
Unified Broadcast in Sensor Networks

Morten Tranberg Hansen
Dept. of Computer Science

Aarhus University
mth@cs.au.dk

Raja Jurdak
Autonomous System Lab.

CSIRO ICT Center
Raja.Jurdak@csiro.au

Branislav Kusy
Autonomous System Lab.

CSIRO ICT Center
Brano.Kusy@csiro.au

ABSTRACT

Complex sensor network applications include multiple ser-
vices such as collection, dissemination, time synchronization,
and failure detection protocols. Many of these protocols re-
quire local state maintenance through periodic broadcasts
which leads to high control overhead. Recent attempts to
consolidate these broadcasts focus on piggybacking informa-
tion into existing services but such tight coupling between
protocols limits code reuse and interoperability of applica-
tions.

We present Unified Broadcast (UB) which combines broad-
casts from multiple protocols while maintaining a modular
architecture of the network stack. UB is implemented as a
transparent layer between the link and network layers, where
it delays, schedules, and combines broadcasts from upper
layer protocols before transmission on the wireless channel.
Our empirical results in simulation and on a testbed show
that UB can decrease the overall packet transmissions in the
network by more than 60%, corresponding to more than 40%
energy savings, without requiring new interfaces or affecting
the correctness of the upper layer protocols.

Categories and Subject Descriptors

D.2.1 [Computer-Communication Networks]: Network
Architecture and Design

General Terms

Design, Experimentation, Performance, Standardization

Keywords

broadcasts, unifying abstractions, link protocols, network
protocols, wireless sensor networks

1. INTRODUCTION
Recent advances in wireless and sensor technologies have

enabled wireless sensor networks applications that go be-
yond the simple data collection paradigm [10]. Deployed

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IPSN’11, April 12–14, 2011, Chicago, Illinois.
Copyright 2011 ACM 978-1-4503-0512-9/11/04 ...$10.00.

sensor networks can now provide end-to-end reliability [13],
global time synchronization [15], wireless network program-
ming [11], and health monitoring [18]. Each of these fea-
tures typically relies on a stand-alone protocol that uses
broadcast messages for state maintenance. With current
sensor network operating systems, each broadcasting pro-
tocol schedules its broadcasts, independently of all other
broadcast protocols, for immediate transmission, without
coordinating with other protocols. This means that the to-
tal control overhead is the sum of the control overhead of the
protocols. Thus, an increase in the number of broadcast pro-
tocols results in an increase in the amount of control traffic
and a faster depletion of the node’s energy resources.

To meet energy requirements in a multi-protocol applica-
tion, some protocols restrict themselves from explicitly send-
ing broadcasts and instead piggyback their data into broad-
casts from other protocols [9, 18]. Theoretically, one could
tailor any specific application to combine as many broad-
casts as possible based on a fixed set of protocols used.
However, such tight coupling between the protocols limits
the code reuse and interoperability of the application [12]
and is undesirable in more complex applications.

We present Unified Broadcast (UB), a transparent pro-
tocol layer that combines broadcast packets from multiple
upper layer protocols while maintaining a modular network
stack architecture. The basic premise of UB is to exploit the
tradeoff between the energy efficiency of radio communica-
tion and the latency of packet delivery. The same informa-
tion can be transmitted with less overhead when combined
in a single packet as compared to multiple fragmented pack-
ets. In fact, the difference between broadcasting long and
short packets becomes negligible when Low Power Listening
(LPL) (e.g., BoXMAC2 [16]) is enabled, as the packet sim-
ply gets retransmitted multiple times for the duration of the
LPL period.

UB sits between the link and the network layer where
it seamlessly intercepts broadcasts from upper layer proto-
cols and automatically combines them in a single broadcast
packet on the wireless channel. This provides UB with back-
ward and forward compatibility with any protocol that uses
broadcast messages.

Delaying packets of upper layer protocols, however, can
adversely impact the correctness of the protocols. UB, there-
fore, does not delay the packets indefinitely. If the same pro-
tocol wants to broadcast another packet, UB pushes out the
unified packet even before its content reaches the maximum
length. We show through extensive simulations and experi-
ments that this simple approach, which is a tradeoff between

306

energy and latency, preserves correctness of the majority
of a set of representative wireless sensor network protocols.
For those protocols that might be negatively affected by the
increased latency, UB bends its goal of transparency and
implements a simple extension that allows the upper layer
protocols to force immediate transmission of its packets.

We demonstrate the savings that UB enables through
analysis, simulations, and testbed experiments. Clearly, sen-
sor network applications that use larger number of protocols
can potentially achieve higher savings with UB. We first an-
alyze the relationship between savings and protocols quali-
tatively through an offline analysis. Our analysis shows that
UB saves up to 50% control overhead combining just three
sensor network protocols. Encouraged by these results we
evaluate our TinyOS implementation of UB quantitatively
in simulations and a real sensor node testbed using vari-
ous combinations of four popular sensor network protocols.
We show that UB can achieve up to 60% improvement in
the control overhead of sensor network applications without
affecting the correctness of the upper layer protocols.

The contributions of this paper are:

• Proposal of a unified broadcast layer to combine sched-
uled broadcast from multiple protocols within a wire-
less sensor node.

• Performance evaluation of UB through analysis, simu-
lation, and testbed experiments to quantify its savings
in terms of packet transmissions and energy.

• Empirical validation of UB’s functionality and savings
on a set of representative network protocols, including
periodic, adaptive periodic, many-to-one and one-to-
many protocols.

The remainder of the paper is organized as follows. Sec-
tion 2 provides background on common sensor network pro-
tocols that rely on regular broadcasts, and presents related
architectural approaches that have taken steps to consoli-
date protocol broadcasts. Section 3 presents an overview of
UB, and Section 4 motivates its use through offline and the-
oretical analysis of protocol broadcasts. Section 5 focuses
on our UB implementation in TinyOS, while Section 6 eval-
uates UB in simulation and testbed experiments. Section 7
discusses the results and concludes the paper.

2. BACKGROUND AND RELATED WORK
This section provides an overview of common sensor net-

work protocols that will benefit from UB, and discusses UB
related design coupled and architectural approaches.

2.1 Common Protocols
Sensor network applications can include various protocols

for managing data collection, time synchronization, code dis-
semination, and anomaly detection, among others. Each
active protocol relies on its own scheduling of packet trans-
missions, a combination of unicast and broadcast packets,
to achieve its desired functionality. Broadcast transmission
periods in particular can either be static or can change dy-
namically during the lifetime of a deployment. Here, we
briefly present a representative set of common sensor net-
work protocols, both with static and dynamic broadcast pe-
riods, in order to expose the opportunities for unifying their
broadcasts.

2.1.1 Static Period Protocols

MultiHopLqi.
MultiHopLqi (LQI) [2] is a widely used collection tree pro-

tocol for sensor networks. It uses periodic broadcasts to dis-
tribute a node’s aggregated link quality to the root node.
The broadcast period is fixed, but randomly offset at the
boot up to avoid packet collisions between neighbors. An
LQI node maintains its own cost, its parent’s cost to the
root, as well as its last seen broadcast link quality indicator
from the parent. Upon reception of a new broadcast from a
neighboring non-parent node, a node (re)elects its parent by
comparing the cumulative path cost of the new neighbor to
its current path cost, and selects the path with the minimum
cost.

FTSP.
The Flooding Time Synchronization Protocol (FTSP) [15]

is a widely used global time synchronization protocol for
resource-restricted sensor networks. In FTSP one node is
dynamically (re)elected as the root of the network which
maintains a global clock with which other nodes synchro-
nize. The synchronization is achieved by per node periodic
broadcasts, where the radio layer performs the actual time
stamping to minimize the error. The FTSP broadcast pe-
riod is fixed, but each node adds a slight randomization to
its period upon booting to avoid repeated collisions between
neighboring nodes.

