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Abstract
IEEE 802.15.4 links can be classified into three distinct

reception regions: connected, transitional, and disconnected.
The transitional region is large in size and characterized by
the existence of links with intermediate reception ratios. Our
work leverages previous work on understanding the proper-
ties of wireless links in the space and time domains but dif-
fers in the sense that we seek opportunities to actively adjust
the physical topologies of sensor networks to improve link
quality. Based on an existing theoretical model supported
by extensive experiments in a variety of environments, we
propose an efficient mechanism to identify locations with
high reception ratios in the transitional region. The pro-
posed mechanism can be used to effectively construct long,
yet high reception ratio links that are 100% longer than the
size of the connected region, thereby reducing the number
of relay nodes necessary to interconnect sparse sensor net-
works by 34%. Furthermore, this mechanism can help better
position mobile sinks and guide the communication proto-
cols for mobile sensor networks. Overall, this paper pro-
vides fresh insights into the implications of the log-normal
path loss model on deploying and moving sensor motes.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Net-

work Architecture and Design—Wireless communication

General Terms
Design, Experimentation, Performance

Keywords
Sensor Network, Relay Node Placement

1 Introduction
IEEE 802.15.4 links have been well studied over the

past few years. Prior research investigated the correla-
tion between link length and packet reception ratio and ob-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
SenSys’11, November 1–4, 2011, Seattle, WA, USA.
Copyright 2011 ACM 978-1-4503-0718-5/11/11 ...$10.00

served that as length increases, wireless links go through
three distinct regions: connected, transitional, and discon-
nected [41, 43]. The packet reception ratio (PRR) of short
links should be close to 100% with high probability; whereas
the PRR of long links should be close to 0%. However, for a
link of intermediate length, one cannot predict its PRR by its
length alone. This unpredictability is the defining character-
istic of the transitional region. Unfortunately, the transitional
region is large in size, including links of various lengths.

The log-normal path loss model [28] is a popular radio
propagation model that can explain the formation of those
three regions [24, 42]. According to this model, the strength
of a radio signal decays with some power of distance. In ad-
dition, the signal strength is also coupled with random Gaus-
sian variations. Those random variations make the PRR un-
predictable in the transitional region and complicate the anal-
ysis of wireless link behavior greatly.

Therefore, recent efforts were devoted to understanding
the behavior of wireless links, in both the space and the
time domains. Patwari and Agrawal [24] observed corre-
lated shadowing and applied its effects on signal strengths to
RF tomography. Srinivasan et al. [35] proposed a metric to
capture correlations in PRR on different links and used this
metric to predict the performance of various protocols. In
the time domain, Srinivasan et al. [36] studied the tempo-
ral properties of wireless links and demonstrated the benefits
of sending packets in bursts over intermediate links. These
links have border-line RSSI values and are in the transitional
region, thus signal strength variations of a few dB can cause
dramatic fluctuations in packet reception ratios. Therefore,
sending packets during the bursty windows effectively makes
use of the good moments of a bad link and avoids the bad
moments of a good link.

Rather than looking at signal strength variations in the
time domain, in this paper we focus on variations in the space
domain. Specifically, we study the implications of the log-
normal path loss model when deploying or moving sensor
motes. The key difference from previous work on wireless
link behaviors is that we seek opportunities to actively adjust
the physical topologies of sensor networks, whereas previ-
ous efforts passively accept the existing physical topology
and strive to make the best of it.

We use a running example throughout the paper, in which
we consider a pair of motes placed at two separate locations
with one mote sending packets to the other. Moreover, the



received signal strength at the receiver is close to the noise
floor and therefore the packet reception ratio is low. Given
this scenario, we would like to answer the following ques-
tion: how can we adjust the receiver’s location to increase
the packet reception ratio?

Let us suppose that the log-normal path loss model holds.
Accordingly, the observed signal strength at the receiver is
a Gaussian random variable. Note that the stochasticity is
over the space but not the time domain. Therefore when we
move the receiver to a different location, its received sig-
nal strength is a new realization of the Gaussian distribution
and more importantly is independent of the signal strength
at the previous location. As a result, by placing the receiver
at several nearby locations we can instantiate multiple real-
izations of the Gaussian distribution and select the location
that measures the highest reception ratio. The independence
of those realizations implies that finding the location whose
reception ratio is above a certain threshold can be modeled
as a sequence of Bernoulli trials. Therefore, the number of
attempts required to find a location with high reception ra-
tio is geometrically distributed. For example, if 25% of the
vicinity has high reception ratio, then the expected number
of locations to try is four. Moreover, since geometric distri-
butions do not exhibit long tails, the actual realization, i.e.,
the number of trials to find a good location, will not deviate
significantly from the expected value.

This simple Bernoulli trial approach has a profound im-
pact. Essentially, it provides a theoretical foundation for the
trial-and-error approach of placing motes: if there is a cer-
tain percentage of locations with high reception ratio in the
vicinity, then trying several random locations is the efficient
way to discover a good one. This technique is also useful for
positioning mobile sinks [37] and the nodes of robotic sensor
networks [38, 40]. At the same time, it also provides a sim-
ple way to find good receiver locations in a link’s transitional
region and therefore assist in the proactive construction of
long, yet reliable links. This can be useful when deploying
sensor motes, and especially so when deploying relay motes
to interconnect the sensing motes [5].

Nevertheless, the log-normal path loss model deviates
from reality because it does not consider spatial correlations
[24]. Indeed, we empirically verify the existence of correla-
tion. However, we also find that the correlation decreases as
the spatial separation grows and can be ignored for practical
purposes when the separation is larger than one meter for the
variety of environments that we have tested.

Our experimental results indicate that the number of lo-
cations one needs to test in order to achieve high packet re-
ception ratio is indeed geometrically distributed and that this
number is usually quite small. As a rule of thumb, when
placing the receiver at a distance that is twice the length of
the connected region, one can find a good location in fewer
than five trials.

Contributions. This paper makes four research contri-
butions: (1) We realize and investigate the implications of
the log-normal path loss model on placing and moving wire-
less sensor motes. (2) We present experimental results based
on extensive measurements from near-ground 802.15.4 net-
works deployed in a variety of environments, ranging from

flat parking lots with few obstacles to lush forests, to vali-
date the applicability of the proposed Bernoulli trial mech-
anism in realistic deployment scenarios. (3) We show how
this Bernoulli trial mechanism, coupled with a relay place-
ment algorithm can significantly reduce the number of re-
quired relay motes. This mechanism can also reduce the ra-
dios’ transmission power. (4) We identify that the Bernoulli
trial approach is an efficient and effective tool for positioning
mobile sinks and the nodes of robotic sensor networks.

This paper has six additional sections. The section that
follows introduces background material on radio signal prop-
agation models and their application to packet loss estima-
tion. Section 3 analyzes the proposed methodology for deter-
mining high reception ratio locations. We present our eval-
uation in Section 4 and describe the applications of the pro-
posed Bernoulli trial method in Section 5. We review related
work in Section 6 and close in Section 7 with a summary.

