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Preface

Interval censoring is a type of censoring that has become increasingly common
in the areas that produce failure time data. In the past 20 years or so, a
voluminous literature on the statistical analysis of interval-censored failure
time data has appeared. The main purpose of this book is to collect and unify
some statistical models and methods that have been proposed for analyzing
failure time data in the presence of interval censoring.

A number of books have been written that provide excellent and compre-
hensive coverage of the statistical analysis of failure time data in the presence
of right censoring. These include Cox and Oakes (1984), Fleming and Harring-
ton (1991), Andersen et al. (1993), Kalbfleisch and Prentice (2002), Klein and
Moeschberger (2003), and Lawless (2003). In general, right-censored failure
time data can be treated as a special case of interval-censored data, and some
of the inference approaches for right-censored data can be directly, or with mi-
nor modifications, applied to the analysis of interval-censored data. However,
most of the inference approaches for right-censored data are not appropriate
for interval-censored data due to the fundamental differences between right
censoring and interval censoring. The censoring mechanism behind interval
censoring is much more complicated than that behind right censoring. For
right-censored failure time data, substantial advances in the theory and de-
velopment of modern statistical methods are due to the theory of counting
processes. Because of the complexity and special structure of interval censor-
ing, the same theory is not applicable to interval-censored data. The goal of
this book is to complement the literature on right-censored data by present-
ing statistical models and methods specifically developed for interval-censored
failure time data.

This book is intended to provide an up-to-date reference for those who are
conducting research on the analysis of interval-censored failure time data as
well as those who need to analyze interval-censored data to answer substan-
tive questions. It can also be used as a text for a graduate course in statistics
or biostatistics that has basic knowledge of probability and statistics as a pre-



viii Preface

requisite. The main focus is on methodology, and applications of the methods
that are based on real data are given along with numerical calculations.

To keep the book at a reasonable length, some topics are discussed only
briefly at the end of each chapter in the Bibliography, Discussion, and Remarks
section or in the last chapter. Also, although some asymptotic results are
discussed, their technical derivations are not presented. Because the literature
on interval-censored data is extensive, the choice of subject matter is difficult.
The material discussed in detail is to some extent a reflection of the author’s
interests in this field. However, our attempt has been to present a relatively
complete and comprehensive coverage of the fundamental concepts along with
selected topics in the field.

Chapter 1 contains introductory material and surveys basic concepts and
regression models for the analysis of failure time data. Examples of right- and
interval-censored survival data are discussed, and several types of interval
censoring commonly seen in practice are described. Before considering the
nonparametric and semiparametric approaches, which are the focus of the
book, some parametric models and methods are presented in Chapter 2. Also,
in Chapter 2, some imputation approaches are briefly investigated for the
analysis of interval-censored failure time data.

Chapters 3 to 10 concern nonparametric and semiparametric approaches
for interval-censored data. Chapter 3 considers statistical procedures for non-
parametric estimation of survival and hazard functions, and Chapter 4 deals
with nonparametric comparisons of survival functions. Both rank-based and
survival-based procedures are investigated. Regression analysis of current sta-
tus data, or case I interval-censored data, is discussed in Chapter 5, and
Chapter 6 considers regression analysis of general, or case II interval-censored
failure time data. The analysis of bivariate interval-censored failure time data
is the subject of Chapter 7, which considers both nonparametric and semi-
parametric approaches. Chapter 8 deals with doubly censored failure time
data. In this situation, the survival time of interest is the duration between
two related events and the observations on the occurrences of both events
could be right- or interval-censored. The analysis of event history data in the
presence of interval censoring, which are commonly referred to as panel count
data, is considered in Chapter 9. Chapter 10 contains brief discussions of sev-
eral other important topics in the field for which it is not feasible to give a
detailed discussion. These include regression diagnostics, regression analysis
with interval-censored covariates, Bayesian inference approaches, and infor-
mative interval censoring.

In all chapters except Chapter 10, we have used references sparsely ex-
cept in the last section of each chapter, which provides bibliographical notes
including related references.

Many persons have contributed directly and indirectly to this book. First,
I want to thank Diane Finkelstein, Jian Huang, Linxiong Li, Liuquan Sun,
Tim Wright, and Ying Zhang for their many critical comments and sugges-
tions. I am especially indebted to Tim Wright, who patiently read all the
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chapters and made numerous corrections in an early draft of the book. I owe
my thanks to Do-Hwan Park, Xingwei Tong, Lianming Wang, Zhigang Zhang,
Qiang Zhao, and Chao Zhu, who not only read parts of the draft and gave
their important comments but also provided great computational help. Also,
I would like to express my thanks to Nancy Flourney, our department chair,
for her encouragement and support during this period, and Jack Kalbfleisch,
Steve Lagakos, Jerry Lawless, and LJ Wei for their important influence on my
academic life and their guidance in the early years of my research.

Finally, I thank my family and especially my wife, Xianghuan, for her
patience and support during this project.

January 2006 Jianguo Sun
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Introduction

1.1 Failure Time Data

By failure time data, we mean data that concern positive random variables
representing times to certain events. Examples of the event, often referred to
as the failure or survival event, include death, the onset of a disease or certain
milestone, the failure of a mechanical component of a machine, or learning
something. The occurrence of the event is usually referred to as a failure.
Sometimes we also use the terminology survival data and refer to the variable
of interest as survival time or the survival variable. Failure time data arise
extensively in medical studies, but there are many other investigations that
also produce failure time data. These include biological studies, demographical
studies, economic and financial studies, epidemiological studies, psychological
experiments, reliability experiments, and sociological studies.

The analysis of failure time data usually means addressing one of three
problems. They are estimation of survival functions, comparison of treatments
or survival functions, and assessment of covariate effects or the dependence of
failure time on explanatory variables. We consider methods that can be used
to deal with these problems for interval-censored data. A survival function,
which is formally defined below, gives the probability that failure time is
greater than a certain time and is of considerable interest in failure time
analysis.

For a number of reasons, special methods are required to treat failure time
data. One reason, which also is a major feature that distinguishes the analysis
of failure time data from other statistical fields, is the existence of censoring,
such as right censoring, which is discussed below. Censoring mechanisms can
be quite complicated and thus necessitate special methods of treatment. The
methods available for other types of data are usually simply not appropriate
for censored data. Truncation is another feature of some failure time data that
requires special treatments. We focus mainly on censoring and discuss only
some special types of truncation. Before discussing censoring and truncation
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Table 1.1. Remission times in weeks for acute leukemia patients

Group Survival times in weeks

6-MP 6, 6, 6, 6∗, 7, 9∗, 10, 10∗, 11∗, 13, 16, 17∗, 19∗, 20∗, 22, 23, 25∗

32∗, 32∗, 34∗, 35∗

Placebo 1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12, 15, 17, 22, 23

in more detail, we describe two examples to introduce failure time data and
their features.

1.1.1 Remission Times of Acute Leukemia Patients

Table 1.1, reproduced from Freireich et al. (1963) and Gehan (1965), presents
a typical set of failure time data arising from a clinical trial on acute leukemia
patients. In the table, remission times in weeks are given for 42 patients in
two treatment groups. One treatment is the drug 6-mercaptopurine (6-MP)
and the other is the placebo treatment. The study was performed over a one-
year period and the patients were enrolled into the study at different times.
A primary concern is the comparison of the two treatments with respect to
ability to maintain remission. In other words, it is of interest to know if the
patients with drug 6-MP had significantly longer remission times than those
given the placebo treatment.

For the observed information given in Table 1.1, the starred numbers are
censoring times or censored remission times. That is, such an observation is
the amount of time from when the patient entered the study to the end of
the study. These remission times were censored because these patients were
still in the state of remission at the end of the trial and thus their remission
times were known only to be greater than the censoring times. For the other
patients, their remission times were observed exactly. This situation commonly
occurs in failure time studies, and the resulting data are usually referred to
as right-censored failure time data. Note that for the comparison of the two
treatments, a simple t-test is not applicable because it cannot handle the
censored remission times, and certainly discarding these times is not desirable.
For more discussion and the analysis of this data set, readers are referred to
Kalbfleisch and Prentice (2002) in addition to Freireich et al. (1963) and
Gehan (1965).

1.1.2 Times to the First Use of Marijuana

Turnbull and Weiss (1978) discussed a set of failure time data from a study on
the use of marijuana by high school students, and the data are given in Table
1.2. In the study, 191 California high school boys were asked the question,
“when did you first use marijuana?” As expected, some boys remembered
the exact age when they first used it, and some boys used it but could not
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Table 1.2. Ages in years to the first use of marijuana

No. of exact No. of left-censored No. of right-censored
Age observations observations observations

10 4 0 0
11 12 0 0
12 19 2 0
13 24 15 1
14 20 24 2
15 13 18 3
16 3 14 2
17 1 6 3
18 0 0 1

>18 4 0 0

remember when they first used marijuana. Also there were boys who never
used it.

Corresponding with these three situations, there are three types of obser-
vations about the age when marijuana was first used. For the first situation,
the age is known exactly. For the second and third situations, the age is known
only to be smaller or greater than the current age of the boy, and these types
of observations are usually referred to as left-censored or right-censored obser-
vations, respectively. For the data set, one question of interest is to estimate
the probability of having used marijuana at certain ages for high school boys.
It is apparent that the simple empirical estimate is not appropriate unless one
disregards some of the left- and right-censored observations. Among others,
Klein and Moeschberger (2003) and Turnbull and Weiss (1978) analyzed this
data set.

1.1.3 Censoring and Truncation

As mentioned above, censoring is one of the unique features of failure time
data. By censoring, we mean that an observation on a survival time of in-
terest is incomplete, that is, the survival time is observed only to fall into
a certain range instead of being known exactly. Note that censored data are
different from missing data as censored observations still provide some partial
information, whereas missing observations provide no information about the
variable of interest. Different types of censoring arise in practice, but the one
that receives most of the attention in the literature is right censoring.

By right censoring or right-censored failure time data, we mean that the
failure time of interest is observed either exactly or to be greater than a cen-
soring time. A typical situation that yields right-censored observations is one
in which a survival study has to end due to, for example, time constraints or
resource limitations. In this case, for subjects whose survival events have not
occurred at the end of the study, their survival times are not observed exactly



4 1 Introduction

but are known to be greater than the study end time, i.e., they are right-
censored. For subjects who have already failed by the end of the study, their
failure times are known exactly. Of course, the study end time could be dif-
ferent for different subjects, and some subjects may withdraw from the study
before the end for some reasons. In a more general setting, which is appropriate
in many applications, for each subject, there exists a censoring variable rep-
resenting the right censoring time. If the survival variable is smaller than the
censoring variable, the observation is exact and otherwise, it is right-censored.
This is usually referred to as the random censorship model.

It is apparent that in general, one has to understand the way that right
censoring occurs to analyze right-censored failure time data properly. To sim-
plify the analysis, an independent right censoring mechanism is commonly
assumed. By this, we mean that the failure rate or hazard is the same for the
subjects who are still in the study and the subjects who have been censored
out. More specifically, under independent right censoring, we have that

lim
∆t→0+

P (t ≤ T < t + ∆t|T ≥ t)
∆t

= lim
∆t→0+

P (t ≤ T < t + ∆t|T ≥ t, Y (t) = 1)
∆t

(Kalbfleisch and Prentice, 2002), where T denotes the survival variable of
interest, and Y (t) = 1 means that the subject has neither failed nor been
censored prior to time t. Under the random censorship model, the above con-
dition is equivalent to

lim
∆t→0+

P (t ≤ T < t + ∆t|T ≥ t)
∆t

= lim
∆t→0+

P (t ≤ T < t + ∆t|T ≥ t, C ≥ t)
∆t

,

where C denotes the censoring variable.
There exist different types of right censoring as well as other types of cen-

soring. For example, the censoring mechanism that stops the study at the
same fixed time point for all subjects is usually referred to as Type 1 cen-
soring. Type 2 censoring means that the study stops if a prespecified number
of individuals out of all study individuals have failed. In addition to right
censoring, some observations may be left-censored, meaning that the failure
time is known only to be less than certain time. Interval censoring, the focus
of this book, is introduced in the next section.

Truncation refers to situations where a subject is included in a study only
if the corresponding failure time satisfies certain conditions. A simple and
common example that yields truncated failure time data is a cohort study
in which subjects are included in the study only if they experience some
initial event prior to the survival event. In this case, for all subjects in the
study, their failure times are greater than the occurrence times of the initial
event. This type of truncation is commonly referred to as left-truncation. In-
dependent truncation can be defined similarly to independent right censoring
and is usually assumed for the analysis of truncated failure time data. For
a more detailed discussion of right censoring and truncation, among others,
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see Kalbfleisch and Prentice (2002) and Lawless (2003). They give various
statistical methods for the analysis of right-censored failure time data such as
those discussed in Section 1.1.1.

1.2 Failure Time Data with Interval Censoring

As discussed in the previous section, failure time data occur in many ways and
in many fields, and there are a number of reasons why special methods are
needed for their analyses. One key feature of failure time data is censoring,
and there exist many excellent books on right censoring. Here we focus on
interval censoring, which is more challenging than right censoring, and for
such data the methods developed for right censoring do not generally apply.

By interval censoring, we mean that study subjects or failure time pro-
cesses of interest are not under continuous observation. As a consequence, the
failure or survival time is not always exactly observed or right-censored. For
an interval-censored observation, one only knows a window, that is, an in-
terval, within which the survival event has occurred. Exact or right-censored
failure times can be regarded a special case of interval-censored failure times
as in such cases, the interval reduces to a single point or is unbounded on the
right. More generally, one could define an interval-censored observation as a
union of several nonoverlapping windows or intervals (Turnbull, 1976).

Interval-censored failure time data occur in many areas including demo-
graphical, epidemiological, financial, medical, and sociological studies. A typi-
cal example of interval-censored data occurs in medical or health studies that
entail periodic follow-ups, and many clinical trials and longitudinal studies
fall into this category. In such situations, interval-censored data may arise in
several ways. For instance, an individual may miss one or more observation
times that have been scheduled to clinically observe possible changes in dis-
ease status and then return with a changed status. Alternatively, individuals
may visit clinical centers at times that are convenient to them rather than
at predetermined observation times. In both situations, the data on change
in status are interval-censored. Even if all study subjects follow exactly the
predetermined observation schedule, one still cannot observe the exact time
of the occurrence of the change of the status assuming that it is a continu-
ous variable. In the last situation, one has grouped failure time data, that is,
interval-censored data for which the observation for each subject is a member
of a collection of nonoverlapping intervals. Grouped failure time data can be
dealt with relatively easily. Among others, Lawless (2003) discussed this type
of failure time data. In the following, we focus on interval-censored data that
are not grouped failure time data.

We present several examples below to further illustrate some of the general
concepts, definitions, common features, and the structure of interval-censored
data. The first two examples concern univariate failure time variables repre-
senting the time from the beginning of a study to the occurrence of an event of
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Table 1.3. Death times in days for 144 male RFM mice with lung tumors

Group Tumor status Death times

CE With tumor 381, 477, 485, 515, 539, 563, 565, 582, 603, 616, 624, 650
651, 656, 659, 672, 679, 698, 702, 709, 723, 731, 775, 779
795, 811, 839

No tumor 45, 198, 215, 217, 257, 262, 266, 371, 431, 447, 454, 459
475, 479, 484, 500, 502, 503, 505, 508, 516, 531, 541, 553
556, 570, 572, 575, 577, 585, 588, 594, 600, 601, 608, 614
616, 632, 632, 638, 642, 642, 642, 644, 644, 647, 647, 653
659, 660, 662, 663, 667, 667, 673, 673, 677, 689, 693, 718
720, 721, 728, 760, 762, 773, 777, 815, 886

GE With tumor 546, 609, 692, 692, 710, 752, 773, 781, 782, 789, 808, 810
814, 842, 846, 851, 871, 873, 876, 888, 888, 890, 894, 896
911, 913, 914, 914, 916, 921, 921, 926, 936, 945, 1008

No tumor 412, 524, 647, 648, 695, 785, 814, 817, 851, 880, 913, 942
986

interest. The third example is about a univariate failure time variable repre-
senting the duration between two related events. The fourth example contains
two correlated failure times of interest.

1.2.1 Lung Tumor Data

Hoel and Walberg (1972) give a set of data for 144 male RFM mice in a
tumorigenicity experiment that involves lung tumors. The data are presented
in Table 1.3 and consist of the death time of each animal measured in days
and an indicator of lung tumor presence (1) or absence (0) at time of death.
The experiment involves two treatments, conventional environment (CE, 96
mice) and germ-free environment (GE, 48 mice). Lung tumors in RFM mice
are predominantly nonlethal, meaning that the occurrence of a tumor does
not change the death rate.

Tumorigenicity experiments are usually designed to determine whether
a suspected agent or environment accelerates the time until tumor onset in
experimental animals. In these situations, the time to tumor onset is usually
of interest but not directly observable. Instead, only the death or sacrifice time
of an animal is observed, and the presence or absence of a tumor at the time
is known. If the tumor can be considered to be rapidly lethal, meaning that
its occurrence kills the animal right away, it is reasonable to treat the time
of death or sacrifice of an animal as an exact or right-censored observation
of the tumor onset time. In this case, the data can be analyzed by methods
developed for right-censored failure time data. On the other hand, if the tumor
is nonlethal as that considered here, then the time to tumor onset is only
known to be less than or greater than the observed time of death or sacrifice.
In other words, only left- or right-censored observations on the tumor onset
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time are available, and the tumor onset time is interval-censored. This type
of interval-censored data is commonly referred to as current status data (see
Section 1.3.1).

Among others, one common objective of tumorigenicity experiments is
to investigate the effect of a suspected agent or environment on tumor preva-
lences or incidence rates. For the data in Table 1.3, for example, it is of interest
to compare the lung tumor incidence rates of the two treatment groups. More
discussion and the analysis of this data set are given in Sections 3.2, 4.5.1,
5.2.2, 5.3.2, 5.4.2, and 5.5.2.

1.2.2 Breast Cancer Study

Table 1.4 presents data from a retrospective study on early breast cancer
patients who had been treated at the Joint Center for Radiation Therapy in
Boston between 1976 and 1980. The data are reproduced from Finkelstein and
Wolfe (1985) and consist of 94 patients who were given either radiation therapy
alone (RT, 46) or radiation therapy plus adjuvant chemotherapy (RCT, 48).

In the study, patients were supposed to be seen at clinic visits every 4 to 6
months. However, actual visit times differ from patient to patient, and times
between visits also vary. At visits, physicians evaluated the cosmetic appear-
ance of the patient such as breast retraction, a response that has a negative
impact on overall cosmetic appearance. The goal of the study is to compare the
two treatments, radiation therapy alone and radiation therapy plus adjuvant
chemotherapy, with respect to their cosmetic effects. Adjuvant chemotherapy
improves the relapse-free and overall survival for some patients. But there ex-
ists some experimental and clinical evidence that suggests that chemotherapy
intensifies the acute response of normal tissue to radiation treatment.

The data contain information about the time to breast retraction. How-
ever, no exact time was observed. There are 38 patients who did not expe-
rience breast retraction during the study, giving right-censored observations

Table 1.4. Observed intervals in months for times to breast retraction of early
breast cancer patients

Group Observed intervals in months

RT (45, ], (25,37], (37, ], (4,11], (17,25], (6,10], (46, ], (0,5], (33, ], (15, ],
(0,7], (26,40], (18, ], (46, ], (19,26], (46, ], (46, ], (24, ], (11,15], (11,18]
(46, ], (27,34], (36, ], (37, ], (22, ], (7,16], (36,44], (5,12], (38, ], (34, ]
(17, ], (46, ], (19,35], (46, ], (5,12], (9,14], (36,48], (17,25], (36, ], (46, ]
(37,44], (37, ], (24, ], (0,8], (40, ], (33, ]

RCT (8,12], (0,5], (30,34], (16,20], (13, ], (0,22], (5,8], (13, ], (30,36], (18,25]
(24,31], (12,20], (10,17], (17,24], (18,24], (17,27], (11, ], (8,21], (17,26], (35, ]
(17,23], (33,40], (4,9], (16,60], (33, ], (24,30], (31, ], (11, ], (15,22], (35,39]
(16,24], (13,39], (15,19], (23, ], (11,17], (13, ], (19,32], (4,8], (22, ], (44,48]
(11,13], (34, ], (34, ], (22,32], (11,20], (14,17], (10,35], (48, ]
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denoted by the intervals with no right end points. For the other patients, the
observations are intervals, representing the time periods during which breast
retractions occurred. The intervals are given by the last clinic visit time at
which breast retraction had not yet occurred and the first clinic visit time
at which breast retraction was detected. For example, the observation (6, 10]
means that at month 6, the patient had shown no deterioration in cosmetic
state, but by the next visit at month 10, breast retraction was present. That
is, we have interval-censored data for the time to breast retraction. The anal-
ysis of this data set is discussed in Sections 2.3.4, 2.4.3, 3.4.4, 4.5.2, 6.2.3, and
6.5.3.

1.2.3 AIDS Cohort Study

Table 1.5 gives a set of data arising from a cohort study of 257 individuals
with Type A or B hemophilia and is reproduced from Kim et al. (1993).
The subjects in the study were treated at two French hospitals beginning
in 1978 and were at risk for infection of the human immunodeficiency virus
(HIV) through contaminated blood factor received for their treatments. The
table includes only 188 subjects who were found to be infected with HIV
during the study period that lasted from 1978 to August 1988. Among these
infected patients, 41 subsequently progressed during the study to the acquired
immunodeficiency syndrome (AIDS) or related clinical symptoms, which will
be simply referred to as an AIDS diagnosis. One variable of great interest in
this study, and also in other similar studies, is the time from HIV infection (or
more precisely HIV seroconversion) to AIDS diagnosis. It is often referred to as
AIDS incubation or latency time. The AIDS latency time provides information
about HIV infection progression and plays an important role in, for example,
predicting HIV prevalences.

In this study of HIV infection times, only intervals that bracket the infec-
tion time for each study subject are available. This is because HIV infection
status was determined by retrospective tests of stored blood sera, and thus
the exact HIV infection time was not observed. The intervals given in Table
1.5 are formed by the times at which the last negative and first positive test
results were obtained with a unit of six months. In terms of AIDS diagnosis
times, they either were observed exactly (for 41 subjects with AIDS diagnosis
before the collection of the data) or were right-censored (for the other sub-
jects). This type of censored data is usually referred to as doubly censored
failure time data. Note that in the original data set, there are a few subjects
whose AIDS diagnosis times were given by narrow intervals, and these are not
included in Table 1.5 for simplicity.

In addition to HIV infection and AIDS diagnosis times, Table 1.5 also
includes information on a covariate that is a group indicator. The subjects in
the study were classified into two groups according to the amount of blood
factor that they received. The heavily treated group includes the individuals
who received at least 1000 µg/kg of the blood factor for at least one year
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Table 1.5. Observed intervals in 6-month scale given by (L, R] for HIV infection
time and observations (denoted by T with starred numbers being right-censored
times) for AIDS diagnosis time for 188 HIV-infected patients (the numbers in paren-
theses are multiplicities)

L R T L R T L R T L R T L R T

Lightly treated group
0 5 23∗ (2) 0 11 23∗ (2) 0 12 23∗ (3) 0 14 23∗ 11 14 23∗ (3)
0 15 23∗ (9) 0 16 23∗ (4) 0 17 23∗ 0 18 23∗ 11 15 23∗

2 10 23∗ 5 8 23∗ 6 10 23∗ 6 12 23∗ 13 16 23∗

7 12 23∗ 7 13 23∗ 7 15 23∗ 8 13 23∗ 5 13 21
8 14 23∗ (3) 9 12 23∗ (2) 9 16 23∗ 10 14 23∗ (4) 10 12 23∗ (2)
11 13 23∗ (4) 11 14 23∗ 12 14 23∗ (4) 12 15 23∗ (3) 10 15 23∗

13 15 23∗ (4) 14 16 23∗ (5) 0 3 8 0 12 15 10 16 23∗

5 12 16 9 11 20 9 12 21 10 12 20 2 16 21
12 13 22 12 15 22 0 13 23∗ 6 13 17 12 14 20
3 11 23∗ 4 11 23∗ 5 13 23∗ 7 16 23∗ 7 16 21
8 12 23∗ 9 15 23∗ 11 13 23

Heavily treated group
0 7 23∗ 0 11 23∗ 0 12 23∗ (2) 0 13 23∗ 0 7 16
0 14 23∗ (3) 0 15 23∗ (2) 0 16 23∗ 2 14 23∗ 8 11 18
4 7 23∗ (2) 6 9 23∗ 6 10 23∗ 7 10 23∗ 9 12 16
8 10 23∗ (2) 8 12 23∗ (3) 9 11 23∗ (7) 9 12 23∗ (2) 9 14 16
9 15 23∗ 10 12 23∗ 10 13 23∗ (4) 11 13 23∗ (7) 7 15 23∗

11 14 23∗ (2) 12 15 23∗ (3) 12 16 23∗ 13 15 23∗ (8) 0 13 23∗

13 16 23∗ (2) 14 16 23∗ (5) 0 7 13 0 10 12 2 15 23∗

0 15 21 2 7 17 4 7 12 4 8 13 6 15 23∗

6 9 19 7 10 15 8 12 18 8 12 22 12 14 18
8 13 15 8 13 18 9 11 15 9 11 16 12 15 18 (2)
9 12 17 9 12 23 11 13 20 12 14 20 12 14 21
13 15 23

between 1982 and 1985, whereas the subjects in the lightly treated group
received less than 1000 µg/kg in each year. Among others, one objective of
interest in this type of study is to estimate the distribution of AIDS latency
time. One could also be interested in investigating the effect of covariates on
the distribution of the AIDS latency time. These are discussed in detail in
Section 8.5.2.

1.2.4 AIDS Clinical Trial

Goggins and Finkelstein (2000) discussed a data set arising from an AIDS
clinical trial, AIDS Clinical Trial Group (ACTG) 181, on HIV-infected in-
dividuals. The study is a natural history substudy of a comparative clinical
trial of three anti-pneumocystis drugs and concerns the opportunistic infec-
tion cytomegalovirus (CMV). During the study, among other activities, blood
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and urine samples were collected from the patients at their clinical visits and
tested for the presence of CMV, which is also commonly referred to as shed-
ding of the virus. These samples and tests provide observed information on
the two variables, the times to CMV shedding in blood and in urine.

The observed information is presented in data set I of Appendix A and
contains the observed intervals for the times to CMV shedding in blood and
urine from 204 patients who provided at least one urine and blood samples
during the study. Some intervals contain time zero, that is, the shedding times
are left-censored because the shedding had already occurred for these patients
when they entered the study. Some intervals have no right end points, that is,
the shedding times are right-censored because the corresponding patients had
not yet started shedding by the end of the study. For the other patients, their
observed intervals are given by the last negative and first positive blood and
urine tests, respectively. In summary, we have two possibly correlated failure
times of interest, and observations on both of them are interval-censored.

In addition to the observed information about CMV shedding times in
blood and in urine, the data set also includes information about the patient’s
baseline CD4 cell counts given by the indicator variable CD4.ind. In particular,
the patients are classified into two groups with CD4.ind equal to 1 if the
baseline CD4 cell count was less than 75 (cells/µl) and 0 otherwise. The CD4
cell count indicates the status of a person’s immune system and is commonly
used to measure the stage of HIV infection. For this data set, one problem
of interest is to estimate the association between CMV shedding times in
blood and in urine or the joint distribution of the times to CMV shedding in
blood and in urine. It is also often of considerable interest to determine the
relationship between the time to CMV shedding and the baseline CD4 cell
count or whether the baseline CD4 cell count is predictive of CMV shedding
in either blood or urine. The analysis of this data set is discussed in Sections
7.2.3 and 7.4.3l.

More examples of interval-censored failure time data and their analyses are
given throughout the book. In the next section, we formally introduce several
types of interval-censored data that are commonly seen in practice and their
corresponding formulations. The methods for their analyses are discussed in
the following chapters.

1.3 Types of Interval Censoring and Their Formulations

Let T be a nonnegative random variable representing the failure time of an
individual in a failure time study. An observation on T is interval-censored if
instead of observing T exactly, only an interval (L , R] is observed such that

T ∈ ( L , R ] , (1.1)

where L ≤ R. In the following, we use the convention that L = R means an
exact observation, and R = ∞ represents a right-censored observation.
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In this book, four types of interval censoring that commonly occur in
practice and their analyses are considered in detail.

1.3.1 Case I Interval-censored Failure Time Data

The term case I interval-censored data is commonly used to refer to interval-
censored failure time data in which all observed intervals “include” either time
zero or infinity (Groeneboom and Wellner, 1992; Huang, 1996). In other words,
the observation on each individual failure time is either left- or right-censored,
that is, either L = 0 or R = ∞. Case I interval-censored data occur when
each study subject is observed only once and the only observed information
for the survival event of interest is whether the event has occurred no later
than the observation time. Instead of the intervals in (1.1), a more convenient
representation of case I interval-censored data is { C , δ = I(T ≤ C) }, where
C denotes the observation time and I is the indicator function. Note that case
I interval-censored data differ from right-censored data or left-censored data,
which usually include some failure times that are observed exactly.

Case I interval-censored data are also often referred to as current status
data, a term originating from demographical studies. Cross-sectional studies
and tumorigenicity experiments on nonlethal tumors are two types of studies
that frequently produce case I interval-censored data. The former is commonly
used in demographical studies, and the lung tumor study discussed in Section
1.2.1 provides an example of the latter. Note that there is a fundamental
difference between the current status data arising from these two types of
studies although they are analyzed in the same way. The current status data
from the former occur mainly due to study designs, whereas those given in
the latter are observed usually due to the inability to measure the variable
directly and/or accurately.

1.3.2 Case II Interval-censored Failure Time Data

Interval-censored data that include at least one interval (L , R] with both
L and R belonging to (0,∞) are usually referred to as general or case II
interval-censored data (Groeneboom and Wellner, 1992; Huang and Wellner,
1997; Sun, 1998, 2005). In other words, case II interval-censored data are
interval-censored data that include some finite intervals away from zero.

Another way to represent a case II interval-censored observation is to use

{ U , V , δ1 = I(T ≤ U) , δ2 = I(U < T ≤ V ) , δ3 = 1 − δ1 − δ2 } (1.2)

assuming that each subject is observed twice, where U and V are two random
variables satisfying U ≤ V with probability 1. This formulation is convenient
and often used, for example, in a theoretical investigation of an inference pro-
cedure. Note that by taking U = V = C, case I interval-censored data can be
described by (1.2). Yu et al. (2000) generalize this formulation to include exact
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observations. Note that in the literature, the term case II interval-censored
data is sometimes used to refer only interval-censored data that are given in
representation (1.2).

Another generalization of the formulation (1.2) is to assume that there
exists a set of observation time points, say U1 ≤ U2 ... ≤ UK , for each study
subject, where K is a random integer. The observed information then has the
form

{ ( K , Uj , δj = I(Uj−1 < T ≤ Uj) ) , j = 1, ..., K } , (1.3)

where U0 = 0. This formulation or type of failure time data is often re-
ferred to as case K or mixed case interval-censored data (Schick and Yu,
2000; Wellner, 1995). It is apparent that the above formulation includes the
representation (1.2) as a special case and provides a natural representation
of interval-censored failure time data arising from longitudinal studies with
periodic follow-up.

All three representations, (1.1) to (1.3), give rise to the same likelihood
function. Note that although both representations (1.2) and (1.3) seem natu-
ral, it is not common to have interval-censored data collected or given in these
formats in practice. However, it is much easier and more natural to impose
assumptions such as independence with T on them than on representation
(1.1), which is often needed for derivation of the asymptotic properties of in-
ference procedures. For data given in representation (1.2) or (1.3), one can
easily obtain the corresponding data with representation (1.1). On the other
hand, it is apparently impossible to transform representation (1.1) to (1.3)
without extra information about observation process, and it is not straight-
forward to transform observations given in representation (1.1) to these in
the representation (1.2). More discussion on this is given later. In the follow-
ing chapters, we mainly focus on the first two representations and use them
interchangeably.

1.3.3 Doubly Censored Failure Time Data

Consider a survival study involving two related events and let X and S denote
the times of the occurrences of the two events with X ≤ S. Define T = S − X
and suppose that T is the survival time of interest. By doubly censored failure
time data, we mean that the observations on both X and S are interval-
censored (De Gruttola and Lagakos, 1989; Sun, 2004). Specifically, suppose
that instead of observing X and S exactly, one only observes two intervals
(L , R] and (U , V ] such that

X ∈ (L , R] , S ∈ (U , V ] ,

where L ≤ R and U ≤ V with probability 1. In other words, the observations
on T are doubly censored.

The special type of doubly censored data in which S is only right-censored
occurs commonly, and in this case, one has either U = V or V = ∞. Another
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formulation for this special case that may be more natural is to assume that
there exists a censoring variable C, which is often assumed to be independent
of S. The observation on S then consists of S∗ = min{S, C} and δ = I(S∗ =
S), where I is the indicator function as before.

One often sees doubly censored failure time data in disease progression
studies where the two events may represent infection and subsequent onset of a
certain disease, respectively, such as the example discussed in Section 1.2.3. In
these situations, doubly censored observations occur mainly due to the nature
of the disease and/or the structure of the study design. In the example given
in Section 1.2.3, X and S represent HIV infection and AIDS diagnosis times,
respectively, and T is the AIDS latency time. For most AIDS cohort studies,
as in this example, because HIV infection usually is determined through pe-
riodic blood tests, observations on it are commonly interval-censored. Also,
observations on the diagnosis of AIDS could be, for example, right-censored
due to the end of the study, thus yielding doubly censored data on T .

Doubly censored failure time data include as special cases right-censored
and interval-censored failure time data. For example, they reduce to interval-
censored data if the time of occurrence of the first event, X, can be observed
exactly (L = R). Furthermore, if the observation on the time of occurrence
of the subsequent event, S, is exact or right-censored, we then have a right-
censored observation on T . Note that for doubly censored data, if X is ob-
served exactly, for inferences about T , one may relabel so that X = 0, which
typically is done in failure time data analysis

In the literature, doubly censored data considered here are sometimes re-
ferred to as doubly interval-censored data (Sun, 1995) to distinguish them
from another type of doubly censored failure time data. In the latter, the
survival time of interest is observed exactly if it is within a window and left-
or right-censored if it is to the left or right of the window (Cai and Cheng,
2004; Chen and Zhou, 2003; Turnbull, 1974). A key difference between the
two types of data is that for the latter type of data, some exact failure times
are observed, but if not, they become case I interval-censored data. The meth-
ods required for the analyses of these two types of doubly censored data are
different.

1.3.4 Panel Count Data

Interval censoring occurs in a more general setting than survival studies. In
failure time data analysis, the random variable of interest is always the time
to an event, and the event is treated as an absorbing event. In other words,
the event can occur only once such as fatal failure or death. In practice,
however, there exist many situations where the event of interest can occur
multiple times such as a tumor or disease symptom. In these situations, in
addition to the time to the event or between the occurrences of the event,
one may also want to study the occurrence process of the event. Without
interval censoring, that is, if the process is observed continuously, then one
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has what is commonly called recurrent event data, in which one knows all
the exact occurrence times of the event (Cai and Schaubel, 2004; Chang and
Wang, 1999). In the presence of interval censoring, which arises if the subject
or occurrence process is observed only at discrete time points, one only knows
the numbers of the occurrences of the event between observation times. In this
case, the observed data are often referred to as panel count data (Kalbfleisch
and Lawless, 1985; Sun and Wei, 2000). However, if the event can occur only
once, then the data become interval-censored failure time data. Panel count
data are also sometimes referred to as interval count data or interval-censored
recurrent event data (Lawless and Zhan, 1998; Thall, 1988).

Panel count data frequently occur in long-term clinical, industrial, or ani-
mal studies. In a follow-up cancer study, for example, one could be interested
in the recurrence rate of one or more types of tumors or of tumors at one or
more locations. For such a study, it is usually impossible or impractical to fol-
low study subjects continuously, and thus panel count data are obtained. An-
other example is longitudinal sociological studies on, for example, job changes.

Define a counting process N(t) with N(t) denoting the number of oc-
currences of a recurrent event up to and including time t. For usual survival
problems, N(t) is a 0-1 counting process, and the counting process formulation
has been used extensively in the literature for the development of statistical
methods for the analysis of right-censored failure time data. For more de-
tailed discussion on this, one can read, for example, the book by Andersen et
al. (1993). The methodology described there can also be used for the analysis
of recurrent event data. In the case of panel count data, the values of N(t)
are known only at different observation time points, and we do not know the
time points at which N(t) jumps. In this book, for the analyses of panel count
data, we focus on methods that allow observation times to vary from subject
to subject.

1.3.5 Independent Interval Censoring, Notation, and Remarks

By independent interval censoring, as independent right censoring, we mean
that the mechanism that generates the censoring is independent of the un-
derlying variable of interest completely or given covariates. For current sta-
tus data, this implies that C and T are independent. For interval-censored
data given in representation (1.2) or (1.3), the independent interval censoring
means that the joint distribution of U and V or the Uj ’s contains no parame-
ters that are involved in the survival function of T . With respect to the data
given in the format (1.1), the independent interval censoring assumes that an
interval (L, R ] gives no more than the information that T is simply bracketed
by the two observed values. In other words, we have

P ( T ≤ t |L = l , R = r , L ≤ T < R ) = P ( T ≤ t | l ≤ T < r )

(Self and Grossman, 1986; Zhang et al., 2005), or
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P ( L < T ≤ R |L = l, R = r ) = P ( l < T ≤ r )

and the joint distribution of L and R is free of the parameters involved in
the survival function of T . More remarks about this independent censoring
mechanism are given in Section 10.5 along with discussion on situations where
it does not hold. Under the independent interval censoring, one does not have
to deal with the censoring mechanism in analyzing interval-censored data.
Throughout the book, the independent interval censoring is assumed unless
otherwise specified.

For presentation of an interval-censored observation, instead of (L , R ],
one could also use [ L , R ], [L , R ), or ( L , R ) (Peto, 1973; Turnbull, 1976).
If T is continuous, it is apparent that there is no difference among them in
the sense that they represent the same observed information about T . On the
other hand, if T is discrete, care is needed because the information given by
them can be different. Some discussion on this can be found in Ng (2002), and
the notation (L , R ] is used throughout this book.

As mentioned above, for T , exact and right-censored observations can be
seen as special cases of interval-censored observations. In practice, a set of
interval-censored data may include both exact and purely interval-censored
observations. Suppose that T is continuous. Then for an exact observation
T = t0, its likelihood contribution is f(t0), and for a purely interval-censored
observation (L , R ], the likelihood contribution has the form S(L) − S(R),
where f(t) and S(t) = P (T > t) denote the density and survival functions of
T , respectively. In the following, we mainly focus attention on purely interval-
censored observations and the corresponding likelihood contribution in the
construction of likelihood functions. In other words, for the construction of
likelihood functions, we assume for convenience that no exact observations are
present unless otherwise specified. The derivation and development of most
likelihood-based inference procedures in this book hold when exact failure
times are present and the corresponding likelihood contributions are included.

In addition to those described in the previous subsections, interval censor-
ing can also occur in other formulations. For example, interval-censored data
can arise from a multi-state model (Commenges, 2003). Also in a survival
study, the variable that suffers interval censoring may be a covariate instead
of the survival time of interest as discussed above (Goggins et al., 1999b).
More generally, observations on both covariates and survival variables may be
interval-censored (Zhao et al., 2005). More discussion on this can be found in
Section 10.3. As in the case of right censoring, truncation may occur together
with interval censoring. By truncation, as before, we mean that a subject is
included in a study only if its failure time belongs to a certain window. Here
truncation can occur for the same reasons as those for right-censored failure
time data. For example, left-truncated and interval-censored data occur if the
survival time T is observed only if T is greater than a certain value and only
an interval to which T belongs can be observed. In the following, we focus
mainly on situations without truncation.
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We remark that in practice, interval-censored data are often collected and
presented as discrete data, and this is especially the case when the data arise
from follow-up studies with day, month, or year as the time unit. Therefore,
it is natural and convenient to treat the underlying survival variables as dis-
crete variables in the development of approaches for their analyses. Also it is
reasonable and sometimes convenient to treat them as continuous variables as
the measured values are often approximations to the true values due to, for
example, measurement errors. This is especially the case for the investigation
of large sample properties of the methods of analysis. In the following discus-
sion, the two formulations are used interchangeably depending on convenience
and purpose.

1.4 Concepts and Some Regression Models

Let T denote a nonnegative random variable representing the failure time of
a subject, that is, the survival variable of interest. For inferences about T , the
survival function and the hazard function are particularly useful for modeling.
The survival function of T is defined as the probability that T exceeds a value
t. Let S(t) denote the survival function of T . Then one has

S(t) = P ( T > t ) , 0 < t < ∞ .

The hazard function is defined differently for continuous and discrete survival
variables and these definitions are given below. The probability density and
distribution functions are often used too in survival analysis although not as
frequently as the survival and hazard functions.

In addition to reviewing these functions along with their relationships,
this section describes several continuous semiparametric regression models
commonly used in survival analysis. These include the Cox or proportional
hazards model, the proportional odds model, the additive hazards model, the
accelerated failure time model, and the linear transformation model. Two
discrete regression models are also presented. Some commonly used paramet-
ric models are discussed in the next chapter along with the corresponding
inference procedures and the imputation approach for the analysis of interval-
censored data.

1.4.1 Continuous Survival Variables

Assume that T is absolutely continuous and thus its probability density func-
tion f(t) exists. By definition, it is easy to see that the density function and
the survival function satisfy

f(t) = − dS(t)/ dt

or
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S(t) =
∫ ∞

t

f(s) ds .

The hazard function of T at time t is defined as

λ(t) = lim
∆t→0+

P ( t ≤ T < t + ∆t |T ≥ t )
∆t

.

It represents the instantaneous probability that a subject fails at time t given
that the subject has not failed before t. The survival, density, and hazard func-
tions have one-to-one relationship. Specifically, given the density or survival
function, we have

λ(t) =
f(t)
S(t)

= − d log S(t)
dt

.

On the other hand, it can be proved that

S(t) = exp
[

−
∫ t

0
λ(s) ds

]
= exp [−Λ(t) ]

and
f(t) = λ(t) exp[−Λ(t) ] ,

where Λ(t) =
∫ t

0 λ(s) ds, which is commonly referred to as the cumulative
hazard function of T .

1.4.2 Discrete Survival Variables

Assume that T is a discrete survival variable taking values s1 < s2 < ... with
probability function { f(sj) = P (T = sj) ; j = 1, 2, ...}. Then one has

S(t) =
∑

j:t<sj

f(sj) .

In this case, the hazard of T at sj is defined as

pj = P ( T = sj |T ≥ sj ) =
f(sj)

S(sj−)
,

the conditional probability that the failure occurs at sj given that the failure
has not occurred before sj , j = 1, 2, ...

As in the continuous case, the survival, density, and hazard functions
uniquely determine each other. Based on the above definitions, one can show
that

S(t) =
∏

j:t≥sj

(1 − pj)

and
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f(sj) = pj

j−1∏
l=1

(1 − pl) .

In survival analysis, due to the special structure of the observed infor-
mation and questions of interest, it is more convenient to model the hazard
function or the survival function than other functions that determine the dis-
tribution of T . The remainder of this section discusses several such regression
models.

1.4.3 The Proportional Hazards Model

Let Z be a vector of covariates including, for example, treatment indicator,
age, and gender. As remarked before, a regression analysis provides an assess-
ment of covariate effects on failure time, which is one of the important tasks
in survival analysis. For this, a regression model is usually needed to specify
how the covariates affect the failure time of interest. The proportional hazards
(PH) or Cox model assumes that the hazard function of T has the form

λ(t; Z) = λ0(t) exp(Z ′ β) (1.4)

given covariates Z (Cox, 1972). In the above, λ0(t) is an arbitrary unspecified
baseline hazard function, and β is the vector of regression parameters. This
model specifies that the covariates act multiplicatively on the hazard function.

The model (1.4) says that the ratio of the hazard functions for two subjects
with different covariates is constant. In particular, for the two-sample situation
where Z = 0 or 1, one has

λ(t; Z = 1)
λ(t; Z = 0)

= exp(β) .

Under the PH model, the conditional density and survival functions of T
given Z have the forms

f(t; Z) = λ0(t) exp(Z ′ β) exp
[−Λ0(t) exp(Z ′ β)

]
and

S(t; Z) = exp[−Λ0(t) exp(Z ′ β) ] = [S0(t) ]exp(Z ′ β)
,

where

Λ0(t) =
∫ t

0
λ0(s)ds

and

S0(t) = exp
[

−
∫ t

0
λ0(s)ds

]
are the baseline cumulative hazard function and the baseline survival function.
The conditional cumulative hazard function of T given Z has the form
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Λ(t; Z) = Λ0(t) exp(Z ′ β) .

The PH model is perhaps the most commonly used regression model in
failure time data analysis. One main reason is that a simple and efficient infer-
ence procedure, the partial likelihood approach, about the regression param-
eter β is available for right-censored failure time data. The partial likelihood
approach was proposed by Cox (1972, 1975) and has been studied by many
authors. It is simple partly because the partial likelihood function used for
such inferences is only a function of β, and thus one does not have to deal
with the baseline hazard function λ0(t). The approach is efficient because the
resulting estimator of β is asymptotically equivalent to the estimator of β
given by the full likelihood function. In addition to Cox (1972, 1975), Cox
and Oakes (1984) and Kalbfleisch and Prentice (2002) give other references
that discuss model (1.4) and its use in regression analyses of right-censored
failure time data.

Many generalizations of the PH model exist. One allows Z to depend on
time, which could be the case if, for example, Z includes the level of air pollu-
tion or the amount that a person exercises. Another allows the baseline hazard
function to be different for subjects from different subgroups or subpopula-
tions. To be specific, suppose that the population is divided into k strata and
the hazard function of T for a subject from the jth stratum has the form

λ(t; Z) = λ0j(t) exp(Z ′ β)

given covariates Z, j = 1, ..., k. That is, the hazard function may have differ-
ent shapes for subjects from different stratum. Other generalizations include
combinations of the two generalizations above and the use of non-linear rela-
tionships for the covariate effect rather than the linear relationship in (1.4)
(Huang, 1999a). This book focuses mainly on time-independent covariates and
related approaches to inferences.

1.4.4 The Proportional Odds Model

The proportional odds model is another regression model commonly used in
survival analysis. It models the conditional survival function given covariates
Z by postulating that

S(t; Z)
1 − S(t; Z)

= e−Z ′β S0(t)
1 − S0(t)

, (1.5)

or
logit[S(t; Z)] = logit[S0(t)] − Z ′ β .

As before, S0(t) denotes the baseline survival function or the survival function
for the subjects with Z = 0, and logit(x) = log(x/(1 − x)).

As with the PH model, (1.5) also assumes that the effect of covariates is
multiplicative, but on the odds of the survival function instead of the hazard
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function. Let H(t) = − logit[S0(t)]. If H(t) is strictly increasing, model (1.5)
can be equivalently written as

H(T ) = −Z ′β + W , (1.6)

where the random variable W follows a standard logistic distribution.
For the two-sample situation with Z = 0 or 1, the proportional odds model

says that the odds of the survival between the two samples are proportional
to each other. Let S0(t) denote the survival function for the subjects with
Z = 0 and α = exp(−β). Then under model (1.5), we have

λ(t; Z = 1)
λ(t; Z = 0)

=
1

1 + (α − 1) S0(t)
,

which is a monotonic function of t and converges to 1 as t → ∞. In other
words, unlike with the PH model, the ratio of the hazards changes with time
and are not proportional to each other under model (1.5). For applications
of model (1.5) to the analysis of right-censored failure time data, see Chen
(2001), Murphy et al. (1997), and Yang and Prentice (1999) among others.

1.4.5 The Additive Hazards Model

As with the PH model, the additive hazards model specifies the effect of
covariates on the failure time through the hazard function. Specifically, it
assumes that given Z, the hazard function of T has the additive form given
by

λ(t; Z) = λ0(t) + Z′ β , (1.7)

where λ0(t) is an arbitrary unspecified baseline hazard function, and β repre-
sents covariate effect as before. That is, the effect of covariates is to additively
increase or decrease the hazard function.

Although both the PH model and the additive hazards model focus on the
hazard function, the defined covariate effects have different meanings. Under
the PH model, the regression parameter β represents the logrithm of the risk
ratio in terms of risk factors and failure rates, whereas under model (1.7), β
denotes the risk difference. This easily can be seen in the two-sample situation
where Z takes only value 0 or 1. In this case, we have

λ(t; Z = 1) = λ(t; Z = 0) + β .

One attractive feature of the additive hazards model is that it provides
a simple structure for modeling failure time data when there exist latent
variables or frailties. For the additive frailty model, the marginal model is
still the additive hazards model and the regression parameter β has the same
meaning in both the the additive frailty model and the marginal model (Lin,
Oakes and Ying, 1998; Lin and Ying, 1997). The same is not true for the PH
model.
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The authors who discussed model (1.7) include Aalen (1980), Breslow and
Day (1987), Kim and Lee (1998), Kulich and Lin (2000), and Lin and Ying
(1994). Some generalizations of model (1.7) have been proposed to make it
more flexible for the analysis of right-censored failure time data. For example,
we could allow Z to be time-dependent, and in this case, inferences about β
are similar to those for the situation where Z is time-independent. Lin and
Ying (1995) gave an additive-multiplicative hazard model that combines the
PH model and the additive hazard model together. Martinussen and Scheike
(2002a) and Scheike and Zhang (2002) further generalized the model.

1.4.6 The Accelerated Failure Time Model

The accelerated failure time model specifies that

log T = Z ′ β + W , (1.8)

where β is defined as before, and W is an error variable with an unknown
distribution function. It is interesting to note that the ways that covariates af-
fect the failure time in the accelerated failure time model and the proportional
odds model are similar, but the ways that they affect the survival function
are quite different as seen below.

Define W ∗ = exp(W ) and let λw(t) denote the hazard function of W ∗,
which is independent of β. Then T = exp(Z′ β) W ∗, and the hazard and
survival functions of T given Z have the forms

λ(t; Z) = λw(t e−Z ′β) exp(−Z′ β)

and
S(t; Z) = exp

[
−Λw(t e−Z ′β)

]
,

respectively, where Λw(t) =
∫ t

0 λw(s)ds.
It is interesting to note that under model (1.8), the effect of covariates

is also multiplicative as under the PH model, but on t instead of the hazard
function. In other words, the effect is to change the timescale and therefore to
accelerate or decelerate the time to failure. Although the PH model specifies
that the effect of covariates on the hazard is multiplicative, it does not give
a direct relationship between Z and T because λ0(t) is arbitrary. In contrast,
the model (1.8) specifies a linear relationship between log T and Z.

Consider the two-sample situation where Z = 0 or 1 and let S1(t) and
λ1(t) denote the survival and hazard functions of the subjects with Z = 1,
respectively. Then we have

S1(t) = S0(γ t) , λ1(t) = γ λ0(γ t) ,

where γ = exp(−Z ′β) and S0(t) and λ0(t) are the survival and hazard func-
tions of the subjects with Z = 0, respectively.
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As for the PH model, one could also consider model (1.8) with time-
dependent covariates. References that discuss the application of model (1.8)
for the analysis of right-censored failure time data include Bagdonavicius and
Nikulin (2001), Jin et al. (2003), Kalbfleisch and Prentice (2002), Park and
Wei (2003), Tsiatis (1990), Wei et al. (1990), and Ying (1990).

1.4.7 The Linear Transformation Model

All regression models described above are specific models in the sense that
they are single models and the underlying probability distribution is com-
pletely specified given unknown baseline functions. This subsection introduces
a class of regression models, commonly called the linear transform model. Let
T and Z be defined as before and H(t) an unknown strictly increasing func-
tion. A linear transform model specifies that

H(T ) = Z ′ β + W , (1.9)

where β is a vector of regression parameters as before, and the random variable
W has a completely known distribution function F .

From (1.6), (1.8), and (1.9), it is seen that the linear transformation model
clearly has close relationships with the accelerated failure time model and
the proportional odds model. Under them, the ways by which explanatory
variables affect the failure time are similar although details may be different.
Furthermore, model (1.9) actually includes the PH model and the proportional
odds model as special cases. To obtain the PH model, one can take F (t) =
1 − exp[− exp(t)], the extreme value distribution, in model (1.9). The linear
transformation model gives the proportional odds model if we let F be the
standard logistic distribution.

Equivalently, the linear transformation model can be defined by

g[S(t; Z)] = H(t) − Z ′ β ,

where g−1(s) = 1 − F (s). This equation shows that under model (1.9), the
effect of covariates is to shift the location of the survival function in the scale
of g. A major advantage of the linear transformation model is its generality as
F could be any distribution function. References that discuss the application
of model (1.9) to regression analysis of right-censored failure time data include
Chen et al. (2002), Cheng et al. (1995, 1997), Fine et al. (1998), Kong et al.
(2004), and Lu and Ying (2004).

1.4.8 Discrete Regression Models

All regression models discussed so far are for continuous survival variables.
This subsection presents two commonly used regression models for discrete
survival variables. One is the grouped PH model (Pierce et al., 1979; Prentice
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and Gloeckler, 1978) and the other is the logistic model (Lawless, 2003). Us-
ing the notation defined in the previous subsections, the grouped PH model
assumes that given Z, the survival function at time sj has the form

S(sj ; Z) = [S0(sj)]exp(Z ′β) . (1.10)

In this model, S0(sj) denotes the value of the baseline survival function or sur-
vival function for the subjects with Z = 0 at sj and β regression parameters.
This gives

qj(Z) = P (T > sj |T ≥ sj ,Z) = q
exp(Z ′β)
j

and

S(sj ; Z) =
j∏

k=1

q
exp(Z ′β)
k ,

where qj = S0(sj)/S0(sj−1).
In practice, it is common to reparameterize model (1.10) by taking αj =

log(− log qj). This not only removes the rang restriction on parameters but
also improves the convergence in the determination of parameter estimates.
Using the new parameters, we have

S(sj ; Z) =
j∏

k=1

e− exp(αk +Z ′β) . (1.11)

Model (1.10) can be regarded as arising from the PH model (1.4) due
to the grouping of continuous failure times. In this case, it is supposed that
each subject can be possibly observed only at the sj ’s and only values of the
survival function at these time points are of interest or can be estimated.
Among others, Lawless (2003) and Prentice and Gloeckler (1978) discussed
use of the grouped PH model for regression analysis of right-censored grouped
failure time data.

In contrast with model (1.10), the logistic model cannot be obtained by
grouping from the PH model, and it specifies that

qj(Z) = P (T > sj |T ≥ sj ,Z) =
1

1 + γj eZ
′β

,

where

γj =
1 − qj(0)

qj(0)
=

1 − qj

qj
.

Then the conditional survival function given Z has the form

S(sj ; Z) =
j∏

k=1

(1 + γk eZ
′β)−1 . (1.12)

The logistic model can be equivalently defined by
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log
[

1 − qj(Z)
qj(Z)

]
= log γj + Z ′β .

For model (1.11), one may want to use the reparameterization αj = log γj ,
which serves the same purpose as the reparameterization discussed above for
the grouped PH model. The model (1.11) was initially proposed by Cox (1972)
and developed further by Thompson (1977) for regression analysis of right-
censored failure time data. An attractive feature of this model is that for
inference about regression parameter β, a partial likelihood for β can be
derived and used, which does not involve the baseline survival function or the
γj ’s (Lawless, 2003). The same is not possible for the grouped PH model.
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Inference for Parametric Models and
Imputation Approaches

2.1 Introduction

Although the main focus of this book is nonparametric and semiparametric
inference procedures, it is helpful to first consider inference methods for para-
metric models and some imputation approaches. A main advantage of para-
metric approaches is that their implementation is straightforward in principle
and in fact standard maximum likelihood theory generally applies. Imputation
approaches are used to reduce the problem of analyzing interval-censored fail-
ure time data to that of analyzing right-censored failure time data. Thus one
can avoid dealing with interval censoring and use existing inference procedures
and statistical software developed for right-censored data.

Section 2.2 describes several commonly used parametric models for failure
time variables with or without the existence of covariates. In Section 2.3, in-
ference for these models is discussed with the focus on the standard likelihood-
based inference procedures that generally apply to most parametric models.
The imputation approach for the analysis of interval-censored failure time
data is the topic of Section 2.4. Section 2.5 provides bibliographic notes and
general discussion about parametric and imputation approaches.

2.2 Parametric Failure Time Models

This section describes several commonly used parametric models for T , a
nonnegative random variable representing the failure time of a subject. These
include the exponential model, Weibull model, log-normal model, and log-
logistic model. Some other parametric models can be found in Kalbfleisch
and Prentice (2002) and Lawless (2003).

2.2.1 The Exponential Model

The one-parameter exponential model assumes that the hazard function of T
is constant over the range of T . That is,
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λ(t) = λ > 0 .

It is the simplest failure time model and supposes that the instantaneous
failure rate is independent of time t. Under this model, the survival and density
functions of T are, respectively,

S(t) = e− λ t , f(t) = λ e− λ t .

Furthermore, it can be easily shown that the conditional probability of failure
within a time interval of specified length is the same regardless of how long
the subject has been on study. This property is usually referred to as the
memoryless property of the exponential model.

Suppose that there exists a vector of covariates Z and one is interested in
the effect of Z on T . One way to define an exponential regression model is to
assume that the conditional hazard function of T given Z has the form

λ(t; Z) = λ exp(Z′ β)

that follows the PH model (1.4). Here β denotes the vector of regression
parameters. The conditional density function of T then has the form

f(t; Z) = λ exp(Z ′ β) exp[−λ t exp(Z ′ β)]

given Z.
Define Y = log T , the log survival time. Then the model above can be

equivalently defined by

Y = α − Z ′ β + W , (2.1)

where α = − log λ and W has the extreme value distribution with the density
function given by

exp(w − ew) , −∞ < w < ∞ .

With respect to T , model (2.1) is a log-linear model, and for Y , it is a linear
model with the error variable W having the extreme value distribution.

2.2.2 The Weibull Model

The simple exponential model described above depends only on one parameter
and can be too restrictive sometimes. An important generalization of it is the
two-parameter Weibull model with the hazard function

λ(t) = λ γ (λ t)γ−1

for λ , γ > 0. It is easy to see that this hazard function is monotone decreasing
for γ < 1, increasing for γ > 1, and reduces to the exponential hazard if
γ = 1. Under the Weibull model, the survival and density functions of T
have the forms
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S(t) = exp[− (λ t)γ ]
and

f(t) = λ γ (λ t)γ−1 exp[− (λ t)γ ] ,

respectively.
For regression analysis, as in the case of exponential model, the hazard

function can be generalized to

λ(t; Z) = λ γ (λ t)γ−1 exp(Z′ β) .

The corresponding conditional density function of T given Z is then

f(t; Z) = λ γ (λ t)γ−1 exp(Z′ β) exp[− (λ t)γ exp(Z′ β) ] .

As in the case of the exponential model, with Y = log T , this regression
model can be written as

Y = α + Z ′ β∗ + σ W , (2.2)

where α = − log λ, σ = γ−1, β∗ = −σ β, and W follows the extreme value
distribution.

It is interesting to note that as the PH model, both exponential and
Weibull regression models specify that covariates have multiplicative effects
on the hazard function. On the other hand, like the accelerated failure time
model (1.8), both models are log-linear models and under them, covariates
additively affect the log survival time Y . In fact, the Weibull model is the
only family of models satisfying these conditions (Kalbfleisch and Prentice,
2002).

2.2.3 The Log-normal Model

The log-normal model assumes that the log survival time Y = log T has the
form Y = α + σ W with W being a standard normal variable. The density
function of T is then

f(t) = (2π)−1/2 γ t−1 exp
[ −γ2 (log λt)2

2

]
,

where λ = exp(−α) and γ = σ−1 as before. The survival and hazard func-
tions of T involve the standard normal distribution function Φ(w) with

S(t) = 1 − Φ(γ log λt)

and both have no closed form. The hazard function increases from zero at
t = 0 to a maximum and then decreases to zero as t increases.

In the case when there exist covariates Z, it is apparent that following
models (2.1) and (2.2), one can define the log-normal regression model as

Y = α + Z ′ β + σ W , (2.3)

the usual linear regression model. This model is particularly easy to apply if
there exists no censoring. But with censoring, the computation and inference
become difficult.
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2.2.4 The Log-logistic Model

The log-logistic model is defined in the same way as the log-normal model
except that W has the logistic density

ew

(1 + ew)2
.

This density function is symmetric with mean 0 and variance π2/3, having
slightly heavier tails than the normal density function. Under the log-logistic
model, T has the density function

f(t) = λ γ (λ t)γ−1 [1 + (λ t)γ ]−2 ,

where again λ = exp(−α) and γ = σ−1.
In comparison with the log-normal model, the log-logistic model, although

it is used less frequently in failure time analysis, has the advantage that both
survival and hazard functions have closed forms. Thus it is more convenient
than the log-normal model in handling censoring. The survival and hazard
functions are, respectively,

S(t) =
1

1 + (λ t)γ

and

λ(t) =
λ γ (λ t)γ−1

1 + (λ t)γ
.

If γ < 1, λ(t) is monotone decreasing from ∞ and if γ = 1, it is mono-
tone decreasing from λ. For γ > 1, as the log-normal hazard function, λ(t)
increases from zero to a maximum and then decreases to zero.

2.3 Likelihood-based Inference for Parametric Models

Consider a survival study that consists of n independent subjects. Let Ti

denote the survival time of interest for subject i, i = 1, ..., n, and suppose that
the Ti’s follow a parametric model with survival function S(t,θ), where θ =
(θ1, ..., θp)′ denotes unknown parameters. Also suppose that only interval-
censored data are available and they have the form

{ (Li, Ri],Zi ; i = 1, ..., n } ,

where (Li, Ri] denotes the interval to which Ti is observed to belong and Zi is
the covariate vector associated with subject i, i = 1, ..., n. Then the likelihood
function is proportional to

L(θ) =
n∏

i=1

Li(θ) =
n∏

i=1

[ S(Li,θ) − S(Ri,θ) ]
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assuming that Li < Ri for all i = 1, ..., n.
In the following, general likelihood-based inference procedures are dis-

cussed first and followed by inference procedures about exponential and gen-
eral log-linear regression models. Two examples are then provided.

2.3.1 Inference with General Parametric Models

A standard approach to inferences about θ is to estimate it by the maximum
likelihood estimator, defined as the value of θ that maximizes L(θ), and to
use the score and likelihood ratio statistics derived from L(θ). Given the inde-
pendent censoring mechanism assumed here, standard large-sample likelihood
theory generally applies. In particular, asymptotic approximations to the dis-
tributions of the maximum likelihood estimator, score statistic, and likelihood
ratio statistic are available and provide straightforward inference approaches.

Let θ̂ denote the maximum likelihood estimator of θ. Define

U(θ) =
n∑

i=1

Ui(θ) =
n∑

i=1

∂

∂ θ
Li(θ)

and

I(θ) =
n∑

i=1

Ii(θ) =
n∑

i=1

∂2

∂ θ ∂θ′ Li(θ) .

Then under certain regularity conditions, θ̂ is consistent. Furthermore, when
n is large, it is the unique solution to U(θ) = 0, and its distribution can be
approximated by the multivariate normal distribution with mean θ and the
covariance matrix I−1(θ). In other words, one has

θ̂ ∼ N( θ , I−1(θ) ) ,

which can be used for testing hypotheses and deriving interval estimates for
θ. To determine θ̂, one can use any root-finding procedure or the Newton-
Raphson algorithm. Suppose that I(θ0) is nonsingular. In the Newton-
Raphson algorithm, an initial value, say θ0, of θ is updated by

θ1 = θ0 − I−1(θ0) U(θ0)

iteratively until convergence is achieved.
To test the hypothesis H1 : θ = θ0, where θ0 is known, it is convenient

to use the score test statistic

U ′(θ0) I−1(θ0) U(θ0) ,

which has an asymptotic χ2 distribution with degrees of freedom p. Assume
θ = (θ′

1,θ
′
2)

′, where θ1 and θ2 are components of θ with dimensions k and
p−k, respectively. Then in practice, a more common hypothesis is H2 : θ1 =
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θ10, where θ10 is known. In this situation, partition U(θ) in the same way as
θ, i.e.,

U ′(θ) = [U ′
1(θ1,θ2), U ′

2(θ1,θ2)] ,

where U1 and U2 are of dimensions k and p − k corresponding with θ1 and
θ2, respectively. Let θ̂20 denote the estimate of θ2 given by the solution to
U2(θ10,θ2) = 0 and I11(θ) the submatrix of I−1(θ) corresponding with θ1.
Then the test of H2 can be based on the statistic

(θ̂1 − θ10)′ [I11(θ10, θ̂20)]−1 (θ̂1 − θ10) (2.4)

or
U ′

1(θ10, θ̂20) I11(θ10, θ̂20) U1(θ10, θ̂20) , (2.5)

where θ̂ = (θ̂
′
1, θ̂

′
2)

′. Both statistics have an asymptotic χ2 distribution with
the degrees of freedom k.

In the methods described above, one needs to determine the observed
Fisher information matrix I(θ), which could be difficult sometimes. An ap-
proach without this drawback is based on the likelihood ratio statistic

LR(θ) =
L(θ)

L(θ̂)
.

One can use the statistic − 2 log [LR(θ0)] or − 2 log [LR(θ10, θ̂20)] to test the
hypothesis H1 or H2, respectively. They have an asymptotic χ2 distribution
with the degrees of freedom p and k, respectively, under the corresponding
hypothesis.

2.3.2 Inference with the Exponential Regression Model

This subsection discusses a special situation where Ti follows the exponential
regression model given in Section 2.2.1. For ease of notation, suppose that the
hazard function has the form

λ(t ; Zi) = exp(Z ′
i β) ,

where Zi1 = 1. With this notation, one has that θ = β = (β1, ..., βp+1)′ and
λ = exp(β1), the hazard rate when all real covariates have value 0.

For subject i, define δi = 1 if Li = Ri and δi = 0, otherwise i = 1, ..., n.
That is, δi indicates if an exact observation is observed for subject i. Then
the likelihood function L(θ) is

L(β) =
∏

i:δi=1

eZ
′
iβ exp(−eZ

′
iβ Li)

∏
i:δi=0

[
exp(−eZ

′
iβ Li) − exp(−eZ

′
i βRi)

]

conditional on the Zi’s. The score vector and the observed Fisher information
matrix are
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U(β) =
∂ log L(β)

∂β

=
n∑

i=1

Zi

[
δi (1 − eZ

′
i β Li) + (1 − δi) exp(Z ′

i β) di(β,Zi)
]

and

Î(β) = − ∂2 log L(β)
∂β∂β′

=
n∑

i=1

Zi Z ′
i eZ

′
i β
{

δi Li − (1 − δi)
[
di(β,Zi) + eZ

′
i β d∗

i (β,Zi)
]}

,

respectively, where

di(β,Zi) =
Ri exp(−eZ

′
i β Ri) − Li exp(−eZ

′
i β Li)

exp(−eZ
′
i β Li) − exp(−eZ

′
i β Ri)

and

d∗
i (β,Zi) =

L2
i exp(−eZ

′
i β Li) − R2

i exp(−eZ
′
i β Ri)

exp(−eZ
′
i β Li) − exp(−eZ

′
i β Ri)

− d2
i (β,Zi) .

For the two sample comparison problem, one has that Zi = (Zi1, Zi2)′,
where Zi1 = 1 as before and Zi2 = 0 or 1. The comparison is equivalent to
testing β2 = 0 and can be performed by using statistic (2.4) or (2.5) with
θ1 = β2 and θ2 = β1.

2.3.3 Inference with Log-linear Regression Models

This subsection considers the more general situation where instead of the
exponential model, Ti follows the general log-linear model including those
defined in (2.1) to (2.3). As before, define Yi = log (Ti) and suppose that the
density function of the Yi’s is given by

σ−1 f(w) ,

where w = (y − Z ′ β)/σ. Here again we assume that Zi1 = 1 for all i. Then
the likelihood function of β and σ can be written as

L(β, σ) =
n∏

i=1

[
σ−1 f(wLi)

]δi [S(wLi) − S(wRi)]
1−δi ,

where wLi = (log Li−Z ′
i β)/σ, wRi = (log Ri−Z ′

i β)/σ, S(w) =
∫∞

w
f(s) ds,

and the δi’s are defined as before.
The score vector has the form
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Uβ(β, σ) =
∂ log L(β, σ)

∂β

= −σ−1
n∑

i=1

Zi

[
δi

f ′(wLi)
f(wLi

)
− (1 − δi)

f(wLi) − f(wRi)
S(wLi

) − S(wRi
)

]

and

Uσ(β, σ) =
∂ log L(β, σ)

∂σ

= −σ−1
n∑

i=1

[
δi + δi

wLi
f ′(wLi

)
f(wLi)

− (1 − δi)
wLi

f(wLi
) − wRi

f(wRi
)

S(wLi) − S(wRi)

]
,

where f ′(w) = df(w)/dw. The components of the observed Fisher information
matrix are

− ∂2 log L(β, σ)
∂β∂β′ = σ−2

n∑
i=1

Zi Z ′
i

{
δi

[(
f ′(wLi)
f(wLi)

)2

− f ′′(wLi)
f(wLi)

]

+ (1 − δi)

[(
f(wLi

) − f(wRi
)

S(wLi
) − S(wRi)

)2

+
f ′(wLi

) − f ′(wRi
)

S(wLi
) − S(wRi)

]}
,

− ∂2 log L(β, σ)
∂β∂σ

= σ−2
n∑

i=1

Zi

{
δi wLi

[(
f ′(wLi)
f(wLi

)

)2

− f ′′(wLi)
f(wLi

)

]

+ (1 − δi)
[
(f(wLi) − f(wRi)) (wLif(wLi) − wRif(wRi))

(S(wLi) − S(wRi))2

+
wLi

f ′(wLi
) − wRi

f ′(wRi
)

S(wLi
) − S(wRi)

]}
+ σ−1 Uβ(β, σ) ,

and

− ∂2 log L(β, σ)
∂σ∂σ

= σ−2
n∑

i=1

{
δi

[(
wLi

f ′(wLi
)

f(wLi
)

)2

− wLif
′(wLi) + w2

Li
f ′′(wLi)

f(wLi)

]
+ (1 − δi)

[(
wLif(wLi

) − wRi
f(wRi

)
S(wLi) − S(wRi)

)2

+
wLi

f(wLi
) + w2

Li
f ′(wLi

) − wRi
f(wRi

) − w2
Ri

f ′(wRi
)

S(wLi
) − S(wRi

)

]}
+ σ−1 Uσ(β, σ) ,

where f ′′(w) = d2f(w)/dw2.
Several authors have investigated parametric inference procedures for the

analysis of interval-censored data. For example, two recent references are Lind-
sey (1998) and Lindsey and Ryan (1998). The former considered a number of
commonly used parametric models and suggested that for many situations,
one can use the middle point imputation approach, which is described in the
next section. The latter gave a useful tutorial about parametric approaches as
well as nonparametric approaches and in particular, discussed the log-linear
regression models considered above. More inferences are given in Section 2.5.
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Table 2.1. Observed intervals in months for HIV infection times of 297 Danish
homosexuals with 0 denoting December 1979 and ni being multiplicities

Li Ri ni Li Ri ni Li Ri ni

0 24 24 0 39 2 24 28 4
24 39 1 24 57 10 24 88 3
24 113 4 24 ∞ 61 28 39 4
28 88 1 28 ∞ 8 39 57 3
39 113 2 39 ∞ 15 57 88 5
57 113 1 57 ∞ 22 88 113 1
88 ∞ 34 113 ∞ 92

2.3.4 Two Examples

To illustrate the inference approaches discussed in the previous subsections,
we discuss two examples. First, consider the set of interval-censored data
presented in Table 2.1, reproduced from Carstensen (1996). The data concern
HIV infection times of 297 Danish homosexuals, who were supposed to be
examined for their HIV status at six time points between December 1981 and
May 1989. As expected, many patients did not make all six visits, and as seen
from the table, the data are highly interval-censored. In the table, zero means
December 1979, and the time origin is assumed to be the same for all patients.

For the analysis, we first fit the data to the exponential model described
in Section 2.2.1, and the likelihood-based approach gives λ̂ = 0.0034 with
an estimated standard error of 0.0004. If we use the Weibull model given in
Section 2.2.2, the approach gives λ̂ = 0.0025 and γ̂ = 0.8119 with their es-
timated standard errors equal to 0.0002 and 0.2523, respectively. In practice,
one use of the Weibull model is to test if the exponential model is appropri-
ate for the data. This can be carried out by testing γ = 1, for which one
has the Wald statistic equal to (0.8119 − 1)/0.2523 = −0.7455. Based on
the standard normal distribution, this gives a p-value of 0.4560 and suggests
that the exponential model seems to provide a reasonable fit to the data. For
the data set, one question of interest is to estimate the proportion of the pa-
tients who were HIV-positive by 1990, which corresponds with the probability
P120 = P ( T ≤ 120 ) = 1 − S(120). For this, Figure 2.1 displays the esti-
mated proportion curves, or the cumulative probabilities of a patient being
HIV-positive by time t under exponential and Weibull models, respectively.
It can be seen that using the exponential model, one gets P̂120 = 0.3350,
suggesting that about 34% of the patients would be HIV-positive by 1990.
Under the Weibull model, one obtains P̂120 = 0.3136, that is, the proportion
would be about 31%.

For the second example, we discuss the analysis of the interval-censored
failure time data given in Table 1.4 from an early breast cancer study. The
study consists of two treatments, radiation therapy alone and radiation ther-
apy plus adjuvant chemotherapy, and its main goal is to compare the two treat-
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Fig. 2.1. Estimated proportion curves of the patients being HIV-positive by certain
time.

ments in terms of time to breast retraction. However, only interval-censored
observations on the time to breast retraction are available.

