
Chapter 15

DEFINITION OF A MATRIX

A matrix of order m x n, or m by n matrix, is a rectangular array of numbers having
m rows and n columns. It can be written in the form

(1)

Each number ajk in this matrix is called an element. The subscripts j and k indicate
respectively the row and column of the matrix in which the element appears.

We shall often denote a matrix by a letter, such as A in (1), or by the symbol (a^) which
shows a representative element.

A matrix having only one row is called a row matrix [or row vector] while a matrix
having only one column is called a column matrix [or column vector]. If the number of
rows m and columns n are equal the matrix is called a square matrix of order n x n or
briefly n. A matrix is said to be a real matrix or complex matrix according as its elements
are real or complex numbers.

SOME SPECIAL DEFINITIONS AND OPERATIONS INVOLVING MATRICES

1. Equality of Matrices. Two matrices A = (ajk) and B = (bik) of the same order [i.e.
equal numbers of rows and columns] are equal if and only if aik = bik.

2. Addition of Matrices. If A = (aik) and B = (bjk) have the same order we define the
sum of A and B as A + B = (aik + bjk).

Example 1. If then

Note that the commutative and associative laws for addition are satisfied by
matrices, i.e. for any matrices A, B, C of the same order

A + B = B + A, A + (B + C) = (A +B) + C (2)

3. Subtraction of Matrices. If A = (a}k), B = (bik) have the same order, we define the
difference of A and B as A - B = (ajk - bik).

Example 2. If A and B are the matrices of Example 1, then
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4. Multiplication of a Matrix by a Number. If A - (aik) and X is any number [or scalar],
we define the product of A by A. as XA = A\ = (Attjic).

Example 3. If A is the matrix of Example 1 and X = 4, then

5. Multiplication of Matrices. If A = (ajfc) is an mxn matrix while B = (&#) is an
nxp matrix, then we define the product A-B or AB of A and 5 as the matrix
C = (Cjk) where

(3)

and where C is of order mxp.

Note that matrix multiplication is defined if and only if the number of columns of
A is the same as the number of rows of B. Such matrices are sometimes called
conformable.

Example 4. Let Then

Note that in general AB ¥* BA, i.e. the commutative law for multiplication of
matrices is not satisfied in general. However, the associative and distributive laws
are satisfied, i.e.

A(BC) = (AB)C, A(B + C) = AB + AC, (B + C)A = BA + CA (4)

A matrix A can be multiplied by itself if and only if it is a square matrix. The
product A - A can in such case be written A2. Similarly we define powers of a square
matrix, i.e. A3 = A'A2, A4 = A«A3, etc.

6. Transpose of a Matrix. If we interchange rows and columns of a matrix A, the
resulting matrix is called the transpose of A and is denoted by AT. In symbols, if
A = (ajfc) then AT = (akj).

Example 5. The transpose of is

We can prove that

(5)

1. Symmetric and Skew-Symmetric Matrices. A square matrix A is called symmetric if
AT — A and skew-symmetric if AT = —A.

Example 6. The matrix is symmetric while is skew-symmetric.

Any real square matrix [i.e. one having only real elements] can always be expressed
as the sum of a real symmetric matrix and a real skew-symmetric matrix.
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8. Complex Conjugate of a Matrix. If all elements ajk of a matrix A are replaced by
their complex conjugates aik, the matrix obtained is called the complex conjugate of A
and is denoted by A. .

9. Hermitian and Skew-Hermitian Matrices. A square matrix A which is the same as
the complex conjugate of its transpose, i.e. if A = AT, is called Hermitian. If
A = —AT, then A is called skew-Hermitian. If A is real these reduce to symmetric
and skew-symmetric matrices respectively.

10. Principal Diagonal and Trace of a Matrix. If A = (aik) is a square matrix, then the
diagonal which contains all elements ajk for which j = k is called the principal or
main diagonal and the sum of all such elements is called the trace of A,

Example 7. The principal or main diagonal of the matrix

is indicated by the shading, and the trace of the matrix is 5 + 1 + 2 = 8.
A matrix for which ajk = 0 when j ¥= k is called a diagonal matrix.

