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The celebrated Szemerédi-Trotter theorem gives a bound for the set of incidences 

 between a finite set of points  and a finite set of lines  in the Euclidean plane

. Specifically, the bound is

where we use the asymptotic notation  or  to denote the statement that  for some

absolute constant . In particular, the number of incidences between  points and  lines is . This bound is

sharp; consider for instance the discrete box  with  being the

collection of lines . One easily verifies that , 

, and , showing that (1) is essentially sharp in the case ; one can concoct similar

examples for other regimes of  and .

On the other hand, if one replaces the Euclidean plane  by a finite field geometry , where  is a finite field, then

the estimate (1) is false. For instance, if  is the entire plane , and  is the set of all lines in , then  are

both comparable to , but  is comparable to , thus violating (1) when  is large. Thus any proof of

the Szemerédi-Trotter theorem must use a special property of the Euclidean plane which is not enjoyed by finite field

geometries. In particular, this strongly suggests that one cannot rely purely on algebra and combinatorics to prove (1);

one must also use some Euclidean geometry or topology as well.

Nowadays, the slickest proof of the Szemerédi-Trotter theorem is via the crossing number inequality (as discussed in

this previous post), which ultimately relies on Euler’s famous formula ; thus in this argument it is

topology which is the feature of Euclidean space which one is exploiting, and which is not present in the finite field

setting. Today, though, I would like to mention a different proof (closer in spirit to the original proof of Szemerédi-

Trotter, and also a later argument of Clarkson et al.), based on the method of cell decomposition, which has proven to

be a very flexible method in combinatorial incidence geometry. Here, the distinctive feature of Euclidean geometry one is

exploiting is convexity, which again has no finite field analogue.

Roughly speaking, the idea is this. Using nothing more than the axiom that two points determine at most one line, one

can obtain the bound

which is inferior to (1). (On the other hand, this estimate works in both Euclidean and finite field geometries, and is sharp

in the latter case, as shown by the example given earlier.) Dually, the axiom that two lines determine at most one point

gives the bound
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(or alternatively, one can use projective duality to interchange points and lines and deduce (3) from (2)).

An inspection of the proof of (2) shows that it is only expected to be sharp when the bushes 

associated to each point  behave like “independent” subsets of , so that there is no significant correlation

between the bush  of one point and the bush of another point .

However, in Euclidean space, we have the phenomenon that the bush of a point  is influenced by the region of space

that  lies in. Clearly, if  lies in a set  (e.g. a convex polygon), then the only lines  that can contribute to  are

those lines which pass through . If  is a small convex region of space, one expects only a fraction of the lines in  to

actually pass through . As such, if  and  both lie in , then  and  are compressed inside a smaller subset of ,

namely the set of lines passing through , and so should be more likely to intersect than if they were independent. This

should lead to an improvement to (2) (and indeed, as we shall see below, ultimately leads to (1)).

More formally, the argument proceeds by applying the following lemma:

Lemma 1 (Cell decomposition) Let  be a finite collection of lines in , let  be a

finite set of points, and let . Then it is possible to find a set  of  lines in ,

plus some additional open line segments not containing any point in , which

subdivide  into  convex regions (or cells), such that the interior of each such

cell is incident to at most  lines.

The deduction of (1) from (2), (3) and Lemma 1 is very quick. Firstly we may assume we are in the range

otherwise the bound (1) follows already from either (2) or (3) and some high-school algebra.

Let  be a parameter to be optimised later. We apply the cell decomposition to subdivide  into  open

convex regions, plus a family  of  lines. Each of the  convex regions  has only  lines through it,

and so by (2) contributes  incidences. Meanwhile, on each of the lines  in  used to

perform this decomposition, there are at most  transverse incidences (because each line in  distinct from  can

intersect  at most once), plus all the incidences along  itself. Putting all this together, one obtains

We optimise this by selecting ; from (4) we can ensure that , so that .

One then obtains

We can iterate away the  error (halving the number of lines each time) and sum the resulting geometric series to

obtain (1).

