Energy-Efficient Low Power Listening for Wireless Sensor
Networks in Noisy Environments

Mo Sha, Gregory Hackmann, Chenyang Lu
Department of Computer Science and Engineering
Washington University in St. Louis
One Brookings Drive, Box 1045
St. Louis, Missouri 63130, USA
{msha, ghackmann, lu}@wustl.edu

ABSTRACT

Low Power Listening (LPL) is a common MAC-layer tech-
nique for reducing energy consumption in wireless sensor
networks, where nodes periodically wakeup to sample the
wireless channel to detect activity. However, LPL is highly
susceptible to false wakeups caused by environmental noise
being detected as activity on the channel, causing nodes
to spuriously wakeup in order to receive nonexistent trans-
missions. In empirical studies in residential environments,
we observe that the false wakeup problem can significantly
increase a node’s duty cycle, compromising the benefit of
LPL. We also find that the energy-level threshold used by
the Clear Channel Assessment (CCA) mechanism to detect
channel activity has a significant impact on the false wakeup
rate. We then design AEDP, an adaptive energy detec-
tion protocol for LPL, which dynamically adjusts a node’s
CCA threshold to improve network reliability and duty cy-
cle based on application-specified bounds. Empirical exper-
iments in both controlled tests and real-world environments
showed AEDP can effectively mitigate the impact of noise
on radio duty cycles, while maintaining satisfactory link re-
liability.

Categories and Subject Descriptors

C.2.2 [Computer-Communication Networks]: Network
Protocols

General Terms

Design; Experimentation; Performance

Keywords

Wireless Sensor Networks; Low Power Listening; CCA Con-
trol

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

IPSN’13, April 8-11, 2013, Philadelphia, Pennsylvania, USA.

Copyright 2013 ACM 978-1-4503-1959-1/13/04 ...$15.00.

1. INTRODUCTION

Clear Channel Assessment (CCA) is a fundamental mech-
anism in MAC protocols for wireless networks. A CCA
check ! samples the energy level in the wireless channel and
considers the channel busy if the energy level is above a
threshold, or idle otherwise. CCA has been commonly used
for two important (and orthogonal) purposes. First, it has
been used by CSMA/CA protocols to avoid collisions on
shared wireless channels, by sampling the channel for activ-
ity just before transmission. Second, CCA has been used in
Low Power Listening (LPL), a popular MAC-layer approach
that enables radio to operate at low duty cycles. Under
LPL, every node periodically wakes up to perform CCA. It
then stays awake to receive packets if the CCA check detects
activity in the wireless channel, or goes back to sleep imme-
diately otherwise. Due to its simplicity and effectiveness,
LPL has been a popular approach to energy-efficient MAC
protocols in Wireless Sensor Networks (WSNs). A multi-
tude of LPL-based MAC protocols has been developed in
recent years [8,18,19], and LPL has been implemented by
many radio drivers inside sensor operating systems such as
TinyOS [1] and Contiki [2].

While the effect of CCA on collision avoidance has been
well studied in the literature, its impact on LPL, particularly
in noisy environments such as residential and office environ-
ments, has received relatively little attention. Applications
deployed in noisy wireless conditions are susceptible to fre-
quent false wakeups: noise may be detected as legitimate
activity on the channel, causing the node to remain awake
even when no transmissions occur. False wakeups may sig-
nificantly increase the duty cycle and energy consumption of
the nodes, as shown by our empirical studies in residential
environments (see Section 4). This limitation of LPL proto-
cols is becoming increasingly significant as more and more
WSNss are being deployed in residential environments, where
co-existing wireless devices and electromagnetic equipments
cause prevalent and highly variable noise.

To address this important problem, we propose a novel
approach that dynamically adjusts the CCA threshold, i.e.,
the energy level threshold used to decide if a channel is ac-
tive. This approach is motivated by the key observation
that nodes may effectively reduce false wakeups by choosing
a threshold above the background noise level, but below the

LCCA, carrier sense and energy detection are used as syn-
onymous in this paper, as supported by [20].

level of real transmissions. Specifically, the main contribu-
tions of this work are three-fold:

e An empirical study in residential environments that
demonstrates the potential benefits of adaptive CCA
control based on both normal channel conditions and
controlled 802.11n traffic;

e Adaptive Energy Detection Protocol (AEDP), an adap-
tive protocol that dynamically adjusts a node’s CCA
threshold to improve network reliability and duty cycle
based on application-specified bounds;

e Discovery of significant shortcomings in the implemen-
tation of CCA checks in TinyOS 2.1.1 2 caused by im-
proper selections of key radio parameters, and a sys-
tematic methodology to tune these parameters in order
to enable efficient CCA checks.

In contrast to previous studies on adjusting the CCA
threshold to better avoid collisions in both 802.11 [7] and
802.15.4 [5, 6, 16, 27] networks, this paper investigates the
CCA threshold’s role in waking up nodes, with the goal to
mitigate the false wakeup problem associated with LPL; to
our knowledge, it represents the first systematic study of the
CCA threshold’s role in the effectiveness of LPL. The uses
of CCA for collision avoidance in CSMA/CA and wakeup
in LPL are orthogonal and complementary to each other,
as CCA is being used at different times for different goals.
Indeed, both forms of CCA adjustment could be deployed
simultaneously, by simply maintaining separate thresholds
for collision avoidance and LPL.

The remainder of the paper is organized as follows. Sec-
tion 2 compares our approach with related works. Section 3
describes an overview of LPL. Section 4 presents an em-
pirical study into the effect of noise on LPL behavior, and
explores the use of CCA thresholds to control the associated
false wakeup problem. Section 5 details the AEDP protocol
for dynamically adjusting a node’s CCA threshold in order
to minimize false wakeups. Section 6 describes the imple-
mentation of AEDP on the TelosB mote platform and ana-
lyzes the impact of radio parameters on the effectiveness of
CCA. Section 7 presents an empirical evaluation of AEDP in
both controlled tests and real-world environments. Finally,
we conclude the paper in Section 8.

2. RELATED WORK

Traditionally, CCA functionality has been used in CS-
MA /CA MAC protocols to avoid collisions on shared wire-
less channels. A sender performs CCA before transmission.
It proceeds with the transmission if the CCA check does not
detect channel activity; otherwise it backs off to avoid collid-
ing with an on-going transmission. Numerous studies have
explored the impact of the CCA thresholds used for collision
avoidance on both 802.11 networks and WSNs [5-7,16, 27].
Bertocco et al. [5] shows that the CCA threshold is critical,
as false negative channel activity detections result in colli-
sions and false positives cause increased latency. Kiryushin
et al. [16] studies the real-world impact of CCA thresholds
in avoiding packet collisions. Chintalapudi et al. [9] shows
that a poor energy detection scheme can lead to significant

2The shortcomings still exist in TinyOS 2.1.2 officially re-
leased on August 20, 2012.

overhead for listening to the channel and switching the radio
between send and receive modes, which may take hundreds
of microseconds. Boano et al. [6] shows that tuning the CCA
threshold at run time can improve the robustness of existing
MAC protocols under interference. Yuan et al. [27] presents
that dynamically adjusting CCA threshold can substantially
reduce the amount of discarded packets due to channel ac-
cess failures. Brodsky et al. [7] presents an opposite con-
clusion based on theories of radio propagation and Shannon
capacity and shows that it is possible to choose a fixed CCA
threshold which performs well across a wide range of sce-
narios since carrier sense performance is surprisingly close
to optimal for radios with adaptive bitrate. All these works
focus on the impact of CCA on collision avoidance in trans-
missions rather than its use for wakeup in LPL-based MAC
protocols.

