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Type of Robot

Robot arm
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Type of Robot

Mobile robot
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@ Determining where to go without hit obstacles
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@ Determining where to go without hit obstacles

@ Given:

@ a robot R, with start and goal position
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What is Motion Planning?

@ Determining where to go without hit obstacles
@ Given:

@ a robot R, with start and goal position
o set S of obstacles

@ find collision-free path for the robot.
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@ Look at a 2-dimensional motion planning problem
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@ Look at a 2-dimensional motion planning problem

@ The environoment is a planar region
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Simplification

Assumptions
@ Look at a 2-dimensional motion planning problem
@ The environoment is a planar region

@ Obstacles and robot are polygons
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Simplification

Assumptions
@ Look at a 2-dimensional motion planning problem
@ The environoment is a planar region
@ Obstacles and robot are polygons
@ There are no mobile obstacles

@ Robot can move in arbitrary directions

Translational Motion Planning
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x- and y-coord of
reference point
2 degrees of freedom

rigid object in 2D,
translation only
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Specifying a Robot placement

x- and y-coord of
reference point
2 degrees of freedom

rigid object in 2D,
translation only

x- and y-coord of
reference

point, angle of rotation
3 degrees of freedom

rigid object in 2D,
translations and
rotations
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Specifying a Robot placement

x- and y-coord of
reference point
2 degrees of freedom

rigid object in 2D,
translation only

x- and y-coord of
reference

point, angle of rotation
3 degrees of freedom

rigid object in 2D,
translations and
rotations

x- and y-coord of
reference

point, k rotation angles
k + 2 degrees of
freedom

point robot with k
arms,

translations and
movement of arms
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@ Placement of robot with f degrees of freedom can be specified with f
parameters
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Configuration spaces

Placement

@ Placement of robot with f degrees of freedom can be specified with f
parameters

@ The parameter space of a robot R is usually called its configuration space
that denote by C (R)

work space configuration space

reference point
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Configuration spaces

Placement
@ Placement of robot with f degrees of freedom can be specified with f
parameters
@ The parameter space of a robot R is usually called its configuration space
that denote by C (R)
@ a placement in work space < a point in f-dimensional configuration space

work space configuration space

reference point



example

@ Robot in 2D, translations only = configuration space: R>
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Configuration spaces

example

@ Robot in 2D, translations only = configuration space: R?

@ For robat in 2D, translations and rotations:

A point (x,y, @) in configuration space corresponds to the placement
R(x,y,®) in the work space

That is:

configuration space : R> x [0 : 2]

~
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Free and Forbidden spaces

Free Space c®

Points in configuration space CaeeR S)
corresponding to collision-free
placements

Denote by Cpee (R, S)
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Free and Forbidden spaces

Free Space C®)

Points in configuration space CaeeR S)
corresponding to collision-free
placements

Denote by Cee (R, S)

Forbidden Space

Points in configuration space
corresponding to colliding
placements

Denote by Cerb (R, S)
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To map placement and path

Translational Motion Planning

work space configuration space

reference point

7



Introduction (Wovk Space and Configuration Space) A Point Robot Minkowski Sums Translational Motion Planning

How to map obstacles to configuration space?

Configuration space obstacles

@ An obstacle P is mapped to the set of points p in configuration space
such that R(p) intersects P.
Denote by C-obstacle
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How to map obstacles to configuration space?

Configuration space obstacles

@ An obstacle P is mapped to the set of points p in configuration space
such that R(p) intersects P.
Denote by C-obstacle

@ obstacles are open sets, so that the robot is allowed to touch them

@ C-obstacles may overlap even when the obstacles in the work space are
disjoint. This happens when there are placements of the robot where it
intersects more than one obstacle at the same time.
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Overview

Total Procedure
@ Decompose free space into constant-complexity cells
@ Construct dual graph of decomposition
@ Find path in graph
@ Transform path in graph to path in configuration space

L
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Total Procedure
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Start with a simple case

@ problem reduces to motion planning for point robot in configuration space
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A Point Robot

Start with a simple case

@ problem reduces to motion planning for point robot in configuration space

@ For a point Robot, the work space and the configuration space are
identical

18
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A Point Robot

Start with a simple case

@ problem reduces to motion planning for point robot in configuration space

@ For a point Robot, the work space and the configuration space are
identical
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o denote the robot by R
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A Point Robot
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A Point Robot

Start with a simple case
@ problem reduces to motion planning for point robot in configuration space
@ For a point Robot, the work space and the configuration space are
identical
@ Marking:

o denote the robot by R
@ denote the obstacle by Py,--- , P:

@ The obstacles are polygons with disjoint interiors, whose total number of
vertices is denoted by n.
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A Point Robot

Start with a simple case
@ problem reduces to motion planning for point robot in configuration space
@ For a point Robot, the work space and the configuration space are
identical
@ Marking:

o denote the robot by R
@ denote the obstacle by Py,--- , P:

@ The obstacles are polygons with disjoint interiors, whose total number of
vertices is denoted by n.

We will construct a data structure storing a representation of the free
space




@ To simplify we restrict the motion of the robot to a large bounding box B
that contains the set of polygons

Robot Motion Planing, Getting Where You Want to Be
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Simplificatio

Assumptions

@ To simplify we restrict the motion of the robot to a large bounding box B
that contains the set of polygons

o Cfree:B\U,-T:lpi
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Assumptions

@ To simplify we restrict the motion of the robot to a large bounding box B
that contains the set of polygons

° Cfree:B\U,T:lpi
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Algorithm ComputeFreeSpace(5)

Algorithm COMPUTEFREESPACE(S)

Input. A set S of disjoint polygons.