For the comparison, we define Zi = 0 for the patients given radiation ther-
apy alone and Zi = 1 otherwise. The fit of the exponential regression model
then gives λ̂ = 0.0163 and β̂ = 0.7416 with their estimated standard errors
being 0.0036 and 0.2769, respectively, using the notation in Section 2.2.1. Note
that the comparison of the two treatments is equivalent to testing β = 0, for
which the Wald test yields β̂/0.2769 = 2.6782 and gives a p-value of 0.0074
based on the standard normal distribution. This suggests that the patients
given radiation therapy plus adjuvant chemotherapy have significantly higher
risk to develop breast retraction. In other words, the adjuvant chemotherapy
significantly increases the risk of breast retraction. Using the Weibull regres-
sion model in Section 2.2.2, we get λ̂ = 0.0203, γ̂ = 1.6149, and β̂ = 0.5677
and the estimated standard errors are 0.0028, 0.1936, and 0.1757, respectively.
In this case, we obtain a p-value of 0.0012 for testing β = 0.

2.4 Imputation-based Inference

Imputation or multiple imputation is a general approach for handling missing
data problems (Rubin, 1987) and is commonly used in, for example, sample
surveys. Missing data usually refer to observed data in which for some sub-
jects, no information is observed for response variables of interest. Censored
or interval-censored failure time data differ from missing data in nature be-
cause the former provides some incomplete information about failure variables
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of interest. In other words, interval-censored data are really incomplete data,
not exactly missing data Nevertheless, one can still treat the underlying, un-
observed true interval-censored failure times as missing and replace them by
using some imputed times conditional on the observed information.

As in the previous section, let the Ti’s represent the survival times of inter-
est from n independent individuals, and suppose that only interval-censored
data

{ (Li, Ri],Zi ; i = 1, ..., n }
are observed. For one sample problem, it is assumed that Zi = 0. Let S(t ; θ)
denote the survival function of the Ti’s that is known up to unknown param-
eters θ. In the following, the discussion mainly focuses on the situation where
the dimension of θ is infinite. These include situations such that θ repre-
sents the whole survival function, or consists of a finite-dimensional vector of
parameters of interest plus a nuisance function. One sample nonparametric
problem corresponds with the former situation, and an example of the latter
situation is given by θ being β and λ0(t) for regression analysis under model
(1.4). However, as those discussed in the previous two sections, the methods
described below equally apply to the case of finite-dimensional θ.

Imputation, in these cases, means to generate one or multiple sets of right-
censored failure time data for the Ti’s using the observed data. One then uses
these new data to make inference about θ. It is apparent that instead of
right-censored data, one could generate exact failure time data for the Ti’s.
However, this is usually not necessary and also not preferred. The main rea-
son is that there exist many established methods for right-censored data for
various inference problems and there are possible shortcomings of imputation
approaches. In the following, two general imputation approaches are discussed.
One is a single point imputation approach, which is commonly used in prac-
tice for its simplicity. The other is a multiple imputation approach (Wei and
Tanner, 1991), the application of the data augmentation technique discussed
in Tanner and Wong (1987) and Tanner (1991).

2.4.1 A Single Point Imputation Approach

For interval-censored failure time data, the simplest imputation approach is
perhaps to assume that for subject i, the underlying true failure time Ti

is equal to a value within the observed interval (Li, Ri], i = 1, ..., n. One
common choice is to let Ti be the middle point of the interval for a finite
interval or truly interval-censored observation. For intervals with Ri = ∞
or right-censored observations, the original observations are kept. Then we
have a set of right-censored failure time data. An alternative to the mid-point
imputation is to take Ti to be Li, the left end point imputation, or Ri, the
right end point imputation. It is apparent that these three methods would
not give much different results if all finite intervals are narrow. In general, the
selection can be made depending on if the true survival event under study
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is more likely to occur close to the middle, left end, or right end point of an
observed interval. Of course, it is often the case that there does not exist any
prior information about the part of an observed interval where the survival
event is more likely to occur. In this case, rather than using the methods
above, one can randomly select a value based on, for instance, the uniform
distribution over the observed interval.

In the methods above, we only impute the Ti that are purely interval-
censored. As mentioned before, this is partly because there exist many estab-
lished inference approaches for right-censored data that can be applied to the
imputed right-censored data. Suppose, for example, that one is interested in
nonparametrically estimating a survival function. In this case, one can simply
use the Kaplan-Meier estimator given by

Ŝ(t) =
∏

j:tj≤t

(
1 − dj

nj

)
(2.6)

(Kalbfleisch and Prentice, 2002). Here the tj ’s denote the distinct imputed
exact failure times, and the dj ’s and nj ’s are the failure and risk numbers at
each of the tj ’s, respectively, based on the imputed right-censored data. It is
apparent that Ŝ(t) is a step function with jumps and is discontinuous at the
tj ’s. The asymptotic variance of Ŝ(t) at time t can be estimated by

V̂S(t) = Ŝ2(t)
∑

j:tj≤t

dj

nj (nj − dj)
(2.7)

(Kalbfleisch and Prentice, 2002), which is commonly referred to as Green-
wood’s formula (Greenwood, 1926).

Instead of the one sample problem, suppose that one is interested in re-
gression analysis under the PH model (1.4). Let the tj ’s be defined as above
and Z(j) denote the covariate vector of the subject whose imputed exact fail-
ure time is equal to tj assuming that there are no tied imputed exact failure
times. Also let R(tj) denote the risk set of individuals at time tj based on the
imputed right-censored data. Then the regression parameter β in model (1.4)
can be estimated by the partial likelihood estimator defined as the value of β
that maximizes the partial likelihood

Lp(β) =
∏
j

exp(Z′
(j) β)∑

l∈R(tj) exp(Z′
(l) β)

(2.8)

(Cox, 1972). For right-censored failure time data, the partial likelihood esti-
mator has been extensively studied and shown to be consistent and have an
asymptotic multivariate normal distribution (Andersen, et al., 1982). If there
exist tied imputed exact failure times, the partial likelihood Lp(β) needs to be
adjusted. For this, there exist several ways and one is to use the approximation
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∏
j

exp(Z′
(j) β)

[
∑

l∈R(tj) exp(Z′
(l) β) ]dj

(Breslow, 1974), where dj is the number of individuals whose imputed failure
times are equal to tj as above.

The biggest advantage of the single point imputation approach is its sim-
plicity, and in this case, inference can be performed without any difficulty
using existing software. If all intervals are relatively narrow or the overlap-
ping among the intervals is slight, the approach can provide a reasonable and
simple approximation to the inference based on observed data. In general, it
may not be reliable, and clearly one natural extension is, instead of using it
only once, to repeatedly carry out the approach as discussed below.

2.4.2 A Multiple Imputation Approach

This subsection discusses the application of the data augmentation algorithm
given in Tanner and Wong (1987) and Tanner (1991) for the analysis of
interval-censored data. The algorithm is originally designed to calculate the
posterior distribution of the parameters of interest and iterates between two
steps: imputation and posterior steps. In the former step, it first generates the
parameter from the current estimate of its posterior distribution. Then M sets
of unobserved (or complete) data are generated from the conditional distribu-
tion given the observed (or incomplete) data and the generated parameters.
Here M is a prespecified integer. In the latter step, the posterior distribution
is first obtained given the observed data and each set of unobserved data. The
updated posterior distribution of the parameters is then given by the mixture
of the M posterior distributions.

For the situations considered here, the interest is to make inference about θ
rather than a posterior distribution. Thus instead of imputation and posterior
steps, one can use the following imputation and estimation steps. Specifically,
let M be defined as above. By following the data augmentation algorithm,
one can estimate θ as follows.
Step 0. Give an initial value θ̂

(0)
and set Ŝ(0)(t) = S(t ; θ̂

(0)
).

Step 1. At the lth iteration, for each k and i, if Ri = ∞, i.e., a right-censored
observation is observed for Ti, define T

(k,l)
i = Li and δ

(k,l)
i = 0, k = 1, ..., M ,

i = 1, ..., n. Otherwise, define T
(k,l)
i to be a random number generated from

Ŝ(l−1) conditional on T
(k,l)
i ∈ (Li, Ri] and δ

(k,l)
i = 1. This gives M sets of

right-censored data

{ T
(k,l)
i , δ

(k,l)
i ,Zi ; i = 1, ..., n } , (2.9)

k = 1, ..., M . Note that here the right-censoring indicators are always same.
Step 2. For each of the M sets of right-censored data generated in step 1,

obtain an estimate θ̂
(k,l)

. Suppose that we can also obtain an estimate of
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the covariance matrix of the estimate of a finite-dimensional component of θ

(parameters of interest) or the pointwise variance of θ̂
(k,l)

for the one sample
nonparametric problem. For both cases, let Σ̂(k,l) denote the estimate for
simplicity.
Step 3. Determine the updated estimator of θ by

θ̂
(l)

=
1
M

M∑
k=1

θ̂
(k,l)

.

The corresponding covariance matrix or variance function can be estimated
by

Σ̂(l) =
1
M

M∑
k=1

Σ̂(k,l) +
(

1 +
1
M

) ∑M
k=1 [θ̂

(k,l)
t − θ̂

(l)
t ] [θ̂

(k,l)
t − θ̂

(l)
t ]′

M − 1
.

(2.10)

In (2.10), θ̂
(k,l)
t denotes the component of θ that is of interest or the value

of the function represented by θ at time t for the one sample nonparametric
problem.
Step 4. Repeat steps 1 to 3 until the desired convergence occurs.

In step 3, the variance estimate consists of two terms, representing the
within-imputation (the first term) and between-imputation (the second term)
estimation. The term (1 + M−1) instead of one is used to take account of a
finite number of imputations. For step 0, one simple way to obtain an initial
value is to apply the single point imputation approach to the observed data
and use the resulting estimate. For convergence of the algorithm, a natural
approach is to put a criterion on the parameters of interest and to stop the
iteration when the consecutive estimates of the parameters are close enough.

To illustrate the estimation algorithm given above, consider the one sample
nonparametric problem with the goal of estimating a survival function. In this
case, θ represents a survival function and Zi = 0. To determine the initial
estimate in step 0, one can use the Kaplan-Meier estimator (2.6) given by, for

example, the mid-point imputation approach. In step 2, θ̂
(k,l)

is again given by
the estimator (2.6) based on the imputed right-censored data and Σ̂(k,l) can
be taken to be the variance estimate (2.7). The estimate (2.10) then becomes

1
M

M∑
k=1

V̂
(k,l)
S (t) +

(
1 +

1
M

) ∑M
k=1 [Ŝ(k,l)(t) − Ŝ(l)(t)]2

M − 1
.

In the above, Ŝ(k,l)(t) and V̂
(k,l)
S (t) denote the estimates given by (2.6) and

(2.7), respectively, based on the imputed right-censored data (2.9) and

Ŝ(l)(t) =
1
M

M∑
k=1

Ŝ(k,l)(t) .
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As another example, consider the regression analysis problem under model
(1.4). In this case, θ consists of two parts: β and S0(t), the baseline survival
function, and suppose that one is interested only in the regression parameter

β. For the initial estimate, one can take β̂
(0)

to be the partial likelihood
estimator given by (2.8) based on the imputed right-censored data given by
the mid point imputation approach. For S0(t), several estimators can be used,
and one common choice is to take

Ŝ
(0)
0 (t) = exp

⎡
⎣−

∑
j:tj≤t

dj∑
l∈R(tj) exp(Z′

l β̂
(0)

)

⎤
⎦

based on the same imputed data (Kalbfleisch and Prentice, 2002). In this
estimate, tj , dj , and R(tj) are defined as in (2.6) to (2.8). The same estimators
can be used again in step 2, but based on data (2.9). For estimation of the

covariance matrix of β̂
(k,l)

, the observed Fisher information matrix from (2.8)
can be used. For step 3, (2.10) has the form

Σ̂(l) =
1
M

M∑
k=1

Σ̂(k,l) +
(

1 +
1
M

) ∑M
k=1 [β̂

(k,l) − β̂
(l)

] [β̂
(k,l) − β̂

(l)
]′

M − 1
.

For both the one sample nonparametric and regression analysis problems
discussed above, in the iterations, one only needs to consider estimates of
survival or baseline survival function that put probability mass at distinct
values of left and right end points of observed intervals. In other words, one
can focus on discrete survival functions that jump at these distinct time points.
The reason for this will be explained in Sections 3.2 and 3.3.

Several authors have considered the multiple imputation procedure de-
scribed above or similar methods for special situations. For example, Be-
bchuk and Betensky (2000) discussed estimation of a hazard function based
on interval-censored data. Pan (2000a) and Satten et al. (1998) studied the
regression problem under the PH model for interval-censored data.

2.4.3 Two Examples

In this subsection, again we discuss the analysis of the breast cancer data con-
sidered in Section 2.3.4, but using the imputation approach. First, we consider
estimation of the survival functions corresponding with the two treatments,
radiation therapy alone (RT) and radiation therapy plus adjuvant chemother-
apy (RCT), separately based on observed data within each treatment group.
Figure 2.2 presents estimates of the two survival functions given by the left
end point, mid-point, and right end point imputation approaches, respectively.
The estimates given by the multiple imputation approach with M = 30, 50,
and 100, respectively, are displayed in Figure 2.3. Both figures indicate that
the patients in the RT treatment seem to have lower risk to develop breast
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Fig. 2.2. Estimated survival functions using single imputation approaches.
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Fig. 2.3. Estimated survival functions using multiple imputation approaches.
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retraction than those in the RCT treatment, which is similar to the result
obtained in Section 2.3.4. As expected, the estimates based on the mid-point
imputation roughly lie between the estimates based on the left and right end
point imputation. Also the left end point imputation generally gives the short-
est survival estimate among the three single imputation approaches. It is in-
teresting to see from Figure 2.3 that for both groups, the multiple imputation
approach with three different values of M gives almost identical estimates,
which are similar to those given by the mid-point imputation approach.

For the multiple imputation estimates given in Figure 2.3, the estimate
given by the left end point imputation is used as the initial estimate. For
convergence, we apply the criterion∑

j

| Ŝ(l)(tj) − Ŝ(l−1)(tj) | ≤ ε ,

where the tj ’s are the ordered, distinct time points of all left and right end
points of observed intervals, and ε is a prespecified positive number, taken to
be 0.0001 here.

For the treatment comparison, we assume that time to breast retraction
follows model (1.4) with the Zi’s defined as in Section 2.3.4 and β representing
the treatment difference. Table 2.2 presents the results given by the single
and multiple imputation approaches, respectively. For the multiple imputation
approach, for comparison, the results are obtained with M equal to 30, 50,
or 100. All six analyses give similar results about the treatment comparison
and suggest that the adjuvant chemotherapy significantly increases the risk
of breast retraction. Although β̂ changes as M increases from 30 to 100, the
estimated treatment effect seems to become stable when M approaches 50.

For a second example, we discuss the interval-censored data given in Table
2.3 about time to drug resistance to zidovudine. The data are reproduced from
Lindsey and Ryan (1998) and Richman et al. (1990) and consist of 31 AIDS
patients enrolled in four clinical trials for the treatment of AIDS. Because
the resistance assays were very expensive, few assessments were performed on
each patient. Consequently, like the data in Table 2.1, this is a set of highly
interval-censored observations, and there is a high proportion of right-censored
observations.

Table 2.2. Estimated effects of adjuvant chemotherapy on time to breast retraction

Method β̂ SD(β̂) p-value

Left end point imputation 0.9120 0.3483 0.009
Middle point imputation 0.9001 0.3454 0.009
Right end point imputation 0.7681 0.3486 0.028
Multiple imputation with M = 30 0.9557 0.3474 0.006
Multiple imputation with M = 50 0.9237 0.3470 0.008
Multiple imputation with M = 100 0.9041 0.3481 0.009
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Table 2.3. Observed intervals (L, R] for time to zidovudine resistance for 31 AIDS
patients and values of four associated covariates

L R Stage Dose CD41 CD42 L R Stage Dose CD41 CD42

0 16 0 0 0 1 0 15 0 1 1 0
14 26 0 0 0 1 2 26 1 0 0 1
11 26 0 0 0 1 3 26 1 0 0 1
16 26 0 0 0 1 0 11 1 0 0 1
12 26 0 0 0 1 12 19 1 0 0 1
0 24 0 0 1 0 0 6 1 0 0 1
5 26 0 1 1 0 0 11 1 1 0 0
0 15 0 1 1 0 5 26 1 1 0 0

13 26 0 1 1 0 0 6 1 1 0 0
11 26 0 1 1 0 1 12 1 1 0 0
12 26 0 1 0 1 0 17 1 1 1 0
11 26 0 1 1 0 0 14 1 1 0 0
11 26 0 1 1 0 0 25 1 1 0 1
0 18 0 1 0 1 1 11 1 1 0 0
0 14 0 1 0 1 0 14 1 1 0 0
0 17 0 1 1 0

The data include four covariates, the stage (0 or 1, earlier or later stage of
the disease), dose (0 or 1, lower or higher dose of zidovudine), and ranges of
CD4 counts at randomization given by CD41 and CD42. Here CD41 indicates
(by 1) if CD4 is between 100 and 399, and CD42 is the indicator of CD4 ≥
400. The analysis results obtained using the single and multiple imputation
approaches are given in Table 2.4, with M = 50 for the multiple imputation
approach. Unlike those obtained for the breast cancer data, the results here
differ, although none of estimated covariate effects is significant except in
one instance. Possible explanations are that the sample size is small, and the
observed information is very limited due to interval-censoring.

Another reason for differing results could be that the covariates are cor-
related. For example, the last two covariates, indicators of CD4 counts, are
correlated and both are also correlated with stage of disease. For this reason,
we remove the last two covariates and reanalyze the data. The analysis results
are presented in Table 2.5. It can be seen that the estimated effects are much
closer to each other than those given in Table 2.4. Both mid-point imputa-
tion and multiple imputation approaches suggest that the patients in the later
stage of the disease have significantly higher risk of developing resistance to
zidovudine than those in the earlier stage of the disease.
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Table 2.4. Estimated effects of four covariates on time to zidovudine resistance

Method β̂ SD(β̂) p-value

Stage of disease
Left end point imputation 0.8755 0.7687 0.255
Middle point imputation 1.0083 0.7280 0.166
Right end point imputation 0.0198 0.8279 0.981
Multiple imputation 1.2548 0.9709 0.196

Dose of zidovudine
Left end point imputation 0.6394 0.9182 0.486
Middle point imputation 0.1232 0.8794 0.889
Right end point imputation 0.0215 0.7168 0.976
Multiple imputation 0.3492 1.0836 0.747

100 ≤ CD4 ≤ 399
Left end point imputation 0.1446 0.9451 0.878
Middle point imputation -1.3721 1.0931 0.209
Right end point imputation -2.1488 1.2300 0.763
Multiple imputation -0.3662 1.2151 0.763

CD4 ≥ 400
Left end point imputation 0.1459 1.0031 0.884
Middle point imputation -1.6082 1.1169 0.150
Right end point imputation -2.3043 1.0725 0.032
Multiple imputation -0.6369 1.2417 0.608

Table 2.5. Estimated effects of two covariates on time to zidovudine resistance

Method β̂ SD(β̂) p-value

Stage of disease
Left end point imputation 0.7925 0.5821 0.173
Middle point imputation 1.3980 0.5906 0.019
Right end point imputation 0.7709 0.5948 0.195
Multiple imputation 1.4056 0.6762 0.038

Dose of zidovudine
Left end point imputation 0.5672 0.6340 0.371
Middle point imputation 0.5333 0.6879 0.438
Right end point imputation 0.3133 0.6301 0.619
Multiple imputation 0.4572 0.6764 0.499

2.5 Bibliography, Discussion, and Remarks

The literature on parametric and imputation approaches for interval-censored
failure time data is relatively limited although the idea behind them seems to
be straightforward. Specifically, the authors who studied imputation methods
for interval-censored data include Bebchuk and Betensky (2000), Betensky
and Finkelstein (1999a), Dorey et al. (1993), Pan (2000a, b, 2001), and Sat-
ten et al. (1998). For parametric inference approaches, in addition to Lindsey
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(1998) and Lindsey and Ryan (1998), others that investigated them include
Boardman (1973), Bogaerts et al. (2002), Burridge (1981, 1982), Farrington
(1996), Hazelrig et al. (1982), Kooperberg and Clarkson (1997), Marshall
(1974), Odell et al. (1992), Samuelson and Kongerud (1994), Tikhov (2004),
and Younes and Lachin (1997). In particular, among others, Farrington (1996),
Kooperberg and Clarkson (1997), Lindsey and Ryan (1998), and Younes and
Lachin (1997) proposed some so-called weakly parametric models. The weakly
parametric model usually refers to a model that is parametric in theory but
can provide good approximations to nonparametric models with the increasing
of the dimension of space that they belong to.

Suppose that the half line [0,∞) is divided into J different intervals
{Ij = [τj , τj+1) ; j = 1, ..., J}. Farrington (1996) and Lindsey and Ryan
(1998) considered the piecewise exponential model that assumes that the haz-
ard function has the form

λ(t) = λj , t ∈ [τj , τj+1) ,

j = 1, ..., J . Here the λj ’s are unknown parameters and τ1 = 0 < τ2 < ... <
τJ < τJ+1 = ∞. If there exists a vector of covariates, Z, this model can be
generalized to

λ(t ; Z) = λj exp(Z′ β) , t ∈ [τj , τj+1)

or
λ(t ; Z) = λj + Z ′ β , t ∈ [τj , τj+1)

following model (1.4) or (1.7), where β denotes regression parameters as be-
fore. Similar to the these models, Kooperberg and Clarkson (1997) suggested
using

log λ(t ; Z) =
J∑

j=1

βj Bj(t |Z)

given Z, and Younes and Lachin (1997) proposed a class of models in which
the baseline hazard function can be expressed as

λ0(t) =
J∑

j=1

eβj Bj(t) .

In these models, the βj ’s are unknown parameters, the Bj(t |Z)’s are known
base functions of some function space, and the Bj(t)’s are known B-spline
functions.

The advantage of weakly parametric models is their flexibility. For exam-
ple, when J in the models described above increases, they become close to
nonparametric models in nature. At the same time, they still have the advan-
tages of parametric models. The inference approach based on these models
provides a bridge and a compromise between purely nonparametric or semi-
parametric approaches and parametric approaches.
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Parametric and imputation methods are two different types of approaches,
but for the analysis of interval-censored data, the idea behind them is the
same: to change to a more familiar or simpler model. As mentioned before, a
key advantage of parametric inference approaches is that their implementa-
tion is straightforward in principle and standard maximum likelihood theory
generally applies. They provide attractive choices in particular if censored in-
tervals are very wide and/or sample sizes are small, resulting in very limited
information about survival variables of interest. A major disadvantage of these
methods is that there often does not exist enough prior information or data
to suggest or verify a parametric model. The main advantage of imputation
approaches is that by using them, one can avoid complex interval censoring
and also can make use of the existing inference procedures and statistical soft-
ware for right-censored data. Some drawbacks include biased estimates and
underestimation of the variability of point estimates.

As mentioned before, for all the methods discussed in this chapter and in
this book except in Section 10.5, it is assumed that the censoring mechanism
or variables are independent of the survival variables of interest. That is,
one has independent interval censoring. For dependent or informative interval
censoring, the imputation approach may not be appropriate because it could
destroy the dependent structure. In contrast, one could use parametric models
for both failure time variables and censoring variables although it may not be
easy to determine appropriate models. More discussion on this topic is given
in Section 10.5.

For the parametric inference approaches discussed in Section 2.3, some
asymptotic approximations to the distributions of the maximum likelihood
estimator and the score and likelihood ratio statistics are described without
giving their derivations. To obtain these derivations, central limit theorems for
sums of independent random variables are needed along with some regularity
conditions. For instance, it is commonly required that the true values of the
unknown parameters lie in the interior of the parameter space. For discussion
on such theorems and conditions, see, for example, Feller (1971) and Shorack
(2000). Assessment of the goodness-of-fit of data to a specified parametric
model also is not discussed in this chapter. In other words, in the use of
parametric approaches, methods are usually needed for the selection of an
appropriate model or the best parametric model among several competitors.
Some general goodness-of-fit approaches for this are discussed in Section 10.2.



 

 

 

 

 



3

Nonparametric Maximum Likelihood
Estimation

3.1 Introduction

Estimation of a survival function is perhaps the first and most commonly re-
quired task in the analysis of failure time data. There can be many reasons
or purposes for such a task. For example, an estimated survival function can
be used to assess the validity of an assumption about a particular parametric
model for the underlying survival variable of interest. Also, one may need to
estimate survival functions to estimate certain survival probabilities, to graph-
ically compare several different treatments, or to predict survival probabilities
for future patients. In the case where a parametric model can be reasonably
assumed for the underlying survival function, the estimation problem is rela-
tively easy, and the maximum likelihood approach discussed in Section 2.3 is
commonly used for the problem. In this chapter, attention is focused on non-
parametric estimation of survival functions along with estimation of hazard
functions.

In the case of right-censored failure time data, the nonparametric max-
imum likelihood estimator (NPMLE) of a survival function is given by the
Kaplan-Meier estimator (Kaplan and Meier, 1958; Kalbfleisch and Prentice,
2002). It is a product-limit estimator and has been extensively studied in the
literature. Furthermore, its pointwise variance estimate is available and given
by the well-known Greenwood’s formula (Greenwood, 1926). For interval-
censored failure time data, unlike parametric inference, nonparametric infer-
ence is much more complicated than that for right-censored data from both
practical and theoretical points of views. In particular, the NPMLE of a sur-
vival function does not have a closed form in general and can only be deter-
mined using iterative algorithms.

Sometimes, one may also be interested in estimation of a hazard function,
which could give more insight about the variable of interest than its sur-
vival function. For this, it is common and natural to apply weakly parametric
approaches, or smoothing estimation techniques such as kernel and spline esti-
mation. This is because parametric approaches usually involve model selection
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or checking, and purely nonparametric approaches often give estimates that
are rough and not very helpful. This chapter discusses several smoothing es-
timation approaches with the focus on kernel estimation for interval-censored
failure time data.

Section 3.2 deals with the NPMLE of a survival function based on case
I interval-censored or current status data. For this special type of interval-
censored data, a closed form is available for the NPMLE. Section 3.3 con-
siders the NPMLE of a survival function based on general interval-censored
failure time data and discusses characterization of the NPMLE that is useful
for its determination. In Section 3.4, three algorithms for determination of
the NPMLE for case II interval-censored data are described. They are the
self-consistency algorithm, the iterative convex minorant (ICM) algorithm,
and the EM iterative convex minorant (EM-ICM) algorithm. The smooth
estimation of hazard functions is considered in Section 3.5. Asymptotic prop-
erties of the NPMLE are the topic of Section 3.6 with attention confined to
discussion of the properties and the conditions required of the observation pro-
cess, but not their derivations. Section 3.7 provides bibliographic notes about
nonparametric maximum likelihood estimation for interval-censored data and
discusses some related issues and topics that are not treated in this chapter.

3.2 NPMLE for Current Status Data

This section assumes that case I interval-censored, i.e., current status, failure
time data are available from n independent subjects. Let the Ti’s denote the
survival times of interest with survival function S(t) and assume that the
observed data have the form

{ (Ci , δi) i = 1, ..., n } ,

where Ci denotes the observation time for subject i independent of Ti and
δi = I(Ti ≤ Ci). Then the likelihood function has the form

LS( S(t) ) =
n∏

i=1

[ S(Ci)]
1−δi [ 1 − S(Ci) ]δi .

Let { sj }m
j=0 denote the unique ordered elements of { 0, Ci ; i = 1, ..., n }.

Define rj =
∑n

i=1 δi I(Ci = sj), the number of subjects who are observed
at sj and found to have failed, and nj =

∑n
i=1 I(Ci = sj), the number of

subjects who are observed at sj , j = 1, ..., m. Then the likelihood function
LS( S(t) ) can be rewritten as

LS(S(t)) =
m∏

j=1

[S(sj)]
nj−rj [1 − S(sj)]

rj =
m∏

j=1

[F (sj)]
rj [1 − F (sj)]

nj−rj ,
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which is proportional to the likelihood arising in an m-sample binomial setting,
where F (t) = 1 − S(t).

It is apparent that the likelihood function LS depends on S or F only
through its values at the sj ’s. That is, one can estimate S or F only at these
sj ’s. By noting the constraint F (s1) ≤ ... ≤ F (sm), one can show that
the maximization of LS(S(t)) with respect to { F (sj) }m

j=1 is equivalent to
minimizing

m∑
j=1

nj

[
rj

nj
− F (sj)

]2

subject to F (s1) ≤ ... ≤ F (sm) (Robertson et al., 1988). The set of values
of { F (sj) }m

j=1 that minimize this summation is commonly referred to as the
isotonic regression of {r1/n1, ..., rm/nm} with weights {n1, ..., nm} (Barlow
et al., 1972; Robertson et al., 1988). Using the max-min formula for isotonic
regression, the NPMLE of F at time sj has the value

F̂ (sj) = max
u≤j

min
v≥j

∑v
l=u dj∑v
l=u nj

,

giving the value of the NPMLE of S at sj to be 1 − F̂ (sj). That is, the NPMLE
of S has a closed form. To computer F̂ (sj), one also can use other algorithms
for the isotonic regression such as the pool adjacent violators algorithm.

For illustration, we apply the formula given above for current status data
to the lung tumor data discussed in Section 1.2.1. The data consist of 144
male mice from two treatment groups, conventional environment and germ-
free environment. For each animal, the death time, which serves as observation
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time, and the presence and absence of lung tumors are observed. Assume that
the death time is independent of time to lung tumor onset. Figure 3.1 presents
the NPMLE of the survival functions of the time to lung tumor onset for the
two groups separately. The estimates suggest that a lung tumor seems to occur
earlier for the mice in the conventional environment than those in the germ-
free environment. However, overall the mice in the germ-free environment seem
to have a higher risk to develop a lung tumor than those in the conventional
environment.

For general or case II interval-censored data, there is no closed form avail-
able for the NPMLE of S. In this situation, an iterative algorithm given in
Section 3.4 has to be applied.

3.3 Characterization of NPMLE for Case II
Interval-censored Data

Consider a failure time study that consists of n independent subjects from
a homogeneous population with survival function S(t). Let Ti denote the
survival time of interest for subject i, i = 1, ..., n. Suppose that interval-
censored data on the Ti’s are observed and given by

O = { (Li, Ri] ; i = 1, ..., n } ,

where (Li, Ri] denotes the interval to which Ti is observed to belong. Also
suppose that the goal is to derive the NPMLE of S(t).

Let { sj }m
j=0 denote the unique ordered elements of { 0, Li, Ri ; i = 1, ..., n }

as in the previous section. Define αij = I(sj ∈ (Li, Ri] ) and pj = S(sj−1) −
S(sj), i = 1, ..., n, j = 1, ..., m. Then the likelihood function is

LS( p ) =
n∏

i=1

[ S(Li) − S(Ri) ] =
n∏

i=1

m∑
j=1

αij pj , (3.1)

where p = (p1, ..., pm)′.
As with current status data, it is easy to show that the likelihood function

LS depends on S only through the values { S(sj)}m
j=1 and not how S changes

between the sj ’s. In other words, the NPMLE of S can be uniquely determined
only up to its values at these sj ’s, and its determination is equivalent to
maximizing LS( p ) with respect to p subject to the constraints

m∑
j=1

pj = 1 ,

pj ≥ 0 (j = 1, ..., m)

(Gentleman and Geyer, 1994; Turnbull, 1976).
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In the following, as usual, it is assumed that the NPMLE of S or of F (t) =
1 − S(t) corresponds with a discrete distribution with jumps only at { sj}m

j=1
unless otherwise specified. Then one determines the NPMLE by maximizing
the likelihood function given in (3.1) over all discrete survival or distribution
functions that are constant between the points s0 < s1 < ... < sm. In some
situations, it may be of interest to maximize the likelihood over a different
set of survival or distribution functions. For example, sometimes it may be
reasonable to assume that F is smooth and thus one wants the NPMLE to be
a smooth function. More comments on this are given at the end of the next
section.

For determination of the NPMLE of S or F , one needs to choose an al-
gorithm, such as the one discussed in the next section. In addition, one may
need to consider some related issues. For instance, if p̂ = (p̂1, ..., p̂m)′ is the
NPMLE, then some elements of p̂ could be zero and it could help greatly
to know these zero components before running a determination program. For
this, one can use the fact that each p̂j can be nonzero only if sj−1 = Li

for some i and sj = Rk for some possibly different k, i, k = 1, ..., n (Peto,
1973; Turnbull, 1976). Thus one only needs to focus on the p̂j ’s that satisfy
this condition, but of course, some of them could still be zero. The use of this
fact could considerably reduce the number of time points, m, that need to be
considered as well as the computational effort. Furthermore, one may use the
Lagrange multiplier criterion described below.

In terms of determining the possible nonzero p̂j ’s, an alternative approach
is to find all time points sj ’s or a set of disjoint intervals that constitutes the
possible support of the NPMLE of S or F . From the discussion above, these
intervals are the ones whose left and right end points are given by some of the
Li’s and Ri’s, respectively, and that contain no other Li’s and Ri’s except at
their end points. This is often referred to as Turnbull’s approach, and from
this point of view, the determination of the NPMLE consists of two steps.
The first one is to determine the possible support points or intervals and the
second step is to maximize LS(p).

To determine if a candidate estimate p̂ = (p̂1, ..., p̂m)′ of p is the NPMLE,
define

dj(p) =
n∑

i=1

αij∑m
l=1 αil pl

, (3.2)

j = 1, ..., m. The Lagrange multiplier criterion, derived from graph theory,
says that p̂ is the NPMLE if dj(p̂) = n for all j = 1, ..., m (Gentleman and
Geyer, 1994). Furthermore, using the general mixture maximum likelihood
theorem, one can in fact show that p̂ is the NPMLE if and only if dj(p̂) ≤ n
for all j (Böhning et al., 1996).

To illustrate the Lagrange multiplier criterion, consider the data set

{ (0, 1], (1, 3], (1, 3], (0, 2], (0, 2], (2, 3] }
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from Gentleman and Geyer (1994). It consists of six observed intervals and
is also discussed by Böhning et al. (1996). For this data, one has { sj }3

j=0 =
{ 0, 1, 2, 3},

A = (αij) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 1
0 1 1
1 1 0
1 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

and

LS(p) =
6∏

i=1

(αi1 p1 + αi2 p2 + αi3 p3) .

To determine the NPMLE, one needs to maximize the likelihood function LS

with respect to p = (p1, p2, p3)′ subject to
∑3

j=1 pj = 1 and p1, p2, p3 ≥ 0.
Suppose that one is given two estimators: p̂1 = (1/2, 0, 1/2)′ and p̂2 =
(1/3, 1/3, 1/3)′. To check if one is the NPMLE, note that

d1 =
1
p1

+
2

p1 + p2
, d2 =

2
p2 + p3

+
2

p1 + p2
, d3 =

2
p2 + p3

+
1
p3

.

Thus it is clear that p̂1 is not the NPMLE because d2 = 8 > n = 6, while
p̂2 satisfies the Lagrange multiplier criterion and thus is the NPMLE because
d1 = d2 = d3 = 6 = n.

The uniqueness of the NPMLE is another issue that often needs to be
checked. For this, note that log LS(p) is a concave function but may not be
strictly concave. Define A = (αij ), the n × m matrix. Then the NPMLE is
unique if the rank of A is equal to m. This guarantees that the log likelihood
function, log LS(p), is strictly concave and thus has a unique maximum. In
practice, the rank of A may often be less than m. For this, let A∗ denote
the submatrix of A that consists of all the columns of A such that either the
corresponding pj > 0 or dj(p) = n if the corresponding pj = 0. Then a
sufficient condition for the uniqueness of the NPMLE, given in Gentleman
and Geyer (1994), is that the rank of A∗ is equal to its number of columns.

3.4 Algorithms for Case II Interval-censored Data

This section first presents three algorithms that can be applied to determine
the NPMLE of S, F or p. The first one is the self-consistency algorithm that
was developed by Turnbull (1976) and can be regarded as an application of the
EM algorithm (Dempster et al., 1977). The second algorithm is the ICM algo-
rithm, first introduced by Groeneboom and Wellner (1992) and later modified
by Jongbloed (1998). It transforms maximization of the likelihood function
(3.1) to maximization of a quadratic function using isotonic regression the-
ory. The third algorithm is a hybrid algorithm proposed by Wellner and Zhan
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(1997), which is referred to as the EM-ICM algorithm in the following. It
basically combines the self-consistency algorithm and the ICM algorithm. Fi-
nally, two illustrative examples are provided and followed by some general
discussion about the estimation of S or F .

3.4.1 The Self-consistency Algorithm

A self-consistent estimate usually refers to an estimate that can be character-
ized by a self-consistency equation and is the limit of iterates obtained from
that equation (Efron, 1967). Consequently, the estimate can be determined
iteratively. To derive the self-consistency equation for interval-censored data,
one may use a direct and intuitive approach based on empirical estimates. A
more general approach is to treat interval-censored data as incomplete data
and then to apply the EM algorithm. In the following, the general approach
is used and is followed by some comments on the direct approach.

Define

Cp =

⎧⎨
⎩p ∈ [0, 1]m ;

m∑
j=1

pj = 1 , pj ≥ 0

⎫⎬
⎭ ,

a subspace of Rm. One determines the NPMLE of p by maximizing the like-
lihood function LS(p) given in (3.1) over the region Cp. To apply the EM
algorithm, suppose that exact failure time data { Ti }n

i=1 are available. The
log-likelihood function for these complete data is

lS(p ; T1, ..., Tn) = log

[
n∏

i=1

dF (Ti)

]
=

m∑
j=1

d∗
j log pj ,

where d∗
j =

∑n
i=1 I(Ti = sj), j = 1, ..., m. Let p̂ c denote the current es-

timate of p and p̂u the updated estimate of p. In the E-step, one needs to
calculate the conditional expectation of lS(p ; T ′

is) given p̂ c and the observed
data O, which has the form

E [ lS(p ; T ′
is)|p̂ c,O ] =

m∑
j=1

log(pj) E(d∗
j |p̂ c,O) =

m∑
j=1

dj(p̂
c) pc

j log(pj) ,

where dj(p) is defined in (3.2).
For the M-step in the EM algorithm, one needs to maximize the conditional

expectation given above over the region Cp. Using the Lagrange approach,
one maximizes

m∑
j=1

dj(p̂
c) pc

j log(pj) + λ

⎛
⎝ 1 −

m∑
j=1

pj

⎞
⎠

over p and λ. Differentiating the function above with respect to pj and set-
ting the derivatives to 0, one gets pj = dj(p̂

c) pc
j/λ. It then follows from∑m

j=1 pj = 1 that λ = n and
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p̂u
j =

dj(p̂
c) pc

j

n
=

1
n

E

[
n∑

i=1

I(Ti = sj) | p̂ c,O

]
, (3.3)

which suggests the following self-consistency algorithm for the NPMLE.
Step 1. Choose an initial estimate p̂0 of p.
Step 2. At the lth iteration, define the updated estimate, denoted by p̂(l) =
(p̂(l)

1 , ..., p̂
(l)
m )′, of p as

p̂
(l)
j =

dj(p̂
(l−1)) p

(l−1)
j

n
=

1
n

n∑
i=1

αij p̂
(l−1)
j∑m

k=1 αik p̂
(l−1)
k

,

j = 1, ..., m.
Step 3. Repeat step 2 until the desired convergence occurs.

The estimate p̂ = (p̂1, ..., p̂m)′ given by this algorithm is the solution to
the self-consistency equation

p̂j =
1
n

E

[
n∑

i=1

I(Ti = sj) | p̂ , O

]
(3.4)

and is a self-consistent estimate. Also, it can be shown that the likelihood
function increases after each iteration. Although the estimate p̂ may not be
the NPMLE of p, it can be checked using the criterion discussed in Section
3.3.

A direct approach that also gives the self-consistency algorithm and equa-
tion (3.4) is to look at the second term in equation (3.3). Given p = p̂ c, the
quantity represents n−1 times the estimated or expected number of subjects
whose survival times are equal to sj , which naturally yields the algorithm
based on empirical estimates. With F̂ (t) =

∑
sj≤t p̂j , equation (3.4) gives

F̂ (t) =
1
n

E

[
n∑

i=1

I(Ti ≤ t) | F̂ , O

]
. (3.5)

3.4.2 The Iterative Convex Minorant Algorithm

To describe the ICM algorithm, define

Cx =
{

x = (x1, ..., xm−1)′ ∈ Rm−1 ; 0 ≤ x1 ≤ ... ≤ xm−1 ≤ 1
}

,

a subspace of Rm−1, and let βj = F (sj), j = 1, ..., m. With β0 = 0, βm = 1
and β = (β1, ..., βm−1)′, the likelihood function in (3.1) can be rewritten as

LS(β) =
n∏

i=1

m∑
j=1

αij (βj − βj−1) , (3.6)
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and the NPMLE is obtained by maximizing LS(β) over Cx.
The ICM algorithm is based on the following two facts. First, suppose that

g is a differentiable, concave mapping from Rm−1 to R and C is a convex cone
in Rm−1. Also suppose that g(x) achieves its maximum over region C at x̂.
Let W be a positive definite (m − 1) × (m − 1) matrix and y a fixed point in
Rm−1. Define

g∗(x |y,W ) = − 1
2

(x − y)′ W (x − y)

for x ∈ Rm−1 and suppose that x̂∗ ∈ C maximizes g∗(x |y,W ) over C. Of
course, x̂∗ may depend on y and W . With y = x̂ + W −1 � g(x̂), where
� g(x) denotes the vector of derivatives of g at x, x̂∗ maximizes g∗(x |y,W )
over C if and only if x̂∗ = x̂ (Groeneboom and Wellner, 1992).

The second fact concerns maximization of a quadratic function over region
Cx. Let x̂∗ = (x̂∗

1, ..., x̂
∗
m−1)

′ be defined as above with C = Cx and W =
diag(wj) be a positive definite diagonal matrix. Define P0 = (0, 0) and

Pu =

(
u∑

i=1

wi ,

u∑
i=1

wiyi

)
, 1 ≤ u ≤ m − 1 ,

points in R2 for some fixed y = (y1, ..., ym−1)′ ∈ Rm−1. The set of points
{ Pu ; u = 0, ..., m − 1 } is commonly referred to as a cumulative sum di-
agram because the coordinates of Pu are cumulative sums of the vectors
(w1, ..., wm−1)′ and (w1y1, ..., wm−1ym−1)′. Then x̂∗

i is given by the left deriva-
tive of the convex minorant of, i.e., the largest convex function below the
cumulative sum diagram { Pu ; u = 0, ..., m − 1 } evaluated at Pj .

The first fact suggests that if x̂ is known, the maximization of a general
function g(x) is equivalent to the maximization of the quadratic function
g∗(x), which is usually relatively easy. The second fact gives the maximizing
point x̂∗ for a special quadratic function. Of course, x̂ is unknown and the
first fact does not give a direct maximization procedure, but it can be used
in an iterative fashion. The two facts together motivate the ICM algorithm
described below.
Step 1. Choose an initial estimate β̂

0
of β.

Step 2. At the lth iteration, define the updated estimate denoted by β̂
(l)

=

(β̂(l)
1 , ..., β̂

(l)
m−1)

′ of β as the x̂∗ that maximizes g∗(x |y, W (β̂
(l−1)

)) with

y = β̂
(l−1) − W−1(β̂

(l−1)
) � lS(β̂

(l−1)
)

and W (β̂
(l−1)

) being a positive definite diagonal matrix that may depend on

β̂
(l−1)

, where lS(β) is the log likelihood function from (3.6). A choice for W

is discussed later. In other words, β̂
(l)

is taken to be the derivative of the
convex minorant of the cumulative sum diagram {Pu ; u = 0, ..., m − 1} given
by P0 = (0, 0) and
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Pu =

(
u∑

i=1

w
(l−1)
i ,

u∑
i=1

(
w

(l−1)
i β̂

(l−1)
i − ∂

∂βi
lS(β̂

(l−1)
)
))

for 1 ≤ u ≤ m − 1, where w
(l−1)
i is the ith diagonal element of W (β̂

(l−1)
).

Step 3. Return to step 2 until the desired convergence occurs.
Jongbloed (1998) shows that the ICM algorithm may not increase the log

likelihood function after each iteration and converge globally, and suggests to
add a line search into the algorithm based on the following fact to achieve
global convergence. Let g, g∗, C and x̂ be as given in the first fact. For given
x and a positive definite diagonal matrix W (x) that may depend on x, also
let A(x) be vector z at which g∗(z |y, W ) achieves its maximum with

y = x − W −1(x) � lS(x) .

Then for x �= x̂ and all sufficiently small λ > 0,

g (x + λ (A(x) − x)) > g(x) .

This suggests that a line search, given by step 2.1 below, can be incorporated
into the ICM algorithm to guarantee that the log likelihood function increases
and thus the global convergence of the algorithm.

Let 0 < ε < 0.5 be a fixed number controlling the line search process.
The following step can be added between steps 2 and 3 of the ICM algorithm
described above.
Step 2.1. If

lS(β̂
(l)

) > lS(β̂
(l−1)

) + (1 − ε) [�lS(β̂
(l−1)

)]′ (β̂
(l) − β̂

(l−1)
) ,

then move to step 3. Otherwise, find a point z such as

z = β̂(l−1) + λ (β̂(l) − β̂(l−1))

for 0 ≤ λ ≤ 1 that satisfies

ε [�lS(β̂
(l−1)

)]′ (z − β̂
(l−1)

) ≤ lS(z) − lS(β̂
(l−1)

)

≤ (1 − ε) [�lS(β̂
(l−1)

)]′ (z − β̂
(l−1)

) .

Let β̂ denote the estimate given by the ICM algorithm. Then the NPMLE
of F and p are given by F̂ (t) = β̂j if sj ≤ t < sj+1 for j = 0, ..., m − 1
and p̂j = β̂j − β̂j−1 for j = 1, ..., m, respectively. In the ICM algorithm, a
natural choice for W (β) is to take

wj = wj(β) = − ∂2

∂β2
j

lS(β) ,

assuming that it exists, j = 1, ..., m−1. Jongbloed (1998) studied this choice
and others using simulation and suggested that it is better than the others
and, in particular, the line search or step 2.1 seems to be used less under it.
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3.4.3 The EM Iterative Convex Minorant Algorithm

This subsection introduces a third algorithm, the EM-ICM algorithm, that can
be used to determine the NPMLE of F . It is a hybrid algorithm and simply
combines the self-consistency and ICM algorithms together. Specifically,

Step 1. Choose an initial estimate β̂
(0)

or p̂0 of β or p.
Step 2. Apply steps 2 and 2.1 of the ICM algorithm to the current estimate
to obtain an updated estimate.
Step 3. Apply step 2 of the self-consistency algorithm to the updated estimate
given in step 2 above to obtain a new updated estimate. That is, apply step
2 of the self-consistency with p̂(l−1) being the updated estimate given in step
2 above.
Step 4. Go back to step 2 until the desired convergence occurs.

Using a general theorem about the global convergence of composite map-
pings, Wellner and Zhan (1997) show that the EM-ICM algorithm converges
to the NPMLE if it exists and is unique and the log likelihood function is
continuously differentiable. They also show using simulations that in apply-
ing the EM-ICM algorithm, one can omit the line search and still achieve the
desired convergence.

To apply the algorithms described above, one needs to select a convergence
criterion. A simple and natural one is to base the convergence on the closeness
of consecutive estimates of F or β, which can be measured by, for example,

m−1∑
j=1

| β̂(l)
j − β̂

(l−1)
j | < ε (3.7)

as in Section 2.3.4 or

max
1≤j≤m−1

| β̂(l)
j − β̂

(l−1)
j | < ε ,

where ε is a fixed, positive constant. Another criterion that is commonly used
in maximizing a likelihood function is to base convergence on the change of
the log likelihood function. In this case, the iterations stop if

| lS(β̂
(l)

) − lS(β̂
(l−1) | < ε .

The two criteria given above can be easily implemented, but they cannot
tell if the estimate given at convergence is a local or global maximizer. If there
exist local maximizers or in general, one may prefer the criterion based on the
Fenchel optimality conditions (Robertson et al., 1988). Under this criterion,

one stops the iteration and accept β̂
(l)

= (β̂(l)
1 , ..., β̂

(l)
m−1)

′ as the NPMLE of
F if

|
m−1∑
j=1

β̂
(l)
j

∂

∂βj
lS(β̂

(l)
) | < ε
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and

max

⎧⎨
⎩

m−1∑
u=j

∂

∂βu
lS(β̂

(l)
) ; j = 1, ..., m − 1

⎫⎬
⎭ < ε .

3.4.4 Examples and Discussion

For illustration and comparison purposes, this subsection first applies the
three algorithms described in the previous subsections to two examples and
then provides some general discussion. First consider the interval-censored
breast cancer data discussed in Sections 1.2.2, 2.3.4, and 2.4.3, and in par-
ticular, estimation of the survival function of the time to breast retraction.
Figure 3.2 presents six NPMLEs of the two survival functions corresponding
with the two treatments, RT and RCT, obtained separately using the algo-
rithms. As expected, the NPMLEs of each survival function given by the three
algorithms at their convergences are almost identical. The figure suggests that
as seen before, the patients in the RCT group seem to develop breast retrac-
tion earlier than those in the RT group.

For the estimates in Figure 3.2, Splus 2000 PR2 on Windows XP is used
for programming with the uniform distribution as the initial estimate. The
convergence criterion used for all algorithms is criterion (3.7) with ε = 10−8.
The numbers of iterations required by the self-consistency, modified ICM and
EM-ICM algorithms are, respectively, 416, 38, and 4 for the RT group, and
505, 7, and 3 for the RCT group. That is, as expected, both the modified ICM
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and EM-ICM algorithms require fewer iterations than the self-consistency al-
gorithm. In terms of computing time, however, the difference is relatively small
as the CPU times required by the three algorithms are 0.43, 0.90, and 0.10
seconds for the RT group, and 0.55, 0.20, and 0.08 seconds for the RCT group,
respectively. In particular, for the RT group, the self-consistency algorithm is
faster than the modified ICM algorithm. This is because the self-consistency
algorithm requires much less effort inside the iteration than the other two
algorithms. We also used the Kaplan-Meier estimates based on imputed right-
censored data as initial estimates and the numbers of iterations required for
all the algorithms are different from, but similar to those given above.

For the second example, consider data set II of Appendix A. The data
arise from a 16-center prospective study, described in detail by Goedert et al.
(1989) and studied by Kroner et al. (1994) among others, to investigate HIV-1
infection risk among people with hemophilia. These patients were at risk of
HIV-1 infection because they received for their treatments blood products such
as factor VIII and factor IX concentrate made from the plasma of thousands
of donors. In the study, for patients’ HIV-1 infection times, only interval-
censored data are available, and the patients are placed into different groups
according to the average annual dose of the blood products they received. The
data set II of Appendix A gives observations on 368 patients from five centers
where patients were enrolled into the study without regard to their HIV-1
antibody status and who received no or low dose (between 1 and 20,000 U)
factor VIII concentrate. The numbers of patients in the two groups are 236
and 132, respectively. For the data, the time unit is quarters and observation
0 means January 1, 1978, the start of the epidemic and the time at which all
patients are considered to be negative.

For estimation of the survival function of the time to HIV-1 infection, Fig-
ure 3.3 displays six NPMLEs of the two survival functions for the patients
in the two dose groups given by the three algorithms. As in Figure 3.2, the
three NPMLEs of each survival function are almost identical. The figure in-
dicates that the patients receiving low dose factor VIII concentrate seem to
have significantly higher risk of being infected by HIV-1 than those receiving
no factor VIII concentrate. For the estimates given here, the same programs,
initial estimates and convergence criterion as those in Figure 3.2 are used. For
the self-consistency, modified ICM and EM-ICM algorithms, the numbers of
iterations required are, respectively, 354, 291, and 12 for the no factor VIII
concentrate group and 2610, 6, and 4 for the low dose factor VIII concentrate
group. The corresponding CPU times are, respectively, 0.56, 6.30, and 0.30
seconds for the former group, and 3.30, 0.17, and 0.11 seconds for the latter
group.

It is interesting to note that compared with the first example, the algo-
rithms seem to behave differently in terms of the number of iterations. For
the low dose group, note that its sample size is larger than that of the data
in the previous example, which naturally results in the large number of iter-
ations needed by the self-consistency algorithm. In contrast, in this case, the
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Fig. 3.3. NPMLE of survival functions of time to HIV-1 infection.

increase in sample size did not seem to affect the other two algorithms much.
On the other hand, although the no factor VIII concentrate group involves
many more patients, the numbers of iterations and the CPU times tell a dif-
ferent story. A close look at the data seems to indicate that this is because
there exists a large proportion of right-censored observations for the group.

Among the self-consistency, ICM, and EM-ICM algorithms, the first al-
gorithm is the simplest and the most natural one. Compared with the other
two algorithms, it can be easily understood and implemented. Although it is
slower than the other two, this usually does not produce a serious problem
unless one faces a large data set or has to use it a number of times. One such
situation occurs when one uses a bootstrap procedure to obtain confidence
bands. In other words, for data sets with small or moderate sample sizes, al-
though the self-consistency algorithm needs more iterations, it may still be a
good choice given its simplicity and the actual computing time needed. The
same is true for data with large proportions of right-censored observations.
The drawback of the algorithm is that there is no guarantee that the resulting
estimate is the NPMLE although it is definitely a self-consistent estimate.

The biggest advantage of the modified ICM and EM-ICM algorithms over
the self-consistency algorithm is their rapid convergence in terms of the num-
ber of iterations and computing time required. More specifically, the EM-ICM
algorithm is the fastest one among them. Both Jongbloed (1998) and Wellner
and Zhan (1997) demonstrated these facts using simulation studies. Another
advantage of these two over the self-consistency algorithm is that their global
convergence can be guaranteed and one does not have to check if the estimate
given by them is the NPMLE.
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As discussed before, for interval-censored failure time data, one can only
estimate the probability mass over intervals (sj−1, sj ], but not how the proba-
bility is distributed within the interval assuming p̂j is not zero. In this regard,
it has been assumed that F̂ puts probability mass only at the sj ’s. Sometimes
it may be reasonable to assume that F is smooth and thus one may want F̂
to be a smooth function rather than a step function over intervals (sj−1, sj ].
One way to obtain such an estimate is to apply the self-consistency algorithm
to F directly replacing the equation in step 2 of the algorithm by

F̂ (l)(t) =
1
n

E

[
n∑

i=1

I(Ti ≤ t) | F̂ (l−1),O

]
,

which is based on equation (3.5). In this case, one should choose a strictly
increasing distribution function as an initial estimate of F . Li et al. (1997)
show that this algorithm converges and gives the same estimated values of F
at the sj ’s as the self-consistency algorithm described in Section 3.4.1.

Another way to obtain a smooth estimate of a survival or distribution
function is to apply smoothing estimation techniques. For example, one can
apply the kernel estimation approach to the NPMLE of F or estimate F by
obtaining a smooth estimate of the log density function (Pan, 2000c). Simi-
larly, one can obtain smooth estimates of a survival or distribution function
using smoothing estimates of the hazard function given in the next section.

3.5 Smooth Estimation of Hazard Functions

Smoothing estimation procedures are commonly used for estimation of hazard
functions. This is because nonparametric estimation without smoothing usu-
ally gives estimated hazard functions that vary dramatically and are not useful
for graphical presentation. For right-censored failure time data, there exist a
number of approaches that produce smooth estimates of hazard functions.
The simplest approaches are perhaps kernel-based approaches that smooth
raw nonparametric estimates using kernel smoothing functions (Lawless, 2003;
Tanner and Wong, 1983). Another class of methods uses spline functions to ap-
proximate hazard functions (Kooperberg and Stone, 1992; Rosenberg, 1995).
In this case, hazard functions are commonly expressed as linear functions of
some spline functions. A third type of approaches often used in practice ap-
plies local likelihood methods (Tibshirani and Hastie, 1987) that approximate
a hazard function at each time point by some parametric functions such as
linear functions of time. Penalized likelihood methods are another choice for
obtaining smooth estimates.

In the following, we focus attention on the kernel-based approach for
smooth estimation of hazard functions based on interval-censored failure time
data. This approach has advantages that it is straightforward and can be eas-
ily implemented. After two illustrative examples, discussion is provided about
some likelihood-based approaches.
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3.5.1 Kernel-based Estimation

As in the previous sections, this section assumes that a set of interval-censored
data is observed and given by

O = { (Li, Ri] ; i = 1, ..., n } .

Let S, F , { sj }m
j=0, αij and p be defined as before. Also let p̂ = (p̂1, ..., p̂m)′

denote the maximum likelihood estimator of p and λ(t) the hazard function
of the underlying failure time.

For estimation of λ(t), note that if right-censored data are available, a
natural estimate at time sj is given by dj/rj , where dj and rj are the observed
failure and risk numbers of subjects at sj , respectively. This suggests that for
the current situation, one can estimate λ(t) at sj by

λ̂j =
dj(p̂) p̂j∑m

u=j du(p̂) p̂u

given p̂, where dj(p) is given in (3.2), j = 1, ..., m. The numerator and denom-
inator in the estimate given above represent, respectively, estimated numbers
of failures and risks at sj . To smooth this raw nonparametric estimate, one can
use the moving average approach. More generally, one can apply the kernel
estimation method described below (Eubank, 1999).

Let K(t) be a nonnegative function symmetric about t = 0 and suppose
that

∫∞
−∞ K(t) dt = 1. It is usually referred to as a kernel function. Also let

h be a positive parameter called the bandwidth parameter, which determines
how large a neighborhood of t is used to calculate the local average. Define

w∗
j (t, h) = h−1 K{ (t − sj) /h }

and

wj(t) =
w∗

j (t, h)∑m
u=1 w∗

u(t, h)
,

j = 1, ..., m. A kernel estimate of λ(t) is then given by

λ̂(t) =
m∑

j=1

wj(t) λ̂j .

In practice, many kernel functions can be used. One simple choice is

K1(t) = I( |t| ≤ 1 )

and under this kernel function, λ̂(t) is the moving average estimate. At time
t, only these λ̂j ’s for which |sj − t| ≤ h contribute to λ̂(t). That is, λ̂(t)
is the average of the λ̂j ’s whose corresponding sj ’s are within the interval
[t − h, t + h]. Another kernel function is
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K2(t) = (2π)−1/2 exp(− t2 /2 ) ,

which is commonly referred to as the Gaussian kernel. Under this function,
every λ̂j contributes to λ̂(t) and the closer the corresponding sj to t, the larger
the contribution to the λ̂(t). More comments about these two kernel functions
are given in the next subsection through examples. Once a kernel function K
is given, one needs to choose the bandwidth parameter h and for this, one
can apply methods commonly used for kernel estimation of density functions
(Bean and Tsokos, 1980; Wand and Jones, 1995). Suppose that the goal is to
provide a simple, graphical presentation of the hazard function. In this case,
the trial and error method seems to be a natural choice. It is obvious that
h cannot be too small or large, and the appropriate range for h depends on
specific problems.

A major advantage of the kernel estimation approach is its simplicity and
flexibility. It can be easily implemented once p̂ is obtained and does not need
much extra work. A disadvantage of the approach is that it is not likelihood-
based and thus inference is not straightforward.

3.5.2 Two Examples

To illustrate the kernel estimation procedure described in the previous sub-
section, we apply it to two sets of interval-censored data. The first one is the
lung tumor data given in Table 1.3 and discussed in Sections 1.2.1 and 3.2,
while the other is the breast cancer data presented in Table 1.4 and discussed
in Sections 1.2.2 and 3.4.4.
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Fig. 3.4. Smooth estimates of hazard functions for time to lung tumor onset.
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First we consider estimation of the hazard functions for time to lung tumor
onset for animals in each of the two treatment groups, conventional environ-
ment (CE) and germ-free environment (GE). Figure 3.4 displays the smooth
estimates obtained separately by applying the estimation procedure to each
of the two parts of the data. The figure includes three estimates: the estimate
with the average kernel K1 and bandwidth h = 100 for animals in the CE
group, the estimate with the Gaussian kernel K2 and bandwidth h = 20 also
for animals in the CE group, and the estimate with the Gaussian kernel K2
and bandwidth h = 20 for animals in the GE group. It is apparent from the
figure that the animals in the two groups have quite different hazard func-
tions, indicating that they have different tumor occurrence rates as suggested
by Figure 3.1. In particular, it seems that for the animals in the CE group,
the tumor risk increases with time, while for the animals in the GE group,
the highest tumor risk occurs roughly between 400 and 800 days.

For the animals in the GE group, only the estimate based on the Gaussian
kernel is given. This is because the raw estimates λ̂j ’s of the hazard function
for these animals is quite rough, and, as expected, the average kernel does not
seem to produce a good estimate. In other words, for small h, the resulting
estimate would not improve much compared with the raw estimate in terms
of smoothing, while for large h, the resulting estimate tends to be flat. In
contrast, for the animals in the CE group, the raw estimate of the hazard
function does not jump up and down very much, and, in fact, its shape is
close to the two estimates given in the figure. For these situations, Figure 3.4
suggests that the two kernel functions give similar estimates. The values of
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the bandwidth h used in the figure are chosen based on the trial and error
method.

Figure 3.5 presents the smooth estimates of the hazard functions for time
to breast retraction obtained by separately applying the kernel estimation
procedure to the two parts of the breast cancer data, the data from patients
in the RT group and from those in the RCT group, respectively. For this data
set, only the estimates based on the Gaussian kernel are given because as it
can be seen from the figure that the raw estimates λ̂j ’s are quite rough for
both groups. For both estimates, the bandwidth used is 2 and is selected using
the same way as with Figure 3.4. As Figure 3.2, Figure 3.5 seems to indicate
that the patients in the two treatment groups have different breast retraction
rates with the patients in the RCT group having higher risk to develop breast
retraction than those in the RT group. Also for the patients in the RT group,
the risk does not seem to change much, while for those in the RCT group,
the risk can be lower for some time periods and higher for some other time
periods.

3.5.3 Likelihood-based Approaches

In addition to the kernel-based approaches, for smooth estimation of hazard
functions, one can use some likelihood-based approaches such as penalized
likelihood methods and local likelihood methods. Let Λ(t) =

∫ t

0 λ(s) ds, the
cumulative hazard function. Define δi = I(Li = Ri), indicating (by 1) if the
observation on subject i is exact. Then the likelihood function in (3.1) has the
form

LS( λ(t) ) =
n∏

i=1

[
λ(Li) e−Λ(Li)

]δi
[
e−Λ(Li) − e−Λ(Ri)

]1−δi

and one may estimate λ(t) by maximizing LS( λ(t) ). However, as with esti-
mation of survival functions, the maximization of this likelihood function only
gives estimates of the hazard function at discrete time points. More seriously,
the resulting estimate is usually not smooth, while it often may be reasonable
to assume that λ(t) is a smooth function.

To obtain a smooth estimate of λ(t), one can use the penalized likelihood
approach, which maximizes the log likelihood function adjusted by a penalty
function such as

lp( λ(t) | τ) = lS ( λ(t) ) − τ

2
g ( λ(t) ) . (3.8)

In lp( λ(t) | τ), lS( λ(t) ) = log LS( λ(t) ), g is a known penalty function mea-
suring the roughness of the hazard function, and τ ( > 0 ) is an unknown
parameter that controls the amount of smoothing. If τ = 0, lp( λ(t) | τ) =
lS( λ(t) ) and there is no smoothing. The penalized likelihood approach aims
to balance smoothness of the hazard function against its fit to the observed
data.
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Suppose that λ(t) is a smooth function. In this case, a common approach
to impose this smoothness is to express the log hazard function as

log λ(t) =
p∑

j=0

αj Bj(t) , (3.9)

where { αj ; j = 1, ...p } are unknown parameters and { Bj(t) ; j = 1, ...p } are
some known smooth functions. For estimation of λ(t), instead of maximizing
the penalized log likelihood function given in (3.8), one can maximize it with
λ(t) replaced by model (3.9) and in this case, lS( λ(t) ) can be written as

lS(α′
js) =

n∑
i=1

⎧⎨
⎩ δi

⎡
⎣ p∑

j=0

αj Bj(Li) −
∫ Li

0
exp

⎛
⎝ p∑

j=0

αjBj(s)

⎞
⎠ ds

⎤
⎦ + (1 − δi)

× log

[
exp

(
−
∫ Li

0
e

∑p

j=0
αjBj(s)ds

)
− exp

(
−
∫ Ri

0
e

∑p

j=0
αjBj(s)ds

)]}
.

The model (3.8) says that the hazard function λ(t) is a linear function
of some known functions. There are many choices for functions Bj(t)’s. For
example, one simple choice is given by taking them to be power functions,
in which the log hazard function is a polynomial function of time t. Another
choice is to let each Bj(t) be some known spline functions such as B-splines or
M-splines, or base functions of some function space. Cai and Betensky (2003)
proposed to use

log λ(t) = α0 + α1 t +
p∑

j=1

βj (t − tj)+ ,

where a+ = max(0, a) and { tj ; j = 1, ..., p } are preselected time points
commonly referred to as knots in the spline literature. That is, λ(t) follows a
linear spline model. In this case, by using the quadratic penalty function, the
penalized log likelihood function has the form

lp(θ |σ2) = lS(θ) − τ

2
β′ β ,

where θ = (α′,β′)′, α = (α0, α1)′, and β = (β1, ..., βp)′.
Instead of modeling the log hazard function, one can also directly model

the hazard function. For example, Joly et al. (1998) suggest using M-splines
to model the hazard function. Rosenberg (1995) discusses the same idea under
the model

λ(t) =
∑

j

Bj(t) exp(αj) .

The methods discussed above are in fact a combination of the penalized
likelihood approach and the modeling of the hazard function. For smooth esti-
mation of λ(t), instead of using this combination method, one could obtain the
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estimates by maximizing the penalized log likelihood function lp(λ(t) | τ) with-
out using model (3.9). Bacchetti (1990) applies this approach to the hazard
function for AIDS incubation time. Similarly, one can directly maximize the
log likelihood function LS( α′

js ) under model (3.9) (Kooperberg and Clarkson,
1997). This corresponds with the weakly parametric estimation techniques or
models discussed in Section 2.5. It should be noted, however, that the weakly
parametric estimation approach itself may yield estimates that are not very
smooth when p is large.

The local likelihood method was proposed by Tibshirani and Hastie (1987)
for smooth estimation of covariate effects in the context of regression analysis.
It is likelihood-based and an extension of the local fitting technique used in
scatterplot smoothing (Cleveland, 1979). Betensky et al. (1999) apply the
method to estimation of the hazard function. To implement the method, a
set of intervals has to be preselected and in each interval, the hazard function
is approximated by a linear function of time. The parameters in the linear
function are estimated using the local likelihood contributed by the interval-
censored failure times related to the interval over which the linear model is
defined. The approach also needs to choose the parameter controlling the
amount of smoothing. A drawback of this approach is that it could have
numerical stability problems in the regions of sparse data.

3.6 Asymptotics

This section deals with asymptotic properties of the NPMLE of S or F . As
seen in Sections 3.2 to 3.4, for interval-censored data, determination of the
NPMLE is much more complex and difficult than that for right-censored data.
This is mainly because the amount of information about the failure time vari-
able of interest given by the former is much less than that given by the latter.
The same phenomenon also makes asymptotic properties of the NPMLE much
harder to study and quite different from those of the NPMLE given by right-
censored data. In the case of right-censored data, the NPMLE can be con-
veniently expressed using counting processes (Andersen et al., 1993). Hence
martingale theory is readily available for the study of asymptotic properties of
the NPMLE such as consistency and asymptotic normalityindexAsymptotic
properties!asymptotic distribution. In contrast, for interval-censored data, the
same is not true anymore due to the structure of the data.

Let T denote the failure time variable of interest and F̂n(t) the NPMLE of
the distribution function of T based on a set of interval-censored failure time
data from n independent individuals. Also, let F0 denote the underlying true
distribution function of T . To discuss the asymptotic properties of F̂n(t), one
needs to separate current status data and case II interval-censored because
they have different structures and thus require different types of conditions.
For current status data, as before, let C denote the observation time variable
that is assumed to be independent of T and G its distribution function. Then
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for each subject under study, only C and the indicator function I(T ≤ C)
are observed.

For case II interval-censored data, we need to use the formulation (1.2)
for asymptotic studies. In this case, let H and h denote the joint distribution
and density functions of observation time variables U and V , respectively,
assumed to be independent of T . Also let H1, H2 and h1, h2 denote the
marginal distribution and density functions of U and V , respectively. In the
following, three basic asymptotic properties of F̂n(t) are discussed. They are
its consistency, local asymptotic distribution of F̂n(t), and the asymptotic
distribution of linear functionals of F̂n(t). For the asymptotic distributions of
both F̂n(t) and its linear functionals, a distinction needs to be made in terms
of the length of observed intervals or the mass of H along the diagonal.

3.6.1 Consistency

Consistency is perhaps the most fundamental property that one investigates
for an estimate. Assume that F0 is continuous. Then for interval-censored fail-
ure time data, Groeneboom and Wellner (1992) show that F̂n(t) is uniformly
consistent in the sense that

P

{
lim

n→∞ sup
t∈R+

∣∣∣ F̂n(t) − F0(t)
∣∣∣ } = 1 . (3.10)

This uniform consistency is true for both current status data and case II
interval-censored data.

Some regularity conditions are needed for the uniform consistency given
above. For current status data, the proof of (3.10) assumes that like F0, G is
also continuous and requires, among others, the following condition.
(C1). F0 	 G. That is, if G puts zero mass on a set A, then F0 has zero mass
on A as well.

For case II interval-censored data, a condition similar to (C1) is required.
Specifically,
(I1). F0 	 H1 + H2. That is, if both H1 and H2 put zero mass on a set A,
then F0 has zero mass on A too.

Both conditions (C1) and (I1) mean that F0 has probability zero on sets
in which no observation can occur. In other words, for the NPMLE of F0 to
be consistent, the support of F0 needs to be contained in the support of G or
in the union of the supports of H1 and H2.

Assume that the support of all F0, G, H1 and H2 is a bounded interval
I = [0, M ] with M > 0 . Then one can also establish the L2-consistency of
F̂n(t) given by

||F̂n − F0||G =
∫ M

0

[
F̂n(t) − F0(t)

]2
dG(t) = Op(n−1/3) (3.11)

for current status data (Huang and Wellner, 1995), or
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||F̂n − F0||Hi =
∫ M

0

[
F̂n(t) − F0(t)

]2
dHi(t) = Op(n−1/3) (3.12)

for i = 1, 2 for case II interval-censored data (Geskus and Groeneboom, 1997).
In addition to the consistency, another fact implied by (3.11) or (3.12)

is that the NPMLE of F0 based on interval-censored data only has n1/3-
convergence rate in L2 measure. This is quite different from n1/2-convergence
rate of the NPMLE based on right-censored data. Other authors who investi-
gated the consistency problem include Schick and Yu (2000) and Yu, Li, and
Wong (2000). The former established the L1-consistency of the NPMLE and
the latter considered the strong consistency of the self-consistent estimate of
F when the support of the observation times is finite.

3.6.2 Local Asymptotic Distribution

The local asymptotic distribution or asymptotic distribution of F̂n(t) at a
given time point t0 differs for current status data and case II interval-censored
data. It also depends on if the observed data contain exact or nearly exact
failure times. As in the previous subsection, assume that F0 is continuous.

For current status data, assume that 0 < F0(t0) , G(t0) < 1 and that F0
and G have density functions f0 and g, respectively, that are strictly positive
at t0. Then Groeneboom and Wellner (1992) show that as n → ∞,

n1/3
[

2 g(t0)
f0(t0) F0(t0) [1 − F0(t0)]

]1/3 [
F̂n(t0) − F0(t0)

]
→ 2 Z (3.13)

in distribution, where Z is the last time where standard Brownian motion
minus the parabola y(t) = t2 reaches its maximum.

Two aspects about F̂n(t) can be immediately seen from (3.13). One is that
as mentioned before, F̂n(t) has n1/3-convergence rate rather than the n1/2-
convergence rate that usually holds for estimates based on right-censored data
The other is that F̂n(t) does not have an asymptotic normal distribution as
one may expect for an NPMLE.

For case II interval-censored data, one can derive an asymptotic result that
is similar to (3.13), but needs stronger conditions. In particular, assume that
both F0 and G have support [0, M ], a bounded interval, and f0 satisfies

f0(t) ≥ a0 > 0 , t ∈ (0, M) ,

for some constant a0 > 0. Also one needs:
(I2). h1 and h2 are continuous with h1(t) + h2(t) > 0 for all t ∈ [0, M ].
(I3). P ( V − U < ε ) = 0 for some positive ε.

Condition (I2) says that any t within (0, M) can be an observation time
point with positive likelihood, while condition (I3) implies that the joint den-
sity function h does not have mass close to the diagonal or the joint distri-
bution function H has zero mass on some strip along the diagonal. In terms
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of the observed data, the condition (I3) means that all observed intervals are
real intervals and no exact failure times are available. Under the conditions
given above plus some other regularity conditions, one has that as n → ∞,

n1/3
[
2a(t0)
f0(t0)

]1/3 [
F̂n(t0) − F0(t0)

]
→ 2 Z (3.14)

in distribution for each point t0 ∈ (0, M) (Groeneboom, 1996). In (3.14), Z
is defined as in (3.13) and

a(t0) =
h1(t0)
F0(t0)

+
h2(t0)

1 − F0(t0)
+
∫ M

t0

h(t0, v)
F0(v) − F0(t0)

dv+
∫ t0

0

h(u, t0)
F0(t0) − F0(u)

du .