In contrast to previous studies on CCA for channel avoid-
ance, this paper investigates the CCA threshold’s role in
avoiding the false wakeup problem associated with LPL;
to our knowledge, it represents the first systematic study
of the CCA threshold’s role in the effectiveness of LPL in
achieving low duty cycles in WSNs, especially in noisy en-
vironments where traditional LPL protocols are vulnerable
to false wakeup problems. Our work is therefore orthogonal
and complementary.

Recently, receiver-initiated MAC protocols have been pro-
posed to avoid the false wakeup problem. Receiver-initiated
MAC protocols such as [12,23] require recipients to transmit
probe packets indicating that they are ready for packet re-
ception. As our experiments presented in Section 7.5, AEDP
is more energy efficient at low data rates than the state-
of-the-art receiver-initiated MAC protocol A-MAC [12], as
AEDP avoids the overhead of the probe packets. On the
other hand, A-MAC is more energy efficient than AEDP for
high data rate applications, where the cost of sending these
probe packets are offset by reduced overhead for transmis-
sions. Our work is therefore an alternative sender-initiated
approach that is complementary to receiver-initiated MACs
for applications with different data rates.

ContikiMAC [11] addresses the false wakeup problem with
two targeted optimizations. First, it performs two CCA
checks spaced slightly apart, allowing it to identify phe-
nomenon too short to be an 802.15.4 transmission. Second,
it performs a “fast sleep” optimization that reduces the cost
of false wakeups, by detecting patterns of activity and si-
lence which cannot belong to ContikiMAC transmissions. In
our testing, we found that our approach’s CCA-threshold-
adjustment can effectively avoid false wakeups without these
optimizations. Since our approach requires only a single
CCA check, it induces lower energy cost in low duty-cycle
cases where nodes rarely need to wakeup to receive pack-
ets. Nevertheless, these approaches are orthogonal, and in
particularly challenging environments could be combined to
reduce both the likelihood and the energy overhead of false
wakeups.

There has been increasing interest in studying the impact
of interference on WSNs and enhancing the robustness of
MAC protocols in noisy environments. Srinivasan et al. [22]
examines the packet delivery behavior of two 802.15.4-based
mote platforms, including the impact of interference from
802.11 and Bluetooth. Liang et al. [17] measures the im-
pact of interference from 802.11 networks on 802.15.4 links,
proposing the use of redundant headers and forward error

correction to alleviate packet corruption. These studies fo-
cus on improving the reliability of transmission and do not
deal with the false wakeup problem to improve energy effi-
ciency.

3. OVERVIEW OF LPL

Low power listening (LPL) is a common MAC-layer tech-
nique for reducing energy consumption in WSNs [19]. Un-
der LPL, nodes periodically wakeup to perform CCA, i.e.,
to briefly sample the wireless channel for activity. If energy
is detected on the channel, the node remains awake in or-
der to receive a packet (or until some timeout). Otherwise,
the node quickly goes back to sleep. To minimize overhead
when the network is idle, these periodic wakeups are not
synchronized across nodes: that is, the recipient knows the
recipient’s wakeup interval but not its wakeup time. Accord-
ingly, before transmitting a packet, the transmitter sends a
preamble stream at least as long as the recipient’s wakeup
interval; this ensures that the recipient will sample the chan-
nel during the preamble. After the preamble, the sender and
recipient exchange data packets.

Later LPL-based MAC layers such as X-MAC [8] modify
this approach by inserting destination address information
and periodic gaps in the preamble stream. When a node
wakes up, it may decode the destination address and see if
it is the packet’s intended recipient. If so, it uses the gaps
in the preamble to send an acknowledgment to the sender,
which will in turn immediately transmit the payload. If
not, the node may go back to sleep immediately. These
enhancements significantly reduce the cost of waking up for
a packet intended for another node, while also reducing the
average cost of unicast packet transmissions by half. BoX-
MAC-2 [18] further refines this approach by transmitting
the entire data packet in place of the destination address,
eliminating the need to explicitly exchange the payload after
the recipient has ACKed the preamble.

Quickly and accurately assessing whether the channel
is active is a critical component of a LPL-based MAC
layer. Modern radios, including all 802.15.4-compliant hard-
ware [15], provide CCA functionality that assists with this
procedure. A common method for radios to implement CCA
is to provide a digital readout (often a dedicated pin) indi-
cating whether the channel’s energy level currently exceeds
some threshold. This particular implementation, known as
energy detection, is commonly found in low-power radios
such as the Chipcon CC2420 and has been identified as a
critical feature for WSN hardware design [13]. After waking
up the radio, the microcontroller may sample the CCA pin
in a tight loop; the node remains awake for packet reception
if some minimum number of samples are positive.

4. EMPIRICAL STUDY

This section describes a series of empirical studies that
provide the motivation and insights for the design of AEDP.
We first measure the false wakeup problem in office and resi-
dential environments, followed by a systematic study on the
impact of CCA’s energy detection threshold on wakeups in
LPL.

4.1 Effects of Wireless Noise

Existing literature on LPL-based MAC layers emphasizes
the ability to run applications at an extremely low duty

cycle, sometimes as low as 1% [19], in exchange for mod-
erately increasing the cost of packet transmissions. This
tradeoff makes LPL well-suited for applications with low-to-
moderate data rates. However, noise from other wireless de-
vices can have a dramatic (and often unanticipated) impact
on nodes’ duty cycle, significantly reducing system lifetime.
Radios based on the 802.15.4 standard operate in the unli-
censed 2.4 GHz band shared by many other devices. Energy
detection simply looks for the presence of some signal on
the wireless channel; it does not distinguish between the
system’s own traffic and noise from other devices. To illus-
trate how a false-negative wakeup can considerably increase
the cost of a CCA check, we deployed a TelosB mote [10]
running TinyOS 2.1.1 [1] in an office environment. The
TelosB mote was configured to use the BoX-MAC-2 LPL-
based MAC layer, TinyOS’s de facto standard LPL im-
plementation. BoX-MAC-2 was in turn configured with a
wakeup interval of 2 seconds: i.e., the motes sleep for 2
seconds between sampling the channel for activity. In or-
der to capture the effects of wireless noise, we configured
the CC2420 radio to use channel 18, which overlaps with
a campus-wide 802.11g network. All other MAC layer and
radio parameters were left to their respective defaults.

—Negative

— False—positive

0 20 40 60 80 100 120 140 160 180 200 220
Time (ms)

Figure 1: Oscilloscope traces comparing a TelosB
node’s energy consumption during a negative (idle)
and false-positive (detected) energy detection check.

Figure 1 shows the energy consumption of this mote when
performing a single energy detection check, as captured with
an oscilloscope. When the channel is idle, the radio is pow-
ered on for 19.0 ms; in contrast, when the channel is occu-
pied, the false wakeup causes the radio to remain powered
on for 103.4 ms until it eventually times out. Similar results
were observed in [12], which found that false wakeups in-
creased the current consumption of a CCA check by 17.3x.

An equally important question is how often wireless noise
will cause these false wakeups to occur in real-world envi-
ronments. To measure this phenomenon, we deployed four
pairs of TelosB motes on orthogonal channels (11, 16, 21,
and 26, respectively) in five different apartments located in
different neighborhoods in St. Louis. The motes were de-
ployed for 24 hours in each apartment during the residents’
normal activities. One mote in each pair was configured to
transmit 1 packet every minute, and the BoX-MAC-2 MAC
layer configured with a wakeup interval of 2 seconds. We
augmented TinyOS’s CC2420 radio stack to track the re-
sult of each CCA check and the radio “on time”, i.e., the
cumulative total time the radio was active during the en-
tire experimental run. The latter data was in turn used to
compute each mote’s duty cycle. For the purposes of this
experiment, the mote’s onboard CC2420 was again config-
ured with the hardware-default CCA behavior, setting its
CCA pin based on an energy threshold of —77 dBm.

o
=3

IS
o

w
=]

n
=]

o

False Wakeup Rate (%)

=)

Channel 11 Channel 16 Channel 21 Channel 26

Figure 2: The false wakeup rate of each recipient
mote in each apartment.