It remains to prove (1). If one subdivides  using  arbitrary lines, one creates at most  cells (because each new

line intersects the existing lines at most once, and so can create at most  distinct cells), and for a similar reason,

http://www.tricki.org/article/Keep_parameters_unspecified_until_it_is_clear_how_to_optimize_them


every line in  visits at most  of these regions, and so by double counting one expects  lines per cell “on the

average”. The key difficulty is then to get  lines through every cell, not just on the average. It turns out that a

probabilistic argument will almost work, but with a logarithmic loss (thus having  lines per cell rather

than ); but with a little more work one can then iterate away this loss also. The arguments here are loosely

based on those of Clarkson et al.; a related (deterministic) decomposition also appears in the original paper of

Szemerédi and Trotter. But I wish to focus here on the probabilistic approach.)

It is also worth noting that the original (somewhat complicated) argument of Szemerédi-Trotter has been adapted to

establish the analogue of (1) in the complex plane  by Toth, while the other known proofs of Szemerédi-Trotter, so

far, have not been able to be extended to this setting (the Euler characteristic argument clearly breaks down, as does

any proof based on using lines to divide planes into half-spaces). So all three proofs have their advantages and

disadvantages.

— 1. The trivial incidence estimate —

We first give a quick proof of the trivial incidence bound (2). We have

and thus by Cauchy-Schwarz

On the other hand, observe that

Because two distinct points  are incident to at most one line, the right-hand side is at most , thus

Comparing this with the Cauchy-Schwarz bound and using a little high-school algebra we obtain (2). A dual argument

(swapping the role of lines and points) give (3).

A more informal proof of (2) can be given as follows. Suppose for contradiction that  was much larger than 

. Since , this implies that that the  are much larger than  on the

average. By the birthday paradox, one then expects two randomly chosen  to intersect in at least two places 

; but this would mean that two lines intersect in two points, a contradiction. The use of Cauchy-Schwarz in the rigorous

argument given above can thus be viewed as an assertion that the average intersection of  and  is at least as large

as what random chance predicts.

As mentioned in the introduction, we now see (intuitively, at least) that if nearby  are such that  are drawn

from a smaller pool of lines than , then their intersection is likely to be higher, and so one should be able to improve

upon (2).

— 2. The probabilistic bound —
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Now we start proving Lemma 1. We can assume that , since the claim is trivial otherwise (we just use all the

lines in  to subdivide the plane, and there are no lines left in  to intersect any of the cells). Similarly we may assume

that , and that  is large. We can also perturb all the lines slightly and assume that the lines are in general position

(no three are concurrent), as the general claim then follows from a limiting argument (note that this may send some of the

cells to become empty). (Of course, the Szemerédi-Trotter theorem is quite easy under the assumption of general

position, but this theorem is not our current objective right now.)

We use the probabilistic method, i.e. we construct  by some random recipe and aim to show that the conclusion of the

lemma holds with positive probaility.

The most obvious approach would be to choose the  lines  at random from , thus each line  has a probability

of  of lying in . Actually, for technical reasons it is slightly better to use a Bernoulli process to select , thus each

line  lies in  with an independent probability of . This can cause  to occasionally have size much larger

than , but this probability can be easily controlled (e.g. using the Chernoff inequality). So with high probability, 

consists of  lines, which therefore carve out  cells. The remaining task is to show that each cell is incident to

at most  lines from .

Observe that each cell is a (possibly unbounded) polygon, whose edges come from lines in . Note that (except in the

degenerate case when  consists of at most one line, which we can ignore) any line  which meets a cell in , must

intersect at least one of the edges of . If we pretend for the moment that all cells have a bounded number of edges, it

would then suffice to show that each edge of each cell was incident to  lines.

Let’s see how this would go. Suppose that one line  was picked for the set , and consider all the other lines in 

that intersect ; there are  of these lines , which (by the general position hypothesis) intersect  at distinct points

 on the line. If one of these lines  intersecting  is also selected for , then the corresponding point  will

become a vertex of one of the cells (indeed, it will be the vertex of four cells). Thus each of these points on  has an

independent probability of  of becoming a vertex for a cell.

