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C H A P T E R 3

Transcendental
Functions

“
It is well known that the central problem of the whole of modern

mathematics is the study of the transcendental functions defined by

differential equations.

”Felix Klein 1849–1925

Lectures on Mathematics (1911)

Introduction With the exception of the trigonometric functions, all the

functions we have encountered so far have been of three

main types: polynomials, rational functions (quotients of polynomials), and algebraic

functions (fractional powers of rational functions). On an interval in its domain, each

of these functions can be constructed from real numbers and a single real variable x

by using finitely many arithmetic operations (addition, subtraction, multiplication, and

division) and by taking finitely many roots (fractional powers). Functions that cannot

be so constructed are called transcendental functions. The only examples of these

that we have seen so far are the trigonometric functions.

Much of the importance of calculus and many of its most useful applications re-

sult from its ability to illuminate the behaviour of transcendental functions that arise

naturally when we try to model concrete problems in mathematical terms. This chap-

ter is devoted to developing other transcendental functions, including exponential and

logarithmic functions and the inverse trigonometric functions.

Some of these functions “undo” what other ones “do” and vice versa. When a pair

of functions behaves this way, we call each one the inverse of the other. We begin the

chapter by studying inverse functions in general.

3.1 Inverse Functions
Consider the function f .x/ D x3 whose graph is shown in Figure 3.1. Like any

function, f .x/ has only one value for each x in its domain (for x3 this is the whole

real line R). In geometric terms, this means that any vertical line meets the graph of

f at only one point. However, for this function f; any horizontal line also meets the

graph at only one point. This means that different values of x always give different

values f .x/. Such a function is said to be one-to-one.

D E F I N I T I O N

1

A function f is one-to-one if f .x1/ ¤ f .x2/ whenever x1 and x2 belong to

the domain of f and x1 ¤ x2, or, equivalently, if

f .x1/ D f .x2/ ÷ x1 D x2:
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A function is one-to-one if any horizontal line that intersects its graph does so at only

one point. If a function defined on a single interval is increasing (or decreasing), then

it is one-to-one. (See Section 2.6 for more discussion of this.)

Reconsider the one-to-one function f .x/ D x3 (Figure 3.1). Since the equation

y D x
3

has a unique solution x for every given value of y in the range of f; f is one-to-one.

Specifically, this solution is given by

x D y
1=3
I

it defines x as a function of y. We call this new function the inverse of f and denote it

f �1. Thus,

y

x

y D x3

Figure 3.1 The graph of f .x/ D x3

f
�1
.y/ D y

1=3
:

In general, if a function f is one-to-one, then for any number y in its range there

Do not confuse the �1 in f �1

with an exponent. The inverse

f �1 is not the reciprocal 1=f . If

we want to denote the reciprocal

1=f .x/ with an exponent we can

write it as
�

f .x/

��1

.

will always exist a single number x in its domain such that y D f .x/. Since x is

determined uniquely by y, it is a function of y. We write x D f �1.y/ and call f �1

the inverse of f: The function f whose graph is shown in Figure 3.2(a) is one-to-one

and has an inverse. The function g whose graph is shown in Figure 3.2(b) is not one-

to-one (some horizontal lines meet the graph twice) and so does not have an inverse.

Figure 3.2

(a) f is one-to-one and has an inverse:

y D f .x/ means the same thing as

x D f �1.y/

(b) g is not one-to-one

y

xx

y y D f .x/

or x D f �1.y/

y

xx1 x2

y

y D g.x/

(a) (b)

We usually like to write functions with the domain variable called x rather than y, so

we reverse the roles of x and y and reformulate the above definition as follows.

D E F I N I T I O N

2

If f is one-to-one, then it has an inverse function f �1. The value of f �1.x/

is the unique number y in the domain of f for which f .y/ D x. Thus,

y D f
�1
.x/ ” x D f .y/:

As seen above, y D f .x/ D x3 is equivalent to x D f �1.y/ D y1=3, or, reversing

the roles of x and y, y D f �1.x/ D x1=3 is equivalent to x D f .y/ D y3.

E X A M P L E 1
Show that f .x/ D 2x � 1 is one-to-one, and find its inverse

f �1.x/.

Solution Since f 0.x/ D 2 > 0 on R, f is increasing and therefore one-to-one there.

Let y D f �1.x/. Then

x D f .y/ D 2y � 1:

Solving this equation for y gives y D
x C 1

2
. Thus, f �1

.x/ D
x C 1

2
.
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A function is one-to-one if any horizontal line that intersects its graph does so at only
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We usually like to write functions with the domain variable called x rather than y, so

we reverse the roles of x and y and reformulate the above definition as follows.

D E F I N I T I O N

2

If f is one-to-one, then it has an inverse function f �1. The value of f �1.x/

is the unique number y in the domain of f for which f .y/ D x. Thus,
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As seen above, y D f .x/ D x3 is equivalent to x D f �1.y/ D y1=3, or, reversing
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Show that f .x/ D 2x � 1 is one-to-one, and find its inverse
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Solution Since f 0.x/ D 2 > 0 on R, f is increasing and therefore one-to-one there.
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2
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x C 1
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There are several things you should remember about the relationship between a func-

tion f and its inverse f �1. The most important one is that the two equations

y D f
�1
.x/ and x D f .y/

say the same thing. They are equivalent just as, for example, y D xC1 and x D y�1

are equivalent. Either of the equations can be replaced by the other. This implies that

the domain of f �1 is the range of f and vice versa.

The inverse of a one-to-one function is itself one-to-one and so also has an inverse.

Not surprisingly, the inverse of f �1 is f :

y D .f
�1
/
�1
.x/ ” x D f

�1
.y/ ” y D f .x/:

We can substitute either of the equations y D f �1
.x/ or x D f .y/ into the other and

obtain the cancellation identities:

f
�

f
�1
.x/
�

D x; f
�1
�

f .y/
�

D y:

The first of these identities holds for all x in the domain of f �1 and the second for

all y in the domain of f . If S is any set of real numbers and IS denotes the identity

function on S; defined by

IS .x/ D x for all x in S;

then the cancellation identities say that if D.f / is the domain of f; then

f ı f
�1
D ID.f �1/ and f

�1
ı f D ID.f /;

where f ı g.x/ denotes the composition f
�

g.x/
�

.

If the coordinates of a point P D .a; b/ are exchanged to give those of a new point

Q D .b; a/, then each point is the reflection of the other in the line x D y. (To see

this, note that the line PQ has slope �1, so it is perpendicular to y D x. Also, the

midpoint of PQ is
�

aCb
2
;

bCa
2

�

, which lies on y D x.) It follows that the graphs of

the equations x D f .y/ and y D f .x/ are reflections of each other in the line x D y.

Since the equation x D f .y/ is equivalent to y D f �1.x/, the graphs of the functions

f
�1 and f are reflections of each other in y D x. See Figure 3.3.

Figure 3.3 The graph of y D f �1.x/

(red) is the reflection of the graph of

y D f .x/ (blue) in the line y D x (green)

y

x

y D f �1.x/

or x D f .y/

y D x

y D f .x/

P

Q
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Here is a summary of the properties of inverse functions discussed above:

Properties of inverse functions

1. y D f �1.x/ ” x D f .y/.

2. The domain of f �1 is the range of f:

3. The range of f �1 is the domain of f:

4. f �1
�

f .x/
�

D x for all x in the domain of f:

5. f
�

f
�1
.x/
�

D x for all x in the domain of f �1
:

6. .f �1
/
�1
.x/ D f .x/ for all x in the domain of f:

7. The graph of f �1 is the reflection of the graph of f in the line x D y.

E X A M P L E 2
Show that g.x/ D

p

2x C 1 is invertible, and find its inverse.

Solution If g.x1/ D g.x2/, then
p

2x1 C 1 D
p

2x2 C 1: Squaring both sides we

get 2x1 C 1 D 2x2 C 1, which implies that x1 D x2. Thus, g is one-to-one and

invertible. Let y D g�1
.x/; then

x D g.y/ D
p

2y C 1:

It follows that x � 0 and x2
D 2y C 1. Therefore, y D

x
2
� 1

2
and

g
�1
.x/ D

x2
� 1

2
for x � 0.

(The restriction x � 0 applies since the range of g is Œ0;1/.) See Figure 3.4(a) for the

graphs of g and g�1.

Figure 3.4

(a) The graphs of g.x/ D
p

2x C 1 and

its inverse

(b) The graph of the self-inverse function

f .x/ D 1=x

y

x

y D g
�1
.x/ D

x2
� 1

2

y D x

y D g.x/ D
p

2x C 1 .1C
p

2;1C
p

2/

y

x

y D f .x/ D
1

x

y D x

(a) (b)

D E F I N I T I O N

3

A function f is self-inverse if f �1
D f; that is, if f

�

f .x/
�

D x for every

x in the domain of f:

E X A M P L E 3
The function f .x/ D 1=x is self-inverse. If y D f �1.x/, then

x D f .y/ D
1

y
. Therefore, y D

1

x
, so f �1.x/ D

1

x
D f .x/.

See Figure 3.4(b). The graph of any self-inverse function must be its own reflection in

the line x D y and must therefore be symmetric about that line.
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Figure 3.3 The graph of y D f �1.x/
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y D f .x/ (blue) in the line y D x (green)

y

x

y D f �1.x/
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y D x

y D f .x/

P

Q
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Here is a summary of the properties of inverse functions discussed above:
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(a) The graphs of g.x/ D
p

2x C 1 and

its inverse
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y

x

y D g
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2

y D x
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p
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D E F I N I T I O N

3

A function f is self-inverse if f �1
D f; that is, if f

�

f .x/
�

D x for every

x in the domain of f:

E X A M P L E 3
The function f .x/ D 1=x is self-inverse. If y D f �1.x/, then
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1

y
. Therefore, y D

1

x
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1
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See Figure 3.4(b). The graph of any self-inverse function must be its own reflection in
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Inverting Non–One-to-One Functions
Many important functions, such as the trigonometric functions, are not one-to-one on

their whole domains. It is still possible to define an inverse for such a function, but we

have to restrict the domain of the function artificially so that the restricted function is

one-to-one.

As an example, consider the function f .x/ D x
2. Unrestricted, its domain is the

whole real line and it is not one-to-one since f .�a/ D f .a/ for any a. Let us define a

new function F.x/ equal to f .x/ but having a smaller domain, so that it is one-to-one.

We can use the interval Œ0;1/ as the domain of F :

F.x/ D x
2 for 0 � x <1:

The graph of F is shown in Figure 3.5; it is the right half of the parabola y D x2, the

graph of f: Evidently F is one-to-one, so it has an inverse F �1, which we calculate

as follows:

y

x

y D F�1.x/

y D x

y D F.x/

y D x2

Figure 3.5 The restriction F of x2 (blue)

to Œ0;1/ and its inverse F�1 (red)

Let y D F �1.x/, then x D F.y/ D y2 and y � 0. Thus, y D
p

x. Hence

F �1.x/ D
p

x.

This method of restricting the domain of a non–one-to-one function to make it

invertible will be used when we invert the trigonometric functions in Section 3.5.

Derivatives of Inverse Functions
Suppose that the function f is differentiable on an interval .a; b/ and that either

f
0
.x/ > 0 for a < x < b, so that f is increasing on .a; b/, or f 0

.x/ < 0 for

a < x < b, so that f is decreasing on .a; b/. In either case f is one-to-one on .a; b/

and has an inverse, f �1 there. Differentiating the cancellation identity

f
�

f
�1
.x/
�

D x

with respect to x, using the Chain Rule, we obtain

f
0�
f

�1
.x/
� d

dx
f

�1
.x/ D

d

dx
x D 1:

Thus,

d

dx
f

�1
.x/ D

1

f 0 .f �1.x//
:

In Leibniz notation, if y D f �1.x/, we have
dy

dx

ˇ

ˇ

ˇ

ˇ

x

D

1

dx

dy

ˇ

ˇ

ˇ

ˇ

yDf �1.x/

.

The slope of the graph of f �1 at .x; y/ is the reciprocal of the slope of the graph of f

at .y; x/. (See Figure 3.6.)

E X A M P L E 4
Show that f .x/ D x

3
C x is one-to-one on the whole real line,

and, noting that f .2/ D 10, find
�

f �1
�0
.10/.

Solution Since f 0.x/ D 3x2
C 1 > 0 for all real numbers x, f is increasing and

therefore one-to-one and invertible. If y D f �1
.x/, then

x D f .y/ D y
3
C y ÷ 1 D .3y

2
C 1/y

0

÷ y
0
D

1

3y2
C 1

:

Now x D f .2/ D 10 implies y D f �1.10/ D 2. Thus,

�

f
�1
�0
.10/ D

1

3y2
C 1

ˇ

ˇ

ˇ

ˇ

yD2

D

1

13
:
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Figure 3.6 Tangents to the graphs of f

and f �1

y

x

.x; y/

graph of f �1
graph of f

.y; x/

y D x

E X E R C I S E S 3.1

Show that the functions f in Exercises 1–12 are one-to-one, and

calculate the inverse functions f �1. Specify the domains and

ranges of f and f �1.

1. f .x/ D x � 1 2. f .x/ D 2x � 1

3. f .x/ D
p

x � 1 4. f .x/ D �
p

x � 1

5. f .x/ D x3 6. f .x/ D 1C 3
p

x

7. f .x/ D x2
; x � 0 8. f .x/ D .1 � 2x/3

9. f .x/ D
1

x C 1
10. f .x/ D

x

1C x

11. f .x/ D
1 � 2x

1C x
12. f .x/ D

x
p

x2
C 1

In Exercises 13–20, f is a one-to-one function with inverse f �1.

Calculate the inverses of the given functions in terms of f �1.

13. g.x/ D f .x/ � 2 14. h.x/ D f .2x/

15. k.x/ D �3f .x/ 16. m.x/ D f .x � 2/

17. p.x/ D
1

1C f .x/
18. q.x/ D

f .x/ � 3

2

19. r.x/ D 1 � 2f .3 � 4x/ 20. s.x/ D
1C f .x/

1� f .x/

In Exercises 21–23, show that the given function is one-to-one and

find its inverse.

21. f .x/ D

�

x2
C 1 if x � 0

x C 1 if x < 0

22. g.x/ D

�

x3 if x � 0

x1=3 if x < 0

23. h.x/ D xjxj C 1

24. Find f �1.2/ if f .x/ D x3
C x.

25. Find g�1.1/ if g.x/ D x3
C x � 9.

26. Find h�1.�3/ if h.x/ D xjxj C 1.

27. Assume that the function f .x/ satisfies f 0.x/ D
1

x
and that

f is one-to-one. If y D f �1
.x/, show that dy=dx D y.

28. Find
�

f
�1
�0
.x/ if f .x/ D 1C 2x3.

29. Show that f .x/ D
4x3

x2
C 1

has an inverse and find
�

f �1
�0
.2/.

30.I Find
�

f �1
�0
.�2/ if f .x/ D x

p

3C x2.

C 31. If f .x/ D x2=.1C
p

x/, find f �1.2/ correct to 5 decimal

places.

C 32. If g.x/ D 2x C sinx, show that g is invertible, and find

g�1.2/ and .g�1/0.2/ correct to 5 decimal places.

33. Show that f .x/ D x sec x is one-to-one on .��=2; �=2/.

What is the domain of f �1.x/? Find .f �1/0.0/.

34. If functions f and g have respective inverses f �1 and g�1,

show that the composite function f ı g has inverse

.f ı g/�1
D g�1

ı f �1.

35.I For what values of the constants a, b, and c is the function

f .x/ D .x � a/=.bx � c/ self-inverse?

36.A Can an even function be self-inverse? an odd function?

37.A In this section it was claimed that an increasing (or

decreasing) function defined on a single interval is necessarily

one-to-one. Is the converse of this statement true? Explain.

38.I Repeat Exercise 37 with the added assumption that f is

continuous on the interval where it is defined.
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Inverting Non–One-to-One Functions
Many important functions, such as the trigonometric functions, are not one-to-one on

their whole domains. It is still possible to define an inverse for such a function, but we

have to restrict the domain of the function artificially so that the restricted function is

one-to-one.

As an example, consider the function f .x/ D x
2. Unrestricted, its domain is the

whole real line and it is not one-to-one since f .�a/ D f .a/ for any a. Let us define a

new function F.x/ equal to f .x/ but having a smaller domain, so that it is one-to-one.

We can use the interval Œ0;1/ as the domain of F :

F.x/ D x
2 for 0 � x <1:

The graph of F is shown in Figure 3.5; it is the right half of the parabola y D x2, the

graph of f: Evidently F is one-to-one, so it has an inverse F �1, which we calculate

as follows:

y

x

y D F�1.x/

y D x

y D F.x/

y D x2

Figure 3.5 The restriction F of x2 (blue)

to Œ0;1/ and its inverse F�1 (red)

Let y D F �1.x/, then x D F.y/ D y2 and y � 0. Thus, y D
p

x. Hence

F �1.x/ D
p

x.

This method of restricting the domain of a non–one-to-one function to make it

invertible will be used when we invert the trigonometric functions in Section 3.5.

Derivatives of Inverse Functions
Suppose that the function f is differentiable on an interval .a; b/ and that either

f
0
.x/ > 0 for a < x < b, so that f is increasing on .a; b/, or f 0

.x/ < 0 for

a < x < b, so that f is decreasing on .a; b/. In either case f is one-to-one on .a; b/

and has an inverse, f �1 there. Differentiating the cancellation identity

f
�

f
�1
.x/
�

D x

with respect to x, using the Chain Rule, we obtain

f
0�
f

�1
.x/
� d

dx
f

�1
.x/ D

d

dx
x D 1:

Thus,

d

dx
f

�1
.x/ D

1

f 0 .f �1.x//
:

In Leibniz notation, if y D f �1.x/, we have
dy

dx

ˇ

ˇ

ˇ

ˇ

x

D

1

dx

dy

ˇ

ˇ

ˇ

ˇ

yDf �1.x/

.

The slope of the graph of f �1 at .x; y/ is the reciprocal of the slope of the graph of f

at .y; x/. (See Figure 3.6.)

E X A M P L E 4
Show that f .x/ D x

3
C x is one-to-one on the whole real line,

and, noting that f .2/ D 10, find
�

f �1
�0
.10/.

Solution Since f 0.x/ D 3x2
C 1 > 0 for all real numbers x, f is increasing and

therefore one-to-one and invertible. If y D f �1
.x/, then

x D f .y/ D y
3
C y ÷ 1 D .3y

2
C 1/y

0

÷ y
0
D

1

3y2
C 1

:

Now x D f .2/ D 10 implies y D f �1.10/ D 2. Thus,

�

f
�1
�0
.10/ D

1

3y2
C 1

ˇ

ˇ

ˇ

ˇ

yD2

D

1

13
:
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Figure 3.6 Tangents to the graphs of f

and f �1

y

x

.x; y/

graph of f �1
graph of f

.y; x/

y D x

E X E R C I S E S 3.1

Show that the functions f in Exercises 1–12 are one-to-one, and

calculate the inverse functions f �1. Specify the domains and

ranges of f and f �1.

1. f .x/ D x � 1 2. f .x/ D 2x � 1

3. f .x/ D
p

x � 1 4. f .x/ D �
p

x � 1

5. f .x/ D x3 6. f .x/ D 1C 3
p

x

7. f .x/ D x2
; x � 0 8. f .x/ D .1 � 2x/3

9. f .x/ D
1

x C 1
10. f .x/ D

x

1C x

11. f .x/ D
1 � 2x

1C x
12. f .x/ D

x
p

x2
C 1

In Exercises 13–20, f is a one-to-one function with inverse f �1.

Calculate the inverses of the given functions in terms of f �1.

13. g.x/ D f .x/ � 2 14. h.x/ D f .2x/

15. k.x/ D �3f .x/ 16. m.x/ D f .x � 2/

17. p.x/ D
1

1C f .x/
18. q.x/ D

f .x/ � 3

2

19. r.x/ D 1 � 2f .3 � 4x/ 20. s.x/ D
1C f .x/

1� f .x/

In Exercises 21–23, show that the given function is one-to-one and

find its inverse.

21. f .x/ D

�

x2
C 1 if x � 0

x C 1 if x < 0

22. g.x/ D

�

x3 if x � 0

x1=3 if x < 0

23. h.x/ D xjxj C 1

24. Find f �1.2/ if f .x/ D x3
C x.

25. Find g�1.1/ if g.x/ D x3
C x � 9.

26. Find h�1.�3/ if h.x/ D xjxj C 1.

27. Assume that the function f .x/ satisfies f 0.x/ D
1

x
and that

f is one-to-one. If y D f �1
.x/, show that dy=dx D y.

28. Find
�

f
�1
�0
.x/ if f .x/ D 1C 2x3.

29. Show that f .x/ D
4x3

x2
C 1

has an inverse and find
�

f �1
�0
.2/.

30.I Find
�

f �1
�0
.�2/ if f .x/ D x

p

3C x2.

C 31. If f .x/ D x2=.1C
p

x/, find f �1.2/ correct to 5 decimal

places.

C 32. If g.x/ D 2x C sinx, show that g is invertible, and find

g�1.2/ and .g�1/0.2/ correct to 5 decimal places.

33. Show that f .x/ D x sec x is one-to-one on .��=2; �=2/.

What is the domain of f �1.x/? Find .f �1/0.0/.

34. If functions f and g have respective inverses f �1 and g�1,

show that the composite function f ı g has inverse

.f ı g/�1
D g�1

ı f �1.

35.I For what values of the constants a, b, and c is the function

f .x/ D .x � a/=.bx � c/ self-inverse?

36.A Can an even function be self-inverse? an odd function?

37.A In this section it was claimed that an increasing (or

decreasing) function defined on a single interval is necessarily

one-to-one. Is the converse of this statement true? Explain.

38.I Repeat Exercise 37 with the added assumption that f is

continuous on the interval where it is defined.
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3.2 Exponential and Logarithmic Functions

To begin we review exponential and logarithmic functions as you may have encoun-

tered them in your previous mathematical studies. In the following sections we will

approach these functions from a different point of view and learn how to find their

derivatives.

Exponentials
An exponential function is a function of the form f .x/ D ax , where the base a is a

positive constant and the exponent x is the variable. Do not confuse such functions

with power functions such as f .x/ D x
a, where the base is variable and the expo-

nent is constant. The exponential function ax can be defined for integer and rational

exponents x as follows:

D E F I N I T I O N

4

Exponential functions

If a > 0, then

a
0
D 1

a
n
D a � a � a � � � a
„ † …

n factors

if n D 1; 2; 3; : : :

a
�n
D

1

an
if n D 1; 2; 3; : : :

a
m=n
D

n
p

am if n D 1; 2; 3; : : : and m D ˙1;˙2;˙3; : : : :

In this definition, n
p

a is the number b > 0 that satisfies bn
D a.

How should we define ax if x is not rational? For example, what does 2� mean? In

order to calculate a derivative of ax , we will want the function to be defined for all real

numbers x, not just rational ones.

In Figure 3.7 we plot points with coordinates .x; 2x/ for many closely spaced ra-

tional values of x. They appear to lie on a smooth curve. The definition of ax can be

extended to irrational x in such a way that ax becomes a differentiable function of x on

the whole real line. We will do so in the next section. For the moment, if x is irrational

we can regard ax as being the limit of values ar for rational numbers r approaching x:

y

x

1

Figure 3.7 y D 2x for rational x

a
x
D lim

r!x
r rational

a
r
:

E X A M P L E 1
Since the irrational number � D 3:141 592 653 59 : : : is the limit

of the sequence of rational numbers

r1 D 3; r2 D 3:1; r3 D 3:14; r4 D 3:141; r5 D 3:1415; : : : ;

we can calculate 2� as the limit of the corresponding sequence

2
3
D 8; 2

3:1
D 8:574 187 7 : : : ; 2

3:14
D 8:815 240 9 : : : :

This gives 2�
D limn!1 2rn

D 8:824 977 827 : : : .

Exponential functions satisfy several identities called laws of exponents:
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Laws of exponents

If a > 0 and b > 0, and x and y are any real numbers, then

(i) a
0
D 1 (ii) a

xCy
D a

x
a

y

(iii) a
�x
D

1

ax
(iv) a

x�y
D

ax

ay

(v) .a
x
/
y
D a

xy (vi) .ab/
x
D a

x
b

x

These identities can be proved for rational exponents using the definitions above. They

remain true for irrational exponents, but we can’t show that until the next section.

If a D 1, then ax
D 1x

D 1 for every x. If a > 1, then ax is an increasing

function of x; if 0 < a < 1, then ax is decreasing. The graphs of some typical

exponential functions are shown in Figure 3.8(a). They all pass through the point (0,1)

since a0
D 1 for every a > 0. Observe that ax > 0 for all a > 0 and all real x and

that:

If a > 1; then lim
x!�1

a
x
D 0 and lim

x!1
a

x
D1:

If 0 < a < 1; then lim
x!�1

a
x
D 1 and lim

x!1
a

x
D 0:

Figure 3.8

(a) Graphs of some exponential functions

y D a
x

(b) Graphs of some logarithmic functions

y D loga.x/

y

x

aD2

aD4

aD 1
10

aD1

y D ax

aD10

aD 1
4

aD 1
2

y

xaD1=10

aD1=4

aD1=2

aD2

aD4

aD10

y D loga x

(a) (b)

The graph of y D ax has the x-axis as a horizontal asymptote if a ¤ 1. It is asymptotic

on the left (as x ! �1) if a > 1 and on the right (as x !1) if 0 < a < 1.

Logarithms
The function f .x/ D ax is a one-to-one function provided that a > 0 and a ¤ 1.

Therefore, f has an inverse which we call a logarithmic function.

D E F I N I T I O N

5

If a > 0 and a ¤ 1, the function loga x, called the logarithm of x to the

base a, is the inverse of the one-to-one function ax :

y D loga x ” x D a
y
; .a > 0; a ¤ 1/:

Since ax has domain .�1;1/, loga x has range .�1;1/. Since ax has range

.0;1/, loga x has domain .0;1/. Since ax and loga x are inverse functions, the

following cancellation identities hold:

loga .a
x
/ D x for all real x and a

loga x
D x for all x > 0:
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3.2 Exponential and Logarithmic Functions

To begin we review exponential and logarithmic functions as you may have encoun-

tered them in your previous mathematical studies. In the following sections we will

approach these functions from a different point of view and learn how to find their

derivatives.

Exponentials
An exponential function is a function of the form f .x/ D ax , where the base a is a

positive constant and the exponent x is the variable. Do not confuse such functions

with power functions such as f .x/ D x
a, where the base is variable and the expo-

nent is constant. The exponential function ax can be defined for integer and rational

exponents x as follows:

D E F I N I T I O N

4

Exponential functions

If a > 0, then

a
0
D 1

a
n
D a � a � a � � � a
„ † …

n factors

if n D 1; 2; 3; : : :

a
�n
D

1

an
if n D 1; 2; 3; : : :

a
m=n
D

n
p

am if n D 1; 2; 3; : : : and m D ˙1;˙2;˙3; : : : :

In this definition, n
p

a is the number b > 0 that satisfies bn
D a.

How should we define ax if x is not rational? For example, what does 2� mean? In

order to calculate a derivative of ax , we will want the function to be defined for all real

numbers x, not just rational ones.

In Figure 3.7 we plot points with coordinates .x; 2x/ for many closely spaced ra-

tional values of x. They appear to lie on a smooth curve. The definition of ax can be

extended to irrational x in such a way that ax becomes a differentiable function of x on

the whole real line. We will do so in the next section. For the moment, if x is irrational

we can regard ax as being the limit of values ar for rational numbers r approaching x:

y

x

1

Figure 3.7 y D 2x for rational x

a
x
D lim

r!x
r rational

a
r
:

E X A M P L E 1
Since the irrational number � D 3:141 592 653 59 : : : is the limit

of the sequence of rational numbers

r1 D 3; r2 D 3:1; r3 D 3:14; r4 D 3:141; r5 D 3:1415; : : : ;

we can calculate 2� as the limit of the corresponding sequence

2
3
D 8; 2

3:1
D 8:574 187 7 : : : ; 2

3:14
D 8:815 240 9 : : : :

This gives 2�
D limn!1 2rn

D 8:824 977 827 : : : .

Exponential functions satisfy several identities called laws of exponents:
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Laws of exponents

If a > 0 and b > 0, and x and y are any real numbers, then

(i) a
0
D 1 (ii) a

xCy
D a

x
a

y

(iii) a
�x
D

1

ax
(iv) a

x�y
D

ax

ay

(v) .a
x
/
y
D a

xy (vi) .ab/
x
D a

x
b

x

These identities can be proved for rational exponents using the definitions above. They

remain true for irrational exponents, but we can’t show that until the next section.

If a D 1, then ax
D 1x

D 1 for every x. If a > 1, then ax is an increasing

function of x; if 0 < a < 1, then ax is decreasing. The graphs of some typical

exponential functions are shown in Figure 3.8(a). They all pass through the point (0,1)

since a0
D 1 for every a > 0. Observe that ax > 0 for all a > 0 and all real x and

that:

If a > 1; then lim
x!�1

a
x
D 0 and lim

x!1
a

x
D1:

If 0 < a < 1; then lim
x!�1

a
x
D 1 and lim

x!1
a

x
D 0:

Figure 3.8

(a) Graphs of some exponential functions

y D a
x

(b) Graphs of some logarithmic functions

y D loga.x/

y

x

aD2

aD4

aD 1
10

aD1

y D ax

aD10

aD 1
4

aD 1
2

y

xaD1=10

aD1=4

aD1=2

aD2

aD4

aD10

y D loga x

(a) (b)

The graph of y D ax has the x-axis as a horizontal asymptote if a ¤ 1. It is asymptotic

on the left (as x ! �1) if a > 1 and on the right (as x !1) if 0 < a < 1.

Logarithms
The function f .x/ D ax is a one-to-one function provided that a > 0 and a ¤ 1.

Therefore, f has an inverse which we call a logarithmic function.

D E F I N I T I O N

5

If a > 0 and a ¤ 1, the function loga x, called the logarithm of x to the

base a, is the inverse of the one-to-one function ax :

y D loga x ” x D a
y
; .a > 0; a ¤ 1/:

Since ax has domain .�1;1/, loga x has range .�1;1/. Since ax has range

.0;1/, loga x has domain .0;1/. Since ax and loga x are inverse functions, the

following cancellation identities hold:

loga .a
x
/ D x for all real x and a

loga x
D x for all x > 0:
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The graphs of some typical logarithmic functions are shown in Figure 3.8(b). They all

pass through the point .1; 0/. Each graph is the reflection in the line y D x of the

corresponding exponential graph in Figure 3.8(a).

From the laws of exponents we can derive the following laws of logarithms:

Laws of logarithms

If x > 0, y > 0, a > 0, b > 0, a ¤ 1, and b ¤ 1, then

(i) loga 1 D 0 (ii) loga.xy/ D loga xCloga y

(iii) loga

�

1

x

�

D � loga x (iv) loga

�

x

y

�

D loga x�loga y

(v) loga .x
y
/ D y loga x (vi) loga x D

logb x

logb a

E X A M P L E 2
If a > 0, x > 0, and y > 0, verify that loga.xy/ D loga x C

loga y, using laws of exponents.

