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Ability Tests
Abstracts
Acceptance Sampling
Achievement Tests
Active Life Expectancy
Adaptive Sampling Design
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Age Norms
Akaike Information Criterion
Alcohol Use Inventory
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American Psychological Association
American Psychological Society. See Association for
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Bender Visual Motor Gestalt Test
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Binomial Distribution/Binomial and Sign Tests
Binomial Test
Bioinformatics
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Bonferroni Test
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Box Plot (Box and Whisker Plot)
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Buros Institute of Mental Measurements

California Psychological Inventory
Career Assessment Inventory



Career Development Inventory
Career Maturity Inventory
Carroll Depression Scale
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Centers for Disease Control and Prevention
Central Limit Theorem
Centroid
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Cluster Sampling
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Data Compression
Data Mining
Decision Boundary
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Effect Size
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EM Algorithm
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Ethical Issues in Testing
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Ethical Principles in the Conduct of Research With
Human Participants

Evidence-Based Practice
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Factorial Design
Fagan Test of Infant Intelligence
Family Environment Scale
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Fisher Exact Probability Test
Fisher-Irwin Test. See Fisher Exact Probability Test 
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Fisher’s Z Transformation
Fourier Transform
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Friedman Test
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Gauss, Carl Friedrich
Generalized Additive Model
Generalized Estimating Equations
Generalized Method of Moments
Generalized Procrustes Analysis
Gerontological Apperception Test
Gf-Gc Theory of Intelligence
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Goodness-of-Fit Tests
Graduate Record Examinations
Grand Mean
Graphical Statistical Methods
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Guttman Scaling

Harmonic Mean
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Kaufman Assessment Battery for Children
Kendall Rank Correlation
Kinetic Family Drawing Test
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Kolmogorov-Smirnov Test for One Sample
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Kruskal-Wallis One-Way Analysis of Variance
Kuder Occupational Interest Survey
Kurtosis

Laboratory Behavioral Measures of Impulsivity
Latent Class Analysis
Law of Large Numbers
Law School Admissions Test
Least Squares, Method of
Life Values Inventory
Likelihood Ratio Test
Likert Scaling
Lilliefors Test for Normality
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Linear Regression
Logistic Regression Analysis
Loglinear Analysis
Longitudinal/Repeated Measures Data
Luria Nebraska Neuropsychological Battery

Male Role Norms Inventory
Malthus, Thomas
Mann-Whitney U Test (Wilcoxon Rank-Sum Test)
Markov, Andrei Andreevich
Markov Chain Monte Carlo Methods
Matrix Analogies Test
Matrix Operations
Maximum Likelihood Method
McNemar Test for Significance of Changes
Mean
Measurement
Measurement Error
Measures of Central Tendency
Median
Median Test
Meta-Analysis
Metric Multidimensional Scaling
Millon Behavioral Medicine Diagnostic
Millon Clinical Multiaxial Inventory-III
Minnesota Clerical Test
Minnesota Multiphasic Personality Inventory
Missing Data Method
Mixed Models
Mixture Models
Mixtures of Experts
Mode

Moderator Variable
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Mosaic Plots
Moving Average
Multicollinearity
Multidimensional Aptitude Battery
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Multiple-Choice Items
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Multiple Correlation Coefficient
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Multiple Factor Analysis
Multiple Imputation for Missing Data
Multitrait Multimethod Matrix and Construct
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Multivariate Analysis of Variance (MANOVA)
Multivariate Normal Distribution
Myers-Briggs Type Indicator

National Council on Measurement in Education
National Science Foundation
NEO Personality Inventory
Neonatal Behavioral Assessment Scale
Newman-Keuls Test
Nominal Level of Measurement
Nomothetic Versus Idiographic
Nonparametric Statistics
Nonprobability Sampling
Normal Curve
Null Hypothesis Significance Testing

O’Brien Test for Homogeneity of Variance
Observational Studies
Ockham’s Razor
Ogive
One- and Two-Tailed Tests
One-Way Analysis of Variance
Ordinal Level of Measurement
Orthogonal Predictors in Regression
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Paired Samples t Test (Dependent Samples t Test)
Pairwise Comparisons
Parallel Coordinate Plots
Parallel Forms Reliability
Parameter
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Parameter Invariance
Part and Partial Correlations
Partial Least Square Regression
Pascal, Blaise
Path Analysis
Peabody Picture Vocabulary Test
Pearson, Karl
Pearson Product-Moment Correlation Coefficient
Percentile and Percentile Rank
Performance IQ
Performance-Based Assessment
Peritz Procedure
Personal Projects Analysis
Personality Assessment Inventory
Personality Research Form
Personality Tests
Pie Chart
Piers-Harris Children’s Self-Concept Scale
Poisson, Siméon Denis
Poisson Distribution
Portfolio Assessment
Post Hoc Comparisons
Posterior Distribution
Predictive Validity
Preschool Language Assessment Instrument
Principal Component Analysis
Prior Distribution
Probability Sampling
Profile Analysis
Projective Hand Test
Projective Testing
Propensity Scores
Psychological Abstracts
Psychometrics
PsycINFO

Q Methodology
Q-Q Plot
Quality of Well-Being Scale
Quasi-Experimental Method
Questionnaires
Quota Sampling

Random Numbers
Random Sampling
Range

Rasch Measurement Model
Ratio Level of Measurement
Raven’s Progressive Matrices
Record Linkage
Regression Analysis
Relative Risk
Reliability Theory
Repeated Measures Analysis of Variance
Residuals
Response to Intervention
Reverse Scaling
Reynolds, Cecil R.
Roberts Apperception Test for Children
Rorschach Inkblot Test
RV and Congruence Coefficients
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Sample Size
Sampling Distribution of a Statistic
Sampling Error
Scaling
Scan Statistic
Scattergram
Scree Plot
Secondary Data Analysis
Section 504 of the Rehabilitation Act of 1973
Self-Report
Semantic Differential
Semantic Differential Scale
Semi-Interquartile Range
Shapiro-Wilk Test for Normality
Signal Detection Theory
Significance Level
Simple Main Effect
Simpson’s Paradox
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Simulation Experiments
Single-Subject Designs
Singular and Generalized Singular Value

Decomposition
Six Sigma
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Smoothing
Social Climate Scales
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Social Skills Rating System
Society for Research in Child Development
Sociological Abstracts
Spatial Learning Ability Test
Spatial Statistics
Spearman’s Rho
Split Half Reliability
Spreadsheet Functions
Spurious Correlation
Standard Deviation
Standard Error of the Mean
Standard Error of Measurement
Standard Scores
Standards for Educational and Psychological

Testing
Stanford Achievement Test
Stanford-Binet Intelligence Scales
Stanine
STATIS
Statistical Significance
Stem-and-Leaf Display
Stratified Random Sampling
Strong Interest Inventory
Stroop Color and Word Test
Structural Equation Modeling
Structured Clinical Interview for DSM-IV
Sunflower Plot
Support Vector Machines
Suppressor Variable
Survey Weights
Survival Analysis
System of Multicultural Pluralistic Assessment

T Scores
t Test for Two Population Means
Test-Retest Reliability
Tests of Mediating Effects
Text Analysis
Thematic Apperception Test

Three-Card Method
Thurstone Scales
Time Series Analysis
Torrance, E. Paul
Torrance Tests of Creative Thinking
Torrance Thinking Creatively in Action and

Movement
Tree Diagram
True/False Items
True Score
Tukey-Kramer Procedure
Type I Error
Type II Error

Unbiased Estimator
Universal Nonverbal Intelligence Test

Validity Coefficient
Validity Theory
Variable
Variable Deletion
Variance
Verbal IQ
Vineland Adaptive Behavior Scales
Vineland Social Maturity Scale

Wechsler Adult Intelligence Scale
Wechsler Individual Achievement Test
Wechsler Preschool and Primary Scale of

Intelligence
West Haven-Yale Multidimensional Pain Inventory
Wilcoxon, Frank
Wilcoxon Mann-Whitney Test. See Mann-Whitney 

U Test (Wilcoxon Rank-Sum Test)
Wilcoxon Signed Ranks Test
Woodcock Johnson Psychoeducational Battery
Woodcock Reading Mastery Tests Revised

z Scores
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Reader’s Guide

The purpose of the Reader’s Guide is to provide you with a tool you can use to locate specific entries in the
encyclopedia, as well as to find out what other related entries might be of interest to you. For example, if you
are interested in the visual display of information and want to learn how to create a bar chart (under the general
heading of Charts, Graphs, and Visual Displays in the Reader’s Guide), you can also find reference to such
entries as Histogram, Line Chart, and Mosaic Plots, all related to the same general topic.

The Reader’s Guide is also a very direct and simple way to get an overview of which items are contained in
the encyclopedia. Although each of the categories lists items in alphabetic order (as the encyclopedia is orga-
nized), you can glance through the main headings of the guide and then focus more on a particular area of inter-
est. Then, just turn to any particular entry you want to locate. These are easily found because they appear in
alphabetical order.

Biographies

Babbage, Charles
Bernoulli, Jakob
Bonferroni, Carlo Emilio
Bruno, James Edward
Comrey, Andrew L.
Cronbach, Lee J.
Darwin, Charles
Deming, William Edwards
Fisher, Ronald Aylmer
Galton, Sir Francis
Gauss, Carl Friedrich
Gresham, Frank M.
Jackson, Douglas N.
Malthus, Thomas
Markov, Andrei Andreevich
Pascal, Blaise
Pearson, Karl
Poisson, Siméon Denis
Reynolds, Cecil R.

Torrance, E. Paul
Wilcoxon, Frank

Charts, Graphs, and Visual Displays

Area Chart
Bar Chart
Box Plot (Box and Whisker Plot)
Contour Plot
Eyeball Estimation
Frequency Distribution
Histogram
Line Chart
Mosaic Plots
Ogive
Parallel Coordinate Plots
Pie Chart
Q-Q Plot
Scattergram
Scree Plot
Smoothing



Stem-and-Leaf Display
Sunflower Plot
Tree Diagram

Computer Topics and Tools

Babbage, Charles
Computational Statistics
Computerized Adaptive Testing
Curvilinear Regression
Data Analysis ToolPak
Data Compression
DISTATIS
Excel Spreadsheet Functions
Linear Regression
Residuals
Spatial Statistics
Spreadsheet Functions
STATIS

Concepts and Issues in Measurement

Ability Tests
Achievement Tests
Alternate Assessment
Americans with Disabilities Act
Anthropometry
Aptitude Tests
Artificial Neural Network
Asymmetry of g
Attitude Tests
Basal Age
Categorical Variable
Classical Test Theory
Coefficient Alpha
Completion Items
Computerized Adaptive Testing
Construct Validity
Content Validity
Criterion-Referenced Test
Criterion Validity
Cronbach, Lee J.
Curriculum-Based Measurement
Diagnostic Validity
Educational Testing Service
Equivalence Testing

Essay Items
Ethical Issues in Testing
Face Validity
Gf-Gc Theory of Intelligence
Guttman Scaling
Health Insurance Portability and Accountability Act
High-Stakes Tests
Immediate and Delayed Memory Tasks
Individuals with Disabilities Education Act
Information Referenced Testing
Informed Consent
Intelligence Quotient
Intelligence Tests
Internal Review Board
Interrater Reliability
Interval Level of Measurement
Ipsative Measure
Item and Test Bias
Item Response Theory
KR-20 and KR-21
Likert Scaling
Measurement
Measurement Error
Metric Multidimensional Scaling
Multiple-Choice Items
Multitrait Multimethod Matrix and Construct

Validity
Nomothetic Versus Idiographic
Ordinal Level of Measurement
Parallel Forms Reliability
Performance IQ
Performance-Based Assessment
Personality Tests
Portfolio Assessment
Predictive Validity
Projective Testing
Q Methodology
Questionnaires
Ratio Level of Measurement
Reliability Theory
Response to Intervention
Reverse Scaling
Scaling
Section 504 of the Rehabilitation Act of 1973
Self-Report
Semantic Differential
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Semantic Differential Scale
Six Sigma
Spearman’s Rho
Split Half Reliability
Standard Error of Measurement
Standard Scores
Standards for Educational and Psychological Testing
T Scores
Test-Retest Reliability
Thurstone Scaling
Torrance, E. Paul
True/False Items
Validity Coefficient
Validity Theory
Verbal IQ
z Scores

Concepts and Issues in Statistics

Artificial Neural Network
Attenuation, Correction for
Autocorrelation
Bayesian Statistics
Bioinformatics
Central Limit Theorem
Decision Theory
Diggle-Kenward Model for Dropout
DISTATIS
Exploratory Factor Analysis
Factorial Design
Fourier Transform
Generalized Additive Model
Generalized Method of Moments
Generalized Procrustes Analysis
Graphical Statistical Methods
Hierarchical Linear Modeling
Historiometrics
Logistic Regression Analysis
Loglinear Analysis
Markov Chain Monte Carlo Methods
Matrix Operations
Mean
Measurement Error
Mixtures of Experts
Nonparametric Statistics
Propensity Scores

Rasch Measurement Model
Regression Analysis
Sampling Distribution of a Statistic
Signal Detection Theory
Simpson’s Paradox
Spurious Correlation
Standard Error of the Mean
Standard Scores
Support Vector Machines
Survival Analysis
Type I Error
Type II Error

Data and Data Reduction Techniques

Censored Data
Data Compression
Data Mining
Discriminant Analysis
Eigenvalues
Exploratory Data Analysis
Factor Analysis
Factor Scores
Missing Data Method
Multiple Factor Analysis
Record Linkage
Secondary Analysis of Data

Descriptive Statistics

Arithmetic Mean
Attenuation, Correction for
Autocorrelation
Average
Average Deviation
Bayley Scales of Infant Development
Biserial Correlation Coefficient
Class Interval
Coefficients of Correlation, Alienation, and

Determination
Cognitive Psychometric Assessment
Cohen’s Kappa
Correlation Coefficient
Cumulative Frequency Distribution
Deviation Score
Difference Score
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Estimates of the Population Median
Fisher’s Z Transformation
Frequency Distribution
Galton, Sir Francis
Grand Mean
Harmonic Mean
Histogram
Kendall Rank Correlation
Mean
Measures of Central Tendency
Median
Mode
Moving Average
Parameter
Parameter Invariance
Part and Partial Correlations
Pearson, Karl
Pearson Product-Moment Correlation Coefficient
Percentile and Percentile Rank
RV and Congruence Coefficients
Scattergram
Semi-Interquartile Range
Spurious Correlation
Standard Deviation
Survey Weights
Text Analysis

Evaluation

Achievement Tests
Evidence-Based Practices
Health Insurance Portability and Accountability Act
High-Stakes Tests
Questionnaires

Experimental Methods

Alternative Hypothesis
American Statistical Association
Americans with Disabilities Act
Association for Psychological Science
Basic Research
Bioinformatics
Complete Independence Hypothesis
Continuous Variable
Critical Value
Data Collection

Data Mining
Delphi Technique
Dependent Variable
Descriptive Research
Ethical Issues in Testing
Ethical Principles in the Conduct of Research With

Human Participants
Fractional Randomized Block Design
Hello-Goodbye Effect
Hypothesis and Hypothesis Testing
Independent Variable
Informed Consent
Instrumental Variables
Internal Review Board
Longitudinal/Repeated Measures Data
Meta-Analysis
Missing Data Method
Mixed Models
Mixture Models
Moderator Variable
Monte Carlo Methods
Null Hypothesis Significance Testing
Ockham’s Razor
Pairwise Comparisons
Post Hoc Comparisons
Projective Testing
Quasi-Experimental Method
Sample Size
Section 504 of the Rehabilitation Act of 1973
Significance Level
Simple Main Effect
Simulation Experiments
Single-Subject Designs
Standards for Educational and Psychological Testing
Statistical Significance
Suppressor Variable
Variable
Variable Deletion
Variance

Inferential Statistics

Akaike Information Criterion
Analysis of Covariance (ANCOVA)
Analysis of Variance (ANOVA)
Bayes Factors
Bayesian Information Criterion
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Binomial Test
Bonferroni, Carlo Emilio
Complete Independence Hypothesis
Data Analysis ToolPak
Exploratory Factor Analysis
Factorial Design
Fisher, Ronald Aylmer
Hierarchical Linear Modeling
Hypothesis and Hypothesis Testing
Inferential Statistics
Logistic Regression Analysis
Markov, Andrei Andreevich
Null Hypothesis Significance Testing
Pairwise Comparisons
Part and Partial Correlations
Repeated Measures Analysis of Variance
Type I Error
Type II Error
Wilcoxon, Frank

Organizations and Publications

Abstracts
American Doctoral Dissertations
American Psychological Association
American Statistical Association
Association for Psychological Science
Buros Institute of Mental Measurements
Centers for Disease Control and Prevention
Educational Testing Service
Journal of the American Statistical Association
Journal of Modern Applied Statistical Methods
Journal of Statistics Education
National Science Foundation
Psychological Abstracts
Psychometrics
PsycINFO
Society for Research in Child Development
Sociological Abstracts

Prediction and Estimation

Attributable Risk
Bernoulli, Jakob
Chance
Conditional Probability
Confidence Intervals

Continuous Variable
Curse of Dimensionality
Decision Boundary
Decision Theory
File Drawer Problem
Gambler’s Fallacy
Generalized Estimating Equations
Law of Large Numbers
Maximum Likelihood Method
Nonprobability Sampling
Pascal, Blaise
Probability Sampling
Random Numbers
Relative Risk
Signal Detection Theory
Significance Level
Three-Card Method

Probability

Alternate Assessment
Audit Trail
Authenticity
Categorical Variable
Essay Items
Grounded Theory
Observational Studies
Portfolio Assessment
Self-Report
Text Analysis

Qualitative Methods

Active Life Expectancy
Assessment of Interactions in Multiple Regression
Eyeball Estimation
Orthogonal Predictors in Regression
Regression Analysis
Survival Analysis

Samples, Sampling, and Distributions

Acceptance Sampling
Adaptive Sampling Design
Age Norms
Attrition Bias
Career Maturity Inventory
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Central Limit Theorem
Class Interval
Cluster Sampling
Confidence Intervals
Convenience Sampling
Cumulative Frequency Distribution
Data Collection
Diggle-Kenward Model for Dropout
Gauss, Carl Friedrich
Heteroscedasticity and Homoscedasticity
Homogeneity of Variance
Hypergeometric Distribution
Kurtosis
Malthus, Thomas
Multicollinearity
Multivariate Normal Distribution
Nonprobability Sampling
Normal Curve
Ogive
Parameter
Percentile and Percentile Rank
Poisson, Siméon Denis
Poisson Distribution
Posterior Distribution
Prior Distribution
Probability Sampling
Quota Sampling
Random Sampling
Sample
Sample Size
Semi-Interquartile Range
Simpson’s Rule
Skewness
Smoothing
Stanine
Stratified Random Sampling
Unbiased Estimator

Statistical Techniques

Binomial Distribution/Binomial and Sign Tests
Bivariate Distributions
Bonferroni Test
Bowker Procedure
Causal Analysis
Centroid

Chance
Chi-Square Test for Goodness of Fit
Chi-Square Test for Independence
Classification and Regression Tree
Cochran Q Test
Cohen’s Kappa
Delta Method
Dimension Reduction
Discriminant Analysis
Dissimilarity Coefficient
Dixon Test for Outliers
Dunn’s Multiple Comparison Test
Eigendecomposition 
Eigenvalues
EM Algorithm
Exploratory Data Analysis
Factor Analysis
Factor Scores
Fisher Exact Probability Test
Fisher’s LSD
Friedman Test
Goodness-of-Fit Tests
Grounded Theory
k-Means Cluster Analysis
Kolmogorov-Smirnov Test for One Sample
Kolmogorov-Smirnov Test for Two Samples
Kruskal-Wallis One-Way Analysis of Variance
Latent Class Analysis
Likelihood Ratio Test
Lilliefors Test for Normality
Mann-Whitney U Test (Wilcoxon Rank-Sum Test)
McNemar Test for Significance of Changes
Median Test
Meta-Analysis
Multiple Comparisons
Multiple Factor Analysis
Multiple Imputation for Missing Data
Multivariate Analysis of Variance (MANOVA)
Newman-Keuls Test
O’Brien Test for Homogeneity of Variance
Observational Studies
One-Way Analysis of Variance
Page’s L Test
Paired Samples t Test (Dependent Samples t Test)
Path Analysis
Peritz Procedure
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Scan Statistic
Shapiro-Wilk Test for Normality
Structural Equation Modeling 
t Test for Two Population Means
Tests of Mediating Effects
Three-Card Method
Tukey-Kramer Procedure
Wilcoxon Signed Ranks Test

Statistical Tests

Analysis of Covariance (ANCOVA)
Analysis of Variance (ANOVA)
Behrens-Fisher Test
Binomial Distribution/Binomial and Sign Tests
Binomial Test
Bonferroni Test
Bowker Procedure
Chi-Square Test for Goodness of Fit
Chi-Square Test for Independence
Classification and Regression Tree
Cochran Q Test
Dixon Test for Outliers
Dunn’s Multiple Comparison Test
Excel Spreadsheet Functions
Fisher Exact Probability Test
Fisher’s LSD
Friedman Test
Goodness-of-Fit Tests
Kolmogorov-Smirnov Test for One Sample
Kolmogorov-Smirnov Test for Two Samples
Kruskal-Wallis One-Way Analysis of Variance
Latent Class Analysis
Likelihood Ratio Test
Lilliefors Test for Normality
Mann-Whitney U Test (Wilcoxon Rank-Sum Test)
McNemar Test for Significance of Changes
Median Test
Multiple Comparisons
Multivariate Analysis of Variance (MANOVA)
Newman-Keuls Test
O’Brien Test for Homogeneity of Variance
One- and Two-Tailed Tests
One-Way Analysis of Variance
Page’s L Test
Paired Samples t Test (Dependent Samples t Test)

Peritz Procedure
Repeated Measures Analysis of Variance
Shapiro-Wilk Test for Normality
t Test for Two Population Means
Tests of Mediating Effects
Tukey-Kramer Procedure
Wilcoxon Signed Ranks Test

Tests by Name

Adjective Checklist
Alcohol Use Inventory
Armed Forces Qualification Test
Armed Services Vocational Aptitude Battery
Basic Personality Inventory
Bayley Scales of Infant Development
Beck Depression Inventory
Behavior Assessment System for Children
Bender Visual Motor Gestalt Test
Bracken Basic Concept Scale–Revised
California Psychological Inventory
Career Assessment Inventory
Career Development Inventory
Career Maturity Inventory
Carroll Depression Scale
Children’s Academic Intrinsic Motivation Inventory
Clinical Assessment of Attention Deficit
Clinical Assessment of Behavior
Clinical Assessment of Depression
Cognitive Abilities Test
Cognitive Psychometric Assessment
Comrey Personality Scales
Coping Resources Inventory for Stress
Culture Fair Intelligence Test
Differential Aptitude Test
Ecological Momentary Assessment
Edwards Personal Preference Schedule
Embedded Figures Test
Fagan Test of Infant Intelligence
Family Environment Scale
Gerontological Apperception Test
Goodenough Harris Drawing Test
Graduate Record Examinations
Holden Psychological Screening Inventory
Illinois Test of Psycholinguistic Abilities
Information Systems Interaction Readiness
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Internal External Locus of Control Scale
International Assessment of Educational Progress
Iowa Tests of Basic Skills
Iowa Tests of Educational Development
Jackson Personality Inventory–Revised
Jackson Vocational Interest Survey
Kaufman Assessment Battery for Children
Kinetic Family Drawing Test
Kingston Standardized Cognitive Assessment
Kuder Occupational Interest Survey
Laboratory Behavioral Measures of Impulsivity
Law School Admissions Test
Life Values Inventory
Luria Nebraska Neuropsychological Battery
Male Role Norms Inventory
Matrix Analogies Test
Millon Behavioral Medicine Diagnostic
Millon Clinical Multiaxial Inventory-III
Minnesota Clerical Test
Minnesota Multiphasic Personality Inventory
Multidimensional Aptitude Battery
Multiple Affect Adjective Checklist–Revised
Myers-Briggs Type Indicator
NEO Personality Inventory
Neonatal Behavioral Assessment Scale
Peabody Picture Vocabulary Test
Personal Projects Analysis
Personality Assessment Inventory
Personality Research Form
Piers-Harris Children’s Self-Concept Scale
Preschool Language Assessment Instrument

Profile Analysis
Projective Hand Test
Quality of Well-Being Scale
Raven’s Progressive Matrices
Roberts Apperception Test for Children
Rorschach Inkblot Test
Sixteen Personality Factor Questionnaire
Social Climate Scales
Social Skills Rating System
Spatial Learning Ability Test
Stanford Achievement Test
Stanford-Binet Intelligence Scales
Strong Interest Inventory
Stroop Color and Word Test
Structured Clinical Interview for DSM-IV
System of Multicultural Pluralistic Assessment
Thematic Apperception Test
Torrance Tests of Creative Thinking
Torrance Thinking Creatively in Action and

Movement
Universal Nonverbal Intelligence Test
Vineland Adaptive Behavior Scales
Vineland Social Maturity Scale
Wechsler Adult Intelligence Scale
Wechsler Individual Achievement Test
Wechsler Preschool and Primary Scale of

Intelligence
West Haven-Yale Multidimensional Pain 

Inventory
Woodcock Johnson Psychoeducational Battery
Woodcock Reading Mastery Tests Revised
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It’s an interesting paradox when an important subject,
which can help us make sense of our busy, everyday
world, is considered very difficult to approach. Such
is the case with measurement and statistics. However,
this does not necessarily have to be the case, and we
believe that the Encyclopedia of Measurement and
Statistics will show you why.

These two areas of study encompass a very wide
range of topics, and a knowledge of even the basic
concepts and ideas allows us to be much better pre-
pared as intelligent consumers of information.

Whether we are interested in knowing if there is a
difference between two groups in their preference for
a particular brand of cereal or how the Americans with
Disabilities Act works, we need to know how to ana-
lyze and interpret information. And often, when that
information is in the form of numbers, that’s where
statistics and measurement come into play. That basic
stat course in college might have been a nightmare,
but the material is no more difficult to grasp and apply
than is any other discipline in the social and behav-
ioral sciences.

Although hundreds of books have been written
about the different topics that are contained in the
Encyclopedia of Measurement and Statistics, and there
are thousands upon thousands of studies that have been
conducted in this area, what we offer here is something
quite different⎯a comprehensive overview of impor-
tant topics. What we hope we have accomplished are
entries that comprise a comprehensive overview of the
most important topics in the areas of measurement and
statistics⎯entries that share this important informa-
tion in a way that is informative; not too technical; and
even, in some cases, entertaining.

Through almost 500 contributions and some
special elements that will be described later in this
preface, experts in each of the entries contained in
these pages contribute an overview and an explanation
of the major topics in these two fields.

The underlying rationale for the selection of partic-
ular topics and their presentation in this encyclopedia
comes from the need to share with the educated reader
topics that are rich, diverse, and deserving of closer
inspection. Within these pages, we provide the over-
view and the detail that we feel is necessary to become
well acquainted with these topics.

As in many other encyclopedias, the Encyclopedia
of Measurement and Statistics is organized in alpha-
betical order, from A through Z. However, particular
themes were identified early on that could be used to
organize conceptually the information and the entries.
These themes or major topic areas constitute the
Reader’s Guide, which appears on page xiii. Cate-
gories such as Experimental Methods, Qualitative
Methods, and Organizations and Publications are only
a few of the many that help organize the entire set of
contributions.

The Process

The first task in the creation of a multivolume ency-
clopedia such as this is the development of a complete
and thorough listing of the important topics in the dis-
ciplines of measurement and statistics. This process
started with the identification of entries that the editor
and advisory board thought were important to include.
We tried to make sure that these entries included top-
ics that would be of interest to a general readership,
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but we wanted to exclude terms and ideas that were
too highly technical or too far removed from the inter-
ests of the everyday reader. This list was reviewed
several times until we felt that it was a comprehen-
sive set of topics that best fit the vision for the
encyclopedia.

Like many other disciplines, there is a great deal 
of overlap between different important concepts and
ideas in measurement and statistics. For example,
although there is an entry titled Descriptive Statistics
(which is a general overview), there is much greater
detail in the entries titled Mean and Median. That
overlap is fine because it provides two different, and
compatible, views of the same topic and can only help
reinforce one’s knowledge. We hope that the cross-
references we provide will help the user understand
this and get the most out of learning about any one
idea, term, or procedure.

As expected, this list was edited and revised as we
worked and as authors were recruited to write partic-
ular entries. Enthusiastic authors suggested new
topics that might have been overlooked as well as
removing topics that might have no appeal. All of
these changes were taken into consideration as the
final list was assembled.

The next step was to assign a length to a particular
entry, which ranged from 500 words for simple
definitions or biographies (such as the one for the
Arithmetic Mean or Charles Babbage, respectively) to
almost 4,000 words for longer, more in-depth explo-
ration for topics (such as the entry on Aptitude Tests).
In between were articles that were 1,500 and 2,000
words in length. (At times, authors asked that the
length be extended because they had so much infor-
mation they wanted to share and they felt that the lim-
itation on space was unwarranted. In most cases, it
was not a problem to allow such an extension.)

The final step was the identification of authors. This
took place through a variety of mechanisms, including
the identification of individuals based on the advisory
board recommendations and/or the editor’s profes-
sional and personal experiences, authors of journal
articles and books who focused on a particular area
directly related to the entry, and referrals from other
individuals who were well known in the field.

Once authors were identified and invited, and once
they confirmed that they could participate, they were
sent detailed instructions and given a deadline for 
the submission of their entry. The results, as you well
know by now, after editing, layout, and other produc-
tion steps, are in your hands.

How to Use This Reference

We know the study of measurement and statistics can
be less than inviting. But, as we mentioned at the
beginning of this preface, and want to emphasize once
again here, the ideas and tools contained in these
pages are approachable and can be invaluable for
understanding our very technical world and an
increasing flow of information.

Although many of the ideas you read about in these
pages are relatively recent, some are centuries old. Yet
both kinds hold promise for your being able to better
navigate the increasingly complex world of informa-
tion we each face every day.

So, although many of us believe that this encyclo-
pedia should only be consulted when a term or idea
needs some clarification, why not take some time and
just browse through the material and see what types of
entries are offered and how useful you might find
them?

As we wrote earlier, a primary goal of creating this
set of volumes was to open up the broad discipline of
measurement and statistics to a wider and more gen-
eral audience than usual.

Take these books and find a comfortable seat in the
library, browse through the topics, and read the ones
that catch your eye. We’re confident that you’ll
continue reading and looking for additional related
entries, such as “Applying Ideas on Statistics and
Measurement,” where you can find examples of how
these ideas are applied and, in doing so, learn more
about whatever interests you.

Should you want to find a topic within a particular
area, consult the Reader’s Guide, which organizes
entries within this two-volume set into one general
category. Using this tool, you can quickly move to an
area or a specific topic that you find valuable and of
interest.
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Finally, there other elements that should be of
interest.

Appendix A is a guide to basic statistics for those
readers who might like a more instructional, step-by-
step presentation of basic concepts in statistics and
measurement. It also includes a table of critical values
used in hypothesis testing and an important part of any
reference in this area. These materials are taken from
Statistics for People Who (Think They) Hate Statistics,
written by the editor and also published by Sage.

Appendix B represents a collection of some impor-
tant and useful sites on the Internet that have addi-
tional information about measurement and statistics.
Although such sites tend to remain stable, there may
be some changes in the Internet address. If you cannot
find the Web page using the address that is provided,
then search for the name of the Web site using Google
or another search engine. 

Finally, Appendix C is a glossary of terms and con-
cepts you will frequently come across in these volumes.

Acknowledgments

This has been a challenging and rewarding project. It
was ambitious in scope because it tried to corral a
wide and diverse set of topics within measurement
and statistics into a coherent set of volumes.

First, thanks to the Advisory Board, a group of
scholars in many different areas that took the time to
review the list of entries and make invaluable sugges-
tions as to what the reader might find valuable and
how that topic should be approached. The Advisory
Board members are very busy people who took the
time to help the editor develop a list that is broad in
scope and represents the most important topics in
human development. You can see a complete list of
who these fine people are on page vi.

My editor and my publisher at Sage Publications,
Lisa Cuevas Shaw and Rolf Janke, respectively,

deserve a great deal of thanks for bringing this project
to me and providing the chance to make it work. They
are terrific people who provide support and ideas and
are always there to listen. And perhaps best of all, they
get things done.

Other people also helped make this task enjoy-
able and helped create the useful, informative, and
approachable set of volumes you hold in your hands.
Among these people are Tracy Alpern, Sage senior
project editor, and Bonnie Freeman, Liann Lech, and
Carla Freeman, copy editors.

I’ll save one of the biggest thank-yous for Kristin
Rasmussen, the managing editor, who managed this
project in every sense of the word, including the
formidable tasks of tracking entries, submissions,
reviews, and resubmissions. All of this was easily
accomplished with enthusiasm, initiative, and perse-
verance when answering endless questions through
thousands of e-mails to hundreds of authors. She 
is currently a doctoral student at the University of
Kansas and has an exceptionally bright future. Thank
you sincerely.

And, of course, how could anything of this magni-
tude ever have been done without the timely execution
and accurate scholarship of the contributing authors?
They understood that the task at hand was to introduce
educated readers (such as you) to new areas of inter-
est in a very broad field, and without exception, they
did a wonderful job. You will see throughout that their
writing is clear and informative—just what material
like this should be for the intelligent reader. To them,
a sincere thank you and a job well done.

Finally, as always, none of this would have hap-
pened or been worth undertaking without my comrade
in (almost all) ups and down and ins and outs, and my
truest and best friend, Leni. Sara and Micah, versions
1.1 and 1.2, didn’t hurt either.

—Neil J. Salkind
University of Kansas

Preface———xxxv



ABILITY TESTS

Ability tests are assessment instruments designed 
to measure the capacity of individuals to perform
particular physical or mental tasks. Ability tests were
developed in the individual differences tradition of
psychology and evolved from early tests of general
intelligence. Most major ability tests assess a range 
of broad ability factors that are conceptually and
empirically related to general intelligence (or g, also
referred to as general cognitive ability). Ability tests
are frequently used in settings such as schools, mili-
tary organizations, business and industry, hospitals
and rehabilitation centers, and private practice.
Several ability tests with strong evidence of reliability
and validity are currently available and are commonly
used for purposes such as educational screening or
diagnosis, personnel selection and classification, neu-
ropsychological assessment, and career guidance and
counseling.

Historical Overview

The first successful “mental test,” predecessor to all
subsequent tests of characteristics of individual differ-
ences characteristics (including ability), is generally

considered to be the intelligence test developed by
French psychologist Alfred Binet and his associate,
Théodore Simon. First published in 1905, the Binet-
Simon Intelligence Scale was designed to identify
children presumably unable to benefit from regular
classroom instruction by measuring their ability to
judge, understand, and reason. The test was found to
be an effective predictor of scholastic achievement.
The success of the Binet-Simon scales and of later
measures, such as Lewis M. Terman’s Stanford-Binet
Intelligence Scale (published in 1916), led the emerg-
ing testing industry to focus on the further develop-
ment of intelligence measures. Many of these early
intelligence tests actually measured a range of differ-
ent abilities.

At the outset of World War I, leading psychologists
in the intelligence testing movement began attending
to the problem of selecting and classifying recruits for
the United States military. These efforts resulted in the
development of group-administered intelligence tests
such as the Army Alpha and Beta. The practical use-
fulness of these assessments and the efficiency with
which they could be administered to large numbers of
people led to the widespread use of tests and also to
intensified research on specific areas of ability rele-
vant to success in a variety of contexts. During the
1920s and 1930s, this shift from measures of general

1
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Sometimes it is useful to know how large your zero is.
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intelligence to measures of specific abilities was
accompanied by the development of a statistical tech-
nique called factor analysis. By identifying underly-
ing factors on the basis of patterns of intercorrelations
among a large number of variables, factor analysis
made it possible to demonstrate that specific abilities
(e.g., reading speed, reaction time) are indicators of
broad areas of ability (e.g., broad visual perception,
broad cognitive speediness) and that these broad
abilities are somewhat independent of g. 

Largely on the basis of evidence obtained from
early factor analytic studies, two opposing theoretical
approaches to understanding the ability domain
emerged. The London school, led by Charles
Spearman, emphasized g as the single most important
ability. In contrast, a group of American scientists, led
by Truman Kelley and Louis L. Thurstone, identified
several relatively independent, broad ability factors. 
A classic study of mechanical ability, led by D. G.
Paterson, provided early empirical evidence to sup-
port the claim that general areas of ability other than
g accounted for significant variance in practical
outcomes, such as job performance.

With World War II came the demand for follow-up
efforts to the work conducted in the 1920s and 1930s.
During the 1940s and 1950s, general multiple-ability
test batteries, such as the Differential Aptitude Tests
(DAT) and General Aptitude Test Battery (GATB),
among many others, were developed and used fre-
quently in subsequent decades. During the 1980s,
controversy erupted over the question of fair use of
the GATB, which was developed by the United States
Employment Service, with prospective employees
from racial and ethnic minorities. This controversy led
to its suspension from use pending further study. A
variety of alternative test batteries (three of which are
reviewed below) measuring multiple areas of ability
are available and in use today.

Definition and Dimensions of Ability

The construct of ability, as defined above, refers to the
power of an individual to perform a specified act or
task. Abilities are generally assumed to be fairly sta-
ble, to have a biological basis, and to be both learned

and innate. Ability may be differentiated from related
constructs, such as achievement, which is defined
as the level of knowledge or skill that has already been
attained in an endeavor; aptitude, which is defined
as the capacity to develop particular knowledge
or skills in the future; and intelligence, which is typi-
cally defined as a general, higher-order ability rele-
vant to tasks that have cognitive demands. These
constructs clearly are related, and in practice the terms
are sometimes used interchangeably. To further com-
plicate the matter, tests of abilities or intelligence
technically measure achievement and usually are used
to infer aptitude. In the context of assessment, a gen-
eral rule of thumb is as follows: achievement tests
typically are designed to measure knowledge of a
specified content area that has been explicitly taught;
ability tests typically are designed to measure current
performance in a particular content area or, when
composed of a battery of subtests, across multiple
content areas; and intelligence tests typically are
designed to measure general cognitive ability. All
three are used to infer aptitude, although the terms
aptitude tests and multiaptitude tests usually refer to
tests of ability.

There are a variety of theoretical approaches to
understanding human ability, but the view most com-
monly held by scholars is that the domain of abilities
can be represented using a hierarchical structure. 
For example, the Cattell-Horn-Carroll (CHC) theory
of cognitive abilities, supported by one of the most
comprehensive factor-analytic investigations of abili-
ties in history, posits a three-level hierarchy. Like
many hierarchical theories of abilities, CHC theory
places g at the highest level, followed by several broad
factors at the intermediate level of specificity and, in
turn, by a large number of more narrowly defined,
specific abilities at the lowest level (in the CHC
model, these are approximately 70 in number). The 10
broad ability factors in the second level of the CHC
model are similar to those posited by other hierarchi-
cal ability models and are as follows:

• Fluid intelligence: The ability to reason and solve
problems involving novel information or procedures
using processes that are not learned or culture bound 
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• Crystallized intelligence: The ability to communicate
and reason using previously learned information and
procedures 

• Quantitative knowledge: The ability to manipulate
numerical symbols and reason procedurally with
quantitative information; includes mathematics
achievement and knowledge 

• Short-term memory: The ability to hold information
in immediate awareness and effectively use it within
seconds 

• Visual processing: The ability to perceive, manipu-
late, analyze, and synthesize visual stimuli; includes
visual memory and spatial relations 

• Auditory processing: The ability to perceive, discrim-
inate, analyze, and synthesize patterns in auditory
stimuli; includes phonetic coding, memory for sound
patterns, and ability to discriminate tones 

• Processing speed: The speed with which information
is attended to and processed; involves rapid, automatic
cognitive processing 

• Long-term retrieval: The ability to store infor-
mation in long-term memory and accurately retrieve
it later 

• Reading/writing: The ability to read and understand
written material accurately and efficiently and to write
in a clear and organized manner with proper gram-
mar, punctuation, and spelling 

• Decision/reaction time or speed: The quickness with
which problems of moderate difficulty are accurately
encoded and mentally manipulated; includes simple
reaction time and semantic processing speed 

The preceding list of broad abilities in the CHC
model is generally representative of the ability factors
traditionally targeted for measurement by multi-
aptitude test batteries, although some differences exist
across competing models of ability and measures of
the domain. For example, because the CHC model
targets cognitive ability, some abilities that are not
traditionally considered cognitive in nature (e.g., psy-
chomotor dexterity) and that are integral parts of other
models of ability are excluded from the list. Also,
some scholars have called for an expanded view of
abilities that may include, for example, emotional
intelligence, social intelligence, situational judgment,
and other areas of human performance not typically
included in traditional theoretical models of the abil-
ity domain.

Assumptions of Ability Tests

Although the specific features of various theoretical
models underlying particular ability tests may differ,
most major ability tests assume the following: (a)
There are multiple abilities that can be reliably and
validly measured using a single, wide-range test or
battery; (b) there are differences between people in
terms of level of performance in each area of ability;
(c) there are differences within people in terms of level
of performance across different areas of ability; (d) dif-
ferences between a person’s level of abilities relative to
a normative group, and differences within a person’s
pattern of ability scores, predict real-world outcomes
(e.g., academic and occupational performance); and
thus (e) scores from ability tests offer useful informa-
tion in settings where decisions related to education,
employment, and rehabilitation are made. It should
also be noted that ability tests measure maximal per-
formance; some have proposed that typical perfor-
mance may better predict some real-world outcomes.

Examples of Ability Tests

Several multiaptitude test batteries are currently
available. Users are encouraged to select an instru-
ment according to such criteria as the evidence for
reliability and validity; the appropriateness of the nor-
mative samples used to standardize the test; the ease
with which the test can be obtained, administered, and
scored; the extent to which scale scores provide clear,
unambiguous results; and the extent to which pro-
posed applications of the test coincide with the needs
of the user. The following are brief descriptions of
three commonly used multiaptitude test batteries.

AArrmmeedd  SSeerrvviicceess  VVooccaattiioonnaall  AAppttiittuuddee  BBaatttteerryy  

The Armed Services Vocational Aptitude Battery
(ASVAB; U.S. Department of Defense) is best known
for its use in military selection and classification and
for its inclusion as part of a comprehensive career
exploration program for high school and college
students. The ASVAB consists of the following
subtests, each separately timed: General Science,
Arithmetic Reasoning, Word Knowledge, Paragraph
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Comprehension, Numerical Operations, Coding
Speed, Auto and Shop Information, Mathematical
Knowledge, Mechanical Comprehension, and Elec-
tronics Information. Factor analytic evidence suggests
that the ASVAB measures general cognitive ability,
verbal-math ability, clerical speed, and technical
knowledge. The ASVAB was developed using impres-
sive norms, but its usefulness for differential predic-
tion has been questioned.

OOccccuuppaattiioonnaall  IInnffoorrmmaattiioonn  
NNeettwwoorrkk  AAbbiilliittyy  PPrrooffiilleerr

The Occupational Information Network (O∗NET)
Ability Profiler (published by the U.S. Department 
of Labor) is a component of the O∗NET Career
Exploration Tools system. The O∗NET Ability Profiler
is an updated version of the GATB and is available in
paper-and-pencil format with optional apparatus
subtests. The O∗NET Ability Profiler consists of 11
subtests that measure nine job-related abilities: verbal
ability, arithmetic reasoning, computation, spatial abil-
ity, form perception, clerical perception, motor coordi-
nation, manual dexterity, and finger dexterity. A major
strength of the battery is that it generates a computer-
generated score report that can be linked to a wealth of
occupational data in the O∗NET database, allowing
individuals to, for example, compare their pattern of
abilities to those required by different occupations.

DDiiffffeerreennttiiaall  AAppttiittuuddee  TTeessttss  

The DAT, published by the Psychological
Corporation, was designed primarily for educational
and career guidance of individuals in middle school,
high school, and adulthood. The DAT provides scores
for the following eight areas of ability: verbal reason-
ing, numerical ability, abstract reasoning, perceptual
speed and accuracy, mechanical reasoning, space rela-
tions, spelling, and language usage. The DAT scores
are computed using very good norm groups, and
efforts to address test fairness have been thorough.
Evidence supporting the reliability of the DAT scores
is strong, although relatively little evidence is available
to assess the validity of the scale scores for predicting
outcomes other than academic achievement.

Each of the preceding test batteries has garnered
evidence of reliability and validity, and this evidence
is reviewed in the user’s manuals. As indicated in 
their descriptions, the ASVAB, O∗NET Ability
Profiler, and DAT typically are used for educational
and vocational counseling and personnel selection.
Other purposes for testing abilities, such as neuropsy-
chological evaluation or educational diagnosis, natu-
rally require tests with validity evidence supporting
their use for those purposes.

Gender and Ethnicity 
in Ability Testing

As is the case with any test, users must be sensitive to
the ways in which personal or group characteristics
such as age, gender, ethnicity, linguistic background,
disability status, and educational and work history
may influence performance on ability tests. Although
the weight of evidence suggests no difference between
females and males in general cognitive ability, consis-
tent differences have been found favoring females on
tests of some verbal abilities and males on tests of
some visual-spatial tasks. Evidence also suggests that
scores on quantitative abilities tend to favor females in
the early years of school and males from adolescence
onward. Most scholars suggest that biological and
social factors work in tandem to produce such
differences.

Some differences between ethnic groups have been
found in scores on tests of ability. This finding con-
tributed to the previously noted controversy over the
GATB, for example. The crux of the controversy was
that some minority groups tended to score lower than
the majority on some GATB subscales and, since the
U.S. Department of Labor had suggested that states
use the test as part of a new employment selection
system, members of these groups were adversely
impacted. However, scores on the GATB (and other
tests of ability) tended to predict educational and
occupational outcomes equally well, regardless of
ethnicity. Eventually the use of within-group norms in
employee selection was proposed, but this suggestion
was also controversial, and as mentioned earlier, the
GATB was eventually suspended from use. Because
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many tests measure abilities that are influenced by
education and training, users must take into account
the quality of the respondent’s educational back-
ground. This is particularly important when interpret-
ing scores of ethnically diverse respondents because
minority groups are more likely than members of the
majority to be socioeconomically disadvantaged,
which in turn is related to poorer school systems and
fewer educational opportunities that might improve
test performance. Of course, it bears remembering
that within-group differences are larger than between-
group differences and that meaningful generalizations
from the group to the individual can never be made
responsibly without additional information.

Conclusion

Ability tests allow users to identify current and poten-
tial performance strengths for individuals, information
that is useful for a wide range of purposes in a variety
of contexts. Many ability tests are laden with positive
features that likely contribute to their widespread use,
such as ease of administration and scoring, strong
psychometric evidence, and the provision of a large
amount of meaningful information in a relatively brief
period of time. With recent advances in technology,
ability testing has become increasingly automated, and
in the future, computer-administered testing will
continue to improve convenience of use and also will
allow users to customize their batteries to better 
suit their specific needs. When combined with other
sources of information, the potential benefits of ability
tests to individuals and society are substantial.

—Bryan J. Dik

See also Iowa Tests of Basic Skills; Reliability Theory;
Validity Theory
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ABSTRACTS

An abstract is a brief, concise, accurate, and generally
nonevaluative summary of a work such as a journal
article, a presentation, or a book. The length of an
abstract varies but is typically a paragraph and never
more than a page. An abstract for a periodical source
often appears at the top of the article, underneath 
the title. For prepared manuscripts, an abstract is pre-
sented by itself on a single page that follows the title
page. Abstracts are often collected in volumes and
presented in either print or electronic format to pro-
vide potential readers of scholarly work with a quick
and time-saving overview of the main document.

There are two common forms of abstracts. A
descriptive abstract is often written prior to the comple-
tion of a specific work. Therefore, it may not provide
results, conclusions, or recommendations. This type of
abstract may be submitted to a local or a national con-
ference, for instance, as a summary of one’s planned
presentation. A descriptive abstract may simply contain
the problem and methods with a brief section on
expected outcome. In contrast, an informative abstract
is written following the completion of a specific work
and summarizes the entire content of the original doc-
ument. It commonly consists of an overview of the fol-
lowing four sections: (a) problem, (b) methodology, (c)
results, and (d) conclusion. This type of abstract pro-
vides a condensed version of the original work so that
a reader can choose whether to review the entire piece.
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Abstract writing is an acquired skill that may be
strengthened with continued practice. To present an
effective abstract, the writer should follow the organi-
zation of the original article closely. In abstracts of
scientific papers, the reader is first presented with infor-
mation about the topic or central issue(s) in the main
document. A statement about the study’s objectives or
the tested hypotheses may be provided. Second, the
reader is educated about the methods used to approach
the main topic. For example, the abstract may provide
information relevant to the number of participants
enrolled in a given study or the assessment strategies
used to examine the stated hypotheses. Third, there is a
brief description of the study’s findings and con-
clusions. The reader is presented with an explanation of
the significance and possible implications of the
obtained results. Fourth, there is some reference to 
the recommendations. In summary, a well-written, self-
contained abstract presents a capsule description of the
original article, without adding new information, in
language that is understandable to a wide audience.

—Marjan Ghahramanlou-Holloway
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ACCEPTANCE SAMPLING

Acceptance sampling is a procedure used for product
acceptance or rejection and is based on inspecting

only a sampled number of units from the total number
produced. In many situations in which the inspection
is destructive, such as testing flashbulbs, it is not
feasible to inspect all the bulbs produced. Acceptance
sampling can be performed during incoming inspec-
tion of raw materials or components, in various phases
of in-process operations, or during final inspection.
Such a procedure may be applied to cases in which
inspection is by attributes or by variables.

Acceptance sampling is a scheme that determines
whether a batch or lot of product items should be
accepted or rejected. It does not control or improve
the quality level of the process. Although acceptance
sampling offers some advantages associated with 
its feasibility in destructive testing, its economies in
inspection cost, and its usefulness in improving qual-
ity, it also poses some risks because an entire batch
may be rejected based on inspection of a few items. 

Risks in Acceptance Sampling

Two types of risks are inherent in acceptance sam-
pling plans: producer’s risk and consumer’s risk.

PPrroodduucceerr’’ss  RRiisskk

This is the risk (denoted by α) associated with
rejecting a lot that is of “good” quality, and a numeri-
cal definition of a “good” lot is prescribed by the
acceptable quality level (AQL). The AQL may be
viewed as the maximum proportion of nonconforming
items in a batch that can be considered satisfactory 
as a process average. Thus, the interpretation of the
statement that the producer’s risk is 5% for an AQL of
0.03 is as follows: Batches that are 3% nonconform-
ing are considered satisfactory, and it is desirable that
such batches, or those that are better, not be rejected
more than 5% of the time.

CCoonnssuummeerr’’ss  RRiisskk

This is the risk (denoted by β) associated with
accepting a “poor” lot. A numerical definition of a
poor lot is indicated by the limiting quality level
(LQL), also referred to as the lot tolerance percent
defective. The statement that the consumer’s risk is
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10% for an LQL of 0.09 means that batches that 
are 9% or more nonconforming are considered poor.
Consequently, such batches should be accepted no
more than 10% of the time by the selected acceptance
sampling plan.

Acceptance Sampling 
by Attributes and Variables

In attribute acceptance sampling, a product is classi-
fied as nonconforming or unacceptable if it contains
one or more nonconformities or defects. For example,
a hair dryer may be nonconforming if the speed con-
trol switch does not operate at each of the settings.

Alternatively, acceptance sampling may be used in
the context of product-related variables, which can be
measured and on the basis of which a decision about
the product can be made. An example is the monitor-
ing of the weight of cereal boxes. Suppose a minimum
acceptable weight of 12 ounces is specified. By the
selection of reasonable protection levels associated
with errors that could be made in decision making
using acceptance sampling, an acceptance limit is
found. For sampled cereal boxes, sample statistics
such as the mean and the standard deviation may be
calculated. Using these measures, if the calculated
sample mean is less than the acceptance limit, the
batch of boxes could be rejected.

PPaarraammeetteerrss  ooff  aann  AAttttrriibbuuttee  SSaammpplliinngg  PPllaann

In the simplest of the attribute sampling plans,
namely, a single sampling plan, a decision is made on
a batch or lot on the basis of information from a sin-
gle sample. There are two parameters for such a plan,
the sample size (n) and the acceptance number (c).
These parameters are chosen on the basis of accept-
able levels of the producer’s (α) and consumer’s (β)
risks and values of AQL and LQL. Standardized pro-
cedures exist whereby, on the basis of on chosen
levels of the above-mentioned parameters, the values
of n and c may be determined. 

Suppose, for example, the batch size (N) for a
product is 2,000. On the basis of a producer’s risk (α)
of 5%, AQL of 2%, a consumer’s risk (β) of 10%, and

an LQL of 8%, the sample size (n) and acceptance
number (c) are determined to be, say, 50 and 3,
respectively, for the single sampling acceptance plan.
The plan operates as follows. A sample of 50 units is
randomly selected from the batch of 2,000 units, and
the number of nonconforming units is found. If the
number of nonconforming units is less than or equal
to the acceptance number, which in this example is 3,
the batch is accepted. Otherwise, the batch is rejected.

—Amitava Mitra

See also Hypergeometric Distribution; Sample; Sampling Error 
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ACHIEVEMENT TESTS

Any test that is designed to measure student learning
in the context of an educational or training program
can be called an achievement test. An achievement
test comprises one to many test items. Each test item
can be scored dichotomously (right or wrong) or with
a rating scale, on which degrees of performance are
determined by a judge, called a rater. Achievement
test items are usually distinguished by the kind of
response they generate: selected or constructed. The
selected response item is often referred to as multiple
choice because the test respondent chooses among 
the choices offered. The constructed response item
requires that the respondent generate a written or oral
response or a response in the form of a product or
process. There is considerable variety in selected and
constructed response test items. 
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The publication Standards for Educational and
Psychological Testing provides definitions relevant to
achievement tests. This publication also offers many
guidelines for the development and validation of
achievement tests. Another useful, comprehensive refer-
ence about the development and validation of achieve-
ment tests is the Handbook of Test Development.

The length of an achievement test varies according
to many factors, all of which relate to validity and the
intended purpose of the test. One of the most impor-
tant factors is reliability. Longer tests tend to yield
more reliable scores. If an achievement test represents
a domain of identifiable knowledge and skills, then it
should be a representative sample from this domain.
Reliability and adequate sampling of content are two
major types of evidence that support the validity of an
achievement test score interpretation or use.

Another useful distinction is the difference between
a test and a quiz. A quiz is shorter than a test and mea-
sures only several student learning objectives, whereas
a test is longer than a quiz and measures many student
learning objectives. Both test and quiz, as distin-
guished here, constitute a measure of student achieve-
ment, but the distinction is in the amount of coverage
of the domain or content to be learned. Thus, any quiz
is also an achievement test in this broader sense.

The term assessment is often used synonymously
with the term achievement test. Strictly speaking, the
two are not the same. Assessment is a judgment, usu-
ally by a teacher, about how well a student has learned
and what a student needs to learn. An assessment
should be based on valid information, which includes
results of achievement tests and other information col-
lected during a semester or school year or in a training
program. Thus, an achievement test that is used for an
assessment purpose may be given the name assess-
ment because the test information is used for an
assessment of student learning.

What Is Achievement?

Achievement is generally considered change in cog-
nitive behavior that we attribute to learning, which 
can occur both within and outside a planned learning
experience, such as a course, class, or training. What

students learn can be thought of as existing in one of
two related domains. Each domain has a large collec-
tion of test items that represent it.

The first domain, which is more familiar to
educators, consists of knowledge and skills. We have
many examples, including reading, mathematics, and
social studies. Generally, states and school districts
have content standards that explicitly define each
domain. One type of achievement test is intended to
be a representative sample from a domain of knowl-
edge and skills. This kind of achievement test is gen-
erally created in a selected-response format because
of the great efficiency of this format when compared
to a constructed-response format. One of the major
shortcomings of the latter format is that it does not
yield an adequate sample from the intended domain of
tasks that represent achievement.

The second domain, which is less familiar to
educators, consists of many complex tasks that repre-
sent an ability. For example, writing is an ability. 
The domain of tasks that represent this ability may
include making a report based on some experience;
writing a creative story; writing a memorandum,
e-mail, or letter; writing an invitation to a social
event; and writing a critique, among many others.
Many educators and psychologists have suggested
that each ability is complex in nature. Each ability is
learned slowly and unevenly over a lifetime. Each
ability requires the application of knowledge and
skills in unique ways to situations that we commonly
encounter. The abilities that we learn in school are
reading, writing, speaking, listening, mathematical
and scientific problem solving, critical thinking, and
creative thinking. Most states have adopted content
standards that contain learning objectives that
describe the kinds of student behaviors that can be
tested. The testing format that seems most appropri-
ate for this type of content is performance based. The
scoring of these performance-based tests can be done
subjectively, using trained, experienced raters and
rating scales, which are referred to as rubrics, or the
scoring can be done objectively, as we often see in
mathematics, where there is likely to be a correct
answer or a step-by-step algorithm to apply to reach
a correct answer.
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The scores from these achievement tests can be
reported as the number of correct answers (raw score);
as a percentage of the total number of items on the
test; as a percentile rank or stanine; or in some derived
scale, such as grade equivalent, standard score, or nor-
mal-curve equivalent. The choice of a scale to report a
person’s score depends on many factors related to the
purpose of the test. Norm-referenced interpretations
of test scores value the rank of scores in a set of test
scores. Knowing how students rank  in achievement is
useful for some test purposes. Criterion-referenced
interpretations are more concerned with how much a
student has learned, usually relative to a standard,
called a cut score. Another term for criterion-
referenced is domain-referenced because the score a
student obtains (e.g., 75% correct) refers to the degree
of learning that has occurred relative to a domain
of knowledge and skills. The terms criterion-
referenced test and norm-referenced test are com-
monly used, but like the term assessment, they are not
used accurately. Any test can yield a norm-referenced
interpretation by using a norm-referenced test score
scale. Many achievement tests lend themselves to
criterion-referenced or domain-referenced interpreta-
tions due to the way they were designed. Thus, we
use the terms norm-referenced test and criterion-
referenced test to refer to the type of interpretation we
desire from the test, but strictly speaking, these are not
types of tests.

The Distinction Between 
Achievement Tests 

and Intelligence Tests

Psychologists and others have spent more than a
hundred years studying human intelligence. Depend-
ing on one’s experiences and background, this field
has been controversial, but some ideas have survived
this controversy. Intelligence and achievement are
often considered as being on a continuum in the cog-
nitive domain. Achievement is generally viewed as
something that changes with experience and instruc-
tion. Achievement tests can detect these changes,
which we know as student learning. Intelligence is
generally viewed as a group of complex abilities that

are less resistant to change. These abilities are verbal,
quantitative, and analytical. Some standardized tests
are indicators of intelligence, and other tests are
indicators of achievement. Sometimes the distinction
is not clear. Validation is a process whereby the truth
of what a test measures is studied and the claim for
what it measures is supported by reasoning and
evidence.

PPuurrppoossee

An achievement test can also be distinguished 
by its purpose. A major difference in purpose distin-
guishes a classroom achievement test and the stan-
dardized achievement test. The design of each type of
achievement test and the uses of its test scores will
vary according to its purpose.

CCllaassssrroooomm  AAcchhiieevveemmeenntt  TTeessttss

A classroom achievement test is a category that
seems focused on two central purposes: formative
and summative. During instruction, formatively used
achievement tests inform both student and teacher
about the extent of learning. These achievement tests
do not count toward a student grade. Instead, forma-
tively used achievement tests guide the student to
improve learning. Summatively used tests are used for
some important purpose, such as grading. During a
grading period, usually 9 weeks, a test can be used as
part of the criteria for a student grade. A test score, by
itself, is never recommended by evaluation specialists
as the sole indicator of a grade. A test result is only
one important piece of information about the extent
and quality of student learning.

The validity of formative and summative tests
depends on several factors. First, the content must be
clearly stated to students. Second, factors that prevent
learning should be removed or minimized. Third,
instruction should be aligned to this content. Fourth,
the achievement test should also be aligned to this
content. Fifth, test design and administration can be
modified to remove factors that may invalidate test
performance. Finally, students should have additional
opportunities to learn what they have not learned.
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SSttaannddaarrddiizzeedd  AAcchhiieevveemmeenntt  TTeessttss

Standardized achievement tests are numerous. Two
comprehensive references on standardized achievement
testing are the Sixteenth Mental Measurement Yearbook
and Tests in Print. A useful Web address for these and
similar publications is http://www.unl.edu/buros/.

A major distinction among standardized tests is
whether they are intended to help assess student learn-
ing in an educational program or to help determine
who passes or fails for a promotion, graduation, certi-
fication, or licensing decision. Achievement tests that
have significant consequences for the test taker or the
public are considered high-stakes achievement tests.

Standardized achievement tests have common
characteristics. The population that is to take this test
is well described. The content of the test is clearly
specified. Items are systematically developed and val-
idated. The test is designed to maximize information
that will be validly interpreted and used by its recipi-
ents. The conditions for administration and scoring
are uniform. If multiple test forms exist, these 
test forms are usually equated so that interpretations
are consistent from test form to test form. Standards
are set validly using procedures that are widely known
and accepted as producing valid results. The interpre-
tation of test scores is consistent with the intended
purpose of the test. Thus, the term standardized refers
to these aspects of test design, test development,
administration, scoring, and reporting.

To ensure that the test scores are validly interpreted
and used, all standardized achievement tests are
subject to validation. The process of validation is a
responsibility of the test developer and the sponsor of
the testing program. The Standards for Educational
and Psychological Testing are very clear about the
conditions and evidence needed for validation. A tech-
nical report or test manual contains the argument and
evidence supporting each intended test score inter-
pretation or use. If subscores are used, each subscore
should also be validated. Test scores should never be
used for purposes that have not been validated.

A major distinction among standardized achieve-
ment tests is whether a test has been aligned to a 
set of content standards specifically or generally.

Specifically aligned tests provide the public with
assurance that what content is mandated in a state or a
school district is represented on the aligned test. An
alignment ensures that curriculum, instruction, and
test all correspond to each another. A good example of
a set of national content standards is the one devel-
oped in 1991 by the National Council of Teachers of
Mathematics. It is reasonable to expect that a state’s or
school district’s aligned test scores will also be based
on national standards and that test scores from a 
state- or district-aligned test will correlate highly with
scores from one of several generally aligned achieve-
ment tests, such as the Stanford Achievement Test, the
Iowa Tests of Basic Skills, or the TerraNova.

All standardized achievement tests can be used for
various purposes. However, each purpose should be
validated. For instance, some standardized achievement
tests can be used diagnostically to identify a student’s
strengths and weaknesses. The same tests can also be
used to identify strengths and weaknesses in a curricu-
lum or instructional program for a school or a school
district. This kind of analysis can even be done at the
state, national, or international level. In some instances,
a standardized achievement test can be used for making
pass-fail decisions for promotion to a higher grade or
for graduation. Validation should focus on the legiti-
macy of using any test score for any purpose.

Summary

Any test that is intended by its developer to reflect the
amount of learning that has occurred in the past can be
considered an achievement test. Assessment is a term
often mistakenly used for a test. Assessment involves
the use of information about student learning to reach
a conclusion about what a student knows and can do
and what the student needs to learn. The content of
achievement tests can be considered in two ways: as a
domain of knowledge and skills and as a domain of
complex tasks. To complete a complex task, a student
has to have knowledge and skills and be able to 
apply each in a complex way to perform the task.
Achievement tests are of two major types: (a) tests
used in the classroom for formative or summative
assessment and (b) standardized tests, which serve
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many purposes, including assessment. Any use of a
test should be validated.

—Thomas Haladyna

See also Iowa Tests of Basic Skills; Iowa Tests of Educational
Development 
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ACTIVE LIFE EXPECTANCY

Active life expectancy (ALE) refers to the number of
years of life one can be expected to live without a dis-
ability. ALE answers the question, Of the remaining
years of life for this cohort of persons, what propor-
tion is expected to be spent disability-free? As such, it
is used to evaluate the quality of life rather than just
the quantity. The term was first introduced by Katz
and colleagues in 1983, although others had described
similar concepts in the mid-1960s and early 1970s.
ALE is a summary measure of population health, is
based on aggregate statistics, and is used in demography
and epidemiology to measure and compare the health
and functional status of national populations.

ALE is usually expressed as a component of total
life expectancy at a certain age. In the measurement of
ALE, disability is usually defined as difficulty in per-
forming one or more activities of daily living (ADLs),
which include eating, dressing, bathing, toileting,
walking, and transferring to a bed or chair. There 
are two closely related concepts, disability-free life
expectancy (DFLE) and healthy, or health-adjusted,
life expectancy (HALE). While ALE uses the pres-
ence of a limitation in any one of the activities of daily
living as an endpoint, disability-free life expectancy
uses the presence of limitations in either ADLs or
instrumental activities of daily living (IADLs), and
HALE uses a measure of general health status, or
good health versus poor health.

ALE can be computed in one of two ways, by using
multistate life tables or by the Sullivan method. The
Sullivan method requires a period life table for the
population and observed age-specific prevalence of
disability in the population (πi). Using standard life
table notation, at each age i, the number of person
years lived in that age interval (Li) is multiplied by the
proportion of people at that age who are not disabled
(1 − πi). ALE is the total of all person years lived above
an age i divided by the number of survivors to age i, li.
In contrast, the multistate life table method requires
age-specific transition probabilities. These transition
probabilities, usually derived from longitudinal survey
data, give the rates of moving from health to disability
(and back), as well as the risk of death for both the
healthy and disabled states at each age. Survival mod-
els incorporate these transition probabilities to esti-
mate the time expected to be spent in the two states,
active and disabled. The advantages of the multistate
method include the ability to model recovery and the
ability to include covariates in the models.

This method was used in 2005 by Reynolds and col-
leagues to examine the effect of obesity on ALE. They
found that being obese at age 70 has virtually no effect
on the total number of years of life remaining but reduces
ALE by 2.4 years for women and 1.5 years for men.

—Christine L. Himes

See also Longitudinal/Repeated Measures Data; Survival
Analysis
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ADAPTIVE SAMPLING DESIGN

In adaptive sampling, information gained during the
sampling process is used to modify, or adapt, how the
subsequent sample units are selected. Traditionally,
the selection procedure is defined prior to sampling.
For example, a sample scheme may be to select n
units at random from the population, as in simple ran-
dom sampling. In adaptive sampling, the select proce-
dure may change during the survey.

In biology, plant or animal populations are often
spatially aggregated, and when the population is rare,
sampling can be challenging. Adaptive sampling can
be used in this situation. An initial sample of plants
may be undertaken within quadrats placed randomly
in the area. Additional sampling is undertaken around
the quadrats where plants were found. The final sam-
ple combines information from the initial sample and
from the additional sampling. In this adaptive design,
survey effort was concentrated in the localities where
plants were found. The information from the initial
sample was used to “adapt” the sample because addi-
tional sampling was directed to the localities where
plants were known to be. In this regard, adaptive sam-
pling is considered more informative than traditional
sampling.

There are many forms of adaptive sampling; the
one described above could be called adaptive cluster
sampling. Another adaptive design is to adaptively
allocate extra survey effort in stratified sampling. In
traditional stratified sampling, the population is

divided into homogeneous groups or regions, called
strata. Survey effort is allocated among strata accord-
ing to some criterion, usually estimates of the within-
stratum variance or mean. If there is no information
on these strata statistics or if the information is poor,
adaptive stratified sampling can be used. After an ini-
tial survey of the strata, estimates of stratum variance
or mean are used to decide on allocation of additional
survey effort. Usually this additional survey effort is
allocated to the strata with the highest variances.
Information on the strata gained during the survey is
used to adapt the final allocation of survey effort.

—Jennifer Ann Brown

See also Sample; Sampling Error
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ADJECTIVE CHECKLIST

The Adjective Checklist (ACL) is a measure of
children’s attitudes that utilizes a checklist format
first employed by Harrison Gough. The ACL has been
employed in more than 30 studies to assess children’s
attitudes toward persons from potentially stigmatized
groups, with a focus on peers with mental retardation.
Other studies have examined attitudes toward
children with visual impairments, autism, obesity,
cancer, and physical disabilities, as well as toward
tobacco users.

The ACL was developed to assess the cognitive com-
ponent of children’s attitudes (opinions and beliefs about
a person), one of three components that make up atti-
tudes (together with the affective component, i.e., emo-
tions and feelings about a person, and the behavioral
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intentions component, i.e., intentions to interact with 
a person). It uses an open-ended format that allows
children to select from a provided list as many positive
and negative adjectives as they wish to select to
describe a specific person (known as a target). The
open-ended approach of the ACL does not restrict
children to making judgments that they may not
ordinarily make, the way a forced choice format might.
That is, the ACL mirrors the behavior of children in
classroom settings where children express their opin-
ions or beliefs about a peer by using common descrip-
tors such as “smart,” “mean,” “friendly,” and so on.

The ACL was developed by asking large samples
of children in Grades 1 through 6 to identify terms
they would use to describe a person they liked and a
person they did not like. Those terms that were men-
tioned most often were compiled into a list, and new
samples of children were asked to judge each term as
a “good” thing or a “bad” thing to say about someone.
As a result, 34 adjectives were identified that describe
a person’s affective feelings, physical appearance,
academic behavior, and social behavior. Within these
broad categories, the ACL includes equal numbers of
positive and negative descriptors. Factor analysis of
ACL responses from more than 2,000 elementary
school children revealed three distinct factors: posi-
tive (P factor, e.g., “proud,” “happy”), negative 
(N factor, e.g., “careless,” “ugly”), and negative affect
(NA factor, e.g., “lonely,” “ashamed”). 

The ACL can be administered to children individu-
ally or in groups by asking the children to use the
checklist to describe a particular target. The target
may be either a hypothetical student depicted in a
videotaped vignette, a photograph, a verbal descrip-
tion, or a real individual. In each instance, the target is
presented, and then the children are asked to describe
the target using as few or as many words from the list
as they would like. There are two methods for scoring
the ACL. The first method involves summing up a
child’s selection of adjectives on each of the three fac-
tors noted above. The second method results in a com-
posite score in which the number of negative
adjectives chosen by a child is subtracted from the
number of positive adjectives chosen, and a constant
of 20 is added. In this method, the negative adjectives

would include all adjectives  in the N factor and the
NA factor (i.e, Total Score = P − N − NA + 20). A
resulting score below 20 represents a negative attitude
toward the target, and a score above 20 represents a
positive attitude.

The ACL has good construct validity: Correlations
with measures of behavioral intentions include
Pearson r values of .76 with the Foley Scale and .67
with the Siperstein Activity Preference Scale, .35 with
Selman’s Friendship Activity Scale, and .46 with the
Shared Activities Questionnaire. Cronbach’s alpha
has been reported to range from .67 to .91, with val-
ues of .83, .76, and .73 reported for the P, N, and NA
factors, respectively. 

—Gary N. Siperstein

See also Attitude Tests 
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AGE NORMS

Age norms are used to represent typical performance
or some aspect of development for children within 
a particular age group. Used as an indication of the
average age at which certain behaviors are expected to
occur, they provide a metric against which same-aged
peers can be compared. Alternatively, they provide
guidelines to determine where along a developmental
continuum an individual’s skill or behavior may fall.
Depending on the measure of interest, these norms
may be expressed in various ways.

The use of age norms assumes homogeneity of a
group with respect to particular skills or behaviors.
Because these can be expected to be normally distrib-
uted within a population, age norms can be computed
on the basis of the average performance of the individ-
uals within that population. For example, a vocabulary
of 50 words is considered to be the norm for typically
developing children between the ages of 12 and 18
months. Children whose vocabulary size falls within,
above, or below this range may therefore be consid-
ered typical, precocious, or delayed, respectively. Age
norms exist as well for certain physiological measures
(e.g., the pitch of the voice) as well as developmental
milestones (e.g., crawling or walking).

Age norms are also employed in characterizing 
the acquisition or emergence of certain skills. These
norms assume an ordering of developmental stages

and are often used to characterize motor functions,
aspects of speech and language acquisition, social
behaviors, and so forth. Often, the emergence of
behaviors is considered to be predicated on the acqui-
sition of prerequisite skills, thus implying a fixed and
orderly developmental sequence. This pattern would
be typical of sensorimotor phenomena such as loco-
motion and manual dexterity. For example, the ability
to stabilize the trunk using large muscle groups typi-
cally occurs at a certain age and precedes the develop-
ment of movements necessary for more precise distal
movements. By extension, failure to develop earlier
skills would predict the delay, impairment, or absence
of later-emerging skills.

Other behaviors may also appear along a develop-
mental continuum. For example, starting as early as 1
year of age, norms exist for the production of classes
of speech sounds (e.g., stop consonants vs. fricatives),
individual sounds within those classes, the ways those
sounds are used in words, syllable structure, and 
so on. Although motorically complex sounds often
appear later than simpler ones, a fixed order does not
necessarily apply. Age norms exist as well for the
acquisition of grammatical structures and various
parts of speech. Failure to acquire speech and lan-
guage according to these norms is considered grounds
for further evaluation or intervention.

Age norms are typically easy to understand, with
respect to performance both at a particular age and
over time. However, their usefulness is limited to
certain types of developmental behaviors or skills.
Moreover, although skills or milestones that fall at
or within age norms may be considered to be normal
or typical, interpretation is more problematic when
performance lies outside those norms. As a result,
measures are typically standardized so that (a) a
child’s performance can be characterized with
respect to other children of the same age or grade
and (b) a comparison of performance across differ-
ent assessment instruments can be made for the
same child.

—Carole E. Gelfer

See also Data Collection; Longitudinal/Repeated Measures
Data
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Applying Ideas on Statistics and Measurement

The following abstract is adapted from Sherry, A.,
Henson, R. K., & Lewis, J. G. (2003). Evaluating
the appropriateness of college-age norms for 
use with adolescents on the NEO Personality
Inventory—Revised. Assessment, 10(1), 71–78.

The NEO Personality Inventory measures
normal personality characteristics and has
demonstrated appropriate score reliability and
validity. Age norms are available for two groups
of individuals, college-age individuals 17 to 20
years old and adults 21 and older. Often, person-
ality instruments normed on older individuals
have been used with adolescent populations. To
examine the appropriateness of this decision, the
current study explored the differences between an
adolescent sample and a college-age sample on
the 30 facets and the five domains of the NEO.
Group differences on the facet and domain scales
were analyzed using discriminant analysis.
Results indicated that the adolescent and college
groups differed on each of the five domains. As
expected, the groups also scored differently when
the aggregated domain-level variables were used
as the outcome measures.

AKAIKE INFORMATION CRITERION

In statistical modeling, one of the main challenges 
is to select a suitable model from a candidate family
to characterize the underlying data. Model selection
criteria provide a useful tool in this regard. A selection
criterion assesses whether a fitted model offers an
optimal balance between goodness-of-fit and parsi-
mony. Ideally, a criterion will identify candidate mod-
els that are either too simplistic to accommodate the
data or unnecessarily complex.

The Akaike information criterion (AIC) was the
first model selection criterion to gain widespread
acceptance. AIC was introduced in 1973 by Hirotogu
Akaike as an extension to the maximum likelihood

principle. Conventionally, maximum likelihood is
applied to estimate the parameters of a model once the
structure of the model has been specified. Akaike’s
seminal idea was to combine estimation and structural
determination into a single procedure.

The minimum AIC procedure is employed as
follows. Given a family of candidate models of vari-
ous structures, each model is fit to the data via maxi-
mum likelihood. An AIC is computed based on each
model fit. The fitted candidate model corresponding
to the minimum value of AIC is then selected.

AIC serves as an estimator of Kullback’s directed
divergence between the generating, or “true,” model
(i.e., the model that presumably gave rise to the data)
and a fitted candidate model. The directed divergence
assesses the disparity or separation between two
statistical models. Thus, when entertaining a family of
fitted candidate models, by selecting the fitted model
corresponding to the minimum value of AIC, one is
hoping to identify the fitted model that is “closest” to
the generating model.

Definition of AIC

Consider a candidate family of models denoted as M1,
M2, . . . , ML. Let θk (k = 1, 2, . . . , L) denote the para-
meter vector for model Mk, and let dk denote the
dimension of model Mk, that is, the number of func-
tionally independent parameters in θk. Let L(θk | y)
denote the likelihood for θk based on the data y, and let
θ̂k denote the maximum likelihood estimate of θk. The
AIC for model Mk is defined as

AICk = −2logL
(

θ̂k⏐y
)

+ 2dk.

The first term in AICk, −2logL(θ̂k⏐y), is based on the
empirical likelihood L(θ̂k⏐y). This term, called the
goodness-of-fit term, will decrease as the conformity
of the fitted model Mk to the data improves. The
second term in AICk, called the penalty term, will
increase in accordance with the complexity of the
model Mk. Models that are too simplistic to accommo-
date the data are associated with large values of the
goodness-of-fit term, whereas models that are unnec-
essarily complex are associated with large values of
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the penalty term. In principle, the fitted candidate
model corresponding to the minimum value of AIC
should provide an optimal tradeoff between fidelity to
the data and parsimony.

The Assumptions 
Underlying the Use of AIC

AIC is applicable in a broad array of modeling
frameworks because its justification requires only
conventional large-sample properties of maximum
likelihood estimators. However, if the sample size n
is small in relation to the model dimension dk (e.g.,
dk ≈ n/2), AICk will be characterized by a large
negative bias. As a result, AICk will tend to undere-
stimate the directed divergence between the generat-
ing model and the fitted candidate model Mk. This
underestimation is potentially problematic in applica-
tions in which the sample size is small relative to the
dimensions of the larger models in the candidate
family. In such settings, AIC may often select a
larger model even though the model may be unnec-
essarily complex and provide a poor description of
the underlying phenomenon. Small-sample variants
of AIC have been developed to adjust for the nega-
tive bias of AIC. The most popular is the “corrected”
AIC (AICc), which was first proposed in 1978 for
the framework of normal linear regression by Nariaki
Sugiura. A decade later, AICc was generalized,
advanced, and popularized in a series of
papers by Clifford M. Hurvich and
Chih-Ling Tsai.

AIC can be used to compare nonnested
models. AIC can also be used to compare
models based on different probability dis-
tributions, such as normal versus Poisson.
However, if the models in the candidate
family are based on different distribu-
tions, all terms in each empirical likeli-
hood must be retained when the values of
AIC are evaluated. (If the models in the
candidate family are based on the same
distribution, terms in the empirical likeli-
hood that do not depend on the data may
be discarded in the AIC computations.)
AIC cannot be used to compare models

based on different transformations of the response
variable.

An Application

The following data set appears in Annette J.
Dobson’s text An Introduction to Generalized Linear
Models (2nd ed.), 2002, pp. 51–53. The response
variable yi consists of the number of deaths from
coronary heart disease in a 5-year age group for men 
in the Hunter region of New South Wales, Australia,
in 1991. Table 1 features the values of yi, the age
groups and the group indices i, the population sizes
ni, and the mortality rates per 100,000 men (i.e., yi /
ni × 100,000).

Figure 1 features a plot of the log of the mortality
rate (per 100,000 men) versus the age group index i.
Dobson notes that the plot is approximately linear.
Thus, if µi = E[yi], the plot might suggest that 
log(µi /ni) could be modeled as a linear function of
the group index i. If the response yi is regarded as a
Poisson random variable, then a generalized linear
model (GLM) of the following form might be postu-
lated for the data:

M1: logµi = logni + α + β1i, yi ∼ Poisson (µi).

However, one could also argue that the plot exhibits
slight curvature for the older age groups and that the
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Table 1 Number of Deaths From Coronary Heart Disease and
Population Sizes by 5-Year Age Groups for Men in the
Hunter Region of New South Wales, Australia, 1991

Number of  Population Mortality 
Group Age group deaths, size, rate per 100,000 
index, i (years) yi ni men, yi /ni × 100,000

1 30–34 1 17,742 5.6

2 35–39 5 16,554 30.2

3 40–44 5 16,059 31.1

4 45–49 12 13,083 91.7

5 50–54 25 10,784 231.8

6 55–59 38 9,645 394.0

7 60–64 54 10,706 504.4

8 65–69 65 9,933 654.4



mean structure of the model should account for this
curvature. Following this reasoning, an alternative
GLM might be postulated that describes log(µi /ni) as
a quadratic function of i:

M2: logµi = logni + α + β1i + β2i
2, yi ~Poisson (µi).

AIC provides a tool for determining which model
is more appropriate, M1 or M2. If the GLM’s M1 and
M2 are fit to the data using PROC GENMOD in SAS
(version 9.1), the empirical log-likelihood logL(θ̂ 1⏐y)
is produced as part of the standard output. For model
M1, we have θ1 = (α,β )′, d1 = 2, logL(θ̂ 1⏐y) = 539.0088,
and AIC1 = −1074.02. For model M2, we have θ2 =
(α,β1,β2)′, d2 = 3, logL(θ̂ 2⏐y) = 544.8068, and AIC2 =
−1083.61. Thus, the minimum AIC procedure favors
the quadratic model, M2.

For model M2, the Wald test based on the null
hypothesis β2 = 0 yields a p value of .0016. Thus, the
Wald test further supports the inclusion of the qua-
dratic term. (The statistics for marginal Wald tests
are also produced as standard output for PROC
GENMOD in SAS.)

We include the Wald p value for the test of β2 = 0
merely for the sake of illustration. In general, the use
of AIC should not be combined with hypothesis

testing, because each tool is formulated according to a
different paradigm.

—Joseph E. Cavanaugh

See also Probability Sampling
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Applying Ideas on Statistics and Measurement

The following abstract is adapted from Weakliem,
D. L. (2004). Introduction to the special issue on
model selection sociological methods research.
Sociological Methods & Research, 33(2), 167–187.

The model selection literature has been gener-
ally poor at reflecting the deep foundations of the
Akaike information criterion (AIC) and at making
appropriate comparisons to the Bayesian informa-
tion criterion (BIC). There is a clear philosophy, 
a sound criterion based in information theory, and
a rigorous statistical foundation for AIC. AIC can be
justified as Bayesian using a “savvy” prior on
models that is a function of sample size and 
the number ofmodel parameters. Furthermore, BIC
can be derived as a non-Bayesian result. Therefore,
arguments about using AIC versus BIC for model
selection cannot be made from a Bayes versus fre-
quentist perspective. The philosophical context of
what is assumed about reality, approximating mod-
els, and the intent of model-based inference should
determine whether AIC or BIC is used. Various
facets of such multimodel inference are presented
here, particularly methods of model averaging.
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ALCOHOL USE INVENTORY

The Alcohol Use Inventory (AUI; Pearson
Assessments, www.pearsonassessments.com/tests/
aui.htm) was designed to assess the nature of and
problems associated with alcohol use. The AUI is a
228-item self-report inventory that comprises 24
scales, including 17 primary scales, 6 second-order
factor skills, and 1 general alcohol involvement scale.
These scales provide a basis for describing the multi-
ple dimensions of alcohol use in individuals 16 years
of age or older who drink to some extent. It describes
the different ways in which individuals use alcohol,
such as the benefits they derive from their alcohol use,
their style of alcohol use, consequences associated
with their use of alcohol, and their degree of concern
and acknowledgment of alcohol use.

The AUI is appropriate for individuals who can
read at a sixth-grade level or higher. Although the AUI
was designed as a self-report inventory, the inventory
items can be read to an individual if the respondent
cannot read at that level. When taking the AUI, the
respondent should be sober and preferably should
have been sober for the 8 hours prior to the test. The
approximate time for administration is 35–60 min-
utes. Administration can take longer if the inventory
items need to be read to the respondent or if the
respondent ponders over items. The AUI can be
administered by pencil and paper or by computer. A
variety of scoring options are available. The AUI can
be scored through computer software, by hand, or
through a mail-in scoring service.

Combinations of the previously mentioned scale
scores can be used to derive scores and develop typolo-
gies and profiles that indicate ways to relate to a client
and help with treatment planning. There are some
exceptions, however, to the use of the AUI for alcohol-
related problems and treatment programs. Even though
the AUI was designed to assess the drinking styles of
problem drinkers, caution is suggested in using the
AUI with individuals convicted of driving under the
influence (DUI). It was found that individuals con-
victed of DUI tended to have lower profiles and that
their results should be interpreted with caution. 

The AUI was also reported as not appropriate for 
pre- and posttreatment administration because of the
historical nature of the test items. However, the AUI
would be appropriate as a baseline measure for a pro-
gram based on outcomes measurement. 

The AUI has a sound basis in research and theory.
It was normed on 1,200 individuals who had been
admitted to a public in-patient alcohol treatment pro-
gram. The AUI also demonstrated good reliability and
presented evidence of validity. Suggested users of the
AUI include psychologists, social workers, chemical
dependency counselors, and physicians who work
with individuals with alcohol problems. They may
find the AUI a useful assessment tool for obtaining
information concerning multiple dimensions of prob-
lem drinking in their clients.

—Thomas O. Williams, Jr.

See also Reliability Theory; Validity Theory
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ALTERNATE ASSESSMENT

Alternate assessment is a generic term for a family of
methods used to assess the academic performance of
students with significant disabilities or limited profi-
ciency with English. A small but meaningful number
of students have disabilities or limited proficiency
with English that make their participation in general
state- and district-wide tests impractical, if not impos-
sible, and likely to result in inaccurate measures of
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their academic achievement. According to the U.S.
Department of Education (USDOE), “An alternate
assessment must be aligned with the State’s content
standards, must yield results separately in both read-
ing/language arts and mathematics, and must be
designed and implemented in a manner that supports
use of the results as an indicator of AYP (adequate
yearly progress).”

Alternate assessments are an important component
of each state’s assessment system and, as such, are
required to meet the federal regulations outlined in
Title I of the Elementary and Secondary Education
Act. Specifically, Title I mandates that “State assess-
ment shall be aligned with the State’s challenging
content and student performance standards and pro-
vide coherent information about student attainment 
of such standards” (§1111[b][3][B]). In 2002, the No
Child Left Behind (NCLB) legislation increased the
federal government’s emphasis on assessment and
accountability systems. Specifically, NCLB requires
annual statewide assessments for all students in
Grades 3–8 and once in high school in reading and
language arts, mathematics, and (by 2007) science.
Moreover, NCLB requires a disaggregated annual
reporting of students’ performance to ensure that all
groups (including students with disabilities and
English language learners) are making adequate
progress toward the goal of all students’ being “profi-
cient” on statewide assessments within the next 12
years.

As noted by Ken Warlick, “The purpose of an alter-
nate assessment should reasonably match, at a mini-
mum, the purpose of the assessment for which it is an
alternate. One might ask, ‘If an alternate assessment is
based on totally different or alternate standards, or a
totally separate curriculum, what is the alternate
assessment an alternate to?’”

Alternate Assessments 
for Students With Disabilities

In 2003, the USDOE reinterpreted the NCLB require-
ments to allow up to 1% of students in states, school
districts, and schools to demonstrate “proficient” per-
formance through participation in statewide alternate

assessment for students with significant cognitive
disabilities. However, this interpretation also requires
that states’ alternate assessments be reliable and valid
measures of students’ achievement of the same rigor-
ous academic content expected of all students. Many
states have struggled to meet these requirements
because (a) the skills and concepts in the state acade-
mic standards were deemed inappropriate or irrele-
vant for students with significant disabilities, resulting
in alternate assessments that focus primarily on func-
tional domains; and (b) the development of the alter-
nate assessment was considered a special education
function and therefore only nominally connected to
the state’s overall assessment system.

In 2005, the USDOE announced a new policy 
with respect to students with disabilities as part of 
the NCLB education reform law. According to this
new policy, states may develop modified academic
achievement standards and use alternate assessments
based on those modified achievement standards for
students with disabilities who are served under the
Individuals with Disabilities Education Act. States
may include proficient scores from such assessments
in making AYP decisions, but those scores will be
capped at 2% of the total tested population. This pro-
vision does not limit how many students may be
assessed against modified achievement standards.
Individualized education program teams will 
decide which individual students should take such an
assessment.

Like the regulations regarding alternate assess-
ments for students with the most significant cognitive
disabilities, the USDOE believes this provision
regarding students served under the Individuals with
Disabilities Education Act will meet the needs of indi-
vidual students while ensuring the goals of NCLB are
achieved. The provision is intended to allow the suc-
cess of a student who takes an alternate assessment
based on modified achievement standards to be
included in calculating school and district perfor-
mance under AYP. This policy is for those students
with disabilities who are expected to make significant
academic progress but, because of their disability, are
not likely to reach grade-level achievement in the
same time frame as all other students. 
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In order to take advantage of the flexibility
provided by the “2% rule,” states are required to
develop modified achievement standards and new
alternate assessment instruments, provide training and
support for individualized education program team
members and teachers, and demonstrate that students
with disabilities have access to the general curriculum
and effective, research-based instruction and interven-
tion. If states meet these requirements, the combina-
tion of alternate assessments based on modified
achievement standards and alternate assessments for
students with significant cognitive disabilities will
allow up to 3% of students to demonstrate their profi-
ciency without taking their state’s general large-scale
assessment.

Alternate Assessment 
for English Language Learners

Title I regulations require that English language
learners be included in large-scale assessments and
accountability “to the extent practicable in the lan-
guage and form most likely to yield accurate and reli-
able information on what such students know and can
do, to determine such students’ mastery of skills in
subjects other than English” [§1111(b)(3); 34C.F.R.
200.4(b)(7)]. Prior to the passage of NCLB, many
states and districts exempted from participation in
large-scale testing those students who had not been in
the United States and in an English language develop-
ment or bilingual program for at least 3 years. When
English language learners are exempted from a gen-
eral large-scale assessment, however, both NCLB and
Title VI mandate that districts and “schools gather
information about the academic progress of the
exempted students that is comparable to the informa-
tion from the large-scale assessment.”

Required Characteristics

According to the 2005 USDOE nonregulatory docu-
ment Alternate Achievement Standards for Students
with the Most Significant Cognitive Disabilities, alter-
nate assessments must meet standards of high technical
quality—validity, reliability, accessibility, objectivity,

and consistency—expected of other educational tests
(i.e., The Standards for Educational and Psychologi-
cal Testing, by the American Educational Research
Association, 1999). In addition, alternate assessments
must have an explicit structure, guidelines for deter-
mining which students may participate, clearly
defined scoring criteria and procedures, and a report
format that communicates student performance in
terms of academic achievement standards.

Approaches to Alternate 
Assessment

Currently, there is no consensus approach to alternate
assessment. Three approaches are commonly used and
are characterized as (a) portfolios, (b) performance
tasks or events, and (c) rating scales. In a review of
states’ alternate assessment practices completed by the
National Center of Education Outcomes (NCEO), 46%
of states indicated they were using some form of port-
folio assessments. Performance and portfolio assess-
ments are appealing because of their potential to
provide rich descriptions of students’ real-life knowl-
edge and skills. Researchers Browder, Fallin, Davis,
and Karvonen, however, have expressed concerns with
performance-based approaches and have suggested
that the technical characteristics of these alternate
assessments may negatively influence students’ and
schools’ outcome scores. Initial data from Kentucky’s
efforts suggest that reliability of scores may be a source
of challenge for states’ portfolio-based alternate
assessments. Challenges to the reliability of ratings
were also observed by states (e.g., Vermont and
Arizona) attempting to use portfolios and performance
assessments as part of their general large-scale assess-
ment systems. These difficulties resulted in states’
inability to publicly report assessment results.
Moreover, to demonstrate adequate alignment to state
standards, performance assessments may need to
include numerous tasks and work samples, resulting in
an extensive and time-consuming assessment process.
Browder and colleagues’ review also identifies student
risk factors (e.g., instability of student behavior or health
status) as potential influences on students’ alternate
assessment results. In the case of on-demand
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performance tasks, fluctuations in student behavior or
physical well-being could potentially result in inaccu-
rate and invalid assessment results.

Extended Reading and Math Tasks, developed by
Tindal and colleagues in 2003, represents a per-
formance task or event approach. Based on curricu-
lum-based measurement technology, this approach
consists of a continuum of tasks that measure
students’ basic skills in reading and mathematics. An
extensive literature on the validity and utility of
curriculum-based measurement for monitoring
students’ academic progress provides support for this
approach. By including assessment tasks at a range of
skill levels, this alternate assessment strategy allows
test users to individualize the assessment by adminis-
tering only those tasks that are considered appropri-
ate to the student’s current skills and instructional
experiences.

The most recent review of state alternate asse-
ssment practices indicates that 30% of states are using
a teacher-completed rating scale for their alternate
assessment for students with disabilities. A substantial
body of evidence on the validity of teachers’ judg-
ments of student behavior and academic performance
provides support for this approach. In addition, alter-
nate assessments in states using rating scales (e.g.,
Idaho and Wisconsin) have been judged as adequately
aligned to state content standards using the nationally
recognized Webb approach to alignment analysis. 

Underlying all the approaches to alternate assess-
ment are (a) the collection of classroom-based
evidence as indicators of knowledge and skills repre-
sentative of academic content standards, (b) a scoring
rubric for evaluating the knowledge and skills, and
(c) a framework for summarizing the level of profi-
ciency exhibited by the collected evidence.

The collection of evidence is a function that consis-
tently is a teacher responsibility. In some cases, evi-
dence is organized in a structured portfolio system
that is submitted to a third party for scoring, whereas
in others it is loosely organized and remains in the
possession of the student’s teacher, who is directly
involved in scoring. The scoring of the knowledge and
skills reflected in the evidence always involves at least
two raters, who use an objective rubric to yield 

item-level and total test scores. The persons involved
in the ratings vary across states; in some cases, educa-
tors within the student’s school do the scoring; in
some cases, scoring is completed in a centralized
scoring center; and in still other cases, a combination
of local and centralized scoring of evidence is
involved. In all cases, significant attention is given to
the interrater reliability of scores. In cases in which all
the scoring is done within a student’s school, states
have implemented both preassessment scorer training
sessions and postassessment monitoring of evidence
collection and scoring practices.

The federal requirements for using the results of
an alternate assessment for determining AYP
resulted in the need to set proficiency standards for
these assessments. Thus, states have had to conduct
standard settings to generate cut scores for reading
and mathematics ratings that correspond to a 3- or 4-
level proficiency framework (e.g., minimal perfor-
mance, basic performance, proficient performance,
and advanced performance) commonly used for tra-
ditional achievement tests. Perhaps the most impor-
tant outcome of a standard setting is not the cut
scores associated with proficiency levels in each
content area but the descriptors of what students who
achieve the various performance levels typically
know and are able to do. By examining the descrip-
tion of typical student performance in a given perfor-
mance level, one can gain an understanding of the
knowledge, skills, and abilities typically held by
students in that performance level and identify things
that a given student is not yet able to perform consis-
tently. This type of information helps teachers com-
municate with others about a student’s progress, next
year’s instructional goals for the student, and the sta-
tus of the student relative to the state’s learning
standards. 

One area of difficulty is the validity and utility of
currently available educational assessments, including
alternate assessments. For example, serious questions
have been raised about using the results of statewide
assessments for (a) monitoring educational perfor-
mance at the levels of student, classroom, school, and
system and (b) making decisions about curriculum and
instruction. In the case of English language learners or
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students with disabilities, narrowing the enacted
curriculum and de-emphasizing other important
educational outcomes (e.g., self-determination, social
skills, or conversational English) may be unintended
consequences of the “new accountability.” Additional
research needs to be conducted to determine the
curricular validity, instructional utility, and effects of
participation in alternate assessments for students
with disabilities and for English language learners.

Concluding Points

The development and use of alternate assessments 
are evolving in a variety of ways across the country.
Recent surveys indicate that states are aligning their
alternate assessment to varying degrees with the gen-
eral education curriculum and content standards. 
The surveys also indicated that a variety of assess-
ment approaches (i.e., direct observation, personal
interview, behavioral rating scales, analysis and review
of progress, and student portfolios) are being used
to evaluate students with severe disabilities. As
indicated by the NCEO survey and the authors’
experiences, it appears that a majority of states are
borrowing heavily from technology used in the devel-
opment of behavior rating scales, portfolios, or per-
formance assessments. These technologies are based
on teacher observations and the collection of student
work samples. These methods, if used appropriately,
have the potential to offer statistically sound results.
Although relatively little research has been published
under the name of alternate assessment, one should
not conclude that there is not a research base for
alternate assessments. In fact, the conceptual and
measurement foundations for alternate assessment
are well developed and are based on years of
research, in both education and psychology, covering
performance assessment, behavioral assessment,
developmental assessment, structured observations,
and clinical assessment. Although these assessment
methods differ somewhat, they all (a) are based on
some direct or indirect observation of students, (b) are
criterion referenced or domain referenced in nature,
and (c) require summary judgments about the synthe-
sis of data and the meaning of the scores or results.

This last quality, the use of judgments by knowledge-
able assessors, is the empirical foundation for alter-
nate assessment in many states. A sound research
literature exists that supports the fact that teachers
can be highly reliable judges of students’ academic
functioning. 

In summary, information collected through alter-
nate assessments is likely to be different from that
collected for students who take large-scale standard-
ized tests, but if it is well aligned with the same
academic standards, performance on an alternate
assessment can serve as a meaningful index of student
progress toward achieving the essential skills and
knowledge expected of all students.

—Stephen N. Elliott and Andrew T. Roach

See also Ability Tests; Text Analysis
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ALTERNATIVE HYPOTHESIS

The term alternative hypothesis describes a critical
element of hypothesis testing, a popular statistical
procedure used by researchers in a wide array of
disciplines to evaluate null hypotheses. Although
hypothesis testing involves other important elements
(such as the level of significance and power), the alter-
native hypothesis is needed so that the probability
associated with the sample data can be computed. If
this probability is quite low, the null hypothesis—
which initially is presumed to be true—is rejected.
Without an alternative hypothesis, there would be no
way to compute the sample’s probability of occurring,
and thus the hypothesis testing procedure would not
work.

The Alternative and 
Null Hypotheses: Similarities 

and Differences

Both the alternative hypothesis (symbolized as H1 or
as Ha) and the null hypothesis (symbolized as H0) are
statements as to the possible state of affairs in the
population(s) of interest. These statements are similar
in two other respects: In any given study, both the
null and alternative hypotheses must deal with the
same statistical concept. Thus, if the null hypothesis
deals with the difference between two population
means (µ1 and µ2), then the alternative hypothesis
must also deal with the difference between µ1 and µ2.
Moreover, in the usual applied situation, neither H1

nor H0 can be proven true on the basis of the study’s
data.

Although the alternative hypothesis and the null
hypothesis are alike in certain ways, they differ in
three important ways. First, H1 and H0 are “opposites”

in the sense that they say different things about a
study’s population(s). Second, the hypothesis testing
procedure is focused more on the null hypothesis
than on the alternative hypothesis. The null hypothe-
sis is always stated first, and it is H0 that will or will
not be rejected after the sample data are analyzed.
Finally, it is the alternative hypothesis (and not H0)
that causes a statistical test to be either one-tailed or
two-tailed.

Directional and Nondirectional
Alternative Hypotheses

The directionality of the alternative hypothesis
determines whether a statistical test is conducted in a
one-tailed or a two-tailed manner. The alternative
hypothesis is said to be directional if it stipulates that
the population parameter is positioned on one partic-
ular side of the number specified in H0. For example,
the alternative hypothesis would be directional if it
said that a population mean is greater than 20 while
the null hypothesis said that 20 is the value of the pop-
ulation mean. Stated symbolically, this situation could
be summarized as follows:

H0: µ = 20

H1: µ > 20.

Of course, the alternative hypothesis in this
example would also be directional if it were set up to
say H1: µ < 20. Regardless of which way the direc-
tional H1 points, such alternative hypotheses lead to
one-tailed tests. This is because the critical region is
positioned entirely in one tail of the test statistic’s
sampling distribution.

The alternative hypothesis is said to be nondirec-
tional if it stipulates that the population parameter is
positioned on either side of the number specified in
H0. For example, the alternative hypothesis would be
nondirectional if it says that a population correlation,
ρ, has either a positive or negative value while the
null hypothesis says that ρ is equal to zero. Stated
symbolically, this situation could be summarized as
follows:
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H0: ρ = 0

H1: ρ ≠ 0

Nondirectional alternative hypotheses lead to 
two-tailed tests. This is because the critical region is
positioned in both tails of the test statistic’s sampling
distribution.

It should be noted that two-tailed tests require a
larger difference between sample statistics and the
hypothesized population parameter in order for the
null hypothesis to be rejected. This is the case because
the threshold for the critical region will be positioned
closer to the center of the test statistic’s sampling dis-
tribution if that critical region is located entirely in
one tail. Because the edges of the critical region are
located farther away from the middle of the sampling
distribution, some people consider nondirectional
alternative hypotheses to be more “conservative” than
directional ones.

When HH1 Should Be Specified

For the hypothesis testing procedure to operate prop-
erly, the alternative hypothesis must be specified prior
to the time any sample data are collected and exam-
ined. Unfortunately, some applied researchers violate
this rule by switching to a one-tailed test after finding
out that they are unable to reject H0 with H1 set up in
a nondirectional fashion. Such a switch is considered
to be a breach of statistical ethics, for the computed
probability that is used to decide whether or not H0

should be rejected is not accurate if H1 is changed in
midstream. (It would be just as “illegal,” of course, for
a researcher to change H0 so as to get a desirable
result—usually a reject decision—after initially ana-
lyzing the data and finding out that a fail-to-reject
decision is in the offing.)

—Dong-Ho Park

See also Null Hypothesis Significance Testing; Type I Error
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Applying Ideas on Statistics and Measurement

The following abstract is adapted from Romero,
D. W. (2003). Divisive primaries and the House
district vote: A pooled analysis. American Politics
Research, 31(2), 178–190. 

The alternative hypothesis in a research study is
the one that presents the “foil” or the “educated
guess” the researcher makes regarding the exact
nature of an absence of a relationship between vari-
ables. In this example, the authors point out how
the political concept of the divisive primary has
fluctuated as investigators have pursued a variety of
theoretical and methodological debates. Although
most recent studies find that divisive primariesharm
general election outcomes, some claim that this
effect is spurious, an artifact of uncontrolled elec-
toral prospects phenomena. David Romero argues
that this claim is debatable because it restson ques-
tionable conceptual and model constructs and
evidence inconsistent with an investigation that
controls for the phenomena central to the spurious
effect claim. He shows that null and alternative
hypothesis findings turn on an unfeatured design
characteristic, pooling election years.

AMERICAN DOCTORAL

DISSERTATIONS

American Doctoral Dissertations (ADD) is an annual
hardcover publication by University Microfilms
International (UMI; Ann Arbor, Michigan) for the
Association of Research Libraries. As a reference
tool, the ADD provides citations to nearly all disserta-
tions written in a given academic year within the
United States. In addition to an author index, it pro-
vides full bibliographic citations for each disserta-
tion, grouped by subject and by institution. Citations
include title of the dissertation, name of the author,
degree awarded, awarding institution, year of comple-
tion, and UMI order number.
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Systematic listing of doctoral dissertations in 
the United States was begun by the Library of
Congress in 1912 in an annual publication titled List
of American Doctoral Dissertations Printed, which
was discontinued in 1938. Doctoral Dissertations
Accepted byAmerican Universities (1933/34–1955/56)
and the Index to American Doctoral Dissertations
(1955/56–1963/64) were two subsequent annual pub-
lications generated by the H. W. Wilson Company.
The ADD was introduced in 1934 by Xerox
University Microfilms.

The ADD is compiled from the ProQuest
Information and Learning database as well as infor-
mation obtained directly from American universi-
ties. The ADD differs from Dissertation Abstracts
International (DAI) in that it does not include
abstracts for each dissertation and does not cover
international dissertations. However, the ADD is more
comprehensive than the DAI because the ADD
includes titles of unpublished dissertations from the
ProQuest database.

Currently, the most enhanced version of the ADD
and the DAI is ProQuest Digital Dissertations, which
is a database of more than 2 million entries for doc-
toral dissertations and master’s theses submitted from
more than 1,000 universities and covering the years
1861 to date. ProQuest Digital Dissertations provides
the citation, abstract, and first 24 pages of disser-
tations submitted to UMI within the preceding 2 years.
Full versions of these manuscripts and older disser-
tations may be obtained from UMI in a variety of 
formats for a fee. Many academic institutions in the
United States provide free access to this database for
their faculty, staff, and students.

—Marjan Ghahramanlou-Holloway
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for Psychological Science
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AMERICAN PSYCHOLOGICAL

ASSOCIATION

The American Psychological Association (APA) is 
the world’s largest association of psychologists and is
the largest scientific and professional association that
represents psychology in the United States. The mem-
bership of the APA includes more than 150,000
researchers, educators, clinicians, consultants, and
students. The APA’s organizational structure includes
55 divisions representing various subfields in psychol-
ogy and 60 state, provincial, and territorial psycholog-
ical associations. The association maintains its
headquarters in Washington, DC.

Mission

The mission of the APA is to advance psychology as 
a science and profession and as a means of promot-
ing health, education, and human welfare through the
application of science to practice and policy. To achieve
this goal, the APA (a) promotes research in psychology
and the improvement of research methods and condi-
tions, (b) encourages and advocates for psychology in
all its branches and forums, (c) establishes the highest
standards of professional conduct and ethics for
members of the APA, (d) promotes ongoing improve-
ment of the qualifications and usefulness of psy-
chologists through education and recognition of
achievement, and (e) promotes the dissemination of
scientific knowledge through meetings, professional
contacts, reports, papers, discussions, and publications.

Organizational Structure

The APA governance structure employs a complex
system of checks and balances that can be difficult 
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to comprehend. The APA is chartered in the District
of Columbia, and because the charter trumps the
association’s bylaws, the charter limits what the
organization can do in the public policy and advo-
cacy realm to promoting psychology in the public
interest. A constitution and bylaws were ratified by
the membership more than 50 years ago and remain
virtually unchanged today. The primary structural
components of the APA include the council of rep-
resentatives, the board of directors, officers, stand-
ing boards and committees, and the central office
staff, including a chief executive officer. The
members of the APA exercise their power through
direct vote and through the election of members to
serve on the council of representatives. The primary
constituencies from which the representatives are
elected are the divisions, which are an integral part
of the association, and the state and provincial
psychological associations, which are affiliates. The
APA divisions include a Division of Evaluation,
Measurement and Statistics (Division 5). Much of
the work of the Association is done on a volunteer
basis by the members of the boards, committees,
and ad hoc task forces and working groups. The
committees carry out a wide variety of tasks, as
indicated by some of their titles: ethics, psychologi-
cal tests and assessments, membership, and accred-
itation, to name a few.

The chief executive officer is responsible for the
management and staffing of the central office and for
running the business aspects of the APA. With nearly
500 employees, the central office provides staff
support for all boards and committees; runs one of the
largest scientific publishing houses in the world;
invests in stocks; manages real estate; and interacts
with private, state, and federal agencies and organi-
zations. Member dues represent only 16% of the rev-
enues needed to run the APA.

—Thomas Kubiszyn

See also Association for Psychological Science
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Applying Ideas on Statistics and Measurement

The following abstract is adapted from Finch, S.,
Thomason, N., and Cumming, G. (2002). Past and
future American Psychological Association guide-
lines for statistical practice. Theory & Psychology,
12(6), 825–853. 

The publication guidelines of the American
Psychological Association (APA) have been the
discipline’s de facto standards since 1929, and
this article documents their advice for authors
about statistical practice. Although the advice has
been extended with each revision of the guide-
lines, it has largely focused on null hypothesis sig-
nificance testing (NHST) to the exclusion of other
statistical methods. In parallel, Sue Finch and her
colleagues review more than 40 years of critiques
of NHST in psychology. Until now, the critiques
have had little impact on the APA guidelines. 
The guidelines are influential in broadly shaping
statistical practice although in some cases, recom-
mended reporting practices are not closely fol-
lowed. The guidelines have an important role to
play in reform of statistical practice in psychology.
Following the report of the APA’s Task Force on
Statistical Inference, we propose that future revi-
sions of the guidelines reflect a broader philoso-
phy of analysis and inference, provide detailed
statistical requirements for reporting research, and
directly address concerns about NHST. In addi-
tion, the APA needs to develop ways to ensure
that its editors succeed in their leadership role in
achieving essential reform.

AMERICAN PSYCHOLOGICAL SOCIETY

See ASSOCIATION FOR PSYCHOLOGICAL SCIENCE

AMERICAN STATISTICAL ASSOCIATION

The American Statistical Association (ASA) is a non-
profit organization devoted to the promotion of statis-
tical practice, applications, and research. Its mission
includes improving statistical education, fostering
excellence in the statistics profession, and enhancing
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human welfare. Established in 1839, the ASA
currently has 19,000 members in the United States,
Canada, and worldwide, and more than 75 chapters
and 20 specialized sections. ASA members in govern-
ment, academia, and the private sector work in diverse
areas, including environmental risk assessment, med-
icine, computing, and social programs.

Formation

The ASA was founded on a commitment to statistical
science in service to the public interest, particularly
in areas related to public health. The inaugural meet-
ing was held in Boston, Massachusetts, with five
founding members: William Cogswell (teacher and
genealogist), Richard Fletcher (lawyer and U.S. con-
gressman), John Dix Fisher (physician), Oliver
Peabody (lawyer, clergyman, and editor), and Lemuel
Shattuck (statistician, genealogist, and publisher). By
1841, the ASA had more than 100 members, primar-
ily in the Boston area; its early membership included
Andrew Carnegie, Alexander Graham Bell, and
Florence Nightingale. By 1898, the ASA was recog-
nized as a national organization, and membership
swelled to more than 500. It is now the largest profes-
sional statistical association in the world.

Publications

The ASA publishes refereed journals, books, and
newsletters devoted to issues relevant to statistical
research and practice. The Journal of the American
Statistical Association (founded in 1888 as
Publications of the American Statistical Association)
is one of the leading journals in the statistical
sciences. Biometrics Bulletin was introduced in 
1945 to promote the use of statistics in the biological
sciences. Technometrics, with a focus on statistics
applications in the physical, chemical, and engineer-
ing sciences, was launched in 1959. In 1976, with the
American Educational Research Association, the ASA
launched the Journal of Educational & Behavioral
Statistics. Other ASA publications include the Journal
of Business & Economic Statistics (1983), the Journal
of Computational & Graphical Statistics (1992), the

Journal of Agricultural, Biological & Environmental
Statistics (1996), and the Journal of Statistical
Education (1999). An annual Current Index for
Statistics was introduced in 1975.

Annual Meetings

The ASA hosts annual meetings, symposia, and
research conferences. Joint Statistical Meetings are
held in conjunction with International Biometric
Society, the Institute of Mathematical Statistics, and
the Statistical Society of Canada and attract more 
than 5,000 delegates. Activities of the Joint Statistical
Meetings include oral presentations, panel sessions,
poster presentations, career placement services, com-
mittee meetings, and networking opportunities.

Awards and Educational Programs

The ASA offers research grant programs (cosponsored
by the National Science Foundation) and numerous
scholarships and awards, including the Statistics
in Chemistry Award, the Outstanding Statistical
Application Award, and the Gertrude Cox Scholarship,
awarded annually to encourage women to enter the
statistics professions. Through the Center for Statistics
Education, the ASA offers workshops, short courses,
and internships, including support for graduate and
professional education for teachers of kindergarten
through Grade 12.

—Lisa M. Given

See also American Psychological Association; Association for
Psychological Science; Journal of the American Statistical
Association

Further Reading

American Statistical Association Web site: www.amstat.org

AMERICANS WITH DISABILITIES ACT

Patterned largely after Section 504 of the Rehabil-
itation Act, the Americans with Disabilities Act 
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(ADA; 42 U.S.C. §§ 12101 et seq.) protects the
disabled by imposing far-reaching obligations on
private-sector employers, public services and accom-
modations, and transportation. The ADA provides a
comprehensive federal mandate to eliminate discrimi-
nation against people with disabilities and provides
“clear, strong, consistent and enforceable standards”
(§ 12101(b)(2)) for doing so. The ADA’s broad defini-
tion of a disability is comparable to the one in Section
504: “(a) a physical or mental impairment that substan-
tially limits one or more of the major life activities; 
(b) a record of such an impairment; or (c) being
regarded as having such an impairment (§ 12102(2)).
Further, like Section 504, “[M]ajor life activities”
include caring for oneself, hearing, walking, speaking,
seeing, breathing, and learning. As with Section 504,
the ADA does not require one to have a certificate from
a doctor or a psychologist in order to be covered.

The ADA specifically excludes a variety of
individuals, most notably those who use illegal
drugs (§ 12210). The ADA also specifically excludes
transvestites (§ 12208); homosexuals and bisexuals
(§ 12211(a)); transsexuals, pedophiles, exhibitionists,
voyeurs, and those with sexual behavior disorders
(§ 12211(b)); and those with conditions such as psy-
choactive substance use disorders stemming from
current illegal use of drugs (§ 12211(c)). However, the
ADA amends Section 504 in that individuals 
who have successfully completed drug treatment or
have otherwise been rehabilitated and are no longer
engaged in illegal drug use and who have been “erro-
neously” regarded as being drug users are covered if
they are no longer using illegal drugs (§ 12110). The
ADA permits drug testing by employers to ensure 
that workers are in compliance with the Drug-
Free Workplace Act of 1988 (41 U.S.C. Sec. 701).
Although it permits employers to prohibit the use of
illegal drugs or alcohol in the workplace, the ADA is
less clear about the status of alcoholics; it appears that
the protections afforded rehabilitated drug users
extend to recovering alcoholics.

The ADA addresses three major areas: First, it
addresses employment in the private sector and is
directly applicable to private schools and colleges.
Second, it addresses state and local governments both

as employers and as providers of public services,
including transportation, and part of the law applies to
public educational institutions. Insofar as the reason-
able accommodations requirements in these provi-
sions imply academic program accommodations,
qualified students with disabilities can participate 
in educational institutions at all levels. Third, it deals
with private sector public accommodations in build-
ings and transportation services, and so it may apply
to schools and colleges that provide public accommo-
dations. Under its miscellaneous provisions, the ADA
stipulates that it cannot be construed as applying a
lesser standard than that under Section 504 and its
regulations.

—Charles J. Russo

Further Reading

Americans with Disabilities Act of 1990, 42 U.S.C. §§ 12101
et seq. 

Drug-Free Workplace Act of 1988, 41 U.S.C. Sec. 701 et seq. 
Miles, A. S., Russo, C. J., & Gordon, W. M. (1991). The rea-

sonable accommodations provisions of the Americans with
Disabilities Act. Education Law Reporter, 69(1), 1–8.

Osborne, A. G., & Russo, C. J. (2006). Special education and
the law: A guide for practitioners (2nd ed.). Thousand
Oaks, CA: Corwin Press.

Council for Exceptional Children: http://www.cec.sped.org
U.S. Department of Education (updates on regulations,

articles, and other general information on the Individuals
with Disabilities Education Act and special education):
http://www.ed.gov/offices/OSERS/IDEA/

U.S. Department of Education, (information from the federal
Office of Special Education Programs): http://www.ed.gov/
about/offices/list/osers/osep/index.html?src=mr

Applying Ideas on Statistics and Measurement

The following abstract is adapted from Harrison,
T. C. (2002). Has the Americans With Disabilities
Act made a difference? A policy analysis of qual-
ity of life in the post-Americans With Disabilities
Act era. Policy, Politics, & Nursing Practice, 3(4),
333–347. 

A major challenge in any policy program is to
evaluate its effectiveness. One such policy, the 
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Americans with Disabilities Act (ADA), was
signed more than 10 years ago. Policymakers
hoped to enable persons with disabilities to com-
bat social barriers such as unemployment by
preventing discrimination. It has been the most
comprehensive piece of legislation for persons
with disabilities in the United States, but the
effects of the ADA have been debatable. This arti-
cle evaluates the effect of the ADA on quality of
life for persons with disabilities and offers sugges-
tions for health care policy.

ANALYSIS OF COVARIANCE

(ANCOVA)

The analysis of covariance (ANCOVA) can be used to
test the null hypothesis of the equality of two or more
population means. Alternatively, it can be used in the
construction of confidence intervals on differences
between means. Although the analysis of variance
(ANOVA) is also used for these purposes, ANCOVA
has two major advantages over ANOVA in random-
ized group experiments. First, it generally has higher
power. Second, it reduces bias associated with chance
differences between groups that exist before the
experiment is carried out. These advantages are real-
ized because measurements on one or more nuisance
variables are incorporated into the analysis in such 
a way that (a) the ANCOVA error term is usually
smaller (often dramatically so) than the corresponding
ANOVA error term and (b) the dependent variable
means are adjusted to partially account for chance
pretreatment differences between the groups. Hence,
nuisance variables play a role in both inferential and
descriptive aspects of ANCOVA.

A nuisance variable is defined as a variable that is
known to be related to the dependent variable but is of
no experimental interest. Suppose, for example, that
there is interest in comparing two methods of training
workers to perform complex repairs on electronic
components; the dependent variable (Y) measures
repair proficiency. Two groups are formed using ran-
dom assignment, and reading skill measurements (X)
are obtained. Each group is then exposed to one of

two methods of training. It is known that reading skill
is related to performance on the dependent variable,
but this relationship is not the focus of the study.
Rather, the major focus is whether the two training
methods have a differential effect. If some of the
within-group variation on the dependent variable is
related to reading skill, it is of interest to control for
this nuisance variable because it contributes to the
error (i.e., within-group) variance. Power is increased
whenever a source of nuisance variation is removed
from the error variance estimate. This can be accom-
plished using ANCOVA.

Nuisance variables are usually called covariates in
the context of ANCOVA. Covariates may be variables
that measure constructs that differ from the construct
measured by the dependent variable, or they may
measure the same construct as the dependent variable
does (as in the case of a multiple group pretest-
posttest design). In either case, they should be mea-
sured before the treatments are applied.

Although ANCOVA is used with several types 
of research design, it (or the equivalent regression
model) is generally most successful with randomi-
zed experiments and regression-discontinuity quasi-
experiments. Although ANCOVA continues to be
widely used in the analysis of observational studies,
these designs present special problems that are fre-
quently better handled using other approaches. A
strong case can be made for analyzing observational
studies using propensity score methods instead of or
in combination with modified versions of ANCOVA.

Comparison of ANOVA and ANCOVA

The data presented in Table 1 were collected in a
randomized groups pretest-posttest experiment that
contained three groups (n1 = 10, n2 = 12, n3 = 12). The
purpose of the experiment was to evaluate whether
there are differential effects of three training condi-
tions (designated I, II, and III in Table 1) applied to
children diagnosed with Down syndrome. Pretest and
posttest scores were obtained on a measure known as
the Doman-Delacato Profile. The pretest measure was
used as the covariate (X), and the posttest was used as
the dependent variable (Y). Key differences between
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ANOVA and ANCOVA applied to these data are
described below.

OOnnee--FFaaccttoorr  AANNOOVVAA

Essential descriptive statistics relevant to ANOVA
include the sample means on the dependent variable.
These means are Y1

_
= 32.15, Y2

_
= 38.77, and Y3

_
= 33.82.

An informal inspection of these means (without the
aid of inferential methods) might lead one to conclude
that the second treatment is the most effective. After
all, the mean for this group is almost seven points

higher than is the mean for the first group. But, if one
were to also inspect the means for the three groups on
the pretest variable X, the picture would not seem so
clear. These means are X1

_
= 28.70, X2

_
= 35.14, X3

_
=

30.95. Notice that the rank order of the three means on
X is the same as the order of the three means on Y.
Further, the sizes of the mean differences are about the
same on both X and Y. The interpretation of the
descriptive results on the dependent variable is
clouded by the annoyingly large differences between
the means on the pretest variable. The pattern of the
pretest differences strongly suggests that the posttest
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Table 1 Comparison of ANOVA and ANCOVA Summary Tables and Descriptive Statistics Example Data 

Treatment

I II III

X Y X Y X Y

35 39.5 52 60 35 39.5
32 35 12 12 48 54
15 18 48 56 44 52
46 54 48 50 18 18
38 42.5 13 15 33.5 36.5
6 10.5 39.5 42 23 23

38 38 17 17 29 33
16 17 38 39.5 9 9
29 32 40 42 32 33
32 35 50 60 37 41

29 33 32 33

ANOVA summary_______________________________________
Source SS df MS F_______________________________________

Among 253.16 2 126.6 .56
Within 6536.34 29 225.4
Total 6789.50 31

Sample means____________
Y
–

1 = 32.15
Y
–

2 = 38.77
Y
–

3 = 33.82____________

ANCOVA summary___________________________________________
Source SS df MS F___________________________________________

Adj. among 4.64 2 2.32 .47
Resid. within 137.25 28 4.90
Resid. total 141.89 30

Sample adjusted means___________________
Y
–

1 adj. = 35.6
Y
–

2 adj. = 34.8
Y
–

3 adj. = 34.7___________________

Notes: I, II, and III represent the training conditions tested; X = pretest scores on Doman-Delacato Profile (covariate); Y = posttest
scores on Doman-Delacato Profile (dependent variable); SS = sum of squares; df = degree of freedom; MS = mean square; F = Fisher’s
F ratio; adj. = adjusted; Resid. = residual. 



results are simply a reflection of differences that
existed before the treatments were carried out. In 
this example, random assignment resulted in groups
that have substantial pretest differences. Because the 
differences do not appear to be trivial, it is likely 
that the researcher would like to know the answer to
the following question: “What would the means on
the posttest have been if the pretest means had been
exactly equal?” ANCOVA provides an answer to this
question.

OOnnee--FFaaccttoorr  AANNCCOOVVAA

Just as the ANOVA F test applies to the means
associated with the different treatment conditions,
the ANCOVA F test applies to the “adjusted” treat-
ment means. The adjusted means are estimates of
what the means on Y would be if all the group means
on X were equal to the grand covariate mean. The
grand covariate mean is simply the average X score
obtained by summing all X scores in the whole exper-
iment and dividing by the total number of X scores. (It
is sometimes denoted as X

_
. . .) In the case of the

example data, X
_

. . = 31.69. Hence, ANCOVA
attempts to answer the following question: “What
would the means on Y have been if each group had a
mean score on X of 31.69?” ANCOVA provides the
following adjusted mean estimates:

Y
_

1adj = 35.56, Y
_

2adj = 34.84, and Y
_

3adj = 34.65.

A comparison of the unadjusted means with the
adjusted means indicates that the adjustment pro-
cess has substantially changed the means. The
adjusted means remove most of the descriptive ambi-
guity caused by the pretest differences.

Adjustment to the means in this example is sub-
stantial, but this is not always the case. The amount of
adjustment depends on the size of the mean differ-
ences on the covariate and the degree of relationship
between the covariate and the dependent variable.
There will be no adjustment whatsoever if either (a)
there are no differences among the covariate means or
(b) there is no linear relationship between the covari-
ate and the dependent variable. Large differences

among covariate means are likely in randomized
experiments only if the sample sizes are small (as in
the example). Consequently, there is likely to be very
little (if any) adjustment of means in large clinical
trials or other large randomized groups experiments.
But this does not mean that there is no reason to 
use ANCOVA in place of ANOVA with large experi-
ments. Indeed, the major justification for using
ANCOVA rather than ANOVA in randomized experi-
ments is not mean adjustment.

The major reason to prefer ANCOVA over ANOVA
is that it is likely to provide a smaller error term. This
is important with respect to both the power of hypoth-
esis tests and the width of confidence intervals. These
advantages will be large when the within-group linear
relationship between X and Y is substantial.

Consider the example data. The error mean square
associated with ANOVA on Y is 225, whereas the error
mean square associated with ANCOVA is only 4.9. If
the power for detecting the maximum difference
between the three population means is set at
5 points, the power estimate for ANOVA is only .09;
the corresponding power estimate for ANCOVA is
more than .99. These data can also be analyzed using
other methods of analysis (including the split-plot
ANOVA and the one-factor ANOVA applied to change
scores), but ANCOVA is usually the method of choice
because it generally has higher power. The power
advantage of ANCOVA in this experiment is rather
dramatic because the pretest (covariate) is very highly
correlated with the posttest (dependent variable).
Pretests are almost always excellent covariates. There
is no requirement, however, that the covariate be a
pretest measure. In most randomized groups designs,
some easily measured variable that is correlated with
but different from the dependent variable is used as the
covariate. Sometimes scores on multiple nuisance vari-
ables are available. In this case, all nuisance variables
can be employed simultaneously as covariates in what
is known as a multiple analysis of covariance.

Assumptions and Design Issues

Several assumptions and design aspects are at the
foundation of ANCOVA. Strong inferences from
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ANCOVA are most easily justified when (a) random
assignment is used to form the comparison groups,
(b) the covariate(s) is measured before treatments are
applied, (c) the individual regression slopes within the
groups are homogeneous, (d) the relationship between
the covariate and the dependent variable is linear, and
(e) the conventional assumptions associated with
parametric tests (i.e., independence of errors, homo-
geneous error distributions, and normally distributed
error distributions) are approximately met.

The first two items in this list are easily confirmed
design issues. The third issue (homogeneity of regres-
sion slopes assumption) should be evaluated when-
ever ANCOVA is applied. The homogeneity of slopes
assumption states that the slope of Y on X is the same
within each individual treatment population. When
the individual slopes are not the same, both the
descriptive and the inferential aspects of the analysis
are suspect. If the slopes are not the same, the size 
of the treatment effect is a function of the value of 
the covariate, but the results of ANCOVA will not
acknowledge this important fact.

When any of the design aspects or assumptions 
are incompatible with the nature of the study, remedial
solutions are available. These include modifications
of ANCOVA and alternative methods of analysis that
either correct for the problems or are less sensitive 
to them.

—Bradley E. Huitema

See also Analysis of Variance (ANOVA)

Further Reading

Huitema, B. E. (in preparation). The analysis of covariance
and alternatives: Statistical methods for experiments,
quasi-experiments, and observational studies (2nd ed.).
Hoboken, NJ: Wiley.

Maxwell, S. E., & Delaney, H. D. (2004). Designing experi-
ments and analyzing data: A model comparison perspec-
tive (2nd ed.). Mahwah, NJ: Erlbaum.

McKean, J. W., & Vidmar, T. J. (1994). A comparison of two
rank-based methods for the analysis of linear models.
American Statistician, 48, 220–229.

Rubin, D. B. (1997). Estimating causal effects from large data
sets using propensity scores. Annals of Internal Medicine,
127, 757–763.

Visual Statistics with Multimedia, an online tutorial that cov-
ers ANCOVA: http://pages.infinit.net/rlevesqu/spss.htm 

Web-based software that performs both traditional ANCOVA
and a more recently developed, robust ANCOVA (based on
the work of McKean & Vidmar, 1994): www.stat.wmich
.edu/slab/RGLM/. Click the Online Resources button
under the Site Guide, and then click on RGLM.

ANALYSIS OF VARIANCE (ANOVA)

Analysis of variance (ANOVA) was developed by
Ronald A. Fisher in the 1930s (although the name
“analysis of variance” came later from John W.
Tukey). ANOVA refers to a family of statistical proce-
dures that use the F test to test the overall fit of a lin-
ear model to the observed data. Although typically
associated with the analysis of experimental research
designs in which categorical independent variables
are manipulated to see the effect (if any) on a contin-
uous dependent variable, these designs are merely
special cases of a general linear model in which the
categorical independent variables are expressed 
as dummy variables. As such, ANOVA embodies a
family of tests that are special cases of linear regres-
sion in which the linear model is defined in terms of
group means. The resulting F test is, therefore, an
overall test of whether group means differ across
levels of the categorical independent variable or 
variables.

Different Types of ANOVA

ANOVA can be applied to a variety of research
designs and takes specific names that reflect the
design to which it has been applied. The computa-
tional details of the analysis become more complex
with the design, but the essence of the test remains the
same. The first distinction that is made is in 
the number of independent variables in the research
design. If there is simply one independent variable,
then the ANOVA is called a one-way ANOVA. If two
independent variables have been manipulated in the
research, then a two-way ANOVA can be used to ana-
lyze the data; likewise if three independent variables
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have been manipulated, a three-way ANOVA is appro-
priate. The logic of the test extends to any number of
independent variables; however, for ease of interpreta-
tion, researchers rarely go beyond a three-way
ANOVA.

The second distinction that needs to be made is
whether data in different conditions are independent
or related. If data representing different levels of an
independent variable are independent (i.e., collected
from different entities), then an independent ANOVA
can be used (also known as a between-groups
ANOVA). If two independent variables have been
used and all levels of all variables contain data 
from different entities, then a two-way independent
ANOVA could be employed, and so on. When data are
related—for example, when different entities have
provided data for all levels of an independent variable
or all levels of several independent variables—then a
repeated measures ANOVA (also known as within-
subjects ANOVA) can be employed. As with indepen-
dent designs, it is possible to have one-way, two-way,
three-way, n-way repeated measures ANOVAs. A final
type of ANOVA is used when a mixture of indepen-
dent and related data have been collected. These
mixed designs require at least two independent vari-
ables, one of which has been manipulated using dif-
ferent entities (and so data are independent) and the
other of which has been manipulated using the same
entities (data are related). In these situations, a mixed
ANOVA is used. It is possible to combine different
numbers of independent variables measured using 
different entities or the same entities to come up 
with three-way, four-way, or n-way mixed ANOVAs.
ANOVAs involving more than one independent vari-
able are known as factorial ANOVAs.

Similarities Among Different ANOVAs

All the ANOVAs above have some common features.
All of them produce F tests that are the ratio of the
variance explained or accounted for by a particular
effect compared to the variance that cannot be
explained by that effect (i.e., error variance). The
computational details of a simple ANOVA are
described in the entry titled “One-Way Analysis of

Variance.” In experimental scenarios, the F test can be
thought of as the ratio of the experimental effect to the
individual differences in performance. The observed
value of F is compared with critical values of F from
a special distribution known as the F distribution,
which represents the values of F that can be expected
at certain levels of probability. If the observed value
exceeds the critical value for a small probability (typ-
ically 0.05), we tend to infer that the model is a 
significant fit of the observed data or, in the case of
experiments, that the experimental manipulation has
had a significant effect on performance.

Differences Among ANOVAs

The main difference among ANOVAs is the effects
that they produce. In an ANOVA with one indepen-
dent variable, a single value of F is produced that tests
the effect of that variable. In factorial ANOVAs, mul-
tiple Fs are produced: one for each effect and one for
every combination of effects. The entry “One-Way
Analysis of Variance” describes an example about the
effect of mood induction on the number of items
people would generate when asked to list as many
items as they could that needed checking before the
people left on holiday. This experiment involved
groups reflecting different levels of the independent
variable: negative mood, positive mood, and no mood
induction. In the study proper, a second independ-
ent variable related to whether participants were
instructed to generate as many items as they could or
to generate items until they felt like stopping. This
second independent variable could be called the stop
rule and had two levels: “as many as can” and “feel
like stopping.” This experiment requires a factorial
ANOVA, and the result would be an F ratio for the
effect of mood (this is known as a main effect), a dif-
ferent F ratio for the main effect of the stop rule, and
a third F ratio representing the combined effect of
mood and the stop rule, known as the mood-by-stop-
rule interaction.

Regardless of whether the factorial ANOVA is inde-
pendent, repeated measures, or mixed design, the result
is the same: F associated with each main effect, and Fs
associated with each interaction term. Sticking with the
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example above, if we added a third variable, such as
gender, into the design, we would end up with three
main effects: (a) mood, (b) stop rule, and (c) gender.

Three interaction terms involving two variables
(known as two-way interactions) would result in the
following main effects:

1. Mood × Stop rule

2. Mood × Gender

3. Stop rule × Gender

One interaction of all three variables (known as
a three-way interaction) would result in one main
effect:

Mood × Stop rule × Gender

Each of these effects would have an associated 
F ratio that tested whether the effect had an influence
on the group means. The derivation of these Fs is
affected by whether the design is repeated measures,
independent, or mixed, but the interpretation of these
Fs is unaffected by the design.

Follow-Up Tests

Unless a main effect represents a difference between
two groups (such as the main effect of the stop rule,
above), the F tells us only that the groups’ means
differ in some way (across one or more variables,
depending on whether it is a main effect or an interac-
tion). Main effects are usually followed up either with
planned comparisons, which compare specific sets of
means, or with post hoc tests, which compare all com-
binations of pairs of means (see, for example, the
entries on Bonferroni Test and Newman-Keuls Test).
In factorial designs, the interactions are typically
more interesting than the main effects. Interactions are
usually broken down using simple effects analysis or
specific contrasts designed by the researcher. 

ANOVA as a General Linear Model

When ANOVA is used to analyze data from groups, it
is a special case of a linear model. Specifically, the

linear model can be expressed in terms of dummy
variables. Any categorical variable can be expressed
as a series of 0s and 1s; there will always be one less
variable than there are groups, and each variable com-
pares each group against a base category (e.g., a con-
trol group). The example from the entry “One-Way
Analysis of Variance,” described above (ignoring the
second independent variable of the stop rule, to keep
things simple), can provide an illustration. Remember
that this experiment involved groups reflecting differ-
ent levels of the independent variable: negative mood,
positive mood, and no mood induction. This scenario
can be represented by a standard regression equation:

Items Generatedi = b0 + b1Negative Moodi

+ b2Positive Moodi + εi

in which Negative Mood is a binary variable coded 1
for people undergoing a negative mood induction and
0 for all other groups, and Positive Mood is a binary
variable coded 1 for the positive mood induction
group and 0 for all other groups. The control group
(no mood induction) is coded zero for both variables.
It turns out that b0 represents the mean of the control
group (i.e., the mean number of items generated when
no mood induction is performed); b1 is the difference
between the mean number of items generated when a
negative mood induction is done and the mean
number of items generated when no mood induction 
is done; and b2 is the difference between the mean
number of items generated when a positive mood
induction is done and the mean number of items
generated when no mood induction is done. More
complex designs such as factorial ANOVA can be
conceptualized in a similar way. 

Assumptions

For the F ratio to be accurate, the following assump-
tions must be met: (a) observations should be stati-
stically independent, (b) data should be randomly
sampled from the population of interest and measured
at an interval level, (c) the outcome variable should be
sampled from a normal distribution, and (d) there
must be homogeneity of variance.
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Differences With Repeated Measures

When data are related (i.e., when the independent
variable has been manipulated using the same enti-
ties), the basic logic described above still holds true.
The resulting F can be interpreted in the same way,
although the partitioning of variance differs some-
what. However, when a repeated measures design is
used, the assumption of independence is violated, giv-
ing rise to an additional assumption of sphericity. This
assumption requires that the variances of difference
scores between conditions be roughly equal. When
this assumption is not met, the degrees of freedom
associated with the F value must be corrected using
one of two estimates of sphericity: the Greenhouse-
Geisser estimate or the Huynh-Feldt estimate. 

—Andy P. Field

See also Analysis of Covariance (ANCOVA); Bonferroni Test;
Dependent Variable; Factorial Design; Fisher, Ronald
Aylmer; Homogeneity of Variance; Independent Variable;
Linear Regression; Newman-Keuls Test; One-Way
Analysis of Variance; Tukey-Kramer Procedure; Variance
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Applying Ideas on Statistics and Measurement

The following abstract is adapted from Castaiieda,
M. B., Levin, J. R., & Dunham, R. B. (1993). Using
planned comparisons in management research: A
case for the Bonferroni procedure. Journal of
Management, 19(3), 707–724. 

This article describes the Bonferroni multiple-
comparison procedure (used in conjunction with
the robust F test) and makes a case for researchers’
more frequent and appropriate use of it. The
procedure is discussed as a test that facilitates 

investigation of precise and powerful a priori
multiple comparisons. Characteristics of the
Bonferroni procedure are described in relation to
the more familiar Scheffe post hoc multiple-
comparison method, and a step-by-step guide for
comparing and choosing between the two is pro-
vided. The Bonferroni procedure is discussed in
detail in the context of one-factor analysis of
variance (ANOVA) designs. Application of the
technique is then considered in the context of
factorial designs, analyses of covariance, univari-
ate repeated measures analyses, multivariate
ANOVAs, and recent sequential hypothesis-
testing extensions.

ANTHROPOMETRY

Anthropometry is the measurement of the human
body. It is distinct from osteometry, which is the mea-
surement of skeletal material. Anthropometry is some-
times subdivided into craniofacial anthropometry
(measurement of the head and face) and somatometry
(measurement of the body). Two-dimensional mea-
surement of the head from x-ray cephalograms is
known in the United States as cephalometry. In
Europe, on the other hand, cephalometry refers to mea-
surement of the head and face, while measurement of
x-ray tracings is known as roentgen-cephalometry.

Canons, or simple rules of proportionality based on
multiples of specific body parts, were used by classi-
cal Greek, Roman, and Renaissance artists to describe
the shape of the human body and were based on aes-
thetic ideals rather than measurement. Anthropometry,
which uses actual body measurements, did not
develop until 1654, when a German anatomist at the
University of Padua, Johann Sigismund Elsholtz,
developed a standardized measuring tool for his doc-
toral dissertation on the symmetry of the human body.
He created a vertical rod divided into six equal parts,
which he called pedis (feet). He then subdivided each
foot into twelve equal parts, which he called uncias
(inches). This “anthropometron” is virtually identical
to the modern anthropometer, used in most doctors’
offices for measuring height.
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After graduation, Elsholtz abandoned anthro-
pometry for research in botany, herbal medicine,
distillation, and intravenous infusion. However, his
technique was adopted widely in the 18th century in
early studies of human growth and development. In
the early 19th century, the applications of anthropom-
etry expanded to include measurements used to clas-
sify human populations on the basis of quantitative
morphology. This research grew out of an interest in
Linnaean systematics and taxonomy, with its empha-
sis on typology and “ideal” types to define contempo-
rary populations.

More sophisticated measuring instruments, includ-
ing spreading and sliding calipers, were devised to
measure the human body, especially the skull, in
greater detail than was possible with Elsholtz’s
anthropometron. Numerous landmarks on the head
and body were identified for measuring an ever-
increasing number of linear and contour dimensions.
These early techniques were highly idiosyncratic,
with researchers using their own measurement sys-
tem. Ambiguity in the names and descriptions of the
landmarks and confusion as to the actual measure-
ments being taken made interobserver error a serious
problem when comparing anthropometric measure-
ments taken by different researchers. For example,
one of the most basic measurements, maximum cra-
nial length, is also known as head length, maximum
glabello-occipital length, maximum head length,
diamètre antero-posterior maximum ou glabellaire, or
grösste Kopflange. This measurement usually is taken
between the landmarks of the glabella, which is
defined as the most prominent point in the median
sagittal plane between the supraorbital ridges, and the
opisthocranion, the most prominent posterior point in
the median plane of the occiput, or back of the skull.
Both landmarks have numerous synonyms. Glabella
also is known as the nasal eminence or bosse moyen,
while point occipital maximum and extremum occiput
are synonyms for opisthocranion.

Much of the early anthropometric research focused
on the Cephalic Index, the ratio of cranial width to
length, developed by Swedish anatomist Anders
Retzius to classify living populations according to
head shape. Variations in measurement technique,

plus disparities in classification systems, resulted in a
bewildering variety of categories in this index. These
differences produced so much confusion about this
simple ratio that French anthropologist Paul Topinard
devoted an entire chapter of his textbook on anthro-
pology to the Cephalic Index.

By 1870, a consensus had developed around the
work of French anatomist Paul Broca. However,
the emergence of the modern German state following
the Franco-Prussian War of 1870 led to the establish-
ment of a separate, distinctly German school of
anthropometry, which was formalized by the
Frankfurt Convention of 1882. The Convention had
one long-term scientific result, the establishment of
the Frankfurt horizontal plane, a standard reference
line connecting the upper edge of the ear canal and the
inferior rim of the orbit. This plane is still used in
anthropometric and cephalometric studies to ensure
standardization of head position while measurements
are taken.

Following the Convention, several international
attempts were made to standardize anthropometry, but
these collapsed by the beginning of World War I. Two
textbooks developed out off these efforts. The first
was Rudolf Martin’s Lehrbuch der Anthropologie, the
standard reference for the German school. In 1920,
Aleš Hrdlička, one of the founders of American
anthropology, wrote Anthropometry, based on his
studies in France, to set the North American standards
in the field. Hrdlička also was the first to propose the
use of anthropometry in medicine.

As anthropometry developed during the 19th cen-
tury, anthropometric data often were misapplied by
scientists of the day to substantiate racial, class, and
gender stereotypes. For example, during the period
1820 to 1851, an American scientist, Samuel George
Morton, collected more than 1,000 human skulls to
measure their cranial capacity as a way to rank races.
(At the time, it was mistakenly assumed that a large
cranial capacity equated with increased intelligence.)
Morton would scientifically measure the skulls but
would bias his sample by omitting individuals or
groups that would not prove the superior cranial capac-
ity of the white race. Cesare Lombroso (1835–1909),
an Italian physician and criminologist, claimed that he
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could identify criminals using anthropometric features
that reflected what he considered to be “atavistic”
traits (or traits that demonstrate a reappearance of ape-
like characteristics). Some of the “criminal character-
istics” he used were shape and size deviations in the
head; large jaws, teeth, and cheekbones; long arms;
and protruding lips. The measurements themselves
were not faulty. Instead, the anthropometric traits used
in these pseudoscientific studies were carefully chosen
to reinforce the prejudices of the day.

Anthropometry as a technique for studying human
populations fell out of favor at the beginning of the
20th century. One reason was a reaction against the
misuse of anthropometric data in racial studies. Other
causes were the discovery of blood group genetics,
which provided a much more precise way to study
populations, and the recognition that the Linnaean
“types” anthropologists studied were not fixed but
were subject to environmental influences. This was
based in part on Hrdlička’s research on growth in immi-
grant families, which demonstrated that the children
of first-generation immigrants were nearly always
taller than their parents. The genetics of the immigrant
children had not changed, but their nutritional status
had improved. Also, the development of x-ray tech-
nology permitted more detailed two-dimensional
measurements to be taken of skeletal features than
could be obtained through direct measurement.

Although racial typology lost favor as a subject of
anthropometric research, the study of human growth
and development has continued, with anthropometry
the primary means of evaluation. Much of the empha-
sis has shifted from academic studies to applied
research. Following the advice of Hrdlička, anthro-
pometry now is used widely in the medical field.
Measurements of height and weight provide data for
the calculation of body composition, which assists in
the assessment of nutrition, physiology, growth, and
development, as well as adding to the understanding
of human obesity. Craniofacial measurements are
used to analyze the patterns of dysmorphology associ-
ated with a wide range of congenital craniofacial
anomalies, calculate the quantitative surgical changes
needed to improve the deformities, and evaluate post-
operative growth and outcomes.

Detailed measurement of the human body and its
segments is used in the field of kinanthropometry to
analyze the relationship between anatomy and move-
ment, an application of particular importance in 
sports medicine. Anthropometry is used extensively in
human engineering, or ergonomics, to study the fit
between human morphology and the physical envi-
ronment in which humans function. This field ranges
from the fit of clothing, especially personal protective
equipment, to the design of furniture, living and work-
ing spaces, and transportation.

Both somatometry and craniometry are employed
in forensic science as tools for human identifica-
tion. Body measurements are correlated with skeletal
dimensions to create regression equations that
estimate body height, determine sex, determine age in
subadults, and identify possible racial affinities.
Craniofacial measurements aid in reconstructing the
facial features of skeletal remains and in age enhance-
ment of photographs of missing children.

Psychologists use anthropometry to study the
mechanisms of facial recognition, increasingly
important in security issues. Other research attempts
to quantify facial attractiveness. Some researchers,
like Elsholtz some 350 years ago, have focused on the
influence of facial symmetry, and others have identi-
fied the importance of statistical averages in defining
attractiveness, updating the research of Sir Francis
Galton on composite photographs.

The increasing use of anthropometry has led to
further expansion of measurement instruments.
Measurements of the body can be taken directly
through spreading and sliding calipers, skin fold
calipers, tape measures, and weight scales and can
also be obtained from radiographs, dual energy x-ray
absorptiometry scans, CAT scans, and other radi-
ographic techniques. With direct measurement of the
body, there is an inherent problem with body con-
tours. In contrast to a dry skull that has many observ-
able landmarks, such as sutures, which reflect where
the bones unite, the living body is covered with skin
and therefore has fewer easily discernable landmarks
for measurement. On the body of someone who has
anomalies due to disease or illness, the difficulty in
locating landmarks is further exacerbated.
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The lack of standardization in anthropometry
remains a major problem. In even the most basic
anthropometric texts, the definition of the landmarks
used for measurement, the instruments to use, and the
best methodology to take a given measurement often
remain unclear. It is difficult to improve on an accu-
racy of better than 5 mm in most body measurements.
In an application such as craniofacial reconstructive
surgery, a measurement error this large would jeopar-
dize the surgical outcome, so the cranial landmarks,
synonyms, instruments, and techniques are more elab-
orately described, along with a discussion of variables
to consider when taking the measurements, to mini-
mize measurement error.

Care must be taken with measurement techniques.
For example, individual height decreases by 1–3 mm
during the day, so to track the growth of a child accu-
rately, height should be measured at the same time of
day. Height also should be consistently measured with
an individual in stocking feet. Adult height decreases
with age as a result of compression of intervertebral
discs and bone thinning and cracking due to diseases
such as osteoporosis. Other factors that affect mea-
surement accuracy are well-calibrated instruments;
replacement of instruments such as tape measures,
which stretch with repeated use; standardized posi-
tioning of the body, such as the Frankfurt horizontal
plane in cranial measurements, to eliminate error; a
good source of natural light for ease of reading the
instruments; a sequence for ease of taking the mea-
surements; and finally, a good recording system to
track the measurements.

With thousands of anthropometric measures avail-
able, proper scientific study using these measurements
depends on the careful selection of the most meaning-
ful measures to eliminate wasted research time collect-
ing irrelevant data. With small samples, the data may
have to be standardized before any analysis can begin
to ensure that the results are meaningful. In studies
based on larger groups of individuals, results can be
broken down easily by sex, age, population of origin,
health status, and other categories to provide reliable
data for subsequent applications.

With improved techniques, anthropometry has
been resurrected from its earlier confusion and 

misapplication to become an integral component 
in fields as diverse as forensic identification, growth
and development studies, reconstructive surgery,
ergonomics, and nutritional evaluation.

—Elizabeth M. Salter and John C. Kolar

See also Measurement; Measurement Error
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Applying Ideas on Statistics and Measurement

The following abstract is adapted from Yin, Z.,
Hanes, J., Jr., Moore, J. B., Humbles, P., Barbeau,
P., & Gutin, B. (2005). An after-school physi-
cal activity program for obesity prevention in
children. Evaluation & the Health Professions,
28(1), 67–89. 

This article describes the process of setting up a
3-year, school-based afterschool physical activity
intervention in elementary schools. The primary
aim of the study is to determine whether adiposity
and fitness will improve in children who are
exposed to a “fitogenic” versus an “obesogenic”
environment. Eighteen schools were randomized
to the control (obesogenic) or intervention (fito-
genic) group. The intervention consisted of 
(a) academic enrichment, (b) a healthy snack, and
(c) physical activity in a mastery-oriented environ-
ment, and outcome measures were anthro-
pometry, body composition, blood samples,
psychological tests, and other measures. Suc-
cessful implementation would show the feasibility
of schools’ being able to provide a fitogenic envi-
ronment, and significant differences between the
groups would provide evidence that a fitogenic
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environment after school has positive health
benefits. If feasibility and efficacy are demon-
strated, implementing an afterschool program like
this one in elementary schools could play a major
role in preventingand reducing childhood obesity.

APPLIED RESEARCH

Whereas basic research is the study of fundamental
principles and processes, the defining characteristic of
applied research is that its research findings have imme-
diate application to the general topic under
consideration.

Another characteristic of applied research is that its
goal is to solve practical questions, and in contrast to
basic research, applied research is aimed not at under-
standing or accumulating more knowledge about
some phenomenon but at describing the phenomenon.
While applied research has a more pragmatic element
than basic research does, basic research forms the
foundation for applied research.

For example, reading is a skill that involves many
different processes, including visual and intellectual
skills. The basics of how the eyes focus on letters and
words and how that message is transmitted to the
brain and then translated into meaningful symbols
may very well constitute a set of basic research ques-
tions. In contrast, an example of an applied research
endeavor is taking those findings and using them to
understand why some children read better than others
or creating an intervention and providing it for a group
of children who are poor readers. 

—Neil J. Salkind

See also Basic Research
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APTITUDE TESTS

The term aptitude, according to most dictionaries, is
derived from the Latin term aptitudo, meaning fitness.
The psychological use of the term is similar in that 
it has traditionally referred to a potential for acquir-
ing knowledge or skill. Traditionally, aptitudes are
described as sets of characteristics that relate to an
individual’s ability to acquire knowledge or skills in
the context of some training or educational program.
There are two important aspects of aptitude to keep 
in mind. First, aptitudes are present conditions (i.e.,
existing at the time they are measured). Second, there
is nothing inherent in the concept of aptitudes that
says whether they are inherited or acquired or repre-
sent some combination of heredity and environmental
influences. Also, aptitude tests do not directly assess
an individual’s future success; they are meant to
assess aspects of the individual that are indicators of
future success. That is, these measures are used to
provide a probability estimate of an individual’s suc-
cess in a particular training or educational program.
While the meaning of aptitude is well delineated,
there is much controversy over how to distinguish
aptitude tests from other kinds of psychometric mea-
sures, specifically intelligence and achievement tests,
partly because the major salient difference between
intelligence, aptitude, and achievement tests has to do
with the purpose of testing rather than with the con-
tent of the tests. What makes an assessment instru-
ment an aptitude test rather than an intelligence or
achievement test is mainly the future orientation of the
predictions to be made from the test scores.

Historians generally date the movement of mod-
ern psychological testing from the 1905 work by
Alfred Binet and Théodore Simon in developing a set
of measures to assess intelligence. The Binet-Simon
measures, and especially the English translation and
refinement made by Lewis Terman in 1916, called
the Stanford-Binet, are in widespread use even today.
Few adults living in industrialized countries today
have avoided taking at least one test of intelligence
during their school years. Intelligence tests were
designed with the goal of predicting school success.
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Thus, in terms of the definition of aptitude provided
above, when the purpose of an intelligence test is
prediction, then the intelligence test is essentially an
aptitude test—although an aptitude test of general
academic content (e.g., memory, reasoning, math,
and verbal domains). Aptitude tests, however, sample
a wider array of talents than those included in most
general intelligence measures, especially in the occu-
pational domain. By the late 1910s and early 1920s,
dozens of different aptitude tests had been created for
prediction of success in a variety of different occupa-
tions (e.g., auto mechanic, retail salesmen, waitress,
telegrapher, clerk, Hollerith operator, musician, regis-
tered nurse).

It is important to distinguish between so-called
trade tests and aptitude tests. The distinction rests
more on the characteristics of the examinee popula-
tion than on the content of the tests. That is, when all
the examinees can be expected to have similar prior
exposure to the knowledge and skills needed to per-
form well on the test, the test is essentially one of abil-
ity or aptitude. But when prior knowledge and skills
have an important impact on the examinees’ success
on the test, it is essentially an achievement test, or a
measure of learned knowledge or skills, rather than an
assessment of potential for acquiring such knowledge
or skills. For psychologists who design aptitude tests,
this is a critical concern. For example, the psycholo-
gist must be able to determine whether reading skills
are an important determinant of test performance in
order to present the test material in a paper-and-pencil
format. Intelligence test developers assumed that indi-
vidual differences in reading skills in young children
were possible confounding influences, and so the
developers created intelligence tests that did not
require a child to know how to read or write. For
assessing the aptitude of adults for an office clerk job,
however, being able to read would be a prerequisite
skill, so a paper-and-pencil aptitude test would cer-
tainly be appropriate.

Utility of Aptitude Tests

Aptitude tests are useful for the purpose of aiding
educational or occupational selection when there are

marked individual differences in the likelihood of
success that are, in turn, determined by cognitive, per-
ceptual, or physical abilities. The degree of utility of
an aptitude test is determined by three major factors:
(a) the cost of training or education, (b) the correlation
between the aptitude test scores and success on the
educational or occupational criterion, and (c) the ratio
of the number of applicants to the number of places to
be filled. When training is expensive, the cost to the
organization of having trainees fail can be an impor-
tant factor in adopting an aptitude testing program for
screening applicants. When training is brief or inex-
pensive, such as for retail sales or other entry-level
positions, the value of aptitude testing is diminished
because the cost of accepting applicants who fail is
not as burdensome for the organization. The correla-
tion between aptitude test scores and success mea-
sures will determine how accurate the prediction of
success or failure is. The larger the correlation, the
more accurate the prediction. Finally, when there 
are many more applicants than spaces to be filled, the
aptitude test will be more effective in maximizing the
overall success rate. In contrast, when there are few
applicants for each position, and thus nearly all appli-
cants are accepted, the ranking of applicants by
aptitude becomes largely irrelevant.

Two Types of Aptitude Tests

The aptitude tests developed over the past century
have generally bifurcated into two different types:
job-specific tests and multiaptitude batteries. Similar
to the early aptitude tests described above, job-
specific aptitude tests are typically designed to deter-
mine which candidates are best suited to particular
occupations. In theory, there can be as many differ-
ent occupational aptitude tests as there are differen-
tiable occupations. In practice, however, there are
common aptitudes underlying many occupations. For
example, different kinds of mechanical jobs (e.g.,
auto mechanic, electronics service repair, assembly
worker) may all involve aptitudes for dexterity, fine
motor coordination, visual perception, and so on. An
organization that wishes to select employees for a par-
ticular occupational placement might attempt to
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identify (through job analysis) what particular
aptitudes are needed for successful job performance.
The organization, in order to select the applicants who
are most likely to succeed in a training program, can
then create an aptitude measure that samples these
specific aptitudes. Alternatively, among the dozens of
commercially available tests, the organization may
find an off-the-shelf aptitude measure that covers the
most important aptitudes for training success for the
particular job.