The asymptotic distribution given in (3.14) says that as with current
status data, the NPMLE from case II interval-censored data also has n1/3-
convergence rate and does not have an asymptotic normal distribution. For
both (3.13) and (3.14), it is assumed that no exact failure times are observed
or available. Suppose that some exact failure times are available and let n1
denote the number of subjects for whom such exact failure times are observed.
Define condition (CI1) as
(CI1). n1/n → b0 as n → ∞ with b0 a positive constant.

Huang (1999b) shows that under condition (CI1) and some other regularity
conditions as n → ∞, one has

n1/2
[
F̂n(t0) − F0(t0)

]
→ Z1(t0) (3.15)

in distribution. Here Z1(t0) is a normal random variable with mean zero and
the variance given by the information lower bound for the estimation of F0.
The result given above is true for both current status data and case II interval-
censored data, but the conditions required for the former are weaker than those
for the latter. For instance, in the case of current status data, no restriction
is needed for G, whereas some restrictions similar to (I3) are required for
observation times for case II interval-censored data.

The result given in (3.15) says that the NPMLE of F0 can have n1/2-
convergence rate and an asymptotic normal distribution if enough exact failure
times or more information about F0 than purely interval-censored observations
is available. For situations that lie between conditions (I3) and (CI1), one
can expect a convergence rate that is between n1/3 and n1/2. For example,
Groeneboom and Wellner (1992) discuss a case where H has sufficient mass
along the diagonal and suggest that F̂n has (n log n)1/3-convergence rate.

One application of (3.13) - (3.15) is to construct pointwise confidence limits
for F0. For this and the situations corresponding to (3.13) and (3.14), one has
to estimate the constants at the left side of (3.13) and (3.14) in addition
to others. The estimation of these constants involves estimation of density
functions, which may not be an easy task. For the situation corresponding
to (3.15), one needs to estimate the variance of F̂n because its asymptotic
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variance does not have a closed form. A consistent estimate of the asymptotic
variance is given by the observed information matrix, the negative second
derivative of the log-likelihood. In this case, based on (3.15), one can also
apply the bootstrap procedure to construct confidence bands for F0 (Huang,
1999b). In general, it should be easier to use likelihood ratio statistics to
construct confidence limits of F0 at a fixed time point if their asymptotic
distributions are known.

In the preceding discussion, it is assumed that F0 is a continuous dis-
tribution function. Sometimes it is of interest and reasonable to treat F0 as
a discrete distribution function with finite known support points (Yu et al.,
1998a, b; Yu, Wong and Li, 2001). Then the derivation of the asymptotic
consistency and distribution of the NPMLE becomes a standard parametric
problem.

3.6.3 Asymptotic Normality of Linear Functionals

This subsection discusses the asymptotic distribution of linear functionals
given by

K(F̂n) =
∫

c(t) d F̂n(t) ,

where c(t) is a given function. Taking c(t) = t, one has K(F0) = E(T ), the
mean of failure time variable of interest. As for the local asymptotic distribu-
tion of F̂n, one has to separate the investigation of the asymptotic distribution
of K(F̂n) for current status data and case II interval-censored data. In the
following, it is assumed that F0 has bounded support, i.e., [0, M ] with M > 0.

First for current status data, assume that G 	 F0, F0 	 G and G has a
density function g. One can show that

√
n
[
K(F̂n) − K(F0)

]
→ N(0, σ2

c ) (3.16)

in distribution as n → ∞, where

σ2
c =

∫ M

0

F0(t) [1 − F0(t)]
g(t)

[c′(t)]2 dt ,

which is assumed to exist (Groeneboom and Wellner, 1992; Huang and Well-
ner, 1995). This result tells us that although F̂n only has n1/3-convergence
rate, its linear functionals have the usual n1/2-convergence rate.

For case II interval-censored data, one can prove that (3.16) still holds,
but there is no explicit formula available for the asymptotic variance σ2

c . In
fact, Geskus and Groeneboom (1997, 1999) show that (3.16) is true for gen-
eral smooth functionals of F̂n and that the asymptotic variance reaches the
information lower bound. As for the local asymptotic distribution of F̂n dis-
cussed in the previous subsection, to have (3.16), one does need more and
stronger conditions about the observation process. In particular, one has to
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pay special attention to the behavior of H along the diagonal. Geskus and
Groeneboom (1997) considered situations where conditions (I1) and (I2) are
true. That is, H has zero mass along the diagonal. Geskus and Groeneboom
(1999) dealt with situations where U and V can be arbitrarily close, i.e., the
following condition holds:
(I4). h(t, t) = limv↓t h(t, v) ≥ c0 > 0 for all t ∈ (0, M) and some c0 > 0.

3.7 Bibliography, Discussion, and Remarks

Nonparametric maximum likelihood estimation is the topic that has been dis-
cussed the most in the analysis of interval-censored failure time data, and
the study of it goes back to the fifties. Ayer et al. (1955) and Eeden (1956)
were the first to derive the NPMLE of a distribution function based on cur-
rent status data. Peto (1973) and Turnbull (1976) investigated the estimation
problem based on general or case II interval-censored data. For the problem,
the former presented a Newton-Raphson algorithm and the latter developed
the self-consistency algorithm described in Section 3.4.

Following the seminal article Turnbull (1976), a number of authors have
studied the nonparametric estimation problem for interval-censored data from
various points of view. For example, as pointed out in the previous sections,
Gentleman and Geyer, 1994, Groeneboom and Wellner (1992), Jongbloed
(1998), Li et al. (1997) and Wellner and Zhan (1997) discussed issues re-
lated to determination of the NPMLE based on interval-censored data such
as its characterization and algorithms. Others that dealt with similar or re-
lated issues include Banerjee and Wellner (2005), Becker and Melbye (1991),
Böhning et al. (1996), Braun et al. (2005), Frydman (1994), Goodall et al.
(2004), Groeneboom (1995), Hudgens (2005), Hudgens and Satten (2001),
Ng (2002), Pan (2000c), Pan and Chappell (1998a), Rücker and Messerer
(1988), Song (2004), Sun (2001a), Vandal et al. (2005), van der Laan and
Jewell (2003), and Yu et al. (1998a). Among them, Banerjee and Wellner
(2005) and Goodall et al. (2004) discussed the construction of confidence lim-
its or intervals for current status data and case II interval-censored data,
respectively. Böhning et al. (1996) noted the similarity between the problem
considered here and the finite mixture model estimation problem and sug-
gested using the vertex-exchange or other algorithms proposed for the latter
situations to determine the NPMLE. Braun et al. (2005) and Pan (2000c)
considered smooth estimation of a density or survival function, respectively,
and Frydman (1994), Hudgens (2005) and Pan and Chappell (1998a) studied
the estimation problem when truncation is present as well as interval cen-
soring. Hudgens and Satten (2001) discussed interval censoring involved in
competing risk data, Sun (2001a) considered pointwise variance estimation of
the NPMLE, and Vandal et al. (2005) studied the constrained nonparametric
estimation problem.
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As discussed in Section 3.6, the study of asymptotic properties of the
NPMLE based on interval-censored failure time data is a difficult, but im-
portant issue. For this, much of the important ground work is laid out in
Groeneboom and Wellner (1992) and Groeneboom (1996) and one needs to
use empirical process theory (van der Vaart and Wellner, 1996). For the con-
sistency of the NPMLE, the authors who studied it include Ayer et al. (1955),
Geskus and Groeneboom (1997), Groeneboom and Wellner (1992), Huang and
Wellner (1995, 1997), Pan and Chappell (1998b), Pan et al. (1998), Schick
and Yu (2000), van de Geer (1993), Wang and Gardiner (1996), Yu, Li, and
Wong (2000), Yu et al. (1998a, b), and Yu et al. (2000). In particular, Pan
and Chappell (1998b) and Pan et al. (1998) dealt with data that involve
both interval censoring and left-truncation. The references that discussed the
asymptotic distribution of the NPMLE or its functionals include Geskus and
Groeneboom (1996, 1997, 1999), Groeneboom (1996), Groeneboom and Well-
ner (1992), Huang (1999b), Huang and Wellner (1995, 1997), and Yu et al.
(1998a).

Several problems that are closely related to nonparametric estimation of
a distribution function are not discussed in the preceding sections. One is
constrained nonparametric estimation of a distribution function based on
interval-censored failure time data such as the maximization of the log like-
lihood functions discussed in the previous sections under constraints. There
exist many situations where one needs to use the procedures developed for
such constrained maximization. For instance, one may want to construct like-
lihood intervals for the NPMLE of a distribution function. Sometimes, it may
be reasonable to assume that the true distribution function F0 is concave,
unimodal, has a monotone hazard function, etc. For the problem, Vandal et
al. (2005) gave a reduction technique as well as some algorithms for determi-
nation of the NPMLE under constraints for interval-censored data.

In addition to interval censoring, truncation may exist, and one may desire
a nonparametric estimate of a distribution function that takes into account
both interval censoring and truncation. The original self-consistency algorithm
given in Turnbull (1976) covers this situation, and as mentioned before, Pan
and Chappell (1998a, b) also discussed the situation.

Sometimes one may be interested in smooth estimation of a density func-
tion based on interval-censored failure time data. A simple approach uses
the NPMLE of a distribution function discussed in the previous sections. For
example, a simple kernel estimate is determined by

∫
1

n h

n∑
i=1

EF̂n

[
K

(
t − Ti

h

)
|Ti ∈ (Li, Ri]

]

given a set of interval-censored data {(Li, Ri] ; i = 1, ..., n}, the NPMLE F̂n,
a kernel function K and a bandwidth h. In the formula above, EF̂n

denotes
the conditional expectation of Ti, the unobserved failure time from subject i,
with respect to F̂n given F̂n and the observed interval (Li, Ri] for Ti. One can
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also obtain a smooth estimate of a density function using the smooth estimate
of a hazard function given in Section 3.5 and the relationship between hazard
and density functions discussed in Section 1.4.1. Braun et al. (2005) proposed
a third approach, which incorporates kernel estimation into self-consistency
and local likelihood procedures.

Also estimation of the variance or covariance of the NPMLE of a distri-
bution function was not considered. Such estimates are needed in order, for
example, to construct confidence bands of a distribution function. If it is rea-
sonable to treat the distribution function as a discrete function with finite
support, then one can easily obtain an estimate of the covariance matrix of
the NPMLE using the observed information matrix. In case the number of
time points in the support is large, this method could be computationally
complex and give unrealistic results. For this, other available methods for
interval-censored data in the literature include the likelihood ratio approach
considered in Banerjee and Wellner (2005) and Goodall et al. (2004) for confi-
dence intervals and the two sampling-based approaches given in Sun (2001a)
for pointwise variance estimation of the NPMLE. For the two sampling-based
approaches, one is a simple bootstrap procedure and the other is a generalized
Greenwood’s formula based on resampling. Also one can use the consistent
estimate of the asymptotic variance given in Yu, Li, and Wong (1998).

Although studies have been conducted that deal with asymptotic prop-
erties of the NPMLE based on interval-censored failure time data, there still
exist many open questions about asymptotic behaviors of the NPMLE. For in-
stance, the local asymptotic distribution of the NPMLE under condition (I4)
is still unknown. Another unresolved, interesting question concerns the local
asymptotic distribution of a constrained NPMLE. By imposing some con-
straints on the distribution function, one may be able to estimate it with a
better convergence rate. Also, it would be useful to investigate the asymptotic
distributions of likelihood ratio statistics, which can be used, for example, to
construct confidence limits of F0.



4

Comparison of Survival Functions

4.1 Introduction

Comparison of treatments is one of the primary objectives in most medical
studies such as clinical trials. In such cases, nonparametric or distribution-
free methods are usually preferred if there does not exist strong evidence to
support a particular parametric model. For right-censored failure time data,
most of the existing nonparametric methods can be classified into two types:
weighted log-rank tests and weighted Kaplan-Meier . In particular, the log-
rank test is perhaps the most commonly used nonparametric procedure in
practice. Detailed discussions about these two types of statistics can be found
in Fleming and Harrington (1991) and Kalbfleisch and Prentice (2002) among
other books. This chapter deals with similar methods that are appropriate for
interval-censored failure time data. Alternatives to these methods, which are
discussed in Chapters 5 and 6, base the comparisons on the score tests derived
under various regression models.

In Section 4.2, we discuss nonparametric treatment comparisons when only
current status data, i.e., case I interval-censored data, are available and two
types of methods are considered. One approach is appropriate only if observa-
tions times across treatment groups follow the same distribution and the other
allows different distributions for these observation times. Sections 4.3 and 4.4
consider, respectively, rank-based and survival-based comparison methods for
general or case II interval-censored data. In both sections, we concentrate on
situations where the censoring intervals for subjects in different treatment
groups are generated from the same distribution function. The use of these
methods are illustrated in Section 4.5 on three examples including the lung
tumor data described in Section 1.2.1 and the breast cancer data described in
Section 1.2.2. Section 4.6 includes bibliographic notes about nonparametric
treatment comparison for interval-censored data and brief discussion about
situations and approaches that are not considered in the previous sections.
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4.2 Statistical Methods for Current Status Data

As before, we use T to denote a random variable representing failure time and
S its survival function. Let C denote the observation time that is assumed
to be independent of T . Suppose that data are observed independently from
n subjects, and for each subject, one observes only C and δ = I(T ≤ C).
For treatment comparisons, we consider two separate situations because the
methods for them are quite different. One assumes that C follows the same
distribution for all subjects, and the other allows the distributions of C to be
different for subjects with different treatments.

4.2.1 Comparisons with the Same Observation Time Distribution

In this subsection, we focus on the two-sample comparison problem and dis-
cuss three simple and natural methods. The first one is a Wilcoxon-type pro-
cedure, and the second one is a rank-based method first developed in Sun
and Kalbfleisch (1993, 1996) following the idea behind the log-rank test. The
third approach is a generalization of the weighted Kaplan-Meier procedure,
and the idea behind it can be found in Andersen and Ronn (1995) among oth-
ers. With S1 and S2 denoting the survival functions corresponding with the
two treatment groups, the goal is to test the hypothesis H0 : S1(t) = S2(t)
for all t or S1 = S2.

4.2.1.1 A Wilcoxon-type Procedure

Suppose that the observed data consist of {(Ci , δi , Zi) ; i = 1, ..., n}, where
Zi = 0 or 1 is the treatment group indicator for subject i. To test H0, we note
that under H0 and the assumption that the Ci’s follow the same distribution,
the δi’s are i.i.d. random variables. This suggests that one can use the following
Wilcoxon statistic ∑

i

∑
j

(Zi − Zj) (δi − δj)

for testing H0. It is apparent that the above statistic is equivalent to

Uc w =
n∑

i=1

(Zi − Z̄) δi ,

where Z̄ = n−1 ∑n
i=1 Zi. It is easy to show that under H0 and for large n, the

distribution of n−1/2 Uc w can be approximated by a normal distribution with
mean zero and variance σ̂2

c w = n−1 ∑n
i=1 (Zi − Z̄)2 δ2

i . Hence a large sample
test of the hypothesis H0 can be performed using the statistic Uc w/σ̂c w with
standard normal critical values.
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4.2.1.2 A Rank-based Procedure

Let s1 < ... < sk denote the distinct ordered observation times of { C1, ..., Cn }
and Ŝ0 the maximum likelihood estimator of the common survival function
S0 under H0. Also let F0(t) = 1 − S0(t) and F̂0 = 1 − Ŝ0(t). Define
nj =

∑
{i : Ci=sj} δi, the number of subjects observed to have experienced

the survival event at time sj , and lj =
∑

{i : Ci=sj} 1, the number of subjects

observed at time sj , j = 1, ..., k. Then as discussed in Section 3.2, F̂0(sj) is
given by

F̂0(sj) = maxr≤j mins≥j

∑s
v=r nv∑s
v=r lv

. (4.1)

To test H0, we note that the log-rank test statistic for right-censored data
has the following form: the summation of the observed minus expected failure
numbers. This motivates a simple and natural test statistic

Uc r =
n∑

i=1

Zi [ δi − F̂0(Ci) ] ,

the summation of the observed minus expected numbers of events over all
subjects. This statistic, Uc r, can also be derived as a score test statistic from
the logistic model

log
1 − S2(t)

S2(t)
= log

1 − S1(t)
S1(t)

+ β

for testing β = 0, where β represents the treatment difference. Under H0, it
can be shown that if n is large, the distribution of Uc r can be approximated
by the normal distribution with mean zero and variance

σ̂2
c r = σ̂2

z

n∑
i=1

[ δi − F̂0(Ci) ]2 ,

where σ̂2
z denotes the sample variance of the Zi’s.

The proof for the normal approximation to the distribution of Uc r and
further discussion are found in Sun and Kalbfleisch (1993, 1996). In fact, the
proof requires that the Zi’s can be regarded as i.i.d. variables. However, the
finite sample studies presented there suggest that this assumption can be
relaxed to the condition that the Zi’s are a random permutation of 0 and 1.
This is usually the case for randomized studies.

4.2.1.3 A Survival-based Procedure

Let G denote the distribution function of C and Ĝn the empirical distribution
of C. Suppose that both S0 and G are absolutely continuous functions. Let
Ŝ1 and Ŝ2 be the maximum likelihood estimators of S1 and S2, respectively,
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as given by (4.1), but based on the subjects within each treatment group
separately. Also, let n1 and n2 denote the numbers of subjects receiving each
of the two treatments, respectively, and assume that n1/n → p (0 < p < 1)
as n → ∞, where n1 + n2 = n. To test H0, motivated by the Kolmogorov-
Smirnov and the weighted Kaplan-Meier tests (Pepe and Fleming, 1989), we
can construct a simple test statistic

Uc s =
∫ τ

0
[ Ŝ2(t) − Ŝ1(t) ] d Ĝn(t) , (4.2)

where τ is a constant such that S0(τ) > 0 and is usually taken to be the
longest observation time.

The asymptotic distribution of Uc s follows easily from the strong consis-
tency of Ĝn and the results discussed in Section 3.6. Specifically, if n is large
and H0 is true, the distribution of Uc s multiplied by

√
n can be approximated

by the normal distribution with mean zero and variance

σ̂2
c s =

n2

n1 n2

∫ τ

0
Ŝ0(t) [1 − Ŝ0(t)] d Ĝn(t) .

Thus a large sample test of the hypothesis H0 can be performed using U∗
c s =√

nUc s/σ̂c s with standard normal critical values.
Following the idea behind Uc s, similar test statistics can be developed.

For example, one can use the statistic Uc s with Ŝ1 and Ŝ2 replaced by their
squares. Another alternative is to consider the difference between the empirical
means of the two populations. The methods based on these two statistics,
which are expected to perform like that based on Uc s, are discussed in detail
in Andersen and Ronn (1995) and Tang et al. (1995), respectively.

Simplicity is a key advantage of the methods based on Uc w, Uc r or Uc s

which can be implemented easily as t-tests. We remark that as in the case of
complete or right-censored failure time data, the first method applies to more
general situations, but may have less power for some specific alternatives. For
the other two approaches, it is expected that the second method based on
Uc r should have better power than the third approach based on Uc s for al-
ternatives with ordered hazard functions. The survival-based approach would
perform better than the rank-based one for alternatives with ordered survival
functions. This is discussed further below for general interval-censored data.

4.2.2 Comparisons with Different Observation Time Distributions

This subsection considers nonparametric comparisons of p + 1 treatments
when observation times may follow different distributions for subjects with
different treatments. We mainly focus on the test procedure given in Sun
(1999). Let Z be the p-dimensional vector of treatment indicators, and for
convenience in presenting the method described below, define N(t) = I( T ≤
t ), indicating if the survival event has occurred by time t. Then the observed
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data consist of { (Ci, Ni(Ci),Zi) ; i = 1, ..., n }, where Ni, Ci, and Zi are
defined as above for subject i, i = 1, ..., n. The hypothesis that the p + 1
treatments are equal is equivalent to the hypothesis H0 : E{ Ni(t) |Zi} is
independent of Zi.

To motivate the approach below, consider the statistic Uc w discussed in
Section 4.2.1. Using the notation of this subsection, it can be written as

n∑
i=1

(Zi − Z̄) Ni(Ci) . (4.3)

Because the distribution of the Ci’s may depend on the Zi’s, it is apparent
that the statistic in (4.3), which measures the observed treatment differences,
may be biased. To correct this possible bias, we need to specify the dependence
of the distribution of the Ci’s on the Zi’s. For this purpose, we assume that
the hazard function of the Ci’s is given by the PH model

λ(t ; Zi) = λ0(t) eZ
′
i β , (4.4)

where λ0(t) denotes an unknown baseline hazard function and β is a p-
dimensional vector of unknown regression parameters.

Under this PH model and H0, it can be shown that

E [Ni(Ci)|Zi] = E

[∫ ∞

0
Ni(t)dÑi(t)|Zi

]

= eZ
′
i β
∫ ∞

0
λ0(t)µ(t)[S0(t)]exp(Z ′

i β)dt,

where µ(t) is the mean function of the Ni(t)’s under H0, Ñi(t) = I(t ≥ Ci)
and S0(t) = exp[− ∫ t

0 λ0(s) ds] is the baseline survival function of the Ci’s.
This yields

E

[
e−Z ′

i β
∫ ∞

0

Ni(t) dÑi(t)

S0(t)exp(Z ′
i β)

|Zi

]
=
∫ ∞

0
λ0(t) µ(t) dt

and, assuming that β is known, suggests the test statistic

U c c(β) =
n∑

i=1

(Zi − Z̄) e−Z ′
i β Ni(Ci)

Ŝ0(C−
i ; β)exp(Z ′

i β)
,

where

Ŝ0(t; β) = exp

[
−
∫ t

0

d Ñ(s)∑n
i=1 I(s ≤ Ci) eZ

′
i β

]
.

This statistic adjusts for the bias due to the difference in the distributions
of the Ci’s and represents the adjusted observed treatment differences. Of
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course, in general, the parameter β is unknown. Because we observe complete
data on the Ci’s, it is then natural to estimate β by the partial likelihood
estimator, β̂, defined as the solution to

U(β) =
n∑

i=1

∫ ∞

0

[
Zi −

∑n
j=1 I(t ≤ Cj) eZ

′
i β Zj∑n

j=1 I(t ≤ Cj) eZ
′
i β

]
d Ñi(t) = 0 .

Therefore, the hypothesis H0 can be tested using the test statistic U c c(β̂).
Define A(β) = ∂U c c(β) /∂β and B(β) = − ∂U(β) /∂β. Also define

R(t) =
n∑

i=1

(Zi − Z̄)
∫ ∞

t

Ni(s) d Ñi(s)

{Ŝ0(s, β̂)}exp(Z ′
i β̂)

,

âi = (Zi − Z̄) e−Z ′
i β̂
∫ ∞

0

Ni(t) d Ñi(t)

{Ŝ0(t−, β̂)}exp(Z ′
i β̂)

,

b̂i =
∫ ∞

0

R(t)∑n
i=1 I(t ≤ Ci) eZ

′
i β̂

⎡
⎣ d Ñi(t) − I(t ≤ Ci) eZ

′
i β̂∑n

i=1 I(t ≤ Ci) eZ
′
i β̂

d Ñ(t)

⎤
⎦

and

α̂i =
∫ ∞

0

⎡
⎣Zi −

∑n
i=1 I(t ≤ Ci)eZ

′
i β̂Zi∑n

i=1 I(t ≤ Ci)eZ
′
i β̂

⎤
⎦

×
⎡
⎣ dÑi(t) − I(t ≤ ti)eZ

′
i β̂∑n

i=1 I(t ≤ Ci)eZ
′
i β̂

dÑ(t)

⎤
⎦ ,

i = 1, ..., n. Sun (1999) shows that if n is large and H0 is true, the dis-
tribution of U c c(β̂) can be approximated by the multivariate normal dis-
tribution with mean 0 and covariance matrix Vc c = H(β̂) Γ H ′(β̂), where
H(β) = ( I , A(β) B−1(β) ), I denotes the p × p identity matrix, and

Γ =
n∑

i=1

(
âi + b̂i

α̂i

) (
â′

i + b̂′
i , α̂′

i

)
.

Therefore, a test of the hypothesis H0 can be based on the statistic U∗
c c =

U c c(β̂)′ V −1
c c U c c(β̂), whose null distribution can be approximated by the χ2

distribution with p degrees of freedom.
This approach requires that the distribution of the observation times, Ci’s,

can be described by the PH model, which can be easily checked in practice
because one observes complete data on the Ci’s. However, it is known that
the PH model fits most failure time data reasonably well.

Another way to develop a test for H0 is to start with the statistic Uc s

defined in (4.2) and to adjust for the bias introduced by the distributions of
the Ci’s. In using Uc s, the adjustment would involve estimation of the density
functions of observation times, which makes the approach complicated and
unattractive.
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4.3 Rank-based Comparison Procedures

Consider general or case II interval-censored failure time data and suppose
that the observed data are

{ (Li, Ri],Zi ; i = 1, ..., n }

from n independent subjects with each receiving one of p + 1 different treat-
ments. In the above, (Li, Ri] denotes the interval within which the survival
event of interest is observed to occur for subject i, and Zi is the p-dimensional
vector of treatment indicators. The goal is to test the hypothesis H0 : the p + 1
survival functions corresponding with the treatments are identical.

Several approaches can be taken to develop test procedures that make
use of the rankings of the underlying unobserved true failure times, Ti, and
are similar to the methods developed for complete or right-censored failure
time data. In this section, we focus attention on the approach given in Zhao
and Sun (2004) that directly generalizes the log-rank test, which is the most
commonly used method for right-censored data, because of its simplicity and
ease of interpretation and implementation. A brief discussion on some other
approaches is followed in Section 4.3.2.

4.3.1 Generalized Log-rank Test

Let Ŝ0 denote the maximum likelihood estimator of the common survival
function S0(t) = Pr(Ti > t) under H0 and s1 < · · · < sm the ordered
distinct time points of {Li, Ri , i = 1, ..., n} at which Ŝ0 has jumps. For
notational convenience, we assume that there exists a time point sm+1 > sm

at which Ŝ0 has all the remaining mass. That is, Ŝ0(t) is equal to zero for
t ≥ sm+1. For each pair (i, j), define αij = I( sj ∈ (Li, Ri] ), the indicator of
the event sj ∈ (Li, Ri], i = 1, ..., n, j = 1, ..., m + 1. To develop a statistic of
log-rank type for H0, we recall that the log-rank test statistic is the summation
of the observed minus expected numbers of deaths or events. Thus we need
to determine the number of failures and the number at risk for each observed
failure time, which we refer to as the failure and risk numbers.

For this, define δi = 0 if the observation on the failure time Ti for the ith
subject is right-censored and 1 otherwise, i = 1, ..., n. That is, δi = I(Ri ≤
sm). Also define ρij = I( δi = 0 , Li ≥ sj ), which is 1 if Ti is right-censored
and subject i is still at risk at sj−, i = 1, ..., n, j = 1, ..., m. Then if H0 is
true and S0(t) is treated as known and given by Ŝ0(t), natural estimates of
the overall observed failure and risk numbers at time sj are given by

dj =
n∑

i=1

δi
αij [Ŝ0(sj−) − Ŝ0(sj)]∑m+1

u=1 αiu[Ŝ0(su−) − Ŝ0(su)]

and
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nj =
m+1∑
r=j

n∑
i=1

δi
αir[Ŝ0(sr−) − Ŝ0(sr)]∑m+1

u=1 αiu[Ŝ0(su−) − Ŝ0(su)]
+

n∑
i=1

ρij ,

respectively, j = 1, ..., m. Similarly estimates of the observed failure and risk
numbers at time sj , j = 1, ..., m, for treatment group l, l = 1, ..., p + 1, are

dj l =
l∑
i

δi
αij [Ŝ0(sj−) − Ŝ0(sj)]∑m+1

u=1 αiu[Ŝ0(su−) − Ŝ0(su)]

and

nj l =
m+1∑
r=j

l∑
i

δi
αir[Ŝ0(sr−) − Ŝ0(sr)]∑m+1

u=1 αiu[Ŝ0(su−) − Ŝ0(su)]
+

l∑
i

ρij ,

respectively, where
∑l

i denotes the summation over all subjects in population
l. It is apparent that if right-censored data are available, the above estimates
reduce to the observed failure and risk numbers that are used in the construc-
tion of the log-rank test statistic.

To test H0, motivated by the log-rank statistic, one can use the statistic
U r = (Ur,1, ..., Ur,p+1)′, where

Ur,l =
m∑

j=1

(
dj l − nj ldj

nj

)
,

the summation of the observed numbers of failures minus the expected num-
bers of failures. To estimate the covariance matrix of U r, Zhao and Sun (2004)
give the following multiple imputation approach. Let M be a prespecified in-
teger. For each b (1 ≤ b ≤ M),
Step 1. For each i, if δi = 0, let T

(b)
i = Li and δ

(b)
i = 0 and if δi = 1, let

T
(b)
i be a random number drawn from the conditional probability function

fi(s) = Pr{ T
(b)
i = s} =

Ŝ0(s−) − Ŝ0(s)
Ŝ0(Li) − Ŝ0(Ri)

over the sj ’s that belong to (Li, Ri] and δ
(b)
i = 1, i = 1, ..., n. That is, we

generate a set of right-censored data {(T (b)
i , δ

(b)
i ) ; i = 1, ..., n} with the same

censoring indicators δ
(b)
i for all b.

Step 2. Given {(T (b)
i , δ

(b)
i ) ; i = 1, ..., n}, determine the corresponding ob-

served failure and risk numbers, i.e., d
(b)
j ’s, n

(b)
j ’s, d

(b)
j l ’s and n

(b)
j l ’s, from all

subjects and from the subjects in each treatment group, respectively. Let U (b)

denote the log-rank statistic based on this set of generated right-censored data,
which is defined like U r with dj , nj , dj l and nj l replaced by the d

(b)
j , n

(b)
j , d

(b)
j l

and n
(b)
j l , respectively. Then calculate the estimate of the covariance matrix
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of U (b) given by V̂
(b)

= V̂
(b)
1 + ... + V̂

(b)
m , where V̂

(b)
j is a (p + 1) × (p + 1)

matrix with elements

(V̂ (b)
j )l l =

n
(b)
j l (n(b)

j − n
(b)
j l ) d

(b)
j (n(b)

j − d
(b)
j )

(n(b)
j )2 (n(b)

j − 1)
, l = 1, ..., p + 1 ,

and

(V̂ (b)
j )l1l2 = − n

(b)
j l1

n
(b)
j l2

d
(b)
j (n(b)

j − d
(b)
j )

(n(b)
j )2 (n(b)

j − 1)
, 1 ≤ l1 �= l2 ≤ p + 1 ,

for j = 1, ..., m. Here V̂
(b)

is obtained by using a conditional multivariate
hypergeometric distribution at each time point sj , j = 1, ..., m.
Step 3. Repeat the steps 1 to 2 for each b = 1, ..., M , and then the covariance
matrix of U r can be estimated by V̂ r = V̂ r,1 + V̂ r,2, where

V̂ r,1 =
1
M

M∑
b=1

V̂
(b)

,

V̂ r,2 =
(

1 +
1
M

) ∑M
b=1 [ U (b) − Ū r ] [U (b) − Ū r ]′

M − 1

with Ū r =
∑M

b=1 U (b) /M .

With V̂
−
r denoting a generalized inverse of V̂ r, the hypothesis H0 can

be tested using the statistic U∗
r = U ′

r V̂
−
r U r, whose null distribution can

be approximated by the χ2 distribution with p degrees of freedom. A similar
approach, which is discussed in Pan (2000b), uses the imputed statistic Ū r

instead of U r. However, U r has a better interpretation than Ū r. Sun (1996)
discussed another procedure in which the test statistic is better motivated for
interval-censored data, but the procedure given there does not reduce to the
log-rank test for right-censored data. It also can be invalid if the percentage
of purely right-censored observations is large.

4.3.2 Discussion

For the two-sample problem (p = 1), Ur,1, the first component of U r given
in the previous subsection can be written as

Ur,1 =
m∑

j=1

nj 1nj 2

nj 1 + nj 2

(
dj 1

nj 1
− dj 2

nj 2

)
=
∫ ∞

0

Y1(t)Y2(t)
Y1(t) + Y2(t)

[
dΛ̂1(t) − dΛ̂2(t)

]
.

Here Yl(t) =
∑

j:sj≤t nj l and
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Λ̂l(t) =
∑

j : sj ≤ t

dj l

nj l

is an estimator of the cumulative hazard function corresponding with treat-
ment l, l = 1, 2. That is, the statistic U r is an integrated weighted difference
between estimated cumulative hazard functions. For the case of p = 1, we
can generalize the above test by employing the following weighted statistics∫ ∞

0
W (t)

Y1(t) Y2(t)
Y1(t) + Y2(t)

[
d Λ̂1(t) − d Λ̂2(t)

]
, (4.5)

where W (t) is a weight process that can depend on observed data. In the case
of right-censored data, the statistics in (4.5) give the weighted log-rank test
statistics and in this situation, a commonly used class of weight processes is

W (t) = [ Ŝ0(t−)]ρ [ 1 − Ŝ0(t−) ]γ ,

where ρ and γ are non-negative constants.
In general, in order to obtain an efficient test, the selection of an ap-

propriate weight process depends on knowledge about possible alternatives.
Consider the class of weight processes given above. For possibly early hazard
differences, for example, one may prefer ρ = 1 and γ = 0, which gives a de-
creasing weight process. On the other hand, if there exist possible late hazard
differences, one may use ρ = 0 and γ = 1, which gives an increasing weight
process. For more discussion about this weight process and its selection for
right-censored data, see Fleming and Harrington (1991). Most of the selection
criteria discussed there apply to interval-censored data although some care is
needed.

Another approach for developing a rank-based comparison procedure for
H0 is to follow the linear rank test theory for complete data. Suppose that
the survival times, Ti, can be described by the linear model

h(Ti) = Z′
i β + εi .

Here h is a strictly increasing function, β is the vector of regression parameters
representing treatment differences, and εi is random error with E(εi) = 0
and the probability density and distribution functions fε and Fε, respectively.
Then the hypothesis H0 is equivalent to β = 0.

Assume that complete data are observed. The marginal likelihood function
of the rank statistic of the Ti’s has the form

P (r) =
∫

· · ·
∫

τ(1)<···<τ(n)

n∏
i=1

fε(τ(i) − Z ′
(i) β) dτ(i) ,

where τ(1) < · · · < τ(n) are the order statistics of the residuals { h(Ti) −
Z ′

i β } and the Z(i)’s are the corresponding ordered treatment indicators.
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Then a locally most powerful linear rank test for β = 0 is given by the score
statistic d log P (r)/ dβ at β = 0, which has the form

∑n
i=1 ci Z(i), where

ci =
∫

· · ·
∫

τ(1)<···<τ(n)

⎡
⎣ −d log fε(τ(i))

dτ(i)

n∏
j=1

fε(τ(j)) dτ(j)

⎤
⎦ .

In theory, this approach can be generalized to censored data. However, unlike
the case of complete data, it does not usually yield simple rank statistics as
shown below. Kalbfleisch and Prentice (2002) discuss this approach for right-
censored data.

To generalize this idea to interval-censored data, one may consider the un-
derlying rank vector corresponding to the complete data that are not observed
due to interval censoring. That is, define R to be the set of all possible under-
lying rank vectors that are consistent with the observed interval-censored fail-
ure time data and treat it as the observed data rank. This gives the marginal
likelihood function

∑
r∈R

∫
· · ·
∫

τ(1)<···<τ(n)

n∏
i=1

fε(τ(i) − Z ′
(i) β) dτ(i) (4.6)

and a rank test statistic can be derived as the derivative of the logarithm
of this likelihood at β = 0. However, computation of the statistic and its
covariance matrix, which can be obtained by using either the observed Fisher
information or permutation approach, is quite complicated compared with
the effort needed for the generalized log-rank test discussed in Section 4.3.1.
Self and Grossman (1986) investigated this method for the case where h(t) =
log(t).

We can also generalize the linear rank test for complete data by considering
the full likelihood function

n∏
i=1

∫ h(Ri)−Z ′
iβ

h(Li)−Z ′
iβ

fε(εi) dεi =
n∏

i=1

[ Fε( h(Ri) − Z ′
iβ ) − Fε( h(Li) − Z ′

iβ ) ]

and basing the test of β = 0 on the resulting score statistic at β = 0. As with
the test based on the marginal likelihood (4.6), this method is very involved
computationally. This procedure is discussed further in Fay (1996).

Finally, one also can test H0 with the rank test discussed in Mantel (1967),
which applies to general censored failure time data and ranks observed inter-
vals. The test is a permutation-type approach and could be much less efficient
than the methods discussed above, especially when the percentage of overlap-
ping intervals is high.

An important feature of rank-based tests is their invariance under mono-
tone increasing transformations on the survival time. An example of this is
the log-rank test, which is well-known to be the locally optimal test within
the class of the PH model. In other words, the rank-based tests are in general
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expected to be efficient for, and sensitive to, alternatives with ordered hazard
functions, such as H1 : λ2(t) ≥ λ1(t) for all t in the case of two-sample com-
parison. Here λ1 and λ2 are the hazard functions corresponding to the two
treatments involved. However, they may not be sensitive to, or even consistent
for, alternatives with ordered survival functions, such as H2 : S2(t) ≥ S1(t)
for all t. Here S1 and S2 are the survival functions corresponding with λ1 and
λ2, respectively. It should be noted that H2 does not imply H1. Methods that
are more appropriate for H2 are discussed in the next section.

4.4 Survival-based Comparison Procedures

Consider the two-sample comparison problem and let S1 and S2 denote the
survival functions representing the two treatments. To test the hypothesis
H0 : S1(t) = S2(t), a class of test statistics that are parallel to the weighted
rank-based test statistics given in (4.5) consists of the integrated weighted
survival differences, ∫ τ

0
W (t) [ Ŝ1(t) − Ŝ2(t) ] dt . (4.7)

In (4.7), τ is the largest observation time, W (t) is a weight process that
can depend on observed data, and Ŝ1 and Ŝ2 are the NPMLEs of S1 and
S2 based on the separate samples, respectively. The statistics given in both
(4.5) and (4.7) have been studied extensively in the case of right-censored
data. While the statistics in (4.5) measure the observed rank or estimated
hazard differences between the two treatment groups, the statistics in (4.7)
measure the estimated survival differences between the two groups. By letting
W (t) = 1, the statistic in (4.7) gives the difference of the estimated means.

In the following, we consider three methods for testing H0 that use the
statistic defined in (4.7) or a variant. The first applies to situations where the
underlying survival variable of interest is discrete and is originally given in
Petroni and Wolfe (1994). The other two concern continuous survival variable
and are first considered by Fang et al. (2002) and Zhang et al. (2001), respec-
tively. As in Section 4.3, suppose that one observes general interval-censored
data { (Li, Ri], Zi ; i = 1, ..., n } and that the distributions of the Li and Ri’s
are identical across the two treatment groups.

4.4.1 Comparison with Discrete Survival Time

Suppose that the underlying survival times, Ti, take only discrete values 0 <
s1 < ... < sm < sm+1 = ∞. Then under H0, the likelihood function is
proportional to

L(p) =
n∏

i=1

⎛
⎝ m∑

j=1

αij pj

⎞
⎠ ,
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where αij = I(sj ∈ (Li, Ri]) and p = (p1, ..., pm)′ with pj = Pr(Ti =
sj |H0) and

∑m
j=1 pj = 1.

Assume that the weight process in (4.7) is a step process with jumps only
at the sj ’s and converges in probability to a deterministic function. Let p̂
denote the maximum likelihood estimator of p obtained from the likelihood
function L(p) and I(p̂) the observed Fisher information matrix from L(p) at
p = p̂. Taking τ = sm, the test statistic in (4.7) then has the form

Ud =
m−1∑
j=1

wj [ Ŝ1(sj) − Ŝ2(sj) ] (sj+1 − sj) ,

the summation over all possible failure time points of the weighted differences
between the two estimated survival probabilities, where wj = W (sj), j =
1, ..., m−1. Assume that the numbers of subjects within both treatment groups
go to infinity as n goes to infinity. Then using maximum likelihood theory,
Petroni and Wolfe (1994) show that under H0 with large n, the distribution
of Ud can be approximated by the normal distribution with mean zero and
variance

σ̂2
d =

m−1∑
j1=1

m−1∑
j2=1

wj1 wj2 (sj1+1 − sj1) (sj2+1 − sj2)
j1∑

k1=1

j2∑
k2=1

ak1 k2 ,

where ak1 k2 is the element of the inverse of I(p̂) at the k1th row and k2th
column.

Thus the hypothesis H0 can be tested by employing the statistic U∗
d =

Ud/ σ̂d with standard normal critical values. As discussed in Section 4.3.2,
the selection of an appropriate weight process W is usually important and
depends on alternatives of interest. The suggestions given for various types
of alternatives and right-censored data generally apply to interval-censored
data. Some discussion on this matter for the discrete survival time data can
be found in Petroni and Wolfe (1994).

4.4.2 Comparison I with Continuous Survival Time

In this subsection, we discuss another special case of the test statistics given
in (4.7) for testing H0. Assume that the Ti’s are continuous variables and
for convenience, assume that the support of the survival functions belongs
to [0, τ ]. Also assume that n1 of the n individuals come from the population
with survival function S1 and the remaining n2 individuals come from the
population with survival function S2, where n = n1 + n2. To present the
method, it is convenient to formulate the observed data as

{ (ui, vi, δ1i, δ2i, δ3i) ; i = 1, · · · , n } ,

where ui and vi are observed values of the two random variables Ui and Vi with
Ui ≤ Vi and the δli’s are the observed values of the indicator variables ∆1i =
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I(Ti ≤ Ui), ∆2i = I(Ui < Ti ≤ Vi) and ∆3i = 1 − ∆1i − ∆2i. Let H(u, v)
denote the joint cumulative distribution function of U and V and H1 and H2
the marginal cumulative distribution functions of U and V , respectively. Also
let h(u, v), h1(u), and h2(v) denote the corresponding density functions. For
the statistics given in (4.7), Fang et al. (2002) give the following result.

Assume that n1/ n → p as n → ∞, where 0 < p < 1. Also assume that
W (t) = w(t) is a deterministic function with a bounded derivative on [0, τ ].
Then under H0 and some regularity conditions, as n → ∞, the statistic

Uc =
√

n1 n2

n

∫ τ

0
w(t) [ Ŝ1(t) − Ŝ2(t) ] dt

has an asymptotic normal distribution with mean 0. One key regularity condi-
tion is condition (I3) given in Section 3.6.2 and requires that Ui and Vi should
not be too close together. That is, it is assumed that no exact failure times
are observed.

For consistent estimation of the asymptotic variance of the statistic Uc, as
before, let Ŝ0 denote the NPMLE of the common survival function under H0,
F̂0(t) = 1 − Ŝ0(t) and 0 < s1 < ... < sm < τ denote the time points at which
Ŝ0 and F̂0 have jumps. Also let aj = F̂0(sj), j = 1, ..., m, and φw,F̂0

denote
the solution to the following Fredholm integral equation

φw,F̂0
(t) = dF̂0

(t)

[
w(t) −

∫ τ

0

φw,F̂0
(t) − φw,F̂0

(t′)

|F̂0(t) − F̂0(t′)|
h∗(t′, t) dt′

]
,

where

dF̂0
(t) =

F̂0(t) [1 − F̂0(t)]
h1(t) [1 − F̂0(t)] + h2(t) F̂0(t)

and h∗(t′, t) = h(t′, t) + h(t, t′). Then φw,F̂0
is absolutely continuous with

respect to F̂0 and a step function with jumps at the sj ’s.
Let Ĥ, Ĥ1 and Ĥ2 denote the empirical distributions of (U, V ), U and V ,

respectively. Define yj = φw,F̂0
(sj),

∆j(hr) =
∫ sj+1

sj

hr(t) dt ≈
∫ sj+1

sj

dĤr(t) ,

∆jl(h) =
∫ sj+1

u=sj

∫ sl+1

sl

h(u, v) dvdu ≈
∫ sj+1

sj

∫ sl+1

sl

dĤ0(u, v)

and

dj =
aj (1 − aj)

∆j(h1)(1 − aj) + ∆j(h2) aj
,

j , l = 1, · · · , m, r = 1, 2. Then it can be shown that the vector y =
(y1, · · · , ym)′ is the unique solution to the following set of linear equations
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yj

⎡
⎣d−1

j +
∑
l<j

∆lj(h)
aj − al

+
∑
l>j

∆jl(h)
al − aj

⎤
⎦ = ∆j(w)+

∑
l<j

∆lj(h)
aj − al

yl +
∑
l>j

∆jl(h)
al − aj

yl

for j = 1, 2, ..., m.
Furthermore, define

θ̃w,F̂0
(u, v, δ1, δ2) = − δ1

φw,F̂0
(u)

F̂0(u)
− δ2

φw,F̂0
(v) − φw,F̂0

(u)

F̂0(v) − F̂0(u)
+ δ3

φw,F̂0
(v)

1 − F̂0(v)

and for (δ1, δ2) = (0, 0), (0, 1), (1, 0),

Q̂(u, v, δ1, δ2) =
∑

i

∆Ĥ(ui, vi)F̂ δ1i
0 (ui){F̂0(vi)−F̂0(ui)}δ2i{1−F̂0(vi)}1−δ1i−δ2i ,

which is the empirical distribution of the vector (Ui, Vi, ∆1i, ∆2i), where the
summation is over { i ; , ui ≤ u, vi ≤ v, δ1i = δ1, δ2i = δ2 }. Then Fang et al.
(2002) show that a consistent estimator of the asymptotic variance of Uc is
given by

‖θ̃w,F̂0
‖2 =

∫
θ̃2

w,F̂0
(u, v, δ1, δ2) dQ̂(u, v, δ1, δ2) .

Hence the hypothesis H0 can be tested using the statistic Uc/ ‖θ̃w,F̂n
‖ with

standard normal critical values.
For the weight function w(t), the simplest choices include w(t) = 1,

w(t) = 1/(t+1) (decreasing) and w(t) = 1 − 1/(t+1) (increasing). The dis-
cussion and remarks given in Sections 4.3.2. and 4.4.1 concerning the weight
function apply here.

4.4.3 Comparison II with Continuous Survival Time

Consider the same situation as in the last subsection and suppose that the
same assumptions hold. Using the same notation, first we notice that the
test statistic Uc is motivated partly by the functional

∫ τ

0 w(t) S(t) dt and as
discussed in Section 3.6, Ŝl (l = 1, 2) converges at the rate of n−1/3, while
its functional converges at the rate of n−1/2. Also, recall that the NPMLE Ŝ0
has a closed form in the case of current status data but does not for general
interval-censored data. This plus the complexity of the variance estimator of
Uc suggests that one might develop an alternative to Uc for testing H0 by
considering the functional given above and the two separate sets of current
status data

{ (ui, δ1i) ; i = 1, · · · , n } and { (vi, 1 − δ3i) ; i = 1, · · · , n } (4.8)

on the (Ui, ∆1i)’s and (Vi, 1 − ∆3i)’s, respectively.
Under H0, let Ŝ0p denote the NPMLE of the common survival function,

S0, that is based on the current status data obtained by combining the two
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sets of current status data in (4.8) and treating them as independent data
sets. Also, let Ŝlp denote the estimator of Sl that is defined like Ŝ0p, but is
based only on observed data corresponding with Sl, l = 1, 2. Motivated by
the functional ∫ ∫

[ w(u) Sl(u) + w(v) Sl(v) ] dH(u, v) ,

the sum of the two functionals corresponding with the two sets of current
status data in (4.8), similar to Uc, we construct the test statistic

U∗
c =

√
n

∫ τ

0

[
w(u){Ŝ1p(u) − Ŝ2p(u)}dĤ1(u) + w(v){Ŝ1p(v) − Ŝ2p(v)}dĤ2(v)

]
.

Zhang et al. (2001) show that under some regularity conditions and the hy-
pothesis H0, the distribution of U∗

c can be approximated by the normal dis-
tribution with mean zero and variance

σ̂∗2
c =

n2

n1n2

∫ τ

0

[
w2(u)Ŝ0p(u){1 − Ŝ0p(u)}dĤ1(u)

+ w2(v)Ŝ0p(v){1 − Ŝ0p(v)}dĤ2(v)
]

+
2n2

n1n2

∫ ∫
0≤u≤v≤τ

{1 − Ŝ0p(u)}Ŝop(v)w(u)w(v)dĤ(u, v)

if both n1 and n2 are large. Hence the hypothesis H0 can be tested by using
the statistic U∗

c / σ̂∗
c and the standard normal critical values.

4.4.4 Discussion

The method based on the statistics defined in (4.7) can be easily generalized
to the p + 1 sample comparison problem. For the situation, the statistics can
be replaced by ∫ τ

0
Wl(t) [ Ŝl(t) − Ŝ0(t) ] dt .

In the latter, W1, ..., Wp+1 are weight processes as before, Ŝl denotes the
NPMLE of the survival function corresponding with sample l, l = 1, ..., p+1,
and Ŝ0 is the NPMLE of the common survival function under the hypothesis
of equality.

There exist several differences between the two test procedures discussed in
Sections 4.4.2 and 4.4.3. It is apparent that a major advantage of the method
based on Uc over that based on U∗

c is that the former is more efficient because
it fully makes use of the observed interval-censored data. In contrast, the lat-
ter divides the observed information on the same subject into two parts and
treats them as independent samples. The advantage of the latter is its sim-
plicity because all quantities involved, including the variance estimator, have
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closed forms. Fang et al. (2002) give an alternative approach for estimating
the variance of Uc that is based on a simple bootstrap procedure. Computa-
tionally, the variance estimation method is much simpler, but no theoretical
justification is provided.

4.5 Examples

Three illustrative examples are discussed in this section. The first two ex-
amples concern current status data from tumorigenicity experiments and the
third example considers the analysis of the breast cancer data discussed in
Sections 1.2.2, 3.4.4, and 3.5.2. In the applications of the methods presented
in Section 4.2 for current status data, we focus on the situation where the dis-
tribution of the observation times Ci’s may depend on treatment indicators.

4.5.1 Analysis of Tumorigenicity Experiments

We first consider the lung tumor data discussed in Section 1.2.1. As men-
tioned before, lung tumors are usually regarded as nonlethal, and thus one
can reasonably assume that the data are current status data with respect to
the time to tumor onset. Also the death times, which serve as observation
times, can be assumed to be independent of tumor onset times within each
treatment group. For the comparison of the rates of development of nonlethal
tumors, traditional methods can be classified into two types: interval-based
tests and model-based tests. In interval-based tests, animals are grouped into
several time intervals according to age at death, and the numbers of animals
who die with and without tumors within each interval are counted and used
for the comparison. It is apparent that the analysis results can vary widely de-
pending on the choice of intervals. The model-based tests refer to approaches
developed by specifying certain models for tumor prevalence or risk and for
these tests, it may be difficult to justify the assumed model in practice. In
contrast, the methods given in Section 4.2 do not depend on either the choice
of intervals or the assumed model.

To compare the tumor incidence rates between the two treatment groups,
we first note that for the data in Table 1.3, the numbers of animals who had
developed tumors at their deaths are 27 and 35 in the conventional and germ-
free environments, respectively. This gives empirical tumor development rates
of 0.28 and 0.73 without considering death time information and suggests that
there is a difference between the tumor rates in the two groups. To make a
statistical comparison, we need to determine if the distribution of the death
times depends on the treatment. Figure 4.1 presents separate Kaplan-Meier
estimators of the survival functions of the death times, Ci, for animals in the
two treatment groups. It seems that the distributions are different and the
mice in the germ-free environment had significantly longer survival time than
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Fig. 4.1. Estimates of survival functions of death times: top, GE; bottom, CE.

those in the conventional environment. This suggests the use of the approach
discussed in Section 4.2.2.

Define Zi = 0 for the animals in the conventional environment and 1
otherwise. Fitting the PH model (4.4) yields β̂ = −1.9627 and the test of
β = 0 gives a p-value of less than 0.0001, which further indicates that the
distributions of the observation times differ. Application of the method given
in Section 4.2.2 results in U∗

c c = 4.852 with a p-value of 0.028. The result in-
dicates that there is a significant difference between the lung tumor incidence
rates of the mice in the two treatments groups. The mice in the germ-free
environment seem to have higher tumor incidence rate than those in the con-
ventional environment. For comparison, we also apply the procedure based
on the statistic Uc w given in Section 4.2.1 and obtain Uc w = 1.194 and a
p-value of 0.0009 for testing no difference between the tumor incidence rates.
Note that although both approaches give similar results, like the empirical
comparison approach, the method that ignores the difference between the dis-
tributions of the observation times overestimates the treatment difference. An
explanation for this is that by forcing the same death rate on the two groups,
the death rate difference is added to the tumor incidence rate difference.

To check the validity of model (4.4) and thus the above result, we obtain
estimates of the survival functions of the death times for animals in the two
treatment groups under the model (4.4). The estimates are included in Figure
4.1 for comparison. It can be seen from that figure that both estimates are
quite close to the corresponding Kaplan-Meier estimators, and this suggests
that the model is reasonable for this set of data.
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Table 4.1. Survival times in weeks for 100 male F344 rats with testicular tumors

Group Tumor presence Survival times in weeks (Ci)

Control With tumor (δi = 1) 73, 79, 87, 91, 95, 96(2), 98, 100(2), 101, 103
104, 108(36)

No tumor (δi = 0) 23
Treatment With tumor (δi = 1) 60, 68, 70, 73, 74, 78, 79, 82(2), 84, 90(3), 92

96(2), 100, 103(2), 104, 105, 106, 108(7)
No tumor (δi = 0) 2, 3, 5, 8(3), 9, 10, 12(2), 14, 24(2), 26, 38

40, 42, 47, 52, 55, 108

As another example, consider the data given in Table 4.1 from a tumori-
genicity study on 100 male F344 rats about testicular tumors, which are also
known to be relatively nonlethal. The data are reproduced from Lagakos and
Louis (1988) and consist of survival times by weeks of the rats and the status
of tumor presence or absence at their death times. The numbers in paren-
theses represent the numbers of the rats with the same survival time. The
study involves two groups, control (50 rats, zi = 0) and treatment (50 rats,
zi = 1) groups, in which the rats were exposed by gavage to 0 or 60mg%/kg
of commercial grade toluene diisocyanate, respectively. It can be seen from
the table that in the control group, only one animal died without a tumor.
The observed tumor rates are 98% and 58% for the animals in the control and
treatment groups, respectively. This suggests that there may exist a difference
between the tumor incidence rates of the rats in the two groups with the rats
in the control group having a higher rate.

Also it can be seen from Table 4.1 that in the control group, 36 animals
survived up to 108 weeks, the time at which the rats were sacrificed. In con-
trast, only 8 animals survived up to 108 weeks in the treatment group. That
is, the rats in the control group seem to survive much longer than those in the
treatment group. As with the lung tumor data, under model (4.4), we test for
equality of the survival functions of the animals natural death times of the
two groups and obtain a p-value of less than 0.0001. This indicates that the
approach in Section 4.2.2 should be applied to take into account the difference
in death times in the comparison of the testicular tumor incidence rates.

Applying the method given in Section 4.2.2 to this set of testicular tumor
data, we obtain Uc c(β̂) = 4.376 and a p-value of 0.054 for testing equality
of the tumor incidence rates in the two groups. The result suggests that the
rats in the treatment group had a moderately higher tumor incidence rate
than those in the control group. Note that unlike the first example, this is
quite different from the simple empirical comparison of tumor rates (98%
against 58%), which indicates that the rats in the control group had a higher
tumor rate. For comparison, again we apply the statistic Uc w to the data
and obtain Uc w = −1.000 and a p-value of 0.024 for the comparison of the
tumor incidence rates between the two groups. These results suggest that
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Fig. 4.2. Estimates of survival functions of natural death times: top, control; bot-
tom, treatment.

comparisons, which do not take into account the dependence of the death
time distribution on the treatment, can not only overestimate the tumor rate
difference, but also can give a misleading direction. In summary, these results
indicate that if all the rats had similar survival times, we would see more
testicular tumors in the rats belonging to the exposure group.

As with the first example, to check the validity of model (4.4) and hence
the results above, we obtain the separate Kaplan-Meier estimators of the
survival functions of natural death times of the rats in the two groups. They
are displayed in Figure 4.2 along with the corresponding estimators given
under model (4.4). The figure indicates that the PH model, (4.4), fits the
death times well for this problem.

4.5.2 Analysis of Breast Cancer Data

For the breast cancer data discussed in Sections 1.2.2, 3.4.4, and 3.5.2, our
main interest is to compare the early breast cancer patients who were treated
with radiation therapy alone to those treated with radiation therapy plus
adjuvant chemotherapy with respect to the time to breast retraction. To the
medical investigator, it seems that the time between visits or visit times were
independent of the times to breast retraction. Also, the assignment of the
treatment was not related to this cosmetic result (Finkelstein, 1986). Thus it
seems appropriate to apply the methods described in Sections 4.3 and 4.4 to
this set of interval-censored data.
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For the treatment comparison, we first apply the generalized log-rank test
given in Section 4.3.1 and obtain Ur,1 = −9.4290, the component correspond-
ing with the RT group, with an estimated standard error of 3.4185. This gives
a p-value of 0.0058 for the comparison and suggests that the patients in the RT
group have lower breast retraction rate than those in the RCT group. Next,
given the discrete nature of the data, we use the survival-based procedure for
discrete failure time data discussed in Section 4.4.1. Assuming that the fail-
ure, i.e., breast retraction, can occur only at six-month time points, we obtain
Ud = 8.9697 and σ̂2

d = 5.5652 with w(t) = 1, yielding a p-value of close to
0.0001. This result again indicates that the use of the adjuvant chemother-
apy significantly increased the breast retraction risk compared with the use
of only radiation therapy. We tried several other discretizing schemes and the
weight functions w(t) = 1/(t + 1) and w(t) = 1 − 1/(1 + t) and got simi-
lar p-values. To confirm these results, we further apply the method discussed
in Section 4.4.2 with w(t) = 1 to the data and obtain Uc = 42.7130 with
estimated standard deviation ‖θ̃w,F̂0

‖ = 12.4062. This corresponds with a
p-value of 0.0006 for the comparison of the two treatments and suggests the
same conclusion as above.

It is seen that both rank- and survival-based methods give similar results
and indicate that the adjuvant chemotherapy significantly increases breast
retraction rate. On the other hand, the p-values given and thus the levels of
differences suggested by the two types of approaches are quite different. One
possible explanation for this is the survival difference between the patients in
the two treatment groups is more significant than the corresponding hazard
difference.

4.6 Bibliography, Discussion, and Remarks

As with right-censored failure time data, most nonparametric test proce-
dures for interval-censored data can be classified into two categories: rank-
based ones and survival-based ones. Research on the ideas behind these two
types of test procedures goes back a long way (Kaplan and Meier, 1958). For
interval-censored data, some early rank-based and survival-based approaches
were given by Mantel (1967) and Peto and Peto (1972), respectively. Fol-
lowing them, many authors studied the nonparametric comparison problem
for interval-censored data. As discussed above, for example, Fay (1996), Pan
(2000b), Self and Grossman (1986), Sun (1996), and Zhao and Sun (2004) de-
veloped some rank-based nonparametric approaches. For the survival-based
nonparametric approach, references include Andersen and Ronn (1995), Fang
et al. (2002), Petroni and Wolfe (1994), Sun (1999), Sun and Kalbfleisch (1993,
1996), Tang et al. (1995), and Zhang et al. (2001).

Others that also investigated the nonparametric comparison for interval-
censored failure time data include Dinse (1994), Fay (1999a), Fay and Shih
(1998), Lim and Sun (2003), Pan (1999), Sun, Zhao and Zhao (2005), and
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Zhang et al. (2003). In particular, Fay (1999a) and Pan (1999) considered the
comparison of several existing procedures, and Lim and Sun (2003) presented
a general class of test statistics that include most of existing test statistics
as special cases. Sun, Zhao and Zhao (2005) generalized the approach inves-
tigated by Peto and Peto (1972). They proposed a class of test statistics for
the comparison of p + 1 survival functions given by

Uξ =
n∑

i=1

Zi
ξ{Ŝ0(Li)} − ξ{Ŝ0(Ri)}

Ŝ0(Li) − Ŝ0(Ri)
,

where ξ is a known function over (0, 1) and the other notation is the same as
before. A similar class of statistics is discussed in Section 6.4.3.

For the procedures discussed in Section 4.2, one can add a weight function
or weight process like those discussed in Sections 4.3 and 4.4. For example,
the statistic Uc s given in (4.2) can be generalized to∫ τ

0
W (t) [ Ŝ2(t) − Ŝ1(t) ] d Ĝn(t) .

Of course, selection of the weight process now becomes an issue that needs
thorough investigation, and the suggestions given before should apply here.

For general interval-censored failure time data, the distribution of {Li, Ri}
or {Ui, Vi} may depend on treatments, but the situation is not considered
above. To develop a test statistic for such cases, one could apply the idea used
in Section 4.2.2 to the statistics discussed in Sections 4.4.2 or 4.4.3 to adjust
for the differences in the distributions of {Ui, Vi}. As mentioned for current
status data, this may involve estimation of the density function of {Ui, Vi}.
Another more complicated situation that also is not discussed above is that
the distribution of Ci or {Ui, Vi} is directly related to the survival function
of interest rather than through treatment indicators as considered here. This
is often referred to as informative censoring, and there exists very limited
research on this topic. Some discussion on informative censoring is given in
Section 10.5.
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Regression Analysis of Current Status Data

5.1 Introduction

As commented before, current status data occur in many fields including an-
imal carcinogenicity experiments, demographical studies, econometrics, epi-
demiological studies, and reliability studies. In some situations such as car-
cinogenicity experiments on occult tumors, current status data are the only
information available about underlying survival variables of interest such as
tumor onset time (Dinse and Lagakos, 1983). That is, the survival variables
cannot be directly measured. In some other situations such as those arising
from cross-sectional studies on some milestone event, current status data pro-
vide easier and more reliable information about the time to the event than
complete data that give exact times to the event. An example of such situ-
ations is epidemiological studies where the event of interest is onset of cer-
tain chronic disease (Keiding, 1991; Keiding et al., 1996; Shiboski and Jewell,
1992). Another example is given by demographical studies where the event
of interest can be, for instance, first pregnancy or marriage (Diamond and
McDonald, 1991; Diamond et al., 1986).

There exists extensive literature about current status data in the context
of animal carcinogenicity experiments and demographical studies. A detailed
study of the data from these fields and discussion of the related literature
are beyond the scope of this book. The objective of this chapter is regression
analysis of case I or current status failure time data under the commonly
used semiparametric models described in Section 1.4 with the focus on in-
ference about regression parameters. For this, as in many other situations,
the most commonly used approach is semiparametric maximum likelihood es-
timation. This likelihood approach is straightforward, but not easy because
the likelihood is a function of finite-dimensional regression parameters and
an infinite-dimensional nuisance parameter, the cumulative baseline hazard
or baseline survival function. As a consequence, one has to estimate the re-
gression parameters and nuisance parameter simultaneously. This differs from
regression analysis of right-censored failure time data using the PH model
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(1.4), where the partial likelihood approach can be applied. In the latter ap-
proach, for inference about the regression parameters, a partial likelihood can
be derived that does not involve the nuisance parameter and whose properties
can be conveniently and easily derived by martingale theory. Unfortunately,
for current status data, the partial likelihood approach is not available, and
one has to work with the full likelihood.

To avoid dealing with the likelihood involving an infinite-dimensional nui-
sance parameter, the sieve maximum likelihood method is often used in prac-
tice. The key idea behind it is to approximate the infinite-dimensional nui-
sance parameter by a sequence of finite-dimensional parameters, that is, the
original parameter space is approximated by a sequence of increasing finite-
dimensional subspaces (sieves). For the problem considered here, suppose that
a semiparametric regression model is defined by regression parameter β and
the cumulative baseline hazard function Λ0(t). Then the original parameter
space related to Λ0(t) can be the collection of all nondecreasing functions,
and the sieves can be, for instance, collections of nondecreasing and contin-
uous piecewise linear functions. For any given finite sample, estimation of β
and Λ0(t) can be carried out by maximizing the likelihood function over the
product of the parameter spaces for β and the sieve. In other words, one
only needs to work with a finite-dimensional parameter space with the sieve
method. Another advantage of the sieve method is that the resulting estimator
of the cumulative baseline function Λ0(t) can have a faster convergence rate
than the estimator given by maximizing the full likelihood over the original
parameter space (Huang and Rossini, 1997).

Another inference approach that could also avoid dealing with an infinite-
dimensional nuisance parameter is to base estimation of β on some estimating
equations. Here it is assumed that some estimating equations about β exist
that have good properties such as unbiasedness but do not involve the nuisance
parameter. A major advantage of this method is that it usually can be very
easily implemented compared with the full or sieve likelihood approach. Also,
it is often the case that the properties of the resulting estimates of regression
parameters from this approach can be relatively easily established.

In the following sections, the inference approaches described above are
discussed in details under specific semiparametric models for β and Λ0(t)
or S0(t), the baseline survival function. Section 5.2 considers the PH model
(1.4) and discusses the application of the semiparametric maximum likeli-
hood approach to it. In Section 5.3, we discuss fitting the proportional odds
model (1.5) to current status data. For inference, the sieve maximum likeli-
hood approach is used along with brief description of some other approaches.
The application of the additive hazards model (1.7) to the analysis of cur-
rent status data is the topic of Section 5.4 with the focus on the estimating
equation-based inference approach about regression parameters. Section 5.5
deals with regression analysis of discrete current status data using the grouped
PH model. In Section 5.6, bibliographic notes about regression analysis of cur-
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rent status failure time data are provided along with some general remarks
about the topic.

To define the notation for this chapter, suppose that there is a survival
study that consists of n independent subjects. For the ith subject, suppose
that there exist two random variables: one is the survival time of interest
denoted by Ti and the other is Ci denoting the observation time on the subject,
i = 1, ..., n. Also for subject i, suppose that there exists a vector of covariates
Zi. It is assumed that the distribution of the Ti’s is determined by regression
parameter β and the baseline cumulative hazard function Λ0(t) or the baseline
survival function S0(t) = exp(−Λ0(t)). Also it is assumed that for inference
about β and Λ0(t) or S0(t), only current status data are available and given
in the form

{ (Ci, δi = I(Ti ≤ Ci),Zi) ; i = 1, ..., n } .

That is, each subject is observed only once at Ci and at Ci, one knows only
if the survival event of interest has occurred before or at Ci. In the following,
we assume that given Zi, Ti and Ci are independent.

5.2 Analysis with the Proportional Hazards Model

This section discusses regression analysis of current status data using the PH
model (1.4), the most commonly used regression model in failure time data
analysis. In terms of the cumulative hazard function, the model specifies

Λ(t; Zi) = Λ0(t) exp(Z ′
i β)

for given Zi and the likelihood function is proportional to

L(β, Λ0) =
n∏

i=1

exp
[
−(1 − δi) eZ

′
iβ Λ0(Ci)

] [
1 − exp(−eZ

′
iβΛ0(Ci))

]δi

.

(5.1)
In terms of β and S0, the baseline survival function, the likelihood function
above has the form

L(β, S0) =
n∏

i=1

[S0(Ci)](1−δi) exp(Z ′
iβ)
{

1 − [S0(Ci)]
exp(Z ′

iβ)
}δi

. (5.2)

In the following, we first consider maximum likelihood estimation of β
and S0(t). Two examples are then presented and followed by some discussion
about asymptotic properties of the maximum likelihood estimators.

5.2.1 Maximum Likelihood Estimation

For estimation of β and S0, the maximum likelihood approach maximizes the
likelihood function L(β, S0) given in (5.2). For this and a given set of current
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status data, as in the one-sample situation discussed in Sections 3.2 to 3.4, only
the values of S0(t) at the observation times Ci’s affect the likelihood function.
Thus without loss of generality, one can focus only on the maximization of
L(β, S0) over all nonincreasing step functions with jumps only at the Ci’s for
S0(t).

Let 0 < s1 < ... < sm denote the ordered distinct time points of { Ci }n
i=1

and ΩS the set of all baseline survival functions S0(t) that have the form

S0(t) =
∏

j : sj ≤ t

e− exp(αj) , (5.3)

where α = (α1, ..., αm)′ are unknown parameters. Then as discussed above,
to determine the maximum likelihood estimators of β and S0, we only need
to consider maximizing L(β, S0) over β and S0 in ΩS . In this case, the log
likelihood function can be written as

l(β,α) =
n∑

i=1

⎧⎨
⎩δi log

⎡
⎣1 −

∏
ji

e− exp(αj+Z ′
iβ)

⎤
⎦−

∑
ji

(1 − δi)eαj+Z ′
iβ

⎫⎬
⎭

in terms of β and α, where
∏

ji
and

∑
ji

denote the product and summation
over { j ; sj ≤ Ci }, respectively.

Define Dj to be the set of indices of subjects for whom Ci = sj and δi = 1
and Rj the set of indices of subjects for whom Ci = sj , j = 1, ...m. Let
aj =

∑j
k=1 exp(αk), j = 1, ..., m. Then the log likelihood function l(β,α)

can be rewritten as

l(β,α) =
m∑

j=1

⎧⎨
⎩
∑
i∈Dj

log

[
1 − e−aj exp(Z ′

iβ)

e−aj exp(Z ′
iβ)

]
− aj

∑
i∈Rj

eZ
′
iβ

⎫⎬
⎭ . (5.4)

To maximize l(β,α), a natural approach is to use the Newton-Raphson algo-
rithm and for this, we need the first and second derivatives of l(β,α). They
are

∂l(β,α)
∂β

=
m∑

j=1

aj

⎧⎨
⎩
∑
i∈Dj

Zie
Z ′

iβ [q(aj ,Zi) + 1] −
∑
i∈Rj

Zie
Z ′

iβ

⎫⎬
⎭ ,

∂l(β,α)
∂αj

= eαj

m∑
k=j

{∑
i∈Dk

eZ
′
iβ [q(ak,Zi) + 1] −

∑
i∈Rk

eZ
′
iβ

}
,

∂2l(β,α)
∂β∂β′ =

m∑
j=1

aj

⎧⎨
⎩
∑
i∈Dj

ZiZ
′
ie

Z ′
iβ
[
q(aj ,Zi) + 1



5.2 Analysis with the Proportional Hazards Model 101

−aj eZ
′
iβq(aj ,Zi)[q(aj ,Zi) + 1]

]
−
∑
i∈Rj

ZiZ
′
ie

Z ′
iβ

⎫⎬
⎭ ,

∂2l(β,α)
∂αj∂β

= eαj

m∑
k=j

{∑
i∈Dk

Zie
Z ′

iβ [q(ak,Zi) + 1

−aj eZ
′
iβq(ak,Zi)[q(ak,Zi) + 1]

]
−
∑
i∈Rk

Zie
Z ′

iβ

}
,

∂2l(β,α)
∂α2

j

=
∂l(β,α)

∂αj
− e2αj

m∑
k=j

{∑
i∈Dk

e2Z ′
iβ [q(ak,Zi) + 1] q(ak,Zi)

}
,

and

∂2l(β,α)
∂αj∂αk

= − eαj+αk

m∑
l=k

∑
i∈Dl

e2Z ′
iβq(al,Zi) [q(al,Zi) + 1] , k > j

where

q(aj ,Zi) =
e−aj exp(Z ′

iβ)

1 − e−aj exp(Z ′
iβ)

,

j = 1, ..., m, i = 1, ..., n.
To implement the Newton-Raphson algorithm, one needs to choose some

initial estimates of β and α as well as a convergence criterion and to compute
the inverse of a (p + m) × (p + m) matrix. One natural set of initial estimates is
that given by the single point imputation approach discussed in Section 2.4.1.
In terms of the convergence criterion, those discussed in Section 3.4.3 can be
applied. For the inverse, a simplification can be obtained by using the fact
that for a symmetric 2 × 2 partitioned matrix

A =
(

A11 A12
A21 A22

)
,

one has

A−1 =

(
A−1

11|2 −A−1
11|2A12A

−1
22

−A−1
22 A21A

−1
11|2 A−1

22 + A−1
22 A21A

−1
11|2A12A

−1
22

)

assuming that all needed inverses exist (Rao, 1973, pp. 33), where A11|2 =
A11 − A12A

−1
22 A21.

Let β̂n and α̂n denote the estimates of β and α defined above. Also let
Ŝn(t) denote the estimate of the baseline survival function given in (5.3) with
α replaced by α̂ and let Λ̂n(t) = − log[Ŝn(t)], an estimate of the baseline
cumulative hazard function. To make inferences about β, one needs to know
the asymptotic distribution and an estimate of the variance-covariance ma-
trix of β̂n. The asymptotic normality of β̂n is discussed in Section 5.2.3.
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For covariance estimation, a general approach is to treat l(β,α) as a para-
metric likelihood function with respect to β and α. Then one can use the
observed Fisher information matrix or the submatrix of the inverse of minus
the second derivative matrix of l(β,α) corresponding to β to estimate the
variance-covariance matrix of β̂. For the case where Zi is dichotomous taking
values 0 or 1, one can also use the following alternative due to Huang (1996).

