Robot Motion Planing Getting Where You Want to Be

Fatemeh Dehghani F.dehghani@stu.yazduni.ac.ir

Yazd University

Computer Science 2010

Outline

- Introduction
- 2 Work Space and Configuration Space
- 3 A Point Robot
- Minkowski Sums
- **5** Translational Motion Planning

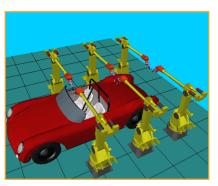
Outline

A Point Robot

- Introduction
- 2 Work Space and Configuration Space
- A Point Robot
- Minkowski Sums
- **5** Translational Motion Planning

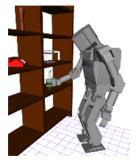
Introduction

Type of Robot



Robot arm

Type of Robot



Mobile robot

What is Motion Planning?

• Determining where to go without hit obstacles

- Determining where to go without hit obstacles
- Given:
 - a robot R, with start and goal position

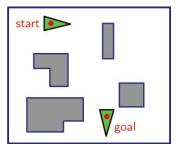
A Point Robot

- Determining where to go without hit obstacles
- Given:
 - a robot R, with start and goal position
 - set S of obstacles

A Point Robot

- Determining where to go without hit obstacles
- Given:
 - a robot R, with start and goal position
 - set S of obstacles
- find collision-free path for the robot.

- Determining where to go without hit obstacles
- Given:
 - a robot R, with start and goal position
 - set S of obstacles
- find collision-free path for the robot.



A Point Robot

Assumptions

• Look at a 2-dimensional motion planning problem

A Point Robot

- Look at a 2-dimensional motion planning problem
- The environoment is a planar region

A Point Robot

- Look at a 2-dimensional motion planning problem
- The environoment is a planar region
- Obstacles and robot are polygons

A Point Robot

- Look at a 2-dimensional motion planning problem
- The environoment is a planar region
- Obstacles and robot are polygons
- There are no mobile obstacles

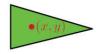
A Point Robot

- Look at a 2-dimensional motion planning problem
- The environoment is a planar region
- Obstacles and robot are polygons
- There are no mobile obstacles
- Robot can move in arbitrary directions

Outline

- Introduction
- **2** Work Space and Configuration Space
- A Point Robot
- Minkowski Sums
- **5** Translational Motion Planning

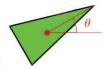
rigid object in 2D, translation only



x- and y-coord of reference point2 degrees of freedom

rigid object in 2D, translation only

rigid object in 2D, translations and rotations

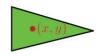


x- and y-coord of reference point 2 degrees of freedom

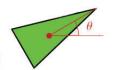
x- and y-coord of reference point, angle of rotation 3 degrees of freedom

Specifying a Robot placement

rigid object in 2D, translation only



rigid object in 2D, translations and rotations



point robot with k arms, translations and movement of arms

x- and y-coord of reference point2 degrees of freedom

x- and y-coord of reference point, angle of rotation3 degrees of freedom

x- and y-coord of reference point, k rotation angles k+2 degrees of freedom

Placement

 Placement of robot with f degrees of freedom can be specified with f parameters

Placement

- Placement of robot with f degrees of freedom can be specified with f parameters
- The parameter space of a robot R is usually called its configuration space that denote by C (R)

configuration space

Placement

- Placement of robot with f degrees of freedom can be specified with f parameters
- The parameter space of a robot R is usually called its configuration space that denote by C(R)
- a placement in work space \Leftrightarrow a point in f-dimensional configuration space

configuration space



example

ullet Robot in 2D, translations only \Longrightarrow configuration space: \mathbb{R}^2

example

- Robot in 2D, translations only \Longrightarrow configuration space: \mathbb{R}^2
- For robat in 2D, translations and rotations:

A point (x,y,ϕ) in configuration space corresponds to the placement $R(x,y,\phi)$ in the work space

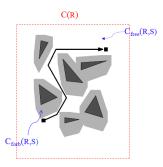
That is:

configuration space : $\mathbb{R}^2 \times [0:2\pi]$

Free and Forbidden spaces

Free Space

Points in configuration space corresponding to collision-free placements
Denote by $C_{free}(R, S)$



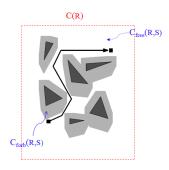
Free and Forbidden spaces

Free Space

Points in configuration space corresponding to collision-free placements
Denote by $C_{free}(R, S)$

Forbidden Space

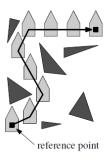
Points in configuration space corresponding to colliding placements
Denote by $C_{forb}(R, S)$



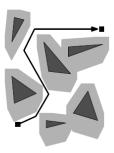
To map placement and path

To map placement and path

work space



configuration space



How to map obstacles to configuration space?

Configuration space obstacles

 An obstacle P is mapped to the set of points p in configuration space such that R(p) intersects P.
 Denote by C-obstacle

How to map obstacles to configuration space?

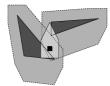
Configuration space obstacles

- An obstacle P is mapped to the set of points p in configuration space such that R(p) intersects P. Denote by C-obstacle
- obstacles are open sets, so that the robot is allowed to touch them

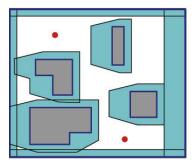
How to map obstacles to configuration space?

Configuration space obstacles

- An obstacle P is mapped to the set of points p in configuration space such that R(p) intersects P.
 Denote by C-obstacle
- obstacles are open sets, so that the robot is allowed to touch them
- C-obstacles may overlap even when the obstacles in the work space are disjoint. This happens when there are placements of the robot where it intersects more than one obstacle at the same time.



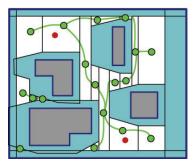
- Decompose free space into constant-complexity cells
- Construct dual graph of decomposition
- Find path in graph
- Transform path in graph to path in configuration space



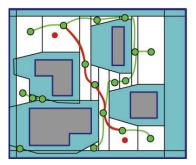
- Decompose free space into constant-complexity cells
- Construct dual graph of decomposition
- Find path in graph
- Transform path in graph to path in configuration space



- Decompose free space into constant-complexity cells
- 2 Construct dual graph of decomposition
- Find path in graph
- Transform path in graph to path in configuration space



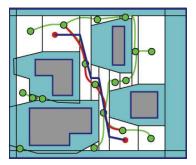
- Decompose free space into constant-complexity cells
- 2 Construct dual graph of decomposition
- Find path in graph
- Transform path in graph to path in configuration space



Overview

Total Procedure

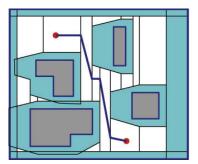
- Decompose free space into constant-complexity cells
- Construct dual graph of decomposition
- Find path in graph
- Transform path in graph to path in configuration space



Overview

Total Procedure

- Decompose free space into constant-complexity cells
- Construct dual graph of decomposition
- Find path in graph
- Transform path in graph to path in configuration space



Outline

- **Work Space and Configuration Space**
- A Point Robot
- Minkowski Sums

Start with a simple case

• problem reduces to motion planning for point robot in configuration space

- problem reduces to motion planning for point robot in configuration space
- For a point Robot, the work space and the configuration space are identical

- problem reduces to motion planning for point robot in configuration space
- For a point Robot, the work space and the configuration space are identical
- Marking:
 - \bullet denote the robot by R

- problem reduces to motion planning for point robot in configuration space
- For a point Robot, the work space and the configuration space are identical
- Marking:
 - ullet denote the robot by R
 - denote the obstacle by P_1, \cdots, P_t

- problem reduces to motion planning for point robot in configuration space
- For a point Robot, the work space and the configuration space are identical
- Marking:
 - denote the robot by R
 - denote the obstacle by P_1, \cdots, P_t
- The obstacles are polygons with disjoint interiors, whose total number of vertices is denoted by n.