The other kind of aptitude measure is the multiap-
titude battery. These tests are used frequently in edu-
cational contexts, and some are used in large-scale
employment testing situations. In the educational con-
text, multiaptitude tests may be very general, such as
the Scholastic Aptitude Test, which was created in
1926 for selecting high school students for college and
university placement. Today, the Scholastic Aptitude
Test is one of the most widely used aptitude test batter-
ies in the United States and is administered to more
than 1 million students each year. The original
Scholastic Aptitude Test assessed only two broad aca-
demic aptitudes: verbal and math. The most recent
modification of the Scholastic Aptitude Test also
includes a writing component. Multiaptitude test bat-
teries can also be designed to provide assessments
across several different aptitudes. The first large-scale
multiaptitude batteries for use in educational contexts
were developed by Thurstone and Thurstone in the
early 1940s and became known as the Primary Mental
Abilities battery. Another battery, the Differential
Aptitude Tests (DAT), was introduced in 1947 and is
still in use today. The DAT provides scores on eight
different aptitudes (verbal, numerical, abstract reason-
ing, clerical speed and accuracy, mechanical reason-
ing, spatial relations, spelling, and language use).

There are many more such multiaptitude batteries
that are administered in schools throughout the United
States each year. Many of these tests do not have the
term aptitude in their titles, but they are similar in
content coverage and in the general purposes of test-
ing. Such educational aptitude batteries are primarily
used for counseling purposes. That is, the underlying
premise for the utility of these tests is that they allow
a parent or counselor to identify an individual

student’s aptitude strengths and weaknesses. Usually,
the test information is presented as a profile, a set of
bar graphs that show where the student stands in
respect to some norming group on each of the differ-
ent aptitudes. Counselors may use this information to
help guide the student in a way that either builds on
the student’s strengths or attempts to remediate the
student’s weaknesses. In practice, however, many of
the different aptitudes assessed with these measures
are themselves substantially positively correlated
because of shared variance with general intelligence.
When that happens, it is more difficult to provide a
reliable differentiation among the individual’s
strengths and weaknesses. This is one of the most
intractable problems associated with the counseling
use of multiaptitude test batteries.

Multiaptitude batteries for occupational selection
tend to be somewhat more useful for selection and
classification purposes. (Classification is the process
of assigning particular individuals to specific jobs by
matching the individual’s profile of aptitude
strengths and weaknesses to the job requirements.)
The two largest occupational multiaptitude test bat-
teries used in the United States are the Armed
Services Vocational Aptitude Battery (ASVAB) and
the General Aptitude Test Battery (GATB). The
ASVAB is used by the U.S. armed forces, and until
recently, the GATB was used by federal and state
employment agencies. In contrast to the multiapti-
tude batteries described above for educational con-
texts, these two tests are explicitly linked to a wide
variety of specific occupations. For example, when
individuals complete the ASVAB, they are each pro-
vided with a set of scores that determines the their
suitability for all the different entry-level occupa-
tions within the military. With that information, they
can be classified into the occupation in which they
are most likely to succeed.

Concerns About Aptitude Tests

Although aptitude tests have been shown to be quite
effective predictors of future academic and occupa-
tional performance, they have been somewhat contro-
versial because of the meaning inherent in the

Aptitude Tests———41



assessment of potential and because of a wide variety
of group differences in performance on standard-
ized aptitude tests. Experience with the Scholastic
Aptitude Test, for example, has indicated marked
mean score differences between male and female test
takers; between black, white, Hispanic, and Asian-
American test takers; and between socioeconomic sta-
tus groups. Because the Scholastic Aptitude Test is not
traditionally considered to be taken by a representa-
tive or random sample of 16–18 year olds (since those
students taking the test essentially are self-selected
college-bound individuals), group differences on the
Scholastic Aptitude Test do not provide direct evi-
dence for overall group differences in academic
potential. However, the differences between group
means are significant and sometimes substantial,
which has led many commentators to question
whether and how much the test is associated with
prior educational background and other demographic
variables. Much of the difficulty centers around the
term “potential” associated with aptitude tests, in
contrast with achievement measures. That is, if these
different groups differ only in terms of academic
achievement, there would be perhaps less controversy
than there is if the groups are determined to differ in
terms of academic potential. Many testing organiza-
tions have in fact revised the names of their aptitude
tests to remove the term that is associated with poten-
tial (e.g., the Scholastic Aptitude Test became the
Scholastic Assessment Test in the 1990s). At one
level, such a change may be cosmetic, but at another
level, it does show that testing organizations have
come to recognize that one does not need to imbue a
test with the notion of potential in order to make
predictions about future academic or occupational
performance. That is, there is nothing inherently
problematic in using an intelligence or achievement
test for the same purpose as an aptitude test as long is
it taps the same underlying knowledge and skills that
are critical for performance on the predicted criterion
measure. Given that intelligence, aptitude, and
achievement tests assess only current performance, it
is ultimately the prediction aspect of a test that makes
it an aptitude test. Furthermore, it is fundamentally
impossible to know what an individual’s actual

potential is for academic or occupational knowledge
or skills, because it is not possible to know what the
universe of instructional or training programs may be.
Should methods of instruction or training be improved
at some time in the future, even those individuals with
relatively lower aptitudes may show marked increases
in performance. In that sense, the operational concep-
tualization of aptitude has to be in terms of whatever
instructional or training methods are actually in use at
any one time.

Over- and Underachievement

One aspect of aptitude tests that has been very much
misunderstood is the notion of over- and under-
achievement. Typically, the term overachiever is
given to individuals who have relatively higher
scores on achievement tests than they do on aptitude
tests, and the term underachiever is given to individ-
uals who have relatively lower scores on achievement
tests than on aptitude tests. However, given that both
aptitude and achievement tests often assess the same
underlying knowledge and skills, the choice of label-
ing one test or another an aptitude or achievement
test is generally arbitrary. That means that one could
just as easily assert that individuals have higher or
lower aptitude in association with their achievement
test performance, which makes little conceptual
sense but is entirely consistent with the underlying
properties of the tests. In fact, given the nature of sta-
tistical regression-to-the-mean phenomena, which are
associated with taking the difference between any
two measures, it is common for individuals with low
scores on one test (e.g., aptitude) to have relatively
higher scores on the other test (e.g., achievement),
and similarly, individuals with higher-than-average
scores on one test will have somewhat lower scores
on the other test. The attribution that low-aptitude
individuals are often overachievers and high-aptitude
individuals are often underachievers is most often an
artifact of this regression-to-the-mean phenomenon
and thus does not provide any useful diagnostic
information. Only extremely large differences
between such scores (i.e., differences that signifi-
cantly exceed the difference attributable to
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regression-to-the-mean effects) can provide any
potential diagnostic information.

—Phillip L. Ackerman

See also Ability Tests; Armed Services Vocational Aptitude
Battery; Differential Aptitude Test; Multidimensional
Aptitude Battery
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Thorndike, R. L. (1963). The concepts of over- and under-
achievement. New York: Bureau of Publications, Teachers
College, Columbia University.

Scholastic Aptitude Test information: http://www.college-
board.com

Test reviews: http://www.unl.edu/buros/
Testing standards and procedures information: http://www

.apa.org/science/testing.html

AREA CHART

Area charts are used to simultaneously display visual
information in multiple categories. The categories are
stacked so that individual as well as cumulative values
are shown.

Area charts, like other charts, such as bar and
column charts, are most often used for categorical
data that are, by definition, not dynamic in nature.
For example, if one were interested in illustrating
money spent across the first quarter of the year in
certain categories, an area chart would be a useful
way to do so, as in the following example. First, here
are the data:

Food Car Fun Miscellaneous

January $165 $56 $56 $54 

February $210 $121 $87 $34 

March $227 $76 $77 $65 

These data represent the amount of money spent 
in four categories, food, car, fun, and miscellaneous, in
each of the first three months of the year. The value for
each category by month is shown in the area chart below,
with each month containing a series of data points.

An area chart is not an easy chart to create manu-
ally; Figure 1 was created using Excel. 

—Neil J. Salkind

See also Bar Chart; Line Chart; Pie Chart

Further Reading

Tufte, E. (2001). The visual display of quantitative information
(2nd ed.). Cheshire, CT: Graphics Press. 

ARITHMETIC MEAN

The most widely used measure of central tendency is
the arithmetic mean. Most commonly, mean refers to
the arithmetic mean. The arithmetic mean is defined
as all the scores for a variable added together and
then divided by the number of observations.
Therefore, the formula to compute the arithmetic
mean is as follows:

X
--- = �X

n
,
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where 

X represents the data points,

Σ is the summation of all the Xs,

n is the number of data points or
observations, and 

X
_

is the computed mean. 

For example, take the data presented in Table 1.
The sum of the observations (ΣX) is 1 + 5 + 7 + 2

+ 10 + 4 + 6 + 5 + 4 + 6 = 50. Then, we divide this
value by n, which in this example is 10 because we
have 10 observations. Thus, 50/10 = 5. The arithmetic
mean for this set of observations is 5.

The SPSS statistical software package provides
several ways to compute a mean for a variable. The
Mean command can be found under Descriptives, then
Frequencies, Explore, and finally Means. Furthermore,
the mean can be added to output for more advanced cal-
culations, such as multiple regression. The output for
the Descriptives mean is presented in Figure 1.

As seen in the output, the variable “data points” has
a total of 10 observations (seen under the column
headed N), the lowest value in the data set is 1, the
highest value is 10, the mean is 5, and the standard
deviation is 2.539.

There are two major issues you should be aware of
when using the arithmetic mean. The first is that the
arithmetic mean can be influenced by outliers, or data
values that are outside the range of the majority of the

data points. Outliers can pull the mean toward them-
selves. For example, if the data set in Figure 1 included
a data point (which would be observation 11) of 40, the
mean would be 8.2. Thus, when the data set is extremely
skewed, it can be more meaningful to use other mea-
sures of central tendency (e.g., the median or the mode).

The second issue is that the arithmetic mean is dif-
ficult to interpret when the variable of interest is nom-
inal with two levels (e.g., gender) and not meaningful
when there are more than two levels or groups for a
given variable (e.g., ethnicity). The mean has been
found to be consistent across time. With repeated mea-
sures of the same variable, the arithmetic mean tends
not to change radically (as long as there are no extreme
outliers in the data set). Furthermore, the arithmetic
mean is the most commonly used measure of central
tendency in more advanced statistical formulas.

—Nancy L. Leech,
Anthony J. Onwuegbuzie, and Larry Daniel

See also Average; Median

Further Reading

Glass, G. V., & Hopkins, K. D. (1995). Statistical methods 
in education and psychology (3rd ed.). Boston: Allyn &
Bacon.

Leech, N. L., Barrett, K. C., & Morgan, G. A. (2005). SPSS for
intermediate statistics: Use and interpretation (2nd ed.).
Mahwah, NJ: Erlbaum.

ARMED FORCES QUALIFICATION TEST

The Armed Forces Qualification Test (AFQT) is the
name given to a series of tests constantly in use from
1950 to the present. The current AFQT is a composite
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Table 1 Data for Arithmetic Mean Computation

Observation Data Points

1 1
2 5
3 7
4 2
5 10
6 4
7 6
8 5
9 4

10 6

Descriptive Statistics

N Minimum Maximum Mean Std. Deviation

Data points 10 1 10 5.00 2.539

Valid N (listwise) 10

Figure 1 SPSS Output for the Descriptives Mean



of subtests from the Armed Services Vocational
Aptitude Battery (ASVAB). Constituent members of
the composite are verbal and quantitative components,
weighted to be of equal variance contribution. The
AFQT is used by the U.S. military as a measure of
quality and trainability. Although AFQT scores are
reported in percentiles, it also has five categories that
are used for legal and classification purposes. By law,
the American military is not permitted to enlist indi-
viduals who score in the lowest category, that is, at the
10th percentile or less, except by direction or legal
exception.

The AFQT is the successor to the World War II
Army General Classification Test and the Navy
General Classification Test. Although these two tests
had similar names, their content was not identical.
The first AFQT (1950) was equated to a mixed Army-
Navy sample based on percentile equivalent scores
from these two tests. The American military calls this
procedure “calibrating” and used it for many years.
All forms of the AFQT were scored on the basis of a
normative sample of men in uniform as of 1944.

The 1950 AFQT had four content areas; verbal,
arithmetic, spatial, and spatial visualization. In 1953,
the content areas of the AFQT were changed to verbal,
arithmetic, spatial, mechanical ability, and tool knowl-
edge. The content remained more or less unchanged
through the first seven versions of the test. When the
ASVAB was adopted (1976), the AFQT became a part
of it. In ASVAB versions 5, 6, and 7, the AFQT
strongly resembled the numbered AFQT forms.
Scores were reported on the 1944 normative sample.

With the implementation of ASVAB forms 8, 9,
and 10, the AFQT portion was reworked to add a
timed subtest, Numerical Operations. With the imple-
mentation of the 1980 nationally representative nor-
mative sample in 1984, a problem was encountered
with the timed subtests of the ASVAB. A small mis-
timing of these subtests could and did have large
impacts on the resultant scores. The AFQT composite
was then changed to be equally verbal and arithmetic
in importance. Scores were still reported on the 
metric of the 1980 normative sample.

In 1997, another nationally representative norma-
tive sample was collected, and the ASVAB subtests,

including those contributing to the AFQT, were placed
on this new metric as of July 1, 2004. The current
AFQT still consists of verbal and arithmetic compo-
nents. It is basically a measure of general cognitive
ability.

Although the AFQT is not available for commer-
cial use, it has been used in nonmilitary research, most
notably in Herrnstein and Murray’s The Bell Curve
(1994) and in numerous econometric and occupa-
tional studies. It has been offered as an ability mea-
sure and related to training and job performance,
earnings, educational attainment, and interregional
migration.

—Malcolm James Ree

See also Ability Tests

Further Reading

Orme, D. R., Brehm, W., & Ree, M. J. (2001). Armed Forces
Qualification Test as a measure of premorbid intelligence.
Military Psychology, 13(4), 187–197.

ARMED SERVICES

VOCATIONAL APTITUDE BATTERY

The Armed Services Vocational Aptitude Battery
(ASVAB) is a multiple aptitude battery used for two
purposes. The first is proprietary: enlistment qualifi-
cation and job classification for all the branches of the
American military and the Coast Guard. The second
purpose is to provide vocational guidance for high
school and vocational students. These two uses are
called the Enlisted Testing Program (ETP) and the
Student Testing Program (STP), respectively.

The ASVAB consists of nine subtests. In the past,
it had contained some purely timed subtests and some
subtests well characterized as mixed speed and power.
Subtest content is verbal ability, quantitative ability,
spatial ability, and job knowledge. The subtests 
are General Science, Arithmetic Reasoning, Mathe-
matics Knowledge, Word Knowledge, Paragraph
Comprehension, Electronics Information, Auto and
Shop Information, Mechanical Comprehension, and
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Assembling Objects. Paragraph Comprehension is a
short subtest and is never used alone but always com-
bined with Word Knowledge to increase reliability.
All subtest raw scores are converted to normative pop-
ulation standard scores and then combined to make
composites for use.

For use in the ETP, the ASVAB is administered in
both paper-and-pencil and computer-adapted forms.
In the ETP, all armed service members are required
to pass a composite called the Armed Forces
Qualification Test (AFQT) for minimal enlistment
qualification. In addition to the AFQT, each service
computes unit or simple weighted composites for clas-
sification of enlistees into specific occupations or clus-
ters of occupations. The scores are reported either in
normative percentiles or in service-specific normative
standard scores. In the normative sample, the com-
posites reflect the high loading of general cognitive
ability in all the subtests. This loading also makes the
composites valid for predicting occupational criteria.

The STP uses only paper-and-pencil administra-
tion and is aimed at career exploration. The ASVAB
and its supporting interpretive materials are offered
free of charge. In this program, the scores are reported
by grade norms in the form of percentiles with error
bands. Grades are reported for each of eight subtests
and three content composites. The STP does not use
the Assembling Objects subtest. Included in the
program are copious materials to aid the student in
exploring potential occupational goals. In the STP, an
associated interest inventory is offered, and the rela-
tionships between interests and test scores are clearly
explained in a guide titled Exploring Careers. 

—Malcolm James Ree

See also Armed Forces Qualification Test

Further Reading

Exploring Careers: The ASVAB career exploration guide.
(2005). DD Form 1304-5WB, July 2005. U.S. Government
Printing Office.

Ree, M. J., & Carretta, T. R. (1994). Factor analysis of
ASVAB: Confirming a Vernon-like structure. Educational
and Psychological Measurement, 54, 457–461.

Ree, M. J., & Earles, J. A. (1991). Predicting training success:
Not much more than g. Personnel Psychology, 44,
321–332.

Ree, M. J., Earles, J. A., & Teachout, M. S. (1994). Predicting
job performance; Not much more than g. Journal of
Applied Psychology, 79, 518–524.

ARTIFICIAL NEURAL NETWORK

An artificial neural network (ANN) is a class of mod-
els, inspired by the central nervous system, used in
machine learning and pattern recognition and classifi-
cation. These models are nonlinear parametric regres-
sion models with either automatic, unsupervised
training (setting of the model parameters) or super-
vised training from some training set of known input-
output relations, depending on the type of network.

An ANN consists of a collection of neurons (pro-
cessing units) and connections between these neurons.
Usually these neurons accumulate “information” from
neighboring neurons and either fire or not, depending
on some local threshold level.

The simplest type of ANN is the feed-forward net,
in which all the information flows in a single direc-
tion. Figure 1 shows a four-layer feed-forward net,
with an input layer, followed by two hidden layers,
followed in turn by an output layer.

Many neurons are modeled (and constructed or
simulated) to have binary outputs (and often binary
inputs as well). Each neuron has some rule (called a
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Figure 1 A Simple Four-Layer Feed-Forward Net



firing rule) for deciding which combination of inputs
results in which output. One particularly simple rule
would be to sum all the inputs (multiplied perhaps by
weights) and check to see if the sum was more than
some threshold value; if so, then fire, and if not, then
do not fire (a binary output). Notice that this firing rule
is discontinuous in that it has a sudden jump at the
threshold. This rule is sometimes called the hardlimit
firing rule.

As a simple example (for the neuron illustrated in
Figure 2), let w1 = 0.3, w2 = 0.5, w3 = 0.3, and the
threshold q = 1.5. Then for the inputs 1.2, 2.1, and 0.7,
we get accumulated sum (.3)(1.2) + (.5)(2.1) ++ (.3)(0.7)
= 1.62 > 1.5, so the neuron would fire.

The parameters of a feed-forward net include the
weights and thresholds for each neuron. These para-
meters must be set during the training phase of the
network. During training (a supervised learning situ-
ation), one uses a set of known input-output relation-
ships to set the parameters of the network. One
common technique for training is the backpropaga-
tion algorithm. This algorithm basically computes a
gradient of the error with respect to the weights in
order to adjust the weights. The computation proceeds
by propagating influences backwards in the network
(and hence the name).

Many other kinds of firing rules are possible,
including a sigmoid (a continuous version of the

hardlimit rule), Gaussian rules, and others. The
sigmoid firing rule has the functional form

Many other kinds of connection topologies are pos-
sible. A Hopfield net, for example, is a neural network
with bidirectional connections (and with the same
weight in each direction). These networks act as asso-
ciative memories in the sense that the network can
store a set of patterns and fire if a similar pattern is
presented to it.

The presence of loops in a network allows for feed-
back, so these types of networks are sometimes called
recurrent networks.

Many popular software systems, including Matlab,
SPSS, SAS, and R (a open source version of S), have
neural network toolboxes. It is also fairly easy to get
software packages (as either executables or source)
from the Internet to simulate various neural networks;
one such place is http://www.neural-networks-at-your-
fingertips.com/.

—Franklin Mendivil

Further Reading

Hertz, J., Krogh, A., & Palmer, R. G. (1991). Introduction to
the theory of neural computation. Reading, MA: Addison-
Wesley.

Artificial neural networks technology: http://www.dacs
.dtic.mil/techs/neural/neural_ToC.html

ASSESSMENT OF INTERACTIONS

IN MULTIPLE REGRESSION

With theories growing ever more complex, analytic
tools for their analysis and testing need to be devel-
oped. In exploring moderator variables that are found
in theory tests in both experimental and nonexperimen-
tal research, we need to be careful to assess the interac-
tions between the moderator variable and the predictor

output = 1

1 + exp(- sum of weighted inputs/T )
.
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variable(s) in an appropriate way. Prior to the early
1990s, many nonexperimentalists using a correlational
paradigm often used it inappropriately by (a) correctly
creating a product term for the moderator and indepen-
dent variable and then (b) inappropriately correlating it
with the dependent variable. This paradigm is inappro-
priate for both theoretical and empirical reasons.

Theoretically, as Jacob Cohen has argued, while
the interaction is carried by the product term, it is not
the product term. The product term alone also carries
variance due to the main effects of the independent
variable and the moderator variable. The appropriate
analysis is to partial out the main effects in a multiple
regression analysis, as pointed out by Saunders as
long ago as 1956.

Empirically, as Schmidt has shown, the correlation
between a product term and the dependent variable is
sensitive to the scale numbers used in the analysis.
Changing from a scale of 1 to 5 to a scale of −2 to +2
will change the correlation dramatically. The proper
analysis, as Arnold and Evans have shown, results in the
incremental R2 between an equation containing just
main effects and one containing the main effects plus
the product term being invariant under linear transfor-
mations of the data (unlike the simple correlation
between the product term and the dependent variable,
which changes dramatically). This invariance translates
to a proper test of theory only if the measurement scales
and the underlying psychological constructs are linearly
related. More recent developments involving structural
equation modeling do not have this limitation.

—Martin G. Evans

See also Analysis of Variance (ANOVA); Correlation Coefficient
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ASSOCIATION FOR

PSYCHOLOGICAL SCIENCE

The Association for Psychological Science (APS) is
the leading national organization devoted solely to
scientific psychology. Its mission is to promote,
protect, and advance the interests of scientifically
oriented psychology in research, application, and
improvement of human welfare.

Established in 1988, APS was instantly embraced
by psychology’s scientific community, and its mem-
bership grew rapidly. By the end of its first year, APS
opened an office in Washington, D.C., and now has
approximately 15,000 members from around the
world. Members are engaged in scientific research or
the application of scientifically grounded research
spanning all areas of psychology. There are also
student affiliates and institutional members. Disting-
uished contributions are recognized by Fellow
status.

Formation

APS was created out of recognition that (a) the needs
and interests of scientific and academic psychologists
are distinct from those of members of the professional
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community primarily engaged in clinical practice and
(b) there was a strong need for a society that would
advance the interests of the discipline in ways that
more specialized organizations were not intended 
to do. An interim group, the Assembly for Scientific
and Applied Psychology, had sought to reform the
American Psychological Association from within, but
its efforts were rejected by a membership-wide vote 
of the APA. APS then became the official embodiment
of the reform effort, and the new organization was
launched on August 12, 1988.

Publications

APS publishes four journals:

1. Psychological Science publishes authoritative arti-
cles of interest across all of scientific psychology’s
subdisciplines. 

2. Current Directions in Psychological Science offers
concise invited reviews spanning all of scientific
psychology and its applications. 

3. Psychological Science in the Public Interest
provides definitive assessments by panels of
distinguished researchers on topics for which psy-
chological science has the potential to inform and
improve the well-being of society. 

4. APS’s newest journal, Perspectives on Psycho-
logical Science, features longer integrative reviews
and a variety of eclectic articles. 

APS also publishes the monthly Observer, featur-
ing news and opinion pieces; a Current Directions
Readers series in conjunction with Prentice Hall; a
Festschrift series in conjunction with LEA Press; and
self-published books on the teaching of psychology.

Annual Convention

APSholdsameeting in late springeachyear toshowcase
the best of scientific psychology. The program features
presentations by the field’s most distinguished
researchers and educators in a variety of formats, includ-
ing invited addresses and symposia, submitted sym-
posia, “hot topic” talks, and posters.The convention also
includes workshops on specialized topics.

APS Fund for the Teaching 
and Public Understanding 
of Psychological Science

In 2004, the David and Carol Myers Foundation
pledged $1 million to APS for the creation of an
endowed fund that aims “to enhance the teaching 
and public understanding of psychological science for
students and the lay public, in the United States,
Canada, and worldwide.”

Achievement Awards

APS recognizes exceptional contributions to scientific
psychology with two annual awards: the APS William
James Fellow Award (for significant intellectual con-
tributions to the basic science of psychology) and the
James McKeen Cattell Fellow Award (for outstanding
contributions to the area of applied psychological
research).

APS Student Caucus

Students are an important and active component of
APS. The APS Student Caucus is the representative
body of the society’s student affiliates. The Student
Caucus organizes research competitions, convention
programs, and a variety of membership activities
aimed at professional development and enhanced
education in psychological science.

Advocacy

APS is widely recognized as an active and effective
leader in advancing the interests of basic and applied
psychological, behavioral, and social science research
in the legislative arena and in the federal agencies that
support these areas of research.

—Morton A. Gernsbacher,
Robert  W. Levenson, and Sarah Brookhart

See American Psychological Association

Further Reading

Association for Psychological Science Web site: www.psycho
logicalscience.org
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ASYMMETRY OF g

Is the strength of the general factor of intelligence uni-
form? That is, do the various indicators of crystallized
intelligence correlate similarly at all levels of intelli-
gence? This question was first explored in 1927, by
Spearman, who, on the basis of his data, suggested a
law of diminishing returns (also known as the diver-
gence hypothesis, or in my terms, the asymmetry of
g). This observation states that at low levels of intelli-
gence, the various facets of intelligence are very
highly correlated, but at higher levels of intelligence,
the correlations between the various facets are less
strong.

Between 1927 and 1990, this work disappeared
from sight, and as late as 1989, Detterman and Daniel
could argue that “it was thought that the positive man-
ifold [the loading of ability tests onto a single factor]
was uniformly distributed over the whole range of
ability.” This finding has been supported in a number
of other studies.

The best estimate is for a linear decline in average
correlations between IQ measures from r = 0.46 for
the least gifted group to average correlations of about
r = 0.30 for the more highly gifted. If this picture is
sustained through additional research, then perhaps
much of the conflict between those arguing for a per-
vasive g factor and those arguing for specific abilities
can be reconciled by considering that both may be
true, with g dominating at the lower levels of intelli-
gence and specific factors dominating at higher levels
of intelligence.

In practice, this means that we will have to recon-
sider our use of intelligence as a selection tool in job
performance. It is fine to use g at low levels of intelli-
gence, but at high levels, the specific abilities needed
for a task will come into play, so predictive studies
will have to explore the interaction between g and spe-
cific abilities to understand who the high performers
will be.

—Martin G. Evans

See also Ability Tests; Intelligence Tests
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ATTENUATION, CORRECTION FOR

Attenuation is a term used to describe the reduction in
the magnitude of the correlation between the scores of
two measurement instruments that is caused by their
unreliabilities. Charles Spearman first recognized the
value of correcting for attenuation by noting that we
are interested in determining the true relationship
between the constructs we study, not the relationship
between flawed empirical measures of these con-
structs. His solution was to estimate the correlation
between two variables using perfectly reliable empir-
ical measures. He developed the following formula:

, (1)

where rxx and ryy equal the reliability coefficients of
the two instruments, and rxy equals the obtained cor-
relation between the scores of the two instruments. It
is assumed that X and Y are imperfect measures of
underlying constructs X ′ and Y ′, containing indepen-
dent, random errors, and rx ′y ′ equals the true correla-
tion between X ′ and Y ′. If rxx equals .61, ryy equals
.55, and rxy equals .43, then

rx′y′ = rxy√
rxxryy
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(2)

The use of the formula allows the researcher to
answer the question, What would the correlation (i.e.,
rx′y′) be if both of the empirical measures were error
free? The example illustrates the considerable reduc-
tion in the size of rxy caused by the unreliabilities of
the scores for the two instruments.

Although correcting for the attenuation of both
empirically measured constructs is useful for investi-
gating theoretical problems, it is more difficult to jus-
tify for practical applications. For instance, when
predicting who will succeed in higher-education pro-
grams or who will benefit from special education ser-
vices, we are limited by the fallible instruments at
hand; after all, the application of the correction for
attenuation does not make the empirical scores more
reliable than they really are! Although it may not be
appropriate to correct for attenuation of a predictor
variable, it may well be justifiable to adjust for the
inaccuracy of criterion measures. For instance, why
should inaccurate graduate grade point averages be
allowed to make Graduate Record Examinations
scores appear less valid than they really are? For this
single correction problem, the formula is as follows:

(3)

Confirmatory factor analysis (CFA) provides a
second way to correct for attenuation. In CFA, the
measurement error of each latent variable is explic-
itly modeled. In research comparing the results of
correcting for attenuation via the two approaches,
Fan found highly comparable results for the same
data. That is, both approaches provided nearly iden-
tical point estimates and confidence intervals for the
relationship between the true scores of his variables.
Nevertheless, it should be mentioned that the CFA
approach might be less applicable, given the con-
straints of modeling item-level data (e.g., extreme
item skewness and kurtosis, different item distribu-
tions, and item unreliability).

History

Over the years, various writers have debated whether
attenuation should be corrected at all. Although 
he supported the use of correction for attenuation,
Nunnally called it a “bandy fiction” the results of
which are always hypothetical. However, given its use
in adjusting effect sizes in substantive research and
meta-analysis, it appears that correction for attenua-
tion is here to stay. One reason is the alarm expressed
by some scholars that doctoral programs in the United
States are giving short shrift to the measurement cur-
riculum. Some suggest that the lack of attention given
measurement issues in higher education has led to the
finding that as many as 50% of contemporary pub-
lished research articles fail to report the reliability and
validity of the independent and dependent variables
employed. This fact takes on added importance when
one realizes that some variables used in published
research are so unreliable as to make it virtually
impossible to obtain statistically significant results.
Furthermore, an increasing number of professional
journals have begun to suggest strongly, and even
demand, that appropriate corrections be provided
readers in order to better inform their judgments
regarding the practical importance of statistically
significant p values.

Which Type of 
Reliability Should Be Used?

One pertinent issue concerns the selection of the 
type of reliability coefficient that should be used:
test-retest, internal consistency, or alternative-form
reliability. Obviously, the selection of the type of
reliability influences the corrected true-score correla-
tion. For instance, the long-term stability of an instru-
ment (e.g., using a 1-year test-retest interval) is
expected to be much lower than an internal consis-
tency estimate of reliability. Consider the case in
which the 1-year test-retest reliability coefficient for a
criterion test equals .65, coefficient alpha (an estimate
of internal consistency reliability) equals .80 for the
same test, and the validity coefficient between the pre-
dictor variable and the criterion test is .49. If we apply

rx′y′ = rxy√
ryy

.

rx′y′ = .43√
(.61)(.55)

= .74.
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Equation 2 to correct for the attenuation of the
criterion variable on the validity coefficient, we obtain
rx′y′ equal to .61 for the test-retest estimate and .55 for
the coefficient alpha estimate. Without knowing the
specific interest of the researcher, we have no basis for
identifying the better estimate of the true validity
coefficient. Over the years, different writers have sug-
gested aggregating corrections for attenuation across
several data sets and using the average value as the
best estimate of the true relationship between the sets
of scores. Cronbach and others have pointed out that,
should the average value be based on corrections
using different sorts of reliability coefficients, a basic
requirement of classic measurement theory would be
violated: Different types of reliability estimates may
not be used interchangeably.

In the literature, each of the three forms of reliabil-
ity has been recommended for use in correction for
attenuation. Most recently, researchers are advised to
choose on the basis of the intent and context of their
research objectives. Although such advice is easy to
follow in some contexts, it is murky in others. For
instance, if one is interested in determining the ability
of a first-grade readiness test to predict student
academic achievement 1 year later, then the test-retest
reliability (i.e., 1-year stability) of the readiness test
would be of greater interest to the researcher than
would other forms of reliability. Should the researcher
be interested in increasing the number of items in a
test (and thus improving the sampling of the item
domain and increasing reliability) in order to increase
the validity of the instrument, then internal con-
sistency reliability estimates offer more informative
results.

What Is Done When Appropriate
Reliability Estimates Are Unavailable

Although it is less problematical in individual
research reports, in meta-analyses it often happens
that reliability estimates of the appropriate types are
unavailable to the analyst. There are no elegant solu-
tions to this dilemma; the following are some of the
common practices in calculating the correction for
attenuation:

1. When appropriate reliability coefficients are
presented in the published report, they are used to
correct for attenuation.

2. When only inappropriate reliability coefficients are
presented in the published report, they are used to
correct for attenuation.

3. When no reliability coefficients are presented in the
published report, published values from technical
manuals and other sources are used to correct for
attenuation.

4. When no published reliability coefficients are
available for use, then average reliability coeffi-
cients from other, similar instruments are used to
correct for attenuation.

Clearly, this is not an enviable state of affairs.
However, until such time as researchers and profes-
sional publications rectify the omissions that remain
commonplace in published reports, the correction for
attenuation will remain a stepchild in research practice.

—Ronald C. Eaves

See also Correlation Coefficient
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ATTITUDE TESTS

Although definitions have varied, the most common
contemporary definition is that an attitude is a rela-
tively general and enduring evaluation of a person,
object, or concept along a dimension ranging from
positive to negative. Because attitudes have played a
central role in psychological theory and applica-
tion, numerous and diverse attitude tests have been
developed to assess this construct.

Direct Measures of Attitudes

The most common way to assess attitudes is simply 
to directly ask people to report them. Traditionally,
this approach has been accomplished using formal
scaling procedures to construct multiple-item tests of
attitudes.

MMuullttiippllee--IItteemm  DDiirreecctt  AAttttiittuuddee  MMeeaassuurreess

Formal attitude measurement began with the work
of Louis L. Thurstone. Although he proposed several
procedures, his most popular approach was the
equally appearing interval scale. This procedure
requires development of a series of opinion statements
that represent varying levels of positivity or negativity
toward the attitude object. Judges then sort these state-
ments into equal-interval categories of favorability
toward the attitude object (e.g., 11 intervals, where 
1 = extremely unfavorable and 11 = extremely favor-
able). Next, a scale value is computed for each state-
ment that corresponds to the median (or mean) score
of judges’ ratings, eliminating items with highly 

variable ratings. From the remaining items, the
researcher selects a final set of statements represent-
ing equal intervals on the evaluative dimension. The
final scale consists of these items in random order,
with instructions for respondents to check the items
with which they personally agree. The mean scale val-
ues of marked items are computed to obtain individ-
ual attitude scores.

Although Thurstone scales generally work well,
the procedure is time consuming because it requires
items to initially be rated by judges. In response to this
and other concerns, in 1932 Rensis Likert developed
the method of summated ratings. This procedure
requires a set of opinion items that are clearly positive
or negative in relation to the attitude object. The items
are then administered to the sample of interest, whose
members are instructed to indicate their level of agree-
ment on a 5-point continuum (where strongly agree is
assigned a value of 5 and strongly disagree is repre-
sented by 1). When the sample has completed the
items, negative items are reverse coded, and each
respondent’s item scores are summed to create an
overall attitude score. Item-total correlations are com-
puted to identify poorly performing items (i.e., items
with low item-total correlations). These items are dis-
carded, and the final attitude scale scores are com-
puted. Research has suggested this procedure tends to
produce highly reliable scales.

In response to concerns that prior procedures did
not guarantee unidimensional attitude tests, Louis
Guttman proposed scalogram analysis. This approach
involves constructing a set of opinion statements 
that are ranked in order, from least extreme to most
extreme (i.e., a set of statements ranging from mildly
positive to extremely positive or a set of items rang-
ing from mildly negative to extremely negative).
Scalogram analysis assumes that agreeing with a more
extreme position implies agreement with less extreme
positions. The pattern of responses to the set of items
is examined to assess the extent to which items satisfy
this assumption. Items are discarded if they frequently
fail to meet this criterion. Although Guttman scales
have the advantage of producing scales that are likely
to be unidimensional, the difficulty of constructing
scales that satisfy its stringent requirements has
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prevented it from becoming a widely used method of
attitude measurement.

One of the most popular measures of attitudes is
Charles Osgood’s semantic differential. The semantic
differential consists of a set of bipolar adjective pairs
(e.g., good-bad, wise-foolish) that represents the
evaluative continuum. Because these bipolar adjective
pairs tend to be very general, they can typically be
applied to any attitude object. Usually the attitude
object is placed at the top of the page and participants
are asked to rate this object by marking a category on
each of the bipolar pairs (reserving the middle cate-
gory for neutral responses). Attitudes are calculated
by summing or averaging the scores for each bipolar
scale. Semantic differential scales have generally been
found to have adequate psychometric properties and
are easy to use. However, because of their generality,
they may provide somewhat less precise and com-
prehensive measurement of specific attitudes than
Thurstone or Likert scales do.

SSiinnggllee--IItteemm  DDiirreecctt  AAttttiittuuddee  MMeeaassuurreess

Attitude measures are traditionally composed of
multiple items. However, in some cases, attitudes are
measured with a single semantic differential item or
opinion statement. This practice is common in situa-
tions such as telephone surveys in which attitudes
toward a wide range of topics must be assessed in a
short time. Unfortunately, any single item may have
biases or ambiguities and may lack the breadth to
fully capture an attitude. Thus, single-item measures
can have inadequate reliability and validity. A large
literature has developed regarding the optimal way 
to construct such items and organize them within a
questionnaire.

AAlltteerrnnaattiivveess  ttoo  DDiirreecctt  
MMeeaassuurreess  ooff  AAttttiittuuddeess

Direct measures of attitudes presume people are
willing and able to discuss their attitudes openly. This
may not always be the case, and researchers have
developed numerous alternatives to direct methods of
attitude measurement.

Indirect Measures of Attitudes

One of the earliest and best known indirect measures
is the information-error test, developed by Kenneth
Hammond. This procedure begins with generating a
large number of objective knowledge questions about
the target issue. The goal is to create questions that in
principle have objective answers but to which respon-
dents are unlikely to know the answers. These ques-
tions are presented in a multiple-choice format, with
answers implying various levels of negativity or posi-
tivity toward the target position (e.g., a question on
capital punishment might ask respondents to guess 
the percentage of executed criminals who were later
found to have been falsely convicted). The assumption
underlying this method is that when individuals
are faced with questions for which they do not know

the answer, they will tend to guess in an attitude-
consistent manner. Attitude scores can be calculated
by assigning scale values to increasingly positive or 
negative answers and then summing or averaging the
responses across items.

More recently, indirect attitude measures have
received renewed attention stemming largely from the
increasing literature on unconscious (or implicit) atti-
tudes and the suggestion that indirect measures may
be more effective than direct measures in capturing
unconscious attitudes, As a result, new indirect mea-
sures (called implicit measures of attitudes) are being
introduced with increasing frequency. Two implicit
measures have received particular attention.

Russell Fazio’s evaluative priming technique (also
called the bona fide pipeline or affective priming) is
based on the notion that even if we are not specifically
asked to report our attitudes, they will automatically
come to mind when we encounter the attitude object.
Interestingly, automatically activated attitudes influ-
ence our judgments of other objects. It has been
shown that if a negative attitude is activated, people
can make quick judgments about other objects that are
negatively evaluated but are slower in making judg-
ments about objects that are positively evaluated. The
opposite is true if the initial attitude activated is posi-
tive. This effect is central to the evaluative priming
technique.
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The evaluative priming procedure involves
presenting respondents with a dual judgment task. They
are told that first they will be briefly presented on
computer with a word prime that they should try to
remember and then they will be presented with a sec-
ond word, for which they will need to make an evalu-
ative judgment (i.e., judge if the word is positive or
negative). Respondents are presented with numerous
word pairs, and the time it takes them to make judg-
ments about the second word in the pair is recorded.
Attitudes are measured by including the target attitude
object among the primes. The speed of judgments
using the attitude object are then examined when it
serves as a prime for words that are almost universally
liked (e.g., love) and as a prime for some words that
are almost universally disliked (e.g., death). If a
person’s attitude is positive, that person should be
faster in making judgments about the second words
when the attitude object is a prime for positive words
than when it is a prime for negative words. The
reverse is true for negative attitudes.

Another recently developed indirect test is the
Implicit Association Test (IAT). This measure is
designed to tap the (automatic) associations between
two concepts (e.g., homosexual, heterosexual) with
positive and negative evaluations. In this procedure,
respondents are told that they will be given a list of
words on computer that will fall into one of four cat-
egories: the target attitude object (e.g., homosexuals),
a comparison attitude object (e.g., heterosexuals),
positive words, and negative words. Respondents
assign each word to one of the four categories by
pressing one of two response keys. In one set of trials,
respondents are told to hit one key if the word is a
word related to the target object or a positive word and
to hit a different key if the word is related to the com-
parison object or a negative word. In a second set of
trials, the task is reversed so that target object words
and negative words share the same response key, and
comparison object words and positive words share the
same response key. The computer records the time it
takes for respondents to make their categorizations.

The logic underlying the IAT is that if a person’s
attitude toward the target attitude object is positive,
that person will be able to perform the task more

quickly when target object words share the same
response key with positive words than they will when
target object words share the same response key with
negative words. In contrast, if the person’s attitude is
negative, the reverse will be true. Attitude scores are
created by computing a numerical index that reflects
the difference between the average speed with which
people perform the two versions of the task.

Both the evaluative priming procedure and the IAT
are new measures of attitudes, and research is still
being conducted to assess their reliability and validity.

Physiological Measures of Attitudes

Another alternative to direct measures of attitudes is
the use of physiological measures. Although some
early physiological measures of attitudes were prob-
lematic, more recent measures have proved pro-
mising. For example, the use of event related brain
potentials (ERP) has proven effective in assessing atti-
tudes. The ERP is measured by attaching electrodes to
certain areas of the scalp and monitoring the pattern of
electrocortical activity that occurs when people are
categorizing objects. Specifically, a sequence of stim-
uli that is evaluatively consistent (i.e., all positive or
all negative) is presented to the participant, with the
target attitude object at the end of this sequence. If the
attitude object differs in categorization from the previ-
ous stimuli (e.g., it is evaluated negatively and the pre-
vious sequence is positive), a large ERP will occur. If
the attitude object’s categorization is consistent with
the previous objects (e.g., all positive), a small ERP
will occur. By presenting the attitude object at the end
of both a sequence of positive objects and a sequence
of negative objects, the overall attitude score can be
computed by comparing the size of the ERP for the
two sequences.

Recently, brain-imaging techniques have been
applied to the measurement of attitudes. For example,
functional magnetic resonance imaging (fMRI), a pro-
cedure for measuring changes in brain activity
through increases in blood flow and oxygen consump-
tion, can be used to assess attitudes. By placing partic-
ipants in the fMRI scanner and presenting them with
an image of the attitudinal object, researchers can see
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what parts of the brain are activated in response to the
target stimuli. Such activation can then be exam-
ined in relation to distinct patterns of brain activity
associated with particular emotional and cognitive
responses. Use of this technique enables researchers
to assess attitude valence and possibly even attitude
structure (e.g., emotional or cognitive).

—Sonia Matwin and Leandre R. Fabrigar

See also Guttman Scaling; Likert Scaling; Questionnaires;
Thurstone Scales 
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Applying Ideas on Statistics and Measurement

The following abstract is adapted from Shlaes, 
J. L., Jason, L. A., & Ferrari, J. R. (1999). The devel-
opment of the Chronic Fatigue Syndrome
Attitudes Test: A psychometric analysis. Evaluation
& the Health Professions, 22(4), 442–465. 

Chronic Fatigue Syndrome (CFS) is character-
ized by debilitating symptoms including persistent
or relapsing fatigue, and as a result of CFS, some
individuals experience significant stigma. Many
medical professionals are skeptical of the validity
of the illness, and employers often fail to appreci-
ate its seriousness. There is presently no tool to
measure attitudes toward this illness or toward
people who have CFS. The purpose of these stud-
ies was to create a scale that measures attitudes
toward individuals with CFS—the Chronic Fatigue
Attitudes Test (CAT)—and to assess the scale’s reli-
ability and validity. The 13-item scale was created
using several constructs outlined in the literature
regarding negative attitudes toward people with
CFS, disabilities, and AIDS.

ATTRIBUTABLE RISK

The attributable risk statistic provides an estimate of
the proportion or number of events that can be
explained by a particular risk factor. Epidemiologists
frequently use attributable risk calculations to deter-
mine the population impact associated with a disease,
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Table 1 Attributable Risk Hypothetical Sample

Lung cancer at
follow-up

Event No event Yes No

Exposed A B A + B Smoker 3,000 7,000 10,000

Unexposed C D C + D Nonsmoker 1,000 9,000 10,000

A + C B + D 4,000 16,000

Notes: Attributable risk = (A/A + B) − (C/C + D); (3,000/[3,000 + 7,000]) − (1,000/[1,000 + 9,000]) = .30 − .10 = .20; Attributable 
risk = C/(C ++ D) × [(A/A + B) / (C/C + D) − 1]; Attributable risk = .10 × (3 − 1) = .20



behavior, or condition. The U.S. Surgeon General’s
estimate that smoking accounts for up to 400,000
deaths annually in the United States is an example of
an attributable risk inference.

In the context of cohort studies, attributable risk is
also referred to as risk difference, in this case quanti-
fying the excess risk in exposed versus unexposed
groups. Attributable risk can be calculated in several
ways. When accompanied by a relative risk statistic,
the attributable risk is equal to the rate of events in the
unexposed group × (relative risk −1). A more widely
applicable formula requires the creation of a 2 × 2
contingency table, as illustrated in Table 1 with a
hypothetical sample of smokers and nonsmokers. 

In Table 1, A through D represent the number of
cases in each study cell. The event rate among smok-
ers (3,000/10,000) is three times higher than among
nonsmokers (1,000/10,000). Half the sample is com-
posed of smokers, and 20% develop cancer over the
course of the study. Attributable risk uses both the
group event rates and the prevalence of the exposure
(smoking) for calculation purposes. The attributable
risk value of .20 tells us that if smokers in the study
became nonsmokers, the incidence of lung cancer
would decrease by 20 per 100 individuals. This repre-
sents a potential 66% decrease in lung cancer cases.

Important facts about attributable risk:

• The attributable risk statistic alone does not imply
that a causal relationship exists between the exposure
factor and the event.

• Because attributable risk uses information about
exposure prevalence, the attributable risk values
between two exposure factors that each double the
risk of an event such as cancer can differ dramati-
cally if one exposure (e.g., working in coal mines) is
much more rare than a more common exposure (e.g.,
smoking).

• Attributable risk can be used to calculate the popula-
tion attributable risk by use of the following formula:
attributable risk × rate of exposure in the population. 

• The proportion of events potentially eliminated in a
population by changing the exposure rate to that of
the unexposed group is often referred to as the attrib-
utable proportion.

• By combining attributable risk with the financial
costs of a health event, researchers can estimate the

health care expenses associated with an exposure
factor and calculate the health care savings achiev-
able by modifying a risk factor in a population.

—Thomas Rutledge

See also Probability Sampling
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ATTRITION BIAS

When data are collected over two or more points in
time, it is common for some participants to drop out
of the study prematurely. The attrition of the original
sample can occur in longitudinal research as well as 
in experimental designs that include pretest, posttest,
and follow-up data collection. In longitudinal
research, which often lasts many years, some partici-
pants move between data points and cannot be
located. Others, especially older persons, may die or
become too incapacitated to continue participation in
the study. In clinical treatment studies, there may 
be barriers to continued participation in the treat-
ment program, such as drug relapse or lack of
transportation. 

Attrition of the original sample represents a poten-
tial threat of bias if those who drop out of the study are
systematically different from those who remain in the
study. The result is that the remaining sample becomes
different from the original sample, resulting in what is
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known as attrition bias. However, if sample attrition
over time is not systematic, meaning that there are no
unique characteristics among those who drop out, then
there is no attrition bias, even though the sample has
decreased in size between waves of data collection. It
is important, then, for researchers who collect multi-
ple waves of data to check for attrition bias.

Attrition bias is one of the major threats to multi-
wave studies, and it can bias the sample in two ways.
First, attrition bias can affect the external validity of
the study. If some groups of people drop out of the
study more frequently than others, the subsequent lon-
gitudinal sample no longer resembles the original
sample in the study. As a result, the remaining sample
is not generalizable to the original population that was
sampled. For example, a longitudinal sample examin-
ing the grieving process of women following the death
of a spouse may fail to retain those participants who
have become too distraught to fill out the question-
naire. The nonparticipation of this group may bias the
findings of the study toward a minimization of depres-
sive symptomatology as a component of the grieving
process. In other words, the composition of the sam-
ple changes to the point that the results are no longer
generalizable to the original population of widows.

Second, systematic, as opposed to random, attrition
can negatively affect the internal validity of the study
by altering the correlations among the variables in the
study. This problem occurs in longitudinal research
because the subsamples that are dropping out of the
study at a higher rate are underrepresented in the
longitudinal sample, which may lead to correlations
between variables that are different from the true
correlations in the original sample. For example, the
underrepresentation of widows with depressive symp-
tomatology in the second or third wave of a study may
alter the correlation between insomnia and length of
time since the death of the spouse.

Selective attrition affects the internal validity of
experimental research when there are differential
dropout rates between the treatment and control
groups. In a clinical trial of a depression treatment, if
the participants in the treatment group drop out at a
higher rate than do the participants of the control
group, the results of the study will be biased toward

showing artificially successful treatment effects,
thus compromising the internal validity of the study.
However, if the dropout rates are comparable, the
threats to internal validity due to attrition are minimal.

Preventing Attrition

Because of the threat of attrition bias to the external
and internal validity of studies, it is important to min-
imize sample attrition when conducting multiwave
research. Researchers who have conducted experi-
mental and longitudinal research have made a number
of recommendations and suggestions to reduce sam-
ple attrition. Mason emphasized the importance of
creating a project identity, offering cash and other
incentives, developing a strong tracking system to
constantly identify the location and status of partici-
pants, and keeping follow-up interviews brief. Others
recommend collecting detailed contact information
about participants to increase the likelihood of locat-
ing them for the second and subsequent interviews.
Follow-up postcards and telephone reminders also
help retain participants in the sample.

Detecting Attrition Bias

Differences in characteristics between those who
prematurely drop out a study (“droppers”) and those
who remain in the sample (“stayers”) can be assessed
by conducting a logistical regression analysis.
Because both groups participated in the first wave of
the study, data are available on which to compare the
two groups. A dichotomous dependent variable is cre-
ated with 1 representing the stayers and 0 representing
the droppers. Variables from the first wave of data are
used as independent variables in the analysis. These
variables should include key demographic variables,
such as race, income, age, and education, as well as
substantive variables that are salient in the study, such
as depression, drug abuse, or marital quality. A statis-
tically significant coefficient for any of the variables
means that there is a difference between the stayers
and the droppers, indicating attrition bias.

Threats to internal validity due to attrition bias can
be tested by comparing the first-wave correlation
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matrices of the overall sample and the longitudinal
sample, which includes only the stayers. This can be
done in two ways:

1. Each of the correlation coefficients (for example,
the correlation between age and level of depres-
sion) is compared using Fisher’s z statistical test. A
significant z score means that the two coefficients
are statistically significantly different, indicating
attrition bias. 

2. A structural equation modeling program, such as
LISREL or AMOS, can be used to test whether the
two correlation matrices are invariant, that is, the
same. If the test for invariance is nonsignificant,
then the two matrices are assumed to be equivalent,
with no apparent attrition bias.

Correcting Attrition Bias

Although the strategies used to detect attrition bias 
are straightforward, there is substantial debate about
appropriate strategies to correct attrition bias. Despite
the lack of consensus, though, the need for correcting
the problem of attrition bias is crucial and continues to
motivate statisticians to pursue solutions. 

Correction of nonrandom attrition can be broken
into two categories. The first category is correction of
data when the mechanism of dropping out is known,
or in other words, when the researcher knows which
characteristics are related to dropping out of the study.
The second category is attrition whose causes the
researcher does not know. 

KKnnoowwnn  CCaauussee  ooff  AAttttrriittiioonn

When the cause of attrition is known, the
researcher can take steps to control the data analysis
procedure to account for the missing data. A model
has been developed that simultaneously calculates the
research question and the mechanism for missing
data. This model is a sample selection model in which
two simultaneous regression models are calculated.
The first model is a regression model that addresses
the research question, with the hypotheses of the
study being examined by the regression of the depen-
dent variable on the key independent variables in the
study. The second model includes the variables that

are causing attrition, with the dependent variable
being a dichotomous variable indicating either con-
tinued participation or nonparticipation in the study.
The error terms of the substantive dependent variable
in the first regression model and the participation
dependent variable in the second regression model are
correlated. A significant correlation between the two
error terms indicates attrition bias. If the correlation is
significant, the inclusion of the second model pro-
vides corrected regression coefficients for the first,
substantive regression model. Thus, the inclusion of
the second model that examines attrition bias serves
as a correction mechanism for the first, substantive
model and enables the calculation of unbiased regres-
sion coefficients.

UUnnkknnoowwnn  CCaauussee  ooff  AAttttrriittiioonn

Heckman proposed a two-step procedure to cor-
rect for attrition bias when the cause of the attrition
is not readily apparent. He conceptualized the issue
of attrition bias as a specification error, in which the
variable that accounts for systematic attrition in the
study is not included in the regression equation. This
specification error results in biased regression coef-
ficients in the analysis. His solution is to first create
a proxy of the variable that explains attrition. This is
done by conducting a logit regression analysis, sim-
ilar to the one described in the section on detecting
attrition bias. The dependent variable is whether or
not each participant participated in the second wave
of data collection, and the independent variables are
possible variables that may explain or predict
dropout. This first step not only tests for attrition
bias but also creates an outcome variable, which
Heckman calls λ (lambda). Thus, a λ value is com-
puted for all cases in the study, and it represents the
proxy variable that explains the causation of attrition
in the study.

The second step of Heckman’s procedure is to
merge the λ value of each participant into the larger
data set and then include it in the substantive analysis.
In other words, the λ variable is included in the regres-
sion equation that is used to test the hypotheses in the
study. Including λ in the equation solves the problem
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of specification error and leads to more accurate
regression coefficients.

While Heckman’s model has been used by longitu-
dinal researchers for many years, some concerns have
arisen regarding its trustworthiness. Stolzenberg and
Relles argue that Heckman’s model has been shown to
compute inaccurate estimates, and they suggest
several cautions when using his model. Nevertheless,
Heckman’s model offers a possible solution when sys-
tematic attrition threatens to bias the results of a study.

—Richard B. Miller and Cody S. Hollist

See also Longitudinal/Repeated Measures Data
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AUDIT TRAIL

An audit trail is a collection of documentation that
enables tracing the steps of any process or procedure.
The term audit is commonly applied in accounting sit-
uations. In such a context, an audit involves reviewing
records of accounting procedures and transactions to
assess the validity of financial reports. The assortment
of documentation and the pathways available for
reviewing that documentation constitute the audit
trail. Information technology contexts use audit trails
for computer security, to trace, for instance, the path
of a system intruder and, ideally, identify the source of
any intrusion. Audit trails also are used in food distri-
bution to ascertain the actual nature of food described
as organic, for example; to trace the presence or
absence of additives; and to locate the origin and path-
ways of items distributed across various settings. This
latter function can be invaluable in public health situ-
ations; for example, a food-borne illness can be traced
to an infected animal, processing plant, or food
service handler.

The audit trail serves a comparable purpose in
research applications. In research, the audit trail is
used to evaluate decisions and analytic procedures
throughout a study to demonstrate the soundness,
appropriateness, and in essence the validity of conclu-
sions. One of the original uses of an audit trail in rela-
tion to research was in association with large-scale
program evaluation projects, and a specific audit
process may be included as part of such a study. For
example, evaluation of a statewide program to
increase graduation rates from high school may
involve a review of expenditures, test scores, student
progress, graduation rates, and other outcome data.
The researchers also might choose to conduct inter-
views or focus groups with teachers and students
involved in the program. To confront questions that
the results could be biased by political or personal
aims, auditors can be employed to review the proce-
dures of the researchers, ensuring that appropriate
data were collected, that conclusions were consistent
with the data, and that the results present a valid eval-
uation of the program under review.
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In qualitative studies, because the entire parameters
of a study cannot be anticipated in advance, changes
often are implemented during a study. The researcher
must maintain documentation of decisions and the
rationale for any changes as a way to recall and
substantiate that such actions were appropriate. In
addition to documenting procedures for credibility
purposes, an audit trail in qualitative research may
include field notes, or notes regarding the behaviors
and actions of people and other events happening in
the situation where data are collected; methodological
documentation; analytic documentation reflecting the
researcher’s thought processes during data analysis;
and documentation of personal responses to capture
the investigator’s role and reactions as the study
progresses. Ongoing developments in software for
qualitative data analysis help to consolidate some of
these processes by making the creation of field notes
and methodological journals a part of the electronic
data set.

—Beth Rodgers

See also Authenticity; Text Analysis
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AUTHENTICITY

Authenticity in education is the fidelity of the intellec-
tual learning environment to the real-world ways in
which knowledge is used in the field of study into
which the student is being inducted. In other words,
the learning that is engendered in formal education
and the mechanisms through which such learning 
is judged are authentic to the extent that there is

congruence between the institutionally derived tasks
and reality. In reality, significant accomplishment
requires the production, rather than the reproduction,
of knowledge. Production of knowledge is a particular
type of cognitive work that constructs new knowledge
in a meaningful way and has a personal, utilitarian, or
aesthetic value beyond the demonstration of compe-
tence. Therefore, formal learning tasks are authentic
when they meet one or more of criteria for significant
accomplishment. Within education, authenticity con-
notes the quality of intellectual engagement required
in reading; writing; speaking; coping with challenges
that do not have single solutions; and producing tan-
gible artifacts such as a research report, a musical
score, an exhibition of artwork, or a demonstration of
an invention. There are three standards by which intel-
lectual engagement can be judged authentic:

1. Analysis: The task requires higher-order thinking
with content by organizing, synthesizing, inter-
preting, evaluating, and hypothesizing to produce
comparisons, contrasts, arguments, new applications
of information, and appraisals of competing
perspectives.

2. Disciplinary concepts: The task requires an under-
standing of ideas, concepts, theories, and principles
that are central to the academic or professional dis-
ciplines into which the student is being inducted.

3. Elaborated written communication: The task
requires production of detail, qualification, argu-
ment, and conclusions that are clear, coherent,
and rich.

This interpretation of authenticity is entirely con-
sistent with contemporary theories of learning and
knowing, which emphasize how knowledge is repre-
sented, organized, and processed in the mind. Because
these theories imply that instruction and assessment
should be integrated, authenticity can refer to both
achievement (the correspondence between classroom
instruction and reality) and assessment (the corre-
spondence between instruction and assessment).

Educational practices often assert authenticity
through using interactive video environments to
engage students in simulated real-life problems.
These have produced gains in problem solving,
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communication skills, and more positive attitudes to
domain knowledge. However, it is not simulations per
se but the extent to which they replicate the conditions
in which people are challenged in context that deter-
mines authenticity. No matter how authentic a task
seems, the institutional constraints and policy vari-
ables in formal education contexts mean that authen-
ticity in education is an approximation that need not
necessarily capture the totality or urgency of all the
real-life variables. Currently, the lack of systematic
investigation into the effects of the learning context,
the learning task, and the learners’ interpretations of
context and task in the simulated experiences means
that the validity and reliability of the simulations are
not yet well understood.

—Effie Maclellan

See also Audit Trail

Further Reading
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Education into any search engine.

AUTOCORRELATION

Many parametric statistical procedures (e.g., ANOVA,
linear regression) assume that the errors of the models
used in the analysis are independent of one another
(i.e., the errors are not correlated). When this assump-
tion is not met in the context of time-series research
designs, the errors are said to be autocorrelated or
dependent. Because time-series designs involve the
collection of data from a single participant at many
points in time rather than from many participants at
one point in time, the assumption of independent
errors inherent in many parametric statistical analyses
may not be met. When this occurs, the outcome of
these analyses and the conclusions drawn from them
are likely to be misleading unless some corrective
action is taken.

The error in a time-series linear model usually refers
to an observed value Yt (i.e., a dependent variable score
observed in a theoretical process at time t) minus the
predicted value Ŷt (based on parameters in the model).
When actual sample data are involved (instead of theo-
retical process data), the predicted values are based on
the estimates of the parameters in the model, and the
difference Yt − Ŷt is called a residual. Hence, a residual
is an estimate of an error. For example, if a researcher
proposes an ANOVA model for a two-phase inter-
rupted time-series design, the residual is defined as an
observed value in a realization (i.e., a sample) of the
process minus the mean of the relevant phase. If the
sign and size of the residuals are unrelated to the sign
and size of the residuals that follow them, there will be
no autocorrelation, and this implies that the errors of
the model are independent. If, however, positive resid-
uals tend to be followed in time by positive residuals
and negative residuals tend to be followed by negative
residuals, the autocorrelation will be positive; this is
evidence that the independence assumption is violated.
Similarly, if positive residuals tend to be followed by
negative residuals and negative residuals tend to be fol-
lowed by positive residuals, the autocorrelation will be
negative, and once again, this is evidence that the inde-
pendence assumption is violated. Autocorrelated
errors are especially likely to occur when (a) the time
between observations is very short, (b) the outcome
behavior changes very slowly, (c) important predictor
variables are left out of the model, or (d) the functional
form (e.g., linear) of the relationship between the pre-
dictors and the outcome is incorrectly specified.

Why Autocorrelation Is Important

Autocorrelation is important because (a) it can affect
the validity of inferential statements associated with
conventional hypothesis tests and confidence intervals
(e.g., positive autocorrelation leads to underestimated
p values and confidence intervals that are too narrow),
(b) knowledge of its presence can lead a researcher to
select a more appropriate statistical analysis, and (c)
the precision of predictions made using regression
equations can be improved using information regard-
ing autocorrelation.
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How Autocorrelation Is Measured

Although one can measure autocorrelation in many
different ways, the most frequently encountered
method involves the computation of a single coeffi-
cient called the lag-1 autocorrelation coefficient. This
autocorrelation coefficient represents the correlation
between the residuals at their associated time t and
those same residuals shifted ahead by one unit of time.
The sample coefficient computed on actual data is
denoted as r1 whereas the population (or process)
parameter is denoted as ρ1. Like most two-variable
correlation coefficients, the autocorrelation coeffi-
cient must fall between −1.0 and +1.0. The conven-
tional formula for computing the sample coefficient is

where

et is the residual (i.e., the estimate of the error of the
model), measured at time t, and

N is the number of residuals in the observed time series.

Consider the data presented in Table 1. The first col-
umn lists the time points at which performance mea-
sures on a complex job task were obtained.
Observations 1 through 10 were obtained during the
first (baseline) phase of a two-phase experiment, and
observations 11 through 20 were obtained during the
second (intervention) phase. The third column contains
the residuals, which were computed by subtracting the
mean for phase 1 from each observation in phase 1.
Similarly, the residuals for phase 2 were computed by
subtracting the mean for phase 2 from each observation
in phase 2. This approach for computing residuals was
used because the investigator chose a simple ANOVA
model for the data analysis. This model defines the
error as (Yt − µt) = εt and the estimate of the error (i.e.,
the residual) as (Yt − Yj

_
) = et, where j indicates the

phase. The fourth column contains the same residuals
shown in column three, except they have been shifted

forward by one time unit. No observation appears in the
first row because there is no observation at time point
zero. The sum of the values shown in column 5 is 26.3
and the sum of the squared residuals (not shown in the
table) is 123.15. The lag-1 autocorrelation coefficient is
the ratio of 26.3 over 123.15, which is .21.

Often researchers apply a formal inferential proce-
dure (such as the Durbin-Watson test) to test the
hypothesis ρ1 = 0. Using the Durbin-Watson test, we
obtain a p value associated with the example autocor-
relation coefficient (r1 = .21) that falls above .10, so we
have insufficient evidence to conclude that the residu-
als are autocorrelated. Consequently, the ANOVA
model appears acceptable with respect to meeting the
independence assumption. Two-phase designs often
require more complex models, but regardless of the

r1 =

N∑

t=2
(et )(et−1)

N∑

t=1
e2

t

,
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Table 1 Values Used in Computing the Lag-1
Autocorrelation Coefficient on the Residuals

Time t Yt et et−1 (et)(et−1)

1 5 −1.28 __ __
2 6 −.26 −1.28 .34
3 6 −.25 −.26 .06
4 7 .77 −.25 −.19
5 7 .79 .77 .61
6 8 1.81 .79 1.43
7 4 −2.17 1.81 −3.93
8 7 .85 −2.17 −1.84
9 7 .86 .85 .73

10 5 −1.12 .86 −.97
11 16 1.12 −1.12 −1.25
12 19 4.14 1.12 4.63
13 14 −.85 4.14 −3.50
14 16 1.17 −.85 −.99
15 11 −3.81 1.17 −4.47
16 10 −4.79 −3.81 18.25
17 10 −4.77 −4.79 22.87
18 19 4.25 −4.77 −20.26
19 18 3.26 4.25 13.86
20 15 .28 3.26 .92

Notes: Yt = observed values (values at t = 1–10 are from Phase 1,
and values at t = 11–20 are from Phase 2); et = residuals,
computed by subtracting the mean for Phase 1 from each
observation in Phase 1 and the mean for Phase 2 from each
observation in Phase 2; et–1 = residuals shifted forward by one
time unit.



complexity of the design or the model, researchers
should attempt to determine whether the errors of the
model are independent by evaluating the residuals.

More Complete 
Evaluations of Dependency

The lag-1 autocorrelation coefficient measures the
degree of relationship between residuals measured
one time period apart. That is, it measures the rela-
tionship between residuals of adjacent scores.
Although dependency in a time series usually
appears in the lag-1 coefficient, this is not always
true. Adjacent values may possibly show little or no
relationship, while values separated by more than
one time unit may show a substantial relationship.
One can measure relationships of this type by com-
puting autocorrelation coefficients at lags greater
than lag-1. If the autocorrelation is computed
between the original series and the original series
lagged by two time units, the resulting coefficient is
called the lag-2 autocorrelation, denoted r 2. We can
extend this idea to many lags. It is possible to com-
pute K coefficients from N observations, where K is
equal to N − 1. The whole collection of autocorrela-
tion coefficients (i.e., r1, r2, . . . , rK ) is called the
autocorrelation function.

Most time-series computer programs compute
autocorrelations for a fraction (usually one sixth to
one quarter) of the possible lags. These programs usu-
ally represent the coefficients graphically in a correl-
ogram. The vertical dimension of the correlogram
indicates the size of the autocorrelation coefficient,
and the horizontal dimension indicates the lag. The
information displayed in the correlogram is very
useful in characterizing the dependency structure in a
time series. If all the lagged autocorrelation coeffi-
cients in the correlogram hover around zero, this
implies that the values in the series are independent.
But if large coefficients appear at one or more lags, we
have reason to suspect dependency in the series. Most
time-series software packages provide formal tests of
independence that consider the whole set of coeffi-
cients in the correlogram. The most popular of these
tests are known as Box-Pierce and Ljung-Box tests.

Relevant Autocorrelations 
for Various Time-Series Models

Sometimes investigators estimate autocorrelation on
dependent variable scores rather than on errors. It is
important to distinguish between autocorrelations
estimated on these two types of scores to understand
the difference between two popular approaches to
time-series analysis. In the approach known as autore-
gressive, integrated, moving averages (ARIMA) mod-
eling, autocorrelation among dependent variable
scores is relevant. In the approach known as time-
series regression modeling, autocorrelation among
errors of a regression model is relevant. Although
both approaches require the computation of autocorre-
lation measures, they use information regarding auto-
correlation for somewhat different purposes. ARIMA
models use autocorrelation measures to identify the
type of time-series parameters necessary for modeling
the dependent variable scores. In contrast, time-series
regression models most often use measures of auto-
correlation to determine whether the errors of the
regression model show independence. In these regres-
sion models, significant autocorrelation should warn
researchers that they have misspecified the model
(i.e., chosen a substantially wrong model) and that
alternative models should be considered. The alter-
native model may contain parameters that either 
(a) eliminate autocorrelation among the errors or 
(b) accommodate that autocorrelation.

—Bradley E. Huitema and Sean Laraway

See also Correlation Coefficient; Time Series Analysis
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series model with autoregressive error terms. Psycho-
logical Methods, 5, 87–101.

Software for estimating time series regression models with
autoregressive errors (output includes regression coeffi-
cients, associated bootstrap tests, and a reduced bias auto-
correlation estimate): http://www.stat.wmich.edu/, click on
Stat Lab → Software → Timeseries. A design matrix and
outcome data must be entered.

AVERAGE

To describe a group of values, it is useful to have a
typical value or an average value. An average is a
summary, so the average value should be representa-
tive of a group of values. An average can be used pri-
marily to describe a sample and can also be used to
estimate a population value. For example, researchers
might want to find an average value in their sample
that lets them predict what the average value in the
population might be.

There are various measures of central tendency, or
average, of a data set, and all have different statistical
properties, which makes them sometimes more and
sometimes less useful descriptors. Specific problems
associated with the distribution the group of values rep-
resents are the shape of the distribution (symmetrically
distributed or skewed, for example) and the presence or
absence of outliers in the data set. Either the average
value can be computed, taking all or only some values
in the group into account, or it can be a chosen value
from the group, seen fit to represent the group.

Most commonly, people refer to the arithmetic
mean as the average (and vice versa), although this
language is ambiguous and should be avoided. The
arithmetic mean is the sum of all the values divided by
the number of values in the group. There are many
variations of the mean, two of the most common ones
being the geometric mean and the harmonic mean. A
trimmed mean excludes a specific percentage of the
upper and the lower end of a distribution, commonly
5% in either direction. A midmean is a special case of
a trimmed mean in which the mean is calculated for
the data between the 25th and 75th percentiles.

The mode, the most frequently occurring value, can
also be a descriptor of a group of values. The median
is also a frequently used term for expressing an aver-
age value. Especially in skewed data, the mean would
be less informative than the median.

It is important to remember that an average value
should be presented together with a measure of
dispersion.

More about average:

• The mean as the most commonly used average mea-
sure is sensitive to extreme scores.

• The median is a suitable average for nonsymmetric
distributions and is not affected by outliers.

• The mode is an average value actually represented in
the group of values, whereas the mean, as a deriva-
tive, can take a value that is not actually represented
in the group of values (e.g., the average number of
children is 1.2).

—Susanne Hempel

See also Arithmetic Mean; Mean; Measures of Central
Tendency; Median; Mode
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Molden, D. C., & Dweck, C.-S. (2006). Finding “meaning” in
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Descriptive Statistics: http://www.physics.csbsju.edu/stats/
descriptive2.html (application that computes the mean
once data are entered) 

Applying Ideas on Statistics and Measurement

The following abstract is adapted from See, W. Y.,
Wagner, T. H., Shuo, C., & Barnett, P. G. (2003).
Average cost of VA rehabilitation, mental health,
and long-term hospital stays. Medical Care
Research and Review, 60(3 suppl), 40S–53S. 

One of the most common methods used to
better understand a collection of data points is
through the calculation of an average (which
includes such descriptive statistics as the mean,
the mode, and the median). In this article,
researchers Wei You See and his colleagues at 
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Stanford University describe the development of a
database for the cost of inpatient rehabilitation,
mental health, and long-term care stays in the
Department of Veterans Affairs from fiscal year
1998. As a unit of analysis, they used bedsection,
which is similar to a hospital ward, and they clas-
sified inpatient services into nine categories,
including rehabilitation, blind rehabilitation,
spinal cord injury, psychiatry, substance abuse,
intermediate medicine, domiciliary, psychosocial
residential rehabilitation, and nursing home. For
each of these nine categories, they estimated 
a national and a local average per diem cost. 
The next step was to calculate what they call
encounter-level costs, which was done by multi-
plying the average per diem cost by the number of
days of stay in the fiscal year. Their conclusion?
The national cost estimates for hospitalization are
more reliable than the local cost estimates for the
same.

AVERAGE DEVIATION

The average deviation (AD) is used as a measure of
dispersion or within-group interrater agreement and
may be referred to as the average absolute deviation
or mean deviation. The average deviation is often
defined in one of two ways: by deviations from
the mean (ADM) or by deviations from the median
(ADMd). The average deviation is calculated by taking
the difference between each score and the mean (or
median), summing the absolute values of these devia-
tions, and then dividing the sum by the number of
deviations. As a measure of dispersion, the larger the
AD, the greater is the variability in a distribution of
scores. As a measure of within-group interrater agree-
ment, the larger the AD, the greater is the disagree-
ment among raters evaluating a single target on a
categorical rating scale.

The formula for the computation of the average
deviation using the mean is 

where

Σ directs you to add together what follows it,

X is each individual score in the distribution of scores,

X
_

is the mean,

the vertical lines are the absolute value symbols and
direct you to disregard the fact that some deviations
are positive and some negative, and 

n is the number of cases or number of raters.

The formula for the computation of average devia-
tion using the median (ADMd) would substitute the
median for the mean in the above equation.

More about the average deviation as a measure of
dispersion:

• It gives equal weight to the deviation of every value
from the mean or median.

• The average deviation from the median has the
property of being the point at which the sum of the
absolute deviations is minimal compared with any
other point in the distribution of scores.

• Given that the AD is based on every value in the
distribution of scores, it provides a better description of
the dispersion than does the range or quartile deviation.

• In comparison with the standard deviation, the 
AD is less affected by extreme values and easier to
understand.

More about the average deviation as a measure of
within-group interrater agreement:

• The AD provides an index of interrater agreement in
the metric (measurement units) of the original rating
scale.

• A statistically derived cutoff for an acceptable level of
disagreement in raters’evaluations of a single target is
c/6values, where c is the number of response options
or rating categories. Values of AD exceeding this cut-
off value (e.g., values of AD exceeding a cutoff value
of 1.2 on a 7-point rating scale) would indicate dis-
agreement among raters, and values of AD below the
cutoff would indicate agreement in raters’ scores of
the single target.

• In comparison with other measures of within-
group interrater agreement, including the standard

ADM =
∑ |X − X

---|
n
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deviation, the AD index is easiest to understand and
interpret.

—Michael J. Burke

See also Standard Deviation; Variance

Further Reading

Dunlap, W. P., Burke, M. J., & Smith Crowe, K. (2003).
Accurate tests of statistical significance for r sub(WG) and
average deviation interrater agreement indexes. Journal of
Applied Psychology, 88(2), 356–362.

Averages and deviations: http://www.sciencebyjones.com/
average_deviation.htm 
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BABBAGE, CHARLES

(1791–1871)

Charles Babbage is best known as the Father of
Computing, having formulated the idea of a mechani-
cal calculator during his student days.

Babbage was born in London on Boxing Day,
December 26, 1791. His father was a banker from
Devon, and Babbage was educated in Totnes, with the
family moving to Teignmouth in 1808. Babbage was
a sickly child who therefore received much of his edu-
cation from private tutors at home. One consequence
was that, on arriving at Cambridge University in 1810,
he was somewhat disappointed with the standards
expected. In 1812, with fellow undergraduates, he
established the Analytical Society with the aim of pro-
moting the use of our modern notation for differential
calculus over the Newtonian presentation then in
vogue.

He graduated in 1814, the year of his marriage to
Georgiana Whitmore (who died in 1827 following the
birth of their eighth child—only three survived to
adulthood). In 1816, following the publication of two
major papers, and as a consequence of his work with
the Analytical Society, Babbage was elected a Fellow

of the Royal Society. In 1820, he was elected a Fellow
of the Royal Society of Edinburgh and was a founding
member of what is now the Royal Astronomical
Society. In 1828, he was appointed Lucasian
Professor of Mathematics at Cambridge University
(a post he held until 1839). In 1834, the decision to
found a statistics society (now the Royal Statistical
Society) was made at his house.

Babbage conceived the notion of constructing a
machine for automated calculations while at
Cambridge, but it was not until 1822 that he com-
pleted a working model. This machine was able to cal-
culate the values of n2 + n + 1 for successive values of
n at the rate of 12 a minute. The machine worked by
using differences: thus the successive values of n2 + n
+ 1 are 3, 7, 13, 17, . . . , with constant differences of
4. The machine that Babbage conceived is therefore
known as a difference engine. The initial model was
well received, and Babbage received a grant to build a
bigger, more powerful engine. However, as is so often
the case with construction projects, the costs escalated
enormously, and the project was finally abandoned in
1834.

Babbage then turned his attention to the construc-
tion of a more versatile analytical engine, which used
punched cards adapted from a Jacquard loom (which
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enabled intricate woven patterns in cloth). The initial,
1835 design was for a machine five meters (16.4 feet)
tall. For the next 10 years, the plans were refined, and
it was at this time that Babbage corresponded with
Ada, Countess of Lovelace, in the construction of
algorithms for the embryonic machine—in other
words, the world’s first computer programs. Babbage
died in London on October 18, 1871.

—Graham Upton

See also Probability Sampling

Further Reading

Swade, D. (2002). The difference engine: Charles Babbage and
the quest to build the first computer. New York: Penguin.

Babbage’s machines: http://www.sciencemuseum.org.uk/on-line/
babbage/index.asp

BAR CHART

A bar chart is a specific type of chart that visually rep-
resents data as a series of horizontal bars, with the
Y axis representing the categories contained in the
data and the X axis representing the frequency. It is
different from a column chart in that column charts
display the data vertically.

Bar charts are most often used for categorical data
that is, by definition, not dynamic in nature. For
example, if one were interested in an examination of
sales figures by brand before and after a marketing
campaign, a bar chart would be the appropriate way to
illustrate such information, as shown in the following
example. First, here are the data.

Brand X Brand Y

Before 56.3 76.8

After 97.4 87.5

Note: Figures represent sales in millions of dollars.

A bar chart is relatively simple to construct manu-
ally. Following these steps and using graph paper is
the easiest way to be accurate.

1. Group the data as shown in the above example.

2. Define the Y axis as “Brand.”

3. Indicate on the X axis the scale that is to be used,
which in this case is millions of dollars, ranging
from 55 to 100.

4. Draw each bar for each brand to correspond with
the data, making sure that the bars are appropriately
colored or patterned so they are easily distinguish-
able from one another.

Using Excel, the process is much simpler.

1. Create the data on a new worksheet and save it.

2. Using the mouse, select all the data, including the
column and row headings.

3. Click on the Chart Wizard icon on the Excel
toolbar.

4. Click Finish in the dialog box.

While the finished bar chart may not appear as
attractive as you might like, modifications are rela-
tively easy to make, as shown in Figure 1.

The following changes were made:

• Major gridlines were removed.
• All coloring was deleted except for the gray added to

one of each pair of bars to help distinguish it from the
other.

• Value labels were added at the end of each bar.
• A title was added, as were labels for each axis.
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• The X axis minimum and maximum were changed
from Excel’s default values to 50 and 105.

• The border was removed from the legend.

—Neil J. Salkind

See also Area Chart; Line Chart; Pie Chart

Further Reading

Tufte, E. R. (2001). The visual display of quantitative informa-
tion (2nd ed.). Cheshire, CT: Graphics Press.

BASAL AGE

Basal age represents the highest level, on a test stan-
dardized in units corresponding to mental age or age-
equivalents, below which it can be assumed that all
items would be answered correctly. For example, a
child who correctly answers the required number of
items at a certain age level would be given credit for
all preceding items on the test even though the child
has not actually been tested on those items. The term
basal age is often used interchangeably with basal
score or basal.

The point at which to begin the calculation of basal
age is usually estimated from a child’s chronological
age or, for children with learning or language disabil-
ities, from a functional estimate of age. For children
who demonstrate considerable scatter in their perfor-
mance or who perform at significantly different levels
from their age-matched peers, the calculation of a
basal age makes it easier to determine a meaningful
starting point on a test.

Although tests vary somewhat in how basal scores
are calculated, the procedure is usually very similar.
The Stanford-Binet Intelligence Scales (fifth edition),
for example, uses basal levels in all its 11 testing
blocks. Testing is begun at a block that is believed to
represent a child’s general ability level. If a basal is
not obtained, testing moves back to successively
lower blocks until a basal is established. On the
Peabody Picture Vocabulary Test (third edition), a
basal is established when a respondent makes no or
only one error within a set of items. On the Woodcock
Language Proficiency Battery-Revised, the number of

correct responses required to establish a basal age
varies between four and six, depending on the partic-
ular subtest.

On almost all tests, the examiner administers test
items in reverse order from the estimated starting
point until a basal is obtained in the manner specified.
In the event that no basal level is achieved, the first
item on the test is usually considered to represent the
basal age.

Tests that employ basal scores typically also use
ceiling scores, or previously defined accuracy levels
that determine the point at which a test is terminated.
Thus, the basal and ceiling essentially define an exam-
inee’s functional range. Moreover, they serve to limit
the number of test items that are administered.
Usually, age-equivalent scores are calculated based on
the raw score derived from the ceiling item and the
number of correct responses below it.

—Carole E. Gelfer

Further Reading

Anastasi, A. (1988). Psychological testing (6th ed.). New York:
Macmillan.

BASIC PERSONALITY INVENTORY

The Basic Personality Inventory (published by Sigma
Assessment Systems, www.sigmaassessmentsys-
tems.com) was developed by Douglas N. Jackson and
is currently in its second edition (BPI-II). The Basic
Personality Inventory was derived through factor
analysis of the 28 scales of the Differential Personality
Inventory, and the resulting 11 dimensions identified
were augmented with the critical item scale deviation to
form the basis for a multiscale inventory of psy-
chopathology and psychosocial adjustment. Once the
12 dimensions to be measured had been defined as
constructs, new items were written and selected for
the scales. The result was 20 items per scale, balanced
in terms of true and false keying for 11 of the 12
scales (all 20 deviation items are true keyed). There is
no item overlap between scales. Items selected corre-
lated more highly with their own scale than with any
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other scale. In order to foster local independence, the
items are ordered such that one item is presented from
each of the 12 scales in succession, and then this block
of 12 items repeats in the same sequence with alterna-
tive keying.

The 12 scales are grouped according to three
primary factors: internalizing psychopathology
(hypochondriasis, anxiety, thinking disorder, persecu-
tory ideas, and deviation), affective psychopathology
(depression, social introversion, and self-deprecia-
tion), and externalizing psychopathology (deviation,
interpersonal problems, alienation, and impulse
expression). The denial scale is not included in these
factors because it is used for validity purposes
as a measure of the dimension representing the
Differential Personality Inventory scales of repres-
sion, shallow affect, and defensiveness. Deviation is
also used as a critical item index of deviant behaviors
requiring further exploration, such as suicidal ideation
or substance abuse. In addition to the 12 standard
scales, a 20-item supplementary social desirability
scale was formed by taking the most desirable item
and most undesirable item from 10 of the 12 scales
(validity scales denial and deviation excluded).
Additional indices that can be scored for validity
assessment are number of true responses, persevera-
tion, person reliability, fake good, and fake bad.

The BPI-II is available in English, French, and
Spanish and can be administered in paper-and-pencil
format with a reusable question booklet and answer
sheet to individuals or to groups in about 35 minutes.
Computerized administration with automated scoring
and reporting is also available. Reports generated by
the software are either clinical with some limited
interpretation or ASCII (text) data file reports for
research. Mail-in and Internet scoring and report gen-
eration are available. The reading level is estimated to
be between Grades 5 and 6. Normative data stratified
by gender are available separately for juveniles and
adults.

—John R. Reddon

See also Comrey Personality Scales; Jackson, Douglas N.;
Minnesota Multiphasic Personality Inventory; NEO
Personality Inventory; Personality Tests
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Rationale and applications. In J. Rosen & P. McReynolds
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BASIC RESEARCH

Basic research consists of empirical studies that
“answer fundamental questions about the nature of
behavior” (Cozby, 1985, p. 8). Its main goal is the
understanding of a phenomenon. Basic research is
less concerned with understanding and solving practi-
cal problems, which are the primary foci of applied
research. Instead, basic research strives to develop a
body of knowledge that has no obvious or immediate
practical application. However, this knowledge can
lead to interventions that alleviate human problems
and distress. For example, Skinner’s research with
pigeons in the 1930s eventually led to the develop-
ment of theoretical principles that had a profound
impact on clinical and educational practices. 

Basic research is most effective and influential
when its explicit goal is the development of theory.
Although research that is conducted solely for the
sake of knowledge represents valid and worthy basic
research, research that tests hypotheses that are
deductively derived from a theory offers much greater
promise of advancing science. Indeed, the primary
purpose of basic research is the testing of hypotheses
that are generated by a particular theory. As theory-
based hypotheses are rejected and supported, theories
are validated, rejected, and refined.

The interaction among research, theory, and appli-
cation is represented in Figure 1, which is a model
adopted from Olson. Theories are developed to
explain human behavior and interaction. These

72———Basic Research



theories are then applied to practical situations, such
as childhood behavioral problems or distressed mar-
riages. For example, the theoretical principles of
childhood attachment have been extended to adult
attachment, and Emotionally Focused Therapy has
been developed from these principles to assess and
treat conflicted romantic relationships. Within this
therapy model, relationship difficulties are conceptu-
alized from an attachment perspective, and treat-
ments have been developed that seek to repair
attachment injuries and promote secure attachment in
relationships.

As illustrated in Figure 1, the purpose of basic
research is to test the validity of particular theories. In
the case of attachment theory, a large body of empirical
research has accumulated that provides robust evidence
for the general principles of the theory. This empirical
support has validated attachment theory, providing
important credibility to the techniques that were
derived from the theory to assess and treat couples.

In some cases, research has rejected significant
theoretical propositions. For example, for many years
the dominant theoretical conceptualization of autism
was that it was caused by poor parenting. Based on
this theory of autism, treatment focused on providing
adequate care outside the realm of the family.
Subsequent research has consistently failed to support
this theory, and more recent research has supported
theories that link autistic symptoms to neurological
impairment. With the conceptualization of autism as a
neurological disorder, parents are included as essen-
tial partners in the treatment of their child because

they provide consistency between behavioral treat-
ments at school and at home.

Thus, basic research serves as a scientific watch-
dog by providing vital empirical evidence in the
process of developing and validating theories.
Without this validation role, science stagnates because
theory development is curtailed. The system of checks
and balances between theoretical generation and basic
research enables the continual refinement of valid
theories. These theories can then be deductively
applied to a variety of human and social problems.

Figure 1 also illustrates the role of applied
research, which has a primary aim of directly testing
the effectiveness of applications and interventions.
Multiple clinical outcome studies have demonstrated
that Emotionally Focused Therapy, which is based on
attachment theory, is effective in improving relation-
ship functioning among couples. Thus, basic and
applied research are complementary, with basic
research examining the validity of theories and
applied research testing the effectiveness of applica-
tions and interventions that are derived from validated
theories.

—Richard B. Miller and Ryan G. Henry

See also Applied Research 
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BAYES FACTORS

The problem of comparing multiple competing mod-
els is a difficult one and has been the focus of much
research over the years. For statisticians of a Bayesian
inclination, the Bayes factor offers an easy way of
comparing two models. Simply defined, the Bayes
factor is the ratio of the posterior and the prior odds.
More specifically, denote the data as x = x1, x2, . . . , xn

and the two models as M1 and M2, respectively. The
Bayes factor in favor of model M1, and thus against
model M2, is

where p(Mi) is the prior probability assigned to model
i and p(Mi | x) is the posterior probability of model i
after observing the data.

Since the posterior probability of model i can be
expressed as p(Mi | x) = p(x | Mi) p(Mi), the Bayes
factor is also sometimes given as B12(x) = p(x | M1)/
p(x | M2). It follows that the posterior odds are equal
to the Bayes factor times the prior odds.

The first representation provides an intuitive expla-
nation of what the Bayes factor measures, namely, how
the data have affected the odds in favor of model M1. If
B12(x) > 1, then the posterior odds in favor of the first
model are higher than the prior odds in favor of the
first model. In other words, the data have increased our
relative amount of belief in the first model. If, on the
other hand, B12(x) < 1, the posterior odds in favor of
model M1 have decreased on observing the data.

In practice, values of B12(x) smaller than 3 are often
taken as providing no evidence in favor of M1 over M2,
values of B12(x) between 3 and 20 give positive evi-
dence, values between 20 and 150 are indicative of
strong evidence, and any value of the Bayes factor
over 150 is taken to be very strong evidence. Although

these values are only guidelines, they are useful for
the calibration of results.

One advantage of Bayes factors over traditional
approaches to model comparison is that the models do
not have to be nested, as this simple example demon-
strates. Suppose we have data x1, . . . , xn, independent,
identically distributed, coming from either a negative
binomial distribution with probability p of success
(this is model M1) or from a Poisson distribution with
mean λ (this is model M2). We use different notation
for the parameters of these two models to emphasize
that there is no need for the models under considera-
tion to be related to each other in any way. Both these
models are completely specified, and so the Bayes
factor for comparing the two models is simply the
likelihood ratio, that is

Now, suppose that p and λ are not known. To carry
out a Bayesian analysis, it is necessary to assign prior
distributions to the unknown parameters of the two
models. For simplicity, suppose that p ∼ Beta(α1, β1)
and λ ∼ Gamma(α2, β2). Then it can be shown that

and

the Bayes factor is the ratio of these two. In this case,
we need to have information on α1, β1, α2, and β2 in
order to evaluate the Bayes factor, which will always
depend on the prior specification. As we assign differ-
ent values to these four parameters, resulting in differ-
ent prior distributions (representing our different
opinions about p and λ and how sure we are of those
opinions), the Bayes factor will in turn vary.

A simple numerical example demonstrates this.
Table 1 shows values of the Bayes factor for three dif-
ferent sample configurations and three choices of
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parameters for the prior distributions. For ease of cal-
culation, the size of the sample is only 4, and in each
of the three cases, x1 = x2 = x3 = x4. The priors are
chosen so that α1α2 = β1β2. As can be seen, the Bayes
factor can change quite dramatically as the nature of
the data or of the prior is changed.

The effect of the sample is seen in particular by
comparing the first and second lines of the table. The
Bayes factor is dramatically reduced, no matter what
the choice of priors. Indeed, looking at the second and
third lines, the practical effect of the prior is
minimal—the same conclusion would be reached in
all these cases, that the data do not speak in favor of
the negative binomial model. The top line of the table
tells a very different story. There, the negative bino-
mial model is preferred to the Poisson model, with
moderately positive to strongly positive evidence in
favor of the former. The value of the Bayes factor and
the conclusions we would draw from the analysis
depend quite heavily for this sample configuration on
the prior distribution. Even though for all three priors
the same model would be indicated, the strength of
our belief in that model would vary greatly.

In spite of the convenience of the Bayes factors for
comparing the strength of evidence in favor of differ-
ent, possibly non-nested, models, they are not without
drawbacks. Among the major criticisms leveled at the
Bayes factor is that it never loses its dependence on the
prior specification, in contrast to Bayesian inferential
procedures, in which the influence of the prior distrib-
ution weakens as more data are collected. Another
critique of the Bayes factor is that it corresponds to
a zero-one loss on the decision “Which of these two
models pertains?” What this means is that if the wrong
choice is made, that is, the wrong model is chosen, it

doesn’t matter how far off the choice is.
This does not correspond to the way in
which statisticians usually think about
model selection problems. Furthermore,
Bayes factors are hard to calculate and to
interpret if improper priors are used.

Because of these various difficul-
ties with the ordinary Bayes factor,
researchers have developed a range of
alternatives, most of which aim at some

form of automatic model selection, particularly to avoid
the problems associated with the dependence on priors.
These include intrinsic Bayes factors (arithmetic and
geometric), fractional Bayes factors, posterior Bayes
factors, and others. However, these have also been crit-
icized on the grounds of being arbitrary, of lacking any
real Bayesian justification, and of avoiding the difficult
issue of prior choice altogether.

The Bayesian information criterion (BIC) is
related to the Bayes factor and is useful for model
comparison in its own right. The BIC of a model
is defined as −2 (log maximized likelihood) + (log
n)(number of parameters). BIC penalizes more-
complex models (those with many parameters) rela-
tive to simpler models. This definition permits multi-
ple models to be compared at once; the model with the
highest posterior probability is the one that minimizes
BIC. The BIC can also be derived by an approxima-
tion to the logarithm of the Bayes factor, given by the
Schwarz criterion for comparing two models,

where 

θ̂ i is the maximum likelihood estimator for the
parameter q1 under model M1,

di is the dimension of θi, and 

n is the sample size. 

One computational advantage of this approximation
is that there is no need to introduce a prior into the

S = log p(x|θ̂1, M1) − log p(x|θ̂2, M2)

− 1

2
(d1 − d2) log n,
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Table 1 Values of the Bayes Factor for Comparing the Negative
Binomial and Poisson Models, With Different Data and
Prior Configurations

α1 = 3, β1 = 6 α1 = 30, β1 = 60 α1 = 1, β1 = 4
α2 = 6, β2 = 3 α2 = 60, β2 = 30 α2 = 8, β2 = 2

∑∑4
i=1xi = 0 4.89 25.59 93.73

∑∑4
i=1xi = 8 0.09 0.09 0.12

∑∑4
i=1xi = 16 0.08 0.22 0.02



calculation at all. However, it is only a rough approxi-
mation, and if a detailed analysis is required, it will gen-
erally not be suitable. The Schwarz criterion multiplied
by −2 is the BIC for the comparison of two models.

In summary, the Bayes factor inherits the strengths
of the Bayesian paradigm, namely, a logical founda-
tion that transfers easily to new situations. In addition,
Bayes factors allow researchers to compare nonnested
models and to incorporate prior information or beliefs
about a theory into the testing situation. On the other
hand, Bayes factors are heavily dependent on the prior
specifications, even for large sample sizes, correspond
to an “all or nothing” approach to model comparison,
and can be difficult to calculate.

—Nicole Lazar

See also Bayesian Information Criterion; Bayesian Statistics 

Further Reading

Bernardo, J. M., & Smith, A. F. M. (1994). Bayesian theory.
Chichester, UK: Wiley. 

Gelfand, A. E. (1996). Model determination using sampling-
based methods. In W. R. Gilks, S. Richardson, & D. J.
Spiegelhalter (Eds.), Markov chain Monte Carlo in prac-
tice. Boca Raton, FL: Chapman & Hall/CRC.

Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2004).
Bayesian data analysis (2nd ed.). Boca Raton, FL:
Chapman & Hall/CRC.

Kass, R. E., & Raftery, A. E. (1995). Bayes factors and model
uncertainty. Journal of the American Statistical Association,
90, 773–795.

BAYESIAN INFORMATION CRITERION

The Bayesian information criterion (BIC) is a statistic
used for comparison and selection of statistical mod-
els. BIC is given by a simple formula that uses only
elements of standard output for fitted models. It is cal-
culated for each model under consideration, and mod-
els with small values of BIC are then preferred for
selection. The BIC formula and the sense in which the
model with the smallest BIC is the “best” one are
motivated by one approach to model selection in
Bayesian statistical inference.

Definition

Suppose that we are analyzing a set of data D of 
size n. Here  is the sample size if D consists of statis-
tically independent observations and the “effective
sample size” in some appropriate sense when the
observations are not independent. Suppose that alter-
native models  Mk are considered for D, and that each
model is fully specified by a parameter vector θk with
pk parameters. Let p(D | θk ;Mk ) denote the likelihood
function for model Mk, l(θk) = log p(D | θk ;Mk ) the cor-
responding log-likelihood, and θ̂ k the maximum like-
lihood estimate of θk.

Let Ms denote a saturated model that fits the data
exactly. One form of the BIC statistic for a model Mk is

(1)

where 

l(θ̂s) is the log-likelihood for the saturated model,

G2
k is the deviance statistic for model Mk, and 

dfk is its degrees of freedom. 

This version of BIC is most appropriate when the
idea of a saturated model is natural, such as for mod-
els for contingency tables and structural equation
models for covariance structures. The deviance and its
degrees of freedom are then typically included in stan-
dard output for the fitted model. In other cases, other
forms of BIC may be more convenient. These vari-
ants, all of which are equivalent for purposes of model
comparison, are described at the end of this entry.

Motivation as an Approximate
Bayes Factor

The theoretical motivation of BIC is based on the idea
of a Bayes factor, which is a statistic used for compar-
ison of models in Bayesian statistical analysis. First,
define for model Mk the integrated likelihood

(2)p(D|Mk) =
∫

p(D|θk, Mk) p(θk|Mk) dθk,

BICk = −2[l(θ̂k) − l(θ̂s)] − dfk log n

= G2
k − dfk log n,
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where p(θk | Mk ) is the density function of
a prior distribution specified for the para-
meters θk, and the integral is over the
range of possible values for θk. Defining
p(θk | Ms) similarly for the saturated
model, the Bayes factor between models
Ms and Mk is the ratio BFk = p(D | Ms)/
p(D | Mk). It is a measure of the evidence
provided by the data in favor of Ms over
Mk. The evidence favors Ms if BFk is
greater than 1 and Mk if BFk is less than 1.

BICk is an approximation of 2logBFk.
The approximation is particularly accu-
rate when each of the prior distributions
p(θk | Mk) and p(θs | Ms) is a multivariate
normal distribution with a variance
matrix comparable to that of the sam-
pling distribution of the maximum like-
lihood estimate of the parameters based
on a hypothetical sample of size n = 1.
An assumption of such prior distribu-
tions, which are known as unit informa-
tion priors, thus implicitly underlies
BIC Equation 1. Their motivation and
the derivation of BIC are discussed in
detail in the Further Reading list below.

A positive value of BICk indicates that
the saturated model Ms is preferred to
Mk (i.e., that BFk > 1), and a negative
BICk indicates that Mk is preferred.
Values of BIC can also be compared
between different nonsaturated models,
and the model with the smaller BIC is then preferred.
The model with the smallest value of BIC overall is
regarded as the best model in the Bayes factor sense of
being supported most strongly given the data D and the
prior distributions of the parameters of all the models.

Example

For an illustration of the use of BIC, consider the data
in Table 1. This shows the cross-tabulation of the pas-
sengers of RMS Titanic, classified according to sex
(men vs. women or children), the class they traveled
in (first, second, or third), and whether they survived

the sinking of the ship. Table 2 shows results for some
models fitted to these data. These are standard loglin-
ear models, identified in the second column of Table 2
using conventional concise notation for such models.
For example, the expression (CY, SY) for model 5
indicates that it includes the two-way interactions
between class (C) and survival (Y) and between sex
(S) and survival, but no interaction between class and
sex. The saturated model here is model 10.

The model with the smallest BIC is model 9, for
which BIC = −7.1. This is also the only model with
a negative BIC, i.e., the only one preferred to the
saturated model. Model 9 includes all one-way and
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Table 1 Passengers of the Titanic, Classified According to Passenger
Class, Sex, and Survival Status

Survivor

Class Group Yes No Total

First Man 57 118 175
(0.326) (0.674) (1.000)

Woman or 146 4 150
child

(0.973) (0.027) (1.000)
Total 203 122 325

(0.625) (0.375) (1.000)

Second Man 14 154 168
(0.083) (0.917) (1.000)

Woman or 104 13 117
child

(0.889) (0.111) (1.000)
Total 118 167 285

(0.414) (0.586) (1.000)

Third Man 75 387 462
(0.162) (0.838) (1.000)

Woman or 103 141 244
child

(0.422) (0.578) (1.000)
Total 178 528 706

(0.252) (0.748) (1.000)

Total 499 817 1316
(0.379) (0.621) (1.000)

Note: Numbers in parentheses are proportions within the rows. 



two-way interactions, and the three-way interaction
between sex, survival, and traveling in third class. In
other words, the model specifies two patterns of asso-
ciation between sex and survival, one for third-class
passengers and one jointly for first- and second-class
passengers. Considering Table 1, it appears that the
main difference between these groups was that there
was a smaller disparity between men’s chances of sur-
vival and those for women and children in the third
class than there was in the other two classes.

Relations to Other 
Methods of Model Selection

In BIC Equation 1, the deviance G2
k is a measure of the

goodness of fit of a model, with well-fitting models
having small values of G2

k. In the second term, dfk is a
decreasing function of the number of parameters pk ,
which can be regarded as a measure of the complexity
of the model. The term −dfk log n is known as the
penalty term of BIC because it is an increasing func-
tion of pk and thus “penalizes” a model for its com-
plexity. Considering increasingly complex models
will generally lead to a decrease in the deviance but an
increase in the penalty term. The terms thus pull in
different directions, apparently expressing a trade-off
between fit and complexity. Small values of BIC are

obtained for models that achieve a good balance
between these two, or in other words, a good fit with
relatively little complexity.

Other choices of the penalty term give different
penalized model selection criteria of the same general
form. The most common of these is the Akaike infor-
mation criterion, where the −dfk log n in Equation 1 is
replaced by −2dfk. The Akaike information criterion is
used for model selection in broadly the same way as
BIC even though the two statistics have very different
theoretical motivations.

BIC and other penalized criteria are often used as
complements to standard significance tests in model
selection. For example, for the models in Table 2, both
the deviances G2

k and their differences between nested
models can be used as test statistics for this purpose.
In this example, both BIC and significance tests iden-
tify model 9 as the preferred model, but in general
they will not always be in agreement. In particular,
conclusions often differ in large samples, where sig-
nificance tests are sensitive to even small observed
discrepancies and may reject most models as having
significant lack of fit. The penalty term of BIC offsets
some of this tendency, so BIC will often favor less-
complex models more than goodness-of-fit tests do. 

Alternative Formulas for BIC

Forms of BIC other than Equation 1 may be more
convenient when the deviance G2

k is not immediately
available. For many regression models, it is easier to
replace the saturated model as the baseline for com-
parisons with a null model M0, which includes no
explanatory variables. This gives the statistic

(3)

where 

l(θ̂0) is the log-likelihood for the null model,

LRk is the likelihood ratio test statistic for testing M0

against Mk , and 

df ′k is its degrees of freedom. 

BIC ′
k = −2[l(θ̂k) − l(θ̂0)] + df ′

k log n

= −LRk + df ′
k log n,
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Table 2 Results for Loglinear Models Fitted to the
Data in Table 1

Model Terms G2 df BIC 

1 (C, S, Y) 582.1 7 531.8 
2 (C, SY) 229.7 6 186.6 
3 (S, CY) 449.4 5 413.5 
4 (CS, Y) 568.8 5 532.9 
5 (CY, SY) 97.0 4 68.3 
6 (CS, SY) 216.4 4 187.7 
7 (CS, CY) 436.2 3 414.7 
8 (CS, CY, SY) 89.1 2 74.7 
9 8 + (Class 3)*S*Y 0.051 1 −7.1  

10 (CSY) 0 0 0 

Notes: C = class; S = sex; Y = survival status; G2 = goodness 
of fit; df = degree of freedom; BIC = Bayesian information
criterion.



For example, for linear regression models, BIC′k =
nlog(1 − R2

k ) + p′k log n, where R2
k is the standard R2

statistic for model Mk and p′k denotes the number of
explanatory variables (excluding the intercept term) in
Mk. In terms of the Bayesian motivation, BIC′k is an
approximation of 2log[p(D | M0)/p(D | Mk)].

When standard computer output includes only the
log-likelihood l (θ̂k) instead of G2

k or LRk, the most
convenient BIC-type statistic is simply −2l(θ̂k) + pk

log n. This is an approximation of 2log p(D | Mk)
under the unit information prior for θk discussed
above. Models with small values of this statistic are
again preferred, as they are for Equations 1 and 3. All
these three variants of BIC will always lead to the
same conclusions about preferences among models
and the selection of the best model.

—Jouni Kuha

See also Akaike Information Criterion; Bayes Factors 

Further Reading

Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of
the American Statistical Association, 90, 773–795.

Kass, R. E., & Wasserman, L. (1995). A reference Bayesian
test for nested hypotheses and its relationship to the
Schwarz criterion. Journal of the American Statistical
Association, 90, 928–934.

Kuha, J. (2004). AIC and BIC: Comparisons of assumptions
and performance. Sociological Methods & Research, 33,
188–229.

Raftery, A. E. (1995). Bayesian model selection in social
research (with discussion). In P. V. Marsden (Ed.),
Sociological methodology (pp. 111–163). Cambridge, MA:
Blackwell.

Weakliem, D. L. (1999). A critique of the Bayesian informa-
tion criterion for model selection. Sociological Methods &
Research, 27, 359–397.

BAYESIAN STATISTICS

The term Bayesian statistics refers to the field of
statistical analysis that deals with the estimation of
probability distributions for unobserved or “latent”
variables based on observed data. When a researcher

collects data from an educational assessment, for
example, the test score itself is not typically of inter-
est, but rather the “trait” or “ability” that is thought to
underlie and influence an examinee’s responses to the
test questions. Indeed, most measurements in the
social sciences are collected as substitutes for some
latent variable or variables that cannot be observed
directly. That is, the data (denoted x) are not of as
much interest to the researcher as the true parameter
values (denoted θ) that gave rise to the data. Under the
framework of a Bayesian data analysis, statistical
inferences are therefore based on a quantity that is of
direct interest to the analyst (i.e., θ), not some proxy
for that quantity of interest (i.e., the data, x).

Bayesian statistical analysis is named after its
founder, Thomas Bayes (1702–1761), an 18th-century
minister and mathematician who first introduced what
is now known as Bayes’ theorem or Bayes’ rule.
Bayes’ theorem posits that the conditional probability
of an event, A, occurring, given that another event, B,
has occurred, is a function of the joint probability of
A and B (the probability of events A and B co-
occurring) divided by the marginal probability of B.
Given this result, the conditional probability of A
given B can be stated as the conditional probability of
B given A, multiplied by the marginal probability of
A, divided by the marginal probability of B:

This probability statement can be used in a variety
of situations for determining the conditional probabil-
ity of a given event. Applications of Bayes’ theorem
are especially useful to statisticians when the theorem
is phrased in terms of distributions of observed and
unobserved variables:

By using this formulation of Bayes’ theorem, statis-
ticians are able to make inferences about some para-
meter of interest, θ, given the observed data, x. This

f (θ |x) = f (x|θ)f (θ)

f (x)
.

P (A|B) = P(A,B)

P (B)
= P(B|A)P (A)

P (B)
.
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density function, f(θ |x), is referred to as the posterior
distribution of θ, and it represents a probability density
function for the latent variable, θ, the primary quantity
of interest, based on the observed data, x. In order to
estimate the posterior distribution and make inferences
about it, three pieces of information are required: (a)
estimation of the function, f (x |θ), often termed the
likelihood function, which represents a statistical
model that has been fit to the distribution of observed
data, x, given the underlying parameter, θ; (b) estima-
tion of f (θ ), referred to as the prior distribution, which
represents either the empirical or the expected distrib-
ution of the parameter, θ, in the population; and (c)
estimation of f (x), which represents the empirical dis-
tribution of the observed data, x.

In most practical applications, the use of Bayes’
theorem for estimating the posterior distribution is
simplified because, for any given data analysis, the
empirical distribution of observed data, f(x), will be a
constant for any given value of the parameter, θ, and
therefore does not need to be included. That is, the
observed distribution of data will not affect estimation
of θ because f(x) is fixed and does not change. As a
result, it is typically dropped from the formula for
estimating the posterior distribution:

The preceding formula is read, “the posterior dis-
tribution of θ given x, f (θ |x), is proportional to the
likelihood function, f (x|θ ), multiplied by the prior
distribution of θ, f (θ ).” Bayesian statisticians typi-
cally rely on estimating a function that is proportional
to f (θ |x) because estimation of f (x) is unnecessary to
estimating the parameters from the posterior distribu-
tion. Leaving f(x) out of the formula for the posterior
distribution will not affect any of the resulting para-
meter estimates.

For any analytical application that involves fitting a
parametric statistical model to observed data (e.g., an
item response model fit to test data, a linear regression
model fit to a matrix of continuous variables, or any
other analysis that involves the estimation of parame-
ters thought to model the behavior of observed data),
analysis proceeds by estimating the likelihood

function, f (x|θ), and multiplying it by the prior distri-
bution, f (θ). This produces an estimate that is propor-
tional to the posterior distribution of θ given x, and
this distribution is used to make inferences about the
parameter, θ.

Inferences from the posterior distribution are typi-
cally made by determining point estimates for θ,
either by finding the mean of the posterior distribution
(referred to as an expected a posteriori estimate) or by
determining the mode of the posterior distribution
(referred to as a modal a posteriori estimate). The
standard error of θ is determined by estimating the
standard deviation of the posterior distribution.

Bayesian statistical methods are distinguished
from the more traditional approach (referred to as
Frequentist methods) in that inferences are made
based on the posterior distribution, which cannot be
directly observed. Frequentist statisticians typically
rely solely on the likelihood function, f (x|θ ), as a
basis for making inferences because it represents the
model that was actually fit to the observed data. Both
methodologies estimate the likelihood function based
on observed data, but Bayesian procedures also incor-
porate information from the prior distribution in order
to make inferences. Because of this difference, there
exists a philosophical schism between Bayesian and
Frequentist statisticians, and it occurs because, gener-
ally speaking, the prior distribution for θ is an unob-
served probability density function that must be
somehow estimated by the analyst. This can often be
done by making some reasonable assumptions about
the distribution of θ in the population or by collect-
ing data and empirically estimating this function.
However, the fact remains that the statistician can
never be sure that the particular choice of a prior dis-
tribution is accurate and therefore cannot be sure how
well the posterior distribution represents the distribu-
tion of θ given x. The impact of the prior distribution
on the final results of the analysis (i.e., the posterior
distribution) will vary depending on the statistician’s
choice for the distribution. Prior distributions that
have significant influence on the posterior distribution
are referred to as relatively informative, and prior
distributions with relatively little influence are called
noninformative priors.

f (θ |x) ∝ f (x|θ)f (θ).
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One cannot know how well suited a particular
prior distribution is for estimating a posterior distri-
bution, and so the choice of whether to conduct a
Frequentist or a Bayesian data analysis often comes
down to philosophical concerns. The perspective of
the Bayesian statistician is that by making some rea-
sonable assumptions about the underlying distribu-
tion of θ in the population, one can make inferences
about the quantities that are of direct interest to the
analyst. The perspective of the Frequentist statisti-
cian is that one can never appropriately make infer-
ences that go beyond what the data alone suggest.
Many statisticians subscribe to the Bayesian school
of thought, not only for its intuitive appeal, but also
because situations exist in which Bayesian method-
ologies may be employed where Frequentist analy-
ses are either intractable or impossible. These
situations may occur when (a) the likelihood func-
tion from a Frequentist analysis is irregular, possibly
indicating relatively poor model-data fit, which
results in difficulties when determining point esti-
mates and standard errors for θ, or (b) the statistical
model is being fit to a relatively sparse data matrix
(i.e., there are very few observed data points),
making estimation of parameters difficult with
Frequentist methods. In both of these situations,
Bayesian methods may be employed to produce rea-
sonable parameter estimates. 

—William P. Skorupski

See also Posterior Distribution; Prior Distribution
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BAYLEY SCALES OF

INFANT DEVELOPMENT

The Bayley Scales of Infant Development (BSID-II,
published by Psychological Corporation) are a set of
scales that take approximately 45 minutes to administer

to infants and young children (ages 1 month to
42 months) in order to assess mental, physical, emo-
tional, and social development. The BSID has four
main uses: to identify developmental delays (diagnos-
tic tool), to monitor progress after intervention (inter-
vention tool), to teach parents about their child’s
development (teaching tool), and to compare individ-
ual and group differences (research tool).

The BSID is composed of three scales: the Mental
Scale, the Motor Scale, and the Behavior Rating
Scale. The Mental Scale assesses sensory and percep-
tual ability, acquisition of object constancy, memory,
problem solving, learning, the beginning of verbal
communication, and mental mapping. Sample items
include discriminating between a bell and a rattle and
tracking a moving person with the eyes. The Motor
Scale assesses degree of body control, large muscle
coordination (sitting and walking), finer manipulation
skills of the hands and fingers (picking up small
objects), dynamic movement and praxis, and postural
imitation. Both the mental and motor scales produce
a standardized score. The Behavior Rating Scale
assesses attention and arousal, orientation and
engagement, and emotional regulation. The Behavior
Rating Scale is a 5-point scale (formerly called the
Infant Behavior Record) and assesses the develop-
mental level for the status of emotional and social
development. The Behavior Rating Scale scores are
based on caregivers’ reports as well as an examiner’s
judgments and is completed after the administration
of the Mental and Motor scales. This process produces
a percentile score for comparison to a nonclinical
population.

The test was updated and released in October 2005
by Harcourt Assessment (www.harcourt.com) as the
Bayley Scales of Infant and Toddler Development,
third edition (Bayley-III). The Bayley-III additions
include a Social-Emotional subtest, Adaptive Behavior
subtest, Screening Test, Caregiver Report, Scoring
Assistant, Growth Scores, and Growth Chart. The
Bayley-III uses a current normative sample represent-
ing 1,700 children stratified according to age, based
on the 2000 U.S. Census. The Bayley-III also has
nonnormative data available for children with
specific clinical diagnoses, such as autism and Down

Bayley Scales of Infant Development———81



syndrome. The BSID is widely used in research set-
tings and has excellent psychometric characteristics.

—Heather Doescher

See also Fagan Test of Infant Intelligence; Intelligence Tests
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BECK DEPRESSION INVENTORY

The Beck Depression Inventory (BDI) and the second
edition, the Beck Depression Inventory-II (BDI-II),
are depression screening instruments published by the
Psychological Corporation (www.harcourtassessment.
com). The BDI-II is a 21-item self-report instrument
(approximate administration time: 5–10 minutes)
used to detect and estimate the overall severity of
depression in adolescents and adults aged 13 years
and older. The instrument can be administered orally
as well as in group settings to clinical and normal
patient populations. Symptoms of depression are eval-
uated according to criteria set forth in the American
Psychiatric Association’s Diagnostic and Statistical
Manual of Mental Disorders (4th ed.). 

The original BDI, developed in 1961, was based on
the clinical observations of Dr. Aaron T. Beck and his
associates and the typical verbal descriptions reported
by depressed psychiatric patients. Representative
depressive attitudes and symptoms were consolidated
into 21 items read aloud to patients by trained inter-
viewers. The inventory underwent revisions in 1971 at
the Center for Cognitive Therapy, University of
Pennsylvania, and the amended version, the BDI-IA,
was copyrighted in 1978 and published in 1979. In the

original version, respondents were instructed to rate
various domains relating to their mood “right now,”
whereas in the revised version, instructions asked for
mood ratings for the “past week, including today.”
The most significant revision of the BDI took place in
1996. This edition, the BDI-II, instructs respondents
to provide ratings for the past two weeks. Recently,
the BDI-FastScreen, a 7-item self-report measure, has
been introduced for use with medical patients.

Each BDI-II item represents a particular symptom
of depression: sadness, pessimism, past failure, loss
of pleasure, guilty feelings, punishment feelings, self-
dislike, self-criticalness, suicidal thoughts or wishes,
crying, agitation, loss of interest, indecisiveness,
worthlessness, loss of energy, changes in sleeping
pattern, irritability, changes in appetite, concentration
difficulty, tiredness or fatigue, and loss of interest in
sex. Four statements in order of severity are presented
to the patient for each item and rated on a 4-point
scale ranging from 0 to 3. A total depression score is
obtained by summing the ratings for the responses to
all 21 items. The suggested cutoff scores are 0–13,
minimal depression; 14–19, mild; 20–28, moderate;
and 29–63, severe.

During the past four decades, the BDI has been
used extensively for clinical as well as research pur-
poses and translated into more than 25 languages. In
clinical settings, the BDI is often an important compo-
nent of a comprehensive psychiatric evaluation, and it
is used to monitor treatment progress. In empirical
studies, the instrument is commonly selected as an
outcome measure to demonstrate treatment efficacy.
The psychometric characteristics of the BDI-II have
been established in groups of college students and
psychiatric outpatients.

—Marjan Ghahramanlou-Holloway 
and Kathryn Lou

See also Carroll Depression Scale; Clinical Assessment of
Depression 
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use of the Beck Depression Inventory. Cognitive Therapy
& Research, 11, 289–299.

Aaron T. Beck Web page: http://mail.med.upenn.edu/~abeck/

Applying Ideas on Statistics and Measurement

The following abstract is adapted from Boothby, J. L.,
& Durham, T. W. (1999). Screening for depres-
sion in prisoners using the Beck Depression
Inventory. Criminal Justice and Behavior, 26(1),
107–124. 

Especially when it comes to working in the
field of mental health, using screening tools that
are accurate is extremely important. In this study,
1,494 prisoners completed the Beck Depression
Inventory as part of the admission process to the
North Carolina state prison system. The mean
score for this population corresponds to the “mild
depression” range on the instrument. While over-
all scores for prisoners were elevated relative
to general population norms for the test, female
inmates, younger prisoners, close custody
inmates, and those serving their first period of
incarceration produced even higher Beck scores.
Results suggest that a score of 20 might serve as
an appropriate cutting score to determine the
need for further assessment and mental health
intervention in this group. Other analysis of the
inmates’ responses yielded four distinct, inter-
pretable factors or groups of variables, labeled (a)
cognitive symptoms, (b) vegetative symptoms,
(c) emotional symptoms, and (d) feelings of
punishment.

BEHAVIOR ASSESSMENT

SYSTEM FOR CHILDREN

The Behavior Assessment System for Children, Second
Edition (BASC-2), published by AGS Publishing
(www.agsnet.com), is a set of rating scales and forms
that gather information about a child’s behavior,
including ratings from parents and teachers as well as
children’s self-reports. It is designed to assess and
identify children and young adults 2 to 25 years of age
with emotional and behavioral disorders. There are
five components, which may be used separately or in

combination with one another: (a) a parent rating
scale, (b) a teacher rating scale, (c) a self-report scale
for the child to describe his or her own emotions
and self-perceptions, (d) a structured developmental
history form, and (e) a form for recording and classify-
ing classroom behavior. By looking at both positive
and negative features, the BASC not only evaluates
personality, behavioral problems, and emotional dis-
turbances; it also identifies positive attributes that may
help in intervention. Analyzing the child’s behavior
from three perspectives—self, teacher, and parent—
fosters a comprehensive picture that helps with educa-
tional classifications and clinical diagnoses.

The teacher and parent scales gather age-appropriate
information on descriptions of observable behavior.
The forms describe specific behaviors that are rated
on a 4-point scale of frequency, ranging from never to
almost always. Respondents are asked to read the
statements and mark the response that best describes
how the child has acted over the past 6 months.
Teacher and parent forms include statements such as
“Adjusts well to changes in routine” and “Annoys
others on purpose.” The child’s self-report form con-
sists of 139 statements. For the first 51 items, children
choose whether each statement is true or false for
them. For the rest of the items, children rate behaviors
on the same 4-point scale that the parents and teachers
use. The child’s self-report scale includes items such
as “I never seem to get anything right” and “I get into
trouble for not paying attention.”

The BASC-2 assesses both positive (adaptive) and
negative (clinical) dimensions of behavior. When the
questionnaire is scored, it provides information about
14 specific areas of a child’s life, which are called
scales. Five composite scales provide information
about broader aspects of the child’s life by combining
the scores from 2 or more of the original 14 scales.
Composite scales on the child report include
School Problems, Internalizing Problems, Inattention/
Hyperactivity, an Emotional Symptoms Index, and
Personal Adjustment. High scores indicate higher risk
on 10 of the clinical scales and 4 of the composite
scales. Low scores indicate higher risk on the remain-
ing 4 adaptive scales and 1 composite scale (Personal
Adjustment).
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Norms are based on a sample of 13,000 students,
ages 2 to 18, from throughout the United States. The
BASC-2 is used in both schools and clinics. The test
was updated in 2004 by the addition of new scales and
the extension of the age range to include college
students. The new scales include Functional Com-
munication, Activities of Daily Living, Attention
Problems, and Hyperactivity.

—Kristen M. Kalymon

See also Vineland Adaptive Behavior Scales
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nGroupInfoID=a30000

BEHRENS-FISHER TEST

A common question in statistics involves testing for
the equality of two population means, µ1 and µ2,
based on independent samples. In many applications,
it is reasonable to assume that the population vari-
ances, σ 2

1 and σ 2
2, are equal. In this case, the question

will usually be addressed by a two-sample t test. The
problem of testing for equality of means when the
population variances are not assumed to be the same
is harder, and is known as the Behrens-Fisher
problem.

Suppose we have two samples, x11, x12, . . . , x1,n1

and x21, x22, . . . , x2,n2
, where the x1i are normally dis-

tributed with mean µ1 and variance σ 2
1 and the x2i are

normally distributed with mean µ2 and variance σ 2
2, all

observations are independent, and it is not assumed
that σ 2

1 = σ 2
2. Let xi

_
and s2

i denote respectively the
mean and variance of sample i = 1,2. Now, x1

_
− x2

_ 
∼

N(µ1 − µ2, σ 2
1/n1 + σ 2

2 /n2) exactly if the original
samples are from a normal distribution, and asymptot-
ically if they are not. So, the assumption of normality
is not in fact needed.

If we define a pooled variance by

then, with or without the assumption of normality, s2

converges to the same quantity, namely a weighted
average of σ 2

1 and σ 2
2,

where w is the limit of the ratio n1/n2 and n1/n2 → w as
n1, n2 → ∞. 

It can be shown that the usual t statistic,

instead of converging to N(0,1) under the null hypothesis
of no difference in the population means, converges
to a normal distribution with mean 0 and variance
(δ + w)/(δw + 1), where δ is the ratio between  σ 2

1 and σ 2
2.

In order to understand the effect of the assumption
that δ is not necessarily equal to 1 on inference in this
setting, it helps to examine how the expression for the
asymptotic variance changes as w and δ vary. It is
important to realize that if w = 1, that is, the two sam-
ple sizes are equal, either exactly or in the limit, then
the asymptotic variance is 1, no matter the value of δ.
Thus, with equal sample sizes, inference, at least
asymptotically, is not affected by unequal variances.
Having nearly equal samples from the two popula-
tions thus mitigates the Behrens-Fisher testing prob-
lem. Similarly, if the discrepancies in the population
variances are not large, such that δ = 1 or nearly so,
then we are back in the standard situation, and again
asymptotic inference will proceed as before.

The most worrisome situation is when w is small and
δ is large. This corresponds to having a much smaller
sample from the first population than from the second,
when the variance in the first population is much larger
than the variance in the second. In this situation, it is nec-
essary to confront the Behrens-Fisher problem directly.
A convenient solution, which is only approximate, is to
use Welch’s t′ statistic, defined as

t = (x̄1 − x̄2) − (µ1 − µ2)

s
√

1/n1 + 1/n2

,

σ 2
w = w

1 + w
σ 2

1 + 1

1 + w
σ 2

2 ,

s2 = n1 − 1

n1 + n2 − 2
s2

1 + n2 − 1

n1 + n2 − 2
s2

2 ,
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which acknowledges the fact that the two sample vari-
ances cannot be assumed equal. The difference in the
procedure derives from the degrees of freedom asso-
ciated with this test, since it can be shown that,
approximately,

where χv
2 is a chi-square distribution with v degrees of

freedom. The degrees of freedom, v, can be estimated,
using Satterthwaite’s approximation, as

To demonstrate that Welch’s t′ statistic, together
with the Satterthwaite approximation for the degrees
of freedom, can have an impact on inference, consider
the following example, taken from Casella and
Berger. Data were collected on wood from a
Byzantine church. The samples were from either
the core of the church (n1 = 14 measurements) or the
periphery (n2 = 9 measurements), and for each, the
date of the wood was determined. Is there a difference
in the mean age of wood in the core and in the periph-
ery? The data are as follows: core—1294, 1251, 1279,
1248, 1274, 1240, 1264, 1232, 1263, 1220, 1254,
1218, 1251, 1210; periphery—1284, 1274, 1272,
1264, 1256, 1256, 1254, 1250, 1242.

Summary statistics on the two samples are as
follows: x1

_
= 1249.857, s2

1 = 591.363, x2

_
= 1261.333,

s2
2 = 176. Applying the usual two-sample t test gives

t = −1.29 on 21 degrees of freedom, which has a p value
of 0.21. There is no reason to reject the null hypothesis,
and we conclude that there is no significant difference
in the age of the wood in the two locations.

Applying Welch’s test with the Satterthwaite
approximation yields t′ = −1.43 on 22.3 degrees of

freedom, which has a p value of 0.08. Now the result
is borderline significant, by traditional standards, and
we might conclude that there is evidence for some dif-
ference in age.

Other solutions besides Welch’s test have been sug-
gested, including the use of nonparametric statistical
tests, resampling (bootstrap), and a Bayesian
approach using uniform priors on (µ1, µ2, log
σ1, log σ2).

—Nicole Lazar

See also Significance Level; Statistical Significance
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BENDER VISUAL

MOTOR GESTALT TEST

Lauretta Bender’s Visual Motor Gestalt Test was
developed in 1938 and is commonly referred to
as the Bender-Gestalt Test (published by Riverside
Publishing Company, www.riversidepublishing.com).
It consists of a series of designs printed on individual
cards, to be copied by the examinee with pencil and
paper. Bender’s scoring system evaluated the overall
quality of each design and provided an assessment of
visual-motor functioning. For comparative purposes,
Bender provided graphs and a summary chart of the
types of drawings made by children from 3 to 11
years of age. Over the next 65 years, a number of
variations in administering and scoring the test
emerged to assess visual-motor functioning, psy-
chopathology, and organic brain dysfunction in
children and adults. Some of the more prominent
variations included scoring systems that examined
specific errors (e.g., failure to integrate parts of

v̂ = (
s2
1

n1
+ s2

2
n2

)2

1
n1−1(

s2
1

n1
)2 + 1

n2−1(
s2
2

n2
)2

.

s2
1

n1
+ s2

2
n2

σ 2
1

n1
+ σ 2

2
n2

∼ χ 2
v

v
,

t ′ = x̄1 − x̄2
√

s2
1

n1
+ s2

2
n2

,
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designs, rotation of designs, simplification of parts
of designs), the use of a background interference
procedure during administration of the test (paper
containing random lines provided), and a reduction of
the number of designs for administration to preschool
and early-primary-school children. The test enjoyed
considerable success among practitioners and
became one of the most widely used tests in
psychology.

The revision of the test in 2003 included the addi-
tion of several new designs; a memory test; separate
tests to assess motor skill and visual perception; a
new, easy-to-use scoring system; and a large, nation-
ally representative sample covering the ages 4 to 85+
years. Administration involves the copy phase, fol-
lowed immediately by the memory phase. In the
copy phase, the examinee is instructed to copy each
design as it is presented. The memory phase requires
the examinee to redraw as many of the designs as
possible from memory. Scoring is based on a 5-point
scale that assesses the overall quality of each draw-
ing. Standard scores and percentile scores are avail-
able for both the copy and the memory phases. If an
examinee’s scores are low, the supplemental motor
and perception tests can be administered to help
determine whether the examinee’s difficulty is
motoric, perceptual, or the integrated visual-motor
process.

Research on nonclinical samples as well as a
variety of clinical samples, such as individuals with
learning disabilities, mental retardation, attention
deficit/hyperactivity disorder, autism, and Alzheimer’s
disease, indicates that the test is a reliable, valid mea-
sure of visual-motor functioning and a useful addition
to educational, psychological, and neuropsychological
test batteries.

—Gary G. Brannigan

Further Reading

Tolor, A., & Brannigan, G. G. (1980). Research and clinical
applications of the Bender-Gestalt Test. Springfield, IL:
Charles C Thomas.

Tolor, A., & Schulberg, H. C. (1963). An evaluation of the
Bender-Gestalt Test. Springfield, IL: Charles C Thomas.

BERNOULLI, JAKOB

(1654–1705)

Jakob (James, Jacques) Bernoulli, from Switzerland,
was the first of eight members of the mathematically
talented Bernoulli family. As directed by his parents,
he was trained as a philosopher (master’s degree,
1671) and theologian (licentiate, 1676) at the
University of Basel.

His career interests, however, were in mathematics
and, at least initially, in its application to astronomy.
He studied mathematics during his extensive travels,
subsequent to graduation, with such luminaries as
Nicolas Malebranche (1638–1715) for two years
in France, Johann van Waveren Hudde (1628–1704)
in the Netherlands, and briefly with Robert Boyle
(1627–1691) and Robert Hooke (1635–1703) in
England. He then resettled in Basel, and while await-
ing a more lucrative offer (and publishing a flawed
theory pertaining to comets), he opened a private
school of mathematics in 1682. The following year, he
was appointed to a teaching post in mechanics at his
alma mater, and in 1687, he obtained a professorship
and chair in mathematics, which he held until his
death.

In 1682, he became a correspondent disciple of
Gottfried Wilhelm Leibniz (1646–1716), who coin-
vented the calculus along with Sir Isaac Newton (1642–
1727). This primarily distance-learning arrangement
led to Bernoulli’s instrumental role in the development
of elementary differential and integral calculus and
ordinary differential equations.

Among his many discoveries were the system of
polar coordinates, the isochrone (the path that an
object falls with uniform velocity), and the logarith-
mic spiral (r = aebθ). He extended trigonometric func-
tions to complex variables, which led analysis (the
study of infinite series) into the study of algebra.
Although the ∫ symbol was invented by his younger
brother and student, Johann (1667–1748), the term
integral was coined by Jakob in an article published in
Acta Eruditorum in 1690.

His magnum opus, Ars Conjectandi, was published
posthumously in 1713. Bernoulli spent 20 years writing
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the book but never brought it to fruition. It was one
of the earliest rigorous treatises on probability theory. In
the second of four parts, he proves by induction the
binomial theorem. The fourth part contains the theorem
of Bernoulli. Siméon-Denis Poisson (1781–1840), a
descendent in Bernoulli’s academic genealogy, renamed
the theorem the law of large numbers. The modern
Monte Carlo method, a technique of repeated sampling,
is also known as Bernoulli trials.

—Shlomo S. Sawilowsky

See also Pascal, Blaise; Probability Sampling

Further Reading

Burton, D. M. (1997). The history of mathematics. (3rd ed.).
New York: McGraw-Hill.

Sawilowsky, S. S. (2004). A conversation with R. Clifford
Blair on the occasion of his retirement. Journal of Modern
Applied Statistical Methods, 3(2), 518–566.

Strunk, D. J. (1987). A concise history of mathematics (4th rev.
ed.). New York: Dover.

BINOMIAL DISTRIBUTION/
BINOMIAL AND SIGN TESTS

The binomial distribution models repeated choices
between two alternatives. For example, it will give the
probability of obtaining 5 tails when tossing 10 coins
or the probability of a rat’s choosing 10 times out of
20 the correct branch of a three-branch maze. The
binomial test uses the binomial distribution to decide
whether the outcome of an experiment using a binary
variable (also called a dichotomy) can be attributed to
a systematic effect. The sign test is applied to before-
after designs and uses the binomial test to evaluate
whether the direction of change between before and
after the treatment is systematic.

Binomial Distribution

The binomial distribution models experiments in
which a repeated binary outcome is counted. Each
binary outcome is called a Bernoulli trial, or simply a

trial. For example, if we toss five coins, each binary
outcome corresponds to H or T, and the outcome of
the experiment could count the number of T out of
these five trials.

NNoottaattiioonnss  aanndd  DDeeffiinniittiioonnss

We call Y the random variable counting the number
of outcomes of interest, N the total number of trials, P
the probability of obtaining the outcome of interest on
each trial, and C a given number of outcomes. For
example, if we toss four coins and count the number
of heads, Y counts the number of heads, N = 4, and
P = ½. If we want to find the probability of getting two
heads out of four, then C = 2.

With these notations, the probability of obtaining
C outcomes out of N trials is given by the formula

(1)

The term (N
C) gives the number of combinations of

C elements from an ensemble of N; it is called the
binomial of N and C and is computed as

. (2)

For example, if the probability of obtaining two
heads when tossing four coins is computed as 

(3)

the mean and standard deviation of the binomial
distribution are equal to

Pr(Y = 2) =
(

N
C

)

× P C × (1 − P)N−C

=
(

4
2

)

P 2(1 − P)4−2

= 6 × .52 × (1 − .5)2

= 6 × .54 = .3750,

(
N
C

)

= N !

C!(N − C)!
where N ! = 1 × 2 . . . × N

Pr(Y = C) =
(

N
C

)

× P C × (1 − P)N−C.
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(4)

The binomial distribution converges toward the
normal distribution for large values of N (practi-
cally, for P = ½ and N = 20, the convergence is
achieved).

Binomial Test

The binomial test uses the binomial distribution to
decide whether the outcome of an experiment in
which we count the number of times one of two alter-
natives has occurred is significant. For example, sup-
pose we ask 10 children to attribute the name
“keewee” or “koowoo” to a pair of dolls identical
except for their size and that we predict that children
will choose keewee for the smaller doll. We found that
9 children out of 10 chose keewee. Can we conclude
that children choose systematically? To answer this
question, we need to evaluate the probability of
obtaining 9 keewees or more than 9 keewees if the
children were choosing randomly. If we denoted this
probability by p, we find (from Equation 1) that 

(5)

Assuming an alpha level of α = .05, we can
conclude that the children did not answer randomly.

P ≠ ½

The binomial test can be used with values of P dif-
ferent from ½. For example, the probability p of hav-
ing five out of six rats choosing the correct door out of
four possible doors in a maze uses a value of P = ¼

and is equal to

And we will conclude that the rats are showing a sig-
nificant preference for the correct door.

LLaarrggee  ::  NNoorrmmaall  AApppprrooxxiimmaattiioonn

For large values of N, a normal approximation can
be used for the binomial distribution. In this case, p is
obtained by first computing a z score. For example,
suppose that we had asked the doll question to 86
children and that 76 of them chose keewee. Using
Equation 4, we can compute the associated z score as

(7)

Because the probability associated with such a
value of Z is smaller than α = .001, we can conclude
that the children did not answer randomly.

SSiiggnn  TTeesstt

The sign test is used in repeated measures designs
that measure a dependent variable on the same
observations before and after some treatment. It tests
whether the direction of change is random or not. The
change is expressed as a binary variable taking the
value + if the dependent variable is larger for a given
observation after the treatment or − if it is smaller.
When there is no change, the change is coded 0 and is
ignored in the analysis. For example, suppose that we
measure the number of candies eaten on two different
days by 15 children and that between these two days,
we expose the children to a film showing the danger
of eating too much sugar. On the second day, of these

ZY = Y − µY

σY

= 76 − 43

4.64
≈ 7.12.

p = Pr(6 out of 6) + Pr(5 out of 6)

=
(

6
6

)

× P 6 × (1 − P)6−6 +
(

6
5

)

× P 5 × (1 − P)6−5

= 1

46
+ 6 × 1

45
× 3

4
= 1

46
+ 18

46

≈ .0046.

p = Pr(9 out of 10) + Pr(10 out of 10)

=
(

10
9

)

× P 9 × (1 − P)10−9 +
(

10
10

)

× P 10 × (1 − P)0

= (10 × .59 × .51) + (1 × .510 × .50)

= .009766 + .000977

≈ .01074.

µY = N × P and σY = √
N × P × (1 − P).
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15 children, 5 eat the same number of candies, 9 eat
less, and  eats more. Can we conclude that the film
diminished candy consumption? This problem is
equivalent to comparing 9 positive outcomes against 
1 negative with P = ½. From Equation 5, we find that
such a result has a p value smaller that α = .05, and we
conclude that the film did change the behavior of the
children.

—Hervé Abdi

Further Reading

Siegel, S. (1956). Nonparametric statistics for the behavioral
sciences. New York: McGraw-Hill.

BINOMIAL TEST

A binomial experiment is one with two outcomes. If
one of the outcomes is identified as a success with
probability on each trial of π, then the probability of r
successes in N trials of the experiment is given by P(r)
where

To test the null hypothesis, H0: π = π 0, for some
constant, 0 < π 0 < 1, against a one-sided alternative
requires the summation of all P(r) for all values from
r to the desired end point (0 or N). For example, test-
ing the alternative, H1: π > π 0, we add P(X) for all
X = r, . . . , N and define the sum as p = ΣP(X). The
result, p, is known as the p value, or exact probability.
If p ≤ α, then the null hypothesis can be rejected at
level α. For directional tests in the opposite direction,
we take p = ΣP(X), X = 0, . . . , r.

For nondirectional tests, the value of p can be cal-
culated in a variety of ways. The definition used here
is p = ΣP(X), for all X such that P(X) ≤ P(r). If p ≤ α,
the test is significant. The observed success rate,
π = r/N, is significantly different from π0 at level α.

Suppose a six-sided die is rolled seven times, and
the side numbered 5 is defined as a success. Suppose

further that in the seven rolls, there is one roll result-
ing in a 5. That is, N = 7 and r = 1. The null hypothe-
sis for a fair die would be H0: π = 1/6. For
the one-sided alternative, we take H1: π < 1/6.
Alternatively, we could say the expected number of
successes is µ = Nπ = 7(1/6) = 1.1667. In that case, we
could express the null hypothesis as H0: µ = 1.1667.

To test the null hypothesis against the alternative
that π < 1/6, we calculate

We also calculate

The one-sided p value becomes p = 0.279082 +
0.390714 = 0.669796. Testing at α = .05, we do not
reject the null hypothesis because .67 > .05. That is,
the observed rate of side 5 in the rolls is π̂ = 1/7 = .143
and is not significantly less than 1/6 = .167. 

Now suppose on the seven rolls, we obtain side 5
on four of the seven rolls. That is, N = 7 and r = 4. If
we want to test the one-sided hypothesis that the
observed rate of π̂ = 4/7 = 0.571 is significantly
greater than 1/6 = 0.167, we need

P(4) = 0.015629

P(5) = 0.001875

P(6) = 0.000125

P(7) = 0.000004.

P(1) = 7!

1!(7 − 1)!

(
1

6

)1 (

1 − 1

6

)7−1

P(1) = 7

(
1

6

) (
5

6

)6

P(1) = 0.390714.

P(0) = 7!

0!(7 − 0)!

(
1

6

)0 (

1 − 1

6

)7−0

P(0) =
(

5

6

)7

P(0) = 0.279082.

P(r) = N !

r!(N − r)!
πr(1 − π)N−r .
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In this case we have

p = 0.015629 + 0.001875 + 0.000125 + 0.000004
p = 0.017633.

Again testing at α = .05, we reject H0 because .0176 < .05.
In the two-sided test of H0: π = 1/6 with r = 1 and

N = 7, we will have p = 1.0 because P(X) < P(1) for
all other 0 ≤ X ≤ 7. Of course, that test is not signifi-
cant at α = .05.

In the two-sided test of H0: π = 1/6 with r = 4 and
N = 7, we will have p = 0.017633 just as in the one-
sided test because P(X) > P(4) for all 0 ≤ X ≤ 4. Of
course, that test is significant at α = .05. In general, we
would expect to find that the one-sided and two-sided
tests produce different values of p.

There is a normal approximation to the binomial
test, and it can be applied with and without a correc-
tion for continuity. It has been known for many years
that even the continuity corrected version fails to limit
the true Type I error rate to the nominal level unless N
is extremely large. It is also well known that the bino-
mial test is more powerful than the normal approxi-
mation. Therefore, it is somewhat strange that
textbooks published as late as 2005 continue to rec-
ommend the normal approximations.

With the wide availability of computer analysis and
handheld calculators, there is little excuse for the use
of the normal approximations. Anyone who anticipates
testing binomial hypotheses should probably obtain a
suitable calculator and resort to normal approxima-
tions only for data sets too large for the calculator.

—Philip H. Ramsey and Patricia Ramsey

See also Binomial Distribution

Further Reading

Ramsey, P. H., & Ramsey, P. P. (1988). Evaluating the normal
approximation to the binomial test. Journal of Educational
Statistics, 13, 173–182.

BIOINFORMATICS

A single remarkable breakthrough of the 21st century
is likely to be biotechnology based on bioinformatics

principles and algorithms. Bioinformatics is advanced
by different disciplines. Much scientific, industrial,
social, political, economic, and religious activity in
upcoming years will be influenced by looming
advancements in genetic research. Biostatisticians and
computational biologists engaged in bioinformatics
are working to clearly comprehend how molecular
machinery works, fails, and can be repaired. One
needs an excellent command of and expertise in biol-
ogy, calculus, probability, mathematical statistics, and
computer science to follow and make contributions in
bioinformatics, an emerging discipline that analyzes
large genetic data sets using statistical and informa-
tion techniques. The discipline is growing quickly as
a result of the rapid availability of DNA or protein
sequence data on the World Wide Web. Because the
biological machine is chance oriented, both probabil-
ity and statistics are fundamental to understanding
DNA or protein sequences.

Bioinformatics is one of three branches in a new
discipline. The other two branches are medical infor-
matics and health informatics. Medical informatics
concentrates on computational algorithms to improve
communication and understanding in order to manage
medical knowledge and application. Microarray tech-
nology is the driving engine of this discipline. Health
informatics studies the dynamics among (a) comput-
ers, communications, and other information sciences;
(b) engineering, technology, and other sciences; and
(c) medical research, education, and practice.
Bioinformatics is a collection of tools and ideas for
deciphering the complexity of molecular machinery.
According to bioinformatics, biology is informational
science, and this complex and diversified field is
increasingly becoming a cross-disciplinary science. It
is in its infancy but evolving rapidly. Biostatisticians,
computer scientists, operations researchers, and mole-
cular biologists work hard to enrich bioinformatics. 

Since the discovery of the helix structure of DNA
by James D. Watson and Francis H. C. Crick, several
array-based biotechnologies have been constructed to
determine and exploit gene expression levels and their
interactions. Gene expression is a basic link between
genotype and phenotype. Gene expression data are
generated on a massive scale. New statistical princi-
ples and computing techniques are necessary to meet



Bioinformatics———91

the demand for quick and correct interpretations of so
much data. 

As the territory of bioinformatics is changing dra-
matically, statisticians have to learn the language and
jargon of bioinformatics. For example, much of the
so-called simple random sampling, stratifications,
randomization, replication, and so on, of the 20th cen-
tury has become obsolete in the genetic research arena
of the 21st century. DNA-oriented research ideas are
geared to statistics’ being an exact science.

John Naisbitt states in Megatrends that “we are
drowning in information but starved of knowledge.”
Fast-improving computing facilities change the way
knowledge, discovery, and application in all scientific
and day-to-day life are done. Before, genetic data
were analyzed using a hypothesis-driven-reductions
approach, but now, it is all done by a data-driven
approach. Consequently, bioinformatics ideas play a
significant role in genetic research.

Bioinformatics is all about identifying genes in
genome sequences, figuring out closeness of one
sequence to another, and answering questions such as
the following: How similar are two different organ-
isms? Where in DNA is a particular gene? What pro-
teins are produced by a particular gene? What are the
interrelations between genes and proteins? How are
one person’s genes different from those of another
individual? And how can we design a way to store,
process, and analyze this knowledge? Molecular
human biology can be summarized as follows: There
are 22 chromosomes in paired style. Every human
female has two X chromosomes whereas a human
male has one X and one Y chromosome. Each chro-
mosome has a single double stranded DNA molecule
with complementary nucleotides (A-T, G-C) forming
pairs in the strands. The nucleotides are A for adenine,
T for thymine, G for guanine, and C for cytosine.
There may be redundant information in each strand.
Organisms need to produce proteins for a variety of
functions in life. There is a code for the start and end
of the proteins. Major terms in bioinformatics include
exon (segment of DNA that supplies information to
make proteins), intron (a noncoding segment that
interrupts exons to produce a proper copy of RNA),
and splice site (the boundary of an exon and an
intron). This site allows the uninterrupted gene or

amino acid sequence of proteins. Promoter sites are
segments of DNA that start the transcription of genes,
enhancing controls of the transcription.

Why should one study bioinformatics? This emerg-
ing field seeks to understand the secrets of life’s
machinery and therefore should be useful in discover-
ing new drugs, custom suited for each patient, to treat
illnesses now considered incurable. The complex
process of life can perhaps be explained by simple
principles of genes! 

The Human Genome Project is closely involved
with the development of bioinformatics. The project
started in 1980 to determine, for medical purposes,
patterns in the entire sequence of the 3 million human
nucleotides. The draft sequence was completed on
October 7, 2000, and was published on February 15,
2001. The sequences of 908 species, including 557
viruses, 112 bacteria, and 172 eukaryotes, have been
completed. The human sequence is the largest and
was completed on April 25, 2003, the 50th anniver-
sary of the discovery of chromosomes. 

The methodologies that are used in bioinformatics
may be grouped as follows: The symbolic computa-
tions, hidden Markov models, and PERL program-
ming are computer intensive. Another group,
consisting of artificial intelligence (using the human
paradigm), statistical inference (inductive or deduc-
tive), knowledge representation, expert systems, rule-
based neural networks, natural languages, pattern
discovery, matching machine learning, and hierarchi-
cal clustering, is statistical. The probabilistic group
consists of decision trees and operations research
methods including dynamic programming, probability
ideas, information and entropy ideas.

Computer programs such as BAMBE, BLAST,
BLAT, FASTA, MEGA, PSI BLAST, VISTA, and
VAST do microarray analysis, describe chromosomes,
try contig mapping, and explore DNA-RNA databases
like EMBL and GENBANK. The hidden Markov
models, knowledge discovery, mutations, machine
learning methods, neural networks, protein databases,
x-y chromosomes, and Zipf’s law, among others, are
heavy but powerful tools of bioinformatics.

Genetic and molecular epidemiology is evolving
into the mainstream of clinical health research. The
proliferation of genetic data highlights the importance
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of analytical and graphical tools. Through an under-
standing of the genetic architecture of complex dis-
eases, new modern medicines can be developed.
Bioinformaticians are expected to play a critical role
in the process of discovering new genetics-based
medicines.

Several Monte Carlo techniques are used in bioin-
formatics. Being interdisciplinary, Monte Carlo tech-
niques attract attention from bioinformaticians, DNA
researchers, computer scientists, probabilists, and sta-
tisticians. Monte Carlo is a computer-assisted prob-
lem-solving technique in a complex system. Its
methodologies were used first in physics but are now
used widely in bioinformatics. Probabilists and statis-
ticians might trace its history all the way back to the
Buffon Needle problem in 1777. It is easy to compute
that the chances of a needle of length l intersecting
one of the parallel lines separated by a distance of D
units is 2l/πD. After throwing the needle a sufficiently
large number of n times and letting pn = #
times intersected / n, the value of π can be
accurately approximated, and that is a
Monte Carlo technique. That is,

In this genomic age, investigations of
complex diseases require genetic con-
cepts for understanding and discussing
susceptibility, severity, drug efficacy,
and drug side effects. In this process,
researchers end up analyzing huge
amounts of data. Concepts and tools such
as multiple testing and data dredging are
valuable in the pursuit of such huge data
analyses.

The subtopics of bioinformatics are
population genetics, evolutionary genet-
ics, genetic epidemiology, animal and
plant genetics, probability theory, several
discrete and continuous distributions,
moment/probability generating func-
tions, Chebychev’s inequality, entropy,
correlation, distribution of maximum and

minimum in a set of random quantities, Bayesian and
classical inference procedures, stochastic processes,
Markov chains, hidden Markov models, computation-
ally intensive methods in statistics, shotgun sequenc-
ing, DNA models, r-scans, nucleotide probabilities,
alignments, dynamic programming, linear gap mod-
els, protein sequences, substitution matrices, edge
effects in unaligned sequences, both discrete and
continuous time evolutionary Jukes-Cantor models,
Kimura neutral models, Felsenstein models, and phy-
logenetic tree estimations in biology, among others.

BLAST (Basic Local Alignment Search Tool), one
of the bioinformatics software programs mentioned
above, comes in several versions, BLASTP,
BLASTN, and BLASTX, for comparing protein
sequences, for nucleotide sequences, and for trans-
lated sequences, respectively. All BLAST programs
produce similar output, consisting of a program intro-
duction, a schematic distribution of alignments of the

π̂ = lim
n→∞

2l

pnD
.

Figure 1 BLAST

Source: www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html.
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query sequence to those in the databases, a series of
one-line descriptions of the database sequences that
have significantly aligned to the query sequence, the
actual sequence alignments, and a list of statistics
specific to the BLAST search method and version
number. (See Figure 1.)

The top 100 significant alignments of the query
sequence to database sequences are displayed
schematically against the query sequence. Colored
bars are distributed to reflect the region of alignment
onto the query sequence. The color legend represents
alignment scores, the higher scores being most signif-
icant. Selecting a bar will cause a description of that
specific database sequence to be displayed in the win-
dow and allow the browser to jump down to that par-
ticular alignment for viewing (Figure 2). 

FASTA (abbreviation of fast algorithms) performs
a fast alignment of all protein/nucleotides sequences.
This computer program is based on ideas found in
Pearson and Lipman (1988). FASTA searches for
similarity between a query sequence and a group of
sequences of the same type (nucleic acid or protein).

DAMBE (Data Analysis in Molecular Biology
and Evolution) can be used for analyzing molecular

sequence data. Although science has unlocked several
secrets of life, mysteries remain. For example, how do
chromosomes organize themselves in meiosis and
mitosis? What are the properties of protein value?
How do DNA strands wind up? How do genes trans-
mit instructions to make a specific protein? Why do
shorter chromosomal arms have higher rates of
recombination? Why is recombination less frequent
near the centromeres? Why do more recombinations
occur during meiosis? Why do chromosomes 13, 18,
and 21 have the fewest genes per kilobase? Why is
genome size not correlated with an organism’s com-
plexity? Why is only 5% of RNA coding while more
than 50% of the repeat sequences are not coding?
Why do more A-T than G-C pairings occur in general
but not in chromosome 19? Why does the genetic
material on the Y chromosome remain relatively
young? Why is the mutation rate of the Y chromo-
some 1.57 times greater than that of the X chromo-
some? Why do thousands of genes produce noncoding
RNA, tRNA, and rRNA? Why do more than 25% of
tRNA genes exist on chromosome 6? And what are
the functions of many proteins? 

There are unresolved cloning and eth-
ical issues. People are divided into those
who argue in favor and those who are
against cloning and stem cell research.
Those in favor of doing research work
cite forensic issues, finding cures for cer-
tain human diseases, advantages of DNA
repair in diabetes and other illnesses, and
advantages of understanding heritability.
Those who are opposed cite security, pri-
vacy, ethics, and the fear of making
“Frankenstein’s monster.”

—Ramalingam Shanmugam

Further Reading

Pearson, W. R., & Lipman, D. J. (1988).
Improved tools for biological sequence
comparison. Proceedings of USA National
Academy of Sciences, 85(8), 2444–2448.
Retrieved from http://srs.ebi.ac.uk/srsbin/
cgi-bin/wgetz?-e+[MEDLINE-pmid:’
3162770’]

Figure 2 Human Chromosomes

Source: http://www.ensembl.org/Homo_sapiens/mapview.
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Xia, X., & Xie, Z. (2001). DAMBE: Data analysis in molecular
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BLAST resources: http://www.ncbi.nlm.nih.gov/Education/
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DAMBE Windows95/98/NT executables: http://aix1.uottawa
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National Center for Biotechnology Information Human
Genome Resources: http://www.ncbi.nlm.nih.gov/projects/
genome/guide/human/ 

National Center for Biotechnology Information Social
Analysis of Gene Expression Tag to Gene Mapping:
www.ncbi.nlm.nih.gov/SAGE/

National Center for Biotechnology Information Statistics 
of Sequence Similarity Scores: www.ncbi.nlm.nih.gov/
BLAST/tutorial/Altschul-1.html

Applying Ideas on Statistics and Measurement

The following abstract is adapted from
Humphreys, K., Demetriou, G., & Gaizauskas, 
R. (2000). Bioinformatics applications of informa-
tion extraction from scientific journal articles.
Journal of Information Science, 26(2), 75–85. 

Information extraction technology developed
through the U.S. Defense Advanced Research
Projects Agency (DARPA) Message Understanding
Conferences (MUCs) has proved successful at
extracting information from newswire texts and in 
domains concerned with human activity. This
paper considers the application of this technology
to the extraction of information from scientific
journal papers in the area of molecular biology. In
particular, it describes how an information extrac-
tion designed to participate in the MUC exercises
has been modified for two bioinformatics appli-
cations, one concerned with enzyme and meta-
bolic pathways, the other with protein structure.
Progress to date provides convincing grounds for
believing that information extraction techniques
will deliver novel and effective ways for scientists
to make use of the core literature that defines their
disciplines.

BISERIAL CORRELATION COEFFICIENTS

Biserial correlation coefficients are measures of asso-
ciation that apply when one of the observed variables

takes on two numerical values (a binary variable) and
the other variable is a measurement or a score. There
are several biserial coefficients, with the appropriate
choice depending on the underlying statistical model
for the data. The point biserial correlation and
Pearson’s biserial correlation are arguably the most
well known and most commonly used coefficients in
practice. We will focus on these two coefficients but
will discuss other approaches.

Karl Pearson developed the sample biserial
correlation coefficient in the early 1900s to esti-
mate the correlation ρYZ between two measurements
Z and Y when Z is not directly observed. Instead of
Z, data are collected on a binary variable X with 
X = 0 if Z falls below a threshold level and X = 1
otherwise. The numerical values assigned to X do
not matter provided the smaller value identifies
when Z is below the threshold. In many settings, the
latent variable Z is a conceptual construct and not
measurable. The sample point biserial correlation
estimates the correlation ρYX between Y and a
binary variable X without reference to an underly-
ing latent variable Z.