Solution Let u D loga x and v D loga y. By the defining property of inverse

functions, x D au and y D av . Thus, xy D auav
D auCv . Inverting again, we get

loga.xy/ D uC v D loga x C loga y:

Logarithm law (vi) presented above shows that if you know logarithms to a particular

base b, you can calculate logarithms to any other base a. Scientific calculators usually

have built-in programs for calculating logarithms to base 10 and to base e, a special

number that we will discover in Section 3.3. Logarithms to any base can be calculated

using either of these functions. For example, computer scientists sometimes need to

use logarithms to base 2. Using a scientific calculator, you can readily calculate

log2 13 D
log10 13

log10 2
D

1:113 943 352 31 : : :

0:301 029 995 664 : : :
D 3:700 439 718 14 : : : :

The laws of logarithms can sometimes be used to simplify complicated expressions.

E X A M P L E 3
Simplify

(a) log2 10C log2 12 � log2 15, (b) loga2 a
3, and (c) 3log9 4.

Solution

(a) log2 10C log2 12 � log2 15 D log2

10 � 12

15
(laws (ii) and (iv))

D log2 8

D log2 2
3
D 3: (cancellation identity)

(b) loga2 a
3
D 3 loga2 a (law (v))

D

3

2
loga2 a

2 (law (v) again)

D

3

2
: (cancellation identity)

(c) 3
log9 4

D 3
.log3 4/=.log3 9/ (law (vi))

D

�

3
log3 4

�1= log3 9

D 4
1= log3 32

D 4
1=2
D 2: (cancellation identity)

E X A M P L E 4
Solve the equation 3x�1

D 2x .
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Solution We can take logarithms of both sides of the equation to any base a and get

.x � 1/ loga 3 D x loga 2

.loga 3 � loga 2/x D loga 3

x D
loga 3

loga 3 � loga 2
D

loga 3

loga.3=2/
:

The numerical value of x can be found using the “log” function on a scientific calcu-

lator. (This function is log10.) The value is x D 2:7095 : : : .

Corresponding to the asymptotic behaviour of the exponential functions, the logarith-

mic functions also exhibit asymptotic behaviour. Their graphs are all asymptotic to the

y-axis as x ! 0 from the right:

If a > 1; then lim
x!0C

loga x D �1 and lim
x!1

loga x D1:

If 0 < a < 1; then lim
x!0C

loga x D1 and lim
x!1

loga x D �1:

E X E R C I S E S 3.2

Simplify the expressions in Exercises 1–18.

1.
3

3

p

35
2. 21=2

8
1=2

3.
�

x
�3
��2

4.

�

1

2

�x

4
x=2

5. log5 125 6. log4

�

1

8

�

7. log1=3 3
2x 8. 2log4 8

9. 10� log10.1=x/ 10. x1=.loga x/

11. .loga b/.logb a/ 12. logx

�

x.logy y
2
/
�

13. .log4 16/.log4 2/ 14. log15 75C log15 3

15. log6 9C log6 4 16. 2 log3 12 � 4 log3 6

17. loga.x
4
C 3x

2
C 2/C loga.x

4
C 5x

2
C 6/

� 4 loga

p

x2
C 2

18. log� .1 � cosx/C log� .1C cosx/ � 2 log� sinx

Use the base 10 exponential and logarithm functions 10x and logx

(that is, log10 x) on a scientific calculator to evaluate the

expressions or solve the equations in Exercises 19–24.

C 19. 3
p

2 20.C log3 5

C 21. 22x
D 5

xC1 22.C x

p
2
D 3

C 23. logx 3 D 5 24.C log3 x D 5

Use the laws of exponents to prove the laws of logarithms in

Exercises 25–28.

25. loga

�

1

x

�

D � loga x

26. loga

�

x

y

�

D loga x � loga y

27. loga.x
y
/ D y loga x

28. loga x D .logb x/=.logb a/

29. Solve log4.x C 4/ � 2 log4.x C 1/ D
1

2
for x.

30. Solve 2 log3 x C log9 x D 10 for x.

Evaluate the limits in Exercises 31–34.

31. lim
x!1

logx 2 32. lim
x!0C

logx.1=2/

33. lim
x!1C

logx 2 34. lim
x!1�

logx 2

35.A Suppose that f .x/ D ax is differentiable at x D 0 and that

f 0.0/ D k, where k ¤ 0. Prove that f is differentiable at any

real number x and that

f
0
.x/ D k a

x
D k f .x/:

36.A Continuing Exercise 35, prove that f �1.x/ D loga x is

differentiable at any x > 0 and that

.f
�1
/
0
.x/ D

1

kx
:

9780134154367_Calculus   194 05/12/16   3:12 pm



ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 3 – page 174 October 15, 2016

174 CHAPTER 3 Transcendental Functions

The graphs of some typical logarithmic functions are shown in Figure 3.8(b). They all

pass through the point .1; 0/. Each graph is the reflection in the line y D x of the

corresponding exponential graph in Figure 3.8(a).

From the laws of exponents we can derive the following laws of logarithms:

Laws of logarithms

If x > 0, y > 0, a > 0, b > 0, a ¤ 1, and b ¤ 1, then

(i) loga 1 D 0 (ii) loga.xy/ D loga xCloga y

(iii) loga

�

1

x

�

D � loga x (iv) loga

�

x

y

�

D loga x�loga y

(v) loga .x
y
/ D y loga x (vi) loga x D

logb x

logb a

E X A M P L E 2
If a > 0, x > 0, and y > 0, verify that loga.xy/ D loga x C

loga y, using laws of exponents.

Solution Let u D loga x and v D loga y. By the defining property of inverse

functions, x D au and y D av . Thus, xy D auav
D auCv . Inverting again, we get

loga.xy/ D uC v D loga x C loga y:

Logarithm law (vi) presented above shows that if you know logarithms to a particular

base b, you can calculate logarithms to any other base a. Scientific calculators usually

have built-in programs for calculating logarithms to base 10 and to base e, a special

number that we will discover in Section 3.3. Logarithms to any base can be calculated

using either of these functions. For example, computer scientists sometimes need to

use logarithms to base 2. Using a scientific calculator, you can readily calculate

log2 13 D
log10 13

log10 2
D

1:113 943 352 31 : : :

0:301 029 995 664 : : :
D 3:700 439 718 14 : : : :

The laws of logarithms can sometimes be used to simplify complicated expressions.

E X A M P L E 3
Simplify

(a) log2 10C log2 12 � log2 15, (b) loga2 a
3, and (c) 3log9 4.

Solution

(a) log2 10C log2 12 � log2 15 D log2

10 � 12

15
(laws (ii) and (iv))

D log2 8

D log2 2
3
D 3: (cancellation identity)

(b) loga2 a
3
D 3 loga2 a (law (v))

D

3

2
loga2 a

2 (law (v) again)

D

3

2
: (cancellation identity)

(c) 3
log9 4

D 3
.log3 4/=.log3 9/ (law (vi))

D

�

3
log3 4

�1= log3 9

D 4
1= log3 32

D 4
1=2
D 2: (cancellation identity)

E X A M P L E 4
Solve the equation 3x�1

D 2x .
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Solution We can take logarithms of both sides of the equation to any base a and get

.x � 1/ loga 3 D x loga 2

.loga 3 � loga 2/x D loga 3

x D
loga 3

loga 3 � loga 2
D

loga 3

loga.3=2/
:

The numerical value of x can be found using the “log” function on a scientific calcu-

lator. (This function is log10.) The value is x D 2:7095 : : : .

Corresponding to the asymptotic behaviour of the exponential functions, the logarith-

mic functions also exhibit asymptotic behaviour. Their graphs are all asymptotic to the

y-axis as x ! 0 from the right:

If a > 1; then lim
x!0C

loga x D �1 and lim
x!1

loga x D1:

If 0 < a < 1; then lim
x!0C

loga x D1 and lim
x!1

loga x D �1:

E X E R C I S E S 3.2

Simplify the expressions in Exercises 1–18.

1.
3

3

p

35
2. 21=2

8
1=2

3.
�

x
�3
��2

4.

�

1

2

�x

4
x=2

5. log5 125 6. log4

�

1

8

�

7. log1=3 3
2x 8. 2log4 8

9. 10� log10.1=x/ 10. x1=.loga x/

11. .loga b/.logb a/ 12. logx

�

x.logy y
2
/
�

13. .log4 16/.log4 2/ 14. log15 75C log15 3

15. log6 9C log6 4 16. 2 log3 12 � 4 log3 6

17. loga.x
4
C 3x

2
C 2/C loga.x

4
C 5x

2
C 6/

� 4 loga

p

x2
C 2

18. log� .1 � cosx/C log� .1C cosx/ � 2 log� sinx

Use the base 10 exponential and logarithm functions 10x and logx

(that is, log10 x) on a scientific calculator to evaluate the

expressions or solve the equations in Exercises 19–24.

C 19. 3
p

2 20.C log3 5

C 21. 22x
D 5

xC1 22.C x

p
2
D 3

C 23. logx 3 D 5 24.C log3 x D 5

Use the laws of exponents to prove the laws of logarithms in

Exercises 25–28.

25. loga

�

1

x

�

D � loga x

26. loga

�

x

y

�

D loga x � loga y

27. loga.x
y
/ D y loga x

28. loga x D .logb x/=.logb a/

29. Solve log4.x C 4/ � 2 log4.x C 1/ D
1

2
for x.

30. Solve 2 log3 x C log9 x D 10 for x.

Evaluate the limits in Exercises 31–34.

31. lim
x!1

logx 2 32. lim
x!0C

logx.1=2/

33. lim
x!1C

logx 2 34. lim
x!1�

logx 2

35.A Suppose that f .x/ D ax is differentiable at x D 0 and that

f 0.0/ D k, where k ¤ 0. Prove that f is differentiable at any

real number x and that

f
0
.x/ D k a

x
D k f .x/:

36.A Continuing Exercise 35, prove that f �1.x/ D loga x is

differentiable at any x > 0 and that

.f
�1
/
0
.x/ D

1

kx
:
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3.3 The Natural Logarithm and Exponential Functions

In this section we are going to define a function lnx, called the natural logarithm

of x, in a way that does not at first seem to have anything to do with the logarithms

Regard this paragraph as

describing a game we are going

to play in this section. The result

of the game will be that we will

acquire two new classes of

functions, logarithms, and

exponentials, to which the rules

of calculus will apply.

considered in Section 3.2. We will show, however, that it has the same properties as

those logarithms, and in the end we will see that lnx D loge x, the logarithm of x

to a certain specific base e. We will show that ln x is a one-to-one function, defined

for all positive real numbers. It must therefore have an inverse, ex , that we will call

the exponential function. Our final goal is to arrive at a definition of the exponential

functions ax (for any a > 0) that is valid for any real number x instead of just rational

numbers, and that is known to be continuous and even differentiable without our having

to assume those properties as we did in Section 3.2.

Table 1. Derivatives of integer

powers

f .x/ f 0.x/

:
:
:

:
:
:

x4 4x3

x3 3x2

x2 2x

x1 1x0
D 1

x
0

0

x�1
�x�2

x�2
�2x�3

x�3
�3x�4

:
:
:

:
:
:

The Natural Logarithm

Table 1 lists the derivatives of integer powers of x. Those derivatives are multiples of

integer powers of x, but one integer power, x�1, is conspicuously absent from the list

of derivatives; we do not yet know a function whose derivative is x�1
D 1=x. We are

going to remedy this situation by defining a function lnx in such a way that it will have

derivative 1=x.

To get a hint as to how this can be done, review Example 1 of Section 2.11. In that

example we showed that the area under the graph of the velocity of a moving object in a

time interval is equal to the distance travelled by the object in that time interval. Since

the derivative of distance is velocity, measuring the area provided a way of finding

a function (the distance) that had a given derivative (the velocity). This relationship

between area and derivatives is one of the most important ideas in calculus. It is called

the Fundamental Theorem of Calculus. We will explore it fully in Chapter 5, but we

will make use of the idea now to define lnx, which we want to have derivative 1=x.

D E F I N I T I O N

6

The natural logarithm

For x > 0, let Ax be the area of the plane region bounded by the curve

y D 1=t , the t-axis, and the vertical lines t D 1 and t D x. The function lnx

is defined by

ln x D

�

Ax if x � 1,

�Ax if 0 < x < 1,

as shown in Figure 3.9.

Figure 3.9

(a) lnx D �area Ax if 0 < x < 1

(b) lnx D area Ax if x � 1

y

t

.1; 1/

y D
1

t

Ax

x 1

y

t

.1; 1/

y D
1

t

Ax

1 x

(a) (b)
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The definition implies that ln 1 D 0, that lnx > 0 if x > 1, that ln x < 0 if 0 < x < 1,

and that ln is a one-to-one function. We now show that if y D lnx, then y 0
D 1=x. The

proof of this result is similar to the proof we will give for the Fundamental Theorem of

Calculus in Section 5.5.

T H E O R E M

1

If x > 0, then

d

dx
lnx D

1

x
:

PROOF For x > 0 and h > 0, ln.xCh/� ln x is the area of the plane region bounded

by y D 1=t , y D 0, and the vertical lines t D x and t D x C h; it is the shaded area

in Figure 3.10. Comparing this area with that of two rectangles, we see that

h

x C h
< shaded area D ln.x C h/ � lnx <

h

x
:

Hence, the Newton quotient for lnx satisfies
y

t

y D
1

t

x x C h

h

1
x

1
xCh

Figure 3.10

1

x C h
<

ln.x C h/ � ln x

h
<
1

x
:

Letting h approach 0 from the right, we obtain (by the Squeeze Theorem applied to

one-sided limits)

lim
h!0C

ln.x C h/ � ln x

h
D

1

x
:

A similar argument shows that if 0 < x C h < x, then

1

x
<

ln.x C h/ � ln x

h
<

1

x C h
;

so that

lim
h!0�

ln.x C h/ � lnx

h
D

1

x
:

Combining these two one-sided limits we get the desired result:

d

dx
lnx D lim

h!0

ln.x C h/ � ln x

h
D

1

x
:

The two properties .d=dx/ lnx D 1=x and ln 1 D 0 are sufficient to determine the

function lnx completely. (This follows from Theorem 13 in Section 2.8.) We can

deduce from these two properties that lnx satisfies the appropriate laws of logarithms:

T H E O R E M

2

Properties of the natural logarithm

(i) ln.xy/ D lnx C ln y (ii) ln

�

1

x

�

D � ln x

(iii) ln

�

x

y

�

D ln x � ln y (iv) ln .xr
/ D r ln x

Because we do not want to assume that exponentials are continuous (as we did in

Section 3.2), we should regard (iv) for the moment as only valid for exponents r that

are rational numbers.
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3.3 The Natural Logarithm and Exponential Functions

In this section we are going to define a function lnx, called the natural logarithm

of x, in a way that does not at first seem to have anything to do with the logarithms

Regard this paragraph as

describing a game we are going

to play in this section. The result

of the game will be that we will

acquire two new classes of

functions, logarithms, and

exponentials, to which the rules

of calculus will apply.

considered in Section 3.2. We will show, however, that it has the same properties as

those logarithms, and in the end we will see that lnx D loge x, the logarithm of x

to a certain specific base e. We will show that ln x is a one-to-one function, defined

for all positive real numbers. It must therefore have an inverse, ex , that we will call

the exponential function. Our final goal is to arrive at a definition of the exponential

functions ax (for any a > 0) that is valid for any real number x instead of just rational

numbers, and that is known to be continuous and even differentiable without our having

to assume those properties as we did in Section 3.2.

Table 1. Derivatives of integer

powers

f .x/ f 0.x/

:
:
:

:
:
:

x4 4x3

x3 3x2

x2 2x

x1 1x0
D 1

x
0

0

x�1
�x�2

x�2
�2x�3

x�3
�3x�4

:
:
:

:
:
:

The Natural Logarithm

Table 1 lists the derivatives of integer powers of x. Those derivatives are multiples of

integer powers of x, but one integer power, x�1, is conspicuously absent from the list

of derivatives; we do not yet know a function whose derivative is x�1
D 1=x. We are

going to remedy this situation by defining a function lnx in such a way that it will have

derivative 1=x.

To get a hint as to how this can be done, review Example 1 of Section 2.11. In that

example we showed that the area under the graph of the velocity of a moving object in a

time interval is equal to the distance travelled by the object in that time interval. Since

the derivative of distance is velocity, measuring the area provided a way of finding

a function (the distance) that had a given derivative (the velocity). This relationship

between area and derivatives is one of the most important ideas in calculus. It is called

the Fundamental Theorem of Calculus. We will explore it fully in Chapter 5, but we

will make use of the idea now to define lnx, which we want to have derivative 1=x.

D E F I N I T I O N

6

The natural logarithm

For x > 0, let Ax be the area of the plane region bounded by the curve

y D 1=t , the t-axis, and the vertical lines t D 1 and t D x. The function lnx

is defined by

ln x D

�

Ax if x � 1,

�Ax if 0 < x < 1,

as shown in Figure 3.9.

Figure 3.9

(a) lnx D �area Ax if 0 < x < 1

(b) lnx D area Ax if x � 1

y

t

.1; 1/

y D
1

t

Ax

x 1

y

t

.1; 1/

y D
1

t

Ax

1 x

(a) (b)
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The definition implies that ln 1 D 0, that lnx > 0 if x > 1, that ln x < 0 if 0 < x < 1,

and that ln is a one-to-one function. We now show that if y D lnx, then y 0
D 1=x. The

proof of this result is similar to the proof we will give for the Fundamental Theorem of

Calculus in Section 5.5.

T H E O R E M

1

If x > 0, then

d

dx
lnx D

1

x
:

PROOF For x > 0 and h > 0, ln.xCh/� ln x is the area of the plane region bounded

by y D 1=t , y D 0, and the vertical lines t D x and t D x C h; it is the shaded area

in Figure 3.10. Comparing this area with that of two rectangles, we see that

h

x C h
< shaded area D ln.x C h/ � lnx <

h

x
:

Hence, the Newton quotient for lnx satisfies
y

t

y D
1

t

x x C h

h

1
x

1
xCh

Figure 3.10

1

x C h
<

ln.x C h/ � ln x

h
<
1

x
:

Letting h approach 0 from the right, we obtain (by the Squeeze Theorem applied to

one-sided limits)

lim
h!0C

ln.x C h/ � ln x

h
D

1

x
:

A similar argument shows that if 0 < x C h < x, then

1

x
<

ln.x C h/ � ln x

h
<

1

x C h
;

so that

lim
h!0�

ln.x C h/ � lnx

h
D

1

x
:

Combining these two one-sided limits we get the desired result:

d

dx
lnx D lim

h!0

ln.x C h/ � ln x

h
D

1

x
:

The two properties .d=dx/ lnx D 1=x and ln 1 D 0 are sufficient to determine the

function lnx completely. (This follows from Theorem 13 in Section 2.8.) We can

deduce from these two properties that lnx satisfies the appropriate laws of logarithms:

T H E O R E M

2

Properties of the natural logarithm

(i) ln.xy/ D lnx C ln y (ii) ln

�

1

x

�

D � ln x

(iii) ln

�

x

y

�

D ln x � ln y (iv) ln .xr
/ D r ln x

Because we do not want to assume that exponentials are continuous (as we did in

Section 3.2), we should regard (iv) for the moment as only valid for exponents r that

are rational numbers.
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PROOF We will only prove part (i) because the other parts are proved by the same

method. If y > 0 is a constant, then by the Chain Rule,

d

dx

�

ln.xy/� lnx
�

D

y

xy
�

1

x
D 0 for all x > 0.

Theorem 13 of Section 2.8 now tells us that ln.xy/� ln x D C (a constant) for x > 0.

Putting x D 1 we get C D ln y and identity (i) follows.

Part (iv) of Theorem 2 shows that ln.2n/ D n ln 2 ! 1 as n ! 1. Therefore, we

y

x.1; 0/

y D lnx

Figure 3.11 The graph of lnx

also have ln.1=2/n D �n ln 2 ! �1 as n ! 1. Since .d=dx/ lnx D 1=x > 0 for

x > 0, it follows that ln x is increasing, so we must have (see Figure 3.11)

lim
x!1

ln x D 1; lim
x!0C

lnx D �1:

E X A M P L E 1 Show that
d

dx
ln jxj D

1

x
for any x ¤ 0. Hence find

Z

1

x
dx.

Solution If x > 0, then

d

dx
ln jxj D

d

dx
ln x D

1

x

by Theorem 1. If x < 0, then, using the Chain Rule,

d

dx
ln jxj D

d

dx
ln.�x/ D

1

�x
.�1/ D

1

x
:

Therefore,
d

dx
ln jxj D

1

x
, and on any interval not containing x D 0,

Z

1

x
dx D ln jxj C C:

E X A M P L E 2
Find the derivatives of (a) ln j cos xj and (b) ln

�

x C
p

x2
C 1

�

.

Simplify your answers as much as possible.

Solution

(a) Using the result of Example 1 and the Chain Rule, we have

d

dx
ln j cos xj D

1

cos x
.� sin x/ D � tan x:

(b)
d

dx
ln
�

x C

p

x2
C 1

�

D

1

x C
p

x2
C 1

�

1C
2x

2
p

x2
C 1

�

D

1

x C
p

x2
C 1

p

x2
C 1C x

p

x2
C 1

D

1
p

x2
C 1

:
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The Exponential Function
The function lnx is one-to-one on its domain, the interval .0;1/, so it has an inverse

there. For the moment, let us call this inverse exp x. Thus,

y D exp x ” x D lny .y > 0/:

Since ln 1 D 0, we have exp 0 D 1. The domain of exp is .�1;1/, the range of ln.

The range of exp is .0;1/, the domain of ln. We have cancellation identities

ln.exp x/ D x for all real x and exp.ln x/ D x for x > 0:

We can deduce various properties of exp from corresponding properties of ln. Not

surprisingly, they are properties we would expect an exponential function to have.

T H E O R E M

3

Properties of the exponential function

(i) .exp x/r D exp.rx/ (ii) exp.xCy/ D .exp x/.exp y/

(iii) exp.�x/ D
1

exp.x/
(iv) exp.x � y/ D

exp x

exp y

For the moment, identity (i) is asserted only for rational numbers r .

PROOF We prove only identity (i); the rest are done similarly. If u D .exp x/r , then,

by Theorem 2(iv), lnu D r ln.exp x/ D rx. Therefore, u D exp.rx/.

Now we make an important definition!

Let e D exp.1/:

The number e satisfies ln e D 1, so the area bounded by the curve y D 1=t; the t-axis,

and the vertical lines t D 1 and t D e must be equal to 1 square unit. See Figure 3.12.

The number e is one of the most important numbers in mathematics. Like � , it is

irrational and not a zero of any polynomial with rational coefficients. (Such numbers

are called transcendental.) Its value is between 2 and 3 and begins

y

t

Area = 1

1 e

y D
1

t

.1; 1/

.e; 1=e/

Figure 3.12 The definition of e

e D 2:7 1828 1828 45 90 45 : : : :

Later on we will learn that

e D 1C
1

1Š
C

1

2Š
C

1

3Š
C

1

4Š
C � � � ;

a formula from which the value of e can be calculated to any desired precision.

Theorem 3(i) shows that exp r D exp.1r/ D .exp 1/r D er holds for any rational

number r: Now here is a crucial observation. We only know what er means if r is a

rational number (if r D m=n, then er
D

n
p

em). But exp x is defined for all real x;

rational or not. Since er
D exp r when r is rational, we can use exp x as a definition of

what ex means for any real number x, and there will be no contradiction if x happens

to be rational.

e
x
D exp x for all real x:

Theorem 3 can now be restated in terms of ex :
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PROOF We will only prove part (i) because the other parts are proved by the same

method. If y > 0 is a constant, then by the Chain Rule,

d

dx

�

ln.xy/� lnx
�

D

y

xy
�

1

x
D 0 for all x > 0.

Theorem 13 of Section 2.8 now tells us that ln.xy/� ln x D C (a constant) for x > 0.

Putting x D 1 we get C D ln y and identity (i) follows.

Part (iv) of Theorem 2 shows that ln.2n/ D n ln 2 ! 1 as n ! 1. Therefore, we

y

x.1; 0/

y D lnx

Figure 3.11 The graph of lnx

also have ln.1=2/n D �n ln 2 ! �1 as n ! 1. Since .d=dx/ lnx D 1=x > 0 for

x > 0, it follows that ln x is increasing, so we must have (see Figure 3.11)

lim
x!1

ln x D 1; lim
x!0C

lnx D �1:

E X A M P L E 1 Show that
d

dx
ln jxj D

1

x
for any x ¤ 0. Hence find

Z

1

x
dx.

Solution If x > 0, then

d

dx
ln jxj D

d

dx
ln x D

1

x

by Theorem 1. If x < 0, then, using the Chain Rule,

d

dx
ln jxj D

d

dx
ln.�x/ D

1

�x
.�1/ D

1

x
:

Therefore,
d

dx
ln jxj D

1

x
, and on any interval not containing x D 0,

Z

1

x
dx D ln jxj C C:

E X A M P L E 2
Find the derivatives of (a) ln j cos xj and (b) ln

�

x C
p

x2
C 1

�

.

Simplify your answers as much as possible.

Solution

(a) Using the result of Example 1 and the Chain Rule, we have

d

dx
ln j cos xj D

1

cos x
.� sin x/ D � tan x:

(b)
d

dx
ln
�

x C

p

x2
C 1

�

D

1

x C
p

x2
C 1

�

1C
2x

2
p

x2
C 1

�

D

1

x C
p

x2
C 1

p

x2
C 1C x

p

x2
C 1

D

1
p

x2
C 1

:
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The Exponential Function
The function lnx is one-to-one on its domain, the interval .0;1/, so it has an inverse

there. For the moment, let us call this inverse exp x. Thus,

y D exp x ” x D lny .y > 0/:

Since ln 1 D 0, we have exp 0 D 1. The domain of exp is .�1;1/, the range of ln.

The range of exp is .0;1/, the domain of ln. We have cancellation identities

ln.exp x/ D x for all real x and exp.ln x/ D x for x > 0:

We can deduce various properties of exp from corresponding properties of ln. Not

surprisingly, they are properties we would expect an exponential function to have.

T H E O R E M

3

Properties of the exponential function

(i) .exp x/r D exp.rx/ (ii) exp.xCy/ D .exp x/.exp y/

(iii) exp.�x/ D
1

exp.x/
(iv) exp.x � y/ D

exp x

exp y

For the moment, identity (i) is asserted only for rational numbers r .

PROOF We prove only identity (i); the rest are done similarly. If u D .exp x/r , then,

by Theorem 2(iv), lnu D r ln.exp x/ D rx. Therefore, u D exp.rx/.

Now we make an important definition!

Let e D exp.1/:

The number e satisfies ln e D 1, so the area bounded by the curve y D 1=t; the t-axis,

and the vertical lines t D 1 and t D e must be equal to 1 square unit. See Figure 3.12.

The number e is one of the most important numbers in mathematics. Like � , it is

irrational and not a zero of any polynomial with rational coefficients. (Such numbers

are called transcendental.) Its value is between 2 and 3 and begins

y

t

Area = 1

1 e

y D
1

t

.1; 1/

.e; 1=e/

Figure 3.12 The definition of e

e D 2:7 1828 1828 45 90 45 : : : :

Later on we will learn that

e D 1C
1

1Š
C

1

2Š
C

1

3Š
C

1

4Š
C � � � ;

a formula from which the value of e can be calculated to any desired precision.

Theorem 3(i) shows that exp r D exp.1r/ D .exp 1/r D er holds for any rational

number r: Now here is a crucial observation. We only know what er means if r is a

rational number (if r D m=n, then er
D

n
p

em). But exp x is defined for all real x;

rational or not. Since er
D exp r when r is rational, we can use exp x as a definition of

what ex means for any real number x, and there will be no contradiction if x happens

to be rational.

e
x
D exp x for all real x:

Theorem 3 can now be restated in terms of ex :
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(i) .e
x
/
y
D e

xy (ii) e
xCy
D e

x
e

y

(iii) e
�x
D

1

ex
(iv) e

x�y
D

ex

ey

The graph of ex is the reflection of the graph of its inverse, ln x, in the line y D x.

Both graphs are shown for comparison in Figure 3.13. Observe that the x-axis is a

horizontal asymptote of the graph of y D ex as x ! �1. We have

y

x

y D ln x

y D x

y D ex

1

1

Figure 3.13 The graphs of ex and lnx

lim
x!�1

e
x
D 0; lim

x!1
e

x
D1:

Since exp x D ex actually is an exponential function, its inverse must actually be a

logarithm:

lnx D loge x:

The derivative of y D ex is calculated by implicit differentiation:

y D e
x
÷ x D ln y

÷ 1 D
1

y

dy

dx

÷

dy

dx
D y D e

x
:

Thus, the exponential function has the remarkable property that it is its own derivative

and, therefore, also its own antiderivative:

d

dx
e

x
D e

x
;

Z

e
x
dx D e

x
C C:

E X A M P L E 3
Find the derivatives of

(a) ex2�3x , (b)
p

1C e2x , and (c)
ex
� e�x

ex
C e�x

.

Solution

(a)
d

dx
e

x2�3x
D e

x2�3x
.2x � 3/ D .2x � 3/e

x2�3x .

(b)
d

dx

p

1C e2x
D

1

2
p

1C e2x

�

e
2x
.2/
�

D

e2x

p

1C e2x
.

(c)
d

dx

ex
� e�x

ex
C e�x

D

.ex
C e�x/.ex

� .�e�x// � .ex
� e�x/.ex

C .�e�x//

.ex
C e�x/2

D

.ex/2 C 2exe�x
C .e�x/2 � Œ.ex/2 � 2exe�x

C .e�x/2�

.ex
C e�x/2

D

4ex�x

.ex
C e�x/2

D

4

.ex
C e�x/2

:

E X A M P L E 4
Let f .t/ D eat . Find (a) f .n/.t/ and (b)

R

f .t/ dt .
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Solution (a) We have f
0
.t/ D a e

at

f
00
.t/ D a

2
e

at

f
000
.t/ D a

3
e

at

:
:
:

f
.n/
.t/ D a

n
e

at
:

(b) Also,

Z

f .t/ dt D

Z

e
at
dt D

1

a
e

at
C C , since

d

dt

1

a
e

at
D e

at .

General Exponentials and Logarithms
We can use the fact that ex is now defined for all real x to define the arbitrary expo-

nential ax (where a > 0) for all real x: If r is rational, then ln.ar / D r ln a; therefore,

ar
D er ln a. However, ex ln a is defined for all real x; so we can use it as a definition of

ax with no possibility of contradiction arising if x is rational.

D E F I N I T I O N

7

The general exponential a
x

a
x
D e

x ln a
; .a > 0; x real/:

E X A M P L E 5
Evaluate 2� , using the natural logarithm (ln) and exponential (exp

or ex) keys on a scientific calculator, but not using the yx or ^

keys.

Solution 2
�
D e

� ln 2
D 8:824 977 8 � � �. If your calculator has a ^ key, or an xy or

yx key, chances are that it is implemented in terms of the exp and ln functions.

The laws of exponents for ax as presented in Section 3.2 can now be obtained from

those for ex , as can the derivative:

d

dx
a

x
D

d

dx
e

x ln a
D e

x ln a lna D ax ln a:

We can also verify the General Power Rule for xa, where a is any real number, provided

x > 0:

d

dx
x

a
D

d

dx
e

a ln x
D e

a ln x a

x
D

a xa

x
D a x

a�1
:

E X A M P L E 6
Show that the graph of f .x/ D x

�
� �

x has a negative slope at

x D � .
Do not confuse x� , which is a

power function of x, and �x ,

which is an exponential function

of x.

Solution f
0
.x/ D � x

��1
� �

x ln�

f
0
.�/ D � �

��1
� �

� ln� D ��
.1 � ln�/:

Since � > 3 > e, we have ln� > ln e D 1, so 1 � ln� < 0. Since ��
D e� ln � > 0,

we have f 0.�/ < 0. Thus, the graph y D f .x/ has negative slope at x D � .