2 Background
This section summarizes existing probabilistic models

that describe signal strength and subsequently packet loss
rates as a function of sender-receiver distance.
2.1 Radio Channel Model

Received signal strength is commonly estimated using
two complementary families of models: large scale mod-
els that predict signal attenuation over long distances (i.e.,
distances that are multiples of the signal’s wavelength (λ))
and small scale models that estimate signal loss over small
distances and small time intervals1.

A commonly used large scale model is the log-distance
path loss model with log-normal shadowing (also known as
log-normal path loss model [28]). According to this model,
the received signal strength Pr(d) (in dBm) at a given dis-
tance d from the transmitter is given by:

Pr(d)[dBm] = Pt [dBm]−PL(d0)−10n log(
d
d0

)−Xσ (1)

where Pt is the power of the transmitted signal, PL(d0) is the
measured path loss at reference distance d0, n is the path-loss
exponent, and Xσ ∼ N(0,σ) is a normal random variable (in
dB). The term Xσ models the path loss variation across all
locations at distance d from the source due to shadowing, a
term that encompasses signal strength variations due to ar-
tifacts in the environment (i.e., occlusions, reflections, etc.).
Accordingly, received signal strengths at locations that are
of equal distance from the transmitter are considered i.i.d.
normal random variables.

While (1) accounts for signal variations over large scales,
the received signal strength can vary considerably over small
distances (in the order of λ) and small time scales, due to
multipath fading [28]. As a result, packet loss can exhibit
wide variations even when d changes by as little as a few
centimeters in the case of 802.15.4 radios.
2.2 Packet Reception Ratio

The received power Pr(d) can be used to estimate a link’s
packet reception ratio (PRR). Specifically, the PRR depends

1If the transceivers and the environment are static then so-called
small-scale fading is a purely spatial phenomenon.
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Figure 1. Measured packet reception ratio (PRR) as a
function of Signal to Noise Ratio (SNR) for the CC2420
802.15.4 radio. Packet size is set to 114 bytes.

on the radio’s modulation scheme, the packet size, and the
signal to noise ratio (SNR) s = Pr(d)−Pnoise. Pnoise models
the power of the ambient noise, usually as a Gaussian ran-
dom variable with zero mean and deviation σn [28].

We experimentally derive the mapping between PRR and
SNR in the case of the CC2420 802.15.4 radio [39] that we
use and Figure 1 illustrates the result. For this experiment
we place the receiver at a fixed distance from the transmitter
and vary the power of the noise emitted by a radio frequency
signal generator, using the configuration used in [8]. The
noise signal has a flat power spectral density within the oper-
ating frequency of the CC2420 radio and the ambient noise
is much lower than the generated noise signal. Note that if
SNR ≥ 8 dB then PRR ≈ 1. We will use this figure as the
reference SNR-PRR curve throughout Section 3. We set the
packet size to 114 bytes because it is close to the maximum
packet size for 802.15.4 radios (127 bytes) and a link that
yields high PRR under this packet size will certainly have
high PRR for smaller packet sizes.

We say a PRR is high if PRR≥ phigh, a predefined thresh-
old. In the analyses and experiments that follow, we set
phigh = 0.85.

3 Bernoulli Trials and Good Locations
Next, we present a detailed analysis for the proposed

Bernoulli trial method for the two-mote example from Sec-
tion 1 and then derive the probabilities to discover good loca-
tions. We term receiver location as good if the PRR ≥ phigh.

3.1 Coverage Percentage and Three Regions
In what follows, we first explore the coverage percentage

of the area surrounding a sender and then show the probabil-
ity for a link to have PRR ≥ phigh as a function of inter-node
distance. This probability will then be used to determine the
lengths for the three regions. Here coverage percentage is
defined as the portion of an area that has high PRR and we
say that any point in this portion is a covered location, i.e., a
good location.

One can use (1) to calculate the percentage U(γth,Ri) of
the area defined by a disk of radius Ri centered at the sender
that has SNR s≥ γth or equivalently PRR≥ phigh. The cov-
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Figure 2. The percentage U of a circular area that has
PRR ≥ phigh = 0.85, as a function of radius Ri and path
loss variation σ. The parameters for the log-normal path
loss model were experimentally derived using data from
an outdoors experiment using 802.15.4 radios.
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Figure 3. The probability for a link to have PRR≥ phigh =
0.85, as a function of transmitter-receiver distance under
various log-normal variations σ. The model parameters
are the same as those used in Figure 2.

erage percentage U(γth,Ri) is given by:

U(γth,Ri) =
1
2

[
1− erf(Pi)+ exp(

1−2PiQi

Q2
i

)
[
1

−erf(
1−PiQi

Qi
)
]]

(2)

where Pi = [γth−Pt +PL(d0) + 10n log( Ri
d0
)]/(σ

√
2), Qi =

(10n loge)/(σ
√

2), and erf(·) is the error function [28].
Figure 2 draws U(γth,Ri) as a function of Ri and the path

loss variation σ. As expected, U shrinks as R grows. The
effect of σ on U is more interesting. Over short distances,
higher values of σ result in lower coverage U . However as
R increases, increased path loss variance leads to increased
coverage. This seemingly counter-intuitive relationship can
be explained as follows. When the signal strength is already
low (i.e., at long distances), further decreases due to shad-
owing will decrease PRR only slightly (see Fig.1). On the
other hand, equal increases in received signal strength will
push the SNR and therefore the PRR upwards.
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Figure 4. Track defined by two concentric circles cen-
tered at S with radii R1 > R2. A sector within that track
is highlighted with a 3 × 3 grid. The dimensions of each
grid element are ∆×∆ meters.

While Figure 2 shows the impact of σ on coverage, Fig-
ure 3 illustrates the effect of σ on the lengths of the three
regions. Specifically, it shows the probability for a link to
have PRR ≥ phigh as a function of the sender-receiver dis-
tance, under various log-normal variations σ. When σ = 0,
there is no log-normal shadowing and thus signal strength
decays monotonically with distance. Therefore, the proba-
bility becomes zero as signal strength falls below γth, and the
corresponding distance is the length of the connected region.
There is no transitional region in this case. On the other
hand, when σ > 0, determining the three regions becomes
more subjective. We define the length of the connected re-
gion as the distance where the probability for a link to have
PRR ≥ phigh is equal to ζ. For example, when σ = 4 dB and
ζ= 0.95, the length of the connected region is≈ 10 meters in
Figure 3. Similarly, we define the transitional region as the
range of the distance in which the probability for a link to
have PRR ≥ phigh is less than ζ but higher than 1−ζ. When
σ = 4 dB and ζ = 0.95, the transitional region approximately
spans from 10 meters to 30 meters. One can see that the tran-
sitional region is indeed large in size, and in this example, it
is twice the size of the connected region.