Memento.
Memento [18] is a health monitoring system for wireless

sensor networks. It consists of two parts: a protocol to
deliver state summaries to a root node and a set of fail-
ure detection mechanisms. Its failure detection mechanisms
are based on the number of periodic heartbeats heard from
neighboring nodes within a defined sweep period. The de-
fault mechanism, called Variance-Bound, takes a target false
positive rate as input to adapt to packet losses. Variance-
Bound estimates the maximum number of consecutively missed
heartbeats from a neighbor within a sweep period. Me-
mento’s standard configuration sets the sweep period to three
times the heartbeat rate. Memento uses a tree-based state
collection mechanism where a node keeps an aggregated
state of its own local state and that of its children. For en-
ergy efficiency a node only propagates its state up through
the collection tree when it changes. This enables the root to
have a global view of the network state. For improved failure
detection Memento suggest to expand the set of monitored
nodes from the node’s subtree to also include its neighbors.

2.1.2 Dynamic Period Protocols

Trickle.
One of the most popular techniques for dynamic period

broadcasts in the sensor networks community is the Trickle
timer, which was originally designed as a protocol for main-
taining code updates in sensor networks [14]. A Trickle timer
uses dynamic adjustment of the broadcast timer and bea-
con suppression to reduce the control overhead of keeping
neighboring nodes up-to-date. When neighbors are up-to-
date, the broadcast period exponentially increases from a
fixed minimum broadcast period to a fixed maximum broad-

307

Protocol 1 ... Protocol n

UB Sender

Protocol 1 ... Protocol n

UB Receiver

UB Packet UB Packet UB Packet

Sender Receiver

Link Layer ReceiverLink Layer Sender

Figure 1: Overview of UB showing the sending and the receiving side.

cast period. Furthermore, a node suppresses its own broad-
cast if it overhears a minimum number of similar broadcasts
from neighbors. When neighbors are not up-to-date, they
reset the broadcast period to the minimum broadcast period.
To avoid broadcast period alignment among neighbors, each
node randomizes its actual broadcast time within the broad-
cast period. Many network layer protocols adopt a variation
of the Trickle timer as an alternative to the non-adaptive pe-
riodic timer.

CTP.
The Collection Tree Protocol (CTP) [10] is a well-tested

tree routing protocol that supports any-cast data collection
to a set of root nodes in a static sensor networks. In CTP,
sensor nodes distribute their expected number of transmis-
sions (ETX) to a root node through regular broadcasts. A
sensor node then chooses its parent based on the minimum
ETX to a root node. To limit the amount of broadcasts,
CTP uses adaptive broadcasts based on the Trickle timer
without suppression. Hence, the broadcast period exponen-
tially increases from a minimum broadcast period to a max-
imum broadcast period until the period is reset. CTP resets
its period in three cases: when a pull bit of an incoming con-
trol packet is set; a routing loop is detected; or if the ETX
estimate drops significantly. CTP uses a pull bit on control
traffic whenever it is disconnected from the routing tree i.e.
does not have a parent node. Loops are detected based on
data path validation by prepending all data packets with
the ETX of the sender. A loop is then assumed at the re-
ceiver if this ETX is less than or equal to its own ETX. CTP
transmits its broadcast packets at a random time during the
second half of its Trickle timer period.

Deluge.
Deluge [11] is a wireless network re-programming protocol

for sensor networks. In Deluge, a sensor node uses a stan-
dard Trickle timer with suppression to periodically advertise
its code version in an energy efficient way. Once code incon-
sistency is detected, Deluge uses a unicast stream of packets
to update the outdated node. The suppression factor in
Deluge is set to 1, which means that a node will suppress
its own broadcast if it hears a similar broadcast from any
neighboring node.

2.2 Design-Coupled Approaches
Several proposals have recognized the need for combin-

ing broadcasts for multiple sensor network protocols for im-

proved energy efficiency. Memento [18] embeds its heartbeat
messages within the underlying routing protocol’s periodic
broadcasts and the four bit link estimator [9] appends its
link estimate to CTP beacons. However, these approaches
tightly couple their interfaces which limits modularity. In
general, requiring higher layer components to change their
existing interfaces in order to use broadcast combining fea-
tures is less versatile and risks backward incompatibility.

More recently, a UB related announcement layer has been
proposed for broadcast coordination in sensor networks [5].
The announcement layer is implemented as a service, defin-
ing a fixed interface where protocols can register to get their
data broadcasted at a minimum rate. Thus, existing pro-
tocols would have to be modified in order to use this an-
nouncement layer. Alternatively, UB is implemented as a
transparent protocol layer that does not require modifica-
tion of upper layer protocols, and is evaluated both based
on savings and on how it affects upper layer protocol per-
formances. The latter is especially important with respect
to the announcement layer which, opposed to UB, does not
guarantee an upper bound on the number of times a certain
broadcast can be sent.

2.3 Architectural Approaches
Other approaches for reducing protocol redundancy in

sensor networks follow a more architectural approach. The
Sensor Protocol (SP) [17] proposes a layer 2.5 unified link
abstraction to consolidate all link layer communication, as
well as a single neighbor table. Research has build on this
and proposed a modular network layer [8] for better code
reuse in composing new network protocols, providing typi-
cal network layer functions, such as (1) packet forwarding,
queueing, scheduling, and fragmentation, (2) route discov-
ery and maintenance, and (3) addressing. Chameleon [6]
focuses on separation of packet formats from protocols and
applications. This is done through the Rime stack, which
provides communication primitives to higher layer proto-
cols, and the Chameleon component, which maps packet
attributes to packet formats for the MAC protocols in use.
All three architectural proposals focus on streamlining the
interfaces to and between layers 2 and 3 for more efficient
composition and functionality of complex sensor network
applications. UB shares the goals and spirit of these ap-
proaches, and it complements them through its introduction
of a unified broadcast layer that seamlessly combines broad-
casts from higher layer protocols and relays the resulting
packets to the MAC layer.

308

CTP LQI FTSP Deluge Memento
τmin 64ms 32s 30s 2s 30s
τmax 3600s 32s 30s 60s 30s

Table 1: Protocol configuration parameters taken

from papers proposing the protocols.

3. DESIGN OVERVIEW
The general principle of Unified Broadcast (UB) is simple:

combine as many broadcasts as possible without affecting
the upper layer protocols. UB’s approach takes advantage
of the asynchronous best-effort nature of broadcasts that do
not require synchronous acknowledgements.

An overview of UB is shown in Figure 1. At the send-
ing side, UB delays broadcasts from upper layer protocols,
in order to embed multiple of such broadcasts into one UB
packet. Upper layer protocols might rely on protocol specific
sequence numbers [10] or physical layer per packet param-
eters [2]. Thus, to minimize the influence on upper layer
packets UB never combines two packets from the same pro-
tocol and guarantees that all packets from upper layer pro-
tocols are sent. To maximize savings UB delays a packet
as long as possible until either an optional fixed maximum
allowed delay is exceeded, or a protocol with an already de-
layed packet sends another one. Once a UB broadcast is to
be sent, all currently delayed packets are embedded in a sin-
gle UB broadcast packet and transmitted on the channel. At
the receiving side, UB packets are unpacked and delivered
to the upper layers.

Specifically, we consider the following set of representa-
tive upper layer protocols: CTP and LQI for data collection,
FTSP for global time synchronization, Deluge for network
reprogramming, and Memento for failure detection. These
protocols cover most of the design choices that network pro-
tocols adopt: static and dynamic broadcast periods, proac-
tive and reactive operation, and packet suppression. Table 1
provides an overview of the protocol configurations we use
in this paper. These settings match values in the original
papers that proposed these protocols. However, in the few
cases (LQI and Memento) where the papers did not have
a clear indication for these settings, we adopt the default
TinyOS source code configuration (LQI) or the most rea-
sonable one based on the papers evaluation (Memento).