Let g0(c) and g1(c) denote the density functions of the Ci’s for subjects
with Zi = 0 or 1 and ĝ0(c) and ĝ1(c) their smooth kernel estimators, respec-
tively. For given covariate Z, define

R̂(c;Z) =
exp[−eZβ̂n Λ̂n(c)]

1 − exp[−eZβ̂n Λ̂n(c)]
Λ̂2

n(c) e2Zβ̂n

and

µ̂(c) =
R̂(c;Z = 1) ĝ1(c)n1

R̂(c;Z = 1)ĝ1(c)n1 + R̂(c;Z = 0)ĝ0(c)(n − n1)
,

where n1 =
∑n

i=1 Zi, the number of subjects with Zi = 1. Then a consistent
estimate of the variance of β̂n is given by (n σ̂2

n)−1 with

σ̂2
n =

1
n

n∑
i=1

{
R̂(Ci; Zi) [Zi − µ̂(Ci)]2

}
. (5.5)

The variance estimate given above is actually a consistent estimate of
the information lower bound for β (see Section 5.2.3). In other words, the
maximum likelihood estimator β̂n is asymptotically efficient. A drawback of
estimate (5.5) is that one has to obtain kernel estimates of g0(c) and g1(c),
which requires selecting a proper bandwidth and kernel function as in Sec-
tion 3.5.1. A simplification arises if g0(c) = g1(c), which implies that Ci is
independent of Zi. In this case, it can be seen that µ̂(c) and thus σ̂n do not
involve the common estimates of g0(c) and g1(c). In fact, for general Zi, if
Ci is independent of Zi, the variance-covariance matrix of β̂n can be simply
estimated by (n Σ̂n)−1 with

Σ̂n =
1
n

n∑
i=1

⎧⎨
⎩R̂(Ci; Zi)

[
Zi −

∑n
j=1 ZjR̂(Ci; Zj)∑n

j=1 R̂(Ci; Zj)

]⊗2
⎫⎬
⎭ (5.6)

(Huang, 1996).
We remark that although the Newton-Raphson algorithm generally works

well, the computation required could become intensive, and one may face
unstable estimation problems for some data sets such as those that have a
large number of different observation time points. As an alternative, for a
given data set, one could maximize the likelihood function L(β, Λ0) given
in (5.1) over β and Λ0 instead of L(β, S0). In this case, the resulting log
likelihood function has the form
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l(β, Λ0) =
n∑

i=1

{
δi log

[
1 − exp(−eZ

′
iβΛ0(Ci))

]
− (1 − δi) exp(Z ′

iβ)Λ0(Ci)
}

.

It can be shown that l(β, Λ0) is concave with respect to Λ0 for given β, which
could be used to develop some maximization procedures. Huang (1996) and
Huang and Wellner (1997) studied this and suggested a two-step convex mi-
norant algorithm. However, the convex minorant algorithm could have similar
numerical problems too.

5.2.2 Two Examples

To illustrate the maximum likelihood approach presented in the previous sub-
section, we apply it to two examples. The first example concerns the lung
tumor data described in Section 1.2.1 and analyzed in Section 4.5.1. In the
second example, we consider a set of current status data arising from a study
of calcification of the hydrogel intraocular lenses.

For the lung tumor data given in Table 1.3, as in Section 4.5.1, define
Zi = 0 for the animals in the conventional environment (CE) and 1 for those
in the germ-free environment (GE). Also define the Ti’s to be the occurrence
times of lung tumors for the animals in the study and assume that they
can be described by the PH model (1.4). For estimation of the effect of the
environmental factor on tumor growth, the maximum likelihood approach
gives β̂ = 0.6934 with estimated standard deviation equal to 0.320 based
on the observed Fisher information approach. This gives a p-value of 0.03
for comparison of the two groups and a conclusion similar to that obtained in
Section 4.5.1. As before, the results here suggest that the animals in the germ-
free environment had significantly higher lung tumor incidence than those in
the conventional environment.

Figure 5.1 presents the maximum likelihood estimates of the survival func-
tions of times to lung tumor for animals in the two environmental groups. For
comparison, the separate NPMLEs of the two survival functions given in Fig-
ure 3.1 are also included in the figure. It can be seen from Figure 5.1 that
the separate estimates and the estimates given under model (1.4) seem to be
reasonably close to each other, suggesting that the model (1.4) provides an
acceptable approximation to the problem. The figure also suggests that the
difference between the lung tumor incidences mainly occurs in later stages of
the experiment.

Now we consider the data presented in Table 5.1 about calcification of the
hydrogel intraocular lenses (IOL), an infrequently reported complication of
cataract treatment. The study consists of 379 patients who had IOL implan-
tation and were examined by an experienced ophthalmologist for the status
of calcification. For each patient, the data give the examination time, which
ranges from 0 to 37 months since the IOL implantation, and the degree of
severity of IOL calcification indicated by 0 and 1. Here 0 (δi = 0) means that
no or little calcification had occurred by the time of examination, whereas 1
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Fig. 5.1. Estimates of survival functions of time to lung tumor onset.

Table 5.1. Observed numbers of patients with (δi = 1) and without (δi = 0) IOL
calcification at their exam times in month

Exam time δi = 0 δi = 1 Exam time δi = 0 δi = 1 Exam time δi = 0 δi = 1

Male patients
1 3 2 4 1 3 5
4 11 5 5 1 6 4
7 9 8 7 1 9 6 1
10 6 1 11 15 1 12 5 1
13 7 1 14 8 2 15 5
16 5 3 17 6 1 18 1 1
19 4 22 1 24 3
26 3 28 2 30 1
32 1

Female patients
2 9 3 6 1 4 7 1
5 10 6 10 7 13 1
8 12 1 9 12 2 10 15 3
11 16 5 12 19 1 13 17 3
14 7 15 10 5 16 14 3
17 7 2 18 2 19 3 1
20 2 1 21 1 22 1
23 1 24 2 25 1
26 2 27 1 29 2
30 1 1 31 1 33 1
37 1
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(δi = 1) means that there existed mild or serious calcification, or calcifica-
tion had already occurred at the time of examination. Also given in the table
is the gender of each patient. We note that the study consists of 142 males
and 237 females. The original study, analyzed by Yu et al. (2001) and Xue
et al. (2004), includes more detailed classifications about the severity of IOL
calcification and some other covariates. The objective here is to estimate the
gender effect on the IOL calcification and to evaluate if the risks or hazards
of IOL calcification between male and female patients are identical.

Define Ti to be the time to the occurrence of IOL calcification for patient
i, i = 1, ..., 379, and suppose that the Ti’s follow the PH model (1.4). Then
for the Ti’s, we only have current status data available. Define Zi = 0 for
female patients and 1 otherwise, i = 1, ..., 379. The maximum likelihood
approach gives β̂ = −0.2241 and its estimated standard error is 0.295 based
on the observed Fisher information approach. Based on the standard normal
distribution, this yields a p-value of 0.448 for testing β = 0 and suggests
that there is no significant difference between male and female patients in
terms of the time to IOL calcification. To give a graphical comparison, Figure
5.2 displays the separate NPMLEs of survival functions of the time to IOL
calcification for male and female patients obtained using the algorithm given in
Section 3.2. Also included in the figure are the maximum likelihood estimates
of the same survival functions derived under the PH model. Figure 5.2 confirms
the conclusion obtained above and also indicates that the PH model seems
reasonable.

For the data set considered here, it can be easily verified that the observa-
tion or examination times Ci’s seem to be independent of the gender factor.
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Fig. 5.2. Estimates of survival functions of time to IOL calcification.
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More discussion on this is given in Section 5.4.2. This suggests that one could
also use formula (5.6) for variance estimation. It gives an estimated standard
error of 0.3117, similar to that given above by the observed Fisher information
approach.

5.2.3 Asymptotics

This subsection discusses some asymptotic properties of the maximum likeli-
hood estimators derived in Section 5.2.1. Suppose that S0(t) is continuous and
the Zi’s are bounded. Then under some regularity conditions, Huang (1996)
shows that both β̂n and Ŝn(t) are consistent. In particular, if the distribution
function G(c) of the Ci’s is discrete, then one has

Ŝn(t) → S0(t)

almost surely at all the mass points of G as n → ∞. If G(c) is continuous, as
n → ∞, one has

sup
0≤t<∞

| Ŝn(t) − S0(t) | → 0

almost surely. This implies that as n → ∞,

sup
0≤t≤C0

| Λ̂n(t) − Λ0(t) | → 0

almost surely for any finite constant C0.
As discussed in Section 3.6, for case I or II interval-censored failure time

data, the convergence rate of maximum likelihood estimators can be slower
than the usual

√
n-convergence rate. This is also true for Λ̂n under the situa-

tion considered here. Specifically, suppose that the joint distribution G(c,z)
of the Ci’s and Zi’s has bounded second order partial derivative with respect
to c. Then under some regularity conditions, we have

{∫ τ1

τ0

[
Λ̂n(t) − Λ0(t)

]2
dGn(t)

}1/2

= Op(n−1/3) ,

where Gn(c) denotes the marginal empirical distribution of the Ci’s. That is,
Λ̂n has only n1/3-convergence rate, which is the same as that of the NPMLE
of a distribution function when only interval-censored data are available. As
seen below, however, β̂n still has the usual

√
n-convergence rate.

For the asymptotic distribution of β̂n, in addition to the assumptions
specified above, we also need that G(c) has bounded support IC = [τ0, τ1]
with τ0 > 0. Furthermore, S0(t) has strictly positive and continuous density
on IC . Then Huang (1996) proves that under some regularity conditions, as
n → ∞, √

n ( β̂n − β ) → N(0, Σ−1)
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in distribution. In the above, Σ is the information matrix for β and can
be estimated by σ̂2

n or Σ̂n given in (5.5) or (5.6) for finite samples if Zi

is dichotomous or Ci is independent of Zi, respectively. The result here says
that β̂n not only has the usual

√
n-convergence rate, but also is asymptotically

efficient as its asymptotic variance achieves the information lower bound.

5.3 Analysis with the Proportional Odds Model

In this section, we discuss use of the proportional odds model (1.5) for regres-
sion analysis of current status data. Define H(t) = − logit[S0(t)] as before.
Then the conditional survival function given covariates Z has the form

S(t; Z) =
1

1 + exp[H(t) + Z′β]

and the likelihood function is proportional to

L(β, H) =
n∏

i=1

{
exp[H(Ci) + Z′

iβ]
1 + exp[H(Ci) + Z′

iβ]

}δi
{

1
1 + exp[H(Ci) + Z′

iβ]

}1−δi

=
n∏

i=1

{
exp{δi [H(Ci) + Z′

iβ]}
1 + exp[H(Ci) + Z′

iβ]

}
.

This gives the log likelihood as

l(β, H) =
n∑

i=1

{δi

[
H(Ci) + Z′

iβ
] − log{1 + exp[H(Ci) + Z′

iβ]}} .

5.3.1 Sieve Maximum Likelihood Estimation

For estimation of β along with H, we consider the sieve maximum likeli-
hood estimation approach. As discussed before, the key idea behind this
approach is to approximate H(t), the infinite-dimensional nuisance param-
eter, by a sequence of finite-dimensional parameters or functions known up
to finite-dimensional parameters. Let Hθ(t) denote a function that is known
up to a k-dimensional parameter θ and can be used to approximate H(t).
The selection of Hθ(t) is discussed below. Then estimation of β and H in-
volves maximization of the approximate parametric log likelihood function
l(β,θ) = l(β, H = Hθ) over β and θ.

Let β̂ and θ̂ denote the values of β and θ that maximize l(β,θ). To
determine these estimators, one needs the first partial derivatives of the log
likelihood function. For i = 1, ..., n, define

Ei(β,θ) =
exp[Hθ(Ci) + Z′

iβ]
1 + exp[Hθ(Ci) + Z′

iβ]
.
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Then the first partial derivatives are

Uβ(β,θ) =
∂l(β,θ)

∂β
=

n∑
i=1

Zi [δi − Ei(β,θ)]

and

Uθ(β,θ) =
∂l(β,θ)

∂θ
=

n∑
i=1

H
(1)
θ

(Ci) [δi − Ei(β,θ)] ,

where H
(1)
θ

(t) = ∂Hθ(t)/∂θ, the k-dimensional vector of derivatives of

Hθ(t). Hence the approximate maximum likelihood estimators β̂ and θ̂ can
be obtained by solving the score equations

U(β,θ) =
(

Uβ(β,θ)
Uθ(β,θ)

)
= 0 .

The variance-covariance matrix of β̂ and θ̂ can be estimated by the ob-
served Fisher information matrix. For this, one needs the second partial deriva-
tives and we have

I11 = −
∂Uβ(β,θ)

∂β
=

n∑
i=1

ZiZ
′
iEi(β,θ)[1 − Ei(β,θ)] ,

I12 = −
∂Uβ(β,θ)

∂θ
=

n∑
i=1

ZiH
(1)
θ

′
(Ci)Ei(β,θ)[1 − Ei(β,θ)] ,

and

I22 = −∂Uθ(β,θ)
∂θ

=
n∑

i=1

{
H

(1)
θ

(Ci)H
(1)
θ

′
(Ci)Ei(β,θ)[1 − Ei(β,θ)]

− [δi − Ei(β,θ)]H(2)
θ

(Ci)
}

,

where H
(2)
θ

(t) = ∂H
(1)
θ

(t)/∂θ, a k × k matrix. Thus the variance-covariance

matrix of β̂ can be estimated by the submatrix of the inverse of

I =
[

I11 I12
I ′
12 I22

]

corresponding to β.
To apply the sieve estimation approach described above, one needs to

choose Hθ(t) for a given sample and many choices exist. It is apparent that
the simplest one is a piecewise constant function and another commonly used
choice is a spline function. Here we focus on the piecewise constant functions.
Specifically, suppose that the distribution function of the Ci’s has bounded
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support [0, τ ] and that 0 = t0 < t1 < ... < tk = τ is a partition of the
interval [0, τ ]. Then a step function over [0, τ ] can be expressed as

Hθ(t) =
k∑

j=1

θj Ij(t) , (5.7)

where θ = (θ1, ..., θk)′ and Ij(t) = I(tj−1 < t ≤ tk), the indicator function
for the jth interval (tj−1, tj ]. Given the tj ’s, Hθ is completely determined by
parameter θ. Using the function given in (5.7), we have

H
(1)
θ

(t) =

⎛
⎜⎜⎜⎜⎝

I1(t)
.
.
.

Ik(t)

⎞
⎟⎟⎟⎟⎠

and H
(2)
θ

(t) = 0.
In practice, the number of partition intervals or steps of Hθ, k, needs to

increase with the sample size n because otherwise β̂ and θ̂ will not be con-
sistent. Rossini and Tsiatis (1996) investigated the sieve estimation approach
under model (5.7) and the asymptotic properties of the estimators. They show
that under some regularity conditions, β̂ and H

θ̂
are consistent estimators of

β and H if k(n) → ∞ and k(n)/n → 0 as n → ∞. Furthermore, if k

increases at a rate k(n) = O(nα) with 1/4 < α < 1, then
√

n (β̂ − β)
converges in distribution to a normal random variable with mean zero and
the variance-covariance achieving the information lower bound. That is, β̂ is
asymptotically efficient.

It is easy to see that for larger k, more computational effort is needed, but
a better approximation is obtained. Based on the results given above, one can
choose k to be the smallest integer above n1/4, but for small n, one may want
to choose larger k since the results may not be stable otherwise. The largest
integer for k is apparently the number of all different observation times Ci. In
this case, the sieve maximum likelihood estimation procedure is equivalent to
the usual maximum likelihood estimation procedure. For given k, one simple
way to choose the tj ’s is to use the equally spaced partition. Another way is
to choose intervals such that they contain approximately equal numbers of
observation times. More comments on k and the tj ’s are given in the next
subsection through examples.

5.3.2 Illustrations

For comparison, we apply the sieve maximum likelihood approach discussed
above to the two examples discussed in Section 5.2.2. First consider the lung
tumor data and let the Ti’s and Zi’s be defined as in Section 5.2.2. To apply
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the sieve maximum likelihood approach, we use the step function given in (5.7)
to approximate H(t) and divide the range of animal death times, (0, 1000),
equally for the selection of the tj ’s. For the number of partition points, several
values of k are used starting with k = 4, the smallest integer larger than
1441/4. Table 5.2 gives estimated regression parameters and their estimated
standard errors. It can be seen from the table that both point and variance
estimation of the regression parameter is quite stable and the resulting p-
values for testing β = 0 are around 0.001. This indicates that the animals
in the germ-free environment had significantly higher rate of occurrence of
lung tumor than those in the conventional environment, and the conclusion is
similar to that obtained using the PH model. The smaller p-value here suggests
that the difference between the tumor occurrence rates of the animals in the
two environments is more significant in terms of the logit difference of the
survival functions than the log-log difference of the survival functions or the
log difference of the cumulative hazard functions.

To investigate the effect of the partition or selection of the tj ’s on the
analysis, we repeated the analysis above by choosing intervals such that they
contain roughly equal numbers of observations. For k = 4 (each interval
contains 36 observations), for example, the approach results in β̂ = 1.4907
with estimated standard error equal to 0.4637. The results are similar to those
given in Table 5.2.

For the application of the sieve maximum likelihood approach to the cal-
cification data, we use the step function given in (5.7) for approximation as
with the lung tumor data and partition the range of observation times, (0, 37),
evenly into k intervals. Using the same Ti’s and Zi’s as defined in Section 5.2.2,
we obtain estimates of the regression parameter and their estimated standard
errors for different k. The results are given in Table 5.3 and in this example,
we start with k = 5, the smallest integer greater than 3791/4. As with the
lung tumor data, the results are quite stable. The resulting p-values for com-
paring the calcification occurrence rates between the male and female patients
are around 0.4 and are consistent with that obtained under the PH model.

Because there exist many tied observation times in the calcification data,
it is impossible to put all the observation times into adjacent groups with
equal numbers in each group. For k = 5, choosing intervals containing ap-
proximately equal numbers of observations times, we divide (0, 37] into five
intervals, containing 78, 90, 62, 90 and 58 observations, respectively. With

Table 5.2. Estimates of regression parameter for lung tumor data

No. of partitions (k) β̂ SD of β̂ No. of partitions (k) β̂ SD of β̂

4 1.5620 0.4516 5 1.5299 0.4637
6 1.5575 0.4707 7 1.6866 0.4685
8 1.5733 0.4819 10 1.5597 0.4684
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Table 5.3. Estimates of regression parameter for calcification data

No. of partitions (k) β̂ SD of β̂ No. of partitions (k) β̂ SD of β̂

5 -0.2360 0.3375 6 -0.2748 0.3357
7 -0.2573 0.3370 8 -0.2620 0.3388
9 -0.2386 0.3397 12 -0.2698 0.3373

the use of the same sieve function as above, the sieve maximum likelihood
approach gives β̂ = −0.2782 with an estimated standard deviation of 0.3353,
similar to the results presented in Table 5.3.

5.3.3 Discussion

Note that the baseline log-odds function H(t) is nondecreasing and continuous
assuming that S0(t) is continuous, whereas the piecewise constant function
(5.7) is apparently not. If the focus is on regression parameters, this should
not affect the inference. On the other hand, if one is interested in estimation
of H(t) or S0(t), one may want to put order restriction on the θj ’s in (5.7).
Alternatively, instead of (5.7), one may want to use

Hθ(t) =
k∑

j=1

[
θj − θj−1

tj − tj−1
t − θjtj−1 − θj−1tj

tj − tj−1

]
Ij(t) (5.8)

for given t0 < t1 < ... < tk, where θ = (θ0, θ1, ..., θk)′ with θ0 ≤ θ1 ... ≤ θk.
It is apparent that this is a continuous nondecreasing function. Huang and
Rossini (1997) studied the sieve maximum likelihood estimation approach
using the function given in (5.8) for general interval-censored data. They show
that the resulting estimators have similar asymptotic properties to those of
the estimators discussed in Section 5.3.1. Of course, one can also use some
spline functions, which are commonly used to approximate unknown smooth
or continuous functions (Shen, 1998).

Instead of the sieve maximum likelihood estimation approach, one can nat-
urally use the maximum likelihood estimation approach that directly maxi-
mizes l(β, H) for estimation of β and H (Dinse and Lagakos, 1983; Huang,
1995). One advantage of the former approach is that the resulting estimators
may have a faster convergence rate than the maximum likelihood estima-
tors under certain smoothness assumptions (Huang and Rossini, 1997). Also
the sieve maximum likelihood estimators may be easier to compute than the
maximum likelihood estimators because fewer parameters are involved for the
former. The main disadvantage of the sieve estimation approach is that one
has to choose the partition and finite-dimensional functions, or more generally
the finite-dimensional parameter or function space. For a given finite sample,
different partition and function space may result in different analysis results.
Also for each selected function space, one needs to investigate properties of
the resulting estimates of parameters because no general theory exists.
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5.4 Analysis with the Additive Hazards Model

As mentioned before, the additive hazards model (1.7) is another commonly
used regression model in survival analysis in addition to the PH model and the
proportional odds model. For fitting model (1.7) to current status data, we fo-
cus on inference about regression parameters and consider a simple estimating
equation approach first considered by Lin, Oakes, and Ying (1998).

5.4.1 Estimation of Regression Parameters

To make inference about regression parameter β in model (1.7), we assume
that given Zi, the conditional hazard function of Ci is given by

λc
i (t; Zi) = λc(t) exp(Z ′

iγ) . (5.9)

In this model, λc(t) is an unknown baseline hazard function like λ0(t) in model
(1.7) and γ is the regression parameters representing the effect of covariates
on Ci. That is, Ci follows the PH model.

Define the counting process Ni(t) = I{Ci ≤ min(Ti, t)}. Then Ni jumps
by one at time t if and only if Ci = t and Ti ≥ t. A subject with Ni can
be regarded as censored if Ci = t and it is found that Ti < t, meaning that
the subject is at risk at t if and only if Ci ≥ t. It follows that the intensity
function dNi(t) has the form

dΛ∗
i (t; Zi) = Yi(t) exp(−tZ ′

iβ + Z ′
iγ) dΛ∗

0(t) , (5.10)

where Yi(t) = I(Ci ≥ t), Λ∗
0(t) = e−Λ0(t) dΛc(t) with Λ0(t) =

∫ t

0 λ0(s)ds

and Λc(t) =
∫ t

0 λc(s)ds. This suggests that the process

Mi(t) = Ni(t) −
∫ t

0
Yi(s) exp(Z′

iγ − tZ ′
iβ) dΛ∗

0(s) (5.11)

is a martingale, i = 1, ..., n, and that one can apply the partial likelihood
approach to model (5.10) for inference about β.

Define

S
(j)
β

(t; β,γ) =
n∑

i=1

Yi(t) (tZi)(j) exp(Z′
iγ − tZ ′

iβ) ,

where (tZi)(0) = 1 and (tZi)(1) = tZi, j = 0, 1. The application of the
partial likelihood approach yields the partial score function

Uβ(β; γ) =
n∑

i=1

∫ ∞

0

⎡
⎣ tZi −

S
(1)
β

(t; β,γ)

S
(0)
β

(t; β,γ)

⎤
⎦ dNi(t)
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for estimation of β given γ. For estimation of γ, one can obtain a partial score
function similar to Uβ(β; γ) under model (5.10). However, a more efficient
approach is to apply the partial likelihood approach to model (5.9) because
the Ci’s are always available. This gives the partial score function

Uγ(γ) =
n∑

i=1

∫ ∞

0

⎡
⎣Zi − S

(1)
γ (t; γ)

S
(0)
β

(t; γ)

⎤
⎦ dI(Ci ≤ t) ,

where

S
(j)
γ (γ) =

n∑
i=1

Yi(t) Z
(j)
i eZ

′
iγ

with Z
(0)
i = 1 and Z

(1)
i = Zi, j = 0, 1.

Let γ̂ denote the partial likelihood estimator of γ given by the solution
to Uγ(γ) = 0. Then one can estimate β by β̂ defined as the solution to
Uβ(β; γ̂) = 0. Both γ̂ and β̂ can be easily obtained by the Newton-Raphson

algorithm. It can be shown that under some regularity conditions, β̂ is con-
sistent as well as γ̂ (Kalbfleisch and Prentice, 2002; Lin, Oakes, and Ying,
1998). Also for large n, the distributions of

√
n (β̂ − β) and

√
n (γ̂ − γ) can

be approximated by the multivariate normal distribution with mean zero and
variance-covariance matrices

I−1
β

(β̂; γ̂) − I−1
β

(β̂; γ̂) Iβ,γ(β̂; γ̂) I−1
γ (γ̂) I ′

β,γ(β̂; γ̂) I−1
β

(β̂; γ̂)

and I−1
γ (γ̂), respectively, where

Iβ(β; γ) =
1
n

∂Uβ(β; γ)

∂β
, Iβ,γ(β; γ) = − 1

n

∂Uβ(β; γ)

∂γ
,

and

Iγ(γ) = − 1
n

∂Uγ(γ)
∂γ

.

It is seen that the approach here essentially transforms the analysis prob-
lem to regression analysis of right-censored failure time data using the PH
model, which can be quite easily performed. In consequence, one can apply
existing software for the PH model to determine the estimators β̂ and γ̂.

Note that unlike the approaches discussed in Sections 5.2 and 5.3, the
estimation procedure described above requires that the Ci’s follow the PH
model. This may be restrictive and could result in biased estimates of regres-
sion parameters if the model is incorrect. On the other hand, we note that
model (5.9) can be easily verified because complete data are always available
for the Ci’s. For the case where Zi takes values 0 and 1, for example, a simple
approach for assessing the model (5.9) is to obtain and compare separate es-
timates of the survival functions for subjects with Zi = 0 and 1, respectively,
and the estimates given under the model (5.9).
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5.4.2 Illustrations

Again, we consider the data sets analyzed in Section 5.2.2 as well as in Section
5.3.2 with the Ti’s and Zi’s defined in the same way. For the lung tumor data,
as discussed in Section 4.5.1, the model (5.9) seems reasonable for description
of the animal death time, Ci, and the result there gave γ̂ = −1.9627 with
estimated standard error equal to 0.243. This indicates that the animals in
the germ-free environment had much significantly longer survival times than
those in the conventional environment. The application of the inference proce-
dure described in the previous subsection gives β̂ = 0.0007 and an estimated
standard deviation 0.0004. This corresponds with a p-value of 0.085 for com-
paring the lung tumor rates between the animals in the two environments,
which is less significant than the results given in in the previous sections. It
should be noted that one cannot directly compare β̂ obtained here to those
given before because they represent different quantities. For example, β̂ here
gives the estimated difference between the two hazard functions for animals
in the two environments. In contrast, the estimate given in Section 5.2.2 rep-
resents the estimated log of the ratio of the two hazard functions, while β̂
in Section 5.3.2 estimates the logit difference between the two corresponding
survival functions.

Now we consider the application of the inference procedure given in the
previous subsection to the calcification data. Assume that the Ti’s follow the
additive hazards model (1.7). Using the inference procedure of Section 5.4.1,
we obtain β̂ = −0.0015 with estimated standard error equal to 0.005. This in-
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Fig. 5.3. Estimates of survival functions of observation times for male and female
patients.
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dicates that there is no significant difference between the hazards of developing
IOL calcification for the male and female patients, and the result is consis-
tent with those obtained using the PH and the proportional odds models. To
check the appropriateness of model (5.9), as with Figure 4.1 for the lung tumor
data, Figure 5.3 presents the estimates of the survival functions of examina-
tion times for male and female patients obtained under model (5.9) along
with their corresponding Kaplan-Meier estimators. It suggests that model
(5.9) seems reasonable and actually, the distribution of examination times
seems to be independent of the gender. This is confirmed by γ̂ = 0.0372 with
estimated standard error of 0.106.

5.4.3 Discussion

Compared with the approaches discussed in Sections 5.2 and 5.3, the estimat-
ing equation approach considered in this section has the advantage that it
does not involve estimation of the baseline cumulative hazard function Λ0(t).
This makes estimation of regression parameters much easier. Also, implemen-
tation of the approach here is much simpler because one can make use of some
existing software for the PH model with right-censored failure time data. An-
other advantage is that the derivation of asymptotic properties of resulting
estimates of regression parameters is much easier again because one essentially
deals with the PH model with right-censored data rather than current status
data.

In general, an estimating equation approach can have the disadvantage
that it may not be as efficient as the maximum likelihood or sieve maximum
likelihood approach. This is true for the method described in Section 5.4.1
because the distribution of the censoring time for Ni(t) involves regression
parameter β (Lin, Oakes, and Ying, 1998; Martinussen and Scheike, 2002b).
That is, the censoring times, which are usually assumed to be independent of
survival times given covariates in the application of the partial likelihood ap-
proach, are informative. In other words, the method discussed here represents
a trade-off between simplicity and efficiency and the amount of efficiency loss
depends on specific situations.

As an alternative to the estimating equation approach for estimation of
β, one can apply the maximum likelihood approach or the sieve maximum
likelihood approach as in Section 5.2 or 5.3. For example, Ghosh (2001) inves-
tigated the maximum likelihood approach for fitting model (1.7) to current
status data. Another alternative is to directly derive and use the efficient score
function for β, which has the form

UE(β; Λ0) =
n∑

i=1

∫ ∞

0

[
tZi − S

(1)
E (t; β, Λ0)

S
(0)
E (t; β, Λ0)

]

×
{

exp[−Λ0(t) − tZ ′
iβ]

1 − exp[−Λ0(t) − tZ ′
iβ]

dN∗
i (t) − dNi(t)

}
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(Martinussen and Scheike, 2002b). In the expression above, N∗
i (t) = I(Ci ≤

t) − Ni(t) and

S
(j)
E (t; β, Λ0) =

n∑
i=1

Yi(t) αc
i (t; Zi)

exp[−Λ0(t) − tZ ′
iβ]

1 − exp[−Λ0(t) − tZ ′
iβ]

(tZi)(j) ,

where αc
i (t; Zi) denotes the hazard function of Ci given Zi, which does not

have to satisfy model (5.9). To apply this approach, one needs first to esti-
mate both Λ0(t) and αc

i (t; Zi) and then can estimate β by the solution to
UE(β; Λ0) = 0 with both Λ0(t) and αc

i (t; Zi) replaced by their estimates.
Martinussen and Scheike (2002b) show that such defined estimator is consis-
tent and asymptotically has a multivariate normal distribution with covari-
ance matrix reaching the information lower bound.

It is straightforward to generalize both the estimating equation approach
and the efficient score function approach to situations where covariates are
time-dependent (Lin, Oakes, and Ying, 1998; Lin and Ying, 1997; Martinussen
and Scheike, 2002b).

5.5 Analysis with the Grouped Proportional Hazards
Models

This section deals with situations where the survival time of interest takes
only finite discrete values 0 < s1 < ... < sm+1 with the survival probability
at sm+1 equal to zero. This can arise if the time axis is divided into m+1 time
intervals, and the survival event can only be observed to occur within certain
interval or intervals. It can also arise if study subjects can only be observed
at the sj ’s due to, for example, study design. As in Section 5.2.1, for each j
(1 ≤ j ≤ m), let Dj denote the set of indices of subjects for whom Ci = sj

and δi = 1 and Rj the set of indices of subjects for whom Ci = sj . Then the
likelihood function is proportional to

L(β, S0) =
m∏

j=1

∏
i∈Dj

[1 − S(sj ; Zi)]
∏

i∈Rj−Dj

S(sj ; Zi)

with respect to regression parameter β and the baseline survival function
S0(t). In the following, we assume that S(sj ; Zi) is given by the grouped
PH model (1.10) or (1.11). This gives the log likelihood function l(β,α) =
log L(β, S0) as

l(β,α) =
m∑

j=1

⎧⎨
⎩
∑
i∈Dj

log

[
1 −∏j

k=1 e− exp(αk+Z ′
iβ)∏j

k=1 e− exp(αk+Z ′
iβ)

]
−
∑
i∈Rj

j∑
k=1

eαk+Z ′
iβ

⎫⎬
⎭

in terms of β and α = (α1, ..., αm)′ defined in model (1.11).
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5.5.1 Maximum Likelihood Estimation of Parameters

Define aj =
∑j

k=1 exp(αk), j = 1, ..., m. The log likelihood function above
can then be rewritten as

l(β,α) =
m∑

j=1

⎧⎨
⎩
∑
i∈Dj

log

[
1 − e−aj exp(Z ′

iβ)

e−aj exp(Z ′
iβ)

]
− aj

∑
i∈Rj

eZ
′
iβ

⎫⎬
⎭ ,

which is the same as the log likelihood function given in (5.4).
For the maximum likelihood estimation of β and α, as in Section 5.2.1, one

can apply the Newton-Raphson algorithm using the first and second deriva-
tives of l(β,α) given there. Although the estimation procedure is the same
for the situations discussed here and in Section 5.2, it is apparent that the
problems considered are different. In particular, the derivation of asymptotic
properties of the maximum likelihood estimators obtained here is straightfor-
ward and follows the standard likelihood theory for parametric models.

Let β̂ and α̂ denote the maximum likelihood estimators of β and α given
by the solution to

∂l(β,α)
∂β

= 0 and
∂l(β,α)

∂αj
= 0 .

As discussed above, they can be obtained by the Newton-Raphson algorithm.
Their variance-covariance matrix can be estimated by the inverse of the ob-
served Fisher information matrix

I(β,α) =
(

I11 I12
I21 I22

)

with β = β̂ and α = α̂, where

I11 = −∂2l(β,α)
∂β∂β′ , I12 = I ′

21 = −
(

∂2l(β,α)
∂αj∂β

)
, I22 = −

(
∂2l(β,α)
∂αj∂αk

)
.

In many situations, tests about β are of particular interest, and for this
purpose, the score test procedure can be applied. For example, consider the
two-sample survival comparison where covariate Zi is defined as a dichoto-
mous variable taking values 0 and 1. In this case, the survival comparison is
equivalent to testing β = 0 and the score function for β has the form

Uβ(β,α) =
∂l(β,α)

∂β
=

m∑
j=1

aj eβ

(
dj1

1 − e−aj exp(β) − nj1

)
,

where dj1 =
∑

i∈Dj
Zi and nj1 =

∑
i∈Rj

Zi. For large n, the distribution
of this score statistic can be approximated by the normal distribution with
mean zero and variance
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σ2(β,α) = I11 − I12 I−1
22 I21 .

Thus the test of β = 0 can be based on the statistic

U2
β(0, α̂0)

σ2(0, α̂0)
,

which is approximately χ2
(1), where α̂0 denotes the maximum likelihood esti-

mator of α at β = 0.

5.5.2 Two Examples

To illustrate the inference procedure described above and compare it with
the other procedures, we consider the grouped lung tumor data obtained by
dividing the observation time period in the lung tumor data discussed in the
previous sections into 10 equally spaced intervals. That is, it is assumed that
each animal was only observed to die in one of the intervals (0, 100], (100, 200],
... , (900, 1000] with or without lung tumor. Then we have m = 10 and sj

can be taken to be any number within the interval (100(j − 1), 100j] with s11
being any number larger than 1000, j = 1, ..., 10. As in the previous sections,
define Zi = 0 for the animals in the conventional environment and 1 for the
animals in the germ-free environment.

The application of the inference procedure gives β̂ = 0.8424 with esti-
mated standard deviation equal to 0.2801. This suggests that the mice in the
germ-free environment developed lung tumor much earlier than those in the
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Fig. 5.4. Estimates of survival functions of tumor onset time.
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conventional environment. To test this, the application of the score test for
β = 0 discussed in the previous subsection yields Uβ(0, α̂0) = 6.1858 and
σ2(0, α̂0) = 8.5479. This corresponds with a p-value of 0.034, and as before,
suggests that the tumor occurrence rates of the two groups significantly differ.
For estimation of the survival function, we take sj = 100j and define Ŝ(t; Zi)
as a step function with Ŝ(sj ; Zi) =

∏j
k=1 exp(−eα̂k+Ziβ̂). Figure 5.4 displays

the estimated survival functions for animals in the two groups and they are
similar to those given in Figure 5.1.

For the analysis above, one may be interested in how the number of in-
tervals may affect the analysis. To study this, we repeated the analysis by
partitioning (0, 1000) into six intervals with the same length. That is, we have
m = 6. In this case, the inference procedure produces β̂ = 0.7795 with
estimated standard deviation being 0.3156, similar to those obtained above.

As another illustration, consider the data presented in Table 5.4 from a
tumorigenicity experiment conducted in the Eppley Colony of University of
Nebraska Medical Center. The data are reproduced from Ii et al. (1987) and
Sun and Kalbfleisch (1993). For 100 male and 99 female rats and 15 intervals
each of length 10 weeks, the numbers of animals that die within each of these
intervals with or without tumors are recorded. Because, as seen from the table,
there are no deaths within the first 3 intervals, it is natural to assume that
there exist 12 time points, the end points of the other 12 intervals, at which
the animals can die. That is, m = 12. The objective here is to compare the
tumor occurrence rates between male and female rats.

Let Ti denote the tumor occurrence time and suppose that it can be de-
scribed by the grouped PH model (1.10) with Zi = 0 for male rats and 1 for
female rats. Use of the maximum likelihood approach described in the pre-
vious subsection results in β̂ = 0.7006 with estimated standard error equal
to 0.1969. The result indicates that the female rats seem to develop tumors
significantly earlier than the male rats. For comparison, one can also use the
score test given in the previous subsection. It produces Uβ(0, α̂0) = 14.3768

Table 5.4. Observed numbers of rats that died with or without tumors within each
of 15 10-week intervals

Males Females Males Females
Weeks Tumor No Tumor No Weeks Tumor No Tumor No

1-10 11-20
21-30 31-40 3
41-50 11 1 9 51-60 1 2
61-70 1 17 2 12 71-80 2
81-90 1 3 2 91-100 4 5 5 1

101-110 10 5 7 5 111-120 8 8 18
121-130 7 10 1 131-140 6 1 14 2
141-150 5 3 6 1
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Fig. 5.5. Estimates of survival functions of tumor occurrence times.

and σ2(0, α̂0) = 27.1724, giving a p-value of 0.006 and a similar conclusion.
As in the previous example, we also calculated the estimated survival func-
tions corresponding to the two groups and they are given in Figure 5.5. It is
interesting to note from the figure that the tumor occurrence rates for male
and female rats were similar during the earlier study weeks and the difference
mainly occurred in later weeks.

5.5.3 Discussion

The inference approach discussed in this section is appropriate if the underly-
ing survival time of interest is discrete or can be observed only at finite time
points, which is often the case for periodic follow-up studies. The approach
also applies to situations where the underlying survival time is continuous, but
only finite discrete failure times are observable due to, for example, grouping.
As most approaches developed for discrete models, the method given above
is straightforward and simpler than those discussed in Sections 5.2 to 5.4 in
theory because only finite-dimensional parameters are involved. On the other
hand, it can be complicated in computation for large m and p, the dimension
of regression parameters, because one has to deal with I(β,α), which is a
(p + m) × (p + m) matrix.

As an alternative to the grouped PH model, one can apply the logistic
model (1.12) to regression analysis of discrete current status data. In this
case, the log likelihood function has the form
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l(β,γ) =
m∑

j=1

⎧⎨
⎩
∑
i∈Dj

log

[
1 −∏j

k=1(1 + γkeZ
′
iβ)−1∏j

k=1(1 + γkeZ
′
iβ)−1

]

−
∑
i∈Rj

j∑
k=1

log(1 + γkeZ
′
iβ)

⎫⎬
⎭

in terms of β and γ = (γ1, ..., γm)′ defined in model (1.12). Estimation of β
and γ can be carried out similarly as in Section 5.5.1 for the parameters in
the grouped PH model.

5.6 Bibliography, Discussion, and Remarks

As remarked before, there exists extensive literature about current status
data in the context of demographical studies (Diamond and McDonald, 1991;
Diamond et al., 1986) and tumorigenicity experiments (Dinse and Lagakos,
1983; Dewanji and Kalbfleisch, 1986). In contrast, the literature about current
status data arising from survival studies is limited, especially about regression
analysis of current status data under the commonly used semiparametric,
survival models. As discussed before, the articles that gave rigorous studies for
the use of the PH model include Huang (1996) and Huang and Wellner (1997).
In particular, they provided important and fundamental ground work for the
asymptotic study of other similar inference procedures. Huang (1995) and
Rossini and Tsiatis (1996) investigated the use of the proportional odds model,
and the authors who discussed the additive hazards model for current status
data include Ghosh (2001), Lin, Oakes, and Ying (1998), and Martinussen
and Scheike (2002b).

Several other semiparametric models have also been considered for regres-
sion analysis of current status data in the literature. One is the accelerated
failure time model (1.8), which provides a different way to describe the rela-
tionship between the survival time of interest and covariates. To fit this model
to current status data, Shen (2000) developed a random sieve likelihood-based
approach. Xue et al. (2004) investigated a partial linear model that is similar
to model (1.8) and given by

log T = Z ′β + g(S) + W .

In this model, g is assumed to be an unknown smooth function, S represents
some covariates that may have nonlinear effect on T , and W has a distribu-
tion known up to a scale parameter. For inference, they proposed to use the
sieve maximum likelihood approach and in fact their method applies to more
general response variable than just the log of survival time.

Also for the analysis of current status data, Sun and Sun (2005) studied
the linear transformation model (1.9) and developed some estimating equa-
tion approaches for estimation of regression parameters. Shiboski (1998) pro-
posed some generalized additive models and applied the maximum likelihood
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approach with the use of step function approximation for inference. Other
models that have been investigated for regression analysis of current status
data include the binary choice model (Huang and Wellner, 1996; Klein and
Spady, 1993), generalized linear models (Jewell and Shiboski, 1990), and spline
models (Grummer-Strawn, 1993).

There exist several other types of current status data that are not dis-
cussed here (Jewell and van der Laan, 1996) and for their analyses, inference
approaches that take into account the special feature of each type of the data
are needed. These include the current status data with time-dependent co-
variates (van der Laan and Robins, 1998), doubly censored current status
data (Jewell and van der Laan, 1997, 2004a; Rabinowitz and Jewell, 1996;
van der Laan and Andrews, 2000; van der Laan et al., 1997; van der Laan and
Jewell, 2001), and case-cohort current status data (Jewell and van der Laan,
2004b; Shiboski and Jewell, 1992). The doubly censored current status data
mean that the survival time of interest is defined as the elapsed time between
two related events. In terms of the observed information, they imply that
the initial event time is not observed, but with a known distribution and for
the subsequent event, only current status data are available. A similar form
of such data, doubly censored data, is considered in Chapter 8. Case-cohort
current status data, by its name, refer to current status data arising from
case-cohort studies. Also in practice, one may face current status data that
arise from competing risk studies (Jewell et al., 2003), are generated from a
cure survival model (Lam and Xue, 2005), or involve truncation in addition
to censoring (Kim, 2003a).

In this chapter, three types of inference approaches are discussed for fitting
current status data to various semiparametric regression models. In theory, the
maximum likelihood approach applies to any model and is the most efficient
method. As noted before, however, it may be a complicated approach both in
terms of investigation of its properties and its implementation. Consequently,
one may prefer the sieve maximum likelihood approach, the estimating equa-
tion approach, or other less efficient, but simpler approaches.

As in any regression analysis, a natural question for regression analysis of
current status data is how to choose a better or an appropriate model among
possible models or to assess the goodness-of-fit for a particular model. For this,
of course, one and the first criterion is to use the prior knowledge, assuming
that it exists, about the possible relationship between the survival variable of
interest and covariates or how the covariates may affect the survival variable.
In the case of right-censored failure time data, many statistical procedures and
diagnosis tools have been proposed (Klein and Moeschberger, 2003; Lawless,
2003), but there exist few methods specifically developed for current status
data. An exception is given by Ghosh (2003), who discussed the goodness-
of-fit of the additive hazards model (5.9) and developed some numerical and
graphical methods based on the inference approach described in Section 5.4.
Babineau (2005) also provided some discussion about the goodness-of-fit for
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the fitting of parametric models to current status data. More discussion on
this is given in Section 10.2.



 

 

 

 

 



6

Regression Analysis of Case II
Interval-censored Data

6.1 Introduction

This chapter discusses regression analysis of general or case II interval-
censored failure time data. Compared with current status data, it is apparent
that case II interval-censored data provide more information about the un-
derlying survival time of interest. Thus intuitively, regression analysis of case
II interval-censored data may seem to be simpler than that of current status
data. On the other hand, for case II interval-censored data, one has to deal
with two or more variables representing observation times rather than only
one variable as in the case of current status data. As seen in Chapter 3 and the
following, regression analysis of case II interval-censored data is more compli-
cated and difficult than that of current status data in both computation and
theory.

For general interval-censored data, as discussed before, three formulations
or representations, (1.1), (1.2), and (1.3), can be used. The representation
(1.1) is used more often in practice, and the representations (1.2) and (1.3),
especially (1.2), are more convenient for formulating inference problems and
investigating asymptotic properties of inference procedures. For a given set
of interval-censored data, the three representations are equivalent from the
likelihood point of view and one can easily transform the data given in (1.2)
or (1.3) to (1.1). But the reverse transformation may not be obvious. For
example, for a left- or right-censored observation given by (1.1), in terms of
representation (1.2), only U or V is known by definition. From the likelihood
point of view, however, one can take V (for left-censored observations) or U
(for right-censored observations) to be any value in these situations because
the corresponding term makes no contribution to the likelihood. This chapter
discusses all three representations with Sections 6.2 and 6.5 mainly focusing
on (1.1) and Sections 6.3 and 6.4 dealing with data described by (1.3).

For the analysis of case II interval-censored data, as in Chapter 5, we first
discuss the use of the PH model (1.4) along with the maximum likelihood ap-
proach for inference in Section 6.2. Although the resulting inference procedure
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is similar to that described in Section 5.2, implementation and computation
for case II interval-censored data are more complicated than for current sta-
tus data. Also derivation of asymptotic properties is much harder. Section
6.3 considers regression analysis of case II interval-censored data using the
proportional odds model and an approximate maximum likelihood approach
is described for inference. The topic of Section 6.4 is use of the accelerated
failure time model for analysis and for this model, an estimating equation ap-
proach is provided for inference about regression parameters. In Section 6.5,
regression analysis of discrete case II interval-censored data is studied with
use of the logistic model (1.12) and the maximum likelihood approach. Section
6.6 provides bibliographic notes about regression analysis of general interval-
censored data along with some general remarks about approaches, problems,
and issues in the analysis that are not treated in the preceding sections.

6.2 Analysis with the Proportional Hazards Model

Consider a survival study that consists of n independent subjects and gives
rise to interval-censored data

{ (Li, Ri],Zi ; i = 1, ..., n } (6.1)

for the survival times of interest. Here as before, (Li, Ri] denotes the interval
within which the survival event for the ith subject is observed to occur, and Zi

represents the p-dimensional vector of covariates from subject i, i = 1, ..., n.
Also as before, let S(t; Z) denote the survival function for a subject with
covariates Z. Then the likelihood function is proportional to

L =
n∏

i=1

[ S(Li,Zi) − S(Ri,Zi) ]

assuming that Li < Ri for all i = 1, ..., n.
In this section, we assume that S(t; Z) is specified by the PH model (1.4).

The log of the likelihood function given above then has the form

l(β, S0) =
n∑

i=1

log
{

[S0(Li)]exp(Z ′
iβ) − [S0(Ri)]exp(Z ′

iβ)
}

in terms of the regression parameter β and the baseline survival function S0(t).
For inference about β and S0, we consider the maximum likelihood approach,
first studied in Finkelstein (1986), and discuss some related asymptotic prop-
erties and survival comparison in the next two subsections. Two illustrative
examples about the approach are then provided and followed by discussion of
some other approaches for the inference.
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6.2.1 Maximum Likelihood Estimation

This section discusses maximum likelihood estimation of β and S0. As with the
one-sample situation discussed in Sections 3.2 to 3.4, the likelihood depends
on S0 only through its values at the different observation time points. Thus
one only needs to focus on estimating the values of S0 at these time points. Let
s0 = 0 < s1 < ... < sm+1 = ∞ denote the ordered distinct time points
of all observed interval end points {Li, Ri; i = 1, ..., n} and αij = I(sj ∈
(Li, Ri]), j = 1, ..., m, i = 1, ..., n. As in Section 5.2.1, suppose that S0(sj)
can be written as

S0(sj) =
j∏

k=1

e− exp(αk) = e−
∑j

k=1
exp(αk) ,

j = 1, ..., m. Then in terms of the parameters β and α = (α1, ..., αm)′, the
log likelihood function l(β, S0) can be rewritten as

l(β,α) =
n∑

i=1

log

⎧⎨
⎩

m+1∑
j=1

αij

[
e− aj−1 exp(Z ′

iβ) − e− aj exp(Z ′
iβ)
]⎫⎬
⎭ ,

where aj =
∑j

k=0 exp(αk), α0 = − ∞ and αm+1 = ∞.
To maximize the log likelihood function above, we can treat it as a log

likelihood function arising from a parametric model and use the Newton-
Raphson algorithm as before. To this end, one needs the score functions of β
and α and the observed Fisher information matrix. The score functions are

Uβ(β,α) =
∂l(β,α)

∂β
=

n∑
i=1

Zi g−1
i

m+1∑
j=1

αij (fi j−1 − fij)

and

Uαj (β,α) =
∂l(β,α)

∂αj
=

n∑
i=1

g−1
i bij cij ,

where fij = S(sj ; Zi) log S(sj ; Zi), fi 0 = fi m+1 = 0, bij = exp(αj +Z ′
iβ),

cij =
∑m+1

l=j (αil − αi l+1) Sil(sl; Zi), αi m+2 = 0, and

gi =
m+1∑
j=1

αij [ S(sj−1; Zi) − S(sj ; Zi)] ,

j = 1, ..., m, i = 1, ..., n. Then the maximum likelihood estimators of β and
α can be determined by solving the score equations

Uβ(β,α) = 0 , Uαj (β,α) = 0 , j = 1, ..., m .

Let
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I(β,α) =
(

I11 I12
I21 I22

)
denote the observed Fisher information matrix, where

I11 = −∂2l(β,α)
∂β∂β′ , I12 = I ′

21 = −
(

∂2l(β,α)
∂αj∂β

)
, I22 = −

(
∂2l(β,α)
∂αj∂αk

)
.

Then we have

I11 =
n∑

i=1

ZiZ
′
i

⎧⎨
⎩
[∑m+1

j=1 αij(fi j−1 − fij)
gi

]2

−
∑m+1

j=1 αij(hi j−1 − hij)
gi

⎫⎬
⎭ ,

∂2l(β,α)
∂αj∂β

=
n∑

i=1

Zibij

[
cij +

∑m+1
l=j (αi l − αi l+1)S(sl; Zi) log S(sl; Zi)

gi

−cij

g2
i

m+1∑
l=1

αil(fi l−1 − fil)

]
,

∂2l(β,α)
∂α2

j

=
n∑

i=1

bij cij

[
1 − bij

gi
− bij cij

g2
i

]
,

and
∂2l(β,α)
∂αj∂αk

= −
n∑

i=1

(
bij bik cij cik

g2
i

+
bij bik cik

gi

)
for j < k ,

where
hij = fij log S(sj ; Zi) + fij ,

and hi0 = hi m+1 = 0.
For implementation of the Newton-Raphson algorithm, the remarks given

in Section 5.2.1 apply. In particular, using the form of the inverse of a sym-
metric 2 × 2 partition matrix, we have

I−1(β,α) =
(

I−1
11|2 I12|2

I21|1 I22|1

)
,

where I11|2 = I11 − I12I
−1
22 I21, I12|2 = I ′

21|1 = −I−1
11|2I12I

−1
22 and I22|1 =

I−1
22 + I−1

22 I21I
−1
11|2I12I

−1
22 .

6.2.2 Asymptotic Properties and Survival Comparisons

Let β̂n and α̂n = (α̂1, ..., α̂m)′ denote the maximum likelihood estimators of
β and α defined in the previous subsection for given n. As in Section 5.2.1,
define Ŝn(t), the estimator of the baseline survival function S0(t), to be the
right-continuous step function with jumps only at the sj ’s and
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Ŝn(sj) =
j∏

k=1

e− exp(α̂k) ,

j = 1, ..., m. Also define Λ̂n(t) = − log Ŝn(t), an estimator of the baseline
cumulative hazard function Λ0(t). Assume that S0(t) is continuous and the
Zi’s are bounded. To describe the conditions required for the asymptotic
properties of β̂n and Ŝn(t), suppose that the observed data are given by the
representation (1.2). That is, the observed data are given in terms of U and
V . Then under the same conditions as those for current status data, it can be
shown that both β̂n and Ŝn(t) are consistent (Huang and Wellner, 1997). In
particular, like the estimator of the baseline survival function given in Section
5.2 based on current status data, we have the following results: if both U and
V are discrete, then

Ŝn(t) → S0(t)

almost surely at all the mass points of U and V ; if at least one of U and V
has a continuous distribution function, then

sup
0≤t<∞

| Ŝn(t) − S0(t) | → 0

almost surely.
For the asymptotic normality of β̂n, as in the case of current status data,

we need more conditions. These include that (a) the union of the support of
U and V is contained in a bounded interval that is bounded away from zero
and (b) S0 has strictly positive and bounded continuous derivative on the
support interval defined in (a). Also assume that condition (I3) in Section 3.5.2
holds. That is, no exact failure time is observed. Then under some regularity
conditions, as n → ∞, one has that

√
n (β̂n − β) → N(0, Σ−1)

in distribution and Σ−1 can be estimated by I−1
11|2 given in the previous subsec-

tion with β and α replaced by their maximum likelihood estimators (Huang
and Wellner, 1997). In the expression above, Σ denotes the information lower
bound for β and thus β̂n is asymptotically efficient.

As discussed in Chapter 4, the comparison of several survival functions is
often of interest in practice. Under the model considered here, if one takes Zi

to be the group indicator vector for subject i, the comparison is then equivalent
to testing β = 0, which can be performed naturally using the score test.
One main advantage of the score test is that it only involves the maximum
likelihood estimator denoted by α̂0 of α at β = 0, but not the maximum
likelihood estimator of β. This can save a great deal of computational effort
compared with the Wald test based on β̂. The score test statistic, defined as
Uβ(β,α) with β = 0 and α = α̂0, has the form
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UPH =
n∑

i=1

Zi

∑m+1
j=1 αij

[
Ŝ0(sj−1) log Ŝ0(sj−1) − Ŝ0(sj) log Ŝ0(sj)

]
∑m+1

j=1 αij

[
Ŝ0(sj−1) − Ŝ0(sj)

] , (6.2)

where Ŝ0(t) = Ŝn(t) at β = 0. Finkelstein (1986) first discussed this score
test and suggested approximating the variance-covariance matrix of UPH by
I11|2 and thus the distribution of U ′

PH I−1
11|2 UPH by the χ2 distribution with

the degrees of freedom p.
Implementation of the score test requires determination of α̂0 or Ŝ0(t),

which is basically the one-sample estimation problem discussed in Sections
3.3 and 3.4. Thus compared with α̂ or Ŝn, the restricted estimator of α
or S0 can be easily obtained by, for example, the self-consistency algorithm
described in Section 3.4.1. Because the score statistic UPH is a function of
Ŝ0(t), it is convenient to directly estimate the baseline survival function S0 at
β = 0. Using the self-consistency algorithm, we have the restricted maximum
likelihood estimator of S0 given by the following self-consistency equations

Ŝ0(sj) = Ŝ0(sj−1)

(
1 −

∑n
i=1 ĝ−1

i αij [Ŝ0(sj−1) − Ŝ0(sj)]∑m+1
k=j

∑n
i=1 ĝ−1

i αij [Ŝ0(sk−1) − Ŝ0(sk)]

)
,

j = 1, ..., m, where Ŝ0(s0) = 1 and

ĝi =
m+1∑
j=1

αij

[
Ŝ0(sj−1) − Ŝ0(sj)

]
,

i = 1, ..., n.

6.2.3 Two Examples

In this subsection, we discuss two illustrative examples for the inference pro-
cedure described in the previous subsections. The first example deals with the
breast cancer data presented in Table 1.4 and studied in Sections 2.3.4, 2.4.3,
3.4.4, and 4.5.2, and the second example concerns the hemophilia data given
in data set II of Appendix A and discussed in Section 3.4.4.

For the breast cancer data, as before, define Ti to be the time to breast
retraction for patient i, i = 1, ..., 94. Also define Zi = 0 for the patients
given the radiation therapy only (RT) and 1 for those given the radiation
therapy plus adjuvant chemotherapy (RCT). As discussed in Section 4.5.2,
for this data set, it seems reasonable to assume that observation times are
independent of the survival times Ti’s. Also the result presented there indicates
that the patients in the two treatment groups had significantly different breast
retraction rates.

Suppose that the Ti’s can be reasonably described by the PH model (1.4).
The application of the inference procedure described in the previous subsec-
tions gives β̂n = 0.8002 with estimated standard deviation equal to 0.290.
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Fig. 6.1. Estimates of survival functions of time to breast retraction: top, RT;
bottom, RCT.

Based on the standard normal distribution, this yields a p-value of 0.006 for
testing β = 0. Using the score test for the comparison of the two groups, we
obtain UPH = 10.0006 and a p-value of 0.005. As expected, these results are
similar to those given in Section 4.5.2 based on rank-based approaches. Figure
6.1 presents the maximum likelihood estimators of the survival functions for
patients in the two groups. For comparison and model-checking, we include
in the figure the separate NPMLEs of the same survival functions shown in
Figure 3.2 that were obtained by the self-consistency algorithm. Figure 6.1
suggests that the PH model seems to provide a reasonable fit to the data set.

For the hemophilia data, as in Section 3.4.4, define Ti to be the time
to HIV-infection for patient i, i = 1, ..., 368. In this data set, as with the
breast cancer data, we have one covariate representing treatment group. One
main objective of the study is to compare the HIV-infection risks between the
patients who received no factor VIII concentrate and those who received up
to 20,000 U factor VIII concentrate for their treatment. Define Zi = 0 for the
patients in the no dose group and 1 otherwise and assume that the Ti’s follow
the PH model (1.4). Using the maximum likelihood approach described in
the previous subsections, we obtain β̂n = 1.8644 with an estimated standard
error of 0.221. Based on the standard normal distribution, the p-value for
testing β = 0 is close to zero. The same conclusion is given by the score test
based on UPH . These results indicate that the factor VIII blood concentrate
given to the patients significantly increased their HIV-1 infection risks.

As with Figure 6.1, Figure 6.2 displays the estimated survival functions
of the time to HIV-1 infection obtained separately and under the PH model,
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Fig. 6.2. Estimates of survival functions of time to HIV-1 infection: top, No factor
VIII; bottom, Low dose VIII.

respectively, for the patients in the two groups. It indicates that the PH model
fits the hemophilia data extremely well. The figure also confirms the test
results given above and shows that the difference between the HIV-1 infection
risks started at about 16 quarters.

6.2.4 Other Approaches

In addition to the full likelihood approach discussed in the previous subsec-
tions, several other approaches are available for fitting the PH model to general
interval-censored failure time data. One is the marginal likelihood approach
based on the likelihood given by the sum over all rankings of the underlying
and unobserved failure times that are consistent with the observed censoring
intervals. This approach is a direct generalization of the corresponding ap-
proach for right-censored failure time data (Kalbfleisch and Prentice, 1973)
and reduces to that based on the partial likelihood when right-censored data
are available. One main advantage of the method is that it does not require es-
timation of the baseline cumulative hazard function. On the other hand, the
approach requires solving complicated score equations and involves a great
deal of computational effort. Satten (1996) investigated this approach and
proposed a Gibbs sampling procedure for generating underlying rankings and
the use of stochastic approximation for solving the score functions. Goggins
et al. (1998) also studied the approach and developed a Monte Carlo EM
algorithm for determination of regression parameter estimates.
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It is seen that the full likelihood approach directly estimates the finite-
dimensional regression parameters and the infinite-dimensional nuisance pa-
rameter simultaneously. In contrast, the marginal likelihood approach focuses
only on the finite-dimensional regression parameters. An approach that lies
between the two approximates the infinite-dimensional nuisance parameter
using some smooth, finite-dimensional parameters. Betensky et al. (2002) con-
sidered such an approach that applies the local likelihood described in Section
3.5.3 to fit the PH model to interval-censored data. For the same problem,
Cai and Betensky (2003) proposed a penalized spline-based approach. In both
approaches, some finite-dimensional functions are used to approximate the log
baseline hazard function in the PH model.

6.3 Analysis with the Proportional Odds Model

This section deals with the proportional odds model (1.5) and assumes that
the observed interval-censored failure time data are given in the form

{ Ki, ( Uij , δij = I(Uij−1 < Ti ≤ Uij) )Ki
j=1, Zi ; i = 1, ..., n } .

In this expression, for subject i, Zi denotes the vector of covariates, Ki the
number of observations and Ui1 < ... < UiKi the observation time points
with Ui0 = 0. That is, the study consists of n independent subjects and
each subject is observed at a sequence of time points that are assumed to be
independent of the survival time of interest for the subject, Ti. The likelihood
function then has the form

L(β, H) =
n∏

i=1

Ki∏
j=1

{
1

1 + exp[H(Uij−1) + Z′
iβ]

− 1
1 + exp[H(Uij) + Z′

iβ]

}δij

,

where H(t) = −logit[S0(t)] as before.
As in the previous section, it is natural to directly maximize the likelihood

function above with respect to β and H and its implementation is similar
to that of the approach in Section 6.2. Instead, we present an approximate
conditional likelihood approach first investigated by Rabinowitz et al. (2000),
which is much simpler than the maximum likelihood approach. The resulting
approximate conditional likelihood leaves H or S0 arbitrary and only involves
the regression parameter β. Here it is assumed that one is interested only in
β with H or S0 being a nuisance parameter.

6.3.1 An Approximate Conditional Likelihood Approach

Let Ω denote the set of all observation time points { Uij ; j = 1, ..., Ki, i =
1, ..., n } and {Ωl ; l = 1, ..., k} a partition of Ω such that all Uij in each Ωl

are close to each other. Define Yij = I(Ti ≤ Uij) =
∑j

l=1 δil, indicating



134 6 Regression Analysis of Case II Interval-censored Data

if the survival event of interest for subject i has occurred before or at Uij ,
j = 1, ..., Ki, i = 1, ..., n.

To derive the approximate conditional likelihood, for each l, consider all
Yij for which the corresponding observation time points Uij belong to Ωl and
assume that they are from different subjects. That is, they are independent.
Then one has

P ( Yij |Uij ∈ Ωl , Zi ) =
∏

Uij∈Ω l

exp{[H(Uij) + Z′
iβ] Yij}

1 + exp{H(Uij) + Z′
iβ}

and the conditional likelihood

L∗
l (β, H) = P ( Yij | y , Uij ∈ Ωl , Zi )

=
P ( Yij |Uij ∈ Ωl, Zi )

P ( Yij = yij ,
∑

Uij∈Ω l
yij = y |Uij ∈ Ωl, Zi )

=

∏
Uij∈Ω l

exp{[H(Uij) + Z′
iβ] Yij}∑

(y)
∏

Uij∈Ω l
exp{[H(Uij) + Z′

iβ] yij}
given y =

∑
Uij∈Ω l

Yij , where
∑

(y) denotes the summation over all permu-
tations of the yij ’s whose corresponding Uij belong to Ωl.

In L∗
l (β, H), if all Uij in Ωl are identical, then it reduces to

Ll(β) = L∗
l (β, H) =

∏
Uij∈Ω l

exp(Z′
iβ Yij)∑

(y)
∏

Uij∈Ω l
exp(Z′

iβ yij)
.

That is, L∗
l (β, H) is independent of H and involves β only. In practice, of

course, this may not be the case. On the other hand, all time points in Ωl

should be close to each other by definition. This suggests that one can use the
approximate conditional likelihood

Lc(β) =
k∏

l=1

Ll(β) =
k∏

l=1

∏
Uij∈Ω l

exp(Z′
iβ Yij)∑

(y)
∏

Uij∈Ω l
exp(Z′

iβ yij)

for inference about β.
It is seen right away that one major advantage of the approximate condi-

tional likelihood Lc is that it is free of the baseline survival function S0 or H.
Also it can be easily seen that Lc has the same format as the partial likelihood
arising from the logistic regression (Lawless, 2003). Thus one can apply the
standard statistical software for logistic regression of right-censored failure
time data to maximize Lc by regarding {Yij ; j = 1, ..., Ki} to be generated
from independent subjects. One way to take into account their dependence,
suggested by Rabinowitz et al. (2000), is to treat the resulting score function
of β as an estimating equation in estimating the variance-covariance matrix
of the resulting estimators.
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Specifically, let β̂c denote the estimator of β given by the value of β that
maximizes Lc. Rabinowitz et al. (2000) argue that β̂c is consistent under some
regularity conditions. Define

El(β) =

∑
(y)

(∑
Uij∈Ω l

Zi yij

) ∏
Uij∈Ω l

exp(Z′
iβ yij)∑

(y)
∏

Uij∈Ω l
exp(Z′

iβ yij)
,

l = 1, ..., k. Then the variance-covariance matrix of β̂c can be estimated by
Σ̂β = A−1(β̂c) B(β̂c) A−1(β̂c), where

A(β) = −∂2 log LC(β)
∂β∂β′

=
k∑

l=1

⎡
⎢⎣
∑

(y)

(∑
Uij∈Ω l

Zi yij

)⊗2∏
Uij∈Ω l

eZ
′
iβ yij∑

(y)
∏

Uij∈Ω l
eZ

′
iβ yij

− El(β)E′
l(β)

⎤
⎥⎦

and

B(β) =
k∑

l=1

∑
l′

⎡
⎣ ∑

Uij∈Ω l

Zi Yij − El(β)

⎤
⎦
⎡
⎣ ∑

Ui′j′ ∈Ω l′

Zi′ Yi′j′ − El′(β)

⎤
⎦

′

.

In the above, a⊗2 = a a′ for a vector a and for each l,
∑

l′ denotes the
summation over all l′ = 1, ..., k such that there exist Uij ∈ Ωl and Uij′ ∈ Ωl′

for some i. For such Ωl and Ωl′ with l �= l′, we say that they are correlated.
It is easy to see from the derivation of the approximate conditional likeli-

hood that in the case of current status data, Lc is indeed a conditional likeli-
hood function because Ki = 1. In this case, the variance-covariance matrix of
β̂c can be estimated by A−1(β̂c), the inverse of the observed information ma-
trix. The standard statistical software for logistic regression of right-censored
data gives A−1(β̂c) as the covariance estimate of β̂c for general situations.

As discussed in Section 6.2.2, the comparison of several survival functions
is often of interest and can be performed using the score test for testing β = 0
with Zi taken to be the group indicator. For the current situation, the score
test statistic has the form

UPO =
∂ log Lc(β)

∂β

∣∣∣∣∣∣β=0 =
k∑

l=1

⎡
⎣ ∑

Uij∈Ω l

Zi Yij − El(0)

⎤
⎦ ,

where

El(0) = |y|−1
∑
(y)

⎛
⎝ ∑

Uij∈Ω l

Zi yij

⎞
⎠
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with |y| denoting the number of terms in the summation
∑

(y). It is easy to see
that the statistic UPO is similar to statistics Ucr and Ur defined in Sections
4.2 and 4.3, respectively. All are summations of the differences between the
observed and expected numbers of survival events. Under β = 0, one can es-
timate the variance-covariance of UPO by B(0) = B(β = 0) and approximate
the distribution of U ′

PO B−1(0) UPO by the χ2 distribution with the degrees
of freedom p.

To apply the approximate conditional likelihood approach, one needs to
choose the partition { Ωl }, which serves as comparison or risk sets. For this, it
is easy to see that a better partition is one in which not too many subsets Ωl’s
are correlated with each other and the ideal one has no two subsets that are
correlated. In the latter case, Lc becomes a true conditional likelihood. One
general approach that can be used to control the number of correlated subsets
is to keep the number of elements or size of each subset Ωl small. In addition
to increasing the number of correlated Ωl’s, large sets can also significantly in-
crease the computational effort required. To choose { Ωl }, a simple approach,
referred to as approach I below, is to put the same observation times from
different subjects into one risk set Ωl assuming that at each observation time,
more than one subject is observed. Approach II, suggested by Rabinowitz et
al. (2000), divides Ω evenly into subsets of a given size, assuming that the
time points in Ω are ordered from the smallest to the largest. More comments
on this are provided in the next subsection through an example.

The simulation studies conducted by Rabinowitz et al. (2000) indicate that
both the estimation of β and its variance as well as the normal approximation
to the distribution of β̂c seem to work well for situations with possibly small β
or larger sample sizes. But for situations where β may be large and the sample
size is small, some care is needed because the procedure may infrequently
produce some very large β̂c. In these cases, one could use larger Ωl to reduce
the degree of this problem, but as discussed above, it is apparent that the size
of Ωl should not be too large.

6.3.2 An Example

Consider data set III of Appendix A arising from an AIDS clinical trial, ACTG
359, that was designed to compare 6 different antiretrovival treatments reg-
imens for AIDS patients (Gómez et al., 2003; Gulick et al., 2000). In AIDS
studies, the viral load level of patients is often of interest and commonly mea-
sured by the number of RNA copies. Among others, one variable of interest
is the first time at which the number of RNA copies drops below the thresh-
old of 500 viral copies/ml, an event that is often used to indicate an AIDS
patient’s stage. In reality, viral load is usually only monitored periodically,
meaning that the occurrence time of the event is interval-censored instead of
being known exactly.

For the study, the blood samples of patients were supposed to be collected
before the study and at month 1, 2, 3, 4, 6, 8, 10, and 12 for the determination
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of their RNA copy counts. As expected, many patients dropped out of the
study or stopped providing blood samples earlier. Also some missed their
scheduled visits. For patient i, let Ti denote the first time at which the number
of RNA copies of the patient drops below 500 viral copies/ml during the
study. Data set III of Appendix A gives the observed information about the
observation process and the Ti’s from 271 AIDS patients in ACTG 359 whose
numbers of RNA copies were measured at least once during the 12 months
period in addition to their initial numbers of RNA copies. Specifically, for each
patient, the data set indicates if the blood sample was collected at each of 8
observation time points (a dot means no observation) and gives Yij defined
in the previous subsection, i = 1, ..., 271, j = 1, ..., 8. Here Yij indicates (by
1) if the RNA count of subject i has already dropped below 500 by the jth
observation time. All patients had initial RNA counts over 500 viral copies/ml.
The data set consists of two parts. The first part, group 1, is for the patients
whose initial numbers of RNA copies were below 20000 viral copies/ml and
the second part, group 2, is for those whose initial numbers of RNA copies
were above 20000 viral copies/ml, another threshold often used to indicate
the stage of AIDS patients. The goal here is to assess if the initial number of
RNA copies has prognostic effect on the time at which the RNA count drops
below 500 copies/ml.

Define Zi = 0 for the subjects in group 1 and 1 otherwise and assume that
the Ti’s follow the proportional odds model (1.5). For estimation of the effect
of the initial RNA count on the Ti’s using the approach given in the previous
subsection, we first need to select a partition { Ωl }. For this, it is apparent
that we should not use approach I because it would divide Ω into k = 8
subsets and each would contain too many observations. The direct use of
approach II would generate a partition in which many subsets are correlated.
Hence, we choose to apply the two approaches together as follows. First we
randomly divide the 271 patients evenly into small groups of size r and then
apply approach I to each group. For example, for groupings of size 6, we have
45 small groups, and each group consists of 6 subjects except one group has
7 subjects. For the generated partition, each subset Ωl is correlated with at
most 7 other subsets. Table 6.1 gives the estimated effect β̂c of the initial RNA
count for several values of r, group size, and their corresponding estimated
standard errors. It can be seen that the results seem to be reasonably stable
for different r and all resulting p-values for testing β = 0 are close to zero. The

Table 6.1. Estimates of regression parameter in the proportional odds model for
RNA data

Group size r β̂c SD of β̂c Group size r β̂c SD of β̂c

4 -1.6428 0.2989 5 -1.8064 0.3049
6 -1.7830 0.3152 7 -1.6249 0.2912
8 -1.7447 0.2712 9 -1.6951 0.2763
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Fig. 6.3. NPMLEs of survival functions for RNA data.

results suggest that the initial RNA count has a very significant prognostic
effect on the Ti’s as expected, and the patients with lower initial RNA counts
have their RNA counts dropping below 500 much earlier than those with
higher initial RNA counts.

For the comparison of the two groups, one can also apply the score test
based on UPO and it gives similar results. For example, with r = 6, we
obtain UPO = −95.7810 with p-value equal to almost zero for testing β = 0
based on the χ2 distribution with degree of freedom 1. To give a graphical
comparison, Figure 6.3 presents the NPMLEs of the survival functions of Ti

for the patients in the two groups and confirms the results given above. It
can also be seen from the figure that for the patients in group 1, about 81%
of them had their RNA counts reach 500 copies by 12 months, whereas the
corresponding percentage for the patients in group 2 is only about 55%. We
remark that for the partition used above with small r, some subsets Ωl could
end up with one or two elements. However, the results given in Table 6.1
suggest that this does not seem to have much effect on the analysis for the
situation considered here.

6.3.3 Discussion

The approximate conditional likelihood approach applies to both current sta-
tus data and the interval-censored data given in the form (1.2), but not the
interval-censored data given in the form (1.1). For the data in the form (1.1),
it is apparent that the observation times L and R and the survival time of in-
terest are not independent. For the data given in the form (1.3), the approach
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requires that even after the survival event, the observation on study subject
continues with the observation times recorded. This is needed to ensure the in-
dependence between observation times and the survival time of interest given
covariates.

As commented above, a major advantage of the approximate conditional
likelihood approach is that one does not need to estimate the baseline survival
function, which is an infinite-dimensional nuisance parameter. Also, the idea
behind it is straightforward, and one can make use of the standard statistical
software for logistic regression to determine estimates of the regression param-
eters and their covariance. A drawback of the approach is that determination
of the variance-covariance estimator, specifically B(β̂C), can become too com-
plicated computationally in some situations, for example, one in which every
subject contributes an observation time to each Ωl. Furthermore, no rigorous
investigation of the asymptotic properties of the approach has been conducted.

Other authors who considered regression analysis of general interval-
censored failure time data using the proportional odds model include Huang
and Rossini (1997), Huang and Wellner (1997), and Shen (1998). In particu-
lar, Huang and Wellner (1997) discussed the maximum likelihood approach,
gave the efficient score function for β, and established the asymptotic normal
distribution of the maximum likelihood estimator of β. Huang and Rossini
(1997) and Shen (1998) considered the sieve maximum likelihood approach
with using the linear functions (5.8) and monotone spline functions, respec-
tively, to approximate the nuisance function.