Next, we will derive the probabilities of finding good lo-
cations. As the first step, we will use (2) to estimate the
coverage percentage for the area between two concentric cir-
cles with radii R1 and R2 (R1 > R2) centered at the sender.
We term the area between the two circles a track. It can be
shown that the coverage percentage in this case is equal to:

U(γth,R1,R2) =
R2

1U(γth,R1)−R2
2U(γth,R2)

R2
1−R2

2
. (3)

Assuming homogeneity, (3) also estimates the coverage of
any sector within the track defined by R1 and R2. Figure 4
presents such a track defined by two concentric circles cen-
tered at S as well as one sector within that track.

Let us consider the scenario in which we place the re-
ceiver mote within a track sector of the area defined by the
two concentric circles. The probability that a certain po-
sition is covered (i.e., PRR ≥ phigh) is approximated p =
U(γth,R1,R2). Then, assuming independence, the probabil-
ity that we will find at least one position which is covered in

Figure 5. Expected number of covered positions (PRR≥
phigh) encountered by N = 5 random trials in the area de-
fined by concentric circles R1 and R2. The effective com-
munication range (20 m) increases by ∼ 100% compared
to the range defined by the naive approach (10 m). We
use the same γth and phigh values as in Figure 2.

N trials is 1− (1− p)N , while the expected number of posi-
tions found is N · p.

Figure 5 plots the expected number of good locations as a
function of R2 and R1−R2, using the parameters from Fig-
ure 2 and N = 5. It is evident that even with few trials, it is
still likely to find a covered location when (R1,R2)=(24 m,
20 m). Therefore, one can actually place the receiver at a dis-
tance of 20 to 24 meters away from the sender, while ensur-
ing that s ≥ γth (and thus PRR ≥ phigh). Doing so increases
the effective communication range by ∼ 100%, compared to
the length of the connected region determined by the log-
normal path loss model (10 m). The trade-off is the need to
test several locations before discovering a covered location.
Nevertheless, we can control the number of trials by select-
ing an appropriate value for p. In turn, selecting the values
of R1 and R2 determines the value of p, and also decides the
sender-receiver distance. Finally, we note that trials are still
necessary even if one places the receiver at a distance equal
to the length of the connected region, because the probability
of finding a link there with PRR ≥ phigh is ζ < 1.
3.2 Grid Sampling

The analysis so far assumes that signal strengths in nearby
locations are independent random variables, controlled only
by the distances between these points and the transmitter.
This assumption however is not true, as signal strengths in
nearby locations are correlated due to the common set of
scatterers and occlusions [24]. Nonetheless, Puccinelli and
Haenggi observed that displacements of λ/2 (i.e., ∼ 5cm for
802.15.4 radios) are sufficient to guarantee the independence
of multipath fading even in the presence of shared occlu-
sions for 802.15.4 radios [27]. Our experimental results (see
Section 4.3) verify that signal strengths display strong spa-
tial correlations and therefore in some cases displacements
of λ/2 are adequate to ensure independence, but not in all
cases. Nevertheless, for all the environments that we tested,
a one meter displacement removes virtually all correlations.



Config. Description

1 Line topology, Elevation 0 cm {P, L}
2 Line topology, Elevation 15.1 cm {P, L, O}
3 Line topology, Elevation 31.2 cm {P}
4 Tee topology, Elevation 0 cm {P, H, O}
5 Tee topology, Elevation 15.1 cm {P, H}
6 Real-life deployment {FA, FB}

Table 1. Test sites and node configurations.

Let us denote by ∆ the displacement that is necessary to
remove any correlations. Accordingly, rather than sampling
random locations within the track, one needs to select loca-
tions that are separated by multiples of ∆. For this reason, we
embed a rectangular grid with dimensions of n×∆ by m×∆

within the track, centered at the receiver’s original location,
and use the grid to sample locations (see Fig.4). Then, given
coverage probability p, the probability of finding at least one
covered point is 1− (1− p)n·m. Note that the separation of ∆

makes this grid sampling a Bernoulli trial, and therefore we
call it the Bernoulli Grid method hereafter.

It is easy to see that even for small values of p the proba-
bility of detecting at least one good location increases rapidly
with the number of trials. As we will show in Section 4.6, a
small number of trials is enough in practice. Finally, the to-
tal number of trials necessary to identify a covered location
are geometrically distributed with expectation equal to 1/p,
which we will experimentally verify in Section 4.6.

Another limitation of the log-normal path loss model is
that it does not consider any temporal RF channel variations.
On the other hand, multiple studies have experimentally ob-
served and modeled the temporal variations of low-power
wireless links [7, 34, 36]. Nevertheless, signal strength vari-
ations in the time domain are mostly due to time-varying
levels of interference and movements in the surrounding en-
vironment. In other words, unless the environment perma-
nently changes after the receiver has been placed, the se-
lected locations selected will have high PRR on average. The
results from Section 4.4 validate this hypothesis.

4 Evaluation
In this section we will first verify the log-normal path loss

model for a variety of environments. Next, we investigate
the spatial correlations for received signal strength as well
as packet reception ratio, and find the sufficient separation
between two locations that will ensure the correlation is suf-
ficiently low. Then, we show that the long links constructed
through the Bernoulli Grid method are stable over time and
symmetric. Finally, we show the average number of trials to
get a good location when connecting to one or two motes.

4.1 Methodology
We conducted tests in five increasingly complex RF en-

vironments: an outdoor parking lot spanning approximately
600 m2, an open lawn area with a higher diffraction index
than the parking lot, a building hallway with line-of-sight
transmissions, an indoors testbed deployed over multiple of-
fices, and finally sensor networks deployed in two forests.

All experiments use TelosB [26] motes equipped with
IEEE 802.15.4 compliant TI CC2420 radios [39]. We use
two network topologies to measure the log-normal path loss
parameters for the parking lot, hallway and indoors testbed
environments. The first is the line topology in which every
mote takes its turn as the transmitter. The distance between
adjacent nodes in this case is 100 to 280 cm. The other is the
tee topology in which all the receivers form a straight line, 15
to 100 cm apart from each other, while the transmitter moves
away from the receivers on a trajectory that is perpendicular
to the line of the receivers.

We automated the data collection process in the second
topology by connecting the transmitter to an Ebox-3854
Linux PC mounted on top of an iRobot Create robot [15].
At each measurement step, the robot moves by Dt = 5 cm
and pauses to allow the transmitter to send a batch of packets.
The benefit of the second topology is that it enables us to eas-
ily collect a large number of measurements distributed over
space. Only the line topology was used in the lawn environ-
ment. All experiments use 114-byte packets and each trans-
mitter sends at least 500 packets per batch, with the inter-
packet-interval (IPI) set to 500 milliseconds. Here we set the
IPI to 500 ms such that we will not be measuring the PRR of
bursty windows [36]. Upon receiving a packet, each receiver
records the corresponding source ID, RSSI, LQI, sequence
number, and batch number. The receiver also samples the
ambient noise level immediately after each packet reception.