11. Unit Matrix. A square matrix in which all elements of the principal diagonal are
equal to 1 while all other elements are zero is called the unit matrix and is denoted by
/. An important property of 7 is that

AI •= IA = A, I* = I, % = 1,2,3, ... (6)

The unit matrix plays a role in matrix algebra similar to that played by the
number one in ordinary algebra.

12. Zero or Null Matrix. A matrix whose elements are all equal to zero is called the
null or zero matrix and is often denoted by O or simply 0. For any matrix A having
the same order as 0 we have

A + 0 = 0 + A=A (7)
Also if A and 0 are square matrices, then

AO = OA = 0 (8)

The zero matrix plays a role in matrix algebra similar to that played by the number
zero of ordinary algebra.

DETERMINANTS

If the matrix A in (1) is a square matrix, then we associate with A a number denoted by

W

called the determinant of A of order n, written det (A). In order to define the value of a
determinant, we introduce the following concepts.

1. Minor. Given any element ajk of A we associate a new determinant of order (n — 1)
obtained by removing all elements of the jth row and Mh column called the minor of ajk.



CHAP. 15] MATRICES 345

Example 8. The minor corresponding to the element 5 in the 2nd row and 3rd column of the
fourth order determinant

which is obtained by removing the elements shown shaded.

2. Cofactor. If we multiply the minor of ajfc by (-l)'+k, the result is called the coj'actor
of cijk and is denoted by A}k.

Example 9. The cofactor corresponding to the element 5 in the determinant of Example 8 is
(—l)2+s times its minor, or

The value of a determinant is then defined as the sum of the products of the elements
in any row [or column] by their corresponding cofactors and is called the Laplace expansion.
In symbols,

(10)

We can show that this value is independent of the row [or column] used [see Problem 15.7],

THEOREMS ON DETERMINANTS

Theorem 15-L The value of a determinant remains the same if rows and columns are
interchanged. In symbols, det (A) = det (AT).

Theorem 15-2. If all elements of any row [or column] are zero except for one element, then
the value of the determinant is equal to the product of that element by its
cofactor. In particular, if all elements of a row [or column] are zero the
determinant is zero.

Theorem 15-3. An interchange of any two rows [or columns] changes the sign of the
determinant.

Theorem 15-4. If all elements in any row [or column] are multiplied by a number, the
determinant is also multiplied by this number.

Theorem 15-5. If any two rows [or columns] are the same or proportional, the determinant
is zero.

Theorem 15-6. If we express the elements of each row [or column] as the sum of two terms,
then the determinant can be expressed as the sum of two determinants
having the same order.

Theorem 15-7. If we multiply the elements of any row [or column] by a given number and
add to corresponding elements of any other row [or column], then the value
of the determinant remains the same.

Theorem 15-8. If A and B are square matrices of the same order, then
det (AS) = det (A) det (B) (11)
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Theorem 15-9. The sum of the products of the elements of any row [or column] by the
cofactors of another row [or column] is zero. In symbols,

(12)

If p = q, the sum is det (A) by (10).

Theorem 15-10. Let v\, v2,..., vn represent row vectors [or column vectors] of a square
matrix A of order n. Then det (A) - 0 if and only if there exist constants
[scalars] Ai, A2, ..., \n not all zero such that

(13)

where O is the null or zero row matrix. If condition (13) is satisfied we
say that the vectors v\, Vz,..., vn are linearly dependent. Otherwise they
are linearly independent. A matrix A such that det (A) = 0 is called a
singular matrix. If det (A) ¥° 0, then A is a non-singular matrix.

In practice we evaluate a determinant of order n by using Theorem 15-7 successively
to replace all but one of the elements in a row or column by zeros and then using Theorem
15-2 to obtain a new determinant of order » —1. We continue in this manner, arriving
ultimately at determinants of orders 2 or 3 which are easily evaluated.

INVERSE OF A MATRIX

If for a given square matrix A there exists a matrix B such that AB — I, then B is
called an inverse of A and is denoted by A"1. The following theorem is fundamental.

