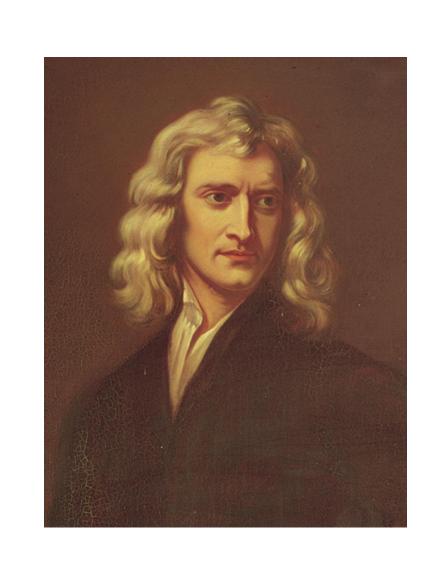
Chapter 5: Force and Motion-I

- ✓ Force
- ✓ Basic Laws of Motion (Newton's Laws)
- ✓ Applying Newton's Laws


Chapter 5: Force and Motion-I

Session 9:

- ✓ Force
- ✓ Basic Laws of Motion (Newton's Laws)

Introduction

- * Chapters 2, 4: The description of an object in motion included its position, velocity, and acceleration.
- There was no consideration of what might influence that motion.
- **Two main factors:**
 - Forces acting on the object
 - Mass of the object
- **❖ Dynamics** studies the causes of motion.
- **❖** Basic laws of motion formulated by Sir Isaac Newton.

Force

- * Force is what cause any change in the velocity of an object.
- * Newton's definition: force is that which causes an acceleration.

***** Forces are vectors.

$$\vec{F} = \vec{F}_1 + \vec{F}_2$$

1) Newton's First Law (Law of Inertia):

- ▶ In the absence of external forces (F_{net}=0), when viewed from an inertial reference frame, an object at rest remains at rest and an object in motion continues in motion with a constant velocity (a=0).
- An inertial reference frame is one in which Newton's laws hold.

- > Inertia is the tendency of an object to resist any attempt to change its velocity.
- We can consider the Earth to be such an inertial frame, although it has a small centripetal acceleration associated with its motion.

- ❖ Inertia is the tendency of an object to resist any attempt to change its velocity.
- * Mass is that property of an object that specifies how much resistance an object exhibits to changes in its velocity.

$$a_1 \neq a_2$$

$$\frac{a_1}{a_2} = \frac{m_2}{m_1}$$

$$a \propto \frac{1}{m}$$

- Mass is an inherent property of an object.
- Mass is independent of the object's surroundings and the method used to measure it.
- Mass is a scalar quantity. (SI unit is kg)
- Mass and weight are two different quantities.

$$m_{Earth} = 3 \text{ kg}; m_{Moon} = 3 \text{ kg}$$

$$w_{Earth} \sim 30 \text{ N}; w_{Moon} \sim 5 \text{ N}$$

2) Newton's Second Law:

> Force is the cause of changes in motion, as measured by the acceleration.

$$\vec{a} \propto \frac{\sum \vec{F}}{m} \longrightarrow \vec{F}_{net,x} = ma_x$$

$$\sum \vec{F} = \vec{F}_{net,y} = ma_y$$

$$\sum \vec{F} = \vec{F}_{net,z} = ma_z$$

> The **SI unit** of force is the **newton** (**N**).

 $1 N = 1 kg \cdot m / s^2$

m/s ²
cm/s ²
ft/s ²

Some Particular Forces:

ightharpoonup Gravitational Force, $\vec{\mathbf{F}}_g$, is the force that the Earth exerts on an object.

$$\vec{\mathbf{F}}_g = m\vec{\mathbf{g}}$$

> Weight, W, of a body is equal to the magnitude of the gravitational force on the body.

$$W = \left| \vec{\mathbf{F}}_{g} \right| = mg$$

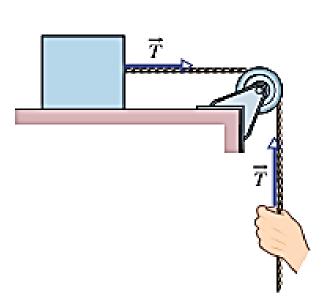
Gravitational mass and inertial mass have the same value.

Some Particular Forces:

 \triangleright Normal Force, \vec{F}_N .

$$\vec{F}_N - \vec{F}_g = m\vec{a} \qquad \qquad F_N - F_g = ma_y$$

$$F_N = mg + ma_y = m(g + a_y)$$


if
$$a_v = 0$$

$$F_N = mg$$

> Tension, T.

3) Newton's Third Law:

When two bodies interact, the forces on the bodies from each other are always equal in magnitude and opposite in direction.

$$\vec{\mathbf{F}}_{AB} = -\vec{\mathbf{F}}_{BA}$$

Note on notation: $\vec{\mathbf{F}}_{AB}$ is the force exerted by A on B.

> The action force is equal in magnitude to the reaction force and opposite in direction.