Table 1 summarizes the different experiment configura-
tions we used. The elevation listed in this table corresponds
to the motes’ vertical distance from the ground. All motes
were placed at the same height for the line topologies. On
the other hand, only the receivers are elevated to the listed
height for the tee topologies. The transmitter is carried by
the robot and its height is fixed at 12 cm. Last, symbols P,
L, H, O and F correspond to the parking lot, lawn, hallway,
office, and the forest environments respectively. For the two
forests, we used the measurements collected by the motes
deployed there for the purpose of environmental monitoring.
4.2 Log-Normal Path Loss

The first step in validating the probabilistic model
proposed in Section 3 is to verify the log-normal path loss
model in the environments summarized by Table 1. Accord-
ing to this model, the average received signal strength µ(d)
decreases with a power of the distance, while the received
signal strength at distance d is a Gaussian random variable,
Pr(d)∼ N(µ(d),σ), due to the shadowing effects. From (1),
µ(d) is:

µ(d) = Pt −PL(d0)−10n log(
d
d0

)

= Pr(d0)−10n log(
d
d0

) (4)

Therefore, the average RSSI for a transmitter-receiver
pair separated by distance d can be expressed using constant
d0 and two parameters (Pr(d0),n) that can be derived through
linear regression over the collected measurements.

Table 2 presents the results of such linear regressions
across the different environments. Letters denote the type
of environments while the number that follows these letters
specifies the topology configuration as listed in Table 1.



n Pr(2m) Configuration

2.05 -53.5 dBm H4
1.74 -51.6 dBm H5
1.68 -61.8 dBm H5, Power 18

3.75 -62.9 dBm L1
3.45 -49.9 dBm L2

3.03 -76.3 dBm P1
2.78 -56.2 dBm P2
3.17 -45.2 dBm P3

1.97 -74.9 dBm O4, Power 3

1.97 -61.4 dBm FA6
2.19 -53.4 dBm FB6

Table 2. Large scale fading parameters derived from the
different environments. Transmission power levels other
than the default (31) are explicitly indicated.
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Figure 6. Average and spread of measured RSSI val-
ues for the parking lot experiment. The line corresponds
to the linear regression fit for the log-normal path loss
model. Both axes are in logarithmic scale.

It is evident that different environments produce different
n and Pr(d0). Moreover, increasing the motes’ elevation in
the same environment leads to longer communication ranges,
as indicated by the higher Pr values. Hallway experiments
tend to have smaller n values, a finding shared by previous
measurement studies [28]. Interestingly, n values from the
two forests are smaller than the path loss exponents at the
parking lot and lawn sites and closer to those in the hallway
and office sites.

Figure 6 plots Pr(d) as a function of distance d, using data
collected from a parking lot experiment. One can see that ex-
perimental data match well the log-normal path loss model.
Also evident is the long tail of RSSI values as d increases,
where the sample average of collected RSSIs is higher than
the predicted mean signal strength µ(d). One possible rea-
son for this discrepancy is that RSSI records are available
only for successfully received packets. For this reason, RSSI
measurements from links with low reception ratios are bi-
ased towards higher values.

Next, we verify that RSSI variations indeed follow the
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Figure 8. Measured Packet Reception Ratios within the
radio’s transitional region as a function of transmitter-
receiver distance. PRR samples from three receivers are
collected as the transmitter moves at 5 cm intervals in the
hallway environment. Tx power is set to 3.

log-normal distribution used by the model. To do so, we use
(4) to calculate µ(d) for each experiment, using the parame-
ters listed in Table 2. Then, we subtract the predicted mean
RSSI µ(d) from the corresponding raw RSSI samples. The
resulting residual RSSI should then be samples of the ran-
dom variable Xσ in (1).

Figure 7(a)-(c) show the Quantile-Quantile plot of resid-
ual RSSI in three environments versus the standard Gaussian
distribution. Figure 7(d) is the aggregate curve for all the
configurations listed in Table 2. One can see that the residual
RSSI matches well the Gaussian distribution, although there
are some discrepancies in the tails in some environments.

4.3 Spatial Correlation and Coverage
The results from the previous section confirm that the log-

normal path loss model agrees with the experimental data
gathered across a variety of environments. Furthermore, the
variations in RSSI are indeed normally distributed. However,
they are not necessarily independent. In this section, we will
study the correlations among those variations. Specifically,
we start by looking at the PRR variations with small changes
in location.

Figure 8 shows the packet reception ratios as the distance
increases at increments of five centimeters. One can see that
the PRR can fluctuate significantly even within a short dis-
tance. This variation is due to small-scale fading and is the
defining signature of the transitional region.

Furthermore, Figure 9 presents this small-scale spatial
PRR variation over a two-dimensional grid, using data col-
lected from one parking lot experiment. The gray cells in
this graph correspond to locations with PRR ≥ 85% (cov-
ered or good locations), whereas the black cells have PRR
< 85% (coverage holes)2. The interlacing of good locations
and coverage holes in the transitional region agrees with the
model in Section 3 and signals good news. The coverage
holes are not clustered and therefore doing grid sampling in
the vicinity of a coverage hole is likely to discover a good

2We observe that the low PRR measurements in Figure 9 are
due to low received signal strength, rather than external noise or
interference.
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(b) Hallway.
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(c) Forest A.
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(d) All datasets.

Figure 7. Q-Q plot of residual RSSI versus standard normal distribution for three environments, and the aggregate
curve for all the datasets listed in Table 2. In all cases, residual RSSI is well modeled by the Gaussian distribution.
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Figure 9. Measured PRR in a parking lot environment.
Black cells correspond to coverage holes, while gray cells
designate good locations (i.e., PRR ≥ 85%). The X-
and Y-axis values correspond to relative distances to the
transmitter on a 2D plane.

location. For example, in the mobile sink or robotic sen-
sor networks scenario, a mobile mote can simply move to
a nearby location when stepping in a coverage hole. More-
over, from those two figures one can see that it would be
overly conservative and unnecessary to completely avoid the
transitional region due to its coverage holes. After all, it is
not that difficult to find a good location. Instead, we can use
the variation to identify good locations and thereby construct
long (distance-wise) and good (PRR) links, which is useful
when deploying relay nodes (cf. Section 5).

While the log-normal path loss model considers the PRRs
at different positions to be independent, Figure 9 suggests
that this model is not valid when the distance between the po-
sitions is small. These dependencies were also identified by
Patwari and Agrawal, who proposed a correlation model for
RSSI values at nearby positions [24]. In their model the cor-
relation exponentially decays with the distance between the
two positions. Patwari and Agrawal also stated that the cor-
relation depends on the characteristics of the environment.