QOutput. A trapezoidal map of Cee (R, S) for a point robot R.

I.  Let E be the set of edges of the polygons in §.

2. Compute the trapezoidal map T(E) with algorithm TRAPEZOIDALMAP described in
Chapter 6.

3. Remove the trapezoids that lie inside one of the polygons from T(£) and return the resulting
subdivision.

20 /77
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Trapezoidal map
T( Cfree)

(a) (b)
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Trapezoidal map
T( Cfree)

(a) (b)

How do we find the trapezoids inside the obstacles?

we know for each trapezoid the edge that bounds it from the
top,therefore it suffices to check whether the edge bounds the obstacle

from above or from below

21 /77
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Complexity of Algorithm ComputeFreeSpace

Algorithm COMPUTEFREESPACE(S)

Input. A set S of disjoint polygons. O(n logn)
Outpur. A trapezoidal map of Cgee (R, S) for a point robot R. f
1. Let E be the set of edees of the polygons in S.

2. Compute the trapezoidal map T(E) with algorithm TRAPEZOIDALMAP described in
Chapter 6.

3. Remove the trapezoids that lie inside one of the polygons from T(£') and return the resulting
subdivision.
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Complexity of Algorithm ComputeFreeSpace

Algorithm COMPUTEFREESPACE(S)

Input. A set S of disjoint polygons.

Output. A trapezoidal map of Cyee (R, S) for a point robot R.

1. Let E be the set of edges of the polygons in S.

2. Compute the trapezoidal map T(E) with algorithm TRAPEZOIDALMAP described in
Chapter 6.

3. Remove the trapezoids that lie inside one of the polygons from T(E ) and return the resulting|
subdivision.

O(1) for any trapezoid and there is at most 3n +1 trapezoid = O(n)

22 /77



Introduction Work Space and Configuration Space A Point Robot Minkowski Sums Translational Motion Planning

Complexity of Algorithm ComputeFreeSpace

Algorithm COMPUTEFREESPACE(S)

Input. A set S of disjoint polygons.

Output. A trapezoidal map of Cyee (R, S) for a point robot R.

1. Let E be the set of edges of the polygons in S.

2. Compute the trapezoidal map T(E) with algorithm TRAPEZOIDALMAP described in

Chapter 6.
3. Remove the trapezoids that lie inside one of the polygons from T(£') and return the resulting|
subdivision.
O(1) for any trapezoid and there is at most 3n +1 trapezoid = O(n)
Lemma 13.1

A trapezoidal map of the free configuration space for a point robot
moving among a set of disjoint polygonal obstacles with n edges in total
can be computed by a randomized algorithm in O (nlog n) expected time.

22
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@ If Pstart and Py, are in the same trapezoid of the map:
the path is a straight line.
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Finding a path

How do we use T(Cpee) to find a path from Pg,r to Pgoy?

@ If Pstarr and Pgoy are in the same trapezoid of the map:
the path is a straight line.
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Finding a path

How do we use T(Cpee) to find a path from Py, to Pgoy?

@ If Pstarr and Pgoy are in the same trapezoid of the map:
the path is a straight line.

@ If the start and goal position are in different trapezoids:
To guide the motion across trapezoids we construct a road map through
the free space.

23
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@ Place a node in the center of each trapezoid
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How do to construct the road map?

Step

@ Place a node in the center of each trapezoid

@ Place a node in the middle of each vertical extension
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How do to construct the road map?

Step
@ Place a node in the center of each trapezoid
@ Place a node in the middle of each vertical extension

© There is an arc between two nodes if and only if one node is in the center
of a trapezoid and the other node is on the boundary of that same
trapezoid
v

~
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Road Map

Constructed Time

The road map goag can be constructed in O(n) time by traversing the
doubly-connected edge list of T(Cree)

25
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Finding a path

We can use the road map, together with the trapezoidal map, to plan a
motion from a start to a goal position.

To this end:

@ Determine the trapezoids A and Agoa containing these points.
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Finding a path
We can use the road map, together with the trapezoidal map, to plan a
motion from a start to a goal position.
To this end:
@ Determine the trapezoids A and Agoa containing these points.

@ if they are the same trapezoid: motion is only in a straight line
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Finding a path
We can use the road map, together with the trapezoidal map, to plan a
motion from a start to a goal position.
To this end:
@ Determine the trapezoids A and Agoa containing these points.
@ if they are the same trapezoid: motion is only in a straight line

@ Otherwise, let Vstarr and vgoa be the nodes of groaq that have been placed

in the center of these trapezoids.
The path will construct now consists of three parts

26
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@ a straight-line motion from Pstart tO Vestart
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Summarize

The path will construct now consists of three parts:

@ a straight-line motion from Pstarr O Vstart

Translational Motion Planning
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Summarize

The path will construct now consists of three parts:

@ a straight-line motion from Pstarr O Vstart

@ a path from Vstarr t0 Vgoas along the arcs of the road map (with
breadth-first search)
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Summarize

The path will construct now consists of three parts:

@ a straight-line motion from Pstarr O Vstart

@ a path from Vstarr t0 Vgoas along the arcs of the road map (with
breadth-first search)