Start with a simple case

- problem reduces to motion planning for point robot in configuration space
- For a point Robot, the work space and the configuration space are identical
- Marking:
 - denote the robot by R
 - denote the obstacle by P_1, \cdots, P_t
- The obstacles are polygons with disjoint interiors, whose total number of vertices is denoted by n.

We will construct a data structure storing a representation of the free space

Simplification

Assumptions

 To simplify we restrict the motion of the robot to a large bounding box B that contains the set of polygons

Simplification

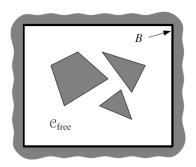
Assumptions

- To simplify we restrict the motion of the robot to a large bounding box B that contains the set of polygons
- $C_{free} = B \setminus \bigcup_{i=1}^{T} P_i$

Simplification

Assumptions

- To simplify we restrict the motion of the robot to a large bounding box B that contains the set of polygons
- $C_{free} = B \setminus \bigcup_{i=1}^{T} P_i$



Algorithm ComputeFreeSpace(S)

Algorithm COMPUTEFREESPACE(S)

Input. A set S of disjoint polygons.

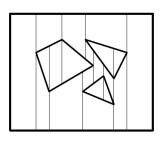
Output. A trapezoidal map of $\mathcal{C}_{\text{free}}(\mathcal{R}, S)$ for a point robot \mathcal{R} .

- Let *E* be the set of edges of the polygons in *S*.
- Compute the trapezoidal map $\mathfrak{T}(E)$ with algorithm TRAPEZOIDALMAP described in Chapter 6.
- 3. Remove the trapezoids that lie inside one of the polygons from $\mathfrak{I}(E)$ and return the resulting subdivision.

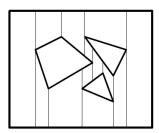
A Point Robot Trapezoidal map

$$T(C_{free})$$

(a)

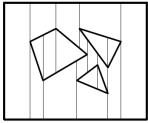


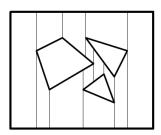
(b)



Trapezoidal map

 $T(C_{free})$





How do we find the trapezoids inside the obstacles?

we know for each trapezoid the edge that bounds it from the top, therefore it suffices to check whether the edge bounds the obstacle from above or from below

O(n logn)

Complexity of Algorithm ComputeFreeSpace

Algorithm COMPUTEFREESPACE(S)

Input. A set S of disjoint polygons.

Output. A trapezoidal map of $\mathcal{C}_{free}(\mathcal{R}, S)$ for a point robot \mathcal{R} .

- 1. Let E be the set of edges of the polygons in S.
- 2. Compute the trapezoidal map $\mathfrak{I}(E)$ with algorithm TRAPEZOIDALMAP described in Chapter 6.
- 3. Remove the trapezoids that lie inside one of the polygons from $\mathfrak{T}(E)$ and return the resulting subdivision.

Complexity of Algorithm ComputeFreeSpace

Algorithm COMPUTEFREESPACE(S)

Input. A set *S* of disjoint polygons.

Output. A trapezoidal map of $\mathcal{C}_{free}(\mathcal{R}, S)$ for a point robot \mathcal{R} .

- 1. Let E be the set of edges of the polygons in S.
- 2. Compute the trapezoidal map $\mathfrak{T}(E)$ with algorithm TRAPEZOIDALMAP described in Chapter 6.
- Remove the trapezoids that lie inside one of the polygons from T(E) and return the resulting subdivision.

O(1) for any trapezoid and there is at most 3n +1 trapezoid \Rightarrow O(n)

Complexity of Algorithm ComputeFreeSpace

Algorithm COMPUTEFREESPACE(S)

Input. A set *S* of disjoint polygons.

Output. A trapezoidal map of $\mathcal{C}_{\text{free}}(\mathcal{R}, S)$ for a point robot \mathcal{R} .

- 1. Let *E* be the set of edges of the polygons in *S*.
- 2. Compute the trapezoidal map $\mathfrak{T}(E)$ with algorithm TrapezoidalMap described in Chapter 6.
- Remove the trapezoids that lie inside one of the polygons from T(E) and return the resulting subdivision.

O(1) for any trapezoid and there is at most 3n +1 trapezoid \Rightarrow O(n)

Lemma 13.1

A trapezoidal map of the free configuration space for a point robot moving among a set of disjoint polygonal obstacles with n edges in total can be computed by a randomized algorithm in $O(n \log n)$ expected time.

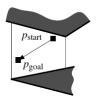
How do we use $T(C_{free})$ to find a path from P_{start} to P_{goal} ?

How do we use $T(C_{free})$ to find a path from P_{start} to P_{goal} ?

1 If P_{start} and P_{goal} are in the same trapezoid of the map: the path is a straight line.

How do we use $T(C_{free})$ to find a path from P_{start} to P_{goal} ?

1 If P_{start} and P_{goal} are in the same trapezoid of the map: the path is a straight line.



· .

How do we use $T(C_{free})$ to find a path from P_{start} to P_{goal} ?

- ① If P_{start} and P_{goal} are in the same trapezoid of the map: the path is a straight line.
- If the start and goal position are in different trapezoids: To guide the motion across trapezoids we construct a road map through the free space.

How do to construct the road map?

Step

Place a node in the center of each trapezoid

Step

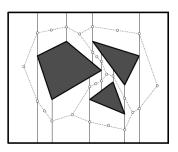
- Place a node in the center of each trapezoid
- 2 Place a node in the middle of each vertical extension

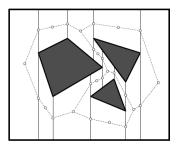
How do to construct the road map?

Step

- Place a node in the center of each trapezoid
- Place a node in the middle of each vertical extension
- 3 There is an arc between two nodes if and only if one node is in the center of a trapezoid and the other node is on the boundary of that same trapezoid

Road Map





Constructed Time

The road map g_{road} can be constructed in O(n) time by traversing the doubly-connected edge list of $T(C_{free})$

We can use the road map, together with the trapezoidal map, to plan a motion from a start to a goal position.

To this end:

• Determine the trapezoids \triangle_{start} and \triangle_{goal} containing these points.

To Use the Road Map

Finding a path

We can use the road map, together with the trapezoidal map, to plan a motion from a start to a goal position.

To this end:

- Determine the trapezoids $\triangle_{\textit{start}}$ and $\triangle_{\textit{goal}}$ containing these points.
- if they are the same trapezoid: motion is only in a straight line

To Use the Road Map

Finding a path

We can use the road map, together with the trapezoidal map, to plan a motion from a start to a goal position.

