; has mass but infinitesimal size)

Center of Mass

* Center of mass:

1) All of the system's mass were concentrated there
2) All external forces were applied there.
> Center of mass for Systems of Particles:

$$
x_{\mathrm{com}}=\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}}
$$

$$
\begin{gathered}
x_{\mathrm{com}}=\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}} \quad y_{\mathrm{com}}=\frac{m_{1} y_{1}+m_{2} y_{2}}{m_{1}+m_{2}} \\
\vec{r}_{\mathrm{com}}=x_{\mathrm{com}} \hat{\mathbf{i}}+y_{\mathrm{com}} \hat{\mathbf{j}}
\end{gathered}
$$

Center of Mass

> Center of mass for Systems of Particles:

$$
x_{\mathrm{com}}=\frac{m_{1} x_{1}+m_{2} x_{2}+\cdots+m_{N} x_{N}}{m_{1}+m_{2}+\cdots+m_{N}}=\frac{\sum_{i=1}^{N} m_{i} x_{i}}{M} y_{\mathrm{com}}=\frac{\sum_{i=1}^{N} m_{i} y_{i}}{M} z_{\mathrm{com}}=\frac{\sum_{i=1}^{N} m_{i} z_{i}}{M}
$$

$$
\vec{r}_{\text {com }}=x_{\text {com }} \hat{\mathbf{i}}+y_{\text {com }} \hat{\mathbf{j}}+z_{\text {com }} \hat{\mathbf{k}}
$$

Ex 1: A system consists of three particles located as shown in Figure. Find the center of mass of the system. The masses of the particles are $\mathbf{m}_{1}=\mathbf{m}_{2}=\mathbf{1 k g}$ and $\mathbf{m}_{3}=\mathbf{2} \mathbf{~ k g}$.

$$
\begin{gathered}
x_{\text {com }}=\frac{\sum_{i=1}^{3} m_{i} x_{i}}{M}=\frac{m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}}{m_{1}+m_{2}+m_{3}} \\
x_{\text {com }}=\frac{(1)(1)+(1)(2)+(2)(0)}{1+1+2}=\frac{3}{4}=0.75 m \\
y_{\text {com }}=\frac{\sum_{i=1}^{3} m_{i} y_{i}}{M}=\frac{m_{1} y_{1}+m_{2} y_{2}+m_{3} y_{3}}{m_{1}+m_{2}+m_{3}} \\
y_{\text {com }}=\frac{(1)(0)+(1)(0)+(2)(2)}{1+1+2}=\frac{4}{4}=1 m \\
\vec{r}_{\text {com }}=0.75 \hat{\mathbf{i}}+\hat{\mathbf{j}}
\end{gathered}
$$

Center of Mass

$>$ Center of mass for an extended object (solid body):

$$
\begin{gathered}
x_{\mathrm{com}}=\frac{\sum_{i=1}^{N}\left(d m_{i}\right) x_{i}}{M} \\
x_{\mathrm{com}}=\lim _{\substack{d m \rightarrow 0 \\
N \rightarrow \infty}}^{\sum_{i=1}^{N}\left(d m_{i}\right) x_{i}} \\
x_{\mathrm{com}}=\frac{1}{M} \int x d m \\
M
\end{gathered}
$$

Ex 2: Find the center of mass of a rod of mass \mathbf{M} and length \mathbf{L}. (assuming the rod has a uniform mass per unit length)

Linear mass density $\quad d m=\frac{M}{L} d x=\lambda d x$
$x_{\mathrm{com}}=\frac{1}{M} \int_{0}^{L} x(\lambda d x)=\frac{\lambda}{M} \int_{0}^{L} x d x$

$$
x_{\mathrm{com}}=\frac{1}{L}\left(\frac{L^{2}}{2}\right)=\frac{L}{2}
$$

$$
\begin{aligned}
& \lambda(x)=\alpha x \quad x_{\mathrm{com}}=\frac{1}{M} \int_{0}^{L} x[\lambda(x) d x]=\frac{\alpha}{M} \int_{0}^{L} x^{2} d x=\frac{\alpha L^{3}}{3 M} \\
& M=\int d m=\int_{0}^{L} \lambda(x) d x=\alpha \int_{0}^{L} x d x=\frac{\alpha L^{2}}{2} \quad \square x_{\mathrm{com}}=\frac{2}{3} L
\end{aligned}
$$