4. POTENTIAL SAVINGS
Before we implement and evaluate UB in real sensor net-

works, we estimate the potential savings of UB under ideal-
ized conditions.

4.1 Offline Analysis
To estimate the potential savings of UB, we built a few

simple TinyOS applications and recorded network traces
during their operation. The applications include CTP/LQI,
FTSP, and Deluge protocols configured with the parameters
from Table 1. We simulated these applications in TOSSIM,
on eight different 16-node topologies. The TOSSIM net-
works were 4x4 grid networks with increasing inter-node
distances where links are generated with the TinyOS link-
layer model for static and low dynamic networks [4]. The
collection root is placed in a corner of all the TOSSIM net-
works. We ran 5 simulation experiments lasting 6 hours for
each network. Figure 2 highlights the topological differences

2 4 6 8
0

50

100

M
e
a
n
 L

in
k
 Q

u
a
lit

y

Networks

(a) Mean Link Quality

2 4 6 8
0

5

10

15

N
e
ig

h
b
o
r

D
e
g
re

e

Networks

(b) Mean Neighbor Degree

Figure 2: Mean node neighbor degree and mean link

quality of all links with PRR > 0 in 8 TOSSIM net-

works. All networks are 16 node grid networks.

2 4 6 8
0

5

10

15

20

Networks

S
a
v
in

g
s
 i
n
 b

ro
a
d
c
a
s
t

[%
]

No Limit

Delay 15s
Delay 10s

Delay 5s

(a) CTP, FTSP, and Deluge.

2 4 6 8
0

20

40

60

Networks

S
a
v
in

g
s
 i
n
 b

ro
a
d
c
a
s
t

[%
]

No Limit

Delay 15s
Delay 10s

Delay 5s

(b) LQI, FTSP, and Deluge.

Figure 3: Mean expected broadcast savings of UB

using offline analysis of broadcasts sent in different

networks with two different set of protocols.

between the networks. Figure 2(a) shows that networks 1
through 8 have a progressively degrading mean link quality,
while Figure 2(b) illustrates that the degrading link qualities
naturally lead to smaller neighbor degrees (a less-connected
network). We log the protocol and timestamps of all broad-
casts sent and received from all nodes during each simulation
run. Based on this log, we performed an offline analysis of
the possible savings using unified broadcast by counting the
number of broadcasts that could be combined without com-
bining two broadcasts from the same protocol or delaying a
broadcast more than a fixed maximum delay.

Figure 3 shows the potential savings in broadcasts using
UB in the 8 TOSSIM networks with decreasing connectivity.
Both Figures 3(a) and 3(b) show that the savings increase
with the maximum time a broadcast is allowed to be de-
layed. Thus, for maximum savings using UB one should not
limit the maximum delay of a broadcast, and hence only
send broadcasts whenever a protocol with an already de-
layed packet sends another one. Furthermore, Figure 3(a)
suggests that the savings for this specific combination of pro-
tocols increase with decreasing network connectivity. This
can be caused by CTP scheduling more broadcasts due to
sudden changes in route costs or detection of loops, or Del-
uge suppression being less effective in a weakly connected
network. To analyze the exact causes, the next subsection
studies the influence of these parameters on potential sav-
ings in detail.

4.2 Maximizing the Savings
If broadcasts from two protocols are perfectly aligned with

the same periods, all broadcasts can be combined. Thus, the
maximum savings would be 50%. Likewise, if the broad-
casts from three protocols were perfectly aligned, one could

309

send the broadcasts from two of the protocols with the third
one, and hence the maximum savings in broadcasts would
be 66%. In general, the maximum savings in broadcasts can
be expressed as:

savings =
#protocols− 1

#protocols

However, as we saw in the previous section network dynam-
ics and advanced protocol behavior reduce the savings and
their predictability. In this section, we simplify the notion
of network dynamics and analyze the maximum savings pos-
sible with any combination of protocols.

We assume all protocols can be modeled by a Trickle timer
(or simplification hereof). A special case of a Trickle timer is
a periodic broadcast timer which is a Trickle timer without
suppression and the maximum broadcast period set equal
to the minimum broadcast period. Consequently, we de-
fine a protocol p as a four tuple 〈τp

min, τ
p
max, θ

p, ρp〉 where
τ
p
min is the minimum broadcast period, τp

max is the maxi-
mum broadcast period, θp is a fixed reset period after which
the broadcast period is reset to τmin, and ρp is the probabil-
ity of suppressing a broadcast. It is important to note that
the fixed reset period is a simplification of the sporadic re-
sets that would happen in a real deployment. Furthermore,
the probability of suppression is a deployment specific pa-
rameter, which depends on the average node degree and the
number of packets a node has to overhear before suppressing
its packet.

For a protocol p we can derive the number of broadcasts
required for the broadcast period to reach its maximum τp

max

without any resets as:

b
p
max = log2

τp
max

τ
p
min

+ 1, (1)

Any broadcast after this will occur with a period of τp
max.

Based on the broadcasts, bpmax, we can derive the time it
takes for a protocol p to send b broadcasts without any resets
as:

t
p
b =

{

τ
p
min(2

b − 1) if b ≤ bpmax,

τ
p
min(2

bpmax − 1) + τp
max(b− bpmax) if bp > bpmax,

(2)
By substituting bpmax from Equation 1 for b in Equation 2 we
define t

p
bmax

to be the time it takes to reach the maximum
broadcast period. From this, we can derive the number of
broadcasts a protocol p can broadcast within time t without
any resets as:

b
p
t =

{

⌊log2(
t

τ
p
min

+ 1)⌋ if t ≤ t
p
bmax

,

⌊log2(
tbmax

τ
p
min

+ 1)⌋ + ⌊
t−tbmax

τ
p
max

⌋ if t > t
p
bmax

.
(3)

The number of broadcasts a protocol can send before be-
ing reset by its reset period θp is b

p
θp and the number of

times a protocol has been reset up to a certain time t is t
θp

.
Thus, we define send

p
t to be the number of accumulative

broadcasts a protocol p wants to send up to and including
time t without considering suppressions as:

send
p
t = ⌊ t

θp
⌋bpθp + b

p

t (mod θp). (4)

Let x1, ..., xtmax be an identically distributed random vari-
able sample from U(0, 1) and broadcast

p
t be a binary indica-

tor of whether or not protocol p broadcasts at time t, defined

as:

broadcast
p
t =

send
p
t if t = 1,

send
p
t − send

p
t−1 if t > 1 ∧ xt > ρp,

0 otherwise.

(5)

Note that broadcast
p
t , as opposed to send

p
t , considers sup-

pression of broadcasts.
We assume that time is divided into a set of discrete units

according to the minimum granularity of any of the proto-
cols considered, and that any simultaneous broadcasts that
happen at time t will be processed at the same time by UB.
Let pendingpt indicate whether or not protocol p has a pend-
ing transmission at time t. We then define ubt to indicate
whether or not a unified broadcast is to be sent a time t. In
this subsection we do not consider a fixed maximum delay
of broadcasts, so a unified broadcast is send at time t if any
protocol p wants to broadcast at time t while already having
a pending broadcast:

ubt = ∃p : broadcastpt ∧ pending
p
t−1 (6)

A protocol has a pending broadcast at time t if:
1. no unified broadcast is sent and it has a broadcast at t,
2. no unified broadcast is sent and it has a pending broad-
cast from t− 1, or
3. a unified broadcast is sent with its pending broadcast
from t− 1 and it has a broadcast at t

We define pending
p
t as:

pending
p
t =

{

broadcast
p
t ∨ pending

p
t−1 if ubt = 0,

broadcast
p
t ∧ pending

p
t−1 if ubt = 1.