To this end:

- Determine the trapezoids \triangle_{start} and \triangle_{goal} containing these points.
- if they are the same trapezoid: motion is only in a straight line
- Otherwise, let v_{start} and v_{goal} be the nodes of g_{road} that have been placed in the center of these trapezoids.
 - The path will construct now consists of three parts

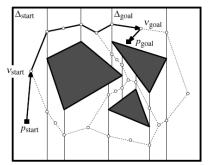
The path will construct now consists of three parts:

The path will construct now consists of three parts:

 $oldsymbol{0}$ a straight-line motion from P_{start} to v_{start}

The path will construct now consists of three parts:

 $oldsymbol{0}$ a straight-line motion from P_{start} to v_{start}



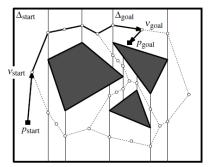
The path will construct now consists of three parts:

- $oldsymbol{0}$ a straight-line motion from P_{start} to v_{start}
- ② a path from v_{start} to v_{goal} along the arcs of the road map (with breadth-first search)



The path will construct now consists of three parts:

- $oldsymbol{0}$ a straight-line motion from P_{start} to v_{start}
- ② a path from v_{start} to v_{goal} along the arcs of the road map (with breadth-first search)
- 3 a straight-line motion from v_{goal} to P_{goal}



Algorithm ComputePath

Algorithm ComputePath($\mathcal{T}(\mathcal{C}_{free}), \mathcal{G}_{road}, p_{start}, p_{goal})$

Input. The trapezoidal map $\mathcal{T}(\mathcal{C}_{free})$ of the free space, the road map \mathcal{G}_{road} , a start position p_{start} , and goal position p_{goal} .

Output. A path from p_{start} to p_{goal} if it exists. If a path does not exist, this fact is reported.

- 1. Find the trapezoid Δ_{start} containing p_{start} and the trapezoid Δ_{goal} containing p_{goal} .
- 2. **if** Δ_{start} or Δ_{goal} does not exist
- 3. **then** Report that the start or goal position is in the forbidden space.
- 4. **else** Let v_{start} be the node of $\mathcal{G}_{\text{road}}$ in the center of Δ_{start} .
- 5. Let v_{goal} be the node of $\mathcal{G}_{\text{road}}$ in the center of Δ_{goal} .
- 6. Compute a path in \mathcal{G}_{road} from v_{start} to v_{goal} using breadth-first search.
- 7. **if** there is no such path
- 8. **then** Report that there is no path from p_{start} to p_{goal} .
- 9. **else** Report the path consisting of a straight-line motion from p_{start} to v_{start} , the path found in $\mathcal{G}_{\text{road}}$, and a straight-line motion from v_{goal} to p_{goal} .

O(log n)

Algorithm ComputePath

Algorithm COMPUTEPATH($\mathcal{T}(\mathcal{C}_{free}), \mathcal{G}_{road}, p_{start}, p_{goal})$

Input. The trapezoidal map $\mathcal{T}(\mathcal{C}_{\text{free}})$ of the free space, the road map $\mathcal{G}_{\text{road}}$, a start position p_{start} , and goal position p_{goal} .

Output. A path from p_{start} to p_{goal} if it exists. If a path does not exist, this fact is reported.

- Find the trapezoid Δ_{start} containing p_{start} and the trapezoid Δ_{goal} containing p_{goal} .
- if Δ_{start} or Δ_{goal} does not exist
- then Report that the start or goal position is in the forbidden space. 3.
- else Let v_{start} be the node of $\mathcal{G}_{\text{road}}$ in the center of Δ_{start} . 4.
- 5. Let v_{goal} be the node of $\mathcal{G}_{\text{road}}$ in the center of Δ_{goal} .
- 6. Compute a path in \mathcal{G}_{road} from v_{start} to v_{goal} using breadth-first search.
- 7. if there is no such path
- 8. **then** Report that there is no path from p_{start} to p_{goal} .
- 9. else Report the path consisting of a straight-line motion from p_{start} to v_{start} , the path found in \mathcal{G}_{road} , and a straight-line motion from v_{goal} to p_{goal} .

Algorithm ComputePath

Algorithm COMPUTEPATH($\mathcal{T}(\mathcal{C}_{free}), \mathcal{G}_{road}, p_{start}, p_{goal})$

Input. The trapezoidal map $\mathcal{T}(\mathcal{C}_{\text{free}})$ of the free space, the road map $\mathcal{G}_{\text{road}}$, a start position p_{start} , and goal position p_{goal} .

Output. A path from p_{start} to p_{goal} if it exists. If a path does not exist, this fact is reported.

- Find the trapezoid Δ_{start} containing p_{start} and the trapezoid Δ_{goal} containing p_{goal} .
- if Δ_{start} or Δ_{goal} does not exist
- 3. then Report that the start or goal position is in the forbidden space.
- else Let v_{start} be the node of $\mathcal{G}_{\text{road}}$ in the center of Δ_{start} . 4.
- 5. Let v_{goal} be the node of $\mathcal{G}_{\text{road}}$ in the center of Δ_{goal} .
- Compute a path in \mathcal{G}_{road} from v_{start} to v_{goal} using breadth-first search. 6. → O(n)
- 7. if there is no such path
- 8. **then** Report that there is no path from p_{start} to p_{goal} .
- 9. else Report the path consisting of a straight-line motion from p_{start} to v_{start} , the path found in \mathcal{G}_{road} , and a straight-line motion from v_{goal} to p_{goal} .

Algorithm ComputePath

Algorithm COMPUTEPATH($\mathcal{T}(\mathcal{C}_{free}), \mathcal{G}_{road}, p_{start}, p_{goal})$

Input. The trapezoidal map $\mathfrak{T}(\mathfrak{C}_{free})$ of the free space, the road map \mathfrak{G}_{road} , a start position p_{start} , and goal position p_{goal} .

Output. A path from p_{start} to p_{goal} if it exists. If a path does not exist, this fact is reported.

- 1. Find the trapezoid Δ_{start} containing p_{start} and the trapezoid Δ_{goal} containing p_{goal} .
- 2. **if** Δ_{start} or Δ_{goal} does not exist
- then Report that the start or goal position is in the forbidden space.
- 4. **else** Let v_{start} be the node of $\mathcal{G}_{\text{road}}$ in the center of Δ_{start} .
- 5. Let v_{goal} be the node of $\mathcal{G}_{\text{road}}$ in the center of Δ_{goal} .
- 6. Compute a path in \mathcal{G}_{road} from v_{start} to v_{goal} using breadth-first search.
- if there is no such path

there is no such path O(n) then Report that there is no path from p_{start} to p_{goal} .

then Report that there is no path from p_{start} to p_{goal}.
else Report the path consisting of a straight-line me

else Report the path consisting of a straight-line motion from p_{start} to v_{start} , the path found in $\mathcal{G}_{\text{road}}$, and a straight-line motion from v_{goal} to p_{goal} .

Correctness of Algorithm

Are the reported path always collision-free?

Any path we report must be collisionfree, since it consists of segments inside trapezoids and all trapezoids are in the free space.

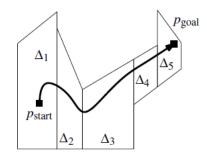
Correctness of Algorithm

Are the reported path always collision-free?

Any path we report must be collisionfree, since it consists of segments inside trapezoids and all trapezoids are in the free space.

Do we always find a collision-free path if one exists?

- suppose that there is a collision-free path from p_{start} to p_{goal}
- The path from p_{start} to p_{goal} must cross a sequence of trapezoids $\triangle_1,...,\triangle_k$
- Let v_i be the node of g_{road} that is in the center of △_i



Conclusion

A Point Robot

Theorem 13.2

Let R be a point robot moving among a set S of polygonal obstacles with n edges in total. We can preprocess S in O(nlogn) expected time, such that between any start and goal position a collision-free path for R can be computed in O(n) time, if it exists

Conclusion

Theorem 13.2

Let R be a point robot moving among a set S of polygonal obstacles with n edges in total. We can preprocess S in O(nlogn) expected time, such that between any start and goal position a collision-free path for R can be computed in O(n) time, if it exists

Note

The path computed by the algorithm is collision-free, but we can give no guarantee that the path does not make large detours

- Work Space and Configuration Space
- A Point Robot
- Minkowski Sums
- **5** Translational Motion Planning

Motion Planning problem for a Polygon Robot

Recall

• We assume that the robot R is convex, and for the moment we also assume that the obstacles are convex

Motion Planning problem for a Polygon Robot

Recall

- We assume that the robot R is convex, and for the moment we also assume that the obstacles are convex
- R(x, y) to denote the placement of R with its reference point at (x, y).