E X A M P L E 7
Find the critical point of y D xx .

Solution We can’t differentiate xx by treating it as a power (like xa) because the ex-

ponent varies. We can’t treat it as an exponential (like ax) because the base varies. We

can differentiate it if we first write it in terms of the exponential function,
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(i) .e
x
/
y
D e

xy (ii) e
xCy
D e

x
e

y

(iii) e
�x
D

1

ex
(iv) e

x�y
D

ex

ey

The graph of ex is the reflection of the graph of its inverse, ln x, in the line y D x.

Both graphs are shown for comparison in Figure 3.13. Observe that the x-axis is a

horizontal asymptote of the graph of y D ex as x ! �1. We have

y

x

y D ln x

y D x

y D ex

1

1

Figure 3.13 The graphs of ex and lnx

lim
x!�1

e
x
D 0; lim

x!1
e

x
D1:

Since exp x D ex actually is an exponential function, its inverse must actually be a

logarithm:

lnx D loge x:

The derivative of y D ex is calculated by implicit differentiation:

y D e
x
÷ x D ln y

÷ 1 D
1

y

dy

dx

÷

dy

dx
D y D e

x
:

Thus, the exponential function has the remarkable property that it is its own derivative

and, therefore, also its own antiderivative:

d

dx
e

x
D e

x
;

Z

e
x
dx D e

x
C C:

E X A M P L E 3
Find the derivatives of

(a) ex2�3x , (b)
p

1C e2x , and (c)
ex
� e�x

ex
C e�x

.

Solution

(a)
d

dx
e

x2�3x
D e

x2�3x
.2x � 3/ D .2x � 3/e

x2�3x .

(b)
d

dx

p

1C e2x
D

1

2
p

1C e2x

�

e
2x
.2/
�

D

e2x

p

1C e2x
.

(c)
d

dx

ex
� e�x

ex
C e�x

D

.ex
C e�x/.ex

� .�e�x// � .ex
� e�x/.ex

C .�e�x//

.ex
C e�x/2

D

.ex/2 C 2exe�x
C .e�x/2 � Œ.ex/2 � 2exe�x

C .e�x/2�

.ex
C e�x/2

D

4ex�x

.ex
C e�x/2

D

4

.ex
C e�x/2

:

E X A M P L E 4
Let f .t/ D eat . Find (a) f .n/.t/ and (b)

R

f .t/ dt .
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Solution (a) We have f
0
.t/ D a e

at

f
00
.t/ D a

2
e

at

f
000
.t/ D a

3
e

at

:
:
:

f
.n/
.t/ D a

n
e

at
:

(b) Also,

Z

f .t/ dt D

Z

e
at
dt D

1

a
e

at
C C , since

d

dt

1

a
e

at
D e

at .

General Exponentials and Logarithms
We can use the fact that ex is now defined for all real x to define the arbitrary expo-

nential ax (where a > 0) for all real x: If r is rational, then ln.ar / D r ln a; therefore,

ar
D er ln a. However, ex ln a is defined for all real x; so we can use it as a definition of

ax with no possibility of contradiction arising if x is rational.

D E F I N I T I O N

7

The general exponential a
x

a
x
D e

x ln a
; .a > 0; x real/:

E X A M P L E 5
Evaluate 2� , using the natural logarithm (ln) and exponential (exp

or ex) keys on a scientific calculator, but not using the yx or ^

keys.

Solution 2
�
D e

� ln 2
D 8:824 977 8 � � �. If your calculator has a ^ key, or an xy or

yx key, chances are that it is implemented in terms of the exp and ln functions.

The laws of exponents for ax as presented in Section 3.2 can now be obtained from

those for ex , as can the derivative:

d

dx
a

x
D

d

dx
e

x ln a
D e

x ln a lna D ax ln a:

We can also verify the General Power Rule for xa, where a is any real number, provided

x > 0:

d

dx
x

a
D

d

dx
e

a ln x
D e

a ln x a

x
D

a xa

x
D a x

a�1
:

E X A M P L E 6
Show that the graph of f .x/ D x

�
� �

x has a negative slope at

x D � .
Do not confuse x� , which is a

power function of x, and �x ,

which is an exponential function

of x.

Solution f
0
.x/ D � x

��1
� �

x ln�

f
0
.�/ D � �

��1
� �

� ln� D ��
.1 � ln�/:

Since � > 3 > e, we have ln� > ln e D 1, so 1 � ln� < 0. Since ��
D e� ln � > 0,

we have f 0.�/ < 0. Thus, the graph y D f .x/ has negative slope at x D � .

E X A M P L E 7
Find the critical point of y D xx .

Solution We can’t differentiate xx by treating it as a power (like xa) because the ex-

ponent varies. We can’t treat it as an exponential (like ax) because the base varies. We

can differentiate it if we first write it in terms of the exponential function,
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xx
D ex ln x , and then use the Chain Rule and the Product Rule:

dy

dx
D

d

dx
e

x ln x
D e

x ln x

�

ln x C x

�

1

x

��

D x
x
.1C lnx/:

Now xx is defined only for x > 0 and is itself never 0. (Why?) Therefore, the critical

point occurs where 1C ln x D 0; that is, lnx D �1, or x D 1=e.

Finally, observe that .d=dx/ax
D ax lna is negative for all x if 0 < a < 1 and is

positive for all x if a > 1. Thus, ax is one-to-one and has an inverse function, loga x,

provided a > 0 and a ¤ 1. Its properties follow in the same way as in Section 3.2. If

y D loga x, then x D ay and, differentiating implicitly with respect to x, we get

1 D a
y lna

dy

dx
D x ln a

dy

dx
:

Thus, the derivative of loga x is given by

d

dx
loga x D

1

x ln a
:

Since loga x can be expressed in terms of logarithms to any other base, say e,

loga x D
ln x

ln a
;

we normally use only natural logarithms. Exceptions are found in chemistry, acoustics,

and other sciences where “logarithmic scales” are used to measure quantities for which

a one-unit increase in the measure corresponds to a tenfold increase in the quantity.

Logarithms to base 10 are used in defining such scales. In computer science, where

powers of 2 play a central role, logarithms to base 2 are often encountered.

Logarithmic Differentiation
Suppose we want to differentiate a function of the form

y D .f .x//
g.x/

.for f .x/ > 0/:

Since the variable appears in both the base and the exponent, neither the general power

rule, .d=dx/xa
D axa�1, nor the exponential rule, .d=dx/ax

D ax lna, can be

directly applied. One method for finding the derivative of such a function is to express

it in the form

y D e
g.x/ ln f .x/

and then differentiate, using the Product Rule to handle the exponent. This is the

method used in Example 7.

The derivative in Example 7 can also be obtained by taking natural logarithms of

both sides of the equation y D xx and differentiating implicitly:

lny D x ln x

1

y

dy

dx
D ln x C

x

x
D 1C lnx

dy

dx
D y.1C ln x/ D xx

.1C ln x/:

This latter technique is called logarithmic differentiation.
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E X A M P L E 8
Find dy=dt if y D

�

sin t
�ln t

, where 0 < t < � .

Solution We have ln y D ln t ln sin t . Thus,

1

y

dy

dt
D

1

t
ln sin t C ln t

cos t

sin t

dy

dt
D y

�

ln sin t

t
C ln t cot t

�

D .sin t/ln t

�

ln sin t

t
C ln t cot t

�

:

Logarithmic differentiation is also useful for finding the derivatives of functions ex-

pressed as products and quotients of many factors. Taking logarithms reduces these

products and quotients to sums and differences. This usually makes the calculation

easier than it would be using the Product and Quotient Rules, especially if the deriva-

tive is to be evaluated at a specific point.

E X A M P L E 9
Differentiate y D Œ.x C 1/.x C 2/.x C 3/�=.x C 4/.

Solution ln jyj D ln jx C 1j C ln jx C 2j C ln jx C 3j � ln jx C 4j. Thus,

1

y
y

0
D

1

x C 1
C

1

x C 2
C

1

x C 3
�

1

x C 4

y
0
D

.x C 1/.x C 2/.x C 3/

x C 4

�

1

x C 1
C

1

x C 2
C

1

x C 3
�

1

x C 4

�

D

.x C 2/.x C 3/

x C 4
C

.x C 1/.x C 3/

x C 4
C

.x C 1/.x C 2/

x C 4

�

.x C 1/.x C 2/.x C 3/

.x C 4/2
:

E X A M P L E 10 Find
du

dx

ˇ

ˇ

ˇ

ˇ

xD1

if u D
p

.x C 1/.x2
C 1/.x3

C 1/.

Solution

lnu D
1

2

�

ln.x C 1/C ln.x2
C 1/C ln.x3

C 1/

�

1

u

du

dx
D

1

2

�

1

x C 1
C

2x

x2
C 1
C

3x2

x3
C 1

�

:

At x D 1 we have u D
p

8 D 2
p

2. Hence,

du

dx

ˇ

ˇ

ˇ

ˇ

xD1

D

p

2

�

1

2
C 1C

3

2

�

D 3
p

2:

E X E R C I S E S 3.3

Simplify the expressions given in Exercises 1–10.

1. e3
=

p

e5 2. ln
�

e
1=2
e

2=3
�

3. e5 ln x 4. e.3 ln 9/=2

5. ln
1

e3x
6. e2 ln cos x

C

�

ln esin x
�2

7. 3 ln 4 � 4 ln 3 8. 4 ln
p

x C 6 ln.x1=3
/

9. 2 lnx C 5 ln.x � 2/ 10. ln.x2
C 6x C 9/
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xx
D ex ln x , and then use the Chain Rule and the Product Rule:

dy

dx
D

d

dx
e

x ln x
D e

x ln x

�

ln x C x

�

1

x

��

D x
x
.1C lnx/:

Now xx is defined only for x > 0 and is itself never 0. (Why?) Therefore, the critical

point occurs where 1C ln x D 0; that is, lnx D �1, or x D 1=e.

Finally, observe that .d=dx/ax
D ax lna is negative for all x if 0 < a < 1 and is

positive for all x if a > 1. Thus, ax is one-to-one and has an inverse function, loga x,

provided a > 0 and a ¤ 1. Its properties follow in the same way as in Section 3.2. If

y D loga x, then x D ay and, differentiating implicitly with respect to x, we get

1 D a
y lna

dy

dx
D x ln a

dy

dx
:

Thus, the derivative of loga x is given by

d

dx
loga x D

1

x ln a
:

Since loga x can be expressed in terms of logarithms to any other base, say e,

loga x D
ln x

ln a
;

we normally use only natural logarithms. Exceptions are found in chemistry, acoustics,

and other sciences where “logarithmic scales” are used to measure quantities for which

a one-unit increase in the measure corresponds to a tenfold increase in the quantity.

Logarithms to base 10 are used in defining such scales. In computer science, where

powers of 2 play a central role, logarithms to base 2 are often encountered.

Logarithmic Differentiation
Suppose we want to differentiate a function of the form

y D .f .x//
g.x/

.for f .x/ > 0/:

Since the variable appears in both the base and the exponent, neither the general power

rule, .d=dx/xa
D axa�1, nor the exponential rule, .d=dx/ax

D ax lna, can be

directly applied. One method for finding the derivative of such a function is to express

it in the form

y D e
g.x/ ln f .x/

and then differentiate, using the Product Rule to handle the exponent. This is the

method used in Example 7.

The derivative in Example 7 can also be obtained by taking natural logarithms of

both sides of the equation y D xx and differentiating implicitly:

lny D x ln x

1

y

dy

dx
D ln x C

x

x
D 1C lnx

dy

dx
D y.1C ln x/ D xx

.1C ln x/:

This latter technique is called logarithmic differentiation.
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E X A M P L E 8
Find dy=dt if y D

�

sin t
�ln t

, where 0 < t < � .

Solution We have ln y D ln t ln sin t . Thus,

1

y

dy

dt
D

1

t
ln sin t C ln t

cos t

sin t

dy

dt
D y

�

ln sin t

t
C ln t cot t

�

D .sin t/ln t

�

ln sin t

t
C ln t cot t

�

:

Logarithmic differentiation is also useful for finding the derivatives of functions ex-

pressed as products and quotients of many factors. Taking logarithms reduces these

products and quotients to sums and differences. This usually makes the calculation

easier than it would be using the Product and Quotient Rules, especially if the deriva-

tive is to be evaluated at a specific point.

E X A M P L E 9
Differentiate y D Œ.x C 1/.x C 2/.x C 3/�=.x C 4/.

Solution ln jyj D ln jx C 1j C ln jx C 2j C ln jx C 3j � ln jx C 4j. Thus,

1

y
y

0
D

1

x C 1
C

1

x C 2
C

1

x C 3
�

1

x C 4

y
0
D

.x C 1/.x C 2/.x C 3/

x C 4

�

1

x C 1
C

1

x C 2
C

1

x C 3
�

1

x C 4

�

D

.x C 2/.x C 3/

x C 4
C

.x C 1/.x C 3/

x C 4
C

.x C 1/.x C 2/

x C 4

�

.x C 1/.x C 2/.x C 3/

.x C 4/2
:

E X A M P L E 10 Find
du

dx

ˇ

ˇ

ˇ

ˇ

xD1

if u D
p

.x C 1/.x2
C 1/.x3

C 1/.

Solution

lnu D
1

2

�

ln.x C 1/C ln.x2
C 1/C ln.x3

C 1/

�

1

u

du

dx
D

1

2

�

1

x C 1
C

2x

x2
C 1
C

3x2

x3
C 1

�

:

At x D 1 we have u D
p

8 D 2
p

2. Hence,

du

dx

ˇ

ˇ

ˇ

ˇ

xD1

D

p

2

�

1

2
C 1C

3

2

�

D 3
p

2:

E X E R C I S E S 3.3

Simplify the expressions given in Exercises 1–10.

1. e3
=

p

e5 2. ln
�

e
1=2
e

2=3
�

3. e5 ln x 4. e.3 ln 9/=2

5. ln
1

e3x
6. e2 ln cos x

C

�

ln esin x
�2

7. 3 ln 4 � 4 ln 3 8. 4 ln
p

x C 6 ln.x1=3
/

9. 2 lnx C 5 ln.x � 2/ 10. ln.x2
C 6x C 9/
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Solve the equations in Exercises 11–14 for x.

11. 2xC1
D 3

x 12. 3x
D 9

1�x

13.
1

2x
D

5

8xC3
14. 2x2�3

D 4
x

Find the domains of the functions in Exercises 15–16.

15. ln
x

2� x
16. ln.x2

� x � 2/

Solve the inequalities in Exercises 17–18.

17. ln.2x � 5/ > ln.7 � 2x/ 18. ln.x2
� 2/ � lnx

In Exercises 19–48, differentiate the given functions. If possible,

simplify your answers.

19. y D e5x 20. y D xex
� x

21. y D
x

e2x
22. y D x2

e
x=2

23. y D ln.3x � 2/ 24. y D ln j3x � 2j

25. y D ln.1C ex
/ 26. f .x/ D e.x2/

27. y D
ex
C e�x

2
28. x D e3t ln t

29. y D e.ex/ 30. y D
ex

1C ex

31. y D ex sinx 32. y D e�x cos x

33. y D ln lnx 34. y D x lnx � x

35. y D x2 lnx �
x2

2
36. y D ln j sinxj

37. y D 52xC1 38. y D 2.x2�3xC8/

39. g.x/ D txxt 40. h.t/ D tx � xt

41. f .s/ D loga.bs C c/ 42. g.x/ D logx.2x C 3/

43. y D x
p

x 44. y D .1=x/ln x

45. y D ln j sec x C tan xj 46. y D ln jx C
p

x2
� a2
j

47. y D ln
�
p

x2
C a2

� x

�

48. y D .cosx/x � xcos x

49. Find the nth derivative of f .x/ D xeax .

50. Show that the nth derivative of .ax2
C bx C c/ex is a

function of the same form but with different constants.

51. Find the first four derivatives of ex2
.

52. Find the nth derivative of ln.2x C 1/.

53. Differentiate (a) f .x/ D .xx/x and (b) g.x/ D x.xx/. Which

function grows more rapidly as x grows large?

54.I Solve the equation xxx::
:

D a, where a > 0. The exponent

tower goes on forever.

Use logarithmic differentiation to find the required derivatives in

Exercises 55–57.

55. f .x/ D .x � 1/.x � 2/.x � 3/.x � 4/. Find f 0.x/.

56. F.x/ D

p

1C x.1 � x/1=3

.1C 5x/4=5
. Find F 0.0/.

57. f .x/ D
.x2
� 1/.x2

� 2/.x2
� 3/

.x2
C 1/.x2

C 2/.x2
C 3/

. Find f 0.2/. Also find

f 0.1/.

58. At what points does the graph y D x2e�x2
have a horizontal

tangent line?

59. Let f .x/ D xe�x . Determine where f is increasing and

where it is decreasing. Sketch the graph of f:

60. Find the equation of a straight line of slope 4 that is tangent to

the graph of y D ln x.

61. Find an equation of the straight line tangent to the curve

y D ex and passing through the origin.

62. Find an equation of the straight line tangent to the curve

y D lnx and passing through the origin.

63. Find an equation of the straight line that is tangent to y D 2x

and that passes through the point .1; 0/.

64. For what values of a > 0 does the curve y D ax intersect the

straight line y D x?

65. Find the slope of the curve exy ln
x

y
D x C

1

y
at .e; 1=e/.

66. Find an equation of the straight line tangent to the curve

xey
C y � 2x D ln 2 at the point .1; ln 2/.

67. Find the derivative of f .x/ D Ax cos lnx C Bx sin lnx. Use

the result to help you find the indefinite integrals
Z

cos lnx dx and

Z

sin lnx dx.

68.I Let FA;B .x/ D Ae
x cosx C Bex sinx. Show that

.d=dx/FA;B .x/ D FACB;B�A.x/.

69.I Using the results of Exercise 68, find

(a) .d2=dx2/FA;B .x/ and (b) .d3=dx3/ex cos x.

70.I Find
d

dx
.Ae

ax cos bx C Beax sin bx/ and use the answer to

help you evaluate

(a)

Z

e
ax cos bx dx and (b)

Z

e
ax sin bx dx.

71.A Prove identity (ii) of Theorem 2 by examining the derivative

of the left side minus the right side, as was done in the proof

of identity (i).

72.A Deduce identity (iii) of Theorem 2 from identities (i) and (ii).

73.A Prove identity (iv) of Theorem 2 for rational exponents r by

the same method used for Exercise 71.

74.I Let x > 0, and let F.x/ be the area bounded by the curve

y D t
2, the t -axis, and the vertical lines t D 0 and t D x.

Using the method of the proof of Theorem 1, show that

F 0.x/ D x2. Hence, find an explicit formula for F.x/. What

is the area of the region bounded by y D t2, y D 0, t D 0,

and t D 2?

75.I Carry out the following steps to show that 2 < e < 3. Let

f .t/ D 1=t for t > 0.

(a) Show that the area under y D f .t/, above y D 0, and

between t D 1 and t D 2 is less than 1 square unit.

Deduce that e > 2.

(b) Show that all tangent lines to the graph of f lie below the

graph. Hint: f 00
.t/ D 2=t

3
> 0.

(c) Find the lines T2 and T3 that are tangent to y D f .t/ at

t D 2 and t D 3, respectively.

(d) Find the area A2 under T2, above y D 0, and between

t D 1 and t D 2. Also find the area A3 under T3, above

y D 0, and between t D 2 and t D 3.

(e) Show that A2 C A3 > 1 square unit. Deduce that e < 3.
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3.4 Growth and Decay

In this section we will study the use of exponential functions to model the growth

rates of quantities whose rate of growth is directly related to their size. The growth of

such quantities is typically governed by differential equations whose solutions involve

exponential functions. Before delving into this topic, we prepare the way by examining

the growth behaviour of exponential and logarithmic functions.

The Growth of Exponentials and Logarithms
In Section 3.3 we showed that both ex and lnx grow large (approach infinity) as x

grows large. However, ex increases very rapidly as x increases, and ln x increases very

slowly. In fact, ex increases faster than any positive power of x (no matter how large

the power), while lnx increases more slowly than any positive power of x (no matter

how small the power). To verify this behaviour we start with an inequality satisfied by

lnx. The straight line y D x � 1 is tangent to the curve y D lnx at the point .1; 0/.

The following theorem asserts that the curve lies below that line. (See Figure 3.14.)

y

x

y D lnx

y D x � 1

.1; 0/

Figure 3.14 lnx � x � 1 for x > 0

T H E O R E M

4

If x > 0, then ln x � x � 1.

PROOF Let g.x/ D lnx � .x � 1/ for x > 0. Then g.1/ D 0 and

g
0
.x/ D

1

x
� 1

n

> 0 if 0 < x < 1

< 0 if x > 1.

As observed in Section 2.8, these inequalities imply that g is increasing on .0; 1/ and

decreasing on .1;1/. Thus, g.x/ � g.1/ D 0 for all x > 0 and ln x � x � 1 for all

such x.

T H E O R E M

5

The growth properties of exp and ln

If a > 0, then

(a) lim
x!1

x
a

ex
D 0;

(c) lim
x!�1

jxj
a
e

x
D 0;

(b) lim
x!1

lnx

xa
D 0;

(d) lim
x!0C

x
a ln x D 0:

Each of these limits makes a statement about who “wins” in a contest between an expo-

nential or logarithm and a power. For example, in part (a), the denominator ex grows

large as x !1, so it tries to make the fraction xa=ex approach 0. On the other hand,

if a is a large positive number, the numerator xa also grows large and tries to make the

fraction approach infinity. The assertion of (a) is that in this contest between the expo-

nential and the power, the exponential is stronger and wins; the fraction approaches 0.

The content of Theorem 5 can be paraphrased as follows:

In a struggle between a power and an exponential, the exponential wins.

In a struggle between a power and a logarithm, the power wins.

PROOF First, we prove part (b). Let x > 1, a > 0, and let s D a=2. Since ln.xs
/ D

s lnx, we have, using Theorem 4,

0 < s ln x D ln.xs
/ � x

s
� 1 < x

s
:
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Solve the equations in Exercises 11–14 for x.

11. 2xC1
D 3

x 12. 3x
D 9

1�x

13.
1

2x
D

5

8xC3
14. 2x2�3

D 4
x

Find the domains of the functions in Exercises 15–16.

15. ln
x

2� x
16. ln.x2

� x � 2/

Solve the inequalities in Exercises 17–18.

17. ln.2x � 5/ > ln.7 � 2x/ 18. ln.x2
� 2/ � lnx

In Exercises 19–48, differentiate the given functions. If possible,

simplify your answers.

19. y D e5x 20. y D xex
� x

21. y D
x

e2x
22. y D x2

e
x=2

23. y D ln.3x � 2/ 24. y D ln j3x � 2j

25. y D ln.1C ex
/ 26. f .x/ D e.x2/

27. y D
ex
C e�x

2
28. x D e3t ln t

29. y D e.ex/ 30. y D
ex

1C ex

31. y D ex sinx 32. y D e�x cos x

33. y D ln lnx 34. y D x lnx � x

35. y D x2 lnx �
x2

2
36. y D ln j sinxj

37. y D 52xC1 38. y D 2.x2�3xC8/

39. g.x/ D txxt 40. h.t/ D tx � xt

41. f .s/ D loga.bs C c/ 42. g.x/ D logx.2x C 3/

43. y D x
p

x 44. y D .1=x/ln x

45. y D ln j sec x C tan xj 46. y D ln jx C
p

x2
� a2
j

47. y D ln
�
p

x2
C a2

� x

�

48. y D .cosx/x � xcos x

49. Find the nth derivative of f .x/ D xeax .

50. Show that the nth derivative of .ax2
C bx C c/ex is a

function of the same form but with different constants.

51. Find the first four derivatives of ex2
.

52. Find the nth derivative of ln.2x C 1/.

53. Differentiate (a) f .x/ D .xx/x and (b) g.x/ D x.xx/. Which

function grows more rapidly as x grows large?

54.I Solve the equation xxx::
:

D a, where a > 0. The exponent

tower goes on forever.

Use logarithmic differentiation to find the required derivatives in

Exercises 55–57.

55. f .x/ D .x � 1/.x � 2/.x � 3/.x � 4/. Find f 0.x/.

56. F.x/ D

p

1C x.1 � x/1=3

.1C 5x/4=5
. Find F 0.0/.

57. f .x/ D
.x2
� 1/.x2

� 2/.x2
� 3/

.x2
C 1/.x2

C 2/.x2
C 3/

. Find f 0.2/. Also find

f 0.1/.

58. At what points does the graph y D x2e�x2
have a horizontal

tangent line?

59. Let f .x/ D xe�x . Determine where f is increasing and

where it is decreasing. Sketch the graph of f:

60. Find the equation of a straight line of slope 4 that is tangent to

the graph of y D ln x.

61. Find an equation of the straight line tangent to the curve

y D ex and passing through the origin.

62. Find an equation of the straight line tangent to the curve

y D lnx and passing through the origin.

63. Find an equation of the straight line that is tangent to y D 2x

and that passes through the point .1; 0/.

64. For what values of a > 0 does the curve y D ax intersect the

straight line y D x?

65. Find the slope of the curve exy ln
x

y
D x C

1

y
at .e; 1=e/.

66. Find an equation of the straight line tangent to the curve

xey
C y � 2x D ln 2 at the point .1; ln 2/.

67. Find the derivative of f .x/ D Ax cos lnx C Bx sin lnx. Use

the result to help you find the indefinite integrals
Z

cos lnx dx and

Z

sin lnx dx.

68.I Let FA;B .x/ D Ae
x cosx C Bex sinx. Show that

.d=dx/FA;B .x/ D FACB;B�A.x/.

69.I Using the results of Exercise 68, find

(a) .d2=dx2/FA;B .x/ and (b) .d3=dx3/ex cos x.

70.I Find
d

dx
.Ae

ax cos bx C Beax sin bx/ and use the answer to

help you evaluate

(a)

Z

e
ax cos bx dx and (b)

Z

e
ax sin bx dx.

71.A Prove identity (ii) of Theorem 2 by examining the derivative

of the left side minus the right side, as was done in the proof

of identity (i).

72.A Deduce identity (iii) of Theorem 2 from identities (i) and (ii).

73.A Prove identity (iv) of Theorem 2 for rational exponents r by

the same method used for Exercise 71.

74.I Let x > 0, and let F.x/ be the area bounded by the curve

y D t
2, the t -axis, and the vertical lines t D 0 and t D x.

Using the method of the proof of Theorem 1, show that

F 0.x/ D x2. Hence, find an explicit formula for F.x/. What

is the area of the region bounded by y D t2, y D 0, t D 0,

and t D 2?

75.I Carry out the following steps to show that 2 < e < 3. Let

f .t/ D 1=t for t > 0.

(a) Show that the area under y D f .t/, above y D 0, and

between t D 1 and t D 2 is less than 1 square unit.

Deduce that e > 2.

(b) Show that all tangent lines to the graph of f lie below the

graph. Hint: f 00
.t/ D 2=t

3
> 0.

(c) Find the lines T2 and T3 that are tangent to y D f .t/ at

t D 2 and t D 3, respectively.

(d) Find the area A2 under T2, above y D 0, and between

t D 1 and t D 2. Also find the area A3 under T3, above

y D 0, and between t D 2 and t D 3.

(e) Show that A2 C A3 > 1 square unit. Deduce that e < 3.
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3.4 Growth and Decay

In this section we will study the use of exponential functions to model the growth

rates of quantities whose rate of growth is directly related to their size. The growth of

such quantities is typically governed by differential equations whose solutions involve

exponential functions. Before delving into this topic, we prepare the way by examining

the growth behaviour of exponential and logarithmic functions.

The Growth of Exponentials and Logarithms
In Section 3.3 we showed that both ex and lnx grow large (approach infinity) as x

grows large. However, ex increases very rapidly as x increases, and ln x increases very

slowly. In fact, ex increases faster than any positive power of x (no matter how large

the power), while lnx increases more slowly than any positive power of x (no matter

how small the power). To verify this behaviour we start with an inequality satisfied by

lnx. The straight line y D x � 1 is tangent to the curve y D lnx at the point .1; 0/.

The following theorem asserts that the curve lies below that line. (See Figure 3.14.)

y

x

y D lnx

y D x � 1

.1; 0/

Figure 3.14 lnx � x � 1 for x > 0

T H E O R E M

4

If x > 0, then ln x � x � 1.

PROOF Let g.x/ D lnx � .x � 1/ for x > 0. Then g.1/ D 0 and

g
0
.x/ D

1

x
� 1

n

> 0 if 0 < x < 1

< 0 if x > 1.

As observed in Section 2.8, these inequalities imply that g is increasing on .0; 1/ and

decreasing on .1;1/. Thus, g.x/ � g.1/ D 0 for all x > 0 and ln x � x � 1 for all

such x.

T H E O R E M

5

The growth properties of exp and ln

If a > 0, then

(a) lim
x!1

x
a

ex
D 0;

(c) lim
x!�1

jxj
a
e

x
D 0;

(b) lim
x!1

lnx

xa
D 0;

(d) lim
x!0C

x
a ln x D 0:

Each of these limits makes a statement about who “wins” in a contest between an expo-

nential or logarithm and a power. For example, in part (a), the denominator ex grows

large as x !1, so it tries to make the fraction xa=ex approach 0. On the other hand,

if a is a large positive number, the numerator xa also grows large and tries to make the

fraction approach infinity. The assertion of (a) is that in this contest between the expo-

nential and the power, the exponential is stronger and wins; the fraction approaches 0.

The content of Theorem 5 can be paraphrased as follows:

In a struggle between a power and an exponential, the exponential wins.

In a struggle between a power and a logarithm, the power wins.

PROOF First, we prove part (b). Let x > 1, a > 0, and let s D a=2. Since ln.xs
/ D

s lnx, we have, using Theorem 4,

0 < s ln x D ln.xs
/ � x

s
� 1 < x

s
:

9780134154367_Calculus   205 05/12/16   3:13 pm



ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 3 – page 186 October 15, 2016

186 CHAPTER 3 Transcendental Functions

Thus, 0 < lnx <
1

s
x

s and, dividing by xa
D x2s ,

0 <
lnx

xa
<
1

s

xs

x2s
D

1

s xs
:

Now 1=.s x
s
/! 0 as x !1 (since s > 0); therefore, by the Squeeze Theorem,

lim
x!1

ln x

xa
D 0:

Next, we deduce part (d) from part (b) by substituting x D 1=t . As x ! 0C, we have

t !1, so

lim
x!0C

x
a lnx D lim

t!1

ln.1=t/

ta
D lim

t!1

� ln t

ta
D �0 D 0:

Now we deduce (a) from (b). If x D ln t , then t !1 as x !1, so

lim
x!1

xa

ex
D lim

t!1

.ln t/a

t
D lim

t!1

�

ln t

t1=a

�a

D 0
a
D 0:

Finally, (c) follows from (a) via the substitution x D �t :

lim
x!�1

jxj
a
e

x
D lim

t!1
j � t j

a
e

�t
D lim

t!1

ta

et
D 0:

Exponential Growth and Decay Models
Many natural processes involve quantities that increase or decrease at a rate propor-

tional to their size. For example, the mass of a culture of bacteria growing in a medium

supplying adequate nourishment will increase at a rate proportional to that mass. The

value of an investment bearing interest that is continuously compounding increases at a

rate proportional to that value. The mass of undecayed radioactive material in a sample

decreases at a rate proportional to that mass.