6.4 Analysis with the Accelerated Failure Time Model

In this section, we consider the same scenario as in the previous section.
Specifically, we assume that each study subject is observed at a sequence of
time points with the data given by

{ Ki, ( Uij , δij = I(Uij−1 < Ti ≤ Uij) )Ki
j=1, Zi ; i = 1, ..., n } ,

which is the same notation used in the previous section. Instead of the pro-
portional odds model, it is assumed that the survival times of interest, Ti,
follow the accelerated failure time model, that is, the log linear model (1.8).
Also it is assumed that the Uij ’s and Ti are independent given Zi and one is
interested only in the regression parameter β.

Let F denote the distribution of W in model (1.8) and for a p-dimensional
vector b, define Uij(b) = log(Uij) − Z ′

i b, j = 1, ..., Ki, i = 1, ..., n. Also
define Yij = I(Ti ≤ Uij) as in the previous section and for each i, let UiL

and UiR denote the two Uij that are the last observation time for which
Yij = 0 and the first observation time for which Yij = 1, respectively. That
is, (UiL, UiR] is the observed interval to which Ti belongs. The likelihood
function is then proportional to
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L(β, F ) =
n∏

i=1

[ F (UiR(β)) − F (UiL(β)) ] , (6.3)

where UiL(b) = log(UiL) − Z ′
i b and UiR(b) = log(UiR) − Z ′

i b. For inference
about β, we describe an estimating equation approach based on linear rank
statistics in the next subsection, and some other approaches are discussed in
Section 6.4.3 following an illustrative example in Section 6.4.2.

6.4.1 Linear Rank Estimation of Regression Parameters

Linear rank statistics are usually defined as

S(b) =
n∑

i=1

Zi ci(b) (6.4)

and are often used for estimation of the regression parameter β in model
(1.8) when right-censored failure time data are available (Jin et al., 2003;
Kalbfleisch and Prentice, 2002). In (6.4), ci is the score for the sample with Zi

that can take various forms and be either assigned or estimated. As discussed
in Section 4.3.2, often, one chooses scores or estimates them so that S(b) gives
or approximates the score function of β. Here we consider such an approach
due to Betensky et al. (2001).

To choose scores ci(b) in (6.4), following the idea used in the previous
section, we suppose that all Yij ’s can be treated as arising from K1 + ... + Kn

independent individuals. Then one has a set of current status data {Yij ; j =
1, ..., Ki , i = 1, ..., n}, which gives a likelihood function

L∗(β, F ) =
n∏

i=1

Ki∏
j=1

[F (Uij(β))]Yij [1 − F (Uij(β))]1−Yij . (6.5)

The resulting score function for β has the form

S∗(β, F ) =
n∑

i=1

Zi

Ki∑
j=1

−f(Uij(β))
F (Uij(β)) [1 − F (Uij(β))]

[Yij − F (Uij(β))] ,

where f denotes the derivative of F . This along with E(Yij |Zi) = F (Uij(β))

suggests that we can take ci(b) =
∑Ki

j=1

[
Yij − F̂b(Uij(b))

]
, which gives the

linear rank statistic

S(b) =
n∑

i=1

Ki∑
j=1

[
Yij − F̂b(Uij(b))

]
Zi . (6.6)

In (6.6), F̂b denotes the NPMLE of F obtained from L∗(β, F ) with fixed
β = b, which can be determined by, for example, the pool adjacent violators
algorithm as in Section 3.2.
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It can be shown that under some regularity conditions, F̂b is a consistent
estimate of F with b = β and asymptotically S(β) has expectation zero
(Betensky et al., 2001). Thus it is natural to estimate β by a zero crossing of
S(b). For determination of the estimate, in practice, one can compute S(b)
for a fine grid of values of b and take the estimator β̂r as the value of b at
which S(b) is closest to zero. It should be noted that this approach may not
be realistic if the dimension of β is high, and in this case, one may need to
use some iterative algorithms.

For each index pair (i j), let Rij denote the set of index pairs (k l) for
which F̂

β̂r

(Ukl(β̂r)) = F̂
β̂r

(Uij(β̂r)) and define

Ê
(
Zi|Uij(β̂r)

)
=

1
|Rij |

∑
(k l)∈Rij

Zk

with |Rij | denoting the number of elements in Rij . For estimation of the
variance-covariance matrix of S(β), for large n, Betensky et al. (2001) suggest

Σ̂(β̂r) =
n∑

i=1

Ki∑
j=1

Ki∑
j′=1

{
F̂
β̂r

(Uij(β̂r) ∨ Uij′(β̂r))
[
1 − F̂ (Uij(β̂r) ∧ Uij′(β̂r))

]

×
[
Zi − Ê(Zi|Uij(β̂r))

] [
Zi − Ê(Zi|Uij′(β̂r))

]′}
.

Thus one can test β = 0 using the statistic

X2(β) = S′(β) Σ̂−1(β) S(β)

with β = 0 based on the χ2 distribution with the degrees of freedom p and
obtain an asymptotic 1 − α level confidence set for β by

{ b ; X2(b) < χ2
p(1 − α) }

(Wei et al., 1990).

6.4.2 An Illustration

For purposes of comparison and illustration, we reanalyze the viral load data
discussed in Section 6.3.2, which is data set III of Appendix A, using the
estimation procedure described in the previous subsection. Let the Ti’s and
Zi’s be defined in as Section 6.3.2 and assume that the distribution of Ti can
be described by the accelerated failure time model (1.8). To find the zero
crossing of S(b), as suggested in the previous subsection, we compute S(b)
for a grid of values of b. Figure 6.4 displays the curve of S(b) given by the
values obtained. This gives β̂r = 1.6094, similar to the estimates obtained in
Section 6.3.2 using the proportional odds model.
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Fig. 6.4. Score function S(b).

To test if there exists a difference between the two groups in terms of the
time at which the RNA count drops below 500 viral copies/ml, we calculate
the statistic X2(β) and obtain X2(β = 0) = 21.999. This results in a p-value
of almost zero for testing β = 0 based on the χ2 distribution with degree
of freedom 1. It suggests, as in Section 6.3.2, that the RNA counts reach
below 500 copies much faster for the patients with initial RNA counts below
20000 than those with initial RNA counts above 20000. The asymptotic 95%
confidence set given by the statistic X2(b) is (0.6932,∞), giving the same
result.

6.4.3 Discussion

Rabinowitz et al. (1995) presented a class of different linear rank statistics
based on the likelihood function L(β, F ) given in (6.3) instead of the likelihood
function L∗(β, F ) given in (6.5). Specifically, their statistics have the form

SR(b) =
n∑

i=1

g[F (UiR(b))] − g[F (UiL(b))]
F (UiR(b)) − F (UiL(b))

Zi (6.7)

with F replaced by the maximum likelihood estimate of F derived from
L(β, F ). In these statistics, g is a known weight function that can be chosen to
minimize the asymptotic variance of linear functions of regression parameter
estimates. Note that if we let g = f ◦ F−1, the statistic SR then becomes
the score statistic of β given by L(β, F ). A major advantage of the statistics
given in (6.7) is that with the optimal weight function and suitable regular-
ity conditions, asymptotic efficiency can be achieved. However, the numerical
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and computational effort involved can be too much for the approach to be
practical (Betensky et al., 2001).

For the rank statistics defined in both (6.6) and (6.7), there could exist
more than one zero crossing. For this, Rabinowitz et al. (1995) suggested using
the zero crossing that is in a neighborhood of an n−1/2-consistent estimator of
β. One way to obtain such an estimator is to consider the current status data
given by only the first observation times Ui1’s and to maximize the resulting
likelihood function

n∏
i=1

[F (Ui1(β))]Yi1 [1 − F (Ui1(β))]1−Yi1

over β and F together.
To derive a rank statistic, one can also directly rank the censored intervals

similar to ranking the survival times, Ti, when they are known (Li, 2003; Li
and Pu, 1999). For example, Li and Pu (2003) investigated such an approach
and proposed the statistic

SLP (b) =
∑
i<j

[ I(Zi < Zj) − I(Zi > Zj) ] [ I(UiR(b) < UjL(b))

− I(UiL(b) > UjR(b)) ] .

In this statistic, it is assumed that there exists only one covariate. That is,
the Zi’s and β are scalars. Note that SLP (b) is discrete and has either no
zero crossing or multiple zero crossings. Define β̂1 = sup{ b : SLP (b) ≥ 0 }
and β̂2 = inf{ b : SLP (b) ≤ 0 }. They suggested estimating β by β̂LP =
(β̂1 + β̂2)/2 and showed that n1/2(β̂LP − β) has an asymptotic normal dis-
tribution with mean zero. In contrast, no similar rigorous investigation of the
estimates defined using rank statistics (6.6) or (6.7) is available yet. A short-
coming of SLP is that it only applies to single covariate situations and it is
not straightforward to generalize it to multivariate covariate situations. Also
it is not hard to see that the statistic SLP could be very inefficient because
many terms in the summation could be zero if, for example, the data contain
no or few exact observations.

As commented before, one can always apply the maximum likelihood
approach for fitting the accelerated failure time model to general interval-
censored data. However, unlike the PH model or the proportional odds model,
use of the maximum likelihood approach here is relatively hard. The main
difficulty is that the regression parameter β and the nuisance function F are
tangled in the likelihood function. Consequently, the profile likelihood func-
tion is not a smooth function of β and also the log likelihood function is
not twice-differentiable with respect to β. Huang and Wellner (1997) investi-
gated this and proved the consistency of the maximum likelihood estimators
of β and F . However, no asymptotic distribution theory for the estimators is
available yet, even for the case of current status data.
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6.5 Analysis with the Logistic Model

In this section, we discuss the analysis of discrete interval-censored failure time
data and consider fitting the logistic model (1.12) to the data. As in Section
5.5, let 0 < s1 < ... < sm+1 denote all possible values that the survival
times Ti’s of interest take and suppose that the observed data are given in the
form (6.1). As in Section 6.2, define αij = I(sj ∈ (Li, Ri]), j = 1, ..., m + 1,
i = 1, ..., n. Then we have the likelihood function proportional to

L(β,γ) =
n∏

i=1

m+1∑
j=1

αij

[
j−1∏
k=0

(
1 + γkeZ

′
iβ
)−1

−
j∏

k=0

(
1 + γkeZ

′
iβ
)−1
]

,

where γ0 = 0, γm+1 = ∞ and γ = (γ1, ..., γm)′. As before, for each j, define
αj = log γj . The log likelihood function then has the form

l(β,α) =
n∑

i=1

log

⎡
⎣m+1∑

j=1

αij

(
j−1∏
k=0

1

1 + eαk+Z ′
iβ

−
j∏

k=0

1

1 + eαk+Z ′
iβ

)⎤⎦
in terms of β and α, where α0 = −∞, αm+1 = ∞, α = (α1, ..., αm)′.

For inference, we first discuss the maximum likelihood approach in the
next subsection. Score tests for survival comparison are then considered with
the focus on their relationships to some other tests. Finally, two illustrative
examples are provided.

6.5.1 Maximum Likelihood Estimation of Parameters

This subsection considers estimation of parameters β and α using the maxi-
mum likelihood approach. For this, we have

∂l(β,α)
∂β

=
n∑

i=1

Zi g−1
i hi(β,α)

and
∂l(β,α)

∂αj
=

n∑
i=1

g−1
i pj(Zi) cij(β,α) ,

j = 1, ..., m. In the expressions above, hi(β,α) =
∑m+1

j=1 αij hij(β,α),

hij(β,α) = S(sj ; Zi)
j∑

k=0

pk(Zi) − S(sj−1; Zi)
j−1∑
k=0

pk(Zi) ,

pj(Zi) =
eαj+Z ′

iβ

1 + eαj+Z ′
iβ

, p0(Zi) = 0 , pm+1(Zi) = 1 ,



6.5 Analysis with the Logistic Model 145

cij(β,α) = αij S(sj ; Zi) −
m+1∑

k=j+1

αik fik(β,α) ,

fij(β,α) = S(sj−1; Zi) − S(sj ; Zi) ,

S(sj ; Zi) is defined in model (1.12), and gi =
∑m+1

j=1 αij fij(β,α) as in Sec-
tion 6.2.1. Thus it is natural to estimate β and α by β̂ and α̂ defined as the
solution to score equations

∂l(β,α)
∂β

= 0 and
∂l(β,α)

∂αj
= 0 ,

which can be solved by the Newton-Raphson algorithm.
The variance-covariance matrix of β̂ and α̂, as in Section 5.5.1, can be

estimated by the inverse of the observed Fisher information matrix

I(β,α) =
(

I11 I12
I21 I22

)

with β = β̂ and α = α̂. Here we have that

I11 = −∂2l(β,α)
∂β∂β′ =

n∑
i=1

ZiZ
′
i

⎧⎨
⎩g−1

i

m+1∑
j=1

αij

⎡
⎣S(sj ; Zi)

(
j∑

k=0

pk(Zi)

)2

−S(sj ; Zi)
j∑

k=0

pk(Zi) (1 − pk(Zi)) − S(sj−1; Zi)

(
j−1∑
k=0

pk(Zi)

)2

+S(sj−1; Zi)
j−1∑
k=0

pk(Zi) (1 − pk(Zi))

]
+
[
hi(β,α)

gi

]2}

and I12 = I ′
21 and I22 have elements

−∂2l(β,α)
∂αj∂β

=
n∑

i=1

Zi

{
g−1

i pj(Zi)

[
αijS(sj ; Zi)

j∑
k=0

pk(Zi)

−cij(β,α)(1 − pj(Zi)) +
m+1∑

k=j+1

αikhik(β,α)

⎤
⎦+

hi(β,α)cij(β,α)pj(Zi)
g2

i

⎫⎬
⎭ ,

−∂2l(β,α)
∂α2

j

=
n∑

i=1

{
pj(Zi)(2pj(Zi) − 1)cij(β,α)

gi
+
[
pj(Zi)cij(β,α)

gi

]2}
,

and

−∂2l(β,α)
∂αj∂αk

=
n∑

i=1

pj(Zi)pk(Zi)cik(β,α)
g2

i

[
αijS(sj ; Zi) +

j∑
l=1

αilfil(β,α)

]

for j < k, respectively, j , k = 1, ..., m.
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6.5.2 Score Tests for Comparison of Survival Functions

In this subsection, we suppose that study subjects come from p + 1 different
groups with the Zi’s being the group indicators, and the goal is to test whether
the subjects in different groups share the same survival function. For this, as
discussed before, one can apply the score test with the score test statistic given
by UL = ∂l(β,α)/∂β with β = 0 and α = α̂0, the maximum likelihood
estimator of α with β = 0. As for UPH in Section 6.2, the variance-covariance
matrix of UL can be estimated by I11|2 = I11 − I12I

−1
22 I21 with β = 0 and

α = α̂0 when n is large (Sun, 1997a).
To see the relationship between UL and some other test statistics described

in the previous sections, using algebra, it can be shown that UL can be rewrit-
ten as

UL =
n∑

i=1

Zi

m+1∑
j=1

⎛
⎝αij f̂j

ĝi
− p̂j

ĝi

m+1∑
l=j

αilf̂l

⎞
⎠ .

In this expression, f̂j , ĝi, and p̂j denote fij(β,α), gi, and pj(Zi) defined above
with β and α set to be equal to 0 and α̂0, respectively. For each j, define
Dj = { i ; αij = 1 } and Rj = { i ; αij′ ≥ 1 for some j′ ≥ j }, the index
sets of subjects who may fail at sj and at or after sj given the observed data,
respectively. Also define

dij =
αij f̂j

ĝi
, rij =

m+1∑
l=j

αil f̂l

ĝi
.

They represent the estimated probabilities that the survival event of interest
from subject i occurs at sj and at or after sj given the observed data and
that there is no survival difference among the p + 1 groups. Then UL has the
form

UL =
m∑

j=1

⎛
⎝ ∑

i∈Dj

Zi dij − p̂j

∑
i∈Rj

Zi rij

⎞
⎠ (6.8)

and it can be shown that p̂j = dj/rj =
∑

i∈Dj
dij/

∑
i∈Rj

rij , j = 1, ..., m.
For the two-sample comparison problem with Zi = 0 or 1, the statistic

UL reduces to UL =
∑m

j=1 (d1j − p̂j r1j), where

d1j =
∑

{i : i∈Dj ,Zi=1}
dij and r1j =

∑
{i : i∈Rj ,Zi=1}

rij .

The quantities d1j and r1j can be regarded as estimates of the numbers of
failures and risks, respectively, at sj for subjects in the group with Zi = 1.
Thus, UL is a summation of the estimated numbers of failures assuming the
two groups may have different failure distributions minus the same estimated
numbers of failures, but under the no difference assumption, among subjects
in the group with Zi = 1.
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It can be seen from the expression (6.8) that UL is similar to the gener-
alized log-rank test statistic Ur given in Section 4.3 and the two have similar
meanings. However, we remark that the two test statistics are different unless
there are no right-censored observations, which implies that UL does not re-
duce to the log-rank test statistic in the case of right-censored data. This is
because in UL, right-censored subjects are treated to be at risk at all times,
while they are regarded to be at risk only up to the right censoring times in
Ur and the log-rank test statistic.

Using the notation defined above, we can rewrite the score test statistic
UPH given in Section 6.2 as

UPH =
n∑

i=1

Zi

m+1∑
j=1

⎡
⎣ log(1 − p̂j)

ĝi

m+1∑
l=j

αilf̂l − αij f̂j log(1 − p̂j)
ĝi p̂j

⎤
⎦

=
m∑

j=1

log(1 − p̂j)−1

p̂j

⎛
⎝∑

i∈Dj

Zi dij − p̂j

∑
i∈Rj

Zi rij

⎞
⎠ . (6.9)

It is apparent from (6.8) and (6.9) that UL and UPH are different. However,
they would be close to each other if the dj ’s, the estimated numbers of failures,
are small relative to the rj ’s, the estimated numbers of risks. In this case, p̂j

is close to zero and thus − log(1 − p̂j) is close to p̂j . As UL, UPH also does
not agree with the log-rank test statistic in the case of right-censored data.
Sun (1997a) studied a more general logistic model that results in a class of
weighted score tests that have the form of UPH with log(1− p̂j)−1/p̂j replaced
by a weight function.

6.5.3 Two Examples

In this subsection, we apply the inference procedures presented in the previous
subsections to two sets of discrete interval-censored failure time data. First we
analyze the grouped breast cancer data given by grouping the breast cancer
data presented in Table 1.4 and assuming that the breast retraction can occur
only at 6, 12, 18, 24, 30, 36, 42, 48, 54, and 65 months, respectively. We then
discuss the data given in Table 5.4 about tumor occurrence rates.

For the grouped breast cancer data, let the Ti’s and Zi’s be defined as in
Section 6.2.3 and assume that Ti can be described by the logistic model (1.12).
In this case, we have m = 9. The maximum likelihood estimation procedure
discussed in Section 6.5.1 yields β̂ = 1.0128 with estimated standard error
equal to 0.3307 and a resulting p-value of 0.002 for testing β = 0. For the score
test, we obtain UL = 9.7826 and its estimated standard deviation is 3.1144,
also giving a p-value of 0.002 for the comparison of the two treatment groups.
The results are similar to those given in Section 6.2.3 using the PH model and
indicate that the patients in the RCT group had significantly higher risk to
develop breast retraction than those in the RT group.
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Fig. 6.5. Estimated survival functions for breast cancer data.

Figure 6.5 presents the estimated survival functions of the time to breast
retraction for the patients in the two groups under model (1.12). They are
similar to the corresponding estimates given in Figure 6.1 and suggest that
as with the PH model, the logistic model also seems to be reasonable for the
data. To investigate the effect of grouping on the analysis, we repeated the
analysis above by assuming that the breast retraction can occur only at 6,
10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, and 65 months, respectively, giving
m = 12. The estimates obtained are β̂ = 0.9844 and UL = 10.3030 with
their estimated standard errors being 0.3195 and 3.2536, respectively. They
are similar to those given above.

For comparison, we consider the tumor occurrence data discussed in Sec-
tion 5.5.2. For each animal, as in Section 5.5.2, define Ti to be the tumor
occurrence time and assume that the tumor occurs only at the end of each
interval. Also define Zi = 0 for male rats and 1 for female rats. The infer-
ence procedure described in the previous subsections gives β̂ = 0.9922 and
UL = 12.4478 with their estimated standard deviations being 0.3636 and
3.6067, respectively. Comparing tumor occurrence rates between male and
female rats, we obtain p-values of 0.007 and 0.0006, respectively, which indi-
cate that the female rats had significantly higher tumor occurrence rate than
male rats. These are similar to the results given in Section 5.5.2 except that
the score test based on UL suggests a more significant difference than others.
Figure 6.6 displays estimates of the survival functions of the time to tumor
occurrence obtained under the logistic model for both male and female rats.
They are similar to those presented in Figure 5.5 that were obtained using
the grouped PH model.
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Fig. 6.6. Estimated survival functions for tumor data.

6.6 Bibliography, Discussion, and Remarks

The literature on regression analysis of case II interval-censored failure time
data goes back a long way with most of early work on grouped data (Pierce
et al., 1979; Prentice and Gloeckler, 1978). It wasn’t until the mid-1980s that
many articles about general interval-censored data began to appear, including
the seminal article Finkelstein (1986), which is the first that studied the use
of the PH model for interval-censored data. Others that investigated the PH
model include Alioum and Commenges (1996), Betensky et al. (2002), Cai
and Betensky (2003), Datta et al. (2000), Goggins et al. (1998), Huang and
Wellner (1997), Huber-Carol and Vonta (2004), Kim (2003a, b), Pan and
Chappell (2002), and Satten (1996). In particular, Huang and Wellner (1997)
discussed the asymptotic properties of the PH model along with other models.
Alioum and Commenges (1996), Datta et al. (2000), Huber-Carol and Vonta
(2004), and Pan and Chappell (2002) studied the use of the PH model for
the analysis of failure time data that involve interval censoring as well as
truncation.

Several other semiparametric models have also been considered for regres-
sion analysis of case II interval-censored data. These include the proportional
odds model, which was studied by Huang and Rossini (1997), Huang and
Wellner (1997), Rabinowitz et al. (2000), and Shen (1998), and the acceler-
ated failure time model, for which references include Betensky et al. (2001), Li
and Pu (1999, 2003), Rabinowitz et al. (1995), and Xue et al. (2006). Also for
the problem, Kooperberg and Clarkson (1997) discussed linear spline models,
and Sun (1997a) investigated the logistic model. Furthermore, Younes and
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Lachin (1997) and Zhang et al. (2005) proposed to use the linear transfor-
mation model (1.9), and Zeng et al. (2006) recently considered the additive
hazards model.

Others that discussed the topic include Bacchetti and Quale (2002),
Carstensen (1996), Finkelstein and Wolfe (1985, 1986), Joly et al. (1998),
and Yu and Wong (2003). Among them, Bacchetti and Quale (2002) and Joly
et al. (1998) considered regression analysis of interval-censored and truncated
data using the penalized likelihood approach under some general regression
models. All the regression approaches discussed in this and other chapters
model the survival time of interest conditional on covariates. To model the
survival time marginally, Finkelstein and Wolfe (1985, 1986) proposed to use
a parametric model for the conditional distribution of covariates given the
survival variable.

In both this chapter and Chapter 5, it has been suggested to use the ob-
served Fisher information matrix to estimate variance-covariance matrix of
the maximum likelihood estimators of regression parameters. As an alterna-
tive, one can also apply the profile likelihood approach, which estimates the
variance-covariance matrix by the inverse of the curvature of the profile likeli-
hood (Huang and Wellner, 1997). This method is feasible if the dimension of
the regression parameters is low and requires that the profile likelihood is a
smooth function of the regression parameters. As with the observed Fisher in-
formation approach, the asymptotic validity of the profile likelihood approach
also needs to be verified for each situation.

For estimation of the finite-dimensional regression parameter in a semi-
parametric model, in addition to the approaches discussed in the previous
sections, another commonly used approach is to base the estimation on the
efficient score function of the parameter (Bickel et al., 1993; van der Vaart,
1998). Among others, Huang and Wellner (1977) applied it to both case I
and II interval-censored data under several semiparametric regression models
discussed in this chapter and Chapter 5. Martinussen and Scheike (2002b)
considered this approach for regression analysis of current status data using
the additive hazards model. A key advantage of this efficient score approach
is that the resulting estimators are efficient. The efficient score function is
also needed for calculation of the information bound for the parameter. On
the other hand, the derivation of an efficient score function is usually not an
easy task, and use of it requires estimating an infinite-dimensional nuisance
parameter such as the cumulative hazard function in the PH model. This lat-
ter feature makes the approach unattractive compared with the approaches
that do not need estimation of the nuisance parameter.

For any inference problem about interval-censored failure time data, a
natural approach is to generalize the existing approaches developed for the
same problem with respect to right-censored data, and many approaches dis-
cussed in this book were indeed developed this way. Of course, such methods
are usually more complicated in terms of both implementation and investiga-
tion of their properties than their counterparts for right-censored data. On the
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other hand, there exist many inference approaches for right-censored data that
seem impossible to generalize, or are still not available, for interval-censored
data due to the complexity of the data and censoring structure involved. One
such example is the partial likelihood approach (Cox, 1972; Kalbfleisch and
Prentice, 2002), which provides a simple and efficient method for regression
analysis of right-censored data using the PH model. It also allows one to use
the counting process and associated martingale theory to easily establish theo-
retical justification of the approach (Andersen et al., 1993; Andersen and Gill,
1982). Unfortunately, the partial likelihood approach does not seem to be di-
rectly applicable to interval-censored data, and no method similar is available
yet.

There exist many challenging unsolved inference problems about interval-
censored data. Of primary importance is the investigation of the asymptotic
properties of the maximum likelihood estimator for various semiparametric
regression models including those discussed in this chapter. For the PH model
and the proportional odds model, the consistency, asymptotic efficiency, and
asymptotic normality of maximum likelihood estimators of regression param-
eters have been established (Huang and Wellner, 1997). But for other models
like the accelerated failure time model and the additive hazards model, these
properties are still unknown. For these models, inferences about the regression
parameter are based on approximate likelihood or estimating equations. For
these approximate likelihood or estimating equation approaches, one needs to
investigate their efficiency, which is usually more challenging than developing
the approximate likelihood or estimating equations. Of course, as remarked
above, it would be really useful if a method similar to the partial likelihood
approach were available.

For case II interval-censored data problems, a general approach to develop
estimating equations or inference procedures is to transfer them to current
status data problems as in Section 6.4.1. Of course, this assumes that a simple
inference procedure is available in the case of current status data and the data
are recorded in representations (1.2) or (1.3). The same idea was also used
in Section 4.4.3 for developing test statistics for survival comparison. For
example, for case II interval-censored data given in representation (1.2), an
estimating equation or inference procedure can be easily obtained as a linear
combination of those based on current status data on U and V , respectively.
Of course, the asymptotic validity and properties of the resulting methods
need to be investigated as well as their efficiency, which is often a difficult
task and for which little research is available.

As discussed in Section 5.6, time-dependent covariates often arise in
practice. However, most of the inference approaches developed for interval-
censored data only apply to time-independent covariates. Some exceptions
include van der Laan and Robins (1998), Lin, Oakes, and Ying (1998), and
Martinussen and Scheike (2002b). To compare several survival functions un-
der semiparametric models, in addition to using score tests, another natural
approach is to apply the likelihood ratio type test. As with the asymptotic
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distribution of the maximum likelihood estimator, however, the derivation of
the asymptotic distribution of the likelihood ratio test statistic is also not an
easy task. As discussed in Chapter 5, model selection is another important
and difficult topic for regression analysis of interval-censored data.



7

Analysis of Bivariate Interval-censored Data

7.1 Introduction

Bivariate failure time data occur in many situations. A standard example is
studies on twins or eyes where one is interested in times to the occurrences in
both twins or eyes of a certain event such as some diseases or disease-related
symptoms. By bivariate failure time data, we usually mean that there exist two
failure time variables of interest, and the two variables cannot be assumed to
be independent. For example, in an eye study, the two variables could be times
to the blindness for both left and right eyes, and the two are obviously related.
A more general example of bivariate failure time data is times to two same
or different types of events that happen on the same subject. It is apparent
that bivariate failure time data are special cases of multivariate failure time
data that concern information about several possibly related failure times.
Sometimes, multivariate failure time data are also referred to as correlated
failure time data. This chapter focuses on bivariate failure time data in the
presence of interval censoring.

A number of authors have studied the analysis of bivariate failure time
data when only right censoring is present. These include Cai and Kim (2003),
Cai and Prentice (1995), Li and Lagakos (2004), Lin (1994), Lin and Ying
(1993), Prentice and Cai (1992), Prentice and Kalbfleisch (2003), and Wei
et al. (1989). In particular, Hougaard (2000) is an excellent book about the
analysis of multivariate failure time data. As discussed before, the mechanism
that generates interval censoring is usually much more complicated and diffi-
cult to deal with than that behind right censoring. For the analysis of bivariate
interval-censored data, one has to deal with the difficulties that exist for the
analysis of univariate interval-censored data as well as those caused by the
correlation structure between two related failure times.

Several inference problems for bivariate failure time data are discussed in
this chapter. In Section 7.2, we first discuss estimation of the association pa-
rameter of two related failure variables in the presence of interval censoring.
For this problem, we focus attention on the situation where the joint survival
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function of the two failure variables can be described by a copula model. A
two-stage estimation procedure given in Sun, Wang, and Sun (2006) and Wang
and Ding (2000) is described. Section 7.3 deals with maximum likelihood es-
timation of a joint distribution function for two failure times of interest. As
in the case of univariate interval-censored data, determination of the maxi-
mum likelihood estimator consists of two steps: determination of the regions
where probability masses lie and maximization of the likelihood. Although
there is basically no difference between the second steps in the two situa-
tions, the first step is much more complicated for bivariate interval-censored
data. Three algorithms for the first step are discussed. Regression analysis
under the discrete or grouped PH model is the topic for Section 7.4, and the
marginal inference approach commonly used for multivariate right-censored
failure time data is discussed. Section 7.5 gives bibliographic notes and gen-
eral discussion and remarks about the analysis of bivariate interval-censored
data, in particular some issues and inference approaches not discussed in the
previous sections. As in the previous chapters, the censoring mechanism is
assumed to be independent of the underlying failure variables in this chapter.

7.2 Estimation of the Association Parameter

Let T1 and T2 denote two possibly correlated failure times. In the analy-
sis of bivariate failure time data, one of the main interests is measuring the
dependence or association of T1 and T2. Several approaches can be used to
characterize this association, and for right-censored failure time data, a few
methods have been proposed for making inferences about the association. In
this section, we focus attention on situations for which the joint survival func-
tion of T1 and T2 can be described by a copula model, a commonly used model
for bivariate failure time data (Clayton, 1978; Fine and Jiang, 2000; Genest
and Rivest, 1993; Hougaard, 1986).

7.2.1 The Copula Model and the Likelihood Function

Let S1(t) and S2(t) denote the marginal survival functions of T1 and T2,
respectively, and S(t1, t2) = P (T1 > t1, T2 > t2) their joint survival function.
A copula model assumes that S(t1, t2) can be expressed as

S(t1, t2) = Cα(S1(t1), S2(t2)) , (7.1)

where Cα is a distribution function on the unit square, and α ∈ R is a global
association parameter.

One attractive feature of model (7.1) is flexibility. In fact, it includes as spe-
cial cases many useful bivariate failure time models such as the Archimedean
copula family,

Cα(u, v) = φα{φ−1
α (u) + φ−1

α (v)} , 0 ≤ u , v ≤ 1 ,
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where 0 ≤ φα ≤ 1, φα(0) = 1, φ′
α < 0, φ′′

α > 0. In particular, taking
φα(u) = (1 + u)1/(1−α), the Laplace transformation of a gamma distribution,
one has

Cα(u, v) = (u1−α + v1−α − 1)1/(1−α) , α > 1 ,

which is commonly referred to as the Clayton family (Clayton, 1978). Suppose
that S(t1, t2) is absolutely continuous. Then under the Clayton model, α also
represents the ratio of the hazard function of T1 = t1 given T2 = t2 to that
given T2 ≥ t2, or that of T2 = t2 given T1 = t1 against given T1 ≥ t1.

Another attractive feature of copula models is that the marginal distribu-
tions do not depend on the choice of the association structure. Thus one can
model the marginal distributions and the association separately.

A second common way to characterize the association of two random vari-
ables is to use Kendall’s τ defined as

τ = Pr{(T1i − T1j)(T2i − T2j) > 0} − Pr{(T1i − T1j)(T2i − T2j) < 0}

for i.i.d. replicates (T1i, T2i) and (T1j , T2j) of (T1, T2). It represents the dif-
ference between the probabilities of concordance and discordance and Beten-
sky and Finkelstein (1999a) considered this approach. Under model (7.1),
Kendall’s τ can be expressed as

τ = 4
∫ 1

0

∫ 1

0
Cα(u, v) Cα(du , dv) − 1 , (7.2)

and thus for a fixed copula model, Cα, one only needs to consider estimation
of α.

To describe the observed data, suppose that there exist two pairs of random
variables (U (1), V (1)) and (U (2), V (2)), representing monitoring times for T1
and T2, respectively. Define

∆
(j)
1 = I(Tj ≤ U (j)) , ∆

(j)
2 = I(U (j) < Tj ≤ V (j)) ,

j = 1, 2. The independent censoring mechanism implies that (T1, T2) is inde-
pendent of (U (1), V (1), U (2), V (2)), but (U (1), V (1)) and (U (2), V (2)) could be
dependent. Let H(x) denote the joint distribution function of (U (1), V (1), U (2),
V (2)) and Gα(x, δ) the subdistribution function of (U (1), V (1), U (2), V (2),∆),
where x = (x1, x2, x3, x4), δ = (δ(1)

1 , δ
(1)
2 , δ

(2)
1 , δ

(2)
2 ) and ∆ = (∆(1)

1 , ∆
(1)
2 , ∆

(2)
1 ,

∆
(2)
2 ). The density or probability functions of (U (1), V (1), U (2), V (2)) and

(U (1), V (1), U (2), V (2),∆) will be denoted by h(x) and gα(x, δ).
Suppose that one observes n i.i.d. replicates of (U (1), V (1), U (2), V (2),∆)

given by
{ U

(1)
i , V

(1)
i , U

(2)
i , V

(2)
i ,∆i ; i = 1, ..., n } ,

where ∆i = (∆(1)
1i , ∆

(1)
2i , ∆

(2)
1i , ∆

(2)
2i ). We have bivariate current status data if

U
(1)
i = V

(1)
i , U

(2)
i = V

(2)
i , and ∆

(1)
2i = ∆

(2)
2i = 0. Define
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S11(α,x) = P (T1 ≤ x1, T2 ≤ x3) = 1−S1(x1)−S2(x3)+Cα(S1(x1), S2(x3)) ,

S12(α,x) = P (T1 ≤ x1, x3 < T2 ≤ x4) = S2(x3)−S2(x4)+Cα(S1(x1), S2(x4))

−Cα(S1(x1), S2(x3)) ,

S13(α,x) = P (T1 ≤ x1, T2 > x4) = S2(x4) − Cα(S1(x1), S2(x4)) ,

S21(α,x) = P (x1 < T1 ≤ x2, T2 ≤ x3) = S1(x1)−S1(x2)+Cα(S1(x2), S2(x3))

−Cα(S1(x1), S2(x3)) ,

S22(α,x) = P (x1 < T1 ≤ x2, x3 < T2 ≤ x4) = Cα(S1(x1), S2(x3))

−Cα(S1(x1), S2(x4)) − Cα(S1(x2), S2(x3)) + Cα(S1(x2), S2(x4)) ,

S23(α,x) = P (x1 < T1 ≤ x2, T2 > x4) = Cα(S1(x1), S2(x4))

−Cα(S1(x2), S2(x4)) ,

S31(α,x) = P (T1 > x2, T2 ≤ x3) = S1(x2) − Cα(S1(x2), S2(x3)) ,

S32(α,x) = P (T1 > x2, x3 < T2 ≤ x4) = Cα(S1(x2), S2(x3))

−Cα(S1(x2), S2(x4))

and
S33(α,x) = P (T1 > x2, T2 > x4) = Cα(S1(x2), S2(x4)) .

Then under model (7.1), the log likelihood function is given by

l(α, S1, S2) =
n∑

i=1

l(α, S1, S2, U
(1)
i , V

(1)
i , U

(2)
i , V

(2)
i ,∆i) ,

where

l(α, S1, S2,x, δ) = δ
(1)
1 δ

(2)
1 log S11(α,x) + δ

(1)
1 δ

(2)
2 log S12(α,x)

+δ
(1)
1 (1 − δ

(2)
1 − δ

(2)
2 ) log S13(α,x) + δ

(1)
2 δ

(2)
1 log S21(α,x)

+δ
(1)
2 δ

(2)
2 log S22(α,x) + δ

(1)
2 (1 − δ

(2)
1 − δ

(2)
2 ) log S23(α,x)

+(1 − δ
(1)
1 − δ

(1)
2 )δ(2)

1 log S31(α,x) + (1 − δ
(1)
1 − δ

(1)
2 )δ(2)

2 log S32(α,x)

+(1 − δ
(1)
1 − δ

(1)
2 )(1 − δ

(2)
1 − δ

(2)
2 ) log S33(α,x) + log h(x) .

In the next subsection, we discuss estimation of the association parameter
α.
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7.2.2 A Two-Stage Estimation Procedure

A natural estimator of α is obtained by maximizing the log likelihood func-
tion, l(α, S1, S2), but involves estimating α, S1, and S2 together. On the other
hand, it is much easier to estimate the marginal survival functions S1 and
S2 separately using the univariate interval-censored data on T1 and T2, re-
spectively. This motivates the following two-stage estimation procedure: first
estimate S1 and S2 separately and then estimate α by maximizing the pseudo
log likelihood given by l(α, Ŝ1, Ŝ2) with Ŝ1 and Ŝ2 being the estimates of S1
and S2.

For Ŝ1 and Ŝ2, one can use the NPMLEs of S1 and S2 based on the
observed univariate interval-censored data

{ U
(1)
i , V

(1)
i , ∆

(1)
1i , ∆

(1)
2i ; i = 1, ..., n }

and
{ U

(2)
i , V

(2)
i , ∆

(2)
1i , ∆

(2)
2i ; i = 1, ..., n } ,

respectively. These estimates, Ŝ1 and Ŝ2, can be obtained from the algorithm
described in Section 3.2 or 3.4. Given Ŝ1 and Ŝ2, one can estimate α by the
solution, say α̂, to the pseudo score equation U(α, Ŝ1, Ŝ2, Ĝn) = 0, where

U(α, Ŝ1, Ŝ2, Ĝn) =
∂l(α, Ŝ1, Ŝ2)

∂α
= n

∫
∂

∂α
l(α, Ŝ1, Ŝ2,x, δ) dGn(x, δ)

and Gn(x, δ) denotes the empirical estimator of Gα(x, δ). It is easily shown
that α̂ is consistent and the root of equation above can be obtained by stan-
dard methods, such as the Newton-Raphson algorithm.

This two-stage procedure was originally proposed by Wang and Ding
(2000) and Sun, Wang, and Sun (2006) for cases I and II bivariate interval-
censored failure time data, respectively. They show that under some regular-
ity conditions, n1/2 (α̂ − α0) converges in distribution to a zero-mean normal
random variable as n → ∞, where α0 denotes the true value of α. For case I
bivariate interval-censored data, a simple estimate of the asymptotic variance
is given below. For case II bivariate interval-censored data, however, the esti-
mate of the asymptotic variance is quite complicated (Sun, Wang, and Sun,
2006). For this reason, we only consider a bootstrap estimate.

We first consider estimating the variance of α̂ for case II bivariate interval-
censored data. To obtain a bootstrap estimate, one can draw M independent,
simple bootstrap samples of size n with replacement from the observed data
{ U

(1)
i , V

(1)
i , U

(2)
i , V

(2)
i , ∆i ; i = 1, ..., n }, where M is a prespecified integer.

Then applying the two-stage estimation procedure described above to the
bootstrap samples yields M estimates { α̃k ; k = 1, ..., M } of α. A natural
estimate of the variance of α̂ is σ̂2

α = (M − 1)−1 ∑M
k=1 (α̃k − α̃)2, the sample

variance of the α̃k’s, where α̃ = M−1∑M
k=1 α̃k. Simulation studies suggest

this bootstrap procedure works reasonably well for practical situations with
M at least 200 (Sun, Wang, and Sun, 2006).
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For case I bivariate interval-censored data, there exists only one monitoring
time U (j) for Tj , j = 1, 2. Suppose that U (1) = U (2) = C and C is a
continuous random variable with density function h. That is, the observation
time for T1 and T2 is the same, which would be the case, for example, if
T1 and T2 represent two different failure times from the same subject. In
this case, using the variables defined earlier, one has V (1) = V (2) = C and
∆

(1)
2 = ∆

(2)
2 = 0 as mentioned before. Wang and Ding (2000) show that the

asymptotic variance of n1/2 (α̂ − α0) can be consistently estimated by

1
n − 1

n∑
i=1

[
Q(α̂, Ŝ1, Ŝ2,xi, δi) − Q̄

]2
,

the sample variance of {Q(α̂, Ŝ1, Ŝ2,xi, δi) ; i = 1, ..., n}. In the expression
above,

Q(α, S1, S2,x, δ) =
∂

∂α
l(α, Ŝ1, Ŝ2,x, δ) +

gα(x, δ)
h(x)

× ∂

∂α

⎡
⎢⎣ 2∑

j=1

( δ
(j)
1 − 1 + Sj(xj) )

1∑
δ
(1)
1 =0

1∑
δ
(2)
1 =0

lj(α, S1, S2,x, δ)

⎤
⎥⎦

and Q̄ = n−1 ∑n
i=1 Q(α̂, Ŝ1, Ŝ2,xi, δi), where

l1(α, t1, t2,x, δ) =
∂l(α, t1, t2,x, δ)

∂t1

and

l2(α, t1, t2,x, δ) =
∂l(α, t1, t2,x, δ)

∂t2
.

Given α̂, one can estimate Kendall’s τ from equation (7.2) and apply the
delta method to estimate its variance. For example, under the Clayton model,
one obtains

τ̂ =
α̂ − 1
α̂ + 1

with its variance estimated by

σ̂2
τ =

4 σ̂2
α

(α̂ + 1)2
,

where σ̂2
α denotes the estimated variance of α̂.

An important application of the estimation procedure discussed above
is to test for independence of T1 and T2, which implies τ = 0 and in the
Clayton model, α → 1. Although one can use either α̂ or τ̂ for this and
both parameters have similar interpretation, Kendall’s τ in general may be
more stable than the association parameter α. Of course, one also can use
a procedure that is specifically developed to test for independence without
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assuming the copula model. There exist several such procedures for bivariate
right-censored failure time data (Hsu and Prentice, 1996; Oakes, 1982; Shih
and Louis, 1995). Ding and Wang (2004) give an approach for bivariate current
status data. No procedure seems to be available for case II bivariate interval-
censored data.

7.2.3 An Example

We consider bivariate interval-censored failure time data concerning CMV
shedding in blood and urine from an AIDS clinical trial on HIV-infected in-
dividuals. The data are described in Section 1.2.4 and given in data set I of
Appendix A. For the patients in this study, blood and urine samples were
supposed to be collected every 12 and 4 weeks, respectively, to test for the
presence of CMV. However, as seen in the data set, real sample collection
times differ from patient to patient, resulting in interval-censored data for
CMV shedding times in both blood and urine. Specifically, for time to CMV
shedding in blood, 7 patients have left-censored observations, 174 patients
have right-censored observations, and 23 patients have interval-censored ob-
servations. For time to CMV shedding in urine, the corresponding numbers of
patients are 49, 88 and 67. It is of scientific interest to determine if there is an
association within individuals between the time to CMV shedding in blood
and the time to CMV shedding in urine.

To assess this relationship, define T1 and T2 to be the times to the occur-
rences of CMV virus in blood and urine, respectively, and assume that they fol-
low the Clayton model. The two-stage estimation procedure gives α̂ = 2.8060
and with M = 500, the estimated standard error is 0.5413. This results in
τ̂ = 0.4746, and by the delta method, the estimated standard error is 0.0747.
As mentioned above, the independence of the CMV shedding times in blood
and urine implies α → 1 or τ → 0. Based on the standard normal distribu-
tion, testing α = 1 against α > 1 gives a p-value of 0.0004. Also based on the
standard normal distribution, testing τ = 0 against τ > 0 gives a p-value of
less than 0.0001. These results suggest that the CMV shedding times in blood
and in urine are significantly correlated for the HIV-infected subjects in the
study.

To investigate the effect of the choice of M , we calculated bootstrap es-
timates σ̂α for different M values and obtained similar results. For example,
with M = 1000, the estimated standard error is 0.5355.

7.3 Nonparametric Estimation of a Bivariate
Distribution Function

Consider a survival study that involves n independent subjects from a homo-
geneous population with each subject giving rise to two failure times denoted
by T1i and T2i, i = 1, ..., n. Let F (t1, t2) = P (T1i ≤ t1, T2i ≤ t2) denote their



160 7 Analysis of Bivariate Interval-censored Data

joint cumulative distribution function and suppose that only interval-censored
failure time data are available. In particular, the observations are

{ Ui = (L1i, R1i] × (L2i, R2i] , i = 1, . . . , n } ,

where (L1i, R1i] and (L2i, R2i] represent the intervals to which T1i and T2i

belong, respectively. In other words, the observation on each subject could
be a point, line segment (which may be a half-line), or rectangle (which may
be a quadrant). These possibilities correspond to the situations where both
failure times are observed exactly, one failure time is observed exactly and the
other is interval- or right-censored, or both failure times are interval- or right-
censored, respectively. If one treats points as rectangles that are degenerate
in both dimensions and line segments as rectangles that are degenerate in one
dimension, then the observed data consist entirely of rectangles. That is, the
observed data are a collection of n rectangles. As before, we use the convention
that (a, a] means the single point {a}.

7.3.1 The Nonparametric Maximum Likelihood Estimator

In this subsection, we study the NPMLE of the distribution function F (t1, t2).
First, note that the likelihood function of the observed data is proportional
to L(F ) =

∏n
i=1 F (Ui), where

F (Ui) = F (R1i, R2i) − F (R1i, L2i) − F (L1i, R2i) + F (L1i, L2i) .

As in the case of univariate interval-censored data discussed in Sections 3.3
and 3.4, it is easy to see that the NPMLE of F has to be discrete. Furthermore,
it puts all of the probability mass on the observed rectangles or intersections
of observed rectangles. Note that a nonempty intersection of rectangles can be
treated as a rectangle too. These rectangles constitute the regions of possible
support of the NPMLE of F . Also it is easy to show that the NPMLE can
be determined uniquely only up to the probability mass on these regions, but
its probability mass can be distributed arbitrarily inside these rectangles. In
other words, the likelihood function L(F ) is independent of the behavior of
F within each of these regions (Betensky and Finkelstein, 1999b; Gentleman
and Vandal, 2002).

Let
H = { Hj = (r1j , s1j ] × (r2j , s2j ] , j = 1, ..., m }

denote the disjoint rectangles that constitute the regions of possible support
of the NPMLE of F . The determination of it will be discussed below. Define

αij = I(Hj ⊆ (L1i, R1i] × (L2i, R2i])

and

pj = F (Hj) = F (s1j , s2j) − F (r1j , s2j) − F (s1j , r2j) + F (r1j , r2,j) ,
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i = 1, ..., n, j = 1, ..., m. Then the likelihood function L(F ) can be rewritten
as

L(p) =
n∏

i=1

m∑
j=1

αij pj (7.3)

with p = (p1, ..., pm)′, and the NPMLE of F is determined by maximizing
(7.3) over the pj ’s subject to pj ≥ 0 and

∑m
j=1 pj = 1.

Thus, as in the case of univariate interval-censored data, calculation of the
maximum likelihood estimator of F involves two steps. First, determine the set
of possible support regions, H, and then maximize (7.3) under the constraints∑m

j=1 pj = 1 and pj ≥ 0 for all j. The second step is the same as the
second step for computing the maximum likelihood estimator with univariate
interval-censored data. Thus the algorithm described in Section 3.2 or 3.4 can
be used. However, as seen below, the first step for the current situation is
much more complicated than that for univariate interval-censored data.

For the uniqueness of the pj ’s that maximize the likelihood function L(p),
the conditions given in Section 3.3 for the uniqueness with univariate interval-
censored data apply here. Define A = (αij), a n×m matrix. If the rank of A
is m, then the p vector is unique and in this case, the log-likelihood function
log L(p) is strictly concave. In general, the log-likelihood function is concave
for all cases. The NPMLE may be unique even if the rank of A is smaller
than m. In such cases, one could use the sufficient Lagrange-type conditions
to check for uniqueness of the NPMLE.

7.3.2 Algorithms for Possible Support Regions

In the following, we discuss three algorithms for finding H. The first algorithm,
given by Betensky and Finkelstein (1999b), takes a direct approach and is
much simpler in concept, but could be substantially slower than the other
two. The second and third algorithms, proposed by Gentleman and Vandal
(2001, 2002) and Bogaerts and Lesaffre (2004), respectively, rely on marginal
approaches. In particular, the second algorithm makes use of graph theory. In
the following, these algorithms are referred to as BF, GV, and BL algorithms,
respectively.

7.3.2.1 BF Algorithm

To determine H, we first note that H consists of rectangles that are intersec-
tions of observed rectangles such that there are no other rectangles contained
within them and each observed rectangle can be expressed as a union of rect-
angles in H. This is the basic idea behind the BF algorithm, which conducts
an iterative, direct search process for all rectangles in H. Before describing
the BF algorithm, we need to define an intersection search process. Suppose
that there is a set of rectangles that yield K arbitrarily ordered pairwise in-
tersections. Define M to be a new set of rectangles given as follows. For the
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kth (1 ≤ k ≤ K) intersection, Ri ∩ Rj , that is a nonempty rectangle, if it is
not included in M yet and also does not properly contain any rectangle that
is already in M, add it to M and discard the two rectangles that give rise
to the intersection, i.e., Ri and Rj . If the kth intersection, Ri ∩ Rj , is empty,
check each of the two rectangles, Ri and Rj . If there is a rectangle in M that
is a proper subset of Ri, then discard Ri. Otherwise, add Ri to M. Repeat
the same process for Rj . In the following, this search process is referred to as
the kept procedure.

Now we are ready to give the BF algorithm for determining H.
Step 0. Apply the kept procedure to the collection of observed rectangles and
let H(0) be M, the set of rectangles resulting from their intersections.
Step 1. At the lth iteration, apply the kept procedure to H(l−1) and let H(l)

be M, the set of the rectangles resulting from the intersections of all elements
in H(l−1).
Step 2. If H(l) = H(l−1), stop and take H = H(l). Otherwise, go back to
step 1.

To illustrate this algorithm, consider a simple example from Betensky and
Finkelstein (1999b) and Bogaerts and Lesaffre (2004) with n = 5 observa-
tions represented by the rectangles labeled 1, 2, 3, 4, and 5 in the left panel
of Figure 7.1. In the example, observation 4 does not overlap with any other
observation. For step 0 of the BF algorithm, we apply the kept procedure to
10 (2 out of 5) intersections and among them, only 4 are nonempty. According
to the kept procedure, the resulting H(0) includes the following five rectan-
gles: the original observation 4 and the intersections between observations 1
and 2, 2 and 3, 2 and 5, and 3 and 5. We label the rectangles in H(0) by A,
B, C, D, and E, respectively. For the first iteration in step 1, again we need
to consider 10 intersections. For the current step, only 3 of 10 are nonempty.
The three nonempty intersections are those between C and D, C and E, and
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Fig. 7.1. An artificial example for the illustration of the algorithms.
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D and E. The last three intersections are identical. Thus H(1) includes only
3 nonoverlapping rectangles, A (observation 4), B (the intersection between
observations 1 and 2), and the intersection between C and D (or the inter-
section given by observations 2, 3 and 5), shaded in the right panel of Figure
7.1. It is apparent that H = H(1).

7.3.2.2 GV Algorithm

For the description of the GV algorithm, we need to define two concepts
from graph theory. A clique C is a subcollection of the observed rectangles
{Ui , i = 1, ..., n} such that each rectangle in C overlaps with every other
rectangle in C. A maximal clique is a clique that is not a proper subset of
any other clique. For the example given in the left panel of Figure 7.1, there
exist 3 maximal cliques and they are {1, 2}, {2, 3, 5}, and {4}. By the GV
algorithm, finding H is equivalent to finding all maximal cliques for the given
observed rectangles. The elements of H are the intersections of all rectangles
in each of the maximal cliques. We note that each of the observed rectangles
could belong to more than one maximal clique.

To determine all maximal cliques for a set of bivariate interval-censored
data, one can use the following three-step procedure.
Step 1. Determine separately the regions of possible support for the marginal
distribution functions of T1 and T2 based on the univariate interval-censored
data { (L1i, R1i] , i = 1, . . . , n } and { (L2i, R2i] , i = 1, . . . , n }, respectively.
Let them be denoted by MT1 and MT2 and recall that they can be obtained
by Turnbull’s approach given in Section 3.3.
Step 2. For each interval in MT1 , find the subcollection of all the observed
rectangles whose projections on the T1-axis contain it and define M1 to be the
collection of all these subcollections. Perform the same process on each interval
in MT2 and define M2 to be the collection of the resulting subcollections.
Step 3. To determine, M, the set of all maximal cliques, for each element
in M1, find its intersection with each element in M2. Recall that elements
in M1 and M2 are subcollections of observed rectangles. If the intersection,
which also is a subcollection of all the observed rectangles, is empty, move to
the next intersection. If it is nonempty, check if it already is included in M or
is included as a proper subset of another intersection. If so, move to the next
intersection and otherwise, include it in M.

To illustrate the GV algorithm, we again consider the example given in the
left panel of Figure 7.1. From step 1, one has MT1 = {(1, 3], (4, 5], (7, 8]} and
MT2 = {(4, 5], (7, 7.5], (10, 11]}. Step 2 gives M1 = {{1, 4}, {1, 2}, {2, 3, 5}}
and M2 = {{1, 2, 5}, {2, 3, 5}, {3, 4}}. For step 3, the nonempty, distinct
intersections are {1}, {4}, {1, 2}, {2}, {2, 5}, {2, 3, 5} and {3}, resulting in
M = {{4}, {1, 2}, {2, 3, 5}}. They give the same H as that shown in the
right panel of Figure 7.1.
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7.3.2.3 BL Algorithm

Step 1 of the GV algorithm starts with one-dimensional situations. The in-
tervals generated by projecting the rectangles in H onto either the T1-axis or
T2-axis should be part of the intervals of possible support for the marginal
distribution of T1 or T2, respectively. This observation also motivates the fol-
lowing two-step BL algorithm.
Step 1. First collect all distinct end points from the observed intervals on
T1 only. For each such point, say t1, find the regions of possible support
for the marginal distribution of T2 based on the data given by intersecting
the observed rectangles with the straight line T1 = t1. Denote by N1,t1 the
collection of these possible support intervals and by N1 the set of all resulting
N1,t1 . Repeat this process on T2 only to obtain the N2,t2 and N2.
Step 2. To find H, for each N1,t1 in N1 and each interval, say (l2, r2], in N1,t1 ,
check if there exists an interval with t1 as either the left or right end point that
belongs to both of N2,l2 and N2,r2 . If not, move to the next interval or next
element in N1. Suppose that such an interval exists, say (l1, r1] with l1 = t1.
Then check if (l2, r2] ∈ N1,r1 . If not, move to the next interval or next element
in N1. Otherwise, check if the rectangle (l1, r1] × (l2, r2] already belongs to H
or includes some rectangle in H as a proper subset. If not, include it in H and
otherwise, move to the next interval or next element in N1 unless all intervals
and all elements in N1 have been checked.

In step 2, one could start with an element in N2 and arrive at the same
H. We apply the BL algorithm to the data given in the left panel of Figure
7.1. For step 1, we note that there exist 9 distinct end points for both T1 and
T2, respectively. Thus both N1 and N2 contain 9 elements, that is, 9 sets of
intervals. For example, two end points for T1 are 3 and 4 and the corresponding
sets of possible support intervals are N1,3 = {(1, 5], (10, 11]} and N1,4 =
{(4, 5]}, respectively. For step 2, first take the interval (1, 5] from N1,3 and
check if there exists an interval in both N2,1 and N2,5 that starts or ends with
t2 = 3, which is obviously not true. For the next interval (10, 11] from N1,3,
there does exist an interval that satisfies the needed condition and it is (1, 3]
belonging to both N2,10 and N2,11. Furthermore, one has that (10, 11] ∈ N1,1.
Thus one has one possible support rectangle given by (1, 3] × (10, 11], which
is the original observation 4. The other two support rectangles are obtained
similarly.

7.3.3 An Example

Table 7.1, reproduced from Betensky and Finkelstein (1999b), presents a set
of bivariate interval-censored failure time data arising from ACTG 181, the
same study discussed in Sections 1.2.4 and 7.2.3. The two failure times of
interest here are the time (T1) to shedding of CMV in the urine and blood
and the time (T2) to colonization of mycobacterium avium complex (MAC)
in the sputum and stool. Although the patients in the study were assigned
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Table 7.1. Observed rectangles (LC , RC ] × (LM , RM ] in months for CMV shedding
and MAC colonization from ACTG 181

LC RC LM RM Multiplicities LC RC LM RM Multiplicities

0 3 0 - 3 0 3 2 - 1
0 3 5 - 3 0 6 5 - 1
0 3 8 - 1 0 3 11 - 5
0 3 14 - 5 0 6 14 - 1
2 3 2 - 1 2 3 5 - 1
2 3 8 - 3 2 6 8 - 2
2 6 11 - 3 2 3 14 - 2
2 6 14 - 2 2 6 17 - 1
2 3 20 - 1 5 6 0 - 2
5 9 0 - 1 5 9 8 - 1
5 6 11 - 1 5 9 11 - 2
5 6 14 - 1 5 9 14 - 1
5 6 17 - 1 5 9 17 - 2
8 9 0 - 1 8 12 0 - 2
8 9 8 - 2 8 12 8 - 1
8 12 11 - 3 8 9 14 - 1
8 12 23 - 1 8 9 26 - 1

11 12 0 - 1 11 15 0 - 1
11 15 5 - 1 11 15 14 - 1
11 15 20 - 1 0 - 0 - 6
2 - 0 - 2 5 - 0 - 1
5 - 2 - 2 5 - 5 - 3
5 - 8 - 1 8 - 0 - 2
8 - 8 - 3 8 - 11 - 1

11 - 0 - 5 11 - 5 - 1
11 - 8 - 4 11 - 11 - 10
14 - 0 - 3 14 - 2 - 1
14 - 5 - 1 14 - 8 - 2
14 - 11 - 8 14 - 14 - 9
17 - 0 - 1 17 - 5 - 1
17 - 8 - 1 17 - 11 - 1
17 - 14 - 3 17 - 17 - 6
20 - 14 - 1 - 0 0 - 9

- 0 2 - 3 - 0 5 - 10
- 0 8 - 6 - 0 11 - 8
- 0 14 - 5 - 0 17 - 4
- 0 20 - 1 - 0 0 3 1
5 - 0 6 1 5 - 5 6 1

11 - 0 3 1 11 - 0 6 1
14 - 0 3 1 20 - 14 15 1
2 - - 0 1 8 - - 0 1

11 - - 0 1 0 3 0 6 1
2 6 5 12 1 8 9 8 9 1
- 0 - 0 1
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prescheduled clinic visit times as discussed before, many missed some of the
visits and returned with a change in laboratory results for CMV shedding or
MAC colonization, thus yielding interval-censored data for T1 and T2. The
goal here is to estimate the joint distribution function of T1 and T2.

The data set consists of 204 patients who were tested for CMV shedding
and MAC colonization at least once during the trial, and the time unit is one
month. In the table, (LC , RC ] and (LM , RM ] represent the observed inter-
vals for T1 and T2, respectively. For the data, there exist 68 and 10 interval-
censored observations on the times to CMV shedding and MAC colonization,
respectively. The numbers of right-censored CMV shedding and MAC colo-
nization times are 89 and 190, respectively, and the remaining observations
are left-censored.

To derive the NPMLE of the joint distribution function of T1 and T2,
we first determine the regions or rectangles of possible support for the joint
distribution function. All three algorithms described above suggest that the
NPMLE would put probability mass at most on 32 rectangles. That is, for
the observed data, there exist 32 maximal cliques and H includes 32 nonover-
lapping rectangles. The NPMLE, which is given in Table 7.2, puts positive
probability mass on only 13 of the 32 rectangles. Concerning uniqueness of
the NPMLE, the rank of A in this example is 31, not 32, suggesting that
the NPMLE may not be unique. However, the submatrix of A given by its
columns corresponding to 13 zero Lagrange multipliers has rank 13. Thus ap-
plying the sufficient Lagrange conditions given in Section 3.3, the NPMLE
given in Table 7.2 is unique.

Bogaerts and Lesaffre (2004) and Gentleman and Vandal (2002) also ana-
lyzed this data set. In particular, Bogaerts and Lesaffre (2004) compared the

Table 7.2. NPMLE of the joint probability function of times to CMV shedding and
MAC colonization

r1j s1j r2j s2j P̂ ((T1, T2) ∈ Hj)

0 0 0 0 0.014
0 0 20 ∞ 0.308
2 3 20 ∞ 0.087
5 6 5 6 0.015
5 6 17 ∞ 0.063
8 9 8 9 0.010
8 9 27 ∞ 0.071
11 12 0 0 0.005
11 12 23 ∞ 0.053
14 15 0 0 0.042
14 15 20 ∞ 0.022
20 ∞ 14 15 0.044
20 ∞ 17 ∞ 0.266
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three algorithms described in Section 7.3.2 and found that for the data, they
took 32, 0.07, and 0.17 seconds, respectively, for the determination of H.

7.3.4 Discussion

Concerning the three algorithms for determining H, the BF algorithm takes
a direct, two-dimensional approach, whereas the other two apply marginal,
univariate approaches. Although both the GV and BL algorithms rely on
marginal approaches, they use different search processes. The former begins
with univariate intervals and focuses on finding maximal cliques, whereas the
latter begins with univariate end points and searches directly for the Hj ’s.

For many situations, an algorithm will be selected based on speed. To give
a simple comparison of the three algorithms, consider two extreme examples.
First suppose that there is no overlap between observed rectangles. In this
case, the BF algorithm determines that H is simply all the observed rectangles
and little effort is needed. In contrast, the fact that H is all the observed
rectangles may not be determined right away if one applies either the GV or
BL algorithms. For a second example, suppose that all the observed rectangles
are different, but every pair of them have a nonempty intersection. Then in the
second step of the BF algorithm, one must consider 2 out of n new rectangles,
which could lead one to deal with a large number of rectangles in the following
steps. However, in this case, it is obvious that there exists only one maximal
clique.

In general, for situations where n is small or the overlap between the
observed rectangles is light, the BF algorithm seems to be efficient. For large n
and substantial overlap of the observed rectangles, the BF algorithm could be
too slow (Bogaerts and Lesaffre, 2004) and thus the two algorithms based on
marginal approaches should be used. Although the BL algorithm is faster than
the GV algorithm in general, the former requires more memory (Bogaerts and
Lesaffre, 2004). For generalizations to higher dimensions, the GV algorithm
may be more straightforward because of its use of graph theory.

As mentioned in Section 7.3.1, given the rectangles of possible support,
H, the determination of the NPMLE, the maximization of L(F ), is similar to
that for univariate interval-censored data. However, the estimation problem
discussed in this chapter is much more complicated, and the estimators can be
more problematic than that in the case of univariate interval-censored data.
For example, the study of theoretical properties such as consistency is more
challenging, and the NPMLE may more often exhibit undesirable properties
such as lack of consistency and non-uniqueness. This also is true even for
bivariate right-censored failure time data.

Because of possible non-uniqueness, inconsistency, and other problems of
the NPMLE, research has been conducted to repair or modify the NPMLE
or to impose some assumptions to overcome these problems (Kalbfleisch and
Prentice, 2002). For example, van der Laan (1996) gave a repaired NPMLE
based on a reduced data set that could perform better than the original
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NPMLE for bivariate right-censored failure time data. Kang and Koehler
(1998) and Yu, Wong, and He (2000) discussed these problems and proposed
some estimators for bivariate interval-censored data. Maathuis (2005) also
gave a reduction algorithm. To use a smoothing estimator provides another
approach (He and Lawless, 2003).

An alternative to nonparametric maximum likelihood estimation of F is
to use the so-called plus-in approach, often used for bivariate right-censored
failure time data (Kalbfleisch and Prentice, 2002; Prentice and Cai, 1992, Lin
and Ying, 1993). In this approach, a bivariate survival function is expressed
as a function of some other quantities that can be more easily estimated. For
example, Prentice and Cai (1992) express the joint survival function of T1 and
T2 as

S(t1, t2) = S1(t1) S2(t2)
[

1 +
∫ t1

0

∫ t2

0
[S1(s1)S2(s2)]−1 C(ds1, ds2)

]
,

where S1 and S2 denote the marginal survival functions as before and C(t1, t2)
is the covariance function of T1 and T2. This suggests that one can esti-
mate S(t1, t2) by using estimates of S1, S2 and C(t1, t2) in the expression
for S(t1, t2). Alternatively, if model (7.1) holds, then estimation of S(t1, t2)
reduces to estimation of the marginal survival functions S1(t1) and S2(t2) and
the association parameter α.

7.4 Regression Analysis with the Grouped Proportional
Hazards Model

This section considers regression analysis of discrete bivariate interval-censored
failure time data. As before, let T1 and T2 denote two possibly correlated fail-
ure time variables. Suppose that the time axis is divided into m time intervals
or the possible probability mass points for T1 and T2 are s1 < ... < sm.
If the probability mass points for T1 and T2 are different, then an inference
procedure like the one below can be developed or one can use the procedure
given below using the union of the probability mass points for T1 and T2. It is
straightforward to generalize the methods discussed here to interval-censored
data with dimension greater than two.

First we describe three marginal grouped PH models that are commonly
used for the analysis of multivariate failure time data. Some inference proce-
dures are then presented using marginal approaches (Goggins and Finkelstein,
2000; Kim and Xue, 2002), which have the advantage of leaving the association
between failure time variables arbitrary. An illustrative example follows.

7.4.1 The Grouped Proportional Hazards Model

Let Sj(t; Z) = P (Tj > t|Z) denote the marginal survival function of Tj given
a vector of covariates Z, j = 1, 2. For regression analysis, one can apply one
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of the following three marginal regression models:

Sj,k(Z) = Sj(sk; Z) = (q1 · · · qk)exp(Z ′β) , (7.4)

Sj,k(Z) = Sj(sk; Z) = (qj,1 · · · qjk)exp(Z ′β) , (7.5)

and
Sj,k(Z) = Sj(sk; Z) = (qj,1 · · · qj,k)exp(Z ′βj) . (7.6)

In (7.4), (7.5) and (7.6),

qj,k = P (Tj > sk |Tj > sk−1,Z = 0)

with s0 = 0, qk denotes qj,k if T1 and T2 have the same marginal distribution,
and β or the βj ’s denote the vector or vectors of regression parameters, k =
1, ..., m, j = 1, 2.

Among these three models, model (7.4) is the simplest and assumes that
the baseline survival functions for T1 and T2 are the same as well as the
covariates’ effects on them. In other words, it imposes the same marginal dis-
tribution on T1 and T2. This could be appropriate for situations such as eye
studies. In contrast, both models (7.5) and (7.6) allow the baseline survival
functions for T1 and T2 to be different. Model (7.5) applies to situations where
the effects of covariates on T1 and T2 can be reasonably assumed to be iden-
tical, while model (7.6) should be used if the effects of covariates on T1 and
T2 may be different. Goggins and Finkelstein (2000) and Kim and Xue (2002)
considered the analysis of general multivariate interval-censored data using
models (7.5) and (7.6), respectively.

Under these models, the corresponding density functions are

fj,k(Z) = (q1 · · · qk−1)exp(Z ′β) [1 − q
exp(Z ′β)
k ] ,

fj,k(Z) = (qj,1 · · · qj,k−1)exp(Z ′β) [1 − q
exp(Z ′β)
j,k ]

and
fj,k(Z) = (qj,1 · · · qj,k−1)exp(Z ′βj) [1 − q

exp(Z ′βj)
j,k ] ,

respectively. Define γk = log[− log(qk)] and θ = (γ1, ..., γm−1,β
′) for model

(7.4), γj,k = log[− log(qj,k)] and θ = (γ1,1, γ1,2, ..., γ2,m−1,β
′) for model

(7.5), or θj = (γj,1, ..., γj,m−1,β
′
j) and θ = (θ1,θ2) for model (7.6). Then

the density functions can be rewritten as

fj,k(Z,θ) = e−(eγ1+...+eγk−1 ) exp(Z ′β) (1 − e− exp(γk+Z ′β)) ,

fj,k(Z,θ) = e−(eγj,1+...+eγj,k−1 ) exp(Z ′β) (1 − e− exp(γj,k+Z ′β)) ,

and

fj,k(Z,θ) = e−(eγj,1+...+eγj,k−1 ) exp(Z ′βj) (1 − e− exp(γj,k+Z ′βj)) ,
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respectively. This reparameterization is commonly used to remove the range
restriction on the parameter space and to improve the convergence rate of the
iterative estimation procedure used to solve the score functions.

The marginal PH model is often used for the analysis of multivariate right-
censored failure time data (Guo and Lin, 1994; Lin, 1994; Wei et al., 1989). To
derive an estimation procedure for the regression parameters with such data,
T1 and T2 are usually assumed to be independent, which is commonly referred
to as the working independence assumption. In the following, we adopt the
same approach for estimation of the parameters in models (7.4) - (7.6).

7.4.2 Inference Procedures

As in the previous section, suppose that the observed data are

{ Ui = (L1i, R1i] × (L2i, R2i] , Zi , i = 1, . . . , n } ,

where (L1i, R1i] and (L2i, R2i] are the intervals, which include the survival
times, T1i and T2i, associated with subject i, respectively. Define αj

i,k =
I(sjε(Lji, Rji]), i = 1, ..., n, k = 1, ..., m, j = 1, 2. Then the marginal likeli-
hood for Tj is proportional to

Lj(θ) =
n∏

i=1

m∑
k=1

αj
i,k fj,k(Zi,θ) ,

j = 1, 2.
Under model (7.4) or (7.5), using the working independence assumption,

the log likelihood function is

l(θ) =
2∑

j=1

log [Lj(θ) ]

and one estimates θ by maximizing l(θ). Under model (7.6), one also can
maximize l(θ). In this case, the working independence assumption is not re-
quired, because one can maximize L1(θ) and L2(θ) separately. This estimator
of θ, denoted by θ̂, can be obtained by, for example, the Newton-Raphson al-
gorithm. The functions L(θ) = L1(θ) L2(θ) and Lj(θ) are similar to the
likelihood functions considered in Section 6.2. Thus the formulas given there
for the first and second derivatives of the log likelihood function can be used
here with minor modifications along with the Newton-Raphson algorithm to
solve the resulting score functions.

Let θ0 denote the true value of θ and define

U i,j(θ) =
∂li,j(θ)

∂θ
=

∂

∂θ
log

[
m∑

k=1

αj
i,k fj,k(Zi,θ)

]
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and

I(θ) = − 1
n

∂2l(θ)
∂θ ∂θ′ ,

i = 1, ..., n, j = 1, 2. Under some regularity conditions, it can be shown that
θ̂ is consistent as long as the marginal models, (7.4) to (7.6), are correctly
specified. Furthermore,

√
n (θ̂ − θ0) converges in distribution to the multi-

variate normal random vector with mean zero and covariance matrix that can
be consistently estimated by I−1(θ̂) D(θ̂) I−1(θ̂), where

D(θ) =
1
n

n∑
i=1

2∑
j1=1

2∑
j2=2

U i,j1(θ) U ′
i,j2(θ)

(Guo and Lin, 1994).
For estimation of θ1 and θ2 under model (7.6), as mentioned above, one

can simply maximize the log likelihood functions l1(θ1) = log L1(θ1) and
l2(θ2) = log L2(θ2), respectively. Let θ̂1 and θ̂2 denote these estimators of
θ1 and θ2. Then, instead of using the general variance estimate given above,
Kim and Xue (2002) suggest that one can simply estimate the asymptotic
covariance matrix of

√
n (θ̂j − θj,0) by I−1

j (θ̂j), where

Ij(θj) = − 1
n

∂2lj(θj)
∂θj ∂θ′

j

and θj,0 denotes the true value of θj , j = 1, 2. In this case, one also can easily
estimate the covariance between θ̂1 and θ̂2.

Models (7.4) to (7.6) assume that there exists a single set of covariates
whose effects on both T1 and T2 are of interest. In practice, the covariates
that affect T1 and T2 may be different. Suppose that for all subjects, the
covariates that affect T1 and T2 are given by two Z1 and Z2, which may be
completely different or share some common elements. In this case, for models
(7.4) and (7.5), we define a new vector of covariates, say Z∗, by combining
Z1 and Z2, and for each study subject, replace Z by Z∗. For model (7.6), we
can simply replace Z by Zj . Then the inference procedures given above can
be applied.

7.4.3 An Example

To illustrate the inference procedures described in Section 7.4.2, we consider
the binary interval-censored failure time data discussed in Sections 1.2.4 and
7.2.3. In that study, it is of interest to estimate the effects of the baseline HIV
infection stage on CMV shedding in blood and urine. In other words, it is of
interest to assess the association between baseline CD4 cell counts and CMV
shedding in blood and urine. A simple way to measure this association is to fit
the PH model separately to the data on CMV shedding in blood and urine,
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Fig. 7.2. Estimates of baseline survival functions for blood and urine CMV shed-
ding.

respectively, using the methods given in Section 6.2. Because, as shown in
Section 7.2.3, the two shedding times are significantly related, it seems more
appropriate to fit the PH model to both CMV shedding times together by
using the approach of the last subsection.

