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Self-protecting software systems are a class of autonomic systems capable of detecting and mitigating se-
curity threats at runtime. They are growing in importance, as the stovepipe static methods of securing
software systems have been shown to be inadequate for the challenges posed by modern software systems.
Self-protection, like other self-* properties, allows the system to adapt to the changing environment through
autonomic means without much human intervention, and can thereby be responsive, agile, and cost effec-
tive. While existing research has made significant progress towards autonomic and adaptive security, gaps
and challenges remain. This article presents a significant extension of our preliminary study in this area.
In particular, unlike our preliminary study, here we have followed a systematic literature review process,
which has broadened the scope of our study and strengthened the validity of our conclusions. By proposing
and applying a comprehensive taxonomy to classify and characterize the state-of-the-art research in this
area, we have identified key patterns, trends and challenges in the existing approaches, which reveals a
number of opportunities that will shape the focus of future research efforts.
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1. INTRODUCTION

Security is increasingly a principal concern for the design and construction of most
modern software systems. In spite of the significant progress over the past few decades,
the challenges posed by security are more prevalent than ever before. As the aware-
ness grows of the limitations of traditional, often static and rigid, security models,
research shifts to dynamic models, where security threats are detected and mitigated
at runtime, that is, self-protection.

Self-protection has been identified as one of the essential traits of self-management
for autonomic computing systems. Kephart and Chess [2003] characterized self-
protection from two perspectives: From a “reactive” perspective, the system automat-
ically defends against malicious attacks or cascading failures, while from a “proac-
tive” perspective, the system anticipates security problems in the future and takes
steps to mitigate them. Self-protection is closely related to the other self-* properties,
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such as self-configuration and self-optimization. On one hand, a self-configuring and
self-optimizing system relies on self-protection functions to ensure the system secu-
rity remains intact during dynamic changes. On the other hand, the implementation
of self-protection functions may also leverage the same techniques used for system
reconfiguration and optimization.

The past decade has seen extensive and systematic research being conducted around
self-adaptive and self-managing systems. Research on self-protecting capabilities,
however, has been relatively speaking less abundant. Scattered efforts can be found
in various application domains such as autonomic computing, mobile and ad-hoc
networks, sensor networks, fault-tolerant systems, trust management, and military
domains like information survivability and tactical systems.

The contributions of this article include: (1) A proposed taxonomy for consistently
and comprehensively classifying self-protection mechanisms and research approaches;
(2) A systematic survey of the state of the art of self-protecting software systems using
the proposed taxonomy; (3) Observations and comparative analysis across these self-
protecting systems, to identify trends, patterns, and gaps; and (4) A set of recommen-
dations for future research directions for self-protecting systems.

This article has significantly extended our preliminary study of self-protecting soft-
ware systems [Yuan and Malek 2012]. In particular, unlike our preliminary study,
here we have followed a systematic literature review process proposed by Kitchenham
[2004]. This has broadened the scope of our study and strengthened the validity of our
conclusions. In particular, we expanded our preliminary study of 32 publications to a
systematic study of more than 1030 papers, from which 107 publications were deemed
relevant (including a few that were published after the previous study). Our taxon-
omy and observations have been refined, enriched with more in-depth analysis, and
in some cases altogether revised. To the best of our knowledge, this study is the most
comprehensive and elaborate investigation of the literature in this area of research.

We begin by introducing our research problem (1.1), illustrating it using a motivat-
ing example (1.2), and laying out the organization of the entire article (1.3).

1.1. Problem Description and Motivation

There is an unprecedented need for self-protection in today’s software systems, driven
by both external factors such as cyber threats as well as internal factors that lie within
the system architecture.

From Outside: Ever Increasing Cyber Threats. As software systems become more dis-
tributed, interactive and ubiquitous, networking services become an integral part of
the system architecture, making these systems more prone to malicious attacks. Over
the years the frequency, complexity, and sophistication of attacks are rapidly increas-
ing, causing severe disruptions of online systems with sometimes catastrophic conse-
quences. From some of the well-publicized recent incidents, we can get a glimpse of
the characteristics of such threats. The Conficker worm, first detected in 2008, caused
the largest known computer infection in history and was able to assemble a botnet of
several million hosts—an attack network that, if activated, would be capable of large-
scale Distributed Denial of Service (DDoS) attacks. What is unique about Conficker is
not just the scale it achieved, but also its use of sophisticated software techniques in-
cluding peer-to-peer networking, self-defense through adaptation, and advanced cryp-
tography [Dittmann et al. 2010]. The Stuxnet worm, discovered in 2010, is the first
known malware to target and subvert industrial control systems. In addition to be-
ing credited with damaging the Iranian nuclear program, the malware demonstrates
its ability to attack multiple architecture layers of the target system—exploiting the
network and host-level vulnerabilities is only a stepping stone for malicious actions at
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Fig. 1. Simple online banking system example.

the application level [Langner 2011]. The Duqu worm, discovered in September 2011,
is a reconnaissance worm that does no harm to the infected systems but is tasked to
collect and exfiltrate information such as valid digital certificates that may be used
in future attacks. It further illustrates the deliberate and persistent nature of today’s
cyber threats [Bencsáth et al. 2012].

What has become increasingly clear from examples like these is that to protect to-
day’s software systems, especially those that are mission critical, applying static point
security solutions (e.g., firewall and one-time password authentication) is no longer
sufficient. Rather, there is a need for dynamic approaches that actively evaluate and
reassess the overall security posture of the entire system architecture.

From Within: Dynamic Architectural Behaviors. An equally pressing need for system
self-protection arises from the fact that software systems are increasingly designed to
take on more dynamic behaviors at runtime. As dynamic architectural styles (such as
service-orientation) become more widely adopted, a system function may, for example,
be reassembled and provisioned with different components (e.g., using Service Com-
ponent Architecture [Marino and Rowley 2010]). Similarly, a web service orchestrator
could be constructed to dynamically discover and access different service providers
(e.g., using a Business Process Execution Language (BPEL) engine). Runtime archi-
tectural changes like these tend to be security-relevant. For example, if a BPEL or-
chestrator switches a Partner Link from a non-responsive local service provider to an
alternative external provider, the new SOAP connection becomes an additional source
of vulnerability.

Therefore, as runtime system architectures become adaptive and dynamic, so must
their protection, as manual changes in security policies would simply be too slow and
too costly.

1.2. A Simple Motivating Example

Self-protection mechanisms for a software system can take many diverse forms. As an
example, let us suppose an intruder, through attempts such as phishing, has gained ac-
cess to an online banking system and starts to exfiltrate confidential user information.
A much-simplified architecture of the system is shown in Figure 1.

Suppose shortly after the intruder breaks into the system, his access gets denied
and he can no longer gain access. To achieve this effect, the system could have taken
any of the following different measures.

— The router’s intrusion detection capability detects this intrusion at the network level
and automatically disables the connection from the source IP address.
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— The firewall detects unusually large data transfer that exceeds the predefined policy
threshold and accordingly disables the HTTP connection.

— The ARchitecture Manager (ARM) monitors and protects the system by implement-
ing the Monitor, Analyze, Plan, Execute (MAPE) loop for self-adaptation [Kephart
and Chess 2003]. Upon sensing an unusual data retrieval pattern from the Windows
server, the ARM shuts down the server and redirects all requests to a backup server
accordingly.

— Alternatively, the ARM deploys and manages multiple application server instances
on the Windows machine. By comparing the behavior from all server instances (e.g.,
using a majority voting scheme), the ARM detects the anomaly from the compro-
mised application server instance and consequently shuts it down.

While the first two examples merely execute predetermined actions using a par-
ticular component, the latter two clearly exhibit self-adaptive and self-protecting be-
havior at the system level. As this article will show later, many other self-protecting
mechanisms are possible. How do these different approaches compare against one an-
other? Are some more effective than others? If so, under what conditions? To better
answer these questions, one must methodically evaluate the state of the art of the self-
protection approaches, architectures, and techniques, and assess how they address the
externally-driven and internally-driven security needs mentioned above.

This article seeks to take a step toward this goal by proposing a comprehensive
taxonomy for self-protecting systems. The next section starts with a survey of existing
taxonomies and classification schemes that are relevant.

1.3. Organization of This Article

The rest of this article is organized as follows. Section 2 provides a detailed definition
of the self-protection property, which serves to bound the scope of this survey. Section 3
lists the existing surveys that are directly or indirectly related to self-protection.
Section 4 summarizes the research method and underlying protocol of the survey while
leaving the process details to Appendix A. Section 5 surveys the existing taxonomies
and classification schemes related to system self-protection and adaptive security, be-
fore proposing a coherent and comprehensive taxonomy that builds on top of existing
taxonomies. Section 6 classifies current and past self-protection research initiatives
against the proposed taxonomy. We present the analysis on the survey results, offer-
ing observations on patterns, trends, gaps, and opportunities. Threats to validity of
the results are addressed in Section 7. Based on this analysis, Section 8 outlines a set
of recommendations for future self-protecting system research. Section 9 presents the
conclusions.

2. SELF-PROTECTION DEFINED

Before we delve into the study, it is important to establish a working definition of self-
protection property, given that our experience shows the term has been used rather
loosely in the literature. The goal of this definition is to clarify what we have considered
to be a self-protecting software system, which in turn has defined the scope of this
study. Our understanding of the self-protection property is consistent with that laid
out in FORMS [Weyns et al. 2012], a formal language for specifying the properties
and architectures of self-* (i.e., self-management, self-healing, self-configuration, and
self-protection) software systems. According to FORMS, a software system exhibiting a
self-* property is comprised of two subsystems: a meta-level subsystem concerned with
the self-* property that manages a base-level subsystem concerned with the domain
functionality.
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Fig. 2. Self-Protection in light of FORMS reference architecture.

Figure 2 shows what we consider to be a self-protecting software system in light of
FORMS’ concepts. The meta-level subsystem is part of the software that is responsi-
ble for protecting (i.e., securing) the base-level subsystem. The meta-level subsystem
would be organized in the form of feedback control loop, such as the MAPE-K archi-
tecture depicted in the figure [Kephart and Chess 2003]. One should not interpret this
reference architecture to mean that the base level subsystem is agnostic to security
concerns. In fact, the base-level subsystem may incorporate various security mecha-
nisms, such as authentication, encryption, etc. It is only that the decision of when and
how those security mechanisms are employed that rests with the meta-level subsys-
tem. In the case of the online banking system introduced in Section 1.2, the banking
application logic corresponds to the base-level subsystem, while the logic used for de-
tecting an intruder and mitigating the threat through changes in the system corre-
sponds to the meta-level subsystem.