All of these phenomena, and others exhibiting similar behaviour, can be modelled

mathematically in the same way. If y D y.t/ denotes the value of a quantity y at time

t , and if y changes at a rate proportional to its size, then

dy

dt
D ky;

where k is the constant of proportionality. The above equation is called the differential

equation of exponential growth or decay because, for any value of the constant C;

the function y D Cekt satisfies the equation. In fact, if y.t/ is any solution of the

differential equation y 0
D ky, then

d

dt

�

y.t/

ekt

�

D

ekty 0.t/ � kekty.t/

e2kt
D

y 0.t/ � ky.t/

ekt
D 0 for all t:

Thus, y.t/=ekt
D C; a constant, and y.t/ D Cekt . Since y.0/ D Ce0

D C;

The initial-value problem

8

<

:

dy

dt
D ky

y.0/ D y0

has unique solution y D y0e
kt
:

If y0 > 0, then y.t/ is an increasing function of t if k > 0 and a decreasing function

of t if k < 0. We say that the quantity y exhibits exponential growth if k > 0 and

exponential decay if k < 0. (See Figure 3.15.)

y0

k < 0

k D 0

k > 0y

t

Figure 3.15 Solutions of the initial-value

problem dy=dt D ky, y.0/ D y0, for

k > 0, k D 0, and k < 0
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E X A M P L E 1
(Growth of a cell culture) A certain cell culture grows at a rate

proportional to the number of cells present. If the culture contains

500 cells initially and 800 after 24 h, how many cells will there be after a further 12 h?

Solution Let y.t/ be the number of cells present t hours after there were 500 cells.

Thus, y.0/ D 500 and y.24/ D 800. Because dy=dt D ky, we have

y.t/ D y.0/e
kt
D 500e

kt
:

Therefore, 800 D y.24/ D 500e24k , so 24k D ln 800
500
D ln.1:6/. It follows that

k D .1=24/ ln.1:6/ and

y.t/ D 500e
.t=24/ ln.1:6/

D 500.1:6/
t=24

:

We want to know y when t D 36: y.36/ D 500e.36=24/ ln.1:6/
D 500.1:6/3=2

� 1012.

The cell count grew to about 1,012 in the 12 h after it was 800.

Exponential growth is characterized by a fixed doubling time. If T is the time at which

y has doubled from its size at t D 0, then 2y.0/ D y.T / D y.0/ekT . Therefore,

ekT
D 2. Since y.t/ D y.0/ekt , we have

y.t C T / D y.0/e
k.tCT /

D e
kT
y.0/e

kt
D 2y.t/I

that is, T units of time are required for y to double from any value. Similarly, exponen-

tial decay involves a fixed halving time (usually called the half-life). If y.T / D 1
2
y.0/,

then ekT
D

1
2

and

y.t C T / D y.0/e
k.tCT /

D

1

2
y.t/:

E X A M P L E 2
(Radioactive decay) A radioactive material has a half-life of 1,200

years. What percentage of the original radioactivity of a sample is

left after 10 years? How many years are required to reduce the radioactivity by 10%?

Solution Let p.t/ be the percentage of the original radioactivity left after t years.

Thus p.0/ D 100 and p.1;200/ D 50. Since the radioactivity decreases at a rate

proportional to itself, dp=dt D kp and

p.t/ D 100e
kt
:

Now 50 D p.1;200/ D 100e
1;200k , so

k D
1

1;200
ln
50

100
D �

ln 2

1;200
:

The percentage left after 10 years is

p.10/ D 100e
10k
D 100e

�10.ln 2/=1;200
� 99:424:

If after t years 90% of the radioactivity is left, then

90 D 100e
kt
;

kt D ln
90

100
;

t D
1

k
ln.0:9/ D �

1;200

ln 2
ln.0:9/ � 182:4;

so it will take a little over 182 years to reduce the radioactivity by 10%.
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Thus, 0 < lnx <
1

s
x

s and, dividing by xa
D x2s ,

0 <
lnx

xa
<
1

s

xs

x2s
D

1

s xs
:

Now 1=.s x
s
/! 0 as x !1 (since s > 0); therefore, by the Squeeze Theorem,

lim
x!1

ln x

xa
D 0:

Next, we deduce part (d) from part (b) by substituting x D 1=t . As x ! 0C, we have

t !1, so

lim
x!0C

x
a lnx D lim

t!1

ln.1=t/

ta
D lim

t!1

� ln t

ta
D �0 D 0:

Now we deduce (a) from (b). If x D ln t , then t !1 as x !1, so

lim
x!1

xa

ex
D lim

t!1

.ln t/a

t
D lim

t!1

�

ln t

t1=a

�a

D 0
a
D 0:

Finally, (c) follows from (a) via the substitution x D �t :

lim
x!�1

jxj
a
e

x
D lim

t!1
j � t j

a
e

�t
D lim

t!1

ta

et
D 0:

Exponential Growth and Decay Models
Many natural processes involve quantities that increase or decrease at a rate propor-

tional to their size. For example, the mass of a culture of bacteria growing in a medium

supplying adequate nourishment will increase at a rate proportional to that mass. The

value of an investment bearing interest that is continuously compounding increases at a

rate proportional to that value. The mass of undecayed radioactive material in a sample

decreases at a rate proportional to that mass.

All of these phenomena, and others exhibiting similar behaviour, can be modelled

mathematically in the same way. If y D y.t/ denotes the value of a quantity y at time

t , and if y changes at a rate proportional to its size, then

dy

dt
D ky;

where k is the constant of proportionality. The above equation is called the differential

equation of exponential growth or decay because, for any value of the constant C;

the function y D Cekt satisfies the equation. In fact, if y.t/ is any solution of the

differential equation y 0
D ky, then

d

dt

�

y.t/

ekt

�

D

ekty 0.t/ � kekty.t/

e2kt
D

y 0.t/ � ky.t/

ekt
D 0 for all t:

Thus, y.t/=ekt
D C; a constant, and y.t/ D Cekt . Since y.0/ D Ce0

D C;

The initial-value problem

8

<

:

dy

dt
D ky

y.0/ D y0

has unique solution y D y0e
kt
:

If y0 > 0, then y.t/ is an increasing function of t if k > 0 and a decreasing function

of t if k < 0. We say that the quantity y exhibits exponential growth if k > 0 and

exponential decay if k < 0. (See Figure 3.15.)

y0

k < 0

k D 0

k > 0y

t

Figure 3.15 Solutions of the initial-value

problem dy=dt D ky, y.0/ D y0, for

k > 0, k D 0, and k < 0

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 3 – page 187 October 15, 2016

SECTION 3.4: Growth and Decay 187

E X A M P L E 1
(Growth of a cell culture) A certain cell culture grows at a rate

proportional to the number of cells present. If the culture contains

500 cells initially and 800 after 24 h, how many cells will there be after a further 12 h?

Solution Let y.t/ be the number of cells present t hours after there were 500 cells.

Thus, y.0/ D 500 and y.24/ D 800. Because dy=dt D ky, we have

y.t/ D y.0/e
kt
D 500e

kt
:

Therefore, 800 D y.24/ D 500e24k , so 24k D ln 800
500
D ln.1:6/. It follows that

k D .1=24/ ln.1:6/ and

y.t/ D 500e
.t=24/ ln.1:6/

D 500.1:6/
t=24

:

We want to know y when t D 36: y.36/ D 500e.36=24/ ln.1:6/
D 500.1:6/3=2

� 1012.

The cell count grew to about 1,012 in the 12 h after it was 800.

Exponential growth is characterized by a fixed doubling time. If T is the time at which

y has doubled from its size at t D 0, then 2y.0/ D y.T / D y.0/ekT . Therefore,

ekT
D 2. Since y.t/ D y.0/ekt , we have

y.t C T / D y.0/e
k.tCT /

D e
kT
y.0/e

kt
D 2y.t/I

that is, T units of time are required for y to double from any value. Similarly, exponen-

tial decay involves a fixed halving time (usually called the half-life). If y.T / D 1
2
y.0/,

then ekT
D

1
2

and

y.t C T / D y.0/e
k.tCT /

D

1

2
y.t/:

E X A M P L E 2
(Radioactive decay) A radioactive material has a half-life of 1,200

years. What percentage of the original radioactivity of a sample is

left after 10 years? How many years are required to reduce the radioactivity by 10%?

Solution Let p.t/ be the percentage of the original radioactivity left after t years.

Thus p.0/ D 100 and p.1;200/ D 50. Since the radioactivity decreases at a rate

proportional to itself, dp=dt D kp and

p.t/ D 100e
kt
:

Now 50 D p.1;200/ D 100e
1;200k , so

k D
1

1;200
ln
50

100
D �

ln 2

1;200
:

The percentage left after 10 years is

p.10/ D 100e
10k
D 100e

�10.ln 2/=1;200
� 99:424:

If after t years 90% of the radioactivity is left, then

90 D 100e
kt
;

kt D ln
90

100
;

t D
1

k
ln.0:9/ D �

1;200

ln 2
ln.0:9/ � 182:4;

so it will take a little over 182 years to reduce the radioactivity by 10%.
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Sometimes an exponential growth or decay problem will involve a quantity that changes

at a rate proportional to the difference between itself and a fixed value:

dy

dt
D k.y � a/:

In this case, the change of dependent variable u.t/ D y.t/ � a should be used to

convert the differential equation to the standard form. Observe that u.t/ changes at the

same rate as y.t/ (i.e., du=dt D dy=dt), so it satisfies

du

dt
D ku:

E X A M P L E 3
(Newton’s law of cooling) A hot object introduced into a cooler

environment will cool at a rate proportional to the excess of its

temperature above that of its environment. If a cup of coffee sitting in a room main-

tained at a temperature of 20 ıC cools from 80
ıC to 50 ıC in 5 minutes, how much

longer will it take to cool to 40 ıC?

Solution Let y.t/ be the temperature of the coffee t min after it was 80 ıC. Thus,

y.0/ D 80 and y.5/ D 50. Newton’s law says that dy=dt D k.y � 20/ in this case, so

let u.t/ D y.t/ � 20. Thus, u.0/ D 60 and u.5/ D 30. We have

du

dt
D

dy

dt
D k.y � 20/ D ku:

Thus,

u.t/ D 60e
kt
;

30 D u.5/ D 60e
5k
;

5k D ln 1
2
D � ln 2:

We want to know t such that y.t/ D 40, that is, u.t/ D 20:

20 D u.t/ D 60e
�.t=5/ ln 2

�

t

5
ln 2 D ln

20

60
D � ln 3;

t D 5
ln 3

ln 2
� 7:92:

The coffee will take about 7:92 � 5 D 2:92 min to cool from 50 ıC to 40 ıC.

Interest on Investments
Suppose that $10,000 is invested at an annual rate of interest of 8%. Thus, the value of

the investment at the end of one year will be $10,000.1:08/ D $10;800. If this amount

remains invested for a second year at the same rate, it will grow to $10,000.1:08/2 =

$11,664; in general, n years after the original investment was made, it will be worth

$10,000.1:08/n.

Now suppose that the 8% rate is compounded semiannually so that the interest is

actually paid at a rate of 4% per 6-month period. After one year (two interest periods)

the $10,000 will grow to $10,000.1:04/2 = $10,816. This is $16 more than was obtained

when the 8% was compounded only once per year. The extra $16 is the interest paid

in the second 6-month period on the $400 interest earned in the first 6-month period.

Continuing in this way, if the 8% interest is compounded monthly (12 periods per year

and 8
12

% paid per period) or daily (365 periods per year and 8
365

% paid per period),

then the original $10,000 would grow in one year to $10,000
�

1C
8

1;200

�12

D $10;830

or $10,000
�

1C
8

36;500

�365

D $10;832:78, respectively.
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For any given nominal interest rate, the investment grows more if the compounding

period is shorter. In general, an original investment of $A invested at r% per annum

compounded n times per year grows in one year to

$A
�

1C
r

100n

�n

:

It is natural to ask how well we can do with our investment if we let the number of

periods in a year approach infinity, that is, we compound the interest continuously.

The answer is that in 1 year the $A will grow to

$A lim
n!1

�

1C
r

100n

�n

D $Aer=100
:

For example, at 8% per annum compounded continuously, our $10,000 will grow in

one year to $10,000e0:08
� $10; 832:87. (Note that this is just a few cents more than

we get by compounding daily.) To justify this result we need the following theorem.

T H E O R E M

6

For every real number x,

e
x
D lim

n!1

�

1C
x

n

�n

:

PROOF If x D 0, there is nothing to prove; both sides of the identity are 1. If x ¤ 0,

let h D x=n. As n tends to infinity, h approaches 0. Thus,

lim
n!1

ln
�

1C
x

n

�n

D lim
n!1

n ln
�

1C
x

n

�

D lim
n!1

x

ln
�

1C
x

n

�

x

n

D x lim
h!0

ln.1C h/

h
.where h D x=n/

D x lim
h!0

ln.1C h/ � ln 1

h
.since ln 1 D 0/

D x

�

d

dt
ln t

�
ˇ

ˇ

ˇ

ˇ

tD1

(by the definition of derivative)

D x
1

t

ˇ

ˇ

ˇ

ˇ

tD1

D x:

Since ln is differentiable, it is continuous. Hence, by Theorem 7 of Section 1.4,

ln
�

lim
n!1

�

1C
x

n

�n�

D lim
n!1

ln
�

1C
x

n

�n

D x:

Taking exponentials of both sides gives the required formula.
Table 2.

n

�

1C
1

n

�n

1 2

10 2:593 74 � � �

100 2:704 81 � � �

1;000 2:716 92 � � �

10;000 2:718 15 � � �

100;000 2:718 27 � � �

In the case x D 1, the formula given in Theorem 6 takes the following form:

e D lim
n!1

�

1C
1

n

�n

:

We can use this formula to compute approximations to e, as shown in Table 2. In a

sense we have cheated in obtaining the numbers in this table; they were produced using

the yx function on a scientific calculator. However, this function is actually computed

as ex ln y . In any event, the formula in this table is not a very efficient way to calculate

e to any great accuracy. Only 4 decimal places are correct for n D 100;000. A much

better way is to use the series
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Sometimes an exponential growth or decay problem will involve a quantity that changes

at a rate proportional to the difference between itself and a fixed value:

dy

dt
D k.y � a/:

In this case, the change of dependent variable u.t/ D y.t/ � a should be used to

convert the differential equation to the standard form. Observe that u.t/ changes at the

same rate as y.t/ (i.e., du=dt D dy=dt), so it satisfies

du

dt
D ku:

E X A M P L E 3
(Newton’s law of cooling) A hot object introduced into a cooler

environment will cool at a rate proportional to the excess of its

temperature above that of its environment. If a cup of coffee sitting in a room main-

tained at a temperature of 20 ıC cools from 80
ıC to 50 ıC in 5 minutes, how much

longer will it take to cool to 40 ıC?

Solution Let y.t/ be the temperature of the coffee t min after it was 80 ıC. Thus,

y.0/ D 80 and y.5/ D 50. Newton’s law says that dy=dt D k.y � 20/ in this case, so

let u.t/ D y.t/ � 20. Thus, u.0/ D 60 and u.5/ D 30. We have

du

dt
D

dy

dt
D k.y � 20/ D ku:

Thus,

u.t/ D 60e
kt
;

30 D u.5/ D 60e
5k
;

5k D ln 1
2
D � ln 2:

We want to know t such that y.t/ D 40, that is, u.t/ D 20:

20 D u.t/ D 60e
�.t=5/ ln 2

�

t

5
ln 2 D ln

20

60
D � ln 3;

t D 5
ln 3

ln 2
� 7:92:

The coffee will take about 7:92 � 5 D 2:92 min to cool from 50 ıC to 40 ıC.

Interest on Investments
Suppose that $10,000 is invested at an annual rate of interest of 8%. Thus, the value of

the investment at the end of one year will be $10,000.1:08/ D $10;800. If this amount

remains invested for a second year at the same rate, it will grow to $10,000.1:08/2 =

$11,664; in general, n years after the original investment was made, it will be worth

$10,000.1:08/n.

Now suppose that the 8% rate is compounded semiannually so that the interest is

actually paid at a rate of 4% per 6-month period. After one year (two interest periods)

the $10,000 will grow to $10,000.1:04/2 = $10,816. This is $16 more than was obtained

when the 8% was compounded only once per year. The extra $16 is the interest paid

in the second 6-month period on the $400 interest earned in the first 6-month period.

Continuing in this way, if the 8% interest is compounded monthly (12 periods per year

and 8
12

% paid per period) or daily (365 periods per year and 8
365

% paid per period),

then the original $10,000 would grow in one year to $10,000
�

1C
8

1;200

�12

D $10;830

or $10,000
�

1C
8

36;500

�365

D $10;832:78, respectively.
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For any given nominal interest rate, the investment grows more if the compounding

period is shorter. In general, an original investment of $A invested at r% per annum

compounded n times per year grows in one year to

$A
�

1C
r

100n

�n

:

It is natural to ask how well we can do with our investment if we let the number of

periods in a year approach infinity, that is, we compound the interest continuously.

The answer is that in 1 year the $A will grow to

$A lim
n!1

�

1C
r

100n

�n

D $Aer=100
:

For example, at 8% per annum compounded continuously, our $10,000 will grow in

one year to $10,000e0:08
� $10; 832:87. (Note that this is just a few cents more than

we get by compounding daily.) To justify this result we need the following theorem.

T H E O R E M

6

For every real number x,

e
x
D lim

n!1

�

1C
x

n

�n

:

PROOF If x D 0, there is nothing to prove; both sides of the identity are 1. If x ¤ 0,

let h D x=n. As n tends to infinity, h approaches 0. Thus,

lim
n!1

ln
�

1C
x

n

�n

D lim
n!1

n ln
�

1C
x

n

�

D lim
n!1

x

ln
�

1C
x

n

�

x

n

D x lim
h!0

ln.1C h/

h
.where h D x=n/

D x lim
h!0

ln.1C h/ � ln 1

h
.since ln 1 D 0/

D x

�

d

dt
ln t

�
ˇ

ˇ

ˇ

ˇ

tD1

(by the definition of derivative)

D x
1

t

ˇ

ˇ

ˇ

ˇ

tD1

D x:

Since ln is differentiable, it is continuous. Hence, by Theorem 7 of Section 1.4,

ln
�

lim
n!1

�

1C
x

n

�n�

D lim
n!1

ln
�

1C
x

n

�n

D x:

Taking exponentials of both sides gives the required formula.
Table 2.

n

�

1C
1

n

�n

1 2

10 2:593 74 � � �

100 2:704 81 � � �

1;000 2:716 92 � � �

10;000 2:718 15 � � �

100;000 2:718 27 � � �

In the case x D 1, the formula given in Theorem 6 takes the following form:

e D lim
n!1

�

1C
1

n

�n

:

We can use this formula to compute approximations to e, as shown in Table 2. In a

sense we have cheated in obtaining the numbers in this table; they were produced using

the yx function on a scientific calculator. However, this function is actually computed

as ex ln y . In any event, the formula in this table is not a very efficient way to calculate

e to any great accuracy. Only 4 decimal places are correct for n D 100;000. A much

better way is to use the series
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e D 1C
1

1Š
C

1

2Š
C

1

3Š
C

1

4Š
C � � � D 1C 1C

1

2
C

1

6
C

1

24
C � � � ;

which we will establish in Section 4.10.

A final word about interest rates. Financial institutions sometimes quote effective

rates of interest rather than nominal rates. The effective rate tells you what the actual

effect of the interest rate will be after one year. Thus, $10,000 invested at an effective

rate of 8% will grow to $10,800.00 in one year regardless of the compounding period.

A nominal rate of 8% per annum compounded daily is equivalent to an effective rate

of about 8.3278%.

Logistic Growth
Few quantities in nature can sustain exponential growth over extended periods of time;

the growth is usually limited by external constraints. For example, suppose a small

number of rabbits (of both sexes) is introduced to a small island where there were

no rabbits previously, and where there are no predators who eat rabbits. By virtue of

natural fertility, the number of rabbits might be expected to grow exponentially, but this

growth will eventually be limited by the food supply available to the rabbits. Suppose

the island can grow enough food to supply a population of L rabbits indefinitely. If

there are y.t/ rabbits in the population at time t , we would expect y.t/ to grow at a

rate proportional to y.t/ provided y.t/ is quite small (much less than L). But as the

numbers increase, it will be harder for the rabbits to find enough food, and we would

expect the rate of increase to approach 0 as y.t/ gets closer and closer to L. One

possible model for such behaviour is the differential equation

dy

dt
D ky

�

1 �
y

L

�

;

Figure 3.16 Some logistic curves

y

t

L

which is called the logistic equation since it models growth that is limited by the

supply of necessary resources. Observe that dy=dt > 0 if 0 < y < L and that this

rate is small if y is small (there are few rabbits to reproduce) or if y is close to L (there

are almost as many rabbits as the available resources can feed). Observe also that

dy=dt < 0 if y > L; there being more animals than the resources can feed, the rabbits

die at a greater rate than they are born. Of course, the steady-state populations y D 0

and y D L are solutions of the logistic equation; for both of these dy=dt D 0. We

will examine techniques for solving differential equations like the logistic equation in

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 3 – page 191 October 15, 2016

SECTION 3.4: Growth and Decay 191

Section 7.9. For now, we invite the reader to verify by differentiation that the solution

satisfying y.0/ D y0 is

y D
Ly0

y0 C .L � y0/e
�kt

:

Observe that, as expected, if 0 < y0 < L, then

lim
t!1

y.t/ D L; lim
t!�1

y.t/ D 0:

The solution given above also holds for y0 > L. However, the solution does not

approach 0 as t approaches �1 in this case. It has a vertical asymptote at a certain

negative value of t . (See Exercise 30 below.) The graphs of solutions of the logistic

equation for various positive values of y0 are given in Figure 3.16.

E X E R C I S E S 3.4

Evaluate the limits in Exercises 1–8.

1. lim
x!1

x
3
e

�x 2. lim
x!1

x
�3
e

x

3. lim
x!1

2e
x
� 3

ex
C 5

4. lim
x!1

x � 2e
�x

x C 3e�x

5. lim
x!0C

x lnx 6. lim
x!0C

ln x

x

7. lim
x!0

x

�

ln jxj
�2

8. lim
x!1

.lnx/3
p

x

9. (Bacterial growth) Bacteria grow in a certain culture at a rate

proportional to the amount present. If there are 100 bacteria

present initially and the amount doubles in 1 h, how many will

there be after a further 1 1
2

h?

10. (Dissolving sugar) Sugar dissolves in water at a rate

proportional to the amount still undissolved. If there were

50 kg of sugar present initially, and at the end of 5 h only

20 kg are left, how much longer will it take until 90% of the

sugar is dissolved?

11. (Radioactive decay) A radioactive substance decays at a rate

proportional to the amount present. If 30% of such a substance

decays in 15 years, what is the half-life of the substance?

12. (Half-life of radium) If the half-life of radium is 1,690 years,

what percentage of the amount present now will be remaining

after (a) 100 years, (b) 1,000 years?

13. Find the half-life of a radioactive substance if after 1 year

99.57% of an initial amount still remains.

14. (Bacterial growth) In a certain culture where the rate of

growth of bacteria is proportional to the number present, the

number triples in 3 days. If at the end of 7 days there are

10 million bacteria present in the culture, how many were

present initially?

15. (Weight of a newborn) In the first few weeks after birth,

babies gain weight at a rate proportional to their weight. A

baby weighing 4 kg at birth weighs 4.4 kg after 2 weeks. How

much did the baby weigh 5 days after birth?

16. (Electric current) When a simple electrical circuit containing

inductance and resistance but no capacitance has the

electromotive force removed, the rate of decrease of the

current is proportional to the current. If the current is I.t/

amperes t s after cutoff, and if I D 40 when t D 0, and

I D 15 when t D 0:01, find a formula for I.t/.

17. (Continuously compounding interest) How much money

needs to be invested today at a nominal rate of 4%

compounded continuously, in order that it should grow to

$10,000 in 7 years?

18. (Continuously compounding interest) Money invested at

compound interest (with instantaneous compounding)

accumulates at a rate proportional to the amount present. If an

initial investment of $1,000 grows to $1,500 in exactly

5 years, find (a) the doubling time for the investment and (b)

the effective annual rate of interest being paid.

19. (Purchasing power) If the purchasing power of the dollar is

decreasing at an effective rate of 9% annually, how long will it

take for the purchasing power to be reduced to 25 cents?

20.I (Effective interest rate) A bank claims to pay interest at an

effective rate of 9.5% on an investment account. If the interest

is actually being compounded monthly, what is the nominal

rate of interest being paid on the account?

21.I Suppose that 1,000 rabbits were introduced onto an island

where they had no natural predators. During the next five

years, the rabbit population grew exponentially. After the first

two years the population was 3,500 rabbits. After the first five

years a rabbit virus was sprayed on the island, and after that

the rabbit population decayed exponentially. Two years after

the virus was introduced (so seven years after rabbits were

introduced to the island), the rabbit population had dropped to

3,000 rabbits. How many rabbits will there be on the island 10

years after they were introduced?

22. Lab rats are to be used in experiments on an isolated island.

Initially R rats are brought to the island and released. Having

a plentiful food supply and no natural predators on the island,

the rat population grows exponentially and doubles in three

months. At the end of the fifth month, and at the end of every

five months thereafter, 1,000 of the rats are captured and

killed. What is the minimum value of R that ensures that the

scientists will never run out of rats?
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e D 1C
1

1Š
C

1

2Š
C

1

3Š
C

1

4Š
C � � � D 1C 1C

1

2
C

1

6
C

1

24
C � � � ;

which we will establish in Section 4.10.

A final word about interest rates. Financial institutions sometimes quote effective

rates of interest rather than nominal rates. The effective rate tells you what the actual

effect of the interest rate will be after one year. Thus, $10,000 invested at an effective

rate of 8% will grow to $10,800.00 in one year regardless of the compounding period.

A nominal rate of 8% per annum compounded daily is equivalent to an effective rate

of about 8.3278%.

Logistic Growth
Few quantities in nature can sustain exponential growth over extended periods of time;

the growth is usually limited by external constraints. For example, suppose a small

number of rabbits (of both sexes) is introduced to a small island where there were

no rabbits previously, and where there are no predators who eat rabbits. By virtue of

natural fertility, the number of rabbits might be expected to grow exponentially, but this

growth will eventually be limited by the food supply available to the rabbits. Suppose

the island can grow enough food to supply a population of L rabbits indefinitely. If

there are y.t/ rabbits in the population at time t , we would expect y.t/ to grow at a

rate proportional to y.t/ provided y.t/ is quite small (much less than L). But as the

numbers increase, it will be harder for the rabbits to find enough food, and we would

expect the rate of increase to approach 0 as y.t/ gets closer and closer to L. One

possible model for such behaviour is the differential equation

dy

dt
D ky

�

1 �
y

L

�

;

Figure 3.16 Some logistic curves

y

t

L

which is called the logistic equation since it models growth that is limited by the

supply of necessary resources. Observe that dy=dt > 0 if 0 < y < L and that this

rate is small if y is small (there are few rabbits to reproduce) or if y is close to L (there

are almost as many rabbits as the available resources can feed). Observe also that

dy=dt < 0 if y > L; there being more animals than the resources can feed, the rabbits

die at a greater rate than they are born. Of course, the steady-state populations y D 0

and y D L are solutions of the logistic equation; for both of these dy=dt D 0. We

will examine techniques for solving differential equations like the logistic equation in
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Section 7.9. For now, we invite the reader to verify by differentiation that the solution

satisfying y.0/ D y0 is

y D
Ly0

y0 C .L � y0/e
�kt

:

Observe that, as expected, if 0 < y0 < L, then

lim
t!1

y.t/ D L; lim
t!�1

y.t/ D 0:

The solution given above also holds for y0 > L. However, the solution does not

approach 0 as t approaches �1 in this case. It has a vertical asymptote at a certain

negative value of t . (See Exercise 30 below.) The graphs of solutions of the logistic

equation for various positive values of y0 are given in Figure 3.16.

E X E R C I S E S 3.4

Evaluate the limits in Exercises 1–8.

1. lim
x!1

x
3
e

�x 2. lim
x!1

x
�3
e

x

3. lim
x!1

2e
x
� 3

ex
C 5

4. lim
x!1

x � 2e
�x

x C 3e�x

5. lim
x!0C

x lnx 6. lim
x!0C

ln x

x

7. lim
x!0

x

�

ln jxj
�2

8. lim
x!1

.lnx/3
p

x

9. (Bacterial growth) Bacteria grow in a certain culture at a rate

proportional to the amount present. If there are 100 bacteria

present initially and the amount doubles in 1 h, how many will

there be after a further 1 1
2

h?

10. (Dissolving sugar) Sugar dissolves in water at a rate

proportional to the amount still undissolved. If there were

50 kg of sugar present initially, and at the end of 5 h only

20 kg are left, how much longer will it take until 90% of the

sugar is dissolved?

11. (Radioactive decay) A radioactive substance decays at a rate

proportional to the amount present. If 30% of such a substance

decays in 15 years, what is the half-life of the substance?

12. (Half-life of radium) If the half-life of radium is 1,690 years,

what percentage of the amount present now will be remaining

after (a) 100 years, (b) 1,000 years?

13. Find the half-life of a radioactive substance if after 1 year

99.57% of an initial amount still remains.

14. (Bacterial growth) In a certain culture where the rate of

growth of bacteria is proportional to the number present, the

number triples in 3 days. If at the end of 7 days there are

10 million bacteria present in the culture, how many were

present initially?

15. (Weight of a newborn) In the first few weeks after birth,

babies gain weight at a rate proportional to their weight. A

baby weighing 4 kg at birth weighs 4.4 kg after 2 weeks. How

much did the baby weigh 5 days after birth?

16. (Electric current) When a simple electrical circuit containing

inductance and resistance but no capacitance has the

electromotive force removed, the rate of decrease of the

current is proportional to the current. If the current is I.t/

amperes t s after cutoff, and if I D 40 when t D 0, and

I D 15 when t D 0:01, find a formula for I.t/.

17. (Continuously compounding interest) How much money

needs to be invested today at a nominal rate of 4%

compounded continuously, in order that it should grow to

$10,000 in 7 years?

18. (Continuously compounding interest) Money invested at

compound interest (with instantaneous compounding)

accumulates at a rate proportional to the amount present. If an

initial investment of $1,000 grows to $1,500 in exactly

5 years, find (a) the doubling time for the investment and (b)

the effective annual rate of interest being paid.

19. (Purchasing power) If the purchasing power of the dollar is

decreasing at an effective rate of 9% annually, how long will it

take for the purchasing power to be reduced to 25 cents?

20.I (Effective interest rate) A bank claims to pay interest at an

effective rate of 9.5% on an investment account. If the interest

is actually being compounded monthly, what is the nominal

rate of interest being paid on the account?

21.I Suppose that 1,000 rabbits were introduced onto an island

where they had no natural predators. During the next five

years, the rabbit population grew exponentially. After the first

two years the population was 3,500 rabbits. After the first five

years a rabbit virus was sprayed on the island, and after that

the rabbit population decayed exponentially. Two years after

the virus was introduced (so seven years after rabbits were

introduced to the island), the rabbit population had dropped to

3,000 rabbits. How many rabbits will there be on the island 10

years after they were introduced?

22. Lab rats are to be used in experiments on an isolated island.

Initially R rats are brought to the island and released. Having

a plentiful food supply and no natural predators on the island,

the rat population grows exponentially and doubles in three

months. At the end of the fifth month, and at the end of every

five months thereafter, 1,000 of the rats are captured and

killed. What is the minimum value of R that ensures that the

scientists will never run out of rats?
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Differential equations of the form y 0
D aC by

23.P Suppose that f .x/ satisfies the differential equation

f
0
.x/ D aC bf .x/;

where a and b are constants.