We use measurements collected from different environ-
ments to characterize the correlation between the received
signal strengths at two nearby locations. We do so, to esti-
mate the sufficient distance ∆ that will guarantee statistical
independence for the corresponding PRRs. This ∆ can be
used in the Bernoulli Grid method presented in Section 3.2.

Specifically, we calculate the correlation coefficients for
raw RSSI, PRR, and residual RSSI as a function of the dis-
tance between the two measurement locations. We calculate
residual RSSI by subtracting µ(d) from raw RSSI, in order to
eliminate the correlations introduced by µ(d). Figures 10(a),
10(b), and 10(c) show these correlation coefficients. Fig-
ures 10(a) and 10(b) correspond to two experiments in differ-
ent areas of a large parking lot. One can see that correlations
decay as distance increases, reducing from 1.0 to ∼0.2. In
Figure 10(c), the correlation for PRR decays considerably at
a few centimeters, suggesting λ/2 = 6cm is a sufficient ∆ for
that environment. However, Figure 10(b) shows that it can
take up to 1 meter for the correlation to decrease. Given this
last result, we set ∆ = 1m for the rest of this discussion3.

We note that Puccinelli and Haenggi observe that, ∆ ≥
λ/2 is sufficient to make the multipath fading at two posi-
tions independent [27]. The implicit requirement for this to
hold is that radio waves arrive from all angles with equal
probability, in which case the correlation coefficient of the
fading signal can analytically be shown to be approximat-
ing zero [23]. However, in real life it is not always true that
multipath signals arrive from all angles equally and therefore
larger distances are necessary to remove the correlation.
4.4 Temporal Variation

One implicit assumption of the proposed Bernoulli Grid
method is that PRR and RSSI values observed in a relatively
short period of time are accurate long term predictions of
these values. On the other hand, temporal variations are of-
ten observed in 802.15.4 links [34, 36], seemingly contra-
dicting the above assumption. Note that we have set the
inter-packet-interval to 500 ms according to [36] to reduce
the impact of bursty links. In this section, we first show that
measuring PRR over a few minutes can predict PRR values
over the following hour. Then we present RSSI measure-
ments collected from the two forest deployments across sev-
eral months which show that RSSI measurements are consis-
tent even over very long time periods.

We start with the relationships between short-term and
medium-term PRRs in four experiments, two indoor (hall-
way and the indoors testbed) and two at a parking lot. In
each experiment, one mote is selected as the common trans-
mitter and broadcasts packets to other motes. The transmitter
is placed at various locations and broadcasts 10,000 packets
with an inter-packet interval of 500 ms at each location. We

3While not shown here, one meter is also sufficient for other
environments that we have tested.
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Figure 10. Correlation coefficients between the RSSI and PRR values at two nearby locations for different environments.

test a total of 84 links, all of which are in the transitional re-
gion, i.e., are longer than the length of the connected region
as defined in Section 3.1.

We define the PRR over all the 10,000 packets as the
medium-term PRR (MPRR). Furthermore, we divide the
10,000 packets into 20 non-overlapping blocks, each con-
taining 500 packets. We define the PRR for each block as the
short-term PRR (SPRR). Therefore, MPRR is the average
over 20 SPRRs and we can calculate the standard deviation
for the corresponding 20 SPRRs. The median SPRR stan-
dard deviation is 2%, while for 90% of all the link MPRRs
the SPRR standard deviation is less than 20%. Figure 12
shows the cumulative distribution for MPRR conditioned on
the observed SPRR. One can see that when SPRR ≥ 85%,
the probability of MPRR ≥ 85% is ≈ 90%. These results
suggest that selecting a good location based on a short dura-
tion PRR test offers a reliable prediction of the link’s quality
at least for the next hour. Finally, we have verified that tem-
poral PRR variations in our experiments were due to fluctua-
tions in RSSI rather than ambient noise or interference. Such
temporal RSSI variations in indoor environments are consid-
erably larger during the day time when people are moving
around the building.

While the previous results suggest that PRR remains
fairly consistent within one hour, what happens over longer
timescales? Note that for mobile sinks and robotic sensor
networks, medium-term stability is more than sufficient be-
cause nodes are mobile and thus can easily relocate. There-
fore, long-term stability is more relevant to deploying sta-
tionary sensor motes and relay nodes. To study the long-
term stability, we collect RSSI measurements from FA and
FB from a total of 120 motes over half a year.

Specifically, for each link in the transitional region,
we calculate the standard deviation of RSSI measurements
across the six months. The average standard deviations
across all links were 3.4 dB for FA and 3.7 dB for FB. We
also collected RSSI measurements at 18 locations within FA
for a few minutes and calculated the standard deviation of
RSSI measurements for each location. The average standard
deviation over these values was 2.1 dB. The fact that the long
term standard deviation is similar to the short term standard
deviation indicates that, for each link, short term RSSI and
long term RSSI are not significantly different. Moreover,
Figure 11(a) shows the daily residual RSSI pattern. One can
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Figure 12. CDF of MPRR under various SPRRs. Links
with high (≥ 85%) SPRR are very likely to also have high
MPRR.

see that there is considerable variation of RSSI within a day,
which also contributes to the long term standard deviation.
Boano et al. [4] observe that RSSI values become smaller as
the temperature rises, which explains the hourly fluctuations
shown in Figure 11(a). On the other hand, as Figure 11(b)
indicates, the monthly distribution is more stable.

We note that temporal properties of wireless links depend
on the characteristics of the environments. The results in
Figure 11(b) suggest that for sensor networks deployed in
forests, link qualities are likely to be stable over time. For
more volatile environments, however, the results in Section
4.3 can be used to guide the placement of sensor nodes (e.g.,
separated by at least 1 meter) such that correlated link fail-
ures are less likely to occur.

4.5 Link Asymmetry
We conduct four experiments to explore whether the links

selected by the proposed mechanism are asymmetric. One
of the experiment is indoors (H), while the rest are outdoors
(P). We test a total number of 183 links across all cases.
For all experiments, we measure PRRs in both directions and
investigate whether we can use the PRR from one direction
to predict the PRR for the reverse direction of the same link.

Figure 13 shows the distribution of the packet reception
ratio for the reverse link direction, given that the observed
link direction has PRR≥ 85%, or PRR≤ 15%. In each case,
two curves are shown. The first curve considers all the links,
including the ones in the connected region, whereas the sec-
ond curve shows only the links within the transitional region.
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Figure 11. Box plots of residual RSSI values over 24 hours and 6 months for the two forest sites.
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Figure 13. CDF of the PRR of the reverse link direction
when the forward link direction has PRR ≥ 85% or ≤
15%. High-quality links are symmetric.