© a straight-line motion from Vgoa to Pgoa
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Algorithm ComputePath

Algorithm COMPUTEPATH(T (Cfree ), Groad: Pstart: Pgoal)

Input. The trapezoidal map T(Cpee) of the free space, the road map Gyoyq. a start position pgar.

and goal position pyg,.
Quitput. A path from pgiart 10 pgoq if it exists. If a path does not exist, this fact is reported.
Find the trapezoid Agn containing pgan and the trapezoid Agoy containing pgoar.
if Agtart OF Agoar does not exist
then Report that the start or goal position is in the forbidden space.
else Let Vg be the node of Gpoqq in the center of Aggart.
Lel Vo be the node of Groaq in the center of Agoy.
Compute a path in Groad TOM Vggar L0 Vgoar using breadth-first search.
if there is no such path
then Report that there is no path from pgar (0 pgoat-
else Report the path consisting of a straight-line motion from pgart t0 Vstart, the
path found in Gyoaq. and a straight-line motion from Vygq 10 pgoq-

M=

TS

s~
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Algorithm ComputePath

Algorithm COMPUTEPATH(T(Cyree ), Groads Pstart: Pgoal)

Input. The trapezoidal map T(Cee ) of the free space, the road map Grgag. a start position pPygar.
and goal position pgga-

Output. A path from pgart t0 Pooar if it exists. If a path does not exist, this fact is reported.

1. | Find the trapezoid Astart containing pstart and the trapezoid Agoa] containing I’goal-l

2. 1 Agpart OF Agog) does not exist

3 then Report that the start or goal position is in the forbidden space. O(logn)

4, else Let Vg be the node of Groaq in the center of Aggar.

5 Let Vyoq be the node of Groad 1n the center of Agoal-

6. Compute a path in Grgaq from Vg to Vgoal Using breadth-first search.

7. if there is no such path

8

9

then Report that there is no path from pgar to Pgoal-
else Report the path consisting of a straight-line motion from pPgart (O Vgari, the
path found in Gpoqqg, and a straight-line motion from Vgoq) to pgoal-

28 /77



Introduction Work Space and Configuration Space A Point Robot Minkowski Sums Translational Motion Planning

Algorithm ComputePath

Algorithm COMPUTEPATH(T(Cyree ), Groads Pstart: Pgoal)
Input. The trapezoidal map T(Cee ) of the free space, the road map Grgag. a start position pPygar.
and goal position pgga-
Output. A path from pggart 10 Pgoar if it exists. If a path does not exist, this fact is reported.
Find the trapezoid Astart containing pstart and the trapezoid Agoa] containing Pgoal-
if Agtar O Agoqr does not exist
then Report that the start or goal position is in the forbidden space.
else Let Vg be the node of Groaq in the center of Aggar.
Let Vyoa be the node of Gpoad in the center of Agoar.
| Compute a path in Grgaq from Vg to Vgoal Using breadth-first search. |—-> 0Ofn)
1T there 1s no such path
then Report that there is no path from pgar to Pgoal-
else Report the path consisting of a straight-line motion from pPgart (O Vgari, the
path found in Gpoqqg, and a straight-line motion from Vgoq) to pgoal-
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Algorithm ComputePath

Algorithm COMPUTEPATH(T(Cyree ), Groads Pstart: Pgoal)
Input. The trapezoidal map T(Cee ) of the free space, the road map Grgag. a start position pPygar.
and goal position pgga-
Output. A path from pggart 10 Pgoar if it exists. If a path does not exist, this fact is reported.
Find the trapezoid Astart containing pstart and the trapezoid Agoa] containing Pgoal-
if Agtar O Agoqr does not exist
then Report that the start or goal position is in the forbidden space.
else Let Vg be the node of Groaq in the center of Aggar.
Let Vyoq be the node of Groad 1n the center of Agoal-
Compute a path in Grgaq from Vg to Vgoal Using breadth-first search.
if there is no such path o(n)
then Report that there is no path from pgar (0 Peoal-
else Report the path consisting of a straight-line motion from pPgart (O Vgari, the
path found in Gpoqqg, and a straight-line motion from Vgoq) to pgoal-
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Correctness of Algorithm

Are the reported path always collision-free?

Any path we report must be collisionfree, since it consists of segments
inside trapezoids and all trapezoids are in the free space.

29 /77
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Correctness of Algorithm

Are the reported path always collision-free?

Any path we report must be collisionfree, since it consists of segments
inside trapezoids and all trapezoids are in the free space.

Do we always find a collision-free
path if one exists? Pgoal

@ suppose that there is a /J
collision-free path from psta to A /AS
Pgoal

@ The path from psart t0 pgoas must ‘ \

cross a sequence of trapezoids
Pstart
Ay ey Dy

@ Let v; be the node of gyoaq that is Ay A3
in the center of A\;
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Conclusion

Theorem 13.2

Let R be a point robot moving among a set S of polygonal obstacles
with n edges in total. We can preprocess S in O(nlogn) expected time,
such that between any start and goal position a collision-free path for R
can be computed in O(n) time, if it exists
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Conclusion

Theorem 13.2

Let R be a point robot moving among a set S of polygonal obstacles
with n edges in total. We can preprocess S in O(nlogn) expected time,
such that between any start and goal position a collision-free path for R
can be computed in O(n) time, if it exists

Note

The path computed by the algorithm is collision-free, but we can give no
guarantee that the path does not make large detours