(a) Solve the differential equation by substituting

u.x/ D aC bf .x/ and solving the simpler differential

equation that results for u.x/.

(b) Solve the initial-value problem:

8

<

:

dy

dx
D aC by

y.0/ D y0

24.P (Drug concentrations in the blood) A drug is introduced into

the bloodstream intravenously at a constant rate and breaks

down and is eliminated from the body at a rate proportional to

its concentration in the blood. The concentration x.t/ of the

drug in the blood satisfies the differential equation

dx

dt
D a � bx;

where a and b are positive constants.

(a) What is the limiting concentration limt!1 x.t/ of the

drug in the blood?

(b) Find the concentration of the drug in the blood at time t ,

given that the concentration was zero at t D 0.

(c) How long after t D 0 will it take for the concentration to

rise to half its limiting value?

25.P (Cooling) Use Newton’s law of cooling to determine the

reading on a thermometer five minutes after it is taken from an

oven at 72 ıC to the outdoors where the temperature is 20 ıC,

if the reading dropped to 48 ıC after one minute.

26.P (Cooling) An object is placed in a freezer maintained at a

temperature of �5 ıC. If the object cools from 45 ıC to 20 ıC

in 40 minutes, how many more minutes will it take to cool to

0 ıC?

27.P (Warming) If an object in a room warms up from 5 ıC to

10 ıC in 4 minutes, and if the room is being maintained at

20 ıC, how much longer will the object take to warm up to

15 ıC? Assume the object warms at a rate proportional to the

difference between its temperature and room temperature.

The logistic equation

28.I Suppose the quantity y.t/ exhibits logistic growth. If the

values of y.t/ at times t D 0, t D 1, and t D 2 are y0, y1, and

y2, respectively, find an equation satisfied by the limiting

value L of y.t/, and solve it for L. If y0 D 3, y1 D 5, and

y2 D 6, find L.

29.P Show that a solution y.t/ of the logistic equation having

0 < y.0/ < L is increasing most rapidly when its value is

L=2. (Hint: You do not need to use the formula for the

solution to see this.)

30.I If y0 > L, find the interval on which the given solution of the

logistic equation is valid. What happens to the solution as t

approaches the left endpoint of this interval?

31.I If y0 < 0, find the interval on which the given solution of the

logistic equation is valid. What happens to the solution as t

approaches the right endpoint of this interval?

32. (Modelling an epidemic) The number y of persons infected

by a highly contagious virus is modelled by a logistic curve

y D
L

1CMe�kt
;

where t is measured in months from the time the outbreak was

discovered. At that time there were 200 infected persons, and

the number grew to 1,000 after 1 month. Eventually, the

number levelled out at 10,000. Find the values of the

parameters L, M , and k of the model.

33. Continuing Exercise 32, how many people were infected

3 months after the outbreak was discovered, and how fast was

the number growing at that time?

3.5 The Inverse Trigonometric Functions

The six trigonometric functions are periodic and, hence, not one-to-one. However, as

we did with the function x2 in Section 3.1, we can restrict their domains in such a way

that the restricted functions are one-to-one and invertible.

The Inverse Sine (or Arcsine) Function
Let us define a function Sinx (note the capital letter) to be sinx, restricted so that its

domain is the interval ��
2
� x �

�
2

:

D E F I N I T I O N

8

The restricted sine function Sin x

Sinx D sin x if �
�

2
� x �

�

2
:

Since its derivative cos x is positive on the interval
�

�
�
2
;

�
2

�

, the function Sinx is

increasing on its domain, so it is a one-to-one function. It has domain
�

�
�
2
;

�
2

�

and
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range Œ�1; 1�. (See Figure 3.17.)

Figure 3.17 The graph of Sinx forms

part of the graph of sinx

y

x

�1

1

��=2

�=2

y D sin x

y D Sin x

Being one-to-one, Sin has an inverse function which is denoted sin�1 (or, in some

books and computer programs, by arcsin, Arcsin, or asin) and which is called the

inverse sine or arcsine function.

D E F I N I T I O N

9

The inverse sine function sin�1
x or Arcsin x

y D sin�1
x ” x D Siny

” x D sin y and �

�

2
� y �

�

2

The graph of sin�1 is shown in Figure 3.18; it is the reflection of the graph of Sin in the

line y D x. The domain of sin�1 is Œ�1; 1� (the range of Sin), and the range of sin�1

is
�

�
�
2
;

�
2

�

(the domain of Sin). The cancellation identities for Sin and sin�1 are

sin�1
.Sinx/ D arcsin .Sinx/ D x for �

�

2
� x �

�

2

Sin .sin�1
x/ D Sin . arcsin x/ D x for � 1 � x � 1

Since the intervals where they apply are specified, Sin can be replaced by sin in both

identities above.

Remark As for the general inverse function f �1, be aware that sin�1
x does not

y

x

.1; �=2/

.�1;��=2/

y D sin�1
x

Figure 3.18 The arcsine function

represent the reciprocal 1= sin x. (We already have a perfectly good name for the

reciprocal of sin x; we call it csc x.) We should think of sin�1
x as “the angle between

�
�
2

and �
2

whose sine is x.”

E X A M P L E 1

(a) sin�1
�

1
2

�

D
�
6

(because sin �
6
D

1
2

and ��
2
<

�
6
<

�
2

).

(b) sin�1
�

�
1p
2

�

D �
�
4

(because sin
�

�
�
4

�

D �
1p
2

and ��
2
< �

�
4
<

�
2

).

(c) sin�1
.�1/ D �

�
2

(because sin
�

�
�
2

�

D �1).

(d) sin�1
2 is not defined. (2 is not in the range of sine.)

E X A M P L E 2
Find (a) sin

�

sin�1
0:7
�

, (b) sin�1
.sin 0:3/, (c) sin�1

�

sin 4�
5

�

,

and (d) cos
�

sin�1
0:6
�

.

Solution

(a) sin
�

sin�1
0:7
�

D 0:7 (cancellation identity).

(b) sin�1
.sin 0:3/ D 0:3 (cancellation identity).

(c) The number 4�
5

does not lie in
�

�
�
2
;

�
2

�

, so we can’t apply the cancellation identity

directly. However, sin 4�
5
D sin

�

� �
�
5

�

D sin �
5

by the supplementary angle

identity. Therefore, sin�1
�

sin 4�
5

�

D sin�1
�

sin �
5

�

D
�
5

(by cancellation).
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Differential equations of the form y 0
D aC by

23.P Suppose that f .x/ satisfies the differential equation

f
0
.x/ D aC bf .x/;

where a and b are constants.

(a) Solve the differential equation by substituting

u.x/ D aC bf .x/ and solving the simpler differential

equation that results for u.x/.

(b) Solve the initial-value problem:

8

<

:

dy

dx
D aC by

y.0/ D y0

24.P (Drug concentrations in the blood) A drug is introduced into

the bloodstream intravenously at a constant rate and breaks

down and is eliminated from the body at a rate proportional to

its concentration in the blood. The concentration x.t/ of the

drug in the blood satisfies the differential equation

dx

dt
D a � bx;

where a and b are positive constants.

(a) What is the limiting concentration limt!1 x.t/ of the

drug in the blood?

(b) Find the concentration of the drug in the blood at time t ,

given that the concentration was zero at t D 0.

(c) How long after t D 0 will it take for the concentration to

rise to half its limiting value?

25.P (Cooling) Use Newton’s law of cooling to determine the

reading on a thermometer five minutes after it is taken from an

oven at 72 ıC to the outdoors where the temperature is 20 ıC,

if the reading dropped to 48 ıC after one minute.

26.P (Cooling) An object is placed in a freezer maintained at a

temperature of �5 ıC. If the object cools from 45 ıC to 20 ıC

in 40 minutes, how many more minutes will it take to cool to

0 ıC?

27.P (Warming) If an object in a room warms up from 5 ıC to

10 ıC in 4 minutes, and if the room is being maintained at

20 ıC, how much longer will the object take to warm up to

15 ıC? Assume the object warms at a rate proportional to the

difference between its temperature and room temperature.

The logistic equation

28.I Suppose the quantity y.t/ exhibits logistic growth. If the

values of y.t/ at times t D 0, t D 1, and t D 2 are y0, y1, and

y2, respectively, find an equation satisfied by the limiting

value L of y.t/, and solve it for L. If y0 D 3, y1 D 5, and

y2 D 6, find L.

29.P Show that a solution y.t/ of the logistic equation having

0 < y.0/ < L is increasing most rapidly when its value is

L=2. (Hint: You do not need to use the formula for the

solution to see this.)

30.I If y0 > L, find the interval on which the given solution of the

logistic equation is valid. What happens to the solution as t

approaches the left endpoint of this interval?

31.I If y0 < 0, find the interval on which the given solution of the

logistic equation is valid. What happens to the solution as t

approaches the right endpoint of this interval?

32. (Modelling an epidemic) The number y of persons infected

by a highly contagious virus is modelled by a logistic curve

y D
L

1CMe�kt
;

where t is measured in months from the time the outbreak was

discovered. At that time there were 200 infected persons, and

the number grew to 1,000 after 1 month. Eventually, the

number levelled out at 10,000. Find the values of the

parameters L, M , and k of the model.

33. Continuing Exercise 32, how many people were infected

3 months after the outbreak was discovered, and how fast was

the number growing at that time?

3.5 The Inverse Trigonometric Functions

The six trigonometric functions are periodic and, hence, not one-to-one. However, as

we did with the function x2 in Section 3.1, we can restrict their domains in such a way

that the restricted functions are one-to-one and invertible.

The Inverse Sine (or Arcsine) Function
Let us define a function Sinx (note the capital letter) to be sinx, restricted so that its

domain is the interval ��
2
� x �

�
2

:

D E F I N I T I O N

8

The restricted sine function Sin x

Sinx D sin x if �
�

2
� x �

�

2
:

Since its derivative cos x is positive on the interval
�

�
�
2
;

�
2

�

, the function Sinx is

increasing on its domain, so it is a one-to-one function. It has domain
�

�
�
2
;

�
2

�

and
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range Œ�1; 1�. (See Figure 3.17.)

Figure 3.17 The graph of Sinx forms

part of the graph of sinx

y

x

�1

1

��=2

�=2

y D sin x

y D Sin x

Being one-to-one, Sin has an inverse function which is denoted sin�1 (or, in some

books and computer programs, by arcsin, Arcsin, or asin) and which is called the

inverse sine or arcsine function.

D E F I N I T I O N

9

The inverse sine function sin�1
x or Arcsin x

y D sin�1
x ” x D Siny

” x D sin y and �

�

2
� y �

�

2

The graph of sin�1 is shown in Figure 3.18; it is the reflection of the graph of Sin in the

line y D x. The domain of sin�1 is Œ�1; 1� (the range of Sin), and the range of sin�1

is
�

�
�
2
;

�
2

�

(the domain of Sin). The cancellation identities for Sin and sin�1 are

sin�1
.Sinx/ D arcsin .Sinx/ D x for �

�

2
� x �

�

2

Sin .sin�1
x/ D Sin . arcsin x/ D x for � 1 � x � 1

Since the intervals where they apply are specified, Sin can be replaced by sin in both

identities above.

Remark As for the general inverse function f �1, be aware that sin�1
x does not

y

x

.1; �=2/

.�1;��=2/

y D sin�1
x

Figure 3.18 The arcsine function

represent the reciprocal 1= sin x. (We already have a perfectly good name for the

reciprocal of sin x; we call it csc x.) We should think of sin�1
x as “the angle between

�
�
2

and �
2

whose sine is x.”

E X A M P L E 1

(a) sin�1
�

1
2

�

D
�
6

(because sin �
6
D

1
2

and ��
2
<

�
6
<

�
2

).

(b) sin�1
�

�
1p
2

�

D �
�
4

(because sin
�

�
�
4

�

D �
1p
2

and ��
2
< �

�
4
<

�
2

).

(c) sin�1
.�1/ D �

�
2

(because sin
�

�
�
2

�

D �1).

(d) sin�1
2 is not defined. (2 is not in the range of sine.)

E X A M P L E 2
Find (a) sin

�

sin�1
0:7
�

, (b) sin�1
.sin 0:3/, (c) sin�1

�

sin 4�
5

�

,

and (d) cos
�

sin�1
0:6
�

.

Solution

(a) sin
�

sin�1
0:7
�

D 0:7 (cancellation identity).

(b) sin�1
.sin 0:3/ D 0:3 (cancellation identity).

(c) The number 4�
5

does not lie in
�

�
�
2
;

�
2

�

, so we can’t apply the cancellation identity

directly. However, sin 4�
5
D sin

�

� �
�
5

�

D sin �
5

by the supplementary angle

identity. Therefore, sin�1
�

sin 4�
5

�

D sin�1
�

sin �
5

�

D
�
5

(by cancellation).
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(d) Let � D sin�1
0:6, as shown in the right triangle in Figure 3.19, which has hy-

�

0:8

0:6
1

Figure 3.19

potenuse 1 and side opposite � equal to 0.6. By the Pythagorean Theorem, the

side adjacent � is
p

1� .0:6/2 D 0:8. Thus, cos
�

sin�1
0:6
�

D cos � D 0:8.

E X A M P L E 3
Simplify the expression tan.sin�1

x/.

Solution We want the tangent of an angle whose sine is x. Suppose first that 0 �

x < 1. As in Example 2, we draw a right triangle (Figure 3.20) with one angle � , and

label the sides so that � D sin�1
x. The side opposite � is x, and the hypotenuse is 1.

The remaining side is
p

1 � x2, and we have

tan.sin�1
x/ D tan � D

x
p

1 � x2
:

Because both sides of the above equation are odd functions of x, the same result holds

for �1 < x < 0.

�

p

1 � x2

1
x

Figure 3.20

Now let us use implicit differentiation to find the derivative of the inverse sine function.

If y D sin�1
x, then x D sin y and ��

2
� y �

�
2

. Differentiating with respect to x,

we obtain

1 D .cos y/
dy

dx
:

Since ��
2
� y �

�
2

, we know that cos y � 0. Therefore,

cos y D

q

1 � sin2
y D

p

1� x2;

and dy=dx D 1= cos y D 1=
p

1 � x2;

d

dx
sin�1

x D
d

dx
arcsinx D

1
p

1 � x2
:

Note that the inverse sine function is differentiable only on the open interval

.�1; 1/; the slope of its graph approaches infinity as x ! �1C or as

x ! 1�. (See Figure 3.18.)

E X A M P L E 4 Find the derivative of sin�1
�

x

a

�

and hence evaluate

Z

dx
p

a2
� x2

,

where a > 0.

Solution By the Chain Rule,

d

dx
sin�1 x

a
D

1
r

1 �
x2

a2

1

a
D

1
r

a2
� x2

a2

1

a
D

1
p

a2
� x2

if a > 0.

Hence,

Z

1
p

a2
� x2

dx D sin�1 x

a
C C .a > 0/:
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E X A M P L E 5
Find the solution y of the following initial-value problem:

8

<

:

y 0
D

4
p

2 � x2
.�
p

2 < x <
p

2/

y.1/ D 2�:

Solution Using the integral from the previous example, we have

y D

Z

4
p

2 � x2
dx D 4 sin�1

�

x
p

2

�

C C

for some constant C . Also 2� D y.1/ D 4 sin�1
.1=
p

2/CC D 4
�

�
4

�

CC D �CC .

Thus, C D � and y D 4 sin�1
.x=
p

2/C � .

E X A M P L E 6
(A sawtooth curve) Let f .x/ D sin�1

.sin x/ for all real

numbers x.

(a) Calculate and simplify f 0.x/.

(b) Where is f differentiable? Where is f continuous?

(c) Use your results from (a) and (b) to sketch the graph of f:

Solution (a) Using the Chain Rule and the Pythagorean identity we calculate

f
0
.x/ D

1
p

1 � .sin x/2
.cos x/

D

cos x
p

cos2 x
D

cos x

j cos xj
D

n

1 if cos x > 0

�1 if cos x < 0.

(b) f is differentiable at all points where cos x ¤ 0, that is, everywhere except at odd

multiples of �=2, namely, ˙�
2

,˙3�
2

, ˙5�
2

, : : : .

Since sin is continuous everywhere and has values in Œ�1; 1�, and since sin�1 is

continuous on Œ�1; 1�, we have that f is continuous on the whole real line.

(c) Since f is continuous, its graph has no breaks. The graph consists of straight line

segments of slopes alternating between 1 and�1 on intervals between consecutive

odd multiples of �=2. Since f 0.x/ D 1 on the interval
�

�
�
2
;

�
2

�

(where cos x �

0), the graph must be as shown in Figure 3.21.

Figure 3.21 A sawtooth graph

y

x

� �
2

�
2

�
2

� �
2

y D sin�1
.sin x/

The Inverse Tangent (or Arctangent) Function
The inverse tangent function is defined in a manner similar to the inverse sine. We

begin by restricting the tangent function to an interval where it is one-to-one; in this

case we use the open interval
�

�
�
2
;

�
2

�

. See Figure 3.22(a).

D E F I N I T I O N

10

The restricted tangent function Tan x

Tan x D tan x if �
�

2
< x <

�

2
:
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(d) Let � D sin�1
0:6, as shown in the right triangle in Figure 3.19, which has hy-

�

0:8

0:6
1

Figure 3.19

potenuse 1 and side opposite � equal to 0.6. By the Pythagorean Theorem, the

side adjacent � is
p

1� .0:6/2 D 0:8. Thus, cos
�

sin�1
0:6
�

D cos � D 0:8.

E X A M P L E 3
Simplify the expression tan.sin�1

x/.

Solution We want the tangent of an angle whose sine is x. Suppose first that 0 �

x < 1. As in Example 2, we draw a right triangle (Figure 3.20) with one angle � , and

label the sides so that � D sin�1
x. The side opposite � is x, and the hypotenuse is 1.

The remaining side is
p

1 � x2, and we have

tan.sin�1
x/ D tan � D

x
p

1 � x2
:

Because both sides of the above equation are odd functions of x, the same result holds

for �1 < x < 0.

�

p

1 � x2

1
x

Figure 3.20

Now let us use implicit differentiation to find the derivative of the inverse sine function.

If y D sin�1
x, then x D sin y and ��

2
� y �

�
2

. Differentiating with respect to x,

we obtain

1 D .cos y/
dy

dx
:

Since ��
2
� y �

�
2

, we know that cos y � 0. Therefore,

cos y D

q

1 � sin2
y D

p

1� x2;

and dy=dx D 1= cos y D 1=
p

1 � x2;

d

dx
sin�1

x D
d

dx
arcsinx D

1
p

1 � x2
:

Note that the inverse sine function is differentiable only on the open interval

.�1; 1/; the slope of its graph approaches infinity as x ! �1C or as

x ! 1�. (See Figure 3.18.)

E X A M P L E 4 Find the derivative of sin�1
�

x

a

�

and hence evaluate

Z

dx
p

a2
� x2

,

where a > 0.

Solution By the Chain Rule,

d

dx
sin�1 x

a
D

1
r

1 �
x2

a2

1

a
D

1
r

a2
� x2

a2

1

a
D

1
p

a2
� x2

if a > 0.

Hence,

Z

1
p

a2
� x2

dx D sin�1 x

a
C C .a > 0/:
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E X A M P L E 5
Find the solution y of the following initial-value problem:

8

<

:

y 0
D

4
p

2 � x2
.�
p

2 < x <
p

2/

y.1/ D 2�:

Solution Using the integral from the previous example, we have

y D

Z

4
p

2 � x2
dx D 4 sin�1

�

x
p

2

�

C C

for some constant C . Also 2� D y.1/ D 4 sin�1
.1=
p

2/CC D 4
�

�
4

�

CC D �CC .

Thus, C D � and y D 4 sin�1
.x=
p

2/C � .

E X A M P L E 6
(A sawtooth curve) Let f .x/ D sin�1

.sin x/ for all real

numbers x.

(a) Calculate and simplify f 0.x/.

(b) Where is f differentiable? Where is f continuous?

(c) Use your results from (a) and (b) to sketch the graph of f:

Solution (a) Using the Chain Rule and the Pythagorean identity we calculate

f
0
.x/ D

1
p

1 � .sin x/2
.cos x/

D

cos x
p

cos2 x
D

cos x

j cos xj
D

n

1 if cos x > 0

�1 if cos x < 0.

(b) f is differentiable at all points where cos x ¤ 0, that is, everywhere except at odd

multiples of �=2, namely, ˙�
2

,˙3�
2

, ˙5�
2

, : : : .

Since sin is continuous everywhere and has values in Œ�1; 1�, and since sin�1 is

continuous on Œ�1; 1�, we have that f is continuous on the whole real line.

(c) Since f is continuous, its graph has no breaks. The graph consists of straight line

segments of slopes alternating between 1 and�1 on intervals between consecutive

odd multiples of �=2. Since f 0.x/ D 1 on the interval
�

�
�
2
;

�
2

�

(where cos x �

0), the graph must be as shown in Figure 3.21.

Figure 3.21 A sawtooth graph

y

x

� �
2

�
2

�
2

� �
2

y D sin�1
.sin x/

The Inverse Tangent (or Arctangent) Function
The inverse tangent function is defined in a manner similar to the inverse sine. We

begin by restricting the tangent function to an interval where it is one-to-one; in this

case we use the open interval
�

�
�
2
;

�
2

�

. See Figure 3.22(a).

D E F I N I T I O N

10

The restricted tangent function Tan x

Tan x D tan x if �
�

2
< x <

�

2
:
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The inverse of the function Tan is called the inverse tangent function and is denoted

tan�1 (or arctan, Arctan, or atan). The domain of tan�1 is the whole real line (the

range of Tan). Its range is the open interval
�

�
�
2
;

�
2

�

.

D E F I N I T I O N

11

The inverse tangent function tan�1
x or Arctan x

y D tan�1
x ” x D Tan y

” x D tan y and �

�

2
< y <

�

2

The graph of tan�1 is shown in Figure 3.22(b); it is the reflection of the graph of Tan

in the line y D x.

Figure 3.22

(a) The graph of Tanx

(b) The graph of tan�1
x

y

x

�
2

� �
2

y D Tan x

y D tan x

y

x

� �
2

�
2

y D tan�1x

(a) (b)

The cancellation identities for Tan and tan�1 are

tan�1
.Tan x/ D arctan .Tan x/ D x for �

�

2
< x <

�

2

Tan .tan�1
x/ D Tan . arctan x/ D x for �1 < x <1

Again, we can replace Tan with tan above since the intervals are specified.

E X A M P L E 7 Evaluate: (a) tan.tan�1
3/, (b) tan�1

�

tan
3�

4

�

,

and (c) cos.tan�1 2/.

Solution

(a) tan.tan�1 3/ D 3 by cancellation.

(b) tan�1
�

tan 3�
4

�

D tan�1.�1/ D �
�
4

.

(c) cos.tan�1
2/ D cos � D 1p

5
via the triangle in Figure 3.23. Alternatively, we

have tan.tan�1 2/ D 2, so sec2.tan�1 2/ D 1C 22
D 5. Thus, cos2.tan�1 2/ D

1
5

.

Since cosine is positive on the range of tan�1, we have cos.tan�1 2/ D
1p
5

.

�

1

p

5
2

Figure 3.23

The derivative of the inverse tangent function is also found by implicit differentiation:

if y D tan�1 x, then x D tan y and

1 D .sec2
y/
dy

dx
D .1C tan2

y/
dy

dx
D .1C x

2
/
dy

dx
:

Thus,

d

dx
tan�1

x D
1

1C x2
:
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E X A M P L E 8 Find
d

dx
tan�1

�

x

a

�

, and hence evaluate

Z

1

x2
C a2

dx.

Solution We have

d

dx
tan�1

�

x

a

�

D

1

1C
x2

a2

1

a
D

a

a2
C x2

I

hence,

Z

dx

a2
C x2

D

1

a
tan�1

�

x

a

�

C C:

E X A M P L E 9 Prove that tan�1

�

x � 1

x C 1

�

D tan�1 x �
�

4
for x > �1.

Solution Let f .x/ D tan�1

�

x � 1

x C 1

�

� tan�1
x. On the interval .�1;1/ we

have, by the Chain Rule and the Quotient Rule,

f
0
.x/ D

1

1C

�

x � 1

x C 1

�2

.x C 1/ � .x � 1/

.x C 1/2
�

1

1C x2

D

.x C 1/2

.x2
C 2x C 1/C .x2

� 2x C 1/

2

.x C 1/2
�

1

1C x2

D

2

2C 2x2
�

1

1C x2
D 0:

Hence, f .x/ D C (constant) on that interval. We can find C by finding f .0/:

C D f .0/ D tan�1
.�1/ � tan�1

0 D �
�

4
:

Hence, the given identity holds on .�1;1/.

Remark Some computer programs, especially spreadsheets, implement two versions

of the arctangent function, usually called “atan” and “atan2.” The function atan is just

the function tan�1 that we have defined; atan.y=x/ gives the angle in radians, between

the line from the origin to the point .x; y/ and the positive x-axis, provided .x; y/ lies

in quadrants I or IV of the plane. The function atan2 is a function of two variables:

atan2.x; y/ gives that angle for any point .x; y/ not on the y-axis. See Figure 3.24.

Some programs, for instance MATLAB, reverse the order of the variables x and y in

their atan2 function. Maple uses arctan(x) and arctan(y,x) for the one- and

two-variable versions of arctangent.

y

x

�1

.x1; y1/

�2.x2; y2/

Figure 3.24

�1 D tan�1.y1=x1/

D atan.y1=x1/

D atan2.x1; y1/

D arctan.y1=x1/ (Maple)

D arctan.y1; x1/ (Maple)

�2 D atan2.x2; y2/

D arctan.y2; x2/ (Maple)

Other Inverse Trigonometric Functions
The function cos x is one-to-one on the interval Œ0; ��, so we could define the inverse

cosine function, cos�1 x (or arccosx, or Arccosx, or acosx), so that

y D cos�1
x ” x D cos y and 0 � y � �:

However, cos y D sin
�

�
2
� y

�

(the complementary angle identity), and �
2
�y is in the

interval
�

�
�
2
;

�
2

�

when 0 � y � � . Thus, the definition above would lead to

y D cos�1x ” x D sin
�

�

2
� y

�

” sin�1
x D

�

2
� y D

�

2
� cos�1x:
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The inverse of the function Tan is called the inverse tangent function and is denoted

tan�1 (or arctan, Arctan, or atan). The domain of tan�1 is the whole real line (the

range of Tan). Its range is the open interval
�

�
�
2
;

�
2

�

.

D E F I N I T I O N

11

The inverse tangent function tan�1
x or Arctan x

y D tan�1
x ” x D Tan y

” x D tan y and �

�

2
< y <

�

2

The graph of tan�1 is shown in Figure 3.22(b); it is the reflection of the graph of Tan

in the line y D x.

Figure 3.22

(a) The graph of Tanx

(b) The graph of tan�1
x

y

x

�
2

� �
2

y D Tan x

y D tan x

y

x

� �
2

�
2

y D tan�1x

(a) (b)

The cancellation identities for Tan and tan�1 are

tan�1
.Tan x/ D arctan .Tan x/ D x for �

�

2
< x <

�

2

Tan .tan�1
x/ D Tan . arctan x/ D x for �1 < x <1

Again, we can replace Tan with tan above since the intervals are specified.

E X A M P L E 7 Evaluate: (a) tan.tan�1
3/, (b) tan�1

�

tan
3�

4

�

,

and (c) cos.tan�1 2/.

Solution

(a) tan.tan�1 3/ D 3 by cancellation.

(b) tan�1
�

tan 3�
4

�

D tan�1.�1/ D �
�
4

.

(c) cos.tan�1
2/ D cos � D 1p

5
via the triangle in Figure 3.23. Alternatively, we

have tan.tan�1 2/ D 2, so sec2.tan�1 2/ D 1C 22
D 5. Thus, cos2.tan�1 2/ D

1
5

.

Since cosine is positive on the range of tan�1, we have cos.tan�1 2/ D
1p
5

.

�

1

p

5
2

Figure 3.23

The derivative of the inverse tangent function is also found by implicit differentiation:

if y D tan�1 x, then x D tan y and

1 D .sec2
y/
dy

dx
D .1C tan2

y/
dy

dx
D .1C x

2
/
dy

dx
:

Thus,

d

dx
tan�1

x D
1

1C x2
:
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E X A M P L E 8 Find
d

dx
tan�1

�

x

a

�

, and hence evaluate

Z

1

x2
C a2

dx.

Solution We have

d

dx
tan�1

�

x

a

�

D

1

1C
x2

a2

1

a
D

a

a2
C x2

I

hence,

Z

dx

a2
C x2

D

1

a
tan�1

�

x

a

�

C C:

E X A M P L E 9 Prove that tan�1

�

x � 1

x C 1

�

D tan�1 x �
�

4
for x > �1.

Solution Let f .x/ D tan�1

�

x � 1

x C 1

�

� tan�1
x. On the interval .�1;1/ we

have, by the Chain Rule and the Quotient Rule,

f
0
.x/ D

1

1C

�

x � 1

x C 1

�2

.x C 1/ � .x � 1/

.x C 1/2
�

1

1C x2

D

.x C 1/2

.x2
C 2x C 1/C .x2

� 2x C 1/

2

.x C 1/2
�

1

1C x2

D

2

2C 2x2
�

1

1C x2
D 0:

Hence, f .x/ D C (constant) on that interval. We can find C by finding f .0/:

C D f .0/ D tan�1
.�1/ � tan�1

0 D �
�

4
:

Hence, the given identity holds on .�1;1/.

Remark Some computer programs, especially spreadsheets, implement two versions

of the arctangent function, usually called “atan” and “atan2.” The function atan is just

the function tan�1 that we have defined; atan.y=x/ gives the angle in radians, between

the line from the origin to the point .x; y/ and the positive x-axis, provided .x; y/ lies

in quadrants I or IV of the plane. The function atan2 is a function of two variables:

atan2.x; y/ gives that angle for any point .x; y/ not on the y-axis. See Figure 3.24.

Some programs, for instance MATLAB, reverse the order of the variables x and y in

their atan2 function. Maple uses arctan(x) and arctan(y,x) for the one- and

two-variable versions of arctangent.

y

x

�1

.x1; y1/

�2.x2; y2/

Figure 3.24

�1 D tan�1.y1=x1/

D atan.y1=x1/

D atan2.x1; y1/

D arctan.y1=x1/ (Maple)

D arctan.y1; x1/ (Maple)

�2 D atan2.x2; y2/

D arctan.y2; x2/ (Maple)

Other Inverse Trigonometric Functions
The function cos x is one-to-one on the interval Œ0; ��, so we could define the inverse

cosine function, cos�1 x (or arccosx, or Arccosx, or acosx), so that

y D cos�1
x ” x D cos y and 0 � y � �:

However, cos y D sin
�

�
2
� y

�

(the complementary angle identity), and �
2
�y is in the

interval
�

�
�
2
;

�
2

�

when 0 � y � � . Thus, the definition above would lead to

y D cos�1x ” x D sin
�

�

2
� y

�

” sin�1
x D

�

2
� y D

�

2
� cos�1x:
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It is easier to use this result to define cos�1x directly:

D E F I N I T I O N

12

The inverse cosine function cos�1
x or Arccos x

cos�1
x D

�

2
� sin�1

x for � 1 � x � 1:

The cancellation identities for cos�1x are

cos�1
.cos x/ D arccos .cos x/ D x for 0 � x � �

cos.cos�1
x/ D cos. arccos x/ D x for � 1 � x � 1

The derivative of cos�1 x is the negative of that of sin�1
x (why?):

d

dx
cos�1

x D �
1

p

1 � x2
:

The graph of cos�1 is shown in Figure 3.25(a).

