
Chapter 2

Uncertain Linear
Optimization Problems
and their Robust
Counterparts

In this Chapter, we introduce the concept of uncertain Linear Optimization
problem and its Robust Counterpart.

2.1 Data uncertainty in Linear Optimization

Recall that a Linear Optimization (LO) problem is of the form

min
x

{
cT x + d : Ax ≤ b

}
, (2.1)

where x ∈ Rn is the vector of decision variables, c ∈ Rn and d ∈ R form the
objective, A is an m × n constraint matrix, and b ∈ Rm is the right hand
side vector.

Clearly, the constant term d in the objective, while affecting the

optimal value, does not affect the optimal solution, this is why it

traditionally is skipped. As we shall see, when treating the LO prob-

lems with uncertain data there are good reasons not to neglect this

constant term.

The structure of problem (2.1) is given by the number m of constraints and
the number n of variables, while the data of the problem is the collection
(c, d, A, b) which we will arrange into (m + 1)× (n + 1) data matrix

D =
[

cT d
A b

]
.
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Usually not all constraints of an LO program, as it arises in ap-

plications, are of the form aT x ≤ const; there can be linear “≤”-

inequalities and linear equalities as well. Clearly, the constraints of

the latter two types can be represented equivalently by linear “≤”-

inequalities, and we will assume henceforth that these are the only

constraints in the problem.

The data of real world LO’s (Linear Optimization problems) is typ-
ically not known exactly when the problem is to be solved. The most
common reasons for data uncertainty are as follows:

• Some of data entries (future demands, returns, etc.) do not exist when
the problem is solved and hence are replaced with their forecasts.
These data entries are thus subject to prediction errors;

• Some of the data (parameters of technological devices and processes,
contents associated with raw materials, etc.) cannot be measured
exactly – in reality their values drift around the measured “nominal”
values; these data are subject to measurement errors;

• Some of the decision variables (intensities with which we intend to use
various technological processes, parameters of physical devices we are
designing, etc.) cannot be implemented exactly as computed. The
resulting implementation errors are equivalent to appropriate artificial
data uncertainties.

Indeed, the contribution of a particular decision variable xj to the left

hand side of constraint i is the product aijxj . Hence the consequences

of an additive implementation error xj 7→ xj + ε are as if there were no

implementation error at all, but the left hand side of the constraint got an

extra additive term aijε, which, in turn, is equivalent to the perturbation

bi 7→ bj − aijε in the right hand side of the constraint. The consequences

of a more typical multiplicative implementation error xj 7→ (1 + ε)xj are

as if there were no implementation error, but each of the data coefficients

aij was subject to perturbation aij 7→ (1+ ε)aij . Similarly, the influence of

additive and multiplicative implementation error in xj on the value of the

objective can be mimicked by appropriate perturbations in d or cj .

In the traditional LO methodology, a small data uncertainty (say, 1% or
less) is just ignored; the problem is solved as if the given (“nominal”) data
were exact, and the resulting nominal optimal solution is what is recom-
mended for use, in hope that small data uncertainties will not affect signif-
icantly feasibility and optimality properties of this solution, or that small
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Parameter DrugI DrugII

Selling price,
$ per 1000 packs

6,200 6,900

Content of agent A,
g per 1000 packs

0.500 0.600

Manpower required,
hours per 1000 packs

90.0 100.0

Equipment required,
hours per 1000 packs

40.0 50.0

Operational costs,
$ per 1000 packs

700 800

(a) Drug production data

Raw material Purchasing price, Content of agent A,
$ per kg g per kg

RawI 100.00 0.01
RawII 199.90 0.02

(b) Contents of raw materials

Budget,
$

Manpower,
hours

Equipment,
hours

Capacity of raw materials
storage, kg

100,000 2,000 800 1,000

(c) Resources

Table 2.1: Data for Example 2.1.

adjustments of the nominal solution will be sufficient to make it feasible.
We are about to demonstrate that these hopes are not necessarily justified,
and sometimes even small data uncertainty deserves significant attention.

Introductory example

Consider a toy linear optimization problem as follows:

Example 2.1 A company produces two kinds of drugs, DrugI and DrugII, con-

taining a specific active agent A, which is extracted from raw materials purchased

on the market. There are two kinds of raw materials, RawI and RawII, which

can be used as sources of the active agent. The related production, cost and re-

source data are given in Table 2.1. The goal is to find the production plan which

maximizes the profit of the company.
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The problem can be immediately posed as the following linear programming
program:

(Drug):

Opt = min
n purchasing and operational costsz }| {

[100 · RawI + 199.90 · RawII + 700 ·DrugI + 800 ·DrugII]

− [6200 ·DrugI + 6900 ·DrugII]| {z }
income from selling the drugs

o

[minus total profit]
subject to

0.01 · RawI + 0.02 · RawII− 0.500 ·DrugI− 0.600 ·DrugII ≥ 0
[balance of active agent]

RawI + RawII ≤ 1000
[storage restriction]

90.0 ·DrugI + 100.0 ·DrugII ≤ 2000
[manpower restriction]

40.0 ·DrugI + 50.0 ·DrugII ≤ 800
[equipment restriction]

100.0 · RawI + 199.90 · RawII + 700 ·DrugI + 800 ·DrugII ≤ 100000
[budget restriction]

RawI, RawII, DrugI, DrugII ≥ 0

The problem has four variables – the amounts RawI, RawII (in kg) of raw
materials to be purchased and the amounts DrugI, DrugII (in 1000 of packs)
of drugs to be produced.