Define T1 and T2 to be the times to CMV shedding in blood and urine,
respectively, and Z = 1 if the baseline CD4 cell count is less than 75 (cells/µl)
and Z = 0 otherwise. First we assume that T1 and T2 share a common baseline
survival function and the covariate effect is the same for T1 and T2. That is,
model (7.4) is true. The inference procedure described above gives β̂ = 0.8446
with an estimated standard error of 0.1729, yielding a p-value close to zero for
testing β = 0. This indicates that the patients with baseline CD4 cell count
below 75 (cells/µl) have significantly higher risk of CMV shedding in blood
or urine than those with baseline CD4 cell count above 75 (cells/µl).

Allowing T1 and T2 to have different baseline survival functions, but as-
suming the covariate effects are the same, the inference procedure under model
(7.5) gives β̂ = 0.9503 with estimated standard error being 0.1932. Again, this
corresponds with a p-value close to zero, and the result is similar to that under
model (7.4). Figure 7.2 presents the estimates of the baseline survival functions
of T1 and T2 obtained under models (7.4) and (7.5), respectively. It suggests
that T1 and T2 seem to have different baseline survival functions and that
the CMV shedding in urine seems to occur much earlier than that in blood.
Because T1 and T2 appear to have different survival functions, model (7.5)
may be more appropriate than model (7.4) for the data set. If one fits model
(7.6) to the observed data, the method gives β̂1 = 1.1997 and β̂2 = 0.8893
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with estimated standard errors of 0.4159 and 0.1993, respectively. Note that
this is equivalent to fitting the PH model to T1 and T2 separately. The results
obtained here suggest that the application of separate analyses could result
in much less significant covariate effects. In other words, the approach given
above for the simultaneous analysis of two correlated, interval-censored failure
times could be more powerful than the separate analyses.

7.5 Bibliography, Discussion, and Remarks

The literature on bivariate or multivariate interval-censored failure time data
is relatively limited compared with that on other topics discussed in the pre-
vious chapters. The existing references mainly focus on the three areas dis-
cussed in the previous three sections: inference about the association param-
eter between two correlated survival variables, nonparametric estimation of
joint distribution or survival functions, and regression analysis. As discussed
above, for the first area, the available references include Betensky and Finkel-
stein (1999a), Ding and Wang (2004), Sun, Wang, and Sun (2006), and Wang
and Ding (2000), and the authors who considered the second area include
Betensky and Finkelstein (1999b), Bogaerts and Lesaffre (2004), Gentleman
and Vandal (2001, 2002), Kang and Koehler (1998), and Yu, Wong, and He
(2000). For the regression analysis problem, the references include Bogaerts
et al. (2002), Goggins and Finkelstein (2000), He and Lawless (2003), and
Kim and Xue (2002). In addition, Jewell et al. (2005) discussed estimation of
smooth functionals of the marginal distribution functions for current status
data.

There are many open problems and issues that need to be studied for
the analysis of bivariate interval-censored failure time data. As with bivariate
right-censored data, bivariate interval-censored data are much more challeng-
ing than their univariate counterparts. In addition to the problems and issues
that exist for univariate interval-censored data, an analysis of bivariate data
has to address the problems arising because the two failure time variables may
be correlated.

In the analysis of bivariate failure time data, nonparametric estimation of
a joint survival function and regression analysis are two of the most basic com-
ponents. Many issues remain untouched even when only right censoring exists
(Hougaard, 2000) and of course, interval censoring makes them even more
challenging. For example, there exists little research on the properties of the
NPMLE discussed in Section 7.3. Of course, one could use other estimators of
a joint distribution function rather than the NPMLE. For instance, in both
nonparametric estimation and regression analysis in the presence of interval
censoring, one could use the conditional or frailty approach (Kalbfleisch and
Prentice, 2002; Klein and Moeschberger, 2003). For this approach, suppose
that there exists a shared and unobserved frailty W , a positive random vari-
able with mean one, and conditional on W = w, T1 and T2 are independent
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with the hazard function of Tj given by

w λj(t) , j = 1, 2. (7.7)

Then the joint survival function of T1 and T2 has the form

S(t1, t2) = E exp [−W ( Λ1(t1) + Λ2(t2) ) ] = L [ Λ1(t1) + Λ2(t2) ] ,

where Λj(t) =
∫ t

0 λj(s)ds denotes the cumulative hazard function of Tj and
L is the Laplace transformation of the distribution of W . Under model (7.7),
T1 and T2 have a nonnegative association and they are independent if the
variance of W is zero. That is, W has a degenerate distribution.

Gamma distributions are often used to model W . In this case, S(t1, t2)
is given by the copula model with Cα belonging to the Clayton family dis-
cussed in Section 7.2, and model (7.7) is called the gamma frailty model.
Other commonly used distributions for W include the log normal distribu-
tions, the positive stable distributions and the inverse Gaussian distributions.
For regression analysis, one can replace model (7.7) by

w λj(t) exp(Z ′β) , (7.8)

where β and Z are defined as in Section 7.4. Compared with the marginal
approach, one advantage of this frailty model approach is that it directly
models the correlation of T1 and T2. However, one of its disadvantages is that
the marginal hazard functions do not follow the PH model. Also the regression
parameters do not have the same interpretations as under the marginal PH
model.

In this chapter, only the grouped PH model is considered for regression
analysis of bivariate interval-censored data. However, the marginal inference
approach can be used with other regression models, such as the continuous,
i.e., the usual PH model, the additive hazards model, the proportional odds
model or others considered in Chapter 5 or 6 and apply the marginal ap-
proach for inference. For bivariate right-censored data with the PH model,
the marginal approach yields an inference procedure that only involves re-
gression parameters, which is an advantage. This is not the case for bivariate
interval-censored data. For this reason, the full likelihood approach may be a
better choice because both involve estimation of baseline hazard functions and
regression parameters. However, a drawback of the full likelihood approach is
that it needs more detailed modeling specifications, such as model (7.7) or
(7.8), and could be more complicated, but it could be more efficient.

Given the complexity of fully nonparametric and semiparametric infer-
ences for bivariate interval-censored failure time data, an alternative approach
is to impose a smoothness or even a piecewise constant assumption on, for ex-
ample, the hazard function as discussed in Sections 2.5 and 3.5. The approach
is easier to implement than the nonparametric and semiparametric ones, but
more flexible than parametric approaches. He and Lawless (2003) investigated
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this with using piecewise constant and spline specifications for baseline hazard
functions in regression analysis of bivariate failure time data.

It is of practical importance to extend the inferences discussed in this chap-
ter to multivariate interval-censored failure time data with dimension greater
than two. In this case, there are several possibly correlated failure time vari-
ables. For examples of multivariate failure time data, readers are referred to
Hougaard (2000). Some of the inference procedures presented in this chap-
ter, such as those in Section 7.4, can be easily generalized to multivariate
interval-censored data, whereas the generalization of the others, such as those
in Section 7.3, is not straightforward.
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Analysis of Doubly Censored Data

8.1 Introduction

As discussed in Section 1.3, doubly censored data occur in studies that consist
of two related events with one followed by the other. A typical example is given
by a disease progression study in which the onset of the disease is caused or
preceded by certain virus infection. In these situations, three variables are
present, and they are time to infection, time between infection and the onset
of the disease, and time to the onset of the disease. It is apparent that one
only needs to know two of the three variables. If the variable of interest is the
time to infection or the time to the onset of the disease, in general, one only
needs to analyze the variable of interest without the need of dealing with the
other two variables.

By doubly censored data, we usually mean that the variable of interest
is the time between infection and the onset of certain disease such as AIDS
latency time in AIDS studies. In this case, one has to deal with two of the three
variables together as seen below. In other words, one cannot transform doubly
censored data into general interval-censored data unless the time to the first
event can be observed exactly. Thus different approaches are required for their
analyses. Of course, one can approach the analysis of doubly censored data
from the point of bivariate data analysis, but the special structure of doubly
censored data makes general bivariate data analysis methods inappropriate.

For the analysis of doubly censored data, it is usually convenient to deal
with the first two variables, the time to infection and the time between infec-
tion and the onset of the disease. The involvement of two variables also means
that one has to face two censoring mechanisms. In addition, sometimes one
also may need to consider the relationship of the first two variables, although
it seems reasonable for most situations to assume that they are independent.
In the following, we focus on this independent situation, and remarks on de-
pendent situations are given in Section 8.6.

In Section 8.2, we consider one-sample problem, and several procedures
are described for nonparametric estimation of distribution functions for dou-
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bly censored data. In addition, we discuss situations that involve truncation
as well as double censoring. Section 8.3 deals with semiparametric regression
analysis of doubly censored data. Methods are described for inference about
regression parameters in both the PH and additive hazards models. The topic
of Section 8.4 is nonparametric comparison of survival functions when only
doubly censored data are available. In Section 8.5, two illustrative examples
are provided for the discussed approaches. Section 8.6 contains bibliographic
notes about the analysis of doubly censored data and some discussion re-
garding several inference approaches and issues that are not treated in this
chapter.

For the discussion below, without loss of generality, we assume that the
observation on the first variable, the time to infection, is either exact or truly
interval-censored, but not right-censored. The observation on the third vari-
able, the onset of the disease, can be either interval- or right-censored.

8.2 Nonparametric Estimation of Distribution Functions

Consider a study that involves n independent subjects from a homogeneous
population and gives doubly censored failure time data. For subject i, let Xi

and Si denote the times of the occurrences of two related events with Xi ≤ Si,
respectively, i = 1, ..., n. Also, let Ti = Si − Xi denote the survival time
of interest. In this section, we assume that all of Xi, Si, and Ti are discrete
random variables.

Let u1 < ... < ur denote the possible mass points for the Xi’s and
v1 < ... < vs the possible mass points for the Ti’s. Define wj = Pr(Xi = uj)
and fk = Pr(Ti = vk), j = 1, ..., r, k = 1, ..., s. Then w = { wj } and
f = { fk } with

∑r
j=1 wj = 1 and

∑s
k=1 fk = 1 are the probability functions

of the Xi’s and Ti’s, respectively. The goal is to estimate f as well as w.
In the following, we discuss three algorithms that use the self-consistency

idea discussed in Section 3.4.1. First we consider a procedure, originally pro-
posed in De Gruttola and Lagakos (1989), that is based on the maximum
likelihood approach and is a generalization of the self-consistency algorithm
given in Section 3.4.1. The second method, from Gómez and Lagakos (1994)
and a two-step procedure, is a simplification of the first procedure and pro-
vides a trade-off between efficiency and complexity with respect to the first
algorithm. The last method is a conditional likelihood-based approach due to
Sun (1997b). It can also be regarded as a generalization of the self-consistency
algorithm given in Section 3.4.1 in that it allows truncation as well as double
censoring.

8.2.1 A Maximum Likelihood Approach

Suppose that observed data have the form
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{ (Li, Ri] , (Ui, Vi] , i = 1, ..., n }
such that Xi ∈ (Li, Ri] and Si ∈ (Ui, Vi]. Define αi

jk = I(Li < uj ≤
Ri , Ui < uj + vk ≤ Vi), j = 1, ..., r, k = 1, ..., s. Then the full likelihood
function has the form

LF (w, f) =
n∏

i=1

r∑
j=1

s∑
k=1

αi
jk wj fk . (8.1)

To estimate w and f , one can maximize the full likelihood function
LF (w, f) or solve the score equations given by LF . For this, define

Ii
jk =

αi
jk wj fk∑r

l=1
∑s

m=1 αi
lm wl fm

, (8.2)

w∗
j =

1
n

n∑
i=1

s∑
k=1

Ii
jk , f∗

k =
1
n

n∑
i=1

r∑
j=1

Ii
jk , (8.3)

j = 1, ..., r, k = 1, ..., s. Note that the quantity Ii
jk is the conditional ex-

pectation of the event Xi = uj and Ti = vk given w and f . Thus
∑n

i=1 Ii
jk

provides a natural estimate of the number of subjects with Xi = uj and
Ti = vk if w and f are known. This motivates the following self-consistency
algorithm given by De Gruttola and Lagakos (1989) for estimation of w and
f .
Step 1. Choose starting values for w and f .
Step 2. Computer the Ii

jk’s given in equation (8.2) and determine the updated
estimates w∗

j ’s and f∗
k ’s of the wj ’s and fk’s given by equation (8.3).

Step 3. Repeat step 2 until the desired convergence occurs.
Let the ŵj ’s and f̂k’s denote the estimators of w and f given by this

algorithm. Then the cumulative distribution functions of the Xi’s and Ti’s
can be estimated, respectively, by

Ĥ(x) =
∑

j:uj≤x

ŵj , F̂ (t) =
∑

k:vk≤t

f̂k .

Note that if the Xi’s are observed exactly, the algorithm given above is equiva-
lent to the self-consistency algorithm given in Section 3.4 for interval-censored
failure time data. In this case, alternatively, one can apply the algorithm given
in Section 3.4 to the data { (Ui −Xi, Vi −Xi] } for estimation of f . Of course,
the cumulative distribution function of the Xi’s can be separately and easily
estimated by its empirical estimate.

To implement the algorithm, one needs to choose initial estimators. For
this , one can apply the middle point imputation approach described in Section
2.4 to the observed doubly censored data and use the resulting maximum
likelihood estimators as initial estimators. Alternatively, one can estimate w
and f separately by using the observed interval-censored data on the Xi’s and
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Ti’s, respectively, or apply the middle point imputation approach to these two
sets of interval-censored data. To check the convergence of the algorithm, one
can use the criterion

r∑
j=1

|w∗ (l)
j − w

∗ (l−1)
j | +

s∑
k=1

|f∗ l
k − f

∗ (l−1)
k | ≤ ε

for a prefixed ε > 0, where the w
∗ (l)
j ’s and f

∗ (l)
k ’s denote the estimators of w

and f at the lth iteration, respectively.
Note that the estimators ŵj ’s and f̂k’s may not maximize LF or be unique

for certain situations. De Gruttola and Lagakos (1989) show that these estima-
tors are either a saddle point or local maximum of the likelihood function LF .
One way to distinguish the maximum likelihood estimator from a saddle point
is to examine the matrix evaluated at the final estimators of negative second
derivatives of the logarithm of LF with respect to w and f . If the eigenvalues
of the matrix are positive, then the estimator is a local or globe maximum,
and if they are both positive and negative, the estimator is a saddle point.
However, for most situations, the estimators obtained using the algorithm
given here are unique and converge in probability to the true parameters as
n increases.

In practice, the nonuniqueness tends to occur when the time points uj ’s
and vk’s are defined too finely or too many. Use of the less number of time
points and thus the less number of parameters are more likely to yield a unique
estimator. It also reduces the convergence time of the algorithm. However, too
few number of time points would prevent the estimation of some important
change patterns of a distribution function.

8.2.2 A Two-step Approach

This subsection considers another algorithm and it estimates w and f sepa-
rately. For simplicity, assume that observed data are given as in the previous
subsection, but with Ui = Vi or Vi = ∞, i = 1, ..., n. That is, for the Si’s,
one has right-censored data instead of interval-censored data. The method
can be easily generalized to interval-censored data situations.

To motivate the algorithm, note that if one is interested only in estimating
w, it is natural to employ the following marginal likelihood

Lm(w) =
n∏

i=1

∑
j : Li<uj≤Ri

wj

based only on interval-censored data on the Xi’s. For estimation of f with
known w, one can maximize the full likelihood function LF given in (8.1),
which can be rewritten as
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LF (f |w) =
n∏

i=1

⎧⎨
⎩

∑
j,k:Li<uj≤Ri,uj+vk=Vi

wj fk

⎫⎬
⎭

δ1
i δ2

i

×
⎧⎨
⎩

∑
j : Li<uj≤Ri

∑
k:uj+vk>Ui

wj fk

⎫⎬
⎭

δ1
i (1−δ2

i )

. (8.4)

Here δ1
i = I(Ri < ∞) and δ2

i = I(Ui = Vi), i = 1, ..., n. Note that the
full likelihood function in (8.4) implies that there do not exist right-censored
observations on the Xi’s as assumed above. Otherwise, it would involve an-
other factor accounting for right-censored Xi. These arguments motivate the
following two-step algorithm due to Gómez and Lagakos (1994).
Step 1. Estimate w using the nonparametric marginal maximum likelihood
estimator from Lm, which can be obtained by the methods given in Section
3.4.
Step 2. Given wj = ŵj from step 1 and the current estimator of fk, say f̂

(l)
k ,

calculate the updated estimator of fk given by

f̂
(l+1)
k =

1
n − m

[ N (l)
1 (k) + N

(l)
2 (k) ] ,

where

N
(l)
1 (k) =

n∑
i=1

δ1
i δ2

i

φij ŵj(uj=Vi−vk) f̂
(l)
k∑r

j=1 φij ŵj f̂
(l)
j(vj=Vi−uj)

,

N
(l)
2 (k) =

n∑
i=1

δ1
i (1 − δ2

i )

∑r
j=1 φij I(Ui < uj + vk) ŵj f̂

(l)
k∑r

j=1 φij ŵj

∑
h:vh>Ui−uj

f̂
(l)
h

,

m =
∑n

i=1 (1 − δ1
i ), where φij = I(uj ∈ (Li, Ri]).

Step 3. Repeat step 2 until the desired convergence occurs.
The main idea behind this two-step algorithm is to replace doubly censored

data by two separate sets of interval-censored data. Its main advantage over
the maximum likelihood approach given in the previous subsection is that it
can be more easily implemented and make use of the algorithms discussed in
Section 3.4 for general interval-censored data. Also it does not have the saddle
point or nonuniqueness problem as the maximum likelihood approach. But it
could be less efficient than the latter.

Note that for estimation of f , more conveniently, sometimes one may want
to transform the observed doubly censored data into a single set of case II
interval-censored data as { (Ui − Ri, Vi − Li] }. Although this would avoid
estimation of w and make it possible to employ the approaches discussed in
Section 3.4, it is invalid. To see this, note that the resulting likelihood function
is given by

n∏
i=1

s∑
k=1

I(Ui − Ri < vs ≤ Ui − Li) fk ,
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which differs from the likelihood function LF given in (8.4) and would yield
biased estimators.

8.2.3 A Conditional Likelihood-based Approach

Truncation may exist in a disease progression study, and here we consider
situations where for subject i, the truncation is characterized by an interval
(B1

i , B2
i ] for Si, i = 1, ..., n. In other words, subject i is included in the study

only if Si is within the interval (B1
i , B2

i ]. Consequently, (Ui, Vi] ⊆ (B1
i , B2

i ]
and one has truncated and doubly censored data on the Ti’s given by

{ (Li, Ri] , (Ui, Vi] , (B1
i , B2

i ] , i = 1, ..., n } .

If B1
i = 0 and B2

i = ∞, one then has doubly censored failure time data. In
the following, we will assume that

∑
k∈∪iBi

fk = 1.
Let the uj ’s, vk’s, φij ’s, αi

jk’s, f and w be defined as before. Also let γi
jk =

I(Li < uj ≤ Ri , B1
i < uj + vk ≤ B2

i ), j = 1, ..., r, k = 1, ..., s. Then the
conditional likelihood function of the observed data given Xi ε (Li, Ri] has the
form

LC(w, f) =
n∏

i=1

∑r
j=1
∑s

k=1 αi
jk wj fk∑r

j=1
∑s

k=1 γi
jk wj fk

.

Define αik = I(vk ∈ (Ui−Ri, Vi−Li]), βik = I(vk ∈ (B1
i −Ri, B

2
i −Li]),

φ∗
ij =

{∑
k:Ui−uj<vk≤Vi−uj

fk if uj ε (Li , Ri]
1 otherwise

and

η∗
ij =

{∑
k:B1

i
−uj<vk≤B2

i
−uj

fk if uj ε (Li, Ri]
1 otherwise ,

j = 1, . . . , r, i = 1, . . . , n. Also define

α∗
ik =

{∑
Ui<ul+vk≤Vi

wl if vk ε (Ui − Ri , Vi − Li]
1 otherwise

and

β∗
ik =

{∑
B1

i
<ul+vk≤B2

i
wl if vk ε (B1

i − Ri, B
2
i − Li]

1 otherwise ,

k = 1, ..., s, i = 1, . . . , n. Then LC can be rewritten as

LC =
n∏

i=1

∑r
j=1 φij φ∗

ij wj∑r
j=1 φij η∗

ij wj
=

n∏
i=1

∑s
k=1 αik α∗

ik fk∑s
j=1 βik β∗

ik fk

with respect to w and f , respectively. For estimation of w and f , motivated
by the self-consistency algorithm given in Section 3.4 and the maximum like-
lihood approach given above, Sun (1997b) proposes the following two-step
self-consistency procedure.
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Step 0. Estimate w as in step 1 of the two-step procedure given in Section
8.2.2 and denote the estimate by w(0) = { w

(0)
j }.

Step 1. At the lth iteration, define the updated estimate denoted by f (l) =
{ f

(l)
k } of f as the maximum likelihood estimator of f from the conditional

likelihood function LC with assuming that w is known and wj = w
(l−1)
j . It

can be obtained by iterating the following self-consistency equation

f
(b)
k =

1
M(f (b−1), w(l−1))

n∑
i=1

[µik(f (b−1), w(l−1)) + νik(f (b−1), w(l−1))] ,

k = 1, ..., s, with respect to b until convergence and with the f
(l−1)
k ’s as the

initial estimators. Here

µik(f, w) =
αik α∗

ik fk∑s
j=1 αij α∗

ij fj
, νik(f, w) =

(1 − βik β∗
ik) fk∑s

j=1 βij β∗
ij fj

and M(f, w) =
∑n

i=1
∑s

k=1 [µik(f, w) + νik(f, w)].
Step 2. Define the updated estimator denoted by w(l) = { w

(l)
j } of w as the

maximum likelihood estimator of w from LC with assuming that f is known
and fk = f

(l)
k from step 1. It can be obtained by iterating the following

self-consistency equation,

w
(b)
j =

1
M∗(w(b−1), f (l))

n∑
i=1

[µ∗
ij(w

(b−1), f (l)) + ν∗
ij(w

(b−1), f (l))] ,

j = 1, ..., r, with respect to b until convergence and with w(l−1) as the initial
estimators. In the above,

µ∗
ij(w, f) =

φij φ∗
ij wj∑r

k=1 φik φ∗
ik wk

, ν∗
ij(w, f) =

(1 − φij η∗
ij) wj∑r

k=1 φik η∗
ik wk

and M∗(w, f) =
∑n

i=1
∑r

j=1 [µ∗
ij(w, f) + ν∗

ij(w, f)].
Step 3. Repeat steps 1 and 2 until the desired convergence occurs.

Sun (1997b) shows that the conditional likelihood function LC increases at
each iteration between steps 1 and 2 and thus the algorithm converges to a lo-
cal or maximum of LC . Note that for the case of no truncation, the conditional
likelihood LC differs from the full likelihood function LF and it can seen from
LC that this may affect estimation of w, but not estimation of f . Numerical
results support this. Also note that like the two-step approach, the conditional
likelihood-based approach given here also operates through interval-censored
data rather than doubly censored data. But the former method involves just
one iteration, while the latter approach involves multiple iterations.

For the situation considered here, an alternative to the conditional likelihood-
based approach is to maximize the full likelihood function
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n∏
i=1

∑r
j=1
∑s

k=1 αi
jk wj fk∑ji0

j=1
∑kij2

k=kij1
wj fk

.

Here ji0 = max{ j ; uj ≤ B2
i }, kij1 = min{ k ; vk ≥ max{ 0 , B1

i − uj } },
and kij2 = max{ k ; vk ≤ B2

i − uj }. A major difference between LC and the
this full likelihood is that if the Xi’s are observed exactly, as expected and one
would like to, LC is independent of w. That is, in this case, the conditional
likelihood-based approach deals only with f , the parameters of interest. In
contrast, the estimation procedure based on the latter still has to deal with
both f and w. Tu (1995) investigated this latter approach for the case when
all truncation intervals are identical.

Note that the three algorithms given above also apply to situations where
the underlying Xi, Si and Ti are continuous variables. This is because for a
finite sample, the likelihood function has the same form for both discrete or
continuous survival variables.

8.3 Semiparametric Regression Analysis

This section considers regression analysis of doubly censored failure time data.
Inference approaches are discussed for regression parameters in two commonly
used regression models, the PH and additive hazards models. For the former,
we deal with both discrete and continuous versions of the model and different
inference methods are described.

Let Xi, Si, and Ti be defined as in the previous section and suppose that
observed data from n independent subjects have the form

{ (Li, Ri] , (Ui, Vi] , Zi , i = 1, ..., n } .

Here (Li, Ri] and (Ui, Vi] denote observed intervals for Xi and Si, respectively,
and Zi is a vector of covariates associated with subject i. For estimation of
covariate effects on the failure time Ti’s, we first consider the discrete PH
model for the situation where all of Xi, Si, and Ti are discrete survival vari-
ables. Estimation procedures are then discussed for the situations where Xi,
Si, and Ti are continuous and the covariate effect can be described by the PH
model or the additive hazards model.

8.3.1 Analysis with the Discrete Proportional Hazards Model

In this subsection, we suppose that for subjects i, the effect of covariates on
Ti can be described by model (1.10). That is, we have

Sk(Zi) = Pr(Ti > vk|Zi) = (q1 · · · qk)exp(Z ′
iβ) , k = 1, ..., s − 1

given Zi. In this model, v1 < ... < vs denote the possible values of the Ti’s
as before, β is the vector of regression parameters and
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qk = Pr(Ti > vk|Ti > vk−1,Zi = 0)

with v0 = 0. Using the notation defined in the previous section, one can write
the full likelihood function as

LF (w, q,β) =
n∏

i=1

r∑
j=1

s∑
k=1

αi
jk wj fk(Zi) , (8.5)

where q = {q1, ..., qs−1} and

fk(Zi) = (q1 · · · qk−1)exp(Z ′
iβ) [1 − q

exp(Z ′
iβ)

k ]

with q0 = 1 and qs = 0.
To estimate the parameters wj ’s, qk’s and β, one can use the maximum

likelihood approach. For this, as in Section 1.4.8 and 7.4.1, it is common to
reparameterize qk by using, for example, γk = log[− log(qk)] to remove the
range restriction on the qk’s and to improve convergence in the estimation
process. Using the new parameters γk’s, one has

fk(Zi) = e− (eγ1 + ... + eγk−1 ) exp(Z ′
iβ) (1 − e− exp(γk+Z ′

iβ)) .

Another common reparameterization is to let γk = log[− log(q1...qk)] and
under this, one has

fk(Zi) = e− exp(γk−1+Z ′
iβ) − e− exp(γk+Z ′

iβ) .

Let γ = { γk }. To maximize LF given in (8.5) with respect to w, γ and β,
one can use the Newton-Raphson algorithm to solve the score functions from
LF . To reduce the dimension of the parameters, alternatively, one could use
the following iterative two-step procedure.
Step 1. Choose initial estimators of (w, γ,β).

Step 2. At the lth iteration, fix γ and β and let γk = γ̂
(l−1)
k and β = β̂

(l−1)

from the previous iteration. Then define the updated estimator of w as the
maximum likelihood estimator from LF (w, γ,β).
Step 3. Fix w and set wj = ŵ

(l)
j from step 2. Then define the updated

estimators of γ and β as the maximum likelihood estimators from LF (w, γ,β).
Step 4. Repeat steps 2 and 3 until the desired convergence occurs.

The idea behind this algorithm was originally given in Kim et al. (1993),
and as in Section 8.2.1, the resulting estimator could be a saddle point. Also
as in Section 8.2.1, one can identify them by examining the signs of the eigen-
values of the information matrix. Given the estimators of (w′

js, γ
′
ks,β), one

could estimate their covariance matrix by the inverse of the observed Fisher
information matrix. For the selection of initial estimators and the convergence
criterion, one can use the approaches discussed in Section 8.2.1.

To implement step 2 of the two-step procedure above, we can use the
self-consistency algorithm given in Section 3.4. To see this, note that one can
rewrite the full likelihood function in (8.5) as
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LF (w, γ,β) =
n∏

i=1

r∑
j=1

φij φ∗
ij(γ,β) wj ,

where φij = I(uj ∈ (Li, Ri]) and

φ∗
ij(γ,β) =

{∑
k:Ui−uj<vk≤Vi−uj

fk(Zi) if uj ε (Li , Ri]
1 otherwise .

That is, given γ and β, LF (w, γ,β) can be regarded as a likelihood function
from a set of interval-censored data. Hence the self-consistency algorithm given
in Section 3.4 can be applied to estimate w using the estimator ŵ(l−1) from
the previous iteration as the initial values.

For step 3, note that one also can rewrite LF (w, γ,β) as

LF (w, γ,β) =
n∏

i=1

s∑
k=1

αik α∗
ik fk(Zi) ,

where αik and α∗
ik are defined as in Section 8.2.3. This has the same form

as the full likelihood function given in Section 6.2. Thus as in Section 6.2,
one can apply the Newton-Raphson algorithm to maximize LF (w, γ,β). In
doing this, the estimators of γ and β from the previous iteration can be used
as initial values because w is fixed. Furthermore, for the first and second
derivatives of the log likelihood function lF (w, γ,β) = log LF (w, γ,β), the
formulas derived in Section 6.2 can be used directly with treating the αik α∗

ik’s
as the αik’s over there. In particular, for the case of β = 0, one has the self-
consistency equation

Ŝ0(0) = 1 , Ŝk(0) = q̂k Ŝk−1(Zi = 0) , q̂k =
n′

k − d′
k

n′
k

for the estimator of the baseline survival function Sk(Zi = 0), k = 1, ..., s−1.
Here

d′
k =

n∑
i=1

αik α̂∗
ik f̂k(0)∑s

m=1 αim α̂∗
im f̂m(0)

and

n′
k =

s∑
j=k

n∑
i=1

αij α̂∗
ij f̂j(0)∑s

m=1 αim α̂∗
im f̂m(0)

,

where α̂∗
ij denotes α∗

ij with the wj ’s replaced by their estimators. Note that
here f̂k(0) = Ŝk−1(0) − Ŝk(0).

An important application of this methodology is that one can derive a
score test for the comparison of several survival functions. Suppose that study
subjects come from p + 1 different populations, and let Zi be the vector of
group indicators. To compare the survival functions corresponding with the
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p + 1 populations when only doubly censored data are available, one can use
the score test statistic

U st =
∂lF (w, γ,β)

∂β

=
n∑

i=1

s∑
k=1

αij α∗
ij Zi [Sk−1(Zi) log Sk−1(Zi) − Sk(Zi) log Sk(Zi)]∑s

k=1 αik α∗
ikf̂k(Zi)

evaluated at β = 0 and with w and the Sk(0)’s replaced by their estimators.
A covariance estimator of U st can be obtained similarly as in Section 6.2 from
the observed Fisher information matrix.

8.3.2 Analysis with the Continuous Proportional Hazards Model

Suppose that the Ti’s are continuous random variables and the hazard of Ti

at time t is given by
λi(t) = λ0(t) exp(Z ′

i β )

given Zi. Here as before, λ0(t) is an unknown baseline hazard function, and β
denotes the vector of regression coefficients. For simplicity, we assume that the
observations on the Si’s are right-censored and given by S∗

i = min{ Si , Ci }
and δi = I(Si = S∗

i ), i = 1, ..., n. Here Ci is the censoring time associated
with subject i and is assumed to be independent of Si.

For estimation of β, define Yi(t |Xi) = I( S∗
i − Xi ≥ t) and Ni(t |Xi) =

I(S∗
i − Xi ≤ t , δi = 1 ). Let X = (X1, ..., Xn) and

S(j)(t; β |X) =
1
n

n∑
i=1

Yi(t |Xi) Zj
i eZ

′
i β ,

j = 0, 1, where Z0
i = 1 and Z1

i = Zi. Also let Ĥ denote the NPMLE of the
cumulative distribution function of the Xi’s based on interval-censored data
on the Xi’s only.

Note that if X = x = (x1, ..., xn) is observed exactly, then one has right-
censored data for the Ti’s. Hence it is common to estimate β by the maximum
partial likelihood estimator defined as the solution to Up(β |x) = 0, where

Up(β |X) =
∫ τ

0

n∑
i=1

[
Zi − S(1)(t; β |X)

S(0)(t; β |X)

]
dNi(t |Xi) (8.6)

is the partial score function of β with τ denoting the longest possible follow-up
time. Of course, X is unknown. By treating X as unknown parameters and
using the profile likelihood idea, it is natural to estimate β by the solution,
say β̂p, to the following estimating equation

Up(β, Ĥ) =

(
n∏

i=1

a−1
i

) ∫ R1

L1

...

∫ Rn

Ln

Up(β |x)
n∏

i=1

[
dĤ(xi)

]
= 0 , (8.7)
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where ai =
∫ Ri

Li
d Ĥ(xi), i = 1, ..., n. It is easy to see that if the Xi’s are

observed exactly, β̂p reduces to the maximum partial likelihood estimator.
This estimation procedure was proposed in Sun et al. (1999), who proved

that β̂p is consistent. Furthermore, n1/2 ( β̂p − β0 ) has the asymptotic normal
distribution with mean zero and covariance matrix that can be consistently es-
timated by Σ̂p = Ap(β̂p) Γp(β̂p) A′

p(β̂p). Here β0 denotes the true value of β,

Ap(β) = {−n−1 ∂Up(β, Ĥ) /∂β }−1 and Γp(β) = n−1 ∑n
i=1 b̂p i(β) b̂

′
p i(β),

where

b̂p i(β) =
∫ τ1

0

∫ R1

L1

...

∫ Rn

Ln

[
Zi − S(1)(t; β |x)

S(0)(t; β |x)

]
[ dNi(t|xi)

− Yi(t|xi) exp(Z ′
iβ)dN̄(t|x)

n S(0)(t; β |x)

] n∏
k=1

d Ĥ(xk)
ak

and N̄(t|x) =
∑n

i=1 Ni(t|xi).
To determine β̂p, one needs to solve the equation (8.7), and this could be

difficult in practice. Alternatively, one can approximate or replace equation
(8.7) by

1
M

M∑
l=1

Up(β |x(l)) = 0 ,

where M is an integer and x(1), ...,x(M) are M sets of independent samples
of X from Ĥ given the observed data. Similar to that discussed in Section
2.3, another alternative due to Pan (2001) is to use the multiple imputation
approach as below.

Let M be an integer as before and for each l (1 ≤ l ≤ M), let Xi = xl i be

a random number from Ĥ given Xi ε (Li, Ri]. Then define β̂
(l)
p as the solution

to equation Up(β |x) = 0 and estimate β by

β̃p =
1
M

M∑
l=1

β̂
(l)
p

and the covariance matrix of β̃p by

Σ̃p =

∑M
l=1 I−1

(l)

M
+
(

1 +
1
M

) ∑M
l=1 (β̂

(l)
p − β̃p) (β̂

(l)
p − β̃p)′

M − 1
,

where Up(β |x) is defined in (8.6) and

I−1
(l) =

[
− ∂Up(β|X(l))

∂β′

∣∣∣∣β=β̃p

]−1

.
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The estimator β̃p is the average of M imputed estimators, and the first and
second terms of its covariance estimator represent the estimates of, respec-
tively, the within-imputation covariance and the between-imputation covari-
ance. Pan (2001) suggests that the inference about β can be performed by
using the normal approximation N( β , Σ̃p ) for β̃p.

As with the method discussed in Section 2.3, this Monte Carlo imputation
approach reduces the interval-censored data problem to a right-censored data
problem. Thus one can take advantage of existing software for right-censored
data. In other words, both β̃p and its covariance matrix estimator Σ̃p can be
easily obtained compared to β̂p and Σ̂p. However, they could be less accurate
than β̂p and Σ̂p.

Sometimes it also is interesting to estimate the cumulative baseline hazard
function Λ0(t) =

∫ t

0 λ0(s) ds. Once given β̂p, a natural estimator of it is given
by

Λ̂p 0(t) =
∫ R1

L1

...

∫ Rn

Ln

∫ t

0

∑n
i=1 dNi(s |xi)

n S(0)(s; β̂ |x)

n∏
i=1

a−1
i d Ĥ(xi) ,

or one can estimate Λ0(t) by

Λ̃p 0(t) =
1
M

M∑
l=1

∫ t

0

∑n
i=1 dNi(s |xl i)

n S(0)(s; β̃
(l)
p |x(l))

with the use of the Monte Carlo imputation approach. In the case where the
Xi’s are observed exactly, these two estimators reduce to the Nelson-Aalen
estimator of Λ0(t).

8.3.3 Analysis with the Additive Hazards Model

Consider the same problem discussed in Section 8.3.2. But instead of the PH
model, we assume that given Zi, the hazard of Ti at time t is given by the
additive hazards model

λ(t) = λ0(t) + Z′
i β , (8.8)

where λ0(t) and β are defined as before. Let the Yi(t |Xi)’s, Ni(t |Xi)’s and
X be defined as in the previous subsection. Also let

Z̄(t |X) =
∑n

i=1 Yi(t |Xi) Zi∑n
i=1 Yi(t |Xi)

.

For estimation of β, as in the case of the PH model, first consider the
situation where X is observed exactly. In this case, a common estimator is
given by the solution to the equation Ua(β |X) = 0, where

Ua(β |X) =
n∑

i=1

∫ τ

0

[
Zi − Z̄(t |X)

] [
dNi(t |Xi) − Yi(t |Xi)Z ′

iβ dt
]

,
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which is derived using the martingale theory (Lin and Ying, 1994). Here unlike
Up(β |X), Ua(β |X) is not a partial likelihood score function.

By using Ua(β |X), as with Up(β, Ĥ) for the PH model, one can define
the corresponding estimating function as

Ua(β, Ĥ) = (
n∏

i=1

a−1
i )

∫ R1

L1

...

∫ Rn

Ln

Ua(β |x)
n∏

i=1

[
dĤ(xi)

]

for estimation of β under model (8.8) (Sun, Kim, and Sun, 2004). Let β̂a

denote the solution to Ua(β, Ĥ) = 0. Then one has

β̂a =

[
n∑

i=1

∫ R1

L1

· · ·
∫ Rn

Ln

∫ τ

0
Yi(t|xi)

{
Zi − Z̄(t|x)

}⊗2
dt

n∏
k=1

dĤ(xk)/ak

]−1

×
[

n∑
i=1

∫ R1

L1

· · ·
∫ Rn

Ln

∫ τ

0

{
Zi − Z̄(t|x)

}
dNi(t|xi)

n∏
k=1

dĤ(xk)/ak

]
,

where for a column vector a, a⊗2 = a a′. It is interesting to note that unlike
β̂p, the estimator β̂a has a closed form.

The consistency and asymptotic normality of β̂a are given in Sun, Kim,
and Sun (2004). In particular, as n → ∞, n1/2 (β̂a − β0) converges in dis-
tribution to a normal random vector with mean zero and covariance matrix
that can be consistently estimated by A−1

a (β̂a) Ba(β̂a) A−1
a (β̂a), where

Aa(β) =
1
n

n∑
i=1

∫ R1

L1

· · ·
∫ Rn

Ln

∫ τ

0
Yi(t |xi)

[
Zi − Z̄(t|x)

]⊗2
dt

n∏
k=1

dĤ(xk)/ak ,

Ba(β) =
1
n

n∑
i=1

b̂a i(β) b̂
′
a i(β) ,

b̂a i(β) =
∫ R1

L1

· · ·
∫ Rn

Ln

∫ τ

0

[
Zi − Z̄(t |x)

]
dM̂i(t |x,β)

n∏
k=1

dĤ(xk)/ak ,

M̂i(t |,x,β) = Ni(t |xi) −
∫ t

0
Yi(s |xi)

[
dΛ̂0(s |x,β) + Z′

iβ ds
]

and

Λ̂0(t |x,β) =
∫ t

0

∑n
i=1

[
dNi(s |xi) − Yi(s |xi)Z ′

iβ ds
]∑n

i=1 Yi(s |xi)
.

As with the PH model, in practice, the determination of β̂a may be com-
plicated. To overcome this and make use of the existing software for right-
censored data, one could also use the Monte Carlo imputation approach de-
scribed in Section 8.3.2.
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Specifically, as before, let M be an integer, and for each l (1 ≤ l ≤ M),
let Xi = xl i be a random number from Ĥ given Xi ε (Li, Ri]. Then for given
X = x(l) = (xl 1, ..., xl n), solve the estimating equation Ua(β |x(l)) = 0,
which gives

β̂
(l)
a =

[
n∑

i=1

∫ τ

0
Yi(t |xl i){Zi − Z̄(t |x(l))}⊗2 dt

]−1

×
[

n∑
i=1

∫ τ

0
{Zi − Z̄(t |x(l))} dNi(t |xl i)

]
.

This gives an estimator of β as

β̃a =
1
M

M∑
l=1

β̂
(l)
a ,

which is asymptotically equivalent to β̂a.
As β̃p, the covariance matrix of β̃a can be estimated by

Σ̃a =
∑M

l=1 Ã−1
l B̃lÃ

−1
l

M
+ (1 +

1
M

)
∑M

l=1 (β̂
(l)
a − β̃a)(β̂

(l)
a − β̃a)′

M − 1
,

the sum of the within-imputation and between-imputation covariance esti-
mates, where

Ãl =
n∑

i=1

∫ τ

0
Yi(t |xl i)

[
Zi − Z̄(t |x(l))

]⊗2
dt

and

B̃l =,

n∑
i=1

∫ τ

0

[
Zi − Z̄(t |x(l))

]⊗2
dNi(t |xl i) .

The term Ã−1
l B̃lÃ

−1
l in this summation is the covariance estimator of β̂

(l)
a

based on the imputed right-censored data.
For the cumulative baseline hazard function Λ0(t) =

∫ t

0 λ0(s) ds, given
β̂a, it can be estimated by

Λ̂a 0(t) =
∫ R1

L1

· · ·
∫ Rn

Ln

Λ̂0(t |x, β̂a)
n∏

i=1

dĤ(xi)/âi .

With the Monte Carlo imputation approach, one can estimate Λ0(t) by

Λ̃a 0(t) =
1
M

M∑
l=1

Λ̂0(t |x(l), β̂
(l)
a ) .
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8.3.4 Discussion

There exist several differences among the approaches discussed in Sections
8.3.1 to 8.3.3. One major difference is that the maximum likelihood method
given in Section 8.3.1 involves estimation of both distribution functions and
regression parameters. In contrast, the estimating equation approaches de-
scribed in Sections 8.3.2 and 8.3.3 deal only with the regression parameters
and do not have to estimate the distribution function. The latter is usually
regarded as nuisance parameters. Furthermore, the involvement of a large
number of parameters in the maximum likelihood approach usually makes
both computation and study of its properties difficult. Another difference is
that in practice, the estimate of the covariance matrix using the Fisher in-
formation matrix in Section 8.3.1 may not give realistic and useful results,
especially for large data sets. In contrast, the covariance estimates given in
Sections 8.3.2 and 8.3.3 do not have the same problem in general. An advan-
tage of the maximum likelihood approach is that it could yield more efficient
estimators than the two estimating equation approaches.

For the models considered in Sections 8.3.2 and 8.3.3, one could develop
an alternative method for inference by employing the maximum likelihood
approach used in Section 8.3.1. Goggins et al. (1999a) discussed this approach
for the continuous PH model and proposed a Monte Carlo EM algorithm.
Compared with the two estimating equation approaches, this approach has
the the differences similar to those between the approaches in Sections 8.3.1
to 8.3.3.

One can increase the efficiency of the methods given in Sections 8.3.2 and
8.3.3 or generalize them by adding a weight process. For example, for the
PH model, one could use the same estimating equation Up(β, Ĥ) = 0 with
replacing the function given in (8.6) by

Up(β |X, W ′
is) =

∫ τ

0

n∑
i=1

Wi(t)
[

Zi − S(1)(β, t |X)
S(0)(β, t |X)

]
dNi(t |Xi) .

Here the Wi(t)’s are weight processes that may depend on observed data.
One practical issue related to the methods discussed in this section is model

checking or the selection between the PH model and the additive hazards
model. For this, of course, the prior knowledge about the possible underlying
model for the subject matter considered is very important. From the statistical
point of view, this is still an open question for interval-censored data. Of
course, one could transfer the problem to the right-censored data problem
by using the imputation approach and apply the existing model checking
or selection techniques for right-censored data. Pan (2001) provided some
discussion on this for the assessment of the PH model. Also some discussion
is given in Section 8.5.2 through an example.
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8.4 Nonparametric Comparison of Survival Functions

For comparison of several survival functions based on doubly censored data,
one way is to use the score test given in Section 8.3.1. Alternatively, this section
describes a nonparametric test procedure, which applies the idea discussed in
Sun (2001b) and is a generalization of the generalized log-rank test given in
Section 4.3.1 for interval-censored data.

Let the Xi’s, Si’s, and Ti’s be defined as before and suppose that only
doubly censored data on the Ti’s are available and they have the form

{ (Li, Ri] , (Ui, Vi] , i = 1, ..., n } ,

where Xi ∈ (Li, Ri] and Si ∈ (Ui, Vi]. Furthermore, suppose that all variables
are discrete and each study subject randomly receives one of p + 1 different
treatments or comes from one of p + 1 different populations. We assume that
the distributions of the Xi’s are same among all subjects. The goal is to test
the hypothesis H0 : the p + 1 survival functions corresponding to the different
treatments or populations are identical.

To generalize the test procedure given in Section 4.3.1, we start by con-
structing estimates of the observed and expected numbers of failures as before.
For this, as in Section 8.2, let u1 < ... < ur denote the possible mass points
for the Xi’s and v1 < ... < vs the possible mass points for the Ti’s. Also
let the ŵj ’s and f̂k’s denote the joint maximum likelihood estimators of the
probability functions of the Xi’s and Ti’s under H0 given in Section 8.2. Define
αik = I( vk ε (Ui − Ri, Vi − Li]) and

α̂∗
ik =

{∑
uj+vkε(Ui,Vi] ŵj if vk ε (Ui − Ri , Vi − Li]

1 otherwise
,

i = 1, ..., n, k = 1, ..., s. Also define δi = I(Vi < vs) and ρik = I( δi =
0 , Ui ≥ vk ) as in Section 4.3.1, i = 1, ..., n, k = 1, ..., s.

Then as in Section 4.3.1, one can estimate the overall observed failure and
risk numbers at time vk by

dk =
n∑

i=1

δi
αik α̂∗

ik f̂k∑s
m=1 αim α̂∗

im f̂m

and

nk =
s∑

j=k

n∑
i=1

δi

αij α̂∗
ij f̂j∑s

m=1 αim α̂∗
im f̂m

+
n∑

i=1

ρik ,

respectively, k = 1, ..., s. For each treatment group l = 1, ..., p + 1, the
corresponding estimates at time vk are

dk l =
l∑
i

δi
αik α̂∗

ik f̂k∑s
m=1 αim α̂∗

im f̂m
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and

nk l =
s∑

j=k

l∑
i

δi

αij α̂∗
ij f̂j∑s

m=1 αim α̂∗
im f̂m

+
l∑
i

ρik ,

respectively, where
∑l

i denotes the summation over all subjects with treat-
ment l. If one has exact observations on the Xi’s, these estimates give the
corresponding estimators defined in Section 4.3.1.

Following the test statistic defined in Section 4.3.1, we can test H0 using
the statistic U = (U1, ..., Up+1)′, where

Ul =
s−1∑
k=1

(
dkl − nkl dk

nk

)
.

The covariance matrix of U can be estimated similarly too as in Section 4.3.1.
Specifically, let M be a prespecified integer. For each b (1 ≤ b ≤ M),
Step 1. Let {X

(b)
i ; i = 1, ..., n} be an independent sample of size n such that

X
(b)
i is drawn from the conditional probability function

Pr{ X
(b)
i = uj } =

ŵj∑
m : Li<um≤Ri

ŵm
, uj ε (Li, Ri]

given Xi ε (Li, Ri], i = 1, ..., n.
Step 2. For the given X

(b)
i ’s, let {(T (b)

i , δ
(b)
i ) ; i = 1, ..., n} be an independent

right-censored survival sample of size n such that if δi = 0, let T
(b)
i = Ui −

X
(b)
i and δ

(b)
i = 0. Otherwise, let T

(b)
i be a random number drawn from the

conditional probability function

Pr{ T
(b)
i = v} =

f̂k∑
m : Ui−X

(b)
i

<vm≤Vi−X
(b)
i

f̂m

over the vk’s that belong to (Ui − X
(b)
i , Vi − X

(b)
i ] and δ

(b)
i = 1, i = 1, ..., n.

Here δ
(b)
i is the censoring indicator.

Step 3. Given right-censored failure time data {(T (b)
i , δ

(b)
i ) ; i = 1, ..., n}, cor-

responding with the dk, nk, dkl, and nkl, first calculate the observed failure
and risk numbers from all subjects and from subjects in each treatment group
denoted by the d

(b)
k , n

(b)
k , d

(b)
kl , and n

(b)
kl , respectively. Then calculate the statis-

tic U denoted by U (b) with replacing dk, nk, dkl, and nkl by d
(b)
k , n

(b)
k , d

(b)
kl ,

and n
(b)
kl , respectively. Also calculate the estimate of the covariance matrix of

U (b) given by V̂
(b)

= V̂
(b)
1 + ... + V̂

(b)
s−1, where V̂

(b)
k is a (p + 1) × (p + 1)

matrix with elements

(V̂ (b)
k )l l =

n
(b)
k l (n(b)

k − n
(b)
k l ) d

(b)
k (n(b)

k − d
(b)
k )

(n(b)
k )2 (n(b)

k − 1)
, l = 1, ..., p + 1
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and

(V̂ (b)
k )l1l2 = − n

(b)
k l1

n
(b)
k l2

d
(b)
k (n(b)

k − d
(b)
k )

(n(b)
k )2 (n(b)

k − 1)
, l1 �= l2 = 1, ..., p + 1

k = 1, ..., s − 1.
Step 4. Repeat the steps 1 to 3 for each b = 1, ..., M and then estimate the
covariance matrix of U by V̂ = V̂ 1 + V̂ 2. Here

V̂ 1 =
1
M

M∑
b=1

V̂
(b)

and

V̂ 2 =
(

1 +
1
M

) ∑M
b=1 [ U (b) − Ū ] [U (b) − Ū ]t

M − 1
,

where Ū =
∑M

b=1 U (b) /M .
Once U and V̂ are obtained, the test of the hypothesis H0 can be carried

out using the statistic U∗ = U ′ V̂
−

U , whose distribution can be approxi-
mated by the χ2 distribution with p degrees of freedom, where V̂

−
denotes

a generalized inverse of V̂ . An equivalent test is to use any p elements of U
and the corresponding submatrix of V̂ . Sun (2001b) gave a procedure that is
similar to the one given above, but does not reduce to the log-rank test for
right-censored data.

The test procedure given above is closely related to the score test given in
Section 8.3.1. To see the relationship between them, define Zi to be the p × 1
vector of treatment indicators such that Zi = 0 for subjects in population
p + 1, and for subjects in population l (1 ≤ l ≤ p), its lth element is equal to
1 and all other elements are equal to 0. Also define

cdik =
αik α∗

ik f̂k∑s
m=1 α̂im α̂∗

im f̂m

and crik =
∑r

m=k cdim, k = 1, ..., s − 1, i = 1, ..., n. Note that the cdik and
crik are the conditional probabilities of the events Ti = vk and Ti ≥ vk given
the observed data, respectively.

As in Section 6.5.2, let Dk denote the set of subjects who have a non-zero
probability of failing at vk and Rk the set of subjects who have a non-zero
probability of being at risk at v−

k given the observed data, k = 1, ..., s − 1.
Then similarly as in Section 6.5.2, using the notation defined here, one can
rewrite the score test statistic given in Section 8.3.1 for H0 as

U st =
n∑

i=1

s−1∑
k=1

(
Zi crik log λ̂k − Zi cdik log λ̂k

1 − λ̂k

)
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=
s−1∑
k=1

− log λ̂k

1 − λ̂k

(∑
iεDk

Zi cdik − (1 − λ̂k)
∑
iεRk

Zi crik

)
,

where λ̂k =
∑s

m=k+1 f̂m/
∑s

m=k f̂m. In contrast, asymptotically, the test
statistic U can be rewritten as

U =
s−1∑
k=1

(∑
iεDk

Zi cdik − (1 − λ̂k)
∑
iεRk

Zi crik

)

assuming that all censoring intervals have finite lengths. Note that if the
lengths of intervals (vk−1, uk] are very small as n → ∞, then log λ̂−1

k will be
approximately equal to 1−λ̂k. Thus U and U st are asymptotically equivalent.

8.5 Examples

This section presents two illustrative examples for the methods discussed in
the previous sections. The first one concerns a set of doubly censored failure
time data arising from an AIDS clinical trial with the focus on the duration of
viral suppression. The second example considers the data discussed in Section
1.2.3 from an AIDS cohort study regarding AIDS latency time.

8.5.1 Analysis of Duration of Viral Suppression Data

Table 8.1 presents a set of doubly censored failure time data arising from
the same AIDS clinical trial, ACTG 359, that generated the data given in
data set III of Appendix A. The table gives the observed information about
the duration of viral suppression defined as the period of time during which
the number of RNA copies is below the threshold of 500 viral copies/ml. As
the time at which the number of RNA copies first drops below the threshold
discussed in Section 6.3.2, the duration of viral suppression is another variable
of great interest to clinicians, which is often used to measure the effectiveness
of AIDS treatments among other purposes. As discussed in Section 6.3.2,
viral load is usually only measured periodically, and thus the times at which
a person’s viral load falls below and comes back over again 500 copies are not
exactly observed. In other words, only doubly censored data are available for
the duration of viral suppression as given in Table 8.1. Unlike in Section 6.3.2,
here we analyze all patients together without considering their initial RNA
levels and focus on the nonparametric estimation problem.

Let T denote the duration of viral suppression and X and S times at
which an AIDS patient’s RNA falls below and comes back over again 500
copies, respectively. Then T = S − X. Table 8.1 gives observed intervals
(L, R] and (U, V ] for X and S, respectively, of 124 AIDS patients from ACTG
359 whose numbers of RNA copies were measured at least once and fell below
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Table 8.1. Observed intervals in months given by (L, R] and (U, V ] for the duration
of viral suppression of 124 AIDS patients from ACTG 359 with . indicating that RNA
is still below 500 at month 12

L R U V L R U V L R U V L R U V

1 2 2 3 1 2 2 3 0 1 1 2 0 1 1 2
8 10 12 . 0 1 6 8 0 1 1 2 0 1 4 6
0 1 1 2 0 2 8 12 0 1 2 . 1 2 2 3
0 1 2 3 0 1 12 . 0 1 2 4 2 3 12 .
1 2 2 3 1 2 3 4 0 1 1 2 0 1 12 .
0 1 12 . 0 1 12 . 1 2 12 . 0 1 1 2
2 3 4 6 2 3 12 . 1 2 2 3 0 1 12 .
1 2 10 12 2 3 4 6 0 1 1 2 2 3 12 .
2 3 3 4 1 2 12 . 0 1 12 . 0 1 4 6
0 1 1 2 0 1 2 3 1 4 4 6 0 1 12 .
0 1 2 3 0 1 12 . 0 1 8 10 0 1 1 2
3 4 4 8 0 1 10 12 8 10 12 . 2 3 3 4
1 2 12 . 0 1 12 . 0 1 1 2 0 2 12 .
1 2 12 . 1 2 3 4 3 4 12 . 1 3 6 .
1 2 12 . 0 2 6 8 1 2 4 6 0 1 4 6
0 2 3 4 3 4 6 8 0 1 1 2 1 2 12 .
0 1 1 2 1 2 8 . 0 2 2 4 0 1 12 .
1 2 12 . 1 2 2 3 0 1 1 2 2 3 12 .
0 1 1 2 0 1 1 2 0 1 1 2 1 2 2 3
4 6 12 . 0 1 3 4 0 1 2 3 0 1 4 6
0 1 12 . 0 1 1 2 1 2 2 3 2 3 4 .
0 1 12 . 2 3 10 . 1 2 2 3 3 4 4 6
6 8 10 . 1 2 10 12 0 1 3 4 2 3 6 .
0 1 6 8 0 1 3 4 3 4 4 6 6 8 12 .
1 2 2 4 2 3 3 6 0 1 4 6 1 2 12 .
1 3 3 4 0 4 4 6 0 1 4 6 1 2 3 4
1 2 4 6 0 1 3 4 0 1 12 . 0 1 1 2
0 2 12 . 2 3 4 8 1 2 6 8 0 1 12 .
0 1 12 . 0 1 8 10 0 1 4 6 0 1 1 2
0 1 12 . 2 3 6 8 2 3 6 8 0 1 12 .
0 1 3 4 3 4 4 6 0 1 2 3 1 2 6 8

500 during the 12 months period. As with data set III of Appendix A, the
time unit is month. For example, the observation (0, 1] and (12, .] means that
the patient’s RNA falls below 500 at the very first clinical visit, the end of
the first month, and is still below 500 at the last visit, the end of month 12.
In other words, his or her duration of viral suppression is greater than 12
months. For the patient with observation (1, 2] and (2, 3], his or her RNA is
above 500 at the first visit (the end of the first month), falls below 500 at the
second visit (the end of the second month), and then jumps over 500 before
the end of month 3.
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Fig. 8.1. Estimates of the survival function of the duration of viral suppression.

Figure 8.1 presents estimates of the survival function of the duration of
viral suppression given by the maximum likelihood (ML), two-step (TS), and
conditional likelihood-based (CL) approaches described in Section 8.2. For
these estimates, we use the self-consistent estimates given in Section 3.4 based
on separate interval-censored data as initial estimates. Other initial estimates
such as uniform distributions are also studied and give similar results. The
figure shows that the ML and CL estimates are quite close to each other, but
the TS estimate seems to overestimate the duration of viral suppression. Both
ML and CL estimates suggest that the median duration of viral suppression
is about 4 months.

To explore the difference between ML and CL estimates and TS estimate
shown in Figure 8.1, Figure 8.2 gives the resulting estimates of the survival
function of the initial event, the RNA copies of the patients in the study
falling below 500, from the three approaches. It is interesting to note that the
ML and TS approaches give almost identical estimates. This indicates that
the use of the marginal estimate of the survival function of the initial event
in the TS approach is not the only difference between the TS and ML and
CL approaches. As expected, the ML and CL approaches can yield different
estimates of the survival function of the initial event.

8.5.2 Analysis of AIDS Latency Time Data

To analyze the doubly censored data discussed in Section 1.2.3, we first es-
timate the survival functions of AIDS latency times of the patients in the
two treatment groups separately. Figure 8.3 displays the estimates obtained
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Fig. 8.2. Estimates of the survival function of the initial event for the duration of
viral suppression.

using the three approaches described in Section 8.2 corresponding with the
two treatment groups. It can be seen from the figure that all three methods
give similar estimates for each of the two groups. All three estimates of the
survival function for the patients in the lightly treated group are on top of
these for the patients in the heavily treated group. That is, the patients in
the lightly treated group have longer AIDS latency time than those in the
heavily treated group. In other words, the HIV patients in the lightly treated
group seem to enjoy longer life without AIDS than those in the heavily treated
group, and the more contaminated blood factor means earlier onset of AIDS.
For the comparison of the survival functions of HIV infection time between the
two groups, Figure 8.4 gives their estimates obtained using the ML approach
and indicates that the patients in the two groups seem to have similar HIV
infection rates. For the estimates given in both Figures 8.3 and 8.4, as with
those in Figures 8.1 and 8.2, the self-consistent estimates based on separate
interval-censored data are used as initial estimates.

Now we consider the comparison of the survival functions of the AIDS
latency times for patients in the two treatment groups. For this, with letting
the lightly treated group being group 1, the application of the generalized
log-rank test described in Section 8.4 gives U1 = −6.9884 and U∗ = 4.8754
with M = 100. Based on the χ2 distribution with degree of freedom 1, these
results correspond with a p-value of 0.027. They suggest that the patients
in the two groups have significantly different survival functions of the AIDS
latency time and confirm what is shown in Figure 8.3.
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Fig. 8.3. Estimates of the survival functions of AIDS latency time.
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Fig. 8.4. Estimates of the survival functions of HIV infection time.
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To estimate the effect of the amount of the blood factor on AIDS latency
time, we apply the inference approaches described in Sections 8.3.2 and 8.3.3
to the data by assuming that the AIDS latency time follows the continuous
PH or additive model. Define Zi = 0 if subject i belongs to the lightly treated
group and 1 otherwise, i = 1, ..., 188. Then using the continuous PH model
with M = 100, we obtain β̃p = 0.7087 with estimated standard error equal
to 0.5083, yielding a p-value of 0.163 for testing β = 0. If using the additive
hazards model with M = 100, we obtain β̃a = 0.0139, and its estimated
standard deviation is 0.0062, giving a p-value of 0.025 for testing β = 0. For
both models, we tried larger values of M and got similar results.

Compared with the estimates given in Figure 8.3 and the result obtained
using the generalized log-rank test, the result from the additive hazards model
seems reasonable. In contrast, the result given by the continuous PH model
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Fig. 8.5. Log - log and - log estimates of the survival functions of AIDS latency
time.
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seems to underestimate the effect of the blood factor on AIDS latency time. To
understand this underestimation, instead of using the Monte Carlo imputation
approach, we estimate the covariate effect directly from the equation (8.7) and
obtain β̂p = 0.7032 with an estimated standard error 0.2834. It can be seen
that the estimated effect of the blood factor is similar as before, but the
estimated standard error is much smaller. This suggests that the Monte Carlo
imputation approach may not affect estimation of covariate effects but could
overestimate the variance. For the regression analysis here, of course, one also
can use the maximum likelihood approaches discussed in Section 8.3, and they
give similar results (Goggins et al., 1999a; Kim et al., 1993).

Note that for the two-sample situation, under the PH model, the log -
log survival functions should be parallel to each other, while under the ad-
ditive hazards model, the - log survival functions should be parallel to each
other. To check which of the two models provides a better fit to the observed
data here, Figure 8.5 presents both log - log and - log estimates of the two
survival functions given by the ML approach in Figure 8.3 corresponding to
the two treatment groups. From the figure, the additive hazards model may
seem better, but the difference between the two models does not seem to be
significant.

8.6 Bibliography, Discussion, and Remarks

Much of the research on doubly censored failure time data is motivated by
AIDS research and, in particular, by the seminal paper De Gruttola and La-
gakos (1989), which studied estimation of the distribution function of AIDS
latency time. Following them, a number of other authors discussed the same
problem and these include Bacchetti (1990), Fang and Sun (2001), Frydman
(1992, 1995a, b), Gómez and Calle (1999), Jewell (1994), Jewell et al. (1994),
Joly and Commenges (1999), Leung and Elashoff (1996), Lim et al. (2002),
Sternberg and Satten (1999), and Sun (1995) in addition to Gómez and La-
gakos (1994), Sun (1997b), and Tu (1995). In particular, Bacchetti (1990) and
Joly and Commenges (1999) considered the use of the penalized likelihood ap-
proach for estimation of the hazard function of the survival time of interest,
and Fang and Sun (2001) established the consistency of the two-step estima-
tion procedure given in Section 8.2.2. Frydman (1992, 1995a, b) and Leung
and Elashoff (1996) applied the three-state model approach to the estimation
problem, and Lim et al. (2002) gave an estimation procedure for the situation
where there is a change-point in the survival function of the survival time of
interest.

Articles that discussed other issues about doubly censored data include
Goggins (1999a), Kim et al. (1993), Pan (2001), Sun (2001b, 2004), Sun et
al. (1999), Sun, Kim, and Sun (1999), Sun, Lim, and Zhao (2004), and Zhu
and Sun (2006). Among these, Sun (2001b) considered nonparametric com-
parison of several distribution functions, and Sun (2004) provided a relatively
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complete review of the field. Also, Sun, Lim, and Zhao (2004) discussed the
test of the independence assumption between X and T used in the preceding
sections, and Zhu and Sun (2006) presented several methods for pointwise
estimation of variances of estimated survival functions. Other references gave
semiparametric approaches for regression analysis of doubly censored data.

For simplicity of discussion, several methods discussed in the previous
sections assume that the infection times or Xi’s follow the same distribution
for all subjects in the study. They can be easily generalized to situations where
this does not hold. Consider situations, for example, where the distribution
of the Ti’s depends on covariates through the continuous PH model. Suppose
that the cumulative distribution function H of the Xi’s is unknown and may
depend on covariates through regression parameters θ. Let Ĥ(x ; θ̂) denote
some consistent estimates of H and θ based on the observed interval-censored
on the Xi’s. Then the equation (8.7) can be generalized to

(
n∏

i=1

a−1
l )

∫ R1

L1

...

∫ Rn

Ln

Up(β |x)
n∏

i=1

[
dĤ(xl ; θ̂)

]
= 0

for estimation of β.
As mentioned above, a basic assumption behind all methods discussed in

this chapter is that the time between the infection and the onset of a disease
is independent of the infection time. It makes the analysis of doubly censored
data tractable, but may not be true in practice (Sun, Lim, and Zhao, 2004). To
assess this assumption, one can apply the test procedure given in Sun, Lim,
and Sun (2004) if the dependence of the Ti’s on the Xi’s can be described
by a PH model. If the independence does not hold, one analysis approach is
to use the three-state Markov model (Frydman, 1992, 1995a, b; Leung and
Elashoff, 1996). In this model, the three states can be infection-free, infection,
and onset of the disease, respectively, with the third state as an absorbing
state.

There are several other issues for the analysis of doubly censored failure
time data that were not treated at all or in detail in this chapter. One is vari-
ance or covariance estimation for some nonparametric and semiparametric
estimation approaches. For the problem, a common suggestion is to use the
observed Fisher information matrix, and it is well-known that this approach
could give unrealistic results when there exist a large number of parameters.
An alternative is to use the resampling methods discussed in Zhu and Sun
(2006). However, these methods are only for pointwise variance estimation.
Also, for both Fisher information matrix and resampling approaches, there
does not exist theoretical justification. The asymptotic property of the pro-
posed methods for doubly censored data is another issue for which there is
not much discussion both in this chapter and in the literature except Fang
and Sun (2001).
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Analysis of Panel Count Data

9.1 Introduction

All of preceding chapters discuss situations where the event of interest or
failure can occur only once and the response variable of interest is time to
the event. In this chapter, we consider situations where the event or failure
can occur multiple times or repeatedly. In other words, study subjects could
experience recurrences of the same event. The studies that result in this type
of information are often referred to as event history studies, and the resulting
data are referred to as event history data. In addition to medical studies, other
application areas that frequently produce event history data include reliability
studies and social sciences, and there exist several books on the analysis of
such data such as Nelson (2003) and Vermunt (1997).

The studies that deal with recurrent events can be generally classified into
two types. One is the studies that monitor study subjects continuously and
thus give recurrent event data (Cook and Lawless, 2006), which record the
times of all occurrences of events. The other is the studies in which study
subjects are checked or observed only at discrete time points and thus they
produce panel count data, which give only the numbers of occurrences of the
events between observation times. The latter type of studies is a combination
of the former type of studies and interval-censoring and exists because, for
example, it may be too expensive, impossible, or not realistic to conduct con-
tinuous follow-ups. Examples of recurrent event data include occurrences of
hospitalizations of intravenous drug users (Wang, et al., 2001), occurrences of
the same infection such as recurrent pyogenic infections among inherited dis-
order patients (Lin et al., 2000), repeated occurrences of certain tumors, and
warranty claims for a particular automobile (Kalbfleisch et al., 1991). These
examples become examples of panel count data if the continuous observation
scheme is changed to a discrete observation scheme. Some specific examples
of panel count data are discussed below.

For the analysis of recurrent event data, a number of statistical methods
have been proposed. In addition to those mentioned above, other references
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on recurrent event data include Chen et al. (2004), Cook and Lawless (1996),
Cook et al. (1996), Lawless and Nadeau (1995), Lawless (2001), Lin, Wei,
and Ying (1998), Pepe and Cai (1993), and Wang and Chen (2000). Also,
Andersen et al. (1993) is an excellent book that provides a comprehensive
coverage of counting process approaches for the analysis of recurrent event
data, and Kalbfleisch and Prentice (2002) devote one chapter to recurrent
event data.

To analyze recurrent event data, it is common and convenient to character-
ize the occurrences of recurrent events by counting processes and to model the
intensity process of the counting process. Consider a study consisting of a sin-
gle type of recurrent event and suppose that there is a p-dimensional covariate
process Z(t). Let N∗(t) denote the number of occurrences of the event over the
interval [0, t] and Ft− the σ-field generated by { N∗(s) , Z(s) : 0 ≤ s < t }.
Then the intensity process λ(t ; Z), assuming that it exists and occurrence
times are absolutely continuous, of N∗(t) associated with Ft− can be defined
as

λ(t ; Z) = lim
δ↓0

δ−1 E [ dN∗(t) | Ft− ] ,

where dN∗(t) = N∗{(t + δ)−} − N∗(t−), the increment of N∗(t) over the
small interval [t, t + δ).

Various models can be used for λ(t ; Z) and perhaps the most commonly
used one is the Andersen-Gill intensity model,

λ(t ; Z) = λ0(t) exp [Z ′(t) β ] ,

proposed in the seminal paper Andersen and Gill (1982). Here λ0(t) is an
unspecified continuous function and β is a p-dimensional vector of regression
parameters. This model assumes that the history of the whole recurrent pro-
cess affects the recurrence of the event at time t only through time-varying
covariates at t in this multiplicative fashion. One way to relax this assumption
is to drop the conditioning on the event history and in place of λ(t ; Z), model
the marginal intensity dµ(t ; Z) = E [ dN∗(t) |Z(s), 0 ≤ s < t ] by

dµ(t ; Z) = exp [ Z ′(t) β ] dµ0(t) (9.1)

(Lin et al., 2000; Pepe and Cai, 1993), where µ0(t) is an unknown continuous
function. If Z is fixed or external covariates, which implies that

E [ dN∗(u) |Z(s), 0 ≤ s < u ] = E [ dN∗(u) |Z(s), 0 ≤ s < t ]

for all t ≥ u (Kalbfleisch and Prentice, 2002), then we have

µ(t ; Z) = E [ N∗(t) |Z(s), s ≥ 0 ] . (9.2)

That is, µ(t ; Z) represents the mean function of the recurrent process N∗(t).
In particular, if Z is time-independent, model (9.1) gives
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µ(t ; Z) = µ0(t) exp(Z ′β) . (9.3)

Models (9.1) and (9.3) are often referred to as the proportional rates and
means models, respectively.

In most studies, study subjects are followed for limited amounts of time
and there exists a variable C representing the follow-up or censoring time.
Define N(t) = N∗(t∧C) and Y (t) = I(t ≤ C), where a∧ b = min(a, b). For
most of the methods developed for recurrent event data, C is assumed to be
independent of the underlying recurrent process, meaning that

E [ dN(t)|N(s), Y (s), Z(s), 0 ≤ s < t ] = Y (t) E [ dN∗(t) | Ft− ]

or
E [ dN(t)|Y (t), Z(t) ] = Y (t) E [ dN∗(t) |Z(t) ] (9.4)

for all t ≥ 0 (Lin et al., 2000).
For the analysis of panel count data, it is more convenient to work directly

on the mean function µ(t ; Z) defined in (9.2) due to the incomplete nature
of observed information. In this case, a natural and simple approach is to
fit the data to parametric Poisson processes or mixed parametric Poisson
processes. For example, Hinde (1982) and Breslow (1984) discussed regression
analysis of Poisson count data, and Thall (1988, 1989) gave some regression
approaches for mixed Poisson processes. Another parametric approach for the
analysis of panel count data is to treat them as longitudinal count data and to
use the generalized estimating equation approach (Diggle et al., 1994; Thall
and Vail, 1990). In this chapter, we focus attention on nonparametric and
semiparametric approaches that regard observed data as realizations of some
underlying counting processes.

Section 9.2 deals with one-sample analysis of panel count data with the
focus on nonparametric estimation of the mean function µ(t ; Z). Two ap-
proaches are discussed along with two illustrative examples. In Section 9.3, we
consider the two-sample comparison problem for panel count data and some
nonparametric procedures are discussed. The topic of Section 9.4 is regression
analysis of general panel count data using the proportional means model de-
fined in (9.3). Section 9.5 gives some bibliographic notes and discusses some
issues and open problems about the analysis of panel count data that are not
treated in the previous sections. In this chapter, we assume independent cen-
sorship, i.e., (9.4) holds, and the observation process including the number of
observations and observation times is independent of the underlying counting
process N∗(t) completely or given covariates.

9.2 Nonparametric Estimation of Mean Functions

Consider a follow-up study that involves n independent subjects from a ho-
mogeneous population and each subject gives rise to a counting process Ni(t)



208 9 Analysis of Panel Count Data

defined as N(t) in the previous section. Define µ(t) = E[Ni(t)], the mean
function of the processes Ni’s. For the ith individual, let 0 < ti,1 < · · · < ti,mi

denote the observation time points and ni,j = Ni(ti,j), the observed value of
Ni(t) at time ti,j , j = 1, . . . , mi, i = 1, . . . , n. That is, the observed data are

{ ( ti,j , ni,j ) ; j = 1, . . . , mi, i = 1, . . . , n } .

This section discusses two estimators of µ(t). One is the nonparametric
maximum likelihood estimator derived under the non-homogeneous Poisson
assumption on the Ni(t)’s. The other is the isotonic regression estimator,
which is based on an idea similar to that behind weighted least squares regres-
sion. The isotonic regression estimator could also be seen as a generalization
of the simple sample mean estimator. The two estimators were first studied
by Wellner and Zhang (2000) and Sun and Kalbfleisch (1995), respectively.