Figure 3.25 The graphs of cos�1 and

sec�1

y

x

�
2

.�1; �/

y D cos�1
x

1

y

x

�
2

.�1; �/

1

y D sec�1x

(a) (b)

Scientific calculators usually implement only the primary trigonometric functions—

sine, cosine, and tangent—and the inverses of these three. The secondary functions—

secant, cosecant, and cotangent—are calculated using the reciprocal key; to calculate

secx you calculate cos x and take the reciprocal of the answer. The inverses of the

secondary trigonometric functions are also easily expressed in terms of those of their

reciprocal functions. For example, we define:

D E F I N I T I O N

13

The inverse secant function sec�1
x (or Arcsec x)

sec�1
x D cos�1

�

1

x

�

for jxj � 1:

The domain of sec�1 is the union of intervals .�1;�1� [ Œ1;1/, and its range is
�

0;
�
2

�

[

�

�
2
; �
�

. The graph of y D sec�1x is shown in Figure 3.25(b). It is the

reflection in the line y D x of that part of the graph of secx for x between 0 and � .
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Observe that

sec.sec�1
x/ D sec

�

cos�1

�

1

x

��

D

1

cos

�

cos�1

�

1

x

�� D

1

1

x

D x for jxj � 1;

sec�1
.sec x/ D cos�1

�

1

sec x

�

D cos�1
.cos x/ D x for x in Œ0; ��; x ¤

�

2
:

We calculate the derivative of sec�1 from that of cos�1:
Some authors prefer to define

sec�1 as the inverse of the

restriction of secx to the

separated intervals Œ0; �=2/ and

Œ�; 3�=2/ because this prevents

the absolute value from

appearing in the formula for the

derivative. However, it is much

harder to calculate values with

that definition. Our definition

makes it easy to obtain a value

such as sec�1.�3/ from a

calculator. Scientific calculators

usually have just the inverses of

sine, cosine, and tangent built in.

d

dx
sec�1

x D
d

dx
cos�1

�

1

x

�

D

�1
r

1 �
1

x2

�

�

1

x2

�

D

1

x2

s

x2

x2
� 1
D

1

x2

jxj
p

x2
� 1
D

1

jxj
p

x2
� 1

:

Note that we had to use
p

x2
D jxj in the last line. There are negative values of x

in the domain of sec�1. Observe in Figure 3.25(b) that the slope of y D sec�1
.x/ is

always positive.

d

dx
sec�1

x D
1

jxj
p

x2
� 1

:

The corresponding integration formula takes different forms on intervals where x � 1

or x � �1:

Z

1

x
p

x2
� 1

dx D

�

sec�1x C C on intervals where x � 1

�sec�1x C C on intervals where x � �1

Finally, note that csc�1 and cot�1 are defined similarly to sec�1. They are seldom

encountered.

D E F I N I T I O N

14

The inverse cosecant and inverse cotangent functions

csc�1
x D sin�1

�

1

x

�

; .jxj � 1/I cot�1
x D tan�1

�

1

x

�

; .x ¤ 0/

E X E R C I S E S 3.5

In Exercises 1–12, evaluate the given expression.

1. sin�1
p

3
2

2. cos�1
��1

2

�

3. tan�1
.�1/ 4. sec�1

p

2

5. sin.sin�1
0:7/ 6. cos.sin�1

0:7/

7. tan�1
�

tan 2�
3

�

8. sin�1
.cos 40ı/

9. cos�1
.sin.�0:2// 10. sin

�

cos�1
��1

3

��

11. cos
�

tan�1 1
2

�

12. tan.tan�1
200/

In Exercises 13–18, simplify the given expression.

13. sin.cos�1
x/ 14. cos.sin�1

x/

15. cos.tan�1
x/ 16. sin.tan�1

x/

17. tan.cos�1
x/ 18. tan.sec�1

x/

In Exercises 19–32, differentiate the given function and simplify

the answer whenever possible.
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It is easier to use this result to define cos�1x directly:

D E F I N I T I O N

12

The inverse cosine function cos�1
x or Arccos x

cos�1
x D

�

2
� sin�1

x for � 1 � x � 1:

The cancellation identities for cos�1x are

cos�1
.cos x/ D arccos .cos x/ D x for 0 � x � �

cos.cos�1
x/ D cos. arccos x/ D x for � 1 � x � 1

The derivative of cos�1 x is the negative of that of sin�1
x (why?):

d

dx
cos�1

x D �
1

p

1 � x2
:

The graph of cos�1 is shown in Figure 3.25(a).

Figure 3.25 The graphs of cos�1 and

sec�1

y

x

�
2

.�1; �/

y D cos�1
x

1

y

x

�
2

.�1; �/

1

y D sec�1x

(a) (b)

Scientific calculators usually implement only the primary trigonometric functions—

sine, cosine, and tangent—and the inverses of these three. The secondary functions—

secant, cosecant, and cotangent—are calculated using the reciprocal key; to calculate

secx you calculate cos x and take the reciprocal of the answer. The inverses of the

secondary trigonometric functions are also easily expressed in terms of those of their

reciprocal functions. For example, we define:

D E F I N I T I O N

13

The inverse secant function sec�1
x (or Arcsec x)

sec�1
x D cos�1

�

1

x

�

for jxj � 1:

The domain of sec�1 is the union of intervals .�1;�1� [ Œ1;1/, and its range is
�

0;
�
2

�

[

�

�
2
; �
�

. The graph of y D sec�1x is shown in Figure 3.25(b). It is the

reflection in the line y D x of that part of the graph of secx for x between 0 and � .
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Observe that

sec.sec�1
x/ D sec

�

cos�1

�

1

x

��

D

1

cos

�

cos�1

�

1

x

�� D

1

1

x

D x for jxj � 1;

sec�1
.sec x/ D cos�1

�

1

sec x

�

D cos�1
.cos x/ D x for x in Œ0; ��; x ¤

�

2
:

We calculate the derivative of sec�1 from that of cos�1:
Some authors prefer to define

sec�1 as the inverse of the

restriction of secx to the

separated intervals Œ0; �=2/ and

Œ�; 3�=2/ because this prevents

the absolute value from

appearing in the formula for the

derivative. However, it is much

harder to calculate values with

that definition. Our definition

makes it easy to obtain a value

such as sec�1.�3/ from a

calculator. Scientific calculators

usually have just the inverses of

sine, cosine, and tangent built in.

d

dx
sec�1

x D
d

dx
cos�1

�

1

x

�

D

�1
r

1 �
1

x2

�

�

1

x2

�

D

1

x2

s

x2

x2
� 1
D

1

x2

jxj
p

x2
� 1
D

1

jxj
p

x2
� 1

:

Note that we had to use
p

x2
D jxj in the last line. There are negative values of x

in the domain of sec�1. Observe in Figure 3.25(b) that the slope of y D sec�1
.x/ is

always positive.

d

dx
sec�1

x D
1

jxj
p

x2
� 1

:

The corresponding integration formula takes different forms on intervals where x � 1

or x � �1:

Z

1

x
p

x2
� 1

dx D

�

sec�1x C C on intervals where x � 1

�sec�1x C C on intervals where x � �1

Finally, note that csc�1 and cot�1 are defined similarly to sec�1. They are seldom

encountered.

D E F I N I T I O N

14

The inverse cosecant and inverse cotangent functions

csc�1
x D sin�1

�

1

x

�

; .jxj � 1/I cot�1
x D tan�1

�

1

x

�

; .x ¤ 0/

E X E R C I S E S 3.5

In Exercises 1–12, evaluate the given expression.

1. sin�1
p

3
2

2. cos�1
��1

2

�

3. tan�1
.�1/ 4. sec�1

p

2

5. sin.sin�1
0:7/ 6. cos.sin�1

0:7/

7. tan�1
�

tan 2�
3

�

8. sin�1
.cos 40ı/

9. cos�1
.sin.�0:2// 10. sin

�

cos�1
��1

3

��

11. cos
�

tan�1 1
2

�

12. tan.tan�1
200/

In Exercises 13–18, simplify the given expression.

13. sin.cos�1
x/ 14. cos.sin�1

x/

15. cos.tan�1
x/ 16. sin.tan�1

x/

17. tan.cos�1
x/ 18. tan.sec�1

x/

In Exercises 19–32, differentiate the given function and simplify

the answer whenever possible.
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19. y D sin�1

�

2x � 1

3

�

20. y D tan�1
.ax C b/

21. y D cos�1

�

x � b

a

�

22. f .x/ D x sin�1
x

23. f .t/ D t tan�1
t 24. u D z2 sec�1

.1C z
2
/

25. F.x/ D .1C x2
/ tan�1

x 26. y D sin�1 a

x

27. G.x/ D
sin�1

x

sin�1
2x

28. H.t/ D
sin�1

t

sin t

29. f .x/ D .sin�1
x

2
/
1=2 30. y D cos�1 a

p

a2
C x2

31. y D
p

a2
� x2

C a sin�1 x

a
.a > 0/

32. y D a cos�1
�

1 �
x

a

�

�

p

2ax � x2 .a > 0/

33. Find the slope of the curve tan�1

�

2x

y

�

D

�x

y2
at the point

.1; 2/.

34. Find equations of two straight lines tangent to the graph of

y D sin�1
x and having slope 2.

35.A Show that, on their respective domains, sin�1 and tan�1 are

increasing functions and cos�1 is a decreasing function.

36.A The derivative of sec�1 x is positive for every x in the domain

of sec�1. Does this imply that sec�1 is increasing on its

domain? Why?

37. Sketch the graph of csc�1
x and find its derivative.

38. Sketch the graph of cot�1
x and find its derivative.

39. Show that tan�1
x C cot�1

x D
�
2

for x > 0. What is the sum

if x < 0?

40. Find the derivative of g.x/ D tan.tan�1 x/ and sketch the

graph of g.

In Exercises 41–44, plot the graphs of the given functions by first

calculating and simplifying the derivative of the function. Where

is each function continuous? Where is it differentiable?

41.I cos�1.cosx/ 42.I sin�1
.cosx/

43.I tan�1.tanx/ 44.I tan�1.cot x/

45. Show that sin�1
x D tan�1

�

x
p

1 � x2

�

if jxj < 1.

46. Show that sec�1 x D

�

tan�1
p

x2
� 1 if x � 1

� � tan�1
p

x2
� 1 if x � �1

47. Show that tan�1
x D sin�1

�

x
p

1C x2

�

for all x.

48. Show that sec�1 x D

8

ˆ

ˆ

<

ˆ

ˆ

:

sin�1

p

x2
� 1

x
if x � 1

� C sin�1

p

x2
� 1

x
if x � �1

49.A Show that the function f .x/ of Example 9 is also constant on

the interval .�1;�1/. Find the value of the constant. Hint:

Find limx!�1 f .x/.

50.A Find the derivative of f .x/ D x � tan�1.tanx/. What does

your answer imply about f .x/? Calculate f .0/ and f .�/. Is

there a contradiction here?

51.I Find the derivative of f .x/ D x � sin�1
.sinx/ for

�� � x � � and sketch the graph of f on that interval.

In Exercises 52–55, solve the initial-value problems.

52.P

8

<

:

y 0
D

1

1C x2

y.0/ D 1

53.P

8

<

:

y 0
D

1

9C x2

y.3/ D 2

54.P

8

<

:

y 0
D

1
p

1 � x2

y.1=2/ D 1

55.P

8

<

:

y 0
D

4
p

25 � x2

y.0/ D 0

3.6 Hyperbolic Functions

Any function defined on the real line can be expressed (in a unique way) as the sum of

an even function and an odd function. (See Exercise 35 of Section P.5.) The hyperbolic

functions cosh x and sinh x are, respectively, the even and odd functions whose sum

is the exponential function ex .

D E F I N I T I O N

15

The hyperbolic cosine and hyperbolic sine functions

For any real x the hyperbolic cosine, cosh x, and the hyperbolic sine, sinh x,

are defined by

cosh x D
ex
C e�x

2
; sinhx D

ex
� e�x

2
:

(The symbol “sinh” is somewhat hard to pronounce as written. Some people say

“shine,” and others say “sinch.”) Recall that cosine and sine are called circular func-

tions because, for any t , the point .cos t; sin t/ lies on the circle with equation x2
C

y2
D 1. Similarly, cosh and sinh are called hyperbolic functions because the point

.cosh t; sinh t/ lies on the rectangular hyperbola with equation x2
� y2

D 1,
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cosh2
t � sinh2

t D 1 for any real t :

To see this, observe that

cosh2
t � sinh2

t D

�

et
C e�t

2

�2

�

�

et
� e�t

2

�2

D

1

4

�

e
2t
C 2C e

�2t
� .e

2t
� 2C e

�2t
/
�

D

1

4
.2C 2/ D 1:

There is no interpretation of t as an arc length or angle as there was in the circular

case; however, the area of the hyperbolic sector bounded by y D 0, the hyperbola

x2
� y2

D 1, and the ray from the origin to .cosh t; sinh t/ is t=2 square units (see

Exercise 21 of Section 8.4), just as is the area of the circular sector bounded by y D 0,

the circle x2
C y2

D 1, and the ray from the origin to .cos t; sin t/. (See Figure 3.26.)

Figure 3.26 Both shaded areas are t=2

square units

y

x

x2
� y2

D 1

.cosh t; sinh t /

t=2

y

x

x2
C y2

D 1

.cos t; sin t /

t=2

(a) (b)

Observe that, similar to the corresponding values of cos x and sinx, we have

cosh 0 D 1 and sinh 0 D 0;

and cosh x, like cos x, is an even function, and sinh x, like sin x, is an odd function:

cosh.�x/ D cosh x; sinh.�x/ D � sinh x:

The graphs of cosh and sinh are shown in Figure 3.27. The graph y D cosh x is called

a catenary. A chain hanging by its ends will assume the shape of a catenary.

Many other properties of the hyperbolic functions resemble those of the corre-

sponding circular functions, sometimes with signs changed.

E X A M P L E 1
Show that

d

dx
cosh x D sinh x and

d

dx
sinh x D cosh x:
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19. y D sin�1

�

2x � 1

3

�

20. y D tan�1
.ax C b/

21. y D cos�1

�

x � b

a

�

22. f .x/ D x sin�1
x

23. f .t/ D t tan�1
t 24. u D z2 sec�1

.1C z
2
/

25. F.x/ D .1C x2
/ tan�1

x 26. y D sin�1 a

x

27. G.x/ D
sin�1

x

sin�1
2x

28. H.t/ D
sin�1

t

sin t

29. f .x/ D .sin�1
x

2
/
1=2 30. y D cos�1 a

p

a2
C x2

31. y D
p

a2
� x2

C a sin�1 x

a
.a > 0/

32. y D a cos�1
�

1 �
x

a

�

�

p

2ax � x2 .a > 0/

33. Find the slope of the curve tan�1

�

2x

y

�

D

�x

y2
at the point

.1; 2/.

34. Find equations of two straight lines tangent to the graph of

y D sin�1
x and having slope 2.

35.A Show that, on their respective domains, sin�1 and tan�1 are

increasing functions and cos�1 is a decreasing function.

36.A The derivative of sec�1 x is positive for every x in the domain

of sec�1. Does this imply that sec�1 is increasing on its

domain? Why?

37. Sketch the graph of csc�1
x and find its derivative.

38. Sketch the graph of cot�1
x and find its derivative.

39. Show that tan�1
x C cot�1

x D
�
2

for x > 0. What is the sum

if x < 0?

40. Find the derivative of g.x/ D tan.tan�1 x/ and sketch the

graph of g.

In Exercises 41–44, plot the graphs of the given functions by first

calculating and simplifying the derivative of the function. Where

is each function continuous? Where is it differentiable?

41.I cos�1.cosx/ 42.I sin�1
.cosx/

43.I tan�1.tanx/ 44.I tan�1.cot x/

45. Show that sin�1
x D tan�1

�

x
p

1 � x2

�

if jxj < 1.

46. Show that sec�1 x D

�

tan�1
p

x2
� 1 if x � 1

� � tan�1
p

x2
� 1 if x � �1

47. Show that tan�1
x D sin�1

�

x
p

1C x2

�

for all x.

48. Show that sec�1 x D

8

ˆ

ˆ

<

ˆ

ˆ

:

sin�1

p

x2
� 1

x
if x � 1

� C sin�1

p

x2
� 1

x
if x � �1

49.A Show that the function f .x/ of Example 9 is also constant on

the interval .�1;�1/. Find the value of the constant. Hint:

Find limx!�1 f .x/.

50.A Find the derivative of f .x/ D x � tan�1.tanx/. What does

your answer imply about f .x/? Calculate f .0/ and f .�/. Is

there a contradiction here?

51.I Find the derivative of f .x/ D x � sin�1
.sinx/ for

�� � x � � and sketch the graph of f on that interval.

In Exercises 52–55, solve the initial-value problems.

52.P

8

<

:

y 0
D

1

1C x2

y.0/ D 1

53.P

8

<

:

y 0
D

1

9C x2

y.3/ D 2

54.P

8

<

:

y 0
D

1
p

1 � x2

y.1=2/ D 1

55.P

8

<

:

y 0
D

4
p

25 � x2

y.0/ D 0

3.6 Hyperbolic Functions

Any function defined on the real line can be expressed (in a unique way) as the sum of

an even function and an odd function. (See Exercise 35 of Section P.5.) The hyperbolic

functions cosh x and sinh x are, respectively, the even and odd functions whose sum

is the exponential function ex .

D E F I N I T I O N

15

The hyperbolic cosine and hyperbolic sine functions

For any real x the hyperbolic cosine, cosh x, and the hyperbolic sine, sinh x,

are defined by

cosh x D
ex
C e�x

2
; sinhx D

ex
� e�x

2
:

(The symbol “sinh” is somewhat hard to pronounce as written. Some people say

“shine,” and others say “sinch.”) Recall that cosine and sine are called circular func-

tions because, for any t , the point .cos t; sin t/ lies on the circle with equation x2
C

y2
D 1. Similarly, cosh and sinh are called hyperbolic functions because the point

.cosh t; sinh t/ lies on the rectangular hyperbola with equation x2
� y2

D 1,
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cosh2
t � sinh2

t D 1 for any real t :

To see this, observe that

cosh2
t � sinh2

t D

�

et
C e�t

2

�2

�

�

et
� e�t

2

�2

D

1

4

�

e
2t
C 2C e

�2t
� .e

2t
� 2C e

�2t
/
�

D

1

4
.2C 2/ D 1:

There is no interpretation of t as an arc length or angle as there was in the circular

case; however, the area of the hyperbolic sector bounded by y D 0, the hyperbola

x2
� y2

D 1, and the ray from the origin to .cosh t; sinh t/ is t=2 square units (see

Exercise 21 of Section 8.4), just as is the area of the circular sector bounded by y D 0,

the circle x2
C y2

D 1, and the ray from the origin to .cos t; sin t/. (See Figure 3.26.)

Figure 3.26 Both shaded areas are t=2

square units

y

x

x2
� y2

D 1

.cosh t; sinh t /

t=2

y

x

x2
C y2

D 1

.cos t; sin t /

t=2

(a) (b)

Observe that, similar to the corresponding values of cos x and sinx, we have

cosh 0 D 1 and sinh 0 D 0;

and cosh x, like cos x, is an even function, and sinh x, like sin x, is an odd function:

cosh.�x/ D cosh x; sinh.�x/ D � sinh x:

The graphs of cosh and sinh are shown in Figure 3.27. The graph y D cosh x is called

a catenary. A chain hanging by its ends will assume the shape of a catenary.

Many other properties of the hyperbolic functions resemble those of the corre-

sponding circular functions, sometimes with signs changed.

E X A M P L E 1
Show that

d

dx
cosh x D sinh x and

d

dx
sinh x D cosh x:
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Solution We have

d

dx
cosh x D

d

dx

ex
C e�x

2
D

ex
C e�x.�1/

2
D sinh x

d

dx
sinh x D

d

dx

e
x
� e

�x

2
D

e
x
� e

�x
.�1/

2
D cosh x:

Figure 3.27 The graphs of cosh (red) and

sinh (blue), and some exponential graphs

(green) to which they are asymptotic

y

x

y D cosh x

y D sinh x

y D �
1
2 e

�x

y D
1
2
e�x

y D
1
2 e

x

The following addition formulas and double-angle formulas can be checked algebraically

by using the definition of cosh and sinh and the laws of exponents:

cosh.x C y/ D cosh x cosh y C sinh x sinh y;

sinh.x C y/ D sinh x cosh y C cosh x sinh y;

cosh.2x/ D cosh2
x C sinh2

x D 1C 2 sinh2
x D 2 cosh2

x � 1;

sinh.2x/ D 2 sinh x cosh x:

By analogy with the trigonometric functions, four other hyperbolic functions can

be defined in terms of cosh and sinh.

D E F I N I T I O N

16

Other hyperbolic functions

tanh x D
sinh x

cosh x
D

ex
� e�x

ex
C e�x

coth x D
cosh x

sinh x
D

ex
C e�x

ex
� e�x

sech x D
1

cosh x
D

2

ex
C e�x

csch x D
1

sinh x
D

2

ex
� e�x

Multiplying the numerator and denominator of the fraction defining tanh x by e�x and

ex , respectively, we obtain

lim
x!1

tanh x D lim
x!1

1 � e�2x

1C e�2x
D 1 and

lim
x!�1

tanh x D lim
x!�1

e2x
� 1

e2x
C 1
D �1;

so that the graph of y D tanh x has two horizontal asymptotes. The graph of tanh x

(Figure 3.28) resembles those of x=
p

1C x2 and .2=�/tan�1x in shape, but, of course,

they are not identical.
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Figure 3.28 The graph of tanhx

y

x

�1

y D tanh x

1

The derivatives of the remaining hyperbolic functions

d

dx
tanh x D sech 2

x

d

dx
coth x D �csch 2

x

d

dx
sech x D �sech x tanh x

d

dx
csch x D �csch x coth x

are easily calculated from those of cosh x and sinh x using the Reciprocal and Quotient

Rules. For example,

d

dx
tanh x D

d

dx

sinh x

cosh x
D

.cosh x/.cosh x/� .sinh x/.sinh x/

cosh2
x

D

1

cosh2
x
D sech 2

x:

Remark The distinction between trigonometric and hyperbolic functions largely dis-

appears if we allow complex numbers instead of just real numbers as variables. If i is

the imaginary unit (so that i2 D �1), then

e
ix
D cos x C i sin x and e

�ix
D cos x � i sin x:

(See Appendix I.) Therefore,

cosh.ix/ D
eix
C e�ix

2
D cos x; cos.ix/ D cosh.�x/ D cosh x;

sinh.ix/ D
eix
� e�ix

2
D i sinx; sin.ix/ D

1

i
sinh.�x/ D i sinh x:

Inverse Hyperbolic Functions
The functions sinh and tanh are increasing and therefore one-to-one and invertible on

the whole real line. Their inverses are denoted sinh�1 and tanh�1, respectively:

y D sinh�1
x ” x D sinh y;

y D tanh�1
x ” x D tanh y:

Since the hyperbolic functions are defined in terms of exponentials, it is not surprising

that their inverses can be expressed in terms of logarithms.

E X A M P L E 2
Express the functions sinh�1

x and tanh�1
x in terms of natural

logarithms.

Solution Let y D sinh�1
x. Then

x D sinh y D
ey
� e�y

2
D

.ey/2 � 1

2ey
:
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Solution We have

d

dx
cosh x D

d

dx

ex
C e�x

2
D

ex
C e�x.�1/

2
D sinh x

d

dx
sinh x D

d

dx

e
x
� e

�x

2
D

e
x
� e

�x
.�1/

2
D cosh x:

Figure 3.27 The graphs of cosh (red) and

sinh (blue), and some exponential graphs

(green) to which they are asymptotic

y

x

y D cosh x

y D sinh x

y D �
1
2 e

�x

y D
1
2
e�x

y D
1
2 e

x

The following addition formulas and double-angle formulas can be checked algebraically

by using the definition of cosh and sinh and the laws of exponents:

cosh.x C y/ D cosh x cosh y C sinh x sinh y;

sinh.x C y/ D sinh x cosh y C cosh x sinh y;

cosh.2x/ D cosh2
x C sinh2

x D 1C 2 sinh2
x D 2 cosh2

x � 1;

sinh.2x/ D 2 sinh x cosh x:

By analogy with the trigonometric functions, four other hyperbolic functions can

be defined in terms of cosh and sinh.

D E F I N I T I O N

16

Other hyperbolic functions

tanh x D
sinh x

cosh x
D

ex
� e�x

ex
C e�x

coth x D
cosh x

sinh x
D

ex
C e�x

ex
� e�x

sech x D
1

cosh x
D

2

ex
C e�x

csch x D
1

sinh x
D

2

ex
� e�x

Multiplying the numerator and denominator of the fraction defining tanh x by e�x and

ex , respectively, we obtain

lim
x!1

tanh x D lim
x!1

1 � e�2x

1C e�2x
D 1 and

lim
x!�1

tanh x D lim
x!�1

e2x
� 1

e2x
C 1
D �1;

so that the graph of y D tanh x has two horizontal asymptotes. The graph of tanh x

(Figure 3.28) resembles those of x=
p

1C x2 and .2=�/tan�1x in shape, but, of course,

they are not identical.
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Figure 3.28 The graph of tanhx

y

x

�1

y D tanh x

1

The derivatives of the remaining hyperbolic functions

d

dx
tanh x D sech 2

x

d

dx
coth x D �csch 2

x

d

dx
sech x D �sech x tanh x

d

dx
csch x D �csch x coth x

are easily calculated from those of cosh x and sinh x using the Reciprocal and Quotient

Rules. For example,

d

dx
tanh x D

d

dx

sinh x

cosh x
D

.cosh x/.cosh x/� .sinh x/.sinh x/

cosh2
x

D

1

cosh2
x
D sech 2

x:

Remark The distinction between trigonometric and hyperbolic functions largely dis-

appears if we allow complex numbers instead of just real numbers as variables. If i is

the imaginary unit (so that i2 D �1), then

e
ix
D cos x C i sin x and e

�ix
D cos x � i sin x:

(See Appendix I.) Therefore,

cosh.ix/ D
eix
C e�ix

2
D cos x; cos.ix/ D cosh.�x/ D cosh x;

sinh.ix/ D
eix
� e�ix

2
D i sinx; sin.ix/ D

1

i
sinh.�x/ D i sinh x:

Inverse Hyperbolic Functions
The functions sinh and tanh are increasing and therefore one-to-one and invertible on

the whole real line. Their inverses are denoted sinh�1 and tanh�1, respectively:

y D sinh�1
x ” x D sinh y;

y D tanh�1
x ” x D tanh y:

Since the hyperbolic functions are defined in terms of exponentials, it is not surprising

that their inverses can be expressed in terms of logarithms.

E X A M P L E 2
Express the functions sinh�1

x and tanh�1
x in terms of natural

logarithms.

Solution Let y D sinh�1
x. Then

x D sinh y D
ey
� e�y

2
D

.ey/2 � 1

2ey
:
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(We multiplied the numerator and denominator of the first fraction by ey to get the

second fraction.) Therefore,

.e
y
/
2
� 2xe

y
� 1 D 0:

This is a quadratic equation in ey , and it can be solved by the quadratic formula:

e
y
D

2x ˙
p

4x2
C 4

2
D x ˙

p

x2
C 1:

Note that
p

x2
C 1 > x. Since ey cannot be negative, we need to use the positive sign:

e
y
D x C

p

x2
C 1:

Hence, y D ln
�

x C
p

x2
C 1

�

, and we have

sinh�1
x D ln

�

x C

p

x2
C 1

�

:

Now let y D tanh�1
x. Then

x D tanh y D
e

y
� e

�y

ey
C e�y

D

e
2y
� 1

e2y
C 1

.�1 < x < 1/;

xe
2y
C x D e

2y
� 1;

e
2y
D

1C x

1 � x
; y D

1

2
ln

�

1C x

1 � x

�

:

Thus,

tanh�1
x D

1

2
ln

�

1C x

1 � x

�

; .�1 < x < 1/:

Since cosh is not one-to-one, its domain must be restricted before an inverse can be

defined. Let us define the principal value of cosh to be

Cosh x D cosh x .x � 0/:

The inverse, cosh�1, is then defined by

y D cosh�1
x ” x D Cosh y

” x D cosh y .y � 0/:

As we did for sinh�1, we can obtain the formula

cosh�1
x D ln

�

x C

p

x2
� 1

�

; .x � 1/:

As was the case for the inverses of the reciprocal trigonometric functions, the

inverses of the remaining three hyperbolic functions, coth, sech, and csch, are best

defined using the inverses of their reciprocals.
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coth�1
x D tanh�1

�

1

x

�

D

1

2
ln

0

B

@

1C
1

x

1 �
1

x

1

C

A
for

ˇ

ˇ

ˇ

ˇ

1

x

ˇ

ˇ

ˇ

ˇ

< 1

D

1

2
ln

�

x C 1

x � 1

�

for x > 1 or x < 1

sech �1
x D cosh�1

�

1

x

�

D ln

 

1

x
C

r

1

x2
� 1

!

for
1

x
� 1

D ln

 

1C
p

1 � x2

x

!

for 0 < x � 1

csch �1
x D sinh�1

�

1

x

�

D ln

 

1

x
C

r

1

x2
C 1

!

D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

ln

 

1C
p

1C x2

x

!

if x > 0

ln

 

1 �
p

1C x2

x

!

if x < 0.

The derivatives of all six inverse hyperbolic functions are left as exercises for the

reader. See Exercise 5 and Exercises 8–10 below.

E X E R C I S E S 3.6

1. Verify the formulas for the derivatives of sech x, cschx, and

cothx given in this section.

2. Verify the addition formulas

cosh.x C y/ D coshx coshy C sinhx sinhy;

sinh.x C y/ D sinhx coshy C coshx sinhy:

Proceed by expanding the right-hand side of each identity in

terms of exponentials. Find similar formulas for cosh.x � y/

and sinh.x � y/.

3. Obtain addition formulas for tanh.x C y/ and tanh.x � y/

from those for sinh and cosh.

4. Sketch the graphs of y D cothx, y D sechx, and y D cschx,

showing any asymptotes.

5. Calculate the derivatives of sinh�1
x, cosh�1

x, and tanh�1
x.

Hence, express each of the indefinite integrals

Z

dx
p

x2
C 1

;

Z

dx
p

x2
� 1

;

Z

dx

1 � x2

in terms of inverse hyperbolic functions.

6. Calculate the derivatives of the functions sinh�1
.x=a/,

cosh�1
.x=a/, and tanh�1

.x=a/ (where a > 0), and use your

answers to provide formulas for certain indefinite integrals.

7. Simplify the following expressions: (a) sinh lnx,

(b) cosh ln x, (c) tanh lnx, (d)
cosh lnx C sinh lnx

cosh lnx � sinh lnx
.

8. Find the domain, range, and derivative of coth�1
x and sketch

the graph of y D coth�1
x.

9. Find the domain, range, and derivative of sech �1
x and sketch

the graph of y D sech �1
x.

10. Find the domain, range, and derivative of csch �1
x, and

sketch the graph of y D csch �1
x.

11.P Show that the functions fA;B .x/ D Ae
kx
C Be�kx and

gC;D.x/ D C cosh kx CD sinh kx are both solutions of the

differential equation y 00
� k2y D 0. (They are both general

solutions.) Express fA;B in terms of gC;D , and express gC;D

in terms of fA;B .