Motion Planning problem for a Polygon Robot

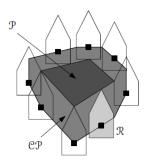
Recall

- We assume that the robot R is convex, and for the moment we also assume that the obstacles are convex
- R(x, y) to denote the placement of R with its reference point at (x, y).
- C -obstacle, of an obstacle P and the robot R is defined as the set of points in configuration space such that the corresponding placement of R intersects P.

$$CP := \{(x, y) : R(x, y) \cap P \neq \emptyset\}$$

C -obstacle

$$CP := \{(x,y) : R(x,y) \cap P \neq \emptyset\}$$



Definition

The Minkowski sum of two sets $S_1 \subset \mathbb{R}^2$ and $S_2 \subset \mathbb{R}^2$ is:

$$S_1 \oplus S_2 := \{p+q : p \in S_1, q \in S_2\}$$

$$p+q:=(p_x+q_x,p_y+q_y)$$

Definition

The Minkowski sum of two sets $S_1 \subset \mathbb{R}^2$ and $S_2 \subset \mathbb{R}^2$ is:

$$S_1 \oplus S_2 := \{p+q : p \in S_1, q \in S_2\}$$

$$p+q:=(p_x+q_x,p_y+q_y)$$

Notation

For a point $p = (p_x, p_y)$ we define $-p := (-p_x, -p_y)$, and for a set S we define $-S := \{-p : p \in S\}$

Example

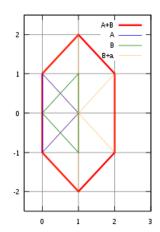
$$A = \{(1,0), (0,1), (0,1)\}$$

$$B = \{(0,0), (1,1), (1,1)\}$$

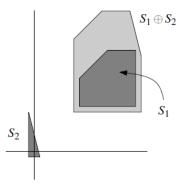
then the Minkowski sum is:

$$A \oplus B = \{(1,0), (2,1), (2,1), (0,1), (1,2),$$

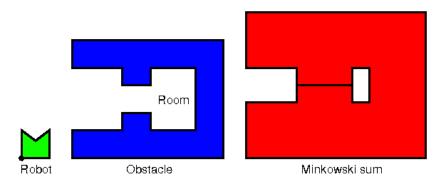
 $(1,0), (0,1), (1,0), (1,2)\}$



Example for Minkowski Sum



Example for Minkowski Sum



Theorem 13.3

Let R be a planar, translating robot and let P be an obstacle. Then the C -obstacle of P is $P \oplus (-R(0,0))$.

Theorem 13.3

Theorem 13.3

Let R be a planar, translating robot and let P be an obstacle. Then the C -obstacle of P is $P \oplus (-R(0,0))$.

Proof

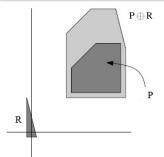
R(x,y) Intersect $P \iff (x,y) \in P \oplus (-R(0,0))$

Theorem 13.3

Theorem 13.3

Let R be a planar, translating robot and let P be an obstacle. Then the C -obstacle of P is $P \oplus (-R(0,0))$.

$$R(x,y)$$
 Intersect $P \iff (x,y) \in P \oplus (-R(0,0))$

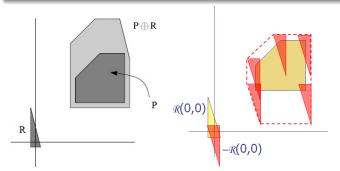


Theorem 13.3

Theorem 13.3

Let R be a planar, translating robot and let P be an obstacle. Then the C -obstacle of P is $P \oplus (-R(0,0))$.

$$R(x,y)$$
 Intersect $P \iff (x,y) \in P \oplus (-R(0,0))$

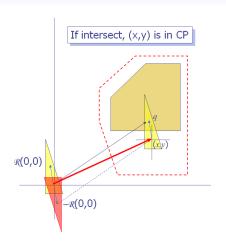


Proof Of Theorem 13.3

If intersect, (x, y) is in CP

A Point q in intersection \Rightarrow $q \in R(x, y) \land q \in P$

$$\therefore q \in P \Rightarrow (q_x, q_y) + (-q_x + x, -q_y + y) = (x, y) \in P \oplus (-R(0, 0))$$



If (x, y) is in CP, R(x, y) and P intersect

$$(x,y) \in P \oplus (-R(0,0)) \Longrightarrow$$

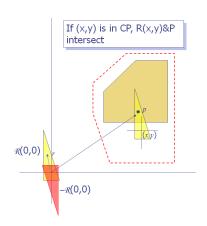
$$\exists (r_x, r_y) \in R(0,0) \land \exists (p_x, p_y) \in P$$

Such that: $(x, y) = (p_x - r_x, p_y - r_y)$

That is:

$$p_x = x + r_x$$

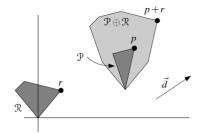
$$p_y = y + r_y$$



Observation

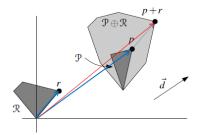
Observation 13.4

Let P and R be two objects in the plane, and let $CP := P \oplus R$. An extreme point in direction \vec{d} on CP is the sum of extreme points in direction \vec{d} on P and R.



Observation 13.4

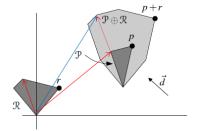
Let P and R be two objects in the plane, and let $CP := P \oplus R$. An extreme point in direction \vec{d} on CP is the sum of extreme points in direction \vec{d} on P and R.



Observation

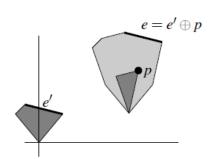
Observation 13.4

Let P and R be two objects in the plane, and let $CP := P \oplus R$. An extreme point in direction \vec{d} on CP is the sum of extreme points in direction \vec{d} on P and R.



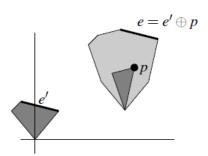
Theorem 13.5

Let P and R be two convex polygons with n and m edges, respectively. Then the Minkowski sum $P \oplus R$ is a convex polygon with at most n+m edges.



Theorem 13.5

Let P and R be two convex polygons with n and m edges, respectively. Then the Minkowski sum $P \oplus R$ is a convex polygon with at most n+m edges.

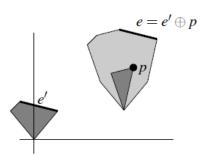


Theorem 13.5

Let P and R be two convex polygons with n and m edges, respectively. Then the Minkowski sum $P \oplus R$ is a convex polygon with at most n + m edges.

Proof

 First part follows directly from the definition.(sliding argument)

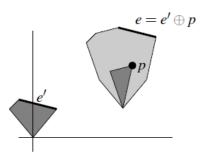


A Point Robot

Theorem 13.5

Let P and R be two convex polygons with n and m edges, respectively. Then the Minkowski sum $P \oplus R$ is a convex polygon with at most n + m edges.

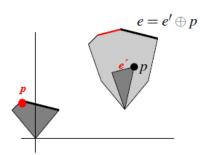
- First part follows directly from the definition.(sliding argument)
- consider an edge e that is extreme in the direction of its outer normal.



Theorem 13.5

Let P and R be two convex polygons with n and m edges, respectively. Then the Minkowski sum $P \oplus R$ is a convex polygon with at most n+m edges.