9.2.1 Nonparametric Maximum Likelihood Estimator

To construct a nonparametric estimator of µ(t), we first consider the full
likelihood approach. Assume that the Ni(t)’s are non-homogeneous Poisson
processes. Then the log full likelihood function is proportional to

l(µ) =
n∑

i=1

mi∑
j=1

(ni,j − ni,j−1) log[µ(ti,j) − µ(ti,j−1)] −
n∑

i=1

µ(ti,mi) ,

where ti,0 = 0 and ni,0 = 0, and one can estimate µ(t) by maximizing l(µ).
Let s1 < ... < sm denote the ordered distinct observation times in the set
{ ti,j ; j = 1, ..., mi, i = 1, ..., n }. Also let bl =

∑n
i=1 I(ti,mi = sl) for

l = 1, ..., m and

ñl,l′ =
n∑

i=1

mi∑
j=1

(ni,j − ni,j−1) I(ti,j = sl, ti,j−1 = sl′) ,

for 0 ≤ l′ < l ≤ m, where s0 = 0. Then the log likelihood function can be
rewritten as

l(µ) =
m−1∑
l′=0

m∑
l=l′+1

ñl,l′ log[µ(sl) − µ(sl′)] −
m∑

l=1

bl µ(sl) . (9.5)

It is apparent that only the values of µ(t) at the sl’s can be estimated and
we can define the nonparametric maximum likelihood estimator (NPMLE)
of µ(t), denoted by µ̂F (t), as the non-decreasing step function with possible
jumps only at the sl’s that maximizes (9.5). Thus the maximization of l(µ)
over functions µ(t) becomes maximizing l(µ) over m-dimensional parameter
vectors µ = (µ1, ..., µm) with µ1 ≤ ... ≤ µm, where µl = µ(sl), l = 1, ..., m.
Of course, other definitions for µ̂F (t) between the sl’s can be used too. Also it
can be easily seen that there is no closed solution for the maximizer of l(µ).
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For the determination of µ̂F (t), for l = 1, ..., m, define

φl(µ) =
∂l(µ)
∂µl

, φll(µ) =
∂2l(µ)
∂µ2

l

.

Also define

∆l,l′(µ) =

∑l
j=l′ [ φj(µ) − µj φjj(µ)]∑l

j=l′ [−φjj(µ)]
,

1 ≤ l′ ≤ l ≤ m. Let µ̂F,l = µ̂F (sl), l = 1, ..., m. By using the Fenchel duality
theorem, it can be shown that µ̂F = (µ̂F,1, ..., µ̂F,m) satisfies

m∑
l=1

φl(µ̂F ) µ̂F,l = 0

and
m∑

j=l

φl(µ̂F ) ≤ 0

for all l = 1, ..., m (Wellner and Zhang, 2000). From these, Wellner and Zhang
(2000) give the following iterative convex minorant algorithm. Let ε > 0 be a
prespecified number.
Step 1. Choose an initial estimator µ(0) = (µ(0)

1 , ..., µ
(0)
m ).

Step 2. At the kth iteration, obtain the updated estimator by

µ
(k)
l = max

j′≤l
min
j≥l

∆j,j′(µ(k−1)) , l = 1, ..., m ,

where µ(k−1) = (µ(k−1)
1 , ..., µ

(k−1)
1 ) denotes the estimator from the (k − 1)th

iteration.
Step 3. If ∣∣∣∣∣

m∑
l=1

φl(µ(k)) µ
(k)
l

∣∣∣∣∣ > ε

or

max
1≤l≤m

m∑
j=l

φl(µ(k)) > ε ,

return to step 2. Otherwise stop and set µ̂F,l = µ
(k)
l .

For the initial estimator, one can use the sample mean of available ob-
servations at each observation time point. Note that although the algorithm
described above works well in many applications, sometimes the resulting es-
timator may not be the globe maximizer. Wellner and Zhang (2000) provide
more discussion on this.
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9.2.2 Isotonic Regression Estimator

The NPMLE relies on the non-homogeneous Poisson assumption and does not
have a closed form. In this subsection, an estimator is discussed that does not
need the Poisson assumption and can be easily determined.

To describe the isotonic regression estimator (IRE), we first consider a
simple situation where ti,j = sj for all i = 1, ..., n and j = 1, ..., mi with
mi ≤ m. That is, all subjects have the same observation time points except
that the numbers of observations may be different. This can be the case in
a follow-up study with prespecified observation time points and in which all
subjects follow the prespecified observation schedule except that some may
drop out of the study early. For this situation, we can use the Nelson-Aalen
estimator ∫ t

0

∑n
i=1 dNi(s)∑n

i=1 I(s ≤ ti,mi
)

proposed for recurrent event data (Andersen et al., 1993). At time sl, it gives
an estimator

l∑
j=1

∑n
i=1 I(sj ≤ ti,mi)[Ni(sj) − Ni(sj−1)]∑n

i=1 I(sj ≤ ti,mi
)

of µ(sl), which is the sample mean of observed values of the Ni(sl)’s from
subjects still under study.

For general situations where subjects may not have identical observation
times, this Nelson-Aalen estimator is not available. However, we can still define
the sample mean at each time point sl based on available observations. But,
unlike the simple situation above, this approach may give an estimator that
does not share the non-decreasing property of µ(t). To fix this, let wl and n̄l

denote the number and mean value respectively of observations made at sl,
l = 1, ..., m. The IRE, denoted by µ̂I = (µ̂I,1, ..., µ̂I,m), of µ is defined as µ
that minimizes the weighted sum of squares

m∑
l=1

wl ( n̄l − µl )2 (9.6)

subject to the order restriction µ1 ≤ · · · ≤ µm (Sun and Kalbfleisch,
1995). This estimator is the isotonic regression of {n̄1, ..., n̄m} with weights
{w1, ..., wm} (Robertson et al., 1988). Obviously if n̄1 ≤ ... ≤ n̄m, µ̂I,l = n̄l,
l = 1, ..., m, and for the simple situation discussed above, the IRE reduces to
the Nelson-Aalen estimator given above. Given µ̂I , the IRE of µ(t) denoted by
µ̂I(t) can be defined as the non-decreasing step function with possible jumps
only at the sl’s and µ̂I(sl) = µ̂I,l, l = 1, ..., m.

The IRE µ̂I has a closed form given by

µ̂I,l = max
r≤l

min
s≥l

∑s
v=r wv n̄v∑s

v=r wv
= min

s≥l
max
r≤l

∑s
v=r wv n̄v∑s

v=r wv
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Table 9.1. Observed numbers of loss of feedwater flow from 30 nuclear plants

Observation time ti (in years) and observed number ni

Plant ti ni Plant ti ni Plant ti ni Plant ti ni

1 15 4 9 4 13 17 2 11 25 1 1
2 12 40 10 3 4 18 2 1 26 3 10
3 8 0 11 4 27 19 2 0 27 2 5
4 8 10 12 4 14 20 1 3 28 4 16
5 6 14 13 4 10 21 1 5 29 3 14
6 5 31 14 2 7 22 1 6 30 11 58
7 5 2 15 3 4 23 5 35
8 4 4 16 3 3 24 3 12

using the max-min formula (Barlow et al., 1972, Robertson et al., 1988). In
practice, a number of algorithms such as the pool adjacent violators and the
up-and-down algorithms can be used to determine µ̂I .

Suppose that each subject is observed only once as in cross-sectional or
some reliability studies. That is, mi = 1, i = 1, ..., n. In this case, it can
be shown that the two estimators µ̂F and µ̂I are actually identical (Sun and
Kalbfleisch , 1995). Furthermore, if Ni(t) is defined from a survival process,
then we have case I interval-censored data and the IRE gives the maximum
likelihood estimator of a distribution function discussed in Section 3.2.

9.2.3 Two Examples

This subsection considers two illustrative examples. The first example con-
cerns a simple set of current status panel count data and provides a direct
look at how the IRE estimates the mean function. The second example deals
with a set of general panel count data.

Table 9.1 presents a set of panel count data arising from a reliability study
on the loss of feedwater flow over 30 nuclear plants. The data are reproduced
from Gaver and O’Muircheartaigh (1987) and Sun and Kalbfleisch (1995)
and consist of the observation time (one per plant) and the corresponding
observed number of losses of feedwater flow for each nuclear plant. There are
a total of 10 different observation time points (m = 10). Assume that the
numbers of the losses of feedwater flow for all 30 nuclear plants follow the
same counting process. To determine the IRE of the mean or average number
of losses of feedwater flow based on the observed data, we first calculate the
sample mean of the numbers of the observed losses of feedwater flow (n̄l)
at each observation time point. Figure 9.1 presents the IRE of the average
number of losses of feedwater flow given by the max-min formula. Note that
for the current situation, the NPMLE and IRE are identical. For comparison
and understanding the IRE, Figure 9.1 also includes the sample means of the
numbers of observed losses (n̄l vs sl). It can be clearly seen that the IRE is
obtained by pooling the n̄l’s according to the order restriction.
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Fig. 9.1. IRE of the average number of losses of feedwater flow.

As a second example, consider data set IV of Appendix A, a set of panel
count data arising from the National Cooperative Gallstone Study. This is a
10-year, multicenter, double-blinded, placebo-controlled clinical trial on the
use of the natural bile acid chenodeoxycholic acid, cheno, for the dissolution
of cholesterol gallstones. In the original study, a total of 916 patients were
randomized into each of three treatments, placebo, low dose, and high dose,
and were treated for up to two years. One of the primary objectives of the
study was to assess the impact of the treatments on the incidence of digestive
symptoms commonly associated with gallstone disease. The symptoms range
from milder episodes of nausea/vomiting, dyspepsia, and diarrhea to more
severe episodes of digestive colic, i.e., severe pain, and cholecystitis, i.e., di-
gestive obstruction. The data set is reproduced from Thall and Lachin (1988)
and contains the observed information on the incidence of nausea from the
first year follow-up on 111 patients with floating gallstones in high-dose (63)
and placebo (48) groups.

Nausea is an unpleasant sensation vaguely referred to the epigastrium and
abdomen, often culminating in vomiting. It is very commonly associated with
gallstone disease and it is important to the investigators to determine whether
there exists a significant difference between the incidence of nausea for the
patients in the two groups. It was hypothesized that any treatment effect
should be observed shortly after patients achieved maximal dose (usually by
three months). The effect might later begin to dissipate. Thus only the first
year data are studied.

During the study, the patients were scheduled to return for clinic observa-
tions at 1, 2, 3, 6, 9, and 12 months during the first year follow-up. At each
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Fig. 9.2. Estimates of the average cumulative counts of episodes of nausea.

visit, they were asked to report the total number of each type of symptom
that had occurred between successive visits such as the number of the inci-
dences of nausea. That is, the observed data include actual visit times and
the numbers of the incidences or occurrences of nausea between the visits. As
expected, actual visit or observation times differ from patient to patient. For
example, first observation times ranged from 3 to 9 weeks, and some patients
dropped out of the study early.

To estimate the average cumulative numbers of the occurrences of nausea
for the patients in the placebo and high-dose groups, the NPMLE and IRE
are obtained and displayed in Figure 9.2. They suggest that the patients in
the placebo group seem to have higher incidence of nausea than those in the
high-dose group over the first 40 weeks. Most of this difference seems due to
an early difference over the first 10 weeks. After 40 weeks, the incidence of
nausea for the patients in the high-dose group seems to catch up that for those
in the placebo group. A possible reason for this is that the treatment, cheno,
may only have short-term effects.

It is interesting to note that for the patients in the high-dose group, the
NPMLE and IRE are quite close to each other, especially for the period of the
first 40 weeks. In contrast, the two estimates for those in the placebo group
differ and the NPMLE gives a higher estimate of the incidence of nausea. To
explain this difference, we calculate the empirical estimates of the rates of the
incidence of nausea for the two groups given by

dµ̂e(t) =
1∑n

i=1 I(t ≤ ti,mi
)

n∑
i=1

mi∑
j=1

ni,j − ni,j−1

ti,j − ti,j−1
I(ti,j−1 < t ≤ ti,j)
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Fig. 9.3. Empirical estimates of the rates of the incidence of episodes of nausea.

(Thall and Lachin, 1988), the average of estimated individual rate functions.
The two estimates are presented in Figure 9.3. The figure shows that for the
patients in the placebo group, the incidence of nausea is relatively quite higher
over the initial period, then becomes lower subsequently. This suggests that
the NPMLE is more influenced by the earlier and higher episodes of nausea
than the IRE, which seems to be consistent with the nature of the IRE.

9.2.4 Discussion

The IRE µ̂I also can be derived under the non-homogeneous Poisson process
assumption. For this, note that ignoring the dependency of {Ni(tij) , j =
1, ..., mi} for each i, one can construct a pseudo log likelihood function

lp(µ) =
n∑

i=1

mi∑
j=1

[ ni,j log µ(ti,j) − µ(ti,j) ] =
m∑

l=1

wl ( n̄l log µl − µl ) (9.7)

for µ under the non-homogeneous Poisson assumption. It can be shown that
the maximization of lp(µ) is equivalent to the minimization of (9.6) (Robertson
et al. 1988; Wellner and Zhang, 2000).

In comparing the two estimators of µ(t) discussed above, it is easy to see
from (9.5) and (9.7) that the NPMLE could be more efficient than the IRE.
Wellner and Zhang (2000) studied this by simulation and suggested that this
is true for both non-homogeneous Poisson processes and some other counting
processes. A disadvantage of the NPMLE is that its implementation is much
more involved in terms of programming and requires much more computing
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time than that of the IRE. In general, the latter provides a general idea
about the shape of the mean function µ(t), especially for the case where the
number of observations for each subject is small. The former should be used,
for example, if the non-homogeneous Poisson assumption seems reasonable.

Wellner and Zhang (2000) investigated the asymptotic properties of the
NPMLE and IRE. In particular, they prove that under some regularity condi-
tions, both estimators are consistent in L2 and for fixed t, n1/3 [µ̂F (t) − µ(t)]
and n1/3 [µ̂I(t) − µ(t)] converge in distribution to the maximum point of a
two-sided Brownian motion process multiplied by some constants. Discussion
about this limit distribution can be found in Groeneboom and Wellner (2001).
We remark that these asymptotic results do not rely on the non-homogeneous
Poisson assumption although the NPMLE is derived under this assumption.

As discussed above, simply from the non-homogeneous Poisson process
point of view, the NPMLE treats the dependence of { ni,j , j = 1, ..., mi} as
it is, while the IRE completely ignores this dependence. One could model or
make some assumptions about this dependence to provide an intermediate ap-
proach. Zhang and Jamshidian (2003) proposed such an approach by assuming
that given a latent variable bi, E[Ni(t)|bi] = bi µ(t) and { ni,j , j = 1, ..., mi}
are independent, i = 1, ..., n. Furthermore, by assuming that the bi’s follow a
gamma distribution, they developed an EM algorithm for estimation of µ(t).
The efficiency of the resulting estimator may be between the NPMLE and
IRE, but as the NPMLE, its determination is still much more involved than
that of the IRE although is simpler than that of the NPMLE. In addition,
the theoretical investigation of its properties is much harder than that of the
NPMLE and IRE.

Instead of direct estimation of the mean function µ(t), which has to take
into account the monotonic property of µ(t), an alternative is to estimate the
rate function dµ(t) first and then to estimate µ(t) by the integral of the rate
estimator. Thall and Lachin (1988) considered this approach by estimating
dµ(t) using the empirical estimate dµe(t) given in Section 9.2.3.

9.3 Nonparametric Comparison of Mean Functions

This section considers the same setup as in the previous section but supposes
that study subjects come from two different treatment groups with zi being
the group indicator, i = 1, ..., n. Define µi(t) = µ(t ; zi) = E[Ni(t)|zi],
i = 1, ..., n. The goal is to test the hypothesis H0 : µ1(t) = ... = µn(t).
That is, the two treatment groups have the same mean functions.

9.3.1 A Generalized Score Test Procedure

To motivate the test statistic for H0, first consider a simple situation where
each subject is observed only once and the mean function µi(t) satisfies the



216 9 Analysis of Panel Count Data

model (9.3) with β representing the group difference. In this case, the hypoth-
esis H0 is equivalent to β = 0 and the log likelihood function of µ0 and β is
proportional to

l(µ0, β) =
n∑

i=1

[ ni,1 log µ0(ti,1) + ni,1 zi β − µ0(ti,1) exp(zi β) ]

using the notation defined in the previous section. A natural statistic for
testing β = 0 is the score statistic from the log likelihood function l(µ0, β),
which has the form

∂l(µ0, β)
∂β

∣∣∣∣∣β=0 =
n∑

i=1

zi [ ni,1 − µ0(ti,1) ]

with µ0(t) replaced by its estimator.
For general panel count data, let µ̂I(t) denote the IRE of µi(t) = µ0(t)

under H0 given in Section 9.2. By generalizing the score statistic given above,
for testing H0, one can use the test statistic

U =
n∑

i=1

zi

mi∑
j=1

[ ni,j − µ̂I(ti,j) ] . (9.8)

Suppose that zi = 0 or 1 and let µ̂
(u)
I (t), { s

(u)
l } and { w

(u)
l } be defined as

µ̂I(t), { sl } and { wl } in the previous section, but based only on subjects with
zi = u, u = 0, 1. Then the test statistic U can be rewritten as

U =
∫

w(1)(t) [ µ̂(1)
I (t) − µ̂I(t) ] d N̄ (1)(t) ,

where w(1)(t) is a step function with jumps only at the s
(1)
l ’s and w(1)(s(1)

l ) =
w

(1)
l and N̄ (1)(t) =

∑
l I(t ≥ s

(1)
l ). That is, U is the integrated weighted

difference between an individual group estimator µ̂
(1)
I (t) and the overall esti-

mator µ̂I(t).
Sun and Kalbfleisch (1993) and Sun and Fang (2003) studied the statistic U

for current status panel count data and general panel count data, respectively.
In particular, they show that under some regularity conditions and H0, as
n → ∞, n−1/2 U asymptotically has a normal distribution with mean zero
and variance that can be consistently estimated by

σ̂2 =
1
n

n∑
i=1

⎡
⎣ (zi − z̄)

mi∑
j=1

(ni,j − µ̂I(ti,j))

⎤
⎦

2

,

where z̄ =
∑n

i=1 zi/n. Hence one can test the hypothesis H0 using the statis-
tic U∗ = U /(n1/2 σ̂) based on the standard normal distribution.
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One condition required for the asymptotic distribution given above is that
the zi’s can be treated as independent and identically distributed random vari-
ables with finite variance when n is large. This may seem restrictive. But it is
often reasonable for large randomized clinical trials. Also Sun and Kalbfleisch
(1993) and Sun and Fang (2003) show by simulation that the result holds as
long as the zi’s are a fixed random permutation of a sequence of constants
such as a sequence of zero and one. The result above also requires that the zi’s
are independent of the observations, which usually holds in most studies. It
should be noted that some randomness on the zi’s is necessary for the validity
of the statistic U . To see this, consider an extreme situation where the mean
function satisfies model (9.3) and the zi’s are a sequence of zero followed by a
sequence of one with ti1,mi1

≤ ti2,mi2
for i1 < i2. In this case, the information

about the baseline mean function µ0(t) and β cannot be separated.
To illustrate the statistical method presented here, consider the set of panel

count data discussed in Section 9.2.3 and presented in data set IV of Appendix
A. Define zi = 1 for patients in the placebo group and zi = 0 otherwise. Let
Ni(t) denote the cumulative number of occurrences of nausea up to weeks t for
the ith patient, i = 1, ..., 111. The application of the test procedure gives U∗

n =
0.7328 based on the data observed up to 58 weeks. This gives a p-value of
0.4637 according to the standard normal distribution. The result suggests that
the average incidences of nausea did not differ significantly overall between the
patients in the placebo and high-dose groups. In summary, although Figures
9.2 and 9.3 indicate that there exists some difference between the groups over
different time periods, there seems no overall difference between the incidences
of nausea of the two groups.

9.3.2 Discussion

An obvious alternative to the statistic U is to replace the IRE by the NPMLE
in (9.8). Another alternative is to use the statistic∫

w(1)(t) [ µ̂(1)
I (t) − µ̂I(t) ]2 d N̄ (1)(t)

or ∫
W (t) | µ̂(1)

I (t) − µ̂
(0)
I (t) | d N̄(t)

for testing H0, where W (t) is a weight process and N̄(t) =
∑

j I(t ≥ sj).
These alternative test statistics could be more efficient than U . However, their
asymptotic null distributions are unknown.

To test H0, in addition to the techniques given above that directly compare
the underlying mean functions, one could employ indirect approaches. For
example, Thall and Lachin (1988) compared the observed numbers of the
event over different time intervals. Specifically, they first partitioned the entire
study period into K fixed, consecutive intervals and transformed the observed
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information on each subject into a K-dimensional vector. The two-sample
comparison was then performed by using the two-sample test given in Wei
and Lachin (1984) for K-variate nonnegative-valued random vectors. It is
apparent that the test result could depend on the selection of the number of
intervals and the intervals themselves.

Sometimes one may need to compare more than two mean functions. Sup-
pose that study subjects come from p different populations and let µ(u)(t)
denote the mean function of counting processes arising from the subject in
the uth population, u = 1, ..., p. To test the hypothesis H ′

0 : µ(1)(t) = ... =
µ(p)(t), let µ̂(u)(t) denote the NPMLE or IRE of µ(u)(t) based only on the sub-
jects within the uth population and µ̂(t) the NPMLE or IRE of the common
mean function under H ′

0. Also let w(u)(t) and N̄ (u)(t) be defined as w(1)(t)
and N̄ (1)(t) before, but based on the subjects from the uth population. Then
for the test of H ′

0, one can use the statistic U = (U1, ..., Up)′, where

Uu =
∫

w(u)(t) [ µ̂(u)(t) − µ̂(t) ] d N̄ (u)(t) ,

u = 1, ..., p. Alternatively, one can apply the statistic U∗ = (U∗
2 , ..., U∗

p )′,
where

U∗
u =

∫
w(u)(t) [ µ̂(u)(t) − µ̂(1)(t) ] d N̄ (u)(t) ,

u = 2, ..., p, assuming that the first population represents a control group.
For the use of either U or U∗, however, one needs to derive its null asymptotic
distribution.

9.4 Regression Analysis of Panel Count Data

This section deals with regression analysis of panel count data. Let the Ni(t),
µ(t ; Zi), ti,j ’s, ni,j ’s, and sl’s be defined as in the previous sections. Suppose
that for subject i, there exists a p-dimensional vector of covariates denoted
by Zi, assumed to be time-independent, and that one observes data

{ ( ti,j , ni,j ,Zi ) ; j = 1, . . . , mi, i = 1, . . . , n } .

We assume that the mean function µ(t ; Zi) satisfies model (9.3) and the main
goal is to make inferences about the regression parameters β.

Following the discussion in Section 9.2, a natural inference approach is to
treat the Ni(t)’s as non-homogeneous Poisson processes. In this case, using
the notation defined before, the log likelihood functions given in (9.5) and
(9.7) are

l(µ0,β) =
m−1∑
l′=0

m∑
l=l′+1

ñl,l′ log[µ0(sl) − µ0(sl′)] −
m∑

l=1

bl(β) µ0(sl)
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+
n∑

i=1

ni,mi
Z ′

i β

and

lp(µ0,β) =
n∑

i=1

mi∑
j=1

[
ni,j log µ0(ti,j) + ni,j Z ′

i β − µ0(ti,j) exp(Z ′
i β)
]

,

respectively, where bl(β) =
∑n

i=1 I(ti,mi = sl) exp(Z ′
i β). In the following,

we discuss two approaches. One is based on the pseudo log likelihood function
lp(µ0,β) (Zhang, 2002; Wellner et al., 2004) and the other on estimating
equations (Sun and Wei, 2000). Although the log likelihood function l(µ0,β)
may seem more attractive than lp(µ0,β), the unknown properties of estimates
resulting from it and its complexity limit its applicability.

9.4.1 A Non-homogeneous Poisson Process Approach

This subsection discusses the non-homogeneous Poisson process approach to
estimation of parameters. Let the wl’s and n̄l’s be defined as before. Define

āl(β) =
1
wl

n∑
i=1

mi∑
j=1

exp(Z′
i β) I(ti,j = sl)

and

b̄l(β) =
1
wl

n∑
i=1

mi∑
j=1

ni,j Z ′
i β I(ti,j = sl)

for given β, l = 1, ..., m. Then the pseudo log likelihood function lp(µ0,β)
can be rewritten as

lp(µ0,β) =
m∑

l=1

wl

[
n̄l log µ0(sl) − āl(β) µ0(sl) + b̄l(β)

]

and one can estimate β as well as µ0(t) by maximizing lp(µ0,β).
As in Section 9.2, only the values of µ0(t) at the sl’s can be estimated. Let

µ̂0(t) and β̂ denote the estimators of µ0(t) and β defined above with µ̂0(t)
being a non-decreasing step function with possible jumps only at the sl’s. The
determination of µ̂0(t) and β̂ is equivalent to maximizing lp(µ0,β) = lp(µ,β)
over the (m + p) unknown parameters µ = (µ1, ..., µm) and β with µ1 ≤
... ≤ µm, where µl = µ0(sl), l = 1, ..., m.

To maximize lp(µ,β), one can use a two-step iterative algorithm that max-
imizes lp over µ and β alternatively. For fixed β, note that the maximization
of lp over µ is equivalent to maximizing

m∑
l=1

wl āl(β)
(

n̄l

āl(β)
log µl − µl

)
,
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which is similar to the log likelihood function given in (9.7). This shows
that with β given, the µ̂0(sl)’s are the isotonic regression estimator of
{n̄1/ā1(β), ..., n̄m/ām(β)} with weights {w1ā1(β), ..., wmām(β)}. Thus they
have the closed form

µ̂β(sl) = max
r≤l

min
s≥l

∑s
v=r wv n̄v∑s

v=r wvāv(β)
= min

s≥l
max
r≤l

∑s
v=r wv n̄v∑s

v=r wvāv(β)

given by the max-min formula of the isotonic regression estimate (Barlow et
al., 1972, Robertson et al., 1988).

For given µ0(t) or µ, one can simply use the Newton-Raphson algorithm
for estimation of β. It can be easily shown that the pseudo log likelihood
function lp is a concave function of β for given µ0(t) and its value increases
after each iteration (Zhang, 2002). For the convergence criterion for the two-
step algorithm given above, one can compare the relative absolute change of
either the log likelihood function lp between two successive estimators of µ0(t)
and β or the difference between the two successive estimators.

In general, the two-step iterative algorithm described above is robust and
seems always to converge (Zhang, 2002). Under some regularity conditions,
Zhang (2002) shows that the estimators of µ0(t) and β given by lp are con-
sistent in L2 even if the Ni(t)’s are not Poisson processes.

9.4.2 An Estimating Equation Approach

The inference in Section 9.4.1 uses a conditional approach in the sense that it
conditions on observation times or treats them as fixed. Sometimes it may be
better to directly model them together with the counting process of interest
and to make unconditional inferences about covariate effects. This subsection
discusses methods of this type that make use of estimating equations and
model the observation process marginally as well as the process of interest. The
method also deals with the censoring or follow-up time, which may be related
to both the counting process of interest and the observation process and is not
considered in the non-homogeneous Poisson process approach. Also note that
formal inference about β cannot be carried out using the non-homogeneous
Poisson process approach because no asymptotic distribution or variance for
β̂ is available although one could apply the bootstrap procedure. In contrast,
formal inference procedures are given below.

9.4.2.1 Models

For subject i, suppose that there exists a censoring or follow-up time de-
noted by Ci and let Ñ∗(t) be the underlying observation process denoting the
potential number of observations up to time t on the subject, i = 1, ..., n.
Then Ñi = Ñ∗

i {min(t, Ci)} =
∑mi

j=1 I(ti,j ≤ t) represents the real obser-
vation process on the ith subject and Ni(t) is observed only at the time
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points where Ñi(t) jumps, i = 1, ..., n. In the following, it is assumed that
[{N∗

i (t), Ñ∗
i (t), Ci,Zi}′ ; t ≥ 0 , i = 1, ..., n] are independent and identically

distributed. Also assume that N∗
i , Ñ∗

i , Ci and Zi may be dependent, but
given Zi, the quantities N∗

i , Ñ∗
i and Ci are independent.

To model the dependence of Ñ∗
i on Zi, as for N∗

i , it is assumed that the
mean function of Ñ∗

i (t) given Zi has the form

µ̃i(t ; Zi) = E [ Ñ∗
i (t) |Zi ] = µ̃0(t) exp(Z ′

i γ) . (9.9)

In this model, µ̃0(t), as µ0(t), is a completely unspecified function and γ
is a p-dimensional vector of regression parameters representing the effect of
covariates on Ñ∗

i . For the follow-up time, suppose that given Zi, the hazard
function λ∗

i (t) of Ci is given by the PH model

λ∗
i (t ; Zi) = λ∗

0(t) exp(Z ′
i τ ) , (9.10)

where λ∗
0(t) is a completely unspecified function and τ is a p-dimensional

vector of regression parameters denoting the effect of covariates on Ci. Note
that here Ci is always observable unlike the case of right-censored failure
time data. In the following, for simplicity of presentation, it is assumed that
the Zi’s are centered around zero. Otherwise, one can simply replace Zi by
Zi − Z̄n, where Z̄n = n−1 ∑n

i=1 Zi.
The following first considers the general situation where all regression pa-

rameters β, γ and τ are unknown and need to be estimated. Then the special
case where τ = 0 is discussed, which implies that the Ci’s are independent
of all concerned processes.

9.4.2.2 Estimation of β, γ, and τ

To describe the estimating equation for regression parameters, first consider a
simple situation where mi = 1 and γ = τ = 0, i = 1, ..., n. That is, one only
has current status panel count data and the Ñ∗

i (t)’s and Ci’s have the same
mean and hazard functions, respectively. In this case, under model (9.3), the
mean of exp(−Z ′

i β) Ni(ti,1) = exp(− Z ′
i β)

∫
Ni(t) dÑi(t) is independent of

i. To estimate β, consider testing model (9.3), for which a natural statistic
due to Wilcoxon is

U∗
0 (β) =

n∑
i=1

n∑
j=1

(Zi − Zj)
[
exp(−Z′

i β)
∫

Ni(t) dÑi(t)

− exp(−Z′
j β)

∫
Nj(t) dÑj(t)

]

= 2 n

n∑
i=1

[
Zi exp(−Z′

i β)
∫

Ni(t) dÑi(t)
]
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given β. This suggests that one can use the estimating equation U0(β) =
(2 n)−1 U∗

0 (β) = 0 for estimation of β.
For cases with mi ≥ 1, i = 1, ..., n, one can still use this estimating

equation and in this case, one has
∫

Ni(t) dÑi(t) =
∑mi

j=1 Ni(ti,j). It is easy
to see that U0(β) is an unbiased estimating function under model (9.3) with
γ = τ = 0.

Now consider the general case where γ and τ may not be zero. Let S0(t) =
exp[− ∫ t

0 λ∗
0(s) ds] and define

dM̃i(t) = dÑi(t) − I(Ci ≥ t) exp(Z ′
i γ) dµ̃0(t) ,

which has mean zero, i = 1, ..., n. Then one has∫
Ni(t)dÑi(t) =

∫
Ni(t)dM̃i(t) +

∫
Ni(t) exp(Z ′

i γ) I(Ci ≥ t)dµ̃0(t) ,

and under model (9.9), conditional on Zi,

E

[∫
Ni(t)dÑi(t)

]
= exp[Z ′

i (β + γ)]
∫

µ0(t) Si(t) dµ̃0(t) , (9.11)

where Si(t) = P (Ci ≥ t) = [S0(t−)]exp(Z ′
i τ ) under model (9.10). Equation

(9.11) shows that U0(β) is biased in the situations considered and needs to
be adjusted.

To have an unbiased estimating function similar to U0(β), it follows from
(9.11) that one should consider the quantity∫

Ni(t) [S0(t−)]− exp(Z ′
i τ ) dÑi(t)

instead of
∫

Ni(t)dÑi(t). Under model (9.10), this quantity has expectation

exp[Z ′
i (β + γ) ]

∫
µ0(t) dµ̃0(t) .

This motivates the estimating function

U(β,γ, τ ) =
∑n

i=1
Zie

−Z ′
i (β+γ)

∫
Ni(t) [Ŝ0(t−; τ )]− exp(Z ′

i τ ) dÑi(t)

for β with fixed γ and τ , where

Ŝ0(t; τ ) = exp

[
−
∫ t

0

d N̄(s)∑n
i=1 I(Ci ≥ s) eZ

′
i τ

]
,

N̄(s) =
∑n

i=1 N̄i(s) and N̄i(s) = I(Ci ≤ s). It can be easily shown that
asymptotically, U(β,γ, τ ) has expectation zero under the true values of the
parameters (Sun and Wei, 2000).
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To estimate γ under model (9.9), a common approach is to use the es-
timating equation Uγ(γ) = ∂L(γ)/∂γ = 0 (Lawless and Nadeau, 1995),
where

L(γ) =
∫ n∑

i=1

[
Z ′

i γ − log[
n∑

l=1

I(Cl ≥ t) exp(Z ′
l γ)]

]
dÑi(t) .

For estimation of τ , one can use the partial likelihood score function

Uτ (τ ) =
n∑

i=1

∫ [
Zi −

∑n
l=1 I(Ci ≥ t) eZ

′
l τ Zl∑n

l=1 I(Ci ≥ t) eZ
′
l τ

]
d I(Ci ≤ t)

(Kalbfleisch and Prentice, 2002). Let γ̃ and τ̃ denote the estimators of γ and
τ given by the solutions to Uγ(γ) = 0 and Uτ (τ ) = 0, respectively. Then
one can estimate β by the solution, denoted by β̃, to U(β, γ̃, τ̃ ) = 0.

Let θ = (β′,γ′, τ ′)′ and θ̃ = (β̃
′
, γ̃′, τ̃ ′)′. Sun and Wei (2000) show that

the estimators β̃, γ̃ and τ̃ are consistent and unique. For their asymptotic
distributions, let

A(θ) = −∂U(θ)
∂β

, B(γ) = −∂Uγ(γ)
∂γ

, G(τ ) = −∂Uτ (τ )
∂τ

, P (θ) = −∂U(θ)
∂τ

.

Define

R(t,θ) =
1
n

∑n

i=1
Zi e−Z ′

i (β+γ−τ )
∫ ∞

t

Ni(s)

[Ŝ0(s, τ)]exp(Z ′
i τ )

d Ñi(s)

and

S(j)(t,γ) =
1
n

n∑
i=1

I(Ci ≥ t) eZ
′
i γ Z

(j)
i ,

where j = 0 and 1, Z
(0)
i = 1, and Z

(1)
i = Zi, i = 1, ..., n. Also define

ãi(θ) = Zi e−Z ′
i (β+γ)

∫
Ni(t)

[Ŝ0(t, τ )]exp(Z ′
i τ )

d Ñi(t) ,

b̃i(θ) =
∫

R(t,θ)
S(0)(t, τ )

[
d N̄i(t) − I(Ci ≥ t) eZ

′
i τ

nS(0)(t, τ )
d N̄(t)

]
,

d̃i(γ) =
∫ ∞

0

[
Zi − S(1)(t,γ)

S(0)(t,γ)

] [
dÑi(t) − I(Ci ≥ t) eZ

′
i γ

nS(0)(t,γ)
dÑ(t)

]

and

d̃i(τ ) =
∫ ∞

0

[
Zi − S(1)(t, τ )

S(0)(t, τ )

] [
dN̄i(t) − I(Ci ≥ t) eZ

′
i τ

nS(0)(t, τ )
dN̄(t)

]
,
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i = 1, ..., n. Sun and Wei (2000) show that for large n, the distribution of
β̃ − β0 can be approximated by a normal distribution with mean 0 and
covariance matrix D(θ̃) Γ̃ D′(θ̃), where β0 denotes the true value of β,

D(θ) =
(
A−1(θ),−B−1(γ),−A−1(θ) P (θ) G−1(τ )

)
and

Γ̃ =
n∑

i=1

⎛
⎝ ãi(θ̃) + b̃i(θ̃)

d̃i(γ̃)
d̃i(τ̃ )

⎞
⎠ ( ã′

i(θ̃) + b̃′
i(θ̃) , d̃′

i(γ̃) , d̃i(τ̃ )′
)

.

Let γ0 and τ 0 denote the true values of γ and τ , respectively. Then it can
be easily shown (Lawless and Nadeau, 1995; Sun and Wei, 2000) that for large
n, the distributions of γ̃ − γ0 and τ̃ − τ 0 can be approximated by normal
distributions with mean zero and covariance matrices

B−1(γ̃)

[
n∑

i=1

d̃(γ̃) d̃′(γ̃)

]
B−1(γ̃)

and

G−1(τ̃ )

[
n∑

i=1

d̃(τ̃ ) d̃′(τ̃ )

]
G−1(τ̃ ) ,

respectively.

9.4.2.3 Estimation with τ = 0

Sometimes it may be reasonable to assume that the Ci’s are independent and
identically distributed, that is, τ = 0. In this case, an estimation procedure
similar to, but simpler than the one given above, can be developed. To see
this, note that under current situation, Si(t) in (9.11) is independent of i.
This suggests an unbiased estimating function

U1(β,γ) =
n∑

i=1

Zi exp[−Z′
i (β + γ)]

∫
Ni(t) dÑi(t)

for estimation of β with given γ. Let β̃1 denote the estimator of β given by
the solution to U1(β, γ̃) = 0. It can be easily shown that β̃1 is consistent and
unique (Sun and Wei, 2000). Furthermore, for large n, one can approximate
the distribution of β̃1 − β0 by a normal distribution with mean zero and
covariance matrix(

A−1
1 (β̃1 + γ̃),−B−1(γ̃)

)
Γ̃1

(
A−1

1 (β̃1 + γ̃),−B−1(γ̃)
)′

,

where A1(β) = −∂U0(β)/∂β and

Γ̃1 =
( ∑n

i=1 ZiZ
′
ie

∗2
i e2

i

∑n
i=1 Zid̃

′
i(γ̃)e∗

i ei∑n
i=1 d̃i(γ̃)Z ′

ie
∗
i ei

∑n
i=1 d̃i(γ̃)d̃′

i(γ̃)

)

with ei =
∫

Ni(t)dÑi(t) and e∗
i = exp{−Z ′

i (β̃1 + γ̃)}, i = 1, ..., n.
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9.4.3 An Example

Consider data set V of Appendix A, a set of panel count data reproduced from
Sun and Wei (2000) and arising from a bladder cancer study conducted by
the Veterans Administration Cooperative Urological Research Group (Byar et
al., 1977; Byar, 1980). The study consists of the patients who had superficial
bladder tumors when they entered the study, and these tumors were removed
transurethrally. Many patients had multiple recurrences of tumors during the
study, and these recurrent tumors were also removed transurethrally at the
patient’s clinic visits. The observed information includes clinical visit times
and the numbers of recurrent tumors that occurred between the visits for
each patient. In addition, for each patient, two potentially important baseline
covariates were recorded, and they are the number of initial tumors and the
size of the largest initial tumor.

Data set V of Appendix A consists of 85 patients who were randomly
allocated at the beginning of the study to one of two treatments, placebo (47)
and thiotepa (38). The original study involves a third treatment pyridoxine
and is not considered here. The unit for observation times is a month with the
largest observation time being 53 months. One of the study objectives was to
make inferences about the effects of the treatments and baseline covariates on
tumor recurrence rates.

To estimate the treatment and covariate effects, for patient i, define Zi1 to
be the initial number of tumors observed at the beginning of the study, Zi2 the
size of the largest initial tumor, and Zi3 = 1 if the patient is in the thiotepa
group and 0 otherwise, i = 1, ..., 85. Also define Ni(t) and Ñi(t) to be the total
number of bladder tumors that had occurred and the number of clinical visits
up to month t for patient i, respectively. First we apply the non-homogeneous
Poisson approach, which gives β̂ = (0.2831,−0.0515,−1.3574)′. For variance
estimation, using the simple bootstrap procedure with 200 resamples of the
observed data, we obtain the estimated standard errors 0.0832, 0.1007, and
0.3695 for β̂1, β̂2, and β̂3, respectively.

Application of the estimating equation approach to the bladder tumor
data yields β̃ = (0.6620,−0.1229,−2.0249)′ with estimated standard errors
(0.2133, 0.2035, 0.4500)′. The non-homogeneous Poisson and estimating equa-
tion approaches give similar results. Both suggest that the recurrent rate of
the tumor was significantly related to the number of initial tumors and that
the thiotepa treatment significantly reduced the recurrent rate. On the other
hand, the size of the largest initial tumor seems to have no significant effect on
the recurrence of the bladder tumor. It is noted that the estimating equation
approach indicates a more significant effect of the thiotepa treatment than
the non-homogeneous Poisson approach. A possible reason for this is that the
former takes into account the possible treatment effect on observation and
follow-up times.

For the data set, the application of the estimating equation approach also
gives γ̃ = (−0.0094, 0.0392, 0.5084)′ and τ̃ = (−0.0083,−0.1186, 0.1571)′
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with their estimated standard errors equal to (0.0350, 0.0325, 0.0674)′ and
(0.3955, 0.3352, 0.6904)′, respectively. These results indicate that the patients
in the thiotepa group visited the clinics more often than those in the placebo
group, and the follow-up or censoring time did not seem to depend on the
treatment or covariates. Note that the large number of visits by the patients
in the thiotepa group could be because the thiotepa was installed into the
patient’s bladder and thus they needed more visits.

From the results obtained above, it seems reasonable to assume that
τ = 0. Under this assumption, the estimating equation approach gives
β̃1 = (0.6604,−0.1230, −1.9712)′ with estimated standard errors being
(0.2247, 0.2043, 0.4423)′. These results are close to those given without as-
suming τ = 0.

9.5 Bibliography, Discussion, and Remarks

The analysis of panel count data is still a relatively new and not-well de-
veloped field, and there remain many open problems. One of the pioneering
works in the field was given by Kalbfleisch and Lawless (1985), which dealt
with panel count data arising from finite state Markov model. The other early
work in the field include Breslow (1984), Gaver and O’Muircheartaigh (1987),
Hinde (1982), Thall (1988, 1989), Thall and Lachin (1988), and Thall and Vail
(1990). Most of these references mainly focus on parametric approaches for
the analysis of panel count data. In terms of nonparametric and semiparamet-
ric approaches for panel count data, as discussed above, Sun and Kalbfleisch
(1995), Weller and Zhang (2000), and Zhang and Jamshidian (2003) con-
sidered the one-sample nonparametric estimation problem. The authors who
studied the nonparametric comparison problem include Sun and Fang (2003),
Sun and Kalbfleisch (1993), and Sun and Rai (2001). The first two references
dealt with comparison of the mean functions of two counting processes, while
the third one discussed comparison of the intensity processes of several count-
ing processes. In particular, Sun and Rai (2001) gave some comparison pro-
cedure for the situation where the ratios of the numbers of subjects between
different groups are approximately constant over the whole study period.

The authors who studied regression analysis of panel count data include
Cheng and Wei (2000), Hu et al. (2003), Ishwaran and James (2004), Lawless
and Zhan (1998), Staniswalls et al. (1997), and Sun and Matthews (1997)
in addition to Sun and Wei (2000), Wellner et al. (2004), and Zhang (2002)
discussed above. In particular, Cheng and Wei (2000) and Hu et al. (2003)
considered the estimating equation approach for situations where γ = τ = 0
or τ = 0, respectively. They derived their estimating equations based on the
counting processes ∫ t

0
Ni(s) dÑi(s) , t ≥ 0 , i = 1, ..., n .
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Note that for these processes, recurrent event data are available. For the same
problem, Ishwaran and James (2004) employed the approach that models
the intensity process of underlying counting processes instead of the mean
function. In contrast, Lawless and Zhan (1998) and Staniswalls et al. (1997)
suggested to analyze the data through modeling the rate function. The former
employed a piecewise constant rate function assumption, whereas the latter
used the Poisson assumption and smoothing techniques. In Sun and Matthews
(1997), the focus was on the case where real observation times can be modeled
as variations of prespecified observation times.

A couple of other issues about panel count data were also considered in
the literature. For example, Chen et al. (2005) discussed the analysis of multi-
variate panel count data using a marginal mixed Poisson process approach by
assuming that the baseline intensity function is piecewise constant. Sinha and
Maiti (2004) considered the analysis of panel count data when the censoring
time may be related to the counting process of interest for the situation where
all study subjects have the same and fixed observation times.

In the preceding sections, the focus is mainly on inference about the mean
function of underlying counting processes for panel count data. As mentioned
before, given the structure of panel count data and the amount of observed
information, it is much more convenient to deal with the mean function rather
than the intensity process or rate function. On the other hand, sometimes one
may want to directly model the intensity process or rate function (Ishwaran
and James, 2004; Lawless and Zhan, 1998; Staniswalls et al., 1997). For this
purpose, however, one usually has to make certain assumptions about the
shape of the intensity process or rate function and/or the observation process
in order to perform nonparametric or semiparametric analysis (Sun and Rai,
2001; Sun and Matthews, 1997).

The methods presented in this chapter mainly focus on panel count data in
which observation and censoring times differ from subject to subject. For the
situation where observation times or intervals are the same for all subjects,
the data can be regarded as multivariate data, and any method that accom-
modates multivariate positive integer-valued response variables can be used
for the analysis. This holds even though subjects may miss some intermediate
observations and/or drop out of the study early. In this case, the resulting
data can be seen as multivariate data with missing values.

Besides those discussed above, a general approach to the analysis of
panel count data is to apply the methods developed for general longi-
tudinal data analysis. For example, one could regard { ni,1, ..., ni,mi } or
{ni,1, ni,2 − ni,1, ..., ni,mi − ni,mi−1 } as repeated measurements on subject
i. One major disadvantage of this approach is that it is usually difficult to
make use of the underlying monotonic property of the mean and thus is less
efficient.

A basic assumption underlying all the methods discussed in this chapter
is that the observation process, or the observation and censoring times, are
independent of the counting process of interest completely or given covari-
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ates. In practice, this may not be true. There exists a great deal of research
in the literature concerning the analysis of longitudinal data in the presence
of a related or dependent censoring time. Sometimes this censoring time is
also referred to as drop-out time in the longitudinal data literature (Little,
1995; Wang and Taylor, 2001; Wulfsohn and Tsiatis, 1997). Some authors also
discussed longitudinal data analysis when response and observation processes
may be related (Lin and Scharfstein, 2004; Robins et al., 1995; Sun et al.,
2005). Among others, Huang and Wang (2004) and Wang et al. (2001) con-
sidered the analysis of recurrent event data when the censoring time may be
correlated with the underlying counting process of interest. However, except
Sinha and Maiti (2004), there exists little work that studies panel count data
when the underlying counting process of interest and observation process may
depend on each other.

For a recurrent event, in addition to the occurrence times of the event,
one may also be interested in the gap times, which are defined as the times
between successive occurrences of the event (Chen et al., 2004; Huang and
Chen, 2003; Sun, Park, and Sun, 2006; Zhao and Sun, 2006). Also, there may
be several different, but related recurrent events that appear in the same study
and need to be studied together (Chen et al., 2005). For their analyses based
on panel count data, there exists relatively limited research in the literature.
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Other Topics

10.1 Introduction

In this chapter, we discuss several important topics about interval-censored
failure time data that can occur in practice but were not discussed in the pre-
vious chapters. These include goodness-of-fit (GOF) tests or regression diag-
nostics, regression analysis of failure time data with interval-censored covari-
ates, Bayesian analysis of interval-censored failure time data, and informative
interval censoring.

In Section 10.2, we start with discussion on issues related to regression
diagnostics. For regression analysis of interval-censored data, as in general
regression analysis, several questions need to be asked. Among them, the
most important one is perhaps the adequacy or appropriateness of a regression
model selected to fit the observed interval-censored data. In other words, one
needs to assess if the model fits the data well or if there is another model
that provides a better fit. The same question could be asked for a parametric
model. Furthermore, one may ask if the functional form of the covariates
in the regression model is appropriate or the best. Also, one may want to
identify possible outliers. To address these questions, we present in Section
10.2 several simple, intuitive approaches that are direct generalizations of the
methods developed for right-censored failure time data.

In the discussion about regression analysis in the preceding chapters, it
was assumed that covariates can be observed exactly. In reality, however, the
observation on covariates could suffer interval censoring as well as the survival
time of interest. Section 10.3 presents approaches to some inference problems
in the presence of interval-censored covariates. In Section 10.4, we consider
Bayesian analysis of interval-censored failure time data, which is often per-
formed when there exists prior information about the survival time of interest.
Several issues concerning nonparametric and semiparametric Bayesian analy-
ses are discussed.

Informative interval censoring is the topic of Section 10.5. In all of the
preceding chapters, we have assumed that the interval censoring mechanism
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is independent of the survival time of interest. It is well-known that this may
not always hold in practice, and informative interval censoring may occur if
the independence assumption is violated. In Section 10.5, interval censoring
mechanisms are discussed and some techniques are described that can be used
for the analysis when informative interval censoring is present. Section 10.6,
the last section of the book, considers computational aspects of the analysis
of interval-censored data and several additional practical topics related to
interval-censored failure time data.

10.2 Regression Diagnostics

It is well-known that in general, regression diagnostics should be conducted in
each regression analysis unless, for example, the same regression problem and
model have been considered before. For complete or right-censored failure time
data, a number of graphical or quantitative methods have been developed for
regression diagnostics. Among others, readers are referred to books by Collett
(1994), Klein and Moeschberger (2003), and Lawless (2003). For interval-
censored failure time data, however, there are not many approaches available
for regression diagnostics, and most of the existing methods are graphical and
intuitive with finite sample and asymptotic properties unknown.

First, we consider a parametric analysis of interval-censored failure time
data in Section 10.2.1. In this situation, the most fundamental and commonly
asked question in terms of diagnostics concerns the appropriateness of an as-
sumed parametric model. To answer this question, one needs to perform a
GOF test that assesses the overall fit of the model to a given data set. Sec-
tion 10.2.1 gives some simple GOF test procedures. Section 10.2.2 deals with
regression diagnostic procedures that can be applied to regression analysis of
interval-censored data using the PH model. For this model, several graphical
model-checking approaches are investigated including those based on resid-
uals. In Section 10.2.3, for interval-censored data with the additive hazards
model, some simple residual-based procedures for regression diagnostics are
briefly discussed.

10.2.1 Parametric Regression Analysis

Consider a survival study that consists of n independent subjects for which
each subject gives rise to a variable Ti, the survival time of interest, i =
1, ..., n. It is assumed that the Ti’s follow a parametric model with density, cu-
mulative distribution, and survival functions f(t), F (t), and S(t), respectively.
Also, we assume that for the Ti’s, only interval-censored data are available and
they have the form

{ (Li, Ri], ; i = 1, ..., n } ,

where as before, (Li, Ri] denotes the interval to which Ti is observed to belong,
i = 1, ..., n.
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Suppose that we are interested in testing the null hypothesis

H1
0 : F (t) = F0(t) ,

where F0(t) is a completely known cumulative distribution function. Let 0 =
s0 < s1 < ... < sm denote the ordered distinct time points of all left and
right end time points Li’s and Ri’s. Also let F̂n denote the NPMLE of F ,
which can be obtained by the algorithms given in Section 3.4. Then to test
H0, it is apparent that a simple graphical approach is to plot F̂n and F0
together and to check for any major discrepancy between them.

To derive a quantitative GOF procedure, define αij = I((sj−1, sj ] ⊆
(Li, Ri]) and for each j, let Oj and Ej denote the observed and expected
numbers of subjects who fail within (sj−1, sj ], j = 1, ..., m, i = 1, ..., n. We
note that for complete data or more generally, if all the Oj ’s are known, a
common approach for testing H0 is to apply the Pearson χ2 statistic defined
as

X2
n =

m∑
j=1

(Oj − Ej)2

Ej
. (10.1)

Of course, the Oj ’s are unknown for interval-censored data, while the Ej ’s
can be easily calculated as

Ej = n [ F0(sj) − F0(sj−1) ]

under H0, j = 1, ..., m. To use X2
n, different methods can be used to estimate

the Oj ’s. By using the same idea as for the calculation of the Ej ’s and treating
F̂n as the true distribution, natural estimates are

Ôj = n [ F̂n(sj) − F̂n(sj−1) ] (10.2)

or alternatively

Ôj =
n∑

i=1

αij [F̂n(sj) − F̂n(sj−1)]
F̂n(Ri) − F̂n(Li)

, (10.3)

j = 1, ..., m.
Given estimates of the Oj ’s, one needs to know the distribution of the

statistic X2
n. Unlike the case of complete or right-censored data, the asymp-

totic distribution of X2
n has not been obtained for interval-censored data. A

major reason is that, as discussed in Section 3.6, the convergence rate of F̂n

depends on the behavior of the observation process generating censoring inter-
vals and is slower than n1/2 unless there exists a large portion of uncensored
observations. Using simulation, Babineau (2005) investigated the finite sam-
ple null distribution of X2

n with the Ôj ’s given by (10.3) as well as its power
and sensitivity. Other similar statistics for testing H0 including the likelihood
ratio test statistics were also studied in Babineau (2005) .

A statistic similar to X2
n with the Ôj ’s given by (10.2) is the Cramer-von

Mises statistic given by
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Un = n

∫ ∞

0
[F̂n(t) − F0(t)]2 dF0(t) .

Ren (2003) argued that Un is not suitable for testing H0 because F̂n does
not converge uniformly and thus Un is not stable under H0 as n → ∞. She
proposed to test H0 with the statistic

U∗
n = m

∫ ∞

0
[F̂ ∗

nm(t) − F0(t)]2 dF0(t)

and established its asymptotic distribution. In the statistic above, F̂ ∗
nm de-

notes the empirical distribution function of the so-called leveraged bootstrap
sample of size m.

A hypothesis that is more general and practical than H0 is

H2
0 : F (t) = F0(t, θ) ,

where F0(t, θ) is a cumulative distribution function known up to parameter
θ. Let θ̂ denote the maximum likelihood estimator of θ based on the observed
interval-censored data. To test H2

0 , one can apply the statistic X2
n with the

Oj ’s and Ej ’s estimated by (10.3) and

Êj = n [ F0(sj , θ̂) − F0(sj−1, θ̂) ] ,

respectively, or the statistic

U∗
n(θ̂) = m

∫ ∞

0
[F̂ ∗

nm(t) − F0(t, θ̂)]2 dF0(t, θ̂)

(Babineau, 2005; Ren, 2003).

10.2.2 Analysis with the Proportional Hazards Model

In this subsection, we discuss the same problem as in Section 6.2, but focus
on regression diagnostics. Specifically, consider a survival study that consists
of n independent subjects and gives rise to interval-censored data

{ (Li, Ri],Zi ; i = 1, ..., n }
for the survival times Ti’s of interest. Here (Li, Ri] denotes the interval within
which the survival event for the ith subject is observed to occur, and Zi

represents the vector of covariates from subject i, i = 1, ..., n. Let S(t; Z)
denote the survival function for a subject with covariate Z and suppose that
it is specified by the PH model (1.4). Then the log likelihood function is given
by

l(β, S0) =
n∑

i=1

log
{

[S0(Li)]exp(Z ′
iβ) − [S0(Ri)]exp(Z ′

iβ)
}

(10.4)



10.2 Regression Diagnostics 233

in terms of regression parameters β and the baseline survival function S0(t).
As before, we use β̂n and Ŝn(t) to denote the maximum likelihood estima-
tors of β and S0, which are defined in Section 6.2. Also define Ŝ(t; Z) =

[Ŝn(t)]exp(Z ′β̂).
For the case of right-censored failure time data, various types of residu-

als have been proposed for assessing the appropriateness of the PH model
analysis. These include Cox-Snell residuals (Cox and Snell, 1968), deviance
residuals (Therneau et al., 1990), martingale residuals (Barlow and Prentice,
1988; Lagakos, 1980), and Schoenfeld residuals (Schoenfeld, 1982). In the fol-
lowing, we discuss several generalizations of these residuals and their uses in
the analysis of interval-censored data.

The Cox-Snell residual was proposed by Cox and Snell (1968) to assess
the overall fit of the PH model to right-censored failure time data and is
based on the fact that the variable − log S(T ; Z) has an exponential distri-
bution with hazard rate one. Based on their work, Farrington (2000) sug-
gests that for interval-censored data, we can define the Cox-Snell residual
interval as (− log Ŝ(Li; Zi),− log Ŝ(Ri; Zi)] for subject i, i = 1, ..., n. To
use them for assessing GOF, as in the case of right-censored data, one
can estimate the cumulative hazard function corresponding to these resid-
ual intervals and plot the estimated function against the distinct values of
{− log Ŝ(Li; Zi) , − log Ŝ(Ri; Zi)}n

i=1. If the PH model provides a reasonable
fit, the plot should approximately give a straight line of unit slope through
the origin. Through some examples of parametric data analyses, Farrington
(2000) points out that this approach may not be very sensitive to the PH
model assumption and thus not provide a good diagnostic tool. More research
on these residuals and this approach is needed.

Among all others, the martingale residual, also sometimes referred to as
the Lagakos residual, may be more commonly used. For right-censored failure
time data, the martingale residuals can be defined as the scores given by the
score function of the regression parameter β. These residuals have sample
mean zero. For the current situation, it can be easily shown from (10.4) that
the score function of β has the form

n∑
i=1

Zi
S(Li; Zi) log S(Li; Zi) − S(Ri; Zi) log S(Ri; Zi)

S(Li; Zi) − S(Ri; Zi)
.

This suggests that when fitting interval-censored data to the PH model (1.4),
one can define the martingale residual as

Mi =
S(Li; Zi) log S(Li; Zi) − S(Ri; Zi) log S(Ri; Zi)

S(Li; Zi) − S(Ri; Zi)

with S(t; Zi) replaced by Ŝ(t; Zi) and expect that they have mean zero for
large n, i = 1, ..., n. Farrington (2000) considered the use of the Mi’s for
parametric analyses.
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The martingale residuals can be plotted in several different ways as in the
case of right-censored data. One is to plot them against continuous covariates
to examine the functional form of covariates in the PH model. Also one could
examine the plot of the residuals against covariates not included in the model
to assess the need of including these covariates in the model, especially for
categorical covariates. Another plot is the residuals against observation num-
ber for identifying observations that are outliers. The martingale residuals
have also been used to construct GOF test statistics for the PH model for
right-censored data (Lin et al., 1993), but it is unclear how to do the same for
interval-censored data.

To identify outlier observations or assess the influence of individual obser-
vations, deviance residuals are more commonly used. As with right-censored
data, for interval-censored data, we can define the deviance as D = − 2 l(β, S0)
with parameters replaced by their maximum likelihood estimators. Also for
each i, define Di to be the deviance D with the ith observation removed
from the data set. Let β̂j denote the maximum likelihood estimator of the
regression parameter representing the effect of the jth covariate and β̂j(i) the
corresponding estimator with the ith observation removed. Younes and Lachin
(1997) define

DRi = D − Di

and

DRj(i) =
β̂j − β̂j(i)

sd(β̂j)

as the deviance residuals for observation i and the jth covariate with respect
to observation i, respectively, where sd(β̂j) denotes the estimated standard
deviation of β̂j . For their applications, they suggest plotting them against
the observation number to detect any observations that are not consistent
with the other observations. One advantage of the deviance residual over the
martingale residual is that the latter ranges between − ∞ and 1 and is skewed,
while the former can be expected to have a pattern close to that given by a
normal variable. As with other residuals, however, one should use the deviance
residual only as exploratory graphical tools because their asymptotic and finite
sample distributions are unknown.

A key assumption about the PH model is that of proportionality of the
hazard rates for subjects with distinct values of a covariate. To check this,
a graphical approach is the simplest and most straightforward. For exam-
ple, for a covariate taking only a finite number of values, one can estimate
survival functions for subjects with the same covariate values separately as
well as under model (1.4), respectively, and plot them together as in Section
4.5. An alternative is to plot the log minus log of the survival functions es-
timated separately or the log of the separately estimated cumulative hazard
functions. Specifically, suppose that the covariate Z1 takes k different values.
Based on the observed data for the subjects with Z1 taking its jth value,
let Λ̂j(t) = − log Ŝj(t) denote the estimated cumulative hazard or minus
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the log survival function given in Section 3.4 , j = 1, ..., k. Then one could
plot log Λ̂1(t), ..., log Λ̂k(t) together versus t, which should be approximately
parallel to each other if the PH model is correct. Alternatively, we can plot
log Λ̂2(t) − log Λ̂1(t), ..., log Λ̂k(t) − log Λ̂1(t) versus t, which are supposed
to be roughly constant under the PH model. For a continuous covariate, one
could group its values into k different intervals and then apply the graphical
tools discussed above.

10.2.3 Analysis with the Additive Hazards Model

Now we consider regression diagnostics for regression analysis of interval-
censored failure time data using the additive hazards model (1.7). In this case,
even for right-censored data, there do not exist many procedures for regres-
sion diagnostics. For a GOF test of model (1.7) with interval-censored data,
an easy and natural graphical tool is to plot the log of the estimated survival
function or the estimated cumulative hazard function for the values of a cate-
gorical covariate. Specifically, suppose that the covariate Z1 takes k different
values and let the Λ̂j(t)’s be defined as in the previous subsection. To check the
additive relationship between the hazard functions for subjects with different
values of Z1, we can plot Λ̂1(t), ..., Λ̂k(t) or Λ̂2(t) − Λ̂1(t), ..., Λ̂k(t) − Λ̂1(t)
together versus t. If model (1.7) is correct, the former plot should give ap-
proximately parallel curves, while the latter plot should be roughly displays
of some constants. As for the PH model, if Z1 is continuous, we can group it
to a categorical variable.

Suppose that the survival study of interest gives rise to current status
data. In this case, using the notation defined in Section 5.4, the martingale
residual can be defined as M̂i(t) = Mi(t) given in (5.11) with β, γ and Λ∗

0(t)
replaced by β̂ and γ̂ defined there and

Λ̂∗
0(t) =

n∑
i=1

∫ t

0

1

n−1 S(0)(s; β̂, γ̂)
dNi(s) ,

respectively. Ghosh (2003) first studied this martingale residual and suggested
plotting the M̂i(∞)’s against the values { Zji } of a covariate Zj to assess
the functional form of the covariate. He further constructed the formal test
statistic

Wj(z) = n1/2
∑

i

I(Zji ≤ z) M̂i(∞)

and showed that under model (1.7), the distribution of Wj(z) can be approx-
imated by that of a Gaussian process Ŵj with mean zero. Thus for checking
the functional form of Zj , one can plot Wj(z) along with some realizations of
Ŵj(z) versus z. Under model (1.7), the curve given by Wj(z) should be like
one of the others.
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10.3 Regression Analysis with Interval-censored
Covariates

As remarked in Section 1.3.5, in practice, interval censoring can occur on
observations on covariates as well as on those on the survival time of interest.
Goggins et al. (1999b) give an example of failure time data with an interval-
censored covariate arising from the ACTG 181, the same AIDS clinical trial
producing the data presented in data set I of Appendix A and discussed in
Section 1.2.4. In the study, an objective of interest is to model the possible
relationship between the status of CMV shedding in the blood and urine and
the onset of active CMV end-organ disease. For this, they proposed to fit
the PH model (1.4) treating the onset time of CMV disease as the survival
time of interest and the status of CMV shedding, presence or absence, as a
binary time-dependent covariate. For the onset time, the study yielded right-
censored data. For the binary covariate, however, only interval-censored data
are available because as discussed in Section 1.2.4, only interval-censored data
are available for the time to CMV shedding. A similar example, also arising
from an AIDS clinical trail, can be found in Gómez et al. (2003).

Two types of situations regarding interval-censored covariates are consid-
ered. First we deal with the situation in which one observes right-censored
failure time data on the survival time of interest. The situation where doubly
censored data are available is then discussed. For the latter, both covariates
and survival time suffer from interval censoring. Some regression models and
inference approaches are discussed for each case, and the section is concluded
with remarks on some related issues.

10.3.1 Analysis with Right-censored Data

This subsection concerns a survival study that consists of n independent sub-
jects and gives rise to right-censored failure time data

{Qi = min{Ti, Ci} , δi = I(Qi = Ti) , (ZLi, ZRi] , W i ; i = 1, ..., n}

for the Ti’s, the survival times of interest. In the expression above, for subject
i, Ci denotes a right censoring variable assumed to be independent of Ti,
(ZLi, ZRi] represents an interval to which a scalar covariate Zi is observed to
belong, and W i denote all other covariates that are assumed to be known or
observed exactly. In other words, we observe right-censored data for the Ti’s
and exact data for the Wi’s, but only interval-censored data for the covariate
Zi’s. We discuss below the situation where there exist more than one covariate
whose observations are interval-censored. The goal is to make inferences about
effects of the covariates W i and Zi on Ti.

Suppose that the effects of covariates can be described by the PH model

λ(t; W i, Zi) = λ0(t) exp(W ′
i β + Zi γ) (10.5)
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in terms of the hazard function of Ti given W i and Zi. In the model above,
as before, λ0 is an unknown baseline hazard function and β and γ represent
the effects of W i and Zi on Ti, respectively. Define Z = (Z1, ..., Zn)′ and
Yi(t) = I(Qi ≥ t), i = 1, ..., n. Let G denote the cumulative distribution
function of the Zi’s. For inference about covariate effects, if Z is known, as
discussed before, we can simply apply the partial likelihood function

L(β, γ; Z) =
n∏

i=1

[
exp (W ′

i β + Zi γ)∑n
j=1 Yj(Qi) exp (W ′

j β + Zj γ)

]δi

. (10.6)

By treating the function above as a conditional likelihood given Z, one can
write down the full likelihood function given the W i’s as

L(β, γ, G) = L(β, γ; Z)
n∏

i=1

dG(Zi) (10.7)

because as assumed, all covariates are external (Kalbfleisch and Prentice,
2002). Of course, we cannot use either the partial likelihood (10.6) or the
full likelihood (10.7) because the Zi’s are unknown. On the other hand, one
could apply them to develop some EM algorithms for estimation of β and γ.

Goggins et al. (1999b) first considered this EM estimation approach for the
situation where W i = 0 and Zi is defined as Zi(t) = I(Si ≤ t), indicating
by one if an event with occurrence time Si has occurred. In their application,
Si denoted the time to onset of CMV shedding in blood and urine, which
we discussed at the beginning of this section. We remark that although Zi

is time-dependent, it still fits the general situation discussed here because
it is a binary variable. For the current situation, (ZLi, ZRi] represents the
observed interval within which Zi switches from 0 to 1 or to which Si belongs.
For estimation of γ, Goggins et al. (1999b) developed a Monte Carlo EM
algorithm that involves imputing the values of the Si’s.

Instead of the PH model (10.5), one can apply the following log-linear
model

T ∗
i = log Ti = W ′

i β + Zi γ + εi (10.8)

for the Ti’s, where the εi’s represent random errors. Gómez et al. (2003)
studied this model for situations where T ∗

i is a general random variable, but
observed exactly, and the distribution of the εi’s belongs to a parametric
family. Assuming that the distribution of the Zi’s has finite support, they
developed a two-step conditional algorithm that iterates estimation of the
distribution of the Zi’s and the other parameters. Topp and Gómez (2004)
discussed the same problem focusing on residual analysis.

In theory, one can easily generalize the inference approaches discussed
above to situations in which more than one covariate suffer interval censoring.
However, implementation could be much more complicated. For example, con-
sider a PH model analysis in which there exist two covariates Z1 and Z2 whose
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observations are interval-censored. In this case, to develop an EM algorithm,
instead of L(β, γ, G) given in (10.7), one has to work with the likelihood

L(β, γ; Z) L(Z1,Z2) .

Here L(Z1,Z2) denotes the marginal likelihood given by samples of Z1 and Z2
and depends on the joint distribution of Z1 and Z2.

There are many open questions for the situation discussed here. For the
Monte Carlo EM algorithm discussed above, no asymptotic justification is
available yet for the derived parameter estimates. Another question of inter-
est for model (10.5) concerns estimation of the baseline cumulative hazard
function Λ0(t) =

∫ t

0 λ0(s) ds. For model (10.8), the inference approach given
in Gómez et al. (2003) applies only to exactly observed Yi and requires that
the distribution of the εi’s is known up to some parameters. In reality, one
might have data for which the accelerated failure time model (1.8) or some
other semiparametric model is more appropriate than model (10.5) or (10.8)
and some corresponding inference approaches are needed.

10.3.2 Analysis with Doubly Censored Data

Now we consider the same situation as that discussed in Section 8.3.2, but
with one covariate whose observations are interval-censored. Let the Xi’s, Si’s
and Ti’s be defined as in Section 8.3.2 and suppose that for the Xi’s and Si’s,
interval- and right-censored data are observed and given by

{(Li, Ri] , i = 1, ..., n} , {S∗
i = min(Si, Ci) , δi = I(S∗

i = Si) , i = 1, ..., n} ,

respectively, as before. Here the Ci’s denote right censoring times with respect
to the Si’s and are assumed to be independent of the Si’s as before. Also it is
assumed that the Xi’s and Ti’s are independent. As in the previous subsection,
for subject i, suppose that there is one interval-censored covariate Zi with
observation (ZLi, ZRi], i.e., Zi ∈ (ZLi, ZRi], and let W i denote all other
covariates assumed to be known or observed exactly. Also suppose that the
hazard function of Ti given W i and Zi is specified by the PH model (10.5).

For inferences about β and γ, let X, Ĥ, the Yi(t|Xi)’s, Ni(t|Xi)’s and ai’s
be defined as in Section 8.3.2. Furthermore, define

S(j)(t; β, γ|X) =
1
n

n∑
i=1

Yi(t|Xi) Zj
i eW

′
i β + Zi γ ,

where Zi = (W ′
i, Zi)′, Z0

i = 1, Z1
i = Zi, j = 0, 1. Also, similar to Up(β|X)

given in (8.6), define

Up(β, γ|X) =
∫ τ

0

n∑
i=1

[
Zi − S(1)(t; β, γ|X)

S(0)(t; β, γ|X)

]
dNi(t|Xi) ,
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where τ denotes the longest possible follow-up time as before. If the Zi’s are
known exactly, following the discussion in Section 8.3.2, we can estimate β
and γ by the solution to

Up(β, γ, Ĥ|Z ′
is) =

(
n∏

i=1

a−1
i

) ∫ R1

L1

...

∫ Rn

Ln

Up(β, γ |x)
n∏

i=1

[
dĤ(xi)

]
= 0 ,

where x = (x1, ...., xn). This suggests that for the current situation, one can
apply the same idea and employ the estimating equations(

n∏
i=1

b−1
i

) ∫ ZR1

ZL1

...

∫ ZRn

ZRn

Up(β, γ, Ĥ | z′
is)

n∏
i=1

[
dF̂Z(zi)

]
= 0 (10.9)

for estimation of β and γ. In these equations, F̂Z denotes the NPMLE of the
cumulative distribution function of the Zi’s based on the interval-censored
data on the Zi’s only and bi =

∫ ZRi

ZLi
d F̂Z(zi), i = 1, ..., n.

This estimation approach is a generalization of the partial likelihood ap-
proach for right-censored failure time data with known covariates and has
the advantage that it does not involve the baseline hazard function. However,
efficiency could be an issue and needs to be investigated. It was first proposed
by Zhao et al. (2005) for the situation where W i = 0, i.e., Zi is the only
covariate for each study subject. Under some regularity conditions, they show
that the resulting regression parameter estimate is consistent and its distri-
bution can be asymptotically approximated by a normal distribution. It is
straightforward to generalize these results to the current situation. One pos-
sible difficulty with the estimating equation (10.9) is that it may not be easy
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10.3.3 Some Remarks

In addition to the two situations discussed in the previous subsections, one
can face interval-censored covariates when one observes case I or II interval-
censored data on the survival time of interest. In this situation, inference about
regression parameters is more difficult than in the two preceding situations and
the ideas discussed above do not seem directly applicable. Instead, one may
have to employ the full likelihood approach that involves the distributions
of both survival variable and interval-censored covariates. Interval-censored
covariates can also occur when, as in Chapter 7, there exist more than one
survival variables of interest.

The analysis of right-censored failure time data with missing covariates
is related to the topic of this section and has been investigated by many
authors. Interval-censored covariates apparently differ from missing covariates
because the former does provide some information about the covariates. For
the latter, it is common to impute the missing covariates and this can be
done for interval-censored covariates using the techniques discussed in Section
2.4 for interval-censored survival times. As with missing covariates, interval-
censored covariates can also occur in contexts other than failure time data
analysis. For instance, Chen and Cook (2003) discussed a situation where
the response is a point process and the covariate is a marker process. For
the response, complete or recurrent event data are observed, but the marker
process is subject to interval censoring.

10.4 Bayesian Analysis

Using the notation defined before, consider a survival study that involves n
independent subjects and gives rise to interval-censored data

O = { (Li, Ri],Zi ; i = 1, ..., n }
for the survival time Ti of interest. Let S(t; Z,θ) denote the survival function
for a subject with covariates Z and suppose that it is known up to an unknown
vector of parameters θ. Here the dimension of θ may be finite or infinite. Then
the likelihood function is proportional to

L(θ |O) =
n∏

i=1

[ S(Li; Zi,θ) − S(Ri; Zi,θ) ] ,

and our goal is to make inference about θ.
For a Bayesian analysis, assume that θ is random and follows a known

distribution, say π(θ), which is called the prior distribution. Then one can
make inference about θ based on the distribution

π(θ |O) =
L(θ |O) π(θ)∫

Θ L(θ |O) π(θ) dθ
,
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which is called the posterior distribution. In this expression, Θ denotes the
space of θ and the probability formula used to derive π(θ |O) is Bayes’s the-
orem. If the posterior distribution π(θ |O) has a closed form, one can draw
inference about θ from it. For example, one can estimate θ by the posterior
mean defined as the mean of θ with respect to π(θ |O). In most applications,
however, π(θ |O) does not have a closed form and in fact, the posterior dis-
tribution is often too complicated to be used directly. Then one may sample
from it in order to make the inference.