Now consider  consecutive such points on . The probability that they all fail to be chosen as cell vertices is 

; if , then this probability is . Thus runs of much more than  points

without vertices are unlikely. In particular, setting , we see that the probability that any given 

 consecutive points on any given line  are skipped is . By the union bound, we thus see

that with probability , that every line  has at most  points between any two adjacent

vertices. Or in other words, the edge of every cell is incident to at most  lines from . This yields

Lemma 1 except for two things: firstly, the logarthmic loss of , and secondly, the assumption that each cell

had only a bounded number of edges.

To fix the latter problem, we will have to add some line segments to . First, we randomly rotate the plane so that none

of the lines in  are vertical. Then we do the following modified construction: we select  lines from  as before,

creating  cells, some of which may have a very large number of edges. But then for each cell, and each vertex in

that cell, we draw a vertical line segment from that vertex (in either the up or down direction) to bisect the cell into two

pieces. (If the vertex is on the far left or far right of the cell, we do nothing.) Note that almost surely this construction will

avoid hitting any point in . Doing this once for each vertex, we see that we have subdivided each of the old cells into a

number of new cells, each of which have at most four sides (two vertical sides, and two non-vertical sides). So we have

now achieved a bounded number of sides per cell. But what about the number of such cells? Well, each vertex of each

cell is responsible for at most two subdivisions of one cell into two, and the number of such vertices is at most  (as

they are formed by intersecting two lines from the original selection of  lines together), so the total number of cells

is still .
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Is there at this point any proof of Szemeredi-Trotter via something like the polynomal

method? This “Algebraic Methods…” paper of Guth and Katz is at least one instance

where the method gives you some new insight into problems about the combinatorics of

incidences.

Reply

I certainly think so! For one thing, there is a link between Szemeredi-Trotter and sum-product

Is it still true that each edge of each cell is incident to  lines in ? We have already proven this (with

high probability) for all the old edges – the ones that were formed from lines in . But there are now some new edges,

caused by dropping a vertical line segment from the intersection of two lines in . But it is not hard to see that one can

use much the same argument as before to see that with high probability, each of these line segments is incident to at most

 lines in  as desired.

Finally, we have to get rid of the logarithm. An inspection of the above arguments (and a use of the first moment

method) reveals the following refinement: for any , there are expected to be at most  cells which

are incident to more than  lines, where  is an absolute constant. This is already enough to improve the 

 bound slightly to . But one can do even better by using Lemma 1 as an induction

hypothesis, i.e. assume that for any smaller set  of lines with , and any , one can partition  into at

most  cells using at most  lines such that each cell is incident to at most  lines, where 

are absolute constants. (When using induction, asymptotic notation becomes quite dangerous to use, and it is much safer

to start writing out the constants explicitly. To close the induction, one has to end up with the same constants 

 as one started with.) For each  between  and  which is a power of two, one can apply the

induction hypothesis to all the cells which are incident to between  and  (with  set equal to the

lines in  incident to this cell, and  set comparable to ), and sum up (using the fact that 

converges, especially if  is restricted to powers of two) to close the induction if the constants  are chosen

properly; we leave the details as an exercise.
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theorems (this is discussed in my crossing number article), so having a new approach to

Szemeredi-Trotter, such as a polynomial approach, may well lead to new sum-product

theorems, which is certainly of interest. Also, the current proof of Szemeredi-Trotter in the complex plane is rather

messy; a clean proof would be good. Finally, the F_p Szemeredi-Trotter paper in my paper with Bourgain and Katz is

only an epsilon better than trivial, and only applies to situations in which the number of lines and points is the same;

improving either of these would be desirable (I understand that removing the latter would be helpful for some of the

SL_d(F_p) product estimates).

There is also the problem of getting a good inverse theorem, i.e. when is Szemeredi-Trotter close to sharp? It’s unlikely

that the polynomial method would help with that specific question, but having some other proof of Szemeredi-Trotter

could also be useful for this purpose.