Theorem 15-11. If A is a non-singular square matrix of order n [i.e. det(A)^0], then
there exists a unique inverse A"1 such that AA"1 = A"1 A = 7 and we
can express A"1 in the following form

(U)

where (Ajk) is the matrix of cofactors ASk and (Ajfc)T = (Aki) is its
transpose.

The following express some properties of the inverse:
(15)

ORTHOGONAL AND UNITARY MATRICES

A real matrix A is called an orthogonal matrix if its transpose is the same as its
inverse, i.e. if AT = A"1 or ATA = 7.

A complex matrix A is called a unitary matrix if its complex conjugate transpose is
the same as its inverse, i.e. if AT = A"1 or ATA = 7. It should be noted that a real
unitary matrix is an orthogonal matrix.

ORTHOGONAL VECTORS

In Chapter 5 we found that the scalar or dot product of two vectors ad + a2j + ask and
&ii + &2J + &sk is ai&i + tt2&2 + as&s and that the vectors are perpendicular or orthogonal if
«i&i + oz&2 + a3&s = 0. From the point of view of matrices we can consider these vectors
as column vectors
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from which it follows that
This leads us to define the scalar product of real column vectors A and B as ATB and to
define A and B to be orthogonal if ATB = 0.

It is convenient to generalize this to cases where the vectors can have complex com-
ponents and we adopt the following definition:
Definition 1. Two column vectors A and B are called orthogonal if ATB = 0, and ATB

is called the scalar product of A and B.

It should be noted also that if A is a unitary matrix then ATA = 1, which means that the
scalar product of A with itself is 1 or equivalently A is a unit vector, i.e. having length 1.
Thus a unitary column vector is a unit vector. Because of these remarks we have the
following
Definition 2. A set of vectors Xi, X2, ... for which

is called a unitary set or system of vectors or, in the case where the vectors
are real, an orthonormal set or an orthogonal set of unit vectors.

SYSTEMS OF LINEAR EQUATIONS

A set of equations having the form

(16)

is called a system of m linear equations in the n unknowns x\,xz,...,xn. If r\,r2,...,rn
are all zero the system is called homogeneous. If they are not all zero it is called non-
homogeneous. Any set of numbers x\,xz, ...,%«. which satisfies (16) is called a solution of
the system.

In matrix form (16) can be written

(17)

or more briefly (18)

where A,X,R represent the corresponding matrices in (17).

SYSTEMS OF n EQUATIONS IN n UNKNOWNS. CRAMER'S RULE
If m = n and if A is a non-singular matrix so that A"1 exists, we can solve (17) or

(18) by writing
(iy)

and the system has a unique solution.
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Alternatively we can express the unknowns x\,xz,.. .,xn as

(20)

where called the determinant of the system, is given by (9) and Afc,
k = 1,2, ..., n is the determinant obtained from A by removing the fcth column and
replacing it by the column vector R. The rule expressed in (20) is called Cramer's rule.

The following four cases can arise.
Case 1, In this case there will be a unique solution where not all x* will

be zero.
Case 2, In this case the only solution will be x\ = 0, x% = 0, ..., xn = 0,

i.e. X = 0. This is often called the trivial solution.

Case 3, A = 0, R = 0. In this case there will be infinitely many solutions other than
the trivial solution. This means that at least one of the equations can be obtained
from the others, i.e. the equations are linearly dependent.

Case 4, A = 0, R ¥* 0. In this case infinitely many solutions will exist if and only if all
of the determinants Afe in (20) are zero. Otherwise there will be no solution.

The cases where m ¥* n are considered in Problems 15.93-15.96.