In general, two basic tasks are involved in Bayesian analyses. One needs
to select a prior distribution for θ and obtain some computational methods to
sample from the posterior distribution. For the case of right-censored failure
time data, a number of authors have discussed these and other related issues.
For instance, a number of sampling techniques based on Gibbs sampling and
other Markov chain Monte Carlo sampling algorithms have been developed in
the literature. For references, readers are referred to the review paper by Sinha
and Dey (1997) and the recent book by Ibrahim et al. (2001), which provides
a relatively complete and comprehensive coverage of Bayesian analysis ap-
proaches for failure time data. On the other hand, for interval-censored data,
there exists much less research due to the difficulties introduced by such cen-
soring. In the following, we briefly discuss two topics, nonparametric (Gómez
et al., 2000) and semiparametric Bayesian approaches (Sinha et al., 1999) for
the analysis of interval-censored data with the focus on the selection of prior
distributions. Section 10.4.3 contains some general remarks.

10.4.1 Nonparametric Bayesian Approaches

In this subsection, we assume that all Zi = 0 or there exist no covariates and
that θ represents the cumulative distribution function F or the cumulative
hazard function Λ of the Ti’s. That is, the goal is to estimate F (t) or Λ(t)
nonparametrically.

For nonparametric estimation of a cumulative distribution or hazard func-
tion, two prior processes are commonly used. One is the Dirichlet process prior
introduced in Ferguson (1973; 1974) and the other is the beta process prior
proposed in Hjort (1990). The former is usually used if F (t) or S(t) = 1 − F (t)
is the target, while the latter is commonly applied if the focus is on Λ(t).

For a set A on the real line, define P (A) =
∫

A
dF (t), which is random

if F is. The Dirichlet process prior assumes that for any partition of the
real line denoted by A1, , ..., Am, the joint distribution of the random vector
Y = (P (A1), ..., P (Am)) is given by the Dirichlet distribution with parameter
vector α = (α(A1), ..., α(Am)), where α is a probability measure. That is, Y
has joint density function

f(y1, ..., ym−1) =

[
Γ (
∑m

j=1 αj)∏m
j=1 Γ (αj)

] ⎛⎝m−1∏
j=1

y
αj−1
j

⎞
⎠
⎛
⎝1 −

m−1∑
j=1

yj

⎞
⎠

αm−1

,
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yj ≥ 0, j = 1, ..., m − 1,
∑m−1

j=1 yj ≤ 1, where Γ denotes the gamma
function and αj = α(Aj), j = 1, ..., m. Assume that F is discrete and the
corresponding survival variable T takes only finite values s1 < ... < sm with
fj = P ( T = sj ), j = 1, ..., m. In this case, a common choice for the prior
distribution of (f1, ..., fm) is the Dirichlet distribution.

Several authors investigated nonparametric Bayesian estimation of F (t) or
S(t) = 1 − F (t) using the Dirichlet process prior or its variant for interval-
censored failure time data. Among them, Doss (1994) considered prior distri-
butions on F (t) that are a mixture of Dirichlets and give most of their mass
to small neighborhoods of some parametric family. Calle and Gómez (2001)
studied the same problem and employed the Dirichlet process prior. Their
approach is a generalization of that given in Susarla and van Ryzin (1976),
who derived nonparametric Bayesian estimators of S(t) for right-censored data
that include the Kaplan-Meier estimator as a special case. More recently, using
the Dirichlet process prior, Zhou (2004) gave another nonparametric Bayesian
estimator of S(t) that has an explicit form. In contrast, the estimators given
by both Doss (1994) and Calle and Gómez (2001) have no closed forms.

As mentioned above, the beta process prior is another prior commonly
used in the analysis of failure time data. In fact, as pointed out in Ibrahim et
al. (2001), the prior that is more convenient and often sufficient in practice
is the discrete beta prior rather than the continuous beta prior. Consider a
discrete survival variable T taking only the finite number of values denoted by
s1 < ... < sm as above. Let pj denote the hazard of T at time sj as defined in
Section 1.4.2, j = 1, ..., m. The discrete beta prior assumes that the pj ’s are
independent and pj follows the beta distribution B(cjαj , cj(1 − αj)), where
the cj ’s and αj ’s are hyperparameters that are usually assumed to be known.
In other words, under the discrete beta prior, the joint prior density function
has the form

π(p1, ..., pm) = C

m∏
j=1

p
cjαj−1
j (1 − pj)cj(1−αj)−1 , (10.10)

where C is the standardizing constant.
A useful feature of the discrete beta prior is that if exact survival data are

available, the posterior distribution is the same as the prior distribution, but
with different parameters. Specifically, let Oc denote the exact survival data
and dj and rj the numbers of subjects for whom T = sj and who are at risk
right before time sj , respectively, j = 1, ..., m. Then we have

π(p1, ..., pm |Oc) = C

m∏
j=1

p
cjαj+dj−1
j (1 − pj)cj(1−αj)+rj−dj−1 .

Of course, for interval-censored failure time data, the dj ’s and rj ’s are un-
known. Sinha (1997) studied the use of the discrete beta prior for Bayesian
analysis of interval-censored data and discussed the selection of the hyperpa-
rameters cj ’s and αj ’s.
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10.4.2 Semiparametric Bayesian Approaches

Consider regression analysis of the observed data O and let θ represent re-
gression parameters β and the baseline survival function S0 together. In this
case, a simple and easy choice for prior distribution is to let S0 follow the
Dirichlet process prior and to assume that β is independent of S0 and has a
multivariate normal distribution as its prior.

For discrete interval-censored failure time data, one can apply the same
strategy as that with continuous interval-censored data. For example, assume
that as above, the survival variable T of interest takes only finite values sj ’s
and for a subject with covariates Z, the hazard at time sj has the form

pj(Z) = pj eZ
′ β ,

where the pj ’s denote the baseline hazards. That is, we have a piecewise con-
stant hazard model. Then we can impose the prior given in (10.10) on the
pj ’s and an independent multivariate normal distribution on the regression
parameters β. Instead of the discrete beta prior, alternatively, one can ap-
ply the discrete version of the Gamma process prior (Ibrahim et al., 2001;
Kalbfleisch, 1978), a commonly used nonparametric prior process for the PH
model. Sinha et al. (1999) discussed this for situations with one covariate.
Specifically, they assume that all the pj ’s and β are independent and

pj ∼ Γ (cj , αj) , β ∼ N(β0, σ
2
0) ,

or β depends on time and

βj+1 | (β1, ..., βj) ∼ N(βj , σ
2
k) ,

where βj denotes the value of the regression parameter at time sj . In this
model, as before, the cj ’s, αj ’s, β0 and σj ’s are hyperparameters and assumed
to be known. Of course, one can use other models in Bayesian analysis (Hanson
and Johnson, 2004).

10.4.3 Some Remarks

It is apparent that if there exists prior information about the survival variable
of interest, Bayesian approaches provide natural tools for the analysis because
one can formally incorporate the information into the analysis through π(θ)
(Dunson et al., 2004). An example of prior information is given by historical
data that may exist for the disease or survival variable under study. In addi-
tion, in some situations, one may simply prefer to apply Bayesian approaches
as analysis tools assuming that an appropriate prior and a sampling technique
are available. For example, this could be the case in a situation where one has
to reply on asymptotic results of a frequentist approach, but the sample size
is small.
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As discussed above, a Bayesian analysis involves choosing a prior as well
as developing a sampling procedure to sample from the posterior distribution.
This section discussed the first step, but not the second step. In general, the
development of a sampling algorithm can be more difficult and again we re-
fer readers to the book by Ibrahim et al. (2001) for discussion on this topic.
Also parametric Bayesian approaches were not considered, but references in-
clude Banerjee and Carlin (2004) and Gómez et al. (2004). In addition to
interval-censored survival times, one can also apply Bayesian approaches to
analyze bivariate interval-censored data (Groenewald and Mokgatlhe (2004),
or data with interval-censored covariates. For the latter, Calle and Gómez
(2005) considered the model (10.8) with the T ∗

i ’s observed exactly.

10.5 Analysis with Informative Interval Censoring

The statistical methods discussed so far assume that the observation process
that generates interval censoring is independent of the variable of interest.
That is, we have independent interval censoring described in Section 1.3.5. In
general, the contribution of an interval-censored observation given by (1.1) to
the likelihood has the form

L∗
S(L = l, R = r; T ) = P (l < T ≤ r |L = l, R = r) dG(l, r) , (10.11)

where dG denotes the joint probability or density function of (L, R). Under
independent interval censoring, this can be replaced by

LS(L = l, R = r; T ) = P (l < T ≤ r ) , (10.12)

which has been used throughout the book and gives a much simplified likeli-
hood function compared with that obtained from the term (10.11). That is,
with independent censoring, one can ignore the censoring mechanism or the
observation process.

The observation process that controls interval censoring can be generated
in many different ways (Babineau, 2005). A natural question is under what
conditions we have or what types of observation processes give independent
interval censoring. More generally, under what conditions or for what types of
observation processes can one use the term (10.12), instead of the term (10.11),
in the construction of a likelihood function? Furthermore, suppose that such
conditions or processes exist. Then in practice, one needs to know how to test
if (10.12) is appropriate and how inferences can be made for situations where
the term (10.12) is not valid.

Before we further discuss independent interval censoring and the use of the
terms (10.11) and (10.12), it is helpful to briefly review right-censored failure
time data regarding the same issues. In this case, as discussed in Section 1.1.3,
an independent right censoring mechanism that is similar to the independent
interval censoring mechanism is commonly assumed. As with the latter, the
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use of the former greatly simplifies the likelihood construction for the analysis
of right-censored data. It is well-known that independent right censoring is not
always appropriate, but in general it cannot be tested (Tsiatis, 1975) unless
more information about the censoring process is available or one imposes some
modeling assumptions on the process. Among others, Lagakos and Williams
(1978) and Williams and Lagakos (1977) investigated conditions under which
one can and cannot, respectively, ignore the right censoring mechanism and
apply a simplified likelihood contribution that is similar to (10.12) for infer-
ences. In particular, Williams and Lagakos (1977) derived a constant-sum con-
dition that allows the use of the simplified likelihood contribution. Kalbfleisch
and MacKay (1979) also studied the constant-sum condition. For the analy-
sis of right-censored data when the censoring mechanism cannot be ignored
or with dependent right censoring, some recent references include DiRienzo
(2003), Huang and Wolfe (2002), Lin et al. (1996), Robins and Finkelstein
(2000), Rotnitzky and Robins (1995), and Scharfstein and Robins (2002).

In Section 10.5.1, we first briefly discuss conditions under which one can
apply the term (10.12) to the likelihood construction for inferences and related
issues. We refer the type of interval censoring for which (10.12) is valid as non-
informative interval censoring. In contrast, the interval censoring for which the
term (10.12) is invalid is referred to as informative interval censoring. In other
words, one can classify interval-censored data into three types according to
three interval censoring mechanisms: data with independent, noninformative,
and informative interval censorings, respectively. It is obvious that indepen-
dent interval censoring is noninformative interval censoring. Sections 10.5.2
describes some ideas that can be applied to the analysis of failure time data
with informative interval censoring and is followed by some general remarks
in Section 10.5.3.

10.5.1 Noninformative Interval Censoring

One wonders if there exists an interval censoring that is noninformative, but
not independent interval censoring. Betensky (2000) first investigated this
for current status data and provided a positive answer. Following Betensky
(2000), Oller et al. (2004) studied the same problem, but for general case
II interval censored data. In both Betensky (2000) and Oller et al. (2004), a
constant-sum condition, similar to that given in Williams and Lagakos (1977),
is described that characterizes an observation process that gives noninforma-
tive interval censoring.

To describe the constant-sum condition for case II interval-censored data,
consider an interval-censored observation given in (1.1) and let F (t) denote
the cumulative distribution function of T . Then Oller et al. (2004) define the
constant-sum condition as∫

( (l,r]:t∈(l,r] )

P (L ∈ dl , R ∈ dr , T ∈ (L, R])
P (T ∈ (l, r])

= 1
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for any t such that dF (t) �= 0. Furthermore, they show that if an observation
process satisfies the constant-sum condition, the resulting interval censoring is
noninformative. For such a process, called the original process, there exists an
observation process that yields independent interval censoring and gives the
same marginal distributions of T and (L, R) as those arising from the original
observation process. In other words, the constant-sum condition is equivalent
to the existence of an observation process that gives both an independent
interval censoring and the same probability distribution for the observed data
as the underlying true process (Lawless, 2004).

More importantly, one wants to know if it is possible to test if interval
censoring is noninformative. As remarked before, unfortunately, this is not
possible in general. For example, if the observed data are given in the for-
mat (1.1) without additional information about the observation process, one
cannot test if the observation process and the underlying survival process are
independent. This is similar to the case of right-censored data. For the case of
current status data, Betensky (2000) gives an example of a class of observa-
tion processes that includes constant-sum observation processes as a subclass,
but within which, the constant-sum condition cannot be tested.

As with right-censored data, one way to test for independent or noninfor-
mative interval censoring is to obtain more information about and/or impose
some model assumptions on the underlying observation process. Betensky and
Finkelstein (2002) discussed this for the situation where there exists a sequence
of prespecified observation times for all subjects. Using the conditional model
of failure given observation status at each observation time, they developed a
procedure for testing a negative correlation between observation process and
failure process.

10.5.2 Informative Interval Censoring

This subsection considers the analysis of interval-censored failure time data
when interval censoring is informative. That is, when one cannot apply the
term (10.12) for the construction of a likelihood function. Instead, we have to
deal with the term (10.11) or the joint probability function or joint density
function, dG(l, r). For this, several ideas can be applied. One is to assume
that there exists another variable that can be observed and conditional on
which dG(l, r) does not involve the parameters of interest. Of course, here
we need to assume that the distribution of the variable that is conditioned
on does not involve the parameters of interest. Among others, van der Laan
and Hubbard (1997) and van der Laan and Robins (1998) considered this
approach for the situation where a surrogate marker is available and serves
as the conditional variable. This approach is essentially similar to those given
in other sections of the book in that they avoid dealing directly with the
interval censoring mechanism. Another idea is to conduct Bayesian analysis.
For example, Dunson and Dinse (2002) developed some Bayesian models for
multivariate current status data in the presence of informative censoring.



10.5 Analysis with Informative Interval Censoring 247

In the following, we focus on directly modeling the observation process as
well as the survival process of interest for the analysis of informatively interval-
censored data. For this, two general approaches are discussed below. One,
first discussed in Finkelstein et al. (2002), bases inferences on a full likelihood
function and the other, proposed in Zhang, Sun, and Sun (2005), applies
estimating equations. For the former, we focus on nonparametric estimation
of a distribution function, and for the latter, the focus is on regression analysis
of current status data using the additive hazards model (1.7).

10.5.2.1 A Full Likelihood Approach

Consider a survival study that consists of n independent subjects in which
each subject is observed at a subset of a sequence of prespecified time points
t1 < ... < tm. That is, we have discrete interval-censored data and for the
survival variable T of interest, only the probabilities { gj = P (tj−1 < T ≤
tj) } can be estimated. We assume that in the study, as in Sections 6.3 and
6.4, subjects continue to be observed even after the failure has occurred and
observation times are recorded. For subject i, let li denote the last observation
time at which the failure has not occurred and ri the first observation time at
which the failure has occurred. That is, (li, ri] denotes the interval to which
the survival time Ti from the subject is observed to belong. For each (i, j),
define δij = 1 if subject i is observed at time tj and 0 otherwise and αij = 1
if (li, ri] contains tj and 0 otherwise, i = 1, ..., n, j = 1, ..., m. Then the full
likelihood function is proportional to

LS =
n∏

i=1

P (Ti ∈ (li, ri] | δi1, ..., δim) dGi(δi1, ..., δim) (10.13)

in terms of the conditional distribution of the Ti’s, or

LS =
n∏

i=1

m∑
j=1

αij gj dGi(δi1, ..., δim |Ti ∈ (tj−1, tj ]) (10.14)

in terms of the marginal distribution of the Ti’s, where dGi(δi1, ..., δim) and
dGi(δi1, ..., δim |Ti ∈ (tj−1, tj ]) denote the marginal and conditional probabil-
ity or density functions of the δij ’s, respectively.

Suppose that one is interested in estimation of the survival function of T
or in particular, the gj ’s. In this case, it is apparent that the likelihood given
in (10.14) is more convenient than that given in (10.13) and one can maximize
it with respect to all parameters. To derive an efficient estimate, we need some
assumptions about dG(δi1, ..., δim |Ti ∈ (tj−1, tj ]). For this, Finkelstein et al.
(2002) assume that the distributions of the δij ’s are the same for all subjects
and given Ti, the δij ’s are independent. Then the likelihood function given in
(10.14) can be rewritten as
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LS =
n∏

i=1

m∑
j=1

αij gj

⎧⎨
⎩

j−1∏
k=1

[
pδik

1k (1 − p1k)1−δik

] m∏
k=j

[
pδik

2k (1 − p2k)1−δik

]⎫⎬
⎭ ,

(10.15)
where p1j = P (δij = 1 |T > tj) and p2k = P (δij = 1 |T ≤ tj), j = 1, ..., m.
To maximize LS in (10.15), Finkelstein et al. (2002) present an EM algorithm.

Suppose that information about some covariates is available and we are
interested in estimating the effects of these covariates. In this case, one can
derive a likelihood function similar to that given in (10.15) after specifying
some regression models for the dependence of the gj ’s, p1j ’s, and p2j ’s on the
covariates, respectively.

We remark that a major assumption in the construction of the likelihood
functions given in (10.13) to (10.15) is that the follow-up on study subjects
continues until the end of study or subjects may drop out of the study, but not
due to the occurrence of failure. Without these assumptions concerning follow-
up, the method described would not apply. Another key assumption about the
likelihood given in (10.15) is the conditional independence of the δij ’s given
the survival variable. An alternative to this is to assume that the observation
probability at each time point depends on the observation probability or status
at the previous time point, or on how close the time point is to the survival
time.

10.5.2.2 An Estimating Equation Approach

In this subsection, we consider regression analysis of current status data as
in Chapter 5. Specifically, using the notation defined before, suppose that the
data arising from n independent subjects have the form

{ (Ci, δi = I(Ti ≤ Ci),Zi) ; i = 1, ..., n } .

Unlike Chapter 5, we assume that the Ti’s and Ci’s may be correlated. Suppose
that the goal is to make inferences about covariate effects.

We assume that the relationship between Ti and Ci can be characterized by
a possibly time-dependent random effect bi(t), and given bi(t), Ti and Ci are
independent. Furthermore, we assume that given Zi and bi(t), the conditional
hazard functions of Ti and Ci are given by, respectively,

λ(t; Zi, bi(s), s ≤ t) = λ0(t) + Z′
i β + bi(t) (10.16)

and
λc

i (t; Zi, bi(s), s ≤ t) = λc(t) exp(Z ′
iγ + bi(t)) . (10.17)

This is the same notation used for models (1.4) and (5.9). It is apparent that
if bi(t) = 0 for all i, the problem considered here reduces to that discussed in
Section 5.4. Also under the assumptions above, Ti and Ci are independent if
bi(t) = 0 or more generally if it has zero variability. This can be used to test
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for independence in interval censoring. As remarked before, one interesting
and useful feature of the model (10.16) is that under it, the marginal hazard
of the Ti’s also follows the additive hazards model (1.7) (Lin, Oakes, and Ying,
1998; Zhang, Sun, and Sun, 2005).

The models (10.16) and (10.17) are special cases of those proposed in
Zhang, Sun, and Sun (2005), who considered the same problem, but with
time-dependent covariates. They show that under models (10.16) and (10.17),
the estimation approach described in Section 5.4 applies here. As discussed
in Section 5.4, this estimation approach is easily implemented, but could be
less efficient than a full likelihood-based approach. Also, for this estimating
equation approach, the types of correlations between Ti and Ci that can be de-
scribed by models (10.16) and (10.17) can be limited. A simple generalization,
which addresses this difficulty, replaces model (10.16) by

λ(t; Zi, bi(s), s ≤ t) = λ0(t) + Z′
i β + α bi(t) ,

where α is an unknown parameter that represents the direction of the cor-
relation between Ti and Ci. For this approach, of course, one also needs to
address model-checking issues.

10.5.3 Some Remarks

A field that has many similarities with interval-censored data is missing data,
in which the mechanism that causes missingness also plays an important role
in their analysis (Little and Rubin, 1987). In terms of missingness, interval-
censored data can be seen as special cases of missing data. But for miss-
ing data, the value of the variable of interest is completely unknown, while
interval-censored data do provide ranges about the missing values. As with
interval-censored data, missing data can also be classified into three categories
according to three commonly used missing mechanisms, missing completely at
random, missing at random, and nonignorable. They are similar, respectively,
to independent, noninformative, and informative interval censorings. Another
concept that is often used in the literature and is similar to both missing at
random and noninformative interval censoring is coarsening at random (Gill
et al., 1997; Heitjan and Rubin, 1991; van der Laan and Robins, 1998). It
was introduced by Heitjan and Rubin (1991) for general incomplete data to
represent coarsening mechanisms that can be ignored in making inferences
about the response variable of interest.

For the analysis of failure time data with informative interval censoring,
in addition to the likelihood and estimating equation approaches described
in the previous subsection, one can also apply other ideas discussed in the
previous chapters. In general, one needs to develop realistic models that are
appropriate for the survival process of interest and the observation process
both individually and jointly. Of course, here it is assumed that necessary
information is available to ensure that the models are identifiable.
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As commented above, it is in general impossible to test if an interval
censoring process is noninformative unless additional information about the
process is available. The same is true for the analysis of informatively interval-
censored data in that one may know some reasonable models for the under-
lying observation process, but no additional information exists and thus one
cannot identify the specific model for the data. In this case, one may con-
duct a sensitivity analysis, which is commonly used in general data analysis
when there exists some uncertainty that cannot be resolved with the available
information.

10.6 Computational Aspects and Additional Topics

Computational aspects of the various inference approaches described in this
book are definitely an important component of their applications but are be-
yond the scope of the book. Currently, there is no statistical software that
provides an extensive coverage for the analysis of interval-censored failure
time data. But one can find some functions in Splus and R and some pro-
cedures in SAS that apply to interval-censored data. Also, there exist some
personal packages written for the analysis of interval-censored data in the lit-
erature. For example, one can use the function kaplanMeier in Splus or install
the R package Icens for nonparametric estimation based on interval-censored
data. Similar results can be obtained using the SAS procedure LIFETEST.
Kooperberg and Stone (1992) provide Splus software for smooth estimation
of a survival function based on interval-censored data using splines, and Fay
(1999b) gives some Splus functions for nonparametric estimation and treat-
ment comparison. For examples given in this book, most programming was
done using Splus or R. References that provide lengthy discussion about com-
putational aspects include Lindsey and Ryan (1998) and Gómez et al. (2004).

In addition to the topics discussed in the previous sections, several other
topics concerning interval-censored data could occur in practice although there
exists little research on them in the literature. One is the analysis of stratified
interval-censored failure time data. By stratified interval-censored data, we
mean that the data are a combination of several data sets arising from different
sources or backgrounds but are generated or collected for the same purpose.
For example, in a cancer study that aims to evaluate the effect of a new drug,
the study may consist of both male and female patients. For the analysis, it is
apparent that a simple way is to define a gender covariate to take into account
the gender effect. In many situations, however, this may not be good enough.
A better approach may be to apply some stratified regression models such
as the stratified PH or additive hazards model, the model (1.4) or (1.7) with
different baseline hazard functions, for male and female patients.

Competing risk problems often occur and have been extensively discussed
in the context of right-censored failure time data (Kalbfleisch and Prentice,
2002). For the same reasons, one could face these problems when only interval-
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censored data are available. The analysis of interval-censored data that involve
covariates with measurement errors is another topic that one may need to deal
with. Also, we could have interval-censored data that arise from case-cohort
studies, for which one may want to develop analysis methods that take into
account the special features of the data or study.



 

 

 

 

 



Appendix

Some Sets of Data

The following sets of data are used for examples and discussion at various
places of the book.

Data set I, given in Table A.1, arises from ACTG 181 and is discussed
in Section 1.2.4 and analyzed in Sections 7.2.3 and 7.4.3. The variables of
interest are times to CMV shedding in blood and urine, respectively, and the
available information includes observed intervals (LU , RU ] and (LU , RU ] for
both the blood and urine shedding times. The variable CD4.ind indicates if
the patient’s baseline CD4 cell count is below 75 (cells/µl) (by 1).

Data set II, given in Table A.2, arises from a 16-center prospective study
in the 1980s on people with hemophilia for the purpose of investigating the
risk of HIV-1 infection on these people. It is analyzed in Sections 3.4.4 and
6.2.3. The table includes observed intervals within which the HIV-1 infection
occurred for 368 patients who received no and low-dose factor VIII concen-
trate.

Data set III, given in Table A.3, arises from ACTG 359 and is analyzed
in Sections 6.3.2 and 6.4.2. The table presents the observed information on
271 AIDS patients whose numbers of RNA copies were measured at least once
during the 12-month period. In the table, for each patient and at each of 8
prescheduled time points, 1 means that an observation is available and the
RNA number has already dropped below 500 at or before the time point,
0 means that an observation is available, but the RNA number has not yet
dropped below 500 up to the time point, and a dot means no observation at
the time point.

Data set IV, given in Table A.4, arises from the National Cooperative
Gallstone Study, a 10-year, multicenter, double-blinded, placebo-controlled
clinical trial of the use of the natural bile acid chenodeoxycholic acid (cheno)
for the dissolution of cholesterol gallstones. It is analyzed in Sections 9.2.3
and 9.3.1. The table includes the successive visit times in study weeks and the
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associated counts of episodes of nausea for the 111 patients in the high-dose
cheno and placebo groups during the first year of the study.

Data set V, given in Table A.5, arises from a bladder cancer study
conducted by the Veterans Administration Cooperative Urological Research
Group and is analyzed in Section 9.4.3. In the table, dot means no visit and
the number represents the number of bladder tumors that occurred between
the previous and current visits. The second column gives the size of the largest
initial tumor, and the number of initial tumors (at month 0) is given in column
3.
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Table A.1. Data set I — Observed intervals in weeks for blood and urine
shedding times along with the baseline CD4 status from ACTG 181

Patient LB RB LU RU CD4.ind Patient LB RB LU RU CD4.ind

1 11 - 11 - 1 45 6 10 0 2 1
2 11 - 11 - 1 46 2 - 2 - 1
3 11 - 11 - 0 47 13 - 13 - 0
4 11 - 8 10 0 48 15 - 0 3 0
5 7 - 6 8 1 49 8 - 0 1 0
6 11 - 12 - 0 50 16 - 6 9 0
7 8 12 8 10 1 51 5 - 0 1 1
8 10 - 10 - 0 52 2 - 0 1 1
9 6 - 6 - 1 53 13 - 0 1 0
10 2 9 9 11 0 54 13 - 13 - 1
11 11 - 11 - 1 55 5 - 0 1 1
12 5 - 0 1 1 56 5 - 9 - 1
13 16 - 16 - 1 57 17 - 0 1 1
14 0 1 0 1 1 58 8 - 1 3 1
15 18 - 1 2 0 59 16 - 3 5 1
16 16 - 0 1 1 60 0 1 0 1 1
17 16 - 0 1 0 61 2 6 0 1 1
18 10 - 10 - 1 62 14 - 13 - 0
19 10 - 0 1 1 63 16 - 17 - 0
20 19 - 1 3 0 64 13 - 13 - 0
21 2 14 9 11 1 65 1 - 1 - 1
22 0 3 1 3 1 66 14 - 0 3 1
23 18 - 18 - 0 67 12 - 6 9 0
24 11 - 9 - 0 68 0 1 0 1 1
25 15 - 1 5 0 69 13 - 0 1 1
26 5 - 1 2 1 70 16 - 3 4 0
27 11 14 12 14 0 71 15 - 0 1 0
28 13 - 0 1 1 72 16 - 5 7 1
29 14 - 16 - 0 73 8 - 0 1 1
30 0 1 1 2 1 74 1 2 1 2 1
31 16 - 17 - 0 75 1 4 0 1 1
32 16 - 1 2 1 76 15 - 1 2 1
33 16 - 17 - 0 77 5 9 0 1 1
34 5 9 4 6 1 78 16 - 16 - 0
35 1 - 1 - 0 79 1 2 0 1 1
36 9 - 4 - 0 80 15 - 1 3 1
37 12 - 11 - 0 81 14 - 0 1 0
38 2 - 1 4 1 82 8 - 1 4 0
39 10 - 11 - 1 83 15 - 2 4 0
40 8 - 11 - 0 84 13 - 13 - 0
41 12 - 12 - 1 85 4 - 0 1 1
42 12 - 12 - 0 86 13 - 9 13 1
43 5 - 11 - 0 87 4 - 0 1 1
44 2 - 3 - 1 88 5 - 4 6 1



256 Appendix: Some Sets of Data

Data set I (Continued)

Patient LB RB LU RU CD4ind Patient LB RB LU RU CD4ind

89 12 - 12 - 1 133 13 - 13 - 0
90 13 - 13 - 0 134 1 3 0 1 1
91 1 - 13 - 0 135 11 - 5 7 0
92 8 - 9 - 1 136 11 - 4 5 1
93 9 - 11 - 0 137 2 - 1 3 1
94 1 - 1 - 1 138 8 - 0 1 1
95 13 - 13 - 0 139 13 - 13 - 0
96 2 - 4 - 1 140 11 - 0 1 0
97 13 - 1 3 1 141 13 - 13 - 0
98 3 - 5 - 1 142 16 - 0 1 1
99 10 - 10 - 0 143 11 - 4 6 1
100 9 - 9 - 1 144 1 - 0 1 1
101 6 - 6 - 1 145 8 - 15 - 0
102 1 - 10 - 1 146 8 14 9 10 1
103 1 - 1 - 1 147 13 - 12 15 0
104 11 15 10 14 0 148 8 - 16 - 1
105 5 9 0 1 0 149 8 - 7 10 0
106 19 - 0 1 1 150 2 11 11 13 0
107 16 - 1 2 0 151 11 - 11 - 0
108 20 - 1 3 1 152 5 - 10 - 0
109 17 - 17 - 0 153 6 - 6 - 1
110 1 4 0 1 0 154 14 - 14 - 0
111 15 - 0 1 0 155 0 1 0 1 1
112 19 - 19 - 0 156 13 - 0 1 0
113 19 - 6 8 0 157 14 - 14 - 1
114 14 - 6 9 1 158 13 - 13 - 0
115 19 - 5 7 0 159 13 - 14 - 0
116 19 - 1 2 1 160 13 - 13 - 1
117 17 - 17 - 0 161 14 - 6 7 1
118 8 - 3 6 1 162 14 - 14 - 0
119 9 - 15 - 0 163 12 - 9 11 0
120 19 - 1 3 0 164 12 - 13 - 1
121 18 - 18 - 0 165 7 - 9 - 1
122 1 6 1 6 1 166 14 - 1 2 1
123 19 - 19 - 0 167 14 - 14 - 0
124 1 3 8 11 0 168 13 - 3 5 1
125 11 15 1 4 1 169 13 - 13 - 1
126 0 1 0 1 1 170 14 - 12 - 0
127 17 - 17 - 0 171 11 - 13 - 0
128 11 - 2 6 1 172 12 - 13 - 1
129 11 14 2 6 1 173 8 - 8 - 1
130 19 - 0 1 0 174 12 - 8 9 0
131 1 - 0 1 1 175 4 - 4 - 0
132 1 4 0 4 1 176 11 - 2 4 1
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Data set I (Continued)

Patient LB RB LU RU CD4ind Patient LB RB LU RU CD4ind

177 11 - 1 3 0 191 1 - 1 - 1
178 14 - 12 14 1 192 6 - 6 - 1
179 19 - 19 - 0 193 10 - 0 1 0
180 19 - 1 3 1 194 1 - 0 1 1
181 16 20 0 1 0 195 8 - 1 2 1
182 1 - 1 - 1 196 3 - 1 2 1
183 10 - 8 10 1 197 13 - 13 - 1
184 6 - 0 1 0 198 14 - 1 2 1
185 13 - 1 2 0 199 13 - 13 - 0
186 11 - 11 - 0 200 11 - 11 - 0
187 11 - 6 8 0 201 7 - 7 - 1
188 2 - 0 1 1 202 14 - 0 1 1
189 10 - 1 3 1 203 14 - 14 - 0
190 11 - 0 1 1 204 4 - 4 - 0

Table A.2. Data set II — Observed intervals (Li, Ri] in quarters for HIV-1
infection times of 368 people with hemophilia in no and low-dose groups
from a 16-center prospective study

Patient Li Ri Patient Li Ri Patient Li Ri

No factor VIII concentrate group
1 55 - 80 29 - 159 47 -
2 55 - 81 54 - 160 47 -
3 56 - 82 53 - 161 49 -
4 54 - 83 16 19 162 21 27
5 53 - 84 48 - 163 0 25
6 57 - 85 55 - 164 46 -
7 31 33 86 29 - 165 27 -
8 56 - 87 46 - 166 49 -
9 56 - 88 55 - 167 27 33
10 54 - 89 54 - 168 18 34
11 56 - 90 53 - 169 45 -
12 54 - 91 53 - 170 49 -
13 55 - 92 20 24 171 54 -
14 56 - 93 53 - 172 6 31
15 57 - 94 54 - 173 47 -
16 56 - 95 51 - 174 0 43
17 54 - 96 48 - 175 57 -
18 56 - 97 18 22 176 34 -
19 54 - 98 51 - 177 54 -
20 5 30 99 32 - 178 0 31
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Data set II (Continued)

Patient Li Ri Patient Li Ri Patient Li Ri

21 54 - 100 20 32 179 56 -
22 55 - 101 18 24 180 56 -
23 57 - 102 54 - 181 25 31
24 55 - 103 17 22 182 35 -
25 56 - 104 33 - 183 50 -
26 52 - 105 47 - 184 56 -
27 46 - 106 53 - 185 0 35
28 45 - 107 33 - 186 55 -
29 49 - 108 48 - 187 54 -
30 55 - 109 47 - 188 25 40
31 57 - 110 20 28 189 48 -
32 54 - 111 38 - 190 42 -
33 57 - 112 4 33 191 55 -
34 55 - 113 41 - 192 53 -
35 43 - 114 52 - 193 52 -
36 48 - 115 55 - 194 56 -
37 40 - 116 26 31 195 56 -
38 54 - 117 52 - 196 56 -
39 51 - 118 24 28 197 56 -
40 56 - 119 53 - 198 55 -
41 56 - 120 54 - 199 55 -
42 51 - 121 54 - 200 54 -
43 55 - 122 50 - 201 57 -
44 54 - 123 53 - 202 39 -
45 35 - 124 54 - 203 56 -
46 35 - 125 37 - 204 57 -
47 56 - 126 55 - 205 53 -
48 42 - 127 48 - 206 30 -
49 54 - 128 51 - 207 56 -
50 45 - 129 54 - 208 57 -
51 56 - 130 45 - 209 56 -
52 56 - 131 48 - 210 55 -
53 56 - 132 50 - 211 55 -
54 50 - 133 0 41 212 57 -
55 54 - 134 41 - 213 30 -
56 39 - 135 47 - 214 5 30
57 56 - 136 41 - 215 0 29
58 51 - 137 51 - 216 44 -
59 55 - 138 46 - 217 30 -
60 50 - 139 50 - 218 30 -
61 45 - 140 47 - 219 56 -
62 49 - 141 47 - 220 31 -
63 52 - 142 47 - 221 55 -
64 52 - 143 54 - 222 56 -
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Data set II (Continued)

Patient Li Ri Patient Li Ri Patient Li Ri

65 57 - 144 53 - 223 54 -
66 56 - 145 53 - 224 54 -
67 55 - 146 54 - 225 57 -
68 14 49 147 54 - 226 54 -
69 54 - 148 43 - 227 38 -
70 55 - 149 49 - 228 54 -
71 55 - 150 44 - 229 54 -
72 54 - 151 29 - 230 57 -
73 56 - 152 46 - 231 57 -
74 55 - 153 40 - 232 44 -
75 55 - 154 9 27 233 55 -
76 53 - 155 49 - 234 55 -
77 0 4 156 45 - 235 56 -
78 54 - 157 49 - 236 54 -
79 20 24 158 49 -

Low-dose factor VIII concentrate group
237 7 20 281 25 34 325 30 -
238 9 20 282 53 - 326 45 -
239 0 25 283 41 - 327 21 26
240 57 - 284 50 - 328 16 32
241 23 26 285 0 36 329 17 24
242 8 21 286 0 29 330 49 -
243 20 26 287 55 - 331 0 37
244 25 27 288 0 55 332 0 41
245 24 29 289 10 16 333 0 30
246 12 21 290 13 29 334 56 -
247 26 29 291 14 19 335 0 30
248 54 - 292 0 16 336 55 -
249 18 22 293 11 29 337 51 -
250 14 22 294 11 20 338 0 30
251 11 17 295 31 - 339 50 -
252 55 - 296 40 - 340 45 -
253 8 15 297 53 - 341 8 30
254 29 31 298 11 15 342 5 30
255 55 - 299 20 24 343 53 -
256 57 - 300 15 20 344 11 41
257 15 20 301 32 - 345 52 -
258 18 22 302 54 - 346 3 33
259 14 22 303 51 - 347 0 47
260 56 - 304 33 - 348 7 49
261 23 30 305 17 26 349 56 -
262 17 21 306 14 17 350 57 -
263 54 - 307 41 - 351 6 29
264 20 31 308 42 - 352 7 29
265 56 - 309 53 - 353 55 -
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Data set II (Continued)

Patient Li Ri Patient Li Ri Patient Li Ri

266 23 27 310 0 26 354 8 29
267 56 - 311 49 - 355 7 29
268 53 - 312 39 - 356 36 -
269 15 19 313 18 29 357 7 28
270 52 - 314 22 25 358 55 -
271 0 17 315 50 - 359 49 -
272 0 21 316 54 - 360 46 -
273 46 - 317 38 - 361 0 30
274 16 23 318 20 30 362 57 -
275 24 32 319 46 - 363 30 -
276 16 24 320 51 - 364 53 -
277 53 - 321 6 30 365 12 21
278 12 20 322 53 - 366 56 -
279 18 22 323 0 30 367 38 -
280 0 33 324 45 - 368 0 44

Table A.3. Data set III — Observation times in months and the status
of RNA numbers for 271 AIDS patients from ACTG 359

Observation times Observation times
1 2 3 4 6 8 10 12 1 2 3 4 6 8 10 12

109 patients with initial RNA < 20000
0 1 1 1 1 . 1 . 1 1 1 1 1 1 1 1
0 0 0 . . . . . 0 1 1 1 1 1 1 1
0 0 0 0 0 . . . 1 1 1 1 1 1 1 1
1 1 1 1 1 . . . 0 0 1 1 1 1 1 .
. 1 1 1 1 1 . 1 0 0 0 0 0 . . .
1 1 . . . . . . 0 1 1 1 1 . . .
1 1 1 1 1 1 1 1 0 0 0 0 0 . . .
1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
1 1 . 1 1 . . . 1 1 1 1 1 . . .
0 1 1 1 1 . . . 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1 1 1 1 1 . 1
1 . . . . . . . 1 1 . 1 1 1 1 1
1 1 1 1 1 1 . . . . . 1 1 . . .
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 0 1 . 1 1 1 . .
0 0 0 0 0 . . . 1 1 1 1 1 1 1 1
0 0 0 0 0 . . . 1 1 1 1 . 1 1 1
0 0 1 1 1 1 1 1 . 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Data set III (Continued)

Observation times Observation times
1 2 3 4 6 8 10 12 1 2 3 4 6 8 10 12

0 0 0 . 0 . . . 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 0 0 0 0 0 . . .
0 0 0 0 0 0 . 0 1 1 1 1 1 1 . 1
. 0 . 0 0 . . 0 1 1 1 1 1 1 . .
0 0 0 0 0 0 0 . 0 0 0 0 0 . . .
1 1 1 1 1 1 1 1 0 . 0 0 0 0 . .
0 . 0 0 0 . . . 1 1 1 1 1 . . .
1 1 1 1 1 1 1 1 0 0 0 0 0 . . .
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 .
0 . . 1 1 . . . 0 0 0 0 0 0 0 0
1 1 1 1 . 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 . . . 1 1 1 1 1 . . .
1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 0 1 . 1 1 1 1 1
0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1
0 1 1 1 1 1 1 1 0 0 1 1 1 . . .
0 0 0 0 0 . . . 1 1 1 1 1 1 1 1
0 0 0 . 1 . . . 0 0 0 0 1 . . .
0 0 0 0 0 . . . 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 . 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 . 0 0 . . . . . 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1 1 1 1 . . .
. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 . 1 . . . . 1 1 1 1 1 1 1 1
1 1 1 1 . 1 . . 0 0 0 . 0 0 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 . . . . . . . . 0 0 0 . . . .
1 1 1 1 1 . . . 1 1 1 1 . 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 . 1 1 1
1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
0 0 0 0 . . . . 1 1 1 1 1 1 . 1
0 0 0 0 0 . . . 1 1 1 1 1 1 1 1
0 0 0 0 0 . . . 0 0 0 0 1 . . .
1 1 1 1 1 1 1 1

162 patients with initial RNA ≥ 20000
0 1 1 1 1 . . . 0 0 0 0 0 . . .
0 0 0 0 0 0 0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 1 . 1 1 1 1 1 1 . 1
1 1 1 1 1 1 1 1 0 0 0 0 0 . . .
0 0 0 0 0 0 1 1 0 0 0 0 0 . . .
0 . . . . . . . 0 0 0 0 0 . . .
0 0 0 0 0 0 0 0 . 0 0 0 0 . . .
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Data set III (Continued)

Observation times Observation times
1 2 3 4 6 8 10 12 1 2 3 4 6 8 10 12

. . 0 0 . . . . 0 0 0 0 0 . . .
0 . . . . . . . 0 0 0 0 1 . . .
1 1 1 1 1 1 1 . 0 0 0 0 0 . . .
1 1 1 1 1 . . . 0 0 0 0 0 . . .
0 0 0 0 0 . . . 0 . 0 0 0 . . .
0 1 1 1 1 1 1 1 0 0 0 0 0 1 1 .
0 0 0 0 0 . . . 0 . 0 . . . . .
0 0 0 0 0 . . . 0 0 0 1 1 1 1 .
0 0 0 0 0 . . . 0 1 . 1 1 . 1 1
0 0 0 0 0 . . . 0 0 0 . 0 . 0 .
0 0 1 1 1 1 1 1 0 0 1 . 1 1 1 1
1 1 . 1 1 1 1 1 0 . 1 1 . 1 1 1
0 0 1 1 1 1 1 1 0 . 0 0 . 0 . .
0 0 . 0 . . . . 0 0 0 0 0 . . .
0 0 . . . . . . 0 0 0 0 0 . . .
0 0 0 0 0 1 . . 0 0 0 0 0 . . .
0 0 0 0 0 . . . 0 0 1 1 . 1 1 1
0 0 0 0 0 . . . . 0 0 0 0 . . .
0 1 1 1 . 1 1 1 0 1 1 1 1 1 1 .
0 0 0 . 0 . . . 1 1 . 1 1 1 1 1
1 1 1 1 1 1 1 1 0 . 0 0 0 0 0 0
0 0 0 0 0 0 . . 0 0 0 0 0 0 . 1
0 0 0 1 . 1 1 1 0 0 0 0 . 0 0 .
0 0 0 0 0 . . . 0 0 0 0 . . . .
0 1 1 1 1 1 1 1 0 0 0 0 . . . .
0 0 0 0 0 . . . 0 0 0 0 0 . . .
0 0 0 0 0 . . . 0 0 1 1 1 1 1 1
0 0 0 0 0 . . . 0 0 0 0 0 1 . .
1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1
1 1 1 1 1 . . . 0 . . . . . . .
0 0 0 0 0 . . . 0 0 0 1 1 1 1 .
0 0 0 0 0 0 0 . 0 0 0 0 0 . . .
0 0 0 0 0 0 0 . 0 1 1 1 1 1 1 1
0 0 0 0 0 . . . 0 0 0 0 0 . . .
0 0 0 0 0 . . . 0 0 0 0 0 . . .
0 0 0 1 1 1 . 1 0 0 0 0 . . . .
0 0 0 0 0 . . . 0 0 0 0 0 . . .
. 1 1 1 1 1 1 . 1 1 1 1 1 1 1 1
0 0 0 0 0 . . . 0 0 0 0 0 . . .
0 . 0 0 . . . . 0 0 0 0 . . . .
. 0 0 0 0 . . . 0 0 0 0 0 . . .
0 0 0 0 . 0 0 0 0 0 0 0 0 0 0 0
. . 0 0 . . . . 1 1 1 1 1 1 1 1
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Data set III (Continued)

Observation times Observation times
1 2 3 4 6 8 10 12 1 2 3 4 6 8 10 12

. 0 0 1 1 1 1 1 0 0 0 0 0 . . .
1 1 1 1 1 1 1 1 0 0 0 0 0 . . .
0 0 0 0 . . . . 0 0 0 0 0 0 . .
0 0 0 0 0 . . . 0 0 0 0 0 0 . .
0 1 1 1 1 1 . . 0 0 0 0 0 . . .
0 0 0 0 0 0 . . 0 . 0 1 1 . . .
. 1 . 1 1 1 . . 0 0 0 0 0 . . .
0 0 0 0 0 . . . 0 0 0 0 0 . . .
0 1 1 1 1 1 1 1 0 0 1 1 . . . .
0 0 0 0 0 . . . 0 0 0 0 0 0 . .
0 0 0 0 . . . . 0 0 . 0 0 . . .
0 0 0 0 0 . . . 0 1 1 1 1 . . .
. 0 0 0 0 . . . 0 0 1 1 1 1 1 1
0 1 1 1 . . . . 0 0 0 0 0 1 . .
0 0 0 0 0 . . . 0 1 1 1 1 1 1 1
. 0 0 0 . . . . 0 0 0 0 0 . . .
1 1 1 . . . . . 0 0 0 0 0 . . .
0 0 0 0 0 . . . 0 0 0 0 0 . . .
0 0 0 0 0 . . . 0 . 1 1 1 . . .
0 0 0 0 0 . . . 0 . 0 0 0 . . .
0 0 0 0 . . . . 0 0 0 0 0 . . .
0 0 0 0 0 0 0 . 0 0 1 1 1 1 1 1
0 0 . 0 . . . . 0 0 0 0 0 . . .
0 0 0 0 0 0 . . 0 0 0 0 0 . . .
. 0 0 0 0 . . . 0 0 1 1 1 1 1 1
0 0 0 0 0 . . . 0 0 0 0 0 . . .
0 0 0 0 0 . . . 0 0 0 0 0 . . .
0 0 0 0 1 1 1 1 0 0 . 0 0 . . .
0 0 0 0 0 . . . 1 1 1 1 1 1 1 1
1 1 1 1 1 . . . 0 0 0 0 0 0 0 0
0 0 0 0 0 . . . 0 0 0 0 0 . . .
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Table A.4. Data set IV — Visit times in weeks and observed counts of
episodes of nausea for 111 patients with floating gallstones in the National
Cooperation Gallstone Study

Patient Visit times and episodes of nausea
ID t1 N1 t2 N2 t3 N3 t4 N4 t5 N5 t6 N6 t7 N7 t8 N8 t9 N9 t10 N10

High-dose cheno group
1 4 0 8 0 13 0 26 0 38 0 51 0 69 0 . . . . . .
2 4 0 9 3 13 0 26 0 39 0 51 0 68 0 . . . . . .
3 4 0 8 0 12 0 24 0 38 0 51 0 69 0 . . . . . .
4 4 0 8 0 12 0 26 0 38 0 51 0 69 0 . . . . . .
5 4 0 8 0 13 0 26 0 38 0 52 0 70 0 . . . . . .
6 4 0 8 0 12 0 25 0 39 0 51 0 68 0 . . . . . .
7 4 0 9 0 14 0 26 0 39 0 52 0 70 0 . . . . . .
8 4 0 9 0 14 0 28 0 39 0 53 0 69 0 . . . . . .
9 4 0 9 1 14 0 27 1 38 1 54 4 71 0 . . . . . .
10 4 0 9 0 13 0 17 0 22 0 26 0 38 0 43 0 62 0 . .
11 3 0 8 0 13 0 26 0 40 4 53 2 68 0 . . . . . .
12 4 0 8 0 13 1 27 0 39 0 52 0 70 0 . . . . . .
13 4 20 10 2 14 2 17 10 28 0 41 0 54 6 71 0 . . . .
14 5 1 9 0 13 0 26 0 38 0 52 0 69 0 . . . . . .
15 5 0 9 0 15 0 27 0 39 0 51 0 70 0 . . . . . .
16 4 0 9 0 13 0 26 0 38 0 52 0 69 0 . . . . . .
17 4 0 8 0 12 0 27 0 39 0 51 0 68 0 . . . . . .
18 4 0 8 0 12 0 26 0 37 0 48 0 70 0 . . . . . .
19 4 0 9 0 14 0 28 0 38 0 52 0 71 0 . . . . . .
20 9 0 22 0 31 0 38 0 55 0 68 0 . . . . . . . .
21 5 0 10 0 13 0 25 0 50 2 81 0 . . . . . . . .
22 4 0 9 0 12 0 25 0 39 0 50 0 59 0 81 0 . . . .
23 5 0 8 0 13 0 25 0 40 0 60 0 . . . . . . . .
24 4 0 9 0 13 0 26 0 38 0 51 0 69 0 . . . . . .
25 4 0 9 0 13 0 26 0 38 0 52 99 84 0 . . . . . .
26 4 0 9 1 13 0 26 0 39 0 53 5 68 2 . . . . . .
27 3 0 8 0 13 1 25 0 40 0 51 0 61 0 . . . . . .
28 4 0 8 0 13 0 24 0 38 0 52 0 68 0 . . . . . .
29 3 0 9 0 12 5 26 0 38 0 50 0 60 0 . . . . . .
30 4 0 10 0 15 1 28 0 41 0 55 3 72 0 . . . . . .
31 3 0 8 0 13 0 26 0 39 0 52 0 93 0 . . . . . .
32 3 1 9 3 13 0 26 0 38 0 52 0 70 0 . . . . . .
33 4 0 10 0 16 0 29 0 41 0 54 6 72 0 . . . . . .
34 3 0 7 0 12 0 25 0 38 0 51 0 71 0 . . . . . .
35 4 0 9 0 13 0 26 0 39 0 51 0 69 0 . . . . . .
36 5 0 9 2 13 0 26 0 39 0 51 0 68 0 . . . . . .
37 6 0 12 6 16 0 28 0 41 0 63 0 . . . . . . . .
38 4 0 9 0 13 0 25 0 38 0 51 0 70 0 . . . . . .
39 4 0 8 0 12 0 26 0 40 0 53 0 71 0 . . . . . .
40 4 0 8 0 12 10 26 0 39 0 52 0 71 5 . . . . . .
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Data set IV (Continued)

Patient Visit times and episodes of nausea
ID t1 N1 t2 N2 t3 N3 t4 N4 t5 N5 t6 N6 t7 N7 t8 N8 t9 N9 t10 N10

41 5 0 9 0 14 0 27 0 39 0 52 0 72 3 . . . . . .
42 5 0 9 0 13 0 26 0 36 2 38 0 51 0 67 0 . . . .
43 4 0 10 0 14 0 26 0 39 0 53 0 71 0 . . . . . .
44 4 0 9 0 16 2 28 4 39 0 51 0 69 0 . . . . . .
45 5 0 10 0 15 0 29 0 40 0 55 0 71 0 . . . . . .
46 4 0 9 0 13 0 26 0 37 0 51 0 70 0 . . . . . .
47 4 0 8 0 13 0 26 0 38 0 51 0 69 0 . . . . . .
48 5 0 10 0 13 0 25 0 39 0 53 0 69 0 . . . . . .
49 3 0 7 0 13 2 25 0 36 5 49 3 68 7 . . . . . .
50 3 0 8 0 13 0 25 8 37 20 53 0 73 0 . . . . . .
51 6 0 9 0 13 0 26 0 40 0 51 0 72 0 . . . . . .
52 5 0 8 0 12 0 25 0 38 0 51 0 69 0 . . . . . .
53 4 0 8 0 13 0 25 0 41 0 53 0 71 1 . . . . . .
54 4 0 8 0 15 0 27 0 40 0 51 10 68 0 . . . . . .
55 4 0 8 1 12 0 27 0 41 0 53 2 56 0 62 0 . . . .
56 5 0 12 0 16 0 29 0 41 0 52 0 71 0 . . . . . .
57 5 0 11 4 16 0 30 5 44 24 51 40 82 30 . . . . . .
58 3 0 9 0 14 0 26 0 . . . . . . . . . . . .
59 4 0 9 0 13 0 25 0 38 0 . . . . . . . . . .
60 4 0 8 0 14 0 18 0 20 0 . . . . . . . . . .
61 4 0 8 0 13 0 17 0 23 0 27 0 32 0 . . . . . .
62 3 0 10 0 26 0 . . . . . . . . . . . . . .
63 8 5 19 0 28 0 . . . . . . . . . . . . . .

Placebo group
64 4 0 8 0 12 0 25 0 38 0 52 0 68 0 . . . . . .
65 4 0 8 0 13 0 27 0 40 0 44 0 53 0 69 0 . . . .
66 4 0 11 0 14 0 26 0 39 0 52 0 69 0 . . . . . .
67 4 0 9 0 12 0 25 0 40 0 52 0 70 0 . . . . . .
68 4 0 8 0 14 0 27 0 40 0 52 0 69 0 . . . . . .
69 5 1 9 0 13 0 26 1 40 0 53 0 69 0 . . . . . .
70 4 0 8 0 13 0 24 0 37 0 50 0 67 0 . . . . . .
71 4 1 9 0 14 4 28 3 41 1 54 1 71 2 . . . . . .
72 3 0 9 0 13 0 25 0 38 0 50 0 67 1 . . . . . .
73 5 0 9 0 13 0 27 0 38 0 51 0 69 0 . . . . . .
74 4 0 8 0 13 0 27 0 38 0 51 0 67 0 . . . . . .
75 4 3 9 0 14 0 25 0 39 0 51 0 69 1 . . . . . .
76 3 8 8 0 11 1 17 4 24 0 38 2 42 0 46 0 51 20 61 1
77 4 0 9 0 13 0 25 0 39 0 51 0 68 0 . . . . . .
78 4 0 8 0 13 0 24 0 38 0 51 0 69 0 . . . . . .
79 4 0 9 0 13 0 26 0 40 0 51 0 68 0 . . . . . .
80 4 0 9 0 14 0 28 0 40 0 51 0 71 0 . . . . . .
81 5 0 8 0 16 0 28 0 36 0 55 0 81 0 . . . . . .
82 5 0 7 0 12 0 25 2 38 0 53 1 72 0 . . . . . .
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Data set IV (Continued)

Patient Visit times and episodes of nausea
ID t1 N1 t2 N2 t3 N3 t4 N4 t5 N5 t6 N6 t7 N7 t8 N8 t9 N9 t10 N10

Placebo group
83 5 0 10 0 15 0 29 0 41 0 55 0 69 0 . . . . . .
84 4 0 9 0 13 0 25 0 35 0 56 0 74 0 . . . . . .
85 4 0 9 0 13 0 28 0 39 0 59 0 70 0 . . . . . .
86 4 0 9 3 12 0 24 0 37 0 51 0 68 0 . . . . . .
87 4 0 8 60 13 0 24 0 40 1 55 0 74 4 . . . . . .
88 3 0 8 1 14 0 26 0 38 0 53 0 70 0 . . . . . .
89 5 0 9 0 13 0 27 0 40 0 54 0 73 0 . . . . . .
90 3 0 8 0 11 0 25 0 37 0 51 0 68 0 . . . . . .
91 3 1 7 4 11 0 24 0 38 0 54 9 . . . . . . . .
92 3 5 8 0 13 0 25 0 38 0 52 0 68 0 . . . . . .
93 4 0 9 0 13 0 26 3 39 0 52 0 70 0 . . . . . .
94 4 0 9 0 14 0 26 0 39 0 52 0 68 0 . . . . . .
95 4 6 9 0 18 1 28 0 39 0 54 0 74 10 . . . . . .
96 5 0 9 0 15 0 27 0 39 0 53 0 69 0 . . . . . .
97 4 0 9 0 13 2 25 0 38 0 50 0 68 0 . . . . . .
98 3 3 7 0 12 0 25 6 38 0 52 0 69 0 . . . . . .
99 4 0 7 0 12 0 25 0 38 1 53 0 69 0 . . . . . .
100 4 0 8 0 13 0 26 0 39 0 51 0 70 0 . . . . . .
101 4 0 8 0 13 0 26 0 40 0 52 0 78 10 . . . . . .
102 4 3 . . . . . . . . . . . . . . . . . .
103 4 0 8 2 . . . . . . . . . . . . . . . .
104 5 0 9 0 13 0 17 0 21 0 28 1 39 1 . . . . . .
105 3 0 . . . . . . . . . . . . . . . . . .
106 6 0 . . . . . . . . . . . . . . . . . .
107 3 25 8 30 14 20 . . . . . . . . . . . . . .
108 4 0 9 0 13 12 . . . . . . . . . . . . . .
109 4 0 9 0 13 1 . . . . . . . . . . . . . .
110 5 0 9 0 14 0 26 0 . . . . . . . . . . . .
111 4 0 9 0 14 0 25 0 . . . . . . . . . . . .



Appendix: Some Sets of Data 267

Table A.5. Data set V — Observed numbers of bladder tumors along
with the numbers of initial tumors and the size of the largest initial
tumor from a bladder cancer study

Patient Size Months
ID 0 10 20 30

Placebo group
1 3 1 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 1 2 0 . . 0 . . . . . . . . . . . . . . . . . . . . . . . . . .
3 1 1 . . . . . . 0 . . . . . . . . . . . . . . . . . . . . . . .
4 1 5 . . 0 . . . . . 0 0 . . . . . . . . . . . . . . . . . . . .
5 1 4 0 . . 0 . 1 0 . . 0 . . . . . . . . . . . . . . . . . . . .
6 1 1 . . 0 . . . . . . 0 . . . 0 . . . . . . . . . . . . . . . .
7 1 1 . 0 . . . . . . . 0 . 2 . . . 3 . 0 . . . . . . . . . . . .
8 1 1 . . 0 . . . . . . . . . . 0 . . . 0 . . . . . . . . . . . .
9 3 1 . . . . 2 . . . . 0 . 0 . . . . . 0 . . . . . . . . . . . .
10 3 1 . . 0 . . . 0 . . 6 . . . . 3 . . . 0 . . . 0 . . . . . . .
11 1 1 0 . 8 . . . . 0 . 0 . . 0 . . 8 . . 0 . . . 8 . . . . . . .
12 1 3 . . 1 . . 0 . . 1 0 . . 0 . 0 . 0 . . 0 8 . 0 . . . . . . .
13 3 3 . . 0 . . 0 . . 0 . 0 . . 0 . . . 0 . . . . 0 . . . . . . .
14 3 2 . . 0 . . . 8 . . 7 . . 0 . . 5 . . . . . . . 7 . . . . . .
15 1 1 . . 1 . . 0 . . 0 . . 0 . . 1 . 0 . . 0 . 0 . . 3 . . . . .
16 1 8 8 . . 0 . . 0 . . . 0 . . 0 . . 0 . . 0 . . . . 0 0 . . . .
17 4 1 . 4 . . . 0 . . . . . . . . . . . . . . . . . . . 8 . . . .
18 2 1 . . 0 . . 0 . . . . . . 0 . . 0 . . . . . 0 0 . . 0 . . . .
19 2 1 . . . . . 0 . . . . . . . . . . . . . . . . . . 3 . . 0 . .
20 4 1 . . . . 0 . . 0 . . . . . . . . 0 . . . . . . . . . . . 0 .
21 2 1 . . 0 . . 0 . . . . . . . 0 . . . . . . . . . . . . . . 0 .
22 1 4 . 0 . . 0 . . 0 . . 0 . . . . . . 0 . . . . . 0 . . . . 0 .
23 5 1 . 4 . . . . . . . 0 . . . . . . 2 . . . . 4 0 . . . . 0 . 0
24 1 2 . . 1 . . 3 . 3 . . . 3 0 . 0 0 0 0 . . . 0 0 . . 3 . . . 0
25 6 1 . 0 . . 0 0 . . 0 . . . 0 . . . . . . . . 0 . . . . . 2 . 1
26 3 1 0 . 0 0 . 0 . . 0 . . 2 . . 3 . . 0 . . . . . 1 . . . 0 . .
27 2 1 . . 0 . . 0 . . 0 . . 0 . 0 . . 0 . . 0 . . . . . 0 . . . .
28 1 2 . . . 0 . . . 0 . 0 . . . 0 . . . . . . . 0 . . . . . . . 0
29 1 2 . . 0 . . 0 . . 0 . 0 . . 0 . . 0 . . 0 . . 0 . . . . . . 0
30 1 3 . . . . . . . . 0 . . . . . . . . . . 0 . . . . . . . . 8 .
31 2 1 0 . . 0 . . . . . 0 . . . . . . 0 . . . . . . 0 . . . . . .
32 1 4 . 0 . . . . . . 8 . . . . 0 . . 2 . . . . 5 . 1 . . . 0 . .
33 1 5 . 0 . 0 0 . . 0 . . 0 . . . 0 1 . . 8 . . . 1 . . 0 . . 2 .
34 2 1 . . 0 . . 0 . . 0 . 0 . . 0 . . 0 . . 0 . . 0 . . 0 . . 0 .
35 1 1 . . 3 . 0 . 0 . . 0 . . . 0 . . . . . 0 . . . . . . 0 . . 0
36 6 2 . . 0 . . 1 0 0 . . 0 . . 0 . 0 0 . . 0 . . 0 . . . . . . .
37 1 2 . . 5 . 0 3 . . 4 . . . . 0 . . 0 . . 0 . . 0 . . . 0 . . 0
38 1 1 . 0 . . . 0 . . 1 . 3 . 0 . . . 0 . . 1 . . 0 . . 4 . . . 3
39 1 1 . . 0 . . 0 . . 0 . 0 . . . 0 . . 1 . . . 0 . . 0 . . 0 . .
40 3 1 . . . . . 0 . 0 . . . 0 . . . . 0 . . . . . 0 . . . . . . 0
41 1 3 . 0 . . 0 . . . . . 0 . . . . . 0 . . . . . 0 . . . . . 0 .
42 7 1 . . 0 . . . . . . 0 . . 0 0 . . 1 . . . 0 . . 0 . . 0 . . 0
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Data set V (Continued)

Patient Size Months
ID 0 10 20 30

43 1 3 . . 7 . . . . . . . 0 . . . 2 . . . . . . . . . . 0 . . . .
44 1 1 0 . . 0 . . 0 . . 0 . . 0 . . 0 . . 0 . . 0 . . . . . 0 . .
45 2 3 . 1 . . 0 . 0 . . 0 . . 0 . 3 . . . 0 . . . . 4 . . 0 . . 3
46 3 1 . 0 . . 3 . . 0 . . 0 . . 4 . . . 0 2 0 . . 0 . . . 5 . 0 .
47 3 2 . 1 . . 0 . . 3 . . . 6 2 . . . 2 . . . 1 . 0 0 . . 0 . . 0

Thiotepa group
48 3 1 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
49 1 1 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
50 1 8 . . . . 8 . . . . . . . . . . . . . . . . . . . . . . . . .
51 2 1 0 0 0 0 0 0 0 0 0 . . . . . . . . . . . . . . . . . . . . .
52 1 1 . . . . . 0 . . . 0 . . . . . . . . . . . . . . . . . . . .
53 1 1 . . 0 . . . . . . . . . 0 . . . . . . . . . . . . . . . . .
54 6 2 . . 1 . 0 . . . 0 . 0 . . 0 . . . . . . . . . . . . . . . .
55 3 5 5 . 2 . 5 . 2 . . 2 . . 0 . . 0 0 . . . . . . . . . . . . .
56 3 1 . . . . 0 . . . . . 0 . . . . . 2 0 . . . . . . . . . . . .
57 1 5 . . . . . . . . . . . . . . . . . 0 . . . . . . . . . . . .
58 1 5 0 2 0 . . . . . . . . . . . . . . . 0 . . . . . . . . . . .
59 1 1 0 0 0 0 0 0 0 0 0 . . . 0 0 0 0 1 . 1 . 0 . . . . . . . . .
60 1 1 . 0 . . 0 . . . . 0 . . . . 0 . . 0 . . . 0 . . . . . . . .
61 3 1 0 0 0 . . . . 0 . . . 0 . . . . . 0 . . 0 . . . 0 . . . . .
62 5 1 0 . . . . . . . 0 . 0 . . . . . . . 0 . . . . . 0 . . . . .
63 1 1 0 0 0 0 0 0 0 0 0 0 . 0 . 0 0 . . 0 0 . . 0 0 . 0 . . . . .
64 1 1 0 0 0 0 0 2 . . . 0 0 3 1 . . . . . . 0 . . 0 . . 0 . . . .
65 1 1 0 . 0 . . 1 . . . 0 . . 0 . . 0 . . . . 0 . . . . . 0 . . .
66 1 2 . 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 0 .
67 3 8 . . 0 . . 0 . . 0 . . . . . . . . . . 0 . 0 0 . . 3 . . 0 .
68 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 . 0 0 0 . 0 0 . . . .
69 1 6 0 0 0 1 . . 0 0 0 0 0 0 0 0 . 3 . 0 0 . 0 0 3 . 0 0 3 . 0 .
70 1 1 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 . 0 0 0 . 2 1 0 0 . 2 0 . .
71 1 3 . . . . 0 . . . . . . . . 0 . . 0 . . . . . . 3 . 2 . . 1 .
72 2 3 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0
73 1 1 0 0 0 0 . . 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .
74 1 1 1 . 0 . . . 0 . . . . . 0 . . . 0 0 0 . 0 0 0 0 . 0 1 . 0 0
75 1 1 . . . . . . . 0 . . . . . . . . . . . . . . . 0 . . . . . .
76 1 6 0 2 . 0 . 0 0 . 0 0 0 0 0 0 0 0 0 0 0 1 . . 2 . . . 1 0 . 0
77 2 1 . . 0 . . 0 . . 0 . . 0 . . 0 . . . . . 0 . 0 . . . 0 . . .
78 4 1 0 1 0 . . 0 0 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . 0 . .
79 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
80 3 3 . . . . . . . . . . 0 . . . 0 . . . . . . . . 0 . . . . 0 .
81 1 4 . . . 1 . . . 0 . . . . 0 . . . . . . . 0 . . 1 . . . . . .
82 1 1 0 0 . . . . . . . . . . . . . . . . . 0 . . . . 0 . . . . .
83 1 2 0 . 0 0 0 0 . 0 . . 0 . 0 0 . . 0 . . 0 . . 0 . . 0 . . 0 .
84 4 3 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
85 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 . 0 0 . 0 0 0 . 0 0 0 0 0 0 0
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Data set V (Continued)

Patient Months
ID 31 40 50 53

Placebo group
1 . . . . . . . . . . . . . . . . . . . . . . .
2 . . . . . . . . . . . . . . . . . . . . . . .
3 . . . . . . . . . . . . . . . . . . . . . . .
4 . . . . . . . . . . . . . . . . . . . . . . .
5 . . . . . . . . . . . . . . . . . . . . . . .
6 . . . . . . . . . . . . . . . . . . . . . . .
7 . . . . . . . . . . . . . . . . . . . . . . .
8 . . . . . . . . . . . . . . . . . . . . . . .
9 . . . . . . . . . . . . . . . . . . . . . . .
10 . . . . . . . . . . . . . . . . . . . . . . .
11 . . . . . . . . . . . . . . . . . . . . . . .
12 . . . . . . . . . . . . . . . . . . . . . . .
13 . . . . . . . . . . . . . . . . . . . . . . .
14 . . . . . . . . . . . . . . . . . . . . . . .
15 . . . . . . . . . . . . . . . . . . . . . . .
16 . . . . . . . . . . . . . . . . . . . . . . .
17 . . . . . . . . . . . . . . . . . . . . . . .
18 . . . . . . . . . . . . . . . . . . . . . . .
19 . . . . . . . . . . . . . . . . . . . . . . .
20 . . . . . . . . . . . . . . . . . . . . . . .
21 . . . . . . . . . . . . . . . . . . . . . . .
22 . . . . . . . . . . . . . . . . . . . . . . .
23 . . . . . . . . . . . . . . . . . . . . . . .
24 . . . . . . . . . . . . . . . . . . . . . . .
25 . . . . . . . . . . . . . . . . . . . . . . .
26 0 . . . . . . . . . . . . . . . . . . . . . .
27 . 0 . . . . . . . . . . . . . . . . . . . . .
28 0 . 0 0 . . . . . . . . . . . . . . . . . . .
29 . . . . . 0 . . . . . . . . . . . . . . . . .
30 . . . . . 0 . . . . . . . . . . . . . . . . .
31 0 . . . . . 0 . . . . . . . . . . . . . . . .
32 0 . . . . 0 . . . 0 . . . . . . . . . . . . .
33 . 0 . 1 . . 0 . . 3 . . . . . . . . . . . . .
34 . . . . 0 0 . . . . 0 . . . . . . . . . . . .
35 . . . 0 . . 0 . . . . . 0 . . . . . . . . . .
36 . 0 . . 0 . . . . . . . 0 . . . . . . . . . .
37 . . 0 . . 0 . . 0 . 0 . . 0 . . . . . . . . .
38 . 0 . . 0 . . . 0 . . 0 . . 0 . . . . . . . .
39 0 . . 0 . . 0 . 0 . . . . . 0 . . 0 . . . . .
40 . . . . 0 . . . . . 0 . . . 0 . . . 0 . . . .
41 . . . . 1 . . . . . . . . 0 . . . 0 . . 0 . .
42 . . 0 . 0 . 0 . . . 0 . . 0 . . 0 . . . . . 0
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Data set V (Continued)

Patient Months
ID 31 40 50 53

43 0 . . . 0 . . . . . 0 . . . . 3 . . . . 2 . 1
44 . . . . 0 . . . . . 0 . 0 . . . 0 . . . . . .
45 . . . 4 . . 0 . 1 . . . 1 . . 0 . . 1 . . 1 .
46 . . 0 . . 0 . . . . 9 . . 0 0 0 . . 0 . . . 0
47 . . 1 . . . 0 . . . 0 . . . 0 . . . 1 . . 0 .

Thiotepa group
48 . . . . . . . . . . . . . . . . . . . . . . .
49 . . . . . . . . . . . . . . . . . . . . . . .
50 . . . . . . . . . . . . . . . . . . . . . . .
51 . . . . . . . . . . . . . . . . . . . . . . .
52 . . . . . . . . . . . . . . . . . . . . . . .
53 . . . . . . . . . . . . . . . . . . . . . . .
54 . . . . . . . . . . . . . . . . . . . . . . .
55 . . . . . . . . . . . . . . . . . . . . . . .
56 . . . . . . . . . . . . . . . . . . . . . . .
57 . . . . . . . . . . . . . . . . . . . . . . .
58 . . . . . . . . . . . . . . . . . . . . . . .
59 . . . . . . . . . . . . . . . . . . . . . . .
60 . . . . . . . . . . . . . . . . . . . . . . .
61 . . . . . . . . . . . . . . . . . . . . . . .
62 . . . . . . . . . . . . . . . . . . . . . . .
63 . . . . . . . . . . . . . . . . . . . . . . .
64 . . . . . . . . . . . . . . . . . . . . . . .
65 . . . . . . . . . . . . . . . . . . . . . . .
66 . . . . . . . . . . . . . . . . . . . . . . .
67 . 0 . . 3 0 . . . . . . . . . . . . . . . . .
68 . . . . . . . 0 . . . . . . . . . . . . . . .
69 . . 8 . 0 9 8 . 0 . . . . . . . . . . . . . .
70 . 3 . 0 . . . . 0 . . . . . . . . . . . . . .
71 . . . . . . . . . 2 . . . . . . . . . . . . .
72 0 0 0 0 . 0 0 . . . 0 . . . . . . . . . . . .
73 0 0 0 0 0 . . . . . 0 . . . . . . . . . . . .
74 . 0 0 . . 0 0 . . . . . 0 . . . . . . . . . .
75 . . . . . . . . . . . . . 0 . . . . . . . . .
76 . . . . . . . 8 . . 0 . . 0 . . . . . . . . .
77 . . 0 . . . . . 0 . . . . . 0 . . . . . . . .
78 . . . 0 . . . . . 0 . . . . . 0 . . . . . . .
79 . 0 0 0 0 0 . . . . . . . . . 0 . . . . . . .
80 . . . . . . . . . . . 0 . . . . . . 0 . . . .
81 0 . 0 . . 0 . . . . . . 0 . . . 1 . . 0 . . .
82 . 0 . . . . . 0 . . . . . 0 . . 0 . . 0 . . .
83 . 0 . . . . . 2 . . 0 . . . 0 . . 0 . . 0 . .
84 0 0 0 0 . 0 . . 0 . . 0 . . 0 . . 0 . . . . .
85 0 0 0 0 0 . . . . . 0 . . . . . . . . . . . .
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Gómez, G., Calle, M. L., Egea, J. M. and Muga, R. (2000). Estimation of the
risk of HIV infection as a function of the length of intravenous drug use: A
nonparametric Bayesian approach. Statistics in Medicine, 19, 2641-2656.
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