We will use S. Karelitz and colleagues’ data on 38
infants to illustrate these ideas. A listing of the data is
given in Table 1. The response Y is a child’s IQ score
at age 3, whereas X = 1 if the child’s speech develop-
mental level at age 3 is high, and X = 0 otherwise. The
(population) biserial correlation ρYZ is a reasonable
measure of association when X is a surrogate for a
latent continuum Z of speech levels. The (population)
point biserial correlation ρYX is more relevant when
the relationship between IQ and the underlying Z
scale is not of interest, or the latent scale could not be
justified.

The Point Biserial Correlation

Assume that a random sample (y1, x1), (y2, x2), . . . ,
(yn, xn) of n observations is selected from the (Y, X)
population, where Y is continuous and X is binary.
Let sYX be the sample covariance between all yi and all
xi, and let s2

y and s2
x be the sample variances of all yi

and all xi, respectively. The population correlation ρYX

between Y and X is estimated by the sample point
biserial correlation coefficient, which is just the
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product-moment correlation between the Y and X
samples:

The sample point biserial estimator rYX can also be
expressed as

where 

y
_

1 and y
_

0 are the average y values from sampled pairs
with xi = 1 and xi = 0, respectively, and 

p̂ is the proportion of observations that have xi = 1. 

The equivalence between the two expressions for
rYX requires that the sample variances and covariances
be computed using a divisor of n and not the usual
divisor of n − 1.

The first careful analysis of the properties of rYX was
provided by Robert Tate in the middle 1950s. He
derived the large-sample distribution of rYX assuming
that the conditional distributions of Y given X = 1 and
given X = 0 are normal with potentially different means
but the same variances. Tate showed that T =
(n − 2)½rYX /(1 – r2

YX)½ is equal to the usual two-sample
Student t statistic for comparing y

_
1 to y

_
0 and that the

hypothesis ρYX = 0 can be tested using the p value from
the two-sample t test. For ρYX ≠ 0, large-sample hypoth-
esis tests and confidence intervals can be based on a
normal approximation to rYX, with estimated variance

The biserial estimate rYX is robust in the sense that the
bias in rYX approaches 0 as the sample size increases,

even if the distributional assumptions
are not satisfied. However, the esti-
mated variance of rYX is sensitive to the
assumption of equal variances for the
two subpopulations (X = 0 and X = 1).
Somesh Das Gupta generalized Tate’s
distributional results to allow unequal
variances and nonnormal distributions.

Figure 1 gives side-by-side box plots of the IQ data
generated by the S-PLUS statistics package. Although
the distributions of the IQ scores for the samples with X
= 0 and X = 1 are slightly skewed, the assumptions for
Tate’s analysis seem plausible. The mean IQ scores in
the two samples are y

_
1 = 2779/22 = 126.32 and  y

_
0 =

1676/16 = 104.75. Also, p̂ = 22/38 = 0.579 and sY =
19.126, which gives rYX = 0.557 and ̂sd(rYX)= 0.013. The
large difference between the means of the two groups
relative to the within-group spreads is consistent with
the observed correlations being significantly different
from 0 (T = 4.024 on 38 – 2 = 36 df; p value < .001).

A shortcoming of the population point biserial cor-
relation as a measure of association is that ρYX cannot
assume all values between –1 and 1. The limits on ρYX

depend on the distribution of Y and the Pr(X = 1). For
example, if Y is normally distributed, then –.798 <_ ρYX

<_ .798 regardless of Pr(X = 1). The maximum value
can be achieved only when Pr (X = 1) = .50. If Y is
normal and Pr(X = 1) = .85, then –.653 <_ ρYX <_ .653.
Such restrictions can lead to a misinterpretation of the
strength of the sample point biserial correlation. 
W. Joe Shih and W. H. Huang examined this issue and

v̂ar(rYX) = (1 − r2
YX)2

n

{

1 − 1.5r2
YX + .25r2

YX

p̂(1 − p̂)

}

.

rYX = (ȳ1 − ȳ0)

sY

{
p̂(1 − p̂)

}1/2
,

rYX = sYX

sY sX
.

Table 1 Data for a Sample of 38 Children

X = 0 Y: 87 90 94 94 97 103 103 104 106 108 109
109 109 112 119 132

X = 1 Y: 100 103 103 106 112 113 114 114 118 119 120
120 124 133 135 135 136 141 155 157 159 162

Note: X = speech developmental level (0 = low; 1 = high), and Y = IQ score.
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Figure 1 Box plots of IQ Score by X
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proposed a way to calibrate the point biserial
coefficient.

Pearson’s Biserial Correlation

Suppose X is a binary variable that results from cate-
gorizing a continuous latent variable Z. Set X = 1
when Z > θ and X = 0 otherwise, where θ is a fixed but
unknown threshold. Without loss of generality, we can
assume that Z is standardized to have mean 0 and vari-
ance 1. Let f(t) be the probability density function of
Z and note that θ is the upper pth percentile of the dis-
tribution of Z; that is,

If the conditional expectation of Y given Z is a lin-
ear function of Z, then the population biserial correla-
tion and the point biserial correlation are related by

where λ(θ, f) = �
θ

∞

tf(t)dt. The linearity assumption is
satisfied when (Y, Z) has a bivariate normal distribu-
tion, a common assumption, but it holds for other
elliptically symmetrical bivariate distributions as well.
Under normality,

and

The relationship between the population biserial
correlation ρYZ and ρYX can be exploited to estimate ρYZ

from a random sample (y1, x1), (y2, x2), . . . , (yn, xn)
when the distribution of Z is known. Edward J. Bedrick
suggested the simple method-of-moments estimator

where θ̂ is the estimated threshold based on the pro-
portion p̂ of sampled pairs with xi = 1 (i.e., θ̂ satisfies
p̂ = Pr(Z > θ̂ )). If Z has a normal distribution, r~YZ is
Pearson’s sample biserial estimator, and 

Bedrick’s derivation of r~YZ parallels Pearson’s orig-
inal treatment of the biserial correlation coefficient, so
r~YZ and r Pb have similar distributional properties.
Bedrick showed that the large-sample distribution of
r~YZ is normal with mean ρYZ and gave an expression for
the large-sample variance of r~YZ. In the early 1900s,
H. E. Soper gave an estimator for var (rPb) when (Y, Z)
is normal:

Tate showed that (approximately
1.25rYX). For the IQ data, rPb = .703 and sd̂ (rPb) = .133.

The derivations of rPb and r~YZ rely heavily on distri-
butional assumptions. Neither estimate is consistent if
either the conditional expectation of Y given Z is not
linear in Z or the distribution of Z is incorrectly speci-
fied. This lack of robustness is problematic because
neither assumption can be checked empirically.
Another undesirable property of rPb and r~YZ is that the
magnitude of these estimates can exceed 1. This anom-
aly is common in small samples when the population
correlation is large but becomes less likely as n
increases.

Alternative Estimators

Several researchers developed estimators that elimi-
nate one or more limitations of rPb. Hubert Brogden,

rPb ≥ √
.5πrYX

v̂ar(rPb) = 1

n

[

r4
Pb + r2

Pb

φ2(θ̂)
{p̂(1 − p̂)θ̂ 2

+ (2p̂ − 1)θ̂φ(θ̂) − 2.5φ2(θ̂)}

+ p̂(1 − p̂)

φ2(θ̂)

]

.

rPb = rYX

φ(θ̂)
{p̂(1 − p̂)}1/2

= (ȳ1 − ȳ0)

sYφ(θ̂)
p̂(1 − p̂).

r̃YZ = rYX
{p̂(1 − p̂)}1/2

λ(θ̂, f )
,

ρYZ = ρYX
{p(1 − p)}1/2

φ(θ)
.

λ(θ, f ) = φ(θ),

f (t) = φ(t) ≡ 1√
2π

exp(−.5t2),

ρYZ = ρYX
{p(1 − p)}1/2

λ(θ, f )
,

p = Pr(X = 1) = Pr(Z > θ) =
∫ ∞

θ

f (t)dt.
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William Clemans, and Frederic Lord generalized
Pearson’s biserial estimator by relaxing the assump-
tion that the distribution of Z is known. The Clemans-
Lord estimator has the attractive property of being
bounded between –1 and +1 and thus is much less
variable than rPb when the population correlation is
large. Edward Cureton and Eugene Glass proposed
rank-based versions of the biserial estimator.

Tate proposed a maximum likelihood estimator of
ρYZ assuming that (Y, Z) has a bivariate normal distri-
bution. The maximum likelihood estimator is efficient
when the model holds, but the estimate is not robust to
misspecification of the model and requires specialized
software to compute. The maximum likelihood
approach could be considered with other probability
models. However, Bedrick showed that the large-
sample variances of the (noniterative) Clemans-Lord
estimator and the maximum likelihood estimator are
often close in a variety of normal and nonnormal
populations.

—Edward J. Bedrick
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BIVARIATE DISTRIBUTIONS

Cause and effect between two phenomena in a real-
life setting cannot be judged or resolved without con-
figuring their patterns of occurrence, correlation, and
uncertainties. Item response theory has been well
developed by psychologists to explain the personal
ability level of the examinees who answer a series of
questions varying in toughness level. The ability and
toughness levels are correlated random variables with
a degree of dependence between them. Another
revealing example is that the safety of a building can-
not be ascertained without knowledge of both stress
and strength of the materials used in the building.
When the strength, Y, exceeds stress level, X, safety is
guaranteed. Another serious life-and-death example is
the distance of a populous city from the geological
epicenter of an earthquake and the severity of damage
in the city, as experienced in the tsunami of December
26, 2004, in south Asia. In a health application, X and
Y are “susceptibility” and “immunity” levels of a
person in the outbreak of a disease epidemic, respec-
tively, and a person is healthy only so long as Y
exceeds X. Identification of underlying bivariate prob-
ability distribution in these and other applications
reveals a volume of related knowledge.

Such two stochastic aspects x and y in experimen-
tal or randomly observed studies are well explained
by employing an appropriate underlying joint (proba-
bility) distribution f(x, y). Their patterns of occur-
rence, correlation, and the prediction of one aspect
using the occurrence level of another aspect are feasi-
ble from randomly collected bivariate data. Though
the domain for the data could be a shrunken version
depending on the cases, it is in general from minus
infinity to positive infinity. A truncated or censored
version of the bivariate (probability) distributions



98———Bivariate Distributions

might be employed in such scenarios. A bivariate
distribution could be a count of continuous or mixed
type. However, their conditional f(x | Y = y) and f(y | X
= x) distributions reveal interinfluence by one on
another, but their marginal distribution f(x) or f(y)
does not. For example, the predicted value of Y for a
given level X = x is called a regression function of x.
The conditional and marginal dispersions obey an
inequality Var(Y | X = x) <_ Var(Y), which means that
the conditional prediction of Y with knowledge of X is
more precise than unconditional prediction of Y. The
inverse of variance is called precision. Also, the so-
called product moment is built in a hierarchical man-
ner in accordance with the result E(YX) = E[E(Y | X)],
where the outer expectation is with respect to the ran-
dom variable, X. Their covariance is defined to be
cov(Y, X) = E[E(Y | X = x] – E(Y) E(X). The covariance
is scale oriented, and it could be misleading unless
caution is exercised. Furthermore, the variance can
also be hierarchically constructed according to a result
Var[Y] = E[Var(Y | X = x] + Var[EY | X = x)].

As done in univariate cases, the moment, cumulant,
and probability generating functions are derived and
used to identify central and noncentral moments and
cumulants, along with their properties in bivariate dis-
tributions. The correlation coefficient ρY,X between
designated dependent variable Y and chosen indepen-
dent (more often called predictor) variable X is cov(Y,
X)/σYσX, where σY = √var(Y) and σX = √var(X) are
standard deviations. The correlation coefficient is
scale free. A simple linear regression function is Y =
β0 + β1x + ε for predicting Y at a selected level X = x,
and the so-called regression parameter (slope) is 
β = ρσy

—σx. See a variety of popular bivariate distributions
in Tables 1 and 2.

The uncorrelated variables Y and X are clearly
independent in the case of bivariate Gaussian random
variables but not necessarily in other cases. Two vari-
ates are uncorrelated if the joint probability distribu-
tion is the product of their marginal probability
distributions. Equivalently, the conditional probability
distribution is equal to the marginal probability distri-
bution. In a collection of bivariate random samples, if
Yi and Xi in an ith pair are independent, then Ymax and
Xmax are also independent. The converse is not always
true. So Geoffroy proved that if the ratio

asymptotically joins the horizontal axis, then the inde-
pendence of Ymax and Xmax is sufficient for the indepen-
dence of the random observations on Y and X where
F(.) is a cumulative distribution. However, bivariate
Gaussian, logistic, Gumbel, and several other distrib-
utions of the type 

FX,Y(x, y) = FX(x)FY(y) [1 + α (1 – FX[x] (1 – FY[y])]

validate the above ratio condition, independence
between Ymax and Xmax. Popularly employed bivariate
distributions for continuous data analysis are dis-
played in Table 1.

Bayesians view nonobservable latent parameter θ
as a random variable. Its marginal distribution p(θ) in
its admissible domain –∞ < θ < ∞ is called prior dis-
tribution. The conditional distribution

is called posterior (an update of the term prior) distri-
bution, where m(y) and l(y| θ) are called marginal dis-
tribution and likelihood function, respectively. The
posterior distribution is an update of knowledge on
parameter θ based on evidence in data, y. For an
example, with known data variance σ2

y, the univariate
Gaussian distribution f(y, θ⏐| σ2

y) = [2πσ2
y]

–½ exp[–(y –
θ)2/2σ2

y] is considered as a bivariate distribution of
random variables Y and Θ. Note the marginal mean
E(Y) = θ is stochastic and follows independently a
prior Gaussian distribution:

f(θ⏐m, σ 2
0) = [2πσ 2

0]
–½ exp[–(y–m)2/2σ 2

0], –∞ < θ < ∞,
σ 2

0 > 0, –∞ < m < ∞. 

Then, the posterior distribution f(θ⏐y) follows a
Gaussian distribution with a weighted mean 

and variance var(θ⏐y).

var(θ |y) =
(

1

σ 2
o

+ 1

σ 2
y

)−1

.

E(θ |y) =
1

σ 2
o
y + 1

σ 2
y
m

1
σ 2
o

+ 1
σ 2
y

p(θ |y) = f (y, θ)

m(y)
= p(θ)l(y|θ)

∫ ∞
−∞ f (y, θ)dθ

1 − FX(x) − FY (y) + FX,Y (x, y)

1 − FX,Y (x, y)
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Note that the posterior mean is the weighted average
of prior mean m and new data y, where the weights are
prior precision and data precision. The precisions
moderate prior mean and current data. The importance
of the Bayesian style of thinking could not be better
advocated by anything other than the concept of
bivariate distribution.

Other distributions commonly employed for count
data are bivariate versions of binomial, Poisson,
inverse binomial, Neyman, Hermite, and logarithmic
series distributions.

Consider that a bivariate distribution for the ran-
dom number of traffic accidents and number of
fatalities needs to be selected. The number of acci-
dents Y and number of fatalities X in a specified
location during a day can be modeled successfully
using a quasi-binomial-Poisson bivariate distribu-
tion, as cited in Table 2. The marginal probability
distribution of Y is 

p(Y = y) = ∑
x=0

y

p(y,x) = λ1(λ1+λ2y)Y–1 exp[–(λ1+λ2y)]/y!,

a quasi-Poisson distribution, where y = 0,1,2, . . . ∞,
plus the parameters λ1 > 0 and –1 < λ2 < 1, denote,
respectively, the observation space, accident rate, and
hazard level. The marginal mean and variance of Y are

and ,

respectively. When there is no accident proneness
(that is, λ2 = 0), the above marginal probability mass
function reduces to the popular Poisson distribution
p(y) = e–λ1λ1

y / y!. Not all accidents turn out to be fatal.
An accident turns out to be a fatal accident with a
probability 0 < p < 1 due to some uncertain causes.
The total number of fatal accidents X = X1 + X2 + . . .
+ XY for a given Y = y follows conditionally a quasi-
binomial distribution

where x = 0,1,2 . . . , y and 0 < p < 1 denote, respec-
tively, the observation space for the random number of
fatal accidents and the fatality parameter. In this sce-
nario, the number of accidents splits into fatal and
nonfatal types. This kind of branching process is
called damage modeling in bivariate distribution liter-
ature. Marginally, the total number of fatal accidents
follows a quasi-Poisson distribution

p(x) = ∑
x=0

∞ 
p(y,x) = λ1p(λ1p + λ2x)X–1 exp[−(λ1p+λ2x)]/x!,

where the observation x = 0,1,2 . . . , ∞ and 
(λ1p+λ2x) > 0. The marginal mean of X is 

,

and the variance is 

In the absence of accident proneness, (that is, λ2 = 0),
the marginal mean and variance of X are λ1p, a unique
Poisson property to be watched. Intuitively, the ran-
dom observations on Y and X must be correlated and
not independent. Such an intuition is backed up by the
difference between marginal and conditional probabil-
ity distributions. That is, p(Y = y| X = x) ≠ p(X = x| Y = y)
and p(X = x| Y = y) ≠ p(X = x) where

p(Y = y | X = x) = λ1[1 − p](λ1[1 − p] + λ2[y − x]y−x−1

exp[−(λ1[1 − p] + λ2[y − x])]/(y − x)!

with y = x,x+1, . . . ,. This conditional distribution
is also quasi-Poisson but shifted x units on the
right. It is easy to notice that E(X| Y = y) = yp, a
regression line with slope p passing through the
origin. But the reversed regression curve of Y given
X = x is 

with an intercept equal to  

and unit slope. For random observations Y and X to be
independent, a rule of thumb is E(Y | X = x) = E(Y) and

λ1[1 − p]

[1 − λ2]

E(Y |X = x) = x + λ1[1 − p]

[1 − λ2]
,

var(X) = λ1p

(1 − λ2)3

E(X) = λ1p

1 − λ2

p(X = x|Y = y)

=
(

y
x

) (
λ1p[1 − p]

λ1 + λ2y

) (
λ1p + λ2x

λ1p + λ2y

)x−1

(
λ1[1 − p] + λ2[y − x]

λ1p + λ2y

)y−x−1

,

λ1

(1 − λ2)3

λ1

1 − λ2
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Table 1 Selective Bivariate Continuous (Cumulative) Probability Distributions

Name Probability density f(x, y) or cumulative distribution function, F(x, y) = Pr[Y ≤ y, X ≤ x]

Gaussian

Marshall-Olkin exponential

Bivariate logistic

Pareto first kind 

Pareto second kind

Pareto third kind

Dirichlet 

Gumbel

Freund

Block-Basu

Bivariate extreme value
H(x, y) = exp(− exp([−(y − µ1)/σ1] + exp[−(x − µ2)/σ2])−1/ρ)

f (y, x) =
{

λλ1(λ2+λ12)

λ1+λ2
e−λ1x−(λ2+λ12)y

λλ2(λ1+λ12)

λ1+λ2
e−λ2y−(λ2+λ12)x

, if

{
0 < x < y < ∞
0 < x < y < ∞

f (y, x) =
{
αβ ′e−β ′y−(α+β−β ′)x

α′βe−α′x−(α+β−α′)y if

{
0 ≤ x ≤ y

0 ≤ y ≤ x

f (y, x) = e−(y+x+θyx)[(1+θy)(1+θx)−θ ]

y, x > 0; 0 ≤ θ ≤ 1

f (y, x) = 	(θo + θ1 + θ2)

	(θ0)	(θ1)	(θ2)
yθ1−1xθ2−1(1 − [y + x])θ0−1

F(y, x) = 1 − 1/

[(
y − µ1

θ1

)1/δ1

+
(

x − µ2

θ2

)1/δ2
]

,

y > µ1, x > µ2, δ1 > 0, δ2 > 0

F(y, x) = 1 −
(

1 + y − µ1

θ1
+ x − µ2

θ2

)λ

,

y > µ1, x > µ2, λ > 0

f (y, x) = λ(λ + 1)/θ1θ2

(
y

θ1
+ x

θ2
− 1

)(λ+2)

,

y > θ1, x > θ2, λ > 0

F(y, x) = [1 + exp(−[y − µ1]/σ1) + exp(−[x − µ2]/σ2])

+ (1 − ρ) exp(−[y − µ1]/σ1 − [x − µ2]/σ2])]−1

F(y, x) = exp[−λ1y − λ2x − λ3 max(y, x)]

f (y, x) = [2πσ1σ2(1 − ρ2)]1/2 exp[−(y − µ1)
2/σ 2

1

− (x − µ2)
2/σ 2

2 + 2ρ(x − µ1)(x − µ1)/σ1σ2]
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Table 2 Selective Bivariate Count Distributions 

Name Probability mass function, f(x, y)

Binomial

Inverse binomial

Poisson

Hypergeometric 

Bivariate geometric

Sarmonov-Lee family

Quasi-binomial-Poisson p(y, x) = λ2
1p(1 − p)(λ1p + λ2x)x−1(λ1[1 − p] + ([y − x]λ2)

y−x−1

exp[−(λ1 + λ2y)]/x!(y − x)!

y = 0, 1, 2 . . . , ∞;
x = 0, 1, 2 . . . , y; (λ1 + λ2y) > 0;
λ1 > 0; −1 < λ2 < 1; 0 < p < 1

p(y, x) =
(

m
y

) (
n
x

)

θ
y

1 (1 − θ1)
m−yθx

2 (1 − θ2)
n−x[1 + �φ1(y)φ2(x)];

y = 0, 1, 2, . . . , m; x = 0, 1, 2, . . . , n; 0 < θ1,θ2 < 1

p(y, x) =
(

y + x
y

)

θ
y

1 θx
2 (1 − θ1 − θ2)

y, x = 0, 1, 2, . . . ; 0 < θ1, θ2 < 1

p(y, x) =

(
Np1
y

) (
Np2
x

) (
N − Np1 − Np2

n − y − x

)

(
N
n

) ;

y = 0, 1, . . . , min(N1, n − x); x = 0, 1, . . . , min(N2, n − y);
(

a
b

)

= 	(a + 1)

	(b + 1)	(a + b + 1)

p(y, x) = e−(θ1+θ2+θ12)

max(y,x)∑

i=0

θ
y−i

1 θx−i
2 θ i

12/(y − i)!(x − i)!i!

p(y, x, n − y − x) = 	(r + y + x)

	(r)y!x!
θ

y

1 θx
2 (1 − θ1 − θ2)

r

0 < θ1, θ2 < 1; y = 0, 1, 2, . . . , ; x = 0, 1, 2, . . . ,

p(y, x, n − y − x) =
(

n!
y!x!(n − y − x)!

)

θ
y

1 θx
2 (1 − θ1 − θ2)

n−y−x

0 < θ1, θ2 < 1; y = 0, 1, 2, . . . , n; x = 0, 1, 2, . . . , n; y + x ≤ n
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E(X| Y = y) = E(X). This rule is clearly not validated in
this example. So the number of accidents and the
number of fatal accidents must be not independent but
correlated. Their correlation is

Also,

and

These results validate a universal result in bivariate
distribution that

var(Y) = var(E[Y | X = x]) + E(var[Y | X = x] ).

The correlation coefficient is a dependence measure.
The importance of dependence measures in bivariate
distributions cannot be overstated. Of course, all depen-
dent measures are model based, and hence, selecting an
appropriate bivariate distribution for a given set of data
is vitally important. The concept of copula (meaning
bond) eases the burden of selecting a bivariate distribu-
tion. The copula is a scale-invariant way of dealing
with dependency. Only the uniform distribution over a
unit square for the copula can detect the independence
between bivariates. A departure from uniformity indi-
cates the existence of dependency. What kind of depen-
dencies can a copula detect in bivariate distributions?
For a discussion of this wonderful idea, consider the
cumulative distribution functions of Y, X, and their joint
random variables, which are indicated respectively 
by u = G(x) = Pr[X <_ x], v = F(y) = Pr[Y <_ y], and 
H(x, y) = Pr[X <_ x, Y <_ y]. The copula is then a mapping
of each (x, y) in a two-dimensional domain to a unique

value H(x, y) in the unit square. There is a unique
copula C(u, v) in the sense H(G–1[u], F–1[v]) = C(u, v).
Bivariate random variables Y and X are considered
independent if and only if there is a copula validating
B(u, v) = uv. In general, max(u + v –1,0) <_ C(u, v) <_
min(u, v).

For the sake of understanding continuous bivariate
distributions, consider bivariate logistic distribution
(as in Table 1). Bivariate logistic distribution is
employed to explain random failing of paired organs
such as kidneys in diabetic patients. When their corre-
lation coefficient ρ = 0, the random lifetimes Y and X
are independent since 

H(x, y) = exp(−[y − µ1]/σ1)exp(−[x − µ2]/σ2) 
= F(y)G(x) and B(u, v) = uv.

Consider the bivariate extreme value distribution
(as in Table 1) with σ = 1/ρ = σ2, µ1 = 0 = µ2. This
bivariate extreme value distribution illustrates 
unusual rainfall and farm damage. Its copula is 
C(u, v) = exp(–[(–1nu)ρ + (–1nv)ρ]1/ρ). When the para-
meter ρ = 1, the amount of rainfall and the amount of
farm damage are stochastically independent.

In the case of bivariate distributions, copula is
related to Spearman’s correlation coefficient ρ and
Kendall’s rank correlation coefficient τ. Bivariate ran-
dom variables Y and X are concordant if large values
of one variate tend to be associated with large values
of the other variate and smaller values of one variate
are associated with small values of the other.
Otherwise, the bivariates are discordant. Kendall’s τ is
simply the probability of concordance minus the prob-
ability of discordance. The copula is related to
Kendall’s τ as C(u, v) = (1+τ)/4. For a given set of
data, both ρ and τ could come out differently but
should validate an inequality −1 ≤ 3τ 2ρ ≤ 1.

—Ramalingam Shanmugam
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var(X|Y = y) = y2p[1 − p]

− y(y − 1)λ1p(1 − p)

(λ1 + λ2y)

y−2∑

s=0

(y − 2)sλs
2

(λ1 + λ2y)s
.

var(Y ) = λ1

(1 − λ2)3
,

var(X) = λ1p

(1 − λ2)3
,

var(Y |X = x) = λ1[1 − p]

(1 − λ2)3
,

ρY,X = cov(Y, X)√
var(Y )var(X)

= +√
p.
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BONFERRONI, CARLO EMILIO

(1892–1960)

Bonferroni was born in Bergamo (near Milan), Italy,
on January 28, 1892. Educated at Turin University, his
first post was assistant professor in financial mathe-
matics, mechanics, and geometry at the Turin
Polytechnic. In 1923, he was appointed professor of
financial mathematics at the Economics Institute in
Bari, where he served 7 years as rector.

In 1933 he moved to Firenze (Florence), where he
remained until his death. During his time in Firenze, he
filled a variety of administrative posts. For example, in
the immediate postwar years, he acted both as head of
the statistics faculty at Bocconi University, Milan, and
as head of the Faculty of Architecture in Florence.

His work on inequalities, published in 1935 and
1936, represented only a small part of his interests.
For example, his inaugural lecture was concerned
with the foundations of probability (which he viewed
as the limit of relative frequency when the entire pop-
ulation is sampled). 

The handwritten notes he produced for his students
reveal his deep insights into mathematics—often
revealed through neat and idiosyncratic solutions. By
all accounts, he was a sensitive and kind-hearted man
and a gentleman. He was a talented pianist and also
composed music. In his younger days, he was a keen
glacier walker. His garden was described as enchanting.

Bonferroni died on August 18, 1960, in Firenze. 

—Graham Upton

Further Reading

Galambos, J., & Simonelli, I. (1996). Bonferroni-type inequal-
ities with applications. New York: Springer.

Carlo Emilio Bonferroni biography and readings: http://www
.aghmed.fsnet.co.uk/bonf/bonf.html

BONFERRONI TEST

The more tests we perform on a set of data, the more
likely we are to reject the null hypothesis when it is
true (a Type I error). This is a consequence of the
logic of hypothesis testing: We reject the null hypoth-
esis if we witness a rare event. But the larger the
number of tests, the easier it is to find rare events, and
therefore, the easier it is to make the mistake of think-
ing that there is an effect when there is none. This
problem is called the inflation of the alpha level. One
strategy for preventing it is to correct the alpha level
when performing multiple tests. Making the alpha
level more stringent (i.e., smaller) will create fewer
errors, but it may also make real effects harder to
detect.

The Different Meanings of Alpha

Maybe researchers perform more and more statistical
tests on one set of data because computers make sta-
tistical analyses easy to run. For example, brain imag-
ing researchers will routinely run millions of tests to
analyze an experiment. Running so many tests
increases the risk of false alarms. To illustrate, imag-
ine the following “pseudoexperiment”:

I toss 20 coins, and I try to force the coins to fall heads
up. I know that, from the binomial test, the null hypoth-
esis is rejected at the α = .05 level if the number of heads
is greater than 14. I repeat this experiment 10 times.

Suppose that one trial gives the “significant” result
of 16 heads versus 4 tails. Did I influence the coins on
that occasion? Of course not, because the larger the
number of experiments, the greater the probability of
encountering a low-probability event (like 16 versus
4). In fact, waiting long enough is a sure way of
detecting rare events!
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PPrroobbaabbiilliittyy  iinn  tthhee  FFaammiillyy

A family of tests is the technical term for a series of
tests performed on a set of data. In this section, we
show how to compute the probability of rejecting the
null hypothesis at least once in a family of tests when
the null hypothesis is true.

For convenience, suppose that we set the signifi-
cance level at α = .05. For each test (i.e., one trial in
the example of the coins), the probability of making a
Type I error is equal to α = .05. The events “making a
Type I error” and “not making a Type I error” are com-
plementary events (they cannot occur simultane-
ously). Therefore the probability of not making a Type
I error on one trial is equal to

1 – α = 1–.05 = .95.

Recall that when two events are independent, the
probability of observing these two events together is
the product of their probabilities. Thus, if the tests are
independent, the probability of not making a Type I
error on the first and the second tests is

.95 × .95 = (1 – .05)2 = (1 – α)2.

With three tests, we find that the probability of not
making a Type I error on all tests is 

.95 × .95 × .95 = (1 – .05)3 = (1 – α)3.

For a family of C tests, the probability of not mak-
ing a Type I error for the whole family is 

(1 – α)C.

For our example, the probability of not making a
Type I error on the family is

(1 – α)C = (1 – .05)10 = .599.

Now, what we are looking for is the probability of
making one or more Type I errors on the family of tests.
This event is the complement of the event of not making
a Type I error on the family, and therefore it is equal to

1 – (1 – α)C.

For our example, we find

1 – (1 – .05)10 = .401.

So, with an α level of .05 for each of the  tests, the
probability of wrongly rejecting the null hypothesis 
is .401.

This example makes clear the need to distinguish
between two meanings of α when performing multi-
ple tests:

• The probability of making a Type I error when deal-
ing only with a specific test. This probability is
denoted α[PT] (pronounced “alpha per test”). It is
also called the testwise alpha.

• The probability of making at least one Type I error
for the whole family of tests. This probability is
denoted α[PF] (pronounced “alpha per family of
tests”). It is also called the familywise or the experi-
mentwise alpha.

AA  MMoonnttee  CCaarrlloo  IIlllluussttrraattiioonn

A Monte Carlo simulation can illustrate the differ-
ence between α[PT] and α[PF]. The Monte Carlo
technique consists of running a simulated experiment
many times using random data. This gives the pattern
of results that happens on the basis of chance.

Here six groups with 100 observations per group
were created with data randomly sampled from the
same normal population. By construction, H0 is true
(i.e., all population means are equal). Call that proce-
dure an experiment. We performed five independent
tests from these six groups. For each test, we com-
puted an F test. If its probability was smaller than α =
.05, the test was declared significant (i.e., α[PT] is
used). We performed this experiment 10,000 times.
Therefore, there were 10,000 experiments, 10,000
families, and 5 × 10,000 = 50,000 tests. The results of
this simulation are given in Table 1.

Table 1 shows that H0 is rejected for 2,403 tests of
more than 50,000 tests performed. From these data, an
estimation of α[PT] is computed as 
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(1)

This value falls close to the theoretical value of α = .05.
For 7,868 families, no test reaches significance.

Equivalently, for 2,132 families (10,000 – 7,868), at
least one Type I error is made. From these data, α[PF]
can be estimated as 

(2)

This value falls close to the theoretical value of

α[PF ] = 1 − (1 − α[PT])C = 1 − (1 − .05)5 = .226

HHooww  ttoo  CCoorrrreecctt  ffoorr  MMuullttiippllee  TTeessttss::  
ŠŠiiddààkk,,  BBoonnffeerrrroonnii,,  BBoooollee,,  DDuunnnn

Recall that the probability of making at least one
Type I error for a family of C tests is

α[PF] = 1 − (1 − α[PT])C

This equation can be rewritten as

α[PF] = 1 − (1 − α[PT])1/C

This formula—derived assuming independence of the
tests—is sometimes called the Šidàk equation. It
shows that in order to reach a given α[PF] level, we
need to adapt the α[PT] values used for each test.

Because the Šidàk equation involves a fractional
power, it is difficult to compute by hand, and therefore
several authors derived a simpler approximation, which
is known as the Bonferroni (the most popular name), or
Boole, or even Dunn approximation. Technically, it is
the first (linear) term of a Taylor expansion of the Šidàk
equation. This approximation gives

Šidàk and Bonferroni are linked to each other by
the inequality

They are, in general, very close to each other, but
the Bonferroni approximation is pessimistic (it always
does worse than the Šidàk equation). Probably
because it is easier to compute, the Bonferroni
approximation is better known (and cited more often)
than the exact Šidàk equation.

The Šidàk-Bonferroni equations can be used to
find the value of α[PT] when α[PF] is fixed. For
example, suppose that you want to perform four inde-
pendent tests, and because you want to limit the risk
of making at least one Type I error to an overall value
of α[PF] = .05, you will consider a test significant if
its associated probability is smaller than

α[PF] = 1 − (1 − α[PT])1/C = 1 − (1 − .05)1/4 = .0127.

With the Bonferroni approximation, a test reaches
significance if its associated probability is smaller than

which is very close to the exact value of .0127.

α[PT ] = α[PF]

C
= .05

4
= .0125,

α[PT ] = 1 − (1 − α[PF])1/C ≥ α[PF]

C
.

α[PT ] ≈ α[PF]

C
.

α[PF] =
number of families with

at least 1 Type I error

total number of families

= 2, 132

10, 000
= .2132.

number of tests = 2,403
50,000  

= .0479.

α[PT] =
number of significant tests

total 

Table 1 Results of a Monte Carlo Simulation:
Numbers of Type I Errors When 
Performing C = 5 Tests for 10,000 Families
When H0 Is True*

Number of X: Number of
Families With X Type I Errors Number of 
Type I Errors per Family Type I Errors

7,868 0 0 
1,907 1 1,907 
192 2 384 
20 3 60 
13 4 52 
0 5 0 

10,000 2,403 

Note: *For example, 192 families out of 10,000 have two Type
I errors; this gives 2 × 192 = 384 Type I errors.
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The Šidàk equation is derived assuming indepen-
dence of the tests. When they are not independent, it
gives a lower bound, and then 

α[PF ] ≤ 1 − (1 − α[PT ])C.

As previously, we can use a Bonferroni approxima-
tion because 

α[PF ] < Cα[PT].

Šidàk and Bonferroni are related by the inequality

α[PF ] ≤ 1 − (1 − α[PT])C < Cα[PT].

The Šidàk and Bonferroni inequalities can also be
used to find a correction on α[PT] in order to keep
α[PF] fixed. The Šidàk inequality gives

α[PT] ≈ 1 − (1 − α[PF])1/C

This is a conservative approximation because the
following inequality holds:

α[PT] ≥ 1 − (1 − α[PF])1/C

The Bonferroni approximation gives

SSpplliittttiinngg  UUpp  α[PF] WWiitthh  UUnneeqquuaall  SSlliicceess

With the Bonferroni approximation, we can make
an unequal allocation of α[PF]. This works because
with the Bonferroni approximation, α[PF] is the sum
of the individual α[PT]:

If some tests are judged more important a priori than
some others, it is possible to allocate α[PF] unequally.
For example, suppose we have three tests that we want
to test with an overall α[PF] = .05, and we think that
the first test is the most important of the set. Then we
can decide to test it with α[PT] = .04 and share the
remaining value, .01 = .05 – .04 , between the last two
tests, which will be evaluated each with a value of
α[PT] = .005. The overall Type I error for the family is
equal to α[PF] = .04 + .005 + .005 = .05, which was
indeed the value we set beforehand. It should be
emphasized, however, that the (subjective) importance
of the tests and the unequal allocation of the individual
α[PT] should be decided a priori for this approach to be
statistically valid. An unequal allocation of the α[PT]
can also be achieved using the Šidàk inequality, but it is
more computationally involved.

Alternatives to Bonferroni

The Šidàk-Bonferroni approach becomes very conser-
vative when the number of comparisons becomes
large and when the tests are not independent (e.g.,
as in brain imaging). Recently, some alternative
approaches have been proposed to make the correc-
tion less stringent. A more recent approach redefines
the problem by replacing the notion of α[PF] with the
false discovery rate, which is defined as the ratio of the
number of Type I errors to the number of significant
tests.

—Hervé Abdi
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α[PF] ≈ Cα[PT ] = α[PT ] + α[PT ] + . . . + α[PT ]
︸ ︷︷ ︸

Ctimes
.

α[PT ] ≈ α[PF]

C
.
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BOWKER PROCEDURE

It is often of interest to examine changes in the cate-
gorical responses taken from participants before and
then after some treatment condition is imposed (i.e.,
to evaluate repeated measurements of the same partic-
ipants, using them as their own controls). In 1947, the
psychologist Quinn McNemar developed a simple
procedure for comparing differences between the pro-
portions in the before and after responses for two
categories. In 1948, the statistician Albert Bowker
expanded on McNemar’s work and developed a test
for symmetry that evaluates the changes in before and
after responses in contingency tables when there are
multiple categories.

Bowker’s procedure has been used broadly both in
the social and behavioral sciences and in medical
research, and some attention has been given to applica-
tions in advertising, public relations, and marketing
research, wherein it may be desirable to evaluate the sig-
nificance of changes in attitudes, opinions, and beliefs.

Development

The responses from a sample of n′ individuals over
two periods of time may be tallied into an r × c table
(where r, the number of rows, equals c, the number of
columns) of cross-classifications, as shown in Table 1. 

With respect to the population from which the
aforementioned sample was taken, let pij be the prob-
ability of responses to the ith category before the
treatment condition was imposed and the jth category
after. The marginal probabilities before and after treat-
ment sum to unity. That is, p1. + p2. + . . . + pr. = 1 and
p.1 + p.2 + . . . + p.c = 1.

Testing for Significance of 
Changes in Related Proportions

In order to investigate changes in repeated measure-
ments, the null hypothesis is that of symmetry:

H0: pij = pji for all i > j.

The alternative is that at least one pair of symmetric
probabilities is unequal:

H1: pij ≠ pji for any i > j.

That is, the null hypothesis tested is conditioned on
those

individuals whose responses change, where the prob-
ability (pij) of a switch from response i to response j is
equal to the probability (pji) of a switch from response
j to response i, and this probability is 0.5.

The Bowker test statistic B, written as 

has a chi-square distribution with u degrees of free-
dom where u = r(r – 1)/2 = c(c – 1)/2 since r = c. The

B =
r∑

i=j+1

c∑

j=1

(xij − xji)
2

xij + xji
,

n =
∑

∀i 
=j

xij
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1 2 … c = r Totals

1 x11 x12 … x1c x1 .

2 x21 x22 … x2c x2 .

… … … … … …

r = c xr1 xr2 … xr c xr .

Totals x.1 x.2 … x.c n'

Notes: I = Time period I (before treatment) in a repeated mea-
surements experiment; II = Time period II (after treatment) in
a repeated measurements experiment; r = number of rows
(number of categories); c = number of columns (number of
categories); n' = sample size.

II

I

Table 1 r × c Table of Cross-Classifications for a
Sample of n' Subjects



null hypothesis can be rejected at the α level of
significance if

A Posteriori Comparisons

If the null hypothesis is rejected, the researcher Alan
Stuart suggested a multiple comparison procedure that
permits the development of a post hoc evaluation of
changes in the correlated proportions (i.e., marginal
probabilities) for each response category versus the c – 1
other categories combined. Thus, regardless of the size
of the initial c × c table of cross-classifications, this
process allows for the formation of a set of c 2 × 2 tables,
one for each of the c categories versus all the other c – 1
categories combined. These 2 × 2 tables take the form

for all i = 1, . . . , c.
The critical ranges for each of these c a posteriori

comparisons arise from the standard error of the dif-
ferences in two related proportions as used in
McNemar-type confidence intervals.

With an experimentwise error rate α, each of the
possible c pairwise comparisons is made, and the
decision rule is to declare column classification i dif-
ferent from row classification i if

where and and

where i′ is the complement of i, the combined
responses from all c – 1 other classifications. That is,

the classification in column i and classification in row
i are declared significantly different if |p̂. i – p̂i.|, the
absolute difference in the sample proportions of “suc-
cess” before and after a treatment intervention,
exceeds a critical range given by the product 

of and 

Applying the Bowker Procedure

Consider the following hypothetical example:
Suppose a consumer panel consists of n′ = 150 indi-
viduals who have stated their preference for Toyota
Camry, Honda Accord, and Nissan Maxima vehicles.
The participants were each asked which of these vehi-
cles they were most likely to choose for their next car
purchase. Of the 150 participants, 45 stated they were
most likely to purchase a Toyota Camry, 66 were most
likely to purchase a Honda Accord, and 39 were most
likely to purchase a Nissan Maxima.

Suppose the panelists are then presented with a
consumer-based rating of customer satisfaction, prod-
uct quality, and buyer behavior for these vehicles,
such as would be found in a J. D. Power automobile
report. The ratings provide detailed information about
these three vehicles and rank the vehicles overall from
best to worst as follows: Toyota Camry, Nissan
Maxima, and Honda Accord.

Following this exposure to the research literature,
the individuals are asked once again to answer the
above question. Of the 45 panelists who initially
stated they were most likely to purchase a Toyota
Camry, 40 remained consistent in their response, 3
stated they were now more likely to purchase a Honda
Accord, and 2 were now more likely to purchase a
Nissan Maxima. Of the 66 panelists who initially
stated they were most likely to purchase a Honda
Accord, 41 remained consistent in their response, 14
stated they were now more likely to purchase a Toyota
Camry, and 11 were now more likely to purchase a

√
p̂.i p̂.i′

n′ + p̂i.p̂i′.
n′ − 2(p̂ii − p̂.i p̂i.)

n′ .

√
χ 2

α,(c−1)

p̂i. = xi.

n′p̂. i = x.i

n′

|p̂.i − p̂i.| >

√
χ 2

α,(c−1)

•
√

p̂.i p̂.i′

n′ + p̂i.p̂i′.
n′ − 2(p̂ii − p̂.i p̂i.)

n′

B > χ 2
v,1−α.
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After

Before i Not i Totals

i xii xii′ xi.

Not i xi′ i xi′ i′ xi′ .

Totals x.i x.i′ n′



Nissan Maxima. Of the 39 panelists who initially
stated they were most likely to purchase a Nissan
Maxima, 29 remained consistent in their response,
6 stated they were now more likely to purchase a
Toyota Camry, and 4 were now more likely to pur-
chase a Honda Accord.

The results are displayed in Table 2.
Bowker’s test seeks to measure the ability of the

automobile ratings to affect consumer preferences.
The null hypothesis for the test of symmetry is

H0: pij = pji for all i > j.

That is, a panelist’s car preference is not affected by
the information in the automobile ratings. For
example, having read the report, a panelist who ini-
tially was leaning toward purchasing a Toyota Camry
is now just as likely to feel more inclined to purchase
a Nissan Maxima as a panelist would be to switch from
most likely to purchase a Nissan Maxima to more
likely to purchase a Toyota Camry. This null hypothe-
sis of symmetry may be tested against the alternative:

H1: pij ≠ pji for any i > j.

That is, exposure to the automobile ratings does influ-
ence one’s preference for a particular vehicle.

For these data, the Bowker test for symmetry
enables an exact test of the null hypothesis with the
chi-square probability distribution, where r = c = 3
and υ = 3(3 – 1)/2 = 3 degrees of freedom with a
“stated” level of significance α. The Bowker test sta-
tistic B is calculated as follows, based on the response

tallies in symmetric positions off the main diagonal of
the 3 × 3 contingency table (i.e., cells x12 versus x21, x13

versus x31, and x23 versus x32 from Table 2:

Since B > χ2
05;3 = 7.815, the null hypothesis is

rejected at the α = 0.05 level of significance. The p
value is 0.0062. Thus, exposure to the automobile rat-
ings does influence one’s preference for a particular
vehicle. At least one of the three pairs of symmetric
probabilities off the main diagonal of the 3 × 3 contin-
gency table is unequal, or preference for at least one
of the three automobiles has changed significantly.

Given that the null hypothesis is rejected, to deter-
mine which of the three automobiles displayed signifi-
cant change in preferences as a result of the automobile
ratings, post hoc evaluations for the c = 3 pairwise dif-
ferences in related proportions (i.e., marginal probabil-
ities) are made. The data, collapsed into three 2 × 2
contingency tables, are presented in Table 3.

The critical ranges for these pairwise comparisons of
preferences for the particular automobiles before and then
after the automobile ratings were examined are obtained
in Table 4, and the pairwise comparisons of differences in
proportions of preference are evaluated in Table 5.

From Table 5 it is clear that preference for the
Toyota Camry significantly increased as a result of the
automobile ratings while preference for the Honda
Accord significantly decreased. However, the
observed decline in preference for the Nissan Maxima
is not statistically significant.

Discussion

For the special case where r = c = 2, the Bowker sta-
tistic is identical to the McNemar test for the signifi-
cance of changes. Unlike McNemar’s procedure for a
2 × 2 contingency table, Bowker’s test of the null
hypothesis of symmetry in a c × c contingency table is
not equivalent to a test of the null hypothesis of equal-
ity of correlated proportions (i.e., marginal probability

B = (14 − 3)2

17
+ (6 − 2)2

8
+ (4 − 11)2

15

= 12.384.
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Toyota Honda Nissan Totals

Toyota X11 = 40 x12 = 3 x13 = 2 x1. = 45

Honda X21 = 14 x22 = 41 x23 = 11 x2. = 66

Nissan X31 = 6 x32 = 4 x33 = 29 x3. = 39

Totals X.1 = 60 x.2 = 48 x.3 = 42 n' = 150

After
Before

Table 2 Hypothetical Results of a Marketing
Campaign



Table 4 Computation of Critical Ranges for Post Hoc Pairwise Comparisons

Automobiles

Toyota vs. not Toyota

Honda vs. not Honda

Nissan vs. not Nissan √
5.991 •
√

(0.28)(0.72)

150
+ (0.26)(0.74)

150
− 2[(0.1933) − (0.28)(0.26)]

150
= 0.0782

√
5.991 •
√

(0.32)(0.68)

150
+ (0.44)(0.56)

150
− 2[(0.2733) − (0.32)(0.44)]

150
= 0.0892

√
5.991 •
√

(0.40)(0.60)

150
+ (0.30)(0.70)

150
− 2[(0.2667) − (0.40)(0.30)]

150
= 0.0791

√
χ 2

α,(c−1)
•

√
p̂.i p̂.i′

n′ + p̂i.p̂i′.
n′ − 2(p̂ii − p̂.i p̂i.)

n′
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distributions). In 1955, Stuart proposed a test for the
latter and, on rejection of the null hypothesis, pro-
posed a set of McNemar-type simultaneous confidence
intervals for a posteriori evaluation of differences in
the c pairs of correlated proportions.

Taking advantage of the fact that testing a null
hypothesis of symmetry is equivalent to testing a null
hypothesis of correlated proportions in the 2 × 2 con-
tingency table, the a posteriori McNemar-type simul-
taneous confidence intervals proposed by Stuart can
be adapted to the Bowker procedure by collapsing the
c × c contingency table on the main diagonal into a set
of c 2 × 2 contingency tables so that one may test
globally, for each category, for the significance of
change in the proportion of respondents switching
from one category to all others combined versus
switching to a category from any other. In the hypo-
thetical example presented here, the intervention
through exposure to the automobile ratings caused a
significant shift in preference to the Toyota Camry
and a significant shift away from the Honda Accord.

As a result of the treatment intervention, if the
gains are transitive, a rejection of the null hypothesis

Toyota Not Toyota Totals

Toyota X11 = 40 x12 = 5 x1. = 45

Not Toyota X21 = 20 x22 = 85 x2. = 105

Totals x.1 = 60 x.2 = 90 n' = 150

Honda Not Honda Totals

Honda X11 = 41 x12 = 25 x1. = 66

Not Honda X21 = 7 x22 = 77 x2. = 84

Totals x.1 = 48 x.2 = 102 n' = 150

Nissan Not Nissan Totals

Nissan X11 = 29 x12 = 10 x1. = 39

Not Nissan X21 = 13 x22 = 98 x2. = 111

Totals x.1 = 42 x.2 = 108 n' = 150

After
Before

After
Before

After
Before

Table 3 A Posteriori Analysis: Collapsing for Pairwise
Comparisons
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by the Bowker test should lead to global findings, as
shown here.

In recent years, the biostatisticians Warren L. May
and William D. Johnson have thoroughly researched
the issue of symmetry among several proportions and
proposed an alternative approach to the Bowker pro-
cedure, along with simultaneous confidence intervals
for a posteriori analysis.

Conclusions

It is essential to a good data analysis that the appropri-
ate statistical procedure be applied to a specific situa-
tion. The Bowker test may be used when studying
symmetry among several proportions based on related
samples. A researcher unaware of the procedure may
employ an inappropriate chi-square test for the c × c
contingency table and draw incorrect conclusions.

The Bowker test is quick and easy to perform. The
only assumption is that the before and after responses
of each participant are categorized into a c × c table.

The pedagogical advantage of the a posteriori mul-
tiple comparisons based on McNemar-type confi-
dence intervals is that they demonstrate that all n′
participants are being evaluated. The initial B test sta-
tistic itself is conditioned on a reduced set of partici-
pants, the “brand switching” panelists off the main
diagonal of the cross-classification table.

—Nicole B. Koppel and Mark L. Berenson
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BOX PLOT (BOX AND WHISKER PLOT)

The box and whisker plot was developed by John
Tukey to summarize visually the important character-
istics of a distribution of scores. The five descriptive
statistics included on a box plot are the minimum and
the maximum scores (i.e., the extremes of the distrib-
ution), the median (i.e., the middle score), and the 1st
(Q1) and 3rd (Q3) quartiles. Together these statistics
are useful in visually summarizing, understanding,
and comparing many types of distributions.

In a box plot, the crossbar indicates the median,
and the length (i.e., height) of the box indicates the
interquartile range (IQR) (i.e., the central 50% of the
data values). The length of the whiskers indicates 
the range of scores that are included within 1.5 
IQRs below and above the 1st and 3rd quartiles,
respectively.

Box plots are particularly useful for investigating
the symmetry of a distribution and for detecting
inconsistent values and outliers. Outliers, which are
scores that are more than 1.5 IQRs below Q1 or above
Q3, are plotted individually on a box plot. In a normal
distribution, about 1% of the scores will fall outside
the box and whiskers. The symmetry of a distribution

Table 5 Post Hoc Pairwise Comparisons of Changes in Perceptions
for the Automobiles

Automobiles |p̂ .i – p̂ i.| Critical range Decision rule

Toyota vs. 
not Toyota |p̂ .1 – p̂1.| = 0.1000 0.0791 Significant

Honda vs. 
not Honda |p̂ .2 – p̂2.| = 0.1200 0.0892 Significant

Nissan vs. 
not Nissan |p̂ .3 – p̂3.| = 0.0200 0.0782 Not Significant



is indicated by where the median bifur-
cates the box (in a symmetrical distribu-
tion, the median is close to the center of
the box) and by the length of the whiskers
(in a distribution with symmetrical tails,
the whiskers are of similar length).

Figure 1 summarizes the descriptive
statistics and displays the box plots for 100
randomly selected IQ scores and for the
subset of all scores that are greater than 99.
Figure 1 shows that variable “Random” is
roughly symmetrical, with three low IQ-
score outliers. Variable “>99” is slightly
positively skewed  (the median is closer to
Q1 than to Q3, the upper whisker is longer
than the lower whisker, and there are no
outliers).

The box plot is a classic exploratory data analysis
tool that is easy to construct and interpret. It is resis-
tant to small changes in the data (up to 25% of the
scores can change with little effect on the plot)
because its major components are the median and the
quartiles. When one is interpreting a box plot, the fol-
lowing limitations should be noted:

1. Quartiles (also called “hinges”) are defined differ-
ently in various computer programs, and these dif-
ferences can produce very different-looking plots
when sample sizes are small.

2. Although the 1.5 IQR value is used in most com-
puter programs to draw the whiskers and define
outliers, this value is not universal.

3. Using the box plot to detect outliers is a conserva-
tive procedure. It identifies an excessive number of
outlying values.

4. Box plots may not have asymmetrical whiskers
when there are gaps in the data.

5. Because the length of the box indicates only the
spread of the distribution, multimodality and other
fine features in the center of the distribution are not
conveyed readily by the plot.

In order to address some of these limitations, other
forms of the box plot have been developed. For
example, the variable-width box plot is used to indi-
cate relative sample size, the notched box plot is used
to indicate the confidence interval of the median to

enable comparisons between centers of distributions,
and the violin plot combines the box plot with density
traces to show multimodality and other fine-grain
features of the distribution.

—Ward Rodriguez

See also Exploratory Data Analysis; Median; Range
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Applying Ideas on Statistics and Measurement

The following abstract is adapted from Cefai, C.
(2004). Pupil resilience in the classroom: A
teacher’s framework. Emotional & Behavioural
Difficulties, 9(3), 149–170. 
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This article describes the development of a
teacher’s framework for identifying a number of
primary school classes in Malta characterized by
high levels of pupil resilience, namely socioemo-
tional competence and educational engagement.
The article defines resilience as a proactive, con-
textual, and relational phenomenon concerning
all pupils, irrespective of individual characteristics
or background. The author, from the University of
Malta, outlines and discusses the construction,
administration, and scoring of a seven-item
framework, followed by an analysis of responses
from 22 teachers who rated 465 pupils in their
classes, on the basis of which three classes in
each school were selected for further study. Box
plots are used to present the frequency of behav-
ior and the level of variability for both total
resilience and individual component scores. The
conclusion suggests how schools and teachers
may use the framework as a descriptive tool in
their efforts to promote socioemotional and cog-
nitive competence.

BRACKEN BASIC

CONCEPT SCALE—REVISED

The Bracken Basic Concept Scale—Revised (BBCS-R)
is an instrument designed to assess the basic con-
cept development of children in the age range of 2
years 6 months through 7 years 11 months. The
BBCS-R measures children’s comprehension of 308
foundational and functionally relevant educational
concepts in 11 subtests or concept categories. Of the
11 subtests on the BBCS-R, the first 6 are combined
into one score and compose the BBCS-R School
Readiness Composite (SRC). The SRC can be used to
assess children’s knowledge of those readiness con-
cepts that parents and preschool and kindergarten
teachers traditionally teach children in preparation
for their formal educations (e.g., colors, shapes,
sizes). The remaining subtests (7–11) each produce
separate scaled scores and assess important concepts
that parents and teachers often fail to teach in 
any systematic manner (e.g., textures/materials,
time/sequence). These latter subtests and the SCR

combine and form the BBCS-R Total Test Score.
Table 1 presents the BBCS subtests, the test compos-
ites, and average cross-sample coefficient alpha esti-
mates of internal consistency.

Historically, concepts have been identified as fun-
damental agents or building blocks of intelligence,
and acquisition of basic concepts has been shown to
be strongly related to children’s overall intellectual
development. Importantly, the BBCS-R is a develop-
mentally sensitive measure of cognitive and linguistic
concept attainment across cultures. Thus, the concepts
assessed on the BBCS-R are more universal and fun-
damental in importance than are the graded vocabu-
lary words found typically on measures of receptive
vocabulary that are not conceptually oriented.
Ironically, researchers have demonstrated that the
administration directions of many preschool and pri-
mary tests of intelligence also are replete with basic
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Table 1 BBCS-R Subtests, Composites, and Average
Coefficient Alpha Across Age Levels

Subtests/Composites Alpha

1. Colors *

2. Letters *

3. Numbers/counting *

4. Sizes *

5. Comparisons *

6. Shapes *

School Readiness Composite .91

7. Direction/position .97

8. Self-/social awareness .93

9. Texture/material .93

10. Quantity .95

11. Time/sequence .93

Total test score .98

Note: *The first six subtests do not produce individual scores
but contribute to the School Readiness Composite; hence, only
School Readiness Composite reliability was calculated and
presented.
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concepts, which may render intelligence test direc-
tions the first conceptual challenge children face on
tests of intelligence. 

Although intelligence is not a construct that is eas-
ily improved or sustained through remedial efforts,
basic concepts can be directly targeted for instruction,
and students can achieve significant and sustainable
growth in concept acquisition when direct instruction
is linked to BBCS-R assessment results. The Bracken
Concept Development Program was developed to cre-
ate a direct assessment–instruction linkage with the
BBCS-R.

—Bruce A. Bracken
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BRUNO, JAMES EDWARD

(1940– )

James Edward Bruno was born to Mr. and Mrs. John
Bruno in Brooklyn, New York, on December 12,
1940, as part of a set of twins. 

Jim grew up in Brooklyn and Long Island before
his parents relocated to Pomona, California. Young
Jim was always an excellent athlete and scholar. After
high school, he attended the University of California,
Los Angeles (UCLA). Jim’s devotion to UCLA was
so strong that he would complete his B.S., M.S., and
Ph.D. degrees there. An outstanding educational
researcher, he was hired by UCLA as a faculty
member in educational policy.

Bruno’s early publications applied a balanced blend
of engineering, statistics, and economics to education
problems. He successfully demonstrated the use of
Monte Carlo methods and linear programming in help-
ing school districts develop their substitute teachers
pool and states develop school finance programs. His
mathematical skills and astute observations of human
behavior led him to develop a mathematical model of
voter preferences that helped John Tunney get elected
to the U.S. Senate. While at the RAND Corporation,
Bruno met Dr. Emir Shuford and became interested in
Shuford’s research on admissible probability measure-
ment and two-dimensional, confidence weighted test-
ing. With his skills as a scientific programmer, Bruno
built the first working programs for scoring and report-
ing tests using a modification of this system and based
on an optical scanning format. Bruno would later call
this procedure for assessment information reference
testing. Organizations such as the Federal Aviation
Administration and the North Atlantic Treaty
Organization used this method to examine the infor-
mation quality of workers who held important and crit-
ical positions. Bruno received a patent for this system
of information quality assessment. Knowledge Factor,
of Denver, Colorado, is applying the technology to
areas of corporate training.

Later Bruno’s research turned to the measurement,
perception, and differential use of time and its impact
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on human behavior and demonstrated that at-risk
children had an entirely different concept of time with
regard to past, present, and future than those children
not at risk and that these differences result in antiso-
cial behaviors. Bruno’s latest research interest
involves the systematic examination of policy issues
as they relate to negative geographical space, social
well-being, and access to equal education opportunity.
This research involves the ways geographical space
shapes adolescents’ behavior and impacts their atti-
tudes toward schooling and society.

Bruno has nearly 200 publications. He is married
to Ann and has two daughters: Jenny and Julia.

—Howard B. Lee
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BUROS INSTITUTE

OF MENTAL MEASUREMENTS

During the first quarter of the 20th century, testing
became a big business in much of the developed
world. Large numbers of authors and publishers
started creating tests in fields such as education, psy-
chology, and business to cater to an increasingly
strong demand. Within about 25 years, more than
4,000 English-language tests were written and pub-
lished. Many of these tests promised more than could
be practically delivered and were formulated with
only a vague understanding of the basic principles of
measurement and statistics.

As a young professor of measurement and statistics
at Rutgers University, Oscar K. Buros (1905–1978)
became acutely aware of the insufficient technical

merits of many commercial tests. In the early 1930s,
alarmed by the state of testing and seeking to improve
the overall quality of tests, Buros began editing a
series of books that featured descriptive test bibliogra-
phies and critical reviews written by recognized
experts in the field. The results of these endeavors
became the Tests in Print (TIP) and the Mental
Measurements Yearbook (MMY) publication series.
Buros used the term mental measurements to describe
tests published in the broad areas of “aptitude, educa-
tional, intelligence, personality and psychological
tests, questionnaires, and rating scales” (Buros, 1938,
p. xiii). The Buros Institute of Mental Measurements
was subsequently created as the organizational com-
ponent to continue these publications.

Despite the pressing need for independent test
evaluation, Buros initially found little financial sup-
port. By locating small grants, borrowing, and using
his own funds, he was able to continue publication
through the difficult years of the 1930s and 1940s.
Financial pressures eased during the 1950s, when the
TIP and MMY series became a recognized part of
many university and public library collections.

After the death of Oscar Buros, his widow and
long-time collaborator, Luella Gubrud Buros, moved
the Institute to the University of Nebraska-Lincoln.
Publication quickly resumed with The Ninth Mental
Measurements Yearbook and Tests in Print III. At the
present time, the Buros Institute is completing The
Seventeenth Mental Measurements Yearbook (pro-
duced every 2 years) and Tests in Print VIII (produced
every 3 years). In 2001, the Buros Institute introduced
Test Reviews Online, a service providing ready access
to a wide variety of information about and reviews of
commercial testing instruments.

In order to fulfill the long-standing dream of Oscar
Buros for an independent testing organization working
to improve contemporary testing practices, the Buros
Center for Testing was created in 1992. This new testing
center brought together the products (MMY and TIP
series) of the Buros Institute of Mental Measurements
with the services (test oversight, evaluation, and inde-
pendent psychometric research) of the newly created
Buros Institute for Assessment Consultation and
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Outreach. Together, these institutes continue the work of
improving both the science and the practice of testing
that were the primary focus of Oscar Buros’s life.

—Robert A. Spies
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Applying Ideas on Statistics and Measurement

The following abstract is adapted from de la Rosa,
I. A., Perry, J., Dalton, L. E., & Johnson, V. (2005).
Strengthening families with first-born children:
Exploratory story of the outcomes of a home visit-
ing intervention. Research on Social Work
Practice, 15(5), 323–338. 

The Buros Institute is very well known for its
collection of test reviews. Its online resources are
the perfect place to begin looking for the appropri-
ate measure. This study used the Buros Institute in
its discussion of the Brigance Diagnostic Inventory
of Early Development as a tool to evaluate the
effectiveness of intervention, along with other mea-
sures. Using a theory-of-change framework, Iván A.
de la Rosa and his colleagues examined outcome
measures of a home visitation program that pro-
vided services to first-born children and their
parents living in southwestern New Mexico. Home
visitation workers conducted pretest and posttest
assessments for prenatal and postpartum periods
for 109 families receiving services in the First-Born
Program. The results showed that clients participat-
ing in the First-Born Program displayed signifi-
cantly higher posttest scores on measures of 
family resiliency. Specifically, clients demonstrated
improved scores in operationalized measures of
resilience: social support, caregiver characteristics,
family interaction measures, and a reduction in
personal problems affecting parenting.



CALIFORNIA

PSYCHOLOGICAL INVENTORY

The California Psychological Inventory (CPI;
publisher: Consulting Psychologists Press) is a mea-
sure of normal personality and behavior. Originally
developed in 1956 by Harrison Gough, the CPI pro-
vides a useful and accurate picture of people taking
the instrument and a means for estimating their behav-
ior across situations. The measure often is used in
conjunction with assessing nonclinical populations
and is appropriate for individuals age 13 years and
older. The inventory takes approximately 45–60
minutes to complete.

Individual profiles are generated from the instru-
ment based on its 20 folk concept scales. These scales
are organized into four sectors: interpersonal style,
intrapersonal style, achievement style and intellectual
efficiency, and stylistic modes of thinking and behav-
ior. The interpersonal style sector represents how indi-
viduals may be typed with regard to social interaction
and includes the scales of dominance, capacity for sta-
tus, sociability, social presence, self-acceptance, inde-
pendence, and empathy. The intrapersonal style sector
relates to an individual’s values and self-regulation

and includes the responsibility, socialization, self-
control, good impression, communality, well-being,
and tolerance scales. The achievement style sector
includes the achievement via conformance, achieve-
ment via independence, and intellectual efficiency
scales. The stylistic modes sector includes psychological-
mindedness, flexibility, and femininity/masculinity.

In addition to the 20 folk scales, the CPI includes
13 research and special purpose scales. These special
purpose scales include managerial potential, work
orientation, masculinity, femininity, anxiety, social
desirability, acquiescence, creative temperament,
leadership potential, amicability, law enforcement ori-
entation, tough-mindedness, and narcissism. In addi-
tion to research, these scales are often used to explore
occupational issues and are used frequently by orga-
nizations for such purposes as identifying leadership
potential and managerial selection.

Underlying the scores on the folk concepts and
special purpose scales are three structural scales that
provide a measure of an individual’s tendency toward
or away from involvement with others, tendency to
favor or doubt societal values, and perceived level of
fulfillment or realization of abilities. The CPI also
provides individual test takers with a description 
of how they would be described according to the
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An experiment is a question which science poses to Nature, and a measurement is the recording of
Nature’s answer.

—Max Planck



California Q-sort instrument. Further, the CPI
provides a measure of the overall reliability and
validity of each individual profile.

The CPI was last updated in 1996. The current
(third) edition includes 434 items, 28 fewer than the
preceding version. Items related to physical or psy-
chological disabilities were removed for consistency
with the 1990 Americans with Disabilities Act.
Evidence of validity for the CPI is being collected
continuously, and the instrument is used widely in
counseling, organizational, and research settings.

—Todd J. Wilkinson and Jo-Ida C. Hansen

See also Minnesota Multiphasic Personality Inventory; 
NEO Personality Inventory; Sixteen Personality Factor
Questionnaire
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CAREER ASSESSMENT INVENTORY

The Career Assessment Inventory (CAI) is an interest
inventory designed to survey an individual’s interest
in a variety of areas and then provide information on
how those interests match up with the interests of
people in a variety of occupations. Intended to assist
individuals in career planning and decision making, it
was authored by Charles B. Johansson and originally
published in 1975. The CAI has undergone several
revisions and is currently available in two versions:
The Enhanced Version, for both college-bound and
non-college-bound individuals, and the Vocational
Version, for those who want to enter the workforce
with little of no postsecondary training.

Both versions of the CAI use the widely accepted
Holland model to organize information about general
interest patterns into six general theme areas (realistic,
investigative, artistic, social, conventional, and enter-
prising). Individuals are encouraged to develop a better
understanding of their interest patterns so that they can
use the information from the test when exploring occu-
pations or other areas that are not specifically covered
in the inventory. Two to eight Basic Interest Area
Scales under each of the theme areas help individuals
better understand their interest patterns; for instance,
writing, creative arts, and performing and entertaining
are under the artistic theme. While these patterns rep-
resent interests in specific areas, they are areas that
could cover a wide variety of occupations. The great-
est degree of specificity is found on the Specific
Occupational Scales (111 for the Enhanced and 91 for
the Vocational), which are each also organized into the
general theme under which it best fits. These scales
compare the responses of the individual taking the test
with those of people in various occupations and indi-
cate how similar they are.

Four scales are considered nonoccupational and
measure one’s orientation to learning by doing versus
learning through traditional classroom work, introver-
sion versus extroversion in the workplace, fine arts
versus mechanical orientation, and the degree of vari-
ability of interests. These scales can be very useful in
determining the validity of the test as well as in future
planning.

The CAI takes 35–40 minutes to complete. Its 370
items are rated on a 5-point scale from like to dislike.
It requires an eighth-grade reading level and is ideally
suited for use with high school students who are in the
process of career exploration, particularly if they are
attempting to choose between attending college and
entering the workforce directly. However, a number of
other interest inventories are much more widely used
(e.g., Strong Interest Inventory, Campbell Interest and
Skill Survey, Self-Directed Search).

—Steve Saladin

See also Career Development Inventory; Career Maturity
Inventory
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CAREER DEVELOPMENT INVENTORY

Career inventories can be separated into two cate-
gories, those that measure career choice content and
those that measure career choice process. Inventories
that deal with career choice content measure an indi-
vidual’s occupational abilities, vocational interests,
and work values and then match these characteristics
to the requirements, routines, and rewards that char-
acterize a variety of occupations. Inventories that deal
with career choice process measure an individual’s
attitudes toward, beliefs about, and competencies for
making educational and vocational decisions as well
as coping with vocational development tasks such as
securing a job and establishing oneself in an organi-
zation. Process-oriented inventories provide a picture
illustrating an individual’s readiness and resources for
career decision making. This picture portrays infor-
mation regarding attitudes toward planning and explo-
ration as well as knowledge about occupations and
competence at decision making.

One popular instrument for measuring readiness
and resources for educational and vocational decision
making during adolescence is the Career Development
Inventory (CDI). The CDI School Form is used with
Grades 8 through 12, and the CDI College Form is
used with college students.

The CDI is composed of two parts. Part I contains
80 items, takes approximately 40 minutes to complete,
and reports scores for four scales: Career Planning
(CP), Career Exploration (CE), Decision Making
(DM), and Knowledge of the World of Work (WW).
CP measures an individual’s future orientation with
regard to the world of work. Responses indicate the
amount of thought an individual has given to future

occupational choices and the extent to which an indi-
vidual has engaged in career planning activities. CE
represents the degree to which an individual has made
use of quality resources in career planning activities.

DM measures one’s ability to apply the principles
of rational decision making to educational and voca-
tional choices. Brief scenarios describe individuals 
in the process of making career decisions. Based on
the information given, the respondent must choose 
the most appropriate solution from a list of possible
answers. It is proposed that individuals who can solve
the career problems in these scenarios are likely to
make wise decisions regarding their own careers. WW
assesses one’s knowledge regarding specific occupa-
tions and ways to attain, establish, and prosper in a job
of one’s own choosing.

Part II measures Knowledge of Preferred Occupa-
tion (PO). It contains 40 items and takes approxi-
mately 30 minutes to complete. Individuals are
prompted to select their preferred occupational group
from a list of 20 groups. The questions that follow
address the type of work one should expect, educa-
tional requirements, values, and interests that are char-
acteristic of individuals employed in that line of work.

The CDI reports three additional scores: Career
Development Attitudes, which combines CP and CE;
Career Decision Knowledge, which combines DM
and WW; and Career Orientation Total, which com-
bines CP, CE, DM, and WW. An online version of the
CDI is available free to qualified professionals at
http://www.vocopher.com.

—Kevin W. Glavin and Mark L. Savickas

See also Career Assessment Inventory; Career Maturity
Inventory

Further Reading

Savickas, M. L. (1984). Career maturity: The construct and 
its measurement. Vocational Guidance Quarterly, 32,
222–231.

Savickas, M. L. (2000). Assessing career decision making. In
E. Watkins & V. Campbell (Eds.), Testing and assessment
in counseling practice (2nd ed.; pp. 429–477). Hillsdale,
NJ: Erlbaum. 
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CAREER MATURITY INVENTORY

Comprehensive models of vocational development
during adolescence address the content of occupa-
tional choices and the process of career decision mak-
ing. Choice content matches an individual’s abilities
and interests to occupational requirements and
rewards. A good match leads to success and satisfac-
tion, a poor match to failure and frustration. Career
choice process deals with how individuals make deci-
sions, not which occupation they choose. Individuals
who apply a more highly developed and mature deci-
sional process usually make more realistic and suit-
able choices. Because career maturity is central to
adolescent vocational development, several invento-
ries have been designed to measure career choice
readiness. The Career Maturity Inventory, created by
John O. Crites in 1978, was the first such measure to
be published, and it subsequently became one of the
most popular readiness inventories for students in
Grades 6 through 12.

The Career Maturity Inventory measures the
process dimension of vocational development during
adolescence. The process dimension consists of two
group factors: career choice attitudes and career
choice competencies. Decision-making attitudes are
viewed as dispositional response tendencies that
mediate both choice behaviors and the use of the
competencies. The decision-making competencies are
viewed as comprehension and problem-solving abili-
ties that pertain to making occupational choices. The
attitudes are considered affective variables, and the
competencies are considered cognitive variables.

The 1978 version of the Attitude Scale of the
Career Maturity Inventory remains available in two
forms: a screening form and a counseling form. The
screening form consists of 50 items that yield a gen-
eral score to indicate overall degree of career choice
readiness. It is best used for performing needs analy-
ses, evaluating career education interventions, and
conducting research. The counseling form uses the
same 50 items and adds 25 more. It yields the same
general score as the screening form and also provides
scores for five subscales: decisiveness, involvement,
independence, orientation, and compromise. As its

name implies, it is best used during individual coun-
seling sessions aimed as fostering vocational develop-
ment and increasing career choice readiness. The
1978 version of the CMI also included five separate
25-item cognitive tests to measure the five decision-
making competencies of self-appraisal, occupational
information, goal selection, planning, and problem
solving. Because of the 2.5 hours required to complete
the five competency tests, few counselors or
researchers ever used them.

Attempting to provide a briefer test, Crites and
Mark L. Savickas constructed a 1995 version of the
CMI that measures both the attitudes and the compe-
tencies. The CMI-R includes content appropriate for
use with high school students as well as postsec-
ondary adults. The CMI-R yields separate scores for
its Attitude Scale, Competence Test, and Career
Maturity Inventory. Five items from each of the 1978
counseling form subscales constitute the CMI-R
Attitude Scale. The CMI-R Competence Test also
consists of 25 items, five for each of the five compe-
tencies. The CMI-R total score merely sums the
scores for the Attitude Scale and the Competency
Test. The CMI screening form is available to qualified
professionals free of charge at http://www.vocopher
.com. The CMI-R is available from Western Educa-
tional Assessment, in Boulder, Colorado.

—Sarah A. Lopienski 
and Mark L. Savickas

See also Career Assessment Inventory; Career Development
Inventory
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Applying Ideas on Statistics and Measurement

The following abstract is adapted from Hardin, 
E. E., & Leong, F. T. L. (2004). Decision-making
theories and career assessment: A psychometric
evaluation of the Decision Making Inventory.
Journal of Career Assessment, 12(1), 51–64. 

To address criticism that the empirical litera-
ture on assessment of career decision making
lacks a theoretical base, the present study
explored the relevance of a general theory of deci-
sion making to career decision making by assess-
ing the psychometric properties of the Decision
Making Inventory (DMI), designed to measure 
J. Johnson’s decision-making styles, and by
exploring the usefulness of the DMI as a predictor
of career maturity. The DMI, the Attitudes Scale 
of the Career Maturity Inventory (CMI), and 
the Self-Construal Scale were administered to
European American college students. The DMI
demonstrated adequate reliability, the expected
factor structure, and good convergent validity.
Relationships with certain subscales of the CMI
suggest the DMI has useful predictive validity.
Similarities and differences between genders in
the relationships between the DMI and CMI were
found.

CARROLL DEPRESSION SCALE

The Carroll Depression Scale is one of three measures
of depression developed by Bernard Carroll. The
Carroll Depression Scales include the Carroll
Depression Scale (CDS), the Carroll Depression 
Scale Revised, and the Brief Carroll Depression
Scale. The CDS is published by Multi-Health Systems
(www.mhs.com).

The CDS is a self-report inventory that takes 10–20
minutes to complete. It is used to measure depression
symptomatology and symptom severity. The CDS is
appropriate for adults age 18 years and older. There 
is no upper age limit for the CDS. The publishers
suggest it is particularly useful for older adults and
severely depressed people because of the cognitive
simplicity of the yes-no response format.

The self-report items were designed to match the
content of the Hamilton Depression Rating Scales.
The CDS includes 52 items. The Revised CDS adds 

9 items that assess subtypes of depression defined in
the fourth edition of the American Psychiatric
Association’s Diagnostic and Statistical Manual of
Mental Disorders. The Brief CDS consists of 12 of 
the 52 CDS items. Items assess central features of
depression, such as appetite, energy, crying, and
sexual interest.

Field trials for the CDS were conducted at the
University of Michigan, Ann Arbor, in the 1970s; the
CDS has also been used in trials at Duke University
Medical Center. The participant pool from these two
settings includes 959 depressed patients and 248 non-
depressed people and has been used in a variety of
reliability and validity studies. The participant pool is
100% White; other information about it is very lim-
ited. Given the test’s norm group, it may have limited
utility with non-White populations.

Validity data suggest good face, convergent, and
discriminant validity. Face validity is demonstrated by
a .80 correlation between scores from the CDS and
scores from the Hamilton Depression Rating Scales.
Convergent validity is demonstrated by moderate to
high correlations with the Clinical Global Rating of
Depression (.63), the Montgomery-Asberg Depression
Rating Scale (.71), the Beck Depression Inventory
(.86), and the Center for Epidemiological Studies of
Depression Scale (.67). Discriminant validity is shown
by the CDS’s ability to differentiate depressed from
anxious patients. The State-Trait Anxiety Inventory
and the CDS correlate at a rate of .26.

Reliability data suggest strong split-half and test-
retest reliability. Cronbach’s alpha for the CDS is .95.
Split-half reliability between odd and even items 
is .87. The Pearson correlation coefficient is .96.
However, test-retest reliability was measured only on
those patients whose Hamilton Depression Rating
Scales scores did not vary more than two points
between administrations. This restriction may have
inflated reliability estimates. The authors state they
chose to restrict the data in this way in their belief that
the CDS is a state rather than a trait measure.

—Kathryn H. Ganske

See also Beck Depression Inventory; Clinical Assessment of
Depression 
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Rating scales for mood disorders: http://www.mhsource.com/
disorders/diagdepress.html

CATEGORICAL VARIABLES

A categorical variable is one that takes on values in a
set of categories, as opposed to a continuous variable,
which takes on a range of values along a continuum.
The simplest examples of categorical variables are
binary variables with only two possible responses, for
instance “yes” and “no.” Categorical variables are
most common in the social, biological, and behavioral
sciences, although they can be found in almost any
area of application. For example, the variable of
marital status can be described as “single,” “married,”
“divorced,” or “widowed”: four categories. The vari-
able sex can be described as “male” or “female”: two
categories. Education level can be classified as “gram-
mar school only,” “some high school,” “completed
high school,” “some university,” “completed univer-
sity,” or “advanced or professional degree.”

When the categories ascribed to the variable are
labels only, with no intrinsic ordering, then the vari-
able is nominal. For example, it is generally meaning-
less to say that an individual who is divorced has
higher or lower marital status than an individual who
is widowed. Hence marital status is a nominal cate-
gorical variable. On the other hand, when the cate-
gories are naturally ordered, as with education level,
socioeconomic status, or evaluation on a scale ranging
from strongly disagree to strongly agree, then the
variable is an ordinal categorical variable. In this case,

qualitative comparisons of individuals in different
categories are meaningful. It is sensible to state that a
person who has completed university has attained a
higher level of education than a person who has com-
pleted only high school.

Categorical variables can be used as either the
explanatory or the response variable in a statistical
analysis. When the response is a categorical variable,
appropriate analyses may include generalized linear
models (for dichotomous or polytomous responses,
with suitable link functions), log linear models, chi-
square goodness-of-fit analysis, and the like, depend-
ing on the nature of the explanatory variables and the
sampling mechanism. Categorical variables also fill 
a useful role as explanatory variables in standard
regression, analysis of variance, and analysis of
covariance models, as well as in generalized linear
models. When the data are cross-classified according
to several categorical variables (that is, when they
come in the form of a table of counts), analyses for
contingency tables, including log linear models, are
appropriate. It is important to heed the distinction
between nominal and ordinal variables in data analy-
sis. When there are ordinal variables in a data set,
the ordering needs to be entered explicitly into the
model; this is usually achieved by incorporating con-
straints on parameters, which makes the analysis
more complex.

In sum, categorical variables arise in a wide
variety of scientific contexts. They require special-
ized statistical techniques, and these have been devel-
oped both theoretically and in terms of practical
implementation.

—Nicole Lazar

See also Interval Level of Measurement; Nominal Level of
Measurement; Ordinal Level of Measurement; Ratio Level
of Measurement

Further Reading

Agresti, A. (1990). Categorical data analysis. New York:
Wiley. 

Fienberg, S. E. (1994). The analysis of cross-classified cate-
gorical data (2nd ed.). Cambridge: MIT Press.
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CAUSAL ANALYSIS

Whether causal relationship can be established
between two phenomena is highly controversial as a
philosophical issue. According to David Hume, causal
connections among real events cannot be perceived.
Bertrand Russell even suggested that the term causal-
ity be banned in scientific discourse. Academic
researchers, however, simply cannot help asking why
and searching for causal explanations. Then Herbert
Simon proposed that discussions of causality be
restricted to our model of the reality rather than to the
reality per se.

The desire to find causality is motivated by at least
three potential benefits. First, causal explanation is
believed to transcend time and space and therefore has
a much wider scope of applications. Second, causal
connections constitute the foundation of good control
of the interested phenomena, which is especially
important for policy making. Third, most causal state-
ments are subject to the laws of logic and therefore
more rigorous than they would be if no logic were
involved. 

It is unjustified, however, to think that causal
analysis is always desirable and superior to other
types of analysis. Sometimes, it is perhaps more
important to know what has happened than why
something has happened, because it is either less
important or extremely difficult to ascertain the causal
mechanism. Carefully produced and interpreted,
descriptive statistics are sufficient in many situations.
Furthermore, causality is not a prerequisite of precise
prediction. For example, in demography and econo-
metrics, making an accurate prediction is more impor-
tant than identifying a causal chain or
measuring a causal effect.

Finally, to discover that A causes B is
beyond the capacity of statistical analy-
sis. Causal mechanisms are either found
through heuristic methods, such as exper-
iment and observation, or simply derived
from current theories and knowledge. It
is only after the causal relationship is

proposed that statistical techniques can be applied to
measure the size of the causal effect.

Basic Concepts

Causality implies a force of production. When we say
A causes B, we mean the connection is a directed one,
going from A to B. A causal relationship is thus asym-
metric. Sometimes, the term reciprocal causality is
used, meaning A causes B and B causes A as well.
Although that relationship is possible, very often it
indicates that a temporary order or an underlying
causal mechanism has not been clearly identified.

In theory, causal relationships are best established
when two conditions are satisfied. Call the causal
variable X and the outcome variable Y, and suppose
there are only two possible values for each of them:
for the cause, “exists” or “not exists,” and for the out-
come, “has happened” or “has not happened.” Then
four scenarios are possible.

For example, consider whether taking a personal
tutorial would improve a student’s exam results (Table 1).
The tutorial does not help if the student takes it but no
improvement follows (scenario 2) or if the student
does not take it but improvement is made (scenario 3).
We can say the tutorial is a causal factor of improve-
ment only when scenarios 1 and 4 are both true, that is,
if the student takes the tutorial and improvement
follows and if not, no improvement. Researchers, how-
ever, are often tempted to make a causal connection
when only scenario 1 is true, without seriously consid-
ering scenario 4. This is not only because it is straight-
forward to make the casual link from scenario 1 but
also because information for scenario 4 is usually not
available. A student either has taken the tutorial or has
not taken it; it is impossible to have taken and have not
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Table 1 Scenarios of Cause and Outcome

Outcome (Y)

Has happened Has not happened

Cause (X) Exists Scenario 1 Scenario 2
Does not exist Scenario 3 Scenario 4



taken a tutorial at the same time. Unless repeated mea-
sures are made at different times, either scenario 1 or
scenario 4 is counterfactual. (Since the mid-1970s, sta-
tisticians and econometricians have developed a series
of methods for estimating causal effects in counterfac-
tual situations. The reader is referred to the second
item in “Further Reading” below for details.)

Causal relationship in these analyses is probabilis-
tic rather than deterministic. Deterministic causality
applies to all cases under study without any exception.
In the sciences of human beings, however, researchers
can hope to measure only the probability of a causal
connection for a particular case, or they have to work
at an aggregate level. Exceptional deviant cases
should not be taken as evidence of disproof.

The Commonly Used 
Three Criteria of Causality

Following John Stuart Mill, statisticians have identi-
fied three criteria for inferring a causal relationship:
(a) covariation between the presumed cause and out-
come; (b) temporal precedence of the cause; and 
(c) exclusion of alternative explanations for cause-
outcome connections. All three have to be satisfied at
the same time in order for causality to be derived.

The first is the easiest to establish—statistics such
as the Pearson correlation coefficient, the score of 
chi-square, and the odds ratio are readily available for
testing and measuring the covariation between two
variables. As widely acknowledged, however, covari-
ation alone cannot lead to causal statements.

The second criterion is more complicated and dif-
ficult to satisfy. The main problem lies in the uncer-
tain relationship between temporal order and logical
order. A cause must both temporally and logically pre-
cede an outcome, but a precedent event may or may
not be a logical cause. Temporal connection is a
special type of covariation and, therefore, does not
necessarily lead to causal connection. For example,
people acquire several fixed attributes at birth, such as
sex, age, ethnicity, order among siblings, and so forth,
but it makes little sense to take them as direct causes
of other attributes that are developed at later stages of
life, such as political affiliation.

The last criterion is said to be the most difficult—
researchers can never be completely certain that all
alternative explanations have been considered and
excluded. The exclusion may be best handled in
experiments because all the known possible causes
have been kept “constant” so that their effects will not
intervene in the causal relationship under study. But
experiments are not immune to limitations: There is
no way to ensure that all possible causes have been or
can be taken into account; some variables, especially
the fixed variables, or even a variable like education,
cannot be manipulated; some participants comply
with the experiment rules, but others do not; it may be
unethical to conduct experiments on a certain group of
participants; and finally, it may be difficult to prevent
the participants from influencing one another.

In short, it is very difficult to establish causal rela-
tionships firmly, and the problem cannot be solved
easily with experimental or longitudinal designs. This
does not mean, however, that we should stop doing
causal analysis. The logic holds for all statistical
analyses—although we cannot prove that something
is true, we can measure the likelihood that something
is not true by analyzing the available information. If
currently no information casts a serious doubt on the
proposed causal relationship, we keep it. Further con-
sistent results will increase the level of our confi-
dence, while new inconsistent evidence will help us
modify or even abandon the previous findings.

Causal Analysis in Nonexperimental
Research: The Structural Equation

Modeling Approach

Due to its aforementioned limitations, the experimen-
tal method is often infeasible for most social and
behavioral studies. Causal analysis of nonexperimental
(or observed) data (surveys, administrative records,
etc.) does not aim to confirm causal relationships by
manipulating the causal factors. Rather, the objective
is to measure the causal effect and to disprove a hypo-
thetical causal connection without any commitment to
completely accepting a causal relationship.

The counterfactual approach, although statistically
established, has not been widely applied in the social
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sciences. A more widely followed approach is
structural equation modeling (SEM). It has two main
advantages. First, it combines path analysis and factor
analysis. Path analysis enables us to statistically test
causal relations among a set of observed variables, but
it does not deal with variables that are not directly
measurable (latent variables), such as socioeconomic
status, social capital, intelligence, and so on. Factor
analysis enables us to link some observed variables to
a latent variable, but it is not designed to test causal
relations among these variables. SEM is a powerful
method that measures causal relations among both
observed and latent variables. Second, measurement
errors are assumed marginal and thus ignorable in
many statistical techniques. In contrast, SEM explic-
itly incorporates the error terms into a statistical
model, generating a more reliable measurement of
causal relationship with the measurement errors cor-
rected. The reader who would like to learn more can
start with the first reference under “Further Reading.”

—Keming Yang

See also Structural Equation Modeling 

Further Reading

Saris, W. E., & Stronkhorst, H. (1984). Causal modelling in
nonexperimental research: An introduction to the LISREL
approach. Amsterdam: Sociometric Research Foundation.

Winship, C., & Sobel, M. (2004). Causal inference in socio-
logical studies. In M. Hardy and A. Bryman (Eds.),
Handbook of data analysis (pp. 481–503). London: Sage.

LISREL student version (8.7) for downloading: http://www
.ssicentral.com/index.html (Note that there are limitations
on the size of the model and no technical support.)

Applying Ideas on Statistics and Measurement

The following abstract is adapted from Henry, S.
(2000). What is school violence? An integrated
definition. Annals of the American Academy of
Political and Social Science, 567(1), 16–29. 

In this study, causal analysis is used to address
the wider context of school violence, the wider
forms of violence in schools, and the important
interactive and causal effects arising from the

confluence of these forces. Usually, such studies
focus on interpersonal violence between students
or by students toward their teachers. Stuart Henry
argues that not only does the complexity of this
issue defy such a simplistic framing but dealing
with the problem at that level does not go far
enough. What is needed is an integrated, multi-
level definition of the problem that will lead to a
multilevel causal analysis and a comprehensive
policy response that takes account of the full
range of constitutive elements. Here, the first
stage of such an approach is outlined with regard
to defining the nature and scope of the problem.

CENSORED DATA

Suppose that in an experiment or study, a group of
individuals (objects, patients, or devices) is followed
over time with the goal of observing an event such as
failure or death. Individuals who do not experience
the event of interest in the observation period are said
to be censored, and the data obtained from such indi-
viduals are known as censored data.

In most cases, experiments or studies have a finite
observation period, so for some individuals, the obser-
vation period may not be long enough to observe the
event of interest. Also, individuals may cease to be at
risk before the observation period. For example, in a
clinical trial setting, patients might drop out of the
study, or in the case of testing the reliability of a
device, the device may fail for reasons other than the
one the experimenter is interested in. Such individuals
known not to experience the event within or before the
observation period are said to be right censored.

Censored data may demonstrate left censoring and
interval censoring, as well. In the former, the event of
interest occurs before the observation period. For
example, suppose a group of women is selected to be
followed for the development of breast cancer. If 
some of these women had already developed breast
cancer, then the time to the development of breast can-
cer is left censored for them. In the case of interval
censoring, one observes an interval within which the
event of interest occurred, but the actual time of
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occurrence remains unknown. Interval censoring
occurs when devices are tested only at specific times,
say t1, t2, . . . tk, and failures occur between two con-
secutive times. Right and left censoring are special
cases of interval censoring with the intervals (T, ∞)
and (0, S), respectively, where S is the starting time
and T is the ending time of the study. 

When data contain censored observations, special
care has to be taken in the analysis. Common statisti-
cal methods used to analyze censored data include the
Kaplan-Meier estimator, the log-rank test, the Cox
proportional hazard model, and the accelerated failure
time model.

—Abdus S. Wahed

See also Observational Studies

Further Reading

Kalbfleisch, J. D., & Prentice, R. L. (2002). Statistical analy-
sis of failure time data (2nd ed.). Hoboken, NJ: Wiley.
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CENTERS FOR DISEASE

CONTROL AND PREVENTION

The Centers for Disease Control and Prevention
(CDC), a unit of the Department of Health and Human
Services, is a U.S. government public health agency
with a workforce of almost 6,000 persons currently
under the direction of Dr. Julie Louise Gerberding.
Headquartered in Atlanta, Georgia, CDC has 10 other
locations in the United States and Puerto Rico. CDC’s
mission encompasses several goals: (a) to protect the
public’s health and safety; (b) to educate the public
through dissemination of reliable scientific health
information; (c) to prevent and control disease, injury,
and disability; and (d) to establish strong partnerships
with numerous public and private entities such as
local and state health departments, academic institu-
tions, and international health organizations.

Following World War II, Dr. Joseph W. Mountin
formed the Communicable Disease Center on July 1,
1946, in Atlanta as a peacetime infectious disease
prevention agency based on the work of an earlier
agency, the Malaria Control in War Areas. CDC’s
original focus was the problems of malaria and
typhus, later broadening to diseases such as polio
(1951) and smallpox (1966). In 1970, the agency
became known as the Center for Disease Control to
reflect its broader mission. In 1992, it added the term
prevention to its name but remained known as CDC.

CDC is now organized into six coordinating offices
for Global Health, Terrorism Preparedness and
Emergency Response, Environmental Health and
Injury Prevention, Health Information and Services,
Health Promotion, and Infectious Diseases. These
coordinating offices are further divided into 12 centers,
each of which has its own areas of expertise and public
health concerns. For instance, the National Center for
Injury Prevention and Control aims to reduce mortality,
disability, and costs related to injuries resulting from
events such as motor vehicle accidents, youth violence,
child maltreatment, and suicide. The National Center
for Health Statistics documents the health status of the
United States population, monitors trends in health care
delivery and utilization, and evaluates the impact of
health policies and programs through statistical compu-
tations. The Office of the Director is responsible for the
management, oversight, and coordination of the scien-
tific endeavors of all centers.

CDC’s working budget for the fiscal year 2005 was
estimated at $7.7 billion, with the highest appropria-
tion assigned to efforts to combat HIV and AIDS.
From its beginnings in 1946, with a budget of less
than $10 million, CDC has become the nation’s pre-
miere public health agency with the stated vision for
the 21st century of healthy people in a healthy world
through prevention.

—Marjan Ghahramanlou-Holloway

Further Reading

Etheridge, E. W. (1992). Sentinel for health: A history of 
the Centers for Disease Control. Berkeley: University of
California Press.
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Applying Ideas on Statistics and Measurement

The following abstract is adapted from Whitaker,
D. J., Lutzker, J. R., & Shelley, G. A. (2005). Child
maltreatment prevention priorities at the Centers
for Disease Control and Prevention. Child Mal-
treatment, 10(3), 245–259. 

The Centers for Disease Control and
Prevention (CDC) is the United States’ public
health agency and deals with many different types
of public health issues. The Division of Violence
Prevention at CDC’s National Center for Injury
Prevention and Control has had a long-standing
interest in the prevention of child maltreatment.
As the nation’s public health agency, CDC seeks
to focus the public health perspective on the
problem of child maltreatment and to promote
science-based practice in the field. Since 1999,
CDC has developed research priorities to address
the prevention of child maltreatment. This article
provides a brief rationale for applying a public
health approach to child maltreatment and a dis-
cussion of the priority-setting process, priorities in
each of four areas of the public health model, and
some of CDC’s current child maltreatment pre-
vention activities.

CENTRAL LIMIT THEOREM

The central limit theorem states that, under conditions
of repeated sampling from a population, the sample
means of random measurements tend to possess an
approximately normal distribution. This is true for
population distributions that are normal and decidedly
not normal.

The central limit theorem is important for two rea-
sons. The first can be understood by examining the
fuzzy central limit theorem, which avers that when-
ever an attribute is influenced by a large number of

relatively independently occurring variables, the
attribute will be normally distributed. Such attributes
are ordinarily complex variables that require consider-
able time in their development. For instance, a multi-
tude of relatively independently occurring variables
influence adult reading achievement, each of which
may be influential in large or small ways:

1. Quality of teachers in the early grades

2. Variety of reading matter available (books, maga-
zines, newspapers)

3. Parental encouragement to read

4. Genetic endowment

5. Diet during developmental years

6. Socioeconomic level of the child’s family

7. Number of competing activities available (e.g.,
arcade games, sports, television)

8. Interests and activities of friends

9. Initial success (or failure) in reading activities

10. Physical athleticism of the child

It is easy to imagine many other such variables. To
the extent that the variables produce small, relatively
random effects on adult reading achievement over time,
the distribution of adult reading achievement will be
normally distributed. Because the variables that influ-
ence such attributes produce unrelated effects, one’s
position in the distribution of scores in the population is
largely a matter of luck. Some individuals are very
lucky (e.g., they may have parents who encourage
reading, access to reading materials, excellent early
teachers) and enjoy high adult reading achievement.
Some are very unlucky (e.g., they may have impover-
ished parents who do not support reading, poor diet,
frequent illnesses) and remain illiterate. But about two
thirds are neither very lucky nor very unlucky and
become average adult readers. The fuzzy central limit
theorem then, provides an explanation for the relatively
common occurrence of normal distributions in nature.

The second reason the central limit theorem is
important concerns its use in statistical inference.
Because in a normal distribution we know the
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percentage of cases falling between any two points
along the baseline and the percentage of cases above
and below any single point along the baseline, many
useful inferences can be made. Consider an investiga-
tion comparing two treatment approaches designed to
enhance math achievement. Following the treatment,
the dependent variable, a test of math achievement, is
administered. By comparing the two treatment group
means, the researchers determine the probability that
the difference between the means could have occurred
by chance if the two treatment groups were drawn
from the same population distribution. If the probabil-
ity were, say, 0.0094, the investigators could have a
high degree of confidence in rejecting the null hypoth-
esis of no difference between the treatments. If the
central limit theorem did not commonly apply in
nature, such inferences could not be made.

—Ronald C. Eaves

See also Sampling Distribution of a Statistic 

Further Reading

Wolfram, S. (2002). A new kind of science. Champaign, IL:
Author.

Sampling distributions and the central limit theorem:
http://people.hofstra.edu/faculty/Stefan_Waner/RealWorld/
finitetopic1/sampldistr.html

Applying Ideas on Statistics and Measurement

The following abstract is adapted from Essex, C.,
& Smythe, W. E. (1999). Between numbers and
notions: A critique of psychological measurement
theory & psychology. Theory & Psychology, 9(6),
739–767. 

The central limit theorem plays a critical role
in statistics. This article discusses the applications
of mathematical machinery to psychological ideas
and how that machinery imposes certain require-
ments on the relationship between numbers and
notions. These imposed choices are driven by the
mathematics and not the psychology. Attempting
a theory-neutral approach to research in psychol-
ogy, where commitments in response to the
options are made unknowingly, becomes instead 

a theory-by-default psychology. The article begins
to catalog some of these mathematical choices to
make them explicit in order to allow psychologists
the opportunity to make explicit theoretical
commitments.

CENTROID

The notion of centroid generalizes the notion of a
mean to multivariate analysis and multidimensional
spaces. It applies to vectors instead of scalars, and it
is computed by associating to each vector a mass that
is a positive number taking values between 0 and 1
such that the sum of all the masses is equal to 1. The
centroid of a set of vectors is also called the center
of gravity, the center of mass, or the barycenter of
this set.

Notations and Definition

Let V be a set of I vectors, with each vector being
composed of J elements:

V = {v1, . . . , vi, . . . ,vI} with vi = [vi,1, . . . ,vi, j, . . . , vi,J]
T.

To each vector is associated a mass denoted mi for
vector i. These masses take values between 0 and 1,
and the sum of these masses is equal to 1. The set of
masses is a vector denoted m. The centroid of the set
of vectors is denoted c, defined as

Examples

The mean of a set of numbers is the centroid of this set
of observations. Here, the mass of each number 
is equal to the inverse of the number of observations:
mi = 1_

I .
For multivariate data, the notion of centroid gener-

alizes the mean. For example, with the following three
vectors,

c =
I∑

i

mivi .
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and the following set of masses,

we obtain the following centroid:

In this example, if we plot the vectors in a two-
dimensional space, the centroid would be the center of
gravity of the triangle made by these three vectors
with masses assigned proportionally to their vector of
mass. The notion of centroid can be used with spaces
of any dimensionality.

Properties of the Centroid

The properties of the centroid of a set of vectors closely
parallel the more familiar properties of the mean of a
set of numbers. Recall that a set of vectors defines a
multidimensional space, and that to each multidimen-
sional space is assigned a generalized Euclidean dis-
tance. The core property of the centroid is that the
centroid of a set of vectors minimizes the weighted sum
of the generalized squared Euclidean distances from
the vectors to any point in the space. This quantity that
generalizes the notion of variance is called the inertia
of the set of vectors relative to their centroid.

Of additional interest for multivariate analysis, the
theorem of Huyghens indicates that the weighted sum
of the squared distances from a set of vectors to any
vector in the space can be decomposed as a weighted
sum of the squared distances from the vectors to their
centroid plus the (weighted) squared distance from the
centroid to this point. In term of inertia, Huyghens’s
theorem states that the inertia of a set of vectors to any
point is equal to the inertia of the set of vectors to their

centroid plus the inertia of their centroid to this point.
As an obvious consequence of this theorem, the iner-
tia of a set of vectors to their centroid is minimal.

—Hervé Abdi

See also Correspondence Analysis; Discriminant Correspon-
dence Analysis; Distance; DISTATIS; Multiple Correspon-
dence Analysis; Multiple Factor Analysis; STATIS

CHANCE

The word chance originated in the Latin word for “to
fall.” Chance occurs the way things just happen to fall.
Like a coin toss, chance events occur unpredictably,
without any apparent or knowable causes, or by acci-
dent—the latter word deriving from the same Latin
root. Although chance is a very useful word in every-
day language, its status as a term in measurement and
statistics is much more ambivalent. On the one hand,
the word is almost never treated as a technical term.
Thus, it is seldom given a precise definition, or even
an intuitive one. Indeed, it is rare to see chance as an
entry in an index to any book on measurement and sta-
tistics.

On the other hand, both the concept and the word
permeate articles and books on these subjects. It is
especially hard to imagine writing a statistics textbook
without having recourse to the word on numerous
occasions. Furthermore, the word chance is used in a
wide variety of ways. In particular, we may distin-
guish chance as probability, as unknown determi-
nants, as technique, and as artifact.

Chance as Probability

What is now called probability theory had its origins
in a famous exchange of letters between the mathe-
maticians Pierre de Fermat and Blaise Pascal con-
cerning games of chance. As a consequence, early
mathematical treatments would be identified as the
“logic of chance” (John Venn) or the “doctrine of
chance” (Abraham de Moivre). But by the time
Pierre-Simon Laplace published his classic Analytical

c =
I∑

i

mivi = 1
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Theory of Probabilities, the word chance had seem-
ingly ceased to have scientific content, thereby return-
ing to the status of a mundane word. It had been
replaced by the word probability.

Despite this shift in significance, chance is still
used to refer to the probability of an event or set of
events—whether or not they concern outcomes in
games of chance. When used in this manner, chance is
often treated as something tantamount to a rough mea-
sure of how much we should anticipate an event’s
occurring. Some events may have a good chance of
happening, others a very poor chance, yet others a
middling chance. Two events can also be said to have
an equal chance of happening (e.g., the balls in urn
models all have an equal chance of being chosen).
Here, chance functions as a generic term that encom-
passes more specialized and precise concepts, includ-
ing an event’s probability (the number of times an
event happens divided by the total number of times it
could have happened) and an event’s odds (the proba-
bility of an event occurring divided by the probability
of an event not occurring).

One could argue that it is no longer proper to use
such a vague word when more-precise terms are read-
ily available. Yet the very imprecision of chance can
prove to be an asset in certain contexts. In particular,
chance becomes serviceable when a more precise term
is unnecessary to convey a statistical idea. For example,
a simple random sample can be defined as a sample in
which each case in the entire population has an equal
chance of being selected for inclusion. Substitut-
ing “probability” for “chance” may not necessarily
improve this definition, especially given that the actual
probability may not be known or even calculable.

Chance as Unmeasured 
Determinants

Chance is often assumed to operate as an active agent
that helps account for a particular pattern of events.
More specifically, chance is frequently invoked as an
unknown force or set of forces that explains why cer-
tain expectations may be violated. A simple example
can be given from classical test theory. A research par-
ticipant’s response on a particular test item may not

accurately reflect the participant’s actual ability,
attitude, or disposition. Instead of the true score, we
obtain a fallible score. According to classical theory,
the fallible score is the sum of the true score plus
error. The error may encompass a large number of
extraneous factors, such as momentary inattentive-
ness, a careless recording mistake, a misunderstand-
ing of the question, a classically conditioned
emotional response, and so forth. Significantly, these
causes are assumed to be so numerous and mutually
independent that the error can be considered pure
chance. Hence, the fallible score is the sum of the true
score and unmeasured chance determinants. This
assumption is absolutely crucial in the classical theory
of measurement. It means that the error is uncorre-
lated with the true score for that item or any other
item, and that the error is equally uncorrelated with
the errors of other items. As a consequence, a com-
posite score defined as the sum of fallible scores on a
large number of items will contain much less error
than the individual items because the separate errors
will cancel each other out rather than accumulate. In
other words, if errors are determined by chance, then
a multi-item test will be much more reliable than any
of the items that make it up.

Various statistical techniques also introduce a
chance component, but with a different purpose in
mind. For example, the dependent variable (or crite-
rion) in a multiple regression equation can be
expressed as a function of an intercept (or constant
term), the weighted sum of the independent variables
(or predictors), and an error term that represents the
discrepancies between predicted and observed scores
(i.e., the residuals). When regression is applied to
correlational data, unbiased least-squares estimators
of the weights for the independent variables (i.e.,
the unstandardized regression coefficients) can be
obtained only if this error (or disturbance) term essen-
tially constitutes a “random shock” consisting of pure
chance. Here chance consists of a conglomerate of all
those unspecified determinants of the dependent vari-
able that are uncorrelated with independent variables
specified in the regression equation.

This chance disturbance plays an even bigger 
role in time series analysis. In particular, this term is
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essential to the very definitions of autoregressive and
moving-average processes. In a first-order autoregres-
sive process, for example, the value of a variable at
time t is specified as a function of the value of the
variable at time t−1 plus a random shock. Even more
striking, in a first-order moving-average process, the
value of a variable at time t is specified as a function
of the value of a random shock at t minus a portion of
the random shock at t−1 (i.e., the variable consists
entirely of concurrent and lagged chance inputs).

Chance as Technique

Many common methodological procedures use chance
to obtain certain desirable outcomes. An example was
given earlier, namely, the use of random sampling to
ensure that the sample is representative of the larger
population. Moreover, knowing that each case has an
equal chance of entering the sample permits the cal-
culation of statistics that would not be available other-
wise, such as the standard error of the mean. Other
sampling strategies, such as stratified random sam-
pling and probability sampling, also use chance to
attain specific methodological ends. In probability
sampling, for instance, each case in the population has
a “known chance” (rather than an equal chance) of
being selected for inclusion in the sample, a stipula-
tion that still permits the inference of population
attributes from sample characteristics.

Another technical use of chance is illustrated by
experimental research in which the participants are
randomly assigned to the various conditions. Such
randomization plays an extremely important role in
causal inference and has direct consequences for the
statistical analyses. Previously it was noted that mul-
tiple regression assumes that all unmeasured causes of
variation in the dependent variable are contained in an
error term. Because the latter term must be uncorre-
lated with the independent variables in the equation,
the error is assumed to be random. Whereas in corre-
lational studies this randomness can only be assumed,
in experimental studies the random assignment itself
guarantees that the error or residual term represents
pure chance. As a result, the estimated effects of the
experimental manipulations are far more likely to be

unbiased than would be the situation if the conditions
were chosen by the participants themselves.

A final example of chance as technique may be
found in Monte Carlo methods. Named after the
famed casino of Monaco, this approach is specifically
inspired by games of chance. A roulette wheel will
generate a series of random numbers, and Monte
Carlo methods rely on random numbers to simulate
processes that are assumed to possess a substantial
chance component. Widely used in the natural
sciences, Monte Carlo methods also have a significant
place in measurement and statistics. When the proper-
ties of measures, techniques, or estimators cannot be
determined analytically, suitable data can be simu-
lated to test the properties empirically. For example, in
studies of exploratory factor analysis, Monte Carlo
methods have frequently been used to address such
issues as the best factor extraction algorithms, the
optimal decision criteria for determining the number
of factors, and the most effective rotational schemes.
Often these simulations take advantage of programs
that generate random numbers with a specified distri-
bution, most commonly a normal distribution (i.e.,
normal random deviates).

Chance as Artifact

With rare exceptions, such as researchers working
with census data, empirical inquiries are most fre-
quently carried out using relatively small samples
from a larger population of cases. The characteristics
of those samples will necessarily depart from the
characteristics of the greater population. Hence, even
if the means for two groups (e.g., men and women)
are absolutely identical in the population, the means
will differ in the sample. Similarly, even if the corre-
lation between two variables was exactly zero in 
the population, the correlation may be substantially
greater or less than zero in the sample. The smaller the
sample size, or N, the more extensive the probable
error. In fact, when N is very small, say less than a
dozen cases, seemingly substantial mean differences
or correlations can appear—statistical outcomes that
still should be attributed to chance rather than to bona
fide effects.
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The most common solution to this problem is 
to implement null hypothesis significance testing.
Typically, the null hypothesis is that mean difference,
correlation, or another statistic is absolutely zero in
the greater population. Using some statistical test,
the researcher determines whether the sample values
exceed what could reasonably be expected from
chance fluctuations alone. So when we conclude that
a result is significant at the .05 probability level, we
are asserting that the chances are only 5 out of 100
that we could obtain an effect of that magnitude by
sampling error. By rejecting the null hypothesis, we
are saying that the observed mean difference or corre-
lation is likely not a mere fluke of our little sample
and that there is a very high probability that these sta-
tistics are nonzero in the larger population.

Unfortunately, this procedure cannot completely
solve the problem. Sometimes researchers will adopt
measurement strategies or statistical techniques that
cause them to “exploit chance,” to take advantage of
sampling error rather than reduce its impact. For
instance, when item analysis is used to select the best
items for inclusion in a multi-item test, the investiga-
tor naturally picks those items that correlate most
highly with the overall score. Yet unless the sample
size is large, the relative sizes of the item-composite
correlations will be contaminated by considerable
sampling error. As a result, the final test may be more
representative of the sample than of the population.
Some items will be incorrectly included while others
are just as incorrectly excluded.

A similar problem arises in a particular form of
multiple regression, namely, analyses employing a
stepwise procedure for variable inclusion. In forward
stepwise regression, for example, predictors are added
to the equation one by one. At each step, that variable
is inserted which makes the greatest improvement in
the equation’s predictive power. Potential predictors
that make no contribution to the explained variance
are then omitted. Regression equations constructed in
this way are taking inappropriate advantage of chance
fluctuations in sample characteristics. Accordingly,
the predictors included in the final equation may not
completely replicate in other samples drawn from the
same population. Indeed, in small samples, the equation

can contain predictors that are almost arbitrary,
and the chances of complete replication become virtu-
ally zero.

It should be made explicit that the emergence of
these chance artifacts is not simply a matter of sample
size. Opportunities for exploiting chance also increase
as we increase the number of parameters to be esti-
mated (e.g., mean differences, correlations, regression
coefficients). For instance, the more correlations com-
puted from the data, the higher is the probability that
a coefficient will emerge that is significant at the .05
level, even when all coefficients are zero in the popu-
lation. Thus, increasing the number of correlations to
be estimated increases the chance of rejecting the null
hypothesis when the null hypothesis is in fact true
(i.e., Type I error). Avoiding this unfortunate reper-
cussion requires that the investigator implement
procedures to correct the probability levels (e.g., the
Bonferroni correction).

Another example also comes from multiple regres-
sion analysis. The more independent variables there
are in the equation, the more parameters that must be
estimated (viz. regression coefficients). Therefore, for
a given sample size, equations with many predictors
will have more opportunities to exploit chance than will
equations with few predictors. This difference will
manifest itself in the “squared multiple correlation”
(R2, where R is the correlation between predicted and
observed scores). This statistic will be biased upward
by the opportunistic assignment of large regression
weights to those independent variables that have their
effects inflated by sampling error. To handle this
adverse consequence, most statistical software pub-
lishes an “adjusted R2” along with the regular squared
multiple correlation. The adjustment makes allowance
for the number of regression coefficients estimated
relative to the sample size.

Clearly “chance as artifact” has a very different
status from chance as probability, as unmeasured
determinants, and as technique. The latter three
usages take chance as a “good thing.” Chance pro-
vides a generic term for probability, odds, or likeli-
hood, makes measurement and prediction errors less
problematic, and offers useful tools for designing
research and evaluating statistical methods. Yet the
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intrusion of sampling error, along with the imple-
mentation of methods that accentuate rather than
reduce that error, shows that chance can also be a
“bad thing” that complicates analyses. Nonetheless, it
should be evident that chance remains a very useful
word despite its varied applications and vague defin-
itions. It provides a catch-all term that can encompass
a diversity of issues that are crucial to measurement
and statistics.

—Dean Keith Simonton

See also Bonferroni Correction; Classical Test Theory;
Exploratory Factor Analysis; Least Squares, Method of;
Markov Chain Monte Carlo Methods; Null Hypothesis
Significance Testing; Pascal, Blaise; Probability Sampl-
ing; Random Numbers; Random Sampling; Regression
Analysis; Residuals; Sampling Error; Significance Level;
Statistical Significance; Type I Error

Further Reading

Everitt, B. (1999). Chance rules: An informal guide to proba-
bility, risk, and statistics. New York: Springer. 

Chance magazine: http://www.amstat.org/publications/chance/
Chance Web site devoted to the teaching of courses dealing

with chance: http://www.dartmouth.edu/~chance/

Applying Ideas on Statistics and Measurement

The following abstract is adapted from Oldman, D.
(1974). Chance and skill: A study of roulette.
Sociology, 8(3), 407–426. 

If scientists have any job, it is trying to reduce
the role that chance, or random variation, plays in
scientific research. Chance is a ubiquitous factor
in all our daily activities, and trying to explain
how chance is addressed and dealt with is a cen-
tral point in the study of measurement and statis-
tics. This article takes an applied approach to the
topic and focuses on how people handle random
events. Many accounts of the chance element in
games and many attempts at general explanations
of gambling assume that an individual accepts the
events as unpredictable and passively awaits the
outcome, but a study of people playing roulette in
a gaming club suggests that this is far from the
case. Playing roulette can be seen as an exercise
in “skill” that depends on the construction and 

maintenance of predictive theories. One form 
of theorizing attributes causal efficacy to the
croupier, and the game becomes a contest
between croupier and player. This behavior is
reinforced as players attempt to manipulate their
working conditions and status. Players may then
adopt a nonarithmetic calculus of win and loss
that confirms their theorizing.

CHI-SQUARE TEST FOR

GOODNESS OF FIT

The chi-square (pronounced “kai square” and often
written as χ2) family of statistical tests comprises
inferential tests that deal with categorical data. In
many situations, the researcher may not have data in
the form of scores or measurements (ordinal, interval,
or ratio level of measurement) for the cases in their
sample but instead will have information concerning
some classification (categorical level of measure-
ment). For instance, if we were interested in smoking
behavior, we may want to know how many cigarettes
the average person smokes per day (interval data);
alternatively, we may want to look more simply at
whether people smoke or not (categorical data).

Typically, when we have scores or interval
measurements, we are interested in the mean or 
the median score (the mean number of cigarettes
smoked). With categorical data, however, it would be
fairly pointless to calculate the mean (the average of
the sample is a semismoker?). Instead, we are inter-
ested in the frequency of cases that come up in each
classification of the variable we are interested in (how
many people smoke and how many do not?). Chi-
square tests can look at situations like this, in which
cases are categorized on one factor (the chi-square
goodness of fit), and also at cases categorized on two
factors (sometimes referred to as being cross catego-
rized), such as a smoker and an undergraduate (the
chi-square measure of association). This entry focuses
on the goodness-of-fit test.

Karl Pearson developed the goodness-of-fit test to
determine whether observed distributions of frequency
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data matched, or “fitted,” a theoretical distribution. By
estimating the cell frequencies one would expect to
observe under some theoretical distribution, one could
compare the actual frequencies and calculate the dif-
ference. The smaller the difference, the better the fit.

The most common use of the chi-square is to com-
pare the observed distribution with the distribution
expected under the null hypothesis. The null hypothe-
sis states that categorization will be random, and thus
the expected cell frequencies will be based on chance.
We can calculate the expected cell frequencies by
dividing the number of cases in the sample by the
number of possible classifications. If these expected
frequencies are very similar to the observed frequen-
cies, then the fit between the observed distribution and
the null hypothesis distribution will be good. If they
are quite different, then the fit will not be good, and
we may reject the null hypothesis.

Using the test statistic and the degrees of freedom,
we can estimate the significance value. Degrees of
freedom for a goodness-of-fit test are calculated as the
number of classifications minus 1.

The following assumptions underlie the test:

1. The data must be treated as categorical.

2. The categories must be mutually exclusive. This
means that it must be impossible for a case to be in
more than one category. For instance, a person is
either a smoker or not.

3. None of the expected values may be less than 1.

4. No more than 20% of the expected values may be
less than 5.

An Example

Suppose we asked 100 people to name their favorite
season. The null hypothesis would state that there
would be a chance distribution of responses, meaning
that there would be a fairly even number of people
selecting each season. So the expected frequencies
under the null hypothesis would be calculated as the
number of cases (100) divided by the number of pos-
sible classifications (4). Therefore, we would expect,
under the null hypothesis, to observe 25 people

choosing spring as their favorite season, 25 choosing
summer, 25 choosing autumn, and 25 choosing win-
ter. Now we compare this to the frequencies we actu-
ally observe, shown in Table 1.

In Table 1, we see that the distribution does not look
like a chance distribution. More people chose summer
as their favorite season than chose any other season. To
see if the null hypothesis model fits the observed data,
we look at the difference between the expected cell fre-
quencies and the observed cell frequencies (these dif-
ferences are called the residuals). The sum of these
residuals represents the goodness of fit. Before they can
be summed, however, the residuals must be squared to
avoid positive residuals cancelling out negative residu-
als. Chi-square is calculated using this equation:

χ2 = Σ([o − e]2/e)

where e is an expected cell frequency and o is an
observed cell frequency.

So for our example,

χ2 = (−42/25) + (232/25) + (−92/25) + (−102/25)

χ2 = 29.04.

Now we have to compare this value to the distribu-
tion of chi-square to assess significance. In this case,
there are 3 degrees of freedom (because we have four
observed residuals and have to subtract one degree of
freedom for the model). Looking at a table of critical
values for chi-square, we see that if the observed value
is greater than 11.34, then it is significant (p < .01);
because our observed value of chi-square (29.04) is
greater than 11.34, we reject the null hypothesis.
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Table 1 Hypothetical Data to Show the Frequency 
of People Choosing Each Season as 
Their Favorite 

Spring Summer Autumn Winter

Expected 25 25 25 25
Observed 21 48 16 15
Residual −4 23 −9 −10



Calculating Chi-Square
Goodness of Fit Using SPSS

The chi-square statistic may be calculated in several
ways using SPSS. The procedure described here is
fairly straightforward for data inputted as per the
screenshot in Figure 1. 

1. Tell SPSS that the “count” variable is a frequency
and not a score: Go to Data → weight cases and
click next to “Weight cases by” and then put
“count” into the “Frequency variable” box.

2. Go to Analyze → Nonparametric tests → Chi-
square . . .

3. Put “count” into the “Test variable list” and click on
“OK.”

The output will be a table of the descriptive statis-
tics as well as a table that contains the chi-square
value, the degrees of freedom, and the p value.

—Siân E. Williams

See also Chi-Square Test for Independence

Further Reading

Chi-square calculator: http://faculty.vassar.edu/lowry/csfit.html

CHI-SQUARE TEST FOR INDEPENDENCE

The chi-square test for independence is a significance
test of the relationship between categorical variables.
This test is sometimes known as the “Pearson’s 
chi-square” in honor of its developer, Karl Pearson.
As an example of this test, consider an experiment by
David M. Lane, S. Camille Peres, Aniko Sándor, and
H. Al Napier that evaluated the effectiveness of a new
method for initiating computer commands. One group
of participants was tested using a mouse; a second
group was tested using a track pad. Although for both
groups, the new method led to faster performance than
did the standard method, the question addressed here
is whether there was any relationship between prefer-
ence for the new method and the type of pointing
device (mouse or track pad).

Table 1 is a contingency table showing whether
preference is contingent on the device used. As can be
seen in Table 1, 4 of the 12 participants in the mouse
group (33%), compared with 9 of the 10 participants
(90%) in the track pad group, preferred the new
method. Therefore, in this sample, there is an associa-
tion between the pointing device used and the method
preferred. A key question is whether this association in

the sample justifies the conclusion that
there is an association in the population.

The chi-square test for independence,
as applied to this experiment, tests 
the null hypothesis that the preferred
method (standard or new) is indepen-
dent of the pointing device used (mouse
or track pad). Another way of stating
this null hypothesis is that there is no
association between the categorical vari-
ables of preferred method and pointing
device. If the null hypothesis is rejected,
then one can conclude that there is an
association in the population.

Calculations

The first step in the calculation is to find
the expected frequencies in each cell
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under the assumption that there is no association
between the variables. Since 9 of the 22 participants
(0.409) preferred the standard method, then if there
were no association between pointing device and pre-
ferred method, one would expect 0.409 of the partici-
pants in the both the mouse condition and track pad
condition to prefer the standard method. Of the 12
participants in the mouse condition, one would there-
fore expect (0.409)(12) = 4.91 participants to prefer
the standard method. Similarly, in the track pad con-
dition, one would expect (0.409)(10) = 4.09 partici-
pants to prefer the standard method. Note that this
expected frequency is a mathematical concept; the
number of participants in a sample with a specific
preference would be a whole number.

An easy way to compute the expected frequency
for a cell is to multiply the row total for the cell by the
column total and then divide by the grand total. For
the cell representing preference for the standard
method when using the mouse, the expected fre-
quency is (12)(9)/22 = 4.91. Table 2 shows the
expected frequencies in parentheses.

The next step is to subtract, for each cell, the
observed frequency from the expected frequency,
square the difference, and then divide by the expected

frequency. For the first cell, this is equal to (4.91 –
8.00)2/4.91 = 1.94. The chi-square statistic is then
computed by summing the values for all the cells. The
formula can be written as 

where E is an expected cell frequency and O is an
observed cell frequency. For this example,

which is equal to 7.25. The chi-square statistic has a
degrees of freedom parameter associated with it that is
calculated as (r − 1)(c − 1), where r is the number of
rows in the data table and c is the number of columns.
For this example, both r and c are equal to 2, so the
degrees of freedom is (2 − 1)(2 − 1) = 1. The proba-
bility associated with a chi-square of 7.25 with one
degree of freedom is 0.007. Since this is lower than
conventional levels of significance, the null hypothe-
sis of no association between preference and pointing
device can be rejected, justifying the conclusion that
there is an association in the population.

Assumptions and Accuracy 
of the Chi-Square Test

A key assumption of the test is that each observation
is independent of each other observation. In general,
this assumption is met if each participant in the exper-
iment adds 1 to the frequency count of only one cell
of the experiment. If this is the case, then the total fre-
quency count will equal the total number of partici-
pants. However, even this safeguard does not ensure
independence. For example, if 2 participants dis-
cussed their possible responses before making them,
their responses would not be independent.

Suppose the example experiment had been a little
different, with each participant making two preference

χ 2 = (4.91 − 8)2

4.91
+ (7.09 − 4)2

7.09

+ (4.09 − 1)2

4.09
+ (5.91 − 9)2

5.91
,

χ 2 =
∑ (E − O)2

E
,
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Table 1 Data From the Example Experiment

Preferred Method

Device Standard New Total

Mouse 8 4 12
Track pad 1 9 10
Total 9 13 22

Table 2 Data From the Example Experiment With
Expected Frequencies

Preferred Method

Device Standard New Total

Mouse 8 (4.91) 4 (7.09) 12
Track pad 1 (4.09) 9 (5.91) 10
Total 9 13 22



judgments, one when using the mouse and once when
using the track pad. Since judgments from the same
participant are not independent, the chi-square test 
of independence would not be appropriate for this
design.

The statistic computed in the chi-square test of
independence is only approximately distributed as
chi-square, and therefore, the test is only an approxi-
mate test. Fortunately, under most circumstances, the
approximation is quite good. Generally speaking, if
there are at least 20 observations, the approximation
will be satisfactory. However, accuracy is reduced 
if the proportions in the population are extreme.
Suppose that the population proportion preferring the
new method were 0.95 in both the mouse and track
pad conditions. Since there is no association in the
population, the null hypothesis is true. If the 0.05 sig-
nificance level were used, the probability of making a
Type I error should be 0.05. However, in this situation
(with 12 and 10 participants, as in the experiment), the
probability of a Type I error is 0.008. Thus, in this sit-
uation, the test is conservative: The true Type I error
rate is lower than the nominal rate. In some situations,
the actual Type I error rate is slightly higher than the
nominal rate. For example, if the population propor-
tions were both 0.60, then the probability of a Type I
error would be 0.059 when the 0.05 significance level
is used. Interestingly, for the same proportions, the
probability of a Type I error using the 0.01 level is
very close to 0.01. A simulation that allows one to
estimate the probabilities of a Type I error in these
designs is available at http://www.ruf.rice.edu/~lane/
stat_sim/contingency/index.html.

Some writers have claimed that the chi-square test
of independence assumes that all expected frequen-
cies are greater than 5 and that a correction should be
done otherwise. The correction is not recommended
since, in general, it makes an already conservative test
even more conservative.

Comparison to the Fisher 
Exact Probability Test

Since the chi-square test for independence is an
approximate test, it would seem that the Fisher exact

probability test, which, as its name implies, results in
exact probabilities, would be preferable. However,
this is not generally the case. The Fisher exact proba-
bility test is based on the assumption that the row and
column totals are known before the experiment is
conducted. For example, consider a hypothetical
experiment designed to determine whether caffeine
decreases response time. Suppose 10 participants are
given caffeine and an additional 10 participants are
given a placebo. After response times are measured,
every participant below the median is classified as 
a fast responder, and every participant above the
median is classified as a slow responder. Therefore,
even before the data are collected, it is known that the
column totals will be as shown in Table 3.

By contrast, in the example experiment, it was not
known until the data were collected that 9 participants
would prefer the standard method and 13 would pre-
fer the new method. When the Fisher exact probabil-
ity test is used with designs in which the row and
column totals are not known in advance, it is very con-
servative, resulting in Type I error rates below the
nominal significance level.

Using the Computer

For this example, the statistical package SAS JMP
was used to compute the test. The output in Figure 1
shows the proportion preferring the new and the stan-
dard methods as a function of device. JMP automati-
cally reports the results of two methods of testing for
significance. The Pearson chi-square is the method
discussed here. As can be seen in Table 4, the chi-
square of 7.246 and probability of 0.0071 match the
results computed previously.
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Table 3 Row and Column Totals in Caffeine Study

Condition

Speed Drug Placebo Total

Fast 10
Slow 10
Total 10 10 22



Larger Designs

The example experiment is a 2 × 2 design since the
two variables (device and method) each have two
levels. The chi-square test for independence can also
be used for larger designs. For instance, the example
experiment might have used three devices and four
methods, resulting in a 3 × 4 design. The calculations
for doing the test are the same except that there are
more cells over which the values of (E – O)2/E are
summed. The degrees of freedom would be (3 – 1)
(4 – 1) = 6.

—David M. Lane

Further Reading

Bradley, D. R., Bradley, T. D., McGrath, S. G., & Cutcomb,
S. D. (1979). Type I error rate of the chi square test of
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Java applet to compute probability values for chi-square:
http://psych.rice.edu/online_stat/analysis_lab/chi_square_
prob.html

Java applet simulation of the chi-square test of association:
http://www.ruf.rice.edu/~lane/stat_sim/contingency/
index.html

CHILDREN’S ACADEMIC

INTRINSIC MOTIVATION INVENTORY

The Children’s Academic Intrinsic Motivation
Inventory (CAIMI), published by Psychological
Assessment Resources (www.parinc.com), measures
intrinsic motivation for school learning. CAIMI items
are based on theories of intrinsic motivation measur-
ing enjoyment of learning; an orientation toward
mastery; curiosity; persistence; and the learning of
challenging, difficult, and novel tasks. It is a self-
report instrument consisting of 44 items, to which
children rate their agreement or disagreement. There
are five subscales, four being subject-area specific
(reading, math, social studies, and science) and one
addressing school in general. The CAIMI was origi-
nally developed (in 1985) for students in Grades 4
through 9 and in 2001 was extended through the end
of high school. A modified downward extension
(YCAIMI) for Grades 1 through 3 was developed 
in 1990.

The CAIMI may be administered to a group or to
individuals and in a classroom or an office setting.
Children with sufficient reading ability may complete
the CAIMI on their own after instructions and practice
items are read aloud. Individual, oral administration 
is recommended for those with learning, reading, or
perceptual difficulties. Individual administration takes
approximately 20–30 minutes, and for administration
to a group, sufficient time must be allocated for
distribution and collection of materials, bringing total
time to about an hour. Percentiles and T scores are
available. Advantages of the CAIMI are that it allows
for distinguishing motivation from ability and
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Table 4 Text Output From JMP

Test Chi-square Prob > chi sq

Likelihood ratio 7.989 0.0047
Pearson 7.246 0.0071

Note: Prob = probability; chi sq = chi-square.



achievement, provides a motivational profile across
the four subject areas and for school in general, is
easily administered and scored, and may be applied to
a variety of settings. For example, the CAIMI can be
used by psychologists and practitioners; teachers and
school administrators in regular and special educa-
tion, including programs for gifted students; program
evaluators; and researchers. It has been used by school
districts to help identify children for inclusion in pro-
grams for the gifted.

The CAIMI has excellent psychometric properties
and has been used nationally and internationally. It
has been translated into several languages, including
Spanish, Japanese, Chinese, and Slovene. Major
research findings made with the CAIMI include 
the following: (a) Motivation is uniquely related to
achievement above and beyond IQ; (b) the CAIMI
provides stable measurement of children’s motivation
from upper elementary school through the end of
high school; (c) children with higher academic intrin-
sic motivation function more effectively in school
(higher achievement, more positive self-perception of
performance, lower academic anxiety, lower extrinsic
motivation) from the elementary school years
through the end of high school; (d) children whose
parents encourage intrinsic motivation and provide a
stimulating environment have greater academic
intrinsic motivation; (e) intellectually and motiva-
tionally gifted children have significantly higher aca-
demic intrinsic motivation; and (f) children with
exceptionally low motivation (motivationally dis-
advantaged children) can be identified as early as
Grade 4, and such children evidence a variety of asso-
ciated poor school functioning from that time though
the end of high school. Research has been conducted
using the CAIMI in the Fullerton Longitudinal Study,
in school settings, and with a variety of children,
including students in regular and special education
populations. Thus, the validity of the CAIMI has
been generalized across a variety of populations and
settings.

—Adele Eskeles Gottfried

See also Achievement Tests
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CLASS INTERVAL

A fundamental skill in measurement and statistics
(and all of science, for that matter) is being able to
communicate the greatest amount of information
about a data set using as little effort as possible. Such
is the case when it comes to consolidating a data set to
represent it by a frequency distribution. The first part
in the creation of a frequency distribution is the estab-
lishment of a class interval, or the range of values that
constitutes a category. A class interval is a range of
numbers. Class intervals are also called bins (some-
thing you put data in), class boundaries, and class
limits.

The first step in establishing a class interval is
defining how large each class interval will be. In the
frequency distribution in Figure 1 (based on the data
set that is also shown), each interval spans five possi-
ble scores, such as 5–9 (which includes scores 5, 6, 7,
8, and 9) and 40–44 (which includes scores 40, 41, 42,
43, and 44).

Class Interval———139



Here are some general rules to follow in the
creation of a class interval, regardless of the size of
values in the data set you are dealing with.

1. Select a class interval that has a range of 2, 5, 10, or
20 data points. In the example in Figure 1, a class
interval of 5 was used.

2. Select a class interval so that 10 to 20 such intervals
cover the entire range of data. A convenient way to
do this is to compute the range, then divide by a
number that represents the number of intervals you
want to use (between 10 and 20). In this example,
there are 50 scores, and 10 intervals are being used,
so 50/10 = 5, which is the size of each class inter-
val. For example, if scores ranged from 100 to 400,
300/20 = 15, so 15 would be the class interval.

3. Begin listing the class interval with a multiple of
that interval. In the sample frequency distribution,
the class interval is 5 and it started with the lowest
class interval of 0.

4. Finally, place the largest interval at the top of the
frequency distribution.

Once class intervals are created, the frequency part
of the frequency distribution can be completed. That
includes counting the number of times a score occurs
in the raw data and entering that number in each of the
class intervals represented by the count.

—Neil J. Salkind

See also Frequency Distribution

Further Reading

Pfeiffer, C., Windzio, M., & Kleimann, M. (2005). Media use and
its impacts on crime perception, sentencing attitudes and crime
policy. European Journal of Criminology, 2(3), 259–285. 

Class interval discussion: Scale and impression: http://
www.shodor.org/interactivate/discussions/sd2.html

CLASSICAL TEST THEORY

The first theory of measurement has been named clas-
sical test theory (CTT) because it was formulated
from simple assumptions made by test theorists at the
start of testing. It is also called the theory of true and
error scores, because it is thought to comprise both
true scores and error, and classical reliability theory,
since its major function is to evaluate the reliability of
the observed scores on a test; that is, it calculates the
strength of the relationship between the observed
score and the true score.

CTT makes use of a number of models considered
as a group and various procedures with which the test
developer tries to provide solutions to complicated
problems in order to measure psychological variables.
Psychologists are not interested in the score itself but
in the conclusions they can draw and the explanations
they can make on the basis of the measured behavior
of an individual.
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Class Interval Frequency

45–49 1

40–44 2

35–39 4

30–34 8

25–29 10

20–24 10

15–19 8

10–14 4

5–9 2

0–4 1

The raw data . . .

47 10 31 25 20

2 11 31 25 21

44 14 15 26 21

41 14 16 26 21

7 30 17 27 24

6 30 16 29 24

35 32 15 29 23

38 33 19 28 20

35 34 18 29 21

36 32 16 27 20

The frequency distribution . . .

Figure 1 Frequency Distribution



Assumptions of CTT

CTT views a test score as having two components, the
true score and a random error. The true score is con-
sidered the average of identical values taken from
repeated measurements without limit. The error is
regarded as unrelated either to the true score or to the
error that can occur in another measurement of the same
attribute. Although the theory is an oversimplification
and does not represent the results, it brings out relation-
ships that are informative and useful in test design and
construction as well as in evaluation of test scores. The
first basic assumption of CTT is that the obtained score
is the sum of true score plus error; that is, the true score
and the error score are inextricably mixed. This concept
can be expressed as a simple equation:

X = T + E,

where 

X is the obtained score,

T is the true score, and 

E represents errors of measurement. 

It must be pointed out that the true score is never
known. It remains within a certain interval, however,
and a best estimate of it can be obtained.

Measurement error is all things except the true
score. Errors of measurement can arise from numer-
ous sources, such as item selection, test adminis-
tration, test scoring, and systematic errors of
measurement. The first three sources of error are
jointly called unsystematic measurement error, mean-
ing that their impact is unexpected and inconsistent. 
A systematic measurement error occurs when a test
consistently measures something different from the
trait it was designed to measure.

Measurement error reduces reliability or repeata-
bility of test results. The assumption that the obtained
score is made up of the true score and the error score
reveals several additional assumptions. An assump-
tion derived from true scores is that unsystematic
measurement error affects test scores randomly. The
randomness of measurement error is a fundamental
assumption of CTT. Since there are random events,

unsystematic measurement errors have some proba-
bility of being positive or negative, and consequently
they amount to an average of zero across a large group
of subjects. It follows that the mean error of measure-
ment is zero. Another assumption of CTT is that mea-
surement errors are not correlated with true scores. 
A final assumption is that measurement errors are not
correlated with errors on other tests. All these assump-
tions can be summarized as follows: (a) Measurement
errors are random, (b) the mean error of measurement
is zero, (c) true scores and error are uncorrelated, and
(d) errors on different tests are uncorrelated.

From the aforementioned assumptions, we can
arrive at some significant conclusions about the relia-
bility of measurement; for example, when we adminis-
ter a test to a large number of persons, we find
variability of scores that can be expressed as a variance,
σ2. According to CTT, the variance of obtained scores
has two separate sources, the variance of the true score
and the variance of errors of measurement, or 

σX
2 = σT

2 + σE
2,

where

σX
2 is the variance of obtained scores,

σT
2 is the variance of true scores, and 

σE
2 is the variance errors of measurement. 

The second basic assumption of CTT is that of
parallel tests. The term parallel tests comes from the
fact that each individual item can be viewed as a test;
that is, each item coincides with the value of the
latent variable. The assumption of the parallel tests
model is satisfactory because it leads to useful con-
clusions about the relationships of the individual
items to the latent variable that are grounded in obser-
vations of the relations of the items to one another.
Thus, the parallel tests model adds two assumptions
to CTT:

1. The amount that the latent variable affects each
item is regarded as the same for all items.

2. Each item is considered to have the same amount of
error as any other item. This means that the factors
affect all items equally.
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These assumptions imply that the correlation of
each item with the true score is identical, and this con-
clusion leads to quantifying reliability.

In summary, the parallel tests model presupposes:
(a) random error, (b) errors that are uncorrelated with
each other, (c) errors that are uncorrelated with the
true score, (d) the latent variable’s influencing all
items equally, and (e) an equal amount of error for
every item. Thus the model allows us to make infer-
ences about the latent variable that are grounded in the
correlation between the items. However, the model
achieves this by proposing strict assumptions.

Alternative Models 
to the Parallel Model

Apart from the strict assumptions referred to above,
useful inferences can be made with less-rigid assump-
tions. Another model is based on what is called essen-
tially tau-equivalent tests and makes a more tolerant
assumption, namely, that each item requires the same
amount of error variance that other items have. This
means that the items are parallel with regard to the
latent variable but are not essentially affected to the
same degree by extraneous factors that are called
error. Thus, since error can vary, item means and item
variances can also vary. This model allows us to reach
the same conclusion as the parallel tests model does,
but with more lenient assumptions.

However, some theorists think that even the essen-
tially tau-equivalent model is too rigid. For this rea-
son, they put forward what is called the congeneric
model, with even more liberal assumptions. The
model assumes only that all items have a common
latent variable. The items do not have equally strong
relationships to the latent variable, and their error
variances are not required to be equal. The only thing
that we must assume is that each item exhibits the true
score to some degree.

A Brief History of CTT

In 1904, Charles Spearman put forward CTT, and 
it is still flourishing. Spearman developed CTT by
combining the concept of error with the concept of

correlation. He argued that test scores have an error
when we measure a human trait, and thus the observed
correlation between test scores is lower than the
correlation between true scores. Later, other authors
restated and worked out the theory. Guilford, for
example, tried to synthesize the developments that
had taken place in CTT through 1936, Gulliksen gave
a detailed account of all the progress through 1950 in
his classic work, Theory of Mental Tests, and Lord and
Novick reanalyzed CTT and combined it with new
psychometric theories in 1968. However, the early
days of the theory were rather difficult because of the
quantitative atmosphere prevalent at that time, and its
acceptance was lukewarm at first. However, before
long, tests were constructed based on CTT, psycho-
metric technology grew at a rapid rate, significant
progress was achieved in psychological assessment,
and thus the theory was extended and stabilized.

Controversies Surrounding 
CTT and Its Impact

CTT is criticized because of its simplicity and because
the concept of true score is only a notion. However,
new theories, such as item response theory (IRT) 
and generalizability theory supplement CTT and can
never replace it. Most psychological tests currently
available are constructed according to CTT. This
means that new theories have to be combined with
CTT in order to surmount the problems associated
with it.

CTT is characterized by its simplicity and flexibil-
ity and for this reason can be used in many different
circumstances. These qualities guarantee that CTT
will be used over and over again in the future.
Moreover, the new psychometric models that
comprise item response theory, although they have
developed rapidly in the past 35 years, have also
demonstrated unfulfilled assumptions and uninter-
pretable parameters, as well as estimation difficulties.
For these reasons, the two- and three-parameter mod-
els may become less popular in the future. This may
lead to revival of interest in CTT, and its use and prac-
tice may extend further. Furthermore, the availability
and development of computers will make calculating
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true score, establishing norms, and equating tests easier,
no doubt increasing the use of CTT even further.

—Demetrios S. Alexopoulos

See also Item Response Theory; Reliability Theory; Validity
Theory
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CLASSIFICATION

AND REGRESSION TREE

Classification and regression tree (CART) is a
machine learning (or classification) algorithm that
constructs a tree-structured classifier to assign group
labels to each case based on its attributes. The result-
ing tree-structured classifier is usually ideal for inter-
pretation and decision making. The algorithm requires
that for each case in the data, there be two variables.
The first is the group variable to be classified and pre-
dicted (such as disease status or treatment), and the
second is the variable of attributes that can be multi-
dimensional numerical or categorical data (such as
smoking status, sex, or abundance of various enzymes
in blood). Normally, the method is implemented in a
set of training cases to learn a classifier. The classifier
is then applied to an independent test set to evaluate
the generalized classification accuracy.

CART analysis is performed as a binary recursive
partition tree. An impurity measure is defined to
describe the purity (concentration in a single group) of
cases in a node. The algorithm recursively searches for

the attribute criterion that partitions data into two parts
with the largest decrease of impurity measure. Normally,
the Gini impurity index is used in CART analysis:

where 

T is the data set in the node,

m the number of groups, and 

pi the proportion of group i in the node. 

When all cases in the node belong to the same group
(the purest case), I(T) is minimized at 0, and when
each group has the same proportion (the most impure
case), I(T) is maximized. The partition of the hierar-
chical tree continues until either the number of cases
in the node is too small or the decrease of the impurity
index is not statistically significant. Additional prun-
ing rules may be applied to decide termination of tree
growth to prevent a problem of overfitting.

CART has a number of merits compared with other
classification algorithms. The method is inherently
nonparametric without a distribution assumption of
the data (in contrast to methods like linear discrimi-
nant analysis). It is thus more robust against skewed or
ill-behaved distributed data. Learning in CART is a
“white” box, and the learned classification criteria are
easy to interpret. Thus CART is most applicable in sit-
uations when interpretation and learning of important
attributes contributing to classification are the major
goals in the application. CART by its nature can easily
handle categorical and ordinal data in addition to
numerical data. Finally, computation of an exhaustive
search for the best partition is very fast, making the
method feasible for large data sets.

Software Package

Since CART is a relatively modern statistical tech-
nique, it is not implemented in most major statistical
software (e.g., SAS and S-PLUS). SPSS contains an
add-on module, “SPSS Classification Trees.” A com-
mercial software, “Classification and Regression Tree,”
specifically for CART analysis, is also available. In the
following discussion, an extension package “tree” of
the free software R is used to implement CART.

I (T ) = 1 −
∑m

i=1
p2

i ,
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An Example

An example of classification of car fuel efficiency is
demonstrated as follows. The data shown in Table 1
are a random subsample of 25 cars from the 
“auto-mpg” data set from the UCI
Machine Learning Repository (http://
www.ics.uci.edu/~mlearn/MLRepository
.html). The group variable for classifica-
tion is “efficiency,” which has two pos-
sible values: inefficient (mpg < 25) and
economic (mpg ≥ 25). Five attributes 
for classifying and predicting fuel
efficiency are available for prediction:
cylinders, displacement, horsepower,
weight, and acceleration.

The CART output of this example
is shown in Figure 1. The top node

represents the whole data set, containing 10
economic and 15 inefficient cars. The algorithm
finds that the best way to classify car fuel effi-
ciency is “whether the displacement is larger than
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Table 1 MPG for a Select Group of Cars

Car Efficiency Cylinders Displacement Horsepower Weight Acceleration

1 Inefficient 4 151 85 2855 17.6
2 Economic 4 98 76 2144 14.7
3 Economic 5 121 67 2950 19.9
4 Inefficient 6 250 105 3353 14.5
5 Inefficient 4 151 88 2740 16
6 Inefficient 6 250 88 3021 16.5
7 Economic 4 71 65 1836 21
8 Economic 4 112 88 2395 18
9 Economic 4 141 71 3190 24.8

10 Inefficient 8 350 155 4360 14.9
11 Inefficient 4 98 60 2164 22.1
12 Economic 6 262 85 3015 17
13 Inefficient 6 200 85 3070 16.7
14 Inefficient 6 258 110 2962 13.5
15 Inefficient 4 116 75 2158 15.5
16 Inefficient 4 140 72 2401 19.5
17 Inefficient 8 350 180 4499 12.5
18 Inefficient 8 307 200 4376 15
19 Inefficient 8 318 140 3735 13.2
20 Economic 4 78 52 1985 19.4
21 Economic 4 89 71 1990 14.9
22 Economic 4 97 75 2265 18.2
23 Inefficient 6 250 98 3525 19
24 Economic 4 83 61 2003 19
25 Inefficient 8 302 140 3449 10.5

displacement < 146

Economic: 10
Inefficient: 15

Economic: 1
Inefficient: 12

Economic: 9
Inefficient: 3

Node 3
Economic: 1
Inefficient: 4

Node 2
Economic: 4
Inefficient: 3

Node 1
Economic: 5
Inefficient: 0

Node 4
Economic: 0
Inefficient: 8

YES

YES

YES

NO

NO NO

horsepower < 93horsepower < 93displacement < 97.5displacement < 97.5

Figure 1 CART Output of Classification of Car Fuel Efficiency



146 or not.” This will split the data into two
groups. The first (“YES”) group (displacement <
146) contains 9 economic and 3 inefficient cars,
and the second (“NO”) group (displacement >
146) contains 1 economic and 12 inefficient cars.
Similarly, the “displacement < 146” group is best
split into Node 1 (displacement < 97.5) and Node
2 (97.5 < displacement < 146). The “displacement
> 146” group is split by horsepower to generate
Node 3 (displacement > 146 & horsepower < 93)
and Node 4 (displacement > 146 & horsepower >
93). All nodes except for Node 2 have high classi-
fication accuracy in this training data. It should be
noted that attributes used for classification may
appear repeatedly in different branches (e.g., dis-
placement in this example). Figure 2 demonstrates
a scatter plot of the 25 cars. The solid lines repre-
sent the splitting rules in the branches of the
CART output.

—George C. Tseng

Further Reading

Breiman, L. (1984). Classification and regression trees. Boca
Raton, FL: Chapman & Hall/CRC.

Classification and regression tree downloads: http://cran.au
.r-project.org/src/contrib/Descriptions/tree.html

CLINICAL ASSESSMENT

OF ATTENTION DEFICIT

The Clinical Assessment of Attention Deficit (CAT)
consists of two comprehensive assessment tools for
the objective evaluation of attention deficit dis-
order and attention deficit/hyperactivity disorder
(ADD/ADHD) symptoms in children, adolescents,
and adults between 8 and 79 years of age. The CAT
is especially useful in clinical, educational, and
research settings because it is theoretically con-
ceived and psychometrically sound. Although the
CAT is very comprehensive in the context-related
behaviors and experiences it assesses, it is brief
(10–20 minutes) and easily administered. The CAT
can be (a) administered individually or in groups, (b)
mailed to respondents’ homes to be completed and
returned, or (c) completed in its paper-and-pencil
format in a professional’s office. The CAT Scoring
Program performs all scoring and profiling of the
assessment and provides a very thorough interpreta-
tive report.

The CAT includes a 108-item instrument for
adults (CAT-A) and a 42-item instrument for
children and adolescents (CAT-C). These instru-
ments are very similar in structure, format, and item
content. Each instrument assesses important clinical
behaviors related to ADD with and without hyper-
activity (as outlined in the American Psychiatric
Association’s Diagnostic and Statistical Manual of
Mental Disorders, 4th ed., text rev.) via three clinical
scales (inattention, impulsivity, and hyperactivity).
Both instruments consider these important clinical
behaviors within multiple contexts (as suggested by
the American Academy of Pediatrics) by means of
the CAT context scales (personal, academic/occupa-
tional, and social) and within an individual’s per-
sonal experiences through the CAT locus scales
(internal and external). Figure 1 depicts the CAT the-
oretical model and shows the clinical, context, and
locus scales. The CAT-C and CAT-A assess the 
same clinical behaviors within the same contexts and
consider the same internal feelings and external
behaviors.
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The minor differences between the two instruments
are primarily age-related considerations. Because
adult diagnosis of ADD/ADHD requires evidence 
of both childhood onset and current symptoms, the
CAT-A is composed of two subparts: Part I, Current
Symptoms, and Part II, Childhood Memories. In
contrast, CAT-C assesses only current ADD/ADHD
symptoms and therefore is not divided into age-
related subparts. Also, CAT-A includes only a self-
report form due to the limited availability of raters
who could accurately recall an adult client’s child-
hood behaviors. CAT-C includes forms for self,
parent, and teacher because of readily available
respondents who can reliably report on a child’s
current behaviors across multiple settings.

CAT normative samples and total scale (Clinical
Index) coefficient alpha reliabilities are quite consis-
tent across instruments and forms. The CAT-C self
form was normed on 800 children and adolescents 8
to 18 years old; the CAT-C parent form was normed
using the ratings from the parents of the 800 children
and adolescents who completed the self form. The
CAT-C teacher form also was normed on 550 teachers
of the same children and adolescents who completed

the self form. CAT-A was normed on 800 adults
ranging from 19 to 79 years old. CAT-C Clinical
Index internal consistency coefficients range from 
.92 on the self form to .98 on the teacher form. The 
CAT-A Clinical Index is .94 for Childhood Memories
and .91 for Current Symptoms, with an overall CAT-A
Clinical Index (i.e., combining Childhood Memories
and Current Symptoms) of .96.

—Bruce A. Bracken

Further Reading

American Academy of Pediatrics. (2000). Clinical practice
guideline: Diagnosis and evaluation of the child with
attention-deficit/hyperactivity disorder. Pediatrics, 105I,
1158–1170.

American Psychiatric Association. (2000). Diagnostic and sta-
tistical manual of mental disorders (4th ed., text rev.).
Washington, DC: Author.

Bracken, B. A., & Boatwright, B. S. (2005). Clinical assess-
ment of attention deficit—adult. Lutz, FL: Psychological
Assessment Resources.

Bracken, B. A., & Boatwright, B. S. (2005). Clinical assess-
ment of attention deficit—child. Lutz, FL: Psychological
Assessment Resources.
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Context Scales Clinical Subscales
Locus Scales

Personal Inattention Impulsivity Hyperactivity

Internal I was bored easily. I was impatient. I often felt nervous.
--------------------------------------------------------------------------------------------------------------

External It seems I was always I acted without thinking. I was extremely 
spilling something. active.

Academic
Occupational

Internal I daydreamed a lot I often regretted my I felt very restless
in school. actions in school. in school.
---------------------------------------------------------------------------------------------------------------

External I was frequently I blurted out answers I talked too much
tardy for class. to questions in class. in school.

Social

Internal I often could not recall I made quick judgments I always had more
the names of people about other people. energy than my friends.
I met.
---------------------------------------------------------------------------------------------------------------

External When playing games, I took more risks I rarely played
I often played out than my friends. quietly with my friends.
of turn.

Figure 1 CAT-A Conceptual Blueprint (Sample Items From the Childhood Memories Scale)



CLINICAL ASSESSMENT

OF BEHAVIOR

The Clinical Assessment of Behavior (CAB) is a com-
prehensive, third-party rating scale for the behavioral
assessment of children and adolescents ages 2 to 
18 years. The two parent forms (a 170-item CAB—
Parent Extended form and a 70-item CAB—Parent
form) and the 70-item teacher form (CAB—Teacher)
allow for a balanced assessment of both adaptive and
clinical (i.e., maladaptive) behaviors across various
settings, contexts, and raters. With a single set of
items spanning the age range of 2 to 18 years, the
CAB permits a longitudinal evaluation of symptoms
throughout the course of an individual’s treatment,
without the introduction of potentially
incompatible instruments into the eval-
uation process as the individual ages.

The CAB structural content includes
3 adaptive and 3 clinical scales and 
2 adaptive and 10 clinical clusters.
Whereas the CAB scales were
designed to reflect “broad brush” psy-
chosocial adjustment domains, CAB
clusters reflect specific areas of excep-
tionality or disorder. Table 1 illustrates
the exceptionalities, disorders, and
conditions assessed by the CAB scales
and clusters across the three forms.
Table 1 also presents coefficient alpha
reliability indices for each scale and
cluster for the standardization sample.
With its close alignment to the
diagnostic criteria of the American
Psychiatric Association’s Diagnostic
and Statistical Manual of Mental
Disorders (4th ed., text rev.), legislative
mandates of the Individuals with
Disabilities Education Act, and a
context-dependent model of psychoso-
cial adjustment, the CAB augments the
diagnosis of childhood and adolescent
psychiatric disorders with comprehen-
sive behavioral content.

The CAB forms require an eighth-grade reading
level of respondents and 5–10 minutes to complete 
the CAB-P and CAB-T forms (the CAB-PX requires
10–20 minutes). Because it is brief and easy to read, the
CAB can be completed by raters without the aid of psy-
chologists, thus rendering the evaluation process more
efficient than if parents and teachers were to be inter-
viewed. Furthermore, the CAB is computer scored 
and interpreted, and the resulting data are profiled 
and reported for professional interpretation and use.

A relatively unique application of the CAB is the
ability for professionals to use its data to identify spe-
cific behaviors associated with educationally relevant
exceptionalities (e.g., mental retardation, learning
disabilities, giftedness and talent, attention deficit
disorder, and attention deficit/hyperactivity disorder).
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Table 1 CAB Scales, Clusters, and Coefficient Alpha Reliabilities 
for the CAB-PX, CAB-P, and CAB-T

Scale/Cluster CAB-PX CAB-P CAB-T

Clinical scales
Internalizing behaviors .95 .89 .92
Externalizing behaviors .97 .95 .98
Critical behaviors .91 — —

Adaptive scales
Social skills .95 .92 .96
Competence .94 .92 .96
Adaptive behaviors .92 — —

Clinical clusters
Anxiety .93 .88 .92
Depression .95 .90 .93
Anger .93 .90 .94
Aggression .95 .92 .97
Bullying .97 .94 .97
Conduct problems .92 .90 .96
Attention deficit/hyperactivity .94 .94 .97
Autistic spectrum disorders .92 .89 .93
Learning disability .92 .90 .95
Mental retardation .91 .90 .95

Adaptive clusters
Executive function .91 .91 .95
Gifted and talented .94 .92 .96

CAB Behavioral Index .98 .97 .99

Notes: CAB = Clinical Assessment of Behavior; PX = Parent Extended form; 
P = Parent form; T = Teacher form.