@ Introduction

Q Work Space and Configuration Space
© A Point Robot
@ Minkowski Sums

© Translational Motion Planning

Robot Motion Planing, Getting Where You Want to Be

VOS] -




Introduction Work Space and Configuration Space A Point Robot Minkowski Sums Translational Motion Planning

Motion Planning problem for a Polygon Robot

Recall

@ We assume that the robot R is convex, and for the moment we also
assume that the obstacles are convex

32
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Motion Planning problem for a Polygon Robot

Recall

@ We assume that the robot R is convex, and for the moment we also
assume that the obstacles are convex

@ R(x,y) to denote the placement of R with its reference point at (x, y).
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Motion Planning problem for a Polygon Robot

Recall

@ We assume that the robot R is convex, and for the moment we also
assume that the obstacles are convex

@ R(x,y) to denote the placement of R with its reference point at (x, y).

@ C -obstacle, of an obstacle P and the robot R is defined as the set of

points in configuration space such that the corresponding placement of R
intersects P.

CP :={(x,y) : R(x,y)N P # 0}
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C -obstacle

CP :={(x,y): R(x,y) NP # 0}

33 /77
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Minkowski Sum

Definition

The Minkowski sum of two sets S; C R? and S, C R? is:

S1©S :={p+q:pcSi,qc S}

p+q:=(px+ gx, Py + qy)

34 /77
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Minkowski Sum

Definition
The Minkowski sum of two sets S; C R? and S, C R? is:

S1©S :={p+q:pcSi,qc S}

p+q:=(px+axpy +ay)

Notation

For a point p = (px, py) we define —p := (—px, —py), and for a set S we
define =S :={—p:p e S}

34 /77
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Minkowski Sum

1
AtB

Example
A= {(150)7(()’1)?(071)} 1

B = {(0a0)7(171)7(171)} ><

then the Minkowski sum is:

A® B=1{(1,0),(2,1),(2,1),(0,1),(1,2), L

(1,0),(0,1),(1,0),(1,2)} 2

0
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Let R be a planar, translating robot and let P be an obstacle. Then the
C -obstacle of P is P & (—R(0,0)).
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Theorem 13.3

Theorem 13.3

Let R be a planar, translating robot and let P be an obstacle. Then the
C -obstacle of P is P & (—R(0,0)).

Proof
R(x,y) Intersect P <> (x,y) € P & (—R(0,0))
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Theorem 13.3

Theorem 13.3

Let R be a planar, translating robot and let P be an obstacle. Then the
C -obstacle of P is P @ (—R(0,0)).

Proof
R(x,y) Intersect P <= (x,y) € P & (—R(0,0))

_‘R(O/O)
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Proof Of Theorem 13.3

If intersect, (x,y) is in CP ‘

If intersect,(x, y) is in CP

A Point q in intersection =
g€ R(x,y)ANgeP

g € R(x,y) =
(gx — x,qy — y) € R(0,0)
(_qX +X,—qy +)/) € _R(O’O)

qEP=
(g, ay) +(—gx +x,—q, +y) =
(Xay) S ’D@ (_R(070))
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Proof Of Theorem 13.3

If (x,y) is in CP, R(x,y)&P
If (x,y) is in CP, R(x,y) and P intersect
intersect

(x,¥) € P& (—R(0,0)) =

I(r«, ry) € R(0,0) A 3(px, py) € P
Such that: (x,y) = (px — rx, Py — 1))

That is:
Px = X + Ix
py=y+tr

39 /77
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Observation

Observation 13.4 PaR

Let P and R be two objects in the

plane, and let CP:=P®R. _ P\

An extreme point in direction d on -
. L r d

CP is the sum of extreme points in ‘ /

direction d on P and R. R
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Observation

Observation 13.4

Let P and R be two objects in the
plane, and let CP := P &® R.

An extreme point in direction d on
CP is the sum of extreme points in
direction d on P and R.
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Observation

Observation 13.4

Let P and R be two objects in the
plane, and let CP := P &® R.

An extreme point in direction d on
CP is the sum of extreme points in
direction d on P and R.
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Theorem

Theorem 13.5

Let P and R be two convex e=edp
polygons with n and m edges,

respectively. Then the Minkowski

sum P ® R is a convex polygon with

at most n+ m edges. ¢
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Theorem

Theorem 13.5

Let P and R be two convex
polygons with n and m edges,
respectively. Then the Minkowski
sum P ® R is a convex polygon with
at most n+ m edges.

Proof

Minkowski Sums

Translational Motion Planning

41 /
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Theorem

Theorem 13.5

Let P and R be two convex
polygons with n and m edges,
respectively. Then the Minkowski
sum P ® R is a convex polygon with
at most n+ m edges. /

Proof

@ First part follows directly from the
definition.(sliding argument)
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Theorem

Theorem 13.5

Let P and R be two convex
polygons with n and m edges,
respectively. Then the Minkowski
sum P ® R is a convex polygon with
at most n+ m edges.

Proof

@ First part follows directly from the
definition.(sliding argument)

@ consider an edge e that is extreme
in the direction of its outer
normal.

e=édp
ef ;i;

41
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Theorem

Theorem 13.5

Let P and R be two convex
polygons with n and m edges,
respectively. Then the Minkowski
sum P ® R is a convex polygon with
at most n+ m edges.

Proof

@ First part follows directly from the
definition.(sliding argument)

@ consider an edge e that is extreme
in the direction of its outer
normal.