In addition to the intricate relationship between the meta-level and base-level sub-
systems, we make two additional observations. First, we underline the role of humans
in such systems. Security objectives often have to be specified by human stakeholders,
which are either the system’s users or engineers. As we will see in the remainder of
this paper, the objectives can take on many different forms (e.g., access control poli-
cies, anomaly thresholds). Second, we observe that for self-protection to be effective,
it needs to be able to observe the domain environment within which the software exe-
cutes. The domain environment is comprised of elements that could have an impact on
the base-level software, but are outside the realm of control exercised by the meta-level
subsystem. For instance, in the case of the online banking system, the domain could be
other banking systems, which could impact the security of the protected system, but
the meta-level subsystem has no control over them.

These concepts, although intuitive, have allowed us to define the scope of our study.
For instance, we were able to distinguish between an authentication algorithm that
periodically changes the key it uses for verifying the identities of users, and a system
that periodically changes the authentication algorithm it uses at runtime. The former
we classified to be an adaptive security algorithm, as the software used in provision-
ing security does not change, and therefore outside the scope of this article. While the
latter we classified to be a self-protecting software system, as it changes the software
elements used in provisioning security, and therefore within the scope of our study.
Though other reference frameworks exist (such as control theory-based DYNAMICO
[Villegas et al. 2013]), we will use the basic concepts introduced in this section through-
out the paper to illustrate the differences between the self-protection approaches
surveyed.
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3. RELATED SURVEYS

Because self-protection mechanisms fall into the intersection of self-adaptive systems
and software security, we have sought survey papers from both research domains.

First, even though the research field of self-adaptive and self-managing systems is a
fertile research ground with rapidly advancing state of the art [Cheng et al. 2009;
Lemos et al. 2013], little endeavor has been devoted to security as an adaptation
property. Nonetheless, a number of related surveys are worth noting. Villegas et al.
[2011] developed a control theory-based framework for surveying and evaluating
self-adaptive software systems, in which security is included as one of the observable
adaptation properties. None of their surveyed papers, however, covered security. A tax-
onomy of compositional adaptation [McKinley et al. 2004] focuses on composition as
a key paradigm for adaptation, and describes a taxonomy based on how, when, and
where software composition takes place. A related survey can be found in Sadjadi
[2003] with a stronger focus on adaptive middleware. Even though these two surveys
are not directly related to self-protection systems, our article draws certain taxonomy
attributes for our purposes. Salehie and Tahvildari [2009] presented a comprehensive
survey on self-adaptive software in general. It offers a taxonomy of self-adaptation
that covers a variety of dimensions, some of which are security-relevant such as adap-
tation layers (OS, middleware, etc.), realization approach (such as static vs. dynamic
decision making), and temporal characteristics (such as reactive vs. proactive adap-
tation). Even though many of these dimensions are relevant for self-protection, they
need to be further defined in the specific context of security before they become useful.
A comprehensive survey of self-healing systems [Psaier and Dustdar 2011] provides
a taxonomy of system failure classes (security being one of them) and catalogs self-
healing approaches such as architecture-based, agent-based, middleware-based, etc.
Albeit not security-focused, the paper identified approaches and techniques that over-
lap with the self-protection research especially around the security goal of availability,
as will be seen later in this article.

Across these surveys, the profound influence of the IBM Autonomic Computing
(AC) vision as presented in Kephart and Chess [2003] is clearly visible, specifically
around the adopted definitions of self-* properties and the MAPE-K (Monitor, Analyze,
Plan, Execute, and Knowledge) loop. A recent survey, for instance, further expanded
the MAPE-K concept with a “Degree of Autonomicity” dimension with four progres-
sive levels of maturity: Support, Core, Autonomous, and Autonomic [Huebscher and
McCann 2008].

Second, we have found quite a number of relevant surveys in the software security
domain. We recognize that computer security is a vast research domain, and that our
objective is not to advance the state of the art of security techniques but rather to
apply them to self-protecting systems. Consequently, we have limited our search to
high-level surveys and review papers from which we can draw useful attributes for
our self-protection taxonomy (described in Section 5). To that end, we have found good
sources that cover various security concepts.

— To have a better understanding of computer security threats and vulnerabilities, we
turned to Igure and Williams [2008], which provides a state-of-the-art “taxonomy of
taxonomies” on types of attacks (general attacks, intrusion detection system (IDS)
signatures and anomalies, Denial of Service (DoS) related attacks, web attacks and
other specialized taxonomies) and vulnerabilities (software flaws, network vulnera-
bilities). Similarly, Swiderski and Snyder [2004] presented Microsoft’s threat model
which classifies attacks along the STRIDE model (spoofing, tampering, repudiation,
information disclosure, DoS, and elevation of privilege). A different attack taxonomy
was introduced in Bijani and Robertson [2012], which defined high-level categories,
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including Disclosure, Modification, DoS, and Fake Identity. The same paper also
organized the countermeasures in terms of detection techniques (peer monitoring,
information monitoring, policy monitoring, activity monitoring, and attack model-
ing) and prevention approaches (encryption, access control policies, behavior poli-
cies, agent-oriented software engineering, and language-based security). Other
related threat taxonomies include the top 25 software vulnerabilities [MITRE 2011]
and dependability threats and failure types [Avižienis et al. 2004] that are a super-
set of security threats and failures.

— In addition to understanding the attacks, it is equally important to understand the
objectives we would like to achieve when it comes to software self-protection. A com-
mon “CIA” model from the security community defines Confidentiality, Integrity,
and Availability as the main security objectives for information systems, as used in
Perrin [2008], Hafiz et al. [2007], and Cavalcante et al. [2012].

— Software systems use a variety of techniques to mitigate security threats to achieve
the CIA objectives. In addition to those countermeasures catalogued in Bijani and
Robertson [2012], Sundaram [1996] provided a good introduction and categoriza-
tion on intrusion detection techniques, an important research area related to self-
protection. Kumar et al. [2010] provided a good survey of Artificial Intelligence (AI)
techniques for intrusion detection.

— A number of surveys focused on organizing and classifying security patterns. Konrad
et al. [2003], for example, uses metrics such as purpose (creational, structural, and
behavioral) and abstraction level (network, host, application). A similar effort [Hafiz
et al. 2007] proposed other ways to organize security patterns, many of which are
applicable to classifying self-protection approaches.

Even though these generic surveys on security attacks, objectives, techniques and
patterns are helpful, they do not specifically apply to software self-protection. Four
other surveys, however, offer more pertinent insight into how software systems adapt
to security threats: First, Elkhodary and Whittle [2007] provided a good survey on
adaptive security mechanisms. It builds on top of the taxonomy of computational
paradigms defined in Sadjadi [2003], and adds additional dimensions such as recon-
figuration scale and conflict handling. These dimensions are certainly applicable to
self-protection systems in general; however, this article’s focus is primarily on the
application layer. Second, Nguyen and Sood [2011] offered an up-to-date survey on
Intrusion Tolerant Systems (ITS), a class of self-protecting systems that focus on con-
tinued system operations even in the presence of intrusion attacks. ITS architectures
are often based on fault tolerance techniques. Some research efforts identified in this
article are also covered in our analysis in Section 6. As correctly pointed out by the au-
thors, these approaches are by no means mutually exclusive and may be used together.
Third, Stakhanova et al. [2007a] and Shameli-Sendi et al. [2012] surveyed a differ-
ent class of systems called Intrusion Response Systems (IRS) that focus on dynamic
response mechanisms once an intrusion has been detected. Both surveys proposed
an IRS taxonomy that included dimensions such as adjustment ability (adaptive vs.
nonadaptive), response selection (static, dynamic, or cost-sensitive), and response type
(proactive vs. reactive), which overlap to some extent with our self-protection taxon-
omy. Cost-sensitive response selection, in particular, corroborated with a similar trend
we have identified in our survey.

Even though ITS and IRS have moved beyond traditional static and human-driven
security mechanisms, they are still intrusion-centric and perimeter based and as such
do not yet constitute true self-protection. In fact, none of the four surveys focused
specifically on self-protection research in the AC context. Nor did any of them follow
the systematic literature review methodology.
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�

�

�

�

�

�

�

�

17:8 E. Yuan et al.

4. RESEARCH METHOD

This survey follows the general guidelines for systematic literature review (SLR) pro-
cess proposed by Kitchenham [2004]. We have also taken into account the lessons from
Brereton et al. [2007] on applying SLR to the software engineering domain. The pro-
cess includes three main phases: planning, conducting, and reporting the review. Based
on the guidelines, we have formulated the following research questions, which serve
as the basis for the systematic literature review.

— RQ1: How can existing research on self-protecting software systems be classified?
— RQ2: What is the current state of self-protection research with respect to this clas-

sification?
— RQ3: What patterns, gaps, and challenges could be inferred from the current re-

search efforts that will inform future research?

We have detailed our review process in Appendix A, including the methodology and
tasks that we used to answer the research questions (Section A.1) and the detailed
SLR protocol including key words, sources, and selection criteria (Section A.2). As a
result, we have included 107 papers published from 1991 to 2013, out of the total of
over 1037 papers found.

No survey can be entirely comprehensive. Our keywords-based search protocol re-
stricts us to papers that explicitly address the self-protection topic while potentially
leaving out relevant papers under different terms. Section 7 lists some of the interest-
ing areas that are not in the scope of the survey.

5. TAXONOMY

To define a self-protection taxonomy for RQ1, we started with selecting suitable di-
mensions and properties found in existing surveys. The aforementioned taxonomies
described in Section 3, though relevant and useful, are not sufficiently specific and
systematic enough for classifying self-protection approaches in that they either focus
on adaptive systems in general, but not specifically on security, or focus on software
security in general, but not on autonomic and adaptive security. Many focus on only
certain architectural layers of software systems (such as middleware). Even when a
taxonomy dimension is appropriate for our purposes here, it is oftentimes too generic
(e.g., open vs. closed) and need to be further qualified in the self-protection context.