The optimal solution of our LO problem is

Opt = −8819.658; RawI = 0, RawII = 438.789, DrugI = 17.552,DrugII = 0.

Note that both the budget restriction and the balance constraint are active
(that is, the production process utilizes the entire 100,000 budget and the
full amount of active agent contained in the raw materials). The solution
promises the company modest, but quite respectful profit 8.8%.

Data uncertainty and its consequences. Clearly, even in our simple
problem some of the data cannot be “absolutely reliable”; e.g., one can
hardly believe that the contents of the active agent in the raw materials
are exactly 0.01 g/kg for RawI and 0.02 g/kg for RawII. In reality, these
contents vary around the indicated values. A natural assumption here is
that the actual contents of active agent aI in RawI and aII in RawII are
realizations of random variables somehow distributed around the ”nomi-
nal contents” anI = 0.01 and anII = 0.02. To be more specific, assume
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that aI drifts in a 0.5%-margin of anI, thus taking values in the segment
[0.00995, 0.01005]. Similarly, assume that aII drifts in the 2% margin of
anII, thus taking values in the segment [0.0196, 0.0204]. Moreover, assume
that aI, aII take, with probabilities 0.5, extreme values in the respective
segments. How do these perturbations of the contents of the active agent
affect the production process? The optimal solution prescribes to purchase
438.8 kg of RawII and to produce 17552 packs of DrugI. With the above
random fluctuations in the content of the active agent in RawII, this pro-
duction plan, with probability 0.5, will be infeasible, i.e., the actual content
of active agent in raw materials will be less than the one required to pro-
duce the planned amount of DrugI. For the sake of simplicity, assume that
this difficulty is resolved in the simplest way: when the actual content
of active agent in raw materials is insufficient, the output of the drug is
reduced accordingly. With this policy, the actual production of DrugI be-
comes random variable which takes with equal probabilities, the nominal
value of 17552 packs and the by 2% less value of 17201 packs. These 2%
fluctuations in the production affect the profit as well; it becomes a random
variable taking, with probabilities 0.5, the nominal value 8,820 and the 21%
(!) less value 6,929. The expected profit is 7,843, which is by 11% less than
the nominal profit 8,820 promised by the optimal solution of the nominal
problem.

We see that in our toy example pretty small (and unavoidable in re-
ality) perturbations of the data may make the nominal optimal solution
infeasible. Moreover, a straightforward adjustment of the nominally opti-
mal solution to the actual data may heavily affect solution’s quality.

Similar phenomenon can be met in many practical linear programs
where at lest part of the data are not known exactly and can vary around
their nominal values. The consequences of data uncertainty can be much
more severe than in our toy example. The analysis of linear optimization
problems from the NETLIB collection1 reported in [3] reveals that for 13 of
94 NETLIB problems, already 0.01%-perturbations of “clearly uncertain”
data can make the nominal optimal solution severely infeasible: with a
non-negligible probability, it violates some of the constraints by 50% and
more. It should be added that in the general case (in contrast to our toy
example) there is no evident way to adjust the optimal solution to the
actual values of the data by a small modification, and there are cases when
such an adjustment is in fact impossible - in order to become feasible for
the perturbed data, the nominal optimal solution should be “completely
reshaped”.

1A collection over 100 LP programs, mainly of real world origin, used a standard
benchmark for testing LP solvers.
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The conclusion is as follows:

In applications of LO, there exists a real need of a technique ca-
pable of detecting cases when data uncertainty can heavily affect the
quality of the nominal solution, and in these cases to generate a “reli-
able” solution, one which is immunized against uncertainty.

We are about to introduce the Robust Counterpart approach to uncertain
LO aimed at coping with data uncertainty.

2.2 Uncertain Linear Programs and their Ro-
bust Counterparts

Definition 2.1 An uncertain Linear Optimization problem is a collec-
tion {

min
x

{
cT x + d : Ax ≤ b

}}
(c,d,A,b)∈U

(LOU )

of LO problems (instances) min
x

{
cT x + d : Ax ≤ b

}
of common struc-

ture (i.e., with common numbers m of constraints and n of variables)
with the data varying in a given uncertainty set U ⊂ R(m+1)×(n+1).

We always assume that the uncertainty set is parameterized, in an
affine fashion, by perturbation vector ζ varying in a given perturbation set
Z:

U =
{[

cT d
A b

]
=

[
cT
0 d0

A0 b0

]

︸ ︷︷ ︸
nominal
data D0

+
L∑

`=1

ζ`

[
cT
` d`

A` b`

]

︸ ︷︷ ︸
basic

shifts D`

: ζ ∈ Z ⊂ RL

}
.

(2.2)

For example, the story told in Section 2.1 makes (Drug) an uncertain
LO problem as follows:

• Decision vector:

x = [RawI;RawII; DrugI;DrugII];
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• Nominal data:

D0 =

2
666666666666664

100 199.9 −5500 −6100 0

−0.01 −0.02 0.500 0.600 0
1 1 0 0 1000
0 0 90.0 100.0 2000
0 0 40.0 50.0 800

100.0 199.9 700 800 100000
−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0

3
777777777777775

• Two basic shifts:

D1 = 5.0e-5·

2
666666666666664

0 0 0 0 0

1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

3
777777777777775

, D2 = 4.0e-4·

2
666666666666664

0 0 0 0 0

0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

3
777777777777775

• Perturbation set:

Z =
˘
ζ ∈ R2 : −1 ≤ ζ1, ζ2 ≤ 1

¯
.