K3
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Theorem

Theorem 13.5

Let P and R be two convex
polygons with n and m edges,
respectively. Then the Minkowski
sum P ® R is a convex polygon with
at most n+ m edges.

Proof

@ First part follows directly from the
definition.(sliding argument)

@ consider an edge e that is extreme
in the direction of its outer
normal.

K3

41
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Theorem

Theorem 13.5

Let P and R be two convex
polygons with n and m edges,
respectively. Then the Minkowski
sum P & R is a convex polygon with
at most n+ m edges.

A\

Proof

@ First part follows directly from the
definition.(sliding argument)

@ consider an edge e that is extreme
in the direction of its outer
normal.

3

41
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Theorem

Theorem 13.5

Let P and R be two convex
polygons with n and m edges,
respectively. Then the Minkowski
sum P ® R is a convex polygon with
at most n+ m edges.

Proof

@ First part follows directly from the
definition.(sliding argument)

@ consider an edge e that is extreme
in the direction of its outer
normal.

e=eap
ip
e

41
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Theorem

Theorem 13.5

Let P and R be two convex
polygons with n and m edges,
respectively. Then the Minkowski
sum P ® R is a convex polygon with
at most n+ m edges.

Proof

@ First part follows directly from the
definition.(sliding argument)

@ consider an edge e that is extreme
in the direction of its outer
normal.

e=eap
L p
(4

41
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Theorem

Theorem 13.5

Let P and R be two convex
polygons with n and m edges,
respectively. Then the Minkowski
sum P ® R is a convex polygon with
at most n+ m edges.

Proof

@ First part follows directly from the
definition.(sliding argument)

@ consider an edge e that is extreme
in the direction of its outer
normal.

41
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Theorem

Theorem 13.5
Let P and R be two convex

e=eap
polygons with n and m edges,
respectively. Then the Minkowski
sum P ® R is a convex polygon with [
at most n+ m edges. P
|

Proof

@ First part follows directly from the
definition.(sliding argument)

@ consider an edge e that is extreme
in the direction of its outer Question J

normal.

/  Why we say at most?
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A pair of Pseudodiscs

Definition
Consider two planar objects o; and 0,, each bounded by a simple closed

curve.
the pair 01, 0 is called a pair of pseudodiscs:

42 /
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A pair of Pseudodiscs

Definition
Consider two planar objects o; and 0,, each bounded by a simple closed

curve.
the pair o1, 0y is called a pair of pseudodiscs:

@ Definition 1: if their boundaries 0o; and do, intersect in at most two
points

42
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A pair of Pseudodiscs

Definition
Consider two planar objects 0; and 0,, each bounded by a simple closed

curve.
the pair 01, 0, is called a pair of pseudodiscs:

@ Definition 1: if their boundaries Jo; and Qo intersect in at most two
points

pseudodiscs not pseudodiscs
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. .
A pair of Pseudodiscs

Definition
Consider two planar objects o; and o,, each bounded by a simple closed

curve.
the pair 01, 0, is called a pair of pseudodiscs:

@ Definition 1: if their boundaries 0o; and do, intersect in at most two

points

Degenerate Case

J
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. .
A pair of Pseudodiscs

Definition
Consider two planar objects 0; and 0,, each bounded by a simple closed

curve.
the pair 01, 0, is called a pair of pseudodiscs:

@ Definition 1: if their boundaries Jo; and Qo intersect in at most two
points
@ Definition 2: if do; N int(02) is connected and do, N int(o1) is connected

pseudodiscs not pseudodiscs

42
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A pair of Pseudodiscs

Definition
Consider two planar objects 0; and 0,, each bounded by a simple closed

curve.
the pair 01, 0, is called a pair of pseudodiscs:

@ Definition 1: if their boundaries Jo; and Qo intersect in at most two
points

@ Definition 2: if do; N int(02) is connected and do, N int(o1) is connected

@ Definition 3: if o; — 0 is connected and 0, — o1 is connected

pseudodiscs not pseudodiscs

42 /7
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Collection of pseudodiscs

Definition

A collection of objects, each bounded by a simple closed curve, is called a
collection of pseudodiscs if every pair of objects in the collection is a pair
of pseudodiscs

43
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Collection of pseudodiscs

Definition

A collection of objects, each bounded by a simple closed curve, is called a
collection of pseudodiscs if every pair of objects in the collection is a pair
of pseudodiscs

Collection of Pseudodiscs

=l O i3
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Collection of pseudodiscs

Definition
A collection of objects, each bounded by a simple closed curve, is called a

collection of pseudodiscs if every pair of objects in the collection is a pair
of pseudodiscs

Note

pseudodisc property is about the way in which (the boundaries of) two
objects can interact. It does not make sense to say of a single object that
it is a pseudodisc.
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Boundary crossing

Definition

consider two polygons P and P
an intersection point p € 9P NP is a boundary crossing if P crosses

from the interior of P to the exterior of P’ at p

44 /77



Introduction Work Space and Configuration Space A Point Robot Translational Motion Planning

Boundary crossing

Definition

consider two polygons P and P’
an intersection point p € 9P N JP is a boundary crossing if QP crosses

from the interior of P’ to the exterior of P at p

p is not boundary crossing p and g is boundary crossing
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An important property of polygonal
pseudodiscs

Observation 13.6

A pair of polygonal pseudodiscs P, P’ defines at most two boundary
crossings.
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An important property of polygonal
pseudodiscs