EIGENVALUES AND EIGENVECTORS

Let A = (Ojk) be an n x n matrix and X a column vector. The equation
AX = AX (21)

where A is a number can be written as

(22)

or

(23)

The equation (23) will have non-trivial solutions if and only if

(24)

which is a polynomial equation of degree n in A. The roots of this polynomial equation are
called eigenvalues or characteristic values of the matrix A. Corresponding to each eigen-
value there will be a solution X ¥* 0, i.e. a non-trivial solution, which is called an eigen-
vector or characteristic vector belonging to the eigenvalue. The equation (24) can also
be written

det(A-A7) = 0 (25)

and the equation in A is often called the characteristic equation.
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THEOREMS ON EIGENVALUES AND EIGENVECTORS
Theorem 15-12. The eigenvalues of a Hermitian matrix [or symmetric real matrix] are

real. The eigenvalues of a skew-Hermitian matrix [or skew-symmetric
real matrix] are zero or pure imaginary. The eigenvalues of a unitary
[or real orthogonal matrix] all have absolute value equal to 1.

Theorem 15-13. The eigenvectors belonging to different eigenvalues of a Hermitian matrix
[or symmetric real matrix] are orthogonal.

Theorem 15-14 [Cayley-Hamilton]. A matrix satisfies its own characteristic equation
[see Problem 15.40].

Theorem 15-15 [Reduction of matrix to diagonal form]. If a non-singular matrix A has
distinct eigenvalues Xi, A2, A.S, ... with corresponding eigenvectors written
as columns in the matrix

then

i.e. B~1AB, called the transform of A by B, is a diagonal matrix containing
the eigenvalues of A in the main diagonal and zeros elsewhere. We say
that A has been transformed or reduced to diagonal form. See Problem
15.41.

Theorem 15-16 [Reduction of quadratic form to canonical form].
Let A be a symmetric real matrix, for example,

Then if , we obtain the quadratic form

The cross product terms of this quadratic form can be removed by letting X = BU
where U is the column vector with elements u\, u2, u3 and B is an orthogonal matrix which
diagonalizes A. The new quadratic form in u\, Uz, u3 with no cross product terms is called
the canonical form. See Problem 15.43. A generalization can be made to Hermitian quad-
ratic forms [see Problem 15.114].

OPERATOR INTERPRETATION OF MATRICES
If A is an n x n matrix, we can think of it as an operator or transformation acting on a

column vector X to produce AX which is another column vector. With this interpretation
equation (21) asks for those vectors X which are transformed by A into constant multiples
of themselves [or equivalently into vectors which have the same direction but possibly
different magnitude].

Then if x
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If case A is an orthogonal matrix, the transformation is a rotation and explains why
the absolute value of all the eigenvalues in such case are equal to one [Theorem 15-12], since
an ordinary rotation of a vector would not change its magnitude.

The ideas of transformation are very convenient in giving interpretations to many
properties of matrices.

Solved Problems
OPERATIONS WITH MATRICES

15.1. If find (a) A + B, (b) A-B,

(c) 2A - 3C, (d) 3A + 2B- 4(7, (e) AB, (/) BA, (g) (AB)C, (h) A(BC), (i) AT + BT,
(j) BTAT.

(a)

(6)

<«)

(d)

(')

(/)

Note that AB ¥= BA using (e), illustrating the fact that the commutative law for products
does not hold in general.

(9)

(K)

Note that (AB)C = A(BC) using (g), illustrating the fact that the associative law for
products holds.

(i)

Note that AT + B* = (A + B)? using (a).

0)

Note that BTAf = (AB)? using (e).
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15.2. If A = B = show that

(A+B)2 = A2 + AB + BA + B2

We have

T h e n ( A + B ) 2 = (A+B)(A+B) =

Now

Thus A* + AB + BA + B2 = \ = (A + B)2

153. Prove that any real square matrix can always be expressed as the sum of a real
symmetric matrix and a real skew-symmetric matrix.

If A is any real square matrix, then
A = $(A+AT) + %(A-AT)

But since (A+A?)? - AT + A = A + AT, it follows that £(A+AT) is symmetric. Also, since
(A-AT)i = AT -A = -(A-AT), it follows that %(A-AT) is skew-symmetric. The required
result is thus proved.

15.4. Show that the matrix is Hermitian.

We have Thus A is Hermitian.
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15.5. Prove that a unit matrix 7 of order n commutes with any square matrix A of order
n and the resulting product is A.

