Chapter 2: Motion Along a Straight Line

\checkmark Position, Displacement and Distance
\checkmark Velocity and Speed
\checkmark Acceleration
\checkmark Finding Displacement and Velocity from Acceleration
\checkmark Motion with Constant Acceleration
\checkmark Free Fall

Chapter 2: Motion Along a Straight Line

Session 2 :

\checkmark Position, Displacement and Distance
\checkmark Velocity and Speed
\checkmark Acceleration
\checkmark Examples

Introduction

* In this chapter, we consider motion in one dimension (along a straight line)
* Motion represents a continual change in an object's position.
* Types of motion:

Translational (An example is a car traveling on a highway.)
Rotational (An example is the Earth's spin on its axis.)
Vibrational (An example is the back-and-forth movement of a pendulum.)

* We will use the particle model. A particle is a point-like object; has mass but infinitesimal size

Position

$>$ The object's position is its location with respect to a chosen reference point.

The position-time graph shows the motion of the particle (car).

Displacement and Distance

$>$ Displacement is defined as the change in position during some time interval.
$>$ Represented as Δx

- $\Delta x \equiv x_{f}-x_{i}$
- SI units are meters (m)
- Δx can be positive, negative or zero.
$>$ Displacement is different than distance.

$>$ Distance is the length of a path followed by a particle.
$>$ Distance is always positive.

Velocity and Speed

$>$ The average velocity is rate at which the displacement occurs.

$$
v_{a v g} \equiv \frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{i}}{\Delta t}
$$

$>$ SI units are (m / s)
$>$ Is also the slope of the line in the position - time graph
$>$ Speed is a scalar quantity.
$>$ Has the same units as velocity (m / s)
$>$ Defined as total distance / total time:

$$
s_{a v g} \equiv \frac{d}{t}
$$

$>$ The average speed is not the magnitude of the average velocity. $\left(s_{\text {avg }} \neq\left|v_{\text {avg }}\right|\right)$

Velocity and Speed

Ex 1: Find the average velocity and average speed of the car in between positions A and F.

Velocity and Speed

$>$ The instantaneous velocity indicates what is happening at every point of time.

$$
v=\lim _{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t}=\frac{d x}{d t}
$$

$>$ The instantaneous velocity is the slope of the line tangent to the x vs. t curve.
$>$ The instantaneous velocity can be positive, negative, or zero.

$>$ The instantaneous speed is the magnitude of the instantaneous velocity.

Acceleration

$>$ Acceleration is the rate of change of the velocity.

$$
a_{a v g} \equiv \frac{\Delta v}{\Delta t}=\frac{v_{f}-v_{i}}{t_{f}-t_{i}}
$$

$>$ SI units are $\mathrm{m} / \mathbf{s}^{\mathbf{2}}$
$>$ The instantaneous acceleration:

$$
a=\lim _{\Delta t \rightarrow 0} \frac{\Delta v}{\Delta t}=\frac{d v}{d t}=\frac{d^{2} x}{d t^{2}}
$$

Acceleration

$>$ Graphical Comparison.

Acceleration

When an object's velocity and acceleration are in the same direction, the object is speeding up. (v.a>0)

When an object's velocity and acceleration are in the opposite direction, the object is slowing down. (v.a < 0)

This car moves at
constant velocity (zero
acceleration).

Ex 2: (Problem 2.2 Halliday)

Compute your average velocity in the following two cases:
(a) You walk $\mathbf{7 3 . 2} \mathbf{~ m}$ at a speed of $\mathbf{1 . 2 2} \mathbf{~ m} / \mathrm{s}$ and then run 73.2 m at a speed of $\mathbf{3 . 0 5} \mathbf{~ m} / \mathrm{s}$ along a straight track. (b) You walk for $\mathbf{1 . 0 0} \mathbf{~ m i n}$ at a speed of $\mathbf{1 . 2 2} \mathbf{~ m} / \mathrm{s}$ and then run for $\mathbf{1 . 0 0} \mathbf{~ m i n ~ a t ~}$ $3.05 \mathrm{~m} / \mathrm{s}$ along a straight track. (c) Graph x versus t for both cases and indicate how the average velocity is found on the graph.

$$
v_{\text {avg }} \equiv \frac{\Delta x}{\Delta t}=\frac{\Delta x_{1}+\Delta x_{2}}{\Delta t_{1}+\Delta t_{2}}
$$

$$
\left\{\begin{array}{l}
v_{\text {arg }} \equiv \frac{73.2+73.2}{\frac{73.2}{1.22}+\frac{73.2}{3.05}=\frac{73.2+73.2}{60+24}=1.74 \mathrm{~m} / \mathrm{s}} \\
v_{\text {avg }} \equiv \frac{1.22(60)+3.05(60)}{60+60}=\frac{73.2+183}{60+60}=2.14 \mathrm{~m} / \mathrm{s} \\
x(\mathrm{~m})
\end{array}\right.
$$

Ex 3: (Problem 2.22 Halliday)

The position of a particle moving along the x axis depends on the time according to the equation $\boldsymbol{x}=\boldsymbol{c t}^{2}-\boldsymbol{b t}^{3}$, where x is in meters and t in seconds. What are the units of (a) constant \mathbf{c} and (b) constant \mathbf{b} ? Let their numerical values be 3.0 and $\mathbf{2 . 0}$, respectively. (c) At what time does the particle reach its maximum positive \times position? From $\mathbf{t}=\mathbf{0 . 0} \mathbf{s}$ to $\mathbf{t}=4.0 \mathbf{s}$, (d) what is its average velocity and (e) average speed?. Find its acceleration at times (e) $\mathbf{0 . 0} \mathbf{s}$ and (f) $1.0 \mathbf{s}$.

$$
c:\left(\frac{m}{s^{2}}\right) ; b:\left(\frac{m}{s^{3}}\right) \quad x=3 t^{2}-2 t^{3} \quad \longrightarrow \quad v=\frac{d x}{d t}=6 t-6 t^{2}
$$

$$
v=6 t-6 t^{2}=0 \Rightarrow 6 t(1-t)=0 \Rightarrow t=0, t=1 s
$$

$$
\Delta x=x(t=4)-x(t=0)=-80-0=-80 m
$$

$$
d=1+1+80=82 m
$$

$$
\begin{aligned}
& v_{a v g} \equiv \frac{\Delta x}{\Delta t}=\frac{-80}{4}=-20 \mathrm{~m} / \mathrm{s} \\
& s_{\text {avg }} \equiv \frac{d}{\Delta t}=\frac{82}{4}=20.5 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
a=\frac{d v}{d t}=6-12 t \Rightarrow a(t=0)=6 \mathrm{~m} / \mathrm{s}^{2}, \quad a(t=1)=-6 \mathrm{~m} / \mathrm{s}^{2}
$$