One can see that links with high PRR tend to be symmetric:
the probability that the other direction also has PRR ≥ 85%
is approximately 0.95. Moreover, PRR symmetry also holds
for links in the transitional region. These results agree with
previous studies which showed that most asymmetries occur
in links with intermediate PRRs [29, 34]. On the other hand,
links with either high (≥ 85%) or low (< 15%) PRR tend to
be mostly symmetric.
4.6 Number of Trials

Next, we evaluate the correctness and effectiveness of ap-
plying the Bernoulli Grid method from Section 3.2 in four
different environments: H,O,P, and FA. We are most inter-
ested in whether the number of trials to find a good location
is actually geometrically distributed. Therefore, we compare
the distribution of the experimentally counted number of tri-
als necessary to find a good location to the number of trials
predicted by the equations in Section 3.2.

We first measure the log-normal parameters and SNR-
PRR curve for each environment. With those parameters, we
can compute the length of the connected region lc as defined
in Section 3.1. Next, we fix the location of the first mote and
place the second mote at a distance lt from the fixed mote.
We let lt > lc thus putting the mote in the transitional region.
Then, we use a control mote to broadcast a beacon instruct-

Dataset T E(T ) lc (cm) lt (cm) TX power

P4 2.26 2.16 1324 2327 23
H4 3.16 2.85 477 1550 3
H4 1.24 1.23 477 900 3
O4 2.24 1.81 300 700 3
FA6 1.67 1.81 3000 7000 31

Table 3. Average number of trials to construct links with
various lengths in four environments. T is the average
number of trials, and E(T ) is the expected number of tri-
als predicted by the model. lc and lt are the lengths of
the connected regions and the links constructed using the
Bernoulli Grid method respectively.

ing the two motes to transmit a certain number of packets,
to measure the PRR of the constructed link. We move the
second mote to multiple locations, iteratively constructing
the Bernoulli Grid described in Section 3.1 and repeat the
packet transmission process. Finally, we use different motes
and put them in different areas in each environment and re-
peat the above process.

Through this process, we can compute the average num-
ber of trials to reach good locations for each environment,
under different lt/lc ratios. Table 3 lists the average number
of trials to get a good location in four types of environments.
One can see that when lt/lc ≈ 2, the number of trials is still
quite small, which indicates that it is very easy to construct
links that are twice the length of the connected region. We
observe that as a general rule of thumb, when putting the re-
ceiver at a distance that is twice the length of the connected
region, we can find a good location in less than five trials.

Furthermore, in the above table the average number of tri-
als matches the expected number of trials. But we are more
interested in the distribution of the number of trials, therefore
we plot Figure 14 which compares the cumulative distribu-
tions of the number of trials in the parking lot and hallway
experiments (the first two rows in Table 3) against the corre-
sponding geometric distributions (whose parameter p is set
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Figure 14. Cumulative distribution of the number of tri-
als in parking lot and hallway experiments and the cor-
responding Geometric distributions.

to 1/T ). Obviously, the number of trials is indeed geometri-
cally distributed. This is a very important result because it is
the theoretical foundation of the random trial method.
4.7 Connecting Two Motes

All the results presented so far are limited to single hop
links involving two motes, a sender and a receiver. When
placing relay nodes, however, we may need to place one re-
lay between two motes to connect with both. Next, we eval-
uate the effectiveness of the Bernoulli Grid method in con-
necting two motes using the same relay.

Let A and B be two fixed sensing motes that we need to
connect using relay nodes. Furthermore, let the distance be-
tween mote A and B be l > lc. In this case, a simple approach
would be to let the distance between two adjacent motes be
≤ lc and thus would need to place dl/lce−1 relay nodes be-
tween A and B. For example, when l = 4lc, three relay nodes
are necessary. In contrast, using the Bernoulli Grid method
one can let the inter-mote distance be 2lc and thereby require
a singe relay, placed at the midpoint between A and B.

Table 3 lists the number of trials necessary to find a loca-
tion for relay R such that link (A,R) is connected for various
environments. However, in order to connect A and B, we also
need to connect link (B,R). Note that a relay location that is
good for link (A,R) is not necessarily good for link (B,R).
Let TAR and TBR be the expected numbers of trials to find
a good location for link (A,R) and (B,R) respectively, and
let TARB be the expected number of trials to find a location
that is good for both link (A,R) and (B,R). Assuming that
the PRRs for link (A,R) and link (B,R) are independent, we
should have TARB = TAR×TBR.

We perform a set of experiments in which two motes are
placed at two locations separated by l meters and place a
relay node at the midpoint. Following the methodology de-
scribed in Section 4.6, the relay mote is also placed at a se-
ries of locations forming a grid centered at the midpoint of
those two endpoints motes. For each environment several
TX power levels are tested, to emulate different node sep-
arations. Table 4 summarizes the corresponding number of
trials. One can see that TARB < TAR×TBR, which means that
link (A,R) and (B,R) are not independent. Nonetheless, the

Dataset TAR TBR TAR×TBR TARB TX power

H4 2.72 1.61 4.39 3.99 3
H4 1.23 1.11 1.37 1.35 4
P4 2.26 1.68 3.79 3.49 23
P4 1.80 1.51 2.73 2.70 27
P4 1.60 1.43 2.31 2.28 31

Table 4. Average number of trials for connecting two
motes A,B using relay node R. TAR, TBR and TARB are the
average number of trials to find a good location of R that
will connect link (A,R), (B,R) and (A,R,B) respectively.

correlation often reduces the number of trials needed to find a
location that is good for both ends. Furthermore, in all cases
the necessary numbers of trials to connect both endpoints to
the relay node is small.

Another interesting observation from Table 4 is that TAR 6=
TBR even though the relay is placed at the midpoint. One pos-
sible explanation for this disparity is the non-isotropic trans-
mission range [44] of the CC2420 radio that we use.
4.8 Lowering Transmission Power

Rather than leveraging the Bernoulli Grid method to place
motes farther apart than the connected region, we can lower
the motes’ transmission power but keep the inter-mote dis-
tance unchanged to reduce power consumption. Figure 15(b)
shows that raising the transmitter’s power level to 18 in-
creases the length of the connected region, compared to Fig-
ure 15(a). However, even with the transmission power level
set to 3, one can still find good positions at 15-20 meters
by grid sampling, as is shown in Figure 15(a). This simple
comparison suggests that the grid sampling mechanism can
match the range of the connected region of higher transmis-
sion power, while using lower transmission power. In turn,
the radio’s transmit current draw for the two power levels is
13.65mA and 8.5mA respectively, or a 38% reduction in ra-
dio transmission power consumption. We note that transmis-
sion power is only a part of the radio power footprint and its
consumption scales with traffic loads. Nevertheless, lower
transmission power implicitly reduces interference to other
motes and thereby the idle listening power consumption for
duty-cycled MAC protocols, especially the sender-initiated
ones (e.g., LPL [25]) as shown in [9].