Observation 13.6

A pair of polygonal pseudodiscs P, P’ defines at most two boundary
crossings.

h=]
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@ Consider the pairs of convex polygons with disjoint interiors
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The more extreme of polygon

Definition
@ Consider the pairs of convex polygons with disjoint interiors

@ one polygon is more extreme in a direction d than another polygon if its
extreme points lie further in that direction than the extreme points of the
other polygon

46 /77
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The more extreme of polygon

Definition
@ Consider the pairs of convex polygons with disjoint interiors

@ one polygon is more extreme in a direction d than another polygon if its
extreme points lie further in that direction than the extreme points of the
other polygon

¥ P,is more extremein direction d

d
P, P\ —>

~

J



Introduction Work Space and Configuration Space A Point Robot

Translational Motion Planning

extreme points for various directions

Definition

The range from a direction d; to a direction
d> is defined as the directions corresponding
to points in the counterclockwise circle
segment from the point representing di to
the point representing .

Ve
.

| directions
between
dy and d>
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Observation

Observation 13.7

Let P; and P, be convex polygons with disjoint interiors.
Let d; and d> be directions in which P; is more extreme than Ps.

Then either P; is more extreme than P, in all directions in the range from
di to db, or it is more extreme in all directions in the range from d> to d.

~
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A Point Robot

Observation

Observation 13.7

Let P; and P, be convex polygons with disjoint interiors.

Translational Motion Planning

Let c71 and cTz be directions in which P; is more extreme than Ps.

Then elther P; is more extreme than P, in all directions in the range from
d1 to d2, or it is more extreme in all directions in the range from d2 to d1

P> is more

Nre me

Py and P, are -

equally extreme /
\‘\ e
\ \

Py is more \ 3/

extreme

48 /T
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Observation

Observation 13.7

Let P; and P, be convex polygons with disjoint interiors.
Let d; and d> be directions in which P; is more extreme than Ps.

Then either P; is more extreme than P, in all directions in the range from
di to db, or it is more extreme in all directions in the range from d> to d.

Not holed for non- convex polygons

48
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Minkowski sums forms a collection of
pseudodiscs

Theorem 13.8

Let P; and P, be two convex polygons with disjoint interiors, and let R
be another convex polygon. Then the two Minkowski sums P; & R and
P> @ R are pseudodiscs.

49 /77
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Minkowski sums forms a collection of
pseudodiscs

Theorem 13.8

Let P; and P, be two convex polygons with disjoint interiors, and let R
be another convex polygon. Then the two Minkowski sums P; & R and
P> @ R are pseudodiscs.

Proof

@ Define:
CPi:=P1®R

CP, =P, R
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Minkowski sums forms a collection of
pseudodiscs

Theorem 13.8

Let P; and P, be two convex polygons with disjoint interiors, and let R
be another convex polygon. Then the two Minkowski sums P; & R and
P> @ R are pseudodiscs.

Proof

@ Define:
CPi:=P1®R

CP, =P, R

@ By symmetry, it suffices to show that 9CP;1 N int(CP:) is connected
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Minkowski sums forms a collection of
pseudodiscs

Theorem 13.8

Let P; and P, be two convex polygons with disjoint interiors, and let R
be another convex polygon. Then the two Minkowski sums P; & R and
P> @ R are pseudodiscs.

Proof

@ Define:
CPi:=P1®R

CP, =P, R

@ By symmetry, it suffices to show that 9CP;1 N int(CP:) is connected

@ Proof with Contradiction

49 /77



&C P, int(€ P,) is not connect
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complexity of union

Theorem 13.9

Let S be a collection of convex polygonal pseudodiscs with n edges in
total. Then the complexity of their union is at most 2n

51 /77
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complexity of union

Theorem 13.9

Let S be a collection of convex polygonal pseudodiscs with n edges in
total. Then the complexity of their union is at most 2n

Proof

We prove the bound by charging every vertex of the union to a
pseudodisc vertex in such a way that any pseudodisc vertex is charged at
most two times

~
J
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@ For each pair v, w of vertices, with v € P and w € R,compute v + w
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Compute the Minkowski sum

A very simple algorithm

@ For each pair v, w of vertices, with v € P and w € R,compute v + w

@ compute the convex hull of all these sums
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Compute the Minkowski sum

A very simple algorithm

@ For each pair v, w of vertices, with v € P and w € R,compute v + w

@ compute the convex hull of all these sums

Problems

this algorithm inefficient when the polygons have many vertices, because
it looks at every pair of vertices.

53 /77
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Compute the Minkowski sum

an alternative algorithm and easy to implement

@ only looks at pairs of vertices that are extreme in the same direction

54 /
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Compute the Minkowski sum

an alternative algorithm and easy to implement

@ only looks at pairs of vertices that are extreme in the same direction

@ it run in linear time

54 /
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In the algorithm we use the notation angle (pg) to denote the angle that
the vector pg makes with the positive x-axis.
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angle

Definition
In the algorithm we use the notation angle (pg) to denote the angle that
the vector pg makes with the positive x-axis.

angle(pq)

N

i3

\J
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Algorithm MinkowskiSum

Algorithm MINKOWSKISUM(P, R)

Input. A convex polygon P with vertices vy,..., vy, and a convex polygon R with vertices
wi,...,wn. The lists of vertices are assumed to be in counterclockwise order, with v, and w,
being the vertices with smallest y-coordinate (and smallest x-coordinate in case of ties).