This description says, in particular, that the only uncertain data in

(Drug) are the coefficients anI, anII of the variables RawI, RawII in

the balance inequality (which is the first constraint in (Drug)), and

that these coefficients vary in the respective segments [0.01 · (1 −
0.005), 0.01 · (1+0.005)], [0.02 · (1−0.02), 0.02 · (1+0.02)] around the

nominal values 0.01, 0.02 of the coefficients – which is exactly what

was said by words in Section 2.1.

Remark 2.1 If the perturbation set Z in (2.2) is itself represented as the
image of another set Ẑ under affine mapping ξ 7→ ζ = p + Pξ, then we can
pass from perturbations ζ to perturbations ξ:

U =
{[

cT d
A b

]
= D0 +

L∑
`=1

ζ`D` : ζ ∈ Z
}

=
{[

cT d
A b

]
= D0 +

L∑
`=1

[p` +
K∑

k=1

P`kξk]D` : ξ ∈ Ẑ
}

=
{[

cT d
A b

]
=

[
D0 +

L∑

`=1

p`D`

]

︸ ︷︷ ︸
bD0

+
K∑

k=1

ξk

[
L∑

`=1

P`kD`

]

︸ ︷︷ ︸
bD`

: ξ ∈ Ẑ
}

.
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It follows that when speaking about perturbation sets with simple geometry
(parallelotopes, ellipsoids, etc.), we can normalize these sets to be “stan-
dard”. E.g., a parallelotope is by definition an affine image of a unit box
{ξ ∈ Rk : −1 ≤ ξj ≤ 1, j = 1, ..., k}, which gives us the possibility to work
with the unit box instead of general parallelotope. Similarly, an ellipsoid is
by definition the image of a unit Euclidean ball {ξ ∈ Rk : ‖x‖22 ≡ xT x ≤ 1}
under affine mapping, so that we can work with the standard ball instead of
ellipsoid, etc. We will use this normalization whenever possible.

Note that a family of optimization problems like (LOU ), in contrast to a
single optimization problem, is not associated by itself with the concepts of
feasible/optimal solution and optimal value. How to define these concepts,
it depends of course on the underlying “decision environment”. Here we
focus on the environment characterized by the following assumptions:

A.1. All decision variables in (LOU ) represent “here and now” decisions;
they should get specific numerical values as a result of solving the
problem before the actual data “reveals itself”.

A.2. The decision maker is fully responsible for consequences of the deci-
sions to be made when, and only when, the actual data is within the
prespecified uncertainty set U given by (2.2).

A.3. The constraints in (LOU ) are “hard” – we cannot tolerate violations
of constraints, even small ones, when the data is in U .

The above assumptions determine, in a more or less unique fashion, what
are the meaningful feasible solutions to the uncertain problem (LOU ). By
A.1, these should be fixed vectors; by A.2 and A.3, they should be robust
feasible – should satisfy all the constraints, whatever be a realization of the
data from the uncertainty set. We have arrived at the following definition.

Definition 2.2 A vector x ∈ Rn is a robust feasible solution to (LOU ),
if it satisfies all realizations of the constraints from the uncertainty set,
that is,

Ax ≤ b ∀(c, d, A, b) ∈ U . (2.3)

As about the objective value to be associated with a meaningful (i.e.,
robust feasible) solution, assumptions A.1 – A.3 do not prescribe it in a



Sec. 2.2 Uncertain Linear Programs and their Robust Counterparts 27

unique fashion. However, “the spirit” of these worst-case-oriented assump-
tions make natural the following definition:

Definition 2.3 Given a candidate solution x, the robust value ĉ(x) of
the objective in (LOU ) at x is the largest value of the “true” objective
cT x + d over all realizations of the data from the uncertainty set:

ĉ(x) = sup
(c,d,A,b)∈U

[cT x + d]. (2.4)

After we agree what are meaningful candidate solutions to the uncer-
tain problem (LOU ) and how to quantify their quality, we can seek for the
best, in terms of the robust value of the objective, among all robust feasible
solutions to the problem. We have arrived at the central for us concept of
Robust Counterpart of uncertain optimization problem as follows:

Definition 2.4 The Robust Counterpart of the uncertain LO problem
(LOU ) is the optimization problem

min
x

{
ĉ(x) = sup

(c,d,A,b)∈cU

[cT x + d] : Ax ≤ b ∀(c, d, A, b) ∈ U
}

(2.5)

of minimizing the robust value of the objective over all robust feasible
solutions to the uncertain problem.

An optimal solution to the Robust Counterpart is called robust
optimal solution to (LOU ), and the optimal value of the Robust Coun-
terpart is called the robust optimal value of (LOU ).

In a nutshell, the robust optimal solution is simply “the best uncertainty-
immunized” solution we can associate with our uncertain problem, and this
is the solution to be actually used.