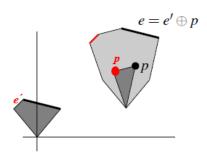
- First part follows directly from the definition.(sliding argument)
- consider an edge e that is extreme in the direction of its outer normal.



Theorem 13.5

Let P and R be two convex polygons with n and m edges, respectively. Then the Minkowski sum $P \oplus R$ is a convex polygon with at most n+m edges.

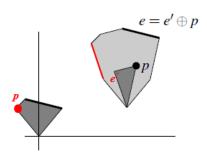
- First part follows directly from the definition.(sliding argument)
- consider an edge e that is extreme in the direction of its outer normal.



Theorem 13.5

Let P and R be two convex polygons with n and m edges, respectively. Then the Minkowski sum $P \oplus R$ is a convex polygon with at most n+m edges.

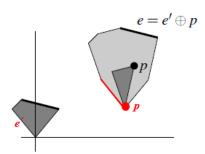
- First part follows directly from the definition.(sliding argument)
- consider an edge e that is extreme in the direction of its outer normal.



Theorem 13.5

Let P and R be two convex polygons with n and m edges, respectively. Then the Minkowski sum $P \oplus R$ is a convex polygon with at most n+m edges.

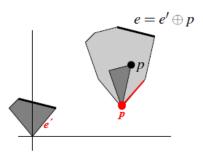
- First part follows directly from the definition.(sliding argument)
- consider an edge e that is extreme in the direction of its outer normal.



Theorem 13.5

Let P and R be two convex polygons with n and m edges, respectively. Then the Minkowski sum $P \oplus R$ is a convex polygon with at most n+m edges.

- First part follows directly from the definition.(sliding argument)
- consider an edge e that is extreme in the direction of its outer normal.



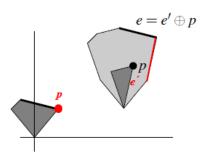
Theorem

Theorem 13.5

Let P and R be two convex polygons with n and m edges, respectively. Then the Minkowski sum $P \oplus R$ is a convex polygon with at most n + m edges.

Proof

- First part follows directly from the definition.(sliding argument)
- consider an edge e that is extreme in the direction of its outer normal



Minkowski Sums

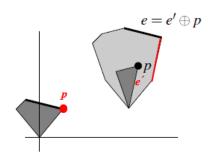
Theorem

Theorem 13.5

Let P and R be two convex polygons with n and m edges, respectively. Then the Minkowski sum $P \oplus R$ is a convex polygon with at most n + m edges.

Proof

- First part follows directly from the definition.(sliding argument)
- consider an edge e that is extreme in the direction of its outer normal



Question

Why we say at most?

Definition

Consider two planar objects o_1 and o_2 , each bounded by a simple closed curve.

the pair o_1, o_2 is called a pair of pseudodiscs:

Definition

Consider two planar objects o_1 and o_2 , each bounded by a simple closed curve.

the pair o_1, o_2 is called a pair of pseudodiscs:

• **Definition 1:** if their boundaries ∂o_1 and ∂o_2 intersect in at most two points

Definition

Consider two planar objects o_1 and o_2 , each bounded by a simple closed curve.

the pair o_1, o_2 is called a pair of pseudodiscs:

• **Definition 1:** if their boundaries ∂o_1 and ∂o_2 intersect in at most two points

pseudodiscs

not pseudodiscs

Definition

Consider two planar objects o_1 and o_2 , each bounded by a simple closed curve.

the pair o_1, o_2 is called a pair of pseudodiscs:

• **Definition 1:** if their boundaries ∂o_1 and ∂o_2 intersect in at most two points

<u>Degenerate Case</u>

Definition

Consider two planar objects o_1 and o_2 , each bounded by a simple closed curve.

the pair o_1, o_2 is called a pair of pseudodiscs:

- **Definition 1:** if their boundaries ∂o_1 and ∂o_2 intersect in at most two points
- **Definition 2:** if $\partial o_1 \cap int(o_2)$ is connected and $\partial o_2 \cap int(o_1)$ is connected

pseudodiscs

not pseudodiscs

A Point Robot

Definition

Consider two planar objects o_1 and o_2 , each bounded by a simple closed curve.

the pair o_1, o_2 is called a pair of pseudodiscs:

- **Definition 1:** if their boundaries ∂o_1 and ∂o_2 intersect in at most two points
- **Definition 2:** if $\partial o_1 \cap int(o_2)$ is connected and $\partial o_2 \cap int(o_1)$ is connected
- **Definition 3:** if $o_1 o_2$ is connected and $o_2 o_1$ is connected

pseudodiscs

not pseudodiscs

Collection of pseudodiscs

Definition

A collection of objects, each bounded by a simple closed curve, is called a collection of pseudodiscs if every pair of objects in the collection is a pair of pseudodiscs

Collection of pseudodiscs

Definition

A collection of objects, each bounded by a simple closed curve, is called a collection of pseudodiscs if every pair of objects in the collection is a pair of pseudodiscs

Collection of Pseudodiscs

Definition

A collection of objects, each bounded by a simple closed curve, is called a collection of pseudodiscs if every pair of objects in the collection is a pair of pseudodiscs

Note

pseudodisc property is about the way in which (the boundaries of) two objects can interact. It does not make sense to say of a single object that it is a pseudodisc.

Boundary crossing

Definition

consider two polygons P and P'. an intersection point $p \in \partial P \cap \partial P'$ is a boundary crossing if ∂P crosses from the interior of P' to the exterior of P' at P

Boundary crossing

Definition

consider two polygons P and $P^{'}$. an intersection point $p \in \partial P \cap \partial P^{'}$ is a boundary crossing if ∂P crosses from the interior of $P^{'}$ to the exterior of $P^{'}$ at P

p is not boundary crossing

p and q is boundary crossing

Observation 13.6

A pair of polygonal pseudodiscs P, P' defines at most two boundary crossings.

Observation 13.6

A pair of polygonal pseudodiscs $P, P^{'}$ defines at most two boundary crossings.

Definition

Definition

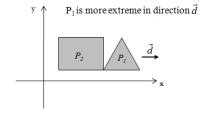
Consider the pairs of convex polygons with disjoint interiors

Definition

- Consider the pairs of convex polygons with disjoint interiors
- one polygon is more extreme in a direction \vec{d} than another polygon if its extreme points lie further in that direction than the extreme points of the other polygon

Definition

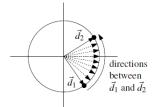
- Consider the pairs of convex polygons with disjoint interiors
- ullet one polygon is more extreme in a direction $ec{d}$ than another polygon if its extreme points lie further in that direction than the extreme points of the other polygon



extreme points for various directions

Definition

The range from a direction $\vec{d_1}$ to a direction $\vec{d_2}$ is defined as the directions corresponding to points in the counterclockwise circle segment from the point representing $\vec{d_1}$ to the point representing $\vec{d_2}$.



Observation

Observation 13.7

Let P_1 and P_2 be convex polygons with disjoint interiors. Let $\vec{d_1}$ and $\vec{d_2}$ be directions in which P_1 is more extreme than P_2 .

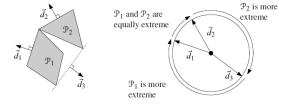
Then either P_1 is more extreme than P_2 in all directions in the range from $\vec{d_1}$ to $\vec{d_2}$, or it is more extreme in all directions in the range from $\vec{d_2}$ to $\vec{d_1}$.

Observation

Observation 13.7

Let P_1 and P_2 be convex polygons with disjoint interiors. Let d_1 and d_2 be directions in which P_1 is more extreme than P_2 .