Furthermore, many of the taxonomies and classification schemes lean heavily to-
wards implementation tactics and techniques (such as those for implementation pat-
terns) but perhaps fall short on covering architectural strategies or styles (though
some exceptions do exist, such as Nguyen and Sood [2011]).

For such reasons, we have defined our own taxonomy to help classify existing self-
protection and adaptive security research. The proposed taxonomy builds upon ex-
isting work surveyed in Section 3, and is a refinement and substantial extension of
what we proposed in earlier work [Yuan and Malek 2012]. It consists of 14 dimen-
sions that fall into three groups: Approach Positioning, Approach Characterization,
and Approach Quality. They are defined and illustrated in Figure 3 and Figure 4, and
explained in the following sections.

5.1. Approach Positioning

The first part of the taxonomy, Approach Positioning, helps characterize the “WHAT”
aspects, that is, the objectives and intent of self-protection research. It includes five
dimensions, as depicted in the left part of Figure 3.

(T1) Self-Protection Levels. This dimension classifies self-protection research based
on the level of sophistication of its meta-level subsystem (as defined in Section 2).
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Fig. 3. Proposed taxonomy for self-protection.

“Monitor & Detect” is the most basic level, indicating the protecting subsystem is
equipped with the capability to constantly monitor for security threats and detect
anomalous or harmful activities from normal system operations. The next level is
“Respond & Protect”, which indicates the subsystem’s ability to take action against
the detected attack or anomaly. This implies the protecting subsystem can, ideally in
an autonomous fashion, (a) characterize and understand the nature/type of the at-
tacks, and (b) deploy the proper countermeasures to mitigate the security threat and
maintain normal system operations to the extent possible – a property often called
“graceful degradation”. The third level, “Plan & Prevent”, represents the highest level
of sophistication; a security approach reaching this level allows a system to adapt and
strengthen its security posture based on past events so that known security faults are
prevented. We illustrate this dimension using the motivating example of Section 1.2.

— The online banking system is at the Monitor & Detect level if it is equipped with
a network based IDS device connected to the router, which can detect an intrusion
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Fig. 4. Taxonomy for self-protection.

attempt based on known attack signatures (such as a DoS attack to the banking
server), and generate an appropriate alert to the ARM, which acts as the “meta-
level subsystem” for self-protection;

— The system is at the Respond & Protect level if, in addition to the previous level,
the ARM component responds to the router alert and changes the firewall policy to
block all traffic from the source domain;

— The system is at the Plan & Prevent level if, in addition to the previous level, the
ARM also reviews the history of such attacks and moves the web server to a different
IP address, so that future DoS attacks are rendered ineffective.

The three levels are consistent with (and in fact inspired by) Kramer and Magee’s
[2007] three-level reference architecture for self-managed systems. It is easy to see
the mapping from the self-protection levels to Component Management, Change Man-
agement, and Goal Management, respectively. It may also be envisioned that each
self-protection level may have its own MAPE-K loop; therefore this dimension is not in
conflict with the IBM reference architecture.

(T2) Depths-of-Defense Layers. This dimension captures the renowned security prin-
ciple of Defense in Depth, which simply acknowledges the fact that no single security
countermeasure is perfectly effective and multiple layers of security protections should
be placed throughout the system. For self-protecting systems, the following defensive
layers are possible, starting with the outmost layer (please see Section 6.1 for examples
of security countermeasures at each layer).

— Network. Focuses on communication links, networking protocols, and data packets.
— Host. Involves the host environment on a machine, involving hardware/firmware,

OS, and in some occasions hypervisors that support virtual machines.
— Middleware. With the prevalence of component-based and service-oriented sys-

tems, use of middleware such as application servers (e.g., JEE), object brokers (e.g.,
CORBA) and service buses (e.g., JBoss ESB) are becoming a common practice and
as such may be used as an additional layer of defense.
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— Applications. As the last line of defense, application level security is usually con-
cerned with programming language security and application-specific measures.

— Depth-Independent. This fifth layer is a special value to indicate any self-protection
research that is not specific to any architecture layers. One example may be an ap-
proach that addresses self-protection in terms of software architecture abstractions
such as software components, connectors, configurations, and architecture styles. A
software architecture-based approach enjoys many benefits such as generality, ab-
straction, and potential for scalability, as pointed out by Kramer and Magee [2007].

The counter-intrusion example given earlier for dimension T1 is clearly a network
layer defense. The online banking system can also choose to have a host-level defense
such as a periodic patching mechanism to install OS patches that remediate Windows
OS vulnerabilities, a middleware level defense that configures a cluster of redundant
application servers under a Byzantine agreement protocol (as described by Castro and
Liskov [2002]), and an application-level defense where the ARM component dynam-
ically directs the web-based banking application to adopt different levels of security
policies.

(T3) Protection Goals. This dimension classifies research approaches according to
the security goal(s) they intend to achieve. Here we follow the traditional CIA model
for its simplicity:

— Confidentiality protects against illegal access, spoofing, impersonation, etc.
— Integrity protects against system tampering, hijacking, defacing, and subversion.
— Availability protects against degradation or denial of service.

Other goals such as Accountability, Authenticity, and Non-Repudiation may also be
considered as implicit subgoals that fit under this model.

In some cases, a security countermeasure may help meet multiple protection goals.
Suppose in the online banking example, the banking application is compiled using
the StackGuard compiler [Cowan et al. 1998] to safeguard against buffer overflow at-
tacks. This technique stops the intruder from obtaining user financial data stored in
memory (confidentiality) and from illegally gaining control of the banking application
(integrity) through buffer overflows. Note that in this case the technique does not help
with the availability goal; we will return to this point later in this article.

(T4) Lifecycle Focus. This dimension indicates what part of the software development
lifecycle (SDLC) a self-protection approach is concerned with. For the purposes of this
article we simply use two phases, Development Time and Runtime, with the former
encompassing also the design, testing, and deployment activities. Security at runtime
is undoubtedly the primary concern of self-protection. Nonetheless, from the software
engineering viewpoint it is also necessary to take into account how to better design,
develop, test, and deploy software systems for self-protection.

As a concrete example, suppose all runtime system auditing data is made avail-
able to the development team of the online banking system. By feeding data into the
automated testing process, the team can make sure all new code is regression-tested
against previously known vulnerabilities, or use the system logs to train the meta-level
self-protection mechanisms.

(T5) Meta-Level Separation. This dimension indicates how Separation of Concerns
as an architectural principle is applied in a self-protection approach. Specifically, the
FORMS reference architecture [Weyns et al. 2012] calls for the separation between
the meta-level subsystem and the base-level subsystem, logically and/or physically.
The degree of separation is useful as a telltale sign of the degree of autonomicity of
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the system. In the security context, it also takes on an added significance, as the meta-
level self-protection logic often becomes a high value target for the adversary and thus
needs special fortification. Three values are used here – No Separation, Partial Separa-
tion, and Complete Separation. Continuing with the online banking system example,
complete separation of security concerns is achieved when all self-protection logic is
contained in the ARM component as illustrated in Figure 1, and the component (along
with communication channels to/from it) is deployed in dedicated, trusted hardware.
On the other hand, if the ARM runs in the same application server as the banking
application itself, or the security policy decisions are embedded in the banking appli-
cation code, the degree of separation is low.

5.2. Approach Characterization

The second group of the taxonomy dimensions are concerned with classifying the
“HOW” aspects of self-protection research. It includes five dimensions shown in the
right half of Figure 3.

(T6) Theoretical Foundation. As a self-protecting software system takes autonomic
and adaptive actions against malicious attacks, it often needs to consider many factors
from the runtime environment and choose the optimal or near-optimal course of action
out of a vast problem space. The theoretical foundation of the approach, as captured
in this dimension, is therefore critical and deserves close examination. The following
subcategories are defined.

— Logic/formal models, which involve logic or other mathematically-based techniques
for defining security related properties, as well as the implementation and verifica-
tion of these properties. The design of the online banking system, for example, may
include security policies formulated by finite state automata (such as those defined
in Schneider [2003]), and formal proof of policy enforceability;

— Heuristics-based, which include knowledge-based, policy-based, or rule-based mod-
els whose parameters may change at runtime. For example, the online banking sys-
tem may implement a policy that disables a user account when suspicious fund
withdrawal patterns arise. In this case, these patterns are based on heuristic rules
such as a maximum daily withdrawal threshold. The system may further lower or
increase the threshold according to security threat levels;

— Optimization, which employs analytical techniques that model security-related sys-
tem behavior through quantitative metrics that is used to select the optimal adapta-
tion strategy. For example, the banking system may use a utility function to model
a user’s preference between convenience/user-friendliness and strengths of protec-
tion, and set security policies accordingly (e.g., username/password vs. multifactor
authentication);

— Learning-based models, including a rich variety of techniques that use historical or
simulated data sets to train the system’s autonomic defences. The learning process
could be based on cognitive, data mining, stochastic/probabilistic models, etc. The
banking system’s router, for instance, may use a neural net algorithm to differenti-
ate intrusions from normal network behavior [Kumar et al. 2010].

Note that these models are not meant to be mutually exclusive. In fact, as we will
see in the survey results, many approaches leverage more than one model.

(T7) Meta-Level Decision-Making. This dimension attempts to further character-
ize self-protection research by examining its decision-making strategy and “thought
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process”. Here we adopt the following rather coarsely grained values (again, illustrated
using the online banking system example).

— Single strategy is the simplest approach with a single objective, a single decision
model, or a single type of attacks/vulnerabilities in mind (many examples given ear-
lier fall into this category).

— Multistrategy involves multiple levels of decisions, metrics, and tactics. For instance,
consider a situation in which the banking system deploys two intrusion detection
sensors, one network-based and the other host-based on the application server. Sim-
ple intrusions such as port scanning and buffer overflows are deterred at the device
level, but the ARM component also correlates the network and host alerts to look for
higher-level attack sequences.

— Cost-sensitive modeling is a special case in which security decisions involve trade-
offs with other non-security related factors, such as costs or Quality of Service (QoS)
requirements. For example, under certain situations, the banking application may
not shut itself down to cope with a user account breach because many other legiti-
mate users will be impacted, resulting in big loss of revenue.