Ouiput. The Minkowski sum P & R.

1 [ 1; j% 1

20 Vppl VL Vg2 V2 Wing ] S WL Wi+ W2

3. repeat

4. Add vi4w;as avertex to P& R.

3. if angle(viviyy) < angle(wjw;i)

6. theni«— (i+1)

7. else if angle(viviy1) > angle(wjwjs)
8. then j — (j+1)

9 else i (i4+1);j—(j+1)
10. untili=n+1land j=m+1
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Algorithm MinkowskiSum

Algorithm MINKOWSKISUM(P,R)

Inpur. A convex polygon P with vertices vy, ..., vy, and a convex polygon R with vertices
Wieen, wp. The lists of vertices are assumed to be in counterclockwise order, with v, and w,
being the vertices with smallest y-coordinate (and smallest x-coordinate in case of ties).

Output. The Minkowski sum P& R,

1. [+ 1; j% 1

20 Vppl VL VR S V2 Wi | S W Wi W2

3. repeat —

4. Add v +wjas avertex to PG R.

5. if angle(viviy1) < angle(wjwjyy)

6. then i« (i+1)

7. else if angle(viviy1) > angle(wjwjyy)[—> Oln+m)
8. then j — (j+1)

9. else i— (i+1):j— (j+1)

10. wntili=n+1and j=m+1

56
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[ij] = (1,1)
Add vy+wy

w3

angle(viv2) > angle(wiw2)
=j2

wi,w5 w2

viv4
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wil

w3

w2

[ii] = (1,2)
Add v{+w,

angle(viv2) < angle(w2w3)

=2
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vi

wil

w3

w2

[ii] = (2,2)
Add v,+w,

angle(v2v3) > angle(w2w3)

=je3
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[ij] = (2,3)
Add v,+ws

w3 °
angle(v2v3) < angle(w3w4)
= i3

wil w2

vi
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[ij] = (3,3)
Add v3+ws

w3 Py
angle(v3v4) > angle(w3w4)
= je4

wil w2

v4,v1
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[ijl = (3,4)
[ ] Add V3+W4

w3 °
angle(v3v4) < angle(w4w5)
=<4

w5,wi w2

v4,v1
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v4,vl

(i3] = (4,4)

Add vy+w,
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The Minkowski sum of two convex polygons with n and m vertices,
respectively, can be computed in O(n + m) time.
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The Minkowski Sum for non-convex polygons

Compute the convex R & Non-convex P
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The Minkowski Sum for non-convex polygons

Compute the convex R & Non-convex P

@ the following equality holds for any sets S1, S,, and Ss:

S1P(S2U8:)=(51®S)U (S @ S3)
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The Minkowski Sum for non-convex polygons

Compute the convex R & Non-convex P

@ the following equality holds for any sets S1, S,, and Ss:
S1®(S2US83)=(S510S)U (56 S3)

@ Therefor,we can do the following steps:
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The Minkowski Sum for non-convex polygons

Compute the convex R & Non-convex P
@ the following equality holds for any sets S1, S>, and Ss:

$19(SUS)=(S19S)U(S @ Ss)

@ Therefor,we can do the following steps:
@ Triangulate P into ti,...,t,—2
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The Minkowski Sum for non-convex polygons
Compute the convex R & Non-convex P
@ the following equality holds for any sets S1, S>, and Ss:
S1P(S2U8:)=(51®S)U (S @ S3)

@ Therefor,we can do the following steps:

@ Triangulate P into ti,...,t,—2
@ Compute R® t1,..., R th_»
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The Minkowski Sum for non-convex polygons

Compute the convex R & Non-convex P

@ the following equality holds for any sets S1, S>, and Ss:
S1P(S2US:)=(S519S2)U (S0 S3)

@ Therefor,we can do the following steps:

@ Triangulate P into ti,...,t,—2
@ Compute R® t1,..., R th_»
© Compute their union
n—2
PoR=|Jt®R
i=1

59 /77
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The Minkowski Sum for non-convex polygons

complexity of P& R
@ t; @ R is a convex polygon with at most m + 3 vertices(according to
Theorem 13.5)

@ the triangles have disjoint interiors, so the collection of Minkowski sums is
a collection of pseudodiscs(according to Theorem 13.8)

@ Hence, the complexity of their union is linear in the sum of their
complexities(according to Theorem 13.9)

@ This implies that the complexity of P @ R is 2 [(n — 2)(m + 3)] € O(nm)
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The Minkowski Sum for non-convex polygons

Compute the Non-Convex R & Non-convex P

@ triangulate both polygons and get a collection of n — 2 triangles t;, and a
collection of m — 2 triangles u;

@ Minkowski sum of P and R is now the union of the Minkowski sums of
the pairs t;, u;
Each sum t; @ u; has constant complexity.

© P ® R is the union of (n — 2)(m — 2) constant-complexity polygons

n—2m-—2

P@R:U Ut,-EBuj

i=1 j=1

This implies that the total complexity of P @ R is O(n’m?)




Complexity union: o(n?)

0Ofn)
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Complexity: o(n?) _, Complexity = O(n2m2)
Complexity : o(m?)

O(m)

0(n)

Robot Motion Planing, Getting Where You Want to Be
e/m
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summarize

Theorem 13.11
Let P and R be polygons with n and m vertices, respectively.