(7)

Assume a unifying broadcast is sent at time t and that a
protocol without any pending broadcast from time t − 1
wants to broadcast at time t. Due to our assumption that
all broadcasts at time t are processed simultaneously, this
broadcast will be sent with the unified broadcast and hence
the protocols would have pending

p
t = 0. Using Equation 5

and 6, the savings in broadcasts of using UB can be defined
as:

savings =

∑

p

∑

t
broadcast

p
t −

∑

t
ubt

∑

p

∑

t
broadcast

p
t

(8)

Based on Table 1 we define the following four protocols
in our model: CTP = 〈64ms, 3600s, θCTP , 0〉 with a vary-
ing reset period θCTP , FTSP = 〈30s, 30s, 30s, 0〉, and
two Deluge protocols with varying suppression probability
and different reset periods depending in the frequency of
code updates as DelugePassive = 〈2s, 60s,∞, ρDeluge〉 and
DelugeActive = 〈2s, 60s, 10min, ρDeluge〉.

Figure 4 shows the broadcast savings of three applications
using CTP, FTSP and optionally a Deluge version, based on
Equation 8 with a maximum time t of 50000s which is five
times as much as the highest CTP reset period tested. Fig-
ure 4(a) shows the broadcast savings without any Deluge
suppressions, ρDeluge = 0, and an increasing CTP reset pe-
riod θCTP . The maximum savings possible using only CTP
and FTSP are for a reset period around 160s, and the sav-
ings increase when adding either active or passive Deluge
to the application. As hinted from our offline analysis in
the last section, the maximum savings are hard to achieve
in well connected networks where the CTP timer is rarely
reset. Figure 4(b) shows the broadcast savings with a fixed

310

10
2

10
4

0

20

40

60

80

CTP reset period [s]

S
a

v
in

g
s
 o

n
 b

ro
a

d
c
a

s
t

[%
]

Active

Passive

No Deluge

(a) Deluge without suppres-
sion and a varying CTP reset
period

0 50 100
30

35

40

45

Deluge suppress propability [%]

S
a
v
in

g
s
 o

n
 b

ro
a
d
c
a
s
t

[%
]

Active

Passive

No Deluge

(b) CTP reset period set to
160s and a varying Deluge
suppression probability.

Figure 4: The maximum savings in broadcasts, ac-

cording to our model, when varying the CTP reset

period and the Deluge suppression .

CTP reset period, θCTP = 160s, and an increasing Deluge
probability of suppression, ρDeluge. The figure shows that
the maximum savings in active Deluge, where Deluge con-
tributes to a significant amount of the control traffic, depend
on the suppression probability. As the suppression proba-
bility increases from 0 to 50%, the savings increase, because
Deluge broadcasts that are sent can be combined. After a
certain point, where more Deluge broadcasts that could be
combined are not sent, the savings start to decrease again.
The same tendency, at a smaller scale, is seen when using
passive Deluge where Deluge’s contribution to the overall
control traffic is limited.

4.3 Guidelines
The previous subsections showed that the potential sav-

ings that UB achieves can be significant and that the best
savings are achieved with a maximum delay of broadcasts.
In general, broadcast savings are best in scenarios where the
protocols equally contribute to the amount of control traffic.
However, the savings do not only depend on the protocols
used, but also on the actual deployment, where changes in
the network state, such as link quality or topology changes,
can impact broadcast savings as shown in Figure 4. As the
exact characteristics of a deployment are rarely predictable
or known a priori we recommend that the savings of using
UB are experimentally verified, before deployment, when
using low control overhead protocols such as CTP.

5. IMPLEMENTATION
UB is implemented in TinyOS together with it’s Active

Message (AM) layer. The AM layer is a dispatch layer be-
tween the link and the network layer, that adds a one byte
AM identifier to all outgoing packets which can be used on
the receiving side to dispatch incoming packets to the ap-
propriate upper layer protocol.

Following the TinyOS design principles, we had two al-
ternative choices for how to implement UB: (1) it could be
implemented as a separate service through which protocols
could send broadcasts; or (2) it could integrated into the
AM layer. For (1), the UB service would use the AM layer
to send special UB packets which would be handled accord-
ingly at the receiving side. This approach would create a
clear boundary between whether or not a protocol sends a
packet through UB, but would require modification of all ex-
isting protocol implementations in order to enable them to
use UB, and furthermore create the need for future protocol

ActiveMessage

AMQueue

AMSender(am_id_t)

Unified Broadcast

Receive

Receive[am_id_t]Send[am_id_t]

Send[client_id_t]

Send

Send[client_id_t]

Send

Receive[am_id_t]

ReceiveSend

AMReceiver(am_id_t)

Figure 5: Overview of how UB is integrated into the

TinyOS AM stack. Ovals represents interfaces to be

used by upper level components and rectangles rep-

resent components. A dashed components represent

a generic component from which multiple instances

can be created. An interface can be parameterized

which means that the providing component provides

multiple instances of the same interface.

developers to be aware of UB. Instead, we took the more
transparent approach in which we integrated UB into the
current AM stack so that all broadcasts by default, trans-
parent to the actual protocols, are sent using UB. Our im-
plementation takes about 2.6kB of ROM and 210B bytes of
RAM.

Figure 5 shows how UB is integrated into the TinyOS AM
stack. The top level components of the AM stack are the
generic AMSender and generic AMReceiver which provide sin-
gle instances of the AMSend and Receive interfaces, respec-
tively. On the sending side without UB the AMSender sets
some AM specific parameters and passes the packet on to
the AMQueue which employ a first come first served queue on
packets to be sent over the radio through the ActiveMes-

sage. Note how the AMQueue provides the Send interface
parameterized by the number of clients (number of AM-
Sender’s) whereas the ActiveMessage only provides the Send
interface parameterized by the AM identification. The Ac-

tiveMessage is a components provided by the specific radio
and hence is the lowest layer of this hardware independent
stack. The receiving side without UB is less complicated as
the AMReceiver wires directly to the Receive interface with
the specified AM identifier provided by the ActiveMessage.

UB sits as a layer directly below the AMSender and the
AMReceiver. On the sending side broadcast packets are de-
layed until either a protocol with an already delayed packet
in the queue sends another one or the aggregate size of de-
layed packets exceeds a single UB packet. As the analysis
in Section 4.1 has shown, UB yields the maximum savings
without a fixed maximum bound on delay, so our implemen-
tation does not apply this.

UB embeds broadcast packets into an UB packet by prepend-
ing the data of the packet by a one byte length field and
the packet’s one byte AM identifier. Thus, each broadcast
packet using UB incurs a two byte packet overhead. The
embedded UB packet is sent from UB using a dedicated AM-

Sender with a special UB AM identifier. The re-use of the
AMSender for sending the UB packet enables it to be fairly
scheduled for transmission together with other (e.g. uni-

311

CF CFD CFDM LF LFD LDFM

CTP x x x
LQI x x x
FTSP x x x x x x
Deluge x x x x
Memento x x

Table 2: The six different sensor network applica-

tions considered. A “x” means that the protocol is

included in the application.

cast) packets through the AMQueue. Furthermore, the use of
a special UB AM identifier, instead of simply assuming all
broadcasts are UB broadcasts, enable UB to send broadcast
packets that are too big to be embedded as a non-embedded
normal broadcast packet.

UB has to handle packets requiring time synchronization
as a special case. The current best practice for packet time
synchronization in TinyOS is to modify the event time after
packet transmission has started. Thus, the event time needs
to be placed at the end of the packet which might not be
the case if we naively embed broadcast packets into a UB
packet. Fortunately, TinyOS currently sends all packets re-
quiring time synchronization with a special allocated time
synchronization AM identifier. Thus, we can easily handle
time synchronization packets by placing the timestamp field
at the end of the UB packet, while keeping the packet con-
tent embedded as with any other packet. Similarly, on the
receiving side, if a time synchronization packet is embedded,
the event time is fetched from the end of the UB packet and
concatenated with the packet content before being relayed
to the upper layers.