Example 2.1 [continued] Let us find the robust optimal solution to the
uncertain problem (Drug). There is exactly one uncertainty-affected “block”
in the data, namely, the coefficients of RawI, RawII in the balance con-
straint. A candidate solution is thus robust feasible if and only if it satisfies
all constraints of (Drug), except for the balance one, as they are, and sat-
isfies the “worst” realization of the balance constraint. Since RawI, RawII
are nonnegative, the worst realization of the balance constraint is the one
where the uncertain coefficients anI, anII are set to their minimal values
allowed by the uncertainty set (these values are 0.00995 and 0.0196, respec-
tively). Since the objective is not affected by the uncertainty, the robust
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objective values are the same as the original ones. Thus, the RC (Robust
Counterpart) of our uncertain problem is the LO problem

RC(Drug):
RobOpt = min {−100 · RawI− 199.9 · RawII + 5500 ·DrugI + 6100 ·DrugII}
subject to

0.00995 · RawI + 0.0196 · RawII− 0.500 ·DrugI− 0.600 ·DrugII ≥ 0
RawI + RawII ≤ 1000

90.0 ·DrugI + 100.0 ·DrugII ≤ 2000
40.0 ·DrugI + 50.0 ·DrugII ≤ 800

100.0 · RawI + 199.90 · RawII + 700 ·DrugI + 800 ·DrugII ≤ 100000
RawI, RawII, DrugI, DrugII ≥ 0

Solving this problem, we get

RobOpt = −8294.567; RawI = 877.732, RawII = 0, DrugI = 17.467, DrugII = 0.

The “price” of robustness is the reduction in the promised profit from its
nominal optimal value 8819.658 to its robust optimal value 8294.567, that
is, by 5.954%. This is much less than the reduction of the actual profit to
7,843 (by 11%) which we may suffer when sticking to the nominal optimal
solution when the “true” data are “against” it. Note also that the structure
of the robust optimal solution is quite different from the one of the nominal
optimal solution: with the robust solution, we shall buy only raw materials
RawI, while with the nominal one – only raw materials RawII. The expla-
nation is clear: with the nominal data, RawII as compared to RawI results
in a bit smaller per unit price of the active agent (9,995 $/g vs. 10,000 $/g),
this is why with the nominal data, it does not make sense to use RawI. The
robust optimal solution takes into account that “uncertainty” in anI (i.e.,
variability of contents of active agent in RawI) is 4 times smaller than that
of anII (0.5% vs. 2%), which ultimately makes it better to use RawI.

More o Robust Counterparts

We start with several useful observations.

A. The Robust Counterpart (2.5) of (LOU) can be rewritten equivalently
as the problem

min
x,t

{
t : cT x− t ≤ −d

Ax ≤ b

}
∀(c, d, A, b) ∈ U

}
. (2.6)

Note that we can arrive at this problem in another fashion: we first intro-
duce extra variable t and rewrite instances of our uncertain problem (LOU )
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equivalently as

min
x,t

{
t : cT x− t ≤ −d

Ax ≤ b

}
,

thus arriving at an equivalent to (LOU ) uncertain problem in variables x, t
with the objective t which is not affected by uncertainty at all. We now
can build the Robust Counterpart of the resulting uncertain problem, and
the RC of the reformulated problem is exactly (2.6). We see that

An uncertain LO problem always can be reformulated as an un-
certain LO problem with certain objective. The Robust Counterpart of
the reformulated problem has the same objective as this problem and is
equivalent to the RC of the original uncertain problem.

As a consequence, we lose nothing when restricting ourselves with uncertain
LO programs with certain objective, and we shall frequently use this option
in the sequel.

B. Assuming that (LOU ) is with certain objective, the Robust Counter-
part of the problem is

min
x

{
cT x + d : Ax ≤ b, ∀(A, b) ∈ U}

(2.7)

(note that the uncertainty set is now a set in the space of the constraint
data [A, b]). We see that

The Robust Counterpart of uncertain LO problem with certain
objective is purely “constraint-wise” construction: to get RC, we

• preserve the original certain objective as it is, and

• replace every one of the original constraints

(Axi) ≤ bi ⇔ aT
i x ≤ bi (Ci)

(aT
i is i-th row in A) with its Robust Counterpart

aT
i x ≤ bi ∀[ai; bi] ∈ Ui RC(Ci)

where Ui is the projection of U on the space of data of i-th constraint:

Ui = {[ai; bi] : [A, b] ∈ U}.
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In particular,

The RC of uncertain LO problem with certain objective remains
intact when the original uncertainty set U is extended to the direct
product

Û = U1 × ...× Um

of its projections onto the spaces of data of respective constraints.

Example 2.2 The RC of the system of uncertain constraints

{x1 ≥ ζ1, x2 ≥ ζ2} (2.8)

with ζ ∈ U := {ζ1 + ζ2 ≤ 1, ζ1, ζ2 ≥ 0} is the infinite system of constraints

x1 ≥ ζ1, x1 ≥ ζ2 ∀ζ ∈ U ;

on variables x1, x2. The latter system is clearly equivalent to the pair of con-
straints

x1 ≥ max
ζ∈U

ζ1 = 1, x2 ≥ max
ζ∈U

ζ2 = 1. (2.9)

The projections of U to the spaces of data of the two uncertain constraints (2.8)

are the segments U1 = {ζ1 : 0 ≤ ζ1 ≤ 1}, U2 = {ζ2 : 0 ≤ ζ2 ≤ 1}, and the RC of

(2.8) w.r.t. the uncertainty set bU = U1 ×U2 = {ζ ∈ R2 : 0 ≤ ζ1, ζ2 ≤ 1} clearly is

(2.9).

The conclusion we have arrived at seems to be counter-intuitive: it

says that it is immaterial whether the perturbations of data in dif-

ferent constraints are or are not linked to each other, while intuition

says that such a link should be important. We shall see later that this

intuition makes sense when a more advanced concept of Adjustable

Robust Counterpart is considered.