The complexity of the Minkowski sum P @ R is bounded as follows:

@ it is O(n+ m) if both polygons are convex
@ it is O(nm) if one of the polygons is convex and one is non-convex

@ it is O(n*m?) if both polygons are non-convex

These bounds are tight in the worst case.




Introduction

Work Space and Configuration Space
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*x
[ <

A Point Robot

summarize

“ >
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%
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Introduction Work Space and Configuration Space

Return to the planar motion planning problem

Theorem 13.12

Let R be a convex robot of constant complexity, translating among a set
S of non-intersecting polygonal obstacles with a total of n edges. Then
the complexity of the free configuration space Cpee(R,S) is O(n)
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Introduction Work Space and Configuration Space

Return to the planar motion planning problem

Theorem 13.12

Let R be a convex robot of constant complexity, translating among a set
S of non-intersecting polygonal obstacles with a total of n edges. Then
the complexity of the free configuration space Cpee(R,S) is O(n)
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Return to the planar motion planning problem

Theorem 13.12

Let R be a convex robot of constant complexity, translating among a set
S of non-intersecting polygonal obstacles with a total of n edges. Then
the complexity of the free configuration space Cpee(R,S) is O(n)

Proof
@ Any triangle is convex, with disjoint interiors

@ The free configuration space is the complement of the union of the
C-obstacles of these triangles

@ Therefor:

@ Triangulate each obstacle polygon —> get a set of O(n) triangular,

@ robot has constant complexity — any C-obstacle have constant
complexity( m + 3 is constant)

@ C-obstacles form a set of pseudodiscs = the union has linear
complexity(total number of C-obstacle is n )

~
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Algorithm to construct the free space

Cfree = I8 = Cforb
@ computing the free space Cpee, We shall compute the forbidden space Crpp

@ the free space is simply its complement.
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Work Space and Configuration Space

Algorithm to construct the free space

Introduction

Cfree = I8 = Cforb
@ computing the free space Cpee, We shall compute the forbidden space Crpp

@ the free space is simply its complement.
@ Let Pi,..., P, denote the triangles that we get when we triangulate the

obstacles: ) )
Cforb = U CP; = U’Dl @ (_R(07 0))

i=1 i=1

Therefor the problem convert to computing forbidden space J
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Algorithm Forbidden Space

Algorithm FORBIDDENSPACE(CPy,...,CP,)
Input. A collection of C-obstacles.
Outpur. The forbidden space Ceo, = UL CP;.

1. ifn=1

2. then return CP,

3. else €}, —FORBIDDENSPACE(P)..... P, /1)
4. Cf, < FORBIDDENSPACE(P[, 0141, )
5. Compute Crop, = Gflorb U G%Om.

6. return Cpyp
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Algorithm Forbidden Space

Algorithm FORBIDDENSPACE(CP,...,CP,)
Input. A collection of C-obstacles.
Output. The forbidden space Cpor, = U CP;.

1. ifn=1

2. then return C7P,

3. else C! . —FORBIDDENSPACE(P)..... Prusa))

4, Cf . —FORBIDDENSPACE(P[, 5141 .. Py)

5. Compute Ceory = @Eorb u @%om. I—) The heart of this algorithm!
6. return Cryp
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Running Time

Lemma 13.13

The free configuration space Cpee Of a convex robot of constant
complexity translating among a set of polygons with n edges in total can
be computed in O(nlog?n) time.
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Lemma 13.13

Proof
o m = complexity of obstacle P;

@ triangulating all the obstacles takes time:

t t
Zm,-/ogm; < Zm,-/ogn
i=1 i=1

nlogn

71/
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@ triangulating all the obstacles takes time:
t t
Z milogm; < Z mjilogn = nlogn
i=1 i=1

@ Computing the C-obstacles of each of the resulting triangles takes linear
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Lemma 13.13

Proof
o m = complexity of obstacle P;
@ triangulating all the obstacles takes time:

t

t
Zm;logm; < Zm;logn = nlogn
i=1

i=1

@ Computing the C-obstacles of each of the resulting triangles takes linear
time in total

@ the merge step (line 5) can be done in:
O((m + m2 + k)log(n1 + m))

m = the complexity of C,
m = the complexity of C2,
k = the complexity of C}, U C2,,

71
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Lemma 13.13

Proof

o m = complexity of obstacle P;

@ triangulating all the obstacles takes time:
t t
Z milogm; < Z mjilogn = nlogn
i=1 i=1

@ Computing the C-obstacles of each of the resulting triangles takes linear
time in total

@ the merge step (line 5) can be done in:
O((m + m2 + k)log(n1 + m))

m = the complexity of C,
m = the complexity of C2,
k = the complexity of C}, U C2,,

@ n1, o and k are all O(n), so the time for the merge step is O(nlogn)

71
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T(n)=T([n/2])+ T(|n/2]) + O(nlogn)

I
O(nlog?n)

Robot Motion Planing, Getting Where You Want to Be
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Time the algorithm
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Time the algorithm
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Time the algorithm
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Continuance is same way as point Robot
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Running Time

Lemma 13.13

Let R be a convex robot of constant complexity translating among a set
S of disjoint polygonal obstacles with n edges in total. We can
preprocess S in O(nlog?n) expected time, such that between any start
and goal position a collision-free path for R, if it exists, can be computed
in O(n) time.




END
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Keep working hard
but also

make sure you enjoy your work

Mark de Berg
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