6. EVALUATION
We evaluate our UB implementation in simulation and on

real sensor node hardware by comparing sensor node ap-
plications with and without the use of UB. The evaluation
is twofold: first we evaluate the savings achieved by using
UB and then we evaluate how these savings affect the up-
per layer routing, time synchronization, dissemination, and
failure detection protocols used.

6.1 Methodology
We evaluate our UB implementation with six different

sensor network applications deployed on the eight 16 node
TOSSIM networks introduced in Section 4.1 and on a 15-
node local sensor node testbed. The local testbed is a 5x3
TMote Sky [3] grid network deployed on a flat surface with
an inter-node distance of approximately 1 meter. Again, the
collection root is placed in a corner and multi-hop paths to
the root is ensured by setting the transmission power of the
CC2420 radio to a minimum. All testbed experiments were
done using software-initiated IEEE 802.15.4 acknowledge-
ments for reliability, hardware address recognition enabled,
and on channel 26 where we infrequently detected natural
interference from neighboring sensor networks.

The six different sensor network applications consist of
either CTP or LQI for data collection, FTSP for time syn-
chronizations, Deluge for wireless network re-programming,
and Memento for node failure detection. Section 2 provided
an overview of the protocols and Table 2 an overview of the
applications. The implementation of CTP, LQI, and FTSP

are taken from the latest TinyOS tree. As packet times-
tamping, and hence FTSP, is not supported in TOSSIM
we used a stripped down version of FTSP leaving out the
timestamping and global time calculations for the TOSSIM
simulations. Similarly, Deluge is not supported (or needed)
in TOSSIM so we only run its code consistency maintenance
protocol (DRIP [19] in its TinyOS implementation) which
handles all communication in Deluge when its in a consis-
tent state. The code for Memento is not public available so
we implemented a distributed version of its Variance-Bound
failure detection mechanism based solely on neighborhood
monitoring. Hence we neglect any efforts done by Memento
to efficiently unicast state summaries to a root node and
only focus on the broadcast related part in form of heart-
beats and failure detection ability. The detection of failures
are reported together with any other protocol statistics over
the USB back-channel. As in Section 4, the above proto-
cols are configured based on Table 1 leaving only the data
generation period as a tunable parameter.

UB saves on broadcasts by combining broadcasts from
multiple protocols into one. If the size of a broadcasts from
a protocol equals the maximum MAC Service Data Unit
(MSDU) of the link layer, UB will not be able to save on
the broadcasts, and hence will send it as a normal broadcast.
To exploit the full potential of UB we increased the TinyOS
MSDU from the default 28 bytes to 60 bytes.

All results shown in the following subsections are averaged
over 5 identical runs with the same application and data
generation period for both the TOSSIM networks and the
testbed.

6.2 Packet Transmission Savings
Figure 6 shows the broadcast and total savings in terms

of packet transmissions for the six different sensor network
applications with two different per node data generation pe-
riods deployed on the TOSSIM networks and on the testbed.

Figures 6(a) and 6(b) show the savings for the six applica-
tion in the 8 TOSSIM networks with a per node data gener-
ation period of 512 and 30 seconds, respectively. The figures
show how the savings increase with the number of protocols
used, especially with CTP, where the broadcast savings in-
crease from a neglectable ∼ 1% to more than 50% with both
data generation periods. The error bars show the changes in
savings over the different networks which is quite significant
in the CFD application. Comparing the CFD broadcast sav-
ings from Figure 6(a) to the savings in our offline analysis
of broadcast savings from Figure 3(a) with no fixed delay
limit, we see a similar variation. As shown in Section 4.2,
this can be attributed to how the network dynamics of the
specific deployment affect CTP and Deluge broadcasts. Fur-
thermore, the fact that the broadcast savings of the offline
analysis, which does not consider how UB influences upper
level protocols, and the results shown in Figure 6(a) are sim-
ilar indicates that UB has minimal influence on upper level
protocol performance with regard to broadcasts. A detailed
discussion of this is the topic of the next subsections. As
expected from our offline analysis the savings of using UB
are greater with LQI than CTP. Of particular interest is the
broadcast savings of the LF application, which shows broad-
cast savings close to 50% for only two protocols with both
data generation periods. This approaches the theoretical
limit of the broadcast savings possible with two protocols.
In general the total savings with a per node data generation

312

0

20

40

60

80
M

e
a

n
 S

a
v
in

g
s
 [

%
]

CF CFD CFDM LF LFD LFDM

Broadcast Savings

Total Savings

(a) TOSSIM networks with a
512s data generation period.

0

20

40

60

80

M
e

a
n

 S
a

v
in

g
s
 [

%
]

CF CFD CFDM LF LFD LFDM

Broadcast Savings

Total Savings

(b) TOSSIM networks with a
30s data generation period.

0

20

40

60

80

M
e

a
n

 S
a

v
in

g
s
 [

%
]

CFDM LFDM

Broadcast Savings

Total Savings

(c) Testbed network with a
512s data generation period.

0

20

40

60

80

M
e

a
n

 S
a

v
in

g
s
 [

%
]

CFDM LFDM

Broadcast Savings

Total Savings

(d) Testbed network with a
30s data generation period.

Figure 6: Broadcast and total packet transmission

savings in TOSSIM and in the testbed. TOSSIM

graphs are averaged over 8 different networks, while

we only tested one network topology in the testbed.

The error bars in TOSSIM graphs show variation in

savings across different networks. The graphs are

averaged over 5 identical 6 hour runs for each appli-

cation in each network.

period of 512 seconds comes close to the broadcast savings
whereas the total savings with a per node data generation
period of 30 seconds is less due to increased amount of data
traffic. From the figures we see that the total savings using
LQI seems to vary more than the broadcast savings over the
networks. A detailed analysis of this variation show that the
total savings decrease with decreasing network connectivity,
due to a decrease in delivery rate, which causes nodes to
send more data packets.

Figures 6(c) and 6(d) show the savings of the CFDM and
the LFDM application in the testbed with a per node data
generation period of 512 and 30 seconds, respectively. Com-
paring Figure 6(c) to 6(a) and Figure 6(d) to 6(b) we see that
the savings found in the testbed are similar to the savings
found in TOSSIM. In fact, the savings achieved by using UB
seems to be slightly better when running the protocols on
real sensor node hardware, which we attribute to topology
differences between the simulation and testbed networks.
Note that error bars showing variations over the different
runs are not shown in Figure 6(c) and 6(d) for consistency
with Figure 6(a) and 6(b) where the error bars show varia-
tions over different networks. However, the error bars would,
similarly to the ones shown in Figure 7, not add much in-
formation to the figure.

6.3 Energy Savings
The UB savings in packet transmissions do not directly

translate to total savings in energy, which also depends on
the time spent in reception and idle states. As a case study,
to see how the use of UB can affect the total energy consump-
tion, we tested it with the widely used TinyOS CC2420 Low

0

2

4

6

8

10

P
o
w

e
r

C
o
n
s
u
m

p
ti
o
n
 [
m

W
]

LPL500 LPL1000 LPL1500

w/UB w/o UB

Figure 7: Power consumption of the CC2420 radio

with and without UB in the testbed with LPL in-

tervals of 500ms, 1000ms, and 1500ms. The graphs

are averaged over 5 identical 6 hour runs with LPL

where the error bars show the variation of the runs.