Too often, educational exceptionalities are diagnosed
with only ability measures (e.g., intelligence tests,
achievement tests, perceptual/motor tests) and without
questioning whether a student’s behaviors are
consistent with the considered diagnosis. The CAB
allows third-party respondents to indicate the fre-
quency with which they observe the child or
adolescent demonstrating behavioral characteristics
associated with specific educational exceptionalities.
Such information provides a multisource, multicon-
text way to corroborate referral information and
ability test data with behavioral indices.

Standardized on more than 2,100 parents and 1,600
teachers, the CAB normative sample is highly represen-
tative of the U.S. population. An examination of the
extent to which students’ behavioral functioning is
associated with their demographic characteristics 
(age, gender, race/ethnicity, parents’ educational levels)
revealed that generally 3% or less of the variance in the
CAB parent-generated ratings was associated with the
demographic attributes evaluated. Approximately 9% or
less of the variance in teachers’ ratings was associated
with demographic attributes. These empirical findings,
along with comparable reliability coefficients for all
age, gender, and ethnic/racial groups, suggest that the
CAB may provide the basis for an equitable behavioral
assessment regardless of a student’s age, gender,
race/ethnicity, or socioeconomic status.

—Bruce A. Bracken

Further Reading

American Psychiatric Association. (2000). Diagnostic and
statistical manual of mental disorders (4th ed., text rev.).
Washington, DC: Author.

Bracken, B. A. (1992). Multidimensional self concept scale.
Austin, TX: PRO-ED.

Bracken, B. A. (1996). Clinical applications of a multidimen-
sional, context-dependent model of self-concept. In B. A.
Bracken (Ed.), Handbook of self concept: Developmental,
social, and clinical considerations (pp. 463–505). New
York: Wiley. 

Bracken, B. A., & Keith, L. K. (2004). Clinical assessment of
behavior. Lutz, FL: Psychological Assessment Resources.

Individuals with Disabilities Education Act Amendments of
1997, Pub. L. No. 103-218 (GPO 1997).

CLINICAL ASSESSMENT

OF DEPRESSION

The Clinical Assessment of Depression (CAD) is 
a comprehensive assessment of children’s, adoles-
cents’, and adults’ depressive symptoms. CAD con-
tent was developed from a review of the literature
pertaining to child, adolescent, and adult development
and depression and was closely aligned with current
diagnostic criteria of the American Psychiatric
Association’s Diagnostic and Statistical Manual of
Mental Disorders (4th ed., text rev.). 

Notably, the CAD employs a single 50-item form as
an overall measure of general affectivity. This compre-
hensive set of depressive symptoms was employed 
in part to test previous assumptions that the nature 
of depression varies across the age span. Multidimen-
sionality was added to the instrument through the
inclusion of symptom scales and critical item clusters
sensitive to specific dimensions of depression. The
CAD produces a total scale score and standard scores
for each of four symptom scales and six clusters. The
CAD critical item clusters (e.g., Hopelessness, Self-
Devaluation) include item content that is especially sen-
sitive to individuals who may be at risk for harming
themselves. Table 1 shows the full range of affective
symptoms assessed on the CAD and its symptom scales.

The CAD was normed on a sample of 1,900 children,
adolescents, and adults aged 8 through 79 years. The
normative sample included individuals from a wide
range of racial and ethnic backgrounds, geographical
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Table 1 Coefficient Alpha Reliabilities for the CAD
Symptom Scales by Age

Age in Years

8–11 12–17 18–25 26–79

Depressed mood .95 .96 .96 .95
Anxiety/worry .83 .85 .83 .86
Diminished interest .78 .85 .85 .86
Cognitive and

physical fatigue .82 .83 .85 .87
CAD total scale .96 .97 .96 .97



regions of the United States, and residential communi-
ties (urban, suburban, and rural). Table 1 also presents
the instrument’s total sample symptom scale and total
scale internal consistency estimates; CAD total scale
reliabilities range from .96 to .97 across the entire age
range. Less than 1% of the total scale variability is asso-
ciated with examinees’ age, gender, race/ethnicity, or
socioeconomic status. Overall, data from CAD reliabil-
ity and validity studies suggest that depressive symp-
toms are common and behave similarly, regardless of
the demographic characteristics of the examinee.

The CAD has multiple applications, with broad
uses in clinical, educational, and research settings.
Although it is very comprehensive as a measure of
depressive symptomatology, the CAD is appropriately
brief (10 minutes) for use with depressed clients and
is easily administered. Because the CAD is a self-
report instrument requiring only a fourth-grade
reading level, it can be completed by most clients,
regardless of age, without help from an examiner.
Maximizing scoring and interpretation efficiency, the
CAD can be scored either by hand or by computer by
individuals with little psychometric training, and
resulting data can be collated, profiled, and reported
for professional interpretation and use.

—Bruce A. Bracken

Further Reading

American Psychiatric Association. (2000). Diagnostic and
statistical manual of mental disorders (4th ed., text rev.).
Washington, DC: Author.

Bracken, B. A., & Howell, K. K. (2005). Clinical assessment of
depression. Lutz, FL: Psychological Assessment Resources.

Finch, S. M. (1960). Fundamentals of child psychiatry. New
York: Norton.

Rie, F. H. (1966). Depression in childhood: A survey of some
pertinent contributions. Journal of Child Psychology and
Psychiatry and Applied Disciplines, 35(7), 1289–1308.

CLUSTER ANALYSIS

The objective of cluster analysis is to construct a
natural grouping of the objects in a multivariate data

set. The grouping captures “similarities” between the
objects according to some criterion. An ideal outcome
is one in which the objects belonging to the same
group are as similar as possible, whereas objects
belonging to different groups are as dissimilar as pos-
sible. Cluster analysis has proved to be a successful
data reduction technique in many scientific fields.

The main steps in cluster analysis are (a) the choice
of algorithms for constructing groups (clusters) and
(b) the choice of a similarity-dissimilarity measure.
Popular choices of dissimilarity measures are various
distances, such as Euclidean or Manhattan. An inter-
esting, robust distance measure is discussed in
Kaufman and Rousseeuw.

Clustering Algorithms

Clustering algorithms can be classified into two
groups: (a) partition methods and (b) hierarchical
methods. Partition methods create a family of clusters
in which each object belongs to just a single member
of the partition. The requirement to generate such par-
titions is that distances between pairs of objects
belonging to the same cluster are smaller than dis-
tances between pairs of objects in different clusters.
Formally, suppose that objects i and j belong to clus-
ter A, while object k belongs to cluster B. It is then
required that dij < dik and dij < djk, where dij denotes 
a dissimilarity measure for objects i and j. The most
prominent partition algorithm is k - means. A more
robust alternative (partitioning around medoids) is
discussed in Kaufman and Rousseeuw, while a model-
based version is presented in Banfield and Raftery.

Agglomerative hierarchical algorithms construct a
clustering solution that is represented by a tree (den-
drogram). Their characteristic feature is that either
any two clusters are disjoint or one cluster is a super-
set of the other. It is usually required for the dissimi-
larity measure to be an ultrametric; in other words, for
every triple set of objects (i, j, k) we have, the two
largest values in the set {dij, djk, dik} are equal. An
agglomerative algorithm starts with as many clusters
as objects in the data set and progressively merges
them, based on the shortest distance between them,
until each object has been assigned to a single cluster.
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The mechanism used for merging clusters is based on
a distance measure between groups. Some common
possibilities include the shortest distance between
members of the two groups (single linkage), the
largest one (complete linkage), the average distance
(average linkage), and the Euclidean distance between
the averages of the clusters (centroid method). Some
other choices are discussed in Gordon.

An important practical consideration is that since
cluster analysis is driven by the distance between
objects, variables need to be scaled appropriately so as
not to exert excessive influence on the distance
measure.

—George Michailidis

See also Factor Analysis 

Further Reading

Banfield, J. D., & Raftery, A. E. (1993). Model-based
Gaussian and non-Gaussian clustering. Biometrics, 49,
803–821.

Everitt, B. S., Landau, S., & Leese, M. (2001). Cluster analy-
sis. London: Hodder Arnold. 

Gordon, A. D. (1999). Classification. London: Chapman &
Hall. 

Kaufman, L., & Rousseeuw, P. J. (1990). Finding groups in
data. New York: Wiley.

Mirkin, B. (2005). Clustering for data mining: A data recovery
approach. London: Chapman & Hall. 

CLUSTER SAMPLING

A cluster sample is a type of sample generated for 
the purposes of describing a population in which the
units, or elements, of the population are organized
into groups, called clusters. The goal of a survey is to
gather data in order to describe the characteristics of
a population. A population can consist of individuals,
school districts, plots of land, or a company’s
invoices. A survey collects information on a sample,
or subset, of the population. In cluster sampling,
instead of choosing individuals to interview or units
on which to record data directly, the survey
researcher first chooses clusters of elements. Once

clusters are selected, one often then samples elements
from within the selected clusters and collects data on
them. A survey following this procedure with two
stages of random selection of units is called a two-
stage cluster sample. A survey that selects units using
three or more stages of random selection is called 
a three-stage or a multistage cluster sample. The
groups of units selected at the first stage of sampling
are called primary sampling units (PSUs). The
groups selected at the second stage are called sec-
ondary sampling units (SSUs). The elements selected
at the final stage can be referred to as the ultimate
sampling units.

Cluster sampling is used widely in large-scale offi-
cial surveys. The U.S. Department of Agriculture’s
National Resources Inventory study selects land areas,
called segments, as PSUs. It then selects points,
defined by latitude and longitude, as SSUs. The U.S.
Bureau of Labor’s Current Population Survey, which
is conducted by the U.S. Bureau of the Census, selects
counties as PSUs and then households within coun-
ties. Surveys of school students organized by the
National Center for Education Statistics and surveys
focused on health and nutrition designed by the
National Center for Health Statistics rely on sampling
designs that involve clustering.

Cluster sampling can be a type of probability sam-
pling, which means that it is possible to compute the
probability of selecting any particular sample. The
main benefit of probability sampling is that one can
estimate means, proportions, and variances without
the problem of selection bias. In comparison with
simple random sampling (SRS), in which units are
selected directly from the population list or frame,
estimates from a cluster sample design usually have
greater variability or random uncertainty. The increase
in variance of estimators occurs because each initial
selection of a cluster means that multiple units ulti-
mately will be in the sample. Units clustered together
typically are more alike than randomly selected units
from across the entire population. As a result, each
initial selection under cluster sampling has more
impact on resulting estimates than it does under SRS.
If clusters are small and if two or more stages of ran-
dom selection are used, the impact of cluster sampling
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on variances is not too large. The main advantage of
cluster sampling is convenience and reduced cost. If
one wanted to interview high school students or look
at their transcripts in the state of Iowa, an SRS would
require sending data collectors all over the state and
negotiating permissions with numerous school dis-
tricts to interview students and look at confidential
data. A cluster sample could first select school dis-
tricts and then schools within districts before selecting
students. Fewer schools would need to be visited,
thereby reducing travel and setup costs and time.
Although cluster sampling is convenient, it is not the
same thing as convenience sampling, which is a type
of nonprobability sampling.

Cluster sampling can be combined with stratifica-
tion to reduce the variance of estimators. Stratification
is the process of dividing the units, or clusters, in a
population into strata, or groups. Although similar to
cluster sampling, in which several clusters are
selected to be in the sample, stratified sampling entails
selecting independent samples within every stratum.
Stratified sampling typically reduces variance of esti-
mators by forcing the sample to include representa-
tives of all strata. In a survey of high school students
in Iowa, the school districts could be stratified into the
twelve Area Education Agencies within the state, and
then a multistage sample of students could be selected
within each Area Education Agency. Stratified 
cluster samples aim to combine the convenience of
cluster sampling with precise estimation produced by
stratification.

—Michael D. Larsen

See also Probability Sampling 

Further Reading

Cochran, W.G. (1977). Sampling techniques. New York: Wiley. 
Henry, G. T. (1990). Practical sampling. Newbury Park, CA:
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Kish, L. (1965). Survey sampling. New York: Wiley. 
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Applying Ideas on Statistics and Measurement

The following abstract is adapted from Burnham,
K. P., & Anderson, D. R. (2004). Multimodel infer-
ence: Understanding AIC and BIC in model selec-
tion. Sociological Methods & Research, 33(2),
261–304. 

This article demonstrates the use of stratified
and cluster sampling to draw a sample from the
U.S. Census Archives for California in 1880. This
is a useful exercise for courses in research design
and also provides an efficient method for taking
samples for historical research. With relatively
little effort spent on data collection and data
entry, useful knowledge about California in 1880
was acquired pertaining to marriage patterns,
migration patterns, occupational status, and cate-
gories of race and ethnicity.

COCHRAN Q TEST

In a randomized complete block design, it is often of
interest to examine a set of c binary responses per-
taining to the levels of some treatment condition pro-
vided either by a sample of participants used as their
own controls to make these assessments or by a sam-
ple of c matched participants randomly assigned to
each treatment level as members of a block. In 1950,
the statistician William G. Cochran developed a test
for the differences in the proportions of “success”
among the treatment levels in c related groups in
which the repeated measurements provided by each
participant under c different conditions or the mea-
surements provided by the c homogeneous partici-
pants in each block are binary responses, with success
coded 1 and “failure” coded 0.

The Cochran Q test is a dichotomous data counter-
part of another nonparametric procedure, the Friedman
rank test, in which the responses to the c treatment
levels within each block are ranked. Both these
procedures are competitors of the classic two-way
ANOVA randomized block F test, in which the
responses to each treatment are measured on an inter-
val or ratio scale and the assumption of underlying
normality of the different treatment groups is made.
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Motivation

Cochran’s Q test has enjoyed
widespread use in behavioral, business,
educational, medical, and social science
research when it may be desirable to
evaluate possible significance of differ-
ences in the proportion of successes
over several treatment groups.

As an example of a study in which
each participant offers repeated mea-
surements, one each for the c levels of
the treatment or condition under evalu-
ation, the efficacy of c different drugs
prescribed for providing relief from
some chronic condition may be inves-
tigated. Other examples of this type
could involve taste testing wines or
other consumer preference studies in
which each of c items is classified as
“acceptable” or “not acceptable.” As an example of
a randomized complete block experiment in which
the c homogeneous members of a block are ran-
domly assigned, one each, to the c levels of the
treatment, an educator may wish to form sets of
homogeneous blocks of students and randomly
assign the members of the block to each of c learn-
ing methods with the goal of assessing whether
there are significant differences among the learning
methods based on the proportions of successes
observed.

Development

The layout for the dichotomous responses from a sam-
ple of either r participants or r blocks of matched
participants over c levels of a treatment condition is
shown in Table 1.

Cochran’s Q test statistic is given by

where 

c is the number of treatment groups (i.e., columns),

r is the number of blocks (i.e., rows of subjects),

xij is the binary response (success = 1, failure = 0) for the
jth treatment in the ith block,

x.j is the total number of successes for treatment j,

xi. is the total number of successes for block i, and

= the total number of successes.

As the number of “discriminating” blocks (i.e.,
those in which outcomes for the c treatments are not
either all 1s or all 0s) gets large, the Cochran Q test
statistic is approximated by a chi-square distribution
with c −− 1 degrees of freedom. The decision rule is to
reject the null hypothesis of no differences (i.e., no
treatment effect), H0: p.1 = p.2 = - - - = p.c, if at the 
α level of significance, Q > χ2

α,(c−1).
The researchers M. W. Tate and S. W. Brown rec-

ommended that there be at least seven such discrimi-
nating blocks in studies for which four treatment
levels are involved in order to use the chi-square dis-
tribution as an approximation to Q, and both they and
the statistician K. D. Patil provided tables of critical

N =
c∑

j=1

x.j =
r∑

i=1

xi.

Q =
(c − 1)(c

c∑

j=1
x2

.j − N 2)

cN −
r∑

i=1
x2

i.

,
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Table 1 Data Layout for the Cochran Q Test 

Treatments

Block 1 2 … c Totals

1 x11 x12 … x1c x1.

2 x21 x22 … x2c x2.

r xr1 xr2 … xrc xr

Totals x.1 x.2 … x.c N
Proportion
of “Success” …

Notes: c = the number of treatment groups (i.e., columns); r = the number of
blocks (i.e., rows of subjects); xij = the binary response (“success” = 1,
“failure” = 0) for the jth treatment in the ith block; x.j = the total number 
of successes for treatment j; xi. the total number of successes for block i;

the total number of successes.N =
c∑

j=1

x.j =
r∑

i=1

xi.

p̂.c = x.c

r
p̂.2 = x.2

r
p̂.1 = x.1

r

………………



values for an exact test of Q that are particularly
useful when the numbers of discriminating blocks and
treatment levels are small.

A Posteriori Comparisons

If the null hypothesis is rejected, the researchers L. A.
Marascuilo and M. McSweeney suggested a multiple
comparison procedure that permits a post hoc evalua-
tion of all pairwise differences among the c treatment
groups. With an experimentwise error rate alpha, each
of the possible c(c–1)/2 pairwise comparisons is
made, and the decision rule is to declare treatment j
different from treatment j ′ if

That is, treatment j and treatment j ′ are declared
significantly different if ⏐p̂ . j − p̂ . j ′⏐, the absolute
difference in the sample proportions 
of success, exceeds a critical range
given by the product of 

and

Applying Cochran’s QQ Test

Consider the following hypothetical
example: Suppose a group of 16 fac-
ulty members is asked to evaluate
the resumes of each of four candi-
dates who have interviewed at the
college for the position of dean.
Each of the 16 faculty is to assign
scores of 1 (would recommend) or 0
(would not recommend) to each of
the four candidates. The results are
displayed in Table 2. Note that one
of the professors (JL) did not recom-
mend any of the four candidates as

qualified for the position of dean while one of the
professors (AO) recommended all the candidates. The
other 14 faculty were able to discriminate among 
the applicants and provide favorable recommenda-
tions to one or more of these candidates.

For these data, the Cochran Q test is used to test the
null hypothesis of no treatment effect (that is, each of
the four candidates is preferred equally, and any differ-
ences in the observed proportions are due to chance),

H0: p.1 = p.2 = - - - = p.c,

against the general alternative that a treatment effect is
present (that is, there are real differences in the
proportions; at least one of the candidates is preferred
differently from the others):

H1: Not all p.j are equal (where j = 1, 2, . . . , c).

From Table 2, it is observed that c = 4, r = 16, N =
31, and the x.j and xi are summarized in the column
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2(cN −
r∑

i=1
x2

i.)

r2c(c − 1)
.

√
χ 2

α,(c−1)

∣
∣
∣
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∣
∣ >

√
χ 2

α,(c−1)
•

√
√
√
√
√

2(cN −
r∑
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Table 2 Hypothetical Results of Evaluating Job Candidates

Candidates

Raters 1 = IC 2 = PE 3 = NP 4 = PS Totals

1 = HB 0 0 1 0 1
2 = RB 0 1 1 1 3
3 = KC 1 0 1 1 3
4 = MD 0 0 1 1 2
5 = EF 0 0 1 1 2
6 = KH 0 0 1 0 1
7 = BK 0 0 0 1 1
8 = JK 0 0 1 1 2
9 = JL 0 0 0 0 0

10 = RM 0 0 0 1 1
11 = AO 1 1 1 1 4
12 = RP 0 0 1 1 2
13 = JT 0 0 1 1 2
14 = JW 1 0 1 1 3
15 = JY 0 0 1 1 2
16 = RZ 1 0 1 0 2
Totals 4 2 13 12 31

Proportions p̂ .1 = 0.2500 p̂ .2 = 0.1250 p̂ .3 = 0.8125 p̂ .4 = 0.7500



and row totals. Cochran’s Q test statistic is then
computed as follows:

Since the Cochran Q test statistic is approximated
by a chi-square distribution with c − 1 degrees of free-
dom, using an α = 0.05 level of significance, the deci-
sion rule is to reject the null hypothesis of no
differences (H0 : p.1 = p.2 = - - - = p.c) if Q > χ2

0.05,(c–1=3) =
7.815, the upper-tailed critical value under the chi-
square distribution with 3 degrees of freedom. The
null hypothesis is rejected, and it is concluded that
significant differences in preferences for the candi-
dates exist.

Given that the null hypothesis is rejected, to deter-
mine which candidate(s) significantly stand out, post
hoc evaluations of all (4)(3)/2 = 6 pairwise differences
among the 4 candidates are made. The critical range
for these pairwise comparisons is

From the sample proportions of success summa-
rized at the bottom of Table 2, the pairwise compar-
isons are evaluated in Table 3.

From Table 3 it is clear that candidates 3 and 4 
are each significantly preferred to candidates 1 and 2.
Nevertheless, the difference in preference between

candidates 1 and 2 is not significant, and more impor-
tant here, the difference in preference between candi-
dates 3 and 4 is not significant. The recommendation
from the faculty regarding the appointment of the
dean would be for candidate 3 or 4. Other criteria
would be needed to finalize the decision process.

Discussion

The Cochran Q test can also be viewed as a c sam-
ple generalization of McNemar’s test for signifi-
cance of change in two proportions based on related
samples.

It is essential to a good data analysis that the appro-
priate statistical procedure be applied to a specific sit-
uation. When comparing differences in c proportions
based on related samples, where the responses in each
of the blocks are simply binary rather than ranked or
measured on some interval or ratio scale, Cochran’s 
Q test should be selected.

Statisticians P. P. Ramsey and P. H. Ramsey inves-
tigated the minimum block sizes or sample sizes
needed to apply Cochran’s Q test, and biostatisticians
S. Wallenstein and A. Berger studied the power prop-
erties of the test.

Conclusions

The Cochran Q test is quick and easy to perform. The
only assumptions are that the outcomes for each

√
χ 2

α,(c−1)
•

√
√
√
√
√

2(cN −
r∑

i=1
x2

i.)

r2c(c − 1)
= √

7.815

•

√
(2)[(4)(31) − (12 + 32 + 32 + · · · + 2 )]
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(c − 1)

(

c
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j=1
x2

.j − N 2

)

cN −
r∑

i=1
x2

i.

= (3)[(4)(42 + 22 + 132 + 122) − 312]

(4)(31) − (12 + 32 + 32 + · · · + 22)

= 1113

49
= 22.714.
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Table 3 Post Hoc Pairwise Comparisons of 
Four Candidates

Critical Decision 
Candidates |p̂ .j – p̂ .j ′| Range Rule

1 vs. 2 |p̂ .1 – p̂ .2| = 0.1250 0.499 Not 
significant

1 vs. 3 |p̂ .1 – p̂ .3| = 0.5625 0.499 Significant
1 vs. 4 |p̂ .1 – p̂ .4| = 0.5000 0.499 Significant
2 vs. 3 |p̂ .2 – p̂ .3| = 0.6875 0.499 Significant
2 vs. 4 |p̂ .2 – p̂ .4| = 0.6250 0.499 Significant
3 vs. 4 |p̂ .3 – p̂ .4| = 0.0625 0.499 Not

significant



response are binary and that either the participants
providing these c binary responses are randomly
selected or the blocks of homogeneous participants
examining the c treatment levels are randomly
selected.

When evaluating the worth of a statistical proce-
dure, statistician John Tukey defined practical power
as the product of statistical power and the utility of the
statistical technique. Based on this, the Cochran Q test
enjoys a high level of practical power under many
useful circumstances.

—Mark L. Berenson

See also Repeated Measures Analysis of Variance 
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COEFFICIENT ALPHA

Two criteria are usually used to assess the quality of a
test: reliability and validity. There are several different
types of reliability, including test-retest, interrater,
alternate form, and internal consistency. These tell us
how much of the variance in the test scores is due to
true differences between people and how much is due

to time, rater, form, and items, respectively. The first
three types of reliability can be assessed by calculat-
ing a simple correlation. Test-retest reliability can be
assessed by correlating total scores from two different
testing times. Interrater reliability can be assessed by
correlating the scores given by two different raters.
Alternate form reliability can be assessed by correlat-
ing total scores from different forms of the test. Each
of these correlations tells us the reliability of a single
measurement: when we use one test, one rater, or one
form. However, when it comes to internal consistency,
we cannot simply use a correlation, because we very
rarely use just a single item. To assess internal consis-
tency, we therefore need to use a formula that tells us
the reliability of the sum of several different measure-
ments. The formula we use most often is coefficient
alpha.

Other Names for Coefficient Alpha

Coefficient alpha, developed by Lee J. Cronbach in
1951, is mathematically identical to several other 
formulas developed to assess the reliability of total
scores. These include Cyril J. Hoyt’s estimate of reli-
ability from 1941 and, if items are dichotomous,
G. Frederik Kuder and M. W. Richardson’s Formula
20. If all items on a test have the same variance, coef-
ficient alpha is also equal to Kuder and Richardson’s
Formula 21 and the Spearman-Brown prophecy for-
mula. Coefficient alpha is the most general of the for-
mulas, which probably explains why it is the most
commonly used version of the formula. Not surpris-
ingly, it is also known as Cronbach’s alpha.

Uses

Coefficient alpha is usually used to assess the reliabil-
ity of total test scores when a test is made up of many
items. It is therefore usually thought of as a measure
of internal consistency. However, coefficient alpha
can also be used to assess the reliability of other types
of total scores. For example, if three letters of refer-
ence are solicited when evaluating applicants, coeffi-
cient alpha can be used to assess the reliability of total
scores from those three letters. Alternatively, in a
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diary study, respondents may answer the same ques-
tion every day for a month. The reliability of the total
of those scores can be estimated with coefficient
alpha. This formula works equally well whether the
researcher calculates the sum of the measurements or
the average of the measurements: The formula will
result in the exact same number.

Formula

The population value of coefficient alpha is calculated
as follows:

,

where

k is the number of measurements,

σ 2
i is the population variance of the ith measurement,

and

σ 2
Total is the population variance of total scores on the k

measurements.

However, we rarely have population data. Instead,
we estimate the population value of coefficient alpha
from the sample data of people we actually measured
in our study. The sample value of coefficient alpha is
calculated by substituting sample variances for popu-
lation variances, as follows:

,

where

k is the number of measurements,

s 2
i is the sample variance of the ith measurement, and

s 2
Total is the sample variance of total scores on the k

measurements.

Example of the Hand Calculation

Consider the following example, in which four
students completed three items on a test. Scores for
each item appear in the columns marked Item.

Student Item 1 Item 2 Item 3 Total

1 3 4 1 8
2 2 2 1 5
3 9 8 4 21
4 6 2 0 8

To calculate coefficient alpha by hand, you must
first calculate the variances of each measurement and
of the total scores. These are as follows.

Item 1 Item 2 Item 3 Total

Sample variance 10 8 3 51

Now we can calculate coefficient alpha:

Hand calculation of coefficient alpha can be quite
tedious, especially if there are a large number of
respondents and a large number of items. Fortunately,
statistical packages like SPSS make these calcula-
tions easy.

Example of the Calculation Using SPSS

In SPSS, calculation of coefficient alpha is easy. Enter
your data into the Data Editor, with one respondent
per row. Then click on the Analyze menu, select Scale
from the drop-down menu, and select Reliability
Analysis from the side menu. This will bring you to
the Reliability Analysis dialogue box. Select your
measurements and move them across to the Items box.
Click OK. From the same data as in the hand
calculation above, Figure 1 was produced.

α̂ = 3

3 − 1

(

1 − 10 + 8 + 3

51

)

= 3

2

(

1 − 21

51

)

= .88.
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The first table in Figure 1 shows that there were four
respondents. The second table shows that coefficient
alpha is .882 and that there were three items on the test.

Interpretation

Like other reliability coefficients, coefficient alpha tells
you the proportion of total score variance that is due to
true differences among respondents. It also tells you the
expected correlation between total scores on your k
measurements and total scores on a hypothetical set of
k other measurements that were designed to measure
the same construct. In 1963, Lee Cronbach, Nageswari
Rajaratnam, and Goldine C. Glesser showed that coef-
ficient alpha provides an unbiased estimate of the true
reliability of a test if the test user assumes that the items
were randomly sampled from a set of other items that
could have been used to measure the same construct.

The most common misinterpretation of coefficient
alpha is to assume that the level of internal consis-
tency tells the test user something about the other
types of reliability. Four types of reliability have been
mentioned already: test-retest reliability, interrater
reliability, alternate form reliability, and internal con-
sistency reliability. It is possible for a test to have high

internal consistency but low test-retest reliability.
Consider, for example, a test of mood. It is also possible
for a test to have high test-retest reliability but low inter-
nal consistency. Consider, for example, a test that consists
of three items: hat size, the last four digits of your phone
number, and number of children. Over a two-week
period, total scores on this test are likely to be very stable,
but these items will have very low internal consistency.
Internal consistency is easy to estimate, but it does not
substitute for estimates of other types of reliability.
Research on other types of reliability is still needed.

Inferential Procedures 
for Coefficient Alpha

Several inferential procedures for coefficient alpha
have been developed. These include confidence inter-
vals, comparisons between independent alpha coeffi-
cients, and comparisons between dependent alpha
coefficients. Leonard S. Feldt, David J. Woodruff, and
Fathi A. Salih wrote a summary of these procedures 
in 1987. Unfortunately, these inferential tests have
fairly restrictive assumptions—that all measurements 
have equal variances and equal covariances—and
Kimberly A. Barchard and A. Ralph Hakstian in two
papers in 1997 showed that these procedures are not
robust to violation of these assumptions. Hakstian and
Barchard’s initial attempts to develop a correction for
violation of this assumption were only partially suc-
cessful, and therefore the results of these inferential
procedures should be considered tentative.

—Kimberly A. Barchard

See also Classical Test Theory; Reliability Theory
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N %

Cases Valid 4 100.0

Excludea 0 .0

Total 4 100.0

Case Processing Summary

Reliability Statistics

a. Listwise deletion based on all variables in
the procedure

Cronbach’s
Alpha N of items

.882 3

Reliability

Figure 1 SPSS Output for Coefficient Alpha
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Applying Ideas on Statistics and Measurement

The following abstract is adapted from Lopez, 
M. N., Lazar, M. D., & Oh, S. (2003). Psychometric
properties of the Hooper Visual Organization Test.
Assessment, 10(1), 66–70.

Coefficient alpha is one of many measures to
assess the internal consistency or reliability of a
test. In this study, the authors present internal con-
sistency and interrater reliability coefficients and
an item analysis using data from a sample (N =
281) of “cognitively impaired” and “cognitively
intact” patients and patients with undetermined
cognitive status. Coefficient alpha for the Visual
Organization Test (VOT) total sample was .882.
Of the 30 items, 26 were good at discriminating
among patients. Also, the interrater reliabilities for
three raters (.992), two raters (.988), and one rater
(.977) were excellent. The authors’ conclusion is
that the judgmental scoring of the VOT does not
interfere significantly with its clinical utility and
that the VOT is a psychometrically sound test.

COEFFICIENTS OF CORRELATION,
ALIENATION, AND DETERMINATION

The coefficient of correlation evaluates the similarity
of two sets of measurements (i.e., two dependent
variables) obtained on the same observations. The
coefficient of correlation indicates the amount of
information common to two variables. This coeffi-
cient takes values between −1 and +1 (inclusive). 

A value of 0 indicates that the two series of measure-
ment have nothing in common. A value of +1 says that
the two series of measurements are measuring the
same thing. A value of −1 says that the two measure-
ments are measuring the same thing, but one mea-
surement varies inversely with the other.

The squared correlation gives the proportion of com-
mon variance between two variables and is also called
the coefficient of determination. Subtracting the coeffi-
cient of determination from the unity gives the propor-
tion of variance not shared between two variables, a
quantity also called the coefficient of alienation.

The coefficient of correlation measures only the
linear relationship between two variables, and its
value is very sensitive to outliers. Its significance can
be tested with an F or a t test. The coefficient of cor-
relation always overestimates the intensity of the cor-
relation in the population and needs to be “corrected”
in order to provide a better estimation. The corrected
value is called “shrunken” or “adjusted.”

Notations and Definition

We have S observations, and for each observation,
we have two measurements, denoted W and Y, with
respective means MW and MY. For each observation,
we define the cross product as the product of the devi-
ations of each variable to its mean. The sum of these
cross products, denoted SCPWY, is computed as 

(1)

The sum of the cross products reflects the associa-
tion between the variables. When the deviations tend
to have the same sign, they indicate a positive rela-
tionship, and when they tend to have different signs,
they indicate a negative relationship. The average
value of the SCPWY is called the covariance (cov), and
just like the variance, the covariance can be computed
by dividing by S or (S – 1):

(2)covWY = SCP

Number of Observations
= SCP

S
.

SCPWY =
S∑

s

(Ws − MW)(Ys − MY).
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The covariance reflects the association between the
variables, but it is expressed in the original units of
measurement. In order to eliminate them, the covari-
ance is normalized by division by the standard devia-
tion of each variable (σ). This defines the coefficient
of correlation, denoted rW .Y , which is equal to

(3)

Rewriting the previous formula gives a more
practical formula:

(4)

An Example: Correlation Computation

We illustrate the computation for the coefficient of
correlation with the following data, describing the val-
ues of W and Y for S = 6 subjects:

W1 = 1 W2 = 3 W3 = 4  W4 = 4 W5 = 5 W6 = 7,
Y1 = 16 Y2 = 10 Y3 = 12 Y4 = 4  Y5 = 8  Y6 = 10.

Step 1: Computing the sum of the cross products
First compute the means of W and Y:

and

The sum of the cross products is then equal to

= (16 – 10)(1 – 4) + (10 – 10)(3 – 4) 
+ (12 – 10)(4 – 4)
+ (4 – 10)(4 – 4) + (8 – 10)(5 – 4) 
+ (10 – 10)(7 – 4) (5)

= (6 × –3) + (0 × –1) +(2 × 0) + (–6 × 0) 
+ (–2 × 1) + (0 × 3)

= –18 + 0 + 0 + 0 – 2 + 0
= –20.

The sum of squares of Ws is obtained as

= (1 – 4)2 + (3 – 4)2 + (4 – 4)2 + (4 – 4)2

+ (5 – 4)2 + (7 – 4)2 (6)
= (–3)2 + (–1)2 + 02 + 02 + 12 + 32

= 9 + 1 + 0 + 0 + 1 + 9
= 20.

The sum of squares of Ys is

= (16 – 10)2 + (10 – 10)2 + (12 – 10)2

+ (4 – 10)2+ (8 – 10)2 + (10 – 10)2 (7)
= 62 + 02 + 22 + (–6)2 + (–2)2 + 02

= 36 + 0 + 4 + 36 + 4 + 0
= 80.

Step 2: Computing rW.Y

The coefficient of correlation between W and Y is
equal to

(8)

We can interpret this value of r = –.5 as an indi-
cation of a negative linear relationship between W
and Y.

Some Properties of the 
Coefficient of Correlation

The coefficient of correlation is a number without a
unit. This occurs because of dividing the units of the
numerator by the same units in the denominator.
Hence, the coefficient of correlation can be used to
compare outcomes across different variables. The

rW .Y =
∑

s

(Ys − MY)(Ws − MW)

√
SSY × SSW

= −20√
80 × 20

= −20√
1600

= −20
40

= −.5.

SSY =
S∑

s=1

(Ys − MY)2

SSW =
S∑

s=1

(Ws − MW)2

SCPYW =
∑

s

(Ys − MY)(Ws − MW)

MY = 1

S

S∑

s=1

Ys = 60

6
= 10.

MW = 1

S

S∑

s=1

Ws = 24

6
= 4

rW .Y = SCPWY√
SSW SSY

.

rW .Y = covWY

σWσY

.
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magnitude of the coefficient of correlation is always
smaller than or equal to 1. This happens because the
numerator of the coefficient of correlation (see
Equation 4) is always smaller than or equal to its
denominator (this property follows from the Cauchy-
Schwartz inequity). A coefficient of correlation equal
to +1 or −1 indicates that a plot of the observations
will show that they are positioned on a line.

The squared coefficient of correlation gives the
proportion of common variance between two vari-
ables, also called the coefficient of determination. In
our example, the coefficient of determination is equal
to r2

W.Y = .25. The proportion of variance not shared
between the variables, or the coefficient of alienation,
is, for our example, equal to 1 – r2

W.Y = .75.

Interpreting Correlation

LLiinneeaarr  aanndd  NNoonnlliinneeaarr  RReellaattiioonnsshhiipp

The coefficient of correlation measures only linear
relationships between two variables and will miss
nonlinear relationships. For example, Figure 1 dis-
plays a perfect nonlinear relationship between two
variables (i.e., the data show a U-shaped relationship,

with Y being proportional to the square of W), but the
coefficient of correlation is equal to 0.

TThhee  EEffffeecctt  ooff  OOuuttlliieerrss

Observations far from the center of the distribution
contribute a lot to the sum of the cross products. 
At the extreme, in fact, as illustrated in Figure 2, one
extremely deviant observation (often called an outlier)
can dramatically influence the value of r.

GGeeoommeettrriicc  IInntteerrpprreettaattiioonn::  
TThhee  CCooeeffffiicciieenntt  ooff  CCoorrrreellaattiioonn  IIss  aa  CCoossiinnee

Each set of observations can also be seen as a vec-
tor in an S dimensional space (one dimension per
observation). Within this framework, the correlation is
equal to the cosine of the angle between the two vec-
tors after they have been centered by subtracting their
respective means. For example, a coefficient of corre-
lation of r = −.50 corresponds to a 150-degree angle.

160———Coefficients of Correlation, Alienation, and Determination
Y

W

Figure 1 A Perfect Nonlinear Relationship With
Coefficient of Correlation = 0

W

Y

Figure 2 The Dangerous Effect of Outliers on the
Value of the Coefficient of Correlation

Note: The correlation of the set of points represented by the
circles is equal to −.87, but when the point represented by the
diamond is added to the set, the correlation is equal to +.61. This
shows that an outlier can completely determine the value of the
coefficient of correlation.



A coefficient of correlation of 0 corresponds to a right
angle, and therefore two uncorrelated variables are
called orthogonal (which is derived from the Greek
word for a right angle).

CCoorrrreellaattiioonn  aanndd  CCaauussaattiioonn

The fact that two variables are correlated does 
not mean that one variable causes the other one:
Correlation is not causation. For example, in France,
the number of Catholic churches, as well as the
number of schools, in a city is highly correlated with
the number of people with cirrhosis of the liver, the
number of teenage pregnancies, and the number of
violent deaths. Does that mean that churches and
schools are sources of vice and that newborns are
murderers? Here, in fact, the observed correlation is
due to a third variable, namely, the size of the cities:
The larger a city, the larger the number of churches,
schools, alcoholics, and so on. In this example, the
correlation between number of churches or schools
and alcoholics is called a spurious correlation because
it reflects only their mutual correlation with a third
variable (i.e., size of the city).

Testing the Significance of rr

A null hypothesis test for r can be performed using an
F statistic obtained as follows:

(9)

When the null hypothesis is true (and when the
normality assumption holds), this statistic is distrib-
uted as a Fisher’s F with v1 = 1 and v2 = S – 2 degrees
of freedom. An equivalent test can be performed using
t = √F

⎯
, which is distributed under H0 as a Student’s

distribution with v = S – 2 degrees of freedom.
For our example, we find that

The probability of finding such a value under H0 is
found using an F distribution with v1 = 1 and v2 = 3
and is equal to p ≈ .31 Such a value does not lead to
rejecting H0.

Estimating the Population 
Correlation: Shrunken and Adjusted rr

The coefficient of correlation is a descriptive statis-
tic that always overestimates the population correla-
tion. This problem is similar to the problem of the
estimation of the variance of a population from a
sample. In order to obtain a better estimate of the
population, the value r needs to be corrected. As sug-
gested earlier, the corrected value of r goes under
various names: corrected r, shrunken r, or adjusted r
(there are some subtle differences between these
terms, but we will ignore them here), and we denote
it by r~2. Several correction formulas are available;
the one used most often estimates the value of the
population correlation as

(10)

For our example, this gives 

With this formula, we find that the estimation of 
the population correlation drops from r = .–50 to 

—Hervé Abdi

See also Correlation Coefficient; Multiple Correlation
Coefficient; Spurious Correlation

r̃ = −√
r̃2 = −√

.06 = −.24.

r̃2 = 1 −
[

(1 − r2)

(
S − 1

S − 2

)]

= 1 −
[

(1 − .25) × 5

4

]

= 1 −
[

.75 × 5

4

]

= 0.06.

r̃2 = 1 −
[

(1 − r2)

(
S − 1

S − 2

)]

.

F = .25

1 − .25
× (6 − 2) = .25

.75
× 4

= 1

3
× 4 = 4

3
= 1.33.

F = r2

1 − r2
× (S − 2).
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COGNITIVE ABILITIES TEST

The Cognitive Abilities Test (CogAT), published 
by Riverside Publishing (www.riverpub.com), is a
group-administered test appraising developed reason-
ing abilities. Its 11 test levels span Kindergarten
through Grade 12. CogAT is the contemporary suc-
cessor to the Lorge-Thorndike Intelligence Tests. In
the spring of 2000, the sixth edition of the test was
conormed with the Iowa Tests of Basic Skills (Grades
K–8) and the Iowa Tests of Educational Development
(Grades 9–12). The standardization sample consisted
of more than 180,000 students in public, Catholic,
and private non-Catholic schools. When administered
with either of the Iowa tests, CogAT discrepancies
between observed and predicted achievement scores
may be obtained for each examinee.

CogAT measures abstract reasoning abilities in the
three major symbol systems used to communicate
knowledge in schools: verbal, quantitative, and
figural/spatial. It reports both age- and grade-normed
scores for all three reasoning abilities, plus a compos-
ite score. Verbal, quantitative, and nonverbal reason-
ing scores are estimated by two subtests in the
Primary Edition (Grades K–2) and by three subtests 
in the Multilevel Edition (Grades 3–12). Items in the
Primary Edition are paced by the teacher and require
no reading. Tests in the Multilevel Edition require
some reading and are administered with time limits.
Testing time for the Multilevel Edition is 90 minutes.

The test authors suggest that the most important
uses of CogAT scores are (a) to guide efforts to adapt
instruction to the needs and abilities of students, (b) to
provide a measure of cognitive development that use-
fully supplements achievement test scores and teacher

grades, and (c) to identify for further study those
students whose predicted levels of achievement differ
markedly from their observed levels of achievement.
The first use is supported through several teacher
guides and a Web-based system for matching the level
and pattern of a student’s CogAT scores to specific
instructional recommendations (see www.cogat.com).
Recommendations are based on recent summaries of
the aptitude-by-treatment interaction literature. That
literature shows that reasoning abilities in the symbol
systems used to communicate new knowledge are
among the most important aptitudes for success in
school and thus interact with variations in instruc-
tional methods.

CogAT manuals provide considerable assistance 
in avoiding common mistakes when interpreting test
scores. In addition to the Research Handbook (104
pages) and Norms Booklet (128 pages), there are 
an extensive Interpretive Guide for Teachers and
Counselors (166 pages) and an Interpretive Guide for
School Administrators (134 pages). A Short Guide for
Teachers is available at no charge on the CogAT Web
site (www.cogat.com). Scores on Form 6 are flagged
if they appear unsound in any of nine different ways.
One of the innovative features of CogAT6 is the intro-
duction of confidence intervals for each score. The
confidence intervals are based both on the conditional
standard error of measurement and an estimate of fit.
In this way, users are warned if the response pattern
on a battery is aberrant for a particular examinee.

—David F. Lohman

See also Cognitive Psychometric Assessment; Kingston
Standardized Cognitive Assessment
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COGNITIVE PSYCHOMETRIC

ASSESSMENT

Cognitive psychometric assessment (CPA) is the
assessment of psychological traits such as abilities,
interests, and dispositions based on data from instru-
ments such as questionnaires and tests that are analyzed
with extensions of psychometric models. The models
used for CPA are cognitive psychometric models
(CPM) that contain discrete or continuous latent vari-
ables; their theoretical foundations are in the areas of
item response theory and structural equation modeling. 

Specifically, CPMs include parameters that opera-
tionalize components of mental processes or faculties
whose existence can be justified through theories that
draw on cognitive psychology. The parameters are
provided by specialists and are typically collected in
so-called Q-matrices, whose entries may be binary
(i.e., indicating the absence or presence of a compo-
nent) or ordinal (i.e., indicating the degree to which a
component is present). In many models, such as the
Linear Logistic Test Model, the DINA and NIDA
Models, or the Rule-Space Methodology, these para-
meters are fixed whereas in some models, such as the
Reparametrized Unified Model or Fusion Model, they
are subject to empirical updating.

Alternatively, the structure of CPMs can reflect a
specific combination of components. In this case, the
number of components is provided by the specialists,
and the model structure is chosen to match the way 
in which examinees engage in mental processes to
respond to items. For example, in the Multidimensional
Rasch Model for Learning and Change, deficiencies in
one component can be compensated for by strengths in
another component, which is also known as a compen-
satory or disjunctive model. In contrast, in the
Multidimensional Logistic Trait Model, deficiencies in
one component cannot be compensated for by strengths

in another component; therefore, such a model is
known as a noncompensatory or conjunctive model.

In order to conduct CPA successfully in practice, a
well-developed theory about the cognitive processes
underlying item responses is necessary. Experience
has shown that this is much easier to accomplish for
tasks that can be easily decomposed into constituent
elements such as mathematical addition and subtrac-
tion but is much harder for complex reasoning and
problem-solving tasks such as reading comprehen-
sion. Such a theory entails a detailed description of
how the tasks that are utilized provide the kinds of
empirical evidence that are needed to make the kinds
of inferences that are desired. Moreover, the success-
ful application of CPMs in practice requires that
sufficiently large sample sizes be available for model
calibration to achieve convergence for parameter esti-
mation routines and to achieve reliable classifications.
The process of understanding how response patterns
influence the estimation of CPMs is just beginning,
however, and more empirical investigation to develop
practical recommendations for their use is needed. 

—André A. Rupp

See also Cognitive Abilities Test; Kingston Standardized
Cognitive Assessment
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COHEN’S KAPPA

Cohen’s kappa statistic was developed to correct
for the problem of inflated percent agreement sta-
tistics that occur when marginal values on the vari-
ables being compared are unevenly distributed.
Kappa is typically used with nominal level vari-
ables and is often seen in situations in which two
independent raters have the task of classifying an
object as belonging to a single level of a nominal
variable.

For example, consider the following data set in
which two raters, Steve and Damian, are asked to
read 100 school mission statements. For each mis-
sion statement, they are to make a judgment as to
the dominant purpose of schooling
set forth in the mission statement.
Each school may have only one
dominant theme, and the theme
should fit into one of the following
categories: (a) social, (b) cognitive,
(c) civic, or (d) emotional. The
results of the rater classifications
are shown in Table 1, where the val-
ues are reported in terms of percent-
ages (e.g., the value of .05 in the
social box indicates that 5 out of
100 schools were classified as hav-
ing a social purpose as their domi-
nant theme).

The marginal totals indicate the percentage of
ratings assigned to each category for each rater. In this
example, Steve classified 61% of the 100 mission
statements as belonging to the civic category, whereas
Damian placed 70% of the mission statements in that
category. The diagonal values of Table 1 represent rat-
ings on which the two raters agreed exactly. Thus, the
raters agreed on their assignment of 5% percent of the
mission statements to the social category, 3% percent
to the emotional category, 9% to the cognitive cate-
gory, and 54% to the civic category. Thus, from a
simple percentage agreement perspective, the two
raters agreed on 71% of the ratings they assigned. The
percent agreement calculation can be derived by sum-
ming the values found in the diagonals (i.e., the pro-
portion of times that the two raters agreed). Note that
the resultant value of 71% generally represents good
agreement:

PA = .05 + .03 + .09 + .54 = .71.

Yet the high percentage agreement statistic is
somewhat artificially inflated given that more than
half of the school mission statements were rated as
having a civic theme. Consequently, a rater with no
knowledge or training could actually simply assign a
mission statement to the civic category when in doubt,
and the raters would end up with percentage agree-
ment statistics that look very good simply because
most schools had a civic purpose as their dominant
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Table 1 Example Data Matrix: Rater Classifications of 100 School
Mission Statements

Steve

Marginal 
Social Emotional Cognitive Civic Total

Social .05 (.01) 0 (0) 0 (.01) 0 (.03) .05
Emotional .01 (.01) .03 (0) 0 (.01) .01 (.03) .05
Cognitive .04 (.04) .01 (.02) .09 (.02) .06 (.12) .20
Civic .10 (.14) .03 (.05) .03 (.08) .54 (.43) .70
Marginal total .20 .07 .12 .61 1.00

Note: Values in parentheses represent the expected proportions on the basis of chance
associations, i.e., the joint probabilities of the marginal proportions.
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theme. Unfortunately, such an artificially inflated
agreement statistic deceives us into believing that the
two raters are perhaps more adept at coding the state-
ments than they actually are. The raters actually agree
less than half of the time (44% to be exact) when they
are assigning codes to mission statements that they
rate as falling into all categories other than the civic
category.

To correct for the problem of inflation and to pro-
vide a more accurate estimate of rater agreement, we
can calculate Cohen’s kappa. To calculate kappa, we
must begin by multiplying the marginal totals in order
to arrive at an expected proportion for each cell
(reported in parentheses in the table). Summing the
product of the marginal values in the diagonal, we find
that on the basis of chance alone, we expect an
observed agreement value of .46:

Pc = .01 + 0 + .02 + .43 = .46.

Kappa provides an adjustment for this chance
agreement factor. Thus, for the data in Table 1, kappa
would be calculated as 

In practice, kappa may be interpreted as the pro-
portion of agreement between raters after accounting
for chance. Consequently, a kappa value of zero sug-
gests that the two raters agreed no more frequently
than we would predict on the basis of chance alone.
Furthermore, kappa can actually take on negative val-
ues if the raters were to agree less frequently than we
would predict by chance alone, given the marginal
values. Benchmarks for interpreting kappa are sug-
gested in Table 2.

Three major assumptions underlie the use of
Cohen’s kappa:

1. Each of the units of analysis is independent.

2. Categories of the nominal scale must be mutually
exclusive and exhaustive.

3. Raters must not work together to arrive at their final
ratings.

Using the Computer

Cohen’s kappa may be calculated in SPSS by using
the crosstabs procedure. The crosstabs procedure pro-
duces the output shown in Table 3.

—Steven E. Stemler

See also Interrater Reliability
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κ = .71 − .46

1.0 − .46
= .46.
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Table 2 Benchmarks for Interpreting Kappa

Kappa Statistic Strength of Agreement

<0.00 Poor
0.00  0.20 Slight
0.21  0.40 Fair
0.41  0.60 Moderate
0.61  0.80 Substantial
0.81  1.00 Almost perfect

Source: From Landis & Koch, 1977 (p. 165).

Table 3 SPSS Crosstabs Output Calculating Cohen’s
Kappa 

Symmetric Measure 

Asymp. Approx.
Value Std. Error a Approx. T b Sig.

Measure of 
Agreement 
Kappa .458 .076 7.392 .000

N of Valid 
Cases 100

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null

hypothesis.
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Applying Ideas on Statistics and Measurement

The following abstract is adapted from Hall, 
D. G., Veltkamp, B. C., & Turkel, W. J. (2004).
Children’s and adults’ understanding of proper
namable things. First Language, 24(1), 5–32. 

D. Geoffrey Hall and his colleagues explored
5-year-olds’ and adults’ beliefs about entities that
receive reference by proper names. In Study 1,
two tasks were used. The first was a listing task, in
which participants stated what things in the world
can and cannot receive proper names. The second
was an explanation task, in which they explained
why some things merit proper names where two
independent coders reached agreement which 
was verified by Cohen’s kappa. Children’s lists of
proper namable things were more centered than
adults’ on living animate entities and their surro-
gates (e.g., dolls and stuffed animals). Both
children’s and adults’ lists of nonnamable things
contained a predominance of artifacts. Both age
groups offered similar explanations for proper
namability, the most common of which pertained
to the desire or need to identify objects as indi-
viduals (or to distinguish them from other objects).
In Study 2, the main results of the Study 1 listing
task were replicated, using a modified set of
instructions. The findings establish a set of norms
about the scope and coherence of children’s and
adults’ concept of a proper namable entity, and
they place constraints on an account of how
children learn proper names.

COMPLETE INDEPENDENCE

HYPOTHESIS

Most studies involve multiple observations on multi-
ple variables. With k variables, there are k(k − 1)/2
bivariate correlations among the measures. Each of

the individual correlations could be evaluated for
statistical significance. Additionally, a multiple corre-
lation could be obtained by regressing each of the 
k variables on the remaining k − 1 variables. Due to
the large number of parameters, trying to ascertain the
joint significance of the entire set of correlations is
complex. A more direct approach is to evaluate the 
k by k symmetric correlation matrix R for complete
independence. A population in which the null hypoth-
esis of complete independence is true is characterized
by a population correlation matrix P = I, the identity
matrix, in which all correlations are equal to 0. If this
null hypothesis can be rejected, it may be concluded
that the variables in the data set are significantly
related. Two common statistical tests for assessing
complete independence are denoted L1 and L2. L1 is
based on Fisher’s Z or tanh−1 transformation of rij, the
bivariate correlation between variables i and j.
Because tanh−1(r) = {log(1 + r) – log(1 − r)}/2, where
log is the natural or Naperian log, has variance of 1/(N
−3), the statistic L1 is distributed as a chi-square with
k(k − 1)/2 degrees of freedom where k is the number
of variables:

i < j.

L2 is based on the distribution of the determinant of
R, denoted |R|, which ranges between 0 and 1. Values
closer to 0 indicate greater dependence among the
measures, and values closer to 1 indicate greater 
independence. The statistic L2 is also distributed as 
a chi-square with k(k − 1)/2 degrees of freedom 
for k variables, where the multiplier ρ = –(N – 1 – 
(2k + 5)/6) and N is the sample size:

L2 = –ρ log |R|.

L1 and L2 have both been subjected to Monte Carlo
sampling studies to evaluate Type I error rates (i.e.,
incorrectly rejecting the null hypothesis when it is
true). A hypothesis test is considered to be biased if
the estimated Type I error rate exceeds the test size α.
When N is small relative to the number of variables,
L2 does not perform well. L2 is biased when N is less

L1 = (N − 3)�k
i=1�

k
j=1 tanh−1(rij)

2
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than 4 times the number of variables. Even by
employing finite sample correction terms, L2 is biased
when N is less than twice the number of variables. In
contrast, L1 is an unbiased hypothesis test, even for
small N.

Power comparisons between L1 and L2 indicate 
that L1 is a more powerful test of P = I than is L2. In
small samples, relative to the number of variables, L1

should be preferred in terms of both Type I and Type II
error rates.

—John R. Reddon and James S. Ho

See also Correlation Coefficient; Type I Error; Type II Error
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COMPLETION ITEMS

Educational and psychological tests are composed 
of test items (questions or statements requiring a
response) in many formats. One common format is the
completion item. In this context, completion items
come in several forms with several names.

Most commonly, completion items include some
form of constructed response and are frequently called
constructed-response items. The item does not contain
options from which a person could select a response
but requires the individual to construct a response.
This may be accomplished by asking a complete ques-
tion or providing a statement that must be completed,
as the following examples demonstrate. 

Item 1: What type of reliability can be estimated from
one form of a test administered on a single occasion?
Answer: Coefficient alpha, split-half reliability.

Item 2: Describe one advantage of true-false items com-
pared with multiple-choice items. Answer: Less testing
time per item, easier to construct.

Item 3: To be most useful, norms should be representa-
tive, relevant, and ____________. Answer: recent.

Some people distinguish between constructed-
response items and completion items. Many people
consider completion items to be primarily of the
short-answer type. Constructed-response items, on the
other hand, may also include extended response and
essay items (requiring extensive responses, potentially
several paragraphs long), configural response items
(such as items requiring manipulation of schematic
diagrams), or computation problems (commonly
found in mathematics, where the individual must
compute the answer).

The use of completion items, including
constructed-response items, has advantages and dis-
advantages. Among the advantages, completion items
are appropriate when the objective being measured
requires a written response; they are relatively easy to
construct and, when responses are short or composed
of a single word, easy to score; short-answer items can
assess higher-order thinking skills; and completion
items allow for novel responses or solutions.
Disadvantages include scoring difficulty because of
the many possible correct responses, which may
reduce reliability of scores; need for longer testing
time, compared with multiple-choice testing, to
achieve adequate reliability; low likelihood of assess-
ing higher-order thinking skills with single-word
answer formats; and because constructed-response
items take more time to complete, limitation of the
content that can be covered in a single test period.

Although it is possible to construct multiple-choice
items to measure higher-order thinking skills, it
appears that the range of cognitive skills addressed by
completion items is larger than the range addressed by
multiple-choice testing. Empirical evidence suggests
that when written to tap the same content and cogni-
tive skill, completion items and multiple-choice items
measure the same construct; when written to tap dif-
ferent cognitive skills, the two formats appear to mea-
sure substantially different constructs. So it is not the
format that determines what is being measured, but
the nature and quality of the problem presented by the
item, whatever its format.

—Michael C. Rodriguez

See also Essay Items; Multiple Choice Items
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Applying Ideas on Statistics and Measurement

The following abstract is adapted from Bornstein,
M. H., Hahn, C.-S., & Haynes, O. M. (2004).
Specific and general language performance
across early childhood: Stability and gender con-
siderations. First Language, 24(3), 267–304. 

Children participated in four longitudinal stud-
ies of specific and general language performance
cumulatively from age 1 year and 1 month to age
6 years and 10 months. Data were drawn from
age-appropriate maternal questionnaires, mater-
nal interviews, teacher reports, completion 
items, experimenter assessments, and transcripts
of children’s own spontaneous speech. Language
performance at each age and stability of individ-
ual differences across age in girls and boys were
assessed separately and together. Across age,
including the important transition from preschool
to school, across multiple tests at each age, and
across multiple reporters, children showed mod-
erate to strong stability of individual differences;
girls and boys alike were stable. In the second
through fifth years, but not before or after, girls
consistently outperformed boys in multiple spe-
cific and general measures of language.

COMPUTATIONAL STATISTICS

The term computational statistics has two distinct but
related meanings. An older meaning is synonymous
with the term statistical computing, or simply compu-
tations for use in statistics. The more recent meaning
emphasizes the extensive use made of computations in
statistical analysis.

Statistical Computing: Numerical
Analysis for Applications in Statistics

Statistical analysis requires computing, and applica-
tions in statistics have motivated many of the

advances in numerical analysis. Particularly note-
worthy among the subareas of numerical analysis are
numerical linear algebra, numerical optimization, and
the evaluation of special functions. Regression analy-
sis, which is one of the most common statistical meth-
ods, as well as other methods involving linear models
and multivariate analysis, requires fast and accurate
algorithms for linear algebra. Linear regression analy-
sis involves analysis of a linear model of the form y =
Xb + e, where y is a vector of observed data, X is a
matrix of observed data, b is a vector of unknown con-
stants, and e is an unobservable vector of random vari-
ables with zero mean. Estimation of the unknown b is
often performed by minimizing some function of the
residuals r(b) = y – Xb with respect to b. Depending
on the function, this problem may be a very difficult
optimization problem.

NNuummeerriiccaall  LLiinneeaarr  AAllggeebbrraa

A very common approach to linear regression
analysis is to minimize the sum of the squares of 
the residuals. In this case, the optimization problem
reduces to a linear problem: Solve XTXb = X Ty. (Here,
the superscript T means transpose.) This problem and
other similar ones in the analysis of linear models are
often best solved by decomposing X into the product
of an orthogonal matrix and an upper triangular
matrix without ever forming XTX. Methods for doing
this have motivated much research in numerical linear
algebra.

Other important applications of numerical linear
algebra arise in such areas as principal components
analysis, where the primary numerical method is the
extraction of eigenvalues and eigenvectors.

NNuummeerriiccaall  OOppttiimmiizzaattiioonn

Many statistical methods, such as regression
analysis mentioned above, are optimization prob-
lems. Some problems, such as linear least squares,
can be formulated as solutions to linear systems, and
then the problems fall into the domain of numerical
linear algebra. Others, such as nonlinear least squares
and many maximum likelihood estimation problems,
do not have closed-form solutions and must be solved
by iterative methods, such as Newton’s method,
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quasi-Netwon methods, general descent methods
such as Nelder-Mead, or stochastic methods such as
simulated annealing.

Another class of optimization problems includes
those with constraints. Restricted maximum likelihood
and constrained least squares are examples of statisti-
cal methods that require constrained optimization.

EEvvaalluuaattiioonn  ooff  SSppeecciiaall  FFuunnccttiioonnss

Methods for evaluation of cumulative distribu-
tion functions (probabilities) and inverse cumulative
distribution functions (quantiles) are important in
all areas of applied statistics. Some evaluations are
straightforward, such as for z scores or for p values
of common distributions such as t or F, but others
are much more complicated. Computations involv-
ing posterior distributions in Bayesian analyses are
often particularly difficult. Most of these computa-
tions are performed using Markov chain Monte
Carlo methods.

RRaannddoomm  NNuummbbeerr  GGeenneerraattiioonn

Monte Carlo methods are widely used in statistics,
both in development of statistical methodology and in
applications of statistical methods. Monte Carlo meth-
ods require good programs for generating random
numbers, firstly from a uniform distribution and
secondly from various other distributions. (Standard
methods for generating random variates from any
given distribution utilize transformations of random
variates from a uniform distribution.)

Most random number generators are cyclic; that is,
they repeat after some fixed period. If the period is
long enough, this repetition is not a problem, but
many of the widely used random number generators
have a period of approximately 231. This is much too
small for serious work in Monte Carlo simulation.
There are several good generators with periods greater
than 2100, and this should be a minimal standard for
important Monte Carlo work.

In addition to problems with the period of genera-
tors, many generators have serious deficiencies in
regard to the “randomness” of their output. Testing
random number generators is a difficult task because
of the nature of the problem: There is no standard

“answer” with which to compare the output of the
generator. The ways in which a generator can produce
unacceptable results are many and varied. Some gen-
erators are thought to be good until someone dis-
covers a systematic departure from randomness,
sometimes several years after the generator entered
service. Anyone using Monte Carlo methods should
be very careful to use random number generators with
long periods and with no known departures from ran-
domness. Likewise, statistical software developers
should remain abreast of current research in the area
so as to be able to provide high-quality random
number generators.

Computational Statistics:
Computationally Intensive 

Statistical Methods

Many statistical methods require extensive computa-
tions, not just because the data set is large, but because
the method itself involves simulation of a statistical
distribution or because the method requires multiple
analyses.

RReessaammpplliinngg  aanndd  DDaattaa--PPaarrttiittiioonniinngg  MMeetthhooddss

An effective approach to data analysis is to use 
the empirical cumulative distribution function to make
inferences about the distribution of the observed data.
In this approach, the underlying, unknown distribu-
tion is approximated by a discrete uniform distribu-
tion with mass points at the values of the observed
data. This empirical distribution of the sample is then
used to make statistical inferences about the unknown
distribution of the population. This is called a boot-
strap method. Often in a bootstrap method, the sample
is resampled randomly. This approach can be useful in
reducing bias of statistical procedures or for estimat-
ing variances or setting confidence intervals.

Related methods involve partitioning the sample,
or analyzing subsets of the sample and then combin-
ing the results. This kind of data partitioning includes
so-called jackknife methods, which can be used 
to reduce bias or to estimate variance, and cross-
validation methods, which can be used to choose
between statistical models and parameter estimates.
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SSttaattiissttiiccaall  IInnffeerreennccee  BBaasseedd  
oonn  MMoonnttee  CCaarrlloo  MMeetthhooddss

Many statistical methods require simulation, either
by randomly resampling the given data as mentioned
above or by generating random data under the
assumptions of a hypothesis to be studied. In a Monte
Carlo statistical test using a given sample, multiple
data sets are generated according to the null hypothe-
sis, a test statistic is computed from each, and then 
the test statistic from the given sample is compared 
to the set of test statistics from the simulated data sets.
If the observed test statistic is extreme within this set,
the hypothesis is rejected.

DDiissccoovveerryy  ooff  SSttrruuccttuurree  iinn  
DDaattaa  aanndd  SSttaattiissttiiccaall  LLeeaarrnniinngg

In many cases, there is no obvious model for
analysis of a given set of data. The data may have
been collected for one purpose, possibly just busi-
ness record-keeping, and then it may be used as a
source of information about any number of new
questions, some of which are not even enunciated
clearly. This kind of exploratory analysis is some-
times called data mining or knowledge discovery.
The main objective is to discover relationships or
structure in the data that was perhaps not anticipated
and then to interpret these relationships in meaning-
ful ways.

Graphical displays from multiple perspectives are
important in these exploratory analyses.

Software

Good and easy-to-use software is very important, both
in statistical analysis of given data and in development
of new statistical methodology.

A wide range of software is available for different
purposes. Many simple analyses can be performed
using a spreadsheet program, such as Excel or Lotus.
Other analyses require more powerful software that
provides a wider array of analyses. Software packages
such as SAS, SPSS, and Minitab implement the stan-
dard statistical analyses as well as many more-
specialized analyses, all in an integrated environment

that provides extensive abilities for data management
and for graphical display of the data.

Some specialized analyses have a limited range of
applications. Often the natural data structures for
these applications are different from the more stan-
dard data structures for other statistical data. For such
analyses and applications, stand-alone statistical soft-
ware packages are available.

For implementing new research methods and for
many exploratory analyses, an integrated program-
ming environment is useful. Software packages such
as SAS/IML and S-Plus provide flexible program-
control structures, as well as a large library of stan-
dard functions.

The open source movement is important in the
development of statistical software. Statisticians have
traditionally shared programs with one another, but
now there is a large, integrated statistical software sys-
tem, called R, that benefits from input from statisticians
around the world. The package is freely distributed
(with restrictions on redistribution), and the source
code is available for anyone to inspect and modify.

—James E. Gentle

See also Data Analysis Toolpak; Eigenvalues; Markov Chain
Monte Carlo Methods; Monte Carlo Methods
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COMPUTERIZED ADAPTIVE TESTING

Computerized adaptive testing (CAT) is a method of
administering tests that adapts to the examinee’s 
trait level. A CAT test differs profoundly from a 
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paper-and-pencil test. In the former, different exami-
nees are tested with different sets of items. In the
latter, all examinees are tested with an identical set of
items. The major goal of CAT is to fit each examinee’s
trait level precisely by selecting test items sequen-
tially from an item pool according to the current per-
formance of an examinee. In other words, the test is
tailored to each examinee’s θ level, so that able exam-
inees can avoid responding to too many easy items,
and less able examinees can avoid being exposed to
too many difficult items. The major advantage of CAT
is that it provides more-efficient latent trait estimates
(θ) with fewer items than would be required in con-
ventional tests.

The earliest large-scale application of CAT is the
computerized version of the Armed Services Vocational
Aptitude Battery (ASVAB), now administered to more
than half a million applicants each year. The paper-and-
pencil version of the ASVAB takes 3 hours to complete,
and the CAT version takes about 90 minutes. With the
CAT version, an examinee’s qualifying scores can be
matched immediately with requirements for all avail-
able positions. CAT has become a popular mode of
assessment in the United States. In addition to the
ASVAB, examples of large-scale CATs include the
Graduate Record Examinations (GRE), the Graduate
Management Admission Test, and the National Council
of State Boards of Nursing. The implementation of
CAT has led to many advantages, such as new question
formats, new types of skills that can be measured, eas-
ier and faster data analysis, and faster score reporting.
Today the CAT GRE is administered year-round, which
allows examinees to choose their own date and time 
for taking it, whereas the paper-and-pencil version is
administered only 3 times per year.

Item Selection in CAT

The most important ingredient in CAT is the item
selection procedure, which selects items during the
course of the test. According to M. F. Lord, an exam-
inee is measured most effectively when test items are
neither too difficult nor too easy. Heuristically, if the
examinee answers an item correctly, the next item
selected should be more difficult; if the answer is

incorrect, the next item should be easier. Because
different examinees receive different tests, in order to
equate scores across different sets of items, it is nec-
essary to use a convenient probability model for item
responses, and this can be achieved by item response
theory (IRT). According to IRT modeling, a difficult
item will have large b-value, and an easy item will
have small b-value. Knowing the difficulty levels of
all the items in the pool, one can possibly develop an
item selection algorithm based on branching. For
instance, if an examinee answers an item incorrectly,
the next item to be selected should have a lower 
b-value; if the examinee answers correctly, the next
item should have a higher b-value.

In 1970, Lord proposed an item selection algorithm
as an extension of the Robbins-Monro process, which
has been widely used in many other areas, including
engineering control and biomedical science. The
Robbins-Monro process has been proved a method in
minimizing the number of animals required to esti-
mate the acute toxicity of a chemical. In order to use
the method in CAT, item difficulty levels for all the
items in the item pool must be calibrated before test-
ing. Let b1, b2, . . . , bn be a sequence of the difficulty
parameters after administering n items to the exami-
nee. The new items should be selected such that bn

approaches a constant b0 (as n are indefinitely large),
where b0 represents the difficulty level of an item that
the examinee has about a 50% chance of answering
correctly, or P{Xn = 1⏐θ = b0} ≈ 1/2. Because our
goal is to estimate θ, knowing b0, we can use b0 as a
reasonable guess for θ. Notice that b0 can be linearly
transformed to any meaningful score scale, which
makes it convenient for us to score the examinee’s test
responses by a function of b0. Lord, writing in 1970,
proposed several rules based on the Robbins-Monro
process and envisioned that such testing could be
implemented when computers became sufficiently
powerful. A specific example of the item selection
rule can be described by the following equation:

where xn is the item response on the nth item (xn = 1 if
the answer is correct, xn = 0 if the answer is incorrect),

bn+1 = bn + d1

n
(xn − 0.5),
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and d1 is a positive number chosen before the testing.
Clearly, the motivation for the adaptive design is to
tailor the difficulty levels of the items administered to
the latent trait of the examinee being tested.

In 1980, Lord proposed the maximum informa-
tion (MI) approach, which has become a standard
item selection procedure. Let θ̂ n be an estimator of θ
based on n responses. The MI method selects the
item with the maximum Fisher item information
evaluated at θ̂ n as the next item. Under IRT, maxi-
mizing Fisher information means intuitively match-
ing item difficulty parameter values with the latent
trait level of an examinee. In addition, items with
high discrimination, or equivalently, high a-parameter
value, will be preferentially selected by the algo-
rithm. Maximizing the Fisher information will lead
to minimizing the sample variance of θ̂ n, and that
makes θ̂n the most efficient. For this reason, the MI
method has become the most popular item selection
method. Though CAT was originally developed in
educational assessments, it should be effective in
many other areas, such as cognitive diagnosis and
quality of life assessment.

Nonstatistical 
Constraints in CAT Design

In order to design an operational CAT test, the set of
items selected for each examinee must satisfy certain
nonstatistical constraints, such as item exposure con-
trol and content balance. The more constraints one 
has to impose, the fewer degrees of freedom one can
include in a design. To design a good CAT algorithm,
many complex controls are needed.

The item exposure rate for each item is defined as
the ratio of the number of times the item is adminis-
tered to the total number of examinees. Since CAT is
designed to select the best items for each examinee,
certain types of items tend to be always selected by
the computers, and many items are not selected at
all, thereby making item exposure rates quite
uneven. Because CAT tests are usually administered
to small groups of examinees at frequent time inter-
vals, examinees who take tests earlier may share
information with those who will take tests later,

escalating the risk that many items may become
known. Therefore, item exposure rates must be con-
trolled. A number of methods have been developed
to control item exposure rate. The most common
method of controlling exposure rate was developed
by Sympson and Hetter, whose general idea is to put
a “filter” between selection and administration such
that an item that is selected by the MI criterion is
evaluated to determine whether it will be adminis-
tered. In this way, the exposure rate can be kept
within a certain prescribed value. The Sympson and
Hetter approach suppresses the use of the most over-
exposed items, usually items with high a-parameters,
and spreads their use over the next tier of over-
exposed items. Chang and Ying proposed the 
a-stratified method with the objective of limiting the
exposure of any given item by using that item at 
the most advantageous point in testing. It attempts to
control item exposure by using less-discriminating
items early in the test, when θ estimation is least
precise, and saving highly discriminating items
until later stages, when finer gradations of θ estima-
tion are required. One of the advantages of the 
a-stratified method is that it tends to equalize the
item exposure rates for all the items in the pool.

Methods have been developed to handle various
types of content-balancing constraints. In particular,
linear programming (LP) has been used to handle
flexible content balancing, which selects items using
LP based on numerous simultaneous constraints
involving statistical and content considerations. One
constraint is to maximize item information. Other
constraints can be mathematical representations of the
test specifications or a model to control for item over-
lap. A weighted deviations model has been proposed
that includes LP as one component and also incorpo-
rates some heuristic steps when LP’s solution may not
be suitable. Actually, both the weighted deviations
model and LP methods are capable of dealing with
multiple constraints, among them content balancing
constraints, exposure control, statistical optimization,
and others. They are in general very powerful, with
relatively more intensive computation than other
methods. Recently, such content balancing constraints
as item pool stratification have been proposed, and
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this method has been generalized for flexible content
balancing.

Issues to Be Addressed

Although CAT has many advantages, issues regarding
large-scale applications need to be addressed. One of
them is the compatibility between CAT and paper-and-
pencil tests. It has been speculated that some exami-
nees may get much lower scores on a CAT test than
they would on a paper-and-pencil version. As evidence
of this, the Educational Testing Service (ETS) found
that the GRE CAT system did not produce reliable
scores for a few thousand examinees in 2000. ETS
offered them a chance to retake the test at no charge.
Another vital issue is test security and large-scale item
theft. In August 2002, ETS suspended the CAT GRE
and reintroduced paper-and-pencil-based versions in
China, Hong Kong, Taiwan, and Korea (www.ets.org,
August 20, 2002) following an investigation that
uncovered a number of Web sites offering questions
from live versions of the CAT GRE. Another issue is
item pool usage. An examination of item usage within
the GRE CAT pools found that as few as 12% of the
available items can account for as many as 50% of the
items actually administered. Without effective reme-
dial measures, this state of affairs could significantly
undermine the future of CAT.

In response to the problems that emerged from the
initial large-scale applications, researchers proposed
corrective procedures. They focused principally on
refinement of item selection methods and also on how
to assess the severity of organized item theft activities.
The underestimation-of-performance problem of the
GRE is very likely caused by the item selection strat-
egy, which heavily relies on the items with the highest
discrimination at the beginning of the test. A reason-
able solution is to use a weighting mechanism to esti-
mate the weights of the likelihood function during the
early-stage estimation. To stabilize the initial estima-
tion of the examinee’s latent trait, items with low dis-
crimination, instead of those with high discrimination,
may be used at the beginning of the test.

To improve test security, several theorems have
been derived on the basis of the hypergeometric

distribution family for addressing questions such as “in
order to compromise 200 items from a given item pool,
how many thieves, at the most, would need to take the
test?” The results may shed light on the relationship
between optimal item pool size and test security. 

It is important to be aware that test security can be
enhanced by evenly using all the items in a pool. A
computer using the constrained MI item selection
method will not select many items in the pool, so the
actual pool size becomes much smaller than the origi-
nal pool, which makes item theft much easier. On the
other hand, if the computer algorithm selects only
high-a items, we may have to force item writers to
generate only high-a items. Item writers may control
such characteristics as item content and item difficulty
level, but it is extremely challenging to produce only
highly discriminating items. The common practice for
generating more relatively high-a items is to discard
items whose a-parameter values are lower than a given
threshold. Once items are included in the pool, they
have already undergone rigorous review processes and
shown no problems. Items with relatively lower dis-
crimination parameters are still of good quality and
should be used. Obviously, test security can be greatly
enhanced by increasing the use of lower-a items.

This research indicates that structuring an opera-
tional CAT exam with only several hundred items
should be considered a design flaw. A high-stakes
CAT exam must have a large item pool. This can be
accomplished partly by including many items that
have never been selected by the current item selection
algorithms. Therefore, test security can be signifi-
cantly improved by increasing the pool size and by
evenly selecting all the items in the pool. If the item
pool is sufficiently large, an examinee who has stud-
ied compromised items has relatively little advantage.
But if the pool is small, the advantage can be huge.

Despite its limitations, CAT undoubtedly has a
great future because cutting-edge developments in
technology will enable us to solve the problems
encountered in current large-scale applications.

—Hua-Hua Chang and Zhiliang Ying

See also Armed Services Vocational Aptitude Battery;
Graduate Record Examinations
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COMREY, ANDREW L. 
(1923– )

Andrew L. Comrey was born in Charleston, West
Virginia, on April 14, 1923. His childhood was marred
by the Great Depression of the 1930s; however, he was
a brilliant student and entered Union College with a full
scholarship. While he was at Union College, his psy-
chology teacher, Ernest M. Ligon, introduced him to
psychological testing. Comrey worked in Ligon’s labo-
ratory giving Stanford-Binet IQ tests to young people in
the Character Research Project. During this time, he
read Louis Thurstone’s Vectors of Mind and planned 
to attend the University of Chicago to study with
Thurstone. However, World War II changed his plans.
Andrew completed his BS degree in science and entered
the U.S. Navy. During his service, he met and married
Barbara Sherman, who was also serving in the military.
They have two daughters, Cynthia and Corinne.

After the war, Comrey attended the University of
Southern California. He studied measurement, psy-
chometrics, and statistics with J. P. Guilford and
earned his PhD in 1949. His dissertation on funda-
mental measurement included a treatise on a method

of absolute ratio scaling. This method, published in
Psychometrika, was among the most cited studies on
scaling at that time.

Comrey’s first academic appointment was at the
University of Illinois. In 1951, he accepted a faculty
position at the University of California, Los Angeles
(UCLA). He has been at UCLA since 1951. During
his time at UCLA, he was a Fulbright Research
Fellow and held a National Science Foundation senior
postdoctoral research fellowship. He has served as
president of the Society for Multivariate Experi-
mental Psychology. His major research contributions
included the development of his own complete system
of factor analysis. He invented the minimum residual
method of factor extraction and the tandem criteria of
rotation.

The minimum residual method of factor extrac-
tion is a controversial method that avoided the
problem associated with communality estimates.
The tandem criteria involved a two-phase proce-
dure to obtain a simple structure solution. The first
of the two criteria is very useful in finding general
factors.

Comrey was the first researcher to write a fully
integrated computer program that would process raw
data through correlations, factor extraction, and rota-
tion. He later used this process to develop the Comrey
Personality Scales (CPS). The CPS was the result of
his research on the Minnesota Multiphasic Personality
Inventory and other personality tests. During the
development of the CPS, he created the factored
homogeneous item dimension as a basic unit of analy-
sis in factor analysis.

Comrey has published more than 150 articles,
chapters, and books. His textbook A First Course 
in Factor Analysis remains a popular and highly
regarded work. It has been translated into Japanese
and Italian.

—Howard B. Lee
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COMREY PERSONALITY SCALES

The Comrey Personality Scales (CPS), developed by
factor analysis, is a personality inventory of 180 mul-
tiple-choice items. Each item uses one of two possible
7-choice answer scales. Scale X has the following
possible answers: 7 (always), 6 (very frequently),
5 (frequently), 4 (occasionally), 3 (rarely), 2 (very
rarely), and 1 (never). Scale Y has the following
possible answers: 7 (definitely), 6 (very probably),
5 (probably), 4 (possibly), 3 (probably not), 2 (very
probably not), and 1 (definitely not). A sample item
using the X scale is “I love to work long hours.” The
CPS is published by the Educational and Industrial
Testing Service (www.edits.net).

The CPS measures eight major factors of personal-
ity that were identified through a unique set of factor
analytic methods and procedures. First, a collection of
factored homogeneous item dimensions (FHIDs) was
developed by culling ideas for important personality
variables from many existing personality inventories
and other sources. Then, each personality concept was
defined in clear terms. Next, multiple-choice items
were written that were deemed possible measures 
of each construct. Seven-choice items were chosen
because seven proved to be optimal for giving good
item response distributions and reliable items while
not demanding too much from a respondent. Each
FHID consisted of two items that were positively
stated and two items that were negatively stated with
respect to the construct dimension. This process was
carried out for a large number of potentially useful
constructs. 

Next, item factor analyses were conducted in
which the variables were items from six or more pos-
sibly useful constructs. If a factor was identified by
the items measuring a given hypothesized construct,
and no other, the items identifying that factor were

considered an FHID and a way of measuring that
dimension. Many factor analyses were conducted, and
items and dimensions were refined, culled, discarded,
and replaced until a substantial number of FHIDs
were selected. In these analyses, great care was exer-
cised to make sure that each FHID was conceptually
distinct from each other FHID in the analysis. 

The number of factors that emerged in analyses of
conceptually distinct FHIDs was found to be strictly
limited. In fact, the author’s extensive empirical inves-
tigations succeeded in turning up only eight major
factors. These eight factors constitute the personality
taxonomy on which the CPS is based. They are as
follows: trust versus defensiveness (T), orderliness ver-
sus lack of compulsion (O), social conformity versus
rebelliousness (C), activity versus lack of energy (A),
emotional stability versus neuroticism (S), extraversion
versus introversion (E), mental toughness versus sensi-
tivity (M), and empathy versus egocentrism (P). Each
of these major personality factors has been identified in
previous studies under one name or another. CPS is
unique because of the particular combination of factors
that makes up its taxonomy and because each factor 
has been identified by a compelling rationale. 

The CPS taxonomy has been validated with various
kinds of samples in many different cultural settings.
Factorial validity has been extensively documented for
the eight CPS factors. These factors have been shown
to be useful for predicting outcomes with respect to a
number of different practical criteria. The clinical
significance of CPS scores, particularly extreme
scores, high and low, has been well documented. Brief
descriptions and summaries of relevant published
articles are given in the Manual and Handbook of
Interpretations referenced below. A description of the
factor analytic procedures used in developing the CPS
is given in A First Course in Factor Analysis. 

—Andrew L. Comrey

See also Minnesota Multiphasic Personality Inventory; NEO
Personality Inventory; Personality Tests
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CONDITIONAL PROBABILITY

Conditional probability is a mathematical description
of the likelihood that a particular event will take place
given the occurrence of a particular precursor event.
Thus the probability of occurrence of event A is con-
ditional on the probability of the prior occurrence of
event B. Conditional probability is expressed as P
(A\B), which is read as “the probability of A given B.”
In order to calculate the conditional probability of an
event, there must be a priori knowledge of both the
probability that the first of the events will occur and
the probability that both events will occur together.
The basic probabilities of the events involved can be
expressed by a Venn diagram, as shown in Figure 1.

In Figure 1, the expressions used are defined as
follows:

P (A) is the probability of event A occurring alone 

P (B) is the probability of event B occurring alone 

P (A∩B) is the probability of both events A and B occur-
ring together, or the joint probability (∩ is the mathe-
matical symbol used to represent the intersection of 
two sets) 

The conditional probability of an event can be cal-
culated by dividing the probability of the occurrence
of the first event into the joint probability. The mathe-
matical formula for this calculation is

It follows that the probability of occurrence of the
primary event (the denominator of the equation) can-
not be equal to zero. Without this condition, the equa-
tion would be mathematically impossible, as well as
illogical (one cannot estimate the probability of a
particular outcome without the occurrence of the
outcome’s predecessor).

Conditional probability can be applied to many sit-
uations in a variety of fields. For example, it could be
used to determine a person’s chance of developing 
a particular disease given the disease’s presence or
absence in the person’s familial background or the
probability of a person using the word cabbage in a
sentence, given that the word directly preceding it was
eggplant. For gamblers, conditional probability could
be used to compare the odds of winning a game; the
chances of having a winning poker hand in five-card
draw are significantly greater if a player is dealt three
queens than if the player gets a pair of twos. In every-
day life, your chances of being mugged in a city might
be dependent on how often you walk alone at night, or
your chances of heartburn might be conditional on
your eating spicy foods.

As an example, suppose there is a 3% chance that a
girl in a senior high school class is both a cheerleader
and class president. Additionally, suppose that the
chance of a girl in the senior class being a cheerleader
is 8%. What are the chances of a girl being elected
senior class president given that she is a cheerleader?

P(A\B) = P(A∩B)

P(B)
or, similarly,

P(B\A) = P(A∩B)

P(A)
.
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Figure 1 Venn Diagram Illustrating the Probabilities
of Event A, Event B, and Events A and B
Together



There is a 38% chance that a girl will be elected pres-
ident of her senior class given that she is a cheerleader.

—Allison B. Kaufman
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CONFIDENCE INTERVALS

Confidence intervals (CIs) are common
tools of inference, measuring how sure
we are of our results. Confidence inter-
vals do the following:

• Across studies, they tell us how accu-
rately and consistently data operate
over time. 

• They invoke two primary concepts,
intervals and confidence levels:
Intervals are determined by the stan-
dard errors of statistics.
Levels are chosen by the researcher
and are given as percentages.

Simply put, a 95% confidence level
says the method used by the researcher
gives an interval that covers the true
population parameter for 95% of the
samples. For example, by calculating a
confidence interval for your cholesterol
level taken 20 times (n = 20), you can
state how confident you are that the CI
accurately contains your true cholesterol
level. A range null hypothesis, say

160–200, is tested rather than a point null hypothesis
(e.g., 180).

There exists a seesaw relationship between confi-
dence levels and CIs: the higher the confidence level,
the wider the interval or the larger the margin of error.
The lower the confidence level, the narrower the inter-
val or the smaller the margin of error. For the CI for
the mean, the standard deviation also affects the mar-
gin of error, and there is more variance in the popula-
tion if the interval is wider, as shown in Figures 1a and
1b. Figure 1c suggests that to make the margin of error
smaller, the researcher must collect more data, which
shrinks the margin of error because of the formula

where z* is a z score related to the p value and is a
measure of distance from the mean measured in stan-
dard deviations. The z* for .05 is 1.96, equaling a 95%
confidence level; z* for .01 is 2.576, equaling a 99%
confidence level.

X̄ ± z∗
(

σ√
n

)

,

P(A\B) = P(A∩B)

P(B)

P(A\B) = .03

.08
= .375 = 38%
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Figure 1 Effect of Changing Confidence Intervals



CIs should be used when reporting results for the
following reasons:

• Graphical display of CI lends itself to enhanced
understanding by readers.

• CIs are fairly easily obtained using common pack-
ages such as SPSS or the Exploratory Software 
for Confidence Intervals software developed by
Cumming and Finch.

• CIs are helpful in compiling studies supporting meta-
analytic thinking.

The American Psychological Association (APA)
Task Force suggested that CIs should always be
reported, and the APA Publication Manual said CIs
were “the best” reporting device. One advantage of
thoughtful use of CIs is that they provide a graphical
tool to integrate or synthesize results across studies,
thereby enhancing replicability. Researchers should
present effect sizes as CIs because CIs contain much
more information than significance tests.

—Mary Margaret Capraro

See also Hypothesis Testing; Significance Level
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Exploratory Software for Confidence Intervals: http://www
.latrobe.edu.au/psy/esci/

CONSTRUCT VALIDITY

Validity refers to the degree that a test measures what
it purports to measure. In terms of classical measure-
ment theory, it is inappropriate to refer to the validity
of a test. Instead, the use of the test is validated for a
specific measurement purpose. 

Instrument reliability, the consistency with which a
test measures whatever it measures, is a necessary but
insufficient condition in determining whether a test is

valid for a specific use. A test may be reliable but not
valid for a particular purpose. However, a test that is
not reliable cannot be valid for any meaningful
measurement purpose.

In 1986, Crocker and Algina defined a construct as
“informed scientific imagination.” A construct is a fic-
tion that is used to explain reality. For example, intel-
ligence, reading readiness, and self-determination are
constructs used to study and communicate inferable
educational and psychological phenomena.

There are a variety of ways to collect evidence of
the validity of a test to measure a construct.
Frequently, test publishers rely on the Pearson prod-
uct-moment correlation as evidence of construct
validity. A random sample of examinees may be given
two different intelligence tests. The presence of a high
correlation of a newly constructed intelligence test
with an established intelligence test is cited as evi-
dence of construct validity. However, this technique is
no stronger than the external evidence that supports
the established intelligence test as a measure of intel-
ligence, which is oftentimes historically problematic.

Another technique is to postulate differential effects
among groups. An experimental design is carried out on
a known intervention to determine whether the outcome
is aligned with the a priori differentiation. This method
is also problematic for a variety of reasons, such as lim-
itations on the reliability of the data-gathering instru-
ments and the unexpected failure of the intervention.

An enigmatic method that is nevertheless fre-
quently used is factor analysis. In exploratory factor
analysis, a reduced set of underlying variables is dis-
covered that purports to account for the variation of
the test items. This reduced set is known as the factor
solution, which constitutes the construct being 
measured. Nevertheless, a plethora of choices make
this approach untenable. They include the choice of
eigenvalue minimum to extract (e.g., 1.0), a priori
number of factors to extract, method of extraction (e.g.,
principal components, principal axis, maximum likeli-
hood), and rotation method (e. g., varimax, equamax).

Confirmatory factor analysis, and structural
equation modeling in general, presents an improve-
ment on exploratory factor analysis in that the 
former provides a method for testing a theoretic mea-
surement model and the goodness of fit of the data to
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that model. Despite its promise, however, Pedhazur
and Schmelkin noted the “large and potentially bewil-
dering number of models” (p. 670) that arise in con-
firmatory factor analysis, in addition to the many and
stringent underlying assumptions that must be met.

In 1959, Campbell and Fiske provided a rigorous
design for determining construct validity called the
multitrait-multimethod matrix. The construct is par-
tialed into constituent traits, which are then measured
in a variety of ways. In 1995, for example, Field,
Hoffman, & Sawilowsky defined the construct self-
determination for students as consisting of the con-
stituent traits of (1) knowing yourself, (2) valuing
yourself, (3) being able to plan, (4) being able to act,
and (5) being able to learn from outcomes. A battery
of five instruments was developed to measure these
traits via differing methodologies: (1) assessment 
of knowledge or skills, (2) behavioral observation
checklist, (3) assessment of affect and belief, (4)
teacher perception, and (5) parent perception.

The multitrait-multimethod matrix consists of four
levels of data. They are, hierarchically from the
highest to the lowest, reliability coefficients (usually

placed in parentheses), validity coefficients (in bold
italics), heterotrait monomethod coefficients (under-
scored), and heterotrait heteromethod coefficients. As
an illustration, consider the multitrait-multimethod
matrix data in Table 1.

Since the multitrait-multimethod matrix was devel-
oped in 1959, there have been many unsuccessful
attempts to determine the appropriate method of sta-
tistical analysis for the data in the matrix. The reason
for the lack of success is that the data in the diagonals
and triangles often conflict. These methods are based
on heuristic argument, analysis of variance models,
nonparametric analogs to the analysis of variance
models, and confirmatory factor analysis.

Campbell and Fiske stated that evidence of con-
struct validity requires the data for the coefficients at
the top level (i.e., reliability) to be as high as possible
and somewhat higher than those at the second level
(validity), which in turn should be higher than those on
the third level (heterotrait monomethod), and so forth.

A quick, distribution-free method with easily
remembered critical values was provided for this
analysis by Sawilowsky in 2002:
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Table 1 Multitrait-Multimethod Matrix Data

Method 1 Method 2 Method 3

Trait: A  B  C A B  C A B  C

Method 1
A (.95)
B .28 (.86) 
C .58 .39 (.92)

Method 2
A .86 .32 .57 (.95)
B .30 .90 .40 .39 (.76)
C .52 .31 .86 .55 .26 (.84)

Method 3
A .74 .10 .43 .64 .17 .37 (.48)
B .10 .63 .17 .22 .67 .19 .15 (.41)
C .35 .16 .52 .31 .17 .56 .41 .30 (.58)

Source: Adapted from Mosher, 1968.

Note: Correlations in parentheses are reliability coefficients, bold italics indicate validity coefficients, underscore indicates heterotrait
monomethod coefficients, and regular type indicates heterotrait heteromethod coefficients.



The null hypothesis is that the coefficients in 
the matrix are unordered. This is tested against the
alternative hypothesis of an increasing trend from the
lowest level (heterotrait heteromethod) to the highest
level (reliability coefficients).

The test statistic, I, is the number of inversions (also
known as U statistics). Consider the coefficients in
Table 1. The data are ranked. Next, the minimum,
median, and maximum values are determined, as indi-
cated in Table 2. Then, count the number of inversions,
beginning with the minimum value of the lowest level
of the heterotrait heteromethod coefficients, as indi-
cated in Table 3. For example, there are no inversions
from the initial value of .10. The second value, .305,
has one inversion (.15, which is the minimum value on
the heterotrait monomethod level). The third value,
.57, has three inversions (.15, .39, and .56).

In this example, I = 10. The critical values for 
α = 0.05 and 0.01 are 10 and 14, respectively. Thus, in
this example, the null hypothesis that the values are
unordered is rejected in favor of the alternative
hypothesis of an upward trend. This constitutes evi-
dence of construct validity. A complete table of criti-
cal values, and the associated p values, may be found
in Sawilowsky (2002).

—Shlomo S. Sawilowsky

See also Content Validity; Criterion Validity; Face Validity;
Predictive Validity; Reliability Theory; Validity Theory
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Table 2 Obtaining Minimum, Median, and Maximum
Values for the I Test for Construct Validity

Reliability coefficients
Original data:
.95, .86, .92, .95, .76, .84, .48, .41, .58
Ranked data:
.41, .48, .58, .76, .84, .86, .92, .95, .95
Minimum, median, maximum
.41, .84, .95

Validity coefficients
Original data:
.86, .90, .86, .64, .67, .56
Ranked data:
.56, .64, .67, .86, .86, .90
Minimum, median, maximum
.56, .765, .90

Heterotrait monomethod coefficients
Original data:
.28, .58, .39, .39, .55, .26, .15, .41, .30
Ranked data:
.15, .26, .28, .30, .39, .39, .41, .55, .58
Minimum, median, maximum:
.15, .39, .58

Heterotrait heteromethod coefficients
Original data:
.32, .57, .30, .40, .52, .31, .10, .43,

.10, .17, .35, .16, .17, .37, .22, .19, .31, .17
Ranked data:
.10, .10, .16, .17, .17, .17, .19, .22, .30, .31, .31,

.32, .35, .37, .40, .43, .52, .57
Minimum, median, maximum:
.10, .305, .57

Note: I = number of inversions.

Table 3 Test for Trend (Construct Validity)

Minimum Median Maximum

Level Value I Value I Value I

Reliability .41 0 .84 0 .95 0
Validity .56 1 .765 0 .90 2
H-M .15 0 .39 0 .58 3
H-H .10 0 .305 1 .57 3

Notes: Total Inversions = 10. Probability [I<– = 10] = 0.00796807.
H-M = heterotrait monomethod, H-H = heterotrait heteromethod.
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CONTENT VALIDITY

In educational and psychological testing, the term
validity refers to “the degree to which evidence and
theory support the interpretations of test scores
entailed by proposed uses of tests” (American
Educational Research Association, 1999, p. 9). From
this definition, it can be deduced that (a) tests can be
evaluated only with respect to one or more specific
testing purposes, (b) validation involves confirming
the inferences derived from test scores, not confirm-
ing the test itself, and (c) evaluating inferences
derived from test scores involves gathering and ana-
lyzing several different types of evidence. In many
cases, the evidence most critical to evaluating the
usefulness and appropriateness of a test for a specific
purpose is based on content validity.

Content validity refers to the degree to which a test
appropriately represents the content domain it is
intended to measure. When a test is judged to have
high content validity, its content is considered to be
congruent with the testing purpose and with prevailing
notions of the subject matter tested. For many testing
purposes, such as determining whether students have
mastered specific course material or determining
whether licensure candidates have sufficient knowl-
edge of the relevant profession, evidence of content
validity provides the most compelling argument that
the test scores are appropriate for inferring conclu-
sions about examinees’ knowledge, skills, and

abilities. For this reason, content validity evidence is
critically important in supporting the use of a test for
a particular purpose. Thus, content validation is an
important activity for test developers, and research on
improved methods for evaluating test content contin-
ues to this day.

Characteristics of Content Validity

As the American Educational Research Association
definition of validity implies, empirical evidence and
cogent theory are needed to support the validity of
inferences derived from test scores. Investigations of
content validity involve both evaluating the theory
underlying the test and gathering empirical evidence
of how well the test represents the content domain 
it targets.

Content validity has at least four aspects: domain
definition, domain representation, domain relevance,
and appropriateness of the test construction process.
Domain definition refers to the process used to opera-
tionally define the content domain tested. Defining the
domain is typically accomplished by providing (a)
detailed descriptions of the content areas and cogni-
tive abilities the test is designed to measure, (b) test
specifications that list the specific content “strands”
(subareas), as well as the cognitive levels measured,
and (c) specific content standards, curricular objec-
tives, or abilities that are contained within the various
content strands and cognitive levels. Evaluating
domain definition involves acquiring external consen-
sus that the operational definition underlying the 
test is commensurate with prevailing notions of the
domain held by experts in the field (e.g., certified
public accountants’ verifying that the test specifica-
tions for the Uniform CPA Exam reflect the major
knowledge and skill domains necessary for safe and
effective practice in the profession).

The next aspect of content validity is domain rep-
resentation, which refers to the degree to which a test
represents and adequately measures all facets of the
intended content domain. To evaluate domain repre-
sentation, inspection of all the items and tasks on 
a test must be undertaken. The critical task is to 
determine whether the items fully and sufficiently
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represent the targeted domain. Studies of domain
representation typically use subject matter experts to
scrutinize test items and judge the degree to which
they are congruent with the test specifications.
Sometimes, as in the case of state-mandated testing in
public schools, subject matter experts judge the extent
to which test items are congruent with curriculum
framework. These studies of domain representation
have recently been classified within the realm of test
alignment research. 

Related to domain representation is domain rele-
vance, which addresses the extent to which each item
on a test is relevant to the domain tested. An item may
be considered to measure an important aspect of a
content domain, and so it would receive high ratings
with respect to domain representation. However, if it
were only tangentially related to the domain, it would
receive low ratings with respect to relevance. For this
reason, studies of content validity may ask subject
matter experts to rate the degree to which each test
item is relevant to specific aspects of the test specifi-
cations. The studies then aggregate those ratings
within each content strand to determine domain rep-
resentation. Taken together, study of domain
representation and relevance can help evaluate (a)
whether all important aspects of the content domain
are measured by the test and (b) whether the test con-
tains trivial or irrelevant content. As Messick
described in 1989 in his seminal treatise on validity,
“Tests are imperfect measures of constructs because
they either leave out something that should be
included . . . or else include something that should be
left out, or both” (p. 34). A thorough study of content
validity, prior to assembling tests, protects against
these potential imperfections.

The fourth aspect of content validity, appropriate-
ness of the test development process, refers to all
processes used when constructing a test to ensure that
test content faithfully and fully represents the con-
struct intended to be measured and does not measure
irrelevant material. The content validity of a test can
be supported if strong quality control procedures are
in place during test development and if there is a
strong rationale for the specific item formats used on
the test. Examples of quality control procedures that

support content validity include (a) reviews of test
items by content experts to ensure their technical
accuracy; (b) reviews of items by measurement
experts to determine how well the items conform to
standard principles of quality item writing; (c) sensi-
tivity review of items and intact test forms to ensure
the test is free of construct-irrelevant material that
may offend, advantage, or disadvantage members of
particular subgroups of examinees; (d) pilot-testing of
items, followed by statistical item analyses to select
the most appropriate items for operational use; and (e)
analysis of differential item functioning, to flag items
that may be disproportionately harder for some groups
of examinees than for others. 

Conducting a Content Validity Study

As briefly mentioned earlier, many studies of content
validity require subject matter experts to review test
specifications and items according to specific evalua-
tion criteria. Thus, a content validity study typically
involves gathering data on test quality from profes-
sionals with expertise in the content domain tested.
Content validity studies differ according to the spe-
cific tasks presented to the experts and the types of
data gathered. One example of a content validity
study is to give content experts the test specifications
and the test items and ask them to match each item to
the content area, educational objective, or cognitive
level that it measures. In another type of study, the
experts are asked to rate the relevance of each test
item to each of the areas, objectives, or levels mea-
sured by the test.

The data gathered from these studies can be sum-
marized using simple descriptive statistics, such as the
proportion of experts who classified an item as it was
listed in the test specifications or the mean relevance
ratings for an item across all areas tested. A “content
validity index” can be computed for a test by averag-
ing these statistics over all test items. More-
sophisticated procedures for analyzing these data have
also been proposed, including a newer procedure
based on experts’ judgments regarding the similarity
of skills being measured by pairs of test items. Other
studies that provide evidence of content validity
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include job analyses (referred to as practice analyses
for licensure testing). Job analyses are often con-
ducted to operationally define the content domain to
be tested. Data gathered from such analyses can be
used to derive weights (e.g., proportions of test items)
for specific content areas as well as to defend the spe-
cific areas tested.

Content Validity: 
Past, Present, and Future

The origins of contemporary, large-scale educational
and psychological tests can be traced to the early 
20th century. As the stakes associated with these tests
increased, the methods used to evaluate tests also
increased. The concept of content validity and the
process of content validation emerged to address 
the limitations of purely statistical (correlational)
approaches to test validation that were common in the
early part of the 20th century. Content validity quickly
became a popular term endorsed by validity theorists
and by the Joint Committee on Testing Standards of
the American Educational Research Association,
the American Psychological Association, and the
National Council on Measurement in Education. That
popularity waned in the middle 1970s, when a unitary
conceptualization of validity centered on construct
validity was proposed. Proponents of this unitary con-
ceptualization suggest using terms such as content
representativeness in place of content validity because
content validity focuses on the test itself rather than
on inferences derived from test scores. This perspec-
tive was incorporated into the current version of 
the American Educational Research Association’s
Standards for Educational and Psychological Testing,
which uses the phrase “evidence based on test con-
tent” in place of content validity. However, not all test
specialists agree, and in educational testing, the atten-
tion paid to content validation is increasing at a stag-
gering pace. 

Regardless of debates over terminology, the funda-
mental characteristics of test quality encompassed by
content validity (i.e., domain definition, domain
representation, domain relevance, and appropriate test
construction process) will remain important criteria

for evaluating tests for as long as tests are used to
make inferences regarding individuals’ knowledge,
skills, and abilities. Clearly, for interpretations of test
results to be valid, (a) the content of a test needs to be
congruent with the testing purpose, and (b) the con-
tent areas to which an assessment is targeted need to
be adequately represented. Thus, for many educa-
tional and psychological tests, content validity is pre-
requisite for valid score interpretation.

—Stephen G. Sireci

See also Criterion Validity; Face Validity; Predictive Validity;
Reliability Theory; Validity Theory
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CONTINUOUS VARIABLE

If members of a group of people (or animals or things)
are the same in terms of a particular characteristic of
interest, there is no variability in the group. Usually,
however, there is at least some degree of heterogene-
ity among the group’s members. In this second, more
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typical situation, the characteristic being focused on is
said to be a variable.

A variable is said to be a continuous variable if it
is theoretically possible for the group members to lie
anywhere along an imaginary line segment with ends
that represent small and large amounts of the charac-
teristic. The litmus test for determining whether a par-
ticular variable is or is not a continuous variable is this
pair of questions: (a) If a small difference exists
between two of the people (or animals or things) in
the group, is it possible for a third member of the
group to be positioned between the first two? (b) If so,
could the third member of the group be positioned
between the first two no matter how small the differ-
ence between the first two?

To illustrate how this two-question test allows us to
determine whether a variable is a continuous variable,
imagine a group of people who are not all equally tall.
Height, therefore, is a variable. To determine whether
height is a continuous variable, first imagine two
people in the group, A and B, who are nearly the same
height; then, ask whether a third person, C, could be
taller than A but shorter than B. Now comes the criti-
cal second question. Could C be between A and B in
terms of height no matter how small the difference
between A and B? The answer is “yes” so long as 
A and B are not the same height. Therefore, height is
a continuous variable.

Other examples of continuous variables include
measurements of many physical traits, such as
weight, length, speed, and temperature. Many psy-
chological traits, such as intelligence, paranoia,
extroversion, and creativity, are also continuous vari-
ables. No matter how similar two rocks are in weight
or how similar two people are in creativity, it is theo-
retically possible for a third rock to have a weight
between the other two rocks or for a third person to
have a level of creativity between the creativity levels
of the other two people.

Continuous Versus Discrete Variables

For a variable to be a continuous variable, the charac-
teristic being focused on must be quantitative in
nature. The examples used in the previous paragraphs

are quantitative in nature and also are continuous.
Many other quantitative variables, however, are not
continuous. Consider these two: the number of sib-
lings a person has or the number of working tele-
visions inside a house. If someone has one sibling
whereas someone else has two siblings, it is not logi-
cally possible for someone else to be “in between” the
first two people. Likewise, if one house had three
working televisions while another house had four
working televisions, it is impossible for another house
to have between three and four working televisions.
Quantitative variables such as these are called discrete
variables.

Data Can Make a Continuous 
Variable Look Like a Discrete Variable

When visiting a doctor’s office, people are typically
measured in terms of their weight and their tempera-
ture. The weight data usually are whole numbers (e.g.,
157 pounds) while the temperature data almost always
are numbers containing one decimal place (e.g., 99.7°
Fahrenheit). When such measurements are collected
from groups of individuals, the data make it look as if
weight and temperature are discrete rather than con-
tinuous variables.

This potential confusion as to whether a variable is
continuous or discrete melts away if we think about
the variable without focusing on the data created by
attempting to measure the characteristic of interest.
Thus, the fact that people’s weights are typically
reported in whole numbers or that their temperatures
are normally reported with numbers containing just
one decimal place does not alter the fact that both
weight and temperature are continuous variables. It is
the characteristic being focused on—rather than any
data made available by trying to measure that charac-
teristic—that determines whether a given variable is
continuous.

The Distinction Between Continuous
and Discrete Variables: Does It Matter?

When statistical techniques are used to summarize or
analyze data, it often makes little difference whether
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the variable on which measurements
have been taken is continuous or dis-
crete. For example, the correlation
between scores on two variables has the
same meaning (and is arrived at using
the same formula) regardless of whether
the variables are continuous or discrete.
Similarly, it doesn’t matter whether the
variable beneath one’s data is continu-
ous or discrete when a standard devia-
tion is computed or interpreted.

Yet in certain situations, it does mat-
ter whether data are tied to a continuous
variable or to a discrete variable. For
example, discrete and continuous vari-
ables are treated differently in probabil-
ity theory. With discrete variables,
probabilities can be determined for par-
ticular points along the score contin-
uum. In contrast, probabilities deal only
with intervals along the score contin-
uum if the variable is continuous.

—Young-Hoon Ham

See also Categorical Variable; Continuous Variable;
Dependent Variable; Independent Variable
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CONTOUR PLOT

A contour plot (or diagram) is a two-dimensional rep-
resentation of a three-dimensional surface. It consists of
a set of curves called contours formed by projecting

the curves of intersection of the surface with planes
parallel to one of the coordinate planes. Typically, the
surface is the graph of a function, which may be given
as a formula or as output of measured data. The con-
tours share the property that on any particular curve,
the value of the dependent variable is constant.
Normally, the diagram is such that the values between
contours vary by a constant amount.

Figure 1 is an example of a contour plot. It was
used to fit a logistic curve, that is, a curve of the form

in the least-squares sense to a set of data for the U.S.
cumulative underground gas storage capacity from
1932 to 2000 (C is an arbitrary constant of integra-
tion). By manipulating the expression for a logistic
function, it is possible to write a formula in terms of
only two parameters: its growth rate and its inflection
point. In order to minimize the corresponding 
least-square error function, one needs an accurate
estimate of those parameters. This usually requires a

y(t) = K

1 + Cexp(−rt)
,
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Source: Data from International Gas Consulting, Inc.



first estimate, which in this example can be obtained
more easily from the contour plot of the error function
than from the three-dimensional graph (see Figure 2).

As with all contour plots, the contour plot illus-
trated above reflects the intersection of planes parallel
to the inflection time-growth rate plane (t0, r – plane)
and the surface of the error function displayed in
Figure 2. Each contour depicts a curve of constant
error; that is, the value of the error function remains
the same along a curve.

Graphing contour lines by hand is generally
impractical. Instead, one uses either graphics software
or a mathematical or statistical software package. The
plots shown were created in Matlab; instead of label-
ing values of the error at some curves, values are indi-
cated by a scale given by a color bar.

Contour plots are used in very diverse fields; in
particular, they are widely used in the earth sciences.
A common application is topographic maps, which
display elevation in terms of longitude and latitude.
Since the elevation between any two consecutive con-
tours varies by the same amount, proximity of con-
tour lines indicates the rate of change of elevation. 

—Silvia A. Madrid

See also Dependent Variable; Logistic Regression Analysis
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CONVENIENCE SAMPLING

Convenience sampling is a type of sur-
vey sampling in which interviewers are
allowed to choose convenient members

of the population to interview. The goal of a survey is
to gather data in order to describe the characteristics
of a population. A population consists of units, or ele-
ments, which, depending on the application, can be
individuals, households, land areas, bank accounts, or
hospital records at a specific time and location. A sur-
vey collects information on a sample, or subset, of the
population. In some surveys, specific units or ele-
ments are chosen by the survey designers to be in the
sample. Interviewers are assigned to interview the
members of the selected sample. Sometimes multiple
attempts at contacting and collecting data from the
selected sample members are made. In convenience
samples, on the other hand, interviewers themselves
are given some latitude in selecting the population
members to interview. That is, the survey designers
and planners do not strictly control the selection of 
the sample.

Convenience samples occur in many forms. If an
interviewer is told to stand on a corner or at the exit of a
shopping mall and find adults to complete a survey
about local schools, then this is a convenience sample
because the instructions of whom to interview are not
explicit. If customer satisfaction forms are distributed to
certain customers in a restaurant, then this is a conve-
nience sample if the waiters are allowed to choose
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which customers to give comment forms. Internet and
call-in opinion polls also could be considered conve-
nience samples in which the sample essentially selects
itself by choosing to participate. A subtler example of
convenience sampling occurs when a telephone inter-
viewer dials the telephone numbers that are randomly
generated from a computer until a willing respondent is
found. Although the telephone numbers are being
provided to the interviewer, the interviewer is going to
speak to the first available and willing people reached.
This is a convenience sample because the survey
planners are not picking specific numbers that should be
called. In this scenario, the people called by the inter-
viewer essentially decide themselves whether or not to
be in the sample.

In the shopping mall example, it is likely that the
interviewer will tend to approach people who look
friendly and are walking at a casual pace rather than
people who are rushing and in a visibly bad mood.
Interviewers might tend to choose people of their own
gender, age group, ethnicity, or race to interview
slightly more often than they choose others. The inter-
viewer also is likely to choose a desirable place to
stand and to avoid loud places, such as by the door to
a video arcade, and smelly locations, such as near a
garbage or designated smoking area. As a result of the
chosen location and tendencies to approach certain
types of individuals and avoid others, it is possible
that the convenience sample will not produce results
that are truly representative of the entire population of
interest. The convenience sample could be representa-
tive of certain subgroups in the population, but due to
the lack of control by the survey planners, it is diffi-
cult to specify which population exactly is being
represented.

Estimates of population characteristics based on
convenience samples are affected by selection bias.
Since the interviewers choose respondents that they
want to interview or respondents decide whether or
not to participate, there is a potential for selection
bias. If the respondents in the survey are systemati-
cally different from the general population on the
variables being measured, then estimates of charac-
teristics will be different on average from what they
would have been with a controlled probability-
sampling scheme. Probability sampling refers to a

collection of survey sample designs in which the
survey planner or researcher controls which units are
in the sample and selects the sample using known
probabilities of selection. The probabilities of selec-
tion can be used to produce estimates of population
characteristics without the problem of selection bias.
Probability sampling is the standard methodology
for large-scale surveys intended to support scientific
studies and decision making for government policy.
That is not to say that convenience sampling
should never be done. Sometimes it is very helpful
to get some feedback and suggestions from people
especially concerned with a problem or issue. One
should be careful, however, about the limitations of
general statements about a large population based on
convenience samples.

—Michael D. Larsen

See also Nonprobability Sampling; Quota Sample; Random
Sampling

Further Reading
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Nonprobability sampling: http://www.statcan.ca/english/
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Applying Ideas on Statistics and Measurement

The following abstract is adapted from Zelinski, 
E. M., Burnight, K. P., & Lane, C. J. (2001). The
relationship between subjective and objective
memory in the oldest old: Comparisons of findings
from a representative and a convenience sample.
Journal of Aging and Health, 13(2), 248–266. 
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Convenience sampling is only one of many 
different techniques that scientists use to select
participants in a study. Elizabeth Zelinski and her
colleagues tested the hypothesis that subjective
memory ratings are more accurate in the oldest
old than in the young old and also tested whether
a representative sample was more accurate than a
convenience sample. The results of analysis of
subjective ratings and participant characteristics
on recall were compared between a nationally
representative sample of 6,446 adults ages 70 to
103 and a convenience sample of 326 adults ages
70 to 97. Researchers found that education inter-
acted with memory ratings in the prediction of
performance in the representative sample, with
better prediction for more highly educated partic-
ipants than for participants with lower levels of
education. Neither hypothesis was supported.

COPING RESOURCES

INVENTORY FOR STRESS

Coping refers to conscious or unconscious efforts to
manage internal and external demands or situations
that are appraised as taxing one’s personal resources.
Instruments measuring coping usually fall into one of
two categories: those measuring coping processes and
those measuring coping resources.

While coping processes are thoughts or behaviors
occurring after stressful events have occurred,
coping resources are factors in place before such
stressors occur. Coping resources may include
psychological traits, cognitive skills, belief systems,
social support, physical health and fitness, and finan-
cial resources.

The Coping Resources Inventory for Stress (CRIS) is
a comprehensive measure of personal resources for cop-
ing with stress. The CRIS offers 15 resource measures,
an overall coping effectiveness measure, five validity
keys, and a computer-generated interpretative report that
suggests ways of strengthening deficit resources. The
resource scales are self-disclosure, self-direction, confi-
dence, acceptance, social support, financial freedom,
physical health, physical fitness, stress monitoring,

tension control, structuring, problem solving, cognitive
restructuring, functional beliefs, and social ease.

The 280 true-false items of the CRIS were distilled
from more than 700 items responded to by more than
3,500 participants during a 12-year period. Contribut-
ing to the development of the inventory were disparate
group studies, factor analyses, item analyses, item
bias studies, reliability coefficients, and meta-analytic
reviews. The normative sample (n = 1,199) was
selected to be representative of the United States pop-
ulation in terms of race, gender, and age. The CRIS
may be administered using test booklets or by
computer.

The CRIS scales have relatively high internal con-
sistency reliabilities (.84 to .97; Mdn = .88; n = 814),
test-retest reliabilities (.76 to .95 over a 4-week
period; Mdn = .87; n = 34 college students), and mod-
erate to low intercorrelations (range .05 to .62; Mdn =
.33). These features allow the CRIS to be used as an
inventory offering stable measures of subconstructs
that all contribute to one superordinate construct, cop-
ing resources. Some of the studies for establishing the
validity of the inventory include measures of illness,
emotional distress, personality type, drug dependency,
occupational choice, acculturation, and life satisfac-
tion. The CRIS is published by Datamax Corporation,
Atlanta, Georgia.

—Kenneth. B. Matheny and 
William L. Curlette

Further Reading

Matheny, K. B., Aycock, D., Curlette, W. L., & Junker, G.
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(Eds.), Evaluating stress: A book of resources. Lanham,
MD: Scarecrow. 
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Gfroerer, C. A., Thompson, D., et al. (2002). Coping
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Journal of Stress Management, 9(2), 81–97.
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CORRELATION COEFFICIENT

Correlation coefficient is a measure of association
between two variables, and it ranges between –1 and
1. If the two variables are in perfect linear relation-
ship, the correlation coefficient will be either 1 or –1.
The sign depends on whether the variables are posi-
tively or negatively related. The correlation coefficient
is 0 if there is no linear relationship between the vari-
ables. Two different types of correlation coefficients
are in use. One is called the Pearson product-moment
correlation coefficient, and the other is called the
Spearman rank correlation coefficient, which is based
on the rank relationship between variables. The
Pearson product-moment correlation coefficient is
more widely used in measuring the association
between two variables. Given paired measurements
(X1,Y1), (X2,Y2), . . . ,(Xn,Yn), the Pearson product-
moment correlation coefficient is a measure of
association given by

where X
_

and Y
_

are the sample mean of X1, X2, . . . , Xn

and Y1, Y2, . . . , Yn, respectively.

Case Study and Data

The following 25 paired measurements can be found
at http://lib.stat.cmu.edu/DASL/Datafiles/Smoking
andCancer.html:

77 84
137 116
117 123
94 128

116 155
102 101
111 118
93 113
88 104

102 88
91 104

104 129
107 86
112 96
113 144
110 139
125 113
133 146
115 128
105 115
87 79
91 85

100 120
76 60
66 51

For a total of 25 occupational groups, the first
variable is the smoking index (average 100), and the
second variable is the lung cancer mortality index
(average 100). Let us denote these paired indices as
(Xi,Yi). The Pearson product-moment correlation
coefficient is computed to be rp = 0.69. Figure 1 shows
the scatter plot of the smoking index versus the lung

rP =

n∑

i=1
(Xi − X̄)(Yi − Ȳ )

√
n∑

i=1
(Xi − X̄)2

n∑

i=1
(Yi − Ȳ )2

,
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cancer mortality index. The straight line is the linear
regression line given by Y = β0 + β1 × X.

The parameters of the regression line are estimated
using the least squares method, which is implemented
in most statistical packages such as SAS and SPSS.
The equation for the regression line is given by Y = 
–2.89 + 1.09 × X. If (Xi, Yi) are distributed as bivariate
normal, a linear relationship exists between the
regression slope and the Pearson product-moment
correlation coefficient given by

where σX and σY are the sample standard deviations of
the smoking index and the lung cancer mortality
index, respectively (σX = 17.2 and σY = 26.11). With
the computed correlation coefficient value, we obtain

which is close to the least squares estimation of 1.09.

Statistical Inference 
on Population Correlation

The Pearson product-moment correlation coefficient
is the underlying population correlation ρ. In the
smoking and lung cancer example above, we are inter-
ested in testing whether the correlation coefficient
indicates the statistical significance of relationship
between smoking and the lung cancer mortality rate.
So we test. H0 : ρ = 0 versus H1 : ρ ≠ 0.

Assuming the normality of the measurements, the
test statistic

follows the t distribution with n–2 degrees of freedom.
The case study gives 

This t value is compared with the 95% quantile
point of the t distribution with n–2 degrees of

freedom, which is 1.71. Since the t value is larger than
the quantile point, we reject the null hypothesis and
conclude that there is correlation between the smok-
ing index and the lung cancer mortality index at sig-
nificance level α = 0.1. Although rp itself can be used
as a test statistic to test more general hypotheses about
ρ, the exact distribution of ρ is difficult to obtain. One
widely used technique is to use the Fisher transform,
which transforms the correlation into

Then for moderately large samples, the
Fisher transform is normally distributed with mean

and variance Then the test statistic is

which is a standard
normal distribution. For the case study example,
under the null hypothesis, we have

The Z value is compared with the 95% quantile
point of the standard normal, which is 1.64. Since the
Z value is larger than the quantile point, we reject the
null hypothesis and conclude that there is correlation
between the smoking index and the lung cancer
mortality index.

—Moo K. Chung

See also Coefficients of Correlation, Alienation, and
Determination; Multiple Correlation Coefficient; Part 
and Partial Correlation
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Her Majesty’s Stationery Office, London, 1978)
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Z = √
25 − 3

(
1

2
ln

(
1 + 0.69

1 − 0.69

)

− 1

2
ln

(
1 + 0

1 − 0

))

= 3.98.

Z = √
n − 3 (F (rP) − F(ρ)) ,

1

n − 3
.

1

2
ln

(
1 + ρ

1 − ρ

)

F(rP) = 1

2
ln

(
1 + rP

1 − rP

)

.

T = 0.69
√

25 − 2√
1 − 0.692

= 4.54.

T = rP

√
n − 2

√
1 − r2

P

β1 � 26.11

17.20
× 0.69 = 1.05,

β1 � σY

σX

rP ,
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Correlation coefficient page: http://mathworld.wolfram.com/
CorrelationCoefficient.html

Spearman rank correlation coefficient: http://mathworld
.wolfram.com/SpearmanRankCorrelationCoefficient.html

CORRESPONDENCE ANALYSIS

Correspondence analysis (CA) is an exploratory mul-
tivariate technique that converts data organized in a
two-way table into graphical displays, with the cate-
gories of the two variables depicted as points. The
objective is to construct a low-dimensional map 
that well summarizes the data, which in the case of
CA are the associations between two categorical vari-
ables. Mathematically, the technique decomposes the
χ 2 measure of association of the two-way table into
components in a manner similar to that of principal
component analysis for continuous data. In CA, no
assumptions about the data-generating mechanism are
made, a significant departure from log linear analysis.
The primary objective of the technique is the repre-
sentation of the underlying structure of the observed
data.

CA can be traced back to the work of Hirschfeld
(see de Leeuw). It has been rediscovered in various
forms by Fisher, Guttman, Hayashi, and Benzécri,
who emphasized the geometric aspects of the tech-
nique. Extensive expositions and a discussion of its
similarities to and differences from other methods,
such as dual scaling and canonical correlation, can be
found in the books by Nishisato and Greenacre.

There are two variants of the technique: simple CA,
which deals with two-way tables, and multiple CA, a
generalization designed to handle more
than two categorical variables.

Simple CA

Consider two categories variables V1

and V2, with I and J categories, respec-
tively. Let α 2 denote the corresponding
I × J two-way table, whose entries xi, j

contain counts of the co-occurrences of
categories i and j, and let N denote the

grand total of X (i.e., N = ∑∑i,j xi,j). Let Z denote the
probability matrix obtained as N–1X. Further, let r =
Z1 denote the vector of row marginals and c = ZT1 the
vector of column marginals. Finally, define Dr = diag
{r} as the diagonal matrix containing the elements of
vector r, and similarly define Dc = diag {c}.

An example that illustrates the notation of a two-
way table first used by Fisher is shown in Table 1.
Data on 5,387 school children from Caithness,
Scotland, were collected for two categorical variables,
eye color and hair color.

The dependencies between the rows (columns) of
Z can be captured by the so-called χ 2 distances
defined (here between row i and i′) as

(1)

Equation 1 shows that the χ 2 distance is a measure
of the difference between the profiles of rows i and i′ .
It also shows that by correcting the entries in the table
by the row marginals, proportional row profiles yield
zero distances. Also note that squared differences
between row categories i and i′ are weighted heavily
if the corresponding column marginal is small, while
such differences contribute little to the distance mea-
sure if the column marginal is large.

The objective of CA is to approximate the χ 2 dis-
tances by Euclidean distances in some low-dimensional
space. In order to derive the I × L coordinates F (with 
L = 2 or 3 for visualization purposes) in the new
Euclidean space, we consider the singular value decom-
position of the observed frequencies minus the expected
frequencies, corrected for row and column marginals:

d2
χ(i, i ′) = N

J∑

j=1

1

cj

(
zi,j

ri

− zi′,j
ri′

)2

.
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Table 1 Example of Two-Way Table

V2 = Hair color

V1 = eye  
color Fair Red Medium Dark Black Total (r)

Light 688 116 584 188 4 1,580
Blue 326 38 241 110 3 718
Medium 343 84 909 412 26 1,774
Dark 98 48 403 681 85 1,315
Total (c) 1,455 286 2,137 1,391 118 N = 5,387



(2)

The optimal coordinates of the row categories are
given (after normalization) by

F = Dr 
–½ P, (3)

so that FTDrF = I and 1TDrF = 0 (i.e., in each dimen-
sion the row scores have a weighted variance of 1 and
a weighted average of 0; note that several implemen-
tations of CA normalize the row factor scores such
that their variance is equal to the corresponding eigen-
value; in this case the factor scores are computed as 
F = Dr 

–½ P∆∆).
Since Euclidean distances between the F coordi-

nates of the row categories approximate the original
χ 2 distances, it can be seen that when two categories
are depicted close together, their profiles are similar,
while they are different if their positions are far apart.
Finally, when a row category is near the center of the
F space, its profile is similar to that of the corre-
sponding column marginal.

Given the above configuration for the row cate-
gories, we can compute the column category configu-
ration as follows:

G = Dc 
–½ Q∆∆, (4)

which implies that the column points are in the center
of gravity of the row points. Since the analysis is sym-
metric regarding rows and columns, one could have
calculated χ 2 distances between the column cate-
gories and obtained the corresponding representation
of row and column categories in L-dimensional
Euclidean space. Some algebra shows that the
Pearson’s χ 2 statistic used for testing independence
between two categorical variables is related to the for-
mulas for CA by

(5)

known as the total inertia in the literature.
An illustration of CA using Fisher’s data from

Table 1 is shown in Figure 1.

It can be seen that there is high association between
fair hair and light and blue eye color and similarly
between black hair and dark eyes. On the other hand,
dark hair is associated to a large extent with both dark
and medium-colored eyes. Further, students with
medium hair color have mostly medium eye color but
can also have all three other eye colors.

Multiple Correspondence Analysis

In the presence of more than two categorical variables,
there are two possible ways to proceed. We examine
both of them next. Suppose that data have been col-
lected on I objects and K categorical variables, with Jk

categories per variable. Let Xk be a I × Jk indicator
(binary) matrix with entries xi, j = 1 if object i belongs to
category j of variable k and 0 if not. Let X ==
[X1⏐X2⏐. . .⏐XK] be the superindicator matrix obtained
by concatenating the indicator matrices of all K vari-
ables. The symmetric matrix B = XTX, known as the
Burt table, contains the marginals for the categories of
all variables along the main diagonal, together with all
two-tables of the K variables in the off-diagonal.

Applying simple CA to the Burt table yields the
following solution for the category points:

DB
−½(B − M−1DB11TDB)DB

−½ = PΛΛPT, (6)

trace
{
∆2

} = X2

N
,

D
− 1

2
r

(
Z − rcT

)
D

− 1
2

c = P∆QT .
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where DB = diag{B} and N = I × K2 (i.e.,
N is the grand total of B). The coordi-
nates of the category points are given by

(7)

Multiple CA is the joint analysis of all
the two-way tables of K categorical
variables.

In many cases, one may want a joint
representation of both objects and
categories of variables they belong to.
This objective can be achieved by
applying simple correspondence analy-
sis directly to the superindicator matrix
X. The coordinates F for the objects 
are given by the singular value decom-
position of

(8)

where the left-hand side corresponds to the superindi-
cator matrix of the data expressed in deviations from
the column means and weighted by the variables’ mar-
ginal frequencies. Specifically, F = √I

_
P (i.e., the coor-

dinates have unit variance). The coordinates of the
categories can be obtained by G = KDB

–1XTF, which
shows that a category point is located in the center of
gravity of the objects that belong to it. An alternative
derivation of the above solution as a graph-drawing
technique is given in Michailidis and de Leeuw, and
various extensions are discussed in Van Rijckevorsel
and de Leeuw.

Multiple CA is illustrated in Figure 2 on a small
data set of 21 objects (sleeping bags) and three cate-
gorical variables (price, comprised of three categories;
fiber type, with two categories; and quality, with three
categories).

From the joint map of objects and categories (con-
nected by lines), it becomes apparent that there are
good, expensive sleeping bags filled with down fibers
and cheap, bad-quality ones filled with synthetic

fibers. Further, there are some not particularly
expensive sleeping bags of acceptable quality made of
synthetic or down fibers.

—George Michailidis

See also Discriminant Analysis; Discriminant Corre-
spondence Analysis; Distance; DISTATIS; Factor
Analysis; Metric Multidimensional Scaling; Multiple
Correspondence Analysis; Multiple Factor Analysis;
STATIS
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COVARIANCE

Covariance is a measure of covariation, or linear
relationship, between two variables that is expressed
in the original units of measurement. Equation 1
formalizes this definition for the population covari-
ance. Examination of the equation shows that
covariance is a bivariate statistic that quantifies the
joint dispersion of two variables from their respec-
tive means. Equation 1 also shows that covariance is
the average of two sets of deviation scores:

(1)

The sample covariance is a statistic that estimates
the degree to which two variables covary in the
population. The sample covariance is an unbiased
estimate of population covariance when observational
pairs are sampled independently from the population.
The sample covariance presumes that the functional
relationship between the two variables is linear.

Equation 2 is the deviation score formula for the
sample covariance for two variables X and Y:

(2)

Steps to computing an unbiased estimate of the
population covariance include (a) calculating the
mean of the X scores and the mean of the Y scores, (b)
calculating the deviation of the X and Y scores from
their respective means, (c) calculating the product of
the deviations for each pair of values (i.e., calculating
the cross products), (d) summing these cross prod-
ucts, and (e) dividing the sum of the cross products by

n − 1 (degrees of freedom). Equation 3 shows that the
covariance of a variable with itself is the variance:

(3)

The units of measurement of the covariance are not
intuitive, because they are expressed in terms of the
cross products of the scales of the X and Y scores. It is
difficult to interpret covariance because it is very dif-
ficult to think in terms of a statistical value as sum-
marizing how two different and frequently arbitrary
metrics covary (e.g., IQ points and Graduate Record
Examinations points).

Properties of the Covariance

Covariance has no limits and can take on any value
between plus and minus infinity. Negative values indi-
cate that high scores on one variable tend to be asso-
ciated with low scores on the other variable. Positive
values indicate that high scores on one variable tend to
be associated with high scores on the other variable. A
covariance of 0 indicates that there is no linear rela-
tionship between the two variables. Because covari-
ance measures only linear dependence, covariance
values of 0 do not indicate independence.

The sample covariances, along with sample sizes,
sample means, and sample variances, form the build-
ing blocks of the general linear statistical model.
Essentially, the covariance summarizes all the impor-
tant information contained in a set of parameters of a
linear model. Covariance becomes more positive for
each pair of values that differ from their mean in the
same direction, and it becomes more negative with
each pair of values that differ from their mean in
opposite directions. The more often the scores differ
in the same direction, the more positive the covari-
ance, and the more often they differ in opposite direc-
tions, the more negative the covariance.

sxx =

n∑

i=1
(Xi − X̄)(Xi − X̄)

n − 1

=

n∑

i=1
(Xi − X̄)2

n − 1
= s2.

COV XY = sxy =

n∑

i=1
(Xi − X̄)(Yi − Ȳ )

n − 1
.

E
[
(X − µx)(Y − µy)

]

=
∑

(X − µx)(Y − µy)

N
= σxy.
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Equation 4 shows that correlation is merely a scale-
free measure of covariance or linear relationship; that
is, correlation is merely a standardized covariance.
When covariance is calculated, the sample means are
subtracted from the scores, and when we calculate the
correlation, we divide the covariance by the product of
the standard deviations. This shows that the correla-
tion is the covariance of the zx and zy scores,

Clearly, the essence of correlation, that it measures
both the strength and the direction of the linear rela-
tionship, is contained in the covariance:

(4)

—Ward Rodriguez

See also Analysis of Covariance (ANCOVA); Linear
Regression; Regression Analysis; Variance 

Further Reading

Nunnally, J. C., & Bernstein, I. (1994). Psychometric theory
(3rd ed.). New York: McGraw-Hill. 

Stilson, D. W. (1966). Probability and statistics in psycholog-
ical research and theory (pp. 251–255). San Francisco:
Holden-Day. 

Tamhane, A. C., & Dunlop, D. D. (2000). Statistics and data
analysis: From elementary to intermediate (pp. 36–38).
Upper Saddle River, NJ: Prentice Hall. 

CRITERION-REFERENCED TESTS

Although criterion-referenced tests (CRTs) can be
developed to measure performance at the domain
level (e.g., mathematics, reading), they are much more
commonly used to measure mastery of short-term
objectives (e.g., a unit on the Civil War). As classroom

tests, CRTs have existed for many decades, if not cen-
turies. The work of Mager and Glaser in the early
1960s started an important and continuing movement
to improve the way that educators estimate students’
achievement. R. F. Mager wrote a popular book that
motivated educators to be precise in explicating the
skills they wanted their students to learn. Robert
Glaser, who is generally credited with coining the
term criterion-referenced test, initiated the movement
to measure the mastery of instructional objectives
with reliability and validity.

What Is a CRT?

A CRT is a measure designed to estimate mastery of an
identified unit of a curriculum (e.g., battles of the Civil
War, multidigit addition with regrouping, use of prepo-
sitions). CRTs are also referred to as curriculum-based
measures and more broadly as curriculum-based
assessment. CRTs are standardized instruments, which
are constructed with sufficient precision that different
examiners will administer, score, and interpret results
in the same way. CRTs contain items designed to rep-
resent the unit of instruction adequately. Each item has
a predetermined correct answer that can be scored
objectively by the assessor. A CRT is used for two
main purposes. First, it is used to determine whether a
student is weak in a given skill and needs further
instruction. Second, it is used to determine the effec-
tiveness of instruction. Although CRTs are seldom
normed nationally, it is beneficial to collect local
norms for appropriate grade groups.

In contrast to norm-referenced tests, which use rel-
ative mastery criteria to interpret scores, CRTs use
absolute mastery criteria. Therefore, the student’s per-
formance is not compared to that of other students but
to a predetermined absolute standard of performance.
Most commonly, CRTs measure performance as per-
centage correct. The particular measure used should
be based on real-life demands. Because CRTs are usu-
ally used to measure short-term objectives, they tend
to be formative rather than summative in nature. Thus,
for skills at the lowest taxonomic levels (e.g.,
miniskills), educators may obtain mastery estimates
on a weekly or even a daily basis.

correlation = rxy = COV XY

sxsy

= sxy

sxsy

=

n∑

i=1
(Xi − X̄)(Yi − Ȳ )

/

n − 1

sxsy

.

rxy =

n∑

i=1
zXzY

N
.

Criterion-Referenced Tests———195



196

N
um

er
at

io
n

a

pr
ob

so
lv

G
eo

m
et

ry
A

dd
iti

on
S

ub
tr

ac
tio

n
R

at
io

na
l

N
um

be
rs

fr
ac

-
tio

ns
de

c-
im

al
s

pe
r-

ce
nt

s

pr
im

op
er

fo
rm

op
er

pr
ob

so
lv

pr
im

op
er

fo
rm

op
er

pr
im

op
er

fo
rm

op
er

pr
ob

so
lv

a 
=

 g
ro

up
 fr

ac
tio

ns
b 

=
 o

bj
ec

t f
ra

ct
io

ns
c 

=
 c

om
bi

ni
ng

 fr
ac

tio
na

l s
et

s
d 

=
 w

rit
in

g 
or

al
 fr

ac
tio

ns
e 

=
 n

am
in

g 
w

rit
te

n 
fr

ac
tio

ns

a 
=

 o
pe

ra
tio

ns
 o

n 
co

m
m

on
 fr

ac
tio

ns
b 

=
 o

pe
ra

tio
ns

 o
n 

im
pr

op
er

 fr
ac

tio
ns

c 
=

 o
pe

ra
tio

ns
 o

n 
m

ix
ed

 n
um

be
rs

d 
=

 o
pe

ra
tio

ns
 o

n 
co

m
bi

ne
d 

fr
ac

tio
ns

a 
=

 id
en

tif
y 

th
e 

op
er

at
io

n(
s)

b 
=

 c
om

pu
te

 th
e 

so
lu

tio
n

c 
=

 e
va

lu
at

e 
th

e 
re

su
lt

b
c

d
e

d
c

b
a

a
b

c

M
at

h
em

at
ic

s

T
ax

o
n

o
m

ic
 L

ev
el

s

D
O

M
A

IN

B
ro

ad
 S

ki
ll

en
ab

lin
g

sk
ill

sp
ec

ifi
c

sk
ill

m
in

is
ki

ll

F
ig

ur
e 

1
A

 P
ar

tia
l T

ax
on

om
y 

fo
r 

M
at

he
m

at
ic

s



Some writers distinguish between domain-
referenced tests and objective-referenced tests.
Domain-referenced tests provide a measure that is
interpretable in the context of a clearly defined and
delimited set of objectives that collectively consti-
tute an entire domain (e.g., mathematics, reading).
Objective-referenced tests provide a measure that is
interpretable only for a particular instructional
objective.

Selection of Taxonomies 
of Objectives

It is useful for practitioners to select taxonomies of
objectives for domains relevant to their practice. For
instance, a mathematics teacher would benefit from 
a complete specification of the broad, enabling, and
specific math skills needed by American citizens.
Such a taxonomy represents the results of a task
analysis of a domain. Although there is no such thing
as a perfect taxonomy, national organizations (e.g.,
the National Council of Teachers of Mathematics,
National Council of Teachers of English, National
Research Council-Science) often publish taxonomies.
A layout of a partial math taxonomy might look like
that displayed in Figure 1.

The layout should be accompanied by a document
containing instructional objectives for each skill rep-
resented in the layout.

Here is a set of objectives for basic addition facts:

3.1.0 Given all possible permutations of the addi-
tion facts (addends 0–9) presented vertically and in
random order, the child will write answers with at
least 95% accuracy and at a rate of at least 20 correct
per minute.

3.1.1 Given all possible permutations of the addi-
tion facts (addends 0–5) presented vertically and in
random order, the child will write answers with at
least 95% accuracy and at a rate of at least 25 correct
per minute.

3.1.2 Given all possible permutations of the addi-
tion facts (addends 6–9) presented vertically and in
random order, the child will write answers with at

least 95% accuracy and at a rate of at least 20 correct
per minute.

Objective 3.1.0 represents an enabling skill,
enabling in the sense that mastery will enable the
student to address higher-order skills in addition and
in the domain of mathematics.

Notice that the objective contains the three critical
features of a good objective:

1. A statement of the conditions under which the
student will perform (i.e., “given all possible
permutations of the addition facts [addends 0–9]
presented vertically and in random order”) 

2. The behavior (i.e., “the child will write answers”) 

3. Criteria for minimally acceptable performance (i.e.,
“with at least 95% accuracy and at a rate of at least
20 correct per minute”; in this case, criteria for both
accuracy and rate are specified) 

When these three features are clearly explicated in
the objective, it is easier for the test writer to construct
items. For objective 3.1.0, there should be 100 items,
exhausting every possible permutation of the addends
0 through 9. They should be randomly sequenced, and
they should be presented vertically, not horizontally
(e.g., 5 + 7 = ___). There can be little question of the
content validity of the test because all 100 single-digit
addition facts are represented, though some may argue
that horizontally presented items should be included.
The student will write answers, so it will be a paper-
and-pencil test. Finally, the student must complete the
test within 5 minutes and miss no more than five items.

Construction of CRTs

The construction of a CRT is a multistage process.
Although it requires time and effort, the process is well
worth the dividends it pays in accurate and valid deci-
sion making. The alternative, which is of little value, is
to create hurriedly a weak instrument, which estimates
mastery poorly and should never be used at all. A well-
constructed CRT is worth filing for future use, though
we recommend the creation of several alternate forms
of tests that cover the same curriculum unit. Below is a
presentation of each step in the development of a CRT.
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NNaammiinngg  tthhee  TTeesstt

Although it seems trivial, it is important to give the
test a name that accurately represents its content. Over
the course of years, teachers construct many tests, and
a filing system that allows efficient retrieval for future
use demands that test names obviously reflect their
content. For instance, the name phonology implies a
lot: sounding out vowels, consonants, consonant
blends, digraphs, and diphthongs in the initial, medial,
and end positions in a word. In other words, the name
implies that everything subsumed under the broad
skill of phonology is measured by the test. If the test
covers only consonant blends in the medial position,
the name phonology misrepresents the test’s content.

OObbjjeeccttiivvee((ss))  RReepprreesseenntteedd  bbyy  tthhee  TTeesstt

It is important that tests be created after objectives
have been specified. The test items are then con-
structed to reflect mastery of the objectives, not the
other way around. Ideally, the objectives will be
drawn from a large taxonomy of objectives that covers
the entire domain.

Conditions under which the behavior will occur
include any condition that might influence the exami-
nee’s performance during testing. Many conditions
are generic and cover nearly all testing situations:
good lighting, comfortable temperature, seats and
tables of the correct size, and so on. Other conditions
are unique to a particular test: necessary materials,
explicit instructions to the examinee, timing factors,
and others. The statement of the behavior should ide-
ally include an action verb (e.g., write, pronounce
orally, walk). In other words, the behavior should be
objectively defined such that two people would agree
that the behavior has or has not occurred. Criteria
should be in the form of one of a number of recog-
nized scores: percentage correct, behavior rates, dura-
tion, response latency, intensity, standard score,
percentile rank, and so on.

IInnssttrruuccttiioonnss  ffoorr  AAddmmiinniissttrraattiioonn

This component tells the user how the test should
be given. It elaborates the conditions element of the

objective. The purpose of instructions for administra-
tion is to standardize data collection so that from
occasion to occasion, from child to child, and from
examiner to examiner, the test is administered in the
same way. This makes the scores comparable. Typical
elements included are (a) instructions to the child,
(b) materials needed (e.g., two sharpened number 2
pencils, a watch for timing purposes), (c) ways to deal
with interruptions, and (d) ways to deal with questions
from the child. The test makers must ask themselves
what elements impinge on the successful administra-
tion of the test.

IInnssttrruuccttiioonnss  ffoorr  SSccoorriinngg

This section tells the user how to transform the
examinee’s responses into item scores and total
scores. This often means providing criteria for correct
and incorrect responses to individual items in a scor-
ing key. A formula may be required to obtain a total
score (e.g., the formula for behavior rates), and it
should be illustrated for the uninformed user.

IInnssttrruuccttiioonnss  ffoorr  IInntteerrpprreettaattiioonn

Here the user is told how to make decisions on the
basis of the score(s) obtained from an administration
of the instrument. Basically, the criteria for minimally
acceptable performance laid out in the objective guide
this process. If the criterion mentions 95% accuracy,
then the user should compare the examinee’s score
with 95%. If the examinee’s score equals or exceeds
that value, the child has mastered the objective. If 
not, then the objective needs more instruction and
practice.

SSppeecciiffiicc  IItteemmss  iinn  tthhee  IInnssttrruummeenntt

The key here is for the test maker to ensure that
the items in the test are representative of the skills
specified in the objectives. First, there must be
enough items to comprise a reliable sample of the
skills in question. It is rarely possible to have a reli-
able measure of any objective with less than 25
items. Second, the items should adequately represent
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the various kinds of subskills contained within an
objective. For instance, a test on addition facts is
unrepresentative if it does not include items contain-
ing 6 or 8.

SSttaannddaarrdd  EErrrroorr  ooff  MMeeaassuurreemmeenntt

The standard error of measurement (SEM) of a test
can be estimated using the number of items contained
in the test. This estimate should be included along
with the other components of the test. As an example
of the use of the SEM, consider the student who
obtains a raw score of 7 on a test containing 11 items.
The student’s percentage correct is 64%. Because the
percentage does not fall into one of the exceptions, the
estimated SEM is 2 (for tests with less than 24 items).
In order to construct a 95% confidence interval, the
assessor should double the SEM (i.e., 2 × 2 = 4). Next,
the product is subtracted from the student’s raw score
(7 − 4 = 3), and then the product is added to the
student’s raw score (7 + 4 = 11). These values repre-
sent the 95% confidence interval in raw-score form
(i.e., 3–11). In percentage-correct form, the assessors
can say, with the knowledge that they will be correct
on 95 out of 100 such judgments, that the student’s
true score is contained within the interval of
27%–100%. Notice that such results on a test with few
items provide virtually no useful information for
decision making. The same relative performance on a

100-item test would result in a 95%
confidence interval of 54%–74%.

—Ronald C. Eaves and 
Suzanne Woods-Groves

See also Computerized Adaptive Testing;
Standards for Educational and Psychological
Testing 
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Applying Ideas on Statistics and Measurement

The following abstract is adapted from Laugksch,
R. C., & Spargo, P. E. (1996). Construction of a
paper-and-pencil Test of Basic Scientific Literacy
based on selected literacy goals recommended by
the American Association for the Advancement of
Science. Public Understanding of Science, 5(4),
331–359. 

This study describes the construction and vali-
dation of a criterion-referenced paper-and-pencil
Test of Basic Scientific Literacy (TBSL) specifically
designed for high school students entering univer-
sity-level education in South Africa. The scientific
literacy test items, designed to be answered true,
false, or do not know, are based on a pool of 472
items developed previously from selected literacy
goals recommended by the AAAS in Science for
All Americans. Test items were pilot tested on 625
students and were included in the 110-item TBSL
on the basis of item discrimination, item difficulty, 
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Table 1 Estimated Standard Errors of Test Scores

Number Standard Exceptions: Regardless of the length 
of items errora of the test, the standard error is

< 24 2 0 when the score is zero or perfect

24–47 3 1 when 1 or 2 percentage points from 0 or 100%

48–89 4 2 when 3 to 7 percentage points from 0 or 100%

90–109 5 3 when 8 to 15 percentage points from 0 or 100%

110–129 6

130–150 7

Source: Used with permission ©1979 Ronald C. Eaves.

a. Standard errors are in raw score form. Items are assumed to be scored
dichotomously (i.e., 0 or 1).



and student feedback. The TBSL consists of sub-
tests on three constitutive dimensions of scientific
literacy: the nature of science, science content
knowledge, and the impact of science and tech-
nology on society. About 260 members of various
South African professional science and engineer-
ing associations participated in setting a perfor-
mance standard for each of the three dimensions
of scientific literacy. The internal consistency of
the individual TBSL subtests, and the reliability 
of mastery-nonmastery classification decisions
based on the performance standard, was found to
be about 0.80. The reliability of the overall 110-
item TBSL was 0.95.

CRITERION VALIDITY

Criterion-related validity refers to the extent to which
one measure estimates or predicts the values of
another measure or quality. The first measure is often
called the estimator or the predictor variable. The
second measure is called the criterion variable in
cases when a decision must be made or when the
measure is regarded as valid. In some cases, neither
measure has well-developed validity evidence, and
there is no genuine criterion variable. There are two
types of criterion-related validity: concurrent validity
and predictive validity. The simple distinction
between the two types concerns the time interval
between obtaining the first and the second set of mea-
surements. For concurrent validity, the data from both
measures are collected at about the same time. For
predictive validity, the data from the criterion mea-
sure are collected some period of time after the data
of the predictor variable.

Concurrent Validity

When a developer designs an instrument intended to
measure any particular construct (say, intelligence),
one of the most straightforward ways to begin estab-
lishing its validity is to conduct a concurrent validity
study. The basic task is to identify an available instru-
ment (say, the Stanford-Binet Intelligence Scale), the

validity of which has already been established, that
measures the same construct or set of constructs as the
new instrument. The second job is for the developer to
identify a large, ideally random sample of people who
are appropriate for the purposes of the instrument.
Next, data are collected for both instruments from
every person in the sample, generally on the same day.
In many circumstances, it is considered important to
collect the data in a counterbalanced fashion in order
to control for practice effects. Fourth, a correlational
technique appropriate to the scale of measurement is
applied to the pairs of scores (e.g., Pearson product-
moment correlation, Spearman rank correlation).
Finally, the developer compares the obtained correla-
tion or correlations with those of the established
instrument and other similar instruments collected
under similar circumstances. To the extent that the
results compare favorably with other available valid-
ity coefficients (as they are called), the developer has
begun the lengthy process of establishing the validity
of the new instrument.

In the case of norm-referenced instruments, a sec-
ond analysis of the data is in order: the comparison of
the mean scores for the two instruments. Although
the validity coefficient, if sufficiently high, estab-
lishes the fact that the instruments measured similar
constructs, at least in the current sample, it does not
indicate that the new instrument is unbiased. If the
standard score means are significantly different sta-
tistically, then the two instruments will lead to differ-
ent decisions in practice. For instance, if the
instruments both measure intelligence, and the IQ
cutoff score for mental retardation is 70, a substantial
number of individuals will be misdiagnosed by the
new instrument. If the mean IQ is too high compared
with the established intelligence test, then a consider-
able number of Type II errors will be made. If the
opposite circumstance exists, then Type I errors are
the problem. Commonly, the source of this problem
is attributed to the unrepresentativeness of the new
instrument’s norm group.

Three additional circumstances exist in which con-
current validity studies are conducted. When an exist-
ing instrument is substantially revised, it is important
for the developer to show that the new instrument
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measures the relevant construct in the same way as the
old instrument. This was perhaps the most important
question users asked when the Vineland Adaptive
Behavior Scales replaced the Vineland Social
Maturity Scale. When a new instrument attempts 
to measure a construct that has not previously been
measured with a high degree of validity (i.e., there is
no available valid criterion measure), the developer
may embark on a series of concurrent validity studies
to determine just what the new instrument actually
measures. For example, a general measure of arousal
might be compared with measures of attention, per-
sistence, curiosity, preference for novelty, vigilance,
and pupillary dilation. Finally, the developer of an
instrument intended to predict some future perfor-
mance may be unable or unwilling to wait for some
lengthy period in order to obtain an appropriate crite-
rion measure.

Predictive Validity

Predictive validity must be demonstrated when an
instrument is specifically designed to estimate future
performance. Although this need is obvious when
applicants are selected for jobs or college enrollment,
many instruments in fact serve a predictive function,
particularly when the construct measured is known to
be stable (e.g., intelligence, academic achievement,
physical strength).

Consider a newly developed test (say, the Primary
School Readiness Test), the purpose of which is to
predict which kindergarten children will succeed and
which will fail if allowed to move on to first grade.
The primary and perhaps the only purpose of such a
test is to make a simple prediction: who should be
retained in kindergarten and who should move on to
first grade. Whatever other evidence is available,
the absence of predictive validity evidence for the
Primary School Readiness Test would cause any
potential users to look elsewhere for their instrument
of choice.

The fundamental research design for predictive
validity is the same as that described above for con-
current validity, but with one difference: a time inter-
val between the collection of the predictor variable

data and the collection of the criterion variable data.
The length of the interval depends on the prediction to
be made. For instance, the Primary School Readiness
Test claims to predict success and failure in achieving
first-grade curriculum objectives, which can best be
determined at the end of first grade. Thus, a 1-year
interval is called for. For tests designed to select high
school students for college enrollment (e.g., the
Scholastic Aptitude Test), the criterion measure is
often final college grade point average. In this case,
the time interval is 4 years or more. Because as time
passes, performance levels can change, concurrent
validity coefficients will almost always be higher than
predictive validity coefficients, and shorter intervals
will lead to higher predictive validity coefficients than
longer intervals will.

An alternative to the conventional predictive valid-
ity study is the postdictive design. The test developer,
who may be reluctant to wait a year or more to obtain
predictive validity data, can sometimes use extant cri-
terion data that were collected at some time in the
past. For instance, to show that an intelligence test can
effectively estimate academic achievement, the devel-
oper may correlate achievement data collected the
previous year with currently obtained data from 
the intelligence test. Although the usual sequence of
the data collection is reversed, Jensen argued that the
resulting validity coefficients provide unbiased esti-
mates of the criterion-related validity of the predictor.

Classification Accuracy

Classification accuracy studies provide another 
way of estimating the criterion-related validity of an
instrument. Consider a test (the Always Accurate
Autism Test, or AAAT) that claims to classify children
with autistic disorder. If such a test were administered
to 50 children previously classified as autistic (i.e.,
true positives) and 50 children previously classified as
not autistic (i.e., true negatives), the test would ideally
classify all 100 children accurately. That is seldom the
case. Sensitivity is a term that refers to the percentage
of true positives identified by the test, and specificity
refers to the percentage of true negatives identified 
by the test. An inspection of Table 1 shows that the
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AAAT correctly identified 60% of the children with
autism (i.e., sensitivity), and 56% of the children who
did not have autism (specificity), and had an overall
classification accuracy of 58%. Consequently, the
classification accuracy of the AAAT was only a bit
better than chance assignment.

The Problem With Criterion Measures

In many cases, the estimator or predictor variable
(e.g., a newly developed test) may have good validity
but suffer because the available criterion measures
are not very valid. Although a record of performance
(e.g., number of widgets made, rate of typing errors,
number of tires changed) is appealing for many jobs,
for many other situations (e.g., teachers, physicians,
administrative assistants), no simple measure of
production or performance is available. The criterion
measures that are available (e.g., supervisor ratings)
may be unreliable and consequently limited in their
validity. For example, college grade point averages
lack validity for a variety of reasons (e.g., restriction
of range of college-student ability levels). This state
of affairs guarantees a reduced validity coefficient
between the estimator or predictor variable and the
criterion variable even though the estimator or pre-
dictor variable is highly valid. In such instances, a
commonly used technique is correction for attenua-
tion. This procedure adjusts the reliability of the cri-
terion measure so that it contains no error, providing
a boost for the resulting validity coefficient and

answering the question, What would the validity
coefficient be if the criterion measure were perfectly
reliable? 

—Ronald C. Eaves and Suzanne Woods-Groves

See also Attenuation, Correction for; Predictive Validity;
Validity Coefficient; Validity Theory
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Boston: Houghton Mifflin.

Applying Ideas on Statistics and Measurement

The following abstract is adapted from Ice, G. H.,
& Yogo, J. (2005). Measuring stress among Luo
elders: Development of the Luo Perceived Stress
Scale. Field Methods, 17(4), 394–411. 