5 Applications
In this section we will present the applications of the pro-

posed Bernoulli trial method. First, we show that integrating
this method into a site planning tool can significantly reduce
the number of relay nodes that we need to deploy. Second,
we show that this method can be used to position mobile
sinks and assist networks of mobile sensing robots.
5.1 Placing Relay Nodes

Figure 16 presents an environmental monitoring network
deployed in a forest in Edgewater, MD to measure soil con-
ditions. The network consists of sensing motes deployed
in multiple distinct sensor patches and a number of relay
nodes deployed to connect these patches into a single net-
work rooted at the gateway located at the top left part of the
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Figure 15. PRR vs. distance for six links at two transmission power levels.
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Figure 16. Map of an environmental sensing network
deployment including sensors deployed in multiple net-
work patches and a series of relay nodes connecting these
patches to the network’s gateway.

map. The gateway is connected via a long-range WiFi link
to an Internet-connected PC. It is not possible to connect the
sensor patches using WiFi links, due to the lack of power.

This deployment provides one example of multi-
resolution sensing, whereby sensor patches that provide
dense spatial sampling are sparsely placed over a wider
area of interest to capture large-scale heterogeneities. These
patches however must be interconnected to allow unified data
collection and network management. In turn, this need trans-
lates to the general relay placement problem, described next.

We consider an area A , over which n sensing motes are
placed at locations S = {(xs

i ,y
s
i ), i = 1, . . . ,n}4. Domain

scientists determine the sensing locations and therefore we
consider them to be fixed [21]. Furthermore, the network
has m≥ 1 gateways at locations G = {(xg

i ,y
g
j), j = 1, . . .m}.

Given S ,G , we need to determine the number c and set of
locations R = {(xr

k,y
r
k),k = 1, . . . ,c} at which to place re-

lay nodes. These nodes use the same radios as the sensing
4We do not make any assumptions about the planarity of A , but

use two dimensions for ease of exposition.

Step 1 Perform site survey and determine S ,G .
Measure site-specific channel parameters (§2.1).

Step 2 Calculate length of the connected region (§2.2).
Step 3 Set effective transmission range Ri (§3.1).
Step 4 Run Steiner tree algorithm, output c and R .
Step 5 Deploy relay nodes using Bernoulli Grid (§3.2).
Step 6 Post deployment maintenance if necessary.

Table 5. Sensor networks deployment procedure.

nodes to relay data. The relay locations are selected so that
every sensing mote has a high quality (i.e., low-loss) end-
to-end path to one of the network’s gateways. To do so,
we need to ensure that the PRR of every link between the
sensing motes and the gateway(s) is above phigh. We note
that this model is different from the one proposed by Krause
et al. [16] which concurrently optimizes communication and
sensing quality by selecting the locations of sensing motes as
well as any possible relay nodes. We chose to focus on op-
timizing the communication topology because this approach
matches the domain scientists’ expectation of being able to
dictate the sensing locations and because it does not require
prior knowledge about the probability distribution of the sen-
sor data.

The relay placement problem is similar to the minimum
Steiner Tree problem [14], in which a set of Steiner points
must be added to create a minimum cost spanning tree of a
graph G. The Steiner Tree problem is NP-Complete even
for Euclidean or rectilinear metrics [11]. However, a num-
ber of polynomial approximation algorithms have been re-
cently proposed for this problem (see [12, 20] and references
therein). These algorithms first compute a Minimum Span-
ning Tree (MST) covering the nodes in S ∪G . They then
determine for each MST link the number and locations of re-
lay nodes necessary based on the link’s length and the relays’
transmission range. These relays are then used to physically
connect the two original MST nodes.

These algorithms assume that the transmission range of
node i can be modeled as a disk with known radius Ri. Unfor-
tunately, selecting an effective transmission radius that en-
sures low loss is a non-trivial task in practice. One approach
is first to estimate the length of the radio’s connected range



Number of Relay Nodes 137 98 91 92 91
Communication Range(m) 30 45 60 75 90

Table 6. Number of relay nodes needed to connect the
network for different communication ranges.

and then set Ri to this value. In practice, the length of the
connected region depends on the deployment environment
and can be derived through an RF site survey. However, this
approach will also require redundant relay nodes as the con-
nected range can be as little as 30% to 50% of the radio’s
total range [43]. Moreover, placing a relay within the radio’s
connected region does not guarantee high PRR (see Figure
2), especially in environments with high RSSI variations.

Setting Ri within the radio’s transitional area allows the
network’s planners to leverage a larger percentage of the ra-
dio’s total range, but also raises the risk of adding links with
low PRR. Therefore, we can use the proposed Bernoulli Grid
method to discover, with high probability, long links with
high PRR, at a trivial additional cost. Extensive results pre-
sented in Section 4 have shown that the proposed methodol-
ogy applies to realistic deployment scenarios including the
forest shown in Fig.16. Table 5 summarizes the deploy-
ment procedures of the network planning tool to apply the
Bernoulli Grid method. Note that the Steiner tree algorithm
uses each relay to connect at most two motes, hence the eval-
uation in Sections 4.6 and 4.7 is sufficient and applicable.

To investigate the improvement achievable for larger net-
works, we simulate a scenario in which 120 sensing motes
are deployed in a forest spanning 800m×800m. The sensing
motes are randomly placed over the deployment area. We
then use our planning tool to estimate the number and po-
sitions of the required relay nodes. Without the Bernoulli
Grid method, one needs to set the maximum communication
range to 30 meters, as this is the radio’s connected region in
the two forests that we tested. By grid sampling, one can set
the effective communication range to lt = 70 meters at the
cost of a few trials when deploying each relay node.

Table 6 summarizes the number of required relay nodes
under different effective communication ranges. Two hun-
dred randomly generated network topologies are simulated
and the median number of relay nodes is listed in each case.
One can see that increasing the effective communication
range of relay nodes by leveraging spatial heterogeneity re-
duces the total number of relay nodes by up to 33.6%. We
note that Table 6 serves as an example of the savings achiev-
able for certain types of sensor network deployments. For a
small deployment, the places to put relay nodes are straight-
forward and the formal planning tool shown in Table 5 is not
necessary. Nevertheless, the principles of the Bernoulli Grid
method are still applicable. We also note that this section
assumes that sensor motes can be placed anywhere, which
might not hold due to obstacles and other practical limita-
tions. In these cases, however, one can still try placing a
relay node at multiple locations, which do not necessarily
form a grid.

The tradeoff inherent to the planning tool is between the
quantity of relay nodes and the efforts to deploy them. Al-

lowing more relay nodes would make the deployment pro-
cess easier as less trials are needed when deploying each
node. However, the costs of maintaining those additional
relay nodes over the lifetime of the network (up to multiple
years) can be much higher than the initial hardware costs of
the relay nodes. Therefore, it is up to the network planner to
strike the balance. Another cost to use the planning tool is
the need for site survey, which is not unique to this tool. In
any deployment, some level of site survey is always needed
to at least estimate the radio communication range. When
using the site planning tool, one can choose to collect mea-
surements to compute the radio propagation parameters, or
simply estimate a general communication range and use the
Bernoulli Grid method to find good locations.