Figure 2 plots the false wakeup rate (the proportion of
CCA checks resulting in wakeup but no packet reception)
of each node in the experiment. From the receiver’s wakeup
interval and the sender’s data rate, we expect a nominal
duty cycle of 0.17%. However, the false wakeups caused
by environmental noise result in substantially higher duty
cycles, with an average duty cycle of 1.4% across all four
tested channels in all five apartments. In the two worst cases
— channel 16 in apartment 5 and channel 26 in apartment
2 — false wakeup rates of 45% resulted in greatly inflated
duty cycles of 2.8%.

4.2 Effects of CCA Threshold

We propose to address the false wakeup problem by ad-
justing the CCA threshold: that is, the specific energy level
used as a binary threshold to determine whether a node
should remain awake. In the context of LPL, setting the
CCA threshold too low will cause nodes to wakeup to re-
ceive non-existent packets. Setting the threshold too high
may cause nodes not to wakeup during transmissions, forcing
the sender to repeatedly retransmit. We note that adjusting
the CCA threshold for LPL has no effect on the receiver’s
ability to decode packets, so long as the threshold is low
enough to wakeup the receiver. Hence, link reliability will
only be affected if the threshold is high enough to cause
a false-negative energy detection (i.e., a node fails to stay
awake to receive a legitimate packet).

As discussed earlier, the CCA threshold also plays a role
in the context of collision avoidance. However, adjusting the
CCA threshold has a different effect in the context of col-
lision avoidance, where it directly affects the sender rather
than receivers. Setting the threshold too low encourages spu-
rious backoffs, while setting the threshold too high may in-
troduce packet losses from otherwise-avoidable collisions. To
distinguish the CCA threshold used by the receiver for LPL
from the CCA threshold used by the sender in CSMA/CA,
we henceforth refer to the former in this paper as the wakeup
threshold. This paper focuses on reducing false wakeups by
manipulating the wakeup threshold used for LPL. We do not
change the CCA threshold used for transmission, an impor-
tant but orthogonal problem that has been well-studied in
literature.

We perform a set of controlled tests in an office environ-
ment to investigate the potential energy savings from adjust-
ing the wakeup threshold, we deployed five groups of four
TelosB motes on channel 16 at varying distances (3-15 ft)
from a pair of 802.11n devices (access point+MAC pro lap-
top) operating on 2.4 GHz band that overlaps with 802.15.4.
Each experimental run was carried out for one hour; as be-

IS
=3

=)

9 —o— 3t
—&— 6ff
4%30 ot
o ——9ft
a
——12ft
3 20
—;46 —v—15ft
=
&
©
e

77 —47

67 _
Wakeup Threshold (dBm)
(a) False wakeup rate under office occupants’
normal activities.

100, e

90) —o—3ft

80) —&—6ft
70 ——Oft
60 ——12ft
—7—15ft

False Wakeup Rate (%)
[
(=}

-77 —47

—67 57
Wakeup Threshold (dBm)

(b) False wakeup rate under controlled (5 Mbps
UDP) 802.11n traffic.

Figure 3: The effects of tuning the CC2420’s wakeup
threshold on the motes’ false wakeup rate, subject
to office occupants’ normal activities and controlled
802.11n traffic. The motes were located 3—15 ft away
from the 802.11n router, and were configured to use
a threshold ranging from —77 to —47 dBm.

fore, BoX-MAC-2 was configured with a wakeup interval of
2 seconds. In contrast to the previous experiments, which
used the radio-default CCA threshold of —77 dBm, each
mote in a group was configured to use one of four different
thresholds (=77, —67, —57, and —47 dBm). Signal gener-
ated by motes may become part of the background noise
when its strength is lower than recipients’ CCA threshold.
We intentionally stop motes from generating real transmis-
sions in this set of tests, thus we can treat the total wakeup
rate as the false wakeup rate.

Figure 3(a) plots the recipients’ false wakeup rate under
the office occupants’ normal activities in real-world environ-
ment. Figure 3(b) plots the false wakeup rate when using
LanTraffic V2 [3] to generate a controlled stream of 5 Mbps
UDP traffic through the pair of 802.11n devices. Two im-
portant conclusions may be drawn from these figures. First,
tuning the wakeup threshold provides a powerful opportu-
nity for conserving energy. We observe that the false wakeup
rate drops dramatically when increasing the threshold from
the radio default of —77 dBm. Under real-world activity as
shown in Figure 3(a), the default threshold incurs a false
wakeup rate of 14-33%. In comparison, this rate may be
reduced to 3-12% by moderately increasing the threshold
by 10 dBm, or to 0% by increasing the threshold by 30
dBm. The effects of tuning the threshold are even more
pronounced under the higher-bandwidth controlled exper-
iments, as shown in Figure 3(b). At a threshold of —77
dBm, the nodes experience a false wakeup rate no lower
than 97.8%, regardless of distance from the pair of 802.11n
devices. This rate drops to 0-4% for two of the distances

at a threshold of —57 dBm, and to 0% for all distances at a
threshold of —47 dBm. Second, the “best” wakeup threshold
is highly dependent on external factors such as the 802.15.4
nodes’ vicinity to other devices, and the other devices’ us-
age patterns and signal strength. Comparing Figures 3(a)
and 3(b), we see that increasing the threshold from —77 dBm
to —67 dBm significantly reduces the false wakeup rate un-
der normal activities. However, under a sustained 5 Mbps
UDP stream, a comparable threshold increase has virtually
no impact on the false wakeup rate.

We also used motes to perform a series of measurements
on signal strength of external interference generated by sev-
eral real-world 802.11 applications as well as the LanTraffic
V2 with various speeds. We observed that noise varies from
application to application and over time for a given applica-
tion depending on the distance from interference source.

Hence, picking an appropriate wakeup threshold is not
simply a matter of choosing a more aggressive default set-
ting. The minimum threshold needed to avoid noise varies
from setting to setting, and even over time depending on
the occupants’ activities. Moreover, selecting too high of a
threshold will intuitively cause the receiver to stop waking
up for legitimate transmissions, decreasing network reliabil-

1ty.

5. PROTOCOL DESIGN

In this section, we present the design of our Adaptive En-
ergy Detection Protocol (AEDP). At a high level, AEDP
tries to meet application-specified constraints on network
reliability and wakeup rate. The desired network reliability
is specified by the desired ETX, ET Xhreshold, where ETX is
the expected number of transmissions needed to successfully
send a packet to its destination. The desired wakeup rate,
W Rihresholda can be determined based on the application
data rate (and hence the corresponding true wakeup rate)
plus a small margin for false wakeups allowed by the appli-
cation. When it is not possible to meet both constraints,
network reliability takes precedence, as it is typically more
critical than lifetime constraints. We set a default value of
ET Xihreshotda to be 5 and a default value of W R¢preshold tO
be 5 times of data rate according to the typical low data
rate home automation systems.

AEDP maintains three variables at run time: ETX, WR,
and WRr. ETX is the average ETX value over a sliding
window (default window size is 15 minutes). WR is the
wakeup rate within the same sliding window. W Ry, is the
cumulative wakeup rate over the whole application lifetime.
Note that W Ry, reflects the long-term wakeup rate that af-
fects the battery life of the node.