(T8) Control Topology. More often than not, modern software-intensive systems are
logically decomposed into separate self-contained components and physically deployed
in distributed and networked environments. Self-protection functionality, therefore,
needs to be implemented and coordinated among different components and machines.
This dimension looks at whether a self-protection approach focuses on controlling the
local (i.e., a single host or node) or global scale of the system. For those approaches
at the global scale, this dimension also specifies whether they use centralized or
decentralized coordination and planning. Under a centralized topology, system self-
protection is controlled by a single component that acts as the “brain”, whereas under
a decentralized topology, the nodes often “federate” with one another in a peer-to-peer
fashion without relying on a central node. In the online banking system, for instance,
self-protection is globally centralized if the ARM component is hosted on a dedicated
server that monitors, controls, and adapts security countermeasures on all other de-
vices and servers. Alternatively, if the banking system consists of multiple intercon-
nected servers (possibly at different locations) and each server hosts its own archi-
tecture manager component, the topology is globally decentralized. In a more trivial
situation, the topology would be “local only” if the self-protection technique is used
within a single server.

(T9) Response Timing. This dimension indicates when and how often self-protecting
actions are executed, which in turn is dependent on whether the approach is reactive
or proactive. In reactive mode, these actions occur in response to detected threats. In
proactive mode, they may occur according to a predefined schedule, with or without de-
tected threats. Some systems may include both modes. The security countermeasures
illustrated earlier using the online banking example, such as intrusion prevention or
controlling access to a user account, all fall into the reactive category. Alternatively,
the banking system could use software rejuvenation techniques (introduced by Huang
et al. [1995]) to periodically restart the web application instances to a pristine state,
to limit damage from undetected attacks.

(T10) Enforcement Locale. This dimension indicates where in the entire system self-
protection is enforced. Here we adopt a metric from [Hafiz et al. 2007] and define
the values as System Boundary or System Internal. In the former case, self-protection
is enforced at the outside perimeter of the system (such as firewalls, network de-
vices, or hosts accessible from external IP addresses). In the latter case, self-protection
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mechanisms cover internal system components. The distinction may be easily seen in
the online banking example: The router and the firewall represent the system bound-
ary that needs to be protected against intrusions, whereas the web application and
the middleware components represent system internals that may also be protected by
access control policies issued from the ARM component. Self-protection approaches
independent of enforcement locations are categorized as locale-neutral.

(T11) Self-Protection Patterns. This dimension indicates any recurring architectural
patterns that rise from the self-protection approaches. Many architecture and design
patterns exist, but as we can see in the next section several interesting patterns have
emerged in our research as being especially effective in establishing self-protecting
behavior. Here we simply mention them in two groupings and describe their details in
Section 6.7.

— Structural patterns use certain architectural layouts to situate, connect, and pos-
sibly reconnect system components to achieve better integrity, robustness, and
resiliency against attacks. These patterns include Protective Containment,
Agreement-based Redundancy, Implementation Diversity, Countermeasure Broker,
and Aspect-Orientation.

— Behavioral patterns seek to reconfigure and adapt the runtime behavior of exist-
ing system components and their connections without necessarily changing the
system architecture. These patterns include Protective Recomposition, Attack Con-
tainment, Software Rejuvenation, Reconfiguration on Reflex, and Artificial Immu-
nization.

Please note that these patterns are not mutually exclusive. It is conceivable that
a system may use a combination any number of them to provide more vigorous and
flexible self-protection behavior.

5.3. Approach Quality

The third and last section of the taxonomy is concerned with the evaluation of self-
protection research. Dimensions in this group, as depicted in Figure 4, provide the
means to assess the quality of research efforts included in the survey.

(T12) Validation Method. This dimension captures how a paper validates the effec-
tiveness of its proposed approach, such as empirical experimentation, formal proof,
computer simulation, or other methods. The selected sub-category for the validation
method is closely related to the selected subcategory for the theoretical foundation
(T6) of the proposed approach. When the approach is based on logic/formal methods,
validation is expected to be in the form of formal proof. Approaches that are based
on heuristics and optimization demand empirical validation. Finally, simulation is a
perfect fit for learning-based models.

(T13) Repeatability. This dimension captures how a third party may reproduce the
validation results from a surveyed paper. This dimension classifies repeatability of
research approaches using a simplified measure:

— High repeatability, when the approach’s underlying platform, tools and/or case stud-
ies are publicly available;

— Low repeatability, otherwise.

(T14) Applicability. A self-protection approach or technique, though effective, may
or may not be easily applied in a broader problem setting. Similar to repeatability, we
use a simple “low” vs. “high” measure:

ACM Transactions on Autonomous and Adaptive Systems, Vol. 8, No. 4, Article 17, Publication date: January 2014.



�

�

�

�

�

�

�

�

A Systematic Survey of Self-Protecting Software Systems 17:15

— Low applicability, when the approach is specific to a particular problem domain
(suppose the online banking system uses users’ income and spending patterns to
calculate their risk profile), is dependent upon a proprietary framework or imple-
mentation, or requires extensive infrastructure support that may not be generally
available;

— High applicability, otherwise.

6. SURVEY RESULTS AND ANALYSIS

A large number of research efforts related to self-protecting systems and adaptive se-
curity have been identified in this survey, and are then evaluated against the proposed
taxonomy. The detailed evaluation results are included in Appendix B.

Note that the classifications are meant to indicate the primary focus of a research
paper. For example, if a certain approach does not have a checkmark in the “Availabil-
ity” column under Protection Goals, it does not necessarily indicate that it absolutely
cannot help address availability issues. Rather, it simply means availability is not its
primary focus.

By using the proposed taxonomy as a consistent point of reference, many insightful
observations surface from the survey results. The number of the research papers sur-
veyed will not allow elaboration on each one of them in this paper. Rather, we highlight
some of them as examples in the observations and analysis below.

6.1. Correlating Self-Protection Levels and Depths of Defense

Starting with the Self-Protection Levels (T1) dimension, we see that abundant re-
search approaches focus on the “Monitor & Detect” level, such as detecting security-
relevant events and enforcing security policies that respond to these events. For
example, Spanoudakis et al. [2007] used Event Calculus to specify security monitor-
ing patterns for detecting breaches in confidentiality, integrity and availability. Liang
and Sekar [2005] used forensic analysis of victim server’s memory to generate attack
message signatures. At the “Respond & Protect” level, research efforts attempt to
characterize and understand the nature of security events and select the appropriate
countermeasures. For example, He et al. [2010b] used policy-aware OS kernels that
can dynamically change device protection levels. Taddeo and Ferrante [2009] used a
multi-attribute utility function to rank the suitability of cryptographic algorithms with
respect to the runtime environment and then used a knapsack problem solver to se-
lect optimal algorithm based on resource constraints. At the highest “Plan & Prevent”
level, research efforts are relatively speaking not as abundant; such efforts seek to
tackle the harder problem of planning for security adaptation to counter existing and
future threats. To that end, many approaches offer a higher degree of autonomicity.
Uribe and Cheung [2004], for instance, used a formal network description language
as the basis for modeling, reasoning, and auto-generating Network-based Intrusion
Detection System (NIDS) configurations. The Self-Architecting Software SYstems
(SASSY) framework, by contrast, achieves architecture regeneration through the
use of Quality of Service scenarios and service activity schemas [Malek et al. 2009;
Menasce et al. 2011].

Along the Depths-of-Defense Layers (T2) dimension, we see many self-adaptive se-
curity approaches focusing on the “traditional” architecture layers, such as network,
host, middleware and application code. At the network level, abundant research can be
found in the field of intrusion-detection and intrusion-prevention. Examples include Yu
et al. [2007, 2008] who used fuzzy reasoning for predicting network intrusions, and the
Wireless Self-Protection System (WSPS) [Fayssal et al. 2008] which uses both standard
and training based anomaly behavior analysis that can detect and deter wide range
of network attack types. Because network vulnerabilities are closely linked to the
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Fig. 5. Correlating self-protection levels and depths of defense.

network topology and equipment configurations, devoted research can also be found
on adapting network security policies based on such network characteristics [Burns
et al. 2001]. At the host/node level, antivirus and malware detection/prevention have
been receiving a lot of attention from the research community (a latest example on
adaptive rule-based malware detection can be found in Blount et al. [2011]).

When we shift our focus to defense at the middleware level, self-protection ap-
proaches start to focus and/or leverage distributed middleware platforms such as Java
Enterprise Edition or JEE (as in De Palma et al. [2012]), object request brokers (as in
Yau et al. [2006]), and message-oriented middleware (as in Abie et al. [2008] and Abie
[2009]). More importantly, researchers started to recognize the benefit of a robust mid-
dleware layer as an extra line of defense against host and application level attacks (as
seen in the QuO adaptive middleware example [Atighetchi et al. 2003, 2004]). More re-
cent research has started to focus on adaptive security for web services middleware in
a SOA. Such research can be found, for example, around service trust [Maximilien and
Singh 2004] and service-level assurance [Casola et al. 2008]. Research around the se-
curity behavior of a collection of services (such as a BPEL orchestration or a composite
service), however, seems to be lacking.

As we move up to the application level, self-adaptive security research is more con-
cerned with programming language level vulnerabilities such as those concerning
pointers, memory buffers, and program execution points. Lorenzoli et al. [2007], for
example, presented a technique, called From Failures to Vaccine (FFTV), which de-
tects faults using code-level assertions and then analyzes the application to identify
relevant programming points that can mitigate the failures.

Research seems to be sparse on the adaptation of the software architecture as a
whole in dealing with security concerns. Nonetheless, the “Depth-Independent” subcat-
egory in this dimension does capture some interesting and sophisticated approaches.
The RAINBOW [Cheng et al. 2006; Garlan et al. 2004] and SASSY frameworks are
two examples that fit into this category, even though they are not specifically focused
on self-protection alone. Additionally, work by Morin et al. [2010] and Mouelhi et al.
[2008] represent a key example of applying “models@runtime” thinking to security
adaptation, which can be applied to all architecture layers.

To take a further look at the research trends, we use Self-Protection Levels and
Depths of Defense as two crosscutting dimensions to map out the existing self-
protection research approaches, as shown in Figure 5. In the plot, the height of each
column represents the number of papers per each self-protection level and each line of
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defense. We clearly see that abundant research exist at the network and host levels
for attack detection and response, fueled by decades of research in such fields as
Intrusion Detection/Intrusion Prevention (ID/IP), Antivirus/Malware, and Mobile Ad-
hoc Networks (MANET) security. It becomes apparent, however, that existing research
start to “thin out” as we move up the two respective dimensions. Autonomic and
adaptive security approaches that apply to attack prediction and prevention, especially
at middleware, application, or abstract architecture levels, appear to be a research gap
to be filled.