C. If x is a robust feasible solution of (Ci), then x remains robust feasible
when we extend the uncertainty set Ui to its convex hull Conv(Ui). Indeed,
if [āi; b̄i] ∈ Conv(Ui), then

[āi; b̄i] =
J∑

j=1

λj [a
j
i ; b

j
i ]

with appropriately chosen [aj
i ; b

j
i ] ∈ Ui, λj ≥ 0 such that

∑
j

λj = 1. We

now have

āT
i x =

J∑

j=1

λj [a
j
i ]

T x ≤︸︷︷︸ (a)
∑

j

λjb
j
i = bi
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where the concluding inequality if given by the fact that x is feasible for
RC(Ci) and [aj

i ; b
j
i ] ∈ Ui. We see that āT

i x ≤ b̄i for all [āi; b̄i] ∈ Conv(Ui),
Q.E.D.

By similar reasons, the set of robust feasible solutions to (Ci) re-
mains intact when we extend Ui to the closure of this set. Combining these
observations with B., we arrive at the following conclusion:

The Robust Counterpart of uncertain LO problem with certain
objective remains intact when we extend the sets Ui of uncertain data
of respective constraints to their closed convex hulls, and extend U to
the direct product of the resulting sets.

In other words, we lose nothing when assuming from the very
beginning that the sets Ui of uncertain data of constraints are closed
and convex, and U is the direct product of these sets.

In terms of the parameterization (2.2) of the uncertainty sets, the latter
conclusion means that

When speaking about Robust Counterpart of uncertain LO prob-
lem with certain objective, we lose nothing when assuming that the set
Ui of uncertain data of i-th constraint is given as

Ui =

{
[ai; bi] = [a0

i ; b
0
i ] +

Li∑

`=1

ζ`[a`
i ; b

`
i ] : ζ ∈ Zi

}
(2.10)

with closed and convex perturbation set Zi.

What is ahead. After introducing the concept of Robust Counterpart
of an uncertain LO problem, we arrive at two major questions as follows:

1. What is the “computational status” of the RC? When it is possible
to process RC efficiently?

2. How to define a meaningful uncertainty set?

The first of these questions, to be addressed in-depth in Section 2.3, is
a “structural” one: what should be the structure of the uncertainty set
in order to make the RC computationally tractable? Note that the RC as
given by (2.6) or (2.7) is a semi-infinite LO program, that is, an optimization
program with simple linear objective and infinitely many linear constraints.
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In principle, such a problem can be “computationally intractable” – NP-
hard.

Example 2.3 Consider an uncertain “nearly linear” constraint

{‖Px− p‖1 ≤ 1}[P ;p]∈U , (2.11)

where ‖z‖1 =
P
j

|zj |, and assume that the matrix P is certain, while

the vector p is uncertain and is parameterized by perturbations from
the unit box:

p ∈ {p = Bζ : ‖ζ‖∞ ≤ 1} ,

where ‖ζ‖∞ = max
`
|ζ`| and B is a given positive semidefinite matrix.

To check whether x = 0 is robust feasible is exactly the same as

to verify whether ‖Bζ‖1 ≤ 1 whenever ‖ζ‖∞ ≤ 1, or, due to the

evident relation ‖u‖1 = max
‖η‖∞≤1

ηT u, the same as to check, given B,

whether max
η,ζ

˘
ηT Bζ : ‖η‖∞ ≤ 1, ‖ζ‖∞ ≤ 1

¯ ≤ 1. The maximum of

the bilinear form ηT Bζ with positive semidefinite B over η, ζ varying

in a convex symmetric neighborhood of the origin is always achieved

when η = ζ (you may check it by using the polarization identity

ηT Bζ = 1
4
(η + ζ)T B(η + ζ) + 1

4
(η − ζ)T B(η − ζ)). Thus, to check

whether x = 0 is robust feasible for (2.11) is the same as to check

whether the maximum of a given nonnegative quadratic form ζT Bζ

over the unit box is ≤ 1. The latter problem is known to be NP-

hard2, and therefore so is the problem of checking robust feasibility

for (2.11).

The second of the above questions is a modelling one, and as such,
goes beyond the scope of purely theoretical considerations. However, the-
ory, as we shall see in Section 3.1, allows to contribute significantly to this
modelling issue.

2.3 Tractability of Robust Counterpart

In this Section, we investigate the “computational status” of the RC of
uncertain LO problem. The situation here turns out to be as nice as it
could be: we shall see, essentially, that the RC of uncertain LO problem
with uncertainty set U is computationally tractable whenever the convex
uncertainty set U is computationally tractable. This can be reformulated
as a precise mathematical statement; we, however, will prove a slightly
restricted version of this statement which does not require long excursions
into complexity theory.

2In fact, it is NP-hard to compute the maximum of a nonnegative quadratic form
over the unit box with accuracy like 4% [22].
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2.3.1 The strategy

Our strategy will be as follows. First, we can restrict ourselves with un-
certain LO problems with certain objective – we remember from item A
in Section 2.2 that we lose nothing when assuming the objective certain.
Second, all we need is a “computationally tractable” representation of the
RC of a single uncertain linear constraint, that is, an equivalent represen-
tation of such a RC by an explicit (and “short”) system of explicit convex
inequalities. Given such representations for the RC’s of every one of the
constraints of our uncertain problem and putting them together (cf. item
B in Section 2.2), we reformulate the RC of the problem as the problem of
minimizing the original linear objective under a finite (and short) system
of explicit convex constraints, and thus – as a computationally tractable
problem.