At runtime, AEDP periodically updates these three vari-
ables ETX, WR, and WR; and compares their values
against BT Xihreshoida and W Ripreshotd- It then computes
a new wakeup threshold T based on four different cases, de-
scribed below.

e Case 1: ETX exceeds ET Xipreshoia- AEDP at-
tempts to quickly recover by significantly reducing the
wakeup threshold. This policy reflects the fact that
network reliability constraints are typically more crit-
ical than lifetime constraints.

e Case 2: ETX meets ET Xi¢preshoia but W R exceeds
W Rinreshotd- This case indicates that the current

wakeup threshold is too low to achieve the desired
wakeup rate. AEDP increases the wakeup threshold
by a small amount AT to try to meet the applica-
tion’s bound on wakeup rate. The default value of the
tuning step AT is set to be 2 dBm.

e Case 3: ETX, WR, and WRy all meet their re-
spective constraints. This case indicates that the cur-
rent wakeup threshold is meeting the application’s con-
straints, both in this period and over the application’s
lifetime. AEDP aims to find the minimum threshold
that does so, as lower wakeup thresholds are poten-
tially more robust to changes in topology and signal
strength. Hence, AEDP decreases the wakeup thresh-
old by AT.

e Case 4: ETX and WR meet their constraints but
W Ry does not. Here, AEDP takes no action. Since
WR is below W Rinreshotd, the wakeup threshold is
high enough to meet the application’s wakeup rate con-
straint in the short term. However, W Rr has still not
met the application’s constraint over the long term, so
AEDP will not yet start to reduce the wakeup thresh-
old.

In all cases, AEDP constrains the wakeup threshold T' to
a range [Tmin, Tmaz]. Reducing T' too much will cause the
node to always be awake, while increasing T' too much will
cause packet loss (increased ETX). AEDP sets Tmin to be
the noise floor to avoid sustained wakeups, and sets Th,qz to
be the minimum Received Signal Strength (RSS) of incom-
ing links, since our experimental results have shown that
link reliability degrades heavily when T exceeds the RSS
of incoming link [21]. To accommodate topology changes,
AEDP periodically resets the wakeup threshold to T,in for
several periods (a default value of 5 wakeup intervals) en-
abling node to establish new incoming links with RSS lower
than T

AEDP has several key design features based on the obser-
vations in our empirical study. First, AEDP adaptively ad-
justs energy detection threshold based on changes in network
reliability (specifically, ETX) observed at runtime. Sec-
ond, AEDP performs its computations based solely on lo-
cal state (WR, WRpL, and ETX), requiring no additional
transmissions between sender and receiver. Third, AEDP
is a lightweight protocol that only piggybacks a single byte
(used to measure ETX) in each existing packet transmission,
and introduces no other traffic of its own.

6. IMPLEMENTATION

In this section, we discuss our implementation of AEDP
on TinyOS 2.1.1. We first describe the software architecture
used by AEDP. We then discuss several key radio parameters
that affected the energy efficiency of LPL, and present a
methodology for picking these parameters appropriately.

6.1 AEDP Architecture

We implement the AEDP algorithm as a layer situated be-
tween the application and MAC layers. This layer consists
of three important components. The WakeupRateMonitor
component tracks the wakeup rate W R and computes the
cumulative wakeup rate W Rr. The LinkEstimator compo-
nent measures the ETX of incoming packets using sequence
numbers in each packet, and computes the average ETX

1.3
129 -8 Channel 11
’ -©-Channel 16
1.9 —-Channel 26
<
= 1.15
(11|
11
1.05)

B0 80 50 40 30 20 10 0
Wakeup Threshold (dBm)

Figure 4: The relationship between wakeup thresh-
old and ETX in the default TinyOS CC2420 stack.

value (ETX) over a sliding window. The LinkEstimator
also measures the RSS of incoming packets, using the mini-
mum average RSS value of all incoming links as the bound
Tmaz. The CCAControlEngine component computes and
sets the wakeup threshold based on the values ETX, WR
and WRpL.

AEDP requires several modifications to the radio stack to
support its operations, as listed below. For the purposes of
this implementation, we have performed these modifications
on TinyOS 2.1.1’s default CC2420 + BoX-MAC-2 stack.

First, we add a PacketInfo interface between the MAC
layer and LinkEstimator to expose the ETX and RSS values
of each incoming packet. The LinkEstimator buffers the
values in sliding windows, calculating the average ETX and
RSS values for the variables ET'X and Ti. respectively.

Second, we augment the radio core to count wakeup events.

This counter is exposed to the WakeupRateMonitor through
the WakeupCounter interface and used to compute the val-
ues of WR and WRy,.

Finally, we add a CCAcontrol interface to the radio core to
expose the radio’s hardware CCA threshold setting. On the
CC2420, this is implemented by writing the new threshold to
the radio’s CCA_THR register, plus a 45 dBm offset specified
by the datasheet [24]. The CCA Control Engine uses this
interface to set the newly-computed wakeup threshold T'.

6.2 System Parameters

When testing our first implementation of AEDP on the
TelosB mote, we were initially surprised to discover that
increasing the wakeup threshold had little impact on net-
work reliability. Figure 4 plots the relationship between the
wakeup threshold and ETX that we observed in our ini-
tial testing, using three different channels and a wide range
of threshold values. We initially expected that an exces-
sively high threshold would cause significant packet loss, and
a high enough threshold would prohibit the node from re-
ceiving packets at all (due to never waking up from sleep).
However, in practice, we observed that an overly aggressive
threshold only increased the number of retransmissions by
a maximum of 20%. Indeed, the node still received packets
after setting the threshold to the radio maximum of 82 dBm,
or even after modifying the CC2420 stack to always put the
radio back to sleep regardless of the energy detection result.

From these results, we hypothesized that the radio was
fully receiving and decoding entire packets during the CCA
check itself. TinyOS’s implementation of BoX-MAC-2 on

the CC2420 detects energy by sampling the CCA pin up to
400 times in a tight loop. Modern packet-based radios like
the CC2420 are designed to fully decode packets without
the microcontroller’s intervention, and could decode packets
while the microcontroller is occupied by polling the CCA
pin.

We confirmed this hypothesis using a logic analyzer to
trace the sequence of events inside the radio hardware and
radio stack. Figure 5 presents a sample trace that we cap-
tured with the CC2420 configured to use the maximum thresh-
old3. At 0 ms, the radio stack begins sampling the wireless
channel by powering on the CC2420. The CC2420 is fully
powered on at T1 = 2.947 ms, and the radio stack starts
energy detection. At T2 = 5.916 ms, the CC2420 signals
the beginning of a packet reception; at T3 = 7.261 ms, the
(CC2420 signals that the packet is fully decoded. The radio
stack will not finish energy detection until 74 = 11.791 ms.
Indeed, the duration of this check (8.844 ms) is much longer
than the on-air time of an 802.15.4 packet (0.59 — 4.24 ms
in lab experiments, depending on payload size).

The apparent cause for this lengthy check is a long ACK
delay built into TinyOS’s CC2420 driver. After transmitting
a packet, the driver waits up to 8 ms for an ACK packet. In
our own measurements, this resulted in BoX-MAC-2 leaving
the channel idle for 8.3 ms between retransmissions.

In principle, an ACK delay of this length is unneces-
sary. From the 802.15.4 specification, we can derive a tight
bound of 544 us on the ACK delay. (Specifically, the recip-
ient must transmit an ACK exactly 192 us after decoding
the incoming packet’s last bit, and transmitting the ACK
packet takes 352 us at 802.15.4’s 250 kbps data rate [12,
15].) However, TinyOS disables the CC2420’s hardware
auto-acknowledgement feature due to concerns over its relia-
bility [4]. Consequently, packets must pass partway through
the recipient’s radio stack before they are acknowledged,
adding significant delay.