6.2. Runtime vs. Development-Time

Along the Lifecycle Focus (T4) dimension, the vast majority of self-protection research
(96% to be exact) focuses on runtime. Indeed, it is a general consensus that software
components are never completely fault-free and vulnerability-free no matter how care-
fully they are designed and coded. Nonetheless, 18% of the papers also involve devel-
opment time activities. They generally fall under three cases.

— Runtime techniques that happen to need development time support. The FFTV ap-
proach [Lorenzoli et al. 2007], for instance, complements runtime healing/protection
strategies with design-time construction of “oracles” and analysis of relevant pro-
gram points, and also with test-time generation of reference data on successful exe-
cutions. In Hashii et al. [2000], the dynamically reconfigurable security policies for
mobile Java programs also rely on supporting mechanisms put in at deployment
time (such as policy class loaders).

— Programming language level protection approaches that focus primarily at devel-
opment time. They employ novel techniques such as fuzz testing [Abie et al. 2008],
whitebox “data perturbation” techniques that involve static analysis [Ghosh et al.
1998; Ghosh and Voas 1999], or software fault injection which merges security en-
forcement code with the target code at compile time [Erlingsson and Schneider
2000].

— Model-driven approaches that essentially blur the line between development time
and runtime. They achieve self-protection through incorporating security require-
ments into architecture and design models, and relying on Model-Driven Engineer-
ing (MDE) tool sets to instrument security related model changes at runtime. In ad-
dition to Morin et al. [2010], the Agent-oriented Model-Driven Architecture (AMDA)
effort [Xiao 2008; Xiao et al. 2007] also falls into this category. Such approaches may
hold some promise for future self-protection research, although empirical results so
far are far from convincing.

Because the philosophy, structure, and process through which software components
are constructed could have a significant impact on their quality of protection at run-
time, we believe that full lifecycle approaches combining development-time and run-
time techniques will result in the best self-protection of software systems – another
research opportunity.

6.3. Balancing the Protection Goals

Along the Protection Goals (T3) dimension, the survey results revealed that most re-
search efforts seem to focus on either Confidentiality and Integrity or Availability, but
not all three goals. As shown in the Venn diagram in Figure 6(a), a large portion of
the survey papers focus on Confidentiality (68%) and Integrity (81%), but only 40%
of the papers address availability, and even fewer (20%) deal with all three goals. The
dichotomy between confidentiality and availability objectives is not surprising: the for-
mer seeks mainly to protect the information within the system, but is not so much con-
cerned with keeping the system always available; the opposite is true for the latter. For
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Fig. 6. (a) Coverage of protection goals; (b) Meta-level separation.

example, when a host-based intrusion is detected, the typical system responses involve
stopping/restarting a service, rebooting the server, disable user logins, etc. [Strasburg
et al. 2009] – system confidentiality and integrity are preserved, whereas availability
suffers.

Preserving system availability, on the other hand, goes beyond the security realm
and is closely related to system QoS, thus requiring different treatments. Intrusion
Tolerant Systems (e.g., Sousa et al. [2007] and Reiser and Kapitza [2007b]) address
availability especially well by leveraging fault tolerance mechanisms, though they tend
to focus on the network and host levels rather than taking a broader architectural
approach.

This observation, though a bit subtle, shows that a selfprotecting system may need
to include a “best of breed” combination of adaptive security techniques rather than
relying on a single mechanism, to meet all protection goals.

6.4. Separation of Meta-Level and Base-Level Subsystems

As introduced in Section 5.1, the Meta-level Separation dimension (T5) intends to show
self-protection research separates the meta-level (“protecting”) components from the
base-level (“protected”) components. The survey results summarized in Figure 6(b) in-
dicate that self-protection architectures from 83% of the papers show at least partial
separation, which serves as strong evidence that the meta-level separation proposed
in Section 2 has been indeed widely practiced in the research community. Instantia-
tions of the meta-level subsystem take on many interesting forms among the surveyed
papers, such as managerial nodes [Abie 2009], Security Manager [Ben Mahmoud et al.
2010], guardians [Montangero and Semini 2004], Out-of-Band (OOB) server [Reynolds
et al. 2002], or control centers [Portokalidis and Bos 2007]. Those approaches that have
been put under “partial separation” either rely on certain enforcement mechanisms
that are an intrinsic part of the base-level subsystem (e.g., through library interposi-
tion with the protected application [Liang and Sekar 2005]), or do not provide a clear
architecture that depicts the separation boundary.

The remaining 17% of papers that do not exhibit meta-level separation deserve spe-
cial attention. Closer examination reveals two contributing factors are the primary
“culprits”, with the first having to do with the domain environment and the second
pertaining to the nature of the research technique. First, for MANETs, wireless sensor
networks, or agent-based networks of a self-organizing nature, because no central con-
trol typically exists within the system, self-protecting mechanisms would have to be
implemented within each network node or agent. This is the case with Adnane et al.
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Fig. 7. (a) Theoretical foundation (b) Meta-level decision-making.

[2008], Alampalayam and Kumar [2003], Chigan et al. [2005], and Jean et al. [2007].
It is no coincidence that these papers also fall into the “Global – Decentralized” sub-
category of the “Control Topology” dimension (T8); see Section 6.6 for more details.
Since each node/agent is just as susceptible to attack and subversion as any other
node/agent, protecting the security mechanism itself becomes a real challenge. Costa
et al. [2008] used a mechanism called Self-Certifying Alerts (SCA) that are broadcasted
over an overlay network to overcome this problem, but the challenge of “protecting the
meta-level” in a globally decentralized topology is largely unanswered in the surveyed
papers.

The second contributing factor arises from those approaches that use code gener-
ation and code injection techniques at the application level, because the protection
mechanism becomes part of the codebase, meta-level separation is obviously lacking. It
is quite revealing that most of the papers cited in Section 6.2 as having a development
time focus – such as FFTV [Lorenzoli et al. 2007], SASI [Erlingsson and Schneider
2000], and AMDA [Xiao et al. 2007] – belong to this case! Here, we see another research
challenge, that is, to find ways to employ valuable techniques (e.g., programming lan-
guage analysis and model-driven engineering) while staying true to the self-protection
reference architecture with clear meta-level vs. base-level separation.

6.5. Foundations and Strategies for Self-Protection Decision-Making

When it comes to the “HOW” part of the taxonomy, we see the surveyed papers em-
ploy a large variety of models, schemes, algorithms, and processes. First of all, a sim-
ple analysis along the Theoretical Foundation dimension (T6) shows a predominant
use of heuristics-based methods, as shown in Figure 7(a), in such forms as expert
systems [Neumann and Porras 1999; Porras and Neumann 1997], policy specifica-
tion languages [Burns et al. 2001], event-condition-action rules [English et al. 2006],
directed graphs [Balepin et al. 2003], genetic/evolutionary algorithms [Raissi 2006],
structured decision analysis (such as Analytic Hierarchy Process or AHP, as in [Ben
Mahmoud et al. 2010]), or human input as a last resort [White et al. 1999]. Even when
nonheuristics-based methods are used, whether it is using formal semantics [Dragoni
et al. 2009] or utility function based optimization [Taddeo and Ferrante 2009] or
stochastic modeling [Sousa et al. 2006], they are more often than not complemented
by heuristics. Our analysis along this dimension has revealed the following insights.

— Given the multitude of decision factors such as objectives, system properties, re-
source constraints and domain-specific environment characteristics, the problem
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space for self-protection decision making is usually too large for classic problem
solving methods (though they may still prove effective in solving a small, narrowly
focused subproblem, such as formalisms and proofs around software rejuvenation
[Ostrovsky and Yung 1991] or reinforcement-based learning for malware detection
[Blount et al. 2011]);

— Because the entire system is at stake with regard to self-adaptive security deci-
sions, a wrong move may lead to severe consequences. As such, few approaches in
this survey leave such decisions (such as threat containment or deploying counter-
measures) solely to an algorithm without any heuristic input. Indeed, as pointed out
in a number of papers [Al-Nashif et al. 2008; Crosbie and Spafford 1995], autonomic
responses often require near 100% accuracy in threat detection and characterization
(i.e., the rate of false positives at near zero). Many papers went to great lengths to
analyse and reduce the rate of false positives while maintaining a high detection
rate (i.e., low false negatives), with varying results.

— The lack of nonheuristics-based methods may also be explained by the daunting
challenge of quantitatively assessing the overall security posture of a complex soft-
ware system. Several papers proposed various metrics as attempts to this goal –
the Security Health Index comprised of a weighted basket of security metrics from
Savola and Heinonen [2010] and the Compromise Confidence Index as a measure to
pinpoint attack location from Foo et al. [2005a] are representative examples. Empir-
ical validation of these metrics, however, is far from sufficient and convincing from
the surveyed papers. This is definitely a pressing research need, especially in today’s
heated domain of cyber warfare.

The meta-level decision-making dimension (T7) of our taxonomy offers an even more
interesting perspective on self-protection decision making. From Figure 7(b), we can
see two important opportunities in self-protection research.

From Single-Strategy to Multi-Strategy. Some researchers have come to the realiza-
tion that a single technique or a point solution is no longer enough to match the ever-
increasing sophistication of today’s cyberattacks, as described in Section 1.1. Rather,
self-protecting systems should be able to (1) detect higher-level attack patterns and
sequences from low-level events, (2) have an arsenal of countermeasures and response
mechanisms that can be selectively activated depending on the type of attack, and
(3) have a concerted strategy to guide the selection and execution of the responses at
multiple defense depths and resolve conflicts if necessary. A number of research pa-
pers have started down this path. The APOD initiative [Atighetchi et al. 2003, 2004],
for example, uses higher level strategies (e.g., attack containment, continuous unpre-
dictable changes, etc.) to derive/direct lower-level substrategies and local tactics in
responding to attacks. Similarly, the AVPS approach [Sibai and Menasce 2011, 2012]
generates signatures (low-level rules) based on high-level rules; Tang and Yu [2008]
showed that high-level goal management can optimize the lower level policy execution
at the network security level. This is an encouraging trend, although the survey shows
the multistrategy-based papers are still a minority (at 33%).