This study describes the development of the
Luo Perceived Stress Scale (LPSS) tested on 200
Luo elders. The LPSS consists of 23 emotions 
and uses alternating “local idioms of distress” 
and well-being. Due to the low level of education
of the population, a yes-no format is used instead
of a Likert-type scale. The scale was tested among
200 Luo elders and was found to be internally
reliable. Criterion validity was examined through
the associations between LPSS score and caregiv-
ing, social networks, depression, and cortisol.
Known group validity was examined through
comparisons of caregiving groups, genders,
marital status, and participation in social groups.
While these variables were generally associated
with LPSS in the predicted direction, subsequent
factor analysis suggested that the LPSS did not
represent a single domain.

CRITICAL VALUE

The critical value is the value needed for rejection of
the null hypothesis when it is true. For example, if
the critical value for a particular type of statistic’s
distribution and the sample size at a particular level
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Table 1 Classification Accuracy of the Always
Accurate Autism Test

Clinical Classification

Not Autistic
AAAT Autistic (n = 50) (n = 50)

Autistic 30 (60%) 22 (44%)
Not autistic 20 (40%) 28 (56%)
Overall classification 

accuracy 58 (58%)



of Type I error is 3.45, then the observed or
computed value must exceed 3.455 for the outcome
to be significant.

The following points about critical values should
be remembered:

1. There is a different critical value depending on 
the size of the sample being evaluated (reflected in the
degrees of freedom) and the Type I error set by the
experimenter.

2. Critical values are usually shown in tables that
accompany many statistical texts. A typical table,
such as the one used for testing the difference
between two independent means, would appear
like Table 1. Note that the research hypothesis 
can be tested at both the .01 and .05 levels of
significance.

3. Each test statistic (such as the t test or the F test)
has its own distribution of critical values.

4. With the advent of computerized statistical analysis
programs, critical values are no longer needed for
comparison’s sake. Rather, the exact probability of
an outcome (the Type I error level) is printed out.
For example, instead of the statement “The results
were significant beyond the .05 level,” a more accu-
rate statement might be, “The probability of a Type
I error was .043.”

—Neil J. Salkind

Further Reading

Salkind, N. J. (2004). Statistics for people who (think they)
hate statistics. Thousand Oaks, CA: Sage.

CRONBACH, LEE J.
(1916–2001)

Lee J. Cronbach, known widely as the creator of
Cronbach’s alpha, was a man whose deep interests in
psychological testing and educational psychology
combined as the focus of more than 50 years of
research into measurement theory, program evalua-
tion, and instruction.

Cronbach was born in Fresno, California, and came
to the attention of Blanche Cummings, a follower of
Lewis Terman, when his precociousness at the age of
4 made itself known as she overheard him calculating
the price of potatoes at a grocery store. Ms.
Cummings gave the Stanford-Binet to Cronbach in
1921 and ensured wide publicity of his score of 200.
According to Cronbach, this number was inflated;
however, his future eminence was not, as evidenced
by his many lifetime contributions.

Because of his mother and Ms. Cummings,
Cronbach’s education began, not with kindergarten, but
with the second grade. He graduated from high school
at 14 and immediately went to college, graduating at
age 18. Interestingly, Cronbach’s first higher educa-
tional interests lay in chemistry and mathematics; had
not a lack of funds kept him at Fresno State, he may
never have discovered his passion for educational
research. He went on to Berkeley for a master’s in edu-
cation, gaining his teaching credentials at the same
time. Cronbach then taught high school (math and
chemistry) while he finished an education doctorate at
the University of Chicago, graduating in 1940. He mar-
ried Helen Claresta Bower while at Chicago, and their
five children arrived between 1941 and 1956.

While at the University of Chicago, he became a
research assistant for Ralph Tyler in the Eight-Year
Study, which looked into how high school curriculum
affected students’ success in both admission to and
graduation from colleges and universities. On gradua-
tion, Cronbach worked as an associate professor at
Washington State University, where he taught myriad
psychology courses. Toward the end of World War II,
he worked as a military psychologist at the Naval
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Table 1 Critical Values

Critical value for Critical value for
rejection of the null rejection of the null

Degrees hypothesis at the .05 hypothesis at the .01
of freedom level of significance level of significance

40 2.021 2.704
60 2.000 2.660

120 1.980 2.617



Sonar School in San Diego, California. Cronbach
went back to the University of Chicago as an associ-
ate professor and then on to the University of Illinois
as a full professor. In 1964, he landed in Palo Alto,
California, where he taught, conducted research, and
finally retired at Stanford University, gaining the pres-
tigious Vida Jacks Professor of Education Emeritus
honor (among many others) during his tenure.

Cronbach’s most famous contributions to the area
of tests and measurements were his efforts at strength-
ening tests and measures through a deeper under-
standing of what constituted measurement error; i.e.,
that error had many sources. This led to the 1951
paper “Coefficient Alpha and the Internal Structure of
Tests.” The subsequent results of this work led to fur-
ther research and ultimately a rewriting of generaliz-
ability theory with Goldine Gleser. Referred to as 
G Theory, these results brought together mathematics
and psychology as an aggregate structure within
which error sources may be identified.

—Suzanne M. Grundy

See also Coefficient Alpha

Further Reading

Cronbach, L. J. (1951). Coefficient alpha and the internal
structure of tests. Psychometrika, 16(3), 297–334.

Cronbach, L. J. (1989). Lee J. Cronbach. In G. Lindzey (Ed.),
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Lee Cronbach’s two most influential papers: http://psychclas
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CULTURE FAIR INTELLIGENCE TEST

Fluid intelligence (Gf) taps “the level of complexity of
relationships which an individual can perceive and act
upon when he doesn’t have recourse to answers 
to such complex issues already stored in memory”
(Cattell, 1971, p. 99). It is “concerned with basic
processes of reasoning and other mental activities that

depend only minimally on learning and acculturation”
(Carroll, 1993, p. 624). Therefore, tests of Gf have
little informational content and require the ability to
see complex relationships between simple elements
like number and letter series, figure classification,
figure analogies, spatial visualization, block designs,
matrices, and so forth.

The Culture Fair Intelligence Test (CFIT) was
designed by R. B. Cattell expressly as a nonverbal test
to measure Gf. The CFIT comprises three scales: scale
1 for ages 4 to 8 as well as for mentally retarded adults,
scale 2 for ages 8 to 13 as well as for average adults
from the general population, and scale 3 for people of
above-average intelligence. Scales 2 and 3 each have
two parallel forms (A and B), which can be alternately
used for retesting. The majority of these tests can be
administered collectively, except some subtests from
scale 1. The CFIT is highly speeded and requires
detailed verbal instructions for administration.

Scale 1 includes eight subtests, but only half of
them are really culturally fair. This scale cannot be
recommended because some subtests must be admin-
istered individually, requiring complex instructions,
and effects of familiarity with language and the habits
of listening and attending are not minimized. 

Scales 2 and 3 are quite similar, differing only in
their difficulty level. They comprise four subtests:
figure series (the individual is asked which figure
logically continues a series of three model figures),
figure classification (the individual is asked which
two figures in each series go together), matrices (the
individual must determine which of five alternatives
most logically completes a given matrix pattern), and
figure generalization (the individual must figure out
the general rule for where a dot has to be placed by
inferring the rule and picking the figure to which 
it applies). Each form of scales 2 and 3 takes about 
30 minutes to administer.

Internal consistency and alternate-form reliability
estimates generally range from .70 to more than .80.
The lowest estimates are justified by Cattell on the
scales’ inclusion of several diverse formats to mea-
sure the same underlying construct. This is a main
difference between the widely known Progressive
Matrices Test and the CFIT. Cattell and Jensen
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discredited the former because of specific variance
due to using only the matrix-problem format. These
researchers agree that the CFIT does not contaminate
the measurement of the construct of interest (Gf) with
variance specific to item type. A fine-grained mea-
sure of Gf must employ several different subtests to
wash out any contamination with test specificity. 

Validity has been researched by means of factor
analysis and correlations with other tests. CFIT corre-
lates around .80 with a latent g factor, and correlations
with other reasoning tests (i.e., Raven’s Progres-
sive Matrices, the Wechsler Intelligence Scale for
Children, and the Wechsler Adult Intelligence Scale)
are generally above .50. Predictive validity studies
show moderate correlations with several scholastic
and occupational criteria. 

The CFIT is an excellent choice for assessing
intelligence across cultures because of its fluid
nature. It has been administered in several European
countries and in North America, Africa, and Asia, and
norms tend to remain unchanged in relatively close
cultures. 

—Roberto Colom and Francisco J. Abad

See also Fagan Test of Infant Intelligence; Gf-Gc Theory of
Intelligence; Intelligence Quotient; Intelligence Tests 
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CUMULATIVE FREQUENCY

DISTRIBUTION

Once a frequency distribution has been created and
the data are visually represented by means of a his-
togram or a frequency polygon, another option is to
create a cumulative frequency distribution, or a visual
representation of the cumulative frequency of occur-
rences by class intervals.

A cumulative frequency distribution is based on the
same data as a frequency distribution, but with an
added column (cumulative frequency), as shown in
Table 1.

The cumulative frequency distribution begins by
the creation of a new column labeled “Cumulative
frequency.” Then, the frequency in each class inter-
val is added to all the frequencies below it. For
example, for the class interval of 19–24, there are 3
occurrences and none below it, so its cumulative fre-
quency is 3. For the class interval of 25–29, there are
4 occurrences and 3 below it, for a total of 7 (4 + 3)
occurrences in that class interval or below it. The last
class interval (65–69) contains 1 occurrence, and
there is a total of 49 occurrences at or below that
class interval.

Once the cumulative frequency distribution is
created, the data can be plotted just as they were for a
histogram or a frequency polygon. Another name for
a cumulative frequency polygon is an ogive. And if 
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Table 1 Cumulative Frequency Distribution

Class Interval Frequency Cumulative Frequency

65–69 1 40
60–64 4 39
55–59 5 35
50–54 4 30
45–49 3 26
40–44 5 23
35–39 6 18
30–34 5 12
25–29 4 7
19–24 3 3



the distribution of the data is normal, then the ogive
represents what is popularly known as a bell curve or
a normal distribution.

—Neil J. Salkind

See also Frequency Distribution; Histogram; Ogive

CURRICULUM-BASED MEASUREMENT

Curriculum-based measurement (CBM) is a method
for measuring student competency and progress in the
basic skill areas of reading fluency (e.g., words 
read correctly per minute), math computation, written
expression, and spelling. When using CBM, an exam-
iner gives the student brief, timed samples or probes
lasting from 1 to 5 minutes, depending on the skill
being measured, and student performance is scored
for speed and accuracy to determine proficiency.
Although CBM has been used in educational settings
for more than 20 years, it is probably more familiar to
special education teachers and school psychologists
than to general education teachers and other
professionals.

History of CBM

CBM began with the work of Stanley Deno and a
number of doctoral students at the University of
Minnesota in the late 1970s. Borrowing from the field
of applied behavioral analysis, Deno and his team
developed a measurement system that could effi-
ciently produce monitoring data, could be displayed
in graphic form, and would permit students’ academic
progress to be evaluated in only a few minutes.

CBM was examined in the 1970s with school-aged
children with and without disabilities to assess its
technical quality (e.g., reliability, validity) and practi-
cal utility (e.g., ease of administration). Following this
development and validation phase, interest in CBM
expanded because it provided an efficient alternative
to expensive and time-consuming norm-referenced
tests and was closely aligned with the curriculum.
CBM has had the support of the U.S. Department of
Education since the 1980s.

Examples of CBM

Examples of the application of CBM to reading,
mathematics, spelling, and writing follow. 

1. In reading, students read aloud for 1 minute from
reading probes taken from basal reading series or from
other reading probes designed with some control for
grade-based readability. The number of words read
correctly per minute is the metric of interest for evalu-
ating oral reading fluency. In practice, three reading
probes are given, and the middle score is reported.
Another reading measure commonly used is the maze-
reading task, a multiple-choice cloze technique in
which students read grade-level reading passages in
which every seventh word has been deleted and
replaced by a blank; students are asked to fill in the
blank by selecting one of three alternatives that appear
beneath the blank. The measure is scored by counting
the number of correct word choices per 5 minutes.

2. In mathematics, students write answers to com-
putational problems. The math probes last from 2 to 5
minutes, depending on the type of skill assessed. The
number of digits correct and incorrect for each probe
is counted.

3. In spelling, the examiner dictates words at spec-
ified intervals of time for 2 minutes, and the number
of correct letter sequences and words spelled correctly
is counted.

4. In writing, the student is given a “story starter”
(e.g., “Jill got a surprise package in the mail”) and is
asked to write a story within 3 minutes. The number
of words written, spelled correctly, correct word
sequences, or both are counted.

CBM is designed to identify students whose level
and rate (slope) of performance are below those of the
reference group. Thus, equal weight is given to skill
level (low achievement) and to progress (slope),
regardless of the type of skill assessed.

Key Features of CBM

CBM has three key features. It is dynamic, it does not
preclude the use of other measures, and it is designed
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to measure basic skills. As a dynamic measure, CBM
is sensitive to the effects of instruction. When a
student’s learning improves as a result of a short-term
intervention (i.e., 6 weeks), CBM is designed to detect
this improvement whereas norm referenced tests may
not be sensitive enough to do so. CBM has been
described as an “academic thermometer.” In the med-
ical field, temperature is an efficient, important indica-
tor of health. As an academic thermometer, CBM is an
efficient, important indicator of academic health. For
example, the number of words read correctly from text
in 1 minute is an accurate yet efficient indicator of gen-
eral reading achievement, including comprehension.

Although CBM assesses important skills, it does
not measure all behaviors in an academic realm, and
so it does not preclude the use of other specific mea-
sures. Finally, CBM is designed to assess basic skills
necessary for success in later courses (e.g., social
studies, science) that in turn are necessary for employ-
ment. Assessment of basic skills acquisition is partic-
ularly important for low-performing students through
sixth grade and for the majority of special education
students, who often continue to experience significant
difficulty in basic skills throughout their schooling.

CBM and Its Use in a 
Problem-Solving Model

CBM is typically used in a problem-solving model
that defines academic problems within a specific
context and attempts to solve these problems. The
problem-solving approach involves five steps: (a)
problem identification, (b) problem certification, (c)
exploration of solutions, (d) evaluation of solutions,
and (e) problem solution. CBM is used in every step
of this process to determine the severity of the prob-
lem, set goals, plan interventions, and evaluate the
efficacy of these interventions. Within this framework,
problems are defined as situational. A problem is con-
ceived as a discrepancy between what is expected and
what is occurring in a specific context. For instance,
for a student experiencing reading difficulty, the prob-
lem would be defined in terms of how the student
reads compared with a particular local standard (e.g.,
a community) rather than a national standard. In this
approach, the need to assess situations or the effects of

interventions in addition to assessing the student is
stressed.

An assessment approach like CBM often chal-
lenges researchers and clinicians to reconsider how
children are assessed. Instead of measuring a student’s
skills at a single point in time, the child is assessed on
an ongoing basis to evaluate the effect of instructional
interventions. In this way, CBM takes into account the
instructional context, something often overlooked 
in traditional assessment approaches. CBM shifts the
focus from a summative evaluation perspective (e.g.,
determining what a student has learned) to a formative
evaluation perspective (e.g., determining what the
student is learning) that is continuous during instruc-
tion. CBM data is collected on a repeated, frequent
basis, rather than in simple pre- or posttest fashion, to
help determine the conditions under which student
progress is facilitated. If student response to an acad-
emic intervention is unsatisfactory, the intervention is
changed in some meaningful way with the aim of
improving learning.

Figure 1 illustrates how CBM data are graphed
to reflect learning level and slope. Each data point
in Figure 1 represents the number of words a
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student read correctly per minute on a given day
while exposed to a reading intervention. The heavy
line indicates the trend, or the actual rate of
progress under the academic intervention. The fine
line is the aim line, or the expected level of perfor-
mance for this child. The expected level of perfor-
mance is an informed guess based on how typical
students are expected to progress on a weekly basis.
This information is used as a frame of reference 
for determining whether the referred student is per-
forming at the same rate of improvement (i.e.,
slope) as classroom peers are. For example, there is
some evidence to suggest that third-grade students
typically improve about one word read correctly
per week on a CBM oral reading measure. CBM
practitioners call this learning trajectory the aver-
age learning rate. The average learning rate can
help us make important comparisons among indi-
viduals (e.g., typical general education students and
English language learners).

Advantages of CBM

Several advantages of CBM are evident. Stecker and
Fuchs, for example, demonstrated improvements in
academic growth among students with and without
disabilities when teachers employed CBM, suggesting
that CBM may be both an effective assessment tool
and a powerful intervention technique to improve
student performance. Because CBM takes only min-
utes to administer, it is possible to collect data on a
large number of students and make local normative
data available quickly to schools and districts. For cer-
tain populations, local norms may be preferred over
national norms to identify which students are falling
behind the general education curriculum. Local norms
enable comparisons with students from similar geo-
graphic locations, who have similar curricular experi-
ences and who share the same language or cultural
background. CBM measures specific skills that are
being taught in the classroom, ensuring content valid-
ity, whereas traditional norm-referenced tests often
measure broad curriculum areas that may not be as
well aligned with the curriculum. The alignment of
test content and the curriculum plus the administration
of multiple brief probes helps ensure valid, continuous

data about progress. Finally, recognition of CBM as a
viable instrument to assess student performance can
be found in a variety of task force documents on
assessment and special education reform. CBM is also
an integral part of the new, alternative approach to the
identification of learning disabilities called Response
to Intervention, which is part of the 2004 reauthoriza-
tion of Individuals with Disabilities in Education
Improvement Act. 

Limitations of CBM

Despite the general acceptance of CBM as a measure-
ment instrument, it has been subjected to criticism.
Critics point out that CBM cannot assess the breadth
and depth of the elementary, middle, and high school
curriculum (e.g., content knowledge in various
subjects). Advocates counter that CBM is intended to
have an exclusive focus on basic skills assessment, not
the assessment of broader skills or abilities. Critics
also argue that a reliance on local norms would lead to
variability between schools in the identification of
students who are eligible for special education ser-
vices under the Response to Intervention model,
resulting in classification inconsistency from school
to school. Proponents of CBM acknowledge this 
criticism but point out that classification variability
already exists. Despite the criticisms, many followers
of CBM would say that this measuring tool has earned
a place among other measurement techniques that
seek to assess academic difficulties and improve instruc-
tion within schools and districts.

—Romilia Domínguez de Ramírez 
and Thomas Kubiszyn

Further Reading

Shapiro, E. S. (2004). Academic skills problems: Direct
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CBM testing materials page: http://aimsweb.com
Intervention Central: http://www.interventioncentral.org 
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CURSE OF DIMENSIONALITY

Curse of dimensionality refers to the rapid increase in
volume associated with adding extra dimensions to 
a mathematical space. In the behavioral and social
sciences, the mathematical space in question refers to
the multidimensional space spanned by the set of V
variables collected by the researcher. Simply put, the
ability to simultaneously analyze large sets of variables
requires large numbers of observations due to the 
fact that, as the number of variables increases,
the multidimensional space becomes more and more
sparse. This problem manifests itself in several analyt-
ical techniques (such as multiple regression and finite
mixture modeling) in which difficulties arise because
the variance-covariance matrix becomes singular (i.e.,
noninvertible) when the number of observations, N,
exceeds the number of variables, V. Additionally, as 
N approaches V , the parameter estimates of the afore-
mentioned models become increasingly unstable,
causing statistical inference to become less precise.

For a mathematical example, consider multiple
regression in which we are predicting y from a matrix
of explanatory variables, X. For ease of presentation,
assume that the data are mean centered; then the unbi-
ased estimate of the covariance matrix of X is given by

Furthermore, the general equation for multiple regres-
sion is

y = Xβ + ε ,

where 

y is the N × 1 vector of responses,

X is the N × V matrix of predictor variables,

β is the V × 1 vector of parameter estimates correspond-

ing to the predictor variables, and

ε is the N × 1 vector of residuals. 

It is well known that the estimate of β is given by

β = (X′X)–1X′y.

It is easily seen that the (X′X)–1 is proportional
to the inverse of ∑. Thus, if there are any redun-
dancies (i.e., ∑ is not of full rank, or in regression
terms, multicollinearity exists) in ∑, it will not be
possible to take the inverse of ∑ and, consequently,
it will not be possible to estimate β. One possible
introduction of multicollinearity into ∑ is when V
exceeds N .

Related to this general problem is the fact that, as
V increases, the multidimensional space becomes
more and more sparse. To illustrate, consider the
Euclidean distance between any two points x and y,

the square root of the sum of squared differences
across all V dimensions. To begin, consider the two
points x = (1, 3) and y = (4, 7), which results in the
Euclidean distance of d(x,y) = [(1 – 4)2 + (3 – 7)2]1/2

= [9 + 16 ]1/2 = 5. Now assume that K additional,
albeit meaningless, dimensions are added to each
observation by sampling from a uniform distribution
with lower bound of 0 and upper bound of 1 (denoted
by U(0,1). The new Euclidean distance, d(x,y)*, is
given by

where the 5 represents the original Euclidean distance
and the remainder of d(x,y)* represents the additional
distance that is due to random noise alone. Clearly, as
K→ ∞, then d(x,y)* → ∞, indicating that as more
dimensions are added, the two points become farther
and farther apart. In the extreme, an infinite amount of
random noise results in the two points being infinitely
far apart.

The problem is amplified when considering the
computation of multivariate distance, D (also known
as the Mahalonobis distance), between two V × 1 vec-
tors, a and b:

D(a,b) = (a – b)′∑–1(a – b) .

d(x, y)∗ = 5 +
√
√
√
√

K∑

k=1

(U(0,1)k − U(0,1)k)2 ,

d(x, y) =
√
√
√
√

v∑

i=1

(xi − yi)2 ,

� = X′X
1

n − 1
.
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If ∑ equals the V × V identity matrix, then D(a,b)
reduces to d(a,b), and the aforementioned problem
exists when dimensions are added; however, when ∑
does not equal the identity matrix, the aforementioned
problems are accompanied by the fact that N must
exceed V so that the inverse of ∑ may be computed.
Thus, any multivariate statistical technique (for
example, multiple discriminant analysis) that relies on
the inverse of the covariance matrix is subject to the
curse of dimensionality.

To make the example more salient, consider the
following visual demonstration. First, we generate
100 observations from a U(0,1) distribution in one
dimension (see upper left panel of Figure 1). Here
the average distance between all points is .3415. 
The upper right panel of Figure 1 depicts the addi-
tion of an additional dimension, in which 100 more
observations were generated from a U(0,1) distribu-
tion, causing the average distance between all pairs
of points to increase to .5436. The lower left panel
of Figure 1 depicts the addition of yet another
dimension generated from a U(0,1) distribution,
causing the average distance between all points to

increase to .6818. The lower right panel indicates
the distance of all points to the mean in each of the
scenarios. It is easily seen that as the number of
dimensions increases, so do the distances to the
mean.

This depiction illustrates how quickly point clouds
can become sparse, wreaking havoc on data analysis
that takes advantage of the full amount of information
available to the researcher. In fact, infinitely increas-
ing the number of dimensions also produces a
multidimensional space with an infinite amount of
variance. Instead of the traditional formula computing
the covariance between two variables, x and y,

which is represented by the distance of observations
from the mean, the covariance matrix can be repre-
sented as a set of pairwise distances,

Given the result discussed above, that
an infinite number of dimensions results
in an infinite distance between any pair
of points, it is clear that the variances or
covariances will also approach infinity
as the number of dimensions approaches
infinity. This increase in variance leads
to the unstable estimation of parame-
ters and joint distributions in high-
dimensional spaces.

In response to sparse high-
dimensional spaces, social science
researchers often attempt to reduce the
dimensionality of the data in such a
manner as to retain the relevant infor-
mation in the full dimensionality in
substantially fewer dimensions. The
two most popular techniques of data
reduction are principal components

Cov(x, y) =
N∑

i=1

N∑

j=1

(xi − xj )(yi − yj )/(2N) .

Cov(x, y) =
N∑

i=1

(xi − x̄)(yi − ȳ)/(N − 1) ,
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analysis and factor analysis. Principal components
analysis attempts to extract a set of K new vari-
ables—called components—(where K is less than V)
from the original data such that the K components are
linear combinations of the original V variables. Thus,
each of the new variables contains some information
from each of the original variables. Furthermore, the
K components are mutually orthogonal (i.e., uncorre-
lated). Usually, K is chosen such that an adequate
amount of the variance originally present in V is still
explained in the reduced dimensionality. In general,
principal components analysis is a pure data reduc-
tion technique. On the other hand, factor analysis is
the more popular method employed in the social
sciences. Similar to the components in principal com-
ponents analysis, the factors derived from factor
analysis are linear combinations of the original V
variables. However, unlike principal components
analysis, factor analysis assumes that an underlying
model consisting of a small number of factors (in
comparison with the original number of variables)
gives rise to the observed set of V variables, where
the goal is to recreate the original V × V covariance
matrix with a substantially smaller number of 
factors. After conducting a principal components
analysis/factor analysis, the researcher often uses the
components or factors in subsequent analyses (such
as regression, MANOVA, or cluster analysis).
Although this is a reasonable approach to dealing
with the curse of dimensionality, the researcher
should always remember that some information is
necessarily lost when the data are reduced to a lower-
dimensional space and that appropriate cautions
should be taken when making subsequent inferences
and interpretations.

—Douglas Steinley

Further Reading
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CURVILINEAR REGRESSION

Researchers often use regression techniques to
describe the relationship between two (or more) vari-
ables. In the simplest case (bivariate linear regres-
sion), it is assumed that the relationship can be
described well by a straight line, Y = a + bX. One can
use Student t to test hypotheses about or construct
confidence intervals around the regression coeffi-
cients a (intercept or constant) and b (slope, number
of units Y changes for each one-point change in X).

Often the relationship between variables can be
better described with a line that is not straight.
Curvilinear regression can be employed to describe
some such relationships. In some cases, the researcher
has good reason to expect a particular curvilinear
relationship even before the data are collected. For
example, an microbiologist may expect that the rela-
tionship between elapsed time and the number of 
bacteria in a rich medium is exponential. A psy-
chophysicist may expect that the perceived intensity
of a visual stimulus is a function of the logarithm of
the physical intensity of the stimulus. A psychologist
may expect that the relationship between the amount
eaten by an individual and the number of persons pre-
sent at the meal is a power function.

In other cases, the researcher does not expect any
particular curvilinear relationship but discovers dur-
ing data screening that the variables are not related in
a linear fashion. One should always inspect a scatter
plot of the data before conducting a regression analy-
sis. All too often, researchers employ linear regression
analysis when a much better fit would be obtained
with a curvilinear analysis. Most researchers are
familiar with linear regression and wish to stay within
that framework when dealing with curvilinear rela-
tionships. This can be accomplished by applying a
nonlinear transformation to one or both variables and
then conducting linear regression analysis with the
transformed data. Alternatively, one can conduct a
polynomial regression (also known as a trend analy-
sis), which is a multiple linear regression in which
powers of the predictor variable(s) are included in the
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model. Less commonly, the researcher may choose to
conduct a true nonlinear analysis. In such an analysis,
the researcher estimates the values of the model para-
meters by attempting to minimize the squared residu-
als (differences between observed Y and predicted Y)
for the actual nonlinear model rather than attempting

to minimize the squared residuals for a linear regres-
sion on transformed data.

The Case Study and the Data

J. M. de Castro and E. M. Brewer investigated the
relationship between the amount eaten by individuals
and the number of persons at the meal. Table 1 pre-
sents data produced by a simulator that was designed
to produce data similar to those obtained by de Castro
and Brewer.

Plotting the Data

SPSS was employed to create a scatter plot with a
quadratic regression line (Figure 1). Clearly, the rela-
tionship between number of persons and amount eaten
can be described with a curved line better than with a
straight line.

Polynomial Regression

For a linear regression, we would find a and b such that
the errors in prediction would be minimized for the
model C = a + b1P , where C is calories consumed by
the individual, and P is the number of persons at the
meal. For a quadratic regression, we would add persons
squared to the linear model, that is, C = a + b1P + b2P

2.
Adding P2 to the model allows the curve to have one
bend in it. For a cubic regression, we would add
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Table 1 Simulated Data to Illustrate Curvilinear
Regression

Number of Persons Calories Consumed by
at Meal Individual

1 413
1 332
1 391
1 392
1 436
2 457
2 534
2 457
2 514
2 537
3 551
3 605
3 601
3 598
3 577
4 701
4 671
4 617
4 590
4 592
5 587
5 596
5 611
5 552
5 679
6 745
6 692
6 666
6 716
6 815

13 762
13 631
13 670
13 720
13 685
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Figure 1 Scatter Plot With Quadratic Regression Line



persons cubed to the quadratic model,
that is, C = a + b1P + b2P

2 + b3P
3. Adding

P3 to the model allows a second bend in
the regression line. For each additional
power of the predictor variable added to
the model, an additional bend is allowed
in the regression line.

While it is not impossible to fit the
model to the data with hand computa-
tions, it is extremely laborious and shall
not be done here. Any of the major sta-
tistical programs can do the analysis
with the same routine that is used to
conduct multiple linear regression. Here
is an SAS program that will conduct the
polynomial regression:

data eat; infile ‘C:\CurviData-Sage.txt’;

input persons calories; pers2 =
persons*persons; pers3 = persons**3;

proc reg; LINEAR: model calories =
persons;

QUADRATIC: model calories = persons pers2;

CUBIC: model calories = persons pers2 pers3; run;

The statistical output for the linear model shows
that there is a significant linear relationship between
calories consumed and the number of people at the
meal, C = 489.4 + 20.97*P, r2 = .464, p < .001. If we
had not produced and inspected a scatter plot, we
might be tempted to report this linear analysis. 
Look at the statistical output for the quadratic model
(Figure 2).

The relationship is now estimated as C = 322.6 +
93.63*P −− 5.012*P2. Notice that the proportion of
variance explained by the model has increased from
.464 to .812. This increase in R2 is statistically signif-
icant, t(32) = 7.69, p < .001. Allowing one bend 
in the regression line produced significantly better fit
to the data.

The R2 for the cubic model (.816) is only slightly
greater than that for the quadratic model, and the
increase in R2 falls well short of statistical

significance, t(31) = 0.86, p = .40. Accordingly, the
quadratic model is adopted.

Evaluating a Power Function

De Castro and Brewer tested the hypothesis that
amount eaten (C, kilocalories) by individuals is a
power function of the number of persons (P) at the
meal. That is, C = k*log(P). Such a model can be esti-
mated by applying a log transformation to both vari-
ables and then using a simple linear model to predict
one transformed variable from the other transformed
variable. Here is the SAS code to conduct such an
analysis for our simulated data:

data power; set eat; logpers = log10(persons); logcal =
log10(calories);

proc reg; POWER: model logcal = logpers; run;

The resulting model is statistically significant, r2 =
.748, t(33) = 9.91, p < .001. The prediction equation,
in log terms, is log(C) = 2.629 + .237*log(P).
Exponentiating both sides of this expression transforms
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Analysis of Variance

Root MSE
Dependent Mean
Coeff Var

51.40487
591.22857

8.69459

R-Square
Adj R-Sq

0.8118
0.8000

Parameter Estimates

Intercept
persons
pers2

1
1
1

322.61068
93.63192
−5.01215

26.02751 
9.74149 
0.65194

12.39 
9.61 

−7.69

<.0001 
<.0001 
<.0001

Variable DF t Value Pr > | t |

Model
Error
Corrected Total

2
32
34

364763
84559

449322

182382
2642.46099

69.02 <.0001

Source DF

Parameter
Estimate

Sum of
Squares

Standard
Error

Mean
Square F Value Pr > F

Figure 2 SAS Output for Quadratic Model

The REG Procedure Model:
QUADRATIC Dependent Variable: Calories



the prediction equation to C = 425.6*P.237. Figure 3
shows the data with the values predicted by the power
function overlaid.

Confidence Interval on R2

It is desirable to report effect size estimates and to
place confidence intervals around those estimates. In
regression analysis, the squared correlation coefficient
is commonly used as an effect size estimate.
Constructing a confidence interval around r2 requires
an iterative procedure, but there are scripts and
programs that make this easy. If the predictor vari-
able(s) can be considered to be fixed rather than ran-
dom, use the SAS program at http://core.ecu.edu/psyc/ 
wuenschk/SAS/Conf-Interval-R2-Regr.sas or the SPSS
script at http://core.ecu.edu/psyc/wuenschk/SPSS/
CI-R2-SPSS.zip. For our sample data, the predictor is
most reasonably considered random. Jim Steiger’s R2
program (which can be downloaded at www.inter
chg.ubc.ca/steiger/r2.zip, manual at http://www.inter
chg.ubc.ca/steiger/r2.pdf) will construct such a

confidence interval. For our data, a 95% confidence
interval for the power model r2 extends from .55 to .86.

Assumptions of the Analysis

There are no assumptions for estimating the slope,
the intercept, and the r2, but one need keep in mind
that the fit of the model to the data will be poor if
one has chosen an inappropriate model, such as a
linear model when a quadratic model would fit the
data much better. When one is testing hypotheses
about or creating confidence intervals around these
estimates, there are three basic assumptions, each
involving the error term (the residuals, the differ-
ence between actual values of Y and predicted
values of Y):

1. Independence: The amount of error for each obser-
vation is assumed to be independent of the amount
of error for any other observation.

2. Homoscedasticity (also known as homogeneity of
variance): It is assumed that the error variance is
constant across all values of the X variable(s).

3. Normality: It is assumed that the error term is nor-
mally distributed at each level of the X variable(s).

These assumptions are most commonly checked
by inspecting residual plots—that is, plots with error
on the ordinate and X (or predicted Y) on the abscissa.
If the assumptions have been seriously violated, then
one cannot trust the p values and confidence
intervals.

Nonlinear Regression

In curvilinear regression, one obtains a curved line by
applying nonlinear transformations to one or more of
the variables and then employing a linear model.
Truly nonlinear regression involves no transforma-
tions. The analyst provides a nonlinear model and
starting values for each parameter in the specified
model. The statistical software then uses an iterative
process to fit the model to the data. Here is an 
SAS program used to fit a power function to our 
sample data:
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proc nlin; parameters alpha=0 beta=1; model calories =
alpha*persons**beta; run;

The nonlinear analysis converged on the model 
C = 448.3*P.204. The relationship was statistically sig-
nificant, η2 = .694, F(2, 33) = 1503, p < .001.

—Karl L. Wuensch

See also Linear Regression; Logistic Regression Analysis;
Regression Analysis

Further Reading
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DARWIN, CHARLES

(1809–1882)

Charles R. Darwin was born on February 12, 1809. He
first studied medicine at Edinburgh, and then ministry
at Cambridge. His primary interests were, however, in
natural history. Ironically, Darwin found his early aca-
demic experiences in natural history “incredibly dull.
The sole effect . . . was the determination never as
long as I lived to read a book on geology, or in any
way study the science.” Clearly, later academic and
field experience reversed Darwin’s early views. After
graduating, Darwin became the naturalist on the HMS
Beagle in 1831. It was on the ship’s 5-year voyage that
he gathered much of the evidence that later formed the
basis for his ideas on evolution.

Darwin’s most important intellectual contribution
was his theory of evolution by natural selection,
published in On the Origin of Species by Means
of Natural Selection (1859). Darwin later published
The Descent of Man, and Selection in Relation to
Sex (1871), which focused on human evolution, sex-
ual selection, and cognitive/behavioral characteristics
in humans and other species. In The Expression of
the Emotions in Man and Animals (1872), Darwin

focused on patterns and mechanisms of emotional
expression in humans and other animals. Darwin died
on April 19, 1882, and was buried in Westminster
Abbey.

Darwin’s ideas about evolution, natural and sexual
selection, and work on emotional expression empha-
sized the adaptive and functional aspects of structure,
behavior, and even cognition. This generated develop-
ments in measurement in areas ranging from compar-
ative psychology to later work on human emotional
expression (e.g., Ekman’s coding system of facial
displays). Because Darwin’s theory emphasized indi-
vidual variations, it helped to generate work in mea-
surement of human individual differences. This
influence was most clearly expressed through the
work of Darwin’s cousin Francis Galton. As Galton
himself notes in an 1869 letter to Darwin, “I always
think of you . . . as converts from barbarism think of
the teacher who first relieved them from . . . supersti-
tion. . . . Your book . . . was the first to give me free-
dom of thought.” Galton referred to his own work as
the “natural history of human faculty.” Galton’s work
on testing led to a number of developments in statis-
tics, and measures of human abilities, physical
characteristics, and sensory acuities. Through Galton,
Darwin indirectly affected many important figures in
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the history of measurement and testing, including
Cattell, Pearson, and Spearman. Darwin’s work thus
had important direct and indirect influences on the
fields of measurement and statistics.

—Matthew J. Hertenstein and Kevin E. Moore

See also Galton, Sir Francis 

Further Reading

Simpson, G. G. (1995). The book of Darwin. New York:
Washington State Press.

Darwin: http://pages.britishlibrary.net/charles.darwin/
Galton: http://www.mugu.com/galton/index.html

Applying Ideas on Statistics and Measurement

The following abstract is adapted from Shermer,
M. B. (2002). This view of science: Stephen Jay
Gould as historian of science and scientific histo-
rian, popular scientist and scientific popularizer.
Social Studies of Science, 32(4), 489–524.

This paper pays needed attention to the depth,
scope, and importance of Stephen Jay Gould’s
role as historian and philosopher of science, and
his use of popular science exposition to reinforce
old knowledge and generate new. It presents the
results of an extensive quantitative content analy-
sis of Gould’s 22 books, 101 book reviews, 479
scientific papers, and 300 natural history essays in
terms of their subject matter and places special
emphasis on the interaction between the subjects
and themes, how Gould has used the history of
science to reinforce his evolutionary theory, and
how his philosophy of science has influenced
both his evolutionary theory and his historiogra-
phy. Darwin said (and Gould cites) that, “All
observation must be for or against some view if it
is to be of any service.” Gould followed Darwin’s
advice throughout his career, including his exten-
sive writings on the history and philosophy of
science.

DATA ANALYSIS TOOLPAK

The Analysis ToolPak is an Excel add-in that offers
a special set of tools for completing a wide range of

statistical analysis. If the Data Analysis item doesn’t
appear on the Tools menu, it needs to be installed.

The Data Analysis ToolPak offers tools in the
following general categories:

ANOVA

Correlation

Covariance

Descriptive Statistics

Exponential Smoothing

F Test Two Sample for Variances

Fourier Analysis

Histogram

Moving Average

Random Number Generation

Rank and Percentile

Regression

Sampling

t Test

z Test

Using the Data Analysis Tool

As an example, examine the use of the ToolPak for
completing a t test between two paired samples of
observations, pre- and postintervention. In Figure 1,
you see the scores for the 10 cases’ data in column A
(the Pre condition) and the scores for the same 10
cases in column B (the Post condition). Finally, you
can also see the t-Test: Paired Two Sample for Means
dialog box output of the Data Analysis ToolPak show-
ing the following:

• Mean and Variance—the means and variances for
each group

• Observations—the number of observations
• Pearson Correlation—the Pearson correlation

coefficient
• The Hypothesized Mean Difference
• df—the degrees of freedom (df) associated with the

t value
• t Stat—the t statistic
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• P(T<=t) one-tail—the probability that a value of t
would be different from chance for a one-tailed test

• t Critical one-tail – the critical value for rejection of
the null hypothesis for a one-tailed test

• P(T<=t) two-tail—the probability that a value of t
would be different from chance for a two-tailed test

• t Critical two-tail—The critical value for rejection of
the null hypothesis for a two-tailed test

—Neil J. Salkind

See also Excel Spreadsheet Functions; Spreadsheet Functions

Further Reading

Salkind, N. J. (2007). Statistics for people who (think they) hate
statistics: The Excel edition. Thousand Oaks, CA: Sage. 

DATA COLLECTION

The word data is the Latin plural of the word datum,
which itself is the past participle of the verb dare
(DAH-reh), meaning “to give.” So, it literally means
“things given.” Data is often used as a singular noun
in English—what we call an “uncountable,” or a
“mass term,” like “water,” “energy,” “information,”
and so on, although the Oxford Advanced Learner’s
Dictionary states that there is uncertainty with “data”
as to whether it is singular or plural, and both are
acceptable. But careful writers only ever use it as

plural. Although data are useful to
generate information, knowledge, and
wisdom, they in themselves are not
treated as information or knowledge.
What, then, are data? Although the lexicon
meaning of data is facts or information,
data need not be facts or information.
Data are subjective and objective human
experiences, feelings, attitudes, beliefs,
values, perceptions, views, opinions,
judgments, and so on. They are also
objective facts in the universe, interactions
between human beings and objective
facts, and human subjective construction
of objects and facts, irrespective of their
object and factual reality. Thus, some data

are readily available as “things given,” whereas some
data need to be diligently discovered and collected
with ethical considerations, depending upon the
research problem, need, and the researcher.

Many of us naturally and generally collect data,
make sense of them, and use the same for better liv-
ing. In the research world, purposeful and systematic
data collection is an important and essential activity.
It is one of the significant elements or phases within
the research design that is followed by the research
problem formulation (objectives, hypotheses, research
questions, concepts, and variables); the selection of
research; and sampling methods. It is preceded by
data analysis and interpretation, and report reporting
phases. Because data collection occupies a crucial
phase in the research design, no research can be con-
ducted without data. To a significant extent, the qual-
ity and impact of research depends upon high-quality,
accurate, and uncontaminated data. In view of the
significance and relevance of the data collection
process for researchers, it may be delineated and dis-
cussed by addressing the following questions: Why do
researchers collect data? What are the types of data?
What are the data collection methods? When should
data be collected? What are the ethical issues in col-
lecting data, and how should researchers deal with
them? What factors are likely to affect the quality of
data? How can researchers minimize the factors that
are likely to negatively affect the quality of data?
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The Necessity of Data

Because social needs, problems, and causes keep
constantly changing, new data need to be collected to
understand and address these emerging changes.
Toward this, some researchers collect data to explore
and gain an in-depth understanding of the phenome-
non, whereas others do so to answer their bold
research questions, to test or formulate new hypothe-
ses, or to validate or falsify existing theories by refin-
ing casual relationships or discovering new ones. At
the extreme, new data are also useful to destroy exist-
ing paradigms and erect new ones. Data are also
needed to formulate, implement, and evaluate appro-
priate policies, programs, and products of government
and nongovernmental organizations and corporations.
They also can be used effectively to inform or educate
people and organizations about new trends that are
relevant to them. From the postmodern perspective,
data also play an important role in demonstrating mul-
tiple realities.

Types of Data

The universe is filled with a huge amount of data, so
it needs to be categorized broadly for the systematic
conduct of research and synthesis of research out-
comes. All of the available data may be classified
broadly into primary and secondary data, and each of
these in turn may be categorized into quantitative and
qualitative data. Primary data are collected directly
from the field by observing, interviewing, or adminis-
tering a questionnaire. Secondary data are collected
from already available sources (see examples in
Table 1). Data that cannot be measured by assigning a
value or by ordering them in ascending or descending
order are generally considered qualitative data, and
data that can be subjected to some kind of quantifica-
tion or measurement are generally considered quanti-
tative data. Furthermore, data may also be categorized
as tangible and intangible (e.g., smell, air, unex-
pressed feelings or emotions). However, it may be
noted that these categorizations or dichotomies are
researchers’ creations. In reality, these exist together,
and thus in research, all types of data need to be col-
lected and diligently integrated, if they enhance the
understanding of reality.

Data Collection Methods

Researchers often employ a specific method or several
data collection methods to collect data, such as obser-
vation, case study, questionnaire, interview, focus
groups, rapid rural appraisal, and secondary data.
Some of these methods overlap with others, and some
are more popular than the others. Many of these data
collection methods have different variations within
them; for example, the observation method has been
further delineated into structured, unstructured, par-
ticipant, and nonparticipant observation, and the case
study method into intrinsic, instrumental, and collec-
tive case studies. There are different types of question-
naires and ways of administering them (one to one, in
groups, or through mail, including e-mail). Interviews
have been classified into structured, semistructured,
and unstructured, which may be organized through
face-to-face, by telephone, or by any other electronic
mode. The focus group also has several types, includ-
ing group interviews, group discussion, nominal
group, and so on. These methods are very impor-
tant because it is through these methods that data are
collected.

Generally, research methodology books discuss
details on these methods. Nonetheless, it is crucial to
note a few points on them. First, researchers need to
carefully select a method or a combination of data col-
lection methods in such a way that they capture reality
appropriately and accurately in order to answer the
research questions and achieve the research objectives.
Inappropriate or incorrect selection of data collection
methods results in incorrect and misleading outcomes
that distort the reality. Second, after having selected
the most appropriate data collection method(s),
researchers need to develop adequate knowledge and
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Table 1 Types of Data

Data Qualitative Quantitative 

Primary Field observations, Age, income,
narratives educational

level
Secondary Letters, diaries Census, annual 

reports



skills through training, practice, or some other relevant
means to use the data collection methods effectively.
These may include sharpening observation skills,
memorizing, taking notes, constructing a question-
naire or an interview schedule, asking questions,
listening, moderating, dealing with diversions and
interruptions, and respecting respondents’ privacy and
self-determination. Third, it is important to be aware of
the strengths and limitations of various data collection
methods and where and when they can be best used.
Fourth, we should be aware of and effectively use in
moderation data collection means with which we
are all gifted. These are our five sense perceptions:
eyes (seeing/observing), ears (hearing/listening), nose
(smell), tongue (taste), and skin (touch). Just as some
data collection methods are more often used than
others (e.g., questionnaire or interview schedule), we
might have gotten accustomed to using some sense
perceptions more intensively than the others (e.g., too
much speaking, not enough listening; observing but
not noting; or too much listening/carried away with the
field or respondent without observing and speaking).
These sensory perceptions need to be employed effec-
tively to collect data rather than relying only on the
data collection instruments. Finally, while collecting
data through the chosen method(s), researchers should
ponder the following questions to keep the data collec-
tion process on track.

• What am I trying to discover?
• Why have I chosen the methods (research, sampling,

data collecting) I have chosen?
• Do these methods help or hinder my efforts toward

understanding reality?
• Are there any alternative methods to understand the

phenomenon I am trying to understand?
• Do these categories of methods make any sense in

understanding the reality?

Resources for and Timeliness
in Data Collection

Data collection is a resource-intense activity in terms
of time, money, and other resources, more so in the
case of primary data collection. Researchers need to
liberally estimate time, budget, personnel, and other
resources, and make arrangements for the same in

advance to ensure a smooth data collection process.
Most important, timeliness is very important in data
collection. Researchers need to approach respondents,
whether individuals, families, groups, communities,
or organizations, at a time that is convenient to them
and they are available and willing to provide data.
Another important aspect of timeliness is that
researchers need to be in the field when the events
occur so as to collect data in the natural setting, if the
research issue/design requires such an approach. For
example, field data on mass protests, mob behavior,
village fares, or indigenous methods of harvesting
cannot be collected whenever researchers desire to
collect. They have to be timely in collecting these
types of data, just like a natural scientist can collect
data on an eclipse only when it occurs.

Ethical Considerations

Researchers need to collect data according to the
set ethical standards, which are often based on cer-
tain values and principles: honesty, truthfulness,
privacy and confidentiality, self-determination and
voluntary involvement, zero physical and psycholog-
ical harm, dignity and worth of human beings,
accountability, right to know on the part of respon-
dents, fairness and impartiality on the part of
researchers, and informed consent. On the other
hand, researchers should avoid breach of confidence
and agreements, absence of informed consent or
self-determination/autonomy of respondents, decep-
tion, risk of harm or offense, acts involving conflict
of interest, and any unethical act.

Many government and nongovernment organiza-
tions, universities, and research firms have well-
developed research ethics committees and ethics
clearance application forms. Before beginning the
data collection process, researchers should adhere to
these ethical requirements and collect data accord-
ingly. Those researchers who do not belong to any
organizations or whose organizations have not devel-
oped such ethical standards and requirements should
also collect data by setting their own ethical standards
based on the above stated values and principles. They
should explain the nature and purpose of research,
provide satisfactory answers to all questions, inure
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that respondents are involved voluntarily and that 
no force is used, and allow the respondent to with-
draw from the research at any time if he or she wishes
to do so.

Impediments in Data Collection

Data collection is a planned, purposeful, and system-
atic activity. Despite choosing appropriate data
collection methods; meticulously developing data
collection instruments; planning adequate resources,
including time; and meeting ethical standards,
researchers may encounter several impediments in the
data collection process. One probable reason for these
impediments is that the nature of the setting, the
research problem, the researcher, the researched, the
time of research, and the prevailing social conditions
vary every time. Thus, the data collection impedi-
ments may be analyzed by looking at three “R” fac-
tors: the researcher; the research problem; and the
researched, or a combination of these factors.

Because the researcher is the main actor in the data
collection process, he or she can contribute signifi-
cantly to reducing or increasing field difficulties.
Data collection experiences suggest that there are
three main issues related to the researcher. First,
researchers’ state of mind affects the data collection
process because they may sometimes feel nervous,
anxious, incapacitated, irritated, uncomfortable, over-
whelmed, frightened, frustrated, tired, and at times
less confident. Several factors within and outside the
researcher may contribute to such a state that might
affect researchers’ observation, interviewing, respon-
ding, and note-taking abilities. Second, researchers’
negative attitudes, prejudices, and preconceived
notions toward the research problem, the field, res-
pondents, and communities may interfere with the
data collection process and reduce the quality of data.
Finally, researchers’ action (i.e., how they actually
behave in the field and with respondents) is also
important and may obstruct the data collection
process if not appropriate.

The second factor is the research problem. Some
data collection difficulties are related to the nature of
the research problem and the decision researchers

make to enter particular settings. If research
problems deal with sensitive issues such as drug
addiction, bankruptcy, the accused awaiting trial in
the criminal justice system, ethnicity, development of
toddlers and children, and so on, researchers often
experience several challenges while collecting data.
Data collection experiences have demonstrated that
some respondents or communities may feel threat-
ened and insecure because of the sensitivity of the
issue. In some cases, data are simply not available,
accessible, or discloseable. For example, while trac-
ing genealogies of families, information on women
may not be available in some cultures. In some
regions and towns, it may not be possible to locate the
universe of the community. Census reports may not
have a particular type of information. A complete, up-
to-date, and accessible list of agencies, organizations,
and companies may not be available. At times,
researchers may not have access to needed data or
organizations. Information may not be well recorded
and kept. These are real problems in the field that are
beyond the control of researchers, and they can affect
the quality of the data collection process. The diffi-
cult nature of the setting and lack of information
about the setting (e.g., widely dispersed respondents
or communities in rural, remote, and hilly areas;
unclear addresses and road maps, etc.) may also lead
to exhaustion and thereby weaken the data collection
process, including its pace.

The third source of data collection impediments is
the researched (i.e., respondents and communities).
Data collection experiences suggest that researchers
have faced the most common problem of making an
entry (into the community) and gaining acceptance.
Every means or way of approaching the respondent
and the community (e.g., through written letters;
health officials; government officials; local leaders,
political or otherwise; friends/relatives; or indepen-
dently without anybody’s introduction) has pros and
cons and may affect the accuracy of data being col-
lected. Equally important is gaining acceptance. If the
respondent’s suspicions and doubts are not cleared,
and acceptance is not gained, the data collection
process will be hampered significantly, and that, in
turn, may lead to inconsistent and incomplete data.
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Experiences of interviewing respondents have
revealed that an unsuitable location for the interview,
lack of functional trust, refusal to give an interview,
difficulty in convincing the respondents, interference
by friends or members of the family, respondents’
keenness to complete the interview quickly, more talk-
ative respondents, and not knowing the local language
can pose several impediments to the data collection
process. In terms of the questionnaire, faulty design of
the questionnaire, low return rates, difficulties in col-
lecting a group of respondents at one place, lack of
organizations’ support to employees in completing the
questionnaire, and approaching busy professionals at
their workplace have hampered the data collection
process. Ethical issues in observation studies, planned
or arranged observations, and lack of prompt record-
ing of observations appear to affect the quality of col-
lected data. Delays in obtaining permissions to collect
data from organizations, particularly from the govern-
ment, and lack of cooperation of staff members to give
access to the available data also create problems in
data collection. Other factors such as adverse weather
conditions, high sample mortality rates, lack of ade-
quate resources, isolation, and health issues of the
researcher also may get in the way of data collection.

Strategies to Ensure
High-Quality Data Collection

Although the above presented impediments can affect
the data collection process and reduce the quality of
data, researchers can consciously employ some sys-
tematic strategies to ensure the collection of accurate
data. In regard to the impediments stemming from the
researcher, first, researchers need to be aware of their
state of mind and reflect on it by raising the following
questions: Why do I feel this way? What am I doing
here? What are my attitudes toward respondents and
communities? How am I behaving with people in the
field? To what extent does my state of mind affect my
data collection process? Is it blocking my efforts to
understand field realities? How can I overcome these
contextual feelings (state of mind) and change my
attitude and behavior, if necessary? Second, these
reflections should result in enhancing the competence

of researchers by acquiring needed knowledge, by
developing practice skills and appropriate attitudes,
and by taking right actions. It is important for
researchers to feel comfortable and confident in the
field, and enhanced competence will help achieve it.
Finally, researchers’ experiences suggest that addi-
tional reading, better information about the issue,
adequate practice, acquaintance with the field, use of
professional skills, anticipation of problems, and
preparation of possible remedies will help. Regardless
of respondents’ background, status, communities
and conditions, and cooperation or noncooperation,
researchers should respect them. They also should be
free from their own prejudices and preconceived
notions about the field so as to develop conducive atti-
tudes and behave appropriately in the field. In addi-
tion, researchers need to be assertive and flexible.

Several creative strategies need to be explored to
prevent and to deal with data collection difficulties
emanating from the research problem and setting.
When the research issue is sensitive and respondents
feel insecure and threatened, it is less likely that a
good data collection process will begin. Strategies
toward this issue will be discussed shortly. If the
research problem and setting-related data collection
difficulties are beyond the control of researchers, first,
they should not get perturbed; second, they should
study the problem; and third, they should look at pos-
sible alternatives. Once they analyze the possible
alternatives, the most appropriate alternative can be
chosen and changes can be introduced in the data
collection strategies. Thorough pilot study should
certainly signal such potential problems. Researchers
need to anticipate and plan well, including logistics to
cope with some of the realistic difficulties in the field.
Careful use of local guides/volunteers and resources
may reduce some of the problems. When research is
undertaken in rural and remote communities and tribal
areas, researchers must learn to live happily with lim-
ited facilities and without the luxuries of urban life.
The pace of research work needs to be organized in
such a way that it takes care of physical exhaustion. If
it is not possible to collect data on some issues and
from some settings, it may be necessary to alter the
whole research design.
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With regard to respondent-based data collection
difficulties, a few strategies may be recommended.
Because making an appropriate entry is a critical issue
and there is no foolproof strategy to address it,
researchers need to be conscious of how they are
going to make an entry and how they will access
respondents, and they need to make an assessment
about likely implications on the quality of data. An
analysis of the consequences of each entry option on
data to be collected may be undertaken, and an entry
approach that has minimum consequences on the data
may be followed. It is also important to develop
systematic plans to overcome those consequences.
Another approach is that when the researcher feels
confident that initial data were inconsistent and unre-
liable, such data may be excluded once the reliable
data pattern is established. To gain acceptance and to
deal with sensitive issues, researchers need to build
functional trust and rapport, and establish credibility.
Toward this, researchers need to provide simple,
straight, and honest information to respondents, com-
munities, and organizations, and answer all questions
so as to overcome their suspicions and doubts. Efforts
to overcome this problem might include ensuring
direct contact with the respondent, rather than using a
second person or intermediary to approach the respon-
dent; maintaining strict confidentiality; suppressing
actual names; exploring the respondent’s version of
the events, opinions, and so on; and avoiding using
anything (e.g., tape recorder) that the respondent par-
ticularly finds threatening. Researchers should avoid
defensive arguments with the respondents. They also
must follow ethical guidelines that are appropriate
to respondents’ cultural practices. Most important,
researchers should demonstrate warmth, empathy,
friendliness, and pleasantness; show interest in what
respondents say; and allow additional questions and
discussion that may not be related to instruments and
the research problem. These strategies are likely to
facilitate a better data collection process to obtain
rich, reliable, and valid data.

A mutually convenient location should be chosen
for the data collection, whether it is an interview,
administration of a questionnaire, or a focus group
discussion. In the case of the respondent’s refusal to

provide data, researchers should politely thank him
or her and withdraw from the process. It is also
important to anticipate a range of interruptions from
people other than respondents (e.g., relatives, friends,
etc.) and prepare well to minimize them. Researchers
need to prepare and plan well to work with the lan-
guage difficulty, if they do not know the local lan-
guage. They need to learn and develop local basic
vocabulary. Most important, they need to identify,
train, and employ neutral interpreters (who do not take
the side of the researcher or the researched) who do
not affect respondents and their responses. Long and
exhausting data collection instruments should be
avoided. By pretesting, the optimum length should be
estimated. If an instrument takes a long time, breaks
should be planned at appropriate stages of the data
collection. In-depth or long interviews may be con-
ducted in two to three separate sessions. If particular
items of the interview/questionnaire do not work, the
researcher should be flexible enough to consistently
drop them from the schedule.

Recording of data, whether through handwritten
notes or electronic devices, should be avoided if
it is implicitly or explicitly resisted by respondents.
An overreliance on electronic gadgets is not recom-
mended because they may not work when researchers
need them the most. If the data collection is based on
the researcher’s memory, the researcher must expand
his or her notes and then write down his or her mem-
ories immediately after interviews. Delay would cause
memories to fade and thus the collected data as well.

If questionnaire respondents are located in govern-
ment, nongovernment, or business organizations,
researchers may ask the organization head to issue a
cover letter advising the respective employees to
cooperate with the survey. This approach may facili-
tate the data collection process in organizations. Avoid
contacting professionals during their busy hours, and
approach them according to their availability and
convenience.

In the case of a questionnaire, administering,
completing, and collecting it in one session will yield
better return rates than giving a questionnaire to
respondents and asking them to return it later.
Researchers must have some autonomy in observing
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so that they can get an adequate picture of the
phenomenon being observed. Research experiences
show that sometimes meaningful data may be col-
lected through casual experiences, observations, and
conversations. Researchers may not be able to capture
such meaningful data when they approach respon-
dents with a questionnaire/interview schedule in a
formal way. If permission is required, it should be
obtained well in advance. If the research topic is
sensitive and securing permission is doubtful, the
researcher may start work on the topic only after
obtaining the permission. If high sample mortality is
expected, researchers should plan for a larger sample
size. They should also consciously plan opportunities
to overcome the problem of isolation in the field.
Modern communication technologies (e-mail, Internet
chat, etc.) may also be used to achieve this purpose, if
they are accessible. Finally, researchers need to take
necessary steps to take care of themselves and to
maintain good health.

Conclusion

As stated in the introduction, it may be reiterated that
data collection activity is a crucial aspect of the
research design. This entry has discussed the necessity
of data collection, types of data, several data collec-
tion methods, resources required for and timeliness in
data collection, ethical considerations, impediments,
and strategies to ensure the collection of high-quality
and accurate data. It may be noted that this discussion
is neither comprehensive nor conclusive. The sug-
gested strategies may work for some and not for
others. However, this entry may provide important
leads to researchers to further explore data collection
methods, impediments, and strategies.

—Manohar Pawar

See also Descriptive Research; Variable
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Applying Ideas on Statistics and Measurement

The following abstract is adapted from Shields,
C. M. (2003). Giving voice to students: Using the
Internet for data collection. Qualitative Research,
3(3), 397–414.

Good data collection techniques are essential
for a research project to run smoothly and for the
data to be trusted. This article explores the use of
a Web-based survey as a means of data collection
with more than 450 adolescents in an American
school district with approximately 50 percent vis-
ible ethnic minority students. After describing the
context of the study, the author explores issues
related to the ease of data collection, the potential
challenges and promise of the Web-based format,
and the quantity and quality of data collected.
Carolyn Shields demonstrates that the data
collected were extremely rich, and that students
appeared to be more comfortable with the elec-
tronic data collection than with an in-person
interview. Moreover, the inherent issues of power
differential related to race, class, and position may
be overcomeusing this strategy for data collection.

DATA COMPRESSION

Data compression is the process by which statisti-
cal structure in data is used to obtain a compact
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representation for the data. Structure can exist in data
in various ways. If there is a correlation between
neighboring symbols, this correlation can be used to
remove the predictable portion of the data and encode
only what remains. If patterns exist in the data, they
can be replaced by indices to a dictionary of patterns.
Even when samples of a data sequence are indepen-
dent of each other, they might show bias, with some
symbols occurring more often than other symbols.
This bias can also be used to provide compression.
Sometimes, it is easier to focus on what is not present
rather than what is present in the data. For example,
the low pass nature of particular data can be taken
advantage of by processing the data in the spectral
domain and discarding the higher frequency coeffi-
cients. In brief, the characteristics of the data guide
the compression process.

Depending on the requirements of the user, data
compression techniques can be classified as lossless
or lossy. Lossless data compression techniques allow
the exact recovery of the original. Lossy data com-
pression permits the introduction of distortion in a
controlled fashion to provide greater compression.
Lossy techniques are used only in situations where
the user can tolerate distortion. We will discuss some
commonly used data compression techniques in the
following sections.

Application Areas

Data compression is used in a wide variety of applica-
tions. WinZip and Gzip are commonly used file com-
pression utilities on computers. Images on the Internet
and in many cameras are compressed using the JPEG
algorithm. Video conferencing is conducted using
compressed video. Cell phones use compression tech-
niques to provide service under limitation of band-
width. Digital television broadcasts would not be
feasible without compression. In fact, compression is
the enabling technology for the multimedia revolution.

Compression Approaches

Compression can be viewed, and compression tech-
niques classified, in terms of the models used in the
compression process and how those models are

obtained. We can focus on the data, examining the
different kinds of structures that exist in the data
without reference to the source of the data. We will
call these approaches data modeling approaches. We
can try to understand how the data are generated and
exploit the source model for the development of data
compression algorithms. Finally, we can examine the
properties of the data user because these properties
will impose certain constraints on the data. We begin
by looking at techniques based on properties gleaned
from the data.

Data Modeling Approaches

With different applications, we get different kinds of
structure in the data that can be used by the compres-
sion algorithm. The simplest form of structure occurs
when there is no symbol-to-symbol dependence;
however, the data symbols take on different values
with differing probabilities. Compression schemes
that make use of this statistical skew include Huffman
coding and arithmetic coding.

Huffman coding, developed as a class project
by David Huffman, assigns short codewords to sym-
bols occurring more often and long codewords to
symbols that occur less often. Let’s look at the exam-
ple in Table 1. There are five symbols in the original
file. If we were to represent them using a fixed-length
code, we would need three binary digits to represent
each symbol. However, if we assign codewords of
different lengths to each symbol according to their
probability, as shown in Table 1, the average length (l)
of binary bits needed to represent a symbol will be

l = 0.5 × 1 + 0.2 × 2 + 0.15 × 3 + 0.1
× 4 + 0.05 × 4 = 1.95bits/symbol.
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Table 1 Huffman Coding

Binary 
Symbols Probability Representation Codeword

A 0.5 000 1
B 0.2 001 01
C 0.15 010 000
D 0.1 011 0010
E 0.05 100 0011



Thus, on average, we save 1.05 bits (3 – 1.95) per
symbol using Huffman coding to represent the origi-
nal symbols. This might not seem like much until we
consider the possibility that the source may be generat-
ing many millions of symbols per second, in which case
the savings is on the order of millions of bits per second.
The encoded sequence is uniquely decodable. By this
we mean that a sequence of codewords corresponds to
one and only one sequence of letters. This is because in
a Huffman code, no codeword is a prefix of another. For
example, if we see the bits 01, we have to decode it
as B because no other codeword begins with 01. Thus,
the “10100000100011,” will be parsed into “1 01 000
0010 0011” and will be decoded into “ABCDE.”

Another method for coding sequences in which
some symbols occur with higher probability than
others is arithmetic coding. In arithmetic coding,
every sequence is assigned a subinterval in the unit
interval [0,1) where the size of the subinterval is
proportional to the probability of occurrence of the
symbol. The binary representation of a “tag” in this subin-
terval is truncated to the ceiling function of �log2 (1/p)�
bits, where p is the probability of the sequence. Clearly,
sequences that are more probable will have a shorter
codeword than sequences that are less probable.

The reasoning behind using shorter codewords for
more probable symbols can be extended to collection
of symbols or phrases. Commonly occurring phrases
in a text can be collected in a dictionary and encoded
with an index into the dictionary. The problem then
becomes one of constructing the dictionary. In two
landmark papers in 1977 and 1978, Jacob Ziv and
Abraham Lempel provided two different approaches
to forming a dictionary. In their 1977 approach, the
dictionary was simply a portion of the previously
encoded text. A repeat of a phrase or pattern was
encoded by sending the offset from the current text
and the length of the text to be copied. This compres-
sion approach, known as LZ77, has been incorporated
in such popular packages as gzip and PNG.

The second approach, proposed in their 1978
paper, built an explicit dictionary based on the
past. Terry Welch popularized a variation of this
approach, known as LZW, in a 1982 paper. Sup-
pose we have the following input sequence:
“HO_HO_HO_OPS_OPS_OPS.” Assuming that the

alphabet for the input file is {H, O, _, P, S}, the LZW
dictionary initially looks like Table 2. The LZW algo-
rithm finds the longest match in the dictionary to the
sequence being encoded, encodes the index of this
match, and concatenates the match with the next sym-
bol to form a new entry in the dictionary. For the
example sequence, initially, the beginning pattern “H”
is the longest pattern in the dictionary, which is
encoded as 1. At this time, “HO” is added as the sixth
entry in the dictionary. Now, the uncoded sequence
starts from “O” and the longest pattern in the dictio-
nary will be “O,” which is encoded as 2. “O_” will be
the seventh entry in the dictionary.

Continuing in this manner, we build the two-letter
patterns in the dictionary. When we reach the letter
“H” in the second “HO_,” we have eight entries in
Table 3. The output sequence is 123. Now we can find
matches of two letters in the dictionary and begin to
construct patterns of three letters. The next match is
“HO,” which is encoded as 6. The ninth entry “HO_”
is added to the dictionary. Continuing in this manner,
we will have the dictionary shown in Table 3 and the
output sequence is 1 2 3 6 8 7 2 4 5 3 12 14 16.
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Table 2 Initial LZW Dictionary

Index Entry

1 H
2 O
3 _
4 P
5 S

Table 3 The LZW Dictionary for the Above Sequence

Index Entry Index Entry

1 H 10 _HO
2 O 11 O_O
3 _ 12 OP
4 P 13 PS
5 S 14 S_
6 HO 15 _OP
7 O_ 16 OPS
8 _H 17 S_O
9 HO_



Note that when the encoder first meets the “OPS”
pattern, it begins to build the two-letter entries in
the dictionary again in Table 3 (Index 12). The dictio-
nary is built dynamically according to the content
in the data file. The decoding is similar to the encod-
ing process. Because the decoder does not know the
symbol right after the decoded symbol, it begins to
build the dictionary entry only after decoding the sec-
ond symbol. So the dictionary build-up in the decoder
is one step behind the encoder. As long as the encoder
does not encode the pattern using the entry just put
in, there will not be a problem. The LZW algorithm
has the special handling procedure for using the
most recent entry in the encoder, which we will not
discuss here. 

Modeling the Source of Information

The use of models of the source of information repre-
sented by the data is a successful approach to com-
pression. In particular, this approach is used for the
compression of speech signals before they are trans-
mitted over the digital cellular network. The approach
used in cell phones essentially involves generating a
model for the speech to be compressed and transmit-
ting the parameters of the model to the receiver along
with some information about aspects
of the speech not incorporated in the
model. The receiver then regenerates
the speech. Speech is produced by
forcing air first through the vocal
cords, then through the laryngeal,
oral, nasal, and pharyngeal passages,
and finally through the mouth and the
nasal cavity. Everything past the
vocal cords is referred to as the vocal
tract. The vocal tract can be modeled
by a filter. The vibration of the vocal
cords can be simulated by pulse
sequences, which are called excita-
tion signals. The Code Excited Linear
Predictive (CELP) algorithm, which
is widely used in the cellular system,
is based on this model of human

speech production to produce high-quality speech at
low bit rates.

A diagram of a CELP encoder and decoder is
shown in Figure 1. The input speech is divided into
frames. For each frame, the parameters of the vocal
tract filter are obtained from the original speech. An
excitation signal is chosen from a stored excitation
codebook. Because the human ear is very sensitive to
pitch errors, a pitch filter is added between the excita-
tion and the vocal tract filter, as shown in Figure 1.
The index of the excitation signal, the gain of the exci-
tation signal, and the parameters of the pitch filter are
selected to reduce the perceptual difference between
the original speech and the synthesized speech. After
finding the best parameters, the encoder sends these
parameters to the decoder instead of the original
speech signal. At the decoder, the speech is synthe-
sized based on these parameters.

Modeling the Users of Information

Examining the users of a class of information can tell
us a lot about the characteristics of the information.
The limitations of the users can provide opportunities
for discarding information not perceptible to the user,
thus leading to compression. Schemes that use this
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approach are particularly useful for classes of data
that are not generated by a single type of source. For
example, unlike human speech, music signals are
generated by a variety of sources. Wonderful sounds
can come from musical instruments, such as violins,
pianos, and flutes, and can also be recorded from nat-
ural sources, such as birds, wind, or running water. It
would be almost impossible to find a source model for
these very different sources. However, although the
sources are different, the user (of interest to us) is the
human auditory system. Therefore, compression tech-
niques can take advantage of the characteristic of the
human auditory system.

The human ear can hear sounds from approxi-
mately 20 Hz to 20 kHz. However, even in this range,
sounds below an audibility threshold cannot be heard.
Furthermore, this audibility threshold can be raised
locally through a phenomenon called masking.
Spectral masking results in the raising of the audi-
bility threshold in the spectral vicinity of a tone.
Temporal masking results in the temporary raising of
the threshold for a short period prior to and after a
sound. Many audio compression algorithms are based
on the masking effect. A block diagram of the popular
MP3 algorithm is shown in Figure 2.

There are two important parts in the MP3 encoder—
the filter bank and the psychoacoustic model. The
psychoacoustic model finds the
major components in the audio
signal and calculates the masking
curve imposed by these major
components. The filter bank con-
verts the audio input samples into
samples of different frequency
bands. The encoder then deter-
mines the active frequency bands
and the quantization level needed
for that band according to the
given output bit rate and masking
curve. For example, if the sound
pressure level of the samples in a
certain band is below the masking
curve, the samples in this band
are not needed because they are

not audible to humans. If the sound pressure level in a
band is much higher than the masking curve, more
quantization levels are needed for this band. In the
final step, the encoder packs all this information into
an MP3 bitstream.

The structure of the decoder is rather simple, as
shown in Figure 3. The input stream is first unpacked;
then the samples in each band are reconstructed; and
the samples in all the bands are remapped into audio
samples, which sound the same as the input audio
samples.

As in the case of music, images and video are also
generated by a variety of sources. Again, as in the case
of music, although the sources are diverse, there is
only a single user of interest to us, namely, the human
visual system. The images of interest to humans con-
sist of regions of constant or stationary pixel values. In
other words, most of the image consists of regions of
low spatial frequency. Therefore, we can design com-
pression schemes that take advantage of this fact. An
example of a scheme that does that is the popular
JPEG algorithm. A block diagram of the JPEG com-
pression algorithm is shown in Figure 4.

The input image is divided into 8 × 8 blocks. The
Discrete Cosine Transform (DCT) transform is then
applied to each block. This results in a spatial frequency
representation of the block. The basis functions of the
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DCT transform are shown in Figure 5. The low-
frequency components are more important than the
high-frequency components to characterize the
images. This allows us to drop high-frequency com-
ponents without degrading the perceptual quality of
the reconstructed image. For example, Figure 6 shows
the original image and reconstructed images obtained
when some of the coefficients are discarded. The
reconstructed images are based on only the first, sec-
ond, and sixty-fourth DCT coefficients. It can be seen
that the first few DCT coefficients contain most of the
information about the image, whereas the sixty-fourth
DCT coefficient has little visible information.

After the transform, the JPEG encoder quantizes
these DCT coefficients. Because the coefficients with
lower indices are more important, they are represented
at a high resolution, whereas the coefficients with

higher indices are represented
more crudely. The quantized
coefficients are further encoded
using a variation of the Huffman
coder described earlier.

Video is a series of images that
is presented in order and at a cer-
tain rate. Because the images
are updated very quickly, the con-

tents of images usually do not change much from one
frame to the next. Most video compression algorithms
use this temporal correlation between the frames by
only transmitting the difference between the current
frame and the previous frame after taking into account
the motion of objects within a frame.

There are many video compression standards. The
most popular video compression standard is known as
MPEG2. MPEG stands for Moving Pictures Experts
Group, which is the group responsible for this stan-
dard. The MPEG2 standard is used in digital cable TV
and with DVDs. One of the important properties of
the MPEG2 algorithm is its random access capability.
This is necessary because the audience may switch the
TV at any moment, or may forward or rewind the
DVD to any location in the video stream. For random
access capability, some frames need to be compressed
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periodically without any reference to past
frames. These frames are referred to as I
frames. In order to improve compression
efficiency, the MPEG algorithm contains
two other kinds of frames, the predictive
coded (P) frames and the bidirectional
predictive coded (B) frames. The P
frames are compressed using motion-
compensated prediction from the last I or
P frame, whichever happens to be closest.
I and P frames are called anchor frames.
The B frames are coded using motion-
compensated prediction from the most
recent anchor frames and the closest
future anchor frames, as shown in Figure 7. I frames
achieve the least compression efficiency because they
do not use the information from neighboring frames. 
B frames achieve the highest compression efficiency
because they use information from the two neighbor-
ing frames.

The different frames are organized together to
form a group of pictures (GOP), as shown in Figure 7.
A GOP is the smallest random access unit in the
video sequence. There are many possible structures
of a GOP. The GOP structure in Figure 7 is a common
one, with 15 frames, and it has the sequence
IBBPBBPBBPBBPBB. The ratio of I, P, and B
pictures in the GOP structure is determined by the
nature of the video stream, the bit rate constraints on
the output stream, and the required encoding and
decoding time.

Because of the reliance of the B frame on the future
anchor frame, there are two different sequence orders.
The display order is the sequence in which the video
is displayed to the user as labeled in Figure 7. The
other order is the bitstream order in which the frame
is processed and transmitted. For the above example,
the first frame is an I frame, which can be compressed
by itself. The next frame to be compressed is the
fourth frame, which is compressed based on the pre-
diction from the first frame. Then the second and the
third frames are compressed based on the prediction
from the first and fourth frames. Hence, the bitstream
order of the above example is IPBBPBBPBBPBB, and
the corresponding display order is 1 4 2 3 7 5 6 10 8
9 13 11 12.

Summary

This entry presented an overview of compression. We
have motivated our discussion by looking at different
ways in which structure in a particular source output
can be modeled. We have also briefly described some
popular compression techniques used for the com-
pression of text, computer files, speech, music,
images, and video.

—Dongsheng Bi and Khalid Sayood

See also Data Mining; Variable
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DATA MINING

Data mining refers to the process of discovering
useful patterns in very large databases. It uses meth-
ods from statistics, machine learning, and database
management to restructure and analyze data to extract
knowledge or information from the data. Data mining
is also known as knowledge discovery in databases
(KDD).

Data mining is used in a wide range of enterprises.
Examples include fraud detection in banking, mar-
ket segmentation, campaign optimization, genetics
research, telecommunications customer turnover
(“churn”) prevention, Web site optimization, and crime
prevention.

How Data Mining
Differs From Traditional

Statistical Analysis

Data mining differs from traditional statistical analy-
sis in a number of ways, including amount and type of
data used and the goals of the analysis.

AAmmoouunntt  ooff  DDaattaa

In traditional statistical analysis, the data set being
analyzed tends to be small, with tens or hundreds of
observations, and rarely more than 10 or 20 variables.
For this reason, statistical methods often place a good
deal of importance on statistical efficiency, or the
method’s ability to generate precise estimates with
small data sets, in order to minimize the expense of
data collection.

In contrast, data mining problems typically 
use very large databases, with thousands, millions,
or even more observations and possibly hundreds 
or thousands of variables. Because of this, many
analysis methods used in data mining focus on com-
putational efficiency, or the ability of the algorithm to
process a large number of cases and/or variables in a
reasonable amount of time. In some data mining set-
tings, sampling is used to reduce the data set to a man-
ageable size.

TTyyppee  ooff  DDaattaa

In research studies of the type statisticians typically
encounter, the data have been specifically planned
and carefully collected for the express purpose of the
study. The researcher has a good deal of control over
the coding of variables, which variables are included
in the data, and the format of the resulting data set.

In most data mining settings, the only data avail-
able are existing data warehouses or other operational
data stores. Formatting and coding of the data have
been predetermined by business or organizational
needs, usually completely independent of the current
analysis. Some fields that the analyst might wish for
may be unavailable, and there is usually a lot of irrel-
evant information in the database that must be sifted
through and removed. Because of this, a considerable
proportion of effort in a data mining project is devoted
to data management, cleaning, and conversion.

GGooaall  ooff  tthhee  AAnnaallyyssiiss

Traditional statistical models are usually used in
confirmatory analyses, where the goal of the analysis
is to test and confirm or reject specific hypotheses
about the process under study. This leads to a strong
emphasis on hypothesis testing.

In data mining, however, the goal is usually one of
two things: exploratory modeling or practical model-
ing. Exploratory modeling is used to find previously
unknown patterns in the data and to generate new
hypotheses about the process described by the data. It
typically emphasizes models with transparency, that
is, models that are easy for an analyst to understand
and integrate with a theoretical framework.

Practical modeling is used to find ways to optimize
a particular process. Here, optimization is loosely
defined as improving a business or organizational
process in some important way, such as increasing
profits for a marketing campaign or adapting a manu-
facturing process to react more quickly to changes
in the economic climate. This kind of modeling is
marked by an emphasis on predictive accuracy; for
such projects, getting the right answer is generally
more important than understanding how you got the
right answer.
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Of course, many data mining
projects include both exploration and
practical prediction as goals, and so
have to balance one against the other to
a certain extent.

Origins of Data Mining

Data mining grew largely out of the
interaction of the machine learning and
database management fields. It wasn’t
until large databases became wide-
spread that a need was perceived for
fast methods of analyzing data and
finding patterns. Traditional statistical
methods were good at finding structure
in data but were not very good at han-
dling the large data sets that enterprises
were amassing, so were somewhat limited in their
utility. Machine learning researchers developed meth-
ods for doing exactly that, and eventually software
suites such as SPSS Clementine, IBM Intelligent
Miner, and SAS Enterprise Miner were developed to
make these machine learning techniques available to
data analysts. As computing power became cheap and
ubiquitous, and improved mathematical algorithms
were discovered, it became more practical to apply
some of the more computationally intensive statistical
methods to large data sets as well, so they were
adopted into the data mining toolbox.

Data Mining Terminology

Because of data mining’s diverse ancestry, there is
some inconsistency in the terminology to describe
various aspects of data mining. Statisticians often
have one name for a concept and machine learning
theorists a different name, and database modelers a
third. Table 1 shows several statistical concepts, along
with other names by which the concepts are known to
data miners.

The Data Mining Process

As indicated above, data mining is a complex process,
of which model building is only a part. The process

includes understanding the problem and the data to be
mined, preparing the data for mining, building mod-
els, evaluating the results of modeling, and deploying
final models to directly address the original problem.
The Cross Industry Standard Process for Data Mining
(CRISP-DM) consortium has developed a detailed
model for the complete data mining process. You can
find out more about the model in the Further Reading
at the end of this entry.

Modeling Procedures
Used in Data Mining

Data miners use a wide variety of modeling methods
borrowed from machine learning and statistics, as
well as methods developed specifically for data min-
ing. Some of the more popular methods are briefly
described as follows.

DDeecciissiioonn  TTrreeeess

This family of algorithms uses recursive partition-
ing to split the data into subgroups, based on values of
the predictor variables, such that each subgroup tends
to have similar values for the target variable. The
effect of the recursive partitioning is to build a “tree”
of nodes, each representing a subgroup. The various
methods differ primarily in the loss function used to
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Table 1 Data Mining Terminology

Statistical Concept Synonymous Data Mining Terms

Variable Field, Attribute, Feature, Column, Dimension
Case Record, Row, Example, Instance
Dependent variable Target (field), Output (field), Outcome (field)
Independent variable Predictor (field), Input (field), Attribute
Nominal Categorical, Set, Discrete
Continuous Numeric, Real
Model estimation Model building, Training, Teaching, Learning
Predictive modeling Supervised learning
Clustering, exploratory Unsupervised learning

factor analysis, other
nonpredictive model
building

Outlier Anomaly
Loss Cost, Utility



decide each split, typically a statistical, entropy, or
information criterion. Examples include CHAID,
CART, C5.0, and QUEST.

RRuullee  IInndduuccttiioonn

This family of algorithms derives rules of the form
IF x THEN y from the data, where x is a set of
antecedent conditions (values for predictor fields) and
y is a consequent condition [value(s) for the target
field(s)]. Such a rule can also be written as x → y. For
example, in a market basket analysis analyzing items
purchased together at a store, you may get rules of the
form BREAD → BUTTER (0.60), meaning that 60%
of the customers who buy bread also buy butter. In this
example, 60% is called the confidence for the rule
BREAD → BUTTER. Examples of rule induction
algorithms include Apriori and Carma.

NNeeuurraall  NNeettwwoorrkkss

This family of algorithms attempts to simulate, in
an abstract fashion, the way nerve cells process infor-
mation in the brain. A neural network model con-
sists of a set of interconnected nodes, each of which
processes information in a simple way and then passes
it on to other nodes to which it is connected, some-
thing like a (simplified) biological neuron. A neural
network learns by adjusting the strengths of the
connections between nodes (the weights), either to
improve predictive performance or based on an inter-
nal loss function. The most common types of neural
networks are backpropagation networks (also called
multilayer perceptrons), radial basis function net-
works, and Kohonen networks (also called self-
organizing maps).

GGeenneettiicc  AAllggoorriitthhmmss

Genetic algorithms work using evolutionary prin-
ciples to select good models from a population of
candidate models.An initial set of models is generated,
usually randomly, and each model is tested for accu-
racy and/or other goodness criteria. Some number of
models, those that give the best performance, are

saved, and the rest are discarded or culled. New
models are created by randomly combining charac-
teristics of the models saved from the previous
round, analogous to sexual reproduction, and the
models are evaluated again. In some cases, mutations
are also added to each successive generation, where
model parameters are changed randomly, indepen-
dent of any other observed values in the saved candi-
date models from the previous iteration. The process
then repeats, with the candidate models being culled,
recombined, and tested again. This process, analo-
gous to natural selection, will tend to produce better
and better models with each successive generation.
Iterations stop when one or more of the candidate
models satisfies some criterion for judging the
model(s) as adequate.

Note that genetic algorithms are a basic optimiza-
tion method and can be used with a variety of model
types.

SSuuppppoorrtt  VVeeccttoorr  MMaacchhiinneess

A support vector machine (SVM) is a method of
constructing models based on kernel methods. An
SVM works by projecting the input space (the space
defined by the input fields or dimensions) into a very
high-dimensional feature space, in which a linear dis-
criminator or hyperplane (or a set of hyperplanes)
can be used to separate target subgroups from one
another. The use of kernel functions saves SVMs
from having to represent the full high-dimensional
feature space. SVMs use the maximum margin
hyperplane in the feature space, which generally con-
trols overfitting, in spite of the high dimensionality of
the feature space.

Various kernels have been used with SVMs,
including radial basis function, linear, polynomial,
and Gaussian.

NNeeaarreesstt  NNeeiigghhbboorr  MMeetthhooddss

This family of methods, also known as memory-
based reasoning, uses examples from the training data
to classify or make predictions for new data. A new
record is compared to a table of exemplars from the
training data, and the target value of the stored record
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most similar to the new record is used as the predicted
value (or classification). In some cases, the k most sim-
ilar records are identified, and the prediction is some
combination of the target values for those records.

CClluusstteerriinngg

Clustering methods attempt to identify homoge-
neous groups in the data set, usually without respect
to known categories or any particular target field.
Because there is no known correct answer, clustering
is often referred to as unsupervised learning.
(Predictive models are supervised because they
usually involve comparing a predicted value to an
observed target value and adjusting the model to
reduce the distance between the two.) Clustering is
often used to define group membership, which is then
used to predict some other characteristic in a subse-
quent model. It can also be used to detect outliers or
anomalies by highlighting records that don’t fit well
with any identifiable subgroup. The two most com-
mon types of clustering are hierarchical clustering
and k-means clustering.

Hierarchical clustering works by starting with each
record defining a separate cluster. The two most
similar clusters are merged into a compound cluster.
Then, the next two most similar clusters are merged,
and so on until all records have been merged into one
giant cluster. By selecting a cut-point in minimum
intercluster distance, you can define a cluster solution
with any number of clusters you want.

K-means clustering starts by defining the number
of clusters a priori. A set of k randomly selected
records defines the initial cluster centers. All of the
other records in the data set are assigned to one of the
k clusters: The assigned cluster is the closest cluster
based on the Euclidean distance between the record
and the cluster center. After the records have been
assigned, a new cluster center is calculated for each
cluster as the mean of the input fields for all records
assigned to the cluster. Records are then reassigned to
their closest clusters, and cluster centers are recalcu-
lated. Iterations continue until the clusters stabilize,
that is, until no records need to be reassigned to a dif-
ferent cluster after cluster centers are updated.

TTeexxtt  MMiinniinngg

Text mining refers to methods that attempt to find
relationships and patterns in unstructured text, such as
newspaper articles, Web sites, and academic papers.
Text mining usually includes categorization of words
or phrases and identification of related words and
concepts. It is a fairly low-level kind of analysis and
does not purport to automatically “understand” the
texts being analyzed. However, by modeling relation-
ships between word categories, often new information
or hypotheses can be generated.

SSttaattiissttiiccaall  MMeetthhooddss

Several statistical methods have become widely
used in data mining, including linear regression, logis-
tic regression, and discriminant analysis.

—Clay Helberg

See also Artificial Neural Network; Cluster Analysis;
Discriminant Analysis; Linear Regression; Logistic Regres-
sion Analysis; Support Vector Machines
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DECISION BOUNDARY

A decision boundary is a partition in n-dimensional
space that divides the space into two or more response
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regions. A decision boundary can take any functional
form, but it is often useful to derive the optimal deci-
sion boundary that maximizes long-run accuracy.

The use of decision boundaries is widespread and
forms the basis of a branch of statistics known as dis-
criminant analysis. Usually, discriminant analysis
assumes a linear decision bound and has been applied
in many settings. For example, the clinical psychia-
trist might be interested in identifying the set of fac-
tors that best predicts whether an individual is likely
to evidence some clinical disorder. To achieve this
goal, the researcher identifies a set of predictor vari-
ables taken at Time 1 (e.g., symptoms, neuropsycho-
logical test scores, etc.) and then constructs a linear
function of these predictors that best separates
depressed from nondepressed or schizophrenic from
nonschizophrenic patients diagnosed at Time 2. The
resulting decision bound then can be applied to symp-
tom and neuropsychological test data collected on
new patients to determine whether they are at risk for
that clinical disorder later in life. Similar applications
can be found in machine learning (e.g., automated
speech recognition) and several other domains.

To make this definition more rigorous, suppose
we have two categories of clinical disorders, such as
depressed and nondepressed individuals with predic-
tor variables in n-dimensional space. Denote the two
multivariate probability density functions fD(x) and
fND(x) and the two diagnoses RD and RND. To maxi-
mize accuracy, it is optimal to use the following deci-
sion rule:

If fD(x)/fND(x) > 1, then RD, else RND. (1)

Notice that the optimal decision bound is the set of
points that satisfies

FD(x)/fND(x) = 1.

It is common to assume that fD(x) and fND(x) are
multivariate normal. Suppose that µD and µND denote
the depressed and nondepressed means, respectively,
and that ΣD and ΣND denote the multivariate normal
covariance matrices. In addition, suppose that ΣD =
ΣND = Σ. Under the latter condition, the optimal deci-
sion bound is linear.

Expanding Equation 1 yields

(2)

Taking the natural log of both sides of Equation 2
yields

h(x) = ln [fD(x)/fND(x)] = (µND – µD)′ Σ−1x
+ –1–

2 (µD′ Σ−1 µD – µND′ Σ−1 µND), (3)

which is linear in x.
As a concrete example, suppose that the objects

are two-dimensional with µD = [100 200]′, µND = [200
100], ΣD = ΣND = Σ 50I (where I is the identify
matrix). Applying Equation 3 yields

.04x1 – .04x2 = 0.

—W. Todd Maddox

See also Discriminant Analysis; Discriminant Correspondence
Analysis 
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DECISION THEORY

Every day, a multitude of decisions are made that
affect not only a small number of individuals, but also
potentially millions of people. These decisions, which
take place in hospitals, pharmaceutical companies,
government offices, investing companies, and so on,

fD(x)/fND(x) = 1

= (2π)− n
2 |Σ|− 1

2 exp
[− 1

2 (x − µD)′Σ−1(x − µD)
]

(2π)− n
2 |Σ|− 1

2 exp
[− 1

2 (x − µND)′Σ−1(x − µND)
]

= exp
[− 1

2 (x − µD)′Σ−1(x − µD)

+ 1
2 (x − µND)′Σ−1(x − µND)

]
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are made based on incomplete information and under
various conditions of uncertainty as to the ability of
the decision maker(s) to follow through with the
commitments made. Thus, nations declare wars with
incomplete information as to the capabilities of the
others involved in the war, and with uncertainty as to
what the impact of these actions might be on their own
economies and citizens. A pharmaceutical company
must decide whether to market a new drug based on
limited information resulting from the clinical trials
and economic uncertainty as to whether the drug can
compete in the market with other drugs.

Decision theory consists of techniques, ideas, and
methodologies that are appropriate for helping the
decision maker to reach a decision in an optimal fash-
ion in the face of uncertainty. Given the universality
of decision theory in corporate life, government
action, and everyday life, it is not surprising to find
that decision theory has been embraced by almost
every scientific discipline. Thus, game theory perme-
ates the theory and applications in economics.
Psychologists know game theory as the theory of
social interactions, and political scientists study ratio-
nal choice theory.

All of these approaches to decision making have
several essential elements in common that will be
discussed below in the context of statistical decision
theory. Game theory served as the precursor to most
of the ideas in decision theory, and its place in mod-
ern decision making was cemented by John von
Neumann and Oskar Morgenstern’s fundamental
work on the Theory of Games and Economic Behavior
(1944). Although decision theory developed from
game theory, there is a fundamental difference
between the two. Informally, whereas in game theory,
players make decisions based on their beliefs of what
other players—whose interests may be diametrically
opposed to theirs—will do, decision theory concerns
itself with the study of decisions of individuals uncon-
cerned with the plans of others—their “opponent”
being nature.

Wald unified at once ideas from game theory and
Neyman’s and Pearson’s mathematical developments
in the theory of statistics in his elegant work
Statistical Decision Functions. It is this approach on
which the rest of the discussion focuses.

Statistical Decision Theory

There are at least three common elements to all intro-
ductory courses of statistical theory and methodology:
estimation, hypothesis testing, and confidence inter-
vals. As taught in an introductory course, these three
topics may appear as being unrelated. Toward the end
of the course, however, the student learns to “invert”
acceptance regions to obtain confidence intervals, and
also learns to use confidence intervals to carry out tests
of hypothesis. In addition, confidence intervals are
introduced as point estimates together with a measure
of precision of the estimates, typically 2 or 3 standard
errors of the point estimate. Statistical decision theory
unifies these ideas, and others, into one paradigm.

Let X1, . . . , Xn represent the data observed as the
outcome of an experiment E and let F represent the
distribution of (X1, . . . , Xn), which we assume to be
parametrized by θ, where θ may be a vector of para-
meters, and the set of all possible values of θ, called
the parameter space, is denoted by Θ. This depen-
dence of F on θ will be denoted as Fθ. The objective
is to use (X1, . . . , Xn) to make inferences about θ.
Faced with this problem, the statistician considers all
the possible actions A (A is called the action space)
that can be taken and makes a decision based on a
criterion that involves minimizing the expected loss.
This requires the statistician to define a function, the
loss function, which represents the loss when the true
state of nature is θ and the statistician decides for
action a. This loss function is denoted as L(θ,a), and L
is usually selected to be of the form

L(θ,a) = v(a – θ),

v(0) = 0,

v(x) is increasing in |x|.

Examples of loss functions include the following:

Squared error loss: L(θ,a) = (a – θ)2,

Absolute error loss: L(θ,a) = |a – θ|, and

Linex error loss: L(θ,a) = b(ec(a – θ) – c(a – θ) – 1).

Historically, squared error loss has been used
mostly because of the relative ease with which prop-
erties of the resulting procedures can be analyzed. It is
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common to assume symmetry of the loss function.
This implies implicitly that overestimating by an
amount d has the same consequences as underestimat-
ing by the same amount. Varian, in the context of real
estate assessment, argued the need for the Linex loss
as more representative of losses accrued when assess-
ing the value of real estate.

Once the probability model for (X1, . . . , Xn) and
the action space A have been defined, and the loss
function has been selected, the statistician attempts to
make a decision a(X1, . . . , Xn) that minimizes the risk
function

R(θ, a(X1, . . . , Xn)) = Eθ (L(θ, a(X1, . . . , Xn)),

for all θ and for all a* ≠ a. Of course, this is not pos-
sible because if θ* ∈ Θ, then no other a(X1, . . . , Xn)
can be better than the action a*(X1, . . . , Xn) = θ*,
which disregards the data and always “guesses” θ*.
Thus, a need arises for eliminating procedures that
“pay too much attention” to certain models and com-
pletely disregard others. Moreover, even when these
“partial” estimators are eliminated, it usually happens
that risk functions for different decision rules will, as
functions of θ, crisscross, and then it is not clear
which decision to use. Before discussing other ideas
in decision theory, let us consider the following
example.

Example

Consider the normal model with mean θ ∈ R, and
known variance s2, and consider the three following
problems:

1. Point estimation of θθ: Here, Θ =A =R. Choosing
squared error as the loss function, the risk function is
given by

R(θ, a(X1, . . . , Xn)) = Variance (a(X1, . . . , Xn))
+ Bias (a(X1, . . . , Xn))

2,

where Bias (a(X1, . . . , Xn)) = Eθ(a(X1, . . . , Xn)) – θ.
This risk function is also known as the mean squared
error of the estimator. In this case, for example, the

sample mean a(X1, . . . , Xn) = X
—

n, being unbiased, has
a risk function equal to 

2. Hypothesis testing: Consider testing the simple
hypothesis H0 : θ = θ0 versus the simple hypothesis
H1 : θ = θ1. In this setup, there are only two possible
actions:

A = {Do not reject H0, Reject H0}

Let a loss function be defined as follows:

L(θ, Do not reject H0) = 0 when θ = θ0,

L(θ, Do not reject H0) = k0 when θ = θ1,

L(θ, Reject H0) = k1 when θ = θ0,

L(θ, Reject H0) = 0 when θ = θ1.

Note that the loss function is zero when the
correct decision is made, the loss is k0 if H0 is
not rejected when it should be rejected (an error of
Type II), and the loss is k1 if H0 is rejected when
it should not be rejected (an error of Type I), where
the decisions of Rejecting H0 and Not rejecting
H0 are defined in terms of the value of a(X1, . . . , Xn)
= X

—

n. The problem of selecting the test function
based on a(X1, . . . , Xn), that minimizes P{Type II
error} = Pθ1

{Do not Reject H0}, subject to the condi-
tion that P{Type I error} = Pθ0

{Reject H0} ≤ α, for
some preselected α, was addressed by Neyman and
Pearson, and the solution is their fundamental
Neyman-Pearson lemma (1938).

3. Confidence  intervals for θθ : Let A consist of all
intervals (a(X1, . . . , Xn), a

_
(X1, . . . , Xn)) with a < a

_
.

Let the loss function be of the form

L(θ; a, a
_
) = L1(θ , a) + L2(θ , a

_
)

where L1 is nonincreasing in a for a < θ and 0 for
a ≥ θ and L2 is nondecreasing in a

_
for a

_
> θ and 0 for

a
_

≤ θ. The goal is then to find the interval (a*, a
_

*) that
minimizes the risk function Eθ (L(θ; a,a

_
)) subject to

Pθ{a > θ} ≤ α1 and Pθ {a
_

< θ} ≤ α2.

σ 2

n
.
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One example of a loss function of the type L1 + L2

is the function that takes the length a
_

– a of the
interval as the loss. Taking, for example, a1 = a2 =
.025, it is well-known that the usual 95% confidence
interval

for θ in the normal case is optimal in the sense of
minimizing the expected length subject to the con-
straint that

Pθ{a > θ} ≤ .025 and Pθ{a– < θ} ≤ .025.

In what follows, we will restrict attention to the
case of point estimation, although most remarks to be
made also apply more generally. As previously dis-
cussed, once the elements (action space, probability
model, and loss functions) of the statistical decision
theoretic problem have been selected, the statistician
would like to choose a decision rule a(X1, . . . , Xn)
that, uniformly, in θ and in a* ∈ A, minimizes the risk
Eq(L(θ, a)). That is, the goal is to find the decision
rule a(X1, . . . , Xn) such that

Eθ (L(θ,a(X1, . . . , Xn)) ≤ Eθ (L(θ, a*(X1, . . . , Xn)).

for all θ ∈ Θ and all a* ∈ A. There is, however, the
difficulty alluded to earlier. It is not possible to carry
out this program because there are decision rules that
pay too much attention to some values of θ while dis-
regarding most other values of θ. At this juncture,
there are two possible ways to proceed. First, one may
restrict the class of decision rules under consideration,
for example, by eliminating those that only pay atten-
tion to a few points in parameter space. Thus, for
example, restricting attention to decision rules that are
unbiased eliminates many estimators, and the hope is
that in this smaller class of decision rules, one may
find one that is uniformly best. There is an extensive
literature on finding the uniformly minimum variance
unbiased estimators (UMVUE). When the problem
satisfies certain symmetry properties, another way
of restricting the class of estimators to a more

manageable size with the hope of finding an estimator
that is uniformly best in the reduced class is to con-
sider only those estimators that are equivariant.

The second approach defines preference orders
for the risk functions. One possible way of doing this
is to integrate R(θ, a(X1, . . . , Xn)) with respect to
a probability distribution Π(θ) on Θ. This approach
gives rise to Bayes estimators, and more generally
to the Bayesian approach that interprets the distribu-
tion Π(θ) as representing the statistician’s “prior”
knowledge about Θ. Thus, informally, a Bayes esti-
mator for θ with respect to a loss function L(θ,a)
achieves the smallest area under the weighted risk
function where the weight is provided by the specific
prior distribution Π on Θ. That is, a Bayes estimator
δπ(x), with respect to the prior distribution Π(θ) and
the loss function L(θ,a), minimizes the Bayes risk
and therefore,

Alternatively, one may order risk functions, and
hence decision rules, by preferring decision rule a1 to
decision rule a2 if

A decision rule a* ∈ A is then said to be minimax if

Thus, a minimax estimator minimizes, among all
estimators, the maximum risk.

Let the loss function be squared error. Consider
the estimator X

—

n. Its risk is constant and given by
Because X

—

n is unbiased, it is of interest to determine if
it is also best in the class of unbiased estimators. That
is, is it UMVUE? It turns out that the estimator is
UMVUE, and also minimax. However, it is not Bayes
with respect to any prior distribution on Θ. In fact,
except for very few cases, an unbiased estimator can-
not be Bayes.

σ 2√
n
.

sup
θ∈�

R(θ, a∗) = inf
a∈A

{sup
θ∈�

R(θ, a)}.

sup
θ∈�

R(θ, a1) ≤ sup
θ∈�

R(θ, a2).

∫

�

R(θ, δπ(x))d�(θ) = inf
δ∈A

∫

�

R(θ, δ(x))d�(θ).

(

X
---

n − 1.96 σ√
n
, X

---
n + 1.96 σ√

n

)
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However, X
—

n is the limit of a sequence of Bayes
estimators. More precisely, consider as a prior distrib-
ution on Θ the normal distribution with mean m and
variance d2. That is, the prior density is given as follows:

The Bayes estimator with respect to this prior and
squared error loss is

Thus, the Bayes estimator is a convex combination
of the sample mean X

—

n and m, the mean of the prior
distribution. Letting b → ∞, it is seen that X

—

n arises as
a limit of Bayes estimators.

—Javier Rojo

See also Bayesian Statistics; Evidence-Based Practice
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DELPHI TECHNIQUE

The Delphi technique is a means of collecting data
from a diverse group of people for the purpose of
reaching a consensus. This entry presents the basic
process of the Delphi technique as well as some vari-
ations on the process that can be used to meet specific
needs. Although the Delphi technique allows for
refinement of original ideas and therefore promotes
high-quality decisions, it can be time consuming and
subject to bias. Examples of how the process can be
used in research are provided. From this entry, readers
can determine if the Delphi technique is appropriate
for their particular situations.

According to S. J. Adams, the Delphi technique
provides a representation of varied backgrounds, and
it prevents individuals with strong personalities from
dominating a group. The purpose is to obtain informa-
tion from participants to help in the areas of problem
solving, planning, and decision making. The Delphi
technique is a way to reach a consensus among a
group of experts.

The RAND Corporation developed the technique
during the 1950s as an approach to forecasting the like-
lihood and the potential impact of Russian bombing
attacks on the United States. The approach was named
for the Oracle of Delphi of Greek mythology. It was
soon adopted by technological forecasting experts and
eventually found its way into other types of research.

a(X1, . . . , Xn) =
{

(n/σ 2)

n/σ 2 + 1/d2

}

X
---

n

+
{

(1/d2)

n/σ 2 + 1/d2

}

µ.

λ(θ) = 1√
2π

exp

{

− 1

2d2
(θ − µ)2

}

.
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Theoretical Basis for
the Delphi Technique

CCoonnsseennssuuss  TThheeoorryy

According to a variety of researchers, the objective
of users of the Delphi technique is to achieve consen-
sus. Some proponents of consensus theory believe that
building consensus offers opportunity for communal
renewal and for achieving group commitment to com-
mon goals.

AAnnoonnyymmiittyy

Some researchers and theorists believe that
anonymity is helpful for generating quality ideas.
Others expect that using the Delphi process dis-
courages individual dominance and simultaneously
encourages each person to share his or her ideas with-
out fear of intimidation.

DDiivveerrggeenntt  TThhoouugghhtt

Some researchers observe that divergent thinking
occurs when individuals or groups are introduced to
minority opinions. Anonymity and exposure to a vari-
ety of viewpoints contributes to improved creativity
and decision making.

Purpose and Uses in Research

Researchers have used the Delphi technique for
gathering broad-based opinions from experts, refining
their views, and reaching consensus on predictions
and plans for dealing with complex issues. The data
generated have been used in forecasting, public
budgeting, and goal setting. Decision makers in such
diverse disciplines as education, safety management,
family therapy research, environmental studies, gov-
ernment, medicine, and community health have relied
on Delphi for all or portions of their research data.

Delphi Technique Process

Delphi technique involved several carefully struc-
tured steps. It bore some resemblance to Nominal
Group Technique (NGT) in that with both processes,

individual contributions were made anonymously.
However, the standard format for Delphi did not
require participants to meet. Thus, not only were
responses anonymous, but even the identity of other
participants might be unknown to the group. The pro-
cedure involved two to four rounds of responses.
However, prior to the first round, primary stakehold-
ers had to do the following:

1. Select a monitor or monitor group. This person or
persons should be experts both on the topic and on
written communication skills.

2. Select participants. Participants usually were stake-
holders as well. However, they could be noninvolved
experts.

3. Invite participants. Selected participants were
invited by telephone, mail, or e-mail to take part in
the process.

4. Develop a broad question or statement for consider-
ation. The monitor developed the initial question
or statement, perhaps in conjunction with other
stakeholders.

To begin the rounds, the monitor was responsible
for (a) identifying and orienting participants; (b) get-
ting the question to each participant; (c) receiving input
from each participant; (d) summarizing the informa-
tion; (e) sending the summary and a new, more focused
question to the participants; and (f) determining that
no more rounds were needed. The process concluded
with a resolution. When consensus was reached, the
resolution was announced to participants. Panel partic-
ipants committed to the decision (see Figure 1).

It was recommended that 12 to 15 panel members
were an appropriate size. Panel sizes ranged from
a few to hundreds of members, depending on the
research topic. A response rate of 70% or greater was
typically acceptable. It was common for the iteration
process to last only two or three rounds before con-
sensus was reached.

Statistical Measures of Agreement

Panels commonly have used Likert scales to assess 
the rating of items. The Delphi monitor calculated
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summary statistics, such as the median, following
each round and reported them to the panel members
for consideration during the next round. Researchers
found the median to represent the most common value
provided by a panel member and cited the interquar-
tile range (the middle half of the scores) as a measure
of consensus. The smaller the interquartile range, the
greater the consensus. Several studies supported using
the median and the interquartile range as measures of
agreement and consensus.

Delphi scholars reported means to panel members
in successive rounds and standard deviations as mea-
sures of consensus. However, other researchers
suggested that providing standard deviations to expert
panels was misleading because they were not applica-
ble to ordinal data.

Variations of the
Delphi Technique

RReeaall--TTiimmee  aanndd
PPoolliiccyy  DDeellpphhii

Clayton identified three types
of Delphi: (a) conventional, (b)
real time, and (c) policy. The
conventional process was pre-
sented earlier. Real-time Delphi
differed in that it occurred face-
to-face, within the context of
a meeting or conference. Policy
Delphi asked participants for
information on which a decision
was to be made. Policy Delphi
and real-time Delphi could be
combined. Consensus was not an
objective in either case.

CCoommbbiinnaattiioonnss  ooff
DDeellpphhii  WWiitthh  NNoommiinnaall
GGrroouupp  TTeecchhnniiqquuee

The possibility of voting when
consensus could not be reached
could be considered a variation on
Delphi. It was a compromise of
the ideal Delphi and borrowed the
last phase from NGT.

MMiixxeedd  MMeetthhooddss  SSttuuddiieess

Some researchers have used mixed methodologies
to complement one another. For example, one might
use Delphi to determine items for a questionnaire that
would be used in a mail survey regarding environmen-
tal policy.

HHiissttoorriicc  DDeellpphhii

In this variation, Strauss and Zeigler found that par-
ticipants attempted to apply systematically the writings
of classical political philosophers to current issues.That
interesting study is presented in the Historic Delphi
Approach section of this entry.
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RReeaaccttiivvee  DDeellpphhii

A popular variation of Delphi was the reactive
method, in which panel members reacted to pregener-
ated items or questions in Round 1, rather than pro-
ducing a list of ideas. In this variation, the researcher
prepared a list of items from a review of related liter-
ature, and the subject matter experts were asked to
rate the importance of each item on some scale. The
researchers found that such structured first rounds
diminished the assessment properties found in the
classic Delphi technique.

Advantages and Disadvantages
of the Delphi Technique

AAddvvaannttaaggeess  ooff  DDeellpphhii  TTeecchhnniiqquuee

Effective structure. The process allowed partici-
pants to refine their original ideas. That resulted in
high-quality decisions on complex issues. These
results came from professionals who gained insights
from one another’s input during the successive rounds.

Fiscal economy. Little financial cost was involved
in using the conventional Delphi technique. There are
no travel costs, no need for accommodations, and usu-
ally no stipends for participants.

Collaboration. Several researchers noted that in
reaching consensus, the Delphi technique fostered
collaboration among parties who would be needed to
carry out the group’s decisions.

DDiissaaddvvaannttaaggeess  aanndd  LLiimmiittaattiioonnss
ooff  tthhee  DDeellpphhii  TTeecchhnniiqquuee

Time requirements. Two aspects of time apply to
Delphi. First, there is the requirement of the
monitor(s) and of each participant. Also, the transmis-
sion of ideas could result in an overall time frame of
several weeks. Difficulty in retaining participants
throughout the process may be a problem. Sometimes,
the latter could be lessened by using e-mail. However,
that would require special care to maintain anonymity.

Inadequacy as sole method. According to several
studies, when used alone, the Delphi technique was
inadequate for forecasting. Also in this regard, one

must consider the built-in dangers of bias. A discus-
sion of such dangers follows.

Central tendency. Michigan State University
Extension found that consensus building generally has
involved finding a middle-of-the-road position, elimi-
nating the extreme ends of the spectrum. This feature
has caused some groups to feel that their views were
rejected and that the process was rigged.

Bias. It is important to ensure that experts are not
influenced by the researcher’s objective. To guard
against this, Delphi experiments usually use two or
more separate groups of experts. There are numerous
opportunities for introducing bias into the Delphi
process, including (a) setting eligibility standards
and soliciting participants, (b) formulating the ques-
tions, (c) summarizing participants’ contributions, (d)
rephrasing questions for successive rounds, (e) deter-
mining the number of rounds, (f) phrasing consensus
statements, and (g) fostering commitment to decisions.
For each step in the process, moderators must be
accountable for keeping the process bias free.

Communication difficulties. Strauss and Zeigler
discussed the possibility of misunderstandings, noting
that the respondents may misunderstand the brief writ-
ten inputs of the panelists. Others noted that Delphi
relied heavily on the written communication skills of
experts. This made the selection of participants espe-
cially difficult, because expertise in the field did not
necessarily include communication expertise.

Ethical standards and need for trust. Conflict
could arise from the many opportunities for bias using
Delphi. Root causes could be intended or unintended
bias or lack of group trust in the process. Without
mutual trust, it would be impossible to reach consen-
sus. Three types of disagreement involving ethics and
trust are especially noteworthy:

1. Forecast versus foresight. Forecasting with the
Delphi technique is used to predict what is likely to
occur, whereas foresight implies that the process
is guided toward a predetermined outcome. As men-
tioned elsewhere, the Delphi process cuts off extreme
views and seeks a middle ground. Unfortunately,
those whose opinions have been sacrificed may feel
disenfranchised. Thus, when a facilitator records a
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group’s comments, the final outcome can be highly
questionable.

2. Consensus versus coalition. The same principle
applies here as to the forecasting versus foresight
outcomes.

3. Consensus and morality. Among populations
that must interrelate, pluralism was the only viable
option. However, if Delphi technique participants
represented a full spectrum of ethical values, abso-
lutism, pluralism, and relativism, some participants
might be open, some might be reluctantly persuaded,
and some might feel excluded. If so, consensus could
not be reached. However, the Delphi technique was
designed especially to reach consensus on complex
issues, and complex questions almost always involve
moral values.

In a discussion of moral consensus, the following
questions should be considered: Does consensus carry
any moral authority? and Can groups ever achieve a
valid consensus on issues of bioethics? Their consid-
erations have raised questions about both the practi-
cality and the propriety of using the Delphi technique
to address the very issues for which the technique was
designed. Perhaps one should consider the words of
Mohandas Gandhi, “In matters of conscience, the law
of majority has no place.”

Research Applications

In this section is a brief overview of some of the
institutional research applications using Delphi. They
range from employee issues, such as selecting job
candidates and handling occupational stress, to fore-
casting training needs and needed changes in human
resource practices, to needs assessment.

Frazer and Sechrist examined the effects of occu-
pational stress on employees in nuclear medicine,
radiologic technology, and medical technology. They
used the Delphi technique to determine 35 job stres-
sors for each discipline. Improved communication
strategies and managerial development were noted as
solutions to occupational stress.

Olmstead-Schafer, Story, and Haughton used the
Delphi method to forecast training needs of public

health nutritionists. It was the consensus of their panel
that communication, policy development, and man-
agerial skills be included in the curriculum for train-
ing nutrition professionals.

Japanese firms used the Delphi method in forecast-
ing needed changes in human resource practices. The
panel made predictions regarding the year in which
strongly held Japanese institutions of lifelong employ-
ment, seniority-focused compensation, and promotion
from within at the exclusion of external recruiting
would transition to practices consistent with Western
cultures. The overall consensus was that it would take
two decades to see significant changes.

Tavana, Kennedy, and Joglekar studied the effec-
tiveness of the Delphi approach for ranking job
candidates for a nursing management position. After
two rounds, the experts reached consensus on the
top applicant from a field of seven. Schuler found that
the Delphi approach was beneficial in emergent and
less structured subject areas such as human resource
planning.

Finally, program evaluation was noted as another
area for using Delphi. The Delphi technique is partic-
ularly useful for studies requiring a needs assessment.

Historic Delphi Application

Strauss and Zeigler conducted an interesting historic
Delphi study. Their objective was to systematically
scrutinize the great political philosophers of the past
and to apply their wisdom to contemporary problems.
Plato, Aristotle, Hobbes, Machiavelli, Swift, Burke,
Rousseau, Locke, Marx, and Freud were the philoso-
phers. Ten panels of six experts each (mostly uni-
versity professors) represented the philosophers. The
questionnaire contained 42 problem statements
regarding serious issues in Western society, and each
statement had a three-part question:

1. In general, what was political philosopher X’s view
on problem statement Y?

2. Based on your knowledge of political philosopher X,
how would he have reacted to the problem statement
in his own time?

3. If alive today, how would political philosopher X
resolve the problem?
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The second round consisted of multiple-choice
options. The experts responded on a 5-point Likert
scale that asked to what extent they agreed or dis-
agreed with each item. The items in the second round
were taken from each group’s first-round responses.

The product of this academic exercise was a series
of options for handling a variety of social problems
based on Western philosophical thought. Strauss and
Zeigler hoped that, in addition to accomplishing this
pragmatic objective, their development of the historic
Delphi approach would be a meaningful way for
students to study philosophy.

Comparison of Delphi, Nominal
Group, and Q-Sort Techniques

Delphi and NGT have many similarities. Each encour-
ages divergent thought, preserves anonymity of partic-
ipants’ contributions, and is aimed at consensus. Each
can be a powerful research technique for solving
complex problems, and each has been adapted to
a variety of needs through variants on the classical
processes. Both processes require significant time
commitments, and both are subject to bias. Both tend
to discredit extreme positions and could alienate those
stakeholders.

Q-Sort, on the other hand, is used primarily as an
individual technique for developing theory related to
human behavior and for identifying and describing

human phenomena. The Q-Sort is a time-consuming
process, as are Delphi and NGT. In contrast to those
methods, Q-Sort researchers develop an instrument
first, through literature review. The instrument is
designed to measure using forced-choice options.
Data collection is usually accomplished one-on-one.
Table 1 depicts similarities and differences between
these three research methods.

Summary

The Delphi technique was designed to identify the
best solutions to complex organizational and other
social problems; and researchers in diverse fields have
used it in its conventional form and with several vari-
ants. However, the process is fraught with opportuni-
ties for contamination through bias, either actual or
perceived. Necessary as it is in a pluralistic society,
both the possibility and the propriety of reaching con-
sensus remains illusive.

—Ernest W. Brewer

See also Decision Theory
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Table 1 Comparisons and Contrasts: Q-Sort, Delphi, and Nominal Group Technique

Name Purpose Data Collection Primary Uses Advantage Disadvantage

Delphi Consensus Group; Medicine; Divergent Possible 
building anonymous social sciences thinking; does manipulation

not require panel
participants to
meet

NGT Decision Group; Social sciences Divergent Possible  
making anonymous thinking manipulation;

requires 
participants to
meet

Q-Sort Theory Individual; Psychology; Quantified Generalizability 
building; forced choice social sciences subjective data difficult
description
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Applying Ideas in Statistics and Measurement

The following abstract is adapted from Kelly, K. P.
(2005). A survey of pediatric oncology nurses’
perceptions of parent educational needs. Journal
of Pediatric Oncology Nursing, 22(1), 58–66.

Educating parents of children with cancer
is a primary nursing responsibility in pediatric
oncology. Katherine Kelly used Delphi techniques
with nurses attending a Children’s Oncology
Group Nursing Workshop to identify priority
educational topics from pediatric oncology
nurses’ perspective. Nurses were asked to identify
five priority educational topics and five topics on
which they spend the most time teaching parents.
Twenty-four educational categories were identi-
fied by 199 nurses, and responses were sorted by
category and frequencies tabulated. Information
about treatment was the most frequently cited
priority. Bone marrow suppression was the
second most important priority and was the topic 

on which nurses spent the most time. In Round 2
of data collection, 132 consenting participants
from Round 1 were asked to rate the importance
of the categories from Round 1 (presented in
random order) during four time periods (diagno-
sis, initial treatment, maintenance, and off ther-
apy). Nurses reported different teaching priorities
across the continuum of treatment. Interestingly,
teaching about end-of-life issues and alternative
therapy were ranked as low in importance across
all time points.

DELTA METHOD

The Delta method allows one to find the approximate
distribution of a function of a random variable.
Often, we are interested in the variability or asymp-
totic distribution not of the random variable X
directly, but rather of a function of that random vari-
able, call it f(X). It is usually not easy to calculate
characteristics of f(X) exactly; indeed, in many cases,
it is impossible or nearly so, hence the appeal to
approximations. The Delta method is one of the stan-
dard approaches.

The Delta method is based on Taylor series expan-
sions from standard calculus, which we now briefly
review. Suppose we have a function g(y) for which
derivatives exist up to order k. The Taylor series
expansion of g(y) about the point a is

where we can continue taking derivatives of g(y)
as long as they exist. In practice, of course, it will
always be necessary to stop the expansion after a
finite number of terms, which leads to Taylor’s for-
mula with remainder. The remainder converges to
zero rapidly enough that it is negligible compared to
the rest of the series expansion and can be ignored.

g(y) = g(a) + g′(a)

1!
(y − a) + g′′(a)

2!
(y − a)2

+ . . . + g(n−1)(a)

(n − 1)!
(y − a)n−1 + . . . ,
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For statistical purposes, we usually need for only
the first derivative to exist, giving the approximation
g(y) = g(a) + g′(a)(y – a) + remainder. Casting this in
a more statistical light, suppose that y is a random
variable with expected value θ and variance σ2. We
expand g(y) in a first-order Taylor series around θ,
ignoring the remainder term, to obtain g(y) ≈ g(θ) +
g′(θ)(y – θ). If we take expectations on both sides of
this last equality, we have

E[g(y)] ≈ g(θ) + g′(θ)E(y – θ).

Because the expected value of y is θ, the second
summand drops out and we are left with E[g(y)]
≈ g(θ).

Approximating the variance is equally easy,
because

Var[g(y)] = E[(g(y)] – g(θ))2]

≈ E[(g′(θ)(y – θ))2]

= [g′(θ)]2Var(y)

= σ 2[g′(θ)]2.

With these in hand, we can derive a Central Limit
Theorem for the function g(y). This extension of the
basic Central Limit Theorem is the Delta method.
Suppose X1, X2, . . . , Xn is a sequence of random vari-
ables, and let Tn be a statistic based on the data such
that √

–
n [Tn – θ ] converges in distribution to a normal

with mean 0 and variance σ2. Then √
–
n [g(Tn) – g(θ)]

converges in distribution to a normal with mean 0 and
variance σ2[g′(θ)]2, if g′(θ ) exists and is not zero.

The result is best demonstrated via examples. In the
first, let X1, X2, . . . , Xn be independent, identically dis-
tributed N(θ,σ2) and the parameter of interest is θ2. A
reasonable estimator of θ is the sample average, X

—
, and

a reasonable estimator of θ2 is therefore the sample
average squared, or X

— 2
. Here, g(y) = y2, which yields

g′(y) = 2y, so that √
–
n [X

— 2
– θ 2

] converges in distribu-
tion to a normal with mean 0 and variance 4θ 2σ2.

As a second example, let X1, X2, . . . , Xn be inde-
pendent, identically distributed Bernoulli (zero–one)
trials, with probability p of success. Instead of p itself,
we are interested in the odds of success, given by

p/(1 – p). We will typically estimate p by p̂ = X
—

, the
sample average, which in this case is the proportion of
successes in the sample. Now, g(y) = y/(1 – y) and
g′(y) = 1/(1 –y)]2. Hence, our estimator p̂ /(1 – p̂ ) is
asymptotically normal, with mean p/(1 – p) and vari-
ance [g′(p)]2Var(p̂) = p/n(1 – p)3.

The statement of the Delta method specifies that
g′(θ) is not zero. If g′(θ) happens to equal zero, a
modification of the result is necessary. This modifica-
tion is simple: instead of taking a first-order Taylor
expansion, we include the second-order term, that is
g(y) = g(a) + g′(a)(y – a) + g′′(a)(y – a)2 / 2 + remain-
der. Because the term involving the first derivative
vanishes, we now have, again expanding around θ,
that g(y) ≈ g(θ) + g′(θ)(y – θ)2 / 2. Moving g(θ) to the
left-hand side of the equation yields g(y) – g(θ) ≈
g′′(θ)(y – θ)2 / 2. The square of a standard normal
distribution is χ2 with 1 degree of freedom, leading to
the modification of the basic Delta method: Suppose
X1, X2, . . . , Xn are independent, identically distributed
random variables, and Tn is a function of the data such
that  √

–
n [Tn – θ] converges in distribution to a normal

with mean 0 and variance σ 2. Then n[g(Tn) – g(θ)]
converges in distribution to σ 2

2
_____g′′(θ) χ2

1, provided that
g′′(θ) ≠ 0.

Returning to the first example, suppose that θ = 0.
Then g(θ ) = θ 2 = 0, and the standard Delta method
cannot be applied. We can use the modification to study
the distribution of X

— 2
in this instance, because g′(θ) =

2θ = 0 when θ = 0, but g′′(θ ) = 2 no matter what the
value of θ. We can then conclude that when θ = 0,
n[X

— 2
– θ 2

] converges in distribution to σ2 2_
2
χ2

1
= σ2 χ2

1
.

A second modification of the basic method
involves a function of multiple parameters that is esti-
mated by a function of more than one random vari-
able. The underlying theory stems from multivariate
calculus and a multivariate version of the Taylor series
expansion, but the essence of the technique is the
same, namely, expand around the parameters to terms
up to first order (i.e., partial first derivatives of the
function with respect to each of the parameters). From
this expression, we can derive the approximate mean
and variance of the function for use in an asymptotic
normal distribution. It is possible to extend the result
even further by considering more than one function of
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the parameters simultaneously, leading to a multi-
variate normal distribution in the Delta method
approximation.

The modification to allow for functions of random
variables is particularly useful for ratio estimators,
which arise frequently in practice but can be difficult
to handle theoretically. Again, a simple example is
instructive. Suppose X1, X2, . . . , Xn and Y1, Y2, . . . ,
Yn are samples of independent, identically distributed
random variables, where E(X) = θX, E(Y) = θY,
Var(X) = σ 2

X, Var(Y) = σ 2
Y, and Cov(X,Y) = σXY. θX

and θY are both nonzero. The function of interest is
g(θX,θY) = θX /θY. To proceed, first take the partial first
derivatives of g(θX,θY) with respect to θX and θY:

and

A natural estimator for g(θX,θY) is X
—

/ Y
—

, the ratio of
the sample averages. Then, by the same reasoning as
in the univariate case,

and

These can then be used to obtain the approximate
normal distribution of X

—
/ Y

—
.

When competing estimators of the same parameter
or function of the parameter are available, the Delta
method provides a convenient way of comparing
them, because one of its by-products is an estimate of
variability.

—Nicole Lazar

See also Normal Curve; Random Sampling

Further Reading

Casella, G., & Berger, R. L. (2002). Statistical inference
(2nd ed.). Pacific Grove, CA: Duxbury.

Lehmann, E. L. (1991). Theory of point estimation. Pacific
Grove, CA: Wadsworth & Brooks/Cole.

DEMING, WILLIAM EDWARDS

(1900–1993)

At the time of his death in 1993, Ed Deming
was regarded as a world leader in quality management;
he had been voted by the business staff of the Los
Angeles Times as being one of the 50 most influential
businesspeople of the century. His obituary in the
American Statistician was headed “The Statistician
Who Changed the World.” However, Deming simply
described himself as a “consultant in statistical studies.”

Deming was born to a poor family in Sioux City,
Iowa, on October 14, 1900. His mother was a music
teacher, and Deming had a lifelong interest in music
(he played the flute). He studied electrical engineering
at the University of Wyoming, graduating in 1921. He
followed this with an MS in mathematics and physics
at the University of Colorado in 1925. As a summer
job, he worked for the Western Electric Company in
Chicago, where he first encountered Shewart’s work
on quality control. He obtained his doctorate in
physics from Yale University in 1928.

Deming began working first for the U.S. Depart-
ment of Agriculture and then for the U.S. Bureau of
the Census, being responsible for the sampling meth-
ods used for the first time in the 1940 U.S. Census.
Between 1930 and 1946, Deming was a special
lecturer on mathematics and statistics in the graduate
school of the National Bureau of Standards, giving
lectures from 8 a.m. to 9 a.m. These led, in 1947, to
the establishment of the Statistical Engineering
Laboratory within the Bureau of Standards.

In 1946, Deming began his practice as a statistical
consultant. In 1947, he spent three months in Japan
helping with the Japanese census. On his return to
Japan in 1950, he gave an extended course in quality
control. The course was so successful and influential
that he was invited back on many occasions and
received by Emperor Hirohito. In 1960, Deming was
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awarded the Second Order of the Sacred Treasure. At
that time, he was much better known in Japan than in
his home country.

Deming’s 14 key principles for transforming busi-
ness effectiveness are summarized thus:

1. Create constancy of purpose.

2. Take the lead in adopting the new philosophy.

3. Cease dependence on mass inspection to achieve
quality.

4. End the practice of awarding business on the basis
of cheapness.

5. Improve constantly.

6. Institute training on the job.

7. Institute leadership.

8. Drive out fear and build trust.

9. Break down barriers between departments.

10. Eliminate slogans, exhortations, and targets.

11. Eliminate numerical goals, and management by
objective. Substitute leadership.

12. Remove barriers to pride in workmanship.

13. Institute a program of education and self-
improvement.

14. Put everybody to work to accomplish the
transformation.

Deming was President of the Institute of
Mathematical Statistics in 1945. In 1983, he was
awarded the Wilks medal, the highest honor of the
American Statistical Association. In 1987, he was
awarded the National Medal for Technology. Deming
died in Washington, DC, on December 20, 1993.

—Graham Upton

Further Reading

Walton, M. (1986). The Deming management method. New
York: Perigee.

W. Edwards Deming Institute: http://www.deming.org/

DEPENDENT VARIABLE

The term dependent variable is derived from
mathematics and is basic to understanding results

in scientific research. The dependent variable,
sometimes referred to as the dependent measure,
criterion variable, or Y variable, is the experimental
variable that is measured to determine the effects
of an independent variable (e.g., experimental treat-
ment) on selected subjects during a research experi-
ment. Using the subjects’ performance on the
dependent variable, the researcher attempts to deter-
mine a relationship between the independent variable
that is manipulated and outcomes on one or more
dependent measures. For example, in a study of how
the implementation of a newly designed reading
program is related to improved scores on reading
comprehension of fourth-grade students, the students’
performance on the reading comprehension test after
they were taught using the new reading program is
the dependent variable, whereas the independent
variable, the manipulated variable, is the reading pro-
gram. Dependent variable is a generic term that can
encompass many different types of measurements.
Examples of dependent variables often seen in the
research literature are posttest, transfer test, general-
ization test, probes, unit tests, and so on. The
researcher typically reports the results of the study
in table or graphic form. Regardless of the type of
research design, the dependent variable is a necessary
feature of the research.

Characteristics

A dependent variable, one in which both the
researcher and consumer can have confidence, should
have certain characteristics. Thus, in any well-
designed research study, the dependent variable
should be (a) clearly defined; (b) closely linked to
the independent variable; (c) reliable and valid; (d)
sensitive to treatment effects; and (e) administered by
the researcher under prescribed, carefully monitored
procedures.

Research Examples

Although the number and types of dependent vari-
ables are innumerable, several examples are presented
across five specific, frequently used research
methodologies.
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SSuurrvveeyy

Research question: What is the average income of physi-
cians in the United States?

Dependent variable: Income of all physicians in the
United States.

Independent variable: None.

CCoorrrreellaattiioonn

Research question: Are years of education related to
income?

Dependent variable: Income of workers across all educa-
tion levels.

Independent variable: Years of education of the research
sample.

EExxppeerriimmeennttaall

Research question: Does a certain assertiveness training
program help salespersons earn more money?

Dependent variable: Income of selected salespersons.

Independent variable: Assertiveness training program.

NNaattuurraalliissttiicc--OObbsseerrvvaattiioonnaall

Research question: What is the frequency of the use of
punishment procedures by ninth-grade resource room,
special education teachers during class?

Dependent variable: The frequency of punishment used
by ninth-grade resource room teachers during class.

Independent variable: None.

SSiinnggllee--SSuubbjjeecctt  RReevveerrssaall  DDeessiiggnn

Research question: Does teacher reinforcement during
instruction increase the attending behavior of a child
with mild mental retardation?

Dependent variable: Percentage of instructional time the
student is attending during reinforcement and teaching
condition.

Independent variable: Use of teacher reinforcement
during instruction.

—Craig Darch and Ronald C. Eaves 

See also Independent Variable

Further Reading

Keppel, G., Saufley, W., & Tokunaga, H. (1992). Introduction
to design and analysis: A student’s handbook. New York:
W. H. Freeman.

Research methods in the social and natural sciences: http://
www.mcli.dist.maricopa.edu/proj/res_meth/

DESCRIPTIVE RESEARCH

Descriptive research provides a detailed account of
a social setting, a group of people, a community, a
situation, or some other phenomenon. This kind of
research strives to paint a complete and accurate
picture of the world by focusing on the factual details
that best describe a current or past event. Researchers
engaged in descriptive studies set out to identify
who participates in an event, where and when it
occurs, and what happens, without exploring the
causal relationships involved in that event. For
example, a descriptive study may examine the types of
services offered by a government agency, the living
conditions of a homeless population in a large urban
center, the experiences of teachers in elementary
school classrooms, or the daily needs of individuals
living with breast cancer. One common example of a
descriptive study is a census, which sets out to docu-
ment demographic (e.g., age, gender) and other details
(e.g., housing costs) about individuals living in a par-
ticular community. Census data are often collected
over many years, allowing researchers to examine
changes in demographic and social patterns within a
particular nation, city, neighborhood, or other identi-
fied social grouping.

In compiling descriptive facts about various phe-
nomena, descriptive research is allied most closely
with quantitative approaches (including the use of
descriptive statistics), although descriptive approaches
may also be used in qualitative research to provide
valuable background information for analyses of indi-
viduals’ attitudes, opinions, and personal experiences
of particular phenomena. Descriptive research is
the most commonly used approach in the human
(behavioral) sciences because it allows researchers to
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examine conditions that occur naturally in the home,
hospitals, classrooms, offices, libraries, sports fields,
and other locales where human activities can be sys-
tematically explored, documented, and analyzed.

Descriptive Research Methods

In quantitative research, descriptive studies are con-
cerned with the functional relationships between
variables, hypothesis testing, and the development of
generalizations across populations. The findings of
descriptive studies are valuable in that they provide
information that enables researchers and practitioners
to define specific variables clearly, to determine their
current situations, and to see how these variables may
relate to other variables. In qualitative approaches,
descriptive research is often referred to as a form of
naturalistic inquiry; this type of research allows the
researcher to observe, document, and detail specific
activities within a defined social setting in order to
point to transferable findings. In both quantitative and
qualitative approaches, descriptive research is marked
by its exploration of existing events and conditions
that would have happened even if the researcher was
not there to observe and document the details. A
number of different research methods are commonly
used in quantitative and qualitative descriptive stud-
ies; the sections that follow will briefly examine the
goals of some of these approaches.

QQuueessttiioonnnnaaiirreess  aanndd
SSttrruuccttuurreedd  IInntteerrvviieewwss

Methods designed to survey individuals about their
experiences, habits, likes and dislikes, or even the
number of televisions in their homes are commonly
used to gather data from a large sample of a given
population at a particular point in time. These meth-
ods are designed to generalize to the larger population
in order to document the current or past activities and
experiences that surround a particular phenomenon.
For example, a questionnaire may be designed to
identify young people’s familiarity with different
media outlets, to explore parents’ knowledge about
treatments for the common cold, or to document the
demographic characteristics of new immigrants in

rural communities. Large-scale questionnaires and
structured interviews typically use some form of prob-
ability sampling to select a representative sample of
a particular population. These methods take many
different forms and can be used across topic areas,
including telephone polls (e.g., to solicit voting
patterns), mail-in or Web-based questionnaires (e.g.,
personal shopping habits), and in-person surveys
(e.g., in-store product assessments). Researchers must
take care to ensure high response rates that will repre-
sent the population, as participation rates as low as
15% can be common, especially in e-mail or Web-
based surveys.

One of the most common examples of this type
of research is an opinion poll, which is typically
designed to document demographic details about indi-
viduals (e.g., their highest level of education) as well
as their opinions on such topics as children being
required to wear uniforms in schools, Internet use in
the home, mass media as a source of health infor-
mation, or other issues of social relevance. Question
response types may include yes/no, multiple choice,
Likert scale, open-ended (short answer) questions, or
other appropriate designs. The results of such polls are
typically analyzed with fairly simple techniques
designed to organize and summarize the findings,
such as the calculation of the mean number of women
versus men in favor of capital punishment.

OObbsseerrvvaattiioonn

Observing human behavior in natural settings
(such as watching shoppers as they stand in line at the
grocery store, or patients as they sit in an emergency
waiting room) can elicit insightful data that could
not be captured using other data collection methods.
The data gathered using observational approaches
consist of detailed descriptions of people’s activities
and behaviors, as well as physical details about the
social settings that surround and inform those activi-
ties. Observational techniques may be covert or overt,
and may even result from a researcher’s involvement
in the particular social scene being investigated
(e.g., librarian researchers who work at the public
library’s reference desk); this latter technique is
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known as participant observation. Researchers
employing observational methods not only document
details about the individuals within the setting under
study (say, in an emergency room), but also examine
the physical (e.g., location of triage facilities) and
organizational (e.g., management hierarchies) struc-
tures within that setting. Data collection may be
restricted to a single site (e.g., one classroom) or may
involve multiple sites (e.g., all classrooms within all
schools in a district), but typically extends over a
long period of time in order to gather valid and com-
plete data.

One example of an observational technique used
for gathering information about individuals in a par-
ticular social context is the “seating sweeps” method
that was developed for use in a public library context.
This method involved the use of checklists to docu-
ment basic demographic information about library
patrons (e.g., gender); the activities in which they
were engaged (e.g., computer use, reading); where
they engaged in those activities (e.g., private study
carrels, computer lab); and the materials that these
patrons carried with them (e.g., briefcases, writing
materials). A number of general patterns emerged
about human behavior in the library using this obser-
vational technique, including the number of men who
used the library at various times of the day and week,
and the prevalence of personal entertainment devices
used by library patrons.

IInn--DDeepptthh  IInntteerrvviieewwss

In-depth interviews allow researchers to examine
issues at length from the interview respondent’s per-
sonal perspective, and they are commonly used in
qualitative research approaches. The data gathered dur-
ing interviews typically consist of verbatim responses
to the interviewer’s questions, which are designed to
elicit descriptions of personal behaviors, and the opin-
ions, feelings, and attitudes that inform those behav-
iors. Interviews typically last from 60 to 90 minutes,
although the length varies depending on the scope of
the project and the availability of participants.
Common themes and patterns that emerge from
the data derived from these interviews can guide
researchers in the assessment of existing programs

and services and in the exploration of various social
issues. Transferable findings generally occur at the
point of saturation of themes in the data, which typi-
cally arise with a minimum of 15 to 18 participants.
Increasing the number of interviewees is one way to
enhance rigor in data collection and to speak more
authoritatively about the findings under study.
However, it is also worth noting here that anomalies in
the data (such as the experiences of a single individual
who provides details about an experience that is
unlike that of other interviewees) can also be
extremely valuable to qualitative researchers. These
singular experiences can highlight individuals’ partic-
ular needs, especially in settings where policies and
practices have been designed for majority popula-
tions, and often point to areas that require additional
research. In-depth interviews can also be combined
with other methods (e.g., structured computer tasks
used to assess Web site usability, quantitative ques-
tionnaires designed to elicit factual data) to provide a
more complete picture of the phenomena under study.

FFooccuuss  GGrroouuppss

Focus groups also fall into the interview category
and may be either highly structured (i.e., quantitative)
in nature, or designed to be more of a personal dia-
logue between participants (i.e., qualitative). In either
case, the defining feature of these interviews is that
they occur with groups of individuals (typically five to
eight people, with one or more groups in total) whose
comments are focused on a particular issue of interest
to the researcher. Participants are typically fairly
homogeneous group members (e.g., new immigrants
living in a particular city, undergraduate students
using campus recreational facilities) who are asked to
reflect on a series of questions or to react to new prod-
ucts or policies. These interviews can be more chal-
lenging to conduct than individual interviews because
of the need to manage group dynamics (e.g., ensuring
that all group members are able to speak their minds
without feeling silenced by other group members).
These interviews are best run by a trained facilitator,
often require a more formal setting (such as a board-
room), and may take more time to coordinate than
other survey methods.
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PPeerrssoonnaall  JJoouurrnnaallss  aanndd  DDiiaarriieess

Asking individuals to document their daily activi-
ties (such as when or how often they have used an
organization’s Web site) can be an effective way to
document human behavior. One benefit of this
approach is that data are collected as they happen, so
that researchers need not rely on the accuracy of indi-
viduals’ memories of events (as in interviews, ques-
tionnaires, or other methods where individuals are
asked to discuss their behaviors). For example, this
method can be used by physicians to track patients’
meals and other activities related to personal health, or
by education researchers to track students’ study
habits. Personal journals and diaries allow individuals
to document quantitative elements of their activities
(such as how often they go to the grocery store and
how much money they spend per trip), as well as their
thoughts, feelings, and experiences of shopping in
particular stores or for particular items. Participants
typically need some instruction in the researcher’s
expectations (e.g., how much detail to provide, how
often to write an entry, what topics to include), but can
often provide much more detail than is possible to
gather using an interview or other research method.
Individuals may keep diaries for a period of a week or
more, and may write on a variety of topics, which can
then be examined further with other, follow-up meth-
ods (e.g., personal interviews).

Whether used on their own or in conjunction
with one another, all of these methods are useful tools
for gathering data on various elements of human
behavior. Descriptive research provides valuable
insight into the social scenes that surround and
inform our lives. The knowledge that we gain about
social settings, people, specific experiences and
activities, and other elements of social behavior are
useful to practitioners (such as hospital and school
administrators, or government officials), but also
inform other research approaches. Descriptive
research can act, for example, as a first step in a more
detailed and complex study of social behavior, pro-
viding valuable background details about individuals
or information on variables that require more
advanced study. However, descriptive studies also
stand in their own right as a means to examine,

document, and reflect on the world and illuminate the
social phenomena that inform individuals’ personal
and work-related lives.

—Lisa M. Given

See also Inferential Statistics
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Sarafino, E. P. (2005). Research methods: Using processes and
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DEVIATION SCORE

The deviation score is the difference between a score
in a distribution and the mean score of that distribu-
tion. The formula for calculating the deviation score is
as follows:

X – X
—

where

X
—

(called “X bar”) is the mean value of the group of
scores, or the mean; and

the X is each individual score in the group of scores.

Deviation scores are computed most often for the
entire distribution. For example, for the following data
set (see Table 1), there are columns representing
scores on the variables X and Y for 10 observations.
The deviation scores for X and Y have also been cal-
culated. Notice that the means of the deviation score
distributions are zero.

Thus, the deviation scores are simply a linear
transformation of a variable. This can be demon-
strated by calculating the Pearson correlations
between X and Y and then between the deviation-X
and deviation-Y scores. In both instances, the correla-
tions are 0.866.
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The next question one might want to ask is, Why
would one want to calculate such scores? The most
frequent use of deviation scores is in conducting
simultaneous solution regression analyses when
there is an interest in the effects of interaction
terms.

For example, assume one wants to predict a crite-
rion (Z) with two main effects, X and Y, as well as their
interaction. The interaction term is generated by mul-
tiplying X and Y, but this interaction term exhibits
multicollinearity with each of the main effects, X and
Y. However, if the interaction term is created from the
deviation scores of X and Y, the multicollinearity no
longer is a problem.

To demonstrate this, the data set shown earlier is
used (see Table 2). The interaction terms have been
generated for each score. The correlations between the
nondeviation interaction, (X)(Y), and the main effects
are .955 with X and .945 with Y. The correlations
between the deviation interaction (X – 4.8)(Y – 4.2)
and the main effects are .479 with X and .428 with Y.
This feature of deviation scores is of immense utility
when conducting simultaneous linear regression-
based analyses (such as multiple regression, discrimi-
nant function analysis, logistic regression, and
structural equation modeling).

—Theresa Kline

See also Standard Deviation; Standard Scores; Variance

Further Reading

Aiken, L. S., & West, S. G. (1991). Multiple regression:
Testing and interpreting interactions. Newbury Park, CA:
Sage.

Kline, T. J. B., & Dunn, B. (2000). Analysis of interaction
terms in structural equation models: A non-technical
demonstration using the deviation score approach.
Canadian Journal of Behavioural Science, 32, 127–132.

DIAGNOSTIC VALIDITY

Diagnostic validity applies to any test, measurement,
or decision-making strategy that categorizes people.

Also referred to as categorical valid-
ity or, more pragmatically, as the 2 × 2
table, diagnostic validity examines
the relationship between how a test
categorizes a subject and in which
category the subject actually is.
Relevant categories might include,
among others, HIV-positive individ-
uals, top employment prospects, vio-
lent recidivists, child molesters, fit
parents, suitable graduate students,
or incompetent defendants. Validity
information answers questions
regarding the probability that a clas-
sification is correct, the utility of the
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Table 1 Raw and Deviation Scores on Two Variables,
X and Y

Observation X Y X − 4.8 Y − 4.2

1 2 1 −2.8 −3.2
2 3 4 −1.8 −0.2
3 4 3 −0.8 −1.2
4 7 5 2.2 0.8
5 8 6 3.2 1.8
6 9 8 4.2 3.8
7 2 3 −2.8 −1.2
8 3 3 −1.8 −1.2
9 4 2 −0.8 −2.2

10 6 7 1.2 2.8
X
—

= 4.8 X
—

= 4.2 X
—

= 0.0 X
—

= 0.0

Table 2 Raw Scores and Interaction Terms for Nondeviation and
Deviation Scores

Observation X Y (X)(Y) X − 4.8 Y − 4.2 (X − 4.8)(Y− 4.2)

1 2 1 2 −2.8 −3.2 8.96
2 3 4 12 −1.8 −0.2 0.36
3 4 3 12 −0.8 −1.2 0.96
4 7 5 35 2.2 0.8 1.76
5 8 6 48 3.2 1.8 5.76
6 9 8 72 4.2 3.8 15.96
7 2 3 6 −2.8 −1.2 3.36
8 3 3 9 −1.8 −1.2 2.16
9 4 2 8 −0.8 −2.2 1.76

10 6 7 42 1.2 2.8 3.36



test or strategy for different purposes, and how to
interpret the classification. This information also
solves Bayes’ theorem: We often know the percentage
of paranoids, say, who score positively on a test of
paranoia (by administering the test to a large group
of paranoids); Bayes’ theorem computes the reason-
ableness of inferring paranoia from a positive test
score. The answer requires knowledge about the
incidence of paranoia and about how nonparanoids do
on the test.

In this entry, test is used specially to mean any
score, sign, symptom, or series of these used to cate-
gorize people. The Diagnostic and Statistical Manual
of Mental Disorders, 4th edition (DSM-IV) is a man-
ual of tests. Each diagnosis is accompanied by a test
to determine if a particular subject has the diagnosis in
question. For example, the test for paranoid personal-
ity is (a) the presence of a personality disorder, plus
(b) the presence of at least four of seven behaviors,
plus (c) the exclusion of some other diagnoses. The
fact that this is a test for paranoid personality is
disguised by the failure of the publishers to include
the 2 × 2 table that would answer questions about
diagnostic validity. The test is made to look like the
definition of the disorder instead of a method of
detecting who has the disorder and who does not.
Before the test was codified, there must have been
some other way to determine who had paranoid per-
sonality disorder and who did not, and that method
was extremely unlikely to be a perfect fit with the cur-
rent criteria, even if that other way was only in the
imagination of the test writers.

As an example, let’s assume that the DSM-IV test
for paranoid personality was a very good test. (We can
only assume because the actual data have not been
published.) Assume that some expert clinicians care-
fully identified 100 people as having this disorder.
Further assume that the test published in DSM-IV gave
a positive result for all 100 individuals, and that of 100
randomly selected psychiatric admissions without
paranoid personality disorder, only 5 tested positive
with the DSM-IV criteria. That would certainly be
impressive, 100 out of 100 correctly identified with
the disorder, and 95 out of 100 correctly identified
without the disorder.

Now for some terminology. In this case, the expert
clinicians’ original diagnoses constitute the gold stan-
dard, which is the method by which subjects were
placed in their actual categories. The gold standard is
crucial for interpreting test results, because even the
best test predicts only the categories assigned by the
gold standard. Thus, for example, a test of violent
recidivism usually has a gold standard of rearrest as
the indicator of recidivism, so the test can never be
better at identifying recidivists than rearrest is, and it
is obvious that there are some people who recidivate
but are not caught. Furthermore, there are some peo-
ple who are arrested, but incorrectly, and not because
they recidivated. Understanding the gold standard is
crucial to understanding what a test that categorizes
people is able to achieve.

Sensitivity is the accuracy of the test among people
who have the condition (who are actually in the cate-
gory). In our paranoid personality example, the sensi-
tivity is 100/100, or 1.00. Specificity is the accuracy of
the test among people who do not have the condition
(who are not actually in the category). In this case, the
specificity is 95/100. True positives (TP) are those sub-
jects who are in the category and who are identified as
such by the test. True negatives (TN) are correctly
identified by the test as not being in the category. False
positives (FP) are not actually in the category but the
test says they are; false negatives (FN) are actually in
the category, but the test says they are not. Sensitivity
= TP/(TP + FN). Specificity = TN/(TN + FP).

The cutoff score is the decision point at which test
results are considered positive or negative for being in
the category. In the DSM-IV, the cutoff score for para-
noid personality is a combination of meeting the first
and third criteria, plus four of the behaviors listed in
the second criterion. On a typing test to determine
good employees, the cutoff score might be 60 words
per minute; for graduate students administered the
Graduate Record Exam, it might be 1200. Each cutoff
score produces a different 2 × 2 table for the analysis
of diagnostic validity. A statistic called the area under
the curve (AUC) of the receiving operator characteris-
tic curve (ROC) can be computed that evaluates 
the test as a whole, independent of the cutoff score.
The AUC expresses the probability that a person in the
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category will score higher on the test than a person not
in the category. For categorization, though, a cutoff
score must be selected and analyzed in the 2 × 2 table
(see Table 1).

Positive predictive value (PPV) is the accuracy of
the test among people who test positive. It tells us how
seriously to take a positive result. PPV = TP/(TP +
FP). Negative predictive value (NPV) is the accuracy
of the test among people who test negative. It tells 
us how seriously to take a negative result. NPV =
TN/(TN + FN).

The hit rate of a test is the overall percentage of
accurate classifications, or (TP + TN)/(TP + FP + FN
+ TN). The value of a test is, generally, in the
improvement it produces over and above the hit rate
that would be obtained from assigning everyone to the
more populous category. An exception would be a test
used for screening rather than for categorization. If a
cheap, harmless medication were available for a seri-
ous disease, a desirable test would have perfect sensi-
tivity, so that everyone with the disease got the
treatment. But if the specificity were mediocre, that
would be fine, because there would be little downside
to overadministering the medication.

Before judging a test’s validity, we need to know or
estimate the base rate of the condition or category. The
base rate is the incidence of the category among
relevant subjects. If the DSM-IV test for paranoid
personality were being used in employment screening,
then the relevant base rate would be the incidence of

this disorder in the general population. If used
to diagnose psychiatric patients, then the base rate
would be the incidence among hospital admissions. 
For the sake of this discussion, assume that the
incidence of paranoid personality is 0.5% in the general
population, and 2% in psychiatric admissions. Because
the specificity data (95/100) were obtained from 100
randomly selected psychiatric admissions, we have the
data needed to analyze this as a test only in that context.
Therefore, in filling in the 2 × 2 table, we need to adjust
the column of persons without the condition so that
they are represented according to their base rate (98%),
while maintaining the test’s specificity of 95%.

Notice that the numbers in Table 2 preserve the
sensitivity of the test (100% of persons with the disor-
der are correctly classified); its specificity (95% of
persons without the disorder are correctly classified);
and the base rate (the table reflects a population in
which 2% of persons, or 100 out of 5,000, have the
disorder). The PPV is 100/345, meaning that there is
only a 29% chance (given our assumptions) that a per-
son diagnosed with paranoid personality disorder
using the DSM-IV actually has the disorder. Such is
the fate of trying to classify people into categories
with low base rates. Because the base rate is, under
our assumptions, only 2%, we could correctly classify
4,900 out of 5,000 admissions by simply claiming that
none of them has the disorder. Even this excellent test,
with its 100% sensitivity and 95% specificity,
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Table 1 The Basic 2 × 2 Table

G
O S
L T
D D

Actually Actually not
in the category in the category

Test says in the
category TP FP

CUTOFF SCORE

Test says not in
the category FN TN

Table 2 Hypothetical Example: A Test of Paranoid
Personality Disorder

G
O S
L T
D D

Actually Actually not
in the category in the category

Test says in the
category TP = 100 FP = 245

CUTOFF SCORE

Test says not in
the category FN = 0 TN = 4,655



correctly classifies only 4,755 out of 5,000 admis-
sions. In terms of Bayes’ theorem, we have calculated
the probability of A given B (the probability of having
the disorder given a positive test score) from the prob-
ability of B given A (the probability of a positive test
score given the disorder).

To demonstrate the breadth of the applicability of
the 2 × 2 table, consider the case of racial profiling.
Racial profiling is the statistical justification of police
suspicion derived from an increased likelihood of
criminal activity based on a suspect’s race. In this
hypothetical example, imagine a wealthy community
whose police routinely stop black motorists. The
police justify this conduct by noting that in this all-
white community, 50% of all non-domestic violent
crimes are committed by black people, while only
0.1% of cars observed in the town have black drivers.
The category is motorist intent on violent crime, and
the test is whether or not the motorist is perceived as
black by the police. The probability of B (testing pos-
itive for looking black) given A (being a violent crim-
inal) is 50%. What is required to justify stopping black
motorists, though, is the probability that a black driver
is a violent criminal, not the probability that a violent
criminal is black. In other words, how good a test of
criminality is being black under these circumstances?

To fill in the 2 × 2 table, we need to know or estimate
the base rate of non-domestic violence perpetration

among car drivers. Suppose this community’s streets
convey 30,000 motorists a day, and there is one
violent crime a week. In the course of the year,
the community sees 52 crimes and 10,950,000 car
trips. (See Table 3.)

Even though half of all non-domestic violent
crimes are committed by black people and black peo-
ple account for only 0.1% of car trips, the probability
of a black driver being a violent criminal in this sce-
nario is only 26/10950. Two chances in a thousand
does not justify a police stop. The low base rate of vio-
lent crime in this community makes the test of race a
useless one, regardless of its consequences for social
justice.

Special Problems With
the Gold Standard

Data regarding test validity depend on the original
sample that was separated into groups by the gold
standard. Any sample may have idiosyncratic or unex-
pected features. For example, the DSM-IV test for
paranoid personality includes an item about bearing
grudges for insults, but it is conceivable that such
grudges are a feature of paranoia only in some subcul-
tures. For this reason, every test that categorizes peo-
ple should be cross-validated on a separate sample.
Cross-validation does not guarantee elimination of
idiosyncrasies in the sample (or in the employment of
the gold standard), because two samples may have the
same idiosyncrasy, but lack of cross-validation makes
the presence of an idiosyncrasy too likely for an
uncrossed test to be trusted.

Care must be taken not to conflate the gold stan-
dard with test items, so as to avoid the creation of a
pseudo-test. In the example above that deals with
racial profiling, it is unclear what the gold standard
was for determining which crimes were violent and
which were not. Conceivably, the perceived race of
the defendant might have influenced this determina-
tion. Then, to include race of the defendant as a test
item for predicting violence conflates the test and the
gold standard, and is bound to make the test look bet-
ter than it is. This is a form of the logical error,
begging the question, or assuming the conclusion.
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Table 3 Hypothetical Example: A Racial Test of
Violence Risk

G
O S
L T
D D

Actually Actually not
in the category in the category
(violent intent) (no violent intent)

Test (black) says 
in the category TP = 26 FP = 10,924

CUTOFF SCORE

Test (not black) says 
not in the category FN = 26 TN = 10,939,024



Certain gold standards are so subjective that tests
validated against them cannot be separated from the
people on whose subjectivity they depend. In certain
contexts, this is not a problem, because the desired
use of the test is to please the original judges. For
example, employers may choose which are the good
current employees and which are the undesirable ones,
as long as it is understood that the resulting test is
designed to select employees with whom the
employer will be pleased, and not employees who
meet some other criterion. Tests of good parenting,
competency to stand trial (CST), and mental retarda-
tion (MR), on the contrary, cannot escape the arbitrari-
ness of the gold standard used to categorize the
original sample. Good parenting is obviously subjec-
tive. CST is a category that does not occur in nature,
but only in the minds of judges. For a test to be useful,
the test must be cheaper or more convenient than the
gold standard it tries to approximate. Any test of CST
is an attempt to improve on a classification that is sim-
ple and, by definition, nearly perfect (judges’ classifi-
cations of CST are rarely overturned by appellate
courts). MR also does not occur in nature, but instead
represents the arbitrary and politically determined per-
centage of people whom the society thinks is too lim-
ited to be held accountable for self-care. There are too
few real differences between subjects who score 69 on
an IQ test (MR) and those who score 75 (not MR) to
employ an objective gold standard for the validation
of, say, a test of adaptive functioning that purports to
distinguish people with and without MR.