To proceed, we should explain first what does it mean “an equivalent
representation of a constraint by a system of convex inequalities”. Every
one understands that the system of 4 constraints on 2 variables

x1 + x2 ≤ 1, x1 − x2 ≤ 1,−x1 + x2 ≤ 1,−x1 − x2 ≤ 1 (2.12)

“represents equivalently” the nonlinear inequality

|x1|+ |x2| ≤ 1 (2.13)

– both (2.13) and (2.12) define the same feasible set. Well, what about the
claim that the system of 5 linear inequalities

−u1 ≤ x1 ≤ u1,−u2 ≤ x2 ≤ u2, u1 + u2 ≤ 1 (2.14)

represents the same set as (2.13)? Here again every one will agree with
the claim, although we cannot justify the claim in the former fashion: the
feasible sets of (2.13) and (2.14) live in different spaces and therefore cannot
be equal to each other!

What actually is meant when speaking about “equivalent represen-
tations of problems/constraints” in Optimization can be formalized as fol-
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lows:

Definition 2.5 A set X+ ⊂ Rn
x×Rk

u is said to represent a set X ⊂ Rn
x ,

if the projection of X+ onto the space of x-variables is exactly X. In
other words, “X+ represents X” means that whenever x ∈ Rn

x we have
x ∈ X if and only if there exists u ∈ Rk

u such that (x, u) ∈ X+:

X =
{
x : ∃u : (x, u) ∈ X+

}
.

A system of constraints S+ in variables x ∈ Rn
x , u ∈ Rk

u is said to
represent a system of constraints S in variables x ∈ Rn

x , if the feasible
set of the former system represents the feasible set of the latter one. In
other words, S+ represents S, if, whenever x ∈ Rn

x , x is feasible for S if
and only if x can be extended, by a u ∈ Rk

u, to a feasible solution (x, u)
of S+.

With this definition, it is clear that the system (2.14) indeed repre-
sents the constraint (2.13), and, more generally, that the system of 2n + 1
linear inequalities

−uj ≤ xj ≤ uj , j = 1, ..., n,
∑

j

uj ≤ 1

in variables x, u represents the constraint
∑

j

|xj | ≤ 1.

To understand how “powerful” this representation is, note that to represent
the same constraint in the style of (2.12), that is, without extra variables,
it would take as much as 2n linear inequalities.

Coming back to the general case, assume that we are given an opti-
mization problem

min
x
{f(x) s.t. x satisfies Si, i = 1, ..., m} (P)

where Si are systems of constraints in variables x, and that we have in our
disposal systems S+

i of constraints in variables x, vi which represent the
systems Si. Clearly, the problem

min
x,v1,...,vm

{
f(x) s.t. (x, vi) satisfies S+

i , i = 1, ...,m
}

(P+)

is equivalent to (P): the x-component of every feasible solution to (P+) is
feasible for (P) with the same value of the objective, and the optimal values
in the problems are equal to each other, so that the x-component of an ε-
optimal, in terms of the objective, feasible solution to (P+) is an ε-optimal
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feasible solution to (P). We shall say that (P+) represents equivalently
the original problem (P). What is important here, is that a representation
can possess desired properties which are absent in the original problem.
For example, an appropriate representation can convert the problem of the
form min

x
{‖Px−p‖1 : Ax ≤ b} with n variables, m linear constraints and k-

dimensional vector p, into a LO problem with n+k variables and m+2k+1
linear inequality constraints, etc. Our goal now is to build a representation
capable to express equivalently a semi-infinite linear constraint (specifically,
the robust counterpart of an uncertain linear inequality) as a finite system
of explicit convex constraints, with the ultimate goal to use these repre-
sentations in order to convert the RC of an uncertain LO problem into an
explicit (and as such, computationally tractable) convex program.

The outlined strategy allows us to focus on a single uncertainty-
affected linear inequality – a family

{
aT x ≤ b

}
[a;b]∈U (2.15)

of linear inequalities with the data varying in the uncertainty set

U =

{
[a; b] = [a0; b0] +

L∑

`=1

ζ`[a`; b`] : ζ ∈ Z
}

(2.16)

– and on “tractable representation” of the RC

aT x ≤ b ∀
(

[a; b] = [a0; b0] +
L∑

`=1

ζ`[a`; b`] : ζ ∈ Z
)

. (2.17)

of this uncertain inequality.
By reasons indicated in item C of Section 2.2, we assume from now

on that the associated perturbation set Z is convex.

2.3.2 Tractable representation of (2.17): simple cases

We start with the cases where the desired representation can be found
by “bare hands”, specifically, the cases of interval and simple ellipsoidal
uncertainty.