From Security-at-Any-Cost to Cost-Sensitive Protection. Though earlier attempts ex-
ist in quantifying the cost of intrusion detection and prevention (such as Lee et al.
[2002]), an increasing number of recent research papers start to consciously balance
the cost (i.e., penalization of other quality attributes) and benefits of autonomic re-
sponses to security attacks. Stakhanova et al. [2007b] and Strasburg et al. [2009],
for example, defined a set of cost metrics and performed quantitative tradeoff anal-
yses between cost of response and cost of damage, and between the importance of
early pre-emptive responses (when there is a high cost of missed or late detections)
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vs. the importance of detection accuracy (when there is a high cost of false positives).
Similarly, Nagarajan et al. [2011] developed cost models involving operational costs,
damage costs, and response costs, and implemented the model using Receiver Operat-
ing Characteristic (ROC) curves. At 23%, the cost-sensitive strategies are a minority
but we believe they represent a promising and sensible direction for self-protection
research, especially in the larger picture of self-* systems.

6.6. Spatial and Temporal Characteristics

Together, the three taxonomy dimensions Control Topology (T8), Response Timing
(T9), and Enforcement Locale (T10) expose interesting characteristics and trends
about the spatial and temporal aspects of self-protection approaches – that is, where
the “brain” of the self-protection is within the system and where the “action” takes
place, as well as when the adaptive actions are carried out.

First, as shown in Figure 8, survey results along the Control Topology dimension
clearly shows that adaptive security approaches functioning at the global level are
predominantly centralized – about 57% of the papers. For example, many research
efforts (e.g., He et al. [2010a] and Abie et al. [2008]) recognize the need for coordi-
nation between local and global security policies. In most cases, the coordination is
through a central controller (e.g., Huang et al. [2006]). One of the main reasons be-
hind widespread adoption of centralized topology may be the fact that using a central
controller makes coordination and global optimization easier. However, central con-
troller runs the risk of becoming the single point of failure of the system, prone to
denial of service and subversion attacks. Some approaches put more robust protection
around the central controller, such as using hardened and trusted hardware/software
(as in the case of the Malicious-and Accidental-Fault Tolerance for Internet Applica-
tions (MAFTIA) system [Verissimo et al. 2006]) or putting the controller in dedicated
network zones [Chong et al. 2005]. Another potential disadvantage for the centralized
approach is scalability. For pervasive systems with highly distributed computing re-
sources, it may be inefficient and costly to have all of the resources communicate with
a central controller. Accounting for only 8% of the total papers, globally decentralized
approaches appear to be an exception rather than norm. As pointed out in Section 6.4,
self-protection efforts from the MANET and self-organizing agent domains tend to
fall into this category because the system topology does not allow for a centralized
component. The decentralized control topology is not limited to these domain environ-
ments however. MAFTIA, for example, also uses local middleware controllers (called
“wormholes”) at each server that are interconnected yet do not appear to require a cen-
tral controller. Decentralized security approaches hold more promise in their resilience
and scalability. The fact that coordination and global optimization is harder in a decen-
tralized setting indicates the need for more research attention. Indeed, decentralized
control has been highlighted as a key research topic on the roadmap of self-adaptive
systems [Lemos et al. 2013].

Secondly, survey results along the Response Timing dimension indicate reactive
adaptation based on the “sense and respond” paradigm still seems to be the norm
for self-protection (79% of total papers). That being said, the survey results also show
an interesting trend that proactive security architectures are gaining ground in the
past decade, with 21% of papers claiming some proactive tactics. By proactively “re-
viving” the system to its “known good” state, one can limit the damage of undetected
attacks, though with a cost. The TALENT system [Okhravi et al. 2010, 2012], for ex-
ample, addresses software security and survivability using a “cyber moving target”
approach, which proactively migrates running applications across different platforms
on a periodic basis while preserving application state. The Self-Cleansing Intrusion
Tolerance (SCIT) architecture [Nagarajan et al. 2011] uses redundant and diverse
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Fig. 8. Temporal and spatial characteristics.

servers to periodically “self-cleanse” the system to pristine state. The aforementioned
R-Xen framework [Jansen et al. 2008] proactively instantiates new VM instances to
ensure system reliability, a technique much faster than rebooting hardware servers
thanks to hypervisor-based virtualization technology.

Third, the Enforcement Locale dimension shows that over 52% of self-protection ap-
proaches still rely on perimeter security, especially those that focus on intrusion detec-
tion and intrusion prevention. Systems relying solely on perimeter security, however,
are often rendered helpless when the perimeter is breached; nor can they effectively
deal with threats that originate from inside of the system. To compensate for this
weakness, some approaches follow the “defense-in-depth” principle and establish mul-
tiple layers of perimeters or security zones [Pal et al. 2007], but the disadvantage still
exists. In light of this, we feel there is a need to shift focus from perimeter security
to overall system protection, especially from monitoring the system boundary to mon-
itoring overall system behavior. For example, recent research has started to focus on
detecting and responding to insider threats based on monitoring user-system interac-
tions [Sibai and Menasce 2011, 2012]. Another possible approach is to shift the focus
from delimiting system boundaries to identifying system assets under protection, as
developed by Salehie et al. [2012] and Pasquale et al. [2012].

Figure 8 summarizes the statistics around the spatial and temporal traits of sur-
veyed approaches, highlighting the research gaps around (1) global self-protection
architectures that do not require a central controller, (2) combining reactive protec-
tion tactics with proactive ones, and (3) protecting the overall system and not just the
perimeter.

6.7. Repeatable Patterns and Tactics for Self-Protection

One of the most revealing findings from our survey is the emergence of repeatable
architectural patterns and design tactics that software systems employ specifically for
self-protection purposes (T11 of the taxonomy). Even though some of these patterns
bear similarity to the generic software architecture and design patterns, their usage
and semantics are quite different. As mentioned in Section 5.2, they can be loosely
categorized as structural and behavioral patterns. Their description, examples, and
perceived pros/cons are summarized in Table I.

These patterns cover 84% of the surveyed papers; therefore, their use is quite per-
vasive. Note that the patterns are by no means mutually exclusive. A system may
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Table I. Catalog of Self-Protection Patterns

Pattern Definition Examples Evaluation
Structural Patterns

Protective Wrapper—Place
a security enforcement
proxy, wrapper, or
container around the
protected resource, so that
request to/response from
the resource may be
monitored and sanitized in
a manner transparent to
the resource.

The SITAR system [Wang et al. 2003]
protects COTS servers by deploying an
adaptive proxy server in the front, which
detects and reacts to intrusions. Invalid
requests trigger reconfiguration of the
COTS server. Virtualization techniques
are increasingly being used as an
effective protective wrapper platform.
VASP [Zhu et al. 2011], for example,
is a hypervisor-based monitor that
provides a trusted execution
environment to monitor various
malicious behaviors in the OS.

Pros—Security adaptation is
transparent to the protected
resource; easy to implement.
Cons—Since the wrapper is
inherently intended for
outside threats, this pattern
cannot address security
vulnerabilities inside the
protected component. The
wrapper, esp. when
externally visible, may itself
become an exploitation
target.

Agreement-based
Redundancy—In addition
to reliability and
availability benefits
provided by the common
redundancy mechanism,
this pattern uses
agreement-based protocols
among the replicas to
detect anomalies and
ensure correct-ness of
results.

The seminal work by Castro and Liskov
[2002] described a Byzantine Fault
Tolerance (BFT) algorithm that can
effectively tolerate f faulty nodes with 3f
replicas. Similar agreement-based voting
protocols have been used in many other
systems such as SITAR and [Valdes et al.
2004]. The Ripley system [Vikram et al.
2009] implements a special kind of
agreement based technique by executing
a “known good” replica of a client-side
program on the server side.

Pros—Robust mechanism
that can meet both system
integrity and availability
goals; effective against
unknown attacks.
Cons—Due to required
number of replicas, needs
significant hardware and
software investments, which
can be costly. Further, by
compromising enough
replicas, the system will
be essentially shut down,
resulting in denial of service.

Implementation
Diversity—Deploy
different implementations
for the same software
specification, in the hope
that attacks to one impl.
may not affect others. This
may be achieved through
the use of diverse prog.
languages, OS, or H/W
platforms. To safely switch
requests from one instance
to another, checkpointing
is necessary to save the
current system state.

The HACQIT system [Reynolds et al.
2002, 2003] achieves diversity by using
two software components with identical
functional specifications (such as a
Microsoft IIS web server and an Apache
web server) for error detection and
failure recovery. Similarly, the DPASA
system [Chong et al. 2005; Pal et al.
2007] included controlled use of
hardware and OS level diversity among
redundant environments as part of a
comprehensive survivable architecture.
A similar approach is dubbed
Architecture Hybridization in the
MAFTIA system [Verissimo et al. 2006].

Pros—Effective defense
against attacks based on
platform-specific
vulnerabilities. Increases
system resilience since an
exploited weakness in one
impl. is less likely to kill the
entire system.
Cons—Significant efforts
required to develop, test, and
deploy diverse program
implementations. Diverse
languages/platforms may
give rise to more software
defects. Further, checkpoint-
ing to preserve program state
at runtime may prove
technically challenging.

Countermeasure Broker—
The self-protecting system
includes a brokering
function that, based on the
type of an attack, performs
dynamic matching or
tradeoff analysis to select
the most appropriate
response or countermea-
sure, often from a
predefined repository.

Case-based Reasoning (CBR) techniques
are sometimes used to detect intrusions
and select responses. The SoSMART
system [Musman and Flesher 2000]
describes an agent-based approach
where the CBR “brain” picks the suitable
response agent. Alternatively, the
ADEPTS effort [Foo et al. 2005a;
Wu et al. 2007] uses attack graphs to
identify possible attack targets and
consequently suitable responses.

Pros—Flexibility and
dynamic nature of the
response, when implemented
correctly, makes it harder
for an adversary to predict
and exploit the security
defense.
Cons—Not effective
against unknown attacks.
Static, “knee-jerk” like
responses are likely to be
predictable, thus lose
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Table I. Catalog of Self-Protection Patterns

Pattern Definition Examples Evaluation
effectiveness in the long run.
The broker component may
become a high value target
for adversaries.