12.P Show that hL;M .x/ D L cosh k.x � a/CM sinh k.x � a/ is

also a solution of the differential equation in the previous

exercise. Express hL;M in terms of the function fA;B above.

13.P Solve the initial-value problem y 00
� k2y D 0, y.a/ D y0,

y 0.a/ D v0. Express the solution in terms of the function

hL;M of Exercise 12.
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(We multiplied the numerator and denominator of the first fraction by ey to get the

second fraction.) Therefore,

.e
y
/
2
� 2xe

y
� 1 D 0:

This is a quadratic equation in ey , and it can be solved by the quadratic formula:

e
y
D

2x ˙
p

4x2
C 4

2
D x ˙

p

x2
C 1:

Note that
p

x2
C 1 > x. Since ey cannot be negative, we need to use the positive sign:

e
y
D x C

p

x2
C 1:

Hence, y D ln
�

x C
p

x2
C 1

�

, and we have

sinh�1
x D ln

�

x C

p

x2
C 1

�

:

Now let y D tanh�1
x. Then

x D tanh y D
e

y
� e

�y

ey
C e�y

D

e
2y
� 1

e2y
C 1

.�1 < x < 1/;

xe
2y
C x D e

2y
� 1;

e
2y
D

1C x

1 � x
; y D

1

2
ln

�

1C x

1 � x

�

:

Thus,

tanh�1
x D

1

2
ln

�

1C x

1 � x

�

; .�1 < x < 1/:

Since cosh is not one-to-one, its domain must be restricted before an inverse can be

defined. Let us define the principal value of cosh to be

Cosh x D cosh x .x � 0/:

The inverse, cosh�1, is then defined by

y D cosh�1
x ” x D Cosh y

” x D cosh y .y � 0/:

As we did for sinh�1, we can obtain the formula

cosh�1
x D ln

�

x C

p

x2
� 1

�

; .x � 1/:

As was the case for the inverses of the reciprocal trigonometric functions, the

inverses of the remaining three hyperbolic functions, coth, sech, and csch, are best

defined using the inverses of their reciprocals.
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coth�1
x D tanh�1

�

1

x

�

D

1

2
ln

0

B

@

1C
1

x

1 �
1

x

1

C

A
for

ˇ

ˇ

ˇ

ˇ

1

x

ˇ

ˇ

ˇ

ˇ

< 1

D

1

2
ln

�

x C 1

x � 1

�

for x > 1 or x < 1

sech �1
x D cosh�1

�

1

x

�

D ln

 

1

x
C

r

1

x2
� 1

!

for
1

x
� 1

D ln

 

1C
p

1 � x2

x

!

for 0 < x � 1

csch �1
x D sinh�1

�

1

x

�

D ln

 

1

x
C

r

1

x2
C 1

!

D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

ln

 

1C
p

1C x2

x

!

if x > 0

ln

 

1 �
p

1C x2

x

!

if x < 0.

The derivatives of all six inverse hyperbolic functions are left as exercises for the

reader. See Exercise 5 and Exercises 8–10 below.

E X E R C I S E S 3.6

1. Verify the formulas for the derivatives of sech x, cschx, and

cothx given in this section.

2. Verify the addition formulas

cosh.x C y/ D coshx coshy C sinhx sinhy;

sinh.x C y/ D sinhx coshy C coshx sinhy:

Proceed by expanding the right-hand side of each identity in

terms of exponentials. Find similar formulas for cosh.x � y/

and sinh.x � y/.

3. Obtain addition formulas for tanh.x C y/ and tanh.x � y/

from those for sinh and cosh.

4. Sketch the graphs of y D cothx, y D sechx, and y D cschx,

showing any asymptotes.

5. Calculate the derivatives of sinh�1
x, cosh�1

x, and tanh�1
x.

Hence, express each of the indefinite integrals

Z

dx
p

x2
C 1

;

Z

dx
p

x2
� 1

;

Z

dx

1 � x2

in terms of inverse hyperbolic functions.

6. Calculate the derivatives of the functions sinh�1
.x=a/,

cosh�1
.x=a/, and tanh�1

.x=a/ (where a > 0), and use your

answers to provide formulas for certain indefinite integrals.

7. Simplify the following expressions: (a) sinh lnx,

(b) cosh ln x, (c) tanh lnx, (d)
cosh lnx C sinh lnx

cosh lnx � sinh lnx
.

8. Find the domain, range, and derivative of coth�1
x and sketch

the graph of y D coth�1
x.

9. Find the domain, range, and derivative of sech �1
x and sketch

the graph of y D sech �1
x.

10. Find the domain, range, and derivative of csch �1
x, and

sketch the graph of y D csch �1
x.

11.P Show that the functions fA;B .x/ D Ae
kx
C Be�kx and

gC;D.x/ D C cosh kx CD sinh kx are both solutions of the

differential equation y 00
� k2y D 0. (They are both general

solutions.) Express fA;B in terms of gC;D , and express gC;D

in terms of fA;B .

12.P Show that hL;M .x/ D L cosh k.x � a/CM sinh k.x � a/ is

also a solution of the differential equation in the previous

exercise. Express hL;M in terms of the function fA;B above.

13.P Solve the initial-value problem y 00
� k2y D 0, y.a/ D y0,

y 0.a/ D v0. Express the solution in terms of the function

hL;M of Exercise 12.
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3.7 Second-Order Linear DEs with Constant Coefficients
A differential equation of the form

a y
00
C b y

0
C cy D 0; .�/

where a, b, and c are constants and a ¤ 0, is called a second-order, linear, homo-

geneous differential equation with constant coefficients. The second-order refers to the

highest order derivative present; the terms linear and homogeneous refer to the fact that

if y1.t/ and y2.t/ are two solutions of the equation, then so is y.t/ D Ay1.t/CBy2.t/

for any constants A and B:

If ay 00
1 .t/C by

0
1.t/C cy1.t/ D 0 and ay 00

2 .t/C by
0
2.t/C cy2.t/ D 0,

and if y.t/ D Ay1.t/C By2.t/, then ay 00
.t/C by

0
.t/C cy.t/ D 0.

(See Section 18.1 for more details on this terminology.) Throughout this section we

will assume that the independent variable in our functions is t rather than x, so the

prime (0) refers to the derivative d=dt . This is because in most applications of such

equations the independent variable is time.

Equations of type .�/ arise in many applications of mathematics. In particular,

they can model mechanical vibrations such as the motion of a mass suspended from an

elastic spring or the current in certain electrical circuits. In most such applications the

three constants a, b, and c are positive, although sometimes we may have b D 0.

Recipe for Solving ay” + by’ + cy = 0
In Section 3.4 we observed that the first-order, constant-coefficient equation y 0

D ky

has solution y D Cekt . Let us try to find a solution of equation .�/ having the form

y D ert . Substituting this expression into equation .�/, we obtain

ar
2
e

rt
C bre

rt
C ce

rt
D 0:

Since ert is never zero, y D ert will be a solution of the differential equation .�/ if

and only if r satisfies the quadratic auxiliary equation

ar
2
C br C c D 0; .��/

which has roots given by the quadratic formula,

r D
�b ˙

p

b2
� 4ac

2a
D �

b

2a
˙

p

D

2a
;

where D D b2
� 4ac is called the discriminant of the auxiliary equation .��/.

There are three cases to consider, depending on whether the discriminant D is

positive, zero, or negative.

CASE I Suppose D D b2
� 4ac > 0. Then the auxiliary equation has two different

real roots, r1 and r2, given by

r1 D
�b �

p

D

2a
; r2 D

�b C
p

D

2a
:

(Sometimes these roots can be found easily by factoring the left side of the auxiliary

equation.) In this case both y D y1.t/ D e
r1t and y D y2.t/ D e

r2t are solutions of

the differential equation .�/, and neither is a multiple of the other. As noted above, the

function
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y D Ae
r1t
C B e

r2t

is also a solution for any choice of the constants A and B . Since the differential equa-

tion is of second order and this solution involves two arbitrary constants, we suspect it

is the general solution, that is, that every solution of the differential equation can be

written in this form. Exercise 18 at the end of this section outlines a way to prove this.

CASE II Suppose D D b2
� 4ac D 0. Then the auxiliary equation has two equal

roots, r1 D r2 D �b=.2a/ D r , say. Certainly, y D e
rt is a solution of .�/. We can

find the general solution by letting y D ertu.t/ and calculating:

y
0
D e

rt
�

u
0
.t/C ru.t/

�

;

y
00
D e

rt
�

u
00
.t/C 2ru

0
.t/C r

2
u.t/

�

:

Substituting these expressions into .�/, we obtain

e
rt
�

au
00
.t/C .2ar C b/u

0
.t/C .ar

2
C br C c/u.t/

�

D 0:

Since ert
¤ 0, 2ar C b D 0 and r satisfies .��/, this equation reduces to u00.t/ D 0,

which has general solution u.t/ D AC Bt for arbitrary constants A and B . Thus, the

general solution of .�/ in this case is

y D Ae
rt
C Bt e

rt
:

CASE III Suppose D D b2
� 4ac < 0. Then the auxiliary equation .��/ has

complex conjugate roots given by

r D
�b ˙

p

b2
� 4ac

2a
D k ˙ i!;

where k D �b=.2a/, ! D
p

4ac � b2=.2a/, and i is the imaginary unit (i2 D �1;

see Appendix I). As in Case I, the functions y�
1 .t/ D e.kCi!/t and y�

2 .t/ D e.k�i!/t

are two independent solutions of (*), but they are not real-valued. However, since

e
ix
D cos x C i sin x and e

�ix
D cos x � i sin x

(as noted in the previous section and in Appendix II), we can find two real-valued

functions that are solutions of (*) by suitably combining y�
1 and y�

2 :

y1.t/ D
1

2
y

�
1 .t/C

1

2
y

�
2 .t/ D e

kt cos.!t/;

y2.t/ D
1

2i
y

�
1 .t/ �

1

2i
y

�
2 .t/ D e

kt sin.!t/:

Therefore, the general solution of .�/ in this case is

y D Ae
kt cos.!t/C B ekt sin.!t/:

The following examples illustrate the recipe for solving .�/ in each of the three cases.

E X A M P L E 1
Find the general solution of

y 00
C y 0

� 2y D 0.

Solution The auxiliary equation is r2
C r � 2 D 0, or .r C 2/.r � 1/ D 0. The

auxiliary roots are r1 D �2 and r2 D 1, which are real and unequal. According to

Case I, the general solution of the differential equation is

y D Ae
�2t
C Be

t
:
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3.7 Second-Order Linear DEs with Constant Coefficients
A differential equation of the form

a y
00
C b y

0
C cy D 0; .�/

where a, b, and c are constants and a ¤ 0, is called a second-order, linear, homo-

geneous differential equation with constant coefficients. The second-order refers to the

highest order derivative present; the terms linear and homogeneous refer to the fact that

if y1.t/ and y2.t/ are two solutions of the equation, then so is y.t/ D Ay1.t/CBy2.t/

for any constants A and B:

If ay 00
1 .t/C by

0
1.t/C cy1.t/ D 0 and ay 00

2 .t/C by
0
2.t/C cy2.t/ D 0,

and if y.t/ D Ay1.t/C By2.t/, then ay 00
.t/C by

0
.t/C cy.t/ D 0.

(See Section 18.1 for more details on this terminology.) Throughout this section we

will assume that the independent variable in our functions is t rather than x, so the

prime (0) refers to the derivative d=dt . This is because in most applications of such

equations the independent variable is time.

Equations of type .�/ arise in many applications of mathematics. In particular,

they can model mechanical vibrations such as the motion of a mass suspended from an

elastic spring or the current in certain electrical circuits. In most such applications the

three constants a, b, and c are positive, although sometimes we may have b D 0.

Recipe for Solving ay” + by’ + cy = 0
In Section 3.4 we observed that the first-order, constant-coefficient equation y 0

D ky

has solution y D Cekt . Let us try to find a solution of equation .�/ having the form

y D ert . Substituting this expression into equation .�/, we obtain

ar
2
e

rt
C bre

rt
C ce

rt
D 0:

Since ert is never zero, y D ert will be a solution of the differential equation .�/ if

and only if r satisfies the quadratic auxiliary equation

ar
2
C br C c D 0; .��/

which has roots given by the quadratic formula,

r D
�b ˙

p

b2
� 4ac

2a
D �

b

2a
˙

p

D

2a
;

where D D b2
� 4ac is called the discriminant of the auxiliary equation .��/.

There are three cases to consider, depending on whether the discriminant D is

positive, zero, or negative.

CASE I Suppose D D b2
� 4ac > 0. Then the auxiliary equation has two different

real roots, r1 and r2, given by

r1 D
�b �

p

D

2a
; r2 D

�b C
p

D

2a
:

(Sometimes these roots can be found easily by factoring the left side of the auxiliary

equation.) In this case both y D y1.t/ D e
r1t and y D y2.t/ D e

r2t are solutions of

the differential equation .�/, and neither is a multiple of the other. As noted above, the

function
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y D Ae
r1t
C B e

r2t

is also a solution for any choice of the constants A and B . Since the differential equa-

tion is of second order and this solution involves two arbitrary constants, we suspect it

is the general solution, that is, that every solution of the differential equation can be

written in this form. Exercise 18 at the end of this section outlines a way to prove this.

CASE II Suppose D D b2
� 4ac D 0. Then the auxiliary equation has two equal

roots, r1 D r2 D �b=.2a/ D r , say. Certainly, y D e
rt is a solution of .�/. We can

find the general solution by letting y D ertu.t/ and calculating:

y
0
D e

rt
�

u
0
.t/C ru.t/

�

;

y
00
D e

rt
�

u
00
.t/C 2ru

0
.t/C r

2
u.t/

�

:

Substituting these expressions into .�/, we obtain

e
rt
�

au
00
.t/C .2ar C b/u

0
.t/C .ar

2
C br C c/u.t/

�

D 0:

Since ert
¤ 0, 2ar C b D 0 and r satisfies .��/, this equation reduces to u00.t/ D 0,

which has general solution u.t/ D AC Bt for arbitrary constants A and B . Thus, the

general solution of .�/ in this case is

y D Ae
rt
C Bt e

rt
:

CASE III Suppose D D b2
� 4ac < 0. Then the auxiliary equation .��/ has

complex conjugate roots given by

r D
�b ˙

p

b2
� 4ac

2a
D k ˙ i!;

where k D �b=.2a/, ! D
p

4ac � b2=.2a/, and i is the imaginary unit (i2 D �1;

see Appendix I). As in Case I, the functions y�
1 .t/ D e.kCi!/t and y�

2 .t/ D e.k�i!/t

are two independent solutions of (*), but they are not real-valued. However, since

e
ix
D cos x C i sin x and e

�ix
D cos x � i sin x

(as noted in the previous section and in Appendix II), we can find two real-valued

functions that are solutions of (*) by suitably combining y�
1 and y�

2 :

y1.t/ D
1

2
y

�
1 .t/C

1

2
y

�
2 .t/ D e

kt cos.!t/;

y2.t/ D
1

2i
y

�
1 .t/ �

1

2i
y

�
2 .t/ D e

kt sin.!t/:

Therefore, the general solution of .�/ in this case is

y D Ae
kt cos.!t/C B ekt sin.!t/:

The following examples illustrate the recipe for solving .�/ in each of the three cases.

E X A M P L E 1
Find the general solution of

y 00
C y 0

� 2y D 0.

Solution The auxiliary equation is r2
C r � 2 D 0, or .r C 2/.r � 1/ D 0. The

auxiliary roots are r1 D �2 and r2 D 1, which are real and unequal. According to

Case I, the general solution of the differential equation is

y D Ae
�2t
C Be

t
:
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E X A M P L E 2
Find the general solution of y 00

C 6y 0
C 9y D 0.

Solution The auxiliary equation is r2
C6rC9 D 0, or .rC3/2 D 0, which has equal

roots r D �3. According to Case II, the general solution of the differential equation is

y D Ae
�3t
C Bt e

�3t
:

E X A M P L E 3
Find the general solution of y 00

C 4y 0
C 13y D 0.

Solution The auxiliary equation is r2
C 4r C 13 D 0, which has solutions

r D
�4˙

p

16 � 52

2
D

�4˙
p

�36

2
D �2˙ 3i:

Thus, k D �2 and ! D 3. According to Case III, the general solution of the given

differential equation is

y D Ae
�2t cos.3t/C B e�2t sin.3t/:

Initial-value problems for ay 00
C by 0

C cy D 0 specify values for y and y 0 at an initial

point. These values can be used to determine the values of the constants A and B in

the general solution, so the initial-value problem has a unique solution.

E X A M P L E 4
Solve the initial-value problem

8

ˆ

<

ˆ

:

y
00
C 2y

0
C 2y D 0

y.0/ D 2

y
0
.0/ D �3:

Solution The auxiliary equation is r2
C 2r C 2 D 0, which has roots

r D
�2˙

p

4 � 8

2
D �1˙ i:

Thus, Case III applies, with k D �1 and ! D 1. Therefore, the differential equation

has the general solution

y D Ae
�t cos t C B e�t sin t:

Also,

y
0
D e

�t
�

�A cos t � B sin t � A sin t C B cos t
�

D .B � A/ e
�t cos t � .AC B/ e�t sin t:

Applying the initial conditions y.0/ D 2 and y 0.0/ D �3, we obtain A D 2 and

B � A D �3. Hence, B D �1 and the initial-value problem has the solution

y D 2 e
�t cos t � e�t sin t:
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Simple Harmonic Motion
Many natural phenomena exhibit periodic behaviour. The swinging of a clock pen-

dulum, the vibrating of a guitar string or drum membrane, the altitude of a rider on

a rotating ferris wheel, the motion of an object floating in wavy seas, and the voltage

produced by an alternating current generator are but a few examples where quanti-

ties depend on time in a periodic way. Being periodic, the circular functions sine and

cosine provide a useful model for such behaviour.

It often happens that a quantity displaced from an equilibrium value experiences

a restoring force that tends to move it back in the direction of its equilibrium. Besides

the obvious examples of elastic motions in physics, one can imagine such a model

applying, say, to a biological population in equilibrium with its food supply or the

price of a commodity in an elastic economy where increasing price causes decreasing

demand and hence decreasing price. In the simplest models, the restoring force is

proportional to the amount of displacement from equilibrium. Such a force causes the

quantity to oscillate sinusoidally; we say that it executes simple harmonic motion.

As a specific example, suppose a mass m is suspended by an elastic spring so that

it hangs unmoving in its equilibrium position with the upward spring tension force

balancing the downward gravitational force on the mass. If the mass is displaced ver-

tically by an amount y from this position, the spring tension changes; the extra force

exerted by the spring is directed to restore the mass to its equilibrium position. (See

Figure 3.29.) This extra force is proportional to the displacement (Hooke’s Law); its

magnitude is �ky, where k is a positive constant called the spring constant. Assum-

ing the spring is weightless, this force imparts to the mass m an acceleration d2y=dt2

that satisfies, by Newton’s Second Law, m.d2y=dt2/ D �ky (mass � acceleration =

force). Dividing this equation by m, we obtain the equation

y

m

Figure 3.29

d2y

dt2
C !

2
y D 0; where !

2
D

k

m
:

The second-order differential equation

d2y

dt2
C !

2
y D 0

is called the equation of simple harmonic motion. Its auxiliary equation,

r2
C !2

D 0, has complex roots r D ˙i!, so it has general solution

y D A cos!t C B sin!t;

where A and B are arbitrary constants.

For any values of the constants R and t0, the function

y D R cos
�

!.t � t0/
�

is also a general solution of the differential equation of simple harmonic motion. If we

expand this formula using the addition formula for cosine, we get

y D R cos!t0 cos!t CR sin!t0 sin!t

D A cos!t C B sin!t;

where

A D R cos.!t0/;

R
2
D A

2
C B

2
;

B D R sin.!t0/;

tan.!t0/ D B=A:
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E X A M P L E 2
Find the general solution of y 00

C 6y 0
C 9y D 0.

Solution The auxiliary equation is r2
C6rC9 D 0, or .rC3/2 D 0, which has equal

roots r D �3. According to Case II, the general solution of the differential equation is

y D Ae
�3t
C Bt e

�3t
:

E X A M P L E 3
Find the general solution of y 00

C 4y 0
C 13y D 0.

Solution The auxiliary equation is r2
C 4r C 13 D 0, which has solutions

r D
�4˙

p

16 � 52

2
D

�4˙
p

�36

2
D �2˙ 3i:

Thus, k D �2 and ! D 3. According to Case III, the general solution of the given

differential equation is

y D Ae
�2t cos.3t/C B e�2t sin.3t/:

Initial-value problems for ay 00
C by 0

C cy D 0 specify values for y and y 0 at an initial

point. These values can be used to determine the values of the constants A and B in

the general solution, so the initial-value problem has a unique solution.

E X A M P L E 4
Solve the initial-value problem

8

ˆ

<

ˆ

:

y
00
C 2y

0
C 2y D 0

y.0/ D 2

y
0
.0/ D �3:

Solution The auxiliary equation is r2
C 2r C 2 D 0, which has roots

r D
�2˙

p

4 � 8

2
D �1˙ i:

Thus, Case III applies, with k D �1 and ! D 1. Therefore, the differential equation

has the general solution

y D Ae
�t cos t C B e�t sin t:

Also,

y
0
D e

�t
�

�A cos t � B sin t � A sin t C B cos t
�

D .B � A/ e
�t cos t � .AC B/ e�t sin t:

Applying the initial conditions y.0/ D 2 and y 0.0/ D �3, we obtain A D 2 and

B � A D �3. Hence, B D �1 and the initial-value problem has the solution

y D 2 e
�t cos t � e�t sin t:
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Simple Harmonic Motion
Many natural phenomena exhibit periodic behaviour. The swinging of a clock pen-

dulum, the vibrating of a guitar string or drum membrane, the altitude of a rider on

a rotating ferris wheel, the motion of an object floating in wavy seas, and the voltage

produced by an alternating current generator are but a few examples where quanti-

ties depend on time in a periodic way. Being periodic, the circular functions sine and

cosine provide a useful model for such behaviour.

It often happens that a quantity displaced from an equilibrium value experiences

a restoring force that tends to move it back in the direction of its equilibrium. Besides

the obvious examples of elastic motions in physics, one can imagine such a model

applying, say, to a biological population in equilibrium with its food supply or the

price of a commodity in an elastic economy where increasing price causes decreasing

demand and hence decreasing price. In the simplest models, the restoring force is

proportional to the amount of displacement from equilibrium. Such a force causes the

quantity to oscillate sinusoidally; we say that it executes simple harmonic motion.

As a specific example, suppose a mass m is suspended by an elastic spring so that

it hangs unmoving in its equilibrium position with the upward spring tension force

balancing the downward gravitational force on the mass. If the mass is displaced ver-

tically by an amount y from this position, the spring tension changes; the extra force

exerted by the spring is directed to restore the mass to its equilibrium position. (See

Figure 3.29.) This extra force is proportional to the displacement (Hooke’s Law); its

magnitude is �ky, where k is a positive constant called the spring constant. Assum-

ing the spring is weightless, this force imparts to the mass m an acceleration d2y=dt2

that satisfies, by Newton’s Second Law, m.d2y=dt2/ D �ky (mass � acceleration =

force). Dividing this equation by m, we obtain the equation

y

m

Figure 3.29

d2y

dt2
C !

2
y D 0; where !

2
D

k

m
:

The second-order differential equation

d2y

dt2
C !

2
y D 0

is called the equation of simple harmonic motion. Its auxiliary equation,

r2
C !2

D 0, has complex roots r D ˙i!, so it has general solution

y D A cos!t C B sin!t;

where A and B are arbitrary constants.

For any values of the constants R and t0, the function

y D R cos
�

!.t � t0/
�

is also a general solution of the differential equation of simple harmonic motion. If we

expand this formula using the addition formula for cosine, we get

y D R cos!t0 cos!t CR sin!t0 sin!t

D A cos!t C B sin!t;

where

A D R cos.!t0/;

R
2
D A

2
C B

2
;

B D R sin.!t0/;

tan.!t0/ D B=A:
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Figure 3.30 Simple harmonic motion

y

tt0
t0 C

2�
!

T

R

�R

y D R cos
�

!.t � t0/

�

The constants A and B are related to the position y0 and the velocity v0 of the massm

at time t D 0:

y0 D y.0/ D A cos 0C B sin 0 D A;

v0 D y
0
.0/ D �A! sin 0C B! cos 0 D B!:

The constant R D
p

A2
C B2 is called the amplitude of the motion. Because cos x

oscillates between �1 and 1, the displacement y varies between �R and R. Note

in Figure 3.30 that the graph of the displacement as a function of time is the curve

y D R cos!t shifted t0 units to the right. The number t0 is called the time-shift. (The

related quantity !t0 is called a phase-shift.) The period of this curve is T D 2�=!;

it is the time interval between consecutive instants when the mass is at the same height

moving in the same direction. The reciprocal 1=T of the period is called the frequency

of the motion. It is usually measured in Hertz (Hz), that is, cycles per second. The

quantity ! D 2�=T is called the circular frequency. It is measured in radians per

second since 1 cycle = 1 revolution = 2� radians.

E X A M P L E 5
Solve the initial-value problem

8

<

:

y
00
C 16y D 0

y.0/ D �6

y 0.0/ D 32:

Find the amplitude, frequency, and period of the solution.

Solution Here, !2
D 16, so ! D 4. The solution is of the form

y D A cos.4t/C B sin.4t/:

Since y.0/ D �6, we have A D �6. Also, y 0.t/ D �4A sin.4t/C 4B cos.4t/. Since

y 0.0/ D 32, we have 4B D 32, or B D 8. Thus, the solution is

y D �6 cos.4t/C 8 sin.4t/:

The amplitude is
p

.�6/2 C 82
D 10, the frequency is !=.2�/ � 0:637Hz, and the

period is 2�=! � 1:57 s.

E X A M P L E 6
(Spring-mass problem) Suppose that a 100 g mass is suspended

from a spring and that a force of 3 � 104 dynes (3 � 104 g-cm/s2)

is required to produce a displacement from equilibrium of 1/3 cm. At time t D 0

the mass is pulled down 2 cm below equilibrium and flicked upward with a velocity

of 60 cm/s. Find its subsequent displacement at any time t > 0. Find the frequency,

period, amplitude, and time-shift of the motion. Express the position of the mass at

time t in terms of the amplitude and the time-shift.
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Solution The spring constant k is determined from Hooke’s Law, F D �ky. Here

F D �3 � 10
4 g-cm/s2 is the force of the spring on the mass displaced 1/3 cm:

�3 � 10
4
D �

1

3
k;

so k D 9 � 104 g/s2. Hence, the circular frequency is ! D
p

k=m D 30 rad/s, the

frequency is !=2� D 15=� � 4:77 Hz, and the period is 2�=! � 0:209 s.

Since the displacement at time t D 0 is y0 D �2 and the velocity at that time

is v0 D 60, the subsequent displacement is y D A cos.30t/ C B sin.30t/, where

A D y0 D �2 and B D v0=! D 60=30 D 2. Thus,

y D �2 cos.30t/C 2 sin.30t/; (y in cm, t in seconds):

The amplitude of the motion isR D
p

.�2/2 C 22
D 2
p

2 � 2:83 cm. The time-shift

t0 must satisfy

�2 D A D R cos.!t0/ D 2
p

2 cos.30t0/;

2 D B D R sin.!t0/ D 2
p

2 sin.30t0/;

so sin.30t0/ D 1=
p

2 D � cos.30t0/. Hence the phase-shift is 30t0 D 3�=4 radians,

and the time-shift is t0 D �=40 � 0:0785 s. The position of the mass at time t > 0 is

also given by

y D 2
p

2 cos
h

30

�

t �
�

40

�i

:

Figure 3.31

Undamped oscillator (b D 0)

Damped oscillator (b > 0, b2 < 4ac)

Critically damped case (b > 0, b2
D 4ac)

Overdamped case (b > 0, b2 > 4ac)

y

t

y

t

y

t

y

t

undamped damped oscillator

critically damped overdamped
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Figure 3.30 Simple harmonic motion
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!

T
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�R

y D R cos
�

!.t � t0/

�

The constants A and B are related to the position y0 and the velocity v0 of the massm

at time t D 0:

y0 D y.0/ D A cos 0C B sin 0 D A;

v0 D y
0
.0/ D �A! sin 0C B! cos 0 D B!:

The constant R D
p

A2
C B2 is called the amplitude of the motion. Because cos x

oscillates between �1 and 1, the displacement y varies between �R and R. Note

in Figure 3.30 that the graph of the displacement as a function of time is the curve

y D R cos!t shifted t0 units to the right. The number t0 is called the time-shift. (The

related quantity !t0 is called a phase-shift.) The period of this curve is T D 2�=!;

it is the time interval between consecutive instants when the mass is at the same height

moving in the same direction. The reciprocal 1=T of the period is called the frequency

of the motion. It is usually measured in Hertz (Hz), that is, cycles per second. The

quantity ! D 2�=T is called the circular frequency. It is measured in radians per

second since 1 cycle = 1 revolution = 2� radians.

E X A M P L E 5
Solve the initial-value problem

8

<

:

y
00
C 16y D 0

y.0/ D �6

y 0.0/ D 32:

Find the amplitude, frequency, and period of the solution.

Solution Here, !2
D 16, so ! D 4. The solution is of the form

y D A cos.4t/C B sin.4t/:

Since y.0/ D �6, we have A D �6. Also, y 0.t/ D �4A sin.4t/C 4B cos.4t/. Since

y 0.0/ D 32, we have 4B D 32, or B D 8. Thus, the solution is

y D �6 cos.4t/C 8 sin.4t/:

The amplitude is
p

.�6/2 C 82
D 10, the frequency is !=.2�/ � 0:637Hz, and the

period is 2�=! � 1:57 s.

E X A M P L E 6
(Spring-mass problem) Suppose that a 100 g mass is suspended

from a spring and that a force of 3 � 104 dynes (3 � 104 g-cm/s2)

is required to produce a displacement from equilibrium of 1/3 cm. At time t D 0

the mass is pulled down 2 cm below equilibrium and flicked upward with a velocity

of 60 cm/s. Find its subsequent displacement at any time t > 0. Find the frequency,

period, amplitude, and time-shift of the motion. Express the position of the mass at

time t in terms of the amplitude and the time-shift.
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Solution The spring constant k is determined from Hooke’s Law, F D �ky. Here

F D �3 � 10
4 g-cm/s2 is the force of the spring on the mass displaced 1/3 cm:

�3 � 10
4
D �

1

3
k;

so k D 9 � 104 g/s2. Hence, the circular frequency is ! D
p

k=m D 30 rad/s, the

frequency is !=2� D 15=� � 4:77 Hz, and the period is 2�=! � 0:209 s.