Finally, developing the polynomial method for its own sake seems worthwhile – it looks like an approach with a lot of

potential for other combinatorial incidence geometry problems.

Reply

You “certainly think so” meaning such a proof is already known, or that it would be good if it

were? I’m wholeheartedly with you on the latter.

Reply

Ah, I misread your “Is there at this point any” as “Is there any point to have a” :-). No, I

don’t know of such an argument, but I would love to hear of one.

Reply

Dear Terry. I think that the cutting lemma proof – which you presented here – tells us more

about the structure of point-line arrangements with almost maximal number of incidences.

Let me give an example. In your calculations you count lines being incident to two points in a cell it

crosses. If the number of incidences is close to the Szemeredi-Trotter bound then using a cell decomposition one can

guarantee that a typical line is incident to at least 3 points in a cell. Then a typical cell which has  points has about 

many collinear triples. Then, by Ruzsa-Szemeredi, it contains many ( ) triangles. So, one can see that if an

arrangement has many incidences then it contains many triangles.

It would be nice to see a simple geometric proof for this; show (without using Ruzsa-Szemeredi) that for every positive

c there is threshold  that if  and the number of incidences between a set of n points, P, and a set of n lines, L,

is at least  then there is a triangle, (i.e. three lines from L that the three crossing points are in P.)

About Csaba Toth’s paper on the complex case; As far as I know the manuscript has been at COMBINATORICA for

more than 8 years(!) without a final decision. I believe that Csaba’s result is correct, however it might be difficult to

referee.
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Are there any recent results in the direction of improving Szemeredi-Trotter for points and circles

Follow

FOLLOW “WHAT'S
NEW”

Get every new post delivered

to your Inbox.

Join 3,409 other followers

Enter your email address

Sign me up

Pow ered by WordPress.com

http://www.math.ucla.edu/~tao
http://quomodocumque.wordpress.com/
http://www.math.ucla.edu/~tao
http://terrytao.wordpress.com/2009/06/12/the-szemeredi-trotter-theorem-and-the-cell-decomposition/?replytocom=39422#respond
http://terrytao.wordpress.com/2009/06/12/the-szemeredi-trotter-theorem-and-the-cell-decomposition/?replytocom=39426#respond
http://terrytao.wordpress.com/2009/06/12/the-szemeredi-trotter-theorem-and-the-cell-decomposition/?replytocom=39432#respond
http://terrytao.wordpress.com/2009/06/12/the-szemeredi-trotter-theorem-and-the-cell-decomposition/?replytocom=39435#respond
javascript:void(0)
http://wordpress.com/signup/?ref=lof


 0  0  Rate This

iosevich

 1  0  Rate This

14 June, 2009 at 8:29 am

JSE

 0  0  Rate This

19 June, 2009 at 12:38 pm

E. Mehmet Kıral

19 June, 2009 at 1:47 pm

Terence Tao

of the same radius?

Reply

As far as I know the manuscript has been at COMBINATORICA for more than 8

years(!) without a final decision.

Time for the Polyreferee Project?

Reply

Dear Professor Tao,

I fail to see how you could conclude that the proof of Szemeredi-Trotter theorem must essentially

use some sort of topological or convexity argument from the finite field example you gave above.

The Szemeredi-Trotter theorem given above involves an asymptotic inequality on the number of points and lines.

However in the finite plane these are bounded and by choosing the hidden constant sufficiently large, we may let the

inequality be satisfied.

Or is there some reason to believe that a generalization of Szemeredi-Trotter theorem to finite fields must involve a

constant that is independent of the field (or maybe only dependent on the characteristic)?

Perhaps by observing that this result does not hold in “infinite characteristic p” fields, or maybe in fields with a quite

different topology such as the p-adics we may deduce that the convexity arguments were necessary. Maybe it does.

Best Regards,

Reply

Dear Mehmet,

Well, if a proof of Szemeredi-Trotter did not use anything special about the ambient field, such as

topology or convexity, then it would apply uniformly for all fields, and the finite field examples show that this is not the

case; one cannot make the implied constant C the same for every choice of finite field, though of course as you say one

can trivially find a C for any fixed choice of finite field for which Szemeredi-Trotter holds.