Then either P_1 is more extreme than P_2 in all directions in the range from $\vec{d_1}$ to $\vec{d_2}$, or it is more extreme in all directions in the range from $\vec{d_2}$ to $\vec{d_1}$.



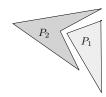
Observation

Observation 13.7

Let P_1 and P_2 be convex polygons with disjoint interiors. Let d_1 and d_2 be directions in which P_1 is more extreme than P_2 .

Then either P_1 is more extreme than P_2 in all directions in the range from $\vec{d_1}$ to $\vec{d_2}$, or it is more extreme in all directions in the range from $\vec{d_2}$ to $\vec{d_1}$.

Not holed for non- convex polygons



Minkowski sums forms a collection of pseudodiscs

Minkowski Sums

Theorem 13.8

Let P_1 and P_2 be two convex polygons with disjoint interiors, and let Rbe another convex polygon. Then the two Minkowski sums $P_1 \oplus R$ and $P_2 \oplus R$ are pseudodiscs.

Minkowski sums forms a collection of pseudodiscs

Theorem 13.8

Let P_1 and P_2 be two convex polygons with disjoint interiors, and let R be another convex polygon. Then the two Minkowski sums $P_1 \oplus R$ and $P_2 \oplus R$ are pseudodiscs.

Proof

Define:

$$CP_1 := P_1 \oplus R$$

$$CP_2 := P_2 \oplus R$$

Minkowski sums forms a collection of pseudodiscs

Theorem 13.8

Let P_1 and P_2 be two convex polygons with disjoint interiors, and let R be another convex polygon. Then the two Minkowski sums $P_1 \oplus R$ and $P_2 \oplus R$ are pseudodiscs.

Proof

Define:

$$CP_1 := P_1 \oplus R$$

$$CP_2 := P_2 \oplus R$$

• By symmetry, it suffices to show that $\partial CP_1 \cap int(CP_2)$ is connected

Minkowski sums forms a collection of pseudodiscs

Theorem 13.8

Let P_1 and P_2 be two convex polygons with disjoint interiors, and let R be another convex polygon. Then the two Minkowski sums $P_1 \oplus R$ and $P_2 \oplus R$ are pseudodiscs.

Proof

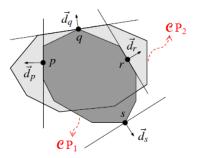
Define:

$$CP_1 := P_1 \oplus R$$

$$CP_2 := P_2 \oplus R$$

- By symmetry, it suffices to show that $\partial CP_1 \cap int(CP_2)$ is connected
- Proof with Contradiction

$\partial \mathbf{C} \mathbf{P}_1 \cap \operatorname{int}(\mathbf{C} \mathbf{P}_2)$ is **not** connect



complexity of union

Theorem 13.9

Let S be a collection of convex polygonal pseudodiscs with n edges in total. Then the complexity of their union is at most 2n

Minkowski Sums

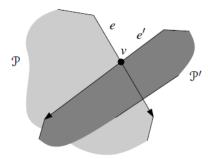
complexity of union

Theorem 13.9

Let S be a collection of convex polygonal pseudodiscs with n edges in total. Then the complexity of their union is at most 2n

Proof

We prove the bound by charging every vertex of the union to a pseudodisc vertex in such a way that any pseudodisc vertex is charged at most two times



(Minkowski Sums)

Minkowski Sums

A very simple algorithm

Minkowski Sums

A very simple algorithm

1 For each pair v, w of vertices, with $v \in P$ and $w \in R$, compute v + w

Compute the Minkowski sum

A very simple algorithm

- **①** For each pair v, w of vertices, with $v \in P$ and $w \in R$, compute v + w
- 2 compute the convex hull of all these sums

Compute the Minkowski sum

A very simple algorithm

- For each pair v, w of vertices, with $v \in P$ and $w \in R$, compute v + w
- 2 compute the convex hull of all these sums

Problems

this algorithm inefficient when the polygons have many vertices, because it looks at every pair of vertices.

Compute the Minkowski sum

an alternative algorithm and easy to implement

Compute the Minkowski sum

an alternative algorithm and easy to implement

only looks at pairs of vertices that are extreme in the same direction

Compute the Minkowski sum

an alternative algorithm and easy to implement

- only looks at pairs of vertices that are extreme in the same direction
- it run in linear time

angle

Minkowski Sums

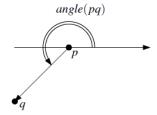
Definition

In the algorithm we use the notation angle (pq) to denote the angle that the vector \vec{pq} makes with the positive x-axis.

angle

Definition

In the algorithm we use the notation angle (pq) to denote the angle that the vector \vec{pq} makes with the positive x-axis.



Algorithm MinkowskiSum

Algorithm MinkowskiSum(\mathcal{P}, \mathcal{R})

Input. A convex polygon \mathcal{P} with vertices v_1, \ldots, v_n , and a convex polygon \mathcal{R} with vertices w_1, \ldots, w_m . The lists of vertices are assumed to be in counterclockwise order, with v_1 and w_1 being the vertices with smallest *y*-coordinate (and smallest *x*-coordinate in case of ties).

Output. The Minkowski sum $\mathcal{P} \oplus \mathcal{R}$.

```
i \leftarrow 1: i \leftarrow 1
       v_{n+1} \leftarrow v_1; v_{n+2} \leftarrow v_2; w_{m+1} \leftarrow w_1; w_{m+2} \leftarrow w_2
3.
       repeat
4.
             Add v_i + w_j as a vertex to \mathcal{P} \oplus \mathcal{R}.
5.
             if angle(v_iv_{i+1}) < angle(w_iw_{i+1})
6.
                then i \leftarrow (i+1)
7.
                else if angle(v_iv_{i+1}) > angle(w_iw_{i+1})
8.
                           then i \leftarrow (i+1)
                           else i \leftarrow (i+1); j \leftarrow (j+1)
9.
       until i = n + 1 and i = m + 1
```

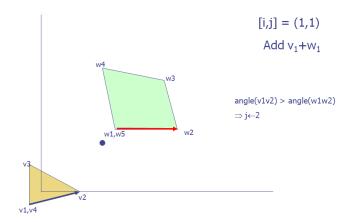
Algorithm MinkowskiSum

Algorithm MinkowskiSum(\mathcal{P}, \mathcal{R})

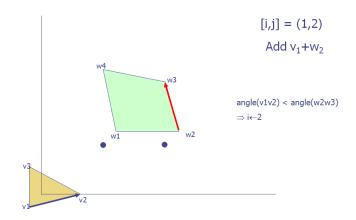
Input. A convex polygon \mathcal{P} with vertices v_1, \ldots, v_n , and a convex polygon \mathcal{R} with vertices w_1, \ldots, w_m . The lists of vertices are assumed to be in counterclockwise order, with v_1 and w_1 being the vertices with smallest y-coordinate (and smallest x-coordinate in case of ties).