Example 2.4 Consider the case of interval uncertainty, that is, the case where
Z in (2.17) is a box. W.l.o.g. we can normalize the situation by assuming that

Z = Box1 ≡ {ζ ∈ RL : ‖ζ‖∞ ≤ 1}.
In this case, (2.17) reads

[a0]T x +
LP

`=1

ζ`[a
`]T x ≤ b0 +

LP
`=1

ζ`b
` ∀(ζ : ‖ζ‖∞ ≤ 1)

⇔
LP

`=1

ζ`[[a
`]T x− b`] ≤ b0 − [a0]T x ∀(ζ : |ζ`| ≤ 1, ` = 1, ..., L)

⇔ max
−1≤ζ`≤1

»
LP

`=1

ζ`[[a
`]T x− b`]

–
≤ b0 − [a0]T x
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The concluding maximum in the chain is clearly
LP

`=1

|[al]T x − b`|, and we arrive

at a representation of (2.17) by the explicit convex constraint

[a0]T x +

LX

`=1

|[a`]T x− b`| ≤ b0, (2.18)

which in turn admits a representation by a system of linear inequalities:

8
<
:

−u` ≤ [a`]T x− b` ≤ u`, ` = 1, ..., L,

[a0]
T
x +

LP
`=1

u` ≤ b0.
(2.19)

Example 2.5 Consider the case of ellipsoidal uncertainty, that is, the case
where Z in (2.17) is an ellipsoid. W.l.o.g. we can normalize the situation by
assuming that Z is merely the ball of radius Ω centered at the origin:

Z = BallΩ = {ζ ∈ RL : ‖ζ‖2 ≤ Ω}.

In this case, (2.17) reads

[a0]T x +
LP

`=1

ζ`[a
`]T x ≤ b0 +

LP
`=1

ζ`b
` ∀(ζ : ‖ζ‖2 ≤ Ω)

⇔ max
‖ζ‖2≤Ω

»
LP

`=1

ζ`[[a
`]T x− b`]

–
≤ b0 − [a0]T x

⇔ Ω

s
LP

`=1

([a`]T x− b`)2 ≤ b0 − [a0]T x,

and the concluding line provides a representation of (2.17) by the explicit convex
constraint

[a0]T x + Ω

vuut
LX

`=1

([a`]T x− b`)2 ≤ b0. (2.20)

2.3.3 Tractable representation of (2.17): general case

Now consider a rather general case when the perturbation set Z in (2.17)
is given by a conic representation (cf. Appendix ??:

Z =
{
ζ ∈ RL : ∃u ∈ RK : Pζ + Qu + p ∈ K

}
, (2.21)

where K is a closed convex pointed cone in RN with a nonempty interior. In
the case when K is not a polyhedral cone, assume that this representation
is strictly feasible:

∃(ζ̄, ū) : P ζ̄ + Qū + p ∈ intK. (2.22)
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Theorem 2.1 Let the perturbation set Z be given by (2.21), and in
the case of non-polyhedral K, let also (2.22) take place. Then the semi-
infinite constraint (2.17) can be represented by the following system of
conic inequalities in variables x ∈ Rn, y ∈ RL:

pT y + [a0]T x ≤ b0,
QT y = 0,
(PT y)` + [a`]T x = b`, ` = 1, ..., L,
y ∈ K∗,

(2.23)

where K∗ = {y : yT z ≥ 0∀z ∈ K} is the cone dual to K.

Proof.
We have

x is feasible for (2.17)

⇔ sup
ζ∈Z

{
[a0]T x− b0

︸ ︷︷ ︸
d[x]

+
L∑

`=1

ζ`

[
[a`]T x− b`

]
︸ ︷︷ ︸

c`[x]

} ≤ 0

⇔ sup
ζ∈Z

{
cT [x]ζ + d[f ]

} ≤ 0

⇔ sup
ζ∈Z

cT [x]ζ ≤ −d[x]

⇔ max
ζ,v

{
cT [x]ζ : Pζ + Qv + p ∈ K

} ≤ −d[x].

The concluding relation says that x is feasible for (2.17) if and only if the
optimal value in the conic program

max
ζ,v

{
cT [x]ζ : Pζ + Qv + p ∈ K

}
(CP)

is ≤ −d[x]. Assume, first, that (2.22) takes place. Then (CP) is strictly
feasible, and therefore, applying the Conic Duality Theorem (Theorem ??),
the optimal value in (CP) is ≤ −d[x] if and only if the optimal value in the
conic dual to (CP) problem

min
y

{
pT y : QT y = 0, PT y = −c[x], y ∈ K∗

}
, (CD)

is achieved and is ≤ −d[x]. Now assume that (2.22) does not take place.
Under assumptions of Theorem, the latter is possible only when K is a
polyhedral cone, in which case the usual LO Duality Theorem yields exactly
the same conclusion: the optimal value in (CP) is ≤ −d[x] if and only if the
optimal value in (CD) is achieved and is ≤ −d[x]. In other words, under
the premise of Theorem, x is feasible for (2.17) if and only if (CD) has a
feasible solution y with pT y ≤ −d[x].

Observing that nonnegative orthants, Lorentz and Semidefinite cones
are self-dual, we derive from Theorem 2.1 the following corollary:
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Corollary 2.1 Let the nonempty perturbation set in (2.17) be
(i) polyhedral, i.e., given by (2.21) with a nonnegative orthant RN

+ in
the role of K, or

(ii) conic quadratic representable, i.e., given by (2.21) with a di-
rect product Lk1 × ... × Lkm of Lorentz cones Lk = {x ∈ Rk : xk ≥√

x2
1 + ... + xk−1

2} in the role of K, or
(iii) semidefinite representable, i.e., given by (2.21) with the positive

semidefinite cone Sk
+ in the role of K.

In the cases of (ii), (iii), assume that (2.22) holds true. Then the Robust
Counterpart (2.17) of uncertain linear inequality with the perturbation set
Z admits equivalent reformulation as an explicit system of

— linear inequalities, in the case of (i),
— conic quadratic inequalities, in the case of (ii),
— linear matrix inequalities, in the case of (iii).