Also, it is not difficult to pack a lot of finite field examples (with the same characteristic) into an infinite field example.

Consider for instance the algebraic closure  of a finite field. This contains arbitrary large finite subfields G, just take

any finite extension of F. For each such subfield G, one can create a Szemeredi-Trotter counterexample in the plane 

and hence in the plane  by the construction in the post; thus Szemeredi-Trotter fails (for any choice of constant) for

the field . Thus any proof of Szemeredi-Trotter must use some property of the real line which is not shared by ,

which seems to rule out most of the purely algebraic approaches to the problem, and is consistent with the fact that all

known proofs use either topological or convexity methods.

[Actually, there is a loophole here. There is known to be a link between Szemeredi-Trotter theorems and sum-product

theorems. The latter can be established by algebraic (and combinatorial) means, the main ingredient being a hypothesis

that the ambient field contains no finite subfields, a statement which does indeed distinguish the real line from examples
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such as ; this is done for instance in my book with Van Vu. It is also known that sum-product theorems can yield

some non-trivial results of Szemeredi-Trotter type (see e.g. my paper with Bourgain and Katz) but there is no known

way of using this technology to establish the full Szemeredi-Trotter theorem.]

Reply

[...] June 2009 in Discrete Geometry Terry Tao has a great post about the Szemeredi-Trotter
theorem on the maximum number of incidences between m points and n [...]

Reply

[...] number methods (as discussed in this previous blog post) or by cell decomposition (as discussed in this previous blog post). In
both cases, the order structure of (and in particular, the fact that a line divides a plane [...]

Reply

[...] (as discussed in this previous post) or via a slightly different type of cell decomposition (as discussed here). The proof given below
is not that different, in particular, from the latter proof, but I believe [...]

Reply

Does the cell decomposition lemma have a multidimensional analogue?

Reply

Yes. See for instance

http://terrytao.wordpress.com/2010/11/20/the-guth-katz-bound-on-the-erdos-distance-problem/

Reply

Dear Terry, I know I am almost three years late to notice, but why can we guarantee that

the cardinality of R is O(r)? My problem is that in your proof we might add r^2 vertical

segments when we “fix the latter problem”.

At other places (e.g. Matousek’s book) it is only claimed that the number of cells is O(r^2). I wonder if this stronger

version also holds.

Reply

Well, the only reason we needed R have cardinality O(r) is so that we have only O(r^2)

cells, and we keep that latter property when the vertical line segments are added, so the

cardinality of the modified R is no longer relevant. (I guess it would be more precise to say that

we are not modifying R, but rather modifying how the cells are constructed from R.)
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Reply

Thank you for your fast reply. I agree with you completely but in this case Lemma 1 is

quite misunderstandable as you stated it in the post. It suggests that the cells are derived

by partitioning the plane by r lines, which is not the case.

Reply

Ah, a fair point; I’ve reworded the text accordingly.

Reply

[...] http://terrytao.wordpress.com/2009/06/12/the-szemeredi-trotter-theorem-and-the-cell-
decomposition/#c… Share this:TwitterFacebookLike this:LikeBe the first to like this post. [...]

Reply

[...] The cutting lemma (a.k.a. cell decomposition lemma) states that given $n$
lines within the plane you’ll be able to divide it into $O(r^2)$ regions (even

triangles) for just about any $1le rle n$ so that the inside associated with a region is intersected by $O(n/r)$ lines. For additional see e.g.
Matousek’s book Lectures on Discrete Geometry or this publish. [...]

Reply

[...] The cutting lemma (a.k.a. cell decomposition lemma) states that
given $n$ lines in the plane it is possible to divide it into $O(r^2)$

regions (even triangles) for any $1le rle n$ such that the interior of any region is intersected by $O(n/r)$ lines. For more see e.g.
Matousek’s book Lectures on Discrete Geometry or this post. [...]
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