Power Listening (LPL) layer (a BoXMAC2 implementation
[16]) in our testbed. We used different LPL wake up inter-
vals and a delay to turn off the radio after packet reception
of 10ms (which is used as a mechanism in TinyOS to allow a
transmitter to send a number of packets without a receiver
turning off its radio). We limited this test to the CFDM
application and ran 5 identical 6 hour runs for each LPL in-
terval. We chose CFDM in favor of LFDM which have better
savings due to CTP being more widely-used than LQI.

To estimate the energy consumption of the sensor nodes
we used software-based on-line energy estimation [7] which
multiplies the on time of periphals with their current draw
and voltage to get a measure of their energy consumption.
We implemented our own variant in TinyOS which tracks
not only the on and off states of the periphals but also their
internal states, which can have varying current draws. Our
implementation uses a 32KHz timer to accurately measure
the time each periphal spend in a state and add this to an ac-
cumulated energy consumption state variable at every state
change. In our experiments we neglect the energy consumed
by the MSP430 micro-controller due to it being orders of
magnitude lower than the energy consumed by the CC2420
radio. The TinyOS CC2420 drivers always keep the radio
off, in receive mode, or in transmit mode. When the radio is
off, it does not consume any energy, so to measure the radios
energy consumption we only had to modified the drivers to
track whenever it was in receive or transmit mode. We mul-
tiplied the times spent in receive and transmit mode by the
current consumptions of 19.7mA and 17.4mA, respectively,
taken from the CC2420 data-sheet [1].

Figure 7 shows the estimated power consumption of the
CC2420 radio, with and without the use of UB, in our LPL
experiments. In general the figure confirms that the signif-
icant total packet savings achieved with UB also translates
to significant energy savings. However, due to the fact that
the savings in packet transmissions will only cause similar
savings in packet receptions and not in idle listening, the
energy savings will always be less.

Idle listening is only affected by savings in packet trans-
missions to the extend that one will not do idle listening
while sending or receiving. The ratio of this happening, com-
pared to the actual number of idle listens, is low and hence
the energy consumed idle listening is majorly determined by

313

CTP500 LQI500 CTP30 LQI30
w/ UB w/o UB w/ UB w/o UB w/ UB w/o UB w/ UB w/o UB

Delivery [%]
min 99.83 99.83 37.20 37.15 99.76 99.87 39.10 39.76

mean 99.93 99.94 58.19 58.89 99.92 99.94 58.92 60.53
max 100.00 100.00 98.43 99.45 99.99 99.99 99.43 99.70

Data Cost [pkt]
min 1.64 1.70 3.00 2.92 1.88 1.65 2.98 2.94

mean 3.56 3.61 12.88 13.12 3.76 3.71 11.92 11.76
max 5.73 6.14 28.59 28.46 6.28 6.18 20.31 22.29

Control Cost [pkt]
min 0.70 0.63 16.64 16.48 0.03 0.02 0.94 0.94

mean 0.77 0.72 32.45 33.03 0.08 0.07 1.83 1.84
max 0.89 0.83 50.32 51.01 0.18 0.17 2.61 2.86

Churn [chg]
min 1.24 1.16 64.80 70.63 1.20 1.21 67.97 71.97

mean 1.59 1.64 156.61 157.73 6.21 6.14 162.32 163.19
max 1.95 1.89 224.50 222.53 15.11 16.04 233.47 223.69

Path Length [hops]
min 1.29 1.36 1.08 1.08 1.53 1.36 1.04 1.02

mean 2.05 2.09 1.70 1.68 2.37 2.34 1.65 1.62
max 2.92 3.06 2.50 2.44 3.26 3.23 2.47 2.44

Table 3: TOSSIM routing performance with and without UB for CTP and LQI using a data generation

period of 512 and 30 seconds. The results are averaged over 5 identical 6 hour runs for each application in

each network.

CTP500 LQI500 CTP30 LQI30
w/ UB w/o UB w/ UB w/o UB w/ UB w/o UB w/ UB w/o UB

Delivery [%] 99.74 99.92 92.02 95.71 99.97 99.97 96.65 93.89
Data Cost [pkt] 3.93 4.00 4.50 4.13 3.88 3.94 4.01 4.29
Control Cost [pkt] 0.48 0.53 19.27 17.83 0.03 0.03 0.98 1.03
Churn [chg] 0.72 0.85 10.54 6.89 0.58 0.72 10.77 8.42
Path Length [hops] 3.60 3.64 3.18 3.32 3.61 3.66 3.36 3.25

Table 4: Testbed routing performance with and without UB for CTP and LQI using a data generation period

of one packet per node each 30s and 500s. The results are averaged over 5 identical 6 hour runs for each

application.

the LPL interval and the time it takes to sample the chan-
nel. Thus, the energy consumed in idle listening decreases
with an increasing LPL interval, which is why the energy
savings in Figure 7 increase from 33%, to 40% and 43%
when increasing the LPL interval from 500ms to 1000ms
and 1500ms, respectively.

Similarly, one could increase the energy savings achieved
by using UB by decreasing the time it takes to sample the
channel for activity. Using the default TinyOS CC2420 stack
we empirically measured this time to be 14ms which is set
this high (almost an order of magnitude higher than the
time it takes to transmit an IEEE 802.15.4 packet on the
channel) due to the stack using an acknowledgement timeout
of almost 8ms. If the CC2420 stack was optimized and
this time decreased, the energy savings of UB will increase.
However, it can never be more than the total packet savings
which was around 50% for the CFDM application in the
testbed.

Of special interest in Figure 7 is the trends of the to-
tal power consumptions when increasing the LPL interval.
Without UB the total power consumption increases from
5.99mW , to 6.64mW and 7.89mW when increasing the LPL
interval due to the increased cost of transmissions being
more than the increased idle savings. Whereas with UB
the total power consumption is almost stable around 4mW
(4.01mW and 3.98mW) when increasing the LPL interval
from 500ms to 1000ms while it increases again to 4.47mW
when increasing the LPL interval further to 1500ms. We

attribute the slight decrease in (or unchanged) power con-
sumption to the savings in idle energy being larger than
(or the same as) the extra cost of transmission when in-
creasing the LPL interval, and vice versa for the increase in
power consumption. Note that this trade-off between idle
and transmission energy is a common trade-off, not caused
be the use of UB, when dealing with LPL—it just happens
to be that with UB in our testbed the equilibrium is in the
chosen LPL range.

6.4 Routing
The previous section showed the savings achieved by al-

lowing UB to delay and combine broadcasts from protocols
in a number of scenarios. However, the delay of broadcasts
from a routing protocol might affect its functioning and
hence decrease its ability to correctly estimate link quali-
ties or eliminate routing loops. In this section we compare
the routing performance of CTP and LQI with and without
the use of UB.

We focus on five performance metrics: delivery, data cost,
control cost, churn, and path length. We compute the net-
work delivery rate as the average of individual node delivery
rates. Individual delivery rates are simply measured as the
portion of packets for each node that are correctly received
at the root of the routing tree. We also measure the data
and control cost as the average of the per node total num-
ber of data/control packets sent over the number of packets
originated from the node. Churn is the average of the per

314

w/ UB w/o UB
Error Mean 1.2 1.3
Error Std. Dev. 0.3 0.4

Table 5: Mean absolute deviation of FTSP global

time in 32kHz clock units. Mean and standard devi-

ation is shown for all recorded reference broadcasts.

node number of parent changes throughout the experiment
and path length is the total number of successfully sent data
packets in the network over the number of originated data
packets in the network.