Nevertheless, we believe that the default ACK delay is
overly conservative. In a microbenchmark experiment, we
transmitted packets between a pair of TelosB motes with
hardware auto-acknowledgement disabled. The transmitter
requested an ACK for each transmission, and recorded the
delay between finishing a transmission and receiving the cor-
responding ACK. Out of 2000 transmissions, the transmitter
observed a mean delay of 2.2 ms and a maximum delay of
2.4 ms.

This result indicates that an 8 ms ACK delay, and the
associated 8.8 ms energy detection length, is excessive. The
length of this check contradicts the need for a short, inexpen-
sive energy detection, and arguably even renders the entire
check ineffective. From the 20% ETX penalty we observed in
our testing, it would have been nearly as effective to simply
leave the radio on for 8.8 ms, and ignore the energy detec-
tion result. Doing so would have had only a small impact on
network reliability, in exchange for never incurring a false
wakeup.

Instead, for the purposes of implementing and evaluating
AEDP, we opt to retain the check but reduce the CC2420

3For illustrative purposes, we modified BoX-MAC-2 to mark
the duration of the energy detection loop using a GIO pin,
and to disable a code branch that short-circuits the loop
when the radio starts receiving a packet. We have verified
that the CC2420 will still fully decode packets during energy
detection, even without these modifications.

0.000 s

T1: 2.947 ms

I2: 5.9161T3: 7.261 ms A T4 11.791 ms [,

VREG_EN

I

FIFOP

N

SFD

1

GIO

Figure 5: A logic analyzer trace demonstrating the CC2420 fully decoding a packet during the energy
detection check. The microcontroller uses the VREG_EN pin to control the CC2420’s power state. The
CC2420 uses the SFD and FIFOP pins to signal the beginning (T2) and end (T3) of packet reception,
respectively. The GIO pin indicates the duration of the check (T4-T1).

Driver ACK delay
CC2420(cc2420 driver) 8 ms
CC2420(cc2420x driver,most platforms) 1 ms
C(C2420(cc2420x driver,micaz platforms) 0.8 ms
CC2520 (most platforms) 1 ms
C(C2520(sam3s_ek platform) 0.8 ms
RF230 1 ms
IEEE 802.15.4 specification 0.544 ms
TelosB (lab measurements) 2.4 ms

Table 1: The ACK delays used by various 802.15.4
radio drivers in TinyOS, the ACK delay derived
from [15], and the actual ACK delay measured on a
TelosB.

driver’s ACK delay to 2.8 ms (2.3 ms + 0.5 ms guard space).
We accordingly modify BoX-MAC-2 to poll the CCA pin up
to 115 times, reducing the energy detection duration from
8.8 ms to 2.9 ms. In general, the duration of CCA polling
must be longer than the ACK delay to avoid false negatives
in energy detection which can heavily worsen the perfor-
mance.

As we show in Section 7, this modification alone has the
effect of significantly reducing the motes’ duty cycle, simply
by reducing the cost of energy detection to a fraction of its
default length.

Although this modification is specific to the particular ra-
dio stack used, it emphasizes the need for a general method-
ology — such as the analysis performed above — to tune
these key radio and MAC layer parameters. Indeed, as
shown in Table 1, TinyOS employs three different ACK de-
lays on the sender side, depending on the combination of ra-
dio driver, radio stack, and underlying mote platform. None
of these three different delays is consistent with the theoret-
ical ACK turnaround time from the 802.15.4 standard, or
with the actual turnaround time measured on the TelosB.
Besides energy efficiency, this inconsistency raises concerns
about basic interoperability.

7. EVALUATION

To validate the efficiency of our approach in reducing false
wakeup rates, we performed a series of controlled experi-
ments and real-world experiments. (1) We first evaluate the
capability of AEDP to effectively converge to the desired
wakeup threshold. (2) We then performed an experiment
where additional transmitters were added to the network
at runtime to test AEDP’s resilience to network changes.

(3) We evaluate AEDP’s impact on duty cycles at the link
level, and compare AEDP’s performance against LPL con-
figurations in a testbed we deployed in a 3-floor apartment
building. (4) We compare AEDP against A-MAC, a state-
of-the-art receiver-initiated MAC protocol under different
data rates. (5) Finally, we evaluate the impacts of AEDP
on multi-hop data collection by running AEDP with CTP
in a 55-node testbed in an academic building.

In all experiments, we deploy our benchmark applications
on top of TelosB motes running the TinyOS 2.1.1 operating
system. BoX-MAC-2 is configured with a wakeup interval
of 2 seconds: i.e., the motes sleep for 2 seconds between
sampling the channel for activity. We use a data rate of
1 packet/5 minutes 4 for all evaluations except the one in
Section 7.5, where we evaluate the performance of AEDP
under different data rates.

We emphasize that our experiments changed only the CCA
threshold used for wakeup and did not change the threshold
used for collision avoidance; hence, improvements in duty
cycle are attributed to a reduction in false wakeups rather
than retransmissions.

7.1 Self-tuning Wakeup Threshold

We first test the capability of AEDP to automatically ad-
just its wakeup threshold. For this experiment, we deployed
a pair of motes with AEDP on channel 16. We also de-
ployed an 802.11n access point and a laptop producing 1
Mbps of UDP traffic on 802.11 channel 6, which overlaps
with 802.15.4 channel 16. We performed two experimental
runs: to vary the impact of the interfering 802.11 network on
the mote pair, the distance between the mote pair and the
802.11n devices was 10 ft during the first run, and increased
to 30 ft for the second run.

Figure 6 illustrates AEDP reactively changing the wakeup
threshold based on runtime conditions. During the first
experimental run, the receiver mote quickly increases the
wakeup threshold to —56 dBm to avoid false wakeups intro-
duced by the nearby 802.11 interferer. At this point, the
mote is still unable to meet the application-specified duty
cycle, and hence the threshold remains at about —55 dBm
for the remainder of the experiment. In the second experi-
mental run, the receiver mote likewise quickly increases the
wakeup threshold to —54 dBm. At this point, because the
mote is located further away from the interferer, it is able to

4The data rate is chosen according to the typical sampling
rate of home automation systems (for example, 1 tempera-
ture reading every 5 minutes is sufficient for an HVAC sys-
tem to control ambient temperature).

-©-1st run (10ft from interferer)
2nd run (30ft from interferer)

|
o
o

|
o
41

|
[0}
o

"\/"

Wakeup Threshold (dBm)
1 | I

|
®

o~
5 10 15 20 25 30 35 40 45 50 55 60
Time (min)

Figure 6: AEDP adapting the wakeup threshold
over time.

Wakeup Threshold (dBm)

0 5 10 15 20 25 30 35 40 45 50 55 60
Time (min)

Figure 7: AEDP adapting the wakeup threshold
over time when new nodes join the network. A sec-
ond transmitter joined into the network at 21 min-
utes (vertical black line) and a third at 41 minutes
(vertical red line).

meet the application-specified duty cycle; hence, it gradu-
ally decreases the wakeup threshold in increments of 2 dBm.
AEDP eventually settles on a threshold between —60 and
—62 dBm that closely matches the requested duty cycle,
where it remains for the remainder of the experiment.

7.2 Adaptation to Network Changes

To test AEDP’s resilience to network changes, we per-
formed an experiment where additional transmitters were
added to the network at runtime. We initially deployed a
single transmitter mote and a single receiver mote. A second
transmitter was added to the network 21 minutes into the
experiment, and a third was added at 41 minutes. All three
transmitters were configured to send packets to the single
receiver node, where we instrumented AEDP to record its
wakeup threshold over time.