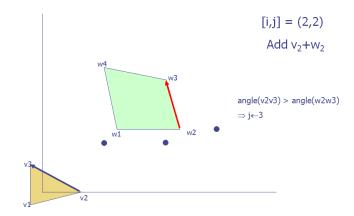
Output. The Minkowski sum $\mathcal{P} \oplus \mathcal{R}$.

```
i \leftarrow 1: i \leftarrow 1
      v_{n+1} \leftarrow v_1; v_{n+2} \leftarrow v_2; w_{m+1} \leftarrow w_1; w_{m+2} \leftarrow w_2
3.
       repeat
             Add v_i + w_j as a vertex to \mathcal{P} \oplus \mathcal{R}.
4.
5.
             if angle(v_iv_{i+1}) < angle(w_iw_{i+1})
6.
                then i \leftarrow (i+1)
7.
                else if angle(v_iv_{i+1}) > angle(w_iw_{i+1}) \longrightarrow O(n+m)
8.
                           then i \leftarrow (i+1)
                           else i \leftarrow (i+1); j \leftarrow (j+1)
9.
       until i = n + 1 and j = m + 1
```

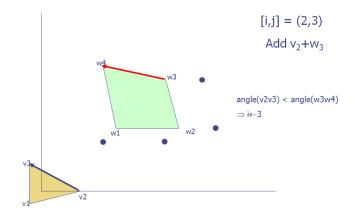


A sample of implement

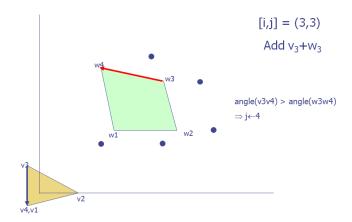


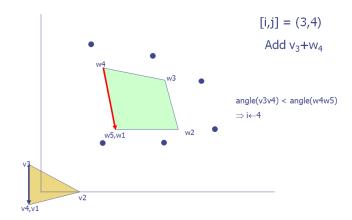


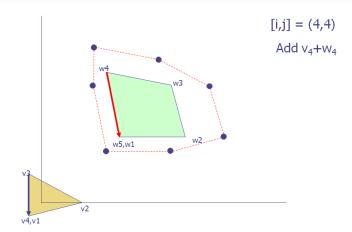
A sample of implement



Minkowski Sums







Theorem

Theorem 13.10

The Minkowski sum of two convex polygons with n and m vertices, respectively, can be computed in O(n+m) time.

Compute the convex $R \oplus \text{Non-convex } P$

Compute the convex $R \oplus \text{Non-convex } P$

$$S_1 \oplus (S_2 \cup S_3) = (S_1 \oplus S_2) \cup (S_1 \oplus S_3)$$

The Minkowski Sum for non-convex polygons

Compute the convex $R \oplus \text{Non-convex } P$

• the following equality holds for any sets S_1 , S_2 , and S_3 :

$$S_1 \oplus (S_2 \cup S_3) = (S_1 \oplus S_2) \cup (S_1 \oplus S_3)$$

• Therefor, we can do the following steps:

Compute the convex $R \oplus \text{Non-convex } P$

$$S_1 \oplus (S_2 \cup S_3) = (S_1 \oplus S_2) \cup (S_1 \oplus S_3)$$

- Therefor, we can do the following steps:
 - 1 Triangulate P into $t_1, ..., t_{n-2}$

Compute the convex $R \oplus \text{Non-convex } P$

$$S_1 \oplus (S_2 \cup S_3) = (S_1 \oplus S_2) \cup (S_1 \oplus S_3)$$

- Therefor, we can do the following steps:
 - 1 Triangulate P into $t_1, ..., t_{n-2}$
 - 2 Compute $R \oplus t_1, ..., R \oplus t_{n-2}$

Compute the convex $R \oplus \text{Non-convex } P$

$$S_1 \oplus (S_2 \cup S_3) = (S_1 \oplus S_2) \cup (S_1 \oplus S_3)$$

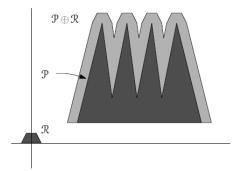
- Therefor,we can do the following steps:
 - **1** Triangulate P into $t_1, ..., t_{n-2}$
 - 2 Compute $R \oplus t_1, ..., R \oplus t_{n-2}$
 - Compute their union

$$P \oplus R = \bigcup_{i=1}^{n-2} t_i \oplus R$$

The Minkowski Sum for non-convex polygons

complexity of $P \oplus R$

- $t_i \oplus R$ is a convex polygon with at most m+3 vertices(according to Theorem 13.5)
- the triangles have disjoint interiors, so the collection of Minkowski sums is a collection of pseudodiscs(according to Theorem 13.8)
- Hence, the complexity of their union is linear in the sum of their complexities (according to Theorem 13.9)
- This implies that the complexity of $P \oplus R$ is $2[(n-2)(m+3)] \in O(nm)$



Compute the Non-Convex $P \oplus Non-convex P$

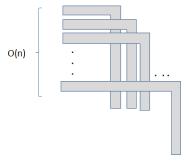
- 1 triangulate both polygons and get a collection of n-2 triangles t_i , and a collection of m-2 triangles u_i
- Minkowski sum of P and R is now the union of the Minkowski sums of the pairs t_i , u_i Each sum $t_i \oplus u_i$ has constant complexity.
- $P \oplus R$ is the union of (n-2)(m-2) constant-complexity polygons

$$P \oplus R = \bigcup_{i=1}^{m-2} \bigcup_{j=1}^{m-2} t_i \oplus u_j$$

This implies that the total complexity of $P \oplus R$ is $O(n^2m^2)$

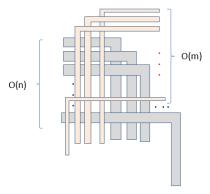
The worst case

Complexity union: o(n2)

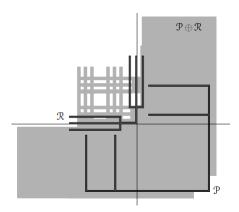


The worst case

 $Complexity: o(n^2) \\$ \Rightarrow Complexity = O(n²m²) Complexity: o(m2)



The worst case



summarize

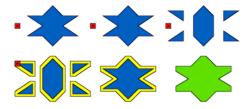
Theorem 13.11

Let P and R be polygons with n and m vertices, respectively. The complexity of the Minkowski sum $P \oplus R$ is bounded as follows:

- it is O(n+m) if both polygons are convex
- it is O(nm) if one of the polygons is convex and one is non-convex
- it is $O(n^2m^2)$ if both polygons are non-convex

These bounds are tight in the worst case.

summarize



Outline

- Introduction
- 2 Work Space and Configuration Space
- **3** A Point Robot
- Minkowski Sums
- **5** Translational Motion Planning

Theorem 13.12

Let R be a convex robot of constant complexity, translating among a set S of non-intersecting polygonal obstacles with a total of n edges. Then the complexity of the free configuration space $C_{free}(R,S)$ is O(n)

Theorem 13.12

Let R be a convex robot of constant complexity, translating among a set S of non-intersecting polygonal obstacles with a total of n edges. Then the complexity of the free configuration space $C_{free}(R,S)$ is O(n)

Theorem 13.12

Let R be a convex robot of constant complexity, translating among a set S of non-intersecting polygonal obstacles with a total of n edges. Then the complexity of the free configuration space $C_{free}(R,S)$ is O(n)

- Any triangle is convex, with disjoint interiors
- The free configuration space is the complement of the union of the C-obstacles of these triangles
- Therefor:

Theorem 13.12

Let R be a convex robot of constant complexity, translating among a set S of non-intersecting polygonal obstacles with a total of n edges. Then the complexity of the free configuration space $C_{free}(R,S)$ is O(n)

- Any triangle is convex, with disjoint interiors
- The free configuration space is the complement of the union of the C-obstacles of these triangles
- Therefor:
 - get a set of O(n) triangular, Triangulate each obstacle polygon

Theorem 13.12

Let R be a convex robot of constant complexity, translating among a set S of non-intersecting polygonal obstacles with a total of n edges. Then the complexity of the free configuration space $C_{free}(R,S)$ is O(n)

- Any triangle is convex, with disjoint interiors
- The free configuration space is the complement of the union of the C-obstacles of these triangles
- Therefor:
 - Triangulate each obstacle polygon
 - robot has constant complexity complexity(m+3 is constant)
- \implies get a set of O(n) triangular,
 - any C-obstacle have constant

Theorem 13.12

Let R be a convex robot of constant complexity, translating among a set S of non-intersecting polygonal obstacles with a total of n edges. Then the complexity of the free configuration space $C_{free}(R,S)$ is O(n)

- Any triangle is convex, with disjoint interiors
- The free configuration space is the complement of the union of the C-obstacles of these triangles
- Therefor:
 - Triangulate each obstacle polygon \implies get a set of O(n) triangular,
 - robot has constant complexity \implies any C-obstacle have constant complexity(m+3 is constant)
 - \bullet C-obstacles form a set of pseudodiscs \implies the union has linear complexity(total number of C-obstacle is n)

Algorithm to construct the free space

$$C_{free} = B - C_{forb}$$

- ullet computing the free space C_{free} , we shall compute the forbidden space C_{forb}
- the free space is simply its complement.