—Michael Karson

See also Validity Theory

Further Reading

Mart, E. G. (1999). Problems with the diagnosis of factitious
disorder by proxy in forensic settings. American Journal of
Forensic Psychology, 17(1), 69–82.

Wood, J. M. (1996). Weighing evidence in sexual abuse
evaluations: An introduction to Bayes’ theorem. Child
Maltreatment, 1(1), 25–36.

Area under the curve and receiving operator characteristic
curve description: http://www.anaesthetist.com/mnm/
stats/roc/

Applying Ideas on Statistics and Measurement

The following abstract is adapted from Miller,
J. D., Bagby, R. M., Pilkonis, P. A., Reynolds, S. K.,
& Lynam, D. R. (2005). A simplified technique for
scoring DSM-IV personality disorders with the
five-factor model. Assessment, 12(4), 404–415.

There are many different types of validity, with
diagnostic validity being the one that examines
how “true” or valid a set of diagnostic criteria is
for a certain condition. The current study com-
pares the use of two alternative methodologies
for using the Five-Factor Model (FFM) to assess
personality disorders (PDs). Across two clinical
samples, a technique using the simple sum of
selected FFM facets is compared with a previ-
ously used prototype matching technique. The
results demonstrate that the more easily calcu-
lated counts perform as well as the similarity
scores that are generated by the prototype match-
ing technique. Optimal diagnostic thresholds for
the FFM PD counts are computed for identifying
patients who meet diagnostic criteria (used to
help establish diagnostic validity) for a specific
PD. These threshold scores demonstrate good
sensitivity in receiver operating characteristics
analyses, suggesting their usefulness for screen-
ing purposes. Given the ease of this scoring pro-
cedure, the FFM count technique has obvious
clinical utility.

DIFFERENCE SCORE

The difference score indicates the amount of change
between two testings. It is computed by subtracting the
score on the first testing from the score on the second

d = Y – X,

where 

d is the difference score (sometimes called change score
or gain score),

X is the first test score (sometimes called the baseline or
pretest score), and 

Y is the second test score (sometimes called the posttest
score).
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In SPSS, difference scores are created by com-
puting a new variable. This is done using the Compute
function found under the Transform window. The
syntax for computing a new variable called “change”
to indicate the change from anxiety1 to anxiety2
would be as follows:

COMPUTE change = anxiety2 - anxiety1.
EXECUTE .

See the example in Table 1.

In Table 1, four of the five participants showed a
decrease in anxiety as indicated by the negative differ-
ence scores.

Difference scores can be treated like any other vari-
able. The mean of difference scores equals the differ-
ence between the means from the two testings. In the
above example, the mean of anxiety1 is 36.0, the
mean of anxiety2 is 32.4, and the mean of the differ-
ence scores is –3.6. This shows that the average
change from the first to the second testing was a
decrease in anxiety of 3.6.

Advantages

Difference scores generally have much less variation
than the scores from which they were created. This is
because the subtraction operation removes any varia-
tion due to individual characteristics that is constant
between the two testings. Thus, analyses using differ-
ence scores offer more statistical power than analyses
conducted on posttest scores.

Difference scores allow a simpler design to be
used. A one-way ANOVA comparing the means of
difference scores yields a main effect that is identical

in both value and meaning to the interaction term in a
two-way ANOVA that used the pretest and posttest
scores as a second, repeated measures variable. Post
hoc comparisons of the mean changes are easier to
conduct and interpret in the one-way design.

Disadvantages

Difference scores contain measurement error from
both the pretest and posttest scores, and are also neg-
atively correlated with baseline because of measure-
ment error. However, neither of these factors prohibits
their use as valid measures of change.

On the other hand, when data are skewed—for
example, by a floor or ceiling effect—difference scores
may not reflect the true amount of change.

Appropriateness for
Comparing Changes in Means

In a randomized experiment, where the goal is to com-
pare the mean changes of groups that receive different
treatments, analysis of covariance (ANCOVA), with
pretest as the covariate and posttest as the dependent
variable, should be used instead of difference scores.
ANCOVA provides a better adjustment for minor dif-
ferences in the pretest means because these differ-
ences are entirely due to chance and will regress on
the second testing.

However, with naturally occurring groups, where
the goal is to compare the changes of different groups
to the same treatment, difference scores should be
used instead of ANCOVA because the pretest differ-
ences between groups are not entirely due to chance
and will not regress. ANCOVA would yield incorrect
and directionally biased conclusions; for example,
when scores are increasing from pretest to posttest,
greater increases would generally appear for the group
with the higher baseline.

Appropriateness for Examining
Predictors of Change

Difference scores should be used instead of residual
scores to study predictors (correlates) of change,
because correlations between predictors and residual
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Table 1 Example of Difference Scores

ANXIETY1 ANXIETY2 CHANGE

23 20 −3.00
45 40 −5.00
26 23 −3.00
34 35 1.00
52 44 −8.00



scores are confounded by correlations between
predictors and baseline. This is analogous to avoiding
ANCOVA with naturally occurring groups. There is
also an analogous directional bias; for example, resid-
ual scores are biased toward finding positive correla-
tions with change for predictors that have positive
correlations with baseline.

—John Jamieson

See also Dependent Variable

Further Reading

Salkind, N. J. (2007). Statistics for people who (think they) hate
statistics: The Excel edition. Thousand Oaks, CA: Sage.

Applying Ideas on Statistics and Measurement

The following abstract is adapted from Edwards,
J. R. (2001). Ten difference score myths. Organiza-
tional Research Methods, 4(3), 265–287.

Difference scores are used in all kinds of stud-
ies, and even though their use is widespread, they
suffer from numerous methodological problems.
Jeffrey Edwards discusses how these problems can
be avoided with polynomial regression analysis, a
method that has become increasingly prevalent
during the past decade. However, a number of
potentially damaging myths have begun to spread
regarding the drawbacks of difference scores and
the advantages of polynomial regression, and if
unchecked, difference scores and the problems
they create are likely to persist. This article
reviews 10 myths about difference scores and
attempts to dispel these myths.

DIFFERENTIAL APTITUDE TEST

The Differential Aptitude Test (DAT), first published
in 1947 by The Psychological Corporation, is a battery
of tests whose goal is to assess multiple separate apti-
tudes of students and adults. The latest (fifth) version
of the DAT, published in 1990, assesses verbal and
numerical reasoning, mechanical reasoning, percep-
tual ability, spatial relations, abstract reasoning,

spelling, and language usage. Separate scoring norms
are available for individual tests in the battery. The
DAT is available in two levels: Level 1 of the DAT was
designed for students in Grades 7 to 9 and adults who
have completed these grades, and Level 2 was
designed for students in Grades 10 to 12 and adults
who have completed more than 9 years of schooling,
but have not graduated from high school. The tests
were designed primarily for educational and career
counseling of students in Grades 7 to 12, but can also
be used to assess abilities of less educated adults. The
test also includes a Career Interest Inventory that can
be used in conjunction with the aptitude tests, and
a shortened version called the Differential Aptitude
Tests for Personnel and Career Assessment (DAT for
PCA) is packaged as a selection tool. The total time to
administer the complete version of the DAT is slightly
under 4 hours. The readability of the tests was assessed
by The Psychological Corporation, and all vocabulary
used in directions and content is at the fifth-grade read-
ing level. The Psychological Corporation conducted a
careful study of the tryout form of the test to make sure
there was no racial test bias in items or scoring.
Scoring of the test can be done by hand or computer,
and there is a computerized version of the test.

The following separate tests are included:

Career Interest Inventory (30 minutes): Students indi-
cate their level of interest in performing activities related
to work and school.

Verbal Reasoning (40 items, 25 minutes): Items include
analogies.

Numerical Reasoning (40 items, 30 minutes): Items
include addition, subtraction, numeric sequences, frac-
tions, multiplication, division, computing percentages,
and basic algebra.

Abstract Reasoning (40 items, 20 minutes): Items assess
logic, pattern or rule recognition, attention to detail, and
abstract reasoning skills.

Perceptual Speed and Accuracy (2 parts, 100 items each
part, 3 minutes each part): Test takers are asked to
choose the letter/number combinations that are the same
as the underlined combinations.
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Mechanical Reasoning (60 items, 25 minutes): Test
takers are presented with a picture of some mechanical
principle and presented with a question.

Space Relations (50 items, 25 minutes): Items assess
perceptual abilities, attention to detail, pattern recogni-
tion, and spatial relationships.

Spelling (40 items, 10 minutes): Test takers must deter-
mine which word is spelled incorrectly.

Language Usage (40 items, 15 minutes): Items include
sentences with errors of grammar, capitalization, or
punctuation that test takers are asked to identify.

—Jennifer Bragger

See also Aptitude Tests

Further Reading
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DIGGLE-KENWARD

MODEL FOR DROPOUT

In medical research, studies are often designed in
which specific parameters are measured repeatedly
over time in the participating subjects. This allows for
modeling the process of change within each subject
separately, based on both subject-specific factors (such
as gender) and experiment-specific factors (such as
treatment). The analysis of such longitudinal data
requires statistical models that take into account the
association between the measurements within sub-
jects. During the past decade, a lot of effort has been
put into the search for flexible longitudinal models.

In practice, longitudinal studies often suffer from
attrition (i.e., subjects dropping out earlier than sched-
uled) for reasons outside the control of the inves-
tigator. The resulting data are then unbalanced with
unequal numbers of measures for each participant.
Nowadays, several statistical packages can handle
unbalanced longitudinal data. However, they yield
valid inferences only under specific assumptions for
the dropout process.

Generally, valid inferences can be obtained only
by modeling the response measurements and the
dropout process simultaneously. Making various
assumptions about the dropout mechanism, a large
variety of models for continuous as well as categori-
cal outcomes have been proposed in the statistical
literature. With the volume of literature on models
for incomplete data increasing, there has been grow-
ing concern about the critical dependence of many
of these models on the validity of the underlying
assumptions. To compound the issue, the data often
have very little to say about the correctness of such
assumptions.

When referring to the missing-value, or nonre-
sponse, process we will use the terminology of Little
and Rubin. A nonresponse process is said to be
missing completely at random (MCAR) if the miss-
ingness is independent of both unobserved and
observed data, and missing at random (MAR) if,
conditional on the observed data, the missingness
is independent of the unobserved measurements. A
process that is neither MCAR nor MAR is termed
nonrandom (MNAR). In the context of likelihood
inference, and when the parameters describing the
measurement process are functionally independent
of the parameters describing the missingness pro-
cess, MCAR and MAR are ignorable, whereas a
nonrandom process is nonignorable. Ignorability
implies that valid inferences about the measurement
model parameters can be obtained by analyzing the
observed data alone, obviating the need for formula-
tion of a dropout model.

We will present one modeling framework that has
been developed for incomplete longitudinal data of a
continuous nature, proposed by Diggle and Kenward.
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The model has been subject to criticism because it is
rather vulnerable to the modeling assumptions made.
These concerns will be discussed and a number of
ways for dealing with it explored, with a prominent
place given to sensitivity analysis.

The Diggle-Kenward
Model for Dropout

We assume that for subject i in the study, i = 1, . . . ,
N, a sequence of measurements Yij is designed to be
measured at time points tij , j = 1, . . . , ni, resulting in
a vector Yi = (Yi1, . . . , Yini

)’ of measurements for each
participant. If dropout occurs, Yi is only partially
observed. We denote the occasion at which dropout
occurs by Di > 1, and Yi is split into the (Di – 1)-
dimensional observed component Yi

obs and the (ni – Di

+ 1)-dimensional missing component Yi
mis. In case of

no dropout, we let Di = ni + 1, and Yi equals Yi
obs. The

likelihood contribution of the ith subject, based on the
observed data (yi

obs, di), is proportional to the marginal
density function

(1)

in which a marginal model for Yi is combined with a
model for the dropout process, conditional on the
response, and where θ and ψ are vectors of unknown
parameters in the measurement model and dropout
model, respectively.

Let hij = (yi1, . . ., yi; j–1) denote the observed history
of subject i up to time ti, j–1. The Diggle-Kenward
model for the dropout process allows the conditional
probability for dropout at occasion j, given that the
subject was still observed at the previous occasion, to
depend on the history hij and the possibly unobserved
current outcome yij, but not on future outcomes yik,
k > j. These conditional probabilities P(Di = j | Di = j,
hij, yij, ψ) can now be used to calculate the probability
of dropout at each occasion:

Diggle and Kenward combine a multivariate nor-
mal model for the measurement process with a logis-
tic regression model for the dropout process. More
specifically, the measurement model assumes that the
vector Yi of repeated measurements for the ith subject
satisfies the linear regression model Yi ~ N (Xi β, Vi),
(i = 1, . . ., N). The matrix Vi can be left unstructured
or is assumed to be of a specific form (e.g., resulting
from a linear mixed model, a factor-analytic structure,
or spatial covariance structure). The logistic dropout
model is typically of the form

logit [P(Di = j | Di ≥ j, hij,yij, ψ)]
= ψ0 + ψ1yij + ψ2yi,j–1.

(2)

More general models can be constructed easily by
including the complete history hij = (yi1, . . . , yi ; j–1), as
well as external covariates, in the above conditional
dropout model. Note also that, strictly speaking, one
could allow dropout at a specific occasion to be
related to all future responses as well. However, this is
rather counterintuitive in many cases. Moreover,
including future outcomes seriously complicates the
calculations because computation of the likelihood
(Equation 1) then requires evaluation of a possibly
high-dimensional integral. Note also that special cases
of a model (Equation 2) are obtained from setting ψ1 =
0 or ψ1 = ψ2 = 0, respectively. In the first case, dropout
is no longer allowed to depend on the current mea-
surement, implying random dropout (MAR). In the
second case, dropout is independent of the outcome,
which corresponds to completely random dropout
(MCAR).

Diggle and Kenward obtained parameter and preci-
sion estimates by means of maximum likelihood.
The likelihood involves marginalization over the
unobserved outcomes Yi

mis. Practically, this involves

P (Di = j |yi, ψ) = P(Di = j |hij, yij, ψ)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

P(Di = j |Di ≥ j, hij, yij, ψ) j = 2,

P (Di = j |Di ≥ j, hij, yij, ψ)

×
j−1∏

k=2
[1 − P(Di = k|Di ≥ k, hik, yik, ψ)] j = 3, . . . , ni,

ni∏

k=2
[1 − P(Di = k|Di ≥ k, hik, yik, ψ)] j = ni + 1.

f (yi
obs, di|θ, ψ) =

∫

f (yi, di|θ, ψ)dyi
mis

=
∫

f (yi|θ)f (di|yi, ψ)dyi
mis
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relatively tedious and computationally demanding
forms of numerical integration. This, combined with
likelihood surfaces tending to be rather flat, makes the
model difficult to use. These issues are related to the
problems to be discussed next.

Remarks on Sensitivity
Analysis and Other Models

Apart from the technical difficulties encountered dur-
ing parameter estimation, there are further important
issues surrounding MNAR based models. Even when
the measurement model (e.g., the multivariate normal
model) would be the choice of preference beyond any
doubt to describe the measurement process should the
data be complete, then the analysis of the actually
observed, incomplete version is, in addition, subject to
further untestable modeling assumptions.

When missingness is MAR, the problems are less
complex because it has been shown that, in a likeli-
hood or Bayesian framework, it is sufficient to analyze
the observed data without explicitly modeling the
dropout process. However, the very assumption of
MAR is itself untestable. Therefore, ignoring MNAR
models is as little an option as blindly shifting to
one particular MNAR model. A sensible compromise
between, on one hand, considering a single MNAR
model or, on the other hand, excluding such models
from consideration is to study the nature of such sen-
sitivities and, building on this knowledge, formulate
ways for conducting sensitivity analyses. Indeed, a
strong conclusion, arising from most sensitivity analy-
sis work, is that MNAR models have to be approached
cautiously. This was made clear by several discussants
to the original paper by Diggle and Kenward, particu-
larly Laird, Little, and Rubin, respectively. An impli-
cation is that, for example, formal tests for the null
hypothesis of MAR versus the alternative of MNAR
should be approached with the utmost caution.

Verbeke, Lesaffre, and Spiessens have shown, in
the context of an onychomycosis study, that excluding
a small amount of measurement error drastically
changes the likelihood ratio test statistics for the MAR
null hypothesis. Kenward revisited the analysis of the

mastitis data performed by Diggle and Kenward. In
this study, the milk yields of 107 cows were to be
recorded during two consecutive years. Whereas data
were complete in the first year, 27 animals were miss-
ing in the second year because they developed masti-
tis and their milk yield was no longer of use. In Diggle
and Kenward’s paper, there was strong evidence for
MNAR, but Kenward showed that removing 2 out of
107 anomalous profiles completely removed this evi-
dence. In addition, he showed that changing the condi-
tional distribution of the Year 2 yield, given the Year 1
yield, from a normal distribution to a heavy-tailed t
also led to the same result of no residual evidence for
MNAR. This particular conditional distribution is of
great importance, because a subject with missing data
does not contribute to it and hence is a source of sen-
sitivity issues. Once more, the conclusion is that fitting
a MNAR model should be subject to careful scrutiny.

In addition to the instances described above, sensi-
tivity to model assumptions has been reported for
about two decades. In an attempt to formulate an
answer to these concerns, a number of authors have
proposed strategies to study sensitivity. We broadly
distinguish between two types. A first family of
approaches can be termed substantive driven in the
sense that the approaches start from particularities of
the problem at hand. Kenward’s approach falls within
this category.Arguably, such approaches are extremely
useful, both in their own right and as a preamble to
using the second family, where what could be termed
general purpose tools are used.

Broadly, we could define a sensitivity analysis as
one in which several statistical models are considered
simultaneously and/or where a statistical model is fur-
ther scrutinized using specialized tools (such as diag-
nostic measures). This rather loose and very general
definition encompasses a wide variety of useful
approaches. The simplest procedure is to fit a selected
number of (MNAR) models that are all deemed plau-
sible or one in which a preferred (primary) analysis is
supplemented with a number of variations. The extent
to which conclusions (inferences) are stable across
such ranges provides an indication about the belief
that can be put into them. Variations to a basic model
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can be constructed in different ways. The most
obvious strategy is to consider various dependencies
of the missing data process on the outcomes and/or on
covariates. Alternatively, the distributional assump-
tions of the models can be changed.

Several authors have proposed the use of global
and local influence tools. Molenberghs, Verbeke,
Thijs, Lesaffre, and Kenward revisited the mastitis
example. They were able to identify the same two
cows found by Kenward, in addition to another one.
Thus, an important question is, What exactly are the
sources causing an MNAR model to provide evidence
for MNAR against MAR? There is evidence to believe
that a multitude of outlying aspects, but not necessar-
ily the (outlying) nature of the missingness mecha-
nism in one or a few subjects, is responsible for an
apparent MNAR mechanism. The consequence of this
is that local influence should be applied and inter-
preted with due caution.

Of course, the above discussion is not limited to
the Diggle-Kenward model. A variety of other mod-
els have been proposed for incomplete longitudinal
data. First, the model has been formulated within the
selection model framework, in which the joint dis-
tribution of the outcome and dropout processes
is factorized as the marginal distribution of the out-
comes f(yi | θ ) and the conditional distribution of the
dropout process, given the outcomes f(di | yi,ψ). Within
this framework, models have been proposed for non-
monotone missingness as well, and furthermore,
a number of proposals have been made for non-
Gaussian outcomes. Apart from the selection model
framework, so-called pattern-mixture models have
gained popularity, where the reverse factorization
is applied with factors f(yi | di,θ ) and f(di | ψ). Also
within this framework, both models and sensitivity
analysis tools for them have been formulated. A third
framework consists of so-called shared parameter
models, where random effects are employed to
describe the relationship between the measurement
and dropout processes.

—Geert Verbeke and Geert Molenberghs

See also Longitudinal/Repeated Measures Data; Missing Data
Method; Mixed Models; Repeated Measures Analysis of
Variance
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DIMENSION REDUCTION

Dimension reduction is a collection of statistical
methodologies that reduces the dimension of the data
while still preserving relevant information. High-
dimensional data are very common in government
agencies, academia, and industrials. However, the
high dimension and large volume of data bring up at
least two issues, among many others. One is to over-
come the curse of dimensionality, which states that
high-dimensional spaces are inherently sparse even
with large number of observations. The other is how
to present the information within data parsimoniously.
Dimension reduction techniques address these issues
to varying extents by reducing the set of variables to a
smaller set of either the original variables or new vari-
ables, where the new variables are linear combina-
tions or even nonlinear functions of the original ones.
When the new dimension is relatively small, data
visualization becomes possible, which often assists
data modeling substantially.
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Dimension Reduction
Methodologies

Based on whether a response is specified or not,
dimension reduction techniques generally can be
divided into two major categories: supervised dimen-
sion reduction and unsupervised dimension reduction.

UUnnssuuppeerrvviisseedd  DDiimmeennssiioonn  RReedduuccttiioonn

Unsupervised dimension reduction treats all vari-
ables equally without specifying a response. The
analysis usually has a natural definition about the
information of interest. Unsupervised dimension
reduction methods find a new set of a smaller number
of variables that either provides a simpler presentation
or discovers intrinsic structure in the data while retain-
ing most of the important information. Listed below
are only a few of the most widely used techniques.

Principal component analysis (PCA) finds a few
orthogonal linear combinations of the original vari-
ables with the largest variances; these linear combina-
tions are the principal components that would be
retained for subsequent analyses. In PCA, the infor-
mation is the variation within the data. Usually, prin-
cipal components are sorted in descending order
according to their variations. The number of principal
components that should be included in the analysis
depends on how much variation should be preserved.

Factor analysis assumes that a set of variables
establishes the relationships among themselves
through a smaller set of common factors. It estimates
the common factors with assumptions about the vari-
ance-covariance structure.

Canonical correlation analysis identifies and
measures the association between two sets of random
variables. Often, it finds one linear combination of
variables for each set, where these two new variables
have the largest correlation.

Correspondence analysis is a graphical tool for
an exploratory data analysis of a contingency table. It
projects the rows and columns as points into a plot,
where rows (columns) have a similar profile if their
corresponding points are close together.

Projection pursuit defines a projection index that
measures the “interestingness” of a direction. Then, it
searches for the direction maximizing the index.

Multidimensional scaling finds a projection of the
data into a smaller dimensional space so that the dis-
tances among the points in the new space reflect the
proximities in the original data.

SSuuppeerrvviisseedd  DDiimmeennssiioonn  RReedduuccttiioonn

Supervised dimension reduction techniques gener-
ally are applied in regression. A response Y is specified
that can be one random variable, one random vector, or
even a curve. The predictor vector X is p-dimensional.
The object of interest is the relation between the
response and the predictors, which is often summa-
rized as Y = f(X, ε), where ε denotes the error term.
Some specific structures are imposed to facilitate the
estimation of the function. Dimension reduction is a
crucial part of the modeling process. For example,
ordinary least squares regression can be considered as
a special case of dimension reduction in regression.

To reduce the dimension in the predictor space,
variable selection techniques select a small set of
variables that is necessary instead of the whole p
predictors. Single-index and multi-index models
focus on only one or a small number of linear combi-
nations of predictors. For example, a multi-index
model assumes Y = f(βT

1 X, βT
2 X, . . . , βΤ

k X, ε), where
βT

i X, i = 1,2, . . . , k are linear combinations of X and ε
is an error term.

In addition to reducing the dimension of the predic-
tor space, we also can apply dimension reduction in
the functional space. For example, a generalized
additive model assumes where the
additive nature of predictors’ contributions to the
model dramatically reduces the functional space con-
sidered for the regression.

Sufficient dimension reduction (SDR) in regres-
sion has generated considerable interest in the past
decade. The basic idea is to replace the predictor
vector with its projection onto a subspace of the pre-
dictor space without loss of information on the condi-
tional distribution of Y | X. Specifically, suppose the
response Y is independent of X given the values of
d linear combinations of predictors (βT

1 X, βT
2 X, . . . ,

βΤ
d X). Thus, these d new variables carry all the infor-

mation that X has about Y. The subspace spanned by
the βi s is called the SDR subspace. One advantage

Y =
∑p

i=1
fi (xi ) + ε,
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of working in SDR is that no prespecified model for
Y | X is required. Many methods have been proposed
to estimate the SDR subspace.

Sliced inverse regression (SIR) is one of the most
widely used methods. Without loss of generality, we
assume X is a standardized predictor vector with a
mean of zero and a covariance matrix as an identity
matrix. Under mild conditions, the inverse condi-
tional means of X given the response Y belong to the
SDR subspace. When Y is discrete, it is easy to cal-
culate the sample version of inverse conditional
means. If Y is continuous, we only need to discretize
Y by slicing on the range of the response. Suppose
we have h slices. Let X

—

s denote the sample average
of X within the sth slice, s = 1,2, . . . , h. Construct 
a SIR kernel matrix where fs is the
proportion of the observations falling in the sth slice.
If we determine that the dimension of the SDR sub-
space is d, then the d eigenvectors of MSIR that corre-
spond to the d largest eigenvalues constitute a basis
for the SDR subspace.

Sliced average variance estimation (SAVE) is
another important SDR method. Under the same
setting as SIR, SAVE constructs a kernel matrix
using the inverse conditional variance of X given Y:

where Ωs is the sample
covariance matrix of X within the sth slice. As with
SIR, the first few eigenvectors of MSAVE serve as an
estimated basis of the SDR subspace.

Principal Hessian directions (pHd) is an SDR
method that does not require slicing. Its kernel matrix
is constructed as where y

–

is the sample average of the response and n is the
number of observations. The estimated basis of the
SDR subspace is the eigenvectors of MpHd that corre-
spond to eigenvalues with the largest absolute values.

Minimum average variance estimation (MAVE),
which is one of the more recent developments, has
virtually no assumptions on X but is computationally
more intensive than SIR or SAVE. MAVE essentially
is a local linear smoother with weights determined
by some kernel functions.

Case Study

We consider a data set of 200 Swiss banknotes,
among which half are genuine. The predictors are six

measurements: the widths of the top margin, the
bottom margin, the left edge, the right edge, the length
of the bill, and the length of the image diagonal. The
response is the status of the bill, which equals 1 if
the bill is counterfeit and 0 otherwise. In this case,
the response is discrete with two slices.

MpHd = 1/n
∑n

i=1
(yi − ȳ)XiX

T
i ,

Y : MSAVE =
∑h

s=1
fs(I − �s)

2,

MSIR =
∑h

s=1
fsX

---
sX

---T
s ,
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SIR can detect only one direction β1 in the SDR
subspace because there are only two slices. Figure 1
plots the histogram of the linear combination of the
predictors β1

T X, where smoothing density curves for
both groups have been superimposed for visual
enhancement. The left solid curve is for genuine bank-
notes. The direction that SIR detected separates these
two groups very well.

For the same data, SAVE can detect more than one
direction. Figure 2 plots the first two directions from
SAVE, where circles denote genuine notes and
crosses denote counterfeit notes. The first SAVE
direction is almost identical to the SIR direction. The
second SAVE direction brought up an interesting pat-
tern in the data, which may suggest that there are two
sources of counterfeit notes. It is also possible that
this pattern is just a result of measurement errors.

—Liqiang Ni
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DISCRIMINANT ANALYSIS

The need for classification arises in most scientific
pursuits. Typically, there is interest in classifying an
entity, say, an individual or object, on the basis of
some characteristics (feature variables) measured on
the entity. This classification is usually undertaken in
the context where there is a finite number, say, g, of
predefined distinct populations, categories, classes, or
groups, and the entity to be classified is assumed to
belong to one (and only one) of these g possible
groups. In order to assist with the construction of a
classification rule or classifier for this purpose, there

are usually available so-called training data from each
group; that is, these training data comprise the fea-
tures measured on some entities that are classified
with respect to the g underlying groups. In statistical
terminology, this classification process is referred to
as discriminant analysis, whereas in pattern recogni-
tion and machine learning, it is referred to as super-
vised learning or learning with a teacher.

We let G1, . . . , Gg denote the g possible groups,
and we suppose that a (feature) vector x containing p
variables can be measured on the entity. The group
membership of the entity is denoted by the categori-
cal variable z, where z = i implies that the entity
belongs to Gi (i = 1, . . . , g). The problem is to esti-
mate or predict z solely on the basis of x and the asso-
ciated training data. An example in which an outright
assignment is required concerns the rejection or
acceptance of loan applicants by a financial institu-
tion. For this decision problem, there are two groups:
G1 refers to applicants who will service their loans
satisfactorily, and G2 refers to those who will not. The
feature vector x for an applicant contains information
such as age, income, and marital status. A rule based
on x for allocating an applicant to either G1 or G2 (that
is, either accepting or rejecting the loan application)
can be formed from an analysis of the feature vectors
of past applicants from each of the two groups. In
some applications, no assignment of the entity to one
of the possible groups is intended. Rather, the prob-
lem is to draw inferences about the relationship
between z and the feature variables in x. An experi-
ment might be designed with the specific aim to
provide insight into the predictive structure of the
feature variables. For example, a political scientist
may wish to determine the socioeconomic factors
that have the most influence on the voting patterns of
a population of voters.

Allocation Rules

Let r(x) denote an allocation or discriminant rule,
where r(x) = i implies that an entity with feature vec-
tor x is to be assigned to the ith group Gi. The alloca-
tion rates associated with this rule r(x) are denoted by
eij(r), where eij(r) is the probability that a randomly
chosen entity from Gi is allocated to Gj (i, j = 1, . . . , g).
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For a diagnostic test using the rule r(x) in the context
where G1 denotes the absence of a disease or condition
and G2 its presence, the error rate e12(r) corresponds to
the probability of a false positive, whereas e21(r) is the
probability of a false negative. The correct allocation
rates e22(r) and e11(r) are known as the sensitivity and
specificity, respectively, of the diagnostic test.

Decision theory provides a convenient framework
for the construction of discriminant rules. More
specifically, let πi denote the prior probability that the
entity comes from the ith group Gi, and let fi(x) denote
the probability density function of the feature vector X
in Gi. This is assuming that the variables in the feature
vector x are of the continuous type. The unconditional
density of X, f(x), is therefore given by the mixture
density, which is the sum of the group-conditional
densities fi(x) weighted by their prior probabilities πi.
If they are discrete variables, then fi(x) can be viewed
as the probability function. With this notation, the
posterior probability that an entity belongs to Gi can
be expressed via Bayes’ theorem as

τi(x) = πi fi(x)/f(x) (i=1, . . . , g) (1)

An optimal rule of allocation can be formed by
assigning an entity with feature vector x to that group
to which the entity has the greatest posterior probabil-
ity of belonging. This rule is optimal in the sense of
minimizing the overall correct allocation rate. It can
be viewed also as optimal in a decision-theoretic
framework of minimizing the so-called risk of alloca-
tion under certain assumptions on the loss function.

Sample-Based Allocation Rules

In practice, the group-conditional densities fi(x) are
usually unknown. A basic assumption in discriminant
analysis is that in order to estimate the unknown
group-conditional densities, there are entities of
known origin on which the feature vector X has been
recorded for each. These data are referred to in the lit-
erature as initial, reference, design, training, or learn-
ing data.

The initial approach to the problem of forming a
sample discriminant rule, and indeed to discriminant

analysis in its modern guise, was developed by Fisher.
In the context of g = 2 groups, he proposed that an
entity with feature vector x be assigned on the basis of
the linear discriminant function aTx, where a maxi-
mizes an index of separation between the two groups.
The index was defined to be the magnitude of the dif-
ference between the group sample means of aTx nor-
malized by the pooled sample estimate of its assumed
common variance within a group.

We let r(x;t) denote a sample-based allocation rule
formed from the training data t. An obvious way of
forming r(x;t) is to take it to be an estimated version
of Bayes’ rule, where the posterior probabilities of
group membership τi(x) are replaced by some esti-
mates τ̂ i (x,t) formed from the training data t. A com-
mon approach, referred to as the sampling approach,
is to formulate the τi(x) through the group-conditional
densities fi(x). With the fully parametric approach to
this problem, the group-conditional densities fi(x) are
assumed to have specified functional forms except for
a finite number of parameters to be estimated. A com-
monly used parametric family for the fi(x) for contin-
uous feature data is the normal with either a linear
or quadratic rule in x being obtained depending on
whether the group covariance matrices are taken to be
equal or unequal.

There is also the direct approach (the diagnostic
paradigm) to the estimation of the τi(x), using either
nonparametric estimates, as with nearest neighbor
methods, or parametric estimates via the logistic model.
With the latter approach, it is the ratios of the group-
conditional densities that are being modeled. The fun-
damental assumption of the logistic approach is that
these ratios are linear, which is equivalent to taking
the log (posterior) odds to be linear. The linearity here
is not necessarily in the basic variables; transforms of
these may be taken. Another method for the direct
modeling of the group posterior probabilities is to use
neural networks, which have been coming under
increasing attention by statisticians.

To illustrate the construction of sample-based
allocation rules, we consider the construction of a
discriminant rule for the problem of assessing loan
applications, as mentioned earlier. Here, the applicant
for a loan is a company, and the feature vector
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contains information on its key financial characteris-
tics. For the purposes of our illustration, we consider
the case where there are p = 2 feature variables, which
are the first two principal components of three finan-
cial ratios concerning the debt, liquid assets, and
working capital of a company. In Figure 1, we have
plotted the boundary

τ̂1 (xj, t) = τ̂2 (xj, t)

for the sample version of the Bayes’ rule (the sample
linear discriminant rule) formed under the assumption
that the feature vector has a bivariate normal distribu-
tion with a common group covariance matrix in each
of the two groups G1 and G2, corresponding to good
(satisfactorily serviced) and bad (unsatisfactorily ser-
viced) loans. It can be seen that the overall error rate
of this rule reapplied to the training data (its apparent
error rate) is not as low as that of the quadratic rule
formed without the restriction of a common group-
conditional covariance matrix for the feature vector X.
With its curved boundary, the quadratic rule misallo-
cates only four (all bad) loans. One should be mindful,
however, that the apparent error rate provides an opti-
mistic assessment of the accuracy of a discriminant
rule when it is applied to data not in the training set.
We have also plotted in Figure 1 the boundary of the
rule obtained by modeling the distribution of the fea-
ture vector X by a two-component normal mixture,
which results in the misallocation of one bad loan at
the expense of misallocating two good loans. The lat-
ter rule is an example of a more flexible approach to
classification than that based on the assumption of
normality for each of the group-conditional distribu-
tions, as to be considered now.

Flexible Discriminant Rules

A common nonparametric approach to discriminant
analysis uses the kernel method to estimate the group-
conditional densities fi(x) in forming an estimate of
the Bayes’ rule. More recently, use has been made
of finite mixture models, mainly normal mixtures,
to provide flexible rules of discrimination. Mixture
models, which provide an extremely flexible way

of modeling a density function, can be fitted in a
straightforward manner via the Expectation-
Maximization algorithm. Among other work on flexi-
ble discrimination, there is the flexible discriminant
analysis (FDA) approach based on nonparametric
regression. The generic version of FDA based on
smoothing splines proceeds by expanding the predic-
tors in a large (adaptively selected) basis set, and
then performing a penalized discriminant analysis in
the enlarged space using a linear discriminant or a
normal mixture model-based rule. The class of nonlin-
ear regression methods that can be used includes addi-
tive models, the multivariate adaptive regression
spline (MARS) model, projection pursuit regression,
and neural networks. In machine learning, there has
been increasing attention in the case of two groups
given to nonlinear rules based on the foundations of
support vector machines. With this approach, the
initial feature space is mapped into a higher dimen-
sional space by choosing a nonlinear mapping and
then choosing an optimal separating hyperplane in the
enlarged feature space.

A rather different approach to the allocation prob-
lem as considered up to now, is to portray the rule in
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terms of a binary tree. The tree provides a hierarchical
representation of the feature space. An allocation is
effected by proceeding down the appropriate branches
of the tree. The Classification and Regression Tree
(CART) methodology of Breiman et al. has con-
tributed significantly to the growing popularity of
tree classifiers. In the context of tree classifiers in
particular, there has been growing interest in the
use of boosting, which is one of the most important
recent developments in classification methodology.
Algorithms such as the Adaboost algorithm of Freund
and Schapire and the bagging algorithm often can
improve performance of unstable classifiers like trees
or neural nets by applying them sequentially to
reweighted versions of the training data and taking a
weighted majority vote of the sequence of classifiers
so formed. The test error of the weighted classifier
usually does not increase as its size increases, and
often is observed to decrease even after the training
error reaches zero.

—Geoffrey McLachlan

See also Discriminant Correspondence Analysis
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DISCRIMINANT

CORRESPONDENCE ANALYSIS

As the name indicates, discriminant correspondence
analysis (DCA) is an extension of discriminant analy-
sis (DA) and correspondence analysis (CA). Like dis-
criminant analysis, the goal of DCA is to categorize
observations in predefined groups, and like correspon-
dence analysis, it is used with nominal variables.

The main idea behind DCA is to represent each
group by the sum of its observations and to perform a
simple CA on the groups by variables matrix. The
original observations are then projected as supple-
mentary elements, and each observation is assigned
to the closest group. The comparison between the
a priori and a posteriori classifications can be used to
assess the quality of the discrimination. A similar pro-
cedure can be used to assign new observations to cat-
egories. The stability of the analysis can be evaluated
using cross-validation techniques such as jackknifing
or bootstrapping.

An Example

It is commonly thought that the taste of wines depends
upon their origin. As an illustration, we have sampled
12 wines coming from three different origins (four
wines per origin) and asked a professional taster
(unaware of the origin of the wines) to rate these
wines on five scales. The scores of the taster were then
transformed into binary codes to form an indicator
matrix (as in multiple correspondence analysis). For
example, a score of 2 on the “Fruity” scale would be
coded by the following pattern of three binary values:
010. An additional unknown wine was also evaluated
by the taster with the goal of predicting its origin from
the ratings. The data are given in Table 1.

Notations

There are K groups, with each group comprising Ik

observations, and the sum of the Iks is equal to I,
which is the total number of observations. For conve-
nience, we assume that the observations constitute the
rows of the data matrix, and that the variables are the
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columns. There are J variables. The I × J data matrix
is denoted X. The indicator matrix is an I × K matrix
denoted Y in which a value of 1 indicates that the row
belongs to the group represented by the column, and a
value of 0 indicates that it does not. The K × J matrix,
denoted N, is called the “group matrix,” and it stores
the total of the variables for each category. For our
example, we find that

(1)

Performing CA on the group matrix N provides
two sets of factor scores—one for the groups (denoted
F) and one for the variables (denoted G). These factor
scores are, in general, scaled such that their variance
is equal to the eigenvalue associated with the factor.

The grand total of the table is noted N, and the
first step of the analysis is to compute the probability
matrix Z = N–1N. We denote r the vector of
the row totals of Z (i.e., r = Z1, with 1 being a con-
formable vector of 1s); c the vector of the column
totals; and Dc = diag {c}, Dr = diag {r}. The factor
scores are obtained from the following singular value
decomposition:

Dr
− 1–

2 (Z – rcT)Dc
− 1–

2 = P∆∆QT. (2)

(∆∆ is the diagonal matrix of the singular values, and ΛΛ
= ∆∆2 is the matrix of the eigenvalues.) The row and
(respectively) column factor scores are obtained as

F = Dr
− 1–

2 P∆∆ and G = Dc
− 1–

2 Q∆∆ . (3)

The squared (χ2) distances from the rows and
columns to their respective barycenters are obtained as

dr = diag{FFT} and dc = diag{GGT}. (4)

N = YTX

=
⎡

⎢
⎣

3 1 0 0 1 3 0 2 2 2 2 0 1 1 1 1

1 2 1 1 2 1 2 1 1 0 1 3 1 1 1 1

0 1 3 3 1 0 1 1 2 3 1 0 1 1 1 1

⎤

⎥
⎦ .
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Table 1 Data for the Three Region Wines Example

Woody Fruity Sweet Alcohol Hedonic

Wine Region 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 4

1 1 Loire 1 0 0 0 0 1 0 1 0 1 0 0 1 0 0 0
2 1 Loire 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0
3 1 Loire 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0
4 1 Loire 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 1

∑∑ 1 Loire 3 1 0 0 1 3 0 2 2 2 2 0 1 1 1 1

5 2 Rhône 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0
6 2 Rhône 0 1 0 1 0 0 1 0 0 0 0 1 0 1 0 0
7 2 Rhône 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 0
8 2 Rhône 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1

∑∑ 2 Rhône 1 2 1 1 2 1 2 1 1 0 1 3 1 1 1 1

9 3 Beaujolais 0 0 1 1 0 0 0 0 1 1 0 0 1 0 0 0
10 3 Beaujolais 0 1 0 1 0 0 0 0 1 1 0 0 0 1 0 0
11 3 Beaujolais 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 1
12 3 Beaujolais 0 0 1 1 0 0 1 0 0 1 0 0 0 0 1 0

∑∑ 3 Beaujolais 0 1 3 3 1 0 1 1 2 3 1 0 1 1 1 1

W? ? 1 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0

Notes: Twelve wines from three different regions are rated on five descriptors. A value of 1 indicates that the wine possesses the given
value of the variable. The wine W? is an unknown wine treated as a supplementary observation.



The squared cosines between row i and factor l and
column j and factor l are obtained respectively as

(5)

(with d2
r,i and d2

c,j being respectively the ith
element of dr and the jth element of dc). Squared
cosines help locate the factors important for a given
observation. The contributions of row i to factor l and
of column j to factor l are obtained respectively as

(6)

Contributions help locate the observations important
for a given factor.

Supplementary or illustrative elements can be pro-
jected onto the factors using the so-called transition
formula. Specifically, let iT

sup be an illustrative row
and jsup be an illustrative column to be projected. Their
coordinates fsup and gsup are obtained as

(7)

After the analysis has been performed on the
groups, the original observations are projected as sup-
plementary elements and their factor scores are stored
in a matrix denoted Fsup. To compute these scores,
first compute the matrix of row profiles R =
(diag{X1})–1X and then apply Equation 7 to obtain

Fsup = RG∆∆–1. (8)

The Euclidean distance between the observations
and the groups computed from the factor scores is
equal to the χ 2-distance between their row profiles.
The I × K distance matrix between observations and
groups is computed as

D = ssup1
T + 1sT – 2FsupF

T with 
ssup = diag{FsupF

T
sup} and s = diag{FFT}.

(9)

Each observation is then assigned to the closest
group.

MMooddeell  EEvvaalluuaattiioonn

The quality of the discrimination can be evaluated
as a fixed-effect model or as a random-effect model.
For the fixed-effect model, the correct classifications
are compared to the assignments obtained from
Equation 9. The fixed-effect model evaluates the qual-
ity of the classification on the sample used to build the
model.

The random-effect model evaluates the quality of
the classification on new observations. Typically, this
step is performed using cross-validation techniques
such as jackknifing or bootstrapping.

Results

Tables 2 and 3 give the results of the analysis and
Figure 1 displays them. The fixed-effect quality of the
model is evaluated by the following confusion matrix:

(10)

In this matrix, the rows are the assigned groups and
the columns are the real groups. For example, out of
five wines assigned to the wine region Beaujolais
(Group 3), one wine was, in fact, from the Rhône
region (Group 2), and four wines were from
Beaujolais. The overall quality can be computed from
the diagonal of the matrix. Here, we find that 11 (4 +
3 + 4) wines out of 12 were classified correctly.

A jackknife procedure was used in order to evalu-
ate the generalization capacity of the analysis to new
wines (i.e., this corresponds to a random-effect analy-
sis). Each wine was, in turn, taken out of the sample,
a DCA was performed on the remaining sample of 11
wines, and the wine taken out was assigned to the
closest group. This gave the following confusion
matrix:

(11)

⎡

⎢
⎣

2 1 1

1 2 1

1 1 2

⎤

⎥
⎦ .

⎡

⎢
⎣

4 0 0

0 3 0

0 1 4

⎤

⎥
⎦ .

fsup = (
iT
sup1

)
iT
supG∆−1 and gsup = (

jT
sup1

)
jT

supF∆−1.

ti,� = f 2
i,�

λ�

and tj,� = g2
j,�

λ�

.

oi,� = f 2
i,�

d2
r,i

and oj,� = g2
j,�

d2
c,j
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As expected, the performance of the model as a
random effect is less impressive than as a fixed-effect
model. Now, only 6 (2 + 2 + 2) wines out of 12 are
classified correctly.

The differences between the fixed- and the random-
effect models are illustrated in Figure 2, where
the jackknifed wines have been projected onto the
fixed-effect solution (using metric multidimensional
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λ2 = .201

τ1 = 56%
λ1 = .251

Loire
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Beaujolais
Sugar

Alcohol   3

Sugar 1

1

Fruit 2

3Wood
Fruit 1

Wood
1

Fruit   3

Alcohol

2
2

Sugar
Hedonic 4

2

1Alcohol

3

3

WoodWoodWood
22

1 

2

3

4

1 

4
3

2

1 

2

3
4

?
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Figure 1 Discriminant Correspondence Analysis

Notes: Projections on the first 2 dimensions. (a) The I set: rows (i.e., wines). The wines are projected as supplementary elements,
and Wine? is an unknown wine. (b) The J set: columns (i.e., descriptors). The wine categories have also been projected for ease
of interpretation. Both figures have the same scale (some projection points have been slightly moved to increase readability).
(Projections from Tables 2 and 3).

a b

Table 2 Factor Scores, Squared Cosines, and Contributions for the Variables ( J set)

Woody Fruity Sweet Alcohol Hedonic

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 4

Axis λ % Factor Scores

1 .251 55 .93 −.05 −.88 −.88 −.05 .93 −.51 .33 .04 −.14 .33 −.20 0 0 0 0

2 .201 44 −.04 .35 −.31 −.31 .35 −.04 .64 −.13 −.28 −.74 −.13 1.40 0 0 0 0

Axis Squared Cosines

1 .998 .021 .892 .892 .021 .998 .384 .864 .021 .035 .864 .021 0 0 0 0

2 .002 .979 .108 .108 .979 .002 .616 .137 .979 .965 .137 .979 0 0 0 0

Axis Contributions

1 .231 .001 .207 .207 .001 .231 .051 .029 .001 .007 .029 .008 0 0 0 0

2 .0006 .0405 .0313 .0313 .0405 .0006 .1019 .0056 .0324 .2235 .0056 .4860 0 0 0 0

Note: Contributions corresponding to negative scores are in italic.
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scaling). The quality of the model can be evaluated by
drawing the convex envelop of each category. For the
fixed-effect model, the centers of gravity of the con-
vex envelops are the categories, and this illustrates
that DCA is a least square estimation technique. For
the random-effect model, the degradation of perfor-
mance is due to a larger variance (the areas of the
convex envelops are larger) and to a rotation of the
envelops (the convex envelops are no longer centered
on the category centers of gravity).

—Hervé Abdi

See also Centroid; Correspondence Analysis; Discriminant
Analysis; Distance; Metric Multidimensional Scaling;
Multiple Correspondence Analysis

Further Reading
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A. Bryman, & T. F. Liao (Eds.), The SAGE encyclopedia of
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Clausen, S. E. (1998). Applied correspondence analysis.
Thousand Oaks, CA: Sage.

Greenacre, M. J. (1984). Theory and applications of corre-
spondence analysis. London: Academic Press.

Greenacre, M. J. (1993). Correspondence analysis in practice.
London: Academic Press.

Weller, S. C., & Romney, A. K. (1990). Metric scaling:
Correspondence analysis. Newbury Park, CA: Sage.

DISSIMILARITY COEFFICIENT

A dissimilarity coefficient is a function that measures
the difference between two objects. It is defined from
a set E × E (e.g., RR × RR, RR2 × RR2, RRn × RRn) to the non-
negative real numbers RR+. Let g be a dissimilarity
coefficient. Let x and y be two elements from E, and g
verifies the following properties:

g(x,x) = 0  (C1),

g(x,y) = g(y,x)  (C2: symmetry),

g(x,y) ≥ 0 (C3: positivity).

The function g is said to be a pseudo-metric if
and only if g verifies C1, C2, C3, and the following
property. Let z be another element from E,

g(x,y) + g(y,z) ≥ g(x,z) (C4: triangle inequality).
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Beaujolais

Beaujolais
Loire

Loire

Rhône

Rhône

Figure 2 Discriminant Correspondence Analysis

Note: Projections on the first 2 dimensions. (a) Fixed effect model. The three regions and the convex envelop for the wines
(b) Random effect model. The jackknifed wines have been projected back onto the fixed effect solution. The convex envelop
shows that the random effect categories have a larger variability and have moved.

a b



Furthermore, the function g is said to be a metric if
and only if g verifies C1, C2, C3, C4, and the follow-
ing additional property:

g(x,y) = 0 → x = y  (C5).

The value taken by g for two elements x and y
is called “dissimilarity” if g is simply a dissimilarity
coefficient; “semi-distance” if g is, in addition, a
pseudo-metric; and “distance” if g is a metric.

The application of the function g to a finite set of
S elements {x1, . . . , xk, . . . , xS} leads to a matrix of
dissimilarities (or semi-distances, or distances)
between pairs of the elements. This matrix is said to
be Euclidean if and only if one can find S points
Mk (k = 1, . . . , S) that can be embedded in a Euclidean
space so that the Euclidean distance between Mk

and Ml is

where ck and cl are the vectors of coordinates for Mk

and Ml, respectively, in the Euclidean space. These
vectors of coordinates can be obtained by a principal
coordinate analysis. Consequently, the interest of this
Euclidean property is the direct association between
the dissimilarities and the obtention of a typology, a
graphical representation of the dissimilarities among
elements. Other types of graphical displays can be
obtained with any dissimilarity coefficient by hierar-
chical cluster analysis and nonmetric multidimen-
sional scaling.

Examples

EExxaammppllee  11

Let E be the Euclidean space RR n, vector space of all
n-tuples of real numbers (x1, . . . , xi, . . . , xn). An
element of this space is noted xk. In that case, each ele-
ment may be characterized by n quantitative variables
X1, . . . , Xi, . . . , Xn. Let xk = (x1k, . . . , xik, . . . , xnk)

t and
xl = (x1l, . . . , xil, . . . , xnl)

t be two vectors containing
the values taken by the objects k and l, respectively,

for each of the variables considered; xk, xl ∈ RRn. The
following dissimilarity coefficients can be used to
measure the difference between the objects k and l:

• the Euclidean metric

• the Jöreskog distance

where V = diag (V(Y1), . . . , V(Yi), . . . , V(Yn)) is the
diagonal matrix containing the variances of the n
variables

• the Mahalanobis distance

where W is the variance-covariance matrix for the n
variables.

All of these dissimilarity coefficients are metrics
and provide Euclidean dissimilarity matrices.

EExxaammppllee  22

Let E be the set of frequency vectors

In that case, let p and q be two vectors from E.
Several functions can be used to measure the dis-

similarity between the two frequency vectors:

• the Euclidean metric g1(p,q)
• the taxicab metric, also called Manhattan distance

g4(p, q) =
S∑

k=1

∣
∣pk − qk

∣
∣

E =
{

p = (p1, . . . , pk, . . . , pS)|pk ≥ 0,

S∑

k=1

pk = 1

}

.

g3(xk, xl) =
√

(xk − xl)t W−1 (xk − xl),

g2(xk, xl) =
√

(xk − xl)t V−1 (xk − xl),

g1(xk, xl) = √
(xk − xl)t (xk − xl);

g(xk, xl) = ‖MkMl‖
= √

(ck − cl)t (ck − cl),
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Modifications of these functions have been
proposed in genetics and ecology so that their values
lie between 0 and 1:

• the Rogers distance

• the minimal distance from Nei

• the absolute genetic distance from Gregorius

The dissimilarity coefficients g4, g5, and g7 are
metrics, but g6 is not because it does not verify the
triangle inequality (Property C4).

Other dissimilarity coefficients have been devel-
oped exclusively for frequency vectors. In 1946,
Bhattacharyya introduced the notion of angular dis-
tance, considering two multinomial sets characterized
by two frequency vectors p and q. The two vectors
(√

—p1 , . . . , √
—ps ) and (√

—q1 , . . . , √
—q s ) can be consid-

ered as the directions of two lines starting from the
origin of a multidimensional space and separated by
an angle θ whose cosine is

The coefficient of dissimilarity proposed by
Bhattacharyya is the squared value of this angle:

Another series of dissimilarity coefficients stems
from the probability of drawing two similar objects

from two populations with respective frequency
vectors p and q:

Amongthedissimilaritycoefficientsdevelopedfrom
this probability are Nei dissimilarity index in genetics

and Manly overlap index in ecology

EExxaammppllee  33

Let E be the set of binary vectors

E = {u = (u1, . . . , uk, . . . , us) | uk ∈ {0,1}}.

In that case, many dissimilarity coefficients, whose
values lie between 0 and 1, have been developed in
ecology where a vector u gives the presence/absence
of species in a community. They have been defined
from similarity coefficients. Let u and v be two
vectors from E. For each position in the vectors—that
is to say, for k = 1, . . . , S—the coefficients look
at the similarity of the values taken by u and v: uk and
vk. Let a be the number of positions, for k = 1, . . . ,
S, where uk = 1 and vk = 1, b the number of
positions where uk = 1 and vk = 0, c the number
of positions where uk = 0 and vk = 1, and d the number
of positions where uk = 0 and vk = 0. The most used
similarity coefficient is Jaccard similarity coefficient

s11(u, v) = a

a + b + c
.

g10(p, q) = 1 −

S∑

k=1
pkqk

√
S∑

k=1
p2

k

√
S∑

k=1
q2

k

.

g9(p, q) = − ln

⎛

⎜
⎜
⎜
⎜
⎝

S∑

k=1
pkqk

√
S∑

k=1
p2

k

√
S∑

k=1
q2

k

⎞

⎟
⎟
⎟
⎟
⎠

,

S∑

k=1

pkqk.

g8(p, q) = θ 2 =
[

cos−1

(
S∑

k=1

√
pkqk

)]2

.

cos θ =
S∑

k=1

√
pkqk.

g7(p, q) = 1

2

S∑

k=1

∣
∣pk − qk

∣
∣.

g6(p, q) = 1

2
(p − q)t (p − q)

g5(p, q) =
√

1

2
(p − q)t (p − q)
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A modification of s11, the Sokal and Michener
similarity coefficient

takes into account the number of species absent from
the two communities compared but present in other,
comparable communities.

Two modifications of coefficients s11 and s12, the
Sokal and Sneath similarity coefficient

and the Rogers and Tanimoto similarity coefficient

give to the difference (measures b and c) twice as
much weight as to the similitude (measures a and d)
between the two communities compared. The most
common dissimilarity coefficient associated to each
similarity coefficient is equal to g = 1 – s. It is metric
for g11 = 1 – s11, g12 = 1 − s12, g13 = 1 – s13, and g14 = 1 –
s14. For all of these coefficients, a matrix of dissimilar-
ities calculated by g* = √

—
1−s

—–
is Euclidean.

Dissimilarity and
Diversity Coefficients:

Rao’s Unified Approach

The concepts of dissimilarity and diversity have been
linked together by C. R. Rao in a unified theoretical
framework. The diversity is the character of objects
that exhibit variety. A population in which the objects
are numerous and different possesses variety. This
variety depends on the relative abundance of the
objects and the dissimilarity among these objects.
This assertion is at the root of Rao’s unified approach.

Consider a population i of S elements {x1, . . . ,
xk, . . . , xS} from any set E. Suppose that these
elements are distributed in the population i according
to the frequency vector pi = (p1i, . . . , pki, . . . , pSi)

t.
One can calculate ∆ = [δkl], 1 ≤ k ≤ S , 1 ≤ l ≤ S , a

matrix of dissimilarities among the elements, by g, a
chosen dissimilarity coefficient: δkl = g(xk, xl). The
diversity in the population i depends on the frequency
vector pi and the dissimilarity matrix ∆. Rao defined a
diversity coefficient, also called quadratic entropy, as

Consider the matrix D = [δ 2
kl /2], that is, D =

[g(xk,xl)
2/2]. Changing  for D in the notations leads to

H(pi) = pt
iDpi.

This coefficient has the special feature of being
associated with the Jensen difference, a dissimilarity
coefficient that calculates dissimilarities among two
populations:

The sign of J depends on g via D. It is positive if g
is a metric leading to Euclidean matrices. In addition,
where g is a metric leading to Euclidean matrices, the
dissimilarity coefficient is

Interestingly, f, as with g, is in that case a metric lead-
ing to Euclidean matrices. Consequently, the coeffi-
cients g and f are measures of inertia (dispersion of
points) in a Euclidean space. This result is the heart of
the new ordination method called double principal
coordinate analysis. It allows a graphical representation
of the dissimilarities among populations (coefficient f),
together with a projection of the constituting elements.

Thus, the coefficients g and f are connected in
a framework of diversity decomposition. The total
diversity over several populations is equal to the sum
of the average diversity within populations and the
diversity among populations. Each component of the
decomposition is measured by the quadratic entropy,

f (pi , pj ) = √
2J (pi , pj ).

J(pi , pj ) = 2H

(
pi + pj

2

)

− H(pi) − H(pj )

= −1

2
(pi − pj )

t D (pi − pj ).

H(pi) =
S∑

k=1

S∑

l=1

pkipli

[
g(xk, xl)

]2

2
.

s14(u, v) = a + d

a + 2(b + c) + d
,

s13(u, v) = a

a + 2(b + c)

s18(u, v) = a + d

a + b + c + d
,
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but its formula depends either on g when it represents
diversity among elements (total and intradiversity) or
on f when it represents diversity among populations
(interdiversity).

Consider r populations. A weight µ i is attributed
to population i so that ∑ r

i=1 µi = 1. The diversity and
dissimilarity coefficients are connected in the follow-
ing diversity decomposition:

The component

stems from the total diversity irrespective of popula-
tions. It is measured by the quadratic entropy from g
and the global frequencies of the S objects. The mean

is the average diversity within populations, also
measured by the quadratic entropy from the dissimi-
larity coefficient g and from the frequencies of the
objects within populations. Finally, the last term

denotes the diversity among populations and is
measured by the quadratic entropy from the dissimi-
larity coefficient f and the relative weights attributed
to populations.

This general framework has two interesting
specific cases.

1. Where E is the set of values taken by a qualita-
tive variable X, and

then

which is known as the Gini-Simpson diversity
index, and

is the Euclidean distance between pi and pj.

2. Where E is the set of values taken by a quantita-
tive variable X, and

g(xk, xl) = | xk – xl |, (1)

then

which is the variance of the quantitative variable X.
Let x be the vector (x1, . . . , xk, . . . , xS)

t,

which can be written simply as the absolute difference
between two means

(2)f (pi, pj) =
∣
∣
∣
∣
∣

S∑

k=1

pkixk −
S∑

k=1

pkjxk

∣
∣
∣
∣
∣
.

f (pi , pj ) =
√

(pt
ix − pt

jx)t (pt
ix − pt

jx) ,

H(pi) =
S∑

k=1

pki

(

xk −
S∑

k=1

pkixk

)2

,

f (pi , pj ) = √
(pi − pj )t (pi − pj )

H(pi) = 1 −
S∑

k=1

p2
ki,

g(xk, xl)
2

2
=
{

1 if xk �= xl

0 if xk = xl

,

r∑

i=1

r∑

j=1

µiµj

f (pi , pj )
2

2

r∑

i=1

µiH(pi) =
r∑

i=1

µi

[
S∑

k=1

S∑

l=1

pkipli
g(xk, xl)

2

2

]

H

(
r∑

i=1

µipi

)

=
s∑

k=1

s∑

l=1

(
r∑

i=1

µipki

)

(
r∑

i=1

µipli

) [
g(xk, xl)

]2

2

H

(
r∑

i=1

µipi

)

=
r∑

i=1

µiH(pi)

+
r∑

i=1

r∑

j=1

µiµj

f (pi , pj )
2

2
.
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This second writing highlights the consistency
between coefficient g (Equation 1), measuring dis-
tances between elements, and coefficient f (Equation 2),
measuring distances between populations.

In conclusion, the dissimilarity coefficients are
functions that may correspond to inertia in Euclidean
spaces provided that they verify additional properties.
They are used in many disciplines and fit in perfectly
with any diversity studies.

—Sandrine Pavoine

See also Distance
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dissimilarities among species to dissimilarities among
communities: A double principal coordinate analysis.
Journal of Theoretical Biology, 228, 523–537.

Rao, C. R. (1982). Diversity and dissimilarity coefficients: A uni-
fied approach. Theoretical Population Biology, 21, 24–43.

ade4 package for R: http://pbil.univ-lyon1.fr/R/rplus/ade
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Analysis)

DISTANCE

The notion of distance is essential because many
statistical techniques are equivalent to the analysis
of a specific distance table. For example, principal
component analysis and metric multidimensional
scaling analyze Euclidean distances, correspondence
analysis deals with a χ 2 distance matrix, and discrim-
inant analysis is equivalent to using a Mahalanobis
distance. To define a distance is equivalent to defining

rules to assign positive numbers between pairs of
objects. The most important distances for statistics are
Euclidean, generalized Euclidean (which include χ 2

and Mahalanobis), Minkowsky (which include the
sorting and the symmetric difference distances), and
the Hellinger distances.

Notation and Definition

For convenience, we restrict our discussion to dis-
tance between vectors because they are the objects
mostly used in statistics. Let a, b, and c be three vec-
tors with J elements each. A distance is a function
that associates to any pair of vectors a real positive
number, denoted d(a,b), which has the following
properties:

d(a, a) = 0 (1)

d(a,b) = d(b,a) [symmetry] (2)

d(a,b) = d(a,c) + d(c,b) [triangular inequality] (3)

AA  MMiinniimmaalliisstt  EExxaammppllee::
TThhee  SSoorrttiinngg  DDiissttaannccee

The axioms defining a distance are very easily met.
For example, suppose that we consider two objects
and assign the number 1 if we find them different and
0 if we find them alike. This procedure defines a dis-
tance called the sorting distance because the number
assigned to a pair of same objects will be equal to 0
(this satisfies Axiom 1). Axiom 2 is also satisfied
because the order of the objects is irrelevant. For the
third axiom, we need to consider two cases, if d(a,b)
is equal to 0, the sum d(a,c) + d(c,b) can take only the
values 0, 1, or 2, which will all satisfy Axiom 3. If a
and b are different, d(a,b) is equal to 1 and c cannot
be identical to both of them, and therefore the sum
d(a,c) + d(c,b) can take only the values 1 or 2, which
will both satisfy Axiom 3.

With the same argument, we can see that if we ask
a set of respondents to sort objects into piles, the
number of participants who do not sort two objects
together defines a distance between the sorted
objects.
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The Euclidean Distance

The most well-known distance is the Euclidean dis-
tance, which is defined as

(4)

(with ||a|| being the norm of a, and aj and bj being the
jth element of a and b). Expressed as a squared dis-
tance (in a Euclidean world, it is always more practi-
cal to work with squared quantities because of the
Pythagorean theorem), it is computed as

d2 (a, b) = (a – b)T(a – b). (5)

For example, with

(6)

the vector a – b gives

(7)

and

d2 (a,b) = (a – b)T(a – b)

= ∑∑
4

j = 1
(aj – bj)

2

= 12 + 32 + 72 + 162

(8)

= 315.

The Euclidean distance between two vectors can
also be expressed via the notion of scalar product and
cosine between vectors. By developing Equation 5 for
the distance between vectors, we find that

d2 (a,b) = (a – b)T(a – b)

= aTa + bTb – 2aTb (9)

= ||a||2 + ||b||2 –2 ||a|| × ||b|| × cos(a,b).

In the particular case of vectors with a unit norm,
the distance between a and b simplifies to

d2 (a, b) = 2[1 – cos(a, b)]. (10)

When two vectors are centered (i.e., when their
mean is equal to 0), their cosine is equal to the coeffi-
cient of correlation. This shows that we can define a
(Euclidean) distance between two series of numbers
as 1 minus their correlation.

Generalized Euclidean

The Euclidean distance can be generalized by taking
into account constraints expressed by a matrix con-
formable with the vectors. Specifically, let W denote
a J × J positive definite matrix, the generalized
Euclidean distance between a and b becomes

d
2

W (a, b) = (a – b)T W(a – b). (11)

The most well-known generalized Euclidean
distances are the χ 2 and the Mahalanobis distances.

χχ 22 DDiissttaannccee

The χ 2 distance is associated with correspon-
dence analysis. It is a distance between profiles.
Recall that a vector is called a profile when it is
composed of numbers greater than or equal to zero
whose sum is equal to 1 (such a vector is sometimes
called a stochastic vector). The χ 2 distance is
defined for the rows (or the columns after transposi-
tion of the data table) of a contingency table such as
the one shown in Table 1. The first step of the com-
putation of the distance is to transform the rows into
row profiles, which is done by dividing each row by
its total. There are I rows and J columns in a contin-
gency table. The mass of each row is denoted ri, and
the mass vector r. The barycenter of the rows,
denoted c is computed by transforming the total of
the columns into a row profile. It can also be com-
puted as the weighted average of the row profiles
(with the weights being given by the mass vector r).
For the χ 2 distance, the W matrix is diagonal, which
is equivalent to assigning a weight to each column.

a − b =

⎡

⎢
⎢
⎢
⎣

2 − 1

5 − 2

10 − 3

20 − 4

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

1

3

7

16

⎤

⎥
⎥
⎥
⎦

,

a =

⎡

⎢
⎢
⎢
⎣

2

5

10

20

⎤

⎥
⎥
⎥
⎦

, and b =

⎡

⎢
⎢
⎢
⎣

1

2

3

4

⎤

⎥
⎥
⎥
⎦

,

d(a, b) = ‖a − b‖ = √
(a − b)T (a − b)

=
√∑

j

(aj − bj)2
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This weight is equal to the inverse of the relative
frequency of the column. This is expressed formally
by expressing W as

W = (diag{c})–1. (12)

With this coding schema, variables that are used
often contribute less to the distance between rows than
variables that are used rarely. For example, from
Table 1, we find that the weight matrix is equal to

(13)

For example, the χ 2 distance between Rousseau
and Chateaubriand is equal to 

d2(Rousseau, Chateaubriand)
= 3.364 × (.291–.270)2 + 1.772

× (.486–.526)2 + 7.219 × (.223–.214)2 (14)
= .0036.

This distance is called the χ 2 distance because the
sum of the weighted distances from the rows to their
barycenter is proportional to the χ 2 computed to test
the independence of the rows and the columns of the
table. Formally, if we denoted by N the grand total of
the contingency table, by d2(i, g) the distance from
row i to the barycenter of the table, and by d2(i,i′) the
distance from row i to row i′, we obtain the following
equality:

(15)

The metric multidimensional scaling analysis of
a χ 2 distance matrix (with masses given by r) is equiv-
alent to correspondence analysis.

MMaahhaallaannoobbiiss  DDiissttaannccee

The Mahalanobis distance is defined between
rows of a table. The weight matrix is obtained as the
inverse of the columns variance/covariance matrix.
Formally, if we denoted by S the variance/covariance
matrix between the columns of a data table, the
weight matrix of the Mahalanobis distance is defined
as W = S–1.

I∑

i

rid
2(i, g) =

∑

i>i′
riri′d

2(i, i ′) = 1

N
χ 2.

W = Dw = diag {w}

=
⎡

⎢
⎣

.2973−1 0 0

0 .5642−1 0

0 0 .1385−1

⎤

⎥
⎦

=
⎡

⎢
⎣

3.3641 0 0

0 1.7724 0

0 0 7.2190

⎤

⎥
⎦ .
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Table 1 Data for the Computation of the χ 2, Mahalanobis, and Hellinger Distances

Raw Data Row Profiles 
Author’s name Period Comma Other N × r r Period Comma Other 

Rousseau 7836 13112 6026 26974 .0189 .2905 .4861 .2234 
Chateaubriand 53655 102383 42413 198451 .1393 .2704 .5159 .2137 
Hugo 115615 184541 59226 359382 .2522 .3217 .5135 .1648 
Zola 161926 340479 62754 565159 .3966 .2865 .6024 .1110 
Proust 38177 105101 12670 155948 .1094 .2448 .6739 .0812 
Giraudoux 46371 58367 14299 119037 .0835 .3896 .4903 .1201 
∑∑ NcT 423580 803983 197388 1424951 1.0000 
cT .2973 .5642 .1385 
wT 3.3641 1.7724 7.2190 

Notes: The punctuation marks of six French writers (from Abdi & Valentin, 2006). The column labeled N × r gives the total number of
punctuation marks used by each author. The mass of each row is the proportion of punctuation marks used by this author. The row
labeled N × cT gives the total of each column. This is the total number of times this punctuation mark was used. The centroid row (or
barycenter, or center of gravity), gives the proportion of each punctuation mark in the sample. The weight of each column is the inverse
of the centroid.



(16)S = 1010 ×
⎡

⎢
⎣

0.325 0.641 0.131

0.641 1.347 0.249

0.131 0.249 0.063

⎤

⎥
⎦ and S−1 = 10−7 ×

⎡

⎢
⎣

0.927 −0.314 −0.683

−0.314 0.134 0.124

−0.683 0.124 1.087

⎤

⎥
⎦ .
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With these values, we find that the Mahalanobis distance between Rousseau and Chateaubriand is equal to

(17)d2(Rousseau, Chateaubriand) = 10−7 ×
⎛

⎜
⎝

⎡

⎢
⎣

−45819

−89271

−36387

⎤

⎥
⎦

T

×
⎡

⎢
⎣

0.927 −0.314 −0.683

−0.314 0.134 0.124

−0.683 0.124 1.087

⎤

⎥
⎦ ×

⎡

⎢
⎣

−45819

−89271

−36387

⎤

⎥
⎦

⎞

⎟
⎠

≈ 4.0878.

TheMahalanobisdistancecanbeseenasa multivari-
ate equivalent of the z-score transformation. The metric
multidimensional scaling analysis of a Mahalanobis
distance matrix is equivalent to discriminant analysis.

Minkowski’s Distance

The Euclidean distance is a particular case of the more
general family of Minkowski’s distances. The p
distance (or a Minkowski’s distance of degree p),
between two vectors is defined as

a = [a1, . . . , aj, . . . , aJ)
T and

b = [b1, . . . , bj, . . . , bJ]
T (18)

as

(19)

The most frequently used Minkowski’s distances
are the distances of degree 1, 2, and ∞. A distance of
degree 1 is also called the city-block or taxicab dis-
tance. When the vectors are binary numbers (i.e.,
1 and 0), the elements of the vector code for member-
ship to a set (i.e., 1 means the element belongs to
the set, 0 means it does not). In this case, the degree 1
distance is commonly referred to as the Hamming
distance or the symmetric difference distance. (The
symmetric difference distance is a set operation that
associates to two sets a new set made of the elements

of these sets that belong to only one of them—i.e.,
elements that belong to both sets are excluded. The
symmetric difference distance gives the number of the
elements of the symmetric difference set.)

When p is equal to 2, we obtain the usual
Euclidean distance. With p = ∞, we take the largest
absolute value of the difference between the vectors as
defining the distance between vectors.

For example, with the vectors

(20)

the Minkowski distance of degree 1 is

(21)

and the Minkowski distance of degree ∞ is

d∞(a, b) = max
j

|aj – bj| = max{1,3,7,16} = 16. (22)

Hellinger

The Hellinger distance is defined between vectors hav-
ing only positive or zero elements. In general (like the
χ 2 distance), it is used for row profiles. The Hellinger
distance between vectors a and b is defined as

d1(a, b) =
4∑

j=1

∣
∣aj − bj

∣
∣ = 1 + 3 + 7 + 16 = 27,

a =

⎡

⎢
⎢
⎢
⎣

2

5

10

20

⎤

⎥
⎥
⎥
⎦

and b =

⎡

⎢
⎢
⎢
⎣

1

2

3

4

⎤

⎥
⎥
⎥
⎦

,

dp(a, b) = ‖a − b‖p =
[

J∑

j

∣
∣aj − bj

∣
∣p
] 1

p

.

Using, again, the data from Table 1, we obtain



(23)

Because the Hellinger distance is not sensitive to
discrepancies between columns, it is sometimes used
as an alternative to the χ 2 distance. An interesting
property of the Hellinger distance when applied to
row profiles is that the vectors representing these
profiles can be represented as points on a sphere
(or hypersphere when the number of elements of the
vector is larger than 3).

For our example, we find that the Hellinger dis-
tance between the row profiles of Rousseau and
Chateaubriand is equal to

(24)

How to Analyze
Distance Matrices

Distance matrices are often computed as the first step
of data analysis. In general, distance matrices are ana-
lyzed by finding a convenient graphic representation
for their elements. These representations approximate
the original distance by another distance such as (a) a
low-dimensionality Euclidean distance (e.g., multi-
dimensional scaling, DISTATIS); or (b) a graph (e.g.,
cluster analysis, additive tree representations).

—Hervé Abdi

See also Correspondence Analysis; Discriminant Analysis;
Discriminant Correspondence Analysis; Dissimilarity
Coefficient; DISTATIS; Metric Multidimensional Scaling
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DISTATIS

DISTATIS is a generalization of classical multidimen-
sional scaling (MDS) proposed by Abdi, Valentin,
O’Toole, and Edelman. Its goal is to analyze several
distance matrices computed on the same set of objects.
The name DISTATIS is derived from a technique
called STATIS, whose goal is to analyze multiple data
sets. DISTATIS first evaluates the similarity between
distance matrices. From this analysis, a compromise
matrix is computed that represents the best aggregate
of the original matrices. The original distance matrices
are then projected onto the compromise.

The data sets to analyze are distance matrices
obtained on the same set of objects. These distance
matrices may correspond to measurements taken at
different times. In this case, the first matrix corre-
sponds to the distances collected at time t = 1, the sec-
ond one to the distances collected at time t = 2, and so
on. The goal of the analysis is to evaluate if the rela-
tive positions of the objects are stable over time. The
different matrices, however, do not need to represent
time. For example, the distance matrices can be
derived from different methods. The goal of the analy-
sis, then, is to evaluate if there is an agreement
between the methods.

d2(Rousseau, Chateaubriand)

=
[ (√

2905 − √
.2704

)2

+
(√

.4861 − √
.5259

)2

+
(√

.2234 − √
.2137

)2
] 1

2

= .0302.

d(a, b) =
[

J∑

j

(√
aj − √

bj

)2
] 1

2

.
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The general idea behind DISTATIS is first to
transform each distance matrix into a cross-product
matrix as it is done for a standard MDS. Then, these
cross-product matrices are aggregated to create a
compromise cross-product matrix that represents their
consensus. The compromise matrix is obtained as a
weighted average of individual cross-product matri-
ces. The principal component analysis (PCA) of the
compromise gives the position of the objects in the
compromise space. The position of the object for each
study can be represented in the compromise space as
supplementary points. Finally, as a by-product of the
weight computation, the studies can be represented as
points in a multidimensional space.

An Example

To illustrate DISTATIS, we will use the set of faces
displayed in Figure 1. Four different “systems” or
algorithms are compared, each of them computing a
distance matrix between the faces. The first system
corresponds to PCA and computes the squared
Euclidean distance between faces directly from the
pixel values of the images. The second system starts
by taking measurements on the faces (see Figure 2)
and computes the squared Euclidean distance between
faces from these measures. The third distance matrix
is obtained by first asking human observers to rate the
faces on several dimensions (e.g., beauty, honesty,
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Figure 1 Six Faces to Be Analyzed by Different “Algorithms”

1

2

3

4

empathy, and intelligence) and then computing the
squared Euclidean distance from these measures. The
fourth distance matrix is obtained from pairwise sim-
ilarity ratings (on a scale from 1 to 7) collected from
human observers. The average similarity rating s was
transformed into a distance using Shepard’s transfor-
mation: d = exp{–s2}.

Notations

The raw data consist of T data sets and we will refer
to each data set as a study. Each study is an I × I dis-
tance matrix denoted D[t], where I is the number of
objects and t denotes the study.

Here, we have T = 4 studies. Each study corre-
sponds to a 6 × 6 distance matrix as shown below.Figure 2 The Measures Taken on a Face



Study 1 (Pixels):

Study 2 (Measures):

Study 3 (Ratings):

Study 4 (Pairwise):

Distance matrices cannot be analyzed directly and
need to be transformed. This step corresponds to MDS
and transforms a distance matrix into a cross-product
matrix.

We start with an I × I distance matrix D, with an
I × 1 vector of mass (whose elements are all positive

or zero and whose sum is equal to 1) denoted m,
such that

m
1 × I × 1

T 1 = 1. (1)

If all observations have the same mass (as in here)
mi = 1_

I . We then define the centering matrix, which is
equal to

ΞΞ =  I − 1  mT

I × I I × I I × I × I ,
(2)

and the cross-product matrix denoted by S̃ is
obtained as

(3)

For example, the first distance matrix is trans-
formed into the following cross-product matrix:

In order to compare the studies, we need to normal-
ize the cross-product matrices. There are several
possible normalizations; here we normalize the cross-
product matrices by dividing each matrix by its first
eigenvalue (an idea akin to multiple factor analysis).
The first eigenvalue of matrix S̃ [1] is equal to λ 1 = .16,
and matrix S̃ [1] is transformed into a normalized cross-
product matrix denoted S [1] as

(4)=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

.261 −.079 .013 −.003 −.174 −.018

−.079 .280 .002 −.042 −.077 −.084

.013 .002 .675 −.168 −.276 −.246

−.003 −.042 −.168 .249 −.009 −.026

−.174 −.077 −.276 −.009 .552 −.015

−.017 −.084 −.246 −.026 −.015 .388

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

S[1] = λ−1
1 × S̃[1]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.042 −0.013 0.002 −0.001 −0.028 −0.003

−0.013 0.045 0.000 −0.007 −0.012 −0.013

0.002 0.000 0.108 −0.027 −0.044 −0.039

−0.001 −0.007 −0.027 0.040 −0.001 −0.004

−0.028 −0.012 −0.044 −0.001 0.088 −0.002

−0.003 −0.013 −0.039 −0.004 −0.002 0.062

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

S̃[1] = −1
2
ΞD[1]Ξ

T

S̃ = −1
2
ΞDΞT .

D[4] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 .014 .159 .004 .001 .002

.014 0 .018 .053 .024 .004

.159 .018 0 .271 .067 .053

.004 .053 .271 0 .001 .008

.001 .024 .067 .001 0 .007

.002 .004 .053 .008 .007 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

D[3] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0.54 1.39 5.78 10.28 6.77

0.54 0 1.06 3.80 6.83 4.71

1.39 1.06 0 8.01 11.03 5.72

5.78 3.80 8.01 0 2.58 6.09

10.28 6.83 11.03 2.58 0 3.53

6.77 4.71 5.72 6.09 3.53 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

D[2] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0.60 1.98 0.42 0.14 0.58

0.60 0 2.10 0.78 0.42 1.34

1.98 2.10 0 2.02 1.72 2.06

0.42 0.78 2.02 0 0.50 0.88

0.14 0.42 1.72 0.50 0 0.30

0.58 1.34 2.06 0.88 0.30 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

D[1] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 .112 .148 .083 .186 .110

.112 0 .152 .098 .158 .134

.146 .152 0 .202 .285 .249

.083 .098 .202 0 .131 .110

.186 .158 .285 .131 0 .155

.110 .134 .249 .110 .155 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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Computing the
Compromise Matrix

The compromise matrix is a cross-product matrix
that gives the best compromise of the studies. It is
obtained as a weighted average of the study cross-
product matrices. The weights are chosen so that stud-
ies agreeing the most with other studies will have the
larger weights. To find these weights, we need to ana-
lyze the relationships between the studies.

The compromise matrix is a cross-product matrix
that gives the best compromise of the cross-product
matrices representing each study. It is obtained as a
weighted average of these matrices. The first step is to
derive an optimal set of weights. The principle to find
this set of weights is similar to that described for
STATIS and involves the following steps.

CCoommppaarriinngg  tthhee  SSttuuddiieess

To analyze the similarity structure of the studies
we start by creating a between-study cosine matrix
denoted C. This is a T × T matrix whose generic
term ct,t′ gives the cosine between studies t and t′.
This cosine, also known as the RV coefficient, is
defined as

(5)

Using this formula, we get the following matrix C:

(6)

PPCCAA  ooff  tthhee  CCoossiinnee  MMaattrriixx

The cosine matrix has the following eigen-
decomposition

C = PΘΘPT with PTP = I, (7)

where P is the matrix of eigenvectors and Θ is the
diagonal matrix of the eigenvalues of C. For our
example, the eigenvectors and eigenvalues of C are

An element of a given eigenvector represents the
projection of one study on this eigenvector. Thus, the
T studies can be represented as points in the eigen-
space and their similarities analyzed visually. This
step corresponds to a PCA of the between-studies
space. In general, when we plot the studies in their
factor space, we want to give to each component the
length corresponding to its eigenvalue (i.e., the inertia
of the coordinates of a dimension is equal to the
eigenvalue of this dimension, which is the standard
procedure in PCA and MDS). For our example, we
obtain the following coordinates:

As an illustration, Figure 3 displays the projections
of the four algorithms onto the first and second eigen-
vectors of the cosine matrix.

Because the matrix is not centered, the first eigen-
vector represents what is common to the different
studies. The more similar a study is to the other stud-
ies, the more it will contribute to this eigenvector. Or,
in other words, studies with larger projections on the
first eigenvector are more similar to the other studies
than studies with smaller projections. Thus, the ele-
ments of the first eigenvector give the optimal weights
to compute the compromise matrix.

CCoommppuuttiinngg  tthhee  CCoommpprroommiissee

As for STATIS, the weights are obtained by dividing
each element of p1 by their sum. The vector containing
these weights is denoted αα . For our example, we obtain

αα = [.29  .27  .24  .20]T. (8)

G = P × Θ
1
2 =

⎡

⎢
⎢
⎢
⎣

.93 .25 −.14 .23

.85 −.22 −.45 −.15

.78 .50 .36 −.13

.65 −.66 .37 .03

⎤

⎥
⎥
⎥
⎦

.

P =

⎡

⎢
⎢
⎢
⎣

.58 .28 −.21 .74

.53 −.24 −.64 −.50

.48 .56 .51 −.44

.40 −.74 .53 .11

⎤

⎥
⎥
⎥
⎦

and diag {Θ} =

⎡

⎢
⎢
⎢
⎣

2.62

0.80

0.49

0.09

⎤

⎥
⎥
⎥
⎦

.

C =

⎡

⎢
⎢
⎢
⎣

1.00 .77 .76 .40

.77 1.00 .41 .53

.76 .41 1.00 .30

.40 .53 .30 1.00

⎤

⎥
⎥
⎥
⎦

.

RV = [
ct,t

′
] = trace

{
ST

[t]S[t ′]
}

√
trace

{
ST

[t]S[t]

} × trace
{
ST

[t ′]S[t ′]
} .
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With αt denoting the weight for the tth study, the
compromise matrix, denoted S[+], is computed as

(9)

In our example, this gives

.

HHooww  RReepprreesseennttaattiivvee  IIss  tthhee  CCoommpprroommiissee??

To evaluate the quality of the compromise, we need
an index of quality. This is given by the first eigen-
value of matrix C, which is denoted ϑ1. An alternative
index of quality (easier to interpret) is the ratio of the
first eigenvalue of C to the sum of its eigenvalues:

(10)

Here, the quality of the compromise is evaluated as

(11)

So, we can say that the compromise “explains”
66% of the inertia of the original set of data tables.
This is a relatively small value, and this indicates that
the algorithms differ substantially on the information
they capture about the faces.

Analyzing the Compromise

The eigendecomposition of the compromise is

S[+] = QΛΛQT (12)

with, in our example,

(13)

and

diag {ΛΛ} = [.80  .35  .26  .16  .11]T. (14)

From Equations 13 and 14, we can compute the
compromise factor scores for the faces as

(15)

F = QΛ
1
2

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−.015 .280 −.228 −.043 −.209

.108 .236 .129 .294 .086

.738 −.126 .058 −.125 .018

−.348 .182 .080 −.229 .164

−.312 −.262 .277 .018 −.155

−.172 −.311 −.316 .086 .096

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Q =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

.017 .474 −.451 −.107 −.627

.121 .400 .256 .726 .258

.823 −.213 .114 −.308 .053

−.388 .309 .159 −.566 .492

−.348 −.443 .549 .043 −.462

−.192 −.527 −.626 .211 .287

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Quality of compromise = ϑ1

trace{Θ} = 2.62

4
≈ .66.

Quality of compromise = ϑ1
∑

�

ϑ�

= ϑ1

trace{Θ} .

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

.176 .004 −.058 .014 −.100 −.036

.004 .178 .022 −.038 −.068 −.010

−.058 .022 .579 −.243 −.186 −.115

.014 −.038 −.243 .240 .054 −.027

−.100 −.068 −.186 .054 .266 .034

−.036 −.010 −.115 −.027 .034 .243

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

S[+]

S[+] =
T∑

t

αtS[t].
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Figure 3 Plot of the Between-Studies Space
(i.e., eigenanalysis of the matrix C)



In the F matrix, each row represents an object
(i.e., a face) and each column a component. Figure 4
displays the faces in the space defined by the first
two principal components. The first component
has an eigenvalue equal to λ 1 = .80; such a value
explains 48% of the inertia. The second component,
with an eigenvalue of .35, explains 21% of the
inertia. The first component is easily interpreted as
the opposition of the male to the female faces (with
Face #3 appearing extremely masculine). The sec-
ond dimension is more difficult to interpret and
seems linked to hair color (i.e., light hair vs. dark or
no hair).

Projecting the Studies Into
the Compromise Space

Each algorithm provided a cross-product matrix, which
was used to create the compromise cross-product

matrix. The analysis of the compromise reveals
the structure of the face space common to the algo-
rithms. In addition to this common space, we want
also to see how each algorithm “interprets” or distorts
this space. This can be achieved by projecting the
cross-product matrix of each algorithm onto the
common space. This operation is performed by com-
puting a projection matrix that transforms the scalar
product matrix into loadings. The projection matrix
is deduced from the combination of Equations 12 and
15, which gives

F = S[+]QΛΛ− 1–
2. (16)

This shows that the projection matrix is equal to
(QΛΛ− 1–

2). It is used to project the scalar product matrix
of each study onto the common space. For example,
the coordinates of the projections for the first study
are obtained by first computing the matrix

DISTATIS———289

2

1

λ2 = .35
τ2 = 21%

λ1 = .80
τ1 = 48%

Figure 4 Analysis of the Compromise: Plot of the Faces in the Plane Defined by the First Two Principal
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Figure 5 The Compromise: Projection of the Algorithm Matrices Onto the Compromise Space

(17)

and then using this matrix to obtain the coordinates of
the projection as

(18)

The same procedure is used to compute the
matrices of the projections onto the compromise space
for the other algorithms.

Figure 5 shows the first two principal components
of the compromise space along with the projections
of each of the algorithms. The position of a face in
the compromise is the barycenter of its positions for
the four algorithms. In order to facilitate the interpre-
tation, we have drawn lines linking the position of
each face for each of the four algorithms to its com-
promise position. This picture confirms that the algo-
rithms differ substantially. It shows also that some
faces are more sensitive to the differences between
algorithms (e.g., compare Faces 3 and 4).

—Hervé Abdi and
Dominique Valentin

See also Distance; Metric Multidimensional Scaling; Multiple
Correspondence Analysis; Multiple Factor Analysis, RV

and Congruence Coefficients; STATIS

F[1] = S[1]

(
QΛ− 1

2

)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

.07 .30 −.44 −.24 −.33

.11 .24 .22 .53 .34

.85 .11 .09 −.44 .01

−.26 .19 .04 −.31 .30

−.47 −.50 .67 .18 −.57

−.30 −.33 −.59 .28 .25

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.02 0.80 −0.89 −0.26 −1.88

0.13 0.68 0.51 1.79 0.77

0.92 −0.36 0.23 −0.76 0.16

−0.43 0.52 0.31 −1.40 1.48

−0.39 −0.75 1.09 0.11 −1.39

−0.21 −0.89 −1.24 0.52 0.86

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,QΛ− 1
2
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DIXON TEST FOR OUTLIERS

In statistics, we assume that our data come from some
probability model, a hypothetical or ideal model for
doing statistical analysis mathematically. In the real-
life world, unfortunately, the data in our hands usually
have some outliers: outlying observations discordant
from the hypothesized model. It is well known that
outliers in the data set can severely distort the result of
statistical inference.

Generally speaking, there are two strategies to deal
with outliers. One way is to use some robust methods
to accommodate outliers in the data, such as using the
sample median (instead of the sample mean) to esti-
mate a population mean. The other way is to try to
identify outliers in the sample and then modify or sim-
ply delete them for further data analysis. Our topic
here is the identification of outliers in the sample data.

Suppose that our sample data x1, x2, . . . , xn come
from an interesting population or distribution.
Arrange the sample observations x1, x2, . . . , xn in
ascending order: x(1) ≤ x(2) ≤ . . . ≤ x(n), which are
called order statistics. Suppose that we have k suspi-
cious lower outliers x(1), x(2), . . . , x(k) or upper outliers
x(n–k+1), . . . , x(n–1), x(n) in the sample (the case of having
both lower and upper outliers is too complicated to be
considered here), where k (the number of suspicious
outliers) is much smaller than the sample size n. We
want to test if they are significantly discordant from
the rest of sample observations.

Hypothesis Test for Outliers

To test the discordancy of suspicious outliers, we need
to propose statistical hypotheses. For example, to test

the discordancy of k suspicious upper outliers x(n–k+1),
. . . , x(n–1), x(n) in a normal sample, suppose that the
underlying distribution of the sample is a normal
distribution N(µ, σ 2) with mean µ and variance σ 2,
where µ and variance σ 2 are unknown.

Under a null hypothesis, the sample data x1,
x2, . . . , xn are a random sample from N(µ, σ 2). Under
an alternative hypothesis, unsuspicious observations
x1, x2, . . . , x(n–k) belong to N(µ, σ 2), but the suspi-
cious upper outliers x(n–k+1), . . . , x(n–1), x(n) belonging to
N(µ + a, σ 2) (a > 0), which has a larger mean µ + a
shifted right from the original mean µ.

In other words, we need to test the null hypothesis

H0: a = 0

against the mean-shifted alternative hypothesis

H1: a > 0.

The likelihood-ratio statistic for testing H0: a = 0
against H1: a > 0 is

[x(n–k+1) + . . . + x(n–1) + x(n) – k · x– ]/s,

where x– and s stand for the sample mean and sample
standard deviation, and large values of the test
statistic reject the null hypothesis H0, identifying
x(n–k+1), . . . , x(n–1), x(n) as outliers or discordant 
observations.

If the underlying distribution of the sample 
is a nonnormal distribution, say, a gamma distribu-
tion (which includes exponential distribution as a
special case), then the likelihood-ratio test statistic
will be

[x(n–k+1) + . . . + x(n–1) + xn]/∑xi.

Dixon Test

There are many varieties of statistical tests for detect-
ing outliers in the sample. Generally speaking, pow-
erful tests are based on sophisticated test statistics,
such as the likelihood-ratio test statistics discussed
before.

Dixon test is a very simple test that is often used to
test outliers in a small sample. The general form of
Dixon statistic in the literature is defined by
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in terms of the ratio of intervals of ordered values.
The advantage of Dixon test is the simplicity of its

test statistic for hand calculation. Because Dixon sta-
tistic simply uses the sample information from four
observations x(p), x(r), x(s), x(q), the power of Dixon test
is relatively low unless the sample size is very small.

There are many different versions of Dixon tests.
In the simplest case,

can be used to test a single suspicious upper outlier x(n)

or lower outlier x(1).
Large values of T1 will reject the null hypothesis,

identifying x(n) or x(1) as outlier. Similarly, we can use

to simultaneously test a pair of upper outliers x(n–1), x(n)

or lower outliers x(1), x(2).

Applying Dixon Test

To apply Dixon test for outliers at a
givensignificancelevelα(0< α < 1),
we need to know the critical value or
percentage point of the test statistic.
If the Dixon statistic T is larger than
its critical value tα , reject the null
hypothesis at level α, identifying the
suspicious observations as outliers.

The critical value of a test statistic
is determined by the sampling distri-
bution of the statistic under the null
hypothesis, which in turn depends
on the underlying distribution of the
sample. For example, Table 1 gives
some of the critical values of Dixon

statistics T1 and T2, assuming that the underlying
distribution of the sample is normal. More detailed
tables can be found in the references listed in the
Further Reading section at the end of this entry.

When T1 is larger than its critical value tα, we will
reject the null hypothesis at significance level α, iden-
tifying x(n) or x(1) as outlier.

Similarly, if T2 is larger than its critical value tα, we
will reject the null hypothesis at significance level α,
simultaneously identifying x(n–1), x(n) or x(1), x(2) as
outliers.

A simple way to test multiple outliers is to apply
sequential or consecutive tests. That is, sequentially
apply a test for a single outlier. Nevertheless, sequen-
tial tests are generally less powerful.

For example, to test the discordancy of three suspi-
cious upper outliers x(n), x(n–1), x(n–2) in the sample data,
we can use an inward or outward method to test them
sequentially. The inward method tests x(n) first. If it is
accordant, stop the procedure and declare x(n–1) and
x(n–2) accordant as well. Otherwise, delete x(n) from the
sample and then repeat the same procedure to test x(n–1)

and x(n–2). On the other hand, the outward method tests
x(n–2) first by deleting x(n–1) and x(n). If x(n–2) is discor-
dant, stop the procedure and declare x(n–1) and x(n)

T2 = x(n) − x(n−2)

x(n) − x(1)

or
x(3) − x(1)

x(n) − x(1)

T1 = x(n) − x(n−1)

x(n) − x(1)

or
x(2) − x(1)

x(n) − x(1)

T = x(s) − x(r)

x(q) − x(p)

, p ≤ r < s ≤ q,
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Table 1 Critical Values tα of Dixon Statistics for Normal Samples

n α = 5% α = 1% α = 5% α = 1%
5 0.642 0.780 0.845 0.929
6 0.560 0.698 0.736 0.836
7 0.507 0.637 0.661 0.778
8 0.468 0.590 0.607 0.710
9 0.437 0.555 0.565 0.667

10 0.412 0.527 0.531 0.632
12 0.376 0.482 0.481 0.579
14 0.349 0.450 0.445 0.538
16 0.329 0.426 0.418 0.508
18 0.313 0.407 0.397 0.484
20 0.300 0.391 0.372 0.464
25 0.277 0.362 0.343 0.428
30 0.260 0.341 0.322 0.402

T2 = x(n) − x(n−2)

x(n) − x(1)

or
x(3) − x(1)

x(n) − x(1)

T1 = x(n) − x(n−1)

x(n) − x(1)

or
x(2) − x(1)

x(n) − x(1)



discordant as well. Otherwise, add x(n–1) into the
sample and then test x(n–1), and so on.

Both inward and outward methods have advantages
and disadvantages. They may suffer from masking or
swamping effect, which is the inability to correctly
identify an outlier in the presence of other outliers.
This is always a tough issue in multiple-outlier
situations.

Example

In a comparison of strength of various plastic
materials, one important characteristic is the percent
elongation at break. The following data are 10 mea-
surements of percent elongation at break made on
certain material:

x(1) x(2) x(3) x(4) x(5) x(6) x(7) x(8) x(9) x(10)

2.02 2.22 3.04 3.23 3.59 3.73 3.94 4.05 4.11 4.13

where x(1) and x(2) appear to be lower outliers in the
sample data.

Because Dixon statistic

which is smaller than its 5% critical value 0.531 in
Table 1 with n = 10, we fail to identify x(1) and x(2) as
outliers at the 5% significance level.

Similarly, we will get the same result if sequential
tests are used. In fact,

which are respectively smaller than the 5% critical
values 0.412 and 0.437. Therefore, both inward and

outward methods will fail to identify x(1) and x(2) as
outliers at the 5% significance level. However, it
should be pointed out that the likelihood-ratio test 
[x– – x(1) − x(2)]/ s will detect x(1) and x(2) as outliers at
the 5% significance level.

—Jin Zhang

See also Normal Curve
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Dixon test for outliers has been implemented in the R project,
a free software environment for statistical computing and
graphics: http://finzi.psych.upenn.edu/R/library/outliers/
html/dixon.test.html

DUNN’S MULTIPLE

COMPARISON TEST

Olive Jean Dunn’s work was one of the earliest
attempts to provide researchers with a way to select,
in advance, and test a number of contrasts from
among a set of mean scores. Fisher, Scheffé, and
Tukey had already provided techniques for testing
comparisons between all possible linear contrasts
among a set of normally distributed variables. Dunn’s
contribution meant that researchers no longer needed
to test all possible comparisons when they were inter-
ested in only a few such comparisons, yet they main-
tained control over an inflated Type I error rate.

T1 = x(3) − x(2)

x(n) − x(2)

= 3.04 − 2.22

4.13 − 2.22
= 0.4293 (n = 9, deleting x(1))

T1 = x(2) − x(1)

x(n) − x(1)

= 2.22 − 2.02

4.13 − 2.02
= 0.0948 (n = 10)

T2 = x(3) − x(1)

x(n) − x(1)

= 3.04 − 2.02

4.13 − 2.02
= 0.4834 ,
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Although the groundwork for Dunn’s multiple
comparison tests is usually attributed to Carlos Emilio
Bonferroni, it actually originated with George Boole,
who worked in the middle of the 19th century. Boole’s
inequality (also known as the union bound) states that
for any finite set of events, the probability that at least
one of the events will occur is no greater than the
sum of the probabilities of the individual events.
Bonferroni expanded Boole’s inequality by demon-
strating how upper and lower bounds (i.e., a confi-
dence interval) could be calculated for the probability
of the finite union of events. These are called
Bonferroni’s inequalities.

Dunn, and later, Dunn and Massey, used a
Bonferroni inequality to construct simultaneous con-
fidence intervals for k means, m comparisons, and v
degrees of freedom based on the Student’s t statistic.
She demonstrated the differences in confidence inter-
vals obtained when the variances of the means were
unknown, and when the variances were unknown but
equal; she also showed how her confidence intervals
could be used in fitting data to locate regression
curves (e.g., growth in height or weight). As such,
no comprehensive table for different numbers of
means, comparisons, and degrees of freedom was
produced until B. J. R. Bailey did so in 1977. Bailey
noted that Dunn’s tables were incomplete, were
rounded to two decimal places, and contained errors
in the tabled values. Although Dunn conducted the
initial work showing how complete tables might be
constructed, Bailey honored the forerunner by titling
his paper “Tables of the Bonferroni t Statistic”; never-
theless, the overlapping t values are, except for round-
ing errors, identical. To date, there remains confusion
about the attribution of this multiple comparison
method, no doubt partly because Bonferroni’s publi-
cations were written in Italian.

Perhaps adding to the confusion, Zbynek Sidák
constructed a partial set of tables using the multiplica-
tive inequality to control family-wise Type I error,
whereas Dunn had employed the additive inequality
for the same purpose. Sidák showed that using the
multiplicative inequality produced slightly smaller
confidence intervals than using the additive inequality.

This increases the probability of finding statistically
significant differences between pairs of means, mak-
ing the test more powerful. Ten years later, Paul
Games published a more complete set of tables using
Sidák’s method. Nowadays, one often sees references
to the Dunn-Sidák multiple comparison test, but, as
noted above, the two methods are not identical and
produce somewhat different results.

Why the Dunn Multiple
Comparison Test Is Used

Dunn’s multiple comparison test is an adjustment
used when several comparisons are performed simul-
taneously. Although a value of alpha may be appropri-
ate for one individual comparison, it is not appropriate
for the set of all comparisons. In order to avoid a sur-
feit of Type I errors, alpha should be lowered to
account for the number of comparisons tested.

Suppose a researcher has collected data on 20 inde-
pendent variables (e.g., gender, intact vs. divorced
parents, age, family income, etc.) that might (or might
not) be related to some dependent variable of interest
(e.g., level of physical violence displayed). The
researcher might be tempted to go on a fishing expe-
dition, making comparisons between all possible
means produced by each independent variable (e.g.,
boys vs. girls, rich vs. poor families, etc.) In all, 20
comparisons could be made. If the alpha level was set
at .05, the researcher has a pretty good chance of find-
ing at least one statistically significant difference even
if all of the independent variables are completely
unrelated to displays of physical violence. That is
because when the alpha level is set at .05, we know
that the odds of obtaining a difference deemed statis-
tically significant would happen by chance on only 1
out of 20 occasions on repeated sampling. In this
example, the researcher has given him- or herself 20
chances of finding a statistically significant differ-
ence, so it is not surprising that one of them met the
critical value for significance. The Dunn adjustment
effectively raises the standard of evidence needed
when researchers are comparing a large number of
means simultaneously.
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How to Use
the Dunn Multiple
Comparison Test

The simplest way to understand the
Dunn procedure is to understand that, if
we are making n comparisons instead
of just one, we must divide the selected
alpha by n. For example, if we were
testing the effect of social praise on the
math achievement of elementary, mid-
dle school, and high school students,
we should not set alpha at the tradi-
tional .05 level, but at the alpha = .05/3,
or .0167 level. This ensures that across
all three comparisons, the chance of
making a Type I error remains at .05.

Dunn’s approach in creating confidence intervals is
simply a different way of accomplishing the same out-
come. Table 1 represents Dunn’s multiple compar-
isons for the effect of three levels of curiosity on
externalizing affect scores. To obtain the confidence
interval for the comparison of high versus medium
curiosity, simply multiply the standard error of the dif-
ference (SEdiff) for the contrast by Dunn’s tabled t
value: 1.52 × 2.40 = 3.648, or 3.65. This is the value
that must be subtracted from and added to the mean
difference (Ψ) to obtain the lower and upper limit for
the 95% confidence interval: Ψ ± 3.65. Therefore,
10.41 – 3.65 = 6.76, and 10.41 + 3.65 = 14.06. The
odds are 95 out of 100 that the true difference between
the means for high curiosity and medium curiosity is
contained within the confidence interval from 6.76 to
14.06 (i.e., 6.76 ≤ Ψ ≤ 14.06). Ninety-five percent
confidence intervals that do not contain the value zero
are considered statistically significant. Because none
of the three confidence intervals contains zero, the
researcher would have a high degree of confidence in
saying that each level of curiosity produced a mean
that was significantly different from every other level,
with high curiosity leading to the highest level of
externalizing affect, and low curiosity leading to the
lowest level of externalizing affect. The probabilities
in Table 1 were adjusted for the fact that multiple
comparisons were made.

Final Considerations

When the variables in a comparison are correlated, the
normal Dunn correction is more conservative, causing
less power, so further adjustment should be used. In
this case, the corrected alpha falls between the usual
Dunn correction and no correction at all.

The decision to use (or not use) a multiple compar-
ison test like Dunn’s hinges not on the fact that
several comparisons are to be made, but on an under-
standing of the theory and logic of the research
design. For instance, an investigator may collect data
to test three independently derived hypotheses, say,
the relationship between gender and anxiety, the influ-
ence of three kinds of primary reinforcer on reading
achievement, and the impact of physical size (small
and large) on the extent of physical violence displayed.
Although five comparisons can be made with these
data, only the three hypotheses associated with the
primary reinforcer data should be corrected with
Dunn’s multiple comparison test.

—Ronald C. Eaves and Anthony J. Guarino

See also Bonferroni Test; Post Hoc Comparisons; Tukey-
Kramer Procedure
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Table 1 Dunn Multiple Comparisons for the Effect of Three Levels
of Curiosity on Externalizing Affect Scores

95%
Mean Confidence

Comparison df Difference SEdiff t p Interval

Curiosity
High vs.

Medium 703 10.41 1.52 2.40 .000 6.76 to 14.06
High vs.

Low 456 14.34 1.77 2.40 .000 10.09 to 18.59
Medium 

vs. Low 702 3.92 1.52 2.40 .003 0.27 to 7.57
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Bonferroni correction: http://www.cmh.edu/stats/ask/bonfer
roni.asp

Bonferroni correction/adjustment: http://home.clara.net/sisa/
bonhlp.htm

Boole’s inequality and Bonferroni’s inequalities description:
http://www.absoluteastronomy.com/encyclopedia/b/bo/
booles_inequality.htm
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ECOLOGICAL MOMENTARY

ASSESSMENT

Ecological momentary assessment (EMA) allows the
study of behavior, psychological states, and physio-
logical functions in their natural contexts. EMA and its
predecessors (e.g., the experience sampling method)
were developed with several purposes in mind. First,
there was concern that retrospective autobiographical
memory was fallible, due primarily to the use of
cognitive heuristics during recall. EMA reduces these
biases by generally limiting the period over which
information is recalled. Second, although laboratory
research offers the benefit of experimental control, it
is not clear if processes observed in the laboratory are
similar to what occurs in the “real” world. EMA often
has greater ecological validity and generalizability
because assessments can be collected in everyday set-
tings. Third, EMA enables a closer examination of
dynamic and temporal processes. EMA designs usu-
ally incorporate a large number of repeated measures,
which provide a movielike view of processes over
time. Such data not only allow examination of tempo-
ral patterns but also provide considerable information
about (although not confirming) causal associations
among variables.

EMA involves participants reporting on current
or recent psychological states, behaviors, and/or
environmental conditions, typically multiple times
each day, for days or even weeks. Responses are
collected in several ways, of which some are self-
initiated by research participants and others request
responses after some signal (e.g., a pager, a hand-
held computer alarm). The three most commonly
used approaches are interval-contingent, event-
contingent, and signal-contingent responding.
Interval-contingent recording involves completing
assessments at regular times (e.g., every hour on the
hour, before bed). Event-contingent schedules entail
completing assessments in response to specific
events (e.g., smoking a cigarette, argument with a
spouse). Signal-contingent schedules require indi-
viduals to report on experiences in response to ran-
dom or semirandom signals across the day. Recent
technological advances, most notably palmtop com-
puters, provide a number of advantages to EMA data
capture over paper-and-pencil approaches. As partic-
ipants can respond directly on a handheld computer,
portability is optimized, compliance can be automat-
ically tracked (reports are date- and time-stamped),
data can be transferred directly to statistical soft-
ware, and researchers have greater control over the
format and order of assessment items.
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Despite the advantages of EMA approaches, they
are not without limitations. First, implementation of
EMA designs requires considerable time and exper-
tise. There are many logistical issues: the design of the
sampling scheme, thoughtful consideration of ques-
tionnaire design, training and motivating participants
to follow the protocol, and dealing with the technical
difficulties inherent in the use of technological devices
(e.g., programming the devices). Second, momentary
data collection techniques yield masses of complex,
time-dependent data. Although such data are a strength
of the approach, considerable statistical and data man-
agement acumen are necessary to manipulate and
appropriately analyze these data sets. Third, given the
intensive nature of data collection (e.g., five times each
day for 2 weeks), the majority of participants are likely
to have some missing data. This presents a problem for
EMA research and must be accounted for in the statis-
tical/analytic approach and interpretation of the data
(e.g., are missing data random or reflective of an
altered environmental state?).

Conclusion

EMA and other strategies for capturing momentary
data provide researchers with a new assessment tech-
nique for studying behavior, psychological states, and
physiological functions as they occur in individuals’
natural environments. This method can reduce retro-
spective recall biases, provides a dynamic picture of
people’s daily lives, and may reveal potential causal
relationships among variables of interest. New tech-
nological advances, such as palmtop computers and
interactive voice recognition systems, are opening up
exciting new avenues for real-time data capture in nat-
uralistic settings.

—Joshua Smyth and Kristin Heron

See also Data Mining

Further Reading

Stone, A., & Shiffman, S. (1994). Ecological Momentary
Assessment (EMA) in behavioral medicine. Annals of
Behavioral Medicine, 16, 199–202.

Experience sampling method: http://seattleweb.intel-research
.net/projects/ESM/index.html

EDUCATIONAL TESTING SERVICE

Educational Testing Service (ETS) is the world’s
largest private educational testing and measurement
organization. With an annual budget approaching
$1 billion, it develops, administers, or scores more
than 24 million tests annually (as of 2005) in more
than 180 countries at more than 9,000 locations inter-
nationally. With locations worldwide, its operations
are headquartered in Princeton, New Jersey.

ETS was founded by Henry Chauncey in 1947, with
key support from the American Council on Education,
The Carnegie Foundation for the Advancement of
Teaching, and the College Entrance Examination
Board. The core ideas behind ETS were put forth by
former Harvard president James Conant. Its mission is
to “advance quality and equity in education for all
people worldwide.”

ETS encompasses five areas—research, assess-
ment development, test administration, test scoring,
and instructional products and services—but it is best
known for assessment development. Perhaps its most
well-known test, the SAT®, is actually published by
the College Board, although ETS develops and
administers the test as a work-for-hire (a procedure it
also does for the Advanced Placement Exams). The
SAT I measures Mathematics, Critical Reading, and
Writing. The SAT IIs are subject-based tests that
assess particular areas of learning.

Major ETS assessments include the GRE® (Gradu-
ate Record Examinations), TOEFL® (Test of English
as a Foreign Language), and the Praxis tests for
teacher certification. The GRE has three subtests:
Verbal, Quantitative, and Analytical Writing. The
latter subtest replaced an Analytic Reasoning subtest
on October 1, 2002. The TOEFL exam is currently
paper based, although there is a shift toward an
Internet-based measure. The paper-based measure
assesses Listening Comprehension, Structure and
Written Expression, and Reading Comprehension.
The new Internet-based measure assesses along the
four dimensions of Listening, Structure, Reading,
and Writing. The Praxis is a series of three different
tests: the first measures basic academic skills; 
the second measures general and subject-specific
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knowledge and teaching skills; and the third mea-
sures classroom performance. These three assess-
ments represent only a hint of the many different ones
offered by ETS.

ETS has many critics, perhaps most notably
FairTest (although such critics tend to be against all
methods of standardized testing, not solely ETS).
FairTest and other critics argue that ETS tests are
biased, overly coachable, and prone to misuse. One
example of such criticisms is that men outperform
women on the GRE Quantitative test by nearly a stan-
dard deviation despite the fact that women often
outperform men in advanced mathematics in the
classroom. The performance-based assessments that
FairTest advocates, however, would likely create sim-
ilar confounding issues.

Perhaps the primary competitor of ETS is the ACT,
formerly the American College Testing Program,
which produces the ACT tests. The ACT test is usually
accepted in lieu of the SATs by most universities. In
addition, ACT recently took over the development of
the GMAT (Graduate Management Admissions Test)
from ETS.

—James C. Kaufman

See also Ethical Issues in Testing; Standards for Educational
and Psychological Testing

Further Reading

Educational Testing Service: http://www.ets.org
FairTest: http://www.fairtest.org

EDWARDS PERSONAL

PREFERENCE SCHEDULE

The Edwards Personal Preference Schedule (EPPS)
(publisher: The Psychological Corporation) is a scale
designed to measure 15 personal needs, originally
proposed by H. A. Murray. The scale, authored by
Allen Edwards, was constructed to provide ipsative
information on how people rank one need relative to
their other needs, as well as normative information on
their needs compared with other people’s. Edwards
discussed needs as nonclinical personality variables

and considers the EPPS foremost a personality
measure. The EPPS has been used in vocational coun-
seling to encourage discussion about how individuals
want to relate to coworkers and their desired levels of
responsibility on the job.

The EPPS includes 15 personality scales and two
scales for assessing the validity of an individual’s
results. The personality dimensions include needs for
Achievement (succeeding and fulfilling high stan-
dards), Deference (concern for the opinions of or
approval from others), Order (organization and fastid-
iousness), Exhibition (social attention), Autonomy
(freedom to self-determine), Affiliation (attachment to
friends), Intraception (psychological-mindedness and
introspection), Succorance (sympathy and affection
from others), Dominance (leading and decision
making), Abasement (feeling guilt for wrongdoings),
Nurturance (helping others), Change (variety and nov-
elty of activity), Endurance (task focus and forbear-
ance), Heterosexuality (engaging the opposite sex
romantically or sexually), and Aggression (being deri-
sive, critical, and vengeful toward others).

The items on the EPPS pair two statements, each
reflecting 1 of the 15 dimensions, and require test
takers to identify which is more typical of them-
selves. Statements reflecting each of the personality
variables are paired two times with statements
reflecting each of the others. Overall, the test requires
approximately 45 minutes to administer. Raw scores
from the test can be used to identify the relative
importance of a need to an individual, whereas
normative data, collected in the late 1950s from a col-
lege sample and a survey of U.S. households, sup-
plies information on how test takers’ personal needs
compare with others’.

The test and its norms were most recently updated
in 1959; consequently, the instrument has been criti-
cized for having normative data that are too old
to serve as a meaningful index. However, the EPPS
has been praised for the degree to which its item struc-
ture reduces the influence of social desirability, and
overall evidence suggests that the individual scales
show moderate-to-favorable internal consistency and
satisfactory stability over a week. In addition, the evi-
dence of convergent validity for the scale scores, most
of which was collected in the 1950s, shows that
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the EPPS scale scores relate modestly, though as
predicted, to other personality measures. For example,
measures of agreeableness showed small positive
correlations with deference and nurturance scales and
small-to-medium negative correlations with aggres-
sion and dominance scales.

—Matthew E. Kaler and Jo-Ida C. Hansen

See also Jackson Personality Inventory–Revised; Personality
Tests

Further Reading

Edwards, A. L. (1959). Manual: Edwards Personal Preference
Schedule. Washington, DC: The Psychological Corporation.

Helms, J. E. (1983). Practitioner’s guide to the Edwards
Personal Preference Schedule. Springfield, IL: Charles C
Thomas.

Thorson, J. A., & Powell, F. C. (1992). Vagaries of college
norms for the Edwards Personal Preference Schedule.
Psychological Reports, 70, 943–946.

EFFECT SIZE

Effect size is a term used to describe the magnitude
of a treatment effect. More formally, it can be
defined as the degree to which the null hypothesis is
false, versus a true alternative hypothesis. Measuring
effect size has taken on increasing study and impor-
tance during the last 30 years. Effect size is impor-
tant in three phases of the research process. First, it
is important prior to collecting data, as it is required
for estimating sample sizes that are necessary to
ensure statistical power. Second, reporting effect size
is important for interpreting statistical tests of signif-
icance. Reporting effect size is fundamental to any
good statistical report of results, since statistical tests
and their associated p values are functions of both
effect size and sample size. Finally, effect size mea-
sures are the raw scores of a meta-analysis.

Effect size measures attempt to strip away the
effects of sample size and produce a simple and easily
interpretable measure of the size of the effect. To
achieve this goal, effect size indices have the follow-
ing three properties: (1) standardization to allow

cross-study comparison and to enhance interpretability
of unfamiliar scales, (2) preservation of the direction
of the effect, and (3) independence from sample
size. Three common classes of effect size measures
are standardized mean differences, correlation coeffi-
cients or their squared values, and odds ratios (com-
mon in medical but not educational and behavioral
research). For many common statistical tests (e.g.,
t tests), the raw or unstandardized effect size is
the numerator of the test statistic. The use of the
“unstandardized” mean difference along with a confi-
dence interval may be preferable to reporting effect
size statistics when the dependent variable is mea-
sured on a familiar scale or is readily understood in
the field of study.

Why It Is Important to
Report Effect Size

Statistical tests combine in various ways effect size
and sample size. Equation 1 summarizes the general
relationship between tests of statistical significance
and effect size. Clearly, the value of the statistical test
and its corresponding p value depend on both effect
size and sample size. Reexpressing the equation
shows that by dividing a statistical test by its sample
size, it is possible to get a measure of the effect that is
independent of sample size:

(1)

In 1991, Rosenthal provided a comprehensive set
of formulas that describe the specific relationship
between tests of significance, effect size, and study
sample size. Table 1 shows this relationship for a few
important statistical tests.

Reporting effect size helps avoid the misleading
decision dichotomy (p ≤ .05 versus p > .05) inherent
in classical null hypothesis statistical testing
by “stripping away” the effect of sample size from
the test statistic. With the sample size factored out,
measures of effect size help researchers answer the

Significance test = Effect size × Sample size or

Effect size = Significance test

Sample size
.
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important clinical or practical question: What is the
size of the treatment or intervention effect? The
publication style manuals for both the American
Psychological Association (2001) and the American
Medical Association, among others, require that mea-
sures of effect size be reported with statistical tests.

Measuring Effect Size: 
Two Types of Effect Size Indices

There are basically two types of effect size measures:
measures of standardized or relative mean differences
and measures of relationship or correlation, including
measures of relationship for nonquantitative variables.
Most measures of effect size overestimate the popula-
tion effect size. However, because overestimation is
small except when sample size is extremely small,
adjustments for bias are seldom used. Table 2 shows
these two types of effect size measures for
a few common statistics. Because statistical signifi-
cance is monotonically related to sample size, it is
important to report effect size for both statistically
significant and nonsignificant results. Presently, there
is little consensus regarding which of the various
effect size measures to report. Wolf, in 1986, gave
available formulas for converting various test statistics
(X2, t, F) to an effect size measure, and computer pro-
grams for these calculations are also readily available
(see Computer Programs for Calculating Effect Size).
A comprehensive list of effect size measures, their
formulas, and calculation examples is found in
Rosenthal (for a focus on control versus treatment
effect size measures); Grissom and Kim (for a

comprehensive review of effect size measures,
especially when violations to the normal model are
suspected); and Olejnik and Algina (for an overview
of measures of effect size for multigroup comparative
studies).

Standardized Mean Difference

Cohen’s d is a measure of effect size in standard devi-
ation units that is very commonly used as a basis to
estimate the sample sizes required to ensure statistical
power for a two-sample problem and as the data for
conducting a meta-analysis. To calculate d, positive
values are assigned to mean differences favoring the
treatment, and negative values are assigned to differ-
ences unfavorable to the treatment. The scale used to
standardize the mean difference is, alternatively, the
control group alone (Glass’s g’ index, preferred when
the treatment affects the variance) or for two repeated
measures, the pretest (using the pretest ensures that
the treatment does not affect the variance); the pooled
standard deviation of the groups that are compared
(Cohen’s d, preferred when the treatment does not
affect the variance in important ways); or the pooled
standard deviation for all of the treatments in multi-
group designs (Hedges’s g).

Correlation and Proportion
of Variance Measures

The point-biserial correlation coefficient (rpb), for t
tests for two independent samples; the phi coeffi-
cient (ø), for chi-square tests for contingency tables
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Table 1 Selected Statistics: Statistic1 = Effect Size × Study Size

Chi-Square
Test for Independent Sample Two Independent
Contingency Table t Test Sample F Test

F = [(X
---

1 − X
---

2)/S
2] × n1n2

n1 + n2
t = [(X

---
1 − X

---
2)/S(pooled)] ×

√
n1n2

n1 + n2
= d ×

√
n1n2

n1 + n2

χ 2 = φ2 × N

1. Note that because a p value is determined by the value of the test statistic, it is also a function of the effect size and study size.



when both variables are dichotomous; and Spearman’s
rank order correlation coefficient, when both vari-
ables are rank ordered, are all common measures of
effect size.

Measures of the proportion of variance in the depen-
dent variable that is associated with the independent
variable, such as the point-biserial correlation coeffi-
cient squared (r2, n2, and ω 2), are all used to report
effect size. Eta squared and partial eta squared are esti-
mates of the degree of association for the sample.
Omega squared, virtually almost always smaller than

eta squared, estimates the degree of association in the
population. SPSS displays eta or partial eta squared
when the “display effect size” option is selected in the
program GLM. A limitation of squared values is that
they can obscure the direction of the effect.

Interpreting Effect
Size Measures

Table 3 summarizes widely used guidelines proposed
by Cohen for the interpretation of effect size in the
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Table 2 Effect Size Measures for Selected Test Statistics

Effect Measure

Raw Unstandardized Relative Effect1/ Correlation or Correlation
Test Statistic Effect2 (Mean RawEffect/Standard Squared

Difference) Error or t/Sample
Size Ratio

One-Sample t (X
–

1 – µ) d = [(X
–

1 – µ)/Sx]

Two-Sample t (X
–

1 – X
–

2) d = [(X
–

1 –X
–

2)/S(pooled)]

Dependent Sample t (D
–

– µ) d = [(D
–

– µ)/SD]

One-Way (X
–

largest – X
–

smallest)
ANOVA3

or
MSA

ω2
A = (k − 1)(F − 1)

(k − 1)(F − 1) + kn

r2 = η2 = F

F + df error

= SSA

SSTOfeffect = SA

Se

=
√

MSA√
MSe

d = 2t
√

df

d = t

√
n1 + n2

n1n2

r2 = η2 = t2

t2 + df
or

ω2 = t2 − 1

t2 + df + 1

d = t
√

df

r =
√

t2

t2 + df

1. Cohen’s d expresses the raw effect size relative to the standard deviation.

2. The raw effect serves as the numerator for many standard tests for mean differences.

3. f is an extension of d to ANOVA and multigroup designs and is used to calculate sample size estimates (Cohen, 1988, effect size
interpretive guidelines: small = .10; medium = .25; large = .40).



behavioral and social sciences. Although widely
used, these guidelines suffer from a number of limi-
tations. Interpretation of an effect size depends on a
number of factors, including the specific research
design used, knowledge of the substantive area of
study, an appreciation of real-world consequences,
and the theoretical importance of the effect. For
example, effect sizes for independent and dependent
group designs may be difficult to compare, as they
control for different sources of bias. A small effect
that is easy to implement, does not have adverse con-
sequences or side effects, and requires few resources
may provide small but important benefits. Small
effects may be important for serious and difficult-to-
treat problems. Small effects when applied to an indi-
vidual may be important when applied to the entire
population. For example, following these guidelines,
many biomedically useful treatments have very small
effects (cf. Salk vaccine and paralytic polio, r = .01;
and psychotherapy and improvement, r = .39).
Ultimately, interpretation of the effect size is
extrastatistical and based on the knowledge of the
field of study. Some argue that because importance is
ultimately not a statistical issue, reporting effect size
measures serves only to obfuscate further under-
standing of the results.

Rosnow and Rosenthal have argued that proportion-
of-variance measures are prone to misinterpretation
and encourage an overly pessimistic interpretation
of many “small” but important effects. Instead, they
have suggested that researchers report measures of
correlation. For example, some suggest that r be

interpreted in terms of success rates (e.g., Rosenthal
& Rubin’s binomial effect size display [BESD]) in the
treatment and comparison groups, assuming an over-
all success rate of 50%. Mathematically, the BESD
is a transformation of r to X2, where success rate =
0.50 ± r/2. For example, the medium effect size r = .30
[r2 = .09] converts to a BESD comparison group
success rate of .35 and to a treatment group success
rate of .65. For an alternative intuitive measure, see
Cohen’s U3, which describes the percentage of scores
in the comparison group that was exceeded by the
mean score in the treatment group.

Other factors that influence the effect size include
the range of treatments studied (increasing the range of
treatments generally increases effect size). Almost any
violation of the normal model may cloud interpretation.
Nonnormality, heterogeneity of variance, low measure-
ment reliability, and the presence of outliers all influ-
ence effect size estimation. In short, interpreting effect
size and comparing effect sizes across studies requires
attention to the specific design features of the various
studies and the assumptions underlying the statistical
tests. In light of these limitations, Table 4 summarizes
perspectives for interpreting effect size measures.

Computer Programs for
Calculating Effect Size

Effect Size Calculator is an especially user-friendly
shareware program. Effect Size Determination Pro-
gram is somewhat more comprehensive and designed
to facilitate coding for a meta-analysis. Most meta-
analysis computer programs calculate one or more
effect size measures (e.g., MetaWin).

—Ward Rodriguez

See also Significance Level; Type I Error; Type II Error
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Table 3 Cohen’s Guidelines for Interpreting Effect
Size Measures

Effect Size
Measure Small Medium Large

Standardized Mean
Difference 0.20 0.50 0.80

Correlation
Coefficient 0.10 0.30 0.50

Correlation
Squared 0.01 0.06 0.14
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EIGENDECOMPOSITION

Eigenvectors and eigenvalues are numbers and
vectors associated with square matrices, and together
they provide the eigendecomposition of a matrix, which

analyzes the structure of this matrix.
Even though the eigendecomposition
does not exist for all square matrices, it
has a particularly simple expression for
a class of matrices often used in multi-
variate analysis, such as correlation,
covariance, or cross-product matrices.
The eigendecomposition of this type of
matrices is important in statistics
because it is used to find the maximum
(or minimum) of functions involving
these matrices. For example, principal
component analysis is obtained from
the eigendecomposition of a covariance
matrix and gives the least square esti-
mate of the original data matrix.

Eigenvectors and eigenvalues are
also referred to as characteristic vec-
tors and latent roots or characteristic
equation (in German, eigen means
“specific to” or “characteristic of ”).
The set of eigenvalues of a matrix is
also called its spectrum.

Notations and Definition

There are several ways to define eigen-
vectors and eigenvalues. The most com-

mon approach defines an eigenvector of the matrix A
as a vector u that satisfies the following equation:

Au = λu. (1)

When rewritten, the equation becomes

(A – λI)u = 0, (2)

where λ is a scalar called the eigenvalue associated to
the eigenvector.

In a similar manner, a vector u is an eigenvector of
a matrix A if the length of the vector (but not its direc-
tion) is changed when it is multiplied by A. For
example, the matrix

(3)

has the eigenvectors

A =
[

2 3
2 1

]
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Table 4 Perspectives for Interpreting Effect Size Measures

Percent
Nonoverlap

Cohen’s Percentile Control vs.
Guidelines d r r² Standing Treatment

2 0.707 0.5 97.7 81.10%
1.9 0.689 0.474 97.1 79.40%
1.8 0.669 0.448 96.4 77.40%
1.7 0.648 0.419 95.5 75.40%
1.6 0.625 0.39 94.5 73.10%
1.5 0.6 0.36 93.3 70.70%
1.4 0.573 0.329 91.9 68.10%
1.3 0.545 0.297 90 65.30%
1.2 0.514 0.265 88 62.20%
1.1 0.482 0.232 86 58.90%
1 0.447 0.2 84 55.40%
0.9 0.401 0.168 82 51.60%

Large 0.8 0.371 0.138 79 47.40%
0.7 0.33 0.109 76 43.00%
0.6 0.287 0.083 73 38.20%

Medium 0.5 0.243 0.059 69 33.00%
0.4 0.196 0.038 66 27.40%
0.3 0.148 0.022 62 21.30%

Small 0.2 0.1 0.01 58 14.70%
0.1 0.05 0.002 54 7.70%
0 0 0 50 0%



with eigenvalue λ1 = 4 (4)

and

with eigenvalue λ2 = –1. (5)

We can verify (as illustrated in Figure 1) that only
the lengths of u1 and u2 are changed when one of these
two vectors is multiplied by the matrix A:

(6)

and

(7)

For most applications, we normalize the eigenvec-
tors (i.e., transform them so that their length is equal
to one):

uTu = 1. (8)

For the previous example, we obtain

(9)

We can check that

(10)

and

(11)

Traditionally, we put together the set of eigenvec-
tors of A in a matrix denoted U. Each column of U is an
eigenvector of A. The eigenvalues are stored in a diag-
onal matrix (denoted ΛΛ), where the diagonal elements
give the eigenvalues (and all the other values are zeros).
The first equation can be rewritten as follows:

AU = ΛΛU; (12)

or also as

A = UΛΛU–1. (13)

[
2 3
2 1

] [−.7071
.7071

]

=
[

.7071
−.7071

]

= −1

[−.7071
.7071

]

.

[
2 3
2 1

] [
.8331
.5547

]

=
[

3.3284
2.2188

]

= 4

[
.8331
.5547

]

u1 =
[
.8331
.5547

]

.

[
2 3
2 1

] [−1
1

]

= −1

[−1
1

]

=
[

1
−1

]

.

[
2 3
2 1

] [
3
2

]

= 4

[
3
2

]

=
[

12
8

]

u2 =
[−1

1

]

u1 =
[

3
2

]
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Figure 1 Two Eigenvectors of a Matrix



For the previous example, we obtain

(14)

It is important to note that not all matrices have
eigenvalues. For example, the matrix does not
have eigenvalues. Even when a matrix has eigenvalues
and eigenvectors, the computation of the eigenvectors
and eigenvalues of a matrix requires a large number of
computations and is therefore better performed by
computers.

DDiiggrreessssiioonn::  AAnn  IInnffiinniittyy  ooff
EEiiggeennvveeccttoorrss  ffoorr  OOnnee  EEiiggeennvvaalluuee

It is only through a slight abuse of language that
we can talk about the eigenvector associated with
one given eigenvalue. Strictly speaking, there is an
infinity of eigenvectors associated with each eigen-
value of a matrix. Because any scalar multiple of 
an eigenvector is still an eigenvector, there is, in fact,
an (infinite) family of eigenvectors for each eigen-
value, but they are all proportional to each other. For
example,

(15)

is an eigenvector of the matrix A

(16)

Therefore,

(17)

is also an eigenvector of A:

(18)

Positive (Semi-) Definite Matrices

A type of matrices used very often in statistics is
called positive semi-definite. The eigendecomposition
of these matrices always exists and has a particularly
convenient form. A matrix is said to be positive semi-
definite when it can be obtained as the product of a
matrix by its transpose. This implies that a positive
semi-definite matrix is always symmetric. So, for-
mally, the matrix A is positive semi-definite if it can
be obtained as

A = XXT (19)

for a certain matrix X (containing real numbers).
Positive semi-definite matrices of special relevance
for multivariate analysis include correlation matrices,
covariance matrices, and cross-product matrices.

The important properties of a positive semi-
definite matrix are that its eigenvalues are always
positive or null and that its eigenvectors are pairwise
orthogonal when their eigenvalues are different. The
eigenvectors are also composed of real values (these
last two properties are a consequence of the symme-
try of the matrix). Because eigenvectors correspond-
ing to different eigenvalues are orthogonal, it is
possible to store all the eigenvectors in an orthogonal
matrix (recall that a matrix is orthogonal when the
product of this matrix by its transpose is a diagonal
matrix).

This implies the following equality:

U–1 = UT. (20)

We can, therefore, express the positive semi-
definite matrix A as

A = UΛΛUT, (21)

where UTU = I are the normalized eigenvectors;
if they are not normalized, then UTU is a diagonal
matrix.

[
2 3
2 1

] [
2

−2

]

=
[−2

2

]

= −1×2

[
1

−1

]

.

2 ×
[

1
−1

]

=
[

2
−2

]

[
2 3
2 1

]

.

[
1

−1

]

[
0 1
0 0

]

A = UΛU−1

=
[

3 −1
2 1

] [
4 0
0 −1

] [
2 2

−4 6

]

=
[

2 3
2 1

]

.
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For example, the matrix

(22)

can be decomposed as

(23)

with

(24)

DDiiaaggoonnaalliizzaattiioonn

When a matrix is positive semi-definite, Equation
21 can be rewritten as follows:

(25)

This shows that we can transform the matrix A into
an equivalent diagonal matrix. As a consequence,
the eigendecomposition of a positive semi-definite
matrix is often referred to as its diagonalization.

AAnnootthheerr  DDeeffiinniittiioonn  ffoorr
PPoossiittiivvee  SSeemmii--DDeeffiinniittee  MMaattrriicceess

A matrix A is said to be positive semi-definite if we
observe the following relationship for any nonzero
vector x:

xTAx ≥ 0 ∀x (26)

(when the relationship is ≤ 0, the matrix is negative
semi-definite).

When all the eigenvalues of a symmetric matrix are
positive, the matrix is positive definite. In that case,
Equation 26 becomes

xTAx > 0 ∀x. (27)

Trace, Determinant, and Rank

The eigenvalues of a matrix are closely related to
three important numbers associated to a square
matrix, namely its trace, determinant, and rank.

TTrraaccee

The trace of a matrix A is denoted trace{A} and is
equal to the sum of its diagonal elements. For
example, with the matrix

(28)

we obtain

trace{A} = 1 + 5 + 9 = 5. (29)

The trace of a matrix is also equal to the sum of its
eigenvalues,

trace{A} = ∑∑
l

λ
l

= trace{ΛΛ}, (30)

with ΛΛ being the matrix of the eigenvalues of A. For
the previous example,

ΛΛ = diag{16.1168, – 1.1168,0}. (31)

We can verify that

trace{A} = ∑∑
l

λ
l

= 16.1168+(–1.1168) = 15. (32)

DDeetteerrmmiinnaanntt  aanndd  RRaannkk

Another classic quantity associated to a square
matrix is its determinant. This concept of determinant,
which was originally defined as a combinatoric notion,

A =
[

1 2 3
4 5 6
7 8 9

]

,

A = UΛUT ⇐⇒ Λ = UTAU.

⎡

⎣

√
1
2

√
1
2√

1
2 −

√
1
2

⎤

⎦

⎡

⎣

√
1
2

√
1
2√

1
2 −

√
1
2

⎤

⎦ =
[

1 0
0 1

]

.

A = UΛUT

=
⎡

⎣

√
1
2

√
1
2√

1
2 −

√
1
2

⎤

⎦
[

4 0
0 2

]
⎡

⎣

√
1
2

√
1
2√

1
2 −

√
1
2

⎤

⎦

=
[

3 1
1 3

]

,

A =
[

3 1
1 3

]
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plays an important role in computing the inverse of a
matrix and in finding the solution of systems of linear
equations (the term determinant is used because this
quantity determines the existence of a solution in
systems of linear equations). The determinant of a
matrix is also equal to the product of its eigenvalues.
Formally, if |A| is the determinant of A,

|A| = ∏∏
l

λ
l

with λl being the

l-th eigenvalue of A.
(33)

For example, the determinant of matrix A (from the
previous section) is equal to

|A| = 16.1168 × –1.1168 × 0 = 0. (34)

Finally, the rank of a matrix can be defined as
being the number of nonzero eigenvalues of the
matrix. In this example,

rank{A} = 2. (35)

For a positive semi-definite matrix, the rank corre-
sponds to the dimensionality of the Euclidean space,
which can be used to represent the matrix. A matrix
whose rank is equal to its dimensions is called full rank.
When the rank of a matrix is smaller than its dimen-
sions, the matrix is called rank-deficient, singular, or
multicollinear. Only full-rank matrices have an inverse.

Statistical Properties of
the Eigendecomposition

The eigendecomposition is important because it is
involved in problems of optimization. For example, in
principal component analysis, we want to analyze an
I × J matrix X, where the rows are observations and
the columns are variables describing these observa-
tions. The goal of the analysis is to find row factor
scores, such that these factor scores “explain” as much
of the variance of X as possible and the sets of factor
scores are pairwise orthogonal. This amounts to defin-
ing the factor score matrix as

F = XP, (36)

under the constraints that

FTF = PTXTXP (37)

is a diagonal matrix (i.e., F is an orthogonal matrix)
and that

PTP = I (38)

(i.e., P is an orthonormal matrix). There are several
ways of obtaining the solution to this problem. One
possible approach is to use the technique of
Lagrangian multipliers, where the constraint from
Equation 38 is expressed as multiplication by a diag-
onal matrix of Lagrangian multipliers, denoted ΛΛ, in
order to give the following expression:

ΛΛ(PTP–I). (39)

This amounts to defining the following equation:

L = FTF–ΛΛ(PTP – I) = PTXTXP–ΛΛ(PTP – I). (40)

To find the values of P that give the maximum val-
ues of L, we first compute the derivative of L relative
to P,

(41)

and then set this derivative to zero:

(42)

Because ΛΛ is diagonal, this is clearly an eigende-
composition problem, and this indicates that ΛΛ is the
matrix of eigenvalues of the positive semi-definite
matrix XTX ordered from the largest to the smallest
and that P is the matrix of eigenvectors of XTX asso-
ciated to ΛΛ. Finally, we find that the factor matrix has
the form

F = PΛΛ
1_
2. (43)

The variance of the factor scores is equal to the
eigenvalues

FTF = ΛΛ
1_
2PTPΛΛ

1_
2 = ΛΛ. (44)

Taking into account that the sum of the eigenvalues
is equal to the trace of XTX, this shows that the first
factor scores “extract” as much of the variance of the
original data as possible, that the second factor scores

XTXP − ΛP = 0 ⇐⇒ XTXP = ΛP.

∂L
∂P

= 2XTXP − 2ΛP,
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extract as much of the variance left unexplained by 
the first factor, and so on for the remaining factors.
Incidentally, the diagonal elements of the matrix ΛΛ

1_
2

that are the standard deviations of the factor scores are
called the singular values of matrix X.

—Hervé Abdi

See also Correspondence Analysis; Discriminant Analysis;
DISTATIS; Eigenvalues; Exploratory Factor Analysis;
Factor Analysis; Metric Multidimensional Scaling;
Multiple Correspondence Analysis; Multiple Factor
Analysis; Multivariate Analysis of Variance (MANOVA);
Partial Least Square Regression; Principal Component
Analysis; Singular and Generalized Singular Value
Decomposition; STATIS
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EIGENVALUES

Given a real (or complex) p × p matrix, A, for what
vectors, xp × 1 ≠ 0p × 1, and for what scalars, λ, is it true
that

Ax = λx ? (1)

A nonzero vector satisfying the above equality is
called an eigenvector (also characteristic vector or
latent root) of A, and the associated value, λ, is called
an eigenvalue (also characteristic root or latent root)
of A. Equation 1 holds if and only if

(A – λI)x = 0, (2)

where I is the p × p identity matrix. This equation rep-
resents a system of p equations in p unknowns, which
has a unique solution if and only if

det(A – λI) = 0, (3)

where Equation 3 is called the characteristic equation.
Thus, a square matrix of full rank will have p-unique
(i.e., different) eigenvalues λi, with associated eigenvec-
tors (normalized to have unit length) ei. Furthermore,
the set of p eigenvectors of order p × 1 are all mutually
orthogonal. If A is not of full rank, then some of the
eigenvalues will be redundant and equal zero.

In the social and behavioral sciences, the eigenval-
ues that researchers are usually most interested in are
those of the variance-covariance matrix, ∑∑ . Although,
in the absence of redundant variables, it is uncommon
to observe eigenvalues equal to zero, it is often the case
that some of the eigenvalues of ∑∑ will be close to zero.
Ordering the eigenvalues from largest to smallest,

λ1 ≥ λ2 ≥ . . . ≥ λp,

a primary interest is reducing the variable space from
p dimensions to k dimensions, where k is some dimen-
sionality that retains an adequate amount of the
variability present in the original dimensionality.
Furthermore, the original n × p data matrix, X, is
reduced to k-dimensional space by the operation Xn × p

eT
p × k = X*n × k. Thus, the k-transformed variables in X*

are each a linear combination of the original p vari-
ables. Finally, since all eigenvectors are orthogonal,
the transformed variables in X* are uncorrelated.

To understand the relevance of the data reduction
process, it is important to realize the following two
results:

and

The first result indicates that the larger eigenvalues
account for more of the variance in the p-dimensional
space, while the second result indicates that the origi-
nal variance-covariance matrix, ∑∑, can be represented
as a sum of p matrices all of size p × p (this decompo-
sition is known as the spectral decomposition).
Popular techniques such as principal components
analysis and some types of factor analysis (which often

Σ = λ1e1e′
1 + λ2e2e′

2 + . . . + λpepe′
p.

tr(Σ) =
p∑

i=1

�ii =
p∑

i=1

λi
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include rotation of the eigenvectors to introduce
interpretability and/or correlation into the reduced
dimensionality) reduce the number of dimensions from
p to k such that an adequate percentage of variance,

is explained. Some other multivariate techniques
relying on eigenvalues and eigenvectors are canonical
correlation, cluster analysis (some types), correspon-
dence analysis, multiple discriminant analysis, and
multivariate analysis of variance.

—Douglas Steinley

See also Factor Analysis; Multiple Factor Analysis
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EM ALGORITHM

One central goal of statistical inference is to estimate
parameters of a model. In a typical statistical analysis,
a likelihood function, L(data;θ), is used to describe the
relationship between the data and some unknown
parameters θ that control the behavior of the data. A
good estimate of θ is a value that maximizes the like-
lihood function, for example, the “most likely” value
supported by the data. This estimate is called the max-
imum likelihood estimate (MLE). In some cases, we
can find the MLEs analytically. But more often, we
need to use numerical methods. The EM algorithm is
one of the numerical techniques for this purpose.

The EM algorithm is an iterative algorithm for
finding the MLEs of the parameters when the data 
are incomplete. The term incomplete refers to two

situations: The first occurs when some of the data are
missing, due to difficulties in data collection process
for example. The second situation occurs when the
direct optimization of the likelihood function is
difficult but when latent parameters are added, the
problem becomes more tractable.

Although the two situations might sound different
in description, from a statistical point of view, they are
similar and share the same features. First, a complete
data set is divided into an “observed” part and an
“unobserved” part. The unobserved part can be either
missing or latent. Second, direct optimization of the
likelihood function based on the observed data might
be difficult, but it becomes manageable with the like-
lihood function based on the complete data. The EM
algorithm provides a bridge to find the MLEs of the
observed data using the complete data likelihood.

EM stands for expectation and maximization. They
are the two essential steps in the algorithm: the expec-
tation step (E-step) and the maximization step
(M-step). The intuition of the EM algorithm is simple:
We first guess the unobserved values using their
expected values (E-step) and then pretend the guessed
values were observed a priori and proceed to estimate
the parameters based on the complete data (M-step).
Because the M-step provides us with new estimates of
the parameters, we again guess the unobserved values
based on these new estimates. This iterative process is
repeated until convergence; for example, two consecu-
tive estimates of the parameters yield very close values.

This idea had been widely adapted in various disci-
plines for a long period of time, although the most fre-
quent citation of the EM algorithm was made by
Dempster, Laird, and Rubin in 1977. They provided a
rigorous framework to implement this idea: That is,
the correct procedure is not to impute the individual
unobserved observations, but instead the complete
data sufficient statistics, or more generally the (log)
likelihood function itself, by the conditional expecta-
tion given the observed data. There had also been
many similar formulations of the same idea prior to
this paper.

The formulation of the EM algorithm is as follows.
Let Yobs and Yunobs be the observed and unobserved
data, respectively. The observed data likelihood
is L(Yobs; θ), and the complete data likelihood is 

k∑

i=1
λi

tr(�)
,
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L(Yobs, Yunobs; θ). The EM algorithm obtains θ̂ for
L(Yobs; θ) via the following steps:

1. Take an initial guess of the parameter values θ (t),
with t = 0. 

2. E-step: Compute the conditional expected value of
the log of the complete data likelihood, log
L(Yobs,Yunobs; θ), given the observed data Yobs, assum-
ing θ = θ (t):

(1)

The expectation is calculated based on the density 

3. M-step: Determine a new value θ (t+1) that maximizes
Q(θ;θ(t)). 

Repeat Steps 1 and 2 until ||θ ( t+1) – θ (t)|| ≤ ε, where
ε is a certain predetermined precision value and 
represents a certain distance measure (for example, it
can be the Euclidean distance, or maximum absolute
difference between two vectors, if θ is high dimen-
sional). Once this criterion is satisfied, the EM algo-
rithm has converged.

The EM algorithm results in a sequence of θ (t) that
always increases the values of the likelihood function,

Verification of this is beyond
the scope of this entry. References can be found in
many standard textbooks.

In practice, this monotonicity property implies that
an EM algorithm can converge only to a local maxi-
mum of the observed likelihood function. Therefore,
it is essential to either choose a good starting value for
θ(0) or, if that is not possible, repeat the algorithm a
number of times with starting points that are far apart.
This would safeguard against the possibility of reach-
ing only a local maximum estimate.

We illustrate the algorithm using a simple example
adopted from Rao, from 1973. Suppose that the
complete data have five data points, y1, y2, y3, y4, y5,
and the data have a multivariate distribution with
probabilities

where 0 ≤ θ ≤ 1. The complete data likelihood
function is 

(2)

where

This is a straightforward estimation problem if all
the data points are available. We can obtain the MLE
of θ using Equation 2 by first taking the derivative
with respect to θ:

(3)

Setting Equation 3 to zero, we obtain a solution 
for θ:

(4)

However, suppose that instead of five data points, we
observe only four counts: Yobs = (y1 + y2, y3, y4, y5,) =
(125,18,20,34). The data point y1 (or y2) is not
observed directly. Based on these four data points, we
have an observed data likelihood function L(Yobs;θ):

(5)

L(Yobs; θ) ∝
(

1

2
+ θ

4

)y1+y2
(

1 − θ

4

)y3

(
1 − θ

4

)y4
(

θ

4

)y5

.

y2 + y5

y2 + y3 + y4 + y5
.

∂L(Yobs, Yunobs; θ)

∂θ
= (y2 + y5)

θ
− (y3 + y4)

1 − θ
.

N =
5∑

i=1

yi.

L (Yobs, Yunobs; θ)

= N !
5∏

i=1
yi!

(
1

2

)y1
(

θ

4

)y2

(
1 − θ

4

)y3
(

1 − θ

4

)y4
(

θ

4

)y5

,

(
1

2
,
θ

4
,

1 − θ

4
,

1 − θ

4
,
θ

4

)

,

L
(
Yobs; θ(t+1)

) ≥ L
(
Yobs; θ(t)

)
.

‖·‖

f
(
Yunobs|Yobs, θ = θ(t)

)
.

Q
(
θ; θ(t)

) = E[logL(Yobs, Yunobs; θ)|Yobs;
θ = θ(t)].
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We can still obtain the MLE of θ using Equation 5
by taking the derivative

(6)

setting it to zero, and solving for θ. However, instead
of working with a linear function based on Equation 3,
we now have a quadratic function in θ that is more dif-
ficult to obtain an answer to:

(y1 + y2)θ(1 – θ) + y5(2 + θ)(1 – θ) – (y3 + y4) θ(2 + θ) = 0. (7)

Here is a situation where it is easier to optimize
L(Yobs,Yunobs;θ), Equation 2, than L(Yobs;θ), Equation 5.
And this calls for the use of the EM algorithm.

The E-step works as follows. By Equation 1, given
the observed Yobs = {y1 + y2 = 125, y3 = 18, y4 = 20, y5

= 34} and θ (t), we have 

(8)

C represents a constant term in Q(θ; θ (t)) that is
independent of the parameter. Note the distribution 
of y2 given that y1+y2 = 125 follows a binomial 
(125, ). (That is, a binomial distribution with
125 number of trials and the “success” probability
being ). Hence,

The M-step is also easy. Using the same technique
as we used to find the MLE based on the complete
data likelihood (Equations 3 and 4), the maximum of
Equation 8 can be found at

We initialized the EM algorithm with a starting
value of θ (0) = 0.5 and used a stopping criterion of

Table 1 lists iteration numbers,
estimated values of θ (t), and stepwise differences. The
stopping criterion is satisfied after 10 iterations, with
θ̂  = 0.62682150. Different starting values of θ (0) do
not change the result.

Analytical solution of Equation 7 yields an MLE of
θ that is very close to the EM estimate:

Currently, there is no software that implements
the EM algorithm for a general problem, and almost

θ̂ = 15 + √
152 + 4 × 197 × 68

2 × 197
≈ 0.6268215.

∣
∣θ(t+1) − θ(t)

∣
∣ < 10−8.

θ (t+1) =
125 × θ(t)/4

1/2 + θ(t)/4
+ 34

125 × θ(t)/4

1/2 + θ(t)/4
+ 72

.

E
(
y2|y1 + y2 = 125; θ = θ(t)

)

= 125 × θ(t)/4

1/2 + θ(t)/4
.

θ/4

1/2 + θ/4

θ/4

1/2 + θ/4

Q(θ; θ(t))

= E
(
log L(Yobs, Yunobs; θ)|Yobs; θ = θ(t)

)

= E

{

C + y2 log

(
θ

4

)

+ (y3 + y4) log

(
1 − θ

4

)

+ y5 log

(
θ

4

)

|Yobs; θ = θ(t)

}

= C + E
(
y2|y1 + y2 = 125; θ = θ(t)

)
log

(
θ

4

)

+ E (y3 + y4|y3 = 18, y4 = 20) log

(
1 − θ

4

)

+ E (y5|y5 = 34) log

(
θ

4

)

= C + 125 × θ(t)/4

1/2 + θ(t)/4
log

(
θ

4

)

+ 38 × log

(
1 − θ
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+ 34 × log
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.

∂L(Yobs; θ)
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2 + θ
+ y5

θ
− y3 + y4

1 − θ
,
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Table 1 Estimated Values of θ in the EM Iterations

t θ (t) ⏐θ(t) − θ (t−1)⏐

0 0.50000000 —
1 0.60824742 0.1082474
2 0.62432105 0.01607363
3 0.62648888 0.002167829
4 0.62677732 0.0002884433
5 0.62681563 3.830976e-05
6 0.62682072 5.086909e-06
7 0.62682140 6.754367e-07
8 0.62682142 8.968368e-08
9 0.62682149 1.190809e-08

10 0.62682150 1.581141e-09



every problem requires both tailored implementations
and careful personal monitoring (e.g., starting values
and convergence). Although some problems can be
solved efficiently using high-level but relatively slow
statistical languages, such as R or Splus, more compli-
cated problems can potentially take a long time to
complete, both in human effort and in computational
resources. Various attempts have been proposed 
to improve the speed of the EM algorithm. One
direction involves the direct extension of the 
original EM algorithm. These approaches include 
the expectation-conditional maximization (ECM), the
expectation-conditional maximization either (ECME),
the space-alternating generalized EM algorithm
(SAGE), the alternating expectation-conditional max-
imization (AECM), and the parameter-expanded EM
algorithm (PX-EM). Another school of thought for
speeding up convergence is to combine EM with
various numerical acceleration techniques. These
approaches include combining EM with (a) Aitken’s
acceleration method, (b) Newton-type method, and (c)
conjugate-gradient acceleration method.

Finally, the EM algorithm presented in this entry
provides us with only an MLE of the parameter. There
exist modifications that augment the EM algorithm
with some computations to produce the standard
errors of the MLEs. The standard errors of the esti-
mates are often estimated via asymptotic theory.

—Jung-Ying Tzeng

See also Inferential Statistics
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EMBEDDED FIGURES TEST

The Embedded Figures Test (EFT) is a measure of
individual differences in how surrounding fields influ-
ence a person’s perception (i.e., the ability to avoid the
confusion of conflicting perceptual cues). Although
the EFT is a cognitive task, its relation to personality
is the primary interest. During his research on percep-
tion, Witkin noticed that people varied markedly in
their abilities to perform on the Rod and Frame Test
and in a task judging body orientation in a tilted room.
To demonstrate these same perceptual differences in a
paper-and-pencil format, Witkin chose materials
Gottschaldt used in his studies of the role of past
experiences in perception. For these materials, one
identifies a simple figure, previously seen, within a
larger, more complex figure. Witkin chose 8 of
Gottschaldt’s simple figures and 24 of his complex
figures. Preliminary experiments demonstrated an
insufficient number of difficult examples using this
material. Using the same principles of patterning to
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create new figures proved ineffective, so Witkin used
coloring to reinforce patterns. This obscured the
simple patterns and increased difficulty. The primary
goals in the final selection of materials for the EFT
were achieving a graded difficulty and containing
sufficient variety of simple figures to reduce the
potential for practice effects.

The EFT is administered individually and consists
of 24 trials, each using different complex figures and
never using the same simple figures in 2 successive
trials. During each trial, the figures are presented
separately in the sequence of complex figure, simple
figure, then complex figure. This pattern is used to
impress upon the participant the complex figure and
discourage the participant from concentrating on the
simple figure at its expense, thereby increasing diffi-
culty. The administrator notes the time at which the
participant verbally indicates he or she has identified
the simple figure and continues timing until the partic-
ipant successfully traces it within the complex figure.
The score is the time at which the participant verbally
indicates he or she has identified the simple figure,
provided it is confirmed correct. The total score is the
summation of the time to complete all trials. Lower
scores are considered field independent, and higher
scores are considered field dependent.

It has been shown that people are consistent across
trials in their abilities to locate simple figures, indicat-
ing that personal factors, not the structure of the field
alone, are responsible for the individual differences
observed. Also, Witkin noted a sex difference, with
men outperforming women. There are relationships to
other tests, including concept formation tests and
intelligence tests, which have generated debate as to
whether the EFT is a measure of cognitive ability or
cognitive style. Relationships to measures of general
intelligence support the ability thesis. Supporting the
style thesis, comparisons with the Vigotsky Test show
that field dependents are related to those who use the
perceptual approach and field independents are
related to those who use the conceptual approach.

—John R. Reddon and Shane M. Whippler

See also Personality Tests
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EQUIVALENCE TESTING

An equivalence test is a method of hypothesis testing
that is a variation of the more commonly used method
of significance testing. In significance testing, the idea
is to test a null hypothesis that two means are equal.
Rejecting the null hypothesis leads to the conclusion
that the population means are significantly different
from each other. Equivalence testing, on the other
hand, is used to test a null hypothesis that two means
are not equal. Rejection of the null hypothesis in an
equivalence test leads to the conclusion that the
population means are equivalent. The approach of
equivalence testing differs from the more familiar
hypothesis tests, such as the two-sample t test, where
rejection of the null is used to infer that the population
means are significantly different.