We illustrate the proof for n = 3. In such case

Then

i.e. IA = AI = A.

Extensions are easily made for n > 3.

DETERMINANTS
15.6. Use the definition of a determinant [Laplace expansion] as given on page 345 to

evaluate a determinant of (a) order 2, (&) order 3.

(a) Let the determinant b « U s e the elements of the f i rs t row. The corresponding
cofactors are

Then by the Laplace expansion the determinant has the value

The same value is obtained by using the elements of the second row [or first and second
columns].

(6) Let the determinant be The cofactors of the elements in the first row are

Then the value of the determinant is

The same value is obtained by using elements of the second or third rows [or first, second and
third columns].
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15.7. Prove that the value of a determinant remains the same regardless of which row [or
column] is taken for the Laplace expansion.

Consider the determinant A = (ajk) of order n. The result is true for n = 2 by Problem 15.6.
We use proof by induction, i.e. assuming it to be true for order n — 1 we shall prove it true for
order n. The plan will be to expand A using two different rows p and q and show that the expan-
sions are the same.

Let us first expand A by elements in the pth row. Then a typical term in the expansion is

(1)

where Mpk is the minor corresponding to the cofactor Apk of Oj,k. Since this minor is of order
n — 1, any row can be used in its expansion.

We shall use the qth row where we assume that q > p since a similar argument holds if
q < p. This row consists of elements aqr where r ¥= k and corresponds to the (q — l)st row of Mpk.

Now if r < k, aqr is located in the rth column of Mpk so that in the expansion the term corre-
sponding to aqr is

(2)

where Mpkqr is the minor corresponding to the element aqr in Mpk. From (1) and (2) it follows that
a typical term in the expansion of A is

(»)
If r > k then aqr is located in the (r — l)st column and so there is an additional minus sign in (3).

If we now expand A by elements in the qih row, a typical term is

(4)

We can expand Mqr by elements in the pth row where p > q. As before if k> r, a typical term
in the expansion of Mqr is

(5)

From (4) and (5) we see that a typical term in the expansion of A is

(«)

which is the same as (3). If k < r an additional minus sign appears in (6), agreeing with the
case corresponding to r > k using the first expansion. Thus the required result is proved.

In a similar manner we can prove that expansion by columns is the same and gives the same
result as the expansion by rows [Theorem 15-1, page 345].

15.8. Evaluate by the Laplace expansion the determinant (a) using elements

in the first row and (&) using elements in the second row.

(a) Using elements in the first row, the expansion is

(6) Using elements in the second row, the expansion is
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15.9. Prove Theorem 15-4, page 345.
Let the determinant be

a)

and suppose that the elements in the fcth row are multiplied by X to give the determinant

(2)

Expanding (1) and (2) according to elements in the fcth row, we find respectively

(S)

(4)

from which . as required.

15.10. Prove Theorem 15-5, page 345.
(a) If two rows have the same elements, then the value of the determinant will not change if the

rows are interchanged. However, according to Theorem 15-3, page 345, the sign must change.
Thus we have A = —A or A = 0.

(6) If the two rows have proportional elements, then they can be made the same by factoring out
the proportionality constants and thus the determinant must be zero by (a).

15.11. Prove Theorem 15-6, page 345.
Write the determinant as

in which the first row has each element expressed as the sum of two terms. Then by the Laplace
expansion we have

W

where An, A12,.. .,Aln are the cofactors of the corresponding elements in the first row. But (1)
can be written as

as required. A similar procedure proves the result if any other row [or column] is chosen.
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15.12. Prove Theorem 15-7, page 345.
Suppose we multiply the elements of the second row of A = (ajk) by X and add to the elements

of the first row [a similar proof can be used for any other rows or columns]. Then the determinant
can be written as

But by Problem 15.11 this can be written as

Then the required result follows since the second determinant is zero because the elements of its
first and second rows are proportional [Theorem 15-5].