Table 3 compares the routing performance of the CFDM
and the LFDM application with and without the use of UB
using a per node data generation period of 512 and 30 sec-
onds in our 8 TOSSIM networks. The table compares the
minimum, mean, and maximum of all five performance met-
rics for the two application in the 8 networks. In general,
the protocols perform similar with and without the use of
UB. Similarly, Table 4 compares the routing performance in
the testbed of the two applications with and without the use
of UB using a per node data generation period of 512 and 30
seconds. Of special interest in these tables are how the use
of UB affects the control cost of the routing protocol. LQI
is a periodic beaconing protocol, so UB was not expected
to affect the control cost of this protocol. But, as discussed
earlier, CTP makes use of adaptive broadcasts which might
be reset more times if the UB delays e.g. causes routing
loops not handled in a timely manner. The TOSSIM evalu-
ation from Table 3 seems to indicate that the control cost is
slightly higher when using UB whereas the testbed evalua-
tion in Table 4 indicate the opposite. We believe that these
small fluctuations in control cost are due to the ability of UB
to adapt its delays to changing periods—UB never delays a
packet longer than the last period from the same protocol.

6.5 Time Synchronization
FTSP is a fixed period protocol and with the use of UB

the average number of broadcast sent throughout a networks
lifetime is not going to change. However, the use of UB
might delay an FTSP packet up to one period and similarly
send two FTSP packet right after each other. In this sec-
tion we explore how such randomization to the FTSP period
affects accuracy of the time synchronization.

To test the accuracy of FTSP we made use of a reference
broadcaster during our testbed experiments which periodi-
cally, every 5 minutes, sends a special reference broadcast
on the wireless channel. On reception of such a broadcast
the nodes log their estimated global time together with the
reference’s sequence number and send this, together with
the other protocol statistics, over the available USB back-
channel.

Table 5 shows the mean and the standard deviation of the
global time mean absolute deviation (MAD) for all reference
broadcast recorded in five 6 hour runs with the CFDM ap-
plication. In order to let FTSP synchronize we consider the
first 20 minutes of each experiment an initialization period
and do not consider reference broadcasts logged in these in-
tervals. The table shows that the randomization caused by
UB slightly improves the global time accuracy of the FTSP
protocol . We consider the difference shown in Table 5 to
be negligible with respect to the clock resolution.

2 4 6 8

0

50

100

Networks

In
c
re

a
s
e
 i
n
 B

ro
a
d
c
a
s
ts

 [
%

]

Passive

Active

Passive Instant

Active Instant

(a) Deluge Broadcasts.

2 4 6 8

0

200

400

600

800

Networks

In
c
re

a
s
e

 i
n

 L
a

te
n

c
y
 [

%
]

Active

Active Instant

(b) Deluge Latencies.

0

10

20

30

M
e

a
n

 S
a

v
in

g
s
 [

%
]

PassivePassive

Instant

Active Active

Instant

Broadcast Savings

Total Savings

(c) Dissemination Savings.

Figure 8: Dissemination performance and UB sav-

ings of the CFD application with passive and ac-

tive Deluge over the 8 TOSSIM networks with and

without delays. The graphs are averaged over five

identical 6 hour runs.

6.6 Dissemination
Deluge uses a Trickle timer with suppression for nodes to

advertise their code version in order to insure code consis-
tency throughout the network. With the use of UB these
code advertisement can be delayed, and hence a node might
receive and old version from a node that is already up to
date. Furthermore, the use of suppression in Deluge can
be affected by the delays incurred by UB. In this section
we explore how the use of UB affects the working of Del-
uge which is the only protocol considered that makes use of
suppression.

In order to focus on the Deluge performance, we limit our-
selves to the CFD application (the CFDM application gives
better savings but Deluge’s influence on savings is more clear
with the CFD application) with a per node data generation
period of 512s. We consider two versions of Deluge: a pas-
sive and an active version, which represent the two possible
states of the Deluge protocol. The majority of the time Del-
uge will be in a passive state, where the code is functional
and hence does not need updates. However, occasionally
Deluge will be used to re-program the network either due to
feature updates or for debugging purposes. We let the pas-
sive version be Deluge without any code updates and the ac-
tive version be Deluge where the networks is re-programmed
every 10 minutes.

Figure 8(a) first shows how the use of UB with delays in-
creases the number Deluge broadcasts being sent, both with
passive and active Deluge (the non-instant lines). A compar-
ison of these results to Deluge running without suppression
show that the increase in number of broadcast being sent

315

with passive Deluge is entirely caused by UB interfering with
the suppression mechanism of Deluge. This also explains
why the increase in broadcasts decreases with a decreasing
network connectivity where suppression is less likely to hap-
pen. Similarly, the use of UB interferes with the suppression
mechanism of active Deluge, and contributes to the majority
of the increase in broadcast being sent in this case. However,
comparing these results to an active Deluge running with-
out suppression we found that the lack of suppression is not
the sole cause of the increase in broadcasts. We attribute
the remaining increase in broadcasts with active Deluge to
cases where a sensor node broadcasts and old version, due
to the UB delay, even though it is already up to date. Thus,
causing the neighbors to think that it is outdated.

The use of UB does not only increase the number of broad-
cast but also the code inconsistency detection time which we
refer to as Deluge latency. Figure 8(b) first show how the
latency in detection for the Deluge active (the non-instant
line) goes from a striking 700% for well connected networks
to about 200% for medium and bad connected networks. As
with the number of broadcast sent by Deluge, we compared
these results to Deluge running without suppression, which
showed that a fraction of the delay can be attributed to lim-
ited suppression, but most of it is simply due to the delay
of Deluge broadcasts.

The increase in latency with the use of UB can be unac-
ceptable, so we extended our UB implementation with the
ability to disable delays for certain packets. We do this
per AM client and hence let each AMSender provide a Uni-

fiedBroadcast interface with a command for enabling and
disabling delays for packets send through that specific AM-

Sender. Note that disabling delays for a protocol does mean
that the protocols packets are sent without UB and hence
prevent it from being combined with other packets. Instead,
it merely forces the UB layer to send the current accumu-
lated UB packet instantly after processing such a packet.

Figures 8(a) and 8(b) show how the increase in broad-
cast sent by Deluge and the increase in detection latency
is 0% with Deluge broadcast sent instantly. Thus, Deluge
performs no different with the use of UB in this case.

Figure 8(c) shows how the savings achieved by using UB
is affected by disabling delays for Deluge packets. Similar to
the figures and discussion in Section 6.2, the error bars show
the changes in savings over the different networks which is
quite significant in the used CFD application. Due to the
fact that Deluge packet without delays can still be combined
with other broadcasts, the figure shows that the average sav-
ings with delays for Deluge packets disabled is only slightly
less than the savings with delays for Deluge packets enabled.
Also, we see that the savings achieved when using UB with
active Deluge is higher than when using UB with passive
Deluge due to the increase in Deluge broadcasts.

6.7 Failure Detection
Memento detects node failures based on the number of

heartbeat messages it hears from neighboring nodes in a
sweep period. If these heartbeats are delayed the number of
heartbeats per sweep period can vary independent of the link
quality and hence influence the Memento failure detection.
In this section we explore exactly how by running the Me-
mento Variance-Bound failure detection with a target false
positive rate of 1% with and without the use of UB.

We limited these experiments to the CFDM application

2 4 6 8
200

250

300

350

400

450

Networks

D
e

te
c
ti
o

n
 L

a
te

n
c
y
 [

s
]

w/ UB

w/o UB

(a) Detection latency

2 4 6 8
0

5

10

Networks

F
a

ls
e

 P
o

s
it
iv

e
s
 [

%
]

w/ UB

w/o UB

(b) False Positives.

Figure 9: Detection latency and false positive rate

when running Memento’s Variance-Bound failure

detection mechanism with and without UB. The

graphs are averaged over five identical 6 hour runs

and the error bars show the absolute variation over

these runs.

with a per node data generation period of 512 seconds and
run five 6 hour runs in the 8 TOSSIM networks with forced
node failures. We let the failure schedule be identical for all
runs and turn off a node for 10 minutes every 20th minute
throughout the simulation.