Since the displacement at time t D 0 is y0 D �2 and the velocity at that time

is v0 D 60, the subsequent displacement is y D A cos.30t/ C B sin.30t/, where

A D y0 D �2 and B D v0=! D 60=30 D 2. Thus,

y D �2 cos.30t/C 2 sin.30t/; (y in cm, t in seconds):

The amplitude of the motion isR D
p

.�2/2 C 22
D 2
p

2 � 2:83 cm. The time-shift

t0 must satisfy

�2 D A D R cos.!t0/ D 2
p

2 cos.30t0/;

2 D B D R sin.!t0/ D 2
p

2 sin.30t0/;

so sin.30t0/ D 1=
p

2 D � cos.30t0/. Hence the phase-shift is 30t0 D 3�=4 radians,

and the time-shift is t0 D �=40 � 0:0785 s. The position of the mass at time t > 0 is

also given by

y D 2
p

2 cos
h

30

�

t �
�

40

�i

:

Figure 3.31

Undamped oscillator (b D 0)

Damped oscillator (b > 0, b2 < 4ac)

Critically damped case (b > 0, b2
D 4ac)

Overdamped case (b > 0, b2 > 4ac)
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t

y
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y
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undamped damped oscillator

critically damped overdamped
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Damped Harmonic Motion
If a and c are positive and b D 0, then equation

ay
00
C by

0
C cy D 0

is the differential equation of simple harmonic motion and has oscillatory solutions

of fixed amplitude as shown above. If a > 0, b > 0, and c > 0, then the roots

of the auxiliary equation are either negative real numbers or, if b2 < 4ac, complex

numbers k˙ i! with negative real parts k D �b=.2a/ (Case III). In this latter case the

solutions still oscillate, but the amplitude diminishes exponentially as t !1 because

of the factor ekt
D e

�.b=2a/t . (See Exercise 17 below.) A system whose behaviour

is modelled by such an equation is said to exhibit damped harmonic motion. If

b2
D 4ac (Case II), the system is said to be critically damped, and if b2 > 4ac

(Case I), it is overdamped. In these cases the behaviour is no longer oscillatory. (See

Figure 3.31. Imagine a mass suspended by a spring in a jar of oil.)

E X E R C I S E S 3.7

In Exercises 1–12, find the general solutions for the given

second-order equations.

1. y 00
C 7y

0
C 10y D 0 2. y 00

� 2y
0
� 3y D 0

3. y 00
C 2y

0
D 0 4. 4y 00

� 4y
0
� 3y D 0

5. y 00
C 8y

0
C 16y D 0 6. y 00

� 2y
0
C y D 0

7. y 00
� 6y

0
C 10y D 0 8. 9y 00

C 6y
0
C y D 0

9. y 00
C 2y

0
C 5y D 0 10. y 00

� 4y
0
C 5y D 0

11. y 00
C 2y

0
C 3y D 0 12. y 00

C y
0
C y D 0

In Exercises 13–15, solve the given initial-value problems.

13.

8

ˆ

<

ˆ

:

2y
00
C 5y

0
� 3y D 0

y.0/ D 1

y
0
.0/ D 0:

14.

8

ˆ

<

ˆ

:

y
00
C 10y

0
C 25y D 0

y.1/ D 0

y
0
.1/ D 2:

15.

8

ˆ

<

ˆ

:

y
00
C 4y

0
C 5y D 0

y.0/ D 2

y
0
.0/ D 2:

16.A Show that if � ¤ 0, the function y�.t/ D
e.1C�/t

� et

�
satisfies the equation y 00

� .2C �/y 0
C .1C �/y D 0.

Calculate y.t/ D lim�!0 y�.t/ and verify that, as expected, it

is a solution of y 00
� 2y

0
C y D 0.

17.I If a > 0, b > 0, and c > 0, prove that all solutions of the

differential equation ay 00
C by 0

C cy D 0 satisfy

limt!1 y.t/ D 0.

18.I Prove that the solution given in the discussion of Case I,

namely, y D Aer1t
C B er2t , is the general solution for that

case as follows: First, let y D er1t
u and show that u satisfies

the equation

u
00
� .r2 � r1/u

0
D 0:

Then let v D u0, so that v must satisfy v 0
D .r2 � r1/v. The

general solution of this equation is v D C e.r2�r1/t , as shown

in the discussion of the equation y 0
D ky in Section 3.4.

Hence, find u and y.

Simple harmonic motion

Exercises 19–22 all refer to the differential equation of simple

harmonic motion:

d2y

dt2
C !

2
y D 0; .! ¤ 0/: .†/

Together they show that y D A cos!t C B sin!t is a general

solution of this equation, that is, every solution is of this form for

some choice of the constants A and B .

19. Show that y D A cos!t C B sin!t is a solution of .†/.

20.A If f .t/ is any solution of .†/, show that !2.f .t//2 C .f 0.t//2

is constant.

21.A If g.t/ is a solution of .†/ satisfying g.0/ D g0.0/ D 0, show

that g.t/ D 0 for all t .

22.A Suppose that f .t/ is any solution of the differential equation

.†/. Show that f .t/ D A cos!t C B sin!t , where A D f .0/

and B! D f 0.0/.

(Hint: Let g.t/ D f .t/ � A cos!t � B sin!t .)

23.I If b2
� 4ac < 0, show that the substitution y D ektu.t/,

where k D �b=.2a/, transforms ay 00
C by

0
C cy D 0 into the

equation u00
C !2u D 0, where !2

D .4ac � b2/=.4a2/.

Together with the result of Exercise 22, this confirms the

recipe for Case III, in case you didn’t feel comfortable with the

complex number argument given in the text.

In Exercises 24–25, solve the given initial-value problems. For

each problem determine the circular frequency, the frequency, the

period, and the amplitude of the solution.

24.

8

<

:

y
00
C 4y D 0

y.0/ D 2

y 0.0/ D �5:

25.

8

<

:

y
00
C 100y D 0

y.0/ D 0

y 0.0/ D 3:

26.I Show that y D ˛ cos.!.t � c//C ˇ sin.!.t � c// is a solution

of the differential equation y 00
C !2y D 0, and that it satisfies

y.c/ D ˛ and y 0.c/ D ˇ!. Express the solution in the form

y D A cos.!t/CB sin.!t/ for certain values of the constants

A and B depending on ˛, ˇ, c, and !.
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27. Solve

8

<

:

y 00
C y D 0

y.2/ D 3

y 0.2/ D �4:

28. Solve

8

<

:

y 00
C !2y D 0

y.a/ D A

y 0.a/ D B:

29. What mass should be suspended from the spring in Example 6

to provide a system whose natural frequency of oscillation is

10 Hz? Find the displacement of such a mass from its

equilibrium position t s after it is pulled down 1 cm from

equilibrium and flicked upward with a speed of 2 cm/s. What

is the amplitude of this motion?

30. A mass of 400 g suspended from a certain elastic spring will

oscillate with a frequency of 24 Hz. What would be the

frequency if the 400 g mass were replaced with a 900 g mass?

a 100 g mass?

31.A Show that if t0, A, and B are constants and k D �b=.2a/ and

! D
p

4ac � b2=.2a/, then

y D e
kt
�

A cos
�

!.t � t0/
�

C B sin
�

!.t � t0/
��

is an alternative to the general solution of the equation

ay 00
C by 0

C cy D 0 for Case III (b2
� 4ac < 0). This form

of the general solution is useful for solving initial-value

problems where y.t0/ and y 0
.t0/ are specified.

32.A Show that if t0, A, and B are constants and k D �b=.2a/ and

! D
p

b2
� 4ac=.2a/, then

y D e
kt
�

A cosh
�

!.t � t0/
�

C B sinh
�

!.t � t0/
��

is an alternative to the general solution of the equation

ay 00
C by 0

C cy D 0 for Case I (b2
� 4ac > 0). This form of

the general solution is useful for solving initial-value problems

where y.t0/ and y 0
.t0/ are specified.

Use the forms of solution provided by the previous two exercises to

solve the initial-value problems in Exercises 33–34.

33.

8

<

:

y
00
C 2y

0
C 5y D 0

y.3/ D 2

y 0.3/ D 0:

34.

8

<

:

y
00
C 4y

0
C 3y D 0

y.3/ D 1

y 0.3/ D 0:

35. By using the change of dependent variable

u.x/ D c � k2y.x/, solve the initial-value problem

8

ˆ

<

ˆ

:

y
00
.x/ D c � k

2
y.x/

y.0/ D a

y
0
.0/ D b:

36.I A mass is attached to a spring mounted horizontally so the

mass can slide along the top of a table. With a suitable choice

of units, the position x.t/ of the mass at time t is governed by

the differential equation

x
00
D �x C F;

where the �x term is due to the elasticity of the spring, and

the F is due to the friction of the mass with the table. The

frictional force should be constant in magnitude and directed

opposite to the velocity of the mass when the mass is moving.

When the mass is stopped, the friction should be constant and

opposed to the spring force unless the spring force has the

smaller magnitude, in which case the friction force should just

cancel the spring force and the mass should remain at rest

thereafter. For this problem, let the magnitude of the friction

force be 1/5. Accordingly,

F D

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

�

1

5
if x 0 > 0 or if x 0

D 0 and x < �
1

5

1

5
if x 0 < 0 or if x 0

D 0 and x >
1

5

x if x 0
D 0 and jxj �

1

5
.

Find the position x.t/ of the mass at all times t > 0 if

x.0/ D 1 and x 0.0/ D 0.

C H A P T E R R E V I E W

Key Ideas

� State the laws of exponents.

� State the laws of logarithms.

� What is the significance of the number e?

� What do the following statements and phrases mean?

˘ f is one-to-one. ˘ f is invertible.

˘ Function f �1 is the inverse of function f:

˘ a
b
D c ˘ loga b D c

˘ the natural logarithm of x

˘ logarithmic differentiation

˘ the half-life of a varying quantity

˘ The quantity y exhibits exponential growth.

˘ The quantity y exhibits logistic growth.

˘ y D sin�1
x ˘ y D tan�1x

˘ The quantity y exhibits simple harmonic motion.

˘ The quantity y exhibits damped harmonic motion.

� Define the functions sinh x, cosh x, and tanh x.

� What kinds of functions satisfy second-order differential

equations with constant coefficients?

Review Exercises

1. If f .x/ D 3x C x
3, show that f has an inverse and find the

slope of y D f �1.x/ at x D 0.

2. Let f .x/ D sec2 x tan x. Show that f is increasing on the

interval .��=2; �=2/ and, hence, one-to-one and invertible

there. What is the domain of f �1? Find .f �1/0.2/. Hint:

f .�=4/ D 2.
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Damped Harmonic Motion
If a and c are positive and b D 0, then equation

ay
00
C by

0
C cy D 0

is the differential equation of simple harmonic motion and has oscillatory solutions

of fixed amplitude as shown above. If a > 0, b > 0, and c > 0, then the roots

of the auxiliary equation are either negative real numbers or, if b2 < 4ac, complex

numbers k˙ i! with negative real parts k D �b=.2a/ (Case III). In this latter case the

solutions still oscillate, but the amplitude diminishes exponentially as t !1 because

of the factor ekt
D e

�.b=2a/t . (See Exercise 17 below.) A system whose behaviour

is modelled by such an equation is said to exhibit damped harmonic motion. If

b2
D 4ac (Case II), the system is said to be critically damped, and if b2 > 4ac

(Case I), it is overdamped. In these cases the behaviour is no longer oscillatory. (See

Figure 3.31. Imagine a mass suspended by a spring in a jar of oil.)

E X E R C I S E S 3.7

In Exercises 1–12, find the general solutions for the given

second-order equations.

1. y 00
C 7y

0
C 10y D 0 2. y 00

� 2y
0
� 3y D 0

3. y 00
C 2y

0
D 0 4. 4y 00

� 4y
0
� 3y D 0

5. y 00
C 8y

0
C 16y D 0 6. y 00

� 2y
0
C y D 0

7. y 00
� 6y

0
C 10y D 0 8. 9y 00

C 6y
0
C y D 0

9. y 00
C 2y

0
C 5y D 0 10. y 00

� 4y
0
C 5y D 0

11. y 00
C 2y

0
C 3y D 0 12. y 00

C y
0
C y D 0

In Exercises 13–15, solve the given initial-value problems.

13.

8

ˆ

<

ˆ

:

2y
00
C 5y

0
� 3y D 0

y.0/ D 1

y
0
.0/ D 0:

14.

8

ˆ

<

ˆ

:

y
00
C 10y

0
C 25y D 0

y.1/ D 0

y
0
.1/ D 2:

15.

8

ˆ

<

ˆ

:

y
00
C 4y

0
C 5y D 0

y.0/ D 2

y
0
.0/ D 2:

16.A Show that if � ¤ 0, the function y�.t/ D
e.1C�/t

� et

�
satisfies the equation y 00

� .2C �/y 0
C .1C �/y D 0.

Calculate y.t/ D lim�!0 y�.t/ and verify that, as expected, it

is a solution of y 00
� 2y

0
C y D 0.

17.I If a > 0, b > 0, and c > 0, prove that all solutions of the

differential equation ay 00
C by 0

C cy D 0 satisfy

limt!1 y.t/ D 0.

18.I Prove that the solution given in the discussion of Case I,

namely, y D Aer1t
C B er2t , is the general solution for that

case as follows: First, let y D er1t
u and show that u satisfies

the equation

u
00
� .r2 � r1/u

0
D 0:

Then let v D u0, so that v must satisfy v 0
D .r2 � r1/v. The

general solution of this equation is v D C e.r2�r1/t , as shown

in the discussion of the equation y 0
D ky in Section 3.4.

Hence, find u and y.

Simple harmonic motion

Exercises 19–22 all refer to the differential equation of simple

harmonic motion:

d2y

dt2
C !

2
y D 0; .! ¤ 0/: .†/

Together they show that y D A cos!t C B sin!t is a general

solution of this equation, that is, every solution is of this form for

some choice of the constants A and B .

19. Show that y D A cos!t C B sin!t is a solution of .†/.

20.A If f .t/ is any solution of .†/, show that !2.f .t//2 C .f 0.t//2

is constant.

21.A If g.t/ is a solution of .†/ satisfying g.0/ D g0.0/ D 0, show

that g.t/ D 0 for all t .

22.A Suppose that f .t/ is any solution of the differential equation

.†/. Show that f .t/ D A cos!t C B sin!t , where A D f .0/

and B! D f 0.0/.

(Hint: Let g.t/ D f .t/ � A cos!t � B sin!t .)

23.I If b2
� 4ac < 0, show that the substitution y D ektu.t/,

where k D �b=.2a/, transforms ay 00
C by

0
C cy D 0 into the

equation u00
C !2u D 0, where !2

D .4ac � b2/=.4a2/.

Together with the result of Exercise 22, this confirms the

recipe for Case III, in case you didn’t feel comfortable with the

complex number argument given in the text.

In Exercises 24–25, solve the given initial-value problems. For

each problem determine the circular frequency, the frequency, the

period, and the amplitude of the solution.

24.

8

<

:

y
00
C 4y D 0

y.0/ D 2

y 0.0/ D �5:

25.

8

<

:

y
00
C 100y D 0

y.0/ D 0

y 0.0/ D 3:

26.I Show that y D ˛ cos.!.t � c//C ˇ sin.!.t � c// is a solution

of the differential equation y 00
C !2y D 0, and that it satisfies

y.c/ D ˛ and y 0.c/ D ˇ!. Express the solution in the form

y D A cos.!t/CB sin.!t/ for certain values of the constants

A and B depending on ˛, ˇ, c, and !.
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27. Solve

8

<

:

y 00
C y D 0

y.2/ D 3

y 0.2/ D �4:

28. Solve

8

<

:

y 00
C !2y D 0

y.a/ D A

y 0.a/ D B:

29. What mass should be suspended from the spring in Example 6

to provide a system whose natural frequency of oscillation is

10 Hz? Find the displacement of such a mass from its

equilibrium position t s after it is pulled down 1 cm from

equilibrium and flicked upward with a speed of 2 cm/s. What

is the amplitude of this motion?

30. A mass of 400 g suspended from a certain elastic spring will

oscillate with a frequency of 24 Hz. What would be the

frequency if the 400 g mass were replaced with a 900 g mass?

a 100 g mass?

31.A Show that if t0, A, and B are constants and k D �b=.2a/ and

! D
p

4ac � b2=.2a/, then

y D e
kt
�

A cos
�

!.t � t0/
�

C B sin
�

!.t � t0/
��

is an alternative to the general solution of the equation

ay 00
C by 0

C cy D 0 for Case III (b2
� 4ac < 0). This form

of the general solution is useful for solving initial-value

problems where y.t0/ and y 0
.t0/ are specified.

32.A Show that if t0, A, and B are constants and k D �b=.2a/ and

! D
p

b2
� 4ac=.2a/, then

y D e
kt
�

A cosh
�

!.t � t0/
�

C B sinh
�

!.t � t0/
��

is an alternative to the general solution of the equation

ay 00
C by 0

C cy D 0 for Case I (b2
� 4ac > 0). This form of

the general solution is useful for solving initial-value problems

where y.t0/ and y 0
.t0/ are specified.

Use the forms of solution provided by the previous two exercises to

solve the initial-value problems in Exercises 33–34.

33.

8

<

:

y
00
C 2y

0
C 5y D 0

y.3/ D 2

y 0.3/ D 0:

34.

8

<

:

y
00
C 4y

0
C 3y D 0

y.3/ D 1

y 0.3/ D 0:

35. By using the change of dependent variable

u.x/ D c � k2y.x/, solve the initial-value problem

8

ˆ

<

ˆ

:

y
00
.x/ D c � k

2
y.x/

y.0/ D a

y
0
.0/ D b:

36.I A mass is attached to a spring mounted horizontally so the

mass can slide along the top of a table. With a suitable choice

of units, the position x.t/ of the mass at time t is governed by

the differential equation

x
00
D �x C F;

where the �x term is due to the elasticity of the spring, and

the F is due to the friction of the mass with the table. The

frictional force should be constant in magnitude and directed

opposite to the velocity of the mass when the mass is moving.

When the mass is stopped, the friction should be constant and

opposed to the spring force unless the spring force has the

smaller magnitude, in which case the friction force should just

cancel the spring force and the mass should remain at rest

thereafter. For this problem, let the magnitude of the friction

force be 1/5. Accordingly,

F D

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

�

1

5
if x 0 > 0 or if x 0

D 0 and x < �
1

5

1

5
if x 0 < 0 or if x 0

D 0 and x >
1

5

x if x 0
D 0 and jxj �

1

5
.

Find the position x.t/ of the mass at all times t > 0 if

x.0/ D 1 and x 0.0/ D 0.

C H A P T E R R E V I E W

Key Ideas

� State the laws of exponents.

� State the laws of logarithms.

� What is the significance of the number e?

� What do the following statements and phrases mean?

˘ f is one-to-one. ˘ f is invertible.

˘ Function f �1 is the inverse of function f:

˘ a
b
D c ˘ loga b D c

˘ the natural logarithm of x

˘ logarithmic differentiation

˘ the half-life of a varying quantity

˘ The quantity y exhibits exponential growth.

˘ The quantity y exhibits logistic growth.

˘ y D sin�1
x ˘ y D tan�1x

˘ The quantity y exhibits simple harmonic motion.

˘ The quantity y exhibits damped harmonic motion.

� Define the functions sinh x, cosh x, and tanh x.

� What kinds of functions satisfy second-order differential

equations with constant coefficients?

Review Exercises

1. If f .x/ D 3x C x
3, show that f has an inverse and find the

slope of y D f �1.x/ at x D 0.

2. Let f .x/ D sec2 x tan x. Show that f is increasing on the

interval .��=2; �=2/ and, hence, one-to-one and invertible

there. What is the domain of f �1? Find .f �1/0.2/. Hint:

f .�=4/ D 2.
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Exercises 3–5 refer to the function f .x/ D x e�x2

.

3. Find limx!1 f .x/ and limx!�1 f .x/.

4. On what intervals is f increasing? decreasing?

5. What are the maximum and minimum values of f .x/?

6. Find the points on the graph of y D e
�x sinx, .0 � x � 2�/,

where the graph has a horizontal tangent line.

7. Suppose that a function f .x/ satisfies f 0.x/ D x f .x/ for all

real x, and f .2/ D 3. Calculate the derivative of f .x/=ex2=2,

and use the result to help you find f .x/ explicitly.

8. A lump of modelling clay is being rolled out so that it maintains

the shape of a circular cylinder. If the length is increasing at a

rate proportional to itself, show that the radius is decreasing at

a rate proportional to itself.

9. (a) What nominal interest rate, compounded continuously,

will cause an investment to double in 5 years?

(b) By about how many days will the doubling time in part (a)

increase if the nominal interest rate drops by 0.5%?

C 10. (A poor man’s natural logarithm)

(a) Show that if a > 0, then

lim
h!0

ah
� 1

h
D ln a:

Hence, show that

lim
n!1

n.a
1=n
� 1/ D ln a:

(b) Most calculators, even nonscientific ones, have a square

root key. If n is a power of 2, say n D 2k , then a1=n can

be calculated by entering a and hitting the square root key

k times:

a
1=2k

D

r

q

� � �

p

a (k square roots):

Then you can subtract 1 and multiply by n to get an approx-

imation for ln a. Use n D 210
D 1024 and n D 211

D

2048 to find approximations for ln 2. Based on the agree-

ment of these two approximations, quote a value of ln 2 to

as many decimal places as you feel justified.

11. A nonconstant function f satisfies

d

dx

�

f .x/

�2

D

�

f
0
.x/

�2

for all x. If f .0/ D 1, find f .x/.

12. If f .x/ D .lnx/=x, show that f 0.x/ > 0 for 0 < x < e and

f 0.x/ < 0 for x > e, so that f .x/ has a maximum value at

x D e. Use this to show that e� > �e .

13. Find an equation of a straight line that passes through the origin

and is tangent to the curve y D xx .

14. (a) Find x ¤ 2 such that
lnx

x
D

ln 2

2
.

(b) Find b > 1 such that there is no x ¤ b with
lnx

x
D

ln b

b
.

C 15. Investment account A bears simple interest at a certain rate.

Investment account B bears interest at the same nominal rate

but compounded instantaneously. If $1,000 is invested in each

account, B produces $10 more in interest after one year than

does A. Find the nominal rate both accounts use.

16. Express each of the functions cos�1 x, cot�1 x, and csc�1 x in

terms of tan�1.

17. Express each of the functions cos�1 x, cot�1 x, and csc�1 x in

terms of sin�1.

18.P (A warming problem) A bottle of milk at 5 ıC is removed

from a refrigerator into a room maintained at 20 ıC. After 12

min the temperature of the milk is 12 ıC. How much longer

will it take for the milk to warm up to 18 ıC?

19.P (A cooling problem) A kettle of hot water at 96 ıC is allowed

to sit in an air-conditioned room. The water cools to 60 ıC

in 10 min and then to 40 ıC in another 10 min. What is the

temperature of the room?

20.A Show that ex > 1C x if x ¤ 0.

21.A Use mathematical induction to show that

e
x
> 1C x C

x2

2Š
C � � � C

xn

nŠ

if x > 0 and n is any positive integer.

Challenging Problems

1.I (a) Show that the function f .x/ D xx is strictly increasing on

Œe
�1
; 1/.

(b) If g is the inverse function to f of part (a), show that

lim
y!1

g.y/ ln.ln y/

lny
D 1

Hint: Start with the equation y D x
x and take the ln of

both sides twice.

Two models for incorporating air resistance into the analysis of

the motion of a falling body

2.P (Air resistance proportional to speed) An object falls under

gravity near the surface of the earth, and its motion is impeded

by air resistance proportional to its speed. Its velocity v there-

fore satisfies the equation

dv

dt
D �g � kv; (*)

where k is a positive constant depending on such factors as the

shape and density of the object and the density of the air.

(a) Find the velocity of the object as a function of time t , given

that it was v0 at t D 0.

(b) Find the limiting velocity limt!1 v.t/. Observe that this

can be done either directly from .�/ or from the solution

found in (a).

(c) If the object was at height y0 at time t D 0, find its height

y.t/ at any time during its fall.

3.I (Air resistance proportional to the square of speed) Under

certain conditions a better model for the effect of air resistance

on a moving object is one where the resistance is proportional

to the square of the speed. For an object falling under constant

gravitational acceleration g, the equation of motion is

dv

dt
D �g � kvjvj;
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where k > 0. Note that vjvj is used instead of v2 to ensure that

the resistance is always in the opposite direction to the velocity.

For an object falling from rest at time t D 0, we have v.0/ D 0

and v.t/ < 0 for t > 0, so the equation of motion becomes

dv

dt
D �g C kv

2
:

We are not (yet) in a position to solve this equation. However,

we can verify its solution.

(a) Verify that the velocity is given for t � 0 by

v.t/ D

r

g

k

1 � e2t
p

gk

1C e2t
p

gk
:

(b) What is the limiting velocity limt!1 v.t/?

(c) Also verify that if the falling object was at height y0 at

time t D 0, then its height at subsequent times during its

fall is given by

y.t/ D y0 C

r

g

k
t �

1

k
ln

 

1C e
2t
p

gk

2

!

:

4.P (A model for the spread of a new technology) When a new

and superior technology is introduced, the percentage p of po-

tential clients that adopt it might be expected to increase logis-

tically with time. However, even newer technologies are con-

tinually being introduced, so adoption of a particular one will

fall off exponentially over time. The following model exhibits

this behaviour:

dp

dt
D kp

�

1 �
p

e�btM

�

:

This DE suggests that the growth in p is logistic but that the

asymptotic limit is not a constant but rather e�btM , which de-

creases exponentially with time.

(a) Show that the change of variable p D e�bt
y.t/ transforms

the equation above into a standard logistic equation, and

hence find an explicit formula for p.t/ given that p.0/ D

p0. It will be necessary to assume thatM < 100k=.bCk/

to ensure that p.t/ < 100.

(b) If k D 10, b D 1, M D 90, and p0 D 1, how large will

p.t/ become before it starts to decrease?
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Exercises 3–5 refer to the function f .x/ D x e�x2

.

3. Find limx!1 f .x/ and limx!�1 f .x/.

4. On what intervals is f increasing? decreasing?

5. What are the maximum and minimum values of f .x/?

6. Find the points on the graph of y D e
�x sinx, .0 � x � 2�/,

where the graph has a horizontal tangent line.

7. Suppose that a function f .x/ satisfies f 0.x/ D x f .x/ for all

real x, and f .2/ D 3. Calculate the derivative of f .x/=ex2=2,

and use the result to help you find f .x/ explicitly.

8. A lump of modelling clay is being rolled out so that it maintains

the shape of a circular cylinder. If the length is increasing at a

rate proportional to itself, show that the radius is decreasing at

a rate proportional to itself.

9. (a) What nominal interest rate, compounded continuously,

will cause an investment to double in 5 years?

(b) By about how many days will the doubling time in part (a)

increase if the nominal interest rate drops by 0.5%?

C 10. (A poor man’s natural logarithm)

(a) Show that if a > 0, then

lim
h!0

ah
� 1

h
D ln a:

Hence, show that

lim
n!1

n.a
1=n
� 1/ D ln a:

(b) Most calculators, even nonscientific ones, have a square

root key. If n is a power of 2, say n D 2k , then a1=n can

be calculated by entering a and hitting the square root key

k times:

a
1=2k

D

r

q

� � �

p

a (k square roots):

Then you can subtract 1 and multiply by n to get an approx-

imation for ln a. Use n D 210
D 1024 and n D 211

D

2048 to find approximations for ln 2. Based on the agree-

ment of these two approximations, quote a value of ln 2 to

as many decimal places as you feel justified.

11. A nonconstant function f satisfies

d

dx

�

f .x/

�2

D

�

f
0
.x/

�2

for all x. If f .0/ D 1, find f .x/.

12. If f .x/ D .lnx/=x, show that f 0.x/ > 0 for 0 < x < e and

f 0.x/ < 0 for x > e, so that f .x/ has a maximum value at

x D e. Use this to show that e� > �e .

13. Find an equation of a straight line that passes through the origin

and is tangent to the curve y D xx .

14. (a) Find x ¤ 2 such that
lnx

x
D

ln 2

2
.

(b) Find b > 1 such that there is no x ¤ b with
lnx

x
D

ln b

b
.

C 15. Investment account A bears simple interest at a certain rate.

Investment account B bears interest at the same nominal rate

but compounded instantaneously. If $1,000 is invested in each

account, B produces $10 more in interest after one year than

does A. Find the nominal rate both accounts use.

16. Express each of the functions cos�1 x, cot�1 x, and csc�1 x in

terms of tan�1.

17. Express each of the functions cos�1 x, cot�1 x, and csc�1 x in

terms of sin�1.

18.P (A warming problem) A bottle of milk at 5 ıC is removed

from a refrigerator into a room maintained at 20 ıC. After 12

min the temperature of the milk is 12 ıC. How much longer

will it take for the milk to warm up to 18 ıC?

19.P (A cooling problem) A kettle of hot water at 96 ıC is allowed

to sit in an air-conditioned room. The water cools to 60 ıC

in 10 min and then to 40 ıC in another 10 min. What is the

temperature of the room?

20.A Show that ex > 1C x if x ¤ 0.

21.A Use mathematical induction to show that

e
x
> 1C x C

x2

2Š
C � � � C

xn

nŠ

if x > 0 and n is any positive integer.

Challenging Problems

1.I (a) Show that the function f .x/ D xx is strictly increasing on

Œe
�1
; 1/.

(b) If g is the inverse function to f of part (a), show that

lim
y!1

g.y/ ln.ln y/

lny
D 1

Hint: Start with the equation y D x
x and take the ln of

both sides twice.

Two models for incorporating air resistance into the analysis of

the motion of a falling body

2.P (Air resistance proportional to speed) An object falls under

gravity near the surface of the earth, and its motion is impeded

by air resistance proportional to its speed. Its velocity v there-

fore satisfies the equation

dv

dt
D �g � kv; (*)

where k is a positive constant depending on such factors as the

shape and density of the object and the density of the air.

(a) Find the velocity of the object as a function of time t , given

that it was v0 at t D 0.

(b) Find the limiting velocity limt!1 v.t/. Observe that this

can be done either directly from .�/ or from the solution

found in (a).

(c) If the object was at height y0 at time t D 0, find its height

y.t/ at any time during its fall.

3.I (Air resistance proportional to the square of speed) Under

certain conditions a better model for the effect of air resistance

on a moving object is one where the resistance is proportional

to the square of the speed. For an object falling under constant

gravitational acceleration g, the equation of motion is

dv

dt
D �g � kvjvj;
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where k > 0. Note that vjvj is used instead of v2 to ensure that

the resistance is always in the opposite direction to the velocity.

For an object falling from rest at time t D 0, we have v.0/ D 0

and v.t/ < 0 for t > 0, so the equation of motion becomes

dv

dt
D �g C kv

2
:

We are not (yet) in a position to solve this equation. However,

we can verify its solution.

(a) Verify that the velocity is given for t � 0 by

v.t/ D

r

g

k

1 � e2t
p

gk

1C e2t
p

gk
:

(b) What is the limiting velocity limt!1 v.t/?

(c) Also verify that if the falling object was at height y0 at

time t D 0, then its height at subsequent times during its

fall is given by

y.t/ D y0 C

r

g

k
t �

1

k
ln

 

1C e
2t
p

gk

2

!

:

4.P (A model for the spread of a new technology) When a new

and superior technology is introduced, the percentage p of po-

tential clients that adopt it might be expected to increase logis-

tically with time. However, even newer technologies are con-

tinually being introduced, so adoption of a particular one will

fall off exponentially over time. The following model exhibits

this behaviour:

dp

dt
D kp

�

1 �
p

e�btM

�

:

This DE suggests that the growth in p is logistic but that the

asymptotic limit is not a constant but rather e�btM , which de-

creases exponentially with time.

(a) Show that the change of variable p D e�bt
y.t/ transforms

the equation above into a standard logistic equation, and

hence find an explicit formula for p.t/ given that p.0/ D

p0. It will be necessary to assume thatM < 100k=.bCk/

to ensure that p.t/ < 100.

(b) If k D 10, b D 1, M D 90, and p0 D 1, how large will

p.t/ become before it starts to decrease?
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