15.13. Evaluate

Multiplying the elements of the first row by —3,2,3 and adding to the elements of the second,
third and fourth rows respectively, we find

which by Theorem 15-7 has a value equal to that of the given determinant. Note that this new
determinant has three zeros in the 2nd column, which was precisely our intention in choosing the
numbers —3,2,3 in the first place.

Multiplying each element in the second column by its cofactor, we see that the value of the
determinant is

on removing the factor 5 from the second row, using Theorem 15-4.

Now multiplying the elements in the second row by 5 and —1 and adding to the elements of
the first and third rows respectively, we find

which on expanding by the elements in the second column gives
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15.14. Verify Theorem 15-8 if

The theorem states that det (AB) = det (A) det (B). Then since

it states that

or (7)(84) = (17)(14)
But since this is correct, the theorem is verified for this case.

15.15. Let vi - (2-1 3), vz = (1 2-1), va = (-3 4-7). (a) Show that Vi,v2fva are
linearly dependent. (6) Illustrate Theorem 15-10, page 346, by showing that

(a) We must show that there exist constants XL X2, X3 not all zero such that \lvl + X2v2 + X3v8 =
0 = (0 0 0). Now

when

Assuming that X3 = 1, for example, the equations become 2Xj + X2 = 3, Xj — 2X2 = 4,
3Xj — X2 = 7. Solving any two of these simultaneously, we find Xt = 2, X2 = —1. Thus
Xt = 2, X2 = —1, X3 = 1 provide the required constants.

(6) Multiplying the elements of the second row by —2,3 and adding to the first and third rows
respectively, the given determinant equals

15.16. Prove Theorem 15-9, page 346.
By definition the determinant

when expanded according to the elements of the pth row has the value

(1)

Let us now replace the elements opfc in the pth row of A by corresponding elements aqk of the gth
row where p ¥° q. Then two rows will be identical and the new determinant thus obtained will be
zero by Theorem 15-5. Since apk — a,qk, (l) is replaced by

i.e. (2)
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Similarly by using columns rather than rows we can show that

(»)

If p = q, then (2) and (3) become respectively

(4)

(5)

INVERSE OF A MATRIX

15.17. Prove that

We must show that AA~l — I, the unit matrix. To do this consider the product

Now by the rule for multiplying determinants [which is the same as that for multiplying matrices],
the element cpq in the resulting determinant is found by taking the sum of the products of elements
in the gth row of the first determinant and the pth column of the second determinant. We thus
have

But by the results of Problem 15.16,

It follows that

Then if det (A) ¥> 0, this can be written

and it thus follows that AB = I where

15.18. (a) Find the inverse of the m a t r i x a n d (6) check the answer by
direct multiplication.

(a) The matrix of cofactors of A is given by
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The transpose of this matrix is

Since det (A) = 35 [see Problem 15.8], we have

(6)

We can also show that A~1A = /. This supplies the required check.

15.19. Prove that (AB)~l = B^A'1.
Let X = (AB)-1. Then (AB)X = I where / is the unit matrix. By the associative law this

becomes A(BX) = I. Multiplying by A"1, we have A~1[A(BX)] = A~ll — A~l which again using
the associative law becomes (A~1A)(BX) = A"1 or I(BX) = A"1, i.e. BX - A'1. Multiplying by
B~l and using the associative law once more, we have B~1(BX) — B~1A~1

> (B~1B)X = B~1A~1,
IX = B~iA-i, i.e. X = B-1A~1, as required.

15.20. Prove that if A is a non-singular matrix, then det

Since A A ~ 1 = I, det (A A -') = det (/) = !. But by Theorem 15-8, det (A A ~») = det (A) det (A -').
Thus det (A-1) det (A) = 1 and the required result follows.

ORTHOGONAL AND UNITARY MATRICES. ORTHOGONAL VECTORS

15.21. Show that is an orthogonal matrix.

We have, using the fact that A is real,

since cos2 6 + sin2 e = 1. Thus A is an orthogonal matrix.

15.22. Show that is a unitary matrix.

Since A is complex, we must show that ATA = /. We have

so that A is a unitary matrix.
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