5.2 Mobile Sensor Networks and Sinks
Recent studies have proposed using mobile sinks to har-

vest data from wireless sensor networks [17, 37]. With the
ability to move to different locations, this type of sink can di-
rectly benefit from the Bernoulli trial method: if the current
location has low PRR, then the sink can move around the
vicinity and try to find a better position. Furthermore, sinks
can also utilize the Bernoulli Grid method to purposely con-
struct long links such that the mobile robot that carries the
sink can travel a shorter distance, thereby saving the robot’s
energy and also accelerating the data collection process.

The Bernoulli trial method has more interesting implica-
tions when more motes are mobile [38, 40]. Due to the in-
creased mobility, the signal variation in the space domain
can be translated to variation in the time domain. For exam-
ple, when a mobile mote sends a packet but does not receive
the acknowledgement, it can infer that the current location
is probably not a very good one. Therefore, one reasonable
action is to wait until the mote gets to a different location
(e.g., at least 1 meter apart from the previous one) and then
try re-sending the packet. The time to wait is determined by
the speed of the robot and the separation that is needed to
ensure independence. Of course, a mobile robot knows how
far it has traveled and therefore does not need to compute
the time to wait. However, for a more general class of mo-
bile networks that cannot control their movement, or do not
know where they are going, the time to wait can potentially
be a useful parameter for communication protocols, assum-
ing some knowledge about the speed of travel is available.

6 Related Work
Multiple studies have shown that the characteristics of

a network’s wireless links significantly impact upper-level
protocols. For example, Ganesan et al. showed that unreli-
able and asymmetric links cause simple flooding protocols to
exhibit unexpected clustering behaviors that differ from the
uniform trees generated under ideal radio conditions [10].
Likewise, Woo et al. studied the effects of link connectivity
on tree routing protocols for sensor networks [41]. Finally,
Zhou et al. found that radio irregularity has a significant im-
pact on geographic routing protocols [44].

This direct connection between wireless link behavior and
application-level performance has motivated researchers to
measure the properties of low-power wireless links and un-
derstand the underlying factors that control their behavior.



Several studies have classified low-power wireless links into
three distinct reception regions: connected, transitional, and
disconnected [41, 43]. In the connected region, links are of
good quality, stable, and symmetric [6]. In contrast, the tran-
sitional or gray region is characterized by the presence of
unreliable and asymmetric links. Unfortunately, the transi-
tional region is often quite large in size and thereby a large
number of network links can be unreliable. In fact, Zhao and
Govindan found that number to be higher than 50% in the
network configurations they tested [43]. Furthermore, the
shape of the transitional region is neither circular nor con-
vex [10, 44]. Cerpa et al. also found that there is a significant
percentage of the radio range in which links are highly vari-
able, with similar probabilities of having very high or very
low reception rates [6].

In a subsequent study, Cerpa et al. measured the tempo-
ral properties of low-power wireless links using an indoor
testbed of Mica motes [7]. This study found that the qual-
ity, in terms of the required number of packets necessary for
a successful transmission, of some wireless links can vary
considerably over time. However, Cerpa et al. also found
that good links tend to be very stable over time [7], an obser-
vation we have independently verified.

Son et al. established that signal to interference plus
noise ratio (SINR) is the main factor determining PRR in
low-power wireless links [33]. Furthermore, the same study
found that radio hardware variations affect the SINR thresh-
old necessary for high packet reception, while location does
not play a significant role, as long as SINR remains con-
stant [33]. Our results, shown in Figure 1, confirm that when
the SNR is greater than a lower bound, the PRR is high with a
high likelihood. Otherwise the link enters a gray area where
the PRR is difficult to predict. Multiple studies have shown
that temporal PRR variations are also due to changes in the
signal strength (up to a few dBm) of packets received from
the same node over long time periods [18, 34, 36].

Zamalloa and Krishnamachari provided an analysis of the
root causes behind link unreliability and asymmetry [42].
Specifically, they used the log-normal path loss model to de-
rive expressions for the distribution, expectation, and vari-
ance of the packet reception rate as a function of distance.
Rather than using such a model to explain the extent and the
location of the transitional region, we leverage it to exper-
imentally find locations within the transitional region that
have high PRR, using a small number of trials. We note
that the existence of these locations is predicted by analytical
models [42] and has been experimentally verified [6, 41, 43].
While we currently do not consider non-isotropic transmis-
sion, a characteristic of low-power wireless links [44], it is
feasible to incorporate hardware transmission irregularities
by introducing variable transmission power Pt (see Sec.2.1).

Extensive literature covers outdoor [32] and indoor RF
signal propagation models, including models that take into
account the number, delay, and power of indoor multipath
components [1]. We employ the popular log-normal path
loss model [28]. This model can be used over large and small
distances [31], while empirical studies have shown that it can
effectively model multipath indoor channels [22].

Recent efforts provide analytical models for estimating

the connectivity of an ad-hoc network using the log-normal
path loss model [3, 13, 19]. These efforts extend earlier work
by Bettstetter, who estimated network connectivity under the
unit disk model [2]. More recently, Robinson et al. presented
a technique for estimating the coverage of metropolitan area
WiFi networks using a combination of modeling and anal-
ysis [30]. Our work is different because it is constructive
rather than descriptive. Specifically, rather than trying to es-
timate the connectivity of given networks it provides mech-
anisms to guide the design of a network by finding locations
with high link quality.

7 Summary
The Log-normal path loss model has been widely used to

describe the propagation of radio signals for 802.15.4 links.
In this work, we start with the hypothesis that if the log-
normal model holds perfectly, then the signal strengths at
nearby locations are independent. In turn, this implies that
finding the location whose packet reception ratio is above a
certain threshold can be modeled as a sequence of Bernoulli
trials. Therefore, the number of attempts required to find a
location with high PRR is geometrically distributed. Fur-
thermore, we argue that the geometric distribution is desir-
able because it does not exhibit long tails and therefore the
number of attempts to find a good location should usually be
small, provided that a reasonable percentage of location with
high PRR exist in the search vicinity.

To verify our hypothesis, we performed extensive exper-
iments in a variety of environments, and concluded that the
hypothesis is indeed valid provided that the separation be-
tween tried locations is above 1 meter. As a result, we can
rely on this hypothesis to perform Bernoulli trials to effec-
tively discover good locations in the transitional region. We
showed that this method is useful when deploying sparse
sensor networks, as well as for positioning mobile sinks and
the nodes of mobile sensor networks.

We also concluded as a rule of thumb that when placing
the receiver at a distance that is twice the length of the con-
nected region, one can find a good location in fewer than five
trials. This is both practical and efficient, and tells us that
finding a good location is usually quite easy. It also serves
as the theoretical foundation for the trial-and-error method
to deploy sensor motes. While the log-normal model and its
application in sensor networks is not new, we argue that this
work provides fresh and useful insights into the implications
of this model, and is of practical importance.
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