Figure 7 illustrates how AEDP adapts the receiver’s
wakeup threshold over the course of the experiment. In order
to reduce the false wakeup rate, AEDP quickly increases the
wakeup threshold to —52 dBm; this closely matches the —50
dBm RSS of the first transmitter. After AEDP reaches its
objective false wakeup rate, it begins steadily decreasing the
threshold until the second transmitter joins at 21 minutes.
The second transmitter’s signal strength is slightly higher
(—46 dBm) than the existing transmitter. Hence, AEDP re-
sponds to the new node by increasing the threshold to —52
dBm, slightly lower than the minimum of both transmit-
ters, and again gradually decreases the threshold over time.
At 41 minutes, the third transmitter joins with a signifi-
cantly lower signal strength at the receiver (—60 dBm) than
the previous two transmitters. Benefiting from the periodi-
cal wakeup threshold reset process mentioned in Section 5,

--AEDP
-=-Reduced ACK dela;
0.7, = Default

Duty Cycle (%)

0 10 20 Time (?ﬂin) 40 50

(a) In a clean environment.

-©-AEDP
-=-Reduced ACK dela;
v Default

o

Duty Cycle (%)
Moo Booo

e

40 50

® Time (in)

(b) In a residence with residents’ normal activi-

ties.

-©-AEDP
-=Reduced ACK delay]
= Default

Duty Cycle (%)

40 50

20 Time fhin)

(c) In a lab stress test with generated 802.11n
interference.

Figure 8: Duty cycle under minimum interference,
normal residential activities, and sustained interfer-
ence. Horizontal lines indicate the theoretical opti-
mal duty cycles of 0.259% (AEDP and reduced-ACK
configurations) and 0.608% (default radio configura-
tion).

AEDP adapts by rapidly dropping the wakeup threshold to
—62 dBm, again slightly below the minimum signal strength
of all the transmitters. These results demonstrate AEDP
dynamically adjusting the wakeup threshold to successfully
accommodate network topology changes.

7.3 Impact on Duty Cycles

To explore AEDP’s impact on duty cycles, we deployed a
pair of motes with a modified radio stack to record the radio
on time — i.e., the cumulative time the radio was active —
on each mote. The precise duty cycle is hence derived from
the radio on time and the experiment’s length.

We first deployed the pair on channel 26 in an office en-
vironment, which we confirmed to be clean with a Wi-Spy
spectrum analyzer [25]. We performed experimental runs,
for 60 minutes each run, once with the default BoX-MAC-
2 configuration and once with AEDP. To isolate the effects
of the reduced ACK delay (discussed in Section 6.2) from
AEDP’s wakeup threshold tuning, we performed a third ex-

perimental run which reduced the ACK delay but was oth-
erwise identical to the default BoX-MAC-2 stack.

Figure 8(a) presents the duty cycle under all three ex-
perimental runs, broken down into 5 minute windows. In
each 5-minute window, the default BoX-MAC-2 configura-
tion activates the radio with an average duty cycle of 0.64%.
AEDP consistently reduces this duty cycle over the entire
experimental run, by an average of 57.48%. In this clean en-
vironment, the false wakeup rate is very low; hence, AEDP
achieves a duty cycle within 99.7% of the reduced-ACK con-
figuration.

For comparison, we also plot the theoretical optimal duty
cycle for both ACK delay configurations. Specifically, at a
data rate of 1 packet/5 min and a wakeup interval of 2 s,
the optimal duty cycle is 149« Tiqie + (Tp +13) /2 + Tp + T4,
where T;q is the time the radio is active when no energy
is detected (11.5 ms under the default configuration, or 4.5
ms with the reduced ACK delay); T}, is the time needed to
receive a packet (4.24 ms); T; is the gap between packets
(8.3 ms under the default configuration, or 2.8 ms with the
reduced ACK delay); and Ty is the time the radio remains
active after receiving a packet (100 ms). Because interfer-
ence was limited, all experimental runs remained within 7%
of their respective optimal duty cycles.

To evaluate AEDP’s performance under a more typical
deployment, we repeated this experiment in a residential set-
ting. This experiment was carried out under normal wireless
condition with residents’ regular wireless activity. The mote
pair is configured to use channel 16, which overlaps with the
residents’ 802.11g network. Figure 8(b) plots the results un-
der this experimental setup. We observe that the adjusted
ACK delay is responsible for a significant reduction in radio
usage, with the average duty cycle in each 5-minute win-
dow dropping from 0.86% to 0.55%. However, in the face
of typical wireless noise, AEDP’s wakeup threshold adjust-
ment has a significant impact on duty cycle. AEDP reduces
the duty cycle to an average of 0.30%, resulting in a savings
of 45.5% over the tweaked radio stack and 65.1% over the
default radio configuration.

Because AEDP is largely able to avoid false wakeups, it
comes within 15.8% of the theoretically optimal duty cycle.
In contrast, the default and reduced-ACK stacks achieves a
duty cycle 41.4% and 112.4% higher than their respective
optimal duty cycles.

As a stress test, we repeated the experiment once more in
a lab setting under controlled interference, in the form of a
laptop and an access point, located 10 ft from the mote pair,
generating 1 Mbps UDP traffic over an overlapping 802.11n
channel 6, which overlaps with 802.15.4 channel 16.

Figure 8(c) plots the duty cycle under this controlled ex-
periment. Due to the persistent source of interference, the
default stack has an average duty cycle of 2.69% while the
reduced-ACK stack has an average duty cycle of 1.69%. In
contrast, AEDP achieves a duty cycle of 0.89%, a 47.3%
reduction over the reduced-ACK stack and 66.9% over the
default stack.

Owing to the challenging nature of the wireless environ-
ment, all three stacks perform several times worse than their
theoretical optimal duty cycles. However, AEDP comes
within the closest of its optimal duty cycle: 244% higher
than optimal, compared to 342% for the default stack and
552% for the reduced-ACK stack.

-e-AEDP
1 -=-Reduced ACK dela)

0. |-v-Default
20
% 0.60
> 0.
o 0.
>
=3
a 0.%
—— o~ —
-80 -75 -70 —65 -60 -55 -50 -45
RSSI (dBM)
(a) Duty cycle.
3 -©-AEDP
-2-Reduced ACK delay]
-v-Default

e
-80 -75 -70

65 60
RSS! (dBM)
(b) Average ETX.

Figure 9: AEDP’s performance on links with diverse
signal strengths.

7.4 Effects of Signal Strength

We explored AEDP’s performance on a diverse set of links
by selecting 30 links at random from the 380 links detected
in a testbed we deployed in a 3-floor residential apartment
building. This experiment was carried out under normal
wireless condition with four residents’ regular wireless activ-
ity. As with the previous experiment, we performed three
runs, for 60 minutes each experimental run: one with the
default LPL configuration, one with a reduced ACK delay,
and one with AEDP.

For the purposes of presentation, we group the 30 links
into 7 buckets based on their signal strength, using buckets
5 dBm wide. As shown in Figure 9(a), these links show
highly diverse RSS at their respective receivers. For the
strongest links (RSS € (—65, —45]), AEDP achieves a duty
cycle of 0.28%, close to the theoretical minimum of 0.259%.
This represents a 40.3% reduction over the reduced-ACK
configuration and 65.1% over the default LPL configuration.

AEDP shows a more moderate — but still significant
— improvement in duty cycle on intermediate links (RSS
€ (—75,—65]). For these links, AEDP achieves a 31.2% re-
duction in duty cycle over the reduced-ACK configuration
and 52.6% over the default LPL configuration.

For the links with the lowest signal strength (RSS < —75),
the RSS is already close to the radio stack’s default wakeup
threshold of —77 dBm. AEDP cannot adjust the wakeup
threshold below the signal strength, since it sets Tyqz to
be the minimum RSS of incoming links to avoid sacrificing
network reliability. Hence, AEDP’s 35.7% reduction in duty
cycle is attributable only to the reduced ACK length.