Center of Mass

$>$ Center of mass for an extended object (solid body):
Two Dimensions

$$
x_{\mathrm{com}}=\frac{1}{M} \int x d m
$$

$$
y_{\mathrm{com}}=\frac{1}{M} \int y d m
$$

$$
\sigma=\frac{M}{A}=\frac{d m}{d \mathrm{~A}}
$$

$$
d m=\frac{M}{A} d A=\sigma d A
$$

$$
x_{\mathrm{com}}=\frac{1}{M} \int x(\sigma d A)=\frac{\sigma}{M} \int_{0}^{a} x(b d x)=\frac{\sigma b a^{2}}{2 M}
$$

$$
x_{\mathrm{com}}=\frac{\sigma A a}{2 \sigma A}=\frac{a}{2}
$$

$$
y_{\mathrm{com}}=\frac{1}{M} \int y(\sigma d A)=\frac{\sigma}{M} \int_{0}^{b} y(a d y)=\frac{\sigma a b^{2}}{2 M}
$$

$$
y_{\mathrm{com}}=\frac{\sigma A b}{2 \sigma A}=\frac{b}{2}
$$

Center of Mass

$>$ Center of mass for an extended object (solid body):
Three Dimensions

$$
x_{\mathrm{com}}=\frac{1}{M} \int x d m \quad y_{\mathrm{com}}=\frac{1}{M} \int y d m \quad z_{\mathrm{com}}=\frac{1}{M} \int z d m
$$

$$
\rho=\frac{M}{V}=\frac{d m}{d V} \quad \text { Volume mass density }
$$

$$
d m=\frac{M}{V} d V=\rho d V
$$

$$
x_{\mathrm{com}}=\frac{1}{M} \int x(\rho d V)=\frac{\rho}{M} \int_{0}^{a} x(b c d x)=\frac{\rho b c a^{2}}{2 M}
$$

$$
x_{\mathrm{com}}=\frac{\rho V a}{2 \rho V}=\frac{a}{2}
$$

$$
y_{\text {com }}=\frac{b}{2}
$$

$$
z_{\text {com }}=\frac{C}{2}
$$

Center of Mass

The center of mass of any symmetric object of uniform mass distribution lies on an axis of symmetry and on any plane of symmetry

If \mathbf{g} is constant over the mass distribution, the center of gravity coincides with the center of mass.

Ex 3: Figure below shows a uniform metal plate \mathbf{P} of radius $2 R$ from which a disk of radius \mathbf{R} has been removed in an assembly line. Using the xy coordinate system shown, locate the center of mass com_{P} of the remaining plate.

$$
x_{\mathrm{com}}=\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}}
$$

$\sigma=\frac{M}{A} \quad \square \frac{m_{s}}{m_{p}}=\frac{\sigma A_{s}}{\sigma A_{p}}=\frac{A_{s}}{A_{p}}=\frac{\pi R^{2}}{\pi\left(4 R^{2}-R^{2}\right)}=\frac{1}{3}$

$$
x_{p}=-\frac{1}{3} x_{s}=\frac{1}{3} R
$$

$$
x_{\mathrm{com}}^{\mathrm{c}}=\frac{m_{p} x_{p}+m_{s} x_{s}}{m_{p}+m_{s}}=0 \quad \square x_{p}=-\frac{m_{s}}{m_{p}} x_{s}
$$

Ex 4: (Problem 9.6 Halliday)

Figure 9-39 shows a cubical box that has been constructed from uniform metal plate of negligible thickness. The box is open at the top and has edge length $\mathbf{L}=\mathbf{4 0} \mathbf{~ c m}$. Find (a) the x coordinate, (b) the y coordinate, and (c) the z coordinate of the center of mass of the box.

$$
\begin{aligned}
& x_{\mathrm{com}_{T}}=\frac{L}{2}=20 \mathrm{~cm} \\
& y_{\mathrm{com}_{T}}=\frac{L}{2}=20 \mathrm{~cm} \\
& z_{\mathrm{com}_{T}}=\frac{L}{2}=20 \mathrm{~cm}
\end{aligned}
$$

$$
x_{\mathrm{com}}=y_{\mathrm{com}}=\frac{L}{2}=20 \mathrm{~cm}
$$

Due to the symmetry

$$
z_{\mathrm{com}_{\mathrm{T}}}=\frac{m_{1} z_{1}+m_{2} z_{2}}{m_{1}+m_{2}} \square \frac{L}{2}=\frac{\frac{5 M}{6} z_{1}+\frac{M}{6}(L)}{M}=\frac{5}{6} z_{1}+\frac{L}{6}
$$

$$
z_{\text {com }}=z_{1}=\frac{2}{5} L=16 \mathrm{~cm}
$$