Aspect-Orientation—
Following the Aspect
Oriented Programming
(AOP) principle, this
pattern deploys self-
protection mechanisms as
a separate aspect in the
system, transparent to
application logic. This
pattern is often assisted by
Model Driven Engineering
(MDE) techniques, as
mentioned in Section 6.2.

Morin et al. [2010], for example, showed
how a security access control metamodel
is defined and combined with the
business architecture metamodel; the
security aspect is “woven” into the
overall model using MDE tools such
as the Kermata language. A related
effort [Mouelhi et al. 2008] shows how
the security policies from the model are
generated in XACML and integrated into
the application using AOP. Xiao et al.
[2007] and Xiao [2008] also used a
similar model driven approach to model
security policy rules and dynamically
weave them into the runtime
application in an agent-based
environment.

Pros—Bringing AOP benefits
to self-protection, such as
reuse, separation of concerns,
and improved application
quality. Assisted with MDE
techniques, it also provides a
way of expressing security
policies as models.
Cons—It is not yet known if
self-protection as a cross-
cutting concern can be
adequately expressed in
today’s modeling languages
and tools. Weaving in the
security aspect into the very
application it is protecting
makes security logic just as
vulnerable.

Behavioral Patterns
Protective Recomposition—
Dynamically adapt
security behavior of a
system through altering
how security-enforcing
components are connected
and orchestrated. This
may include tuning of
security parameters,
changing authentication/
authorization methods,
switching to a different
crypto algorithm, or
regeneration of access
control policies.

The E2R Autonomic Security Framework
[He and Lacoste 2008a; Saxena et al.
2007], for example, allows nodes in a
wireless network to collect and derive
security context information from
neighboring nodes and reorganize upon
node failures. Other examples include
changes in contract negotiations between
security components [Feiertag et al.
2000], altered security service sequences
based on QoS objective changes [Malek
et al. 2009], or regenerating new concrete
policy instances from a generic policy
based on dynamic security context
[Debar et al. 2007].

Pros—A key pattern that
touches the very essence of
self-adaptive security: the
ability to adapt security
posture based on changing
threats and real time
security contexts. Makes
the system more defendable
and harder to exploit.
Cons—Dynamic and
sometimes even
non-deterministic security
behavior is difficult to test
and even harder to evaluate
its correctness and
effectiveness.

Attack Containment—A
simple pattern that seeks
to isolate a compromised
component from the rest of
the system to minimize the
damage. Typical
techniques include
blocking access, denying
request, deactivating user
logins, and shutting down
the system component.

De Palma et al. [2012] developed an
approach for clustered distributed
systems that involves isolating a
compromised machine from the network.
Solitude uses file-system level isolation
and application sandboxing to limit
attack propagation [Jain et al. 2008].
SASI [Erlingsson and Schneider 2000], a
code-level containment approach, uses a
compile-time Software Fault Isolation
(SFI) method to enforce security policies.

Pros—Simple, fast, and
effective way to mitigate
and contain security
compromises.
Cons—Often carried out at
the opportunity cost of
(at least temporary)
unavailability of system
resources to legitimate
users.

Software Rejuvenation—
As defined by Huang et al.
[1995], this pattern
involves gracefully
terminating an application
and immediately
restarting it at a clean
internal state. Often

In addition to the rejuvenation-based
SCIT system [Huang et al. 2006;
Nagarajan et al. 2011] and the
aforementioned HACQIT system, the
Proactive Resilience Wormhole (PRW)
effort [Sousa et al. 2006, 2007, 2010]
also employs proactive rejuvenation
for intrusion tolerance and high

Pros—Effective technique
that addresses both security
and high availability.
Periodic software
rejuvenation limits the
damage of undetected
attacks.
Cons—The rejuvenation
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Table I. Catalog of Self-Protection Patterns

Pattern Definition Examples Evaluation
done proactively and
periodically.

availability. Wang et al. [2009] presented
a special case of rejuvenation involving
software hotswapping, i.e., swapping out
infected components at runtime,
replaced with a valid/more strongly
protected equivalent.

process, short as it may be,
temporarily reduces system
reliability. Extra care is
needed to preserve
application state and
transition applications to a
rejuvenated replica. Extra
investment is needed
for maintaining redundant
replicas.

Reconfiguration on
Reflex—A bio-inspired
pattern that reconfigures
the system to a higher
level of protection (which
may be more resource
consuming), and when
attack passes, returns to a
less restrictive mode.

The Security Adaptation Manager (SAM)
[Hinton et al. 1999] dynamically operates
the system at 3 levels of implementations
(calm, nervous, panic) depending on the
threat level. The DASAC approach [Jean
et al. 2007] uses a boosting-based
algorithm and heuristically defined
security levels that allow the agent
network to react to agent
trustworthiness.

Pros—A technique for
balancing competing goals of
security and performance,
depending on the ongoing
threat level.
Cons—Ineffective in the case
of undetected threats. An
attacker can trick the system
to always run at heightened
security levels to sacrifice
performance, therefore
not suitable for persistent
threats.

Artificial Immunization—
Inspired by adaptive
immune systems in
vertebrates, this pattern
seeks to capture samples
of worms or viruses;
analyze the virus to derive
a signature that can be
used to detect and remove
it from infected resources;
and disseminate the
“antidote” to all vulnerable
systems.

Kephart et al. [1997] and White et al.
[1999] designed one of the first Digital
Immune Systems in response to early
virus epidemics, when it was realized
that automation was needed to spread
the cure faster than the virus itself.
Later approaches such as SweetBait
[Portokalidis and Bos 2007] use more
sophisticated “honeypot” techniques to
capture suspicious traffic and generate
worm signatures. A variant of this
pattern uses the so-called Danger Theory
to as the basis for autonomic attack
detection and defense [Rawat and
Saxena 2009; Swimmer 2007].

Pros— “Detect once, defend
anywhere”; the pattern
proved to be a successful
approach for defending
against computer viruses
and helped creation of the
anti-virus industry.
Cons—Centralized and
top-down architecture is a
challenge to scalability and
agility, esp. as attacks
become more localized and
targeted. Further, just like
all signature-based
techniques, it is not effective
against unknown/zero-day
attacks.

combine a number of complementary patterns to add to its depths of defense and
boost survivability. The TALENT system, for instance, employs OS-level and program-
ming language-level diversity and periodically moves running applications to a clean
platform. Though technical challenges remain, this “cyber moving target” approach
holds promise for defense against advanced, zero-day attacks. As another example, the
R-Xen framework [Jansen et al. 2008] used hypervisor-based Protective Wrapper to
provide application monitoring and protection. Fearing the protective wrapper itself
may become a weak link for the system, it also used software rejuvenation to protect
the hypervisor core.

We also found, not surprisingly, that the positioning and techniques employed by a
self-protection approach will to some extent determine the architectural patterns being
used. This observation, however, does point to a critical research opportunity, that is, to
further identify and catalogue such correlations, to codify them into machine-readable
forms, so that a system may dynamically re-architect itself using repeatable patterns
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Fig. 9. (a) Validation method; (b) Repeatability; (c) Applicability.

as requirements and environments change. This is a higher level of self-protection and
may only be enabled through an architecture-based approach.

6.8. Quality Assessment of Surveyed Papers

We used reputable sites in our review protocol (see Appendix A). This resulted in the
discovery of high-quality refereed research papers from respectable venues. We use
Validation Method (T12), Repeatability (T13), and Applicability (T14), which are the
three Approach Quality dimensions in the taxonomy, to develop better insights into
the quality of the research papers surveyed. Figure 9 summarizes some of our find-
ings. Figure 9(a) depicts the share of different Validation Methods in assessing the
quality of self-protection approaches. Most (70%) of the approaches have used Empir-
ical techniques to assess the validity of their ideas. The Empirical techniques range
from detailed assessment of full implementation of the approach (e.g., Castro and
Liskov [2002]) to a proof-of-concept experimentation of a prototype (e.g., Raissi [2006]).
A limited number (6%) of approaches (e.g., Ostrovsky and Yung [1991]) have provided
mathematical Proof to validate their ideas. Some approaches (16%) have relied on Sim-
ulation to validate their claims (e.g., Taddeo and Ferrante [2009]). Finally, there are
approaches (14%) that have either not validated their ideas (e.g., Valdes et al. [2004])
or validated aspects (such as performance) of their work other than security (e.g.,
Swimmer [2007]).

The evaluation of security research is generally known to be difficult. Making the
results of experiments repeatable is even more difficult. We can see this in Figure 9(b),
where only limited portions (12%) of approaches are highly repeatable. The rest have
not made their implementations, prototypes, tools, and experiments available to other
researchers. This has hampered their adoption in other relevant domains. As we can
see in Figure 9(c), many approaches (60%) are portable and have high potential for
being applicable to broad range of situations and domains. However, the fact that their
artifacts are not accessible outside the boundary of the same team/organization, has
limited their usage and prevented their potential applicability from becoming actual
applicability.

7. THREATS TO VALIDITY

As detailed in Appendix A, by carefully following the SLR process in conducting this
study, we have tried to minimize the threats to the validity of our results and conclu-
sions made in this article. Nevertheless, there are three possible threats that deserve
additional discussion.

One important threat is the completeness of this study, that is, whether all of the
appropriate papers in the literature were identified and included. This threat could be
due to two reasons: (1) some relevant papers were not picked up by the search engines

ACM Transactions on Autonomous and Adaptive Systems, Vol. 8, No. 4, Article 17, Publication date: January 2014.



�

�

�

�

�

�

�

�

A Systematic Survey of Self-Protecting Software Systems 17:27

or did not match our keyword search, (2) some relevant papers that were mistakenly
omitted, and vice-versa, some irrelevant papers that were mistakenly included. To ad-
dress these threats, we adopted multiple strategies. First, we used multiple search en-
gines of different types, including those targeted specifically at scientific publications
as well as general-purpose search engines. Second, we adopted an iterative approach
to keyword-list construction. As the study progressed, we noticed different research
communities refer to the same concepts using different words. The iterative process
allowed us to ensure proper list of keywords were used in our search process. Nonethe-
less, the limited number of keyword phrases we used (see Section A.2 in Appendix A)
in order to keep the study manageable has prevented the coverage of some interesting
areas, such as:

— research pertaining to security assurance and security Service Level Agreements
(SLA) during the autonomic adaptation of services/components, such as the ongoing
work at EU projects ASSERT4SOA and Aniketos (see Anisetti et al. [2012], Foster
et al. [2012] and other related publications);

— risk-based self-protecting solutions, such as an approach by Cheng et al. [2007];
— adaptive solutions addressing privacy as introduced by Schaub et al. [2012].