As shown in Figure 9(b), the reduced-ACK configuration
and AEDP introduced a small number of false-negative en-
ergy detection checks which were not experienced under the
default stack, since the number of CCA pin polling was re-
duced from 400 times to 115 times, as discussed in Sec-
tion 6.2. The reduced-ACK configuration consequently had

a 5.5% increase in average ETX (from 1.05 to 1.11) and
AEDP had a 6.7% increase in average ETX (from 1.05 to
1.12). The slight increases in average ETX are in exchange
for a proportionally much-larger reduction in duty cycle.

We note that links with the lowest signal strength tend
to be highly bursty; while productive for routing, they must
be used opportunistically. While AEDP will neither help
nor hurt when such links exist, by their nature this will only
happen for short bursts during the application’s lifetime.
During the periods where moderate-to-strong links are used
for routing, AEDP will dynamically increase the wakeup
threshold, resulting in significant energy savings.

7.5 Comparison with A-MAC

Receiver-initiated MAC protocols [12, 23] avoid the false
wakeup problem by transmitting probe packets when nodes
are ready to receive data, eliminating the need for recipi-
ents to actively sample the channel. Although AEDP and
receiver-initiated MAC protocols approach the false wakeup
problem from different directions, they share the same goal
of extending network lifetime by reducing duty cycle in the
face of noisy wireless channels. To understand the effective-
ness of these two approaches, we performed a set of experi-
ments comparing AEDP’s performance with that of A-MAC,
a state-of-the-art receiver initiated MAC protocol [12]. For
this set of experiments, we choose the same set of links
from the residential testbed used in Section 7.4, and con-
figured the transmitters to transmit at data rates ranging
from 1 packet/2 s to 1 packet/600 s. We performed each
experimental run twice, once with AEDP and once with
the A-MAC implementation provided by the authors of A-
MAC [12]. A-MAC’s radio stack was instrumented to record
the radio on time, but was otherwise set to its default con-
figuration. For fairness, we used the default parameters for
both BoX-MAC-2 in TinyOS 2.1.1 [1] and A-MAC provided
by the authors [12]. The only change we made for BoX-
MAC-2 is reducing the ACK delay because of the imple-
mentation flaw discussed in Section 6.2.

As shown in Figure 10(a), at low data rates (Inter Packet
Interval (IPI) within [300,600] s) AEDP leads to lower duty
cycles than A-MAC. For instance, AEDP achieves an av-
erage duty cycle of 0.338%, representing a 41.5% reduction
over A-MAC (0.578%) when IPI is 300 s. AEDP and A-
MAC achieve similar duty cycles at intermediate data rates
(IPI within [100,200] s). In contrast, at high data rates (IPI
<100 s), AEDP leads to a higher duty cycle than A-MAC.
For instance, with an IPI of 30 s AEDP achieves an average
duty cycle of 0.803%, which is 24.1% higher than A-MAC
(0.647%). As shown in Figure 10(b), AEDP introduced a
small number of false-negative energy detection checks lead-
ing to an up to 16.7% increase in average ETX (from 1.000
to 1.166 when IPI is 400 s) in exchange for a proportionally
much-larger reduction in duty cycle at low data rates.

The protocols’ respective advantages at different date rates
may be understood by analyzing their respective strategies.
Under LPL, senders repeatedly transmit long preambles in-
dicating that they are ready to send data; recipients period-
ically sample the channel, and turn on the radio if energy is
detected. Under receiver-initiated MACs like A-MAC, recip-
ients periodically broadcast beacons announcing that they
are ready to receive data; senders keep their radios on wait-
ing for the recipient’s beacon, and then immediately ACK
it. In principle, receiver-initiated MACs replace LPL’s short

o

Duty Cycle (%)
o

o

0 100 200 300 400 500 600
Inter—Packet Interval (s)
(a) Duty cycle
3 -o- AEDP
- A-MAC
2.5
2
=
1.5
u 3
PTG I G
0.5
0 100 500 600

200 300 400
Inter—Packet Interval (s)
(b) Average ETX.

Figure 10: Comparing AEDP and A-MAC with dif-
ferent inter-packet intervals (IPIs)

channel sampling with an entire transmission plus a short
delay waiting for a response. As discussed in Section 6.2, the
default BoX-MAC-2 configuration suffers from an unneces-
sarily high channel sampling cost of 10.0 ms; in comparison,
A-MAC pays a probing cost of 6.2 ms under our oscilloscope
measurement. Consequently, previous literature has found
that the overhead of receiver-initiated MAC protocols can
be even lower than LPL [12]. However, after tuning the
energy detection length, AEDP pays a significantly lower
sampling cost of 2.9 ms. We note that receiver-initiated
MAC s inherently must pay the overhead of an entire packet
transmission; hence A-MAC’s overhead cannot be tuned in
this fashion.

Thus, A-MAC has a higher overhead than AEDP at low
data rates. However, since A-MAC saves the cost of sending
a long preamble, it is able to outperform AEDP at suffi-
ciently high data rates. This result suggests that AEDP is
more suitable for low date rate applications, while A-MAC
has advantages in high data rate applications. They there-
fore represent complementary approaches in the design space
of low-power MAC protocols in noisy environments °.

7.6 Collection Tree Protocol Performance

Finally, we study how well CTP protocol [14] performs
over AEDP. Since AEDP is implemented as a layer situ-
ated on top of LPL BoX-MAC-2 MAC layers, running CTP
over AEDP is largely a matter of changing configuration

5The pTunes project [28] shows that the performance of
MAC protocols are sensitive to their parameters. Optimiz-
ing parameters of a MAC protocol is not the focus of this
paper. The pTunes system does not support TinyOS and
hence cannot be used to select the MAC parameters for our
experiments. Nevertheless the experimental study presented
in this subsection reveals the general trend of the comple-
mentary behavior of AEDP and a receiver-initiated MAC
when facing different data rates.

Figure 11: The Testbed topology with a transmis-
sion power of 0 dBm. Blue node is a sink node.

F14 .
Y é :
&) :
5. ;
>
Ao04 ; g
Reduced ACK delay AEDP
(a) Duty cycle.
5
£ 4 _ —_
3 : :
- - -
o
F =
1 i -
Reduced ACK delay AEDP
(b) Hop count.
1
> —_
£ s —
2 — —_
©
c
w

Reduced ACK delay AEDP
(c¢) End-to-end ETX.

Figure 12: Box-plot comparison between AEDP and
LPL BoX-MAC-2 with reduced ACK delay. Cen-
tral mark in box indicates median; bottom and
top of box represent the 25th percentile (¢1) and
75th percentile (¢2); crosses indicate outliers (z >
G2+ 15-(q2—q1) or x < ¢1 — 1.5 (g2 — q1)); whiskers
indicate range excluding outliers.

wirings. To explore the performance on a large scale, multi-
hop networks, we run the experiments on an indoor testbed
consisting of 55-TelosB motes in Jolley and Bryan Hall at
Washington University in St. Louis [26]. Figure 11 shows the
network topology with transmission power of 0 dBm. Each
node produces data at a rate of 1 packet every 5 minutes and
all data packets are forwarded to a sink node. We performed
two 24-hour experimental runs one with the AEDP and the
other with LPL BoX-MAC-2 configuration with the reduced
ACK delay. We use the default CTP setting in both two
runs. To test the network’s performance in a noisy environ-
ment, we set the nodes operating on channel 18 overlapping
with the campus Wi-Fi channel.