In all cases, the size of the reformulation is polynomial in the number of
variables in (2.17) and the size of the conic description of Z, while the data
of the reformulation is readily given by the data describing, via (2.21), the
perturbation set Z.

Remark 2.2 Usually, the cone K participating in (2.21) is the direct prod-
uct of simpler cones K1, ...,KS , so that representation (2.21) takes the form

Z = {ζ : ∃u1, ..., uS : Psζ + Qsu
s + ps ∈ Ks, s = 1, ..., S}. (2.24)

In this case, (2.23) becomes the system of conic constraints in variables
x, y1, ..., yS as follows:

S∑
s=1

pT
s ys + [a0]T x ≤ b0,

QT
s ys = 0, s = 1, ..., S,

S∑
s=1

(PT
s ys)` + [a`]T x = b`, ` = 1, ..., L,

ys ∈ Ks
∗, s = 1, ..., S,

(2.25)

where Ks
∗ is the cone dual to Ks.

Examples

We are about to apply Theorem 2.1 to build tractable reformulations of
the semi-infinite inequality (2.17) in two particular cases. While at a first
glance seemingly no natural “uncertainty models” lead to “strange” pertur-
bation sets we are about to consider, it will become clear in the mean time
that these sets are of significant importance – they allow to model random
uncertainty.
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Example 2.6 Z is the intersection of concentric co-axial box and ellipsoid,
specifically,

Z = {ζ ∈ RL : −1 ≤ ζ` ≤ 1, ` ≤ L,

vuut
LX

`=1

ζ2
` /σ2

` ≤ Ω}, (2.26)

where σ` > 0 and Ω > 0 are given parameters.
Here representation (2.24) becomes

Z = {ζ ∈ RL : P1ζ + p1 ∈ K1, P2ζ + p2 ∈ K2},

where
• P1ζ ≡ [ζ; 0], p1 = [0L×1; 1] and K1 = {(z, t) ∈ RL × R : t ≥ ‖z‖∞},

whence K1
∗ = {(z, t) ∈ RL × R : t ≥ ‖z‖1};

• P2ζ = [Σ−1ζ; 0] with Σ = Diag{σ1, ..., σL}, p2 = [0L×1; Ω] and K2 is the
Lorentz cone of the dimension L + 1 (whence K2

∗ = K2)
Setting y1 = [η1; τ1], y2 = [η2; τ2] with one-dimensional τ1, τ2 and L-dimensional
η1, η2, (2.25) becomes the following system of constraints in variables τ , η, x:

(a) τ1 + Ωτ2 + [a0]T x ≤ b0,

(b) (η1 + Σ−1η2)` = b` − [a`]T x, ` = 1, ..., L,
(c) ‖η1‖1 ≤ τ1 [⇔ [η1; τ1] ∈ K1

∗],
(d) ‖η2‖2 ≤ τ2 [⇔ [η2; τ2] ∈ K2

∗].

We can eliminate from this system the variables τ1, τ2 – for every feasible solution
to the system, we have τ1 ≥ τ̄1 ≡ ‖η1‖∞, τ2 ≥ τ̄2 ≡ ‖η2‖2, and the solution
obtained when replacing τ1, τ2 with τ̄1, τ̄2 still is feasible. The reduced system in
variables x, z = η1, w = Σ−1η2, namely, the system

LP
`=1

|z`|+ Ω
rP

`

σ2
` w2

` + [a0]T x ≤ b0,

z` + w` = b` − [a`]T x, ` = 1, ..., L

(2.27)

also is a representation of (2.17), (2.26).

Example 2.7 “Budgeted uncertainty”. Consider the case where

Z = {ζ ∈ RL : ‖ζ‖∞ ≡ max
`
|ζ`| ≤ 1, ‖ζ‖1 ≡

X

`

|ζ`| ≤ γ}, (2.28)

where γ, 1 ≤ γ ≤ L, is a given “uncertainty budget”.
In the case in question, representation (2.24) becomes

Z = {ζ ∈ RL : P1ζ + p1 ∈ K1, P2ζ + p2 ∈ K2},

where
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• P1ζ ≡ [ζ; 0], p1 = [0L×1; 1] and K1 = {[z; t] ∈ RL × R : t ≥ ‖z‖∞},
whence K1

∗ = {[z; t] ∈ RL × R : t ≥ ‖z‖1};
• P2ζ = [ζ; 0], p2 = [0L×1; γ] and K2 = K1

∗ = {[z; t] ∈ RL × R : t ≥ ‖z‖1},
whence K2

∗ = K1.
Setting y1 = [z; τ1], y2 = [w; τ2] with one-dimensional τ and L-dimensional z, w,
system (2.25) becomes the following system of constraints in variables τ1, τ2, z,
w, x:

(a) τ1 + γτ2 + [a0]T x ≤ b0,

(b) (z + w)` = b` − [a`]T x, ` = 1, ..., L,
(c) ‖z‖1 ≤ τ1 [⇔ [η1; τ1] ∈ K1

∗],
(d) ‖w‖∞ ≤ τ2 [⇔ [η2; τ2] ∈ K2

∗].

Same as in Example 2.6, we can eliminate the τ -variables, arriving at the following
representation of (2.17), (2.28) by the following system of constraints in variables
x, z, w:

LP
`=1

|z`|+ γ max
`
|w`|+ [a0]T x ≤ b0,

z` + w` = b` − [a`]T x, ` = 1, ..., L.

(2.29)

which can be further converted into the system of linear inequalities in z, w and

additional variables.