Equivalence testing originated in the fields of biosta-
tistics and pharmacology, where one often wishes to
show that two means are “equivalent” within a certain
bound. Many researchers often incorrectly conclude
that the failure to reject the null hypothesis in a standard
hypothesis test (such as a t test) is “proof” that the null
hypothesis is true and hence that the populations are
“equivalent.” This erroneous inference neglects the pos-
sibility that the failure to reject the null is often merely
indicative of a Type II error, particularly when the sam-
ple sizes being used are small and the power is low.

We will consider a common equivalence test known
as the two one-sided tests procedure, or TOST. It is a
variation of the standard independent-samples t test.
With a TOST, the researcher will conclude that the two
population means are equivalent if it can be shown that
they differ by less than some constant τ, the equiva-
lence bound, in both directions. This bound is often
chosen to be the smallest difference between the
means that is practically significant. Biostatisticians
often have the choice for τ made for them by govern-
ment regulation.
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The null hypothesis for a TOST is H0:|µ1–µ2| ≥ τ.
The alternative hypothesis is H1:| µ1–µ2| < τ.

The first one-sided test seeks to show that the dif-
ference between the two means is less than or equal
to −τ. To do so, compute the test statistic

where sp is the pooled standard deviation of the two
samples. Then, compute the p value as p1 = P(t1 < tv),
where tv has a t-distribution with η = n1+n2–2 degrees
of freedom.

Similarly, the second one-sided test seeks to show
that the difference between the two means is greater
than or equal to +τ. To do so, compute the test statistic

Compute the p value as p2 = P(t2 > tv). Then let p =
max(p1, p2) and reject the null hypothesis of nonequiv-
alence if p < α. 

Establishing equivalence between two treatments
or groups has applications not just in biostatistical and
pharmacological settings but also in many situations
in the social sciences. Many hypotheses currently
tested and interpreted with standard significance test-
ing should be approached with equivalence testing.

—Christopher J. Mecklin and Nathaniel R. Hirtz

See also Hypothesis and Hypothesis Testing; Null Hypothesis
Significance Testing
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ESSAY ITEMS

Essay items require the test taker to write a coherent
and informative response to a question, with the pur-
pose of assessing how well the test taker can organize
information and express his or her ideas in writing.

Essay questions can be open-ended (also called
unrestricted or extended) questions or closed-ended
(also called restricted) questions. An open-ended essay
question is one in which there are no restrictions on
the response, including the amount of time allowed
to finish, the number of pages written, or material
included. A closed-ended question is one in which
there are restrictions on a response.

Guidelines for writing an essay question are as
follows:

1. Adequate time should be allowed to answer the ques-
tion. By their very design, essay questions can take a
considerable amount of time to answer. Regardless
of whether an essay question is closed- or open-
ended, the test preparer must know how much time
will be allowed, as must the test taker.

2. The essay question needs to be complete and clear.

3. The same essay question should be administered to
all test takers. This reduces the burden placed on the
developer of the test questions in terms of time
needed to create more than one item but also reduces
the likelihood that questions on the same topic are of
different levels of difficulty.

Advantages and Disadvantages
of Using Essay Items

Essay items have several advantages. First, they are
the best way of finding out what the test taker knows
and also how well the test taker can relate ideas to
one another. Second, security is increased, since it is

t2 = x1 − x2 − τx2

sp

√
1/n1 + 1/n2

.

t1 = x1 − x2 + τx2

sp

√
1/n1 + 1/n2
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very difficult to plagiarize during an essay item
examination. Finally, and this is very important, if the
test constructor knows the material well, essay ques-
tions can effectively tap higher-order learning.

However, there are disadvantages to essay items as
well. First, they emphasize writing and do not neces-
sarily tap the test taker who is knowledgeable about
ideas and their relationships to one another but just
cannot express this in words. Second, it is difficult for
essay questions to adequately sample the entire uni-
verse of what the test taker might have learned. Third,
essay questions are not easy to score, with even a small
number of items and a small number of test takers
resulting in a large number of essays to read and grade.

Scoring Essay Items

Scorers should provide plenty of time to score an
essay item. Each item has to be read and then scored,
and often the scorer reads the items more than once,
the first time for a general overview of the content and
the second time for a more detailed analysis, includ-
ing an assessment of content (again) and writing skills
(such as grammar, transitions, and sentence usage).

A model of a correct answer should also be used
to serve as a basis for comparison. Having a model
greatly increases the likelihood that the scorer will
evaluate each answer fairly and have as objective a
standard as is possible, since the scorer can compare
what is there (the test taker’s response) to what should
be there (the model response).

All items should also be scored across all test tak-
ers. The model answer for Question #1, for example,
should be used to score Item #1 for all test takers. This
allows the scorer not only to make absolute judgments
in comparison to the model answer but also to make
relative judgments (if necessary) within any one item.

Finally, responses should be graded without know-
ing the test taker’s identity. Since there is a subjective
element that can enter into the grading of essay ques-
tions, not knowing who the test taker is (and avoiding
that possible bias) can be a great help.

— Neil J. Salkind

See also Multiple-Choice Items; Standards for Educational
and Psychological Testing
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Applying Ideas on Statistics and Measurement

The following abstract is adapted from Curren, 
R. R. (2004). Educational measurement and
knowledge of other minds. Theory and Research
in Education, 2(3), 235–253.

This article addresses the capacity of high-
stakes tests tomeasure the most significant kinds of
learning and discusses the value of several
different test items, such as multiple choice and
essay. It begins by examining a set of philosophi-
cal arguments pertaining to construct validity and
alleged conceptualobstacles to attributing specific
knowledge and skills to learners, and it continues
to examine the difficulties involved in combining
adequatevalidity and reliability in one test. The lit-
erature on test item formats is discussed as it
relates to the potential validity of multiple-choice
items, and the rater reliability of constructed-
response items (such as essay items) is addressed
through discussion of the methods used by the
Educational Testing Service and a summary report
of alternative methods developed by the author.

ESTIMATES OF THE

POPULATION MEDIAN

The median (θ ), the point on a scale below which 50%
of the observations fall, is an ancient but commonly
used measure of central tendency or location parameter
of a population. The sample median can be written as

MS = (1 – k)X(i) + kX(i+1), (1)

where i = [(n+1)/2] and k = {(n + 1)/2} are the whole
and decimal portions of the (n + 1)/2, respectively.

The sample median, however, suffers from several
limitations. First, its sampling distribution is intract-
able, which precludes straightforward development of
an inferential statistic based on a sample median.
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Second, the sample median lacks one of the funda-
mental niceties of any sample statistic. It is not the
best unbiased estimate of the population median.
Indeed, a potentially infinite number of sample statis-
tics may more closely estimate the population median.

One of the most commonly used competitors of the
sample median is the Harrell-Davis estimator, from
1982, which is based on Maritz and Jarrett, from
1978. Let X = (X1, . . . , Xn) be a random sample of size
n and X~ = (X(1),. . . , X(n)) be its order statistics (X(1) ≤
. . . ≤ X(n)). The estimator for pth population quantile
takes the form of a weighted sum of order statistics
with the weights based on incomplete beta function:

(2)

where the weights WHD
n,i can be expressed as

(3)

where i = 1, . . . , n.
An interesting property of Equation 3 is that the

resulting beta deviates represent the approximation of
the probability that the ith-order statistic is the value
of the population median. However, that observation
is irrelevant to the task of finding the best estimate of
the population median (or any specific quantile). In
other words, this observation neither proves that the
Harrell-Davis is the best estimator nor precludes the
possibility that other multipliers may be substituted
for Equation 3 in Equation 2 that produce a closer
estimate of the population median.

A new competitor was recently proposed by
Shulkin and Sawilowsky, in 2006, which is based on a
modified double-exponential distribution. Calculate
the weights Wn,i

AltExp in the following form:

The weights in Equation 4 can be interpreted as
the probability that a random variable falls between
–n/3 + 2(i – 1)/3 and –n/3 + 2i/3. The modified form
of the Laplace distribution used here was obtained
through a series of Monte Carlo minimization studies.
The estimate is calculated as a weighted sum,

(5)

There are two ways to judge which competitor is
superior in estimating the population median regard-
less of distribution or sample size. One benchmark is
the smallest root mean square error from the popula-
tion median. Another is the closeness to the popula-
tion median.

Let MP be the population median. Let NR be a
number of Monte-Carlo repetitions and Mj

i be the
median estimate by the jth method in ith repetition,
j = 1, . . . , NM. Here NM is the number of methods. Then,
mean square error (MSE) can be defined as follows:

(6)

Further, calculate deviation of each estimate from the
population median:

(7)

For each i = 1,…, NR. find a set of indexes I(j),
j = 1,…, NM, such that 

(8)

The rank-based error (RBE) can now be defined as
follows:

(9)

A Monte Carlo study was conducted to compare
these three sample statistics. The distributions that

ε
j

RBE =

NR∑

i=1
(I (j) − 1)/NM
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.
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MAltExp =
n∑

i=1

W
AltExp
n,i X(i).

WAltExp
n,i =

−n/3+2i/3∫

−∞

1

2
(1 + sgn(x)(1 − e−8|x|/n))dx

−
−n/3+2(i−1)/3∫

−∞

1

2
(1 + sgn(x)(1 − e−8|x|/n))dx,

where i = 1, . . . , n.

W HD
n,i = Ii/n((n + 1)/2, (n + 1)/2) − I(i−1)/n

((n + 1)/2, (n + 1)/2),

MHD =
n∑

i=1

W HD
n,i X(i) ,
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were sampled included the standard normal
(De Moivre or Gauss), uniform, exponential (µ = σ = 1),
chi-squared (df = 2), and Student’s t (df = 3). The
sample sizes were n = 5, 10, 15, 20, 25, 30, and 50.
Results showed that the modified double exponential
minimizes the mean square error from the population
median, followed by the Harrell-Davis estimator,
and, finally, the sample median. The modified dou-
ble exponential had the largest frequency of occur-
rences of being the closest to the population median,
with the Harrell-Davis and the sample median
obtaining fewer occurrences of being the closest,
respectively.

Example

Let X = (10, 12, 13, 15, 20) be a random sample of
size n = 5, drawn from an unknown population. The
task is to estimate the population median based on
these data points. X~ = (10, 12, 13, 15, 20) is its order
statistic.

SSaammppllee  MMeeddiiaann

The sample median is M = 13. This result is
available in most computer statistics packages. For
example, in SPSS, the commands are Analyze
| Descriptive Statistics | Explore.

HHaarrrreellll--DDaavviiss

The weights are available by taking expected
values for size n from the beta distribution. In this
example, the weights are WHD

n,1 = .0579, WHD
n,2 = .2595,

WHD
n,3 = .3651, WHD

n,4 = .2595, and WHD
n,5 = .0579. Thus,

MHD = .0579 × 10 + .2595 × 12 + .3651 × 13
+ . 2595 × 15 + .0579 × 20 = 13.4912.

MMooddiiffiieedd  DDoouubbllee  EExxppoonneennttiiaall

The weights are available in Shulkin, from 2006.
In this example, they are calculated as Wn,1

AltExp =.0662,
Wn,2

Alxp =.1923, Wn,3
AltExp = .4133, Wn,4

AltExp = .1923, and
Wn,5

AltExp = .0662. Thus,

MAltExp = .0662 × 10 + .1923 × 12 + .4133 × 13
+ .1923 × 15 + .0662 × 20 = 12.5539.

—Boris Shulkin and Shlomo S. Sawilowsky 

See also Measures of Central Tendency; Median
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ETHICAL ISSUES IN TESTING

All professional activities of psychologists, including
psychological testing, are governed by ethical stan-
dards and principles, such as the ethics code of the
American Psychological Association (APA). In this
entry, the discussion focuses on the ethical practice of
formal testing activities as outlined in the APA ethics
code.

Selection and Use of Tests

Before the first test item is administered, the evaluator
makes important decisions regarding the specific tests
to be employed with a particular client. When evalua-
tors select tests, they are ethically obligated to ensure
that the tests fall within their areas of competence. For
example, a psychologist trained exclusively to work
with children will probably be adequately trained to
administer children’s IQ tests but may need additional
training to reach a level of competence with adult IQ
tests. Also, tests should be selected for a particular
evaluation only if they are appropriate for the 
purpose of that evaluation. Similarly, evaluators
should select tests that are suitable for the client being
evaluated, especially considering the client’s age,
cultural background, and linguistic abilities. Thus, if
a psychologist’s task is to conduct a personality
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evaluation for which a popular test, such as the
Minnesota Multiphasic Personality Inventory-Second
Edition (MMPI-2), might be appropriate, the psychol-
ogist should be familiar with the age range restrictions
of the various versions of the adolescent and adult
forms of the test, as well as the languages in which it
is available.

Evaluators should select tests that have established
reliability and validity. If no such test is available and
the evaluator chooses to use a test with questionable
or unknown reliability and validity, this fact should be
noted in the report of the results. Likewise, evaluators
should use tests in accordance with the purpose and
administration procedure outlined in the tests’ manu-
als. This is particularly important with standardized
face-to-face tests, such as the Wechsler IQ tests,
where uniform administration and scoring are essen-
tial to the validity of the test results.

Informed Consent Regarding Testing

Also, before the first test item is administered, the
evaluator is ethically obligated to obtain informed
consent from the client or from his or her legal
guardian, when appropriate. This obligation stands
unless the testing is mandated by law or governmental
regulations or in other isolated cases, as explained in
the APA ethics code. Even when it is not necessary to
obtain informed consent, ethical evaluators still
inform clients about the testing activities they are
about to undergo. In practice, there is some variability
among evaluators regarding the specific information
they present to a client prior to testing, but in general,
this process should include an explanation of the
nature and purpose of the testing, any costs or fees,
the involvement of third parties (such as third-party
payers, legal authorities, or employers), and the limits
of confidentiality. In testing situations, confidentiality
may be limited by state laws involving a psycholo-
gist’s “duty to warn” or mandated child abuse report-
ing. Typically in these cases, a psychologist who,
during testing, discovers that a client intends to cause
harm to himself or herself or another individual or that
a child is being abused breaks confidentiality in order
to protect the individual at risk. It is also important to
discuss the limits of confidentiality with minors and

their parents or guardians, especially regarding the
access to testing information that the parents or
guardians may have.

Clients should be informed about testing in lan-
guage they can understand, and their consent should
be voluntary rather than coerced. Moreover, the eval-
uator is ethically obligated to give the client an oppor-
tunity to ask questions and receive answers about the
testing process before it begins. Generally, it is impor-
tant to ensure that the client is adequately informed
and agreeable to the testing process before beginning.

The Test Itself

When the creators of psychological tests design,
standardize, and validate their tests, they should use
appropriate psychometric procedures and up-to-date
scientific knowledge. Test developers should also aim
to minimize test bias as much as possible and should
create a test manual that adequately educates test
administrators about when, how, and with whom the
test should be used.

Evaluators are ethically obligated to avoid obsolete
tests. A test may become obsolete when it is replaced
by a revision that represents a significant improve-
ment in terms of psychometrics, standardization, or
applicability. For example, both the child and adult
versions of the Wechsler intelligence tests have been
repeatedly revised, with each new edition superseding
the previous edition. Likewise, the original Beck
Depression Inventory was made obsolete when a
revised edition was created in the 1990s to better
match depression symptoms as listed in the revised
Diagnostic and Statistical Manual of Mental
Disorders (DSM-IV). In other cases, a test may be
become obsolete without being replaced by a more
current edition. Several projective tests created in the
first half of the 20th century may fit this description,
either because their standardization sample has
become antiquated or because they no longer meet
professional standards for reliable and valid tests.

Like tests themselves, the data obtained via tests
can become outdated as well. For example, data
collected during a child’s learning disability evalu-
ation via intelligence or achievement test remains
applicable to the child for only a limited period of
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time. As time passes, the child’s development and
education warrant that similar tests be readministered.
Likewise, data obtained via neuropsychological test-
ing may remain accurate for only a limited period
of time. After this period, its optimal use may be
for comparison to data collected more recently via
similar tests.

Qualifications of the Evaluator

Psychological testing should be conducted only by
individuals with appropriate qualifications. The
evaluator must have competencies specific to the test
and the client in question; merely possessing a license
to practice psychology does not support unlimited use
of psychological tests. An important exception to this
rule is the psychological trainee under supervision.
Such individuals can conduct testing for training
purposes but should do so with supervision suitable
to their levels of training and should inform the peo-
ple they evaluate (or their parents or guardians) of
their status.

Scoring and Interpretation

When scoring or interpreting psychological test
results, evaluators should consider client-specific vari-
ables, such as situational, linguistic, ethnic, and cul-
tural factors. Notes regarding interpretations made in
these contexts should be included in the report.

If a psychologist utilizes a scoring or interpretation
service in the process of an evaluation, the psycholo-
gist should ensure that the procedure is valid for the
purpose of the particular test or evaluation. Even if the
scoring or interpretation was completed by another
person (or computer service), the psychologist con-
ducting the evaluation retains professional responsi-
bility. Those offering scoring or interpretation services
to other professionals should nonetheless create reli-
able and valid procedures and should accurately
describe their purpose, method, and applications.

Use of Test Results

Although previous editions of the APA ethics code
generally prohibited the release of raw test data to

clients, the most recent edition obligates psycholo-
gists to release test data to clients (with a signed
release from the client) unless substantial harm or
misuse can be reasonably expected. In this context,
test data include client responses to test items but not
the stimuli, questions, or protocols that elicited the
responses. This category also includes raw and scale
scores as well as notes about the client’s behavior dur-
ing the testing. Without a release signed by the client,
psychologists should maintain the confidentiality of
test data unless required by law or court order to pro-
vide these data. It is important for those conducting
testing to be familiar with state laws governing these
issues, as well as relevant ethical standards.

In most cases, clients will not seek their own test
data. Nonetheless, all clients are entitled to receive
feedback regarding their test results. In general, ethi-
cal evaluators provide an intelligible explanation to
clients (or their parents or guardians) regarding their
test results, the meaning of these results, and their
possible implications or consequences. In some
circumstances (such as some forensic evaluations or
organizational assessments), this feedback or explana-
tion procedure may be precluded; in these cases, the
evaluator should inform the client during the informed
consent procedure that no explanation of results will
be forthcoming.

Test Security

Psychologists and others who administer psychologi-
cal tests are ethically bound to maintain the security of
these tests. The APA ethics code requires that reason-
able efforts should be taken to maintain the integrity
and security of test materials. Individual test takers
should not be able to access and review psychological
tests before the test administration. When individuals
have prior access to tests, test questions, or test
answers, the psychometric integrity of the tests is
compromised. For example, if a person were to have
access to the questions contained in an IQ test before-
hand, the individual’s test scores could be artificially
inflated. Such prior access to test materials would
make the test administration invalid. This breach in
test security could lead to a gradual weakening in the
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validity of the test in question if the test stimuli were
shared with other potential test takers.

Professionals who are responsible for psychologi-
cal tests should take reasonable steps to make sure
that individuals are not able to review tests before
administration, keep scoring keys and test materials
secure, and not allow unqualified individuals access to
test materials. Copyright law should also be consid-
ered before test materials are published or disclosed.
Before any portion of a copyrighted test is repro-
duced, permission should be gained from the pub-
lisher or copyright holder.

The security of test materials may be compromised
by publishing test materials in scholarly writing,
including test materials in court records, maintaining
poor control of test materials in academic settings,
and the unauthorized distribution or publications of
the test materials through Web sites and other means.
Reproducing test materials in scholarly writing could
compromise test security if test items or stimuli were
included in the publication. Caution should be exer-
cised in such cases to maintain test security and
adhere to copyright laws. Controlling the security of
tests in court settings may be obtained by asking the
court to restrict the release of subpoenaed test materi-
als to a psychologist or other individual bound by the
applicable ethical standards. Tests can be kept secure
in academic settings by keeping them in a secure area
and by allowing only those individuals who have been
deemed competent test users to have access to the
tests. However, even highly trained individuals may
at times be unaware of the guidelines promulgated
by test publishers that identify the different levels
of training necessary for competent test use. For
example, some social science researchers may use
psychological tests in research that were designed
for use primarily in clinical settings. However, these
researchers may be unaware of the ethical guidelines
that control the security of these tests. Tests designed
for clinical purposes that are used in research should
be maintained at a high level of security.

The Internet provides an easy method for the unau-
thorized distribution of test materials by individuals
who are not competent test users. Furthermore,
nonprofessionals are not bound by the same ethical

standards as psychologists and other test users. The
unauthorized distribution or publication of test mate-
rials may not be under the control of test administra-
tors, but test users are responsible for taking steps
to avoid any opportunity for test materials and test
scores to be obtained by fraudulent means.

—Andrew M. Pomerantz and Bryce F. Sullivan

See also Educational Testing Service; Ethical Principles in the
Conduct of Research With Human Participants; Standards
for Educational and Psychological Testing
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ETHICAL PRINCIPLES

IN THE CONDUCT OF RESEARCH

WITH HUMAN PARTICIPANTS

Ethics is the study of assumptions believed to assist in
distinguishing between right and wrong for the pur-
pose of making sound moral judgments. Ethical prin-
ciples are standards or rules that may serve as policy
for determining modes of action in situations that
involve or require moral judgment and decision
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making. The conduct of scientific research using
human participants necessarily involves ethical deci-
sion making and is rife with potential for ethical con-
flict. Largely in response to flagrant occurrences of
unethical research with human participants, profes-
sional organizations and government agencies began
specifying ethical principles to guide researchers in
the mid-20th century. These principles vary somewhat
but typically emphasize beneficence and nonmalefi-
cence; fidelity, responsibility, and trust; integrity;
justice; and respect for the dignity and autonomy of
persons. The complexities of many ethical decisions
require more than the rigid application of rules;
researchers are responsible for using sound, well-
reasoned judgment in planning and implementing
research in a way that maximizes benefits, minimizes
harm, and promotes the dignity and worth of all
human participants.

History

Although ethical considerations have influenced
researchers on an informal and individual basis
throughout history, the first formal recognition of the
importance of ethical principles in research occurred
in 1947, after the Nuremberg Trials of Nazi war crim-
inals. These trials revealed to the public that during
World War II, physicians and scientists had conducted
biomedical experiments on involuntary participants
drawn from Nazi concentration camps. Some of these
experiments were designed to assess human responses
to poisons, extreme temperatures, and infections, and
they essentially resembled torture. Noting that there
was at the time no international law or ethics code to
refer to in addressing such egregious treatment of
human participants, Leo Alexander, an American
physician and consultant to the prosecution during
the trials, submitted a report that presented standards
for legitimate, ethical research. This report formed
the basis of the subsequently developed Nuremberg
Code, the first formal code of ethical principles
addressing the conduct of research with human partic-
ipants. The Nuremberg Code emphasized principles
such as informed consent, avoidance of harm, the
necessity of researchers having appropriate training,
and freedom of participants to withdraw at any time.

The Nuremburg Code played a significant role in
shaping the content of ethical guidelines published
by professional organizations such as the American
Psychological Association (APA). The APA first pub-
lished a general ethics code for psychologists in 1953.
In 1966, APA established an ad hoc committee to fur-
ther examine research ethics. In 1973, the committee
published a booklet titled “Ethical Principles in the
Conduct of Research With Human Participants.” This
booklet, along with APA’s general ethical guidelines,
has subsequently undergone revision. The most recent
APA ethics code, which includes guidelines for
research, was published in 2002.

The Nuremberg Code also influenced federal regu-
lations that were set forth by the U.S. Congress in 
the National Research Act of 1974. This legislation
created a National Commission for the Protection
of Human Subjects in Biomedical and Behavioral
Research and required the formation of an institutional,
or internal, review board (IRB) by every university or
other organization that receives federal funds for
research. The purpose of the IRB is to review proposals
for research with the aim of preventing ethically ques-
tionable studies from being conducted with human
participants. During the mid-1970s, the National
Commission held hearings on a series of ethically prob-
lematic research efforts, including the Tuskegee
Syphilis Study, which examined the degenerative
course of syphilis in rural, underprivileged African
American males by deliberately withholding treatment
of the disease. These hearings led the National
Commission to develop specific recommendations for
research with human participants, published in “The
Belmont Report,” which set the framework for federal
regulation of research. The U.S. Department of Health
and Human Services issued a set of regulations in 1981,
called “Protection of Human Subjects.” This document
and its subsequent revisions have continued to empha-
size the principles of beneficence, justice, and respect
for persons, as outlined in the Belmont Report.

Philosophical Approaches
to Ethical Decisions

The ethical guidelines currently in use by biomedical
and behavioral research communities have the
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Western philosophical underpinnings of the deonto-
logical and utilitarian traditions. The deontological
tradition, based on the assumption that ethics reflects
a universal moral code, emphasizes respect for the
autonomy of the individual. The utilitarian tradition,
based on the assumption that moral judgments depend
on the consequences of particular actions, emphasizes
an optimal balance of the possible harms and potential
benefits to people. The shared goal embedded in these
approaches is to uphold the welfare and protection
of individuals and groups by respecting the intrinsic
worth and dignity of all persons and by carefully
weighing the pros and cons of potential courses
of action.

Cost-Benefit Considerations

Ethics codes such as those adopted by the APA gener-
ally emphasize utilitarian considerations guiding ethi-
cal decision making with respect to research. That is,
instead of specifying a concrete set of rules, the guide-
lines require that researchers engage in a cost-benefit
analysis before conducting a particular study. There
are a number of possible costs of conducting research
with human participants. Costs to participants may
include their time, resources, and effort; possible
injury, stress, anxiety, pain, social discomfort, and
threats to self-esteem; and the risk of breached confi-
dentiality. Other costs of research include the use
of resources and monetary expenses required for
salaries, equipment, and supplies, and possible detri-
ment to the profession or to society, as in the case of
an experimental treatment that unintentionally harms
participants and causes distrust toward behavioral
research.

These costs must be weighed against the possible
benefits of the research. Such benefits include the
advancement of basic scientific knowledge; the
improvement of research or assessment methods; ben-
efits for society, such as improved psychotherapy
techniques or enhanced classroom teaching and learn-
ing processes; benefits for researchers and research
trainees, such as increased knowledge and advance-
ment toward professional and educational goals; and
benefits for research participants, such as when a
study testing an experimental treatment for depression

helps participants become less depressed. Researchers
bear responsibility to society, science, students and
trainees, and research participants. The main focus
of the current ethical guidelines for research is on
responsibility to participants, but this responsibility
must always be held in balance with researchers’ other
three responsibilities.

Five Ethical Principles for Research
With Human Participants

There are five general principles in the 2002 APA
ethics code designed to “guide and inspire psycholo-
gists toward the very highest ethical ideals of the pro-
fession.” These principles include beneficence and
nonmaleficence (i.e., benefit people and do no harm);
fidelity and responsibility; and integrity, justice, and
respect for people’s rights and dignity. The Belmont
Report identified three basic ethical principles when
conducting research: respect for persons, justice, and
beneficence. The following are five basic ethical
principles presented in the order of the general princi-
ples in the APA code that apply specifically to
conducting biomedical and behavioral research with
human participants.

PPrriinncciippllee  11::  BBeenneeffiicceennccee
aanndd  NNoonnmmaalleeffiicceennccee

Representing the utilitarian tradition, this principle
requires that researchers, using considerations such as
those described above, strive to maximize potential
benefits while minimizing risks of their research.
Although the cost-benefit mandate seems straightfor-
ward, it is rarely unambiguous in practice because
costs to participants and benefits to the profession
and to society are difficult to accurately estimate in
advance and no universally agreed-upon method or
criteria exist for optimally balancing the two. Where
questions arise related to the degree of risk,
researchers are responsible for seeking ethical advice
and implementing safeguards to protect participants.
Risks that are identified in advance must be commu-
nicated to prospective research participants or their
legal equivalent, and informed consent must be
obtained (except in special cases approved by the
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IRB, such as research involving a placebo control, in
which fully informed consent compromises a scientif-
ically required research design). Sometimes research
presents risks to groups of people or social institu-
tions. No consensus exists for whether a representa-
tive can provide consent on behalf of a collective
entity, but full compliance to Principle 1 requires
sensitivity to this issue.

PPrriinncciippllee  22::  FFiiddeelliittyy,,
RReessppoonnssiibbiilliittyy,,  aanndd  TTrruusstt

This principle requires researchers to establish and
maintain a relationship of trust with research partici-
pants. For example, before individuals agree to partic-
ipate in research, investigators must be clear and
explicit in describing to prospective participants what
they will experience and what consequences may
result from participation. Researchers also are oblig-
ated to honor all promises and commitments that
are made as part of the agreement to participate.
When full disclosure is not made prior to obtaining
informed consent (e.g., information germane to the
purpose of the study would compromise its validity),
safeguards must be implemented to protect the wel-
fare and dignity of participants. In general, procedures
that involve concealment or deception in a research
design can be implemented only after rigorous criteria
for the necessity of such procedures are met and the
study is approved by the IRB. (Such instances also
require a thorough debriefing of participants at the
conclusion of their participation.) When children or
adults with limited understanding serve as partici-
pants, researchers must implement special protective
safeguards. When unintended negative consequences
of research participation occur, researchers are oblig-
ated to detect, remove, and/or correct these conse-
quences and ensure that they do not persist over time.
Understandably, past ethical breaches have resulted in
what some describe as widespread mistrust of bio-
medical and behavioral research in contemporary
society. Principle 2 requires researchers to make every
effort to foster trust and avoid causing further public
mistrust.

PPrriinncciippllee  33::  IInntteeggrriittyy

This principle requires researchers to “do good
science,” to truthfully report their results, to take rea-
sonable steps to correct errors that are discovered, to
present work that is their own (or to otherwise make
appropriate citations), to take responsibility and credit
only for work that is their own, to avoid “piecemeal
publication” (i.e., submitting redundant analyses of a
single data set for multiple publications), to share data
on which results are published with other qualified
professionals provided they seek only to verify sub-
stantive claims and do not use the data for other any
other purpose, and to respect the proprietary rights of
others engaged in the scientific enterprise.

PPrriinncciippllee  44::  JJuussttiiccee

In following this principle, researchers strive for
two forms of justice. The first, distributive justice,
requires psychologists to entitle all persons equal
access to the benefits of research, as well as to ensure
that the risks for harm from research are not dispro-
portionately greater for a particular group or category
of persons within society. The second, procedural jus-
tice, refers to the adequacy of research procedures to
ensure fairness, such as when easily accessible mech-
anisms are made available to participants to address
any concerns they may have related to their participa-
tion in research.

Researchers also are promoting Principle 3 when
they attend to the special concerns of underrepre-
sented groups in developing programs of research, so
as to avoid continued underinclusion and lack of
representation in the knowledge base.

PPrriinncciippllee  55::  RReessppeecctt  ffoorr
tthhee  DDiiggnniittyy  aanndd  AAuuttoonnoommyy  ooff  PPeerrssoonnss

Representing the deontological tradition, this prin-
ciple asserts that researchers respect research partici-
pants as human beings with intrinsic worth, whose
participation is a result of their autonomous choices.
The implications of this principle are far-reaching and
relate to matters of obtaining informed consent,
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avoiding coercive and deceptive practices, upholding
confidentiality and privacy, and preserving the self-
determination of participants. In abiding by this prin-
ciple, psychologists are also aware of and respect
individual differences, including those influenced by
gender, age, culture, role, race, ethnicity, sexual orien-
tation, religious identity, disability, linguistic back-
ground, economic status, or any other characteristic
related to group membership.

Ethical Conflicts and
Decision Making

The potential for ethical conflict is ubiquitous in bio-
medical and behavioral research. When making eth-
ical decisions about research, it may be prudent to
develop a systematic approach to reviewing all rele-
vant sources of ethical responsibility, including one’s
own moral principles and personal values; cultural
factors; professional ethics codes, such as the APA
code; agency or employer policies; federal and state
rules and regulations; and even case law or legal
precedent. A process-oriented approach to ethical
decision making may involve some variation of the
following: (1) writing a description of the ethically
relevant parameters of the situation; (2) defining the
apparent dilemma; (3) progressing through the rele-
vant sources of ethical responsibility; (4) generating
alternative courses of action; (5) enumerating poten-
tial benefits and consequences of each alternative;
(6) consulting with the IRB, relevant colleagues,
and/or legal professionals; (7) documenting the pre-
vious six steps in the process; and (8) evaluating and
taking responsibility for the results of the course of
action selected. As previously mentioned, all
research studies must be approved by the relevant
IRB. However, approval of a research proposal by an
IRB does not remove the mandate of ethical respon-
sibility from the researcher. In making ethical
decisions, researchers should consider the likeli-
hood of self-serving bias that can lead to overestima-
tion of the scientific value of a proposed study and
underestimation of its risks.

Conclusion

Scientific research with human participants is an
inherently ethical enterprise, and ethical conflicts in
research are virtually inevitable. Researchers who exer-
cise the privilege to conduct research with human par-
ticipants bear the responsibility of being familiar with
and abiding by the ethical principles and relevant rules
and regulations established by their professional orga-
nizations and by federal and state governments.
However, rigid application of rules is not a substitute
for well-reasoned, responsible ethical decision making.

—Bryan J. Dik

See also Ethical Issues in Testing; Standards for Educational
and Psychological Testing
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EVIDENCE-BASED PRACTICE

The quest to determine what works in psychotherapy
is a critical one. Evidence for therapeutic interven-
tions can be defined in many ways. Building consen-
sus on the definition of evidence and ensuring that
evidence-based practice (EBP) in psychology recog-
nizes not only the research but also the clinician’s
expertise and the patient’s preferences, values, and
culture is important to providing quality patient care
and to the future of the profession of psychology.
Some psychologists believe that psychological inter-
ventions should be based solely on randomized
clinical trials, while others claim that other forms of
evidence have their value. Regardless of their posi-
tions, most psychologists recognize that the EBP
movement in U.S. society is a juggernaut, racing to
achieve accountability in medicine, psychology,
education, public policy, and even architecture. The
zeitgeist is to require professionals to base their prac-
tice on evidence to whatever extent possible.

The American Psychological Association (APA)
developed and adopted a policy statement and
received a longer report on EBP in psychology at the
meeting of its Council of Representatives in August
2005. The policy statement was based on the three
components of the Institute of Medicine definition of
EBP in medicine. Thus, the APA statement on EBP in
psychology aimed to affirm the importance of attend-
ing to multiple sources of research evidence and to
assert that psychological practice based on evidence
is also based on clinical expertise and patient values.
The statement begins, “Evidence-Based Practice in
Psychology . . . is the integration of the best available
research with clinical expertise in the context of
patient characteristics, culture and preferences.”

1. The APA policy statement has a broad view of
research evidence, including multiple research
designs, research in public health, health services
research, and health care economics, while recogniz-
ing that there is a progression of evidence.

2. The APA policy statement explicates the competen-
cies that make up clinical expertise. It also defines

the appropriate role of clinical expertise in treatment
decision making, including attention to both the mul-
tiple streams of evidence that must be integrated by
clinicians and to the heuristics and biases that can
affect clinical judgment.

3. The APA policy statement articulated the role of
patient values in treatment decision making, includ-
ing the consideration of the role of ethnicity, race,
culture, language, gender, sexual orientation, reli-
gion, age, and disability status and the issues of treat-
ment acceptability and consumer choice.

The statement concludes,

Clinical decisions should be made in collaboration
with the patient, based on the best clinically relevant
evidence and with consideration of the probable costs,
benefits, and available resources and options. It is the
treating psychologist who makes the ultimate judg-
ment regarding a particular intervention or treatment
plan.

—Ronald F. Levant

See also Ethical Principles in the Conduct of Research With
Human Participants
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EXCEL SPREADSHEET FUNCTIONS

A spreadsheet function is a predefined formula. Excel,
the most popular spreadsheet, has several categories
of functions, including one labeled statistical.

One of the most simple of these functions is
AVERAGE, which computes the average of a set of
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Table 1 Excel Functions That Perform Statistical Operations

The Function Name What It Does

AVERAGE Returns the average of its arguments
CHIDIST Returns the one-tailed probability of the chi-squared distribution
CHITEST Returns the test for independence
CORREL Returns the correlation coefficient between two data sets
FDIST Returns the F probability distribution
FORECAST Returns a value along a linear trend
FREQUENCY Returns a frequency distribution as a vertical array
FTEST Returns the result of an F test
GEOMEAN Returns the geometric mean
KURT Returns the kurtosis of a data set
LINEST Returns the parameters of a linear trend
MEDIAN Returns the median of the given numbers
MODE Returns the most common value in a data set
NORMDIST Returns the normal cumulative distribution
NORMSDIST Returns the standard normal cumulative distribution
PEARSON Returns the Pearson product moment correlation coefficient
QUARTILE Returns the quartile of a data set
SKEW Returns the skewness of a distribution
SLOPE Returns the slope of the linear regression line
STANDARDIZE Returns a normalized value
STDEV Estimates standard deviation based on a sample
STDEVA Estimates standard deviation based on a sample, including numbers, text, and logical values
STDEVP Calculates standard deviation based on the entire population
STDEVPA Calculates standard deviation based on the entire population, including numbers, text, and

logical values
STEYX Returns the standard error of the predicted y-value for each x in the regression
TDIST Returns the student’s t distribution
TREND Returns values along a linear trend
TTEST Returns the probability associated with a student’s t test
VAR Estimates variance based on a sample
VARA Estimates variance based on a sample, including numbers, text, and logical values
VARP Calculates variance based on the entire population
VARPA Calculates variance based on the entire population, including numbers, text, and

logical values

values. For example, the following statement averages
the numbers in cells A1 through A3:

= AVERAGE(A1:A3)

The name of the function is AVERAGE, and the argu-
ment is A1:A3n.

A similar common function produces the sum of a
set of cells as follows:

= SUM(A1:A3)

In both cases, the results of these calculations are
placed in the cell that contains the statement of the



function. For example, to use the SUM (or any other)
function, follow these steps:

1. Enter the function in the cell where you want the
results to appear.

2. Enter the range of cells you want the function to
operate on.

3. Press the Enter key, and there you have it. Figure 1
shows the function, the argument, and the result.

Functions can be entered directly when the name of
the function and its syntax are known or using the
Insert command. Some selected Excel functions that
perform statistical operations are shown in Table 1.

—Neil J. Salkind

See also Spreadsheet Functions

Further Reading

Instruction on using spreadsheet functions: http://spread
sheets.about.com/od/excelfunctions/

EXPLORATORY DATA ANALYSIS

Exploratory data analysis (EDA) looks at data to
see what they seem to say. The distribution of the
observed data is examined without imposing an arbi-
trary probability model on it. We look for trends, such
as patterns and linear or nonlinear relationships

between variables, and deviations from the trends,
such as local anomalies, outliers, or clusters. This
facilitates discovering the unexpected as well as con-
firming suspicions, rather like detective work.

EDA is sometimes viewed as a grab bag of tools,
but this is a misconception. It is more accurate to view
EDA as a procedure for data analysis. We start from a
set of expectations or specific questions arising from
the data context and explore the data with these in
mind, while remaining open to observing unexpected
patterns. The approach involves making many plots
and numerical models of the data. Plots allow us to
examine the distribution of the data without an
imposed probability model; thus, statistical graphics
form the backbone of EDA. Plots provide simple,
digestible summaries of complex information that
enable discovering unexpected structure. With the
assistance of techniques such as bootstrapping, per-
mutation, and model selection methods, we can assess
whether the observed patterns in the data are more
than random noise.

EDA is different from confirmatory statistical
analysis. In confirmatory analysis, we start from a
hypothesis and work to confirm or reject the hypothe-
sis. EDA is a hypothesis discovery process. EDA pro-
vides approximate answers to any question of interest,
instead of an exact answer to the wrong question. In
the process of exploration, the data may suggest
hypotheses, leading to follow-up confirmatory analy-
sis with new data.

Methods in common usage that have arisen from
EDA include the boxplot, stem-and-leaf plot, median
polish, and projection pursuit.

History

The term exploratory data analysis was coined by
John W. Tukey, and it is the title of his landmark book,
published in 1977. It is a very idiosyncratic book,
jam-packed with ways to make calculations on and
draw pictures of data with paper and pencil. It is full
of opinions, such as the following:

Pictures based on the exploration of data should
force their messages upon us. Pictures that empha-
size what we already know—“security blankets” to
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reassure us—are frequently not worth the space they
take. Pictures that have to be gone over with a read-
ing glass to see the main point are wasteful of time
and inadequate of effect. The greatest value of a pic-
ture is when it forces us to notice what we never
expected to see.

Such opinions communicate a wisdom learned
from experiences with data. The intensity of this writ-
ten work, emphasized by bold and italic typeface,
communicates practical advice on working with data.
This integral component of Tukey’s conceptualization
of EDA is unfortunately missing from later treatments
of EDA, which tend to make EDA look like a loose
collection of ad hoc methods. In 2001, Salsburg pub-
lished an easy-reading biography of Tukey’s contribu-
tions on EDA in the context of other major statistical
developments of the previous century.

Tukey places credit for the EDA ideas with Charles
P. Winsor, who taught him “many things about data
analysis that weren’t in the books.” Practical issues of
data analysis traverse the history of statistics. Data
analysts evince the value of exploring data to see what
they seem to say. EDA both descends from these mat-
ters and transcends them. IDA is the necessary prior
data inspection to check that the assumptions required
for formal analysis are satisfied by the data. Checking
the data quality early in the analysis may save some
red faces later. EDA is about the data for its own sake.
There may be no need or desire for further analysis.
Tukey’s book may drown the reader in the author’s
thrill of pushing methodology in intricate dimensions,
but ultimately, EDA is about the data. The methods
are the tools used to dissect the data, which EDA
borrows from and lends to IDA.

The Evolution of EDA

Tukey produced all of his scratched-down numbers
and pictures using pencil and paper, but today, as he
predicted, the computer is invaluable for EDA. EDA
has evolved from a pencil-and-paper activity on
tiny data sets to highly sophisticated algorithms
and interactive computer-generated graphics on any
size of data and any complexity of data. Software, a
word coined by Tukey, such as R enables rapid data

calculations and making pictures easy. Software such
as GGobi and Mondrian supports the use of interac-
tive and dynamic graphics for exploring data, and
emerging packages for R, such as iPlots, iSPlot, and
RGtk, are enabling the integration of dynamic graph-
ics with numerical analyses. We might call this
computer-dependent approach “the new EDA.” It
remains heavily dependent on statistical graphics.

EDA has expanded in many directions. For data
with a spatial context, EDA has matured into
exploratory spatial data analysis (ESDA). New diag-
nostic statistical quantities, such as local indicators for
spatial dependence, and graphics, such as variocloud
plots, help to find observations that are unusual in the
context of their spatial neighbors. Robust methods for
downweighting contamination have evolved from
median polish to the expansive field of robust statis-
tics. Quite ironically, robust approaches are some-
times described as relieving the data analyst from the
task of inspecting the data. For large electronically
stored databases, algorithms have emerged to mine
the data for information. Examples of these algo-
rithms are trees, forests, neural networks, and support
vector machines. A statistical treatment of the area can
be found in the publication by Hastie, Tibshirani, and
Friedman, in 2001, including the application of boot-
strapping methods to evaluate uncertainty.

EDA is permeating through statistics education. For
example, introductory statistics courses, such as can
be found in the publication by DeVeaux, Velleman,
and Bock, in 2005, have been reframed to present sta-
tistics from an EDA perspective before introducing
confirmatory methods.

An Example

This is an example derived from a case study, in 1995,
by Bryant and Smith. The data on tips are collected by
one waiter over a 2.5-month period at one restaurant.
He recorded the tip, total bill, sex of the bill payer,
smoking or nonsmoking section, size of the dining
party, and the time of day. The question of interest is
“What factors affect the tips?”

A basic analysis fits a multiple regression model
using tip rate as the response variable to the remaining
variables. It yields a model for the data with only one

Exploratory Data Analysis———329



significant explanatory variable, tipr^ate = 0.18 – 0.01
× size, which can be interpreted as follows: For each
increase of one person in the size of the dining party,
tip rate decreases by 1%, starting from a rate of 17%
for a party size of one. The model explains very little
of the variation in tip rate, as you can see from the plot
of the data and the model in Figure 1. The EDA
approach is different from this: First, make many plots
of the data and then model them. It is surprising what
these deceptively casual data reveal!

To examine the variable tips, the conventional plot
to use is a histogram. Tukey might have scratched up
a stem-and-leaf of tips, but using the computer, a
histogram is simple to produce today. EDA would
suggest that several histograms of tips are generated
using a variety of bin widths. Because the units are
dollars and cents, a commonsense scale utilizes these
units. The histograms using a full-dollar bin width
show a skewed distribution, with tips centered around
$2 and few tips larger than $6. When a bin width of
10¢ is used, it reveals something unpredicted: There
are peaks at full- and half-dollar amounts. This is
interesting! Are people rounding their tips? Additional
observations from this plot are as follows: There are
three outlying tips larger than $7 and, surprisingly, no
tips smaller than $1.

In examining the two variables together, tips and
total bill, a linear association between the two would
be expected. Tips are conventionally calculated as a
percentage of the bill. Total bill should explain the
amount of tip. This plot is shown in Figure 1 at lower
left. A linear relationship can be seen between the two
variables. It is not as strong as might be expected, and
there is a surprising pattern: If the plot is divided on a
diagonal running from low bill/low tip to high
total/high tip, there are more points in the lower right
triangle. This region corresponds to tips that are lower
than expected. There are very few points in the upper
left triangle, where tips are higher than expected. This
is also interesting! It suggests a tendency toward
cheap rather than generous tips.

The data shows more unanticipated patterns when
subset by the categorical variables “sex” and “smoking
party.” The plots in Figure 1 (bottom right) show tip and

total bill conditioned by sex and smoking party. There
is a big difference in the relationship between
tip and bill in the different subsets. There is more vari-
ation in tips when the dining party is in the smoking
section. The linear association is much stronger for
nonsmoking parties. In the plot of female nonsmokers,
with the exception of three points, the association
between tip and bill is nearly perfect. The few large
bills are paid mostly by males, or when paid by a
female, the tips are lower than expected. The largest
relative tip was paid by a male nonsmoker. These are
interesting observations!

What have the data revealed? This is a small data
set, but it is rich on information. It is a bit shocking
and pleasing to discover so many intricate details in
the numbers. Here is a summary of the observations
that were made:

• Many tips are rounded to the nearest-dollar and half-
dollar value.

• There are no tips less than $1 reported.
• Tip and total bill are not as strongly associated as

might be expected.
• There is more tendency toward cheap tips than

generous tips.
• Smoking parties have more variation in tip and total

bill.
• Males pay most of the largest bills, but when a

female pays a large bill, the tip tends to be dispropor-
tionately low.

• Finally, the only factor in the data that affects tips is
the size of the dining party. Tip rate has a weak neg-
ative dependence on the size of the party: The larger
the party, the lower the tip rate, tipr^ate = 0.18 –
0.01 × size.

What was accomplished in this example? A prob-
lem was posed for the collected data but was not con-
strained to it; many simple plots were used; and some
calculations were made. The observations can be
brought forward as hypotheses to be tested in confir-
matory studies about tipping behavior. This is the
process of exploring data.

—Dianne Cook

See also Data Mining; Graphical Statistical Methods
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EXPLORATORY FACTOR ANALYSIS

Exploratory factor analysis (EFA) is a statistical
method used to explore the underlying structure of
correlations among observed variables. The goal of
EFA is to describe this underlying structure in a parsi-
monious manner by specifying a small number of fac-
tors that can account for the correlations among a set
of measured variables. EFA (as opposed to confir-
matory factor analysis) is undertaken when the
researcher has no strong a priori theories about the
number and nature of the underlying factors.

The mathematical basis of EFA is the common
factor model, which proposes that measured variables
can be explained by underlying factors (also called
latent variables) that cannot be directly measured, but
influence the measured variables. There are two types
of underlying factors. Common factors are those that
influence more than one measured variable in a set,
whereas unique factors are those that influence only
one measured variable.

The common factor model is often expressed using
the following equation:

P = λΦλT + DΨ,

where P is the correlation matrix in the population,
λ are the factor loadings (i.e., numerical values repre-
senting the strength and direction of influence of the
common factors on the measured variables), Φ is the
matrix of correlations among the common factors, and
DΨ is the matrix of unique factor variances (i.e., the
proportion of variance in each measured variable that
is explained by its unique factor).

Conducting an EFA essentially involves computing
estimates for the elements in the above equation.
Statistical software provides the results of such calcu-
lations, including a factor-loading matrix (λ) and a
common factor correlation matrix (Φ). Programs cus-
tomarily do not directly report the unique variances
(DΨ). Instead, they report the communalities (i.e., pro-
portions of variance accounted for by the common
factors), which are inversely related to the unique
variances.

To illustrate the use of EFA, imagine that four
ability tests (paragraph comprehension, vocabulary,
arithmetic skills, and mathematical word problems)
are administered. An EFA is then conducted on
the correlations between these four variables. To
identify and describe the underlying factors,
researchers first examine the pattern of factor
loadings. These values represent the magnitude 
and direction of influence of the common factors 
on the measured variables. As shown in Table 1,
Paragraph Comprehension, Vocabulary, and Math
Word Problems appear to load highly on Factor 1
(i.e., are strongly influenced by Factor 1), and
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Table 1 Sample Factor Loading Matrix

Factor 1 Factor 2

Paragraph Comprehension .70 .10
Vocabulary .70 .00
Arithmetic .10 .70
Math Word Problems .60 .60



Arithmetic Skills and Math Word Problems load
highly on Factor 2 (i.e., are strongly influenced by
Factor 2). Based on this pattern, Factor 1 might be
interpreted as a verbal ability factor and Factor 2 as
mathematical ability factor.

The common factor correlation matrix in Table 2
demonstrates that the verbal and mathematical ability
factors are moderately correlated (r = .41), indicating
that these factors are distinct but related constructs.
The commonalities in Table 3 show that a moderate-
to-large proportion of the variance in each measured
variable is explained by the two common factors.

Decisions in Conducting EFA

Performing an EFA is a complex process that requires
a researcher to make a number of decisions. For
each step, researchers must choose from a variety of
procedures.

TThhee  NNuummbbeerr  ooff  CCoommmmoonn  FFaaccttoorrss

The first decision that must be made in EFA is the
appropriate number of common factors. Several statis-
tical procedures exist to accomplish this task. These
procedures are often used in combination with other
considerations such as the interpretability and replica-
bility of the factor analysis solutions.

The Kaiser Criterion

This commonly used procedure involves generat-
ing eigenvalues from the correlation matrix. Eigen-
values are numerical values that can be calculated
from a correlation matrix and represent the variance in
the measured variables accounted for by each com-
mon factor. The number of eigenvalues computed is
equal to the number of measured variables. If a factor
has a low eigenvalue, it does not account for much
variance and can presumably be disregarded. The
Kaiser criterion (also called the “eigenvalues-greater-
than-1 rule”) proposes that a researcher should retain
as many factors as there are eigenvalues greater than
1. Unfortunately, although easy to use, this procedure
has often been found to perform poorly.

Scree Plot

Another popular method for determining the
number of common factors is the scree plot. The scree
plot is a graph of the eigenvalues, plotted from largest
to smallest. This graph is then examined to determine
where the last major drop in eigenvalues occurs.
The number of factors equivalent to the number of
eigenvalues that precede the last major drop are
retained. For example, in Figure 1, the scree plot
would suggest retention of three common factors.
Although somewhat subjective, this procedure has
been found to function reasonably well when clear
dominant factors are present.
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Table 3 Sample Commonalities

Variable Commonality

Paragraph Comprehension .84
Vocabulary .78
Arithmetic Skills .42
Math Word Problems .38

Table 2 Sample Phi Matrix

Factor 1 Factor 2

Factor 1 — .41
Factor 2 .70 —
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Figure 1 Scree Plot



Parallel Analysis

Parallel analysis involves comparing eigenvalues
obtained from the data with eigenvalues that would
be expected from random data with an equivalent
number of variables and equivalent sample size. The
number of factors retained is equivalent to the number
of eigenvalues in the sample data set that are greater
than the corresponding eigenvalues expected from the
random data. Table 4 provides an example of a paral-
lel analysis that suggests retaining three factors.
Studies have suggested that parallel analysis functions
well when strong factors are present in the data.

Goodness of Fit

When conducting certain kinds of EFAs, goodness-
of-fit indices can be computed. These are numerical
indices that evaluate how well the model accounts for
the data. These indices can be compared for a series of
models with increasing numbers of common factors.
The appropriate number of factors is determined by
finding the model in which a model with one less factor
demonstrates substantially poorer fit and a model with
one more factor provides little improvement in fit.

MMooddeell  FFiittttiinngg

The goal of model fitting (also called factor extrac-
tion) is to obtain estimates for the model parameters.
A variety of methods can be used to accomplish
this goal.

Principal Axis Factors

For any EFA model, numerical values can be cal-
culated for the model and used to generate a predicted
correlation matrix (i.e., the model’s predictions of
how the measured variables should be correlated).
The predicted matrix can then be compared with
the observed correlation matrix to obtain a residual
matrix (i.e., a matrix of the differences between the
predicted and observed correlations). Noniterated
principal axis factors (PAF) compute model parame-
ters such that the sum of the squared residual matrix
values is minimized. Iterated PAF uses the same
mathematical procedure but with an additional series
of steps to refine the estimates. At each step, the esti-
mates from the prior step serve as the starting point
for the next set of calculations. This process continues
until the estimates at the start of the calculations are
extremely similar to the estimates at the end of a step
of calculations.

Maximum Likelihood

Maximum likelihood (ML) is a model-fitting
procedure based on the likelihood function. The like-
lihood function refers to the relative likelihood that
a given model with a set of estimates could have
produced the observed data. ML seeks to find the
set of estimates for a given model that is maximally
likely to have produced the data. One strength of
ML is that it provides indices of model fit and confi-
dence intervals for estimates. A disadvantage of ML
is that, unlike PAF, it assumes the data are multivari-
ate normal.

Principal Components Analysis

A final model-fitting procedure that is sometimes
used for EFA is principal components analysis (PCA).
Although PCA is popular and computationally similar
in some respects to PAF, this method is not a factor
analysis in the strict sense of the term. Specifically, the
method is not based on the common factor model. Most
notably, this procedure does not distinguish between
common and unique variance. Thus, PCA does not take
into account the existence of random error.
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Table 4 Sample Parallel Analysis

Eigenvalues 
Observed Expected From 

Eigenvalues Random Data Set

1. 1.8934 1.3848
2. 1.7839 1.2390
3. 1.7738 1.1907
4. 1.0003 1.0332
5. .6987 .7986
6. .4205 .5334
7. .4133 .4202
8. .2454 .3454



Rotating a Solution

When examining EFA models with more than one
factor, there will be a family of best-fitting solutions for
the data. Thus, it is necessary to choose which of these
equally fitting solutions is most readily interpretable.
This process is accomplished using rotation. Most rota-
tions seek the solution with the best “simple structure.”
According to Louis Thurstone, simple structure exists
when each factor influences a distinct subset of mea-
sured variables, there is little overlap in the subsets of
measured variables, and each measured variable is
influenced only by a subset of the common factors.

Numerous rotations have been proposed. Some of
these procedures are orthogonal rotations (i.e., rota-
tions that assume factors are uncorrelated). The most
widely used orthogonal rotation is Varimax rotation.
Other rotations are oblique rotations (i.e., rotations
that allow, but do not require, factors to be correlated).
Popular oblique rotations include Direct Quartimin,
Promax, and Harris-Kaiser Orthoblique rotation.
Orthogonal and oblique rotations will lead to similar
results if factors are relatively uncorrelated, but
oblique rotations may produce better simple structure
when factors are correlated.

—Naomi Grant and Leandre Fabrigar

See also Exploratory Data Analysis; Factor Analysis; Factor
Scores; Multiple Factor Analysis
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Applying Ideas on Statistics and Measurement

The following abstract is adapted from Conway, 
J. M., & Huffcutt, A. I. (2003). A review and eval-
uation of exploratory factor analysis practices in
organizational research. Organizational Research
Methods, 6(2), 147–168.

When there are large data sets, factor analysis
is often selected as the technique to help reduce
the data set to a more manageable size (and to see
how well this data reduction fits on the hypothe-
sis that may have been proposed). In this study,
the authors surveyed exploratory factor analysis
(EFA) practices in three different organizational
journals, published from 1985 through 1999, to
investigate the use of EFA. The review of 371 stud-
ies shows reason for optimism, with the tendency
to use multiple number-of-factors criteria and
oblique rotations increasing. The authors also 
found that researchers tend to make better deci-
sions when EFA plays a more consequential role
in the research. They stress the importance of
careful and thoughtful analysis, including deci-
sions about whether and how EFA should be
used.

EYEBALL ESTIMATION

Eyeball estimation refers to inspecting data and
quickly making an educated guess about the approxi-
mate magnitude of relevant statistics without using a
calculator or statistical tables.

Here are some examples:

• To eyeball estimate the mean from data presented as

a histogram, imagine that the histogram is cut out of ply-

wood. The mean of the distribution is the point where that

piece of plywood would balance.

• To eyeball estimate the mean from data presented in a

table, find the largest and the smallest values; the mean will

be approximately halfway between those values. For

example, if the values of X are 7, 8, 6, 7, 5, 6, 4, 7, 6, 8, 9, 7,

8, 9, 7, 6, 6, 7, 4, 5, 6, 5, 4, 8, 7, the largest value is 9 and the

smallest value is 4; the mean will be approximately 6.5. (It is

actually 6.48.)
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• To eyeball estimate the standard deviation from data

presented as a histogram, superimpose a sketch of a normal

distribution over the histogram—make the normal distribu-

tion cut through the tops of some of the histogram’s bars. The

standard deviation will be approximately the distance from

the mean to the inflection point of the normal distribution.

• To eyeball estimate the standard deviation from data

presented in a table, find the range (the largest value minus

the smallest value). The standard deviation is roughly a

quarter of the range. For example, for the data above, the

largest value is 9 and the smallest value is 4, so the range is

9 – 4 = 5. The standard deviation will be approximately 5/4,

or 1.25. (It is actually 1.45.)

The other commonly used descriptive statistics
(correlation coefficients, regression constants, areas
under normal distributions) can also be eyeball esti-
mated, as can straightforward inferential statistics
such as t tests and analyses of variance.

Eyeball estimation is not a substitute for accurate
computation. Eyeball estimates are “in-the-ballpark”
approximations that can be affected (sometimes dra-
matically) by such factors as skew. However, eyeball
estimation is a valuable skill. It enables the observer

to get a sense of the data and to spot mistakes in the
computations.

Students benefit from eyeball estimation because
it cultivates genuine understanding of statistical con-
cepts. The ability to make an in-the-ballpark, educated
guess is better evidence of comprehension than is
the ability to compute an exact result from a formula.
Furthermore, eyeball estimation is quick. A beginning
student can eyeball estimate a standard deviation
in about 15 seconds; computation would take the
same student about 15 minutes. Furthermore, while
students are eyeball estimating standard deviations,
they are developing their comprehension of the stan-
dard deviation as a measure of the width of a distrib-
ution. By contrast, almost no time involved in the
computation of a standard deviation is focused on that
comprehension.

—Russell T. Hurlburt

See also Bar Chart; Line Chart; Pie Chart
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FACE VALIDITY

Face validity is most often understood as a subjective
and cursory judgment of a concept, assessment instru-
ment, or any other conceptualization to ascertain
whether, on its face, it appears valid (i.e., that the con-
cept being measured seems reasonable; that a test
instrument appears to measure what it purports to
measure; that the association between the concept and
how it is measured seems appropriate and relevant at
first glance), without further regard to the underlying
legitimacy of the nomological network, concept,
instrument and test items, or the construct it purports
to measure.

Face validity is the least reliable validity judgment
among validity measures and should serve only as a
preliminary screening, given that it addresses appro-
priateness without empirical data. However, if the
minimum requirement of face validity cannot be
established, then it is highly unlikely that any of the
more rigorous validity criteria will hold.

Face validity, therefore, may reflect reasonable,
consistent, and understandable surface connections
between the instrument and test items on the one
hand and their underlying construct on the other.
Conversely, face validity might fail to reveal such

connections, irrespective of whether, on closer
scrutiny, they actually exist. Therefore, there can be
no claim of a logical relationship between face valid-
ity and true validity, although correlations between
face validity and true validity are possible.

Judgments about face validity are closely con-
nected to the knowledge and experience of the test
user. For example, the more a test instrument and its
items appear to test takers, on the basis of their expe-
rience, to be understandable, reasonable, and clearly
related to the test criterion, the more likely it will be
that the test takers will judge the test to have a high
level of face validity. However, the face validity of a
test instrument is more likely to be judged accurately
by a psychometrician than by an individual without
psychometric training.

Practical Aspects

AAddvvaannttaaggeess

The notion of face validity embodies a number of
advantages; for example, it may enable someone to
narrow the number of instruments or reports under
consideration. However, its most significant contribu-
tion is bringing the experience and contexts of test
takers into consideration during test construction. For
example, potential test items might be examined
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There is a very easy way to return from a casino with a small fortune: go there with a large one.

—Jack Yelton



by representatives of potential test populations to
determine whether the items are recognizable and
appropriate for inclusion in the final version of a test.
That is, the level of face validity is established by a
test taker who rates a test, test item, or battery of tests
as relevant or irrelevant. Face validity, therefore, is
judged from the point of view of the user’s knowl-
edge, experience, and attention.

If test items appear to be related to appropriate and
relevant content, test takers are more likely to be
highly motivated to do their best, thereby making the
instrument more valid and reliable. Equally, if the
content of the test or items is perceived to be inappro-
priate or irrelevant, then the test takers’ level of moti-
vation for test performance may well be lower. Higher
levels of test-taking motivation ensure that test takers
are also likely to be more cooperative, more satisfied
with their performance, and less likely to blame the
test if they obtain low scores.

Relatedly, high levels of face validity are signifi-
cant when selecting tests that rely heavily on test tak-
ers’ cooperation. Finally, high levels of face validity
may also be a potent factor in marketing the test
commercially.

DDiissaaddvvaannttaaggeess

Face validity also comprises a number of less pos-
itive attributes. For example, face validity may actu-
ally, in some instances, work against high levels of
motivation to complete a test properly if test takers
are coerced in some way to take the test and if they
are not accustomed to test-taking behavior. In some
test areas, such as tests that measure levels of perfor-
mance rather than more abstract concepts, any distor-
tion related to this motivational attribute may not be
significant. However, among tests that attempt to
measure more subjective areas (such as personality
traits), a test with high face validity might well fail
because respondents do not wish to answer the test
items truthfully.

Other problems might occur. For example, while
high levels of motivation on the part of test takers may
be assumed and desirable, there is the possibility that
even their most diligent attempts might not reflect

what the test is actually measuring. Further, the only
evidence of the test or test items’ face validity is the
judgment of the test taker.

In sum, face validity is considered the chief means
of generating acceptance from the general public,
from organizations that are considering using a test,
and from test takers themselves.

Context

Historically, the exact nature of validity in general has
undergone several changes and has assumed great sig-
nificance in the area of psychometrics.

While commonly acknowledged, by implication,
as tangential in test and test item construction for
many decades, issues of face validity were largely
ceded to the publishers and other vendors of psycho-
metric tests by the early 1900s. Face validity emerged
more prominently in the 1940s and 1950s, but dissen-
sion among scholars caused several leaders in the field
to suggest that use of the term face validity be elimi-
nated from psychometrics altogether.

This problem was largely put to rest by the publi-
cation of the first set of Standards for Educational and
Psychological Tests by the American Psychological
Association in 1954. The Standards largely reinforced
the claims made for face validity by Lee Cronbach
(1949) and colleagues, particularly Anne Anastasi
(1954). Proponents of face validity claimed (a) that it
was distinct in its own right, (b) that it was different
from other forms of validity, (c) that face validity was
not interchangeable with other forms of validity, and
(d) perhaps most important, that it was a key practical
aspect of test construction related to test acceptability
in the eyes of consumers and test takers.

Subsequent American Psychological Association
standards have, however, increasingly downplayed the
worth of face validity. The 1966 and 1974 Standards
specified only that face validity should, in
psychometrics, be separated from more substantial
forms of content validity in psychometrics. The 1985
Standards ignored the issue of face validity altogether.
That same year, however, Baruch Nevo made the case
that face validity should be considered and reported
in test construction, although primarily to enhance
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acceptability rather than as a formal psychometric
aspect of test construction.

Implied Meanings of Face Validity

Nevo argued that three and possibly four meanings
of face validity have a bearing on judgments about
instruments and their test items: validity by assump-
tion, by definition, by appearance, and possibly by
hypothesis.

AAssssuummppttiioonn

Face validity is established when the test user
assumes the predictability of the tested criterion by
identifying the degree of reasonableness of the test
items as related to the objective of the test. The
assumption thus made is so strong that recourse to fur-
ther statistical evidence is unlikely or unwarranted.
Establishing face validity in this way is problematic
because whatever the level of the test’s or test items’
perceived practical value, more substantial statistical
evidence, whether supportive or conflicting, may be
disregarded. 

DDeeffiinniittiioonn

Face validity by definition makes a judgment of
tests or test items via a sample judged by an expert to
thoroughly represent the universe of such questions.
Historically, this meaning comes closest to what face
validity was intended to explain. The better defined
the test criterion and the closer it is related to the test
items themselves, the more likely that face validity, by
definition, can be established. Obviously, face validity
assumptions can only be extrapolated to the larger
population from which the sample items were drawn.

AAppppeeaarraannccee

Face validity by appearance makes judgments of a
test instrument and its items without recourse to statis-
tical tests to verify stability. Validity is established by
those who judge the test and its items relevant, practi-
cal, and closely related to the purpose of the test and
test performance criteria. Such tests, therefore, are

likely to have a high degree of acceptance among
those who use them as well as those who take the tests.

HHyyppootthheessiiss

Face validity by hypothesis is arguably a secondary
consideration associated with assumption and defini-
tion. Face validity is judged in this case when it is
necessary and practical to use a test in the real world
before statistical information can validate the test. The
test is hypothesized as having at least some degree of
validity on the basis of other valid tests with the same
or similar test criteria and objectives. This form of
face validity differs from the first three, all of which
judge face validity on easily identifiable and logical
ties between the test items and the test criterion. With
face validity by hypothesis, the level of confidence in
the test’s validity rests on the level of confidence in
the hypothesis and the amount of research that sup-
ports it. Furthermore, the level of confidence in the
hypothesis will determine the feasibility of when,
how, or whether the testing should proceed.

Other Aspects

Since 1985, discussion of face validity has not
been widespread, although some isolated pockets of
interest seem to persist. For example, Mark Mostert
constructed and applied face validity criteria to meta-
analyses in special education, contending that
meta-analysis is often assumed to derive definitive
quantitative answers from an entire body of research.
However, face validity of published meta-analyses (in
special education, in this case) can be substantially
affected by the information supplied to the user, an
observation that has important implications for theory
and practice.

This study noted that published meta-analytic
results rely heavily on several essential interpretive
aspects, including (a) the definition and relationships
between the primary study independent variables, (b)
the manner in which the independent variables are
coded, and (c) how these key variables are interrelated
and reported. Face validity is especially germane in
view of meta-analyses that have been conducted
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on the same body of primary studies but that have
yielded dissimilar findings. 

To establish the exact nature of face validity in spe-
cial education meta-analyses, the study developed a
set of criteria to clarify mega-analytical study charac-
teristics that needed to be available in order for a user
to judge face validity. The criteria, which encompass
six domains, are discussed in the following sections. 

LLooccaattiinngg  SSttuuddiieess  aanndd
EEssttaabblliisshhiinngg  CCoonntteexxtt

The first set of information to provide to users in
order to establish face validity includes (a) a literature
review (to briefly describe studies and to contextual-
ize the meta-analysis), (b) search procedures used to
obtain the primary studies, (c) the dates of the search,
(d) the number of primary studies used in the meta-
analysis (to establish whether they are a population or
a sample of a known universe of studies), and (e) con-
firmation that the primary studies are clearly noted.

SSppeecciiffyyiinngg  IInncclluussiioonn  CCrriitteerriiaa

The primary study data set must also be justified by
reporting the criteria used to select the primary stud-
ies and the criteria used to eliminate other primary
studies.

CCooddiinngg  IInnddeeppeennddeenntt  VVaarriiaabblleess

In this step, the meta-analyst must provide (a) a
general description of the primary studies around
the central research question, (b) a description of the
independent variables, (c) descriptions of relation-
ships between variables to explain the conceptual and
rational connections between variables (if more than
one variable is to be entered into the meta-analysis),
and (d) notes explaining any variation among the
coded variables.

CCaallccuullaattiinngg  IInnddiivviidduuaall  SSttuuddyy  OOuuttccoommeess

The meta-analysis requires extensive reporting of
the statistical calculations, including (a) the number of
effects sizes (ESs) calculated; (b) ES range and stan-
dard deviation as general indicators of the scope of

variability found in the primary studies, noting both
n sizes (ESs for each primary study) and the overall
N (used to calculate the ES for the meta-analysis)
to measure the overall effect of the meta-analyzed
intervention; (c) factors affecting ES (e.g., pooled ESs
or the use of placebo groups); and (d) interrater relia-
bility to demonstrate coding of the independent vari-
ables by more than one researcher in order to add
credence to the analysis and the overall interpretation
of the meta-analytical outcomes.

AAnnaallyyzziinngg  DDaattaa  

After executing and reporting the basic statistical
calculations, the analyst should proceed to add inter-
pretive aspects: (a) reporting fail-safe sample size (the
number of nonsignificant studies needed outside of
those in the meta-analysis to negate the meta-analytic
results); (b) summarizing statistics for significant find-
ings (e.g., F and t ratios or rs; useful for drawing
generalized research conclusions); (c) reporting non-
significant findings along with or instead of signifi-
cant findings to establish the overall integrity of the
analysis; (d) explaining the proportion of variance
accounted for by the treatment effect after statistical
artifacts and other moderators have been acknowl-
edged; (e) providing a summation of research applica-
tions and important findings of the meta-analysis,
adding analytical coherence to the research hypothesis;
and (f) suggesting how findings may be practically
and theoretically applied. 

DDooccuummeennttiinngg  tthhee  LLiimmiittss
ooff  tthhee  MMeettaa--AAnnaallyyssiiss

Finally, the limits of the meta-analytic findings
should be discussed in order to circumscribe the inter-
pretation of the data.

On the basis of these face validity criteria, the study
reported that of 44 special education meta-analyses,
the mean proportion of face validity criteria evident
from the publications was .60, with a range of .26–1.0.

—Mark Mostert

See also Psychometrics; Validity Theory 
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FACTOR ANALYSIS

Factor analysis (FA) is a statistical technique used to
examine the structure of correlations among a set of
observed scores. Although initially developed as a
method for studying intelligence, FA has become
widely used in numerous areas of psychology was
well as in other social sciences, business, economics,
and biology.

The Common Factor Model 

Although Charles Spearman is largely credited with
development of the first formal FA model, Louis L.
Thurstone is generally regarded as having provided the
foundations of contemporary FA with his development
of the common factor model (CFM). The goal of the
CFM is to represent the structure of correlations among
observed scores by estimating the pattern of relation-
ships between the common factors and the measured
variables (a set of observed scores). This relationship
is represented numerically by a factor loading in the
analysis. Thurstone posited that each measured vari-
able in a set of measured variables is a linear function
of two types of latent factors. Common factors, which
are unobserved latent variables (constructs), influence

more than one measured variable and thus account for
the correlations among the measured variables. Unique
factors, also latent variables, influence only one mea-
sured variable in a set and thus do not account for
correlations among measured variables. Unique fac-
tors consist of two components (i.e., a specific factor
and an error of measurement) although in practice
these components are not separately estimated.

The CFM can be expressed in several forms. When
expressed as a data model, its goal is to explain the
structure of the raw data. Each participant’s score on
each of the measured variables is represented by a
separate equation. The data model for the CFM is
expressed by the equation 

xij = µj + λj1zi1 + λj2zi2 + . . . + λjmzim + υij,

where 

i is the individual,

j is the measured variable,

xij is the score of the individual on the measured
variable,

µj is the mean of the measured variable,

zim is the common factor (latent variable) score for indi-
vidual i on factor m,

λjm is the factor loading on test j on factor m, and

υij is the unique factor score for person i on the unique
factor j. 

The components of the unique factor are repre-
sented by the equation 

υij = sij + eij,

where

sij is the factor score of individual i on the specific factor
j and

eij is the factor score of individual i on the unique factor j.

Although the data model is conceptually useful, in
practice its values are impossible to estimate because
individuals’ scores on unobservable latent variables
cannot be known.

Factor Analysis———341



The data model, however, does provide the
theoretical basis for an alternative expression of the
model that can be used. Specifically, given the data
model and making certain distributional assumptions,
it is possible to mathematically derive a version of the
CFM designed not to explain the structure of raw data
but instead to account for the structure of correlations
among measured variables. The correlational structure
version of the CFM is represented by the equation 

P = λ φ λT + Dψ,

where 

P is the correlation matrix in the population,

λ is the factor loadings matrix,

φ is the matrix of correlations among common factors,

λT is transpose of the factor loadings matrix, and 

Dψ is the matrix of unique variances.

This equation states that a matrix of correla-
tions among measured variables is a function of
the common factor loadings (λ), the correlations
among common factors (φ), and the unique vari-
ances (Dψ).

Yet another way in which the CFM can be repre-
sented is in the form of a “path diagram” (see Figure 1).
In these diagrams, circles or ovals represent latent
variables and factors (both common and unique), and
squares or rectangles represent measured variables.
The other components of the diagram are directional
arrows, which imply a linear causal influence, and
bidirectional arrows, which represent an association
with no assumption of causality. Figure 1 provides
an example of how the CFM can be represented 
in a case where it is hypothesized that two common
factors (F1 and F2) and four unique factors 
(U1–U4) can be used to explain correlations among 
four measured variables (X1–X4). Note that in the
present example, the two common factors are
assumed to each influence two measured variables,
and each unique variable influences only one mea-
sured variable.

Exploratory Factor Analysis 

In practice, factor analysis involves a set of statistical
procedures used to arrive at numerical values for the
elements of the matrices expressed in the correlation
structure version of the CFM. In some cases, this is
accomplished in an exploratory fashion. Exploratory
factor analysis (EFA) (also called unrestricted factor
analysis) is used when there is little empirical or the-
oretical basis for specifying a precise a priori model.
In brief, EFA is a collection of procedures for deter-
mining the precise model that is appropriate for the
data and arriving at estimates of the numerical values
for that model. Several steps must be undertaken to
accomplish these objectives.

First, the correct number of common factors must
be determined. Procedures for performing this step
include the scree plot, parallel analysis, model fit, and
Kaiser criterion (the “eigenvalue is greater than one”
rule). Importantly, not all these procedures work well
(e.g., the Kaiser criterion), and none are infallible.
Thus, methodologists recommend using several of
the best-performing procedures in conjunction with
one another. Methodologists also recommend that
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Figure 1 Path Diagram for a Common Factor Model
With Two Common Factors and Four
Measured Variables 



researchers consider the interpretability and replica-
bility of the solution in addition to these statistical
procedures when determining the appropriate number
of factors.

Second, given a model with a specific number
of factors, the model must then be fit to the data
(a process also called factor extraction). This process
involves calculating the actual numerical values for
the model. A number of model fitting procedures are
available (e.g., noniterated principal axis factors, iter-
ated principal axis factors, and maximum likelihood).
Although the procedures use different mathematical
approaches, all of them share a common goal of
attempting to find the set of numerical values that will
result in the best fit of the model to the data. One
advantage of the principal axis factors methods is that
they do not make strong distributional assumptions. In
contrast, maximum likelihood does make assumptions
of multivariate normality but provides more informa-
tion (e.g., model fit indices, confidence intervals for
parameter estimates).

Finally, because more than one best-fitting solution
is possible for an EFA involving two or more factors,
a single solution is arrived at through “rotation.” The
goal of the rotation process is to select that solution
that is most readily interpretable. Various rotation pro-
cedures have been proposed. Some of these proce-
dures (e.g., varimax rotation) are orthogonal rotations
in that they assume common factors to be uncorre-
lated. Others (e.g., direct quartimin, Promax, and
Harris-Kaiser orthoblique) are oblique rotations in
that they permit (but do not require) common factors
to be correlated. Given that in most cases it is difficult
to know if factors will be correlated, oblique rotation
is usually more conceptually sensible than orthogonal
rotation.

Confirmatory Factor Analysis 

In other cases, researchers may have a strong empiri-
cal or theoretical basis to make predictions regarding
the number and nature of the common factors. In these
contexts, confirmatory factor analysis (CFA) is used.
CFA can be broken into several phases. First, the

researcher must specify the model. This process
involves specifying how many common factors exist
and exactly where zero factor loadings will occur (i.e.,
which measured variables will not load on each com-
mon factor). Model specification also requires the
researcher to specify which, if any, common factors
are correlated with one another and which, if any,
unique factors will correlate with one another.

Once the model is specified, it must be fit to the
data. As in EFA, this involves finding the set of
numerical values that provides the best fit of the
model to the data. Various model fitting procedures
are available (e.g., generalized least squares and
asymptotic distribution-free estimation), but maxi-
mum likelihood is by far the most frequently used
procedure. Because the specific pattern of zero and
nonzero factor loadings is specified in CFA, rotation
of solutions is not necessary.

The third phase of CFA is model evaluation. This
step involves examining the results of the analysis
and assessing the adequacy of the proposed model.
Several types of information are considered. For
example, most CFA model fitting procedures permit
the computation of goodness-of-fit indices. Numerous
fit indices have been proposed, but these indices are
often categorized as falling into two groups. Absolute
fit indices assess the absolute magnitude of the dis-
crepancy between the model and the data. Popular
indices of this type include root mean square error of
approximation and standardized root mean square
residual. Incremental fit indices evaluate the fit of the
model to the data relative to some comparison model
(usually the null model, which postulates no underly-
ing structure in the data). Popular fit indices of this
type include the nonnormed fit index (or Tucker-
Lewis fit index) and the normed fit index. 

The second category of information used in model
evaluation is the parameter estimates of the model.
Unlike EFA, CFA analyses not only report the esti-
mates of the parameters but also routinely report
confidence intervals and significance tests for all
estimates. All of this information is examined to eval-
uate the theoretical plausibility of the estimates.
Additionally, it is sometimes the case in CFA that a
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researcher has specific hypotheses to test regarding
certain parameters in the model. For example, the
researcher might postulate that a given factor is more
highly correlated with one factor than another. Precise
hypotheses involving comparisons of parameters can
be tested by placing equality constraints on the model
(e.g., constraining the two correlations being com-
pared to be equal) and then comparing the constrained
model to the original model. A formal statistical test
comparing the fit between the two models (a chi-
square difference test) can then be conducted. If sig-
nificant, such a test indicates that the constraint is not
appropriate and thus the constrained parameters are
significantly different from one another.

The final step in CFA is model modification. When
a proposed model is found to perform poorly (as a
result of either poor model fit or implausible parame-
ter estimates), researchers sometimes consider modifi-
cations to the model. Most structural equation
modeling programs used to conduct CFA provide
numerical indices that can be used as a guide to which
parameters originally fixed in the model might be
freed to improve model fit. Unfortunately, use of these
indices has proven problematic because such changes
often do not have a firm theoretical basis. Additionally,
studies have suggested that these modification indices
are not especially effective in identifying model mis-
specifications. Thus, most methodologists recommend
that model modification be guided by theory rather
than the use of these indices.

Conclusions

EFA and CFA can be thought of as complementary
rather than opposing approaches to data analysis.
Specifically, EFA may be the approach of choice
during the early phases of a research program, when
comparatively little is known about the underlying
structure of correlations among a set of measured
variables. Once EFA analyses have helped establish a
firm theoretical and empirical basis for more precise
predictions, later studies may make use of CFA to
conduct more rigorous and focused tests of the
researchers’ theory.

—Ronald D. Porter and Leandre R. Fabrigar

See also Exploratory Factor Analysis; Factor Scores; Multiple
Factor Analysis 
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Applying Ideas on Statistics and Measurement

The following abstract is adapted from Hogarty,
K. Y., Hines, C. V., Kromrey, J. D., Ferron, J. M., &
Mumford, K. R. (2005). The quality of factor solu-
tions in exploratory factor analysis: The influence
of sample size, communality, and overdetermina-
tion. Educational and Psychological Measurement,
65(2), 202–226. 

Factor analysis is one of many techniques that
allows us to better understand threads common to
large sets for data. The purpose of this study was
to investigate the relationship between sample
size and the quality of factor solutions obtained
from one type of factor analysis, exploratory
factor analysis. This research expanded on the
range of conditions previously examined, employ-
ing a broad selection of criteria for the evaluation
of the quality of sample factor solutions. Results



FACTOR SCORES

The purpose of conducting factor analysis is to
explain the interrelationships between a set of mea-
sured variables and a reduced set of theoretically
meaningful common factors. An attractive feature of
this multivariate procedure is the capability to rank
order the measured objects (usually people) on the
common factors. These novel factor scores can be
used in subsequent statistical analyses or employed in
decision making processes. For instance, factor scores
can be correlated with other variables, entered as pre-
dictor variables in regression analyses, or used as
dependent measures in analyses of variance. They can
also be employed in applied settings, such as when a
clinical psychologist uses a client’s factor scores on
measures of psychological well-being to determine
a treatment plan or when a school psychologist uses
factor scores from an intelligence test to make judg-
ments regarding a child’s cognitive abilities. Given
their utility, factor scores are widely employed in both
research and practice.

Factor Scores Explained

As a contrived example study, consider 200 individu-
als who rate themselves on six questionnaire items
written to measure personality traits. The individuals
rate on a 5-point scale the extent to which each state-
ment (e.g., “I have many close friends,” “I do not get
stressed-out easily”) applies to themselves. A com-
mon factor analysis is subsequently conducted on the
ratings, and two factors are extracted. After the factors
are rotated with an oblique transformation, they are
labeled Extroversion and Emotional Stability. Factor

scores for the 200 individuals can now be computed
by regressing the six item scores onto the two factors.
Common factors are often referred to as latent or
unobservable because their scores must be derived
through such a regression analysis based on the
original items. The resulting regression weights are
referred to as factor score coefficients, and they can be
applied to the standardized item responses to compute
the factor scores. For example, Extroversion factor
scores may be computed as follows:

(Item1z)(.45) + (Item2z)(.32) + (Item3z)(.72)
+ (Item4z)(.02) + (Item5z)(−.12) + (Item6z)(.05).

The values .45, .32, .72, and the rest are the factor
score coefficients, which are standardized regression
weights. Coefficients are computed for all six items,
and their relative absolute magnitudes indicate that
the first three items contribute most to the prediction
of scores on the Extroversion factor, while the remain-
ing three items contribute less (their weights are near
zero). Item 5 contributes negatively to the computa-
tion of Extroversion factor scores in this example.

Now consider two individuals, Joe and Mary. If
their standardized responses (i.e., their z scores) on
the rating scale are placed in the equation, their
Extroversion factor scores are as follows:

Joe’s Extroversion = (.90)(.45) + (1.02)(.32) + (1.10)
(.72) + (.25)(.02) + (.43)(−.12)
+ (.22)(.05) = 1.49

Mary’s Extroversion = (−.68)(.45) + (.19) (.32)
+ ( −1.29)(.72) + (.45)(.02)
+ (.77) ( −.12) + (.15)(.05)

= −1.25

Since high scores on the rating scale indicate
greater extroversion, Joe is found to be extroverted
and Mary is introverted. The standardized Emotional
Stability factor scores can be computed similarly:

Joe’s Emotional = (.90)(.05) + (1.02) (.01) + (1.10)
Stability ( −.03) + (.25)(.60) + (.43) (.70)

+ (.22)(.53) = .59
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showed that when communalities are high,
sample size tended to have less influence on the
quality of factor solutions than when communali-
ties are low. Overdetermination of factors was
also shown to improve the factor analysis solu-
tion. Finally, decisions about the quality of the
factor solution depended on which criteria were
examined.



Mary’s Emotional = (−.68)(.05) + (.19) (.01)
Stability + (−1.29)( −.03) + (.45)(.60)

+ (.77) (.70) + (.15)(.53) = .90

The second numbers (e.g., .05, .01, −.03) in each
product are the factor score coefficients for the
Emotional Stability factor, and the first numbers are
Joe’s and Mary’s z scores for the six items. The results
indicate that Mary is slightly more emotionally stable
than Joe. The same coefficients for both factors could
similarly be used to compute factor scores for the
remaining 198 individuals in the study.

Computing factor scores is thus a matter of
regressing the items onto the factors to derive factor
score coefficients. These standardized regression
weights are then applied to the standardized scale
responses to compute each individual’s relative
standing on the factors. How, exactly, are the factor
score coefficients computed? Unfortunately, the
answer to this question is not straightforward because
of a historic intellectual puzzle referred to as factor
score indeterminacy.

In the early days of factor analysis, a peculiar
property of the common factor model was discov-
ered; specifically, the algebra underlying the compu-
tation of factor scores involves solving a set of
equations with more unknowns than equations. The
implication is that a unique solution
for the factor scores does not exist.
Instead, an infinite number of sets of
factor scores can be computed for any
given analysis. The scores for Joe and
Mary above on the Extroversion and
Emotional Stability factors are thus
one of an infinite number of sets of
factor scores that can be computed!
What would happen if in another solu-
tion, Joe was introverted and Mary was
extraverted? There would be no way of
choosing between the two different
conclusions regarding Joe and Mary
since both sets of factor scores repre-
sent valid solutions. Obviously, factor
score indeterminacy is a serious
issue. If the individuals (or measured

objects) in the study cannot be unambiguously rank
ordered along the Extroversion and Emotional
Stability factors, one must wonder if the factors are of
any scientific value.

Refined and Coarse Factor Scores

Since it was discovered in the early 1900s, psycho-
metricians have attempted to understand the analyti-
cal, practical, and theoretical meaning of factor score
indeterminacy. One implication is that computed
factor scores are imperfect representations of the fac-
tors themselves. Consequently, the statistical proper-
ties of the factor scores may not always match those
of the factors for which they are computed. For
instance, while the common factors in a given
analysis are uncorrelated (i.e., orthogonal), the factor
scores may be slightly or moderately correlated. To
adjust for these discrepancies, psychometricians have
developed a number of methods for computing factor
scores, and these methods can be divided into two
groups: refined and coarse. The former produce mul-
tidecimal factor score coefficients like those in the
examples above. They are often referred to by their
distinct statistical properties or by the names of the
scholars responsible for their derivation and are sum-
marized in Table 1.
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Table 1 Methods for Computing Refined Factor Scores

Author

Thurstone

Anderson-
Rubin

Bartlett

McDonald

Name

Regression

Orthogonal

Univocal

Correlation-
preserving

Desirable Property

Indeterminacy is minimized (i.e.,
determinacy is maximized). 

Factor scores for different factors are
uncorrelated (i.e., perfectly
orthogonal); only appropriate for
orthogonal factors.

Factor scores for a given factor are not
correlated with other factors in the
analysis; only appropriate for
orthogonal factors. 

Correlations between factor scores
match the correlations between the
factors; appropriate for orthogonal
or correlated factors. 



The most popular of the refined factor scoring
methods can be found in many statistical programs,
and their equations are readily available (see Further
Reading at the end of this entry). None of these
methods are clearly superior to the others, however,
and the choice between the different refined factor
scores rests entirely with the researcher, who alone
can decide which property is most important for a
particular investigation.

The coarse methods offer popular alternatives to
the refined factor scores. With coarse methods the
factor scores are computed as simple sums of the orig-
inal or standardized item scores. For example, Joe’s
Extroversion factor score might be computed as
follows:

Joe’s Extroversion = Item1z + Item2z +Item3z

= .90 + 1.02 + 1.10 = 3.02

Such scores are often referred to as scale scores, sum
scores, or total scores, among other names. As long as
they are based on the results of a factor analysis, they
are also appropriately referred to as factor scores since
they indicate the relative standings of the people (or
objects) on the factors. This point can be understood
by realizing that the simple summing process involves
an implicit weighting scheme:

Joe’s Extroversion = (1)(Item1z) + (1) (Item2z)
+ (1)(Item3z) + (0)(Item4z)
+ (0) (Item5z) + (0)(Item6z)

= (1)(.90) + (1)(1.02) + (1)(1.10) + (0) (.25)
+ (0)(.43) + (0)(.22) = 3.02

It is easy to see that the coarse method of computing
Joe’s factor scores is a simplification of the refined
method; the multidecimal factor score coefficients have
been replaced with whole numbers. In this example, the
fourth, fifth, and sixth items are given weights of zero,
essentially dropping them from the computation of the
coarse factor scores. Since the six items are all mea-
sured on the same scale, it should also be noted that
Joe’s coarse factor scores could be computed by sum-
ming his original responses instead of the z scores.

The coarse methods differ with regard to the
processes used to determine the whole weights. The
most common approach for determining the weights is
to examine the structure coefficients (i.e., the correla-
tions between the factors and the items) and choose
the most salient items. A salience criterion is deter-
mined using some rule-of-thumb value such as |.30| or
|.40|. Items with salient positive structure coefficients
are given weights of 1, and items with salient negative
coefficients are given weights of −1. Items with non-
salient structure coefficients are given weights of zero.
The pattern coefficients are sometimes used instead of
the structure coefficients in this scheme. Either way,
these particular coarse factor scores are problematic
because they run the risk of being very poor represen-
tations of the factors themselves. In other words,
coarse factor scores based on the structure or pattern
coefficients may not be highly correlated with the very
factors they are intended to quantify. Consequently,
although they are popular in the scientific literature,
they are not recommended. Instead, the coarse factor
scores should be based on a process of simplifying the
factor score coefficients. The process therefore begins
by using one of the refined factor scoring methods
to derive the factor score coefficients. The resulting
coefficients are then simplified to whole numbers and
used as weights to compute the coarse factor scores.
This coarse method is superior because it is based on
the factor score coefficients, which are specifically
designed for computing factor scores. The relative
magnitudes of the pattern and structure coefficients
may be quite discrepant from the factor score coeffi-
cients, leading to an inaccurate weighting scheme and
invalid factor scores.

Evaluating Factor Scores

Tools are available for assessing the amount of indeter-
minacy in any given common factor analysis as well
as for evaluating the quality of the computed factor
scores. Many statistical programs, for instance, report
the squared multiple correlations for the common fac-
tors. These values indicate the proportion of determi-
nacy in the common factors, and results near 1 are
desirable (1 = no indeterminacy), whereas results equal
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to or less than .80 are generally considered to indicate
too much indeterminacy. When a common factor is
judged as highly indeterminate, factor scores should
not be computed via any method above. If a factor is
judged sufficiently determinate, and factor scores are
computed, they should be evaluated for their validity,
correlational accuracy, and univocality. Validity refers
to the correlation between the factor scores and the fac-
tors themselves, and correlational accuracy refers to
the correspondence between the factor score intercor-
relations and the factor intercorrelations. Univocality
refers to the degree of overlap between factor scores
and noncorresponding factors in the analysis. Macros
for SAS are readily available for assessing these differ-
ent properties of refined and coarse factor scores (see
Further Reading at the end of this entry).

Additional Issues

A number of additional issues regarding factor scores
should be noted. First, principal component analysis
(PCA) always produces refined component scores that
are determinate. The four methods in Table 1 thus pro-
duce identical results for PCA. If coarse component
scores are computed, however, they should be based
on the component score coefficients and evaluated for
their quality. Second, image analysis is the only com-
mon factor model that yields determinate factor
scores. It is not as popular as other factor techniques
(e.g., maximum likelihood or iterated principal axes),
but it offers a viable alternative if one wishes to avoid
indeterminacy and still use a common factor model.
Last, other latent trait statistical methods such as struc-
tural equation modeling and item response theory 
are indeterminate. Although it has not been
discussed at great length with these other methods,
indeterminacy is an important concern that should not
be overlooked indefinitely.

—James W. Grice

See also Exploratory Factor Analysis; Multiple Factor
Analysis

Further Reading

Grice, J. W. (2001). Computing and evaluating factor scores.
Psychological Methods, 6, 430–450.

Guttman, L. (1955). The determinacy of factor score matrices
with applications for five other problems of common factor
theory. British Journal of Statistical Psychology, 8, 65–82.

Steiger, J. H., & Schonemann, P. H. (1978). A history of factor
indeterminacy. In S. Shye (Ed.), Theory construction
and data analysis (pp. 136–178). Chicago: University of
Chicago Press.

Factor scores computation and evaluation tools: http://psycho
logy.okstate.edu/faculty/jgrice/factorscores/

FACTORIAL DESIGN

Factorial design is one of the most popular research
tools in many areas, including psychology and educa-
tion. Factorial design investigates two or more
independent variables simultaneously, along with
interactions between independent variables. Each
independent variable can be either a treatment or a
classification. Ideally, all possible combinations of
each treatment (or classification) occur together in the
design. The purpose is to investigate the effect of each
independent variable and interaction on a dependent
variable.

In a one-way design, a single independent variable
is investigated for its effect on a dependent variable.
For example, we might ask whether three therapies
produce different recovery rates or whether two drugs
lead to a significant difference in average adjustment
scores. In a factorial design, we might ask whether
the two drugs differ in effectiveness and whether the
effectiveness of the drugs changes when they are
applied at different dosage levels. The first indepen-
dent variable is the type of drug (with two levels), and
the second independent variable is the dosage (with
two levels). This design would be a 2 × 2 factorial
design. Each independent variable could have more
than two levels.

An Example of a 2 ×× 2 Design

Table 1 presents hypothetical data and means in which
the data are presented for scores under two drugs and
two dosage levels. Each of the four cell means is
based on three observations. That is, three different
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individuals were given either Drug 1 or Drug 2 and
either 10 mg or 20 mg of the drug. The 12 individuals
were randomly assigned to one of the four combina-
tions of drug and dosage level. Higher mean adjust-
ment scores indicate better adjustment.

As in a simple, independent-sample t test or
one-way analysis of variance (ANOVA), the variabil-
ity within each treatment condition must be deter-
mined. The variability within the four groups is
defined as SSWG where

SSWG = SS1 + SS2 + SS3 + SS4

SSWG = 2.0 + 2.0 + 2.0 + 2.0
SSWG = 8.0.

With three observations in each group, there are
3 − 1 = 2 degrees of freedom (df) within each group.
The degrees of freedom within all groups are

dfWG = 2 + 2 + 2 + 2 = 8.

The within-groups variability is known as the mean
square (MS) within groups, defined as

The overall difference between drugs is Factor A,
Drug Type. The null and alternative hypotheses are

H0: µA1
= µA2

H1: µA1
≠ µA2

.

The variability among the drug means is

SSA = NA
1

(X
_

A
1

− X
_

T)2 + NA
2

(X
_

A
2

− X
_

T)2

SSA = 6(8.0 − 5.5)2 + 6(3.0 −− 5.5)2

SSA = 6(2.5)2 + 6(−2.5)2

SSA = 6(6.25) + 6(6.25)
SSA = 75.

With a levels of Factor A, the degrees of freedom
will be

dfA = a − 1 = 2 − 1 = 1.

The MS for Factor A is

The F test for Factor A is

FA = = = 75.

To test the null hypothesis at α = .01, we need the
critical value CV = F.99(1,8) = 11.26. The null hypothe-
sis is rejected because FA = 75.0 > 11.26. The overall
mean, MA

1

= 8.0, for Drug 1 is significantly greater than
the overall mean, MA

2

= 3.0, for Drug 2. Drug 1 pro-
duces significantly greater adjustment that does Drug 2.

Applying similar calculations to Factor B, Dosage
Level, we have the hypotheses

H0: µB
1

= µB
2

H1: µB
1

≠ µB
2

.

The variability among the drug means is

SSB = NB
1

(X
_

B
1

− X
_

T)2 + NB
2

(X
_

B
2

− X
_

T)2

SSB = 6(5.5 − 5.5)2 + 6(5.5 − 5.5)2

SSA = 0.0.

With b levels of Factor B, the degrees of freedom
will be

dfB = b − 1 = 2 − 1 = 1.

MSA = SSA

dfA

= 75

1
= 75.

MSWG = SSWG

df WG

= 8.0

8
= 1.0.

Factorial Design———349

Table 1 Summary Table for Two Factor Design

Drug/ B1 B2

Dosage 10 mg 20 mg Overall

A1 8.0 10.0
Drug 1 7.0 9.0

6.0 8.0
Means 7.0 9.0 MA1

= 8.0
SS 2.0 2.0 NA1

= 6

A2 5.0 3.0
Drug 2 4.0 2.0

3.0 1.0
Means 4.0 2.0 MA2

= 3.0
SS 2.0 2.0 NA2

= 6

Overall MB1
= 5.5 MB1

= 5.5 MT = 5.5
NB1

= 6 NB2
= 6

Note: SS = sum of squares; M = mean.



The MS for Factor B is

The F test for Factor B is

To test the null hypothesis at α = .01, we need the
critical value (CV) = F.99(1,8) = 11.26. The null
hypothesis is not rejected because FB = 0.0 < 11.26.
The overall mean, MB

1

= 5.5, for 10 mg is not sig-
nificantly different from the overall mean, MB

2

= 5.5,
for 20 mg. There is no overall difference between the
dosage levels.

To investigate the interaction effect, we define the
following population means:

µ11 = Population mean for Drug 1 and Dosage 
10 mg,

µ12 = Population mean for Drug 1 and Dosage 
20 mg,

µ21 = Population mean for Drug 2 and Dosage 
10 mg, and 

µ22 = Population mean for Drug 2 and Dosage 
20 mg.

The null and alternative hypotheses for the interac-
tion are

H0: µ11 − µ21 = µ12 − µ22

H1: µ11 − µ21 ≠ µ12 − µ22.

One way to evaluate the interaction variability is to
first calculate the variability among the four cell
means. We call this the cells SS, defined as

SSCELLS = N11(X
_

11 − X
_

T)2 + N12(X
_

12 − X
_

T)2

+ N21(X
_

21 − X
_

T)2 + N22(X
_

22 − X
_

T)2

SSCELLS = 3(7.0 − 5.5)2 + 3(9.0 − 5.5)2

+ 3 (4.0 − 5.5)2 + 3 (2.0 − 5.5)2

SSCELLS = 3(1.5)2 + 3(3.5)2 + 3(−1.5)2 + 3 (−3.5)2

SSCELLS = 3[2.25 + 12.25 2.25 + 12.25]
SSCELLS = 3[29]
SSCELLS = 87.

There are four cell means or four different treat-
ments among the two drugs and two dosage levels. In
a larger factorial design, we might have more than two
levels of Factor A, more than two levels of Factor B,
or more than two levels of both. If the total number of
cells or treatment combinations is k, then the value of
CELLS degrees of freedom would be

dfCELLS = k − 1.

In the present case we have

dfCELLS = 4 − 1 = 3.

The interaction sum of squares, SSAB, can be found
from

SSAB = SSCELLS − SSA − SSB.
SSAB = 87 − 75 − 0.0
SSAB = 12.

dfAB = dfA × dfB = 1 × 1 = 1.

From the above we have

We test the interaction null hypothesis with

Testing at α = .01, we reject H0 because 12.0 >
11.26. The greater adjustment for Drug 1 compared
with Drug 2 is significantly greater for 20 mg (7.0 =
9.0 − 2.0) than for 10 mg (3.0 = 7.0 − 4.0).

Some researchers like to test simple main effects
to aid in the interpretation of a significant interac-
tion. For example, the difference between adjust-
ment scores of the two drugs when both are
administered at 20 mg is 7.0. It can be shown that the
difference is significant at the .01 level. It can also be
shown that the difference of 3.0 for 10 mg is also
significant at the .01 level. Thus, these two simple
main effects are not helpful for the data in Table 1
because the same pattern of significance is found
for both simple main effects. The interpretation that

FAB = MSAB

MSWG
= 12.0

1
= 12.0.

MSAB = SSAB

df AB

= 12.0

1
= 12.0.

FB = MSA

MSWG
= 0.0

1
= 0.0.

MSB = SSB

df B

= 0.0

1
= 0.0.
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the 7.0 difference is significantly greater than the
3.0 difference can be made without any additional
testing.

There are three assumptions for each of the F tests
in a factorial design. They are the same three assump-
tions as for the independent-samples t test and the
one-way, independent-groups ANOVA. They are as
follows:

1. Independent observations are assumed in each cell
of the design. This includes random assignment to
groups. Failure of this assumption can completely
invalidate the results of the F tests.

2. The populations are normally distributed. The F tests
are relatively robust to failure of the normality
assumption. With markedly nonnormal populations,
alternative tests, such as nonparametric procedures,
must be considered.

3. Population variances are assumed to be equal. With
equal sample sizes that are not too small, the F
tests are relatively robust to failure of the equal
variances assumption. Equal N of 7 to 15 may be
needed, depending on the degree of inequality of
variances.

Although equal Ns are not a requirement of facto-
rial designs, they are highly recommended, even if
the equal variances assumption is satisfied. Equal
sizes are necessary to maintain independence of the
three effects in factorial design. In fact, unequal cell
sizes lead to a number of complications in the test-
ing and interpretation of the effects of factorial
design.

—Philip H. Ramsey

See also Analysis of Covariance (ANCOVA); Analysis of
Variance (ANOVA); Multivariate Analysis of Variance
(MANOVA)
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FAGAN TEST OF

INFANT INTELLIGENCE

The Fagan Test of Infant Intelligence (FTII, published
by Infantest Corporation) purports to index infant
intelligence by assessing infants’ information process-
ing capacities. The degree to which continuity exists
between infant cognitive capacities and later intelli-
gence has interested researchers since the 1930s. Until
the early 1980s, intelligence in infancy was thought to
be unrelated to intellectual functioning in childhood
and adulthood. This sentiment was based on the lack
of association between researchers’ indices of infant
intelligence, which assessed sensory-motor function-
ing, and adult measures of intelligence.

The FTII was developed in the early 1980s by
Joseph F. Fagan, III, to assess infant information pro-
cessing capacities such as visual recognition memory,
habituation, and discrimination and relate them to
intellectual functioning later in life. The FTII and
other tests tapping infant information processing have
led researchers to believe today that there is a relation
between infant intellectual capacities and later intel-
lectual functioning.

The FTII procedure is conducted on infants
between 3 and 12 months of age and rests on the well-
known tendency of infants to gaze more at novel stim-
uli than at familiar stimuli. The standard procedure
involves two phases; the timing of each phase varies
according to the age of the infant. In the “familiariza-
tion phase,” the infant sitting in the parent’s lap is
presented with two identical stimuli, such as faces or
geometric patterns, until the infant gazes at them for a
predetermined amount of time. In the “test phase,”
one of the familiar stimuli is then paired with a novel
stimulus. This procedure is repeated approximately 10
times during one sitting. The proportion of total look-
ing time during which the infant gazes at the novel
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stimulus is used to derive a novelty preference score
thought to reflect some of the cognitive capacities of
the infant. 

There is mixed evidence as to whether the FTII
predicts later intellectual functioning. A quantitative
review of several empirical investigations suggests
that the FTII and other similar measures of infant cog-
nitive functioning positively correlate with later intel-
lectual performance. There is also evidence that the
FTII is a valid screening device in infancy that predicts
mild to severe mental retardation with up to 80% accu-
racy. Nevertheless, the FTII has been criticized for its
low predictive validity and lack of reliability. As a
whole, the FTII assesses infant cognitive capacities,
but some controversy surrounds the degree to which
the procedure accurately predicts later intelligence.

—Matthew J. Hertenstein and Lauren E. Auld

See also Culture Fair Intelligence Test; Gf-Gc Theory of
Intelligence; Intelligence Quotient; Intelligence Tests 

Further Reading

Fagan, J. F., & Detterman, D. K. (1992). The Fagan Test
of Infant Intelligence: A technical summary. Journal of
Applied Developmental Psychology, 13, 173–193.

FTII description and other measures of infant cognitive assess
ment: http://ehp.niehs.nih.gov/members/2003/6205/6205
.html#comp

FAMILY ENVIRONMENT SCALE

The Family Environment Scale (FES; published by
Mind Garden, www.mindgarden.com) is composed
of 10 subscales that measure the actual, preferred, and
expected social environments of all types of families.
The 10 subscales assess three sets of dimensions:
(a) relationship dimensions (cohesion, expressiveness,
conflict); (b) personal growth or goal orientation
dimensions (independence, achievement orientation,
intellectual-cultural orientation, active-recreational
orientation, moral-religious emphasis); and (c) system
maintenance dimensions (organization, control). The
relationship and system maintenance dimensions

primarily reflect internal family functioning; the
personal growth or goal orientation dimensions pri-
marily reflect the linkages between the family and the
larger social context.

The FES has three forms:

1. The Real Form (Form R) measures people’s per-
ceptions of their current family or their family of
origin. This form is used to assess individuals’ percep-
tions of their conjugal and nuclear families, formulate
clinical case descriptions, monitor and promote
improvement in families, focus on how families adapt
to life transitions and crises, understand the impact of
the family on children and adolescents, and predict
and measure the outcome of treatment. 

2. The Ideal Form (Form I) measures people’s
preferences about an ideal family environment. This
form is used to measure family members’ preferences
about how a family should function; assess family
members’ value orientations and how they change
over time, such as before and after family counseling;
and identify areas in which people want to change
their family. 

3. The Expectations Form (Form E) measures
people’s expectations about family settings. This form
is used in premarital counseling to clarify prospective
partners’ expectations of their family, help members
of blended families describe how they expect their
new family to function, and identify parents’ expecta-
tions about their family after a major life transition,
such as retirement or the youngest child’s leaving
home.

The FES manual presents normative data on 1,432
normal families and 788 distressed families, describes
the derivation and application of a family incon-
gruence score that assesses the extent of disagreement
among family members, presents psychometric infor-
mation on the reliability and stability of the subscales,
and covers the research applications and validity of
the subscales. The manual includes a conceptual model
of the determinants and outcomes of the family envi-
ronment and reviews studies focusing on families of
youth with behavioral, emotional, or developmental
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disabilities; families with a physically ill child;
families with a history of physical or sexual abuse;
and families of patients with medical and psychiatric
disorders. The FES has also been used to focus on the
relationship between the family environment and
child development and adult adaptation and on
families coping with life transitions and crises, such as
parent or child death, unemployment and economic
deprivation, immigration and acculturation, and com-
bat and war.

—Rudolf H. Moos and Bernice S. Moos

See also Social Climate Scale

Further Reading

Moos, R. (2001). The Family Environment Scale: An anno-
tated bibliography (3rd ed.). Redwood City, CA: Mind
Garden.

Moos, R., & Moos, B. (1994). Family Environment Scale man-
ual (3rd ed.). Redwood City, CA: Mind Garden.

FILE DRAWER PROBLEM

A meta-analysis is a quantitative summary or synthe-
sis of findings of studies that focus on a common
question; one example is a quantitative synthesis of
results of studies that focus on the efficacy of psy-
chotherapy. Unfortunately, studies that are included in
a meta-analysis can be unrepresentative of all the
methodologically sound studies that address this com-
mon question, so the combined results of the studies
in the meta-analysis can be misleading. Included stud-
ies may be unrepresentative because of the well-
documented “publication bias,” which refers to a bias
against publication of results of studies that do not
yield statistically significant results. Because of this
bias, results of studies that are not statistically signif-
icant often (a) do not appear in print (either as journal
articles or as published abstracts of presentations),
(b) wind up tucked away in researchers’ “file draw-
ers,” and (c) remain undetected or inaccessible to
meta-analysts. In the most extreme case of the “file
drawer problem,” the collection of studies included in

a meta-analysis consists exclusively of those that
yielded results significant at the conventional .05 level.

The most popular method of dealing with the file
drawer problem involves calculation of Robert
Rosenthal’s Fail-Safe-N (FSN). The FSN—which was
derived under the (questionable) assumptions that (a)
the studies targeted by meta-analyses use two-tailed
(nondirectional) tests and (b) the studies in the file
drawers average null results—is an estimate of the
minimum number of unpublished studies (tucked
away in file drawers) that would threaten the validity
of significant combined results of a meta-analysis. For
example, for a well-known 1982 meta-analysis (by
Landman and Dawes) focusing on a set of 42 studies
of efficacy of psychotherapy that were considered (by
the meta-analysts) to be appropriately controlled, the
FSN was 461. Since the combined results of this
meta-analysis indicated statistically significant bene-
ficial effects of psychotherapy, it was inferred (by
FSN users) that there would have to exist at least 461
unpublished file drawer studies (averaging null
results) to threaten the validity of this conclusion.
Although there are no firm guidelines for interpreta-
tion of FSNs, Rosenthal suggested using FSNc = K(5)
+ 10 as a critical value or rule of thumb (where K =
number of studies in the meta-analysis); thus only
FSNs below FSNc would be considered to threaten
significant combined results of a meta-analysis. For
the Landman and Dawes meta-analysis, the FSN of
461 is well above the FSNc of 220 (i.e., 42(5) + 10 =
220), suggesting to users of the FSN that the file
drawer problem was negligible in this meta-analysis.

—Louis M. Hsu

See also Meta-Analysis

Further Reading
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Iyengar, S., & Greenhouse, J. B. (1988). Selection models and
the file drawer problem. Statistical Science, 3, 109–135.

Light, R. J., & Pillemer, D. B. (1984). Summing up: The
science of reviewing research. Cambridge, MA: Harvard
University Press.

FISHER, RONALD AYLMER

(1890–1962)

Ronald Aylmer Fisher was a statistician, eugenicist,
evolutionary biologist, and geneticist who helped lay
the foundations of modern statistical science. At
an early age, Fisher’s special abilities were apparent.
Because of his poor eyesight—extreme myopia—he
was forbidden to read with the aid of electric lights. In
the evenings, his mother and teachers would read
to him and provide instruction without visual aids.
Fisher’s exceptional ability to solve mathematical
problems in his head and his geometrical approach to
statistical problems are attributed to this early form of
instruction.

Fisher obtained a bachelor’s degree in mathematics
from the University of Cambridge in 1912. The
following year, he took a statistical job with the
Mercantile and General Investment Company of
London, a position he held for two years. Because of
his poor eyesight, he was rejected for military service
during World War I and spent the war years teaching
mathematics and physics at various public schools. In
1917, he married Ruth Eileen Guinness. The marriage
produced two sons and eight daughters.

In 1919, Fisher accepted the newly created position
of statistician at Rothamsted Experimental Station,
approximately 20 miles north of London. The career
move proved to be a fortunate choice. It brought him
into close contact with researchers who were con-
cerned with the interpretation of agricultural field
experiments and with laboratory and greenhouse
experiments. Rothamsted provided an environment in
which Fisher was free to pursue his interests in genet-
ics and evolution; carry out breeding experiments
on mice, snails, and poultry; and develop statistical
methods for small samples.

While at Rothamsted, Fisher invented the analysis
of variance and revolutionized the design of experi-
ments. The publication of Fisher’s books Statistical
Methods for Research Workers in 1925 and The
Design of Experiments in 1939 gradually led to the
acceptance of what today are considered the corner-
stones of good experimental design: randomization,
replication, local control or blocking, confounding,
randomized blocks, and factorial arrangements. Other
notable contributions include the concept of likeli-
hood and the maximum likelihood estimator, the
development of methods suitable for small samples,
the discovery of the exact distribution of numerous
statistics derived from small samples, the Fisher infor-
mation measure, and contributions to hypothesis test-
ing. In 1933, Fisher succeeded Karl Pearson as the
Galton Professor of Eugenics at University College,
London. Ten years later, he accepted an appointment
as the Arthur Balfour Chair of Genetics at Cambridge,
a position he held until his retirement in 1957.

Friends described Fisher as charming and warm
but possessing a quick temper and a devotion to
scientific truth as he saw it. The latter traits help
explain his long-running disputes with Karl Pearson
and Pearson’s son Egon. Fisher was the recipient of
numerous honors and was created a Knight Bachelor
by Queen Elizabeth in 1952.

—Roger E. Kirk

See also Analysis of Variance (ANOVA)

Further Reading

Box, J. F. (1978). R. A. Fisher: The life of a scientist. New
York: Wiley.

Ronald A. Fisher biographical essay: http://en.wikipedia.org/
wiki/Ronald_Fisher

FISHER EXACT PROBABILITY TEST

The Fisher exact probability test (also called the
Fisher-Irwin test) is one of several tests that can be
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used to detect whether one dichotomous variable is
related to another. The rationale of this test, as well as
its principal advantages and limitations, can be pre-
sented in the context of the following hypothetical
small randomized experiment designed to determine
whether a dichotomous “treatment” variable (Drug vs.
Placebo) is related to a dichotomous “outcome” vari-
able (Survival vs. Death).

A physician believes that a new antiviral drug
might be effective in the treatment of SARS (severe
acute respiratory syndrome). Assume that the physi-
cian carries out a randomized double-blind drug effi-
cacy study involving 6 SARS patients (designated A,
B, C, D, E, and F), 3 of whom (say, A, B, and C) were
randomly selected from this group and given the drug
and the remaining 3 of whom (D, E, and F) were given
a placebo. Four months later, the 3 patients
who received the drug were still alive whereas the
3 patients who received the placebo were not.

Results of this study may be summarized in a 2 × 2
table (see Table 1, which has 2 rows and 2 columns,
ignoring row and column totals). More generally,
results of any randomized treatment efficacy study
involving dichotomous treatment and outcome vari-
ables may be summarized using the notation shown in
Table 2. Do the results in Table 1 support the belief
that the new drug is effective (relative to the placebo)?
Or, more generally, do results of a randomized study
that can be summarized as in Table 2 support the belief
that the two dichotomous variables are related—for
example, that patient outcomes are related to the treat-
ments to which they have been exposed?

The fact that, in the physician’s study, all the drug
patients survived and all the placebo patients died
(Table 1) would seem consistent with the belief that
the patient outcomes were related to treatments they
received. But is there a nonnegligible probability that
such a positive result could have occurred if the treat-
ment had in fact been unrelated to the outcome?
Consistent with absence of relation of outcomes to
treatments, let us hypothesize (this will be called
the null hypothesis, and designated H0 hereafter) that
patients A, B, and C, who actually survived, would
have survived whether they received the drug or the

placebo, and that D, E, and F, who actually died,
would have died whether they received the drug or the
placebo. Now we ask, Would the positive results in
Table 1 have been unlikely if this H0 had been true?

This H0 has two important implications that are
relevant to answering the question: First, the total
number of survivors and nonsurvivors would be 3 and
3, respectively, regardless of which 3 patients were
selected to receive the drug (and which other 3
received the placebo), so that the marginal totals of
Table 1 would be fixed regardless of results of the ran-
domization. Second, the number of survivors among
the drug patients (which will be designated X here-
after), as well as the other 3 entries in the 2 × 2 table,
would be determined by which patients were selected
to receive the drug. For example, with the selection A,
B, and C, the number of drug patients who would sur-
vive (X) would be 3, and the results of the study would
be as displayed in Table 1. But with the selection of A,
B, and D, then X would be 2, and the four cells of the
2 × 2 table would then have entries of [2 1] for row 1
and [1 2] for row 2 (note that since marginal totals of
Table 1 are fixed, irrespective of which 3 patients are
selected to receive the drug, knowledge of X deter-
mines entries in the other three cells of the 2 × 2 table;
these entries are therefore redundant with X). With
fixed marginal totals, the variable X is clearly relevant
to tenability of the H0 relative to the hypothesis that
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Table 1 Results of a 2 x 2 Design

Drug Placebo Row Totals

Survived X = 3 0 3
Died 0 3 3
Column total 3 3 6

Table 2 Summary of Study Results

Treatment 1 Treatment 2 Row Totals

Success X = a b Ns

Failure c d Nf

N 1 N 2 N



the drug is effective. There were, in fact, 20 possible
ways in which the 3 patients who were to receive the
drug could have been selected; these 20 selections are
listed in Table 3, together with values of X they would
have determined under the H0. 

Since the selection was random (meaning that all
20 possible selections were equiprobable), it is appar-
ent that the probabilities of X = 0, 1, 2, and 3 given H0

(designated P(X | H0)) can be determined by counting
how many of the 20 assignments yield each value of X
and dividing this count by 20. Table 4 lists the proba-
bilities obtained by applying this enumeration
method.

Table 4 shows that the very positive result of the
physician’s study (in particular, X = 3) is improbable
under the H0 that the outcome (survival, death)
was unrelated to treatment assignment for each of
the 6 patients (in particular, P(X = 3 | H0) = 0.05). This
result, however, would be consistent with the hypoth-
esis that the new drug worked. Table 4 also implies
that a researcher who decided to reject the H0 (i.e., to
conclude that outcomes were related to treatments)
if X = 3 would be taking a risk of 0.05 of making a
Type I error (defined as “rejection of a true null
hypothesis”). Note also that if a researcher decided
to reject the H0 if X ≥ 2, then the researcher would
be taking a very large risk (viz., .45 + .05 = .50) of
making a Type I error.

Determining Fisher
Exact Probabilities From

Hypergeometric Distributions

In general (see Table 2), given (a) random assignment
of N1 participants (drawn from a pool of N partici-
pants) to Treatment 1 and N2 = (N − N1) participants
to Treatment 2, (b) Ns were observed to “Succeed”
(e.g., survive) and Nf were observed to “Fail” (e.g.,
die), and (c) the null hypothesis (H0) that the outcome
is unrelated to treatment assignment, the probability
of (X = a) successes among participants exposed to
Treatment 1 can be obtained using the formula 

where any number (say, M) followed by an exclama-
tion point (M!) is defined as follows:

M! = M (M–1) (M–2) . . . (3) (2) (1) 
(e.g., 6! = (6)(5)(4)(3)(2)(1) = 720),

and where 0! = 1! = 1. For example, the P(X = 2 | H0)
for Table 1 would be

P(X = 2 | H0) =
3!

2! (3 − 2)!

3!

1! (3 − 1)!

6!

3! (6 − 3)!

=
(3)(2)(1)

(2)(1) (1)

(3)(2)(1)

(1) (2)(1)

(6)(5)(4)(3)(2)(1)

(3)(2)(1) (3)(2)(1)

= 9

20
= .45

P(X = a | H0)

=
Ns!Nf !

a!(Ns − a)!(N1 − a)!(Nf − N1 + a)!
N !

N1!(N − N1)!

,
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Table 3 Patient Selection Possibilities for Receiving Drug

ABC(3)
ABD(2) ABE(2) ABF(2) ACD(2) ACE(2) ACF(2) BCD(2) BCE(2) BCF(2)
ADE(1) ADF(1) AEF(1) BDE(1) BDF(1) BEF(1) CDE(1) CDF(1) CEF(1)
DEF(0)

Table 4 Probabilities Obtained by Applying
This Enumeration Method

X 0 1 2 3

P(X|Ho) 1/20 = .05 9/20 = .45 9/20 = .45 1/20 = .05



Note that the numerator yields the number of
equiprobable selections of N1 from N participants that
would result in X = 2 (cf. the second line in Table 3)
and that the denominator (obtained from N! / (N1!(N −
N1))!) is a count of the total number of possible
equiprobable selections of N1 from N (cf. all four lines
in Table 3). The above formula, which calculates
P(X | H0) using efficient counting principles, is called
the general term of the hypergeometric distribution,
and the probability distribution of X that can be used
to generate (e.g., Table 1) is called the hypergeomet-
ric distribution.

The Fisher exact test is therefore appropriate for
randomized designs (with random selection of N1 par-
ticipants, drawn from a pool of N participants, for
assignment to Treatment 1 and N2 = N − N1 partici-
pants for assignment to Treatment 2, and with Ns

Successes and Nf Failures) to address questions about
relations of dichotomous “treatment” and “outcome”
variables (see Table 2). The null hypothesis (H0) in
these designs is that, for each of the N participants, the
outcome is unrelated to the treatment assignment.
This H0 implies that the selection (treatment assign-
ment) does not affect the total numbers of Successes
or Failures observed in the study (i.e., fix the row
totals, Ns and Nf) but determines a, the value of X (see
Table 2), as well as values of b, c, and d (since the
value of a determines the values of b, c, and d, given
the fixed marginal totals). Given randomization, X
will have the hypergeometric distribution under H0.
Evidence against H0, in a given study, consists of
obtained values of X (the number of Treatment 1
patients who Succeed) so extreme as to have been
very unlikely to have occurred had H0 been true (say
p ≤ .05, as determined from the hypergeometric distri-
bution). When the researcher’s prediction or experi-
mental hypothesis implies high values of X, the
expression “exact probability” in the Fisher “exact
probability” test usually refers to P(X ≥ Xobtained | H0),
where Xobtained is the value of X obtained in the study
and where the probabilities that are cumulated to cal-
culate P(X ≥ Xobtained | H0) are determined by the right
side or “right tail” of the hypergeometric distribution.
For example (see Table 1), if in the physician’s study,
Xobtained = 2 (i.e., 2 of the 3 patients who were given the

drug survived), then P(X ≥ Xobtained | H0) would be .45 +
.05 = .50. This probability is called a one-tailed
p value of the Fisher exact test. Similarly, when the
experimental hypothesis implies low values of X, the
“exact probability” of Fisher’s test results in another
one-tailed p value, defined as P(X ≤ Xobtained | H0), the
sum of probabilities of X ≤ Xobtained, located on the left
side or left tail of the hypergeometric distribution. A
“two-tailed p value” for the Fisher test would be the
sum of probabilities of X at least as extreme as Xobtained

in both tails of the hypergeometric distribution. For
example, if Xobtained = 3, results at least as extreme in
the hypergeometric distribution would be X = 3 and
X = 0, and the two-tailed p value of the Fisher test
would therefore be .05 + .05 = .10 (see Table 4).

Assumptions and Limitations

The above information draws attention to two impor-
tant characteristics of the Fisher exact test. First, the
exact probability generated for this test is based on
two important assumptions: (a) that both column and
row marginal totals of the 2 × 2 table are fixed under
the H0 and (b) that the [N! / (N1! (N − N1)!] possible
results of the experiment are all equiprobable under
the H0. These assumptions are required for the deriva-
tion of the hypergeometric distribution that is used to
calculate the “exact probabilities” of this test. In the
randomized design illustrations (above), assumption
(a) is satisfied by the researcher’s decision to select N1

(drawn from the pool of N) participants for assign-
ment to Treatment 1 and N2 = N −N1 participants for
assignment to Treatment 2 (this decision fixes the
column totals) and by the definition of the H0 (which
fixes the row totals, as explained above). Assumption
(b) is satisfied, in these illustrations, by the random
assignment. Second, the exact probability associated
with the Fisher test is relevant, in these illustrations, to
inferences about the relation of the outcome to the
treatment only for the N participants included in the
study. For example, the p value of .05 corresponding
to the results of the physician’s study warrants the
conclusion (assuming that a risk of .05 of a Type I
error is acceptable) that the H0 can be rejected for
the 6 patients included in the physician’s study. The
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p value of the Fisher test does not support statistical
inferences about efficacy of the drug with patients
other than the 6 who took part in the study (although
nonstatistical inferences may be possible).

The Fisher exact probability test can be applied to
2 × 2 table data of studies that do not involve random
assignment of participants to conditions, as long as the
hypergeometric distribution assumptions (viz., fixed
marginal totals for both rows and columns of the
2 × 2 table and equiprobability under H0 of the [N! /
(N1!(N − N1)!)] are plausible under the researcher’s H0.
It is noteworthy that the experiment R. A. Fisher orig-
inally chose to illustrate his exact test did not involve
random assignment of N participants to treatments but
instead involved a selection made by a single partici-
pant. Fisher’s experiment was designed to test a tea-
drinking lady’s claim that she could taste the
difference between two cups of tea with milk, one in
which the milk was added prior to the tea, and the
other in which the tea was added prior to the milk.
Fisher’s experiment consisted of presenting the lady
with eight cups (in random order) after informing her
that in half of the cups, milk had been added first and
in the other half, tea had been added first, and asking
her to select the four in which the milk had been added
first. The H0 was that her claim was false and that her
selection of four from the eight cups could then in
effect be viewed as a random selection of four from
eight cups. The number of successes (X = number of
cups in which milk was added first) for the four cups
she selected, which could be 0, 1, 2, 3, or 4, is relevant
to testing her claim and can be viewed as a hypergeo-
metric random variable if the H0 is true. Clearly, the
larger the value of X, the stronger the evidence against
the H0 (and indirectly for the lady’s claim). Assuming
that the lady obtained X = 4 successes, the exact one-
tailed p level of the Fisher exact probability test would
be 1/70 = .014 (which may be verified by enumeration
or by applying the general term of the hypergeometric
distribution); in other words, it is improbable that she
could have had that many successes if her claim had
been false (and if her selection had in effect been
a random selection of four from the eight cups).
(Historical note: R. A. Fisher, who designed this inter-
esting little experiment, once told M. G. Kendall that
he never actually carried it out.)

A researcher who considers a p level of .014 too
large for rejection of the H0 could easily modify
the study by increasing the number of cups so that
more convincing evidence against the H0 could be
obtained. Thus, for example, if from a set of 16 cups
the lady correctly identified the 8 cups in which
milk had been poured first, the one-tailed p level of
the Fisher exact test would be 1/12,870 = .0000777
(which can easily be determined from the general
term of the hypergeometric distribution). This result
would provide very convincing evidence against the
hypothesis (H0) that her selection had been a random
selection. However, as in the physician’s study
(above), the Fisher test would not allow statistical
inferences about persons not included in the study: In
particular, a very small p value for the tea-tasting
experiment would not allow statistical inferences
about tea-tasting abilities of any person other than the
lady who took part in the study.

Using the Computer

SYSTAT offers two-tailed p values for the Fisher
exact probability test as an option in its “cross-tab”
module when the cross-tabulation involves two
dichotomous variables. The SYSTAT output for the
16-cup tea-tasting experiment in which the lady cor-
rectly selected all (i.e., X = 8) of the cups in which
milk had been poured first includes the 2 × 2 table and
the exact two-tailed p value of the Fisher test:

Milk First Tea First Total

Selected 8 0 8
Not selected 0 8 8
Total 8 8 16

Fisher exact test (two-tailed) probability = .000155.

—Louis M. Hsu

Further Reading

Fisher, R. A. (1971). The design of experiments. New York:
Hafner. (Original work published in 1935)

Hodges, J. L., Jr., & Lehmann, E. L. (1970). Basic concepts
of probability and statistics (2nd ed.). San Francisco:
Holden-Day.
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Maxwell, S. E., & Delaney, H. D. (2004). Designing experi-
ments and analyzing data (2nd ed.). Mahwah, NJ:
Erlbaum.

Fisher’s exact test calculation: http://www.unc.edu/~preacher/
fisher/fisher.htm

FISHER-IRWIN TEST

See FISHER EXACT PROBABILITY TEST

FISHER’S LSD

The analysis of variance (ANOVA) can be used to test
the significance of the difference between two or more
means. A significant overall F test leads to the rejec-
tion of the full null hypothesis that all population
means are identical. However, if there are more than
two means, then some population means might be
equal. R. A. Fisher proposed following a significant
overall F test with the testing of each pair of means
with a t test applied at the same level α as the overall
F test. No additional testing is done following a non-
significant F because the full null hypothesis is not
rejected. This procedure was designated the least sig-
nificant difference (LSD) procedure.

If there are exactly three means in the ANOVA, the
probability of one or more Type I errors is limited to
the level α of the test. However, with four or more
means, that probability can exceed α. A. J. Hayter
proposed a modification to LSD that limits the proba-
bility of a Type I error to α regardless of the number
of means being tested.

If the number of means is k then Tukey’s honestly
significant difference (HSD) procedure can be used to
test each pair of means in an ANOVA using critical
values from the Studentized range distribution. Hayter
proposed replacing Fisher’s t tests with the HSD crit-
ical values that would be used with k − 1 means even
though the number of means is k. That is, a significant
F test is followed by testing all pairs of means from
the k means with the HSD critical value for k − 1
means.

Illustrative Example

Table 1 presents a hypothetical data set in which four
groups containing five observations each produce a
within-groups MS of 2.0. An independent-groups
ANOVA applied to such data would produce an over-
all F = 22.62, which would exceed the critical value,
F.95(1,16) = 3.24.

Following the significant F test, the LSD procedure
requires testing all pairs of means. In Hayter’s modi-
fication, a critical difference for all pairs at the .05
level is obtained from the formula

where 

SR.95,k−1,ν is the Studentized range statistic,

k is the number of means,

ν is the error degrees of freedom,

MSE is the error term (in this case the Mean Square
within groups), and

N is the common group size.

For the data in Table 1, we obtain the result

Table 2 presents the six pairwise differences and
shows that all pairs are significantly different except
for Group 2 and Group 3. That difference of 2.30 is
less than the critical difference of 2.31.

CD = 3.65

√
2.0

5
= 3.65

√
0.4

= 3.65(.63245) = 2.31.

CD = SR.95,k−1,ν

√
MSE

N
,
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Table 1 A Hypothetical Data Set in Which Four
Groups Contain Five Observations

Group 1 Group 2 Group 3 Group 4

2.00 4.31 6.61 9.00



The Hayter-Fisher version of LSD will always be
more powerful than Tukey’s HSD for testing all pair-
wise differences following an ANOVA F test. In the
case of testing exactly three means, the Hayter-Fisher
version gives the same results as the original LSD.

Most computer packages apply the original version
of LSD. In the case of testing exactly three means,
those results will be accurate. However, when testing
more than three means, such packages will risk exces-
sively high Type I error rates.

Most computer packages also provide Tukey’s
HSD procedure. Following a significant overall F test,
any pair of means found significantly different by
HSD will also be significantly different by the Hayter-
Fisher version of LSD. Also, any pair of means found
not to be significantly different by the original LSD
will also not be significantly different by the Hayter-
Fisher version. Thus, in most cases the results of the
Hayter-Fisher procedure can be found from a com-
puter package that provides HSD and the original
LSD. In cases where a pair of means is not significant
by HSD but is significant by the original LSD, the
final decision for the Hayter-Fisher can be determined
quite easily as described above. Of course, computer
packages could easily modify their procedures to offer
the Hayter-Fisher method.

—Philip H. Ramsey

See also Bonferroni Test; Post Hoc Comparisons

Further Reading

Hayter, A. J. (1986). The maximum familywise error rate
of Fisher’s least significant difference test. Journal of the
American Statistical Association, 81, 1000–1004.

Kirk, R. E. (1995). Experimental design: Procedures for the
behavioral sciences. Pacific Grove, CA: Brooks/Cole.

Ramsey, P. H. (2002). Comparison of closed procedures
for pairwise testing of means. Psychological Methods, 7,
504–523.

FISHER’S Z TRANSFORMATION

Fisher’s Z transformation is a procedure that rescales
the product-moment correlation coefficient into an
interval scale that is not bounded by + 1.00. It may
be used to test a null hypothesis that an obtained cor-
relation is significantly different from some hypothe-
sized value (usually a nonzero value, because a t test
is available to test whether ρ = 0), to test the signifi-
cance of the difference between two independent cor-
relations, to find the average of several correlations, or
to form a confidence interval (CI) for a correlation
coefficient. 

Like all statistics, the correlation coefficient is
subject to sampling variation. For a given population,
the sample correlation coefficient (r) has a sampling
distribution around its population parameter, ρ
(Greek lowercase letter rho), and this distribution has
a standard error, the standard error of the correlation
coefficient, σr. However, the sampling distribution of
r has a different shape, depending on the value of ρ.
The possible values of r are limited to the range
between +1.0 and −1.0. If the value of ρ is about zero,
sample deviations can occur equally in either direc-
tion, and the distribution is symmetric. However, as ρ
departs from zero, this symmetry is lost because one
end of the sampling distribution is more restricted
than the other due to the limiting values of + 1.0.
There is more space on one side of the parameter than
on the other. For extreme values of ρ, the sampling
distribution of r becomes markedly skewed. The skew
becomes noticeable at about ρ = .40.

A solution to this problem was developed by
R. A. Fisher, who proposed a transformation for r that
would normalize the distribution. The resulting index
is called Fisher’s Z or ZF. Note that this is not the same
quantity as the standard score or the critical ratio, each
of which is a deviation of an observed value from the
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* = Significantly different at α = .05.

Table 2 The Six Possible Pairwise Differences

Group 1 Group 2 Group 3 Group 4 Critical
2.0 4.31 6.61 9.00 Difference

2.0 – 2.31* 4.61* 7.00* 2.31
4.31 – 2.30 4.69*
6.61 – 2.39*



distribution mean, divided by the standard deviation.
The statistic Fisher developed,

(1)

has the advantage that its sampling distribution is
almost exactly normal for any value of ρ and has a
standard error of

(2)

This standard error does not depend on the value of
ρ, unlike the standard error used in the t test for test-
ing the hypothesis that ρ = 0. Also, σZ

F
is calculated,

not estimated, so the test statistic is a critical ratio
Z and is more powerful than the t test.

Because r can have only a limited number of values
(to 2 decimal places) and the distribution is symmetric
around zero, some statistics books contain tables for
transforming r to ZF and ZF back to r. However, the
equations for transforming a correlation to the metric
of ZF and back again are so simple that they are easily
entered into a cell of a spreadsheet or programmed as
a macro. The equation for the reverse transformation is

(3)

where the first form of the expression is in the nota-
tion used for computations by EXCEL and the second
is in standard notation. However, many spreadsheets
also include functions for converting to and from ZF in
their function libraries. For example, EXCEL has a
function called FISHER for the r-to-ZF transformation
in Equation 1 and one called FISHERINV for
the reverse transformation in Equation 3. Pasting
FISHER into a cell produces the dialog box in Figure
1. Entering the observed r for X produces ZF. In this
example, r = .80 produces ZF = 1.0986.

The process is reversed by pasting FISHERINV
into a cell. In the example in Figure 2, we have
reversed the transformation to recover our original
correlation of .80.

Applying ZZFF to Hypothesis Testing

Sometimes we might wish to test a hypothesis that ρ
is some value other than 0. Suppose we wish to test
the null hypothesis that the correlation between scores
on a reaction-time measure (RT) and scores on
Thorndike’s Precarious Prognosticator of Potential
Proficiency (the TP4) is −.75. Because the sampling
distribution of r around a population parameter as
high as this is definitely not symmetric, we must use
Fisher’s Z transformation. We transform the r and the
ρ to ZFs and carry out the test using the formula

(4)Z = ZFr
− ZFρ

1√
N − 3

,

r = (exp(2 ∗ Z) − 1)/(exp(2 ∗ Z) + 1)

= e2Z − 1

e2Z + 1
,

σZF
= 1√

N − 3
.

ZF = 1/2 ln

(
1 + r

1 − r

)

,
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Figure 1 Excel Screen Image for Transforming r to ZF

Figure 2 Excel Screen Image for Transforming ZF to r



where ZFr
is the transformed value of the observed

correlation and ZFρ
is the transformed value of the

hypothesized population correlation. If Z from
Equation 4 exceeds the usual critical value (1.96, 2.58,
or another value we might choose), we would reject
the null hypothesis that ρ = 0.75.

Suppose we have data from a sample of 68 partici-
pants, and the observed correlation between RT and
the TP4 is −.59. The transformed values are ZFr

=
−.678 and ZFρ

= −.973, so with this sample size, we
obtain

Since a Z of 2.38 exceeds the critical value of
1.96, we would reject the hypothesis that ρ = −.75
in the population that produced this sample at the
p < .05 level. That is, it is unlikely that this sample
was drawn from a population in which ρ = −.75. The
fact that the Z is positive suggests that the sample
was probably drawn from a population in which
ρ is less than −.75 (that is, not as large a negative
correlation).

We can see how important Fisher’s Z transforma-
tion is if we compare the result above with what we
would get if we tested the same hypothesis without
the transformation. The appropriate equation (see
t test of a correlation coefficient) produces

A t of 1.62 with df = 66 is not significant, so we
would not reject the hypothesis that ρ = −.75. Had we
been testing the hypothesis that ρ = 0, either test
would have been appropriate, and either would have
led to the same conclusion. The difference is caused
by the asymmetry of the sampling distribution of r for
large values of ρ.

Confidence Intervals
for Correlations

A second situation that we occasionally encounter and
that calls for ZF is the need to place a CI for ρ on an
observed r. For example, in the section above, we
were able to conclude that it is unlikely that the popu-
lation from which we drew our sample is one in which
the correlation is −.75, but what is a reasonable range
for this correlation? A CI provides an answer.

The first step is to determine ZF for the obtained r.
Next, calculate σZ

F
using Equation 2. Using the appro-

priate normal deviate Zs for our chosen confidence
level (Zα ) (for example, +1.96 for the 95% CI), we
compute the upper and lower CI limits for ZF using the
usual linear transformations

CIL = (–Zα)σZF
+ ZFr

and

CIU = (+Zα)σZ
F

+ ZF
r
.

These limits, which are in the metric of ZF, are then
transformed into correlation values.

To find the 95% CI for the relationship between RT
and the TP4, we would proceed as follows: The
obtained r was −.59 computed on 68 participants, the
ZF was .678, and σZ

F
= 0.124.

The upper- and lower-limit values for the 95% CI
in the metric of ZF are

(−1.96)(0.124) + (−.678) = −.921

and

(+1.96)(0.124) + (−.678) = −.435.

This CI is symmetric in terms of probability and in
terms of ZF but not in terms of r. With FISHERINV,
we can transform the values of ZF into the metric of r.
The CI in the scale of r goes from −.409 to −.726, with
its center at −.59, reflecting the fact that the sampling
distribution of r in this region is positively skewed.
(The sampling distribution would be negatively
skewed for positive correlations.)

t66 = −.59 − (−.75)
√

(1 − .552)

(68 − 2)

= .16

.099
= 1.62.

Z = −.678 − (−.973)
√

1

65

= +.295

.124
= +2.38.
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Hypotheses About
Two Correlations From
Independent Samples

We occasionally encounter a situation where we
want to test a null hypothesis that two correlations
are equal or that they differ by a specified amount. If
the two correlations involve the same variables in
two different samples, such as testing whether a cor-
relation is the same for men as it is for women, we
can use ZF . First, transform both rs to ZFs, then
calculate the standard error of the difference between
two ZFs:

(5)

A critical ratio Z of the usual form then provides
the test statistic for the null hypothesis that ρ1 = ρ2

(ρ1 – ρ2 = 0):

(6)

Suppose we found the correlations between
midterm and final examination scores for students in
a statistics class. For the 17 men in the class, the cor-
relation is 0.78, and for the 24 women, r is 0.55. The
null hypothesis that ρM = ρF is tested by finding

and

Clearly, we cannot reject the null hypothesis
of equal correlations on the basis of these data, but
we also cannot reach the conclusion that they are
equal.

Averaging Correlations

Another application is the problem of averaging the
correlation between two variables across several
groups of people. For example, research on the
Wechsler Intelligence Scale for Children sometimes
involves several groups of children who differ in age.
For some research questions, it is desirable to col-
lapse the results across ages to obtain larger samples.
It is not appropriate simply to consider all children to
be a single sample, because cognitive ability is
related to age. Therefore, correlations are computed
within each age group and then averaged across
ages.

Because the sampling distribution of the correlation
coefficient is highly skewed for large values of ρ, the
meaning of differences between correlations changes
depending on where we are in the range of possible
values. For this reason, we cannot use simple averag-
ing techniques with rs. We can, however, use ZF

because it represents a variable on an interval scale.
Whenever it is necessary to find an average of several
correlations, particularly when they differ by more
than about .10, the appropriate procedure is as follows:

1. Transform all rs to ZFs. 

2. Find Z
—

F (the mean of the ZFs). 

3. Then reverse the transformation using Z
—

F to find the
mean r, or r–.

When the correlations being averaged are based on
samples of different sizes, it is necessary to compute a
weighted average. Under these conditions, the proper
weighting is given by the formula in Equation 7:

Z = (1.045 − .618) − 0

.345
= +.427

.345
= 1.24 .

σ(ZF1 −ZF2)
=

√
1

17 − 3
+ 1

24 − 3
= √

.119 = .345

Z = ZFr1
− ZFr2

− (
ZFρ1

− ZFρ2

)

σ(ZF1 −ZF2)
.

σ(ZF1 −ZF2)
=

√
1

N1 − 3
+ 1

N2 − 3
.
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(7)
ZF = (N1 − 3)ZF1 + (N2 − 3)ZF2 + · · · + (NK − 3)ZFK

(N1 − 3) + (N2 − 3) + · · · + (NK − 3)
.



The mean correlation, r–, is found by transforming
Z
—

F back into the metric of r using Equation 3.
Hypotheses concerning this mean correlation should
be tested using Z

—

F, which has a standard error of

(8)

The critical ratio test statistic for testing null
hypotheses concerning r– is

(9)

As usual, ZFρ
is the ZF of ρ, the correlation under the

null hypothesis, which is usually zero but may take on
any appropriate value.

Imagine that we have the correlation between the
midterm exam scores and final exam scores for each
of three classes in statistics. The data are

r1 = 0.77 N1 = 12 ZF1 
= 1.020

r2 = 0.47 N2 = 18 ZF2 
= 0.510

r3 = 0.25 N3 = 57 ZF3 
= 0.255.

We may wish to find r– and test the hypothesis that
the mean correlation is zero. This is done by using
Equations 7–9 to find

from which we can conclude that the mean correlation
of 0.373 differs significantly from zero.

We can place a CI on this mean correlation in the
usual way. For the 95% CI, we start with

Z
—

F = .392 σZ
— = .113 Z0.95 = + 1.96.

Finding the lower and upper limits of the CI for
Z
—

F yields

CIL = −1.96(.113) + .392 = .171
CIU = +1.96(.0864) + .221 = .653.

Converting these ZFs back into correlations produces
a CI centering on +.37 and running from +.17 to +.57.

—Robert M. Thorndike

See also Correlation Coefficient
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FOURIER TRANSFORM

The Fourier transform takes a function (or sequence)
defined in the time or spatial domain and transforms
it to the frequency domain, which provides a natural
environment for studying many problems. Fourier

r = 0.373

σZF
= 1√

78
= .113

Z = .373/.113 = 3.30,

ZF = 9(1.020) + 15(.510) + 54(.255)

9 + 15 + 54

= 30.6

78
= .392

Z = ZF − ZFρ

σZF

.

σZF
= 1√

(N1 − 3) + (N2 − 3) + · · · + (NK − 3)
.
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analysis (often referred to as spectral analysis) is
usually associated with the study of periodic behavior
(e.g., sunspots) but is also used to understand nonpe-
riodic and stochastic behavior. Spectral analysis tech-
niques are some of the most ubiquitous tools in modern
science and are used in fields as diverse as signal
processing, astronomy, geophysics, medical imaging,
neurophysiology, speech analysis, and optics.

The Fourier transform can be applied to multidimen-
sional processes; however, it has undoubtedly been
applied most widely to one-dimensional processes.
Hence, this discussion will refer only to functions (or
sequences) defined in the time domain.

Historical Aspects

The Fourier transform is named after the French engi-
neer Jean Baptiste (Joseph Baron) Fourier
(1768–1830), who, motivated by his work modeling
heat conduction, proposed that any function could
be decomposed into a superposition of sinusoidal (sine
and cosine) terms. It has since been found that the
decomposition is valid only for func-
tions that satisfy certain conditions,
which are rather technical (the inter-
ested reader is referred to the refer-
ences). However, almost all functions
that arise in physical applications will
satisfy the conditions or at least will
be well approximated by a sum of
sinusoidal terms.

Which Fourier Transform?

Without context, the term Fourier
transform generally refers to the
continuous Fourier transform, which
is a linear mapping from a continuous
time interval to the frequency domain.
The discrete Fourier transform is then
the equivalent form for discrete time.

The frequency domain representa-
tion allows analysis of a function’s
frequency characteristics, such as 
the contribution of the function to

sinusoids at different frequencies. The inverse Fourier
transform reverses the transformation from the fre-
quency domain back to the time domain. The mapping
is unique, so the inverse Fourier transform will repro-
duce the original function exactly. The dual trans-
forms are called the Fourier transform pair.

What Do We Mean by Frequency?

Frequency is the number of times a function repeats
itself within a unit of time. If the time unit is a second,
the frequency measure is hertz, the number of cycles
per second. The period is the time taken for the func-
tion to repeat; in other words, period is the reciprocal
of frequency: Frequency = 1/Period. Frequency can
intuitively be considered in terms of sound waves:
A bass note is a low-frequency sound, and a whistle is
a high-frequency sound.

The period between successive peaks of the solid
line in Figure 1 is 8 seconds, giving a frequency of
f = 1_

8
Hz. The dotted line is of a higher frequency, f = 1_

4
,

shown by the period of 4 seconds. The amplitude of a

Fourier Transform———365

0 1 2 3 4 5 6 7 8

1

0.75

0.25

0

0.25

0.5

0.75

1

time (seconds)

y

0.5

Figure 1 Sinusoidal Functions of Various Frequencies and Phases

Note: Solid line is sin(2π ft) with frequency f = 1_
8
, dashed line is sin(2π t + π/2) =

cos(2π ft), and dotted line is sin(2π ft)/4 with twice the frequency, or f = 1_
4

.



sinusoid is the height of each peak or trough. The
solid line has amplitude one, whereas the dotted line
has amplitude 1_

4
. The phase of a sinusoid indicates

which part of the cycle the function commences at
time zero. The solid line has phase 0 (a sine term),
whereas the dashed line has the same frequency,
but the phase is shifted by π/2 (equivalent to a cosine
term). Hence, cosine functions are simply phase-
shifted sine functions.

Continuous Fourier Transform

The continuous Fourier transform X(f) of a function
x(t) at frequency f can be expressed as 

with corresponding inverse Fourier transform 

where i is the square root of −1. The integrals decom-
pose the function into sinusoidal terms at an infinite
division of frequencies. The Fourier transform can be
used for complex-valued functions. However, in most
applications, the functions are real-valued, which will
be assumed in this discussion.

It is not possible to venture into the mathematical
detail of the Fourier transform. The interested reader
is referred to the references. However, it is useful to
consider why the integrand involves complex expo-
nentials rather than sinusoidal terms, as one might
expect. Insight comes from Euler’s formula:

eiϑ = cos(ϑ) + isin(ϑ).

Hence, the complex exponential gives a complex
number whose real part is a cosine term and whose
imaginary part is a sine term. We know that a sinusoid
term with a particular phase angle can be written as a

combination of simple sine and cosine terms. Hence,
the complex exponential allows us to consider sinu-
soidal functions, but in a much more convenient func-
tional form (integrals of exponential functions are
easier than sinusoids).

The Fourier transform of a function carries infor-
mation about the amplitude and phase of contributions
at each frequency. The absolute value of the Fourier
transform is related to the amplitude. The phase is
given by the angle in complex space (called the argu-
ment of the complex number). A plot of the square of
the absolute value of the Fourier transform against fre-
quency is called the power spectrum of the signal. The
corresponding plot of the phases is the phase spec-
trum. For real functions, the power spectrum is sym-
metric, and the phase spectrum is antisymmetric, so
only the positive frequencies are usually shown.

The Fourier transform has many interesting prop-
erties. For example, the Fourier transform of an
even function is entirely real and even, whereas for
an odd function, it is entirely complex and odd.
A time shift changes only the phase, not the ampli-
tude, so the power spectrum is unchanged. The
Fourier transform of the sum of two functions is
simply the sum of their respective Fourier trans-
forms (known as linearity). Examples of a few
important functions and their Fourier transforms are
shown in Figure 2. A delta function can be thought
of as infinity at a single point. The sinc function is
defined as sin(π f)/ π f. 

One of the most useful properties of the Fourier
transform is its behavior under convolution, which
makes an efficient computational tool in many scien-
tific problems. Convolution includes operations like
smoothing and filtering of a function (signal). The
result of the convolution of a function in the time
domain is equivalent to multiplication of the Fourier
transform of the signal with the transform of the
convolution function. Similarly, convolution in the
frequency domain is equivalent to multiplication in
the time domain. Hence, a convolution (usually a
computationally intensive operation) can efficiently
be carried out by a simple multiplication in the alter-
nate domain.

x(t) =
∞∫

−∞
X(f )ei2π ftdf ,

X(f ) =
∞∫

−∞
x(t)e−i2π ftdt,
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Discrete Fourier Transform

In most practical applications, to enable analysis
using computers, a signal is regularly sampled
(equally spaced) over a finite time interval. The
details associated with irregular sampling are
deferred to the interested reader. The sample period,
often known as the fundamental, is the length of time
between the regularly sampled points. The funda-
mental frequency is then . Integer mul-
tiples of the fundamental frequency give the Fourier
frequencies. The sampling frequency must be suffi-
ciently small to provide an accurate approximation of

the function, in particular to prevent aliasing,
discussed further as follows.

Sinusoids at multiples of the fundamental frequency
are called harmonics. A harmonic will complete a
whole number of cycles within the time interval; for
example, first harmonic completes one cycle, second
harmonic two cycles, and so on. Consider the sound
produced when a string is struck. The vibrations that
produce the sound travel along the string and back
again; in other words, the fundamental period is twice
the string length. The initial burst of energy produces
vibrations at many frequencies. Most frequencies will

1

Fundamental Period
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Figure 2 Plots of Various Functions and Their Fourier Transforms

Note: From top to bottom: cosine function, rectangular window, and delta function.
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die away quickly, their energy being used in producing
the sound and some heat. However, the harmonic fre-
quencies will continue to resonate, as they simply
bounce back and forth between the ends. The harmon-
ics will slowly die away as energy is lost on produc-
ing the sound you hear.

The discrete Fourier transform takes a sampled
signal xt of finite length n and produces a frequency
domain representation Xf ,

with inverse discrete Fourier transform,

Usually it is evaluated only at the Fourier frequencies

Some textbooks present the discrete Fourier
transform adjusting for different fundamental periods,
but this detail is superfluous to this entry. 

Essentially, the integral of the continuous Fourier
transform is replaced with a summation, which is
appropriately normalized. There is no strict conven-
tion on whether the normalization (1/n) should apply
to the discrete Fourier transform or its inverse 
or both. The different normalizations can have a
physical meaning in certain contexts. In statistics, it
is useful that the power spectrum of the autocovari-
ance function has the same shape as the transform of
the original series, but with different phases. This
property can enable efficient calculation of the auto-
correlation function, often the starting point in time
series analysis.

The maximum absolute frequency the discrete
Fourier transform can resolve is the Nyquist fre-
quency 1/2. The signal should be bandlimited so that
there is no periodic variation outside of the Nyquist
frequency range (−1/2,1/2). Alternatively, a signal can
be subject to an antialiasing filter (called a low-pass
filter) prior to sampling, to remove variation outside
this range. This is important because of an issue
known as aliasing. If a signal has periodicities higher
than the Nyquist frequency, then this high-frequency
variation is not distinguishable at the sampled points
from a signal at lower frequency. Power from all fre-
quencies outside the Nyquist range is folded back into
this range. Figure 4 provides an example of sampled
sinusoidal signals above the Nyquist frequency indis-
tinguishable from a signal below the Nyquist fre-
quency. Aliasing is the reason stagecoach wheels
seem to rotate backwards in some old “western”
movies shot at a low frame rate. 

As the discrete Fourier transform is usually calcu-
lated only at the Fourier frequencies, components
between these frequencies are not shown. This prob-
lem is known as the picket fence effect. For evaluation
of the discrete Fourier transform at a higher division
of frequencies, the series can be zero-padded (zeros
appended to end), which will not impact the power
spectrum.

(1/
√

n)

f = −1

2
, . . . , −2

n
, −1

n
, 0,

1

n
,

2

n
, . . . ,

1

2
.

xt =
n−1/n∑

f =0

Xf e
i2π ft.

Xf = 1

n

n−1∑

t=0

xte
−i2π ft,
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Spectral leakage is caused by observation of a
signal of infinite extent over a finite time interval.
Observation over a finite interval is equivalent to
multiplying the signal by a rectangular window, as
in Figure 2. Hence, when the Fourier transform is
applied, the resultant series is a convolution of the
Fourier transform of the true signal and the transform
of the rectangular window, or the sinc kernel shown in
Figure 2. The power from each frequency will leak
into the rest of the spectrum, a phenomenon known
as spectral leakage, which can substantially distort 
the spectrum. It is possible to multiply a series by

an alternative taper window to improve the leakage
properties.

The fast Fourier transform is an extremely efficient
algorithm for calculating the discrete Fourier trans-
form. The algorithm reduces the number of computa-
tions involved from order n2 to nlog(n). The algorithm
requires the length of the series to be a multiple of
low-order primes, such as n = 210 = 1024.

—Carl J. Scarrott

See also Autocorrelation; Smoothing; Time Series Analysis
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FRACTAL

There is no universally accepted definition of what
constitutes a fractal. However, it is usually clear what
one means by a fractal. Fractal objects are objects
with strong scaling behavior. That is, there is some
relation between the “behavior” of the object at some
scale and at finer scales. Figure 1 illustrates some of
the self-similar geometric fractals (self-similar means
that they are similar to pieces of themselves).

IFS Fractals

A particularly nice class of fractal objects is those
objects defined by iterated function systems (IFSs).
An IFS is a formal way of saying that an object is
self-similar (i.e., made up of smaller copies of itself).
Consider the Sierpinski Gasket, S (shown in Figure 2).
We can see that it is made up of three smaller copies
of itself. If we think of S as living in [0,1] × [0,1] and
we define the three maps

w1(x,y) = (x/2,y/2), w2(x,y)
= (x/2 + 1/2,y/2), w3(x,y) = (x/2,y/2 + 1/2),

then we see that S = w1(S) ∪ w2(S) ∪ w3(S). The
collection of functions {w1,w2,w3} make up the IFS.
We notice that each wi is contractive in that for any
two points x,y, we see that d(f(x), f(y)) = (1/2)d(x,y),
where d measures the usual distance in the plane.
Because of this, the combined set mapping W(B) =
w1(B) ∪ w2(B) ∪ w3(B) is also contractive (in the
appropriate sense), so by the contraction mapping
theorem there is a unique set A with W(A) = A. This
set A is the attractor of the IFS (in this case, the
Sierpinski Gasket).