Figure 9(a) shows the average node failure detection la-
tency of the Variance-Bound failure detection mechanism
with and without the use of UB. The figure shows that
the detection latency when using UB is slightly higher than
without which is due to the variance in number of heartbeats
per sweep period caused by the UB delays. The Variance-
Bound failure detection mechanism cannot tell the difference
between this variance and the variance in heartbeats caused
by changing link qualities, and hence accounts for this vari-
ance in its estimate. Thus, the number of missed heartbeats
before a failure is concluded increases and thereby the de-
tection latency.

Figure 9(b) shows the average number of false positive
failures reported by the Variance-Bound failure detection
mechanism with and without UB. Even though the variance
over the runs is quite large, which is due to the limited num-
ber of samples available in a 6 hour run where a node only
fails every 20 minutes, the figure shows similar results with
and without UB. Considering that the target false positive
rate, taken as input to the Variance-Bound failure detection
mechanism, was 1%, the technique performs poorly in the
low quality networks. We believe this is due to even less
recorded detection in these networks, but leave a detailed
exploration of the cause to future work as it is not the topic
of this paper.

7. CONCLUSION
We presented Unified Broadcast as a modular solution

for seamlessly combining broadcasts from many higher layer
sensor network protocols. We analyzed the benefits of UB
through extensive offline analysis, which motivated the de-
sign and implementation of UB in TinyOS.We then explored
UB in TOSSIM simulations and testbed experiments for
more comprehensive results. Our main observation is that
the benefits of UB increase with the number of concurrent
broadcast protocols. Our analysis and experiments explored
two routing protocols, CTP and LQI, running alongside time
synchronization (FTSP), dissemination (Deluge), and health
monitoring (Memento) protocols. We have shown both an-

316

alytically and empirically that the total packet savings of
UB depends on the number of upper layer protocols, and
range from close to 0% for a certain two protocol case up
to 60% for 4 protocols running within the same applica-
tion. Our performance evaluation has also shown that a
total packet savings of around 50% with UB translate to
about 43% energy savings when using LPL with a wakeup
interval of 1500ms. The reduced number of broadcasts with
UB means that nodes spend more time idle listening and
hence the energy savings can never be as much as the packet
savings. However, through our energy analysis with differ-
ent LPL intervals, we have shown that higher LPL intervals
achieve higher energy savings because of the reduced impact
of idle listening on the overall node energy profile.

One of the key questions for UB is its impact on the cor-
rect operation of the upper layer protocols. We have investi-
gated this question for each of the protocols used. For proto-
cols that use a static broadcast period, such as LQI, FTSP,
and Memento, the use of UB did not exhibit any significant
decrease in the protocol performance metrics. Dynamic pe-
riod broadcast protocols had more distinctions when running
with and without UB. More specifically, the CTP simulation
experiments with UB yielded a 5-7% increase in control traf-
fic, while the testbed experiments for UB showed a decrease
of up to 8% for the same metric. We attribute this differ-
ence to topological differences between the simulation and
testbed. In the case of Deluge, the basic implementation of
UB yielded significant increases in latency and broadcasts,
which prompted us to bend the UB design goal of trans-
parency to add an optional feature to disable delays for cer-
tain packets. We show that UB still achieves considerable
savings even if some protocols force immediate transmission
of their broadcast packets.

UB is a layer 2.5 protocol which can fit into existing ar-
chitectures, such as SP and Chameleon, that aim at provid-
ing a layer 2.5 abstraction for all upper layer services and
protocols. An interesting direction for future research is to
explore how UB can be integrated as a component into these
architectures.

8. REFERENCES

[1] CC2420: 2.4 GHz ieee 802.15.4/ZigBee RF
transceiver. http://www.ti.com/lit/gpn/cc2420.

[2] Multihoplqi. http://www.tinyos.net/tinyos-
1.x/tos/lib/MultiHopLQI.

[3] Tmote sky low power wireless sensor module.
http://sentilla.com/files/pdf/eol/tmote-sky-
datasheet.pdf.

[4] A. Cerpa, J. L. Wong, M. Potkonjak, and D. Estrin.
Temporal properties of low power wireless links:
modeling and implications on multi-hop routing. In
MobiHoc ’05: Proceedings of the 6th ACM
international symposium on Mobile ad hoc networking
and computing, pages 414–425, 2005.

[5] A. Dunkels, L. Mottola, N. Tsiftes, F. Österlind,
J. Eriksson, and N. Finne. The Announcement Layer:
Beacon Coordination for the Sensornet Stack. In
Wireless Sensor Networks, Lecture Notes in Computer
Science. 2011.

[6] A. Dunkels, F. Österlind, and Z. He. An adaptive
communication architecture for wireless sensor
networks. In SenSys ’07: Proceedings of the 5th

international conference on Embedded networked
sensor systems, pages 335–349, 2007.

[7] A. Dunkels, F. Österlind, N. Tsiftes, and Z. He.
Software-based on-line energy estimation for sensor
nodes. In EmNets ’07: Proceedings of the 4th workshop
on Embedded networked sensors, pages 28–32, 2007.

[8] C. T. Ee, R. Fonseca, S. Kim, D. Moon, A. Tavakoli,
D. Culler, S. Shenker, and I. Stoica. A modular
network layer for sensorsets. In OSDI ’06: Proceedings
of the 7th symposium on Operating systems design and
implementation, pages 249–262, 2006.

[9] R. Fonseca, O. Gnawali, K. Jamieson, and P. Levis.
Four-bit wireless link estimation. Technical report,
Stanford, 2007.

[10] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and
P. Levis. Collection tree protocol. In SenSys ’09:
Proceedings of the 7th ACM conference on Embedded
network sensor systems, 2009.

[11] J. W. Hui and D. Culler. The dynamic behavior of a
data dissemination protocol for network programming
at scale. In SenSys ’04: Proceedings of the 2nd
international conference on Embedded networked
sensor systems, pages 81–94, 2004.

[12] R. Jurdak. Wireless Ad Hoc and Sensor Networks: A
Cross-Layer Design Perspective (Signals and
Communication Technology). Springer-Verlag New
York, Inc., 2007.

[13] S. Kim, R. Fonseca, P. Dutta, A. Tavakoli, D. Culler,
P. Levis, S. Shenker, and I. Stoica. Flush: a reliable
bulk transport protocol for multihop wireless
networks. In SenSys ’07: Proceedings of the 5th
international conference on Embedded networked
sensor systems, pages 351–365, 2007.

[14] P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle:
a self-regulating algorithm for code propagation and
maintenance in wireless sensor networks. In NSDI’04:
Proceedings of the 1st conference on Symposium on
Networked Systems Design and Implementation, 2004.

[15] M. Maróti, B. Kusy, G. Simon, and A. Lédeczi. The
flooding time synchronization protocol. In SenSys ’04:
Proceedings of the 2nd international conference on
Embedded networked sensor systems, pages 39–49,
2004.

[16] D. Moss and P. Levis. Box-macs: Exploiting physical
and link layer boundaries in low-power networking.
Technical report, Stanford, 2008.

[17] J. Polastre, J. Hui, P. Levis, J. Zhao, D. Culler,
S. Shenker, and I. Stoica. A unifying link abstraction
for wireless sensor networks. In SenSys ’05:
Proceedings of the 3rd international conference on
Embedded networked sensor systems, pages 76–89,
2005.

[18] S. Rost and H. Balakrishnan. Memento: A health
monitoring system for wireless sensor networks. In
2006 3rd Annual IEEE Communications Society on
Sensor and Ad Hoc Communications and Networks,
volume 2, pages 575–584, September 2006.

[19] G. Tolle and D. Culler. Design of an
application-cooperative management system for
wireless sensor networks. In Wireless Sensor Networks,
2005. Proceeedings of the Second European Workshop
on, pages 121–132, February 2005.

317