It is our hope that these areas will be covered in our future research.
Another threat is the objectiveness of the study, that is, whether the included pa-

pers were classified without any bias. To avoid misclassification of papers, the authors
crosschecked papers reviewed by one another, such that no paper received only a single
reviewer. This allowed us to reduce the effect of bias in our review process.

Yet another threat is the validity of the proposed taxonomy, that is, whether the tax-
onomy is sufficiently rich to enable proper classification and analysis of the literature
in this area. To mitigate this threat, we adopted an iterative content analysis method,
whereby the taxonomy was continuously evolved to account for every new concept en-
countered in the papers. While the changes to the taxonomy were drastic toward the
beginning of our study (roughly the first 30 papers that were classified), toward the
end (roughly the last 30 papers) resulted in almost no changes to the taxonomy. This
gives us confidence that the taxonomy provides a good coverage for the variations and
concepts that are encountered in this area of research.

Finally, the last threat is that synthesis of the results and conclusions made in
Section 6 could be biased or flawed. As mentioned earlier, we have tackled the in-
dividual reviewer’s bias by crosschecking the papers, such that no paper received a
single reviewer. We have also strived to base the conclusions on the collective numbers
obtained from the classification of papers, rather than individual reviewer’s interpre-
tation or general observations, thus minimizing the individual reviewer’s bias. Lastly,
we have made the classification of the papers available to the public, which can be
accessed at http://goo.gl/Ksy1u.

8. RECOMMENDATIONS FOR FUTURE RESEARCH

From systematically reviewing the self-protection-related literature, we see some
important trends in software security research. Starting in the 1990s, dynamic and
automated security mechanisms started to emerge in the antivirus and anti-spam
communities. The late 1990s and early 2000s saw a research boom in the Intrusion
Detection (ID) / firewall communities, as online systems faced the onslaught of net-
work and host based attacks. We then see two important trends in the past decade, as
reflected by the observations in Section 6:

(a) from Intrusion Detection to Intrusion Response (IR), as the increasing scale and
speed of attacks showed the acute need for dynamic and autonomic response
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mechanisms, as confirmed in recent surveys [Shameli-Sendi et al. 2012;
Stakhanova et al. 2007a];

(b) from Intrusion Detection to Intrusion Tolerance (IT), when both the industry and
academia came to the realization that security threats will persist and prevention
mechanisms will likely never be adequate, and began to give additional consid-
eration to maintaining system performance even in the presence of an intrusion
[Nguyen and Sood 2011].

Only in recent few years did we see an explicit focus on self-protection as a system
property in the autonomic computing context. Frincke et al. [2007] and Atighetchi and
Pal [2009], for example, see the pressing need for autonomic security approaches and
true self-protecting systems. From the break-down of papers across ID, IR, IT, and
Self-Protection (SP) communities, we see an encouraging sign of growing SP research,
yet we also see the continued influence of the intrusion-centric mindset.

Therefore, our first and foremost recommendation is to increase attention, conver-
gence, and collaboration on self-protection research, and to leverage this community
for integrating a diverse set of strategies, technologies, and techniques from ID, IR, IT
and other communities toward achieving a common goal. More specifically, the survey
using our proposed taxonomy has revealed some gaps and needs for future research.
To summarize, self-protection research needs to focus on the following to stay ahead of
today’s advancing cyberthreats.

— Advance the sophistication at each self-protection level, that is, from automatically
monitoring and detecting threats and vulnerabilities to autonomously predict and
prevent attacks.

— Move beyond defending the network and host layers, towards developing ap-
proaches that are independent of specific system architectures and that can select
suitable strategies and tactics at different architecture layers.

— Pursue integrated, “full lifecycle” approaches that span both development-time and
runtime.

— “Protect the protector”, that is, safeguard the meta-level self-protection module,
especially in a globally decentralized topology.

— Explore models@runtime and model-driven engineering techniques while main-
taining clear meta-level and base-level separation.

— Explore the definition and application of qualitative and quantitative metrics that
can be used to dynamically assess overall system security posture and make auto-
nomic response decisions.

— Continue to explore multilevel, multiobjective, as well as cost-sensitive security
decision-making strategies based on stakeholder requirements.

— Continue the paradigm shift from perimeter security to overall system protection
and monitoring, and from merely reactive responses to a combined use of both re-
active and proactive mechanisms.

— Catalog, implement, and evaluate self-protection patterns at the abstract architec-
ture level.

— Promote collaboration in the community by making research repeatable (such
as providing tools and case studies) and developing common evaluation plat-
forms/benchmarks.

9. CONCLUSION

Self-protection of software systems is becoming increasingly important as these sys-
tems face increasing external threats from the outside and adopt more dynamic ar-
chitecture behavior from within. Self-protection, like other self-* properties, allows
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Fig. A.1. Research process flow and tasks.

the system to adapt to the changing environment through autonomic means without
much human intervention, and can thereby be responsive, agile, and cost effective. Ex-
isting research has made significant progress towards software self-protection, such
as in intrusion tolerance systems and adaptive security mechanisms at the applica-
tion level. This article proposes a comprehensive taxonomy to classify and character-
ize research efforts in this arena. We have carefully followed the systematic literature
review process, resulting in the most comprehensive and elaborate investigation of the
literature in this area of research, comprised of 107 papers published from 1991 to
2013. The research has revealed patterns, trends, and gaps in the existing literature
and underlined key challenges and opportunities that will shape the focus of future
research efforts. In particular, the survey shows self-protection research should ad-
vance from focusing primarily on the network and host layers to layer-independent and
architecture-based approaches; from single-mechanism and single-objective to multi-
strategy and cost-sensitive decision-making, and from perimeter security to overall
system protection. We believe the results of our review will help to advance the much
needed research in this area and hope the taxonomy itself will become useful in the
development and assessment of new research.
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APPENDIX A

A.1 Research Tasks

To answer the three research questions introduced in Section 4, we organized our
tasks into a process flow tailored to our specific objectives, yet still adhering to the
three-phase SLR process. The overall process flow is outlined in Figure A.1 and briefly
described here.

First, in the planning phase, we defined the review protocol that includes selection
of the search engines, the initial selection of the keywords pertaining to self-protecting
software systems, and the inclusion/exclusion criteria for the candidate papers. The
protocol is described in detail in Section A.2.

The initial keyword-based selection of the papers is an iterative process that involves
exporting the candidate papers to a “research catalog” and applying the pre-defined
inclusion/exclusion criteria on them. In the process, the keyword search expressions
and the inclusion/exclusion criteria themselves may also need to be fine-tuned, which
would in turn trigger new searches. Once the review protocol and the resulting paper
collection were stabilized, our research team also conducted peer-reviews to validate
the selections.

For RQ1, in order to define a comprehensive taxonomy suitable for classifying self-
protection research, we first started with a quick “survey of surveys” on related tax-
onomies. Since our research topic straddles both the autonomic/adaptive systems and
computer security domains, we identified some classification schemes and taxonomies
from both domains, as described in Section 3. After an initial taxonomy was for-
mulated, we then used the initial paper review process (focusing on abstracts, in-
troduction, contribution, and conclusions sections) to identify new concepts and ap-
proaches to augment and refine our taxonomy. The resulting taxonomy is presented in
Section 5.

For the second research question (RQ2), we used the validated paper collection and
the consolidated taxonomy to conduct a more detailed review on the papers. Each pa-
per was classified using every dimension in the taxonomy, and the results were again
captured in the research catalog. The catalog, consisting of a set of spreadsheets, al-
lowed us to perform qualitative and quantitative analysis not only in a single dimen-
sion, but also across different dimensions in the taxonomy. The analysis and findings
are documented in Section 6.

To answer the third research question (RQ3), we analyzed the results from RQ2 and
attempted to identify the gaps and trends, again using the taxonomy as a critical aid.
The possible research directions are henceforth identified and presented in Section 8.

A.2 Literature Review Protocol

The first part of our review protocol was concerned with the selection of search en-
gines. As correctly pointed out in Brereton et al. [2007], no single search engine in the
software engineering domain is sufficient to find all of the primary studies, therefore
multiple search engines are needed. We selected the following search sites to have a
broad coverage: IEEE Explore, ACM Digital Library, Springer Digital Library, Elsevier
ScienceDirect (Computer Science collection), Google Scholar.

For these search engines we used a targeted set of keywords, including: Software
Self-Protection, Self-Protecting Software, Self-Securing Software, Adaptive Security,
and Autonomous Security. It is worth noting that the exact search expression had
to be fine-tuned for each search engine due to its unique search interface (e.g. basic
search vs. advanced search screens, the use of double quotes, and the AND/OR expres-
sions). In each case, we tried to broaden the search as much as possible while maintain-
ing a manageable result set. For example, because Google Scholar invariably returns

ACM Transactions on Autonomous and Adaptive Systems, Vol. 8, No. 4, Article 17, Publication date: January 2014.
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thousands of hits, we limited our search to the first 200 results. We also used the fol-
lowing inclusion and exclusion criteria to further filter the candidate papers.

— Only refereed journal and conference publications were included.
— Based on our definition of self-protection in Section 2, we included autonomic and

adaptive software research that is directly relevant to the self-protecting and self-
securing properties. Other properties such as self-healing and self-optimization are
out of the scope of this survey.

— Our review focuses on software systems only, therefore does not include self-
protection pertaining to hardware systems.

— Software security research that doesn’t exhibit any self-adaptive/autonomic traits
is excluded.

— Our definition of self-protection pertains to protecting the software system against
malicious threats and attacks. Sometimes other connotations of self-protection may
be possible. For example, protecting a system from entering into an inconsistent
state (from a version consistency perspective), or protecting a wireless sensor net-
work (from the field-of-view perspective) may also be viewed as self-protection.
Such papers are excluded in this review.

— Position papers or research proposals not yet implemented or evaluated are ex-
cluded.

When reviewing a candidate paper, we have in many occasions further extended the
collection with additional papers that appear in its citations or those that are citing it
(backward and forward citation search).

APPENDIX B

The following evaluation matrix contains the detailed survey results.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 8, No. 4, Article 17, Publication date: January 2014.
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