Figure 12(a)- 12(c) show the box-plots of the duty cycles
of all nodes in the testbed and the average hop counts and
end-to-end ETX of the routes of all nodes. Since the routes
of nodes may change dynamically under CTP, for each node
we calculates the average values of hop count and end-to-
end ETX during each 24-hour experimental run. As shown
in Figure 12(a) and 12(c), AEDP reduces the median duty
cycle by 35.44% (from 0.79% to 0.51%), while also reducing
the median end-to-end ETX by 11.26% (from 6.30 to 5.59).
This result shows that AEDA is able to mitigates the im-
pacts of noise on LPL on node duty cycles while simultane-
ously reducing the multi-hop transmission cost under CTP.
As shown in Figure 12(b), AEDP does result in a slight in-
crease in the median hop count of the routes (from 2.30 hops
to 2.46 hops) as a result of a higher CCA threshold used to
filter out noise. The combination of a lower end-to-end ETX
and higher hop counts indicate that AEDP was able to filter
out weak links affected by noise while still enabling CTP to
take advantage of enough good links for low-cost multi-hop
communication.

8. CONCLUSION

Maintaining energy efficiency in noisy environments has
become an increasingly critical problem as wireless sensor
networks are gaining widely deployment in residential and
office environments. While LPL has been a popular and
effective approach to energy-efficient MAC protocols, false
wakeups caused by wireless noise can significantly increase
the duty cycle and compromise the benefit of LPL. To ad-
dress this problem, we first perform an empirical study of
the false wakeup problem of LPL in real-world residential en-
vironments and find that the CCA wakeup threshold is an
effective knob for controlling false wakeups. We then pro-
pose AEDP, an adaptive protocol that dynamically adjusts a
node’s wakeup threshold to improve network reliability and
duty cycle based on application-specified bounds. AEDP
has been implemented on TinyOS 2.1.1 and the TelosB plat-
form. Experimental results from both real-world residential
deployments and testbed experiments show that AEDP can
effectively maintain low duty cycles in noisy environments
and adapt to network changes and links with varying signal
strength. We also found AEDP and A-MAC more energy-
efficient for applications with low data rate and high data
rate, respectively, and therefore provide complementary ap-
proaches suitable for different classes of applications.

There are two limitations to AEDP. First, tuning CCA
threshold is ineffective for links with low signal strength that
can be close to or below the signal strength of noise. In this
case AEDP will set the wakeup threshold to the minimum
RSS of incoming links and as a result cannot effectively re-

duce false wakeups caused by noise. This makes AEDP less
effective for highly sparse networks connected by mostly long
links. Second, our implementation is specific to the partic-
ular CC2420 radio stack used. It is important to develop a
general methodology — such as the analysis performed in
Section 6.2 — to select the key radio and MAC layer pa-
rameters. For a new radio stack, developers should firstly
measure the ACK delay and then tune the duration of CCA
polling accordingly. In general, the duration of CCA polling
must be longer than the ACK delay to avoid false negatives
in energy detection which can heavily worsen the perfor-
mance. On the other hand, a long energy detection contra-
dicts the need for a short, inexpensive energy detection, and
arguably even renders the entire check ineffective. There-
fore, the duration of CCA polling should be slightly longer
than the ACK delay.

Acknowledgment

The authors thank the anonymous reviewers, and the shep-
herd Matteo Ceriotti for their insightful comments. This
work was supported in part by NSF under grants CNS-
1035773 (CPS) and CNS-1144552 (NeT'S).

9. REFERENCES

[1] http://www.tinyos.net/.

[2] http://www.contiki-os.org/.

[3] http:
//wuw.zti-telecom.com/EN/LanTrafficV2.html.

[4] http://docs.tinyos.net/index.php/CC2420_
Hardware_and_Software_Acks.

[5] M. Bertocco, G. Gamba, and A. Sona. Experimental
optimization of CCA thresholds in wireless sensor
networks. In EMC, 2007.

[6] C. A. Boano, T. Voigt, N. Tsiftes, and L. Mottola.
Making sensornet mac protocols robust against
interference. In EWSN, 2010.

[7] M. Z. Brodsky and R. T. Morris. In defense of wireless
carrier sense. In SIGCOMM, 2009.

[8] M. Buettner, G. V. Yee, E. Anderson, and R. Han.
X-magc: a short preamble mac protocol for duty-cycled
wireless sensor networks. In SenSys, 2006.

[9] K. K. Chintalapudi and L. Venkatraman. On the
design of mac protocols for lowlatency hard real-time
discrete control applications over 802.15.4 hardware.
In IPSN, 2008.

[10] Crossbow Technology. TelosB mote platform.
http://www.xbow.com/Products/Product_pdf_
files/Wireless_pdf/TelosB_Datasheet.pdf.

[11] A. Dunkels. The contikimac radio duty cycling
protocol. Technical Report 5128, Swedish Institute of
Computer Science, 2011.

[12] P. Dutta, S. Dawson-Haggerty, Y. Chen, C.-J. M.
Liang, and A. Terzis. Design and evaluation of a
versatile and efficient receiver-initiated link layer for
low-power wireless. In SenSys, 2010.

[13] P. Dutta, J. Taneja, J. Jeong, X. Jiang, and D. Culler.
A building block approach to sensornet systems. In
SenSys, 2008.

[14] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and
P. Levis. Collection tree protocol. In SenSys, 2009.

[15] IEEE. Part 15.4: Wireless Medium Access Control
(MAC) and Physical Layer (PHY) Specifications for
Low-Rate Wireless Personal Area Networks (WPANs),
2006.

[16] A. Kiryushin, A. Sadkov, and A. Mainwaring.
Real-world performance of clear channel assessment in
802.15.4 wireless sensor networks. In SENSORCOMM,
2008.

[17] C.-J. M. Liang, B. Priyantha, J. Liu, and A. Terzis.
Surviving wi-fi interference in low power zigbee
networks. In SenSys, 2010.

[18] D. Moss and P. Levis. BoX-MACs: Exploiting
physical and link layer boundaries in low-power
networking. Technical Report SING-08-00, Stanford
Information Networks Group, 2008.

[19] J. Polastre, J. Hill, and D. Culler. Versatile low power
media access for wireless sensor networks. In SenSys,
2004.

[20] I. Ramachandran and S. Roy. On the impact of clear
channel assessment on mac performance. In
GLOBECOM, 2006.

[21] M. Sha, G. Hackmann, and C. Lu. Energy-efficient low
power listening for wireless sensor networks in noisy
environments. Technical Report WUCSE-2011-61,
Washington University in St. Louis, 2013.
http://cse.wustl.edu/Research/Lists/Technical,
20Reports/Attachments/957/aedp.pdf.

[22] K. Srinivasan, P. Dutta, A. Tavakoli, and P. Levis. An
empirical study of low power wireless. In ACM
Transactions on Sensor Networks, 2010.

[23] Y. Sun, O. Gurewitz, and D. B. Johnson. Ri-mac: A
receiver-initiated asynchronous duty cycle mac
protocol for dynamic traffic loads in wireless sensor
networks. In SenSys, 2008.

[24] Texas Instruments. 2.4 GHz IEEE 802.15.4 /
ZigBee-ready RF Transceiver.

[25] Wi-Spy Spectrum Analyzer.
http://www.metageek.net/.

[26] WUSTL Wireless Sensor Network Testbed.
http://wsn.cse.wustl.edu/index.php/Testbed.

[27] W. Yuan, J.-P. M. G. Linnartz, and I. G. M. M.
Niemegeers. Adaptive cca for ieee 802.15.4 wireless
sensor networks to mitigate interference. In WCNC,
2010.

[28] M. Zimmerling, F. Ferrari, L. Mottolay, T. Voigty, and
L. Thiele. ptunes: Runtime parameter adaptation for
low-power mac protocols. In IPSN, 2012.