Algorithm to construct the free space

$C_{free} = B - C_{forb}$

- computing the free space C_{free} , we shall compute the forbidden space C_{forb}
- the free space is simply its complement.
- Let P₁,..., P_n denote the triangles that we get when we triangulate the obstacles:

$$C_{forb} = \bigcup_{i=1}^{n} CP_{i} = \bigcup_{i=1}^{n} P_{i} \oplus (-R(0,0))$$

Therefor the problem convert to computing forbidden space

6.

Algorithm Forbidden Space

```
Algorithm FORBIDDENSPACE(\mathbb{CP}_1, \dots, \mathbb{CP}_n)
Input. A collection of C-obstacles.
Output. The forbidden space \mathcal{C}_{forb} = \bigcup_{i=1}^n \mathcal{CP}_i.
         if n=1
             then return CP₁
             else \mathcal{C}^1_{\text{forb}} \leftarrow \text{FORBIDDENSPACE}(\mathcal{P}_1, \dots, \mathcal{P}_{\lceil n/2 \rceil})
                        \mathcal{C}^2_{\text{forb}} \leftarrow \text{FORBIDDENSPACE}(\mathcal{P}_{\lceil n/2 \rceil+1}, \dots, \mathcal{P}_n)
4.
                       Compute \mathcal{C}_{\text{forb}} = \mathcal{C}_{\text{forb}}^1 \cup \mathcal{C}_{\text{forb}}^2.
5.
```

return C_{forb}

Algorithm Forbidden Space

```
Algorithm FORBIDDENSPACE(\mathbb{CP}_1, \dots, \mathbb{CP}_n)
Input. A collection of C-obstacles.
Output. The forbidden space C_{\text{forb}} = \bigcup_{i=1}^{n} CP_{i}.
         if n=1
             then return \mathbb{CP}_1
3.
             else \mathcal{C}^1_{\text{forb}} \leftarrow \text{FORBIDDENSPACE}(\mathcal{P}_1, \dots, \mathcal{P}_{\lceil n/2 \rceil})
                      \mathcal{C}^2_{\text{forb}} \leftarrow \text{FORBIDDENSPACE}(\mathcal{P}_{\lceil n/2 \rceil+1}, \dots, \mathcal{P}_n)
4.
                      Compute \mathcal{C}_{forb} = \mathcal{C}_{forb}^1 \cup \mathcal{C}_{forb}^2. \longrightarrow The heart of this algorithm!
5.
6.
                       return C<sub>forb</sub>
```

A Point Robot

Lemma 13.13

The free configuration space C_{free} of a convex robot of constant complexity translating among a set of polygons with n edges in total can be computed in $O(nlog^2n)$ time.

Proof

- $m_i \implies \text{complexity of obstacle } P_i$
- triangulating all the obstacles takes time:

$$\sum_{i=1}^{t} m_{i} log m_{i} \leqslant \sum_{i=1}^{t} m_{i} log n = n log n$$

Proof

- $m_i \implies \text{complexity of obstacle } P_i$
- triangulating all the obstacles takes time:

$$\sum_{i=1}^{t} m_{i} log m_{i} \leqslant \sum_{i=1}^{t} m_{i} log n = n log n$$

 Computing the C-obstacles of each of the resulting triangles takes linear time in total

Proof

- complexity of obstacle P_i
- triangulating all the obstacles takes time:

$$\sum_{i=1}^{t} m_{i} log m_{i} \leqslant \sum_{i=1}^{t} m_{i} log n = n log n$$

- Computing the C-obstacles of each of the resulting triangles takes linear time in total
- the merge step (line 5) can be done in:

$$O((n_1 + n_2 + k)log(n_1 + n_2))$$

$$\begin{array}{lll} \textit{n}_1 & \Rightarrow & \text{the complexity of } C^1_{\textit{forb}} \\ \textit{n}_2 & \Rightarrow & \text{the complexity of } C^2_{\textit{forb}} \\ \textit{k} & \Rightarrow & \text{the complexity of } C^1_{\textit{forb}} \cup C^2_{\textit{forb}} \end{array}$$

Lemma 13.13

Proof

- $m_i \implies \text{complexity of obstacle } P_i$
- triangulating all the obstacles takes time:

$$\sum_{i=1}^{t} m_i log m_i \leqslant \sum_{i=1}^{t} m_i log n = n log n$$

- Computing the C-obstacles of each of the resulting triangles takes linear time in total
- the merge step (line 5) can be done in:

$$O((n_1 + n_2 + k)log(n_1 + n_2))$$

 $n_1 \Rightarrow \text{the complexity of } C^1_{forb}$

 $n_2 \Rightarrow \text{the complexity of } C_{forb}^2$

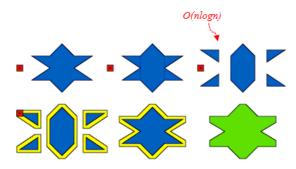
 $k \Rightarrow \text{the complexity of } C_{forb}^1 \cup C_{forb}^2$

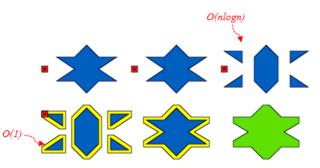
• n_1, n_2 and k are all O(n), so the time for the merge step is $O(n\log n)$

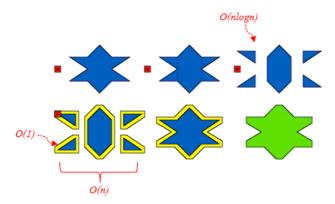
$$T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + O(n\log n)$$

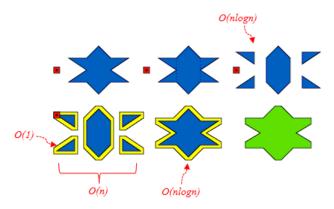
$$\Downarrow$$

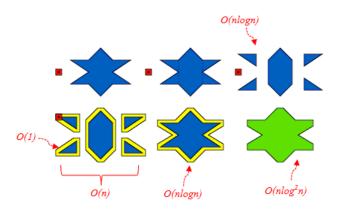
$$O(n\log^2 n)$$



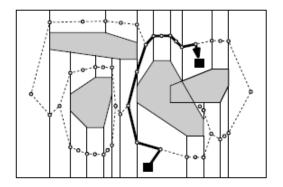








Continuance is same way as point Robot



Lemma 13.13

Let R be a convex robot of constant complexity translating among a set S of disjoint polygonal obstacles with n edges in total. We can preprocess S in $O(nlog^2n)$ expected time, such that between any start and goal position a collision-free path for R, if it exists, can be computed in O(n) time.

END

Work Space and Configuration Space

Keep working hard but also make sure you enjoy your work

Mark de Berg