One nice consequence of the contractivity of
the IFS mapping W is that we can start with any set B,
and the iterates Wn(B) will converge to the attractor of
the IFS. As illustrated in Figure 3, after one applica-
tion of W, we have 3 smaller copies of our original
set (a smile in this case), then 9 even smaller copies,
then 27 still smaller copies, and on and on until, even-
tually, all the details of the original set are too small to
see and all we see is the overall structure of the
Sierpinski Gasket. A moment’s thought will convince
you that the same thing would happen with any other
initial set.

Now we give a more formal definition of a (geo-
metric) IFS. We start with a complete metric space
(X,d) and a finite collection of self-maps wi: X → X,
with d(wi(x), wi(y)) ≤ sid(x,y) for all x,y, where 0 ≤ si

< 1 is the contraction factor for wi. Let H(X) denote
the set of all nonempty compact subsets of X, and
define the metric h (the Hausdorff metric) on H(X) by

It turns out that this is a metric on H(X), which makes
it into a complete metric space. Furthermore, under
this metric, the set map W: H(X) → H(X) defined by

W(B) = ∪i wi(B)

is contractive with contractivity factor s.
Geometric fractals are interesting and useful in

many applications as models of physical objects,
but many times one needs a functional model. It is
easy to extend the IFS framework to construct fractal
functions.

h(A,B) = max{sup
a∈A

inf
b∈B

d(a,b), sup
b∈B

inf
a∈A

d(a,b)}.
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Fractal Functions

There are several different IFS frameworks for con-
structing fractal functions, but all of them have a com-
mon core, so we concentrate on this core. We illustrate
the ideas by constructing fractal functions on the unit

interval; that is, we construct functions f :[0,1] → IR.
Take the three mappings w1(x) = x/4, w2(x) = x/2 + 1/4,
and w3(x) = x/4 + 3/4 and notice that [0,1] = w1[0,1] ∪
w2[0,1] ∪ w3[0,1], so that the images of [0,1] under
each wi tile [0,1].
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Choose three numbers α1, α2, α3 and three other
numbers β1, β2, β3 and define the operator T by

T(f)(x) = αi f(wi
–1(x)) + βi if x E wi([0,1]),

where f :[0,1] → IR is a function. Then clearly T(f):
[0,1] → IR is also a function, so T takes functions to
functions.

There are various conditions under which T is a
contraction. For instance, if |αi | < 1 for each i, then T
is contractive in the supremum norm given by

so Tn(f) converges uniformly to a unique fixed point
f
_

for any starting function f.
Figure 4 illustrates the limiting fractal functions

in the case where α1 = –α2 = α3 = 0.3 and β1 = – β2 =
β3 = –1.

It is also possible to formulate contractivity
conditions in other norms, such as the LP norms. These
tend to have weaker conditions, so they apply in more
situations. However, the type of convergence is clearly
different (the functions need not converge pointwise
anywhere, for instance, and may be unbounded).

Statistically Self-Similar Fractals

Many times a fractal object is not self-similar in
the IFS sense, but it is self-similar in a statistical
sense. That is, either it is created by some random
self-scaling process (so the steps from one scale to the
next are random) or it exhibits similar statistics from
one scale to another. The object in Figure 5 is an
example of this type of fractal.

These types of fractals are well modeled by ran-
dom IFS models, where there is some randomness in
the choice of the maps at each stage.

Other Types of Fractals

IFS-type models are useful as approximations for self-
similar or almost self-similar objects. However, often
these models are too hard to fit to a given situation.

‖f ‖sup = sup
x∈[0,1]

|f (x)|,
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For these cases, we have a choice—we can either
build some other type of model governing the growth
of the object, or we can give up on finding a model of
the interscale behavior and just measure aspects of
this behavior.

An example of the first instance is a simple model
for diffusion limited aggregation (DLA), illustrated in
Figure 6. In this growth model, we start with a seed and
successively allow particles to drift around until they
“stick” to the developing object. Clearly the resulting
figure is fractal, but our model has no explicit interscale
dependence. However, these models allow one to do
simulation experiments to fit data observed in the labo-
ratory. They also allow one to measure more global
aspects of the model (like the fractal dimension).

Fractal objects also frequently arise as so-called
strange attractors in chaotic dynamical systems. One
particularly famous example is the butterfly-shaped
attractor in the Lorentz system of differential equa-
tions. These differential equations are a toy model of
a weather system and exhibit “chaotic” behavior. The
attractor of this system is an incredibly intricate fili-
greed structure of curves. The fractal nature of this

attractor is evident by the fact that, as you zoom in on
the attractor, more and more detail appears in an
approximately self-similar fashion.

Fractal Random Processes

Since the introduction of fractional Brownian motion
(fBm) in 1968 by Benoit Mandelbrot and John van
Ness, self-similar stochastic processes have been used
to model a variety of physical phenomena (including
computer network traffic and turbulence). These
processes have power spectral densities that decay
like 1/f a.

An fBm is a Gaussian process x(t) with zero mean
and covariance,

E[x(t)x(s)] = (σ2/2)[|t|2H + |s|2H – |t – s|2H],

and is completely characterized by the Hurst exponent
H and the variance E[x(1)2] = σ 2. An fBm is statisti-
cally self-similar in the sense that for any scaling a > 0,
we have

x(at) = aHx(t),
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Figure 5 A Statistically Self-Similar Fractal

Figure 6 A DLA Fractal



where by equality we mean equality in distribution.
(As an aside and an indication of one meaning of H,
the sample paths of an fBm with parameter H are
almost surely Hölder continuous with parameter H, so
the larger the value of H, the smoother the sample
paths of the fBm). Because of this scaling behavior, an
fBm exhibits very strong longtime dependence. It is
also clearly not a stationary (time invariant) process.
This causes many problems with traditional methods
of signal synthesis, signal estimation, and parameter
estimation. However, wavelet-based methods work
rather well, as the scaling and finite time behavior
of wavelets match the scaling and nonstationarity
of the fBm. With an appropriately chosen (i.e., suffi-
ciently smooth) wavelet, the wavelet coefficients of an
fBm become a stationary sequence without the long-
range dependence properties. This aids in the estima-
tion of the Hurst parameter H.

Several generalizations of fBms have been
defined, including a multifractal Brownian motion.
This particular generalization allows the Hurst para-
meter to be a changing function of time, H(t), in a
continuous way. Since the sample paths of an fBm
have Hölder continuity H (almost surely), this is par-
ticularly interesting for modeling situations in which
one expects the smoothness of the sample paths to
vary over time.

Fractal Dimension

There are several parameters associated with a fractal
object. Of these, fractal dimension (of which there
are several variants) is one of the most widely used.
Roughly speaking, this “dimension” measures the
scaling behavior of the object by comparing it to a
power law.

An example will make it more clear. Clearly the
line segment L = [0,1] has dimension equal to one.
One way to think about this is that if we scale L by a
factor of s, the “size” of L changes by a factor of s1.
That is, if we reduce it by a factor of 1/2, the new copy
of L has 1/2 the length of the original L.

Similarly the square S = [0,1] × [0,1] has dimen-
sion equal to two since if we scale it by a factor of
s, the “size” (in this case, area) scales by a factor of
s2. How do we know that the “size” scales by a factor

of s2? If s = 1/3, say, then we see that we can tile S
by exactly 9 = 32 reduced copies of S, which means
that each copy has “size” (1/3)2 times the size of the
original.

Now take the Sierpinski Gasket S. We see that S is
covered by three smaller copies of itself, each copy
having been reduced in size by a factor of two. Thus, for
s = 1/2, we need 3 reduced copies to tile S. This gives

size of original = 3 ×  size of smaller copy
copy = 3′ × (1/2)D size of original copy,

so 3(1/2)D = 1 or D = log(3)/log(2). That is, for the
Sierpinski Gasket, if we shrink it by a factor of
1/2, then the “size” gets reduced by a factor of
(1/2)log(3)/log(2) = 1/3. In this sense, the Sierpinski Gasket
has dimension log(3)/log(2) ≈ 1.5849, so it has a dimen-
sion that is fractional, and so it is a fractal. 

We need a different method or definition for the
fractal dimension of objects that are not exactly self-
similar. The DLA fractal in Figure 6 is a fractal but is
not strictly self-similar.

One very common way to estimate the dimension
of such an object is the box counting method. To
do this, cover the image with a square grid (of side
length ε) and count how many of these boxes are
occupied by a point in the image. Let N(ε) be this
number. Now repeat this for a sequence of finer
and finer grids (letting ε tend to 0). We want to fit the
relation N(ε) = aε –D, so we take logarithms of both
sides to get log(N) = log(a–Dlog(ε). To estimate D, we
plot log(N(ε)) versus log(ε) and find the slope of the
least squares line.

For the object in Figure 6, we have the data in
Table 1, which give a fractal dimension of 1.60.

Fractals and Wavelets

We briefly mentioned the connection between frac-
tals and wavelets. Wavelet analysis has become a
very useful part of any data analyst’s tool kit. In many
ways, wavelet analysis is a supplement (and, some-
times, replacement) for Fourier analysis; the wavelet
functions replace the usual sine and cosine basis
functions.
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The connection between wavelets and fractals
comes because wavelet functions are nearly self-
similar functions. The so-called scaling function is a
fractal function, and the “mother wavelet” is simply a
linear combination of copies of this scaling function.
This scaling behavior of wavelets makes it particu-
larly nice for examining fractal data, especially if the
scaling in the data matches the scaling in the wavelet
functions. The coefficients that come from a wavelet
analysis are naturally organized in a hierarchy of
information from different scales, and hence doing a
wavelet analysis can help one find scaling relations in
data, if such relations exist.

Of course, wavelet analysis is much more than just
an analysis to find scaling relations. There are many
different wavelet bases. This freedom in choice of
basis gives greater flexibility than Fourier analysis.

—Franklin Mendivil
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FRACTIONAL RANDOMIZED

BLOCK DESIGN

A fractional randomized block design (also called a
randomized block fractional factorial design) reduces
the number of treatment combinations that must be
included in a multitreatment experiment to some
fraction (1_

2
, 1_

3
, 1_

4
, 1_

8
, 1_

9
, and so on) of the total number of

treatment combinations. Consider an experiment with
five treatments, denoted by the letters A, B, C, D, and
E. If each treatment has two levels, the number of
treatment combinations in the experiment is 2 × 2 × 2
× 2 × 2 = 32. By using a 1_

2
or a 1_

4
fractional randomized

block design, the number of treatment combinations
can be reduced to 16 or 8, respectively. However, the
reduction in the size of the experiment comes at a
price: Considerable ambiguity may exist in interpret-
ing the results of the experiment. Ambiguity occurs
because in the case of a 1_

2
fractional design, two

names, called aliases, can be given to each source of
variation. For example, a sum of squares could be
attributed to the effects of treatment A and the BCDE
interaction. In a one-fourth fractional randomized
block design, each source of variation has four aliases.
Treatments are customarily aliased with higher-order
interactions that are assumed to equal zero. This helps
minimize but does not eliminate ambiguity in inter-
preting the outcome of an experiment. One can never
be sure that the higher-order interaction is really equal
to zero. Because the interpretation of fractional ran-
domized block designs always involves some ambigu-
ity, the designs are most useful for pilot experiments
and for exploratory research situations that permit
follow-up experiments to be performed. Thus, a large
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Table 1 A Fractal Dimension of 1.60

e N(ε)

1/2 4 
1/4 16 
1/8 52 
2− 4 174 
2−5 580 
2−6 1,893 
2−7 6,037 
2−8 17,556 
2−9 44,399 
2−10 95,432



number of treatments, typically seven or more, can be
investigated efficiently in an initial experiment, with
subsequent smaller experiments designed to clarify
the results or follow up on the most promising inde-
pendent variables.

A 1_
2

fractional randomized block design in which
each treatment has two levels is denoted by 2k–1, where
2k indicates that each of the k treatments has 2 levels.
The –1 in 2k–1 indicates that the design is a one-half
fraction of a complete 2k factorial design. This follows
because the designation for a one-half fraction of 2k

can be written as 1_
2
2k = 2–12k = 2k–1. A one-fourth frac-

tional randomized block design is denoted by 2k–2

because 1_
4
2k = 1_

22

2k = 2–22k = 2k–2.

Procedures for
Constructing a Fractional
Randomized Block Design

A 25–1 design reduces the number of treatment combi-
nations in an experiment from 32 to 16. The highest-
order interaction, ABCDE, is typically used to
determine which treatment combinations are in the
experiment. This interaction, which is called the defin-
ing relation, divides the treatment combinations into
two sets, each containing 16 combinations.

Several schemes have been devised to partition the
treatment combinations into orthogonal subsets. One
scheme that uses modular arithmetic is applicable
to designs of the form pk–i , where i indicates that the
design is a 1_

2
, 1_

3
, and so on, fractional replication and p

is a prime number. Let aj, bk, cl, dm, eo, z, and p
correspond to properties of a design as follows:

aj, bk, cl, dm, and eo denote levels of treatments A through
E, respectively, where the first level of a treatment is
denoted by 0 and the second level is denoted by 1;

z = 0 or 1 identifies one of the defining relations:
(ABCDE)z = (ABCDE)0 or (ABCDE)1; and

p denotes the number of levels of each treatment.

The expression aj + bk + cl + dm + eo = z(mod p)
says to add the treatment levels (0 or 1) represented by
aj, bk, cl, dm, and eo and reduce the sum modulo p; that
is, express the sum as a remainder equal to z with

respect to the modulus p. For example, to find a
treatment combination in the subset of treatment
combinations denoted by (ABCDE)0, find a combina-
tion whose sum when divided by p leaves the remain-
der z = 0. Each of the following 16 treatment
combinations is in this subset:

00000, 00011, 00101, 01001, 10001, 00110, 01010,

10010, 01100, 10100, 11000, 01111, 11011, 11101,

10111, 11110 = aj + bk + cl + dm + eo = 0(mod 2).

For example, the sum of the treatment levels repre-
sented by 0 + 0 + 0 + 1 + 1 = 2. When 2 is divided by
p = 2, the remainder is 0. Hence, the treatment combi-
nation represented by 00011 satisfies the relation
(ABCDE)0. The treatment combinations that satisfy
the relation (ABCDE)1 are

00001, 00010, 00100, 01000, 00111, 01011, 01101,

01110, 10000, 11100, 11010, 11001, 10110, 10101,

10011, 11111 = aj + bk + cl + dm + eo = 1(mod 2).

A researcher can flip a coin to decide which of the
two sets of 16 treatment combinations to use in an
experiment.

A confounding contrast is used to assign the 16
treatment combinations in the subset, say, (ABCDE)0,
to two groups of blocks. Suppose the researcher
chooses CD as the confounding contrast. The
following eight treatment combinations satisfy the
two relations (ABCDE)0 and (CD)0:

00000, 00110, 01001, 01111, 10001, 10111, 11000,

11110 = aj + bk + cl + dm + eo = 0(mod 2) and
cl + dm = 0(mod 2).

The remaining eight treatment combinations sat-
isfy the relations (ABCDE)0 and (CD)1:

00011, 00101, 01010, 01100, 10010, 10100, 11101,

11011 = aj + bk + cl + dm + eo = 0(mod 2) and
cl + dm = 1(mod 2).

This design has two blocks of size eight.
It is often difficult to obtain two blocks of eight

experimental units such that the units in a block are
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relatively homogeneous. To reduce the block size
from eight to four, two confounding interactions can
be used. Suppose a researcher chooses CE as the
second confounding contrast. The first block contains
the treatment combinations that satisfy three relations,
(ABCDE)0, (CD)0, and (CE)0:

00000, 01111, 10111, 11000 = aj + bk + cl + dm + eo
= 0(mod 2), cl + dm = 0(mod 2), and cl
+ eo = 0(mod 2).

The second through the fourth
blocks contain the combinations that
satisfy the relations (a) (ABCDE)0,
(CD)0, and (CE)1, (b) (ABCDE)0,
(CD)1, and (CE)0, and (c) (ABCDE)0,
(CD)1, and (CE)1. The design is shown
in Table 1.

When two confounding contrasts are
used to reduce the block size, a third
interaction or treatment, called the
generalized interaction or generalized
treatment, also is confounded with the
between-block variation. For the design
in Table 1, the generalized interaction is
obtained by multiplying the confound-
ing contrasts and reducing the sums 
of the exponents modulo p, that is,
expressing the sums as a remainder
with respect to the modulus p. For
example,

CD × CE = C2D1E1 = 0(mod 2)
= C0D1E1 = D1E1= DE.

Hence, the generalized interaction of the two con-
founding interactions is DE.

The alias for a source of variation is obtained by
multiplying the label for the source of variation by the
defining relation and reducing the sums of the expo-
nents modulo p. For example, the alias for the source
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Table 1 Layout for Fractional Randomized Block Design With Five Treatments 

Treatment Combinations

a0 b0 c0 d0 e0 a0 b1 c1 d1 e1 a1 b0 c1 d1 e1 a1 b1 c0 d0 e0

Block (CD)0 (CE0) Y00000 Y01111 Y10111 Y11000

a0 b0 c1 d1 e0 a0 b1 c0 d0 e1 a1 b0 c0 d0 e1 a1 b1 c1 d1 e0

Block (CD)0 (CE)1 Y00110 Y01001 Y10001 Y11110

a0 b0 c1 d0 e1 a0 b1 c0 d1 e0 a1 b0 c0 d1 e0 a1 b1 c1 d0 e1

Block (CD)1 (CE)0 Y00101 Y01010 Y10010 Y11101

a0 b0 c0 d1 e1 a0 b1 c1 d0 e0 a1 b0 c1 d0 e0 a1 b1 c0 d1 e1

Block (CD)1 (CE)1 Y00011 Y01100 Y10100 Y11011

Note: Defining relation = (ABCDE)0, confounding contrasts = (CD)z and (CE)z, generalized interaction = (DE)z.

Table 2 ANOVA Table for Fractional Randomized Block Design
With Five Treatments 

Source Alias df

Blocks (CD), (CE), (DE) (ABE), (ABD), (ABC) 3
A (BCDE) 1
B (ACDE) 1
C (ABDE) 1
D (ABCE) 1
E (ABCD) 1
AB (CDE) 1
AC (BDE) 1
AD (BCE) 1
AE (BCD) 1
BC (ADE) 1
BD (ACE) 1
BE (ACD) 1
Error = pooled two- and 7
three-treatment interactions
Total 15

Note: Defining relation = (ABCDE)0, confounding contrasts = (CD)z

and (CE)z, generalized interaction = (DE)z.



SSERROR = SSAC + SSBC = 4.50 + 18.00 = 22.50
SSTOTAL = 1,528.00 − 1,250.00 = 278.00

Note: Defining relation = (ABCD)0, confounding contrast = (AB)z.
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ABCD Summary Table, Entry is Yjklm

a0 b0 c0 d0 a0 b0 c1 d1 a1 b1 c0 d0 a1 b1 c0 d0

Block (AB)0 11 14 12 18 55

a0 b1 c0 d1 a0 b1 c1 d0 a1 b0 c0 d1 a1 b0 c1 d0

Block (AB)1 15 22 5 3 45

AB Summary Table AC Summary Table BC Summary Table

Entry is Σl
r
=1Yjklm Entry is Σk

q
=1Yjklm Entry is Σj

p
=1Yjklm

b0 b1 c0 c1 c0 c1

a0 25 37 62 a0 26 36 62 b0 16 17 33
a1 8 30 38 a1 17 21 38 b1 27 40 67

33 67 100 43 57 100 43 57 100

Notes: Yjklm = a score for the experimental unit in treatment combination ajbkcldm; j = 1, . . . , p levels of treatment A (aj); k = 1, . . . , q
levels of treatment B (bk); l = 1, . . . , r levels of treatment C (cl); m = 1, . . . , t levels of treatment D (dm). 

Table 3 Computational Procedures for Fractional Randomized Block Design With Four Treatments 

SSBLOCKS = (55)2

4
+ (45)2

4
− (100.00)2

(2)(2)(2)
= 12.50

SSA = (62)2

(2)(2)
+ (38)2

(2)(2)
− (100.00)2

(2)(2)(2)
= 72.00

SSB = (33)2

(2)(2)
+ (67)2

(2)(2)
− (100.00)2

(2)(2)(2)
= 144.50

SSC = (43)2

(2)(2)
+ (57)2

(2)(2)
− (100.00)2

(2)(2)(2)
= 24.50

SSD =
[
(11)2 + (14)2 + · · · + (3)2

]
−

[
(25)2

2
+ · · · + (30)2

2

]

−
[
(26)2

2
+ · · · + (21)2

2

]

−
[
(16)2

2
+ · · · + (40)2

2

]

+
[

(62)2

(2)(2)
+ (38)2

(2)(2)

]

+
[

(33)2

(2)(2)
+ (67)2

(2)(2)

]

+
[

(43)2

(2)(2)
+ (57)2

(2)(2)

]

− (100.00)2

(2)(2)(2)
= 2.00

SSAC =
[
(26)2

2
+ · · · + (21)2

2

]

−
[

(62)2

(2)(2)
+ (38)2

(2)(2)

]

−
[
(43)2

2
+ · · · + (57)2

2

]

+ (100.00)2

(2)(2)(2)
= 4.50

SSBC =
[
(16)2

2
+ · · · + (40)2

2

]

−
[

(33)2

(2)(2)
+ (67)2

(2)(2)

]

−
[

(43)2

(2)(2)
+ (57)2

(2)(2)

]

+ (100.00)2

(2)(2)(2)
= 18.00

Sums and Sums of Squares

Σ
p

j=1
Σ
q

k=1
Σ
r

l=1
Σ
t

m=1
Yjklm= 11 + 14 + . . . + 3 = 100.00

Σ
p

j=1
Σ
q

k=1
Σ
r

l=1
Σ
t

m=1
Y2

jklm= (11)2 + (14)2 + . . . + (3)2 = 1,528.00 



of variation labeled treatment A, where
the defining relation is ABCDE, is

ABCDE × A = A2B1C1D1E1

= 0(mod 2) = A0B1C1D1E1

= BCDE.

Hence, treatment A and the BCDE
interaction are alternative names for the
same source of variation. The source of
variation represented by the blocks has
seven aliases: blocks plus the two con-
founding contrasts and generalized
interaction, plus their aliases. The
sources of variation and aliases for the
design are shown in Table 2.

Computational Example

The computational procedures for a 24–1 design with
(ABCD)0 as the defining relation and AB as the con-
founding contrast will be illustrated. A fractional
factorial design with only four treatments is unrealis-
tically small, but the small size simplifies the presen-
tation. The layout and computational procedures for
the design are shown in Table 3.

The analysis is summarized in Table 4. An exami-
nation of the table reveals that the 1_

2
fractional design

contains the treatment combinations of a complete
factorial design with treatments A, B, and C.
Treatment D and all interactions involving treatment
D are aliased with the sources of variation for the
three-treatment design.

Advantages of Fractional
Randomized Block Designs

Each source of variation for the design in Table 4 has
two labels. You may wonder why anyone would use
such a design—after all, experiments are supposed to
resolve ambiguity, not create it. Fractional factorial
designs are usually used in exploratory research situ-
ations where a large number of treatments must be
investigated. In such designs, it is customary to limit
all treatments to either two or three levels, thereby
increasing the likelihood that higher-order interac-
tions are small relative to treatments and lower-order

interactions. Under these conditions, if a source of
variation labeled treatment A and its alias, say the
BCDEFG interaction, is significant, it is likely that
the significance is due to the treatment rather than the
interaction. A fractional factorial design can dramati-
cally decrease the number of treatment combinations
that must be run in an experiment. An experiment with
seven treatments, each having two levels, contains 128
treatment combinations. By the use of a one-fourth
fractional factorial design, 27–2 design, the number of
treatment combinations in the experiment can be
reduced from 128 to 32. If none of the seven-
treatment F statistics are significant, the researcher
has answered the research questions with one fourth
the effort required for a complete factorial design. On
the other hand, if several of the F statistics are signif-
icant, the researcher can follow up with several small
experiments to determine which aliases are responsi-
ble for the significant F statistics. Many researchers
would consider ambiguity in interpreting the outcome
of the initial experiment a small price to pay for the
reduction in experimental effort.

—Roger E. Kirk

See also Factorial Design; Multivariate Analysis of Variance
(MANOVA)

Further Reading

Kirk, R. E. (1995). Experimental design: Procedures for the
behavioral sciences (3rd ed.). Pacific Grove, CA: Brooks/Cole.
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Table 4 ANOVA Table for Fractional Randomized Block Design
With Four Treatments 

Source (Alias) SS df MS F

Blocks or (AB), (CD) 12.50 n − 1 = 1 12.50 1.11
A (BCD) 72.00 p − 1 = 1 72.00 6.40
B (ACD) 144.50 q − 1 = 1 144.50 12.84
C (ABD) 24.50 r − 1 = 1 24.50 2.18
D (ABC) 2.00 t − 1 = 1 2.00 0.18
ERROR 22.50 11.25

AC (BD) (p − 1)(r − 1)
+ BC (AD) + (q − 1)(r − 1) = 2

Total 278.00 pqr − 1 = 7

Note: Defining relation = (ABCD)0; confounding contrast = (AB)z.



FREQUENCY DISTRIBUTION

Frequency distribution graphs present all the actual
data for a single variable. Their purpose is to illustrate
the shape and distribution of the data, making it easier
to identify outliers, gaps, clusters, and the most com-
mon data points.

Stem-and-leaf plots are examples of frequency dis-
tributions. Each number in the data set is divided into
a stem and a leaf. The stem consists of the first digit
or digits, and the leaf consists of the last digit. The
stem can have any number of digits, but the leaf will
contain only one number. For example, the number
1004 would be broken down into 100 (stem) and 4
(leaf), and the number 1.9 would be broken down into
1 (stem) and 9 (leaf).

Table 1 is a stem-and-leaf plot of grades in a
history course. The graph was created using Word (a
vertical bar was typed on each line). The plot illus-
trates that there are 21 grades, one grade of 39, none
in the 40s, one grade of 57, two of 63, one of 64, one
of 65, one of 67, three of 70, and so on.

To create a stem-and-leaf plot, follow these steps:

1. Put all the raw data in numerical order.

2. Separate each number into a stem and a leaf.

—Adelheid A. M. Nicol

See also Cumulative Frequency Distribution; Histogram;
Stem-and-Leaf Display

Further Reading

Friel, S. N, Curcio, F. R., & Bright, G. W. (2001). Making
sense of graphs: Critical factors influencing comprehen-
sion and instructional implications. Journal for Research in
Mathematics Education, 32, 124–158.

FRIEDMAN TEST

The Friedman test is a rank-based, nonparametric test
for several related samples. This test is named in honor
of its developer, the Nobel laureate and American
economist Milton Friedman, who first proposed the
test in 1937 in the Journal of the American Statistical
Association. A researcher may sometimes feel con-
fused when reading about the Friedman test because
the “related samples” may arise from a variety of
research settings. A very common way to think of
Friedman’s test is that it is a test for treatment differ-
ences for a randomized complete block (RCB) design.
The RCB design uses blocks of participants who are
matched closely on some relevant characteristic. Once
the blocks are formed, participants within each block
are assigned randomly to the treatment conditions. In
the behavioral and health sciences, a common proce-
dure is to treat a participant as a “block,” wherein the
participant serves in all the treatment conditions of an
independent variable—also commonly referred to as a
repeated measures design or a within-subjects design.

Although it is seen relatively rarely in the research
literature, there is another research situation in which
the Friedman test can be applied. One can use it in the
context in which one has measured two or more com-
parable (also referred to as “commensurable”) depen-
dent variables from the same sample, usually at the
same time. In this context, the data are treated much
like a repeated measures design wherein the commen-
surable measures are levels of the repeated measures
factor.

There is an additional source of confusion when
one thinks about the Friedman test for repeated
measures designs because for the RCB design, the
parametric method for testing the hypothesis of no
differences between treatments is the two-way
ANOVA, with treatment and block factors. The
Friedman test, which depends on the ranks of the
dependent variable within each block, may therefore
be considered a two-way ANOVA on ranks.

It is known in theoretical statistics that the
Friedman test is a generalization of the sign test
and has similar modest statistical power for most
distributions that are likely to be encountered in
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Table 1 Final Grades for Students in a History Course

3 9
4
5 7
6 33457
7 0001122356
8 145
9 4



behavioral and health research. For normal distribu-
tions, the asymptotic relative efficiency (ARE) of
the Friedman test with respect to the F test, its coun-
terpart among parametric statistical tests, is 0.955k / (k
+ 1), where k is the number of treatment groups. When
k = 4, the ARE of the Friedman test relative to the F
test is 0.764. There is evidence from computer simu-
lation studies that the ARE results, which are for very
large sample sizes, are close to the relative efficiency
to be expected for small and moderate sample sizes.

It is useful to note that in our desire to select the
statistical test with the greatest statistical power, we
often select the test with the greatest ARE. Therefore,
for a normal distribution, the parametric test is more
statistically powerful, leading us to recommend the
ANOVA F test over the Friedman test. However, in
the case of nonnormal distributions of dependent
variables, the recommendation favors the Friedman
test. Given the frequency at which nonnormal distri-
butions are encountered in research, it is remarkable
that nonparametric tests, such as the Friedman test,
or other more-powerful tests, such as (a) the
Zimmerman-Zumbo repeated measures ANOVA on
ranks, wherein the scores in all treatment
groups are combined in a single group and
ranked, or (b) the Quade test, which uses
information about the range of scores in
the blocks relative to each other, are not
used more often.

The Case Study and the Data

In the field of art education, there is a great
deal of interest in whether parents partici-
pate in art activities with their young
children and whether this participation
changes over the early school years. It is
often noted in the educational literature
that talking with children about book illus-
trations, providing writing materials at
home, and having children try various
forms of expression such as drawing and
painting enable children to express their
creativity and can lead to their using art-
work as material for instruction, play, and
creative display.

For the purposes of demonstrating the Friedman
test, 20 children (11 boys, 9 girls), average age 67.6
months, were selected from the Early Childhood
Longitudinal Study, Kindergarten (ECLS-K) class
of 1998–99. The ECLS-K focuses on children’s early
school experiences, collecting information from
children and their parents, teachers, and schools. The
question “How often do you help your child do
art?”—with four response options: (a) not at all, (b)
once or twice per week, (c) 3 to 6 times per week, and
(d) every day—was asked of parents when their child
was in kindergarten, Grade 1, and Grade 3. The statis-
tical software package SPSS version 13 was used for
the analyses. The data are listed in Table 1 by each
child’s gender, age in months at the kindergarten
assessment, and three parent responses to the question
“How often do you help your child do art?”

The Assumptions Underlying
the Friedman Test

The two assumptions for the test are stated here in
terms of the RBC design:
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Table 1 Raw Data From the ECLS-K Study

Gender Age in Months Kindergarten Grade 1 Grade 3

Male 67.40 3 2 3
Male 67.40 4 2 3
Female 64.33 2 2 2
Female 64.40 2 2 2
Female 75.20 3 2 2
Male 67.20 4 2 2
Male 70.47 3 3 3
Female 69.03 1 2 3
Male 67.30 3 3 2
Female 75.17 3 2 2
Male 68.47 2 2 1
Male 62.70 2 2 2
Male 65.80 4 3 3
Female 74.47 2 3 2
Female 66.10 3 2 2
Female 68.23 3 3 2
Female 69.17 3 4 4
Male 61.83 2 1 1
Male 62.77 2 2 1
Male 65.33 3 2 2



• The dependent variable is quantitative in nature
(ordinal, interval, or ratio scale) so that the rank
transformation can be applied.

• The scores within one block do not influence the
scores within the other blocks. This is an assumption
of statistical independence across blocks. Violation
of this assumption will seriously inflate the Type I
error rates of the hypothesis test.

The Research Hypothesis

For our example, the “treatment” condition, in RCB
design notation, is the grade (i.e., kindergarten,
Grade 1, and Grade 3). The most general statistical
hypothesis is:

H0: The treatment conditions have identical effects. That
is, each ranking of the dependent variable within a block
is equally likely.

Ha: At least one of the treatment conditions tends to yield
larger or smaller observed values than at least one other
treatment.

The Friedman test is both an unbiased and a con-
sistent test when testing these hypotheses. If one is
willing to make additional assumptions about the
distributions of dependent variables, for example that
they are symmetric, the Friedman test can also test the
equality of mean ranks of the treatments.

To compute the Friedman test, the scores within
each block are compared with each other, and the rank
of 1 is assigned to the smallest value, the rank of 2 to
the next smallest, and so on. Average ranks are used in
the case of ties. The computations for the Friedman
test are then based on the sum of ranks for each treat-
ment. The resulting test statistic does not follow a reg-
ularly shaped (and known) probability diostribution,
and so an approximation is usually used. The approxi-
mate distribution for the Friedman statistic is the chi-
square distribution with k − 1 degrees of freedom. For
this example, SPSS was used to compute the Friedman
test of equal mean ranks. The SPSS output below
shows that the mean ranks in kindergarten, Grade 1,
and Grade 3 are not equal, χ2 (2) = 8.32, p < .05.

Although it is beyond the scope of this entry, a post
hoc multiple comparison procedure is available. Also,
although we demonstrated the Friedman test using the

SPSS software, it is also available in other statistical
packages, such as SAS, Minitab, and S-Plus.

—Bruno D. Zumbo

See also Inferential Statistics

Further Reading

Beasley, T. M., & Zumbo, B. D. (2003). Comparison of
aligned Friedman rank and parametric methods for testing
interactions in split-plot designs. Computational Statistics
and Data Analysis, 42, 569–593.

Conover, W. J. (1999). Practical nonparametric statistics (3rd
ed.). New York: Wiley. 

Friedman, M. (1937). The use of ranks to avoid the assumption
of normality implicit in the analysis of variance. Journal of
the American Statistical Association, 32, 675–701.

Zimmerman, D. W., & Zumbo, B. D. (1993). Relative power
of parametric and nonparametric statistical methods. In G.
Keren & C. Lewis (Eds.), A handbook for data analysis in
the behavioral sciences: Vol. 1. Methodological issues
(pp. 481–517). Hillsdale, NJ: Erlbaum.

Zimmerman, D. W., & Zumbo, B. D. (1993). Relative
power of the Wilcoxon test, the Friedman test, and
repeated-measures ANOVA on ranks. Journal of
Experimental Education, 62, 75–86.

Friedman’s Test Applet (allows you to enter data and calculate
the test statistic): http://www.fon.hum.uva.nl/Service/
Statistics/Friedman.html
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Mean Rank

how often parent helps
child with art - kindergarten 2.40
how often parent helps
child with art - first grade 1.90
how often parent helps
child with art - third grade 1.70

N 20

Chi - Square 8.320

df 2

Asymp. Sig. .016

Test Statisticsa

a. Friedman Test

Figure 1 SPSS Results Based on the ECLS-K
Study Data

Ranks



GALTON, SIR FRANCIS

(1822–1911)

A prodigy, Sir Francis Galton was born of two 
important families. His mother was Charles Darwin’s
aunt and the daughter of Erasmus Darwin. His father’s
line included wealthy bankers and gunsmiths. By age
six, Galton was conversant with the Iliad and the
Odyssey. At age seven, he read Marmion’s, Cowper’s,
Pope’s, and Shakespeare’s works for pleasure. After
reading a page twice, he could repeat the text verbatim.

After studying medicine and mathematics at
Cambridge and failing to excel in either discipline,
Galton took a poll degree in 1843. After his father
died, Galton pursued his passion for exploration. In so
doing, he became a published author, received gold
medals from two geographic societies, and was
elected to the Royal Society. Galton developed a
method for mapping atmospheric circulation and was
the first to recognize the effects of high-pressure sys-
tems on weather. Another of his achievements was
research proving that one’s fingerprints are unique.

In statistics, Galton showed that the law of error
could be used not only to estimate true scores, but also
to investigate populations in terms of individuals’
deviations from the mean. He developed the concept

of regression, which allowed for the first scientific
attempts to study the relationship of heredity and
human behavior. Galton measured the heights of
children and their parents. He plotted the data in such
a fashion that the initial regression line decreased the
error in prediction. Using sweet pea samples selected
on the basis of the weight of parent seeds, he discov-
ered that the progeny seed weights reverted (i.e.,
regressed) toward the mean of the parent distribution.
This discovery led to the development of the concept
of correlation. The statistical concepts of regression
toward the mean and correlation allowed the field
of psychometrics to move forward significantly.
Researchers were able to study the stability of human
attributes. For instance, through the use of regression
and correlation, the relationship between the intelli-
gence scores of parents and their children could be
examined.

In Hereditary Genius (1869), Galton contended
that intellect is inherited. To collect evidence to test
his theory, he founded an anthropometric laboratory
through which he measured an array of physical
attributes (e.g., height, reaction time, and head cir-
cumference). Although his notion was fatally flawed,
throughout his life Galton argued that nature domi-
nates nurture in the development of human mental
ability.
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Galton used Darwin’s comments on the selective
breeding of plants and animals to suggest that humans
could be improved by similar methods. In 1883, he
coined the term for such practices, eugenics, and a
long and bitter controversy ensued. Although his
name is often linked to negative eugenics (e.g.,
Hitler’s attempts to exterminate “inferior races”), for
the most part Galton favored positive approaches
(e.g., “genetically superior” people should marry
early and produce more children). Nevertheless, he
urged that “undesirables” be restricted from free
reproduction, even supporting their sterilization.

—Ronald C. Eaves

See also Correlation Coefficient; Intelligence Quotient;
Intelligence Tests

Further Reading

Brookes, M. (2004). Extreme measures: The dark visions and
bright ideas of Francis Galton. London: Bloomsbury.

Sir Francis Galton: http://www.mugu.com/galton/

Applying Ideas on Statistics and Measurement

The following abstract is adapted from Huberty,
C. J. (2002). A history of effect size indices.
Educational and Psychological Measurement,
62(2), 227–240.

Depending on how one interprets what an
effect size index is, it may be claimed that its
history started around 1940, or about 100 years
prior to that with the ideas of Sir Francis Galton,
Charles Darwin (Galton’s cousin), and others. An
attempt is made in this article to trace histories of
a variety of effect size indices. Effect size bases
discussed pertain to (a) relationship, (b) group dif-
ferences, and (c) group overlap. Multivariate as
well as univariate indices are considered in
reviewing the histories.

GAMBLER’S FALLACY

The gambler’s fallacy is a common invalid inductive
inference. It involves the mistaken intuition or belief

that the likelihood of a particular outcome of a process
that generates independent random events increases as
a function of the length of a run of consecutive non-
occurrences of that outcome.

For example, a person playing a casino roulette
wheel would commit the gambler’s fallacy if he or
she had a greater tendency to gamble on red than on
black after four consecutive black outcomes, than
after a shorter run of black outcomes. Such a ten-
dency, or belief that red is more likely to occur as a
function of its nonoccurrence, is erroneous, because
the outcomes of the spins of a properly calibrated
roulette wheel are independent, and the probabilities
of red and black are equal and remain constant from
spin to spin of the wheel. Similarly, a flip of a fair
coin is not more likely to produce tails after a run of
heads; nor is a pregnant woman more likely to give
birth to a girl if she has, in the past, given birth to
three boys consecutively.

The most widely cited explanation of the gam-
bler’s fallacy effect involves the hypothesis that
people judge the randomness of an observed series of
outcomes in terms of the extent to which it represents
the output that would be expected of a prototypical
random process—one that contains few orderly
sequences such as long runs, symmetries, or strict
alternations of one outcome, and few over- or under-
representations of possible outcomes. Perhaps the
gambler’s fallacy arises because the occurrence of a
locally less frequent outcome would produce a sam-
ple that would better represent randomness than the
alternative sample would. For example, given five
flips of a fair coin, heads might seem more likely
after a series such as THTTT, because THTTTH has a
shorter run of tails, and overrepresents tails less, than
THTTTT does. People may also believe that a random
device is somehow capable of correcting for the local
scarcity of one outcome by overproducing instances
of that outcome. Such thinking is faulty. A random
device has no memory or means by which to correct
its output, or to prevent patterns from appearing in a
sample of outcomes.

Generalization from frequently encountered cases
involving finite populations sampled without replace-
ment could also explain this fallacy. For example,
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a motorist who is stopped at a railroad crossing
waiting for a freight train to pass would be using
sound reasoning if he or she counted freight cars
that have passed the crossing and compared this
number to his or her knowledge of the finite distrib-
ution of train lengths to determine when the cross-
ing will clear. However, such reasoning is invalid
when applied to large populations sampled without
replacement.

—David M. Boynton

See also Law of Large Numbers

Further Reading

Gold, E. (1997). The gambler’s fallacy. Unpublished doctoral
dissertation, Carnegie Mellon University.

Kahneman, D., & Tversky, A. (1972). Subjective probability:
A judgment of representativeness. Cognitive Psychology, 3,
430–454.

Applying Ideas on Statistics and Measurement

The following abstract is adapted from Johnson, J.,
& Tellis, G. J. (2005). Blowing bubbles: Heuristics
and biases in the run-up of stock prices. Journal
of the Academy of Marketing Science, 33(4),
486–503. 

Ads of stocks and mutual funds typically tout
their past performance, despite a disclosure that
past performance does not guarantee future
returns. Are consumers motivated to buy or sell
based on past performance of assets? More gener-
ally, do consumers (wrongly) use sequential infor-
mation about past performance of assets to make
suboptimal decisions? Use of this heuristic leads
to two well-known biases: the hot hand and the
gambler’s fallacy. This study proposes a theory of
hype that integrates these two biases—that a pos-
itive run could inflate prices, and a negative run
could depress them, although the pattern could
reverse on extended runs. Tests on two experi-
ments and one event study of stock purchases
strongly suggest that consumers dump “losers”
and buy “winners.” The latter phenomenon could
lead to hyped-up prices on the stock market for
winning stocks. The authors discuss the manager-
ial, public policy, and research implications of the
results.

GAUSS, CARL FRIEDRICH

(1777–1855)

Gauss, who was born April 30, 1777, in Brunswick,
Germany, the child of a poor family, was a prodigy who
became famous for his advances in many branches of
science, but he was, above all else, a mathematician.

Mathematics came naturally to Gauss, who is said
to have corrected his father’s wage calculations when
he was aged three. Early evidence of his ability was
provided by his speedy answer to the request by his
schoolteacher to sum the numbers from 1 to 100. He
saw immediately that each of (1 + 100), (2 + 99), . . .
summed to 101 and thus the answer was 5050. He had
invented the formula for himself, and this was typical
of his early career—he was frequently inventing
results and discovering later that these results had
been found before. Gauss’s ability came to the atten-
tion of the Duke of Brunswick, who became his
patron and sent him, in 1795, to the University of
Göttingen. It was only a matter of time before Gauss
outdid his predecessors: In 1796, he showed that it
would be possible, using ruler and compasses only, to
construct a regular figure with 

22
n

+ 1 

sides for any integer n.
In 1801, Gauss summarized his discoveries of the

previous 5 years in Disquisitiones Arithmeticae, a
masterpiece that immediately established him as the
foremost living mathematician. Turning to astronomy,
Gauss next developed new methods for calculating the
motions of planets. This was spectacularly confirmed
by his ability to predict where astronomers should
search for the minor planet Ceres. Gauss’s achieve-
ment was based on his development of the method of
least squares and the use of an error distribution now
known variously as the normal or Gaussian distribu-
tion. The procedures were set out in his 1809 work
Theoria Motus Corporum Coelestium in sectionibus
conicis solem ambientium.

In 1805, Gauss was happily married to Johanna
Ostoff, and he soon had a son and daughter. In 1807,
the family moved to Göttingen, where Gauss was
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appointed director of the observatory. In 1809, Johanna
died in childbirth, and the following year, Gauss married
her best friend, Minna Waldeck, although it appears
that this marriage was not a happy one.

Gauss’s astronomical work resulted in inventions
such as the heliotrope, an instrument for accurate
direction-finding by means of reflected sunlight.
Gauss also experimented with magnetometers; pho-
tometers; and, some 5 years before Samuel Morse, the
telegraph. He died peacefully at Göttingen in the early
morning of February 23, 1855.

—Graham Upton

See also Normal Curve

Further Reading

Dunnington, G. W. (2004). Carl Friedrich Gauss: Titan of
science. Washington, DC: Mathematical Association of
America.

Carl Friedrich Gauss article: http://en.wikipedia.org/wiki/
Carl_Friedrich_Gauss

GENERALIZED ADDITIVE MODEL

Estimating the linear model Yi = β0 + β1X1i + . . . +
βkXki + ei is at the core of many of the statistics con-
ducted today. If you allow the individual X variables to
be products of themselves and other variables, the lin-
ear model is appropriate for factorial ANOVAs and
polynomial regressions, as well as estimating the
mean, t tests, and so on. The flexibility of the linear
model has led authors of some textbooks and software
to call this the general linear model. I try to avoid this
phrase because it can be confused with the generalized
linear model, or GLM. The GLM is an important
extension that allows researchers to analyze efficiently
models where the responses are proportions and
counts, as well as other situations. More on this later.

The main focus of this entry is extending the linear
model into an additive model. In the linear model,
each X variable is multiplied by a scalar, the β value.
This is what makes it a linear model, but this restricts

the relationship between X and Y (conditioned on all
the other Xs). With additive models, the β values are
replaced by usually fairly simple (in terms of degrees
of freedom) functions of the X variables. The model
can be rewritten as Yi = α + f1(X1i) + . . . + fk(Xki) 
+ ei . The functions are usually assumed to be splines
with a small number of knots. More complex func-
tions can be used, but this may cause the model to
overfit the observed data and thus not generalize well
to new data sets. The typical graphical output shows
the functions and the numeric output shows the fit of
the linear and nonlinear components. The choice of
functions, which often comes down to the type and
complexity of the splines, is critical.

To illustrate this procedure, Berndt’s 1991 data from
534 respondents on hourly wages and several covari-
ates (experience in years, gender, and education in
years) are considered. One outlier with an hourly wage
of $44 (z = 6.9) is removed, but the data remain skewed
(1.28, se = 0.11). Logging these data removes the skew
(0.05, se = 0.11), so a fairly common approach is to use
the logged values as the response variable and assume
that the residuals are normally distributed. Suppose the
researchers’ main interests are in the experience
variable, and whether income steadily increases with
experience or whether it increases rapidly until some
point and then increases but less rapidly. For argu-
ment’s sake, let us assume that the increases are both
linear with the logged wages. The researchers accept
that wages increase with education and believe that the
relationship is nonlinear, and so they allow this rela-
tionship to be modeled with a smoothing spline.
Because the variable female is binary, only a single
parameter is needed to measure the difference in earn-
ings between males and females. Although categorical
variables can be included within generalized additive
models (GAMs), the purpose of GAMs is to examine
the relationships between quantitative variables and
the response variable. The first model is

ln wagesi = β0 + β1femalei + β2Experi

+ f1(Educi) + ei.

This is like a normal multiple linear regression for
the variables female and Exper; the model fits both as
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conditionally linear with the log of wages, but the
relationship for education is allowed to be curved. This
was fit with the gam package for S-Plus with the default
spline (smoothing spline with df = 4). The residual
deviance is 103.74. There is a positive linear relation-
ship between experience and the log of wages and a
positive curved relationship between education and the
log of wages. The effect for female is negative, mean-
ing that after controlling for experience and education,
females earn less than their male counterparts. The top
three plots in Figure 1 show this model. With GAMs,
people usually rely on plots to interpret the models and
compare the deviance values, or they use methods of
cross-validation to decide how complex the model
(including the complexities of the individual fks)
should be. Here, the deviance values will be compared.

The bottom three plots of Figure 1 show the model

ln wagesi = β0 + β1femalei + f 1(Experi) 
+ f 2(Educi) + ei.

f1 has been set to a piecewise linear model, so two lines
are connected at a knot determined by the algorithm.
The residual deviance drops to 97.55, which is statis-
tically significant (χ2(1) = 6.20, p = .01). The package
used (gam) allows different types of curves (including
loess) to be included in the model, although the effi-
ciency of the algorithm works best if the same type is
used. What is clear from this model is that a single lin-
ear term of experience is not sufficient to account for
these data. If we allow the relationship between expe-
rience and the log of wages to be a df = 4 spline, the
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Figure 1 Plots for the Predictor Variables for Two Models Predicting the Log of Wages Using Experience,
Education, and Gender

Notes: The top row shows the GAM where experience is a linear predictor. The bottom row has experience as a piecewise linear
relationship with a single knot estimated at approximately 15 years’ experience. The dashed lines are for standard errors and rugplots
are used to show the univariate distributions of experience and education. 



residual deviance drops only to 96.85. Although this is
not an improvement in the fit of the model, the
researcher might still opt for this unless he or she has
a theoretical explanation for the sudden change in
slope for the previous model.

Just as the generalized linear model allows
researchers to model proportions and counts effi-
ciently using the basic concepts of the linear model,
the generalized additive model also allows this. The
user chooses an error distribution from the exponen-
tial family and an associated link function, denoted
g(). Popular distributions are the normal distribution
(associated link is the identity function), the bino-
mial distribution (associated link is the logit func-
tion), and the Poisson distribution (associated link is
the natural log, or ln, function). In fact, the above
example could have been modeled with the log link
and assuming Poisson error, and this approach shows
that a smooth spline does fit experience better than
the piecewise linear model. Generalizing the additive
model can be done in the same way as generalizing
the linear model. If µi is the value of the response
variable, then E(g(µi)) = ηi, where ηi is an additive
model of the form Σfk(Xki) where one of
the X variables is a constant so that an intercept 
is included. Including the error term, this is g(µi) =
ηi + ei, where the ei are assumed to follow some dis-
tribution. The wages example could be fit with the
following GAM:

1n(µi) = ηi + ei

ηi = α + f 1(Experi) + f 2(Educi) + β1femalei

ei ~ Poisson(µi).

To illustrate a logistic additive model, Vriji’s 2005
data inspired by truth and lie detection using criteria-
based content analysis (CBCA) will be used. This is a
method used in several countries to try to determine
whether a child is telling the truth or a lie when ques-
tioned, usually in connection with cases of child sexual
abuse. There are 19 criteria, and each statement can be
given a 0, 1, or 2. These are summed so that each
person can get a score from 0 to 38, with high scores
indicating more truthfulness. One problem with this
procedure is that people with more linguistic skills tend
to have higher scores than people with fewer linguistic

skills. Because of this, there is assumed to be a complex
relationship between age, CBCA score, and truth.

Suppose there are 1,000 statements from people
who are 3 to 22 years old. All of the statements have
CBCA scores, and it is known whether or not they are
truthful. For these data, age and truth were created
independently, so age, on its own, does not predict
truth (t(998) = 1.04, p = .30). Three GAMs were esti-
mated. The first has just CBCA to predict truth. This
uses the logit link function and assumes binomial
variation. The default smoothing function for the gam
package is used, and the result (in the upper left hand
corner of Figure 2) shows that the probability of truth
increases with CBCA scores. The deviation from lin-
ear is statistically insignificant (χ2(3) = 44.18, p <
.01). The residual deviance of this model is 1251.65.

The next model has ηi = αi +f1(CBCAi) + f2(agei),
where both f1 and f2 are df = 4 smoothing splines, and
the resulting curves are shown in the second row of
Figure 2. CBCA is again positively related to truth.
However, age is negatively related (because it is condi-
tional on CBCA). Both curves show marked nonlinear-
ity. The residual deviance is 1209.60, which is a large
improvement in fit on the previous model (χ2(3.82) =
42.05, p < .001). The final row in Figure 2 shows the
GAM, which includes an interaction term. The graph
of the interaction effect (new residual deviance
1201.51, change χχ2(3.96) = 28.09, p = .09) shows that
the predictive value of the CBCA scores increases with
age. To examine this interaction further, values of the
age variable were placed into four approximately equal
sized bins, and separate GAMs were run on each. The
resulting ogives for these are shown in Figure 3.
Simple monotonic curves appear to represent the rela-
tionship between CBCA and truthfulness for the older
people, but not for the younger groups. It appears
either that the relationship between CBCA and truth-
fulness is different for the age groups, or that the
CBCA is only diagnostic of truthfulness above about
16 or 17 points (which the older people do not score
below for either true or false statements). Given that
these are data created for illustration, it is not appropri-
ate to speculate further about either explanation.

GAMs are useful generalizations of the basic
regression models. Like GLMs, they allow different
link functions and distributions that are appropriate
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for a large amount of data collected in science.
Furthermore, the additive components allow an
extremely flexible approach to data modeling. There
are several extensions to GAMs not discussed here,
such as model selection and regulatization techniques,
multilevel GAMs, and different types of estimation.
Current software allows many different types of
curves to be fit within GAMs. Two were illustrative, a
theory-driven example where a linear model was com-
pared with a piecewise linear model, and a data-driven
example that included an interaction. As algorithms
and software advance, these models should become
more flexible and more widely used.

—Daniel B. Wright

See also Ogive; Smoothing

Further Reading

Berndt, E. R. (1991). The practice of econometrics. New York:
Addison-Wesley.
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GENERALIZED METHOD

OF MOMENTS

When information on a set of parameters is given in
the form of moments (expectations), equations con-
taining this information are called the moment condi-
tions. For example, if yt = x′tθ + ut is considered and
the statistician knows a priori that xt and ut are uncor-
related, then the corresponding moment conditions
are Ext(yt – x′tθ) = 0. Alternatively, if it is believed that
zt and ut are uncorrelated for some random variables zt,
then the moment conditions would be Ezt(yt – x′tθ) = 0.
In the above examples, the functions xt(yt – x′tθ) and
zt(yt – xt′θ), whose expectations are set to zero, are
called the moment functions. In general, for some
functions g(Xt,θ) of random variables Xt and unknown
parameter vector θ, the moment conditions are
expressed as Eg(Xt,θ) = 0.

Identification and Overidentification

For a given set of moment functions g(Xt,θ), the true
parameter sets the expected moment functions to zero
by definition. When Eg(Xt,θ ) = 0 at only the true
parameter, we say that the true parameter vector is
identified by the moment conditions. A necessary con-
dition for the identification of the true parameter is
that the number of moment conditions should be at
least as large as the number of parameters. When the
number of moment conditions is exactly equal to the
number of parameters (and when the true parameter is
identified), we say that the true parameter is exactly
identified. On the other hand, if there are more
moment conditions than necessary, we say that the
true parameter is overidentified.

Generalized Method of Moments

When there is a set of moment conditions that exactly
identifies a parameter vector, method of moments esti-
mation is widely used. As the true parameter sets the
population moments to zero, the method of moments
estimator sets the sample moments to zero. More pre-
cisely, when the true parameter is exactly identified by
Eg(Xt,θ) = 0, the method of moments estimator θ̂ sat-
isfies T–1∑T

t=1 g(Xt,θ̂ ) = 0.
If the true parameter is overidentified, that is, if

there are more moment conditions than are necessary
to identify θ, then it is usually impossible to set the
sample moment vector to zero (because there are
more equations than parameters). The generalized
method of moments (GMM) was introduced by Lars
Peter Hansen in 1982 in order to handle this case. Let
g
_
(θ) = T–1∑T

t=1 g(Xt, θ) for notational simplicity. Instead
of setting the sample moment functions simultane-
ously to zero (which is usually impossible), Hansen
proposed to minimize the quadratic distance of the
sample moment vector from zero, that is, to minimize
g
_
(θ)′g

_
(θ) with respect to θ over the parameter space.

The minimizer is called the generalized method of
moments (GMM) estimator.

The GMM estimator is consistent and asymptoti-
cally normal. In addition, the GMM procedure con-
tains method of moments estimation as a special case.
The method of moments estimator sets g

_
(θ̂ ) = 0, in

which case the criterion function g
_
(θ)′g

_
(θ) attains the

minimal value zero at θ = θ̂ .

Weighted GMM and Optimal GMM

A symmetric and positive definite constant matrix W
can be used in the criterion function to form a
weighted criterion function g

_
(θ)′Wg

_
(θ), whose min-

imizer is called the weighted GMM estimator using
the matrix W as weights. Because any symmetric
and positive definite matrix can be decomposed 
into A′A for some nonsingular matrix A (e.g., by a
Cholesky decomposition), we observe that any
weighted criterion function can be regarded as the
(unweighted) quadratic distance of the transformed
sample moment vector Ag

_
(θ ) = T–1∑T

t=1Ag(Xt,θ) from
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zero. Because W is a constant matrix, A is also a
constant matrix, and therefore the transformed
moment conditions are also valid, because E[Ag(Xt,θ)]
= AEg(Xt,θ) = 0. This obvious fact shows that any
weighted GMM estimator (using a symmetric and
positive definite weight matrix) is also consistent
and asymptotically normal.

When the moment conditions exactly identify a
parameter, a weighted GMM can still be consid-
ered. But in that case, the resulting weighted GMM
estimator is always equal to the method of moments
estimator satisfying g

_
(θ̂ ) = 0. Therefore, weighted

GMM needs to be used only in the case of
overidentification.

The asymptotic variance of a weighted GMM esti-
mator depends on the associated weight matrix.
Optimal weights would correspond to the transforma-
tion of the moment conditions such that all the
moment functions have identical variance and are
pairwise uncorrelated. More specifically, the optimal
weight, which yields the most efficient GMM estima-
tor in the class of weighted GMM estimators, is Ω-1,
where Ω = E[g(Xt,θ)g(Xt,θ)′]. The weighted GMM
estimator using this optimal weight is called the opti-
mal GMM estimator. The optimal GMM estimator is
again obviously consistent because E[Ag(Xt,θ)] =
AEg(Xt,θ), where A′A = ΩΩ–1.

Under the assumption that the random variables Xt

are iid for all t, and some other technical assumptions,
the asymptotic distribution of the optimal GMM esti-
mator is

where D = E∂ g(Xt,θ)/∂ θ ′, and both D and ΩΩ are
evaluated at the true parameter. This optimal
GMM estimator is efficient in the class of consis-
tent estimators based on a given set of moment
conditions.

In practice, the optimal weight matrix Ω−1 is
unknown, and as such, the estimator based on
g
_
(θ)′Ω–1g

_
(θ) is infeasible. We can make this proce-

dure feasible using a consistent estimate of Ω.
Usually, a two-step procedure is used by practitioners.

1. A consistent estimator of Ω is found. Often, this is
done using an unweighted GMM, or method of
moments estimation with an exactly identifying
subset of the moment conditions. If θ̃ is the resulting
estimator, then Ω is estimated by 

Ω̃= T–1 ∑T
t=1g (Xt,θ̃ ) g(Xt,θ̃ )′.

2. We then minimize g
_
(θ)′Ω̃–1g

_
(θ) to yield an efficient

GMM estimator.

This estimator is called the two-step efficient GMM
estimator. The asymptotic distribution of the two-step
efficient GMM estimator is identical to that of the
(infeasible) optimal GMM estimator using Ω−1 as
weights.

Sometimes, estimation of Ω and the efficient
GMM estimator are repeated until the first step esti-
mator and the second step estimator coincide. This
estimator, called the continuous updating estimator,
also has the same asymptotic distribution as the opti-
mal GMM estimator.

The continuous updating estimator is also obtained
by minimizing

with respect to θ. The difference between this
criterion function and the loss function for the two-
step efficient GMM is that in the continuous updat-
ing estimation, the weighting matrix is a function of
the parameter and is adjusted to attain the global
minimum.

When θ̂ is the optimal GMM estimator (feasible or
infeasible), the variance-covariance matrix (D′Ω–1D)–1

is estimated by (D̂′Ω̂–1D̂)–1, where

and 

When computing D̂, if the first derivative is not
algebraically obtained, we may use a numerical
procedure to differentiate the moment functions.

�̂ = 1
T

T∑

t=1

g(Xt, θ̂ )g(Xt, θ̂ )′.

D̂ = 1

T

T∑

t=1

∂g(Xt, θ̂ )

∂θ ′

ḡ(θ)′
[

1
T

T∑

t=1

g(Xt, θ)g(Xt, θ)′
]−1

ḡ(θ)

√
T (θ̂ − θ) →d N

(
0, (D′�−1D)−1

)
,
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Inferences on the parameters may still be done using
this numerical approximation.

When an overidentifying set of moment conditions
is available, method of moments estimation using an
exactly identifying subset of the moment conditions is
always an available option that yields a consistent
and asymptotically normal estimator. Moreover, this
method of moments estimator based on a subset does
not involved weighting and therefore is simpler com-
putationally and conceptually. However, mathemati-
cal theorems show that the asymptotic variance of the
optimal GMM estimator never increases as moment
conditions are added to a given set of moment condi-
tions, which is natural because a bigger set of moment
conditions means more information, and an optimal
utilization of more information should not yield a
worse estimator. So, from the perspective of asymp-
totic efficiency, it is more desirable to make use of all
the moment conditions available and consider optimal
GMM. However, when the sample size is small, it is
known that too many moment conditions are likely to
lead to a poor (e.g., biased) estimator, and methods
with which to choose an optimal number of moment
conditions are being researched actively.

In order for the GMM estimators (unweighted,
weighted, optimal, two-step, and continuous updating)
to be consistent and asymptotically normal, the
moment conditions must clearly identify the true para-
meter in the sense that the slope of the moment func-
tions is steep enough to clearly separate the true
parameter from its neighborhood. If the moment func-
tions fail this condition, we say that the moment func-
tions weakly identify the true parameter. In this case, the
two-step efficient GMM estimator has severe bias in
general. However, available evidence suggests that the
continuous updating estimator has little or no bias. In
the example of linear structural equations models, the
two-stage least squares estimator with weak instru-
ments is biased, and the estimator corresponds to the
two-step efficient GMM estimator. In this same setting,
the limited information maximum likelihood estimator
corresponds to the continuous updating estimator, and
these appear not to have any bias. Formalizing the prop-
erties of the GMM estimators in the case of weak iden-
tification is an active research area.

Overidentification Test

Now consider testing if the specification Eg(Xt,θ ) = 0
is correct. If the true parameter is exactly identified,
then it is impossible to test this specification because
GMM estimation is achieved by setting g

_
(θ̂) = 0. But

if the moment conditions overidentify the true para-
meter, then a test is available based on g

_
(θ̂). This test

is called the overidentification test.
If H0: Eg(Xt,θ ) = 0 is true, then the sample

moments g
_
(θ̂), evaluated at the GMM (consistent)

estimator, will be close to zero, whereas if H0 is incor-
rect, then the sample moments will be far from
zero. When H0 is correct, it can be shown that
Tg

_
(θ̂ )′Ω̂–1g

_
(θ̂) is approximately χ 2 distributed with

degrees of freedom equal to the degree of overidenti-
fication, that is, the number of moment conditions
minus the number of parameters. If the test statistic is
large, then this implies that there are some moment
conditions that are not compatible with the others, and
so some elements of Eg(Xt ,θ) are not zero, leading us
to reject H0. Unfortunately, the test does not indicate
which of the moment conditions are correctly speci-
fied and which are incorrectly specified.

Examples

Any estimator that uses information given in the form
of moment conditions can be classified as a GMM
estimator. For example, the ordinary least squares
estimator is the GMM (or more exactly, the method of
moments) estimator using the moment conditions that
each regressor is uncorrelated with the error term. The
two-stage least squares estimator is another example
of GMM based on the moment conditions that the
instruments and the error term are uncorrelated. The
maximum likelihood estimator can also be regarded
as a GMM estimator, because the estimator satisfying
the first order condition T–1∑T

t=1∂ log Lt(θ̂ )/∂θ = 0 can
be regarded as a method of moments estimator using
E∂ log Lt(θ)/∂θ = 0 as moment conditions.

Application

Consider a random sample of T observations:
X1, . . . , XT. If we identify the true parameter θ as
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θ = E(Xt), that is, E(Xt – θ ) = 0, then the
method of moments estimator for θ
is θ̂ mm = T−1∑T

t=1Xt, whose variance
may be estimated by V̂mm = T −2∑T

t=1

(Xt – θ̂ mm)2.
Now suppose that the statistician also

knows a priori that the third central
moment of Xt is zero, that is, that E[(Xt –
θ )3] = 0. Then we have two moment functions

for the θ parameter. For the two-step efficient GMM
estimation, we first get a consistent estimate of θ to
construct a consistent estimate for the optimal weight-
ing matrix. We may use the above θ̂mm to get Ω̃ =
(1/T)∑T

t=1 g(Xt ,θ̃)g(Xt ,θ̃)′, and then the feasible opti-
mal weight is Ω̃–1. Now the two-step efficient GMM
estimator minimizes g–(θ)′Ω̃–1g–(θ), where g–(θ) =
(1/T)∑T

t=1 g(Xt ,θ). Let θ̂gmm denote this two-step effi-
cient GMM estimator. The variance of the asymptotic
distribution of √T

⎯
(θ̂gmm – θ ) is (D′Ω–1D)–1, where

and Ω = E[g(Xt, θ ) g(Xt, θ )′] as before. These D and Ω
are estimated consistently by replacing θ with θ̂gmm

and the expectation operator with the sample mean
over the T observations. The continuous updating esti-
mation is straightforward.

Table 1 contains a sample of 40 observations of Xt.
The method of moments estimator θ̂mm , which is the
sample mean of X1, . . . , X40, equals 1.0230 with stan-
dard error V̂ 1/2 = 0.1554. The S-plus program for the
two-step efficient GMM estimation is listed in Table 2,
and that for the continuous updating estimation is in
Table 3. The resulting two-step GMM estimate is

D = E
∂g(Xt, θ)

∂θ
= −

[
1

3E[(Xt − θ)2]

]

g(Xt, θ) =
[

Xt − θ

(Xt − θ)3

]
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Table 2 S-Plus and R Code for Two-Step Efficient GMM

x <- read.csv (“datafile.csv”)

n <- NROW(x)

g.matrix <- function(p) {

m1 <- x-p

as.matrix(cbind(m1,m1^3))

}

gmm.func <- function(p) {

gbar <- as.numeric(colMeans(g.matrix(p)))

t(gbar)%*%W%*%gbar

}

std.error <- function(p) {

Omega <- crossprod (g.matrix (p))/n

D <- -c(1,3*mean((x-p)^2)) # algebraic differentiation

1/(t(D)%*%solve(Omega)%*%D)/sqrt(n)

}

est1 <- mean(x) # First step MM

W <- solve(crossprod (g.matrix(est1))/n) # Weighting matrix

gmm2 <- nlm(gmm.func,est1) # Second step efficient GMM

est2 <- gmm2$estimate

## Overidentification test

overid <- n*gmm2$minimum

Table 1 Data: 40 Observations

−0.012 0.442 0.508 1.301 −0.462 0.214 1.693 −0.620 
1.281 1.705 1.029 0.807 2.436 −0.349 2.275 2.449 
1.593 −0.102 0.756 1.506 0.500 1.407 −0.193 1.095 
2.219 1.547 −0.090 2.219 2.003 2.688 0.190 −0.269 
1.677 0.576 1.842 −0.107 −0.736 2.318 1.704 1.881 



0.9518 with standard error 0.0456, and the continuous
updating estimate is 0.9513 with standard error
0.0456. The sample mean is the method of moments
estimator based on the first moment condition only,
and the other GMM estimators make use of both
moment conditions. As might be expected, the two
GMM estimators are more efficient than the sample
mean (because more information is used). The overi-
dentification test statistic based on the two-step GMM
is computed easily by multiplying the sample size by
the minimized criterion function, which is approxi-
mately distributed χ

1

2. For the data set above, the test
statistic is 0.3040 with a p value of 0.5814. So, the
specification that E(Xt – θ ) = 0 and E[(Xt – θ )3] = 0 is
regarded as correct.

—Chirok Han and John Randal

See also Instrumental Variables

Further Reading

Hansen, L. P. (1982). Large sample properties of generalized
method of moments estimators. Econometrica, 50,
1029–1054.

Lee, M. (1996). Methods of moments and semiparametric
econometrics for limited dependent variable models. New
York: Springer.

GENERALIZED PROCRUSTES ANALYSIS

Generalized Procrustes Analysis (GPA) is a method
for determining the degree of agreement, or consen-
sus, among data matrices. For instance, consider 20
judges who rate four brands of coffee on 10 attributes

(e.g., bitterness, richness, smoothness).
The ratings for each judge can be
recorded in a two-dimensional (10 × 4)
matrix. GPA then can be used to deter-
mine the extent to which the judges
agree in their views of the four brands of
coffee. To the extent the 20 judges do
not agree, individual differences in the
patterns of ratings can also be examined
with GPA. At the heart of the analysis is

a consensus configuration, which is derived through a
process of scaling, rotating, and averaging the original
rating matrices. Each judge’s ratings can be compared
to this consensus configuration, and an overall con-
sensus proportion can be computed that indicates the
degree of similarity among the judge’s views of the
four coffees. GPA is also extremely flexible and
can accommodate any number of matrices of varying
dimensions. Qualitative judgments or quantitative
data can be analyzed, and the matrices must be
matched on only a single dimension. For instance,
each of the 20 judges could rate the four brands of
coffee using a different set of attributes as well as a
different number of attributes. The flexibility of GPA
can also be seen in the variety of studies in which it
has been employed. Researchers have examined indi-
viduals’ perceptions of food, products, medical treat-
ments, genetic engineering, and personality traits
using this technique.

Abbreviated Example

Four managers from a department store freely describe
and then rate six of their employees on 5-point scales
constructed from their individual descriptive adjec-
tives. A high score on the rating scale indicates that a
particular adjective is an accurate description of the
employee. The data are reported in Table 1.

The goal of GPA is to assess the degree of similar-
ity among the managers’ views of the employees.
More specifically, the goal is to determine if the pat-
terns, or profiles, of the six employees are similar
across the four managers. Because the focus is on the
profiles of the employees, the analysis does not
require a fixed set of attributes.
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Table 3 S-Plus and R Code for Continuous Updating Estimation

code continued from Table 2

cue.func <- function(p) {

gbar <-as.numeric(colMeans (g.matrix (p)))

W <- solve(crossprod (g.matrix(p))/n)

t(gbar)%*%W%*%gbar

}

est3 <- nlm(cue.func,est1)$estimate

se3 <- std.error(est3)



A number of prescaling methods are typically
recommended when conducting GPA. As with any
scaling method, the investigator must consider the
impact of controlling statistical differences in the data.
It is well known, for example, that the mean and
standard deviation of z scores are equal to zero and
one, respectively. Converting any two variables to z
scores will thus equate the two variables on their
means and standard deviations. With GPA, three scal-
ing methods are recommended: centering, dimen-
sional, and isotropic.

Centering rescales each manager’s ratings such that
the mean of each attribute is equal to zero. Isotropic
scaling “shrinks” or “expands” each manager’s ratings
to remove individual differences in scale usage. The
ratings for those managers who use relatively few
scale values will be expanded with a multiplicative
constant greater than one, and the ratings for those
managers who use relatively more extreme scale val-
ues will be shrunken with a multiplicative constant
less than one. The isotropic scaling values for the four
managers (.75, 1.01, 1.48, and .94, respectively) indicate
that the overall range in the third manager’s ratings
was less than the range in the other managers’ ratings.
In fact, it can be seen in Table 1 that the third manager
did not use the full range of scale values (1–5). Finally,

dimensional scaling adjusts for differences in the
number of attributes in the managers’ matrices. The
magnitudes of the original values are uniformly
increased or decreased depending on the size of the
matrix. In this way, matrices with large numbers of
attributes will not spuriously influence the results.

Once the original matrices have been rescaled,
GPA works through an iterative algorithm in which
the six rated employees are maximally aligned across
managers. Space does not permit a complete explana-
tion of this algorithm or the equations that underlie
GPA, and the Further Reading list at the end of this
entry should be consulted. Nonetheless, as the name
of the technique implies, Procrustes transformations
play an important role in the computations. In
essence, the rescaled matrices are sequentially rotated
(i.e., transformed) to maximal agreement with an
average matrix that is continually updated throughout
the process. This average matrix of rescaled ratings is
referred to as the consensus configuration. At the end
of each pass through the four managers’ rotated matri-
ces, the consensus configuration is computed and
compared to the consensus from the previous itera-
tion. After a number of iterations, changes in the con-
sensus configuration will be negligible, indicating that
the procedure has converged on a final solution.
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Table 1 Managers’ Ratings of Six Employees

Manager 1 Manager 2

John Bob Amy Jan Fred Jill John Bob Amy Jan Fred Jill
Extraverted 1 1 5 4 5 3 Blunt 2 3 1 3 4 1
Sharing 5 5 2 1 2 3 Patient 5 1 4 2 2 3
Motivated 2 2 4 3 4 1 Creative 5 2 3 4 1 3
Funny 1 2 2 2 4 1 Outgoing 2 4 1 4 3 3
Loud 1 2 2 1 4 1

Manager 3 Manager 4

Outgoing 2 4 2 4 5 3 Easygoing 2 3 1 3 4 3
Carefree 2 4 3 4 4 2 Outgoing 1 3 1 5 5 1
Generous 3 2 4 2 2 5 Nurturing 3 3 5 5 1 5
Trusting 3 2 4 3 2 4 Calm 5 2 4 1 2 5
Organized 4 3 3 2 3 3 Intelligent 5 3 5 2 3 3
Athletic 3 2 2 2 4 2



The consensus configuration is therefore the
average of rescaled (if scaling options are applied) and
rotated ratings, and its dimensionality will equal the
largest original matrix. A principal components analy-
sis can be conducted on the consensus configuration,
and the employees can be plotted in the space created
from the first two components. Results shown in
Figure 1 reveal that the managers view John and Amy
as highly similar to one another and more similar to
Jill than the other three employees.

The attributes generated by the four managers can
also be plotted in the component space. It can be seen
that Fred, Bob, and Jan are generally viewed as outgoing,
easygoing, and carefree compared to Amy, Jill, and John,
who are viewed as calm, generous, and patient.

The four managers’ individual rating matrices can
be compared to the consensus configuration using
analysis of variance. The results from such an analy-
sis are shown in Table 2.

As can be seen, an overall consensus proportion is
produced from the analysis. A value of 1.0 would indi-
cate perfect agreement among the four managers. In
such an instance, the four managers’ rescaled and
rotated matrices would all match the consensus con-
figuration perfectly. Here, the managers’ consensus
proportion is .79, and a randomization test indicates
that this value is statistically significant (p < .04).

Table 2 also shows results for the individual man-
agers and for the four employees. The residual values
from these results can be examined to identify points
of difference between the individual matrices and
the consensus configuration. The residual for the first
manager is substantially higher than the others, indi-
cating that this manager is most deviant from the con-
sensus. The residuals for the employees indicate that
the ratings for Bob and Amy vary most across the four
managers compared to the consensus configuration.
The specific residuals shown in Table 3 indicate fur-
ther that much of the disagreement regarding Bob and
Amy is a result of the first manager’s ratings. The sec-
ond manager’s ratings of Bob also show relatively
high deviance from the consensus configuration.
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Figure 1 Plot of First and Second Principal
Components of the Consensus Grid

Table 2 Analysis of Variance Results

Consensus Residual Total

Employee
John 16.71 2.33 19.04
Bob 5.47 6.28 11.76
Amy 9.74 5.87 15.61
Jan 11.01 3.55 14.56
Fred 24.10 1.41 25.51
Jill 11.54 1.99 13.52

Grids
Manager 1 9.87 16.09
Manager 2 5.42 24.61
Manager 3 2.64 29.94
Manager 4 3.51 29.36

Total SS 78.57 21.43 100.00
Consensus Proportion = .79

Table 3 Specific Residuals From Analysis of Variance

Manager 1 Manager 2 Manager 3 Manager 4

John 0.77 0.75 0.18 0.63
Bob 3.65 1.94 0.62 0.08
Amy 3.39 0.86 0.54 1.07
Jan 0.95 1.31 0.13 1.17
Fred 0.72 0.09 0.21 0.39
Jill 0.38 0.47 0.97 0.17
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The first manager’s ratings can be submitted to a
principal components analysis to examine the nature
of the disagreement. The employees and attributes can
be plotted in the space created by the first two compo-
nents, as shown in Figure 2. Comparing the patterns
of employees in the consensus configuration in Figure
1 and the first manager’s ratings in Figure 2 shows
that the manager essentially swapped Bob and Amy.
Whereas in the consensus configuration Amy is
similar to Jill and John, from the first manager’s point
of view Bob is similar to Jill and John and Amy is
similar to Fred and Jan.

Additional Issues

The heartbeat of GPA is the consensus configuration.
Although its name implies that some sort of agreement
has been reached through the analysis, the consensus
configuration is essentially a matrix of aggregate val-
ues. It is perhaps thus best referred to as the average
configuration or centroid configuration. Nonetheless,
the degree of variation around the consensus configu-
ration can be quantified and reported as the consensus
proportion. A long-standing criticism of Procrustes
transformations is their ability to generate high agree-
ment among even matrices of random numbers.
Therefore, the consensus proportion should be tested
routinely for statistical significance using a random-
ization test, as was done above. The issue of prescaling

discussed above is also important. Although all three
scaling methods are typically recommended, only the
investigator can determine if variability in scale means,
scale extremities, or matrix dimensionality represents
spurious differences that must be removed from his or
her data. Given the convenience of modern computers,
conducting the GPA with and without the different
scaling options is therefore recommended in order to
assess their impact on the results.

—James W. Grice

Further Reading

Dijksterhuis, G. B., & Gower, J. C. (1991/2). The interpreta-
tion of generalized Procrustes analysis and allied methods.
Food Quality and Preference, 3, 67–87.

Fewer, L. J., Howard, C., & Shepherd, R. (1997). Public con-
cerns in the United Kingdom about general and specific
applications of genetic engineering: Risk, benefit, and
ethics. Science, Technology, & Human Values, 22, 98–124.

Gower, J. C. (1975). Generalized Procrustes analysis.
Psychometrika, 40, 33–51.

GENERALIZED ESTIMATING

EQUATIONS

Correlated data sets arise from repeated measures
studies where multiple observations are collected from
a specific sampling unit (a specific patient’s status
over time), or from grouped or clustered data where
observations are grouped based on sharing some com-
mon characteristic (animals in a specific litter). When
measurements are collected over time, the term longi-
tudinal or panel data is preferred. Generalized esti-
mating equations (GEEs) provide a framework for
analyzing correlated data. This framework extends
the generalized linear models methodology, which
assumes independent data. We discuss the estimation
of model parameters and associated variances via gen-
eralized estimating equation methodology.

The usual practice in model construction is the
specification of the systematic and random compo-
nents of variation. Classical maximum likelihood
models then rely on the validity of the specified
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Figure 2 Plot of First and Second Principal
Components of the First Manager’s Ratings



components. Model construction proceeds from the
(components of variation) specification to a likelihood
and, ultimately, an estimating equation. The estimat-
ing equation for maximum likelihood estimation is
obtained by equating zero to the derivative of the log-
likelihood with respect to the parameters of interest.
Point estimates of unknown parameters are obtained
by solving the estimating equation.

Generalized Linear Models

The theory and an algorithm appropriate for obtaining
maximum likelihood estimates where the response
follows a distribution in the exponential family was
introduced in 1972 by Nelder and Wedderburn. They
introduced the term generalized linear model (GLM)
to refer to a class of models that could be analyzed by
a single algorithm. The theoretical and practical appli-
cation of GLMs has since received attention in many
articles and books.

GLMs encompass a wide range of commonly used
models such as linear regression, logistic regression
for binary outcomes, and Poisson regression for count
data outcomes. The specification of a particular GLM
requires a link function that characterizes the relation-
ship of the mean response to a vector of covariates. In
addition, a GLM requires specification of a variance
function that relates the variance of the outcomes as a
function of the mean.

The derivation of the iteratively reweighted least
squares (IRLS) algorithm appropriate for fitting
GLMs begins with the likelihood specification for the
exponential family. Within an iterative algorithm, an
updated estimate of the coefficient vector may be
obtained via weighted ordinary least squares where
the weights are related to the link and variance speci-
fications. The estimation is then iterated to conver-
gence where convergence may be defined, for
example, as the change in the estimated coefficient
vector being smaller than some tolerance.

For any response that follows a member of the
exponential family of distributions, f(y) = exp{[y θ –
b(θ)]/φ + c(y, φ)}, where  θ is the canonical parame-
ter and φ is a proportionality constant, we can obtain
maximum likelihood estimates of the p × 1 regression

coefficient vector β by solving the estimating
equation given by

Ψ(β) = ∑
n

i=1
Ψi = ∑

n

i=1
Xi

T (yi – µi)/[φV(µi)] [∂µi/∂ηi]

= 0(p×1).

In the estimation equation, Xi is the ith row of an
n × p matrix of covariates X, µ i = g(xiβ) represents the
expected outcome E(y) = b′(θ) in terms of a transfor-
mation of the linear predictor ηi = xiβ via a monotonic
(invertible) link function g(), and the variance V(µi) is
a function of the expected value proportional to the
variance of the outcome V(y i)= φ V(µi). The estimat-
ing equation is also known as the score equation
because it equates the score vector Ψ(β) to zero.

Modelers are free to choose a link function as well
as a variance function. If the link-variance pair of
functions is chosen from a common member of the
exponential family of distributions, the resulting
estimates are equivalent to maximum likelihood esti-
mates. However, modelers are not limited to these
choices. When one selects variance and link functions
that do not coincide to a particular exponential family
member distribution, the estimating equation is said to
imply existence of a quasi-likelihood, and the result-
ing estimates are referred to as maximum quasi-
likelihood estimates.

The link function that equates the canonical para-
meter θ with the linear predictor ηi = xiβ is called the
canonical link. If this link is selected, an advantage to
interpretation of results is that the estimating equation
simplifies to

Ψ(β) = ∑
n

i=1
Ψi = ∑

n

i=1
Xi

T(yi – µ i)/φ = 0(p×1).

A second advantage of the canonical link over
other link functions is that the expected Hessian
matrix is equal to the observed Hessian matrix.

The Independence Model

A basic individual-level model is written in terms of
the n individual observations yi for i = 1, . . . , n. When
observations may be clustered, due to repeated obser-
vations on the sampling unit or because the observa-
tions are related to some cluster identifier variable,
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the model may be written in terms of the observations
yit for the clusters i = 1, . . . , n and the within-cluster
repeated, or related, observations t = 1, . . . , ni. The
total number of observations is then N = ∑i ni. The
clusters may also be referred to as panels, subjects,
or groups. In this presentation, the clusters i are inde-
pendent, but the within-clusters observations it
may be correlated. An independence model, however,
assumes that the within-cluster observations are
not correlated.

The independence model is a special case of more
sophisticated correlated data approaches (such as
GEE). This model assumes that there is no correlation
within clusters. Therefore, the model specification is
in terms of the individual observations yit. Although
the independence model assumes that the repeated
measures are independent, the model still provides
consistent estimators in the presence of correlated
data. Of course, this approach is paid for through inef-
ficiency, although the efficiency loss is not always
large. As such, this model remains an attractive alter-
native because of its computational simplicity. The
independence model also serves as a reference model
in the derivation of diagnostics for more sophisticated
models for clustered data (such as GEE models).

Analysts can use the independence model to obtain
point estimates along with standard errors based on
the modified sandwich variance estimator to ensure
that inference is robust to any type of within-cluster
correlation. Although the inference regarding mar-
ginal effects is valid (assuming that the model for the
mean is correctly specified), the estimator from the
independence model is not efficient when the data are
correlated.

The validity of the (naive) model-based variance
estimators depends on the correct specification of the
variance; in turn, this depends on the correct specifi-
cation of the working correlation model. A formal jus-
tification for an alternative estimator known as the
sandwich variance estimator is given in Huber.

It should be noted that assuming independence
is not always conservative; the model-based (naive)
variance estimates based on the observed or expected
Hessian matrix are not always smaller than those of
the modified sandwich variance estimator. Because

the sandwich variance estimator is sometimes called
the robust variance estimator, this result may seem
counterintuitive. However, it is easily seen by assum-
ing negative within-cluster correlation leading to clus-
ters with both positive and negative residuals. The
clusterwise sums of those residuals will be small, and
the resulting modified sandwich variance estimator
will yield smaller standard errors than the model-
based Hessian variance estimators.

Other obvious approaches to the nested structure
assumed for the data include fixed effects and random
effects models. Fixed effects models incorporate a
fixed increment to the model for each group, whereas
random effects models assume that the incremental
effects from the groups are from a common random
distribution; in such a model, the parameters of the
assumed random effects distribution are estimated
rather than the effects. In the example at the end of
this entry, we consider two different distributions for
random effects in a Poisson model.

Subject-Specific Versus
Population-Averaged Models

There are two main approaches to dealing with corre-
lation in repeated or longitudinal data. One approach
focuses on the marginal effects averaged across the
individuals (population-averaged approach), and the
second approach focuses on the effects for given
values of the random effects by fitting parameters
of the assumed random effects distribution (subject-
specific approach).

The population-averaged approach models the
average response for observations sharing the same
covariates (across all of the clusters or subjects),
whereas the subject-specific approach explicitly
models the source of heterogeneity so that the fitted
regression coefficients have an interpretation in terms
of the individuals.

The most commonly described GEE model is a
population-averaged approach. Although it is possible
to derive subject-specific GEE models, such models
are not currently supported in commercial software
packages and so do not appear nearly as often in the
literature.
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The basic idea behind this approach is illustrated
as follows. We consider the estimating equation for
GLMs; that estimating equation, in matrix form, is for
the exponential family of distributions

Assuming independence, V–1 (µi) is clearly an
ni × ni diagonal matrix that can be factored with an
identity matrix in the center playing the role of the
correlation of observations within a given group or
cluster. This corresponds to the independence model
already mentioned.

The genesis of the original population-averaged
generalized estimating equations is to replace the
identity matrix with a parameterized working correla-
tion matrix R(α). To address correlated data, the
working correlation matrix imposes structural con-
straints. In this way, the independence model is a spe-
cial case of the GEE specifications where R(α) is an
identity matrix.

Formally, Liang and Zeger introduce a second
estimating equation for the structural parameters of
the working correlation matrix. The authors then
establish the properties of the estimators resulting
from the solution of these estimating equations. The
GEE moniker was applied because the model is
derived through a generalization of the GLM estimat-
ing equation; the second-order variance components
are introduced directly into the estimating equation
rather than appearing in consideration of a multivari-
ate likelihood.

Several software packages support estimation of
these models. These packages include R, SAS,
S-PLUS, Stata, and SUDAAN. R and S-PLUS users
can easily find user-written software tools for fitting

GEE models, whereas such support is included in the
other packages.

Estimating the Working
Correlation Matrix

One should consider carefully the parameterization of
the working correlation matrix, because including the
correct parameterization leads to more efficient esti-
mates. We want to consider this choice carefully even
if we employ the modified sandwich variance estima-
tor in the calculation of standard errors and confidence
intervals for the regression parameters. Although
the use of the modified sandwich variance estimator
ensures robustness in the case of misspecification of
the working correlation matrix, the advantage of more
efficient point estimates is still worth this effort. There
is no controversy as to the fact that the GEE estimates
are consistent, but there is some controversy as to how
efficient they are. This controversy centers on how
well the correlation parameters can be estimated.

Typically, a careful analyst chooses some small
number of candidate parameterizations. Pan also
discusses the quasi-likelihood information criterion
(QIC) measures for choosing between candidate para-
meterizations. This criterion measure is similar to the
well-known Akaike information criterion (AIC).

The most common choices for the working corre-
lation R matrix are given by parameterizing the
elements of the matrix, as shown in Table 1.

The independence model admits no extra para-
meters, and the resulting model is equivalent to
a generalized linear model specification, and the

�(β) =
n∑

i=1

�i

=
n∑

i=1

X T
i D[∂µi/∂ηi] V−1 (µi)(yi − µi)/φ

=
n∑

i=1

X T
i D[∂µi/∂ηi] V−1/2 (µi)

I(n×n) V−1/2 (µi)(yi − µi)/φ = 0(p×1).
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Table 1 Common Correlation Structures

Independent Ruv = 0
Exchangeable Ruv = α
Autocorrelated – AR(1) Ruv = α|u-v|

Stationary (k) Ruv α|u-v| if |u − v| ≤ k
0 otherwise

Nonstationary (k) Ruv α(u,v) if |u − v| ≤ k
0 otherwise

Unstructured Ruv = α(u,v)

Note: Values are given for u ≠ v; Ruu = 1.



exchangeable correlation parameterization admits one
extra parameter. The most general approach is to
consider the unstructured (only imposing symmetry)
working correlation parameterization, which admits
M(M – 1)/2 – M extra parameters, where M = maxi

{ni}. The exchangeable correlation specification is
also known as equal correlation, common correlation,
and compound symmetry.

The elements of the working correlation matrix are
estimated using the Pearson. Estimation alternates
between estimating the regression parameters β,
assuming the current estimates of α are true, and then

assuming β estimates are true to obtain residuals to
update the estimate of α.

Example

To highlight the interpretation of GEE analyses and
point out the alternate models, we focus on a simple
example (Table 2).

These data have been analyzed in many forums and
are from a panel study on Progabide treatment of
epilepsy. Baseline measures of the number of seizures
in an 8-week period were collected and recorded as
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Table 2 Data From Progabide Study on Epilepsy
(59 Patients Over 5 Weeks)

id age trt base s1 s2 s3 s4

1 31 0 11 5 3 3 3
2 30 0 11 3 5 3 3
3 25 0 6 2 4 0 5
4 36 0 8 4 4 1 4
5 22 0 66 7 18 9 21
6 29 0 27 5 2 8 7
7 31 0 12 6 4 0 2
8 42 0 52 40 20 23 12
9 37 0 23 5 6 6 5

10 28 0 10 14 13 6 0
11 36 0 51 26 12 6 22
12 24 0 33 12 6 8 5
13 23 0 18 4 4 6 2
14 36 0 42 7 9 12 14
15 26 0 87 16 24 10 9
16 26 0 50 11 0 0 5
17 28 0 18 0 0 3 3
18 31 0 111 37 29 28 29
19 32 0 18 3 5 2 5
20 21 0 20 3 0 6 7
21 29 0 12 3 4 3 4
22 21 0 9 3 4 3 4
23 32 0 17 2 3 3 5
24 25 0 28 8 12 2 8
25 30 0 55 18 24 76 25
26 40 0 9 2 1 2 1
27 19 0 1- 3 1 4 2
28 22 0 47 13 15 13 12

(Continued)

29 18 1 76 11 14 9 8
30 32 1 38 8 7 9 4
31 20 1 19 0 4 3 0
32 20 1 10 3 6 1 3
33 18 1 19 2 6 7 4
34 24 1 24 4 3 1 3
35 30 1 31 22 17 19 16
36 35 1 14 5 4 7 4
37 57 1 11 2 4 0 4
38 20 1 67 3 7 7 7
39 22 1 41 4 18 2 5
40 28 1 7 2 1 1 0
41 23 1 22 0 2 4 0
42 40 1 13 5 4 0 3
43 43 1 46 11 14 25 15
44 21 1 36 10 5 3 8
45 35 1 38 19 7 6 7
46 25 1 7 1 1 2 4
47 26 1 36 6 10 8 8
48 25 1 11 2 1 0 0
49 22 1 151 102 65 72 63
50 32 1 22 4 3 2 4
51 25 1 42 8 6 5 7
52 35 1 32 1 3 1 5
53 21 1 56 18 11 28 13
54 41 1 24 6 3 4 0
55 32 1 16 3 5 4 3
56 26 1 22 1 23 19 8
57 21 1 25 2 3 0 1
58 36 1 13 0 0 0 0
59 37 1 12 1 4 3 2



base for 59 patients. Four follow-up 2-week periods
also counted the number of seizures; these were
recorded as s1, s2, s3, and s4. The base variable was
divided by four in our analyses to put it on the same
scale as the follow-up counts. The age variable
records the patient’s age in years, and the trt variable
indicates whether the patient received the Progabide
treatment (value recorded as one) or was part of the
control group (value recorded as zero).

An obvious approach to analyzing the data is to
hypothesize a Poisson model for the number of
seizures. Because we have repeated measures, we can
choose a number of alternative approaches. In our
illustrations of these alternative models, we use the
baseline measure as a covariate along with the time
and age variables.

Table 3 contains the results of several analyses. For
each covariate, we list the estimated incidence rate
ratio (exponentiated coefficient). Following the inci-
dence rate ratio estimates, we list the classical and
sandwich-based estimated standard errors. We did not
calculate sandwich-based standard errors for the
gamma distributed random effects model.

We emphasize again that the independence model
coupled with standard errors based on the modified
sandwich variance estimator is a valid approach to
modeling data of this type. The weakness of the
approach is that the estimators will not be as efficient
as a model including the true underlying within-
cluster correlation structure. Another standard

approach to modeling this type of repeated measures
is to hypothesize that the correlations are due to indi-
vidual-specific random intercepts. These random
effects (one could also hypothesize fixed effects) will
lead to alternate models for the data.

Results from two different random effects models
are included in the table. The gamma-distributed ran-
dom effects model is rather easy to program and fit to
data because the log-likelihood of the model is in ana-
lytic form. On the other hand, the normally distributed
random effects model has a log-likelihood specification
that includes an integral. Sophisticated numeric tech-
niques are required for the calculation of such a model.

We could hypothesize that the correlation follows
an autoregressive process because the data are col-
lected over time. However, this is not always the best
choice in an experiment because we must believe that
the hypothesized correlation structure applies to both
the treated and untreated groups.

The QIC values for the independence, exchange-
able, ar1, and unstructured correlation structures are
respectively given by –5826.23, –5826.25, –5832.20,
and –5847.91. This criterion measure indicates a
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Table 3 Estimated Incidence Rate Ratios and Standard Errors for Various Poisson Models

Model time trt age baseline

Independence 0.944 (0.019, 0.033) 0.832 (0.039, 0.143) 1.019 (0.003, 0.010) 1.095 (0.002, 0.006)

Gamma RE 0.944 (0.019) 0.810 (0.124) 1.013 (0.011) 1.116 (0.015)

Gaussian RE 0.944 (0.019, 0.033) 0.760 (0.117, 0.117) 1.011 (0.011, 0.009) 1.115 (0.012, 0.011)

GEE(exch) 0.939 (0.019, 0.019) 0.834 (0.058, 0.141) 1.019 (0.005, 0.010) 1.095 (0.003, 0.006)

GEE(ar 1) 0.939 (0.019, 0.019) 0.818 (0.054, 0.054) 1.021 (0.005, 0.003) 1.097 (0.003, 0.003)

GEE(unst) 0.951 (0.017, 0.041) 0.832 (0.055, 0.108) 1.019 (0.005, 0.009) 1.095 (0.003, 0.005)

Table 4 Fitted Correlation Matrices

1.00 1.00
0.51 1.00 0.25 1.00
0.26 0.51 1.00 0.42 0.68 1.00
0.13 0.26 0.51 1.00 0.22 0.28 0.58 1.00



preference for the unstructured model over the autore-
gressive model. The fitted correlation matrices for
these models (printing only the bottom half of the
symmetric matrices) are given by Table 4.

—James W. Hardin

Further Reading

Glonek, G. F. V., & McCullagh, R. (1995). Multivariate logis-
tic models. Journal of the Royal Statistical Society–Series
B, 57, 533–546.

Huber, P. J. (1967). The behavior of maximum likelihood
estimates under nonstandard conditions. In Proceedings
for the Fifth Berkeley Symposium on Mathematical
Statistics and Probability (Vol. 1, pp. 221–223). Berkeley:
University of California Press.

Liang, K.-Y., & Zeger, S. L. (1986). Longitudinal data analy-
sis using generalized linear models. Biometrika, 73, 13–22.

McCullagh, P., & Nelder, J. A. (1989). Generalized linear
models (2nd ed.). London: Chapman & Hall.

Nelder, J. A., & Wedderburn, R. W. M. (1972). Generalized
linear models. Journal of the Royal Statistical Society–
Series A, 135(3), 370–384.

Pan, W. (2001). Akaike’s information criterion in generalized
estimating equations. Biometrics, 57, 120–125.

GERONTOLOGICAL APPERCEPTION TEST

The Gerontological Apperception Test, developed by
Wolk and Wolk in 1971, is a projective test published
by Behavioral Publications that is designed to com-
pensate for the reputed weakness of many appercep-
tive tests in the assessment of older adults. Because at
least one older adult is depicted in a situation fre-
quently encountered by the aged, identification with
the test stimuli is assumed to be evocative of
responses. This enhances an understanding of the
aged personality and his or her reactions to common
situations.

Specifically, the Gerontological Apperception Test
consists of a set of 14 achromatic cards, each card
reflecting a situation with which older adults could
identify. The pictures are designed to elicit more
relevant themes such as isolation, loss of physical

mobility/sexuality, dependency, and ageism. There is
no standard set of cards to be administered. Cards are
selected for administration based on suspected per-
sonal issues and concerns of each individual subject.
At the time of the initial publication of the Geronto-
logical Apperception Test, there was not a standard
scoring procedure. Protocols were typically analyzed
for the presence of themes.

The Gerontological Apperception Test has been
criticized on the bases of (a) the negative tone of the
pictures (all achromatic), (b) the stereotypic presenta-
tion of older people on the cards, and (c) no accepted
scoring system that would permit the development
of norms to guide clinical use. However, a revised
and more differentiated scoring system for the
Gerontological Apperception Test was developed by
Hayslip and his colleagues.

The literature on the Gerontological Apperception
Test is not extensive, nor does the literature demon-
strate that the test is more successful than the
Thematic Apperception Test in eliciting relevant
themes from older adults. Therefore, although the test
shows promise for clinical use with older adults, more
research is required before the clinical utility of the
Gerontological Apperception Test has been demon-
strated effectively.

—Paul E. Panek

See also Thematic Apperception Test
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GF-GC THEORY OF INTELLIGENCE

There are a number of widely known and respected
theories of human intelligence (e.g., Howard Gardner’s
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Theory of Multiple Intelligences, Robert Sternberg’s
Tir-archic Theory of Intelligence), but in recent years,
the Gf-Gc theory has become increasingly important
in the field of intellectual assessment. This is at least
partially due to the fact that the Gf-Gc theory is based
on factor analytical studies of the results from IQ
tests. Many of the other theories, although intriguing,
do not have a means of actually measuring their con-
structs in an individual.

In the early 1900s, Charles Spearman applied
statistical analyses to the concept of mental ability and
arrived at the conclusion that there is one general
factor (g) that is related to all aspects of intelligence.
Although this is expressed in many different ways,
underlying it all is one thing that we think of as intel-
ligence. This concept took root and is the basis for the
single IQ score that was generated with early measures
of intelligence and, although controversial, continues
to be reflected in the Full Scale IQ or similar score
found on most measures of cognitive ability today.

It was not until the 1940s that Raymond Cattell,
building on Spearman’s work, proposed the existence
of two general types of intelligence: fluid intelligence
(Gf) and crystallized intelligence (Gc). Fluid intelli-
gence was related to biological and neurological
factors and is exemplified by inductive and deductive
reasoning. Although experience may influence it indi-
rectly (e.g., introduction of new paradigms allows
for different ways of organizing problems), it is not
dependent upon learned information. Conversely,
crystallized intelligence was seen as being the direct
result of experience, learning, and education, and was
relatively free from the influence of biological and
neurological factors. This dichotomy was frequently
thought of loosely as innate and learned abilities, right
and left hemisphere abilities, or nonverbal and verbal
abilities, respectively. Although useful conceptually,
these alternative ways of thinking about the two
types of intelligence were not fully supported by the
research and remain controversial at best.

In the early 1980s, John Horn, using the decades of
factor analytic research on human cognitive abilities
since Cattell’s original postulation, added to the orig-
inal Gf-Gc theory to form what became known as the
Cattell-Horn Gf-Gc theory of intelligence. This new

theory contained 9 to 10 broad abilities by the
mid-1990s and began to be used more and more as a
basis for interpreting the results of intelligence tests.

At this same time, John Carroll conducted a meta-
analysis of more than 400 different data sets that had
been collected from 1925 on. He looked at the raw
scores, conducted exploratory factor analyses, and
concluded that the results fit a hierarchical three-
stratum model: 69 narrow abilities at the first level;
8 broad abilities (that roughly corresponded to the
broad abilities articulated by Horn-Cattell) at the sec-
ond level; and a general factor, g, above them all at the
third level. Subsequently, these two models were
merged by Kevin McGrew and others to form the
Cattell-Horn-Carroll (CHC) theory of cognitive abili-
ties. CHC theory and Gf-Gc theory are now essen-
tially analogous.

Current articulations of Gf-Gc theory typically
include 10 different broad abilities. Two of these
are usually found on measures of achievement and
are considered basic academic skills. These two are
Quantitative Knowledge (Gq), which represents an
individual’s store of acquired mathematical knowl-
edge, and Reading/Writing Ability (Grw), which rep-
resents an individual’s acquired store of knowledge
related to the comprehension of written material and
the expression of thoughts in writing. It is important to
differentiate Gq from Quantitative Reasoning (RQ),
which is a narrow ability that is part of Fluid
Reasoning (Gf). Gq is evident in applying a mathe-
matical formula to arrive at a solution, whereas RQ
would be involved in finding the missing number in a
number series. Grw is not clearly defined but appears
to consist of reading decoding, reading comprehen-
sion, reading speed, spelling, grammar and punctua-
tion, and written expression. Both Gq and Grw are
generally found on measures of achievement and not
on measures of intelligence.

The remaining eight abilities—Fluid Reasoning
(Gf); Crystallized Intelligence (often referred to
as Comprehension-Knowledge, or Gc); Short-Term
Memory (Gsm); Visual Processing (Gv); Auditory
Processing (Ga); Long-Term Storage and Retrieval
(Glr); Processing Speed (Gs); and Decision/Reaction
Time or Speed (Gt)—are typically found on
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intelligence tests. Depending upon the measure of
intelligence, different abilities may be emphasized or
absent. For example, the Wechsler Scales do not have
measures of Auditory Processing (Ga) but have multi-
ple measures of Comprehension-Knowledge (Gc),
and the Woodcock Johnson-III (WJ-III) has multiple
measures of all but Decision/Reaction Time (Gt).

Fluid Reasoning (Gf) is basically novel problem
solving and reasoning. It subsumes the narrow abili-
ties of General Sequential Reasoning, Induction,
Quantitative Reasoning, Piagetian Reasoning, and
Reasoning Speed. In everyday life, it is the ability to
form concepts, apply logic, manipulate abstractions
and relations, and solve problems that include novel
information and procedures. It is particularly impor-
tant in fields that require the logical application of
creativity (e.g., engineering, research science).

Crystallized Intelligence, or Comprehension-
Knowledge (Gc), is an individual’s breadth and depth
of knowledge, the ability to communicate (especially
verbally) that knowledge, and the ability to apply
that knowledge in reasoning. Under the broad Gc
ability, we find the narrow abilities of Language
Development; Lexical Knowledge; Listening Ability;
Information (General, Cultural, Science, Geography);
Communication Ability; Oral Production & Fluency;
Grammatical Sensitivity; and Foreign Language
(Proficiency and Aptitude). Of all the factors, Gc is the
most heavily culturally loaded because it depends upon
experience for development and is the most resistant to
neurological damage, such as traumatic brain injury. It
is also the single factor that is likely to increase as we
age and gain additional experience and the factor
mostly closely correlated to academic performance.

Short-Term Memory (Gsm) is the ability to appre-
hend and hold information in immediate awareness
and to use it within a few seconds. It is composed
of the narrow abilities of Memory Span, Working
Memory, and Learning Abilities (also under Glr).
Measurement of Gsm is highly sensitive to attentional
problems (have to actually perceive it before you can
remember it) and anxiety. It is a foundational ability
that will influence many other abilities. For example,
you cannot solve a multivariable problem if you can
keep only one variable in awareness at a time.

Visual Processing (Gv) is the ability to perceive and
manipulate visual shapes and to analyze and synthe-
size visual information. It includes the narrow abilities
of Spatial Relations, Visual Memory, Closure Speed,
Flexibility of Closure, Spatial Scanning, Serial
Perceptual Integration, Length Estimation, Perceptual
Illusions, Perceptual Alterations, Visualization, and
Imagery. It is the ability to see things in your mind’s
eye; to manipulate those things mentally (rotate,
rearrange, resize, assemble, take apart, etc.); and to use
these skills to solve real-world problems. Typically,
someone high in Gv will be considered a visual learner.

Auditory Processing (Ga) is the analog of Gv with
auditory stimuli rather than visual. It is the ability to
perceive, discriminate, analyze, and synthesize audi-
tory information. The narrow abilities under Ga are
Phonetic Coding (Analysis and Synthesis), Speech
Sound Discrimination, Resistance to Auditory Dis-
tortion, Memory for Sound Patterns, General Sound
Discrimination, Temporal Tracking, Musical Discri-
mination and Judgment, Sound-Intensity/Duration
Discrimination, Sound-Frequency Discrimination,
Hearing and Speech Threshold Factors, Absolute
Pitch, and Sound Localization. Although understand-
ing of a language is not necessary for measuring Ga,
it is likely to be very important in the development of
language and is related to musical ability.

Long-Term Storage and Retrieval (Glr) is the ability
to store information in and then fluently retrieve
that information from long-term memory through the
use of association. It is the process of storage and
retrieval, and not the information that is actually
stored, that constitutes Glr. Under the umbrella of Glr
are the following narrow abilities: Associative; Mean-
ingful and Free Recall Memory; Fluency (Ideational,
Associational, and Expressional) Naming Facility;
Word and Figural Fluency; Figural Flexibility;
Sensitivity to Problems; Originality/Creativity; and
Learning Abilities. Clearly, Glr is of critical impor-
tance in everyday life to be able to not only acquire and
store new information, but to be able to access that
information when needed. One analogy that captures
the essence of Glr is that of the fisherman’s net. The
knots or intersections represent the pieces of informa-
tion and the strands that you must traverse in Glr.
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Processing Speed (Gs) is the ability to perform
cognitive tasks fluently and automatically, especially
when under pressure to maintain focused attention
and concentration. It is basically the ability to make
routine things automatic so that each step of the task
does not have to be processed (e.g., alphabetizing
files or other clerical tasks). It consists of Perceptual
Speed, Rate-of-Test Taking, Number Facility, and
Semantic Processing Speed. Individuals low in pro-
cessing speed not only may find themselves taking
more time to perform tasks, but also may find those
tasks more effortful and tiring because they cannot do
them automatically.

—Steve Saladin

See also Intelligence Quotient; Intelligence Tests
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GOODENOUGH HARRIS

DRAWING TEST

The Goodenough Harris Drawing Test, published
by Psychological Corporation, is a nonverbal test of
mental ability that is appropriate as either a group or
an individual test. The test takes 10 to 15 minutes to
administer to children ages 3 to 15. The directions
given to the children are simple: “Make a picture of a
man; make the very best picture you can.” The current
version of the test is essentially the 1963 revision of
the original Draw a Man Test.

The purpose of constructing the Goodenough
Harris Drawing Test was to substitute the concept of
intelligence with the notion of intellectual maturity or,
more accurately, conceptual maturity. Thus, intellec-
tual maturity means the ability to form concepts of an

abstract character. This encompasses (a) the ability to
perceive (i.e., to distinguish between likenesses and
differences), (b) the ability to abstract (i.e., to put into
groups objects according to likenesses and differ-
ences), and (c) the ability to generalize (i.e., to assign
newly experienced objects to the correct class).
Therefore, evaluation of children’s drawings of the
human figure helps to measure the complexity of the
child’s concept formation. The human figure is
employed because it is the most familiar and signifi-
cant figure for the children.

The evaluation of children’s drawings is carried out
by two different scoring procedures, the Point Scale
and the 12-Point Quality Scale. According to the first
procedure, each item is rated as pass or fail
(1 point or 0), which is based on the presence or
absence of a body part or a specific detail (e.g., eyes
are present). The Draw a Man Test has 73 items and
the Draw a Woman Test 71 items. The scorable items
of both drawings are chosen on the basis of (a) age
differentiation, (b) relationship to tests of general
intelligence, and (c) diversification of children of
lower to higher intellectual ability. The score (mark-
ing) on the Goodenough Harris Drawing Test is a
single one. A detailed scoring guide is offered in
the test manual. The second procedure relies on a
12-Point Quality Scale in which 1 indicates the lowest
category and 12 the highest.

Norms for both the Point Scale and the 12-Point
Quality Scale are provided. The psychometric proper-
ties are good, although the test is better employed for
children ages 5–15. The test is simple to administer, is
enjoyed by the children, and measures general intelli-
gence. However, its cross-cultural use is questionable.
The test works well with younger children, especially
those of lower intellectual abilities, language handi-
capped, minority, and bilingual children.

—Demetrios S. Alexopoulos

See also Personality Tests
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GOODNESS-OF-FIT TESTS

Most of the commonly used statistical methods are
known to be parametric tests, which impose distribu-
tional assumptions on the data. For instance, the t test
is popular in comparing the means of two independent
samples. This test assumes that the underlying distri-
bution from which each of the samples came is a
normal distribution. This assumption is critical, espe-
cially in cases where the sample sizes are small. If this
distributional assumption is not met, results may be
invalid and misleading. Some statistical procedures
based on the normal distribution are still approxi-
mately valid regardless of the distribution of the data
as long as the sample size is large enough. The prob-
lem is that it is not clear what “large enough” means.
In some cases, a sample size of 30 is large enough,
whereas in other cases, a sample size of 30 is not suf-
ficient. On the other hand, one may opt to use non-
parametric statistical methods, which do not assume a
specific form of the distribution of the samples. These
procedures are valid regardless of the sample size.
However, it is a well-known fact that nonparametric
tests are not as powerful as parametric tests; that is,
a nonparametric test requires a larger sample size
than its corresponding parametric test to detect a dif-
ference, if one truly exists, as long as the distributional
assumption of the parametric test is satisfied.
Therefore, it is important, especially when sample
sizes are small, that the distributional assumption of
parametric tests be checked and validated before
reporting the results of the statistical analyses are
reported. Goodness-of-fit (GOF) tests provide meth-
ods to achieve this purpose.

The null and alternative hypotheses of the GOF
tests are as follows:

Null hypothesis (H0): assumed distribution has a good fit

Alternative hypothesis (Ha): assumed distribution is not
a good fit

A GOF test does not try to prove that the under-
lying distribution is true. Instead, it starts by assuming
that the data follow the underlying distribution. It
rejects this assumption if there is strong evidence of
violation of this assumption, and it does not suggest
an alternative distribution to consider. A GOF test
does not give any information on how the data deviate
from the hypothesized distribution; for this reason, it
is highly recommended that GOF tests be accompa-
nied by graphical representation of the data distri-
bution, such as a probability plot, if one exists for
the distribution being tested, or a histogram. More-
over, it is possible that GOF tests will not reject a
number of distributions, implying that these distribu-
tions are a good fit to the data. GOF tests are not
designed to choose which among these distributions
best fits the data.

Numerous goodness-of-fit tests exist, and they can
range from simple to very complex depending on
whether the underlying distribution is univariate or
multivariate. The most popular and simplest univari-
ate GOF tests are the chi-square goodness-of-fit test
and the Kolmogorov-Smirnov test. The chi-square
GOF test may be applied whether the underlying dis-
tribution is discrete and continuous. The Kolmogorov-
Smirnov test applies only when the underlying
distribution is continuous. Both of these tests are
available in most statistical packages.

Chi-Square
Goodness-of-Fit Test

The idea behind the chi-square GOF test is simple. It
compares the observed proportion to the expected
proportion based on the assumed distribution. Because
distributions depend on parameters that are typically
unknown, these parameters are first estimated from
the data. These estimates will be plugged in to the dis-
tribution to compute the expected proportion.

Consider a data set with n observations. The
following are steps in a chi-square GOF test.
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1. Define K classes in which to assign each
observation. If data are continuous (interval scale), the
classes defined in constructing a histogram may
be used. In this case, classes need not be of equal
interval size.

2. Count the number of observations that fall on
the ith class and denote this by Oi.

3. Compute the expected number of observations
that will fall on the ith class based on the underlying
distribution and denote this by Ei. In the continuous
case, where the cumulative distribution function is
denoted by F(x), the expected number falling in the
interval [Li,Ui] is

Ei = n∗[F̂(Ui) – F̂(Li)],

where F̂ is the cumulative distribution function using
the estimated values of any unknown parameters.

4. Compute the test statistic, χ 2, as

5. Finally, reject the null hypothesis at an approxi-
mate level α if

χ2 > χ2
α,K–1–p ,

where K is the number of classes, p is the number of
estimated parameters in the underlying distribution,
and α is the (1 – α)th percentile of a chi-squared dis-
tribution with degrees of freedom K − 1 − p.

The chi-square GOF test requires adequate sample
size to be valid. Furthermore, it requires all cells to be
nonempty and have expected counts of at least 5.
Collapsing cells is a common remedy to this problem.
However, if cells represent categories that are not
related, collapsing may not be a good idea.

Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov (KS) goodness-of-fit
test compares the theoretical cumulative distribution

function, F(x), with the empirical distribution func-
tion, which is an estimate of the cumulative distribu-
tion function based on the data. If the distribution
being tested is a good fit, then the theoretical and
empirical cumulative distribution functions should be
close to each other. The KS statistic is based on the
maximum distance between these two functions. As
previously mentioned, a major limitation of the KS
test is that it cannot be applied to discrete data.

The steps in the KS goodness-of-fit test are as
follows.

1. Arrange the observations in increasing order and
label them as X(1), X(2), . . . , X(n), so that X(1) and X(n) are
the smallest and largest observations, respectively.

2. Compute the KS test statistic based on the
formula

3. Finally, if the value of the D statistic is larger
than the KS critical value at a given level of signifi-
cance, then we reject the hypothesis that the assumed
distribution is a good fit to the data. Tables of KS
critical values are readily available in the literature.
These critical values are applicable only when the
parameters of the distribution are completely speci-
fied. Otherwise, the critical values are computed via
simulation.

Other GOF Tests

Other GOF tests are available for continuous
data, such as Anderson-Darling, empirical distribu-
tion function, and Cramer-von Mises tests, to name
a few. GOF tests for discrete data are available for
specific discrete distributions, such as the Poisson
distribution.

GOF tests are also available in other commonly
used statistical procedures. In ordinary regression
analysis and analysis of variance, the distribution of
the error term is assumed to follow a normal distribu-
tion, and hence, the response variable also has a

D = max
1<i<n

[

F(X(i)) − i − 1

n
,

i

n
− F(X(i))

]

χ 2 =
K∑

i=1

(Oi − Ei)
2

Ei

.
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normal distribution. GOF tests are not applied to the
response variable because its distribution depends on
the predictors or factors in the model. To test the dis-
tributional assumption of these procedures, univariate
GOF tests are instead applied to residuals, whose
distribution does not depend on the predictor variables
or factors in the model.

A cautionary note: GOF tests, just like any statisti-
cal test of a hypothesis, will tend to reject the null
hypothesis as the sample size increases. Therefore,
one should be very careful in interpreting the results
of GOF tests when the sample sizes are very large.
Sometimes, performing a GOF test is no longer advis-
able. Instead, graphical techniques are better suited to
assessing distributional assumptions.

An Illustration

One hundred observations (Y) were generated using
SAS from a normal distribution with mean 3 and vari-
ance 0.5. A set of X observations was obtained from
Y via the transformation X = eY. In this case, X is
known to have a lognormal distribution. GOF tests
were performed on X and Y observations testing the fit
of the normal and lognormal distributions.

Figure 1 displays the SAS code used in this
illustration, which provides results of Kolmogorov-
Smirnov, Cramer-von Mises, Anderson-Darling, and
chi-square goodness-of-fit tests. Figure 2 displays
the histogram of the X observations with the best fit
normal and lognormal densities showing that lognor-
mal is a better fit than normal. Portions of the output
from SAS displaying the results of the GOF tests on
X observations are presented in Tables 1 and 2. Table
1 contains the result of fitting a normal distribution.
The interval size used for the chi-square test is 30
units, with the midpoint starting at 0. Except for the
chi-square test, all other tests are significant at the
5% level of significance, indicating that the normal
distribution is not a good fit to the data. Table 2 con-
tains the results of fitting a lognormal distribution.
Again, except for the chi-square test, all other tests
have the same conclusion, which is to not reject the
lognormal distribution. It should be noted that
because of the way the intervals were defined, the

chi-square test will not be valid because intervals for
larger values of X are mostly empty and have
expected values less than 5. In fact, SAS sends out
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data a;
do j = 1 to 100;

y=3+sqrt (.5)*rannor (934410);
x=expr(y);
output;

end;
run;

proc means; 
var x y ;
run;

/* goodness of fit test of X observations*/
proc capability data=a; 
var x ;
histogram / 
midpoints=0 30 60 90 120 150 180
lognormal (l=1  color=red)

normal     (l=8  color=yellow)
cframe  = ligr;

run;

/* goodness of fit test of Y observations*/
proc capability data=a; 
var y;
histogram / 
midpoints=1 2 3 4 5 6

lognormal (l=1  color=red)
normal     (l=8  color=yellow)
cframe  = ligr;

run;

Figure 1 SAS Program

Figure 2 Histogram of Data With Fitted Normal and
Lognormal Densities



the following message as a reminder: “The chi-
square statistic has been computed using expected
values less than 1. You can regroup the data using the
MIDPOINTS= option.” Because SAS does not allow
unequal interval size, one has to use other programs
to perform the chi-square test using carefully defined
intervals so that there will be no intervals that are

empty nor have expected values
less than 5.

Table 3 displays the results of
testing the normality assumption
on Y. As expected, the normal
fit was not rejected. Even the
chi-square test, which is still not
valid in this case because of some
intervals with expected values
less than 5, has the same conclu-
sion as the other tests. Note that Y
may be obtained from X via the
transformation Y = log X. This
technique of transforming data is
commonly used in applications as
a remedy to get normal data from
nonnormal data.

—Inmaculada Aban
and Edsel Pena

See also Chi-Square Test for Good-
ness of Fit; Chi-Square Test for
Independence

Further Reading

D’Agostino, R. B., & Stephens, M. A.
(Eds.). (1986). Goodness-of-fit-
techniques. New York: Marcel
Dekker.

Huber-Carol, C., Balakrishnan, N.,
Nikulin, M. S., & Mesbah, M.
(Eds.). (2002). Goodness of fit tests
and model validity. Papers from the
International Conference held in
Paris, May 29–31, 2000. Boston:
Birkhäuser Boston.

NIST/SEMATECH e-Handbook of
Statistical Methods: http://www.itl
.nist.gov/div898/handbook/

GRADUATE RECORD EXAMINATIONS

The Graduate Record Examinations (GRE) test,
published by Educational Testing Service, is a

Test Statistic DF p Value

Kolmogorov-Smirnov D 0.05567901 Pr > D > 0.150

Cramer-von Mises W-Sq 0.05199648 Pr > W-Sq > 0.250

Anderson-Darling A-Sq 0.34639466 Pr > A-Sq > 0.250

Chi-Square Chi-Sq 3.71521303 2 Pr > Chi-Sq 0.156

Test Statistic DF p Value

Kolmogorov-Smirnov D 0.05567901 Pr > D > 0.150

Cramer-von Mises W-Sq 0.05199648 Pr > W-Sq 0.486

Anderson-Darling A-Sq 0.34639466 Pr > A-Sq 0.484

Chi-Square Chi-Sq 9.54984429 4 Pr > Chi-Sq 0.049

Test Statistic DF p Value

Kolmogorov-Smirnov D 0.14540565 Pr > D <0.010

Cramer-von Mises W-Sq 0.74062491 Pr > W-Sq <0.005

Anderson-Darling A-Sq 4.51011616 Pr > A-Sq <0.005

Chi-Square Chi-Sq 3.66244120 4 Pr > Chi-Sq 0.454
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Table 1 SAS Output: Goodness-of-Fit Tests on X

Note: H0: normal distribution is a good fit.

Table 2 SAS Output: Goodness-of-Fit Tests on X

Note: H0: lognormal distribution is a good fit.

Table 3 SAS Output: Goodness-of-Fit Tests on Y

Note: H0: normal distribution is a good fit.



standardized test to be taken prior to applying for
graduate education. The College Board was originally
designed to develop and implement standardized tests
for the admission and placement of undergraduate
students. After the success of the Scholastic Aptitude
Test (SAT) in determining a student’s readiness for
postsecondary education, the College Board went a
step higher, developing a series of tests for graduate
admission in 1936, which included the GRE.

Presently, the GRE is designed to supplement
undergraduate achievements, including grade point
average (GPA), providing graduate admission com-
mittees a common measure from which to compare the
qualifications of applicants. Many graduate programs
have an explicit cut-off for applicant GRE scores and
rarely admit students scoring below these levels.

The GRE offers two different tests for students, a
General Test and a Subject Test, both of which may be
required for applying to an accredited graduate or pro-
fessional program. The GRE General Test produces a
different score for each of its three sections:

1. The analytic writing section measures the student’s
ability to articulate and evaluate meaningful, sup-
ported arguments. This section focuses more on
critical thinking than on the basic mechanics of
language.

2. The verbal reasoning section measures the student’s
ability to analyze written material. Test takers are
expected to synthesize information and recognize
relationships between words, sentences, and over-
arching concepts.

3. The quantitative reasoning section measures the
student’s ability to solve problems using the basic
concepts of arithmetic, algebra, geometry, and data
analysis.

The GRE Subject Test evaluates undergraduate
achievement in eight specific areas of study:
Biochemistry/Cell and Molecular Biology, Biology,
Chemistry, Computer Science, Literature in English,
Mathematics, Physics, and Psychology.

Sternberg and Williams evaluated the GRE’s abil-
ity to predict graduate marks for psychology students
at Yale University. The GRE General Test predicted

graduate grades only modestly (correlation of .17),
whereas the GRE Subject Test in psychology pre-
dicted marks more strongly (correlation of .37). The
Graduate Record Examinations Board has reported
that when combined, undergraduate GPA, the GRE
General Test, and the GRE Subject Test strongly pre-
dicted (correlation of .50) first-year grades in graduate
school for psychology students. Beyond predicting
first-year graduate marks, however, GRE scores are
not found to be useful for predicting other aspects of
graduate performance, including the ratings of analyt-
ical, creative, research, and teaching abilities by pri-
mary advisers, and the ratings of dissertation quality
by faculty members. Therefore, it appears that the
GRE should be taken into consideration along with
other indicators of qualification, including undergrad-
uate GPA and past experience, when evaluating appli-
cants to graduate studies.

—John R. Reddon and Michelle D. Chudleigh

See also Educational Testing Service

Further Reading

Graduate Record Examinations Board. (1997). GRE 1997–98:
Guide to the use of scores. Princeton, NJ: Educational
Testing Service.

Sternberg, R. J., & Williams, W. M. (1997). Does the Graduate
Record Examination predict meaningful success in the
graduate training of psychologists? American Psychologist,
52, 630–641.

Graduate Record Examinations Web site: http://www.gre.org

GRAND MEAN

The grand mean is most often used in the computation
of the F value in analysis of variance, or ANOVA. It is
the overall mean from which group means are sub-
tracted when computing the between-group variance.
The between-group variance and the within-group
variance are the two variance estimates that are used
to create the F ratio. The grand mean can also
be used as an estimate of the average of all the scores
in a group.
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For example, Table 1 shows three sets of 10 scores
along with the mean for each of the groups. The
grand, or overall, mean is shown in this table as well.

—Neil J. Salkind

See also Analysis of Variance (ANOVA); Average; Mean

GRAPHICAL STATISTICAL METHODS

The use of diagrams as a means for summarizing
and analyzing data has a long tradition in data explo-
ration. Long before the discipline of statistics was
established, people saw the need to
summarize available data. Maps are
probably the earliest diagrams used
to depict and pass on information. The
19th century saw a surge in the creation
of beautiful artistic charts with a more
data-oriented background. Some of
the most influential persons creating
and establishing statistical graphics
were Charles Joseph Minard, Dr. John
Snow, Florence Nightingale, and
William Playfair.

Charles Joseph Minard (1781–
1870) was a French engineer. He is

best known for his rich portfolio of intricate maps.
His most famous piece of work is the chart of
Napoleon’s March to Moscow (see Figure 1), which,
according to Tufte, is the best statistical graphic
ever drawn. Minard manages to artistically incorpo-
rate complex data in a single chart: size of the
army, marching direction, spatial location, tempera-
ture, and the dates of river crossings tell the sad
story of the deaths of hundreds of thousands of
French soldiers.

Dr. John Snow (1813–1858) is one of the founding
fathers of modern epidemiology. During the 1854
cholera outbreak in central London, Dr. Snow used a
map (see Figure 2) to mark all outbreaks and put them
in geographical reference to the water pumps regu-
larly used by the victims. In this way, he was able to
identify the pump near Broad Street as the source of
the epidemic.

William Playfair (1759–1823) was a Scottish
inventor and writer. He introduced some of the chart
types still in use today, such as the pie chart,
the bar chart, and line diagrams to depict time series.
In 1786, he published The Commercial and Political
Atlas, which contained 43 time series plots and
one bar chart. One of the most famous charts is shown
in Figure 3, describing the relationship of food prices
and wages throughout the reigns of Elizabeth I to
George IV.

Florence Nightingale’s (1820–1910) most famous
diagram discusses insufficient sanitary conditions in
military field hospitals during the Crimean War,
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Table 1 Sample Data for Computing the Means and
Grand Mean

Group 1 Group 2 Group 3

6 7 8
4 6 7
5 5 6
6 3 5
5 4 6
4 5 5
3 3 4
4 2 4
5 3 3
6 3 3

Group Average 4.8 4.1 5.1
Grand Mean 4.7

Figure 1 Minard’s Chart of Napoleon’s 1812 March on Moscow



which led to the (preventable) deaths of thousands of
soldiers. She invented polar-area diagrams, where the
statistic being represented is proportional to the area
of a wedge in a circular diagram. In 1858, Florence
Nightingale was elected the first female member of
the Royal Statistical Society, and she became an hon-
orary member of the American Statistical Association

in 1874. Karl Pearson acknowledged
Nightingale as a “prophetess” in the
development of applied statistics.

Birth of Modern
Statistical Graphics

With the invention of computers, the
time for hand-drawn maps and charts
had run out. Much simpler and more
abstract computer graphics are used
now, for both presentation and explo-
ration of data. The founder of this mod-
ern era of statistical graphics was John
Wilder Tukey (1915–2000). He was
one of the great statisticians of the 20th
century, leaving his prints in many
areas of statistics. Tukey was the first
to emphasize the difference between
exploratory data analysis and confir-
matory analysis. For exploratory data
analysis in particular, he suggested 
the use of graphics. In his monograph
on exploratory data analysis, Tukey

introduced a variety of now well-known and 
used diagram types, such as the box plot (box-
and-whisker plot) and the (slightly outdated) stem-
and-leaf plot (see Figure 5 for examples). The
ground-breaking new features of Tukey’s inventions
are their abstractness. Data points are plotted along
axes that do not have a direct relation to space or

time. In this respect, Tukey is the
founding father of statistical graphics
as it is seen today. We use visualization
methods to portray abstract relation-
ships among variables. This is the
essential difference between statistical
graphics and other areas of information
visualization, which are principally
concerned with the rendering of
objects and phenomena in physical 3-D
space.

Today, the standard ensemble in the
toolkit of a statistician consists of the
following:
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Figure 2 Snow’s Map of Central London Investigating the Cause for
the Cholera Epidemic of 1854

Figure 3 Playfair’s “Prices, Wages, and Reigns”



• one-dimensional plots: bar charts and pie charts for
categorical variables, histograms, dot plots, and box
plots for continuous variables

• two-dimensional plots, such as the scatter plot
for continuous variables, and combination of one-
dimensional plots for a mixture of one continuous
variable and categorical variables

• mosaic plots for displaying multivariate categorical
data

• rotating plots for three dimensions
• projection techniques for higher dimensional data
• interactive tools, such as selection and linked

highlighting to gain insight in higher dimensional
structures in the data

This list is certainly not complete—there are varia-
tions of each of these diagrams under various names;
there are other types of diagrams; and there are new
kinds of data, such as data streams or (Internet) net-
work data, which cannot be displayed well by any of
the diagrams mentioned above. Some of the ongoing
research in graphics deals with the problem of how
best to display new types of data. Other research deals
with how best to present information and how to come
up with “good” (i.e., faithful) graphics, because bad
graphics seem to appear everywhere, particularly in
nonstatistical environments. Ground-breaking work
has been published by Edward R. Tufte in this area. In
The Visual Display of Quantitative Information, Tufte
describes a set of rules for preserving and checking
graphical integrity in charts.

The Semiology of Graphics (first edition in
French in 1967) by Jean-Jacques Bertin provides a
summary of elements of graphics and conceptual
principles. Leland Wilkinson’s monograph The
Grammar of Graphics can be seen as a logical suc-
cessor to Bertin, even though the book is self-reliant.
Wilkinson describes elements of graphics and pre-
sents an algebra for them that allows a flexible and
consistent way of constructing and describing
graphs.

Interactive Statistical Graphics

With the rise of computer technology and general
availability of personal computers on almost every-
body’s desk, software for statistical graphics became
widely accessible. This led statisticians to search for
ways of “interacting” with their data. The collection

of movies in the ASA Statistical
Graphics Section Video Lending
Library paint an impressive picture of
the developments in statistical graph-
ics since 1960. But what makes soft-
ware interactive? There is an almost
bewildering abundance of applica-
tions that go under the heading of
interactive software, yet there seem to
be quite different opinions of what

interactivity means. The definition and
use of this term is not quite clear, even
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Figure 4 Nightingale’s Polar-Area Diagram of the
Causes of Mortality in the Army in the East

Figure 5 Box Plot (left) and Stem-and-Leaf Plot (right) of the Time
Between Eruptions of Old Faithful
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among computational statisticians, as a survey on this
topic by Swayne and Klinke made clear.

Here, we will refer to human-computer interaction
based on the definition proposed by Unwin as the direct
manipulation of plots and plotting elements in them.
This goes back to one of the first definitionsof interac-
tivity made by Becker and Cleveland and Becker et al.:
“dynamic methods have two important properties: direct
manipulation and instantaneous change.” The data ana-
lyst takes an action of an input device and something
happens, virtually instantaneously, on a computer
graphics screen. Huber (1988) corrects the term 
of dynamic graphics to high-interaction graphics.
“Virtually instantaneously” is often interpreted as real
time changes, with the maximum response time set to
20 ms or, equivalently, an update speed of 20 frames per
second. This, however, looks rather dangerous because
it emphasizes the role of the underlying hardware and
may even lead to different decisions about which meth-
ods can be classified as interactive. Therefore, it is prob-
ably better to speak of a potentially interactive method
if it fulfills the proposition of being directly manipula-
tive. Direct manipulation depends on two conditions:

1. Immediacy of place—by using a pointing device
such as a mouse, the analyst can specify visually the
areas of the plot, which are meant as a starting point
of an action.

2. Immediacy of action—the action is triggered by
using a clicking device such as a mouse, pressing
keys on the keyboard (but not typing in commands),
or via some other input device.

Interactive methods let graphics become real tools
of data analysis. The most commonly used methods
are linked highlighting, brushing, identifying, and
zooming. Brushing was first introduced by Becker
et al. as a tool for identifying and cross-linking points
in scatterplot matrices. The idea of brushing is to
mark all points inside the brushing area, usually a rec-
tangle, and mark corresponding values in other graphs
in the same way. Moving the brushing area to differ-
ent positions leads to changes of marked points in
all other graphs, revealing relationships between
variables. The most commonly used brushing tech-
nique is highlighting. Figure 6 shows an example of
linked highlighting in the iris data set: The brush is
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Figure 6 Example of Linked Highlighting in the Iris Data Set



moved along the diagonal of a scatterplot showing
petal length versus petal width. Corresponding values
are highlighted by color in a linked bar chart of iris
type. As the brush moves from bottom left to top right,
iris species are setosa, then predominantly versicolor,
and finally virginica.

Being able to identify objects and individuals in
graphs is crucial. Interactive querying allows the out-
put of context-sensitive information. This operation is
normally triggered by a movement of the mouse or by
point and click of a graphical object such as an axis, a
point, or a bar. Figure 7 shows examples of identifying
objects in scatterplots. Query-clicking in empty space
(left) gives the coordinates along the x- and y-axes.
Query-clicking points triggers output of the number of
observation (five, in the example) and their coordi-
nates. More in-depth information is shown on the right:
All available information for Observation #2 pops up.

Of course, all interactive methods depend highly
on the specific implementation of a particular soft-
ware. On the up side, though, basically all interactive
systems now do have implementations of these crucial
interactive methods even though names and function-
ality may vary slightly.

The final interactive, which seems to be common
to all interactive systems for data exploration, is logi-
cal zooming. Whereas standard zooming enlarges the
displayed graphical elements, logical zooming works
on the underlying model and changes it to display

more details. Logical zooming is quite natural when
working with maps. Starting with a country map,
we zoom into a regional map, a city map, and finally
a street map, which shows us the neighborhood in
every detail. This gives us a tool for breaking down
large data sets into smaller parts, which are easier
to analyze.

—Heike Hofmann

See also Area Chart; Bar Chart; Line Chart; Pie Chart

Further Reading
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Figure 7 Examples of Identifying Objects in Scatterplots
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GRESHAM, FRANK M. 
(1949– )

Frank Gresham was born in the small town of
Greenville, South Carolina, in April 1949. As a young
man growing up in Simpsonville, South Carolina,
Frank was a good football player and was offered a
scholarship to play football for a small local college.
However, Frank had other plans and left home to pur-
sue his college education.

He earned his Bachelor of Science degree in psy-
chology from Georgia State University in 1973. He
then went on to the University of South Carolina
(USC), where he earned his M.Ed. in Rehabilitation
Counseling. While working as a counseling coordina-
tor for the South Carolina Department of Corrections,
he went on to earn his PhD in psychology from USC.

After receiving his PhD, Dr. Gresham accepted a
position at Iowa State University. Two years later,
he was asked to become the director of the School
Psychology Program at Louisiana State University.
Dr. Gresham held this position for 8 years and pub-
lished dozens of articles in the areas of applied behav-
ior analysis, social skills, and behavioral consultation.
As a result of his extraordinary research, he was given
the Lightner Witmer Award in 1982. The highly cov-
eted Lightner Witmer Award is given by the American
Psychological Association (APA) for outstanding
research contributions by a school psychologist. In
1985, he was recognized as a Fellow by both the APA
and the APA’s Division of School Psychology.

In 1989, Dr. Gresham accepted a position as
the director of the Combined Clinical and School
Psychology Program at Hofstra University. His most
notable accomplishment during his 2 years at Hofstra
University was to co-author the Social Skills Rating
System (SSRS). The SSRS is used frequently by
school psychologists throughout the United States
and abroad for the assessment of children experienc-
ing social, emotional, and behavioral difficulties. In
1991, Dr. Gresham accepted a position as the director
of the School Psychology Program at the University
of California, Riverside (UCR). During his 14 years at
UCR, Dr. Gresham continued to publish research arti-
cles and chapters at an unparalleled rate. He was the
recipient of eight federally funded grants for the study
of learning disabilities, literacy, and emotional and
behavioral disorders, and he received many honors for
his scholarly work and research, including the Senior
Scientist Award by the APA and the rank of
Distinguished Professor.

Currently, the field of school psychology is
undergoing a major paradigm shift in the identi-
fication of children with learning disabilities.
The Response-to-Intervention model proposed by
Dr. Gresham to the U.S. Office of Special Education
Programs in 2001 was recently approved by the U.S.
Congress to replace the traditional discrepancy
model used for identifying learning disabilities for
the past 30 years.

In addition to his work as a researcher, teacher, and
mentor, Dr. Gresham was appointed as an expert wit-
ness to the President’s Commission on Excellence in
Special Education. Dr. Gresham is also a consultant
to state psychological associations in more than
45 states, as well as Canada and Australia.

Dr. Frank Gresham continues to be one of the most
respected and prolific scholars of our time in the field
of school psychology.

—Alberto Restori

Further Reading

Frank Gresham home page: http://www.behavioralinstitute
.org/Frank%20Gresham.htm
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GROUNDED THEORY

Grounded theory is a broad perspective on how to
conduct qualitative social science research. It com-
prises a distinctive methodology, a particular view of
scientific method, and a set of procedures for ana-
lyzing data and constructing theories. The method-
ology provides a justification for undertaking
qualitative research as a legitimate, indeed rigorous,
form of inquiry. The conception of scientific method
depicts research as a process of inductively generating
theories from closely analyzed data. The specific
procedures used in grounded theory comprise an array
of coding and sampling procedures for data analysis,
and a set of interpretative procedures that assist in
the construction of theory that emerges from, and is
grounded in, the data. In all of this, grounded theory
researchers are expected to meet the canons of doing
good scientific research, such as reproducibility and
generalizability.

Grounded theory has been employed by researchers
in a variety of disciplines, including sociology, nursing
studies, education, management science, and psychol-
ogy. It is probably the best known and widely used
qualitative research methodology available today.

History

The grounded theory method was introduced in the
1960s by two American sociologists, Barney Glaser
and Anselm Strauss, and has been further developed
by them and others. Grounded theory was introduced
to serve three purposes. First, it endeavored to close
the gap between theory and empirical research by
having theory emerge from the data. Second, it began
to spell out the inductive logic involved in producing
grounded theory. Finally, it provided a justification for
the careful and rigorous use of qualitative research
methods in sociology.

Deriving its theoretical underpinnings from the
philosophy of American pragmatism and the related
social theory, symbolic interactionism, grounded
theory portrays research as a problem-solving
endeavor concerned with understanding action from
the perspective of the human agent. Strauss was

heavily influenced by the University of Chicago
tradition in qualitative social research, with its empha-
sis on the method of comparative analysis and the
use of participant observation. Glaser was strongly
influenced by the quantitative research tradition at
Columbia University, and he brought to grounded
theory important ideas from this tradition and trans-
lated them into qualitative terms.

Both Glaser and Strauss continued to develop the
methodology of grounded theory, although in separate
publications. From the 1980s onwards, their formula-
tions of grounded theory diverged somewhat. Glaser
sees himself as having remained true to the original
conception of grounded theory, with its emphasis on
studying basic social processes, the use of the con-
stant comparison method, and the formulation of
theories by letting abstract relationships between the-
oretical categories emerge from the data. Strauss, in
association with Juliet Corbin, developed new meth-
ods of analysis in place of the strategy of constant
comparative analysis, and they stressed the impor-
tance of verification of theory as well as its genera-
tion. Glaser has strongly objected that Strauss and
Corbin’s approach forces data and their analysis into
preconceived categories instead of letting the cate-
gories emerge from the data. Although Strauss
acknowledges that there are differences, he maintains
that both he and Glaser advocate use of the same basic
procedures for doing grounded theory research.

Philosophical Perspectives

Grounded theory has also been presented from a
number of different philosophical positions. Glaser
adopts a general empiricist outlook on inquiry. This
has sometimes been described by commentators as
“positivism.” However, given the influence of prag-
matism on his early formulations of grounded theory,
this is an unfair characterization. Strauss’s own char-
acterization of grounded theory leans toward a social
constructionist perspective. Kathy Charmaz has
provided an explicitly constructivist depiction of
grounded theory that breaks with the objectivism of
Glaserian grounded theory. On a constructionist per-
spective, social reality is not revealed so much as
socially constructed in the course of inquiry. David
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Rennie offers a hermeneutic interpretation of the
grounded theory method that is able to provide an
understanding of the meaning of text and reconcile the
tensions that exist between realism and relativism in
orthodox accounts of the method. Finally, Brian Haig
offers a reconstruction of grounded theory methodol-
ogy from a broadly scientific realist perspective. On
this interpretation, grounded theory method involves
the inductive discovery of empirical phenomena fol-
lowed by the abductive construction of theory to
explain the phenomena.

Procedures

The variety of interpretations of grounded theory
extend to characterizations of the method itself. In
efforts to identify empirical social phenomena, and
construct theories that explain those phenomena,
almost all accounts of grounded theory adopt the three
major research strategies of data coding, memo writ-
ing, and theoretical sampling. In grounded theory,
data gathering and data analysis are interactive: From
the time data collection begins, grounded theorists
engage in data analysis, which leads to further data
collection, subsequent data analysis, and so on.

The first data-analytic phase of grounded theory
begins with the coding of data. This is undertaken to
conceptualize the data by discovering categories into
which they fit. The coding process has three phases:
open coding, axial coding, and selective coding. In
open coding, researchers describe the data by looking
at them line by line. This strategy of focusing on small
units of data, and their interpretation, encourages
the development of a theoretical sensitivity to new
ideas about the data and helps prevent the forcing of
data into existing categories. Strauss and Corbin
maintain that when a full array of categories has been
identified, one should undertake axial coding,
whereby one puts the data back together again in new
ways by making connections between the numerous
categories. After that, a selective coding step is imple-
mented in which the researcher looks to systemati-
cally identify those categories that relate closely to
the core category. The core category lies at the heart
of the emerging theory and is central to the theory’s
integration.

Although memo writing can occur at any stage of
the research process, it frequently takes place between
the coding of data and the writing of the initial draft
of the research report. Memos are written to identify,
develop, and keep track of theoretical ideas. Where
relevant, they are recorded, recalled, and reworked
to produce new theoretical memos. Memo writing
becomes more systematic, focused, and intense as
theory of greater density and coherence is produced.

Memos written about data codes and theoretical
ideas enable the researcher to identify gaps that
require the collection of further data. For this, theoret-
ical sampling is undertaken. With theoretical sam-
pling, in contrast with traditional representative
sampling, decisions about which data to collect, code,
analyze, and interpret are directed by the emerging
grounded theory. Theoretically relevant events, activi-
ties, and populations are all sampled, and the com-
parisons between these are aimed at increasing the
conceptual density and integration of the emerging
theory. Thinking effectively about data in theoretical
terms requires an adequate degree of theoretical sen-
sitivity. When the additional gathering and analysis of
data no longer contribute to the understanding of a
concept or category, a point of theoretical saturation is
reached. At this point, one stops collecting data in
respect of a category and moves to consider another
category or concept.

Grounded theory considers writing to be an impor-
tant part of the research process. This extends beyond
the writing of memos to writing up the research report
itself. One of the major goals in drafting the research
report is to present a fully integrated account of the
phenomena studied. This will involve highlighting
areas that are insufficiently integrated and working
to remedy these through multiple drafts if needs be.
Grounded theory provides a number of rules of
thumb, or heuristics, to improve the integrative value
of the research report.

Criticisms

Despite its popularity, grounded theory has been sub-
jected to a number of criticisms. One criticism asserts
that grounded theory is a regression to a simple
“Baconian” form of inductive science. In this
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interpretation, grounded theory is depicted as a tabula
rasa view of inquiry, which maintains that data analy-
sis and interpretation are not dependent on concepts or
theories. However, this is an unwarranted criticism.
In their first book on grounded theory, Glaser and
Strauss explicitly stated that the researcher must
have a perspective in order to discern relevant data
and abstract relevant categories from them. In their
view, the researcher seeks to obtain emergent diverse
categories at different levels of abstraction by bracket-
ing potentially relevant existing facts and theories for
some time.

A further criticism of grounded theory is the claim
that the reasoning involved in the generation of
grounded theory is not inductive, as Glaser and
Strauss claim, but abductive. Inductive reasoning is
typically a generalizing inference, and it is difficult to
see how such descriptive inferences could lead to the
causes that explain generalizations. In contrast,
abductive inference is explanatory inference, often
from presumed effects to underlying causes. It is this
type of reasoning process that leads from facts to
explanatory theories. It is surprising that the origina-
tors of grounded theory have not appealed to abduc-
tive reasoning, given its prominence in the work of the
pragmatist tradition from which they have drawn.

Yet another criticism of grounded theory points out
that its methodology stresses the importance of theory
generation at the expense of theory verification, or
validation. However, whereas the first writings on
grounded theory method deemphasized theory valida-
tion in favor of theory generation, this was in part due
to Glaser and Strauss’s desire to break from the
hypothetico-deductive emphasis on theory testing that
dominated 20th-century sociology. Glaser has contin-
ued to see grounded theory primarily as a theory gen-
eration method, but Strauss has come to emphasize
the importance of theory verification in grounded
theory research.

Although grounded theory does not articulate a
precise account of the nature of theory testing, some
writings on the method make it clear that there is
more to theory appraisal than testing for empirical
adequacy. Clarity, consistency, parsimony, density,
scope, integration, fit to data, explanatory power, pre-
dictiveness, heuristic worth, and application are all

mentioned by Glaser and Strauss as relevant evalua-
tive criteria, although they do not elaborate on these,
nor do they work them into an integrated view of
theory appraisal.

Conclusion

Grounded theory methodology continues to be the
subject of critical epistemological examination. Its
methods continue to be employed widely, both in
full and in part, in social science research, especially
with the aid of computer programs for qualitative
data analysis. Although initially developed as an
approach to qualitative research, the use of grounded
theory method in the future is likely to employ a mix
of qualitative and quantitative research methods and
to link with other methods that give explicit emphasis
to the construction of theory that is undertaken to
explain the data patterns obtained about empirical
social phenomena.

—Brian Haig

See also Authenticity
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Applying Ideas on Statistics and Measurement

The following abstract is adapted from Rennie,
D. L. (2000). Grounded theory methodology as
methodical hermeneutics: Reconciling realism
and relativism. Theory and Psychology, 10(4),
481–502.

David Rennie argues that the realism-relativism
duality addressed by the grounded theory
approach to qualitative research is best accounted
for when the method is understood to be an
inductive approach to hermeneutics. Phenome-
nology, C. S. Peirce’s theory of inference, philo-
sophical hermeneutics, pragmatism, and the new
rhetoric are drawn upon in support of this argu-
ment. It is also held that this formulation of the
grounded theory method opens the possibility
that the method improves on earlier approaches to
methodical hermeneutics. As an outcome of this
formulation, the debate on the validity and relia-
bility of returns from the grounded theory
approach is cast in a new light. The new method-
ical hermeneutics is discussed in terms of prior
attempts to relate hermeneutics to method.

GUTTMAN SCALING

Guttman scaling (also called scalogram analysis) is a
method of scaling involving items that reflect increas-
ing levels of extremity on a single dimension of inter-
est. This procedure was developed by Louis Guttman
and was introduced in response to the concern that
prior attitude measures might sometimes tap multiple
constructs. For instance, a scale might include (among
others) the statements presented in Table 1.

These statements both represent negative views
toward obesity. Item 1 is the most extreme, and it
seems reasonable to expect that individuals who
endorse it might also endorse Item 2. However, it is

plausible that an individual might have an attitude
toward obesity based solely on the associated health
risks. This person might agree with the more extreme
(health-related) item, but disagree with the less
extreme attractiveness item. A scale containing these
types of items would be assessing more than one
construct. Therefore, it would be difficult to determine
whether two people receiving the same score actually
reported the same attitude, or whether their scores were
driven by different dimensions. Guttman’s approach
was designed to correct this potential problem.

Guttman Scale Criteria

A Guttman scale is composed of a set of statements to
which respondents indicate their level of agreement.
Because these scales are meant to assess a single dimen-
sion, items are selected to vary on extremity alone.
Therefore, statements chosen must be unipolar, reflect-
ing gradations of either support or rejection. It is
expected that individuals will agree with all items lead-
ing up to their most extreme endorsement and will dis-
agree with items of higher extremity. With this goal in
mind, researchers aim to select items that will fit a step-
wise sequence of extremity. In fact, successful Guttman
scales often consist of nested statements, such that
agreeing with any one item almost necessitates agree-
ment with items of lower extremity. This is a useful
strategy because individuals with extreme attitudes
might otherwise reject more moderate items on the basis
that they denote too weak a stance. For example, the
statements presented in Table 2 might be used to exam-
ine respondents’ attitudes toward the film Casablanca.
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Table 1 Obesity Items Reflecting Two Dimensions

Items

Obesity is a serious health threat that leads to early death.
Obese individuals are less physically attractive than

people who aren’t overweight.

Table 2 Sample Guttman Scaling Items

Items

Casablanca is the greatest
movie ever made. (most extreme)

Casablanca is one of the top
5 movies of all time. 

Casablanca is an exceptional
film, one of the best. 

Casablanca is a great film,
well above average.

Casablanca is a good movie. (least extreme)



To satisfy the requirements of a Guttman scale,
individuals who agree with Item 1 should also agree
with all other statements listed because they represent
less extreme views. Likewise, respondents who
disagree with Item 1 but agree with Item 2 should
endorse all remaining items, and so on. This not only
ensures that scores obtained are interpretable (because
individuals with the same score will have endorsed the
same statements), but it also introduces the possibility
that knowledge of individuals’ scores alone will allow
exact replication of their responses. This “repro-
ducibility” is a key element of Guttman scaling.

Evaluating Reproducibility

To assess the criterion of reproducibility, researchers
first organize their data by creating a matrix in which
columns represent scale items and rows represent
respondents. If an individual agrees with a statement,
a 1 is placed in the cell common to both the item and
the respondent, and if a person disagrees with a state-
ment, a 0 is placed in that cell. Individuals’ scores are
calculated by counting the number of 1s in each row.
If this type of matrix were created for the Casablanca
items mentioned earlier, it might look like Table 3.
This table indicates, for example, that Persons 3 and 9
agreed with all items, whereas Person 6 agreed only
with Item 1.

After creating this preliminary matrix, rows and
columns must then be rearranged according to the
number of 1s they contain. This is done such that the
column with the most 1s is placed at the far right and
the row with the most 1s is at the top (see Table 4).
This matrix is used to identify items of equivalent
extremity and to determine which items produce
inconsistent response patterns.

In a perfect Guttman scale, respondents would
agree with all statements leading up to their most
extreme endorsement, overall response patterns
would support the hypothesized extremity of each
statement, and all individuals with a given score
would agree and disagree with the same statements.
Furthermore, because scores would be entirely
dependent on the extremity of the statements
endorsed, the data from such a scale would be com-
pletely reproducible from the scores alone. In prac-
tice, such a pattern is seldom achieved. For example,
the data presented in Table 4 are not consistent with a
perfect Guttman scale. In fact, both Person 4 and
Person 6 endorse the most extreme statement (Item 1)
and subsequently disagree with items deemed lower
in extremity. Individuals who break the pattern by
responding unexpectedly are said to have committed
errors. Violations of this type serve to undermine
reproducibility because response patterns can no
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Table 3 Initial Response Matrix (Items by
Respondents)

Items

Total
Person #1 2 3 4 5 Score

1 0 0 0 1 1 2
2 0 0 1 1 1 3
3 1 1 1 1 1 5
4 1 0 0 1 1 3
5 0 0 0 0 1 1
6 1 0 0 0 0 1
7 0 0 0 1 1 2
8 0 1 1 1 1 4
9 1 1 1 1 1 5

10 0 1 1 1 1 4

Table 4 Reordered Response Matrix, Including
Errors

Items

Total
Person # 1 2 3 4 5 Score Errors

3 1 1 1 1 1 5 0
9 1 1 1 1 1 5 0
8 0 1 1 1 1 4 0 

10 0 1 1 1 1 4 0
2 0 0 1 1 1 3 0
4 1 0 0 1 1 3 1
1 0 0 0 1 1 2 0
7 0 0 0 1 1 2 0
5 0 0 0 0 1 1 0
6 1 0 0 0 0 1 1



longer be determined from scores alone. Because
reproducibility is a proxy for unidimensionality in
Guttman scaling, procedures have been devised to
assess the degree to which a set of responses violates
the ideal pattern.

The coefficient of reproducibility (defined as [1 –
total number of errors/total number of responses]) was
suggested by Guttman in 1950 and is used to indicate
the level of reproducibility. Guttman proposed a coef-
ficient of .90 as the level needed to assume unidimen-
sionality. The total number of responses for a scale is
equal to the number of respondents multiplied by the
number of items, but the number of errors is ambigu-
ous initially, so determining the total error count is
more complicated. A limited number of response sets
fit the pattern required for Guttman scaling, and it is
necessary to establish which of these a person
“should” have given to determine a person’s number
of errors. Errors are thus conceptualized as the number
of responses that need to be changed to create one of
the acceptable patterns. This “intended” response pat-
tern is selected to optimize reproducibility, so each
individual is charged with the fewest errors possible.

For example, in Table 4, one break from the ideal
pattern occurs with Person 6. This individual agreed
with the most extreme item, but disagreed with all
statements deemed lower in extremity. This response
set can be explained in several ways. It could be
assumed that because the individual endorsed the
most extreme item, he or she should also have agreed
with the remaining items (resulting in four errors).
However, the pattern can also be explained with fewer
errors if the endorsement of Item 1 is considered a
mistake. This assumption charges only one error to
Person 6 and so is the appropriate choice.

Researchers have questioned the merit of
Guttman’s reproducibility coefficient because large
coefficients are not necessarily evidence for unidi-
mensionality. For instance, the reproducibility of a
statement with two response options (e.g., agree/
disagree) cannot be less than the proportion of people
who gave the most popular response for that item.
That is, if 95 out of 100 respondents agree with a
statement, the maximum number of errors for that
item is 5, so the smallest possible reproducibility for

the statement would be .95. Therefore, if several items
are selected to which a large percentage of respon-
dents agree (or disagree), it is conceivable that a scale
could be highly reproducible for reasons unrelated to
content. To remedy this, a more precise alternative,
the error ratio, has been proposed to assess repro-
ducibility. This ratio is calculated by dividing the
number of observed errors by the maximum number
of errors possible, so that the ratio will range from
0.00 (no observed errors) to 1.00 (maximum error
observed). This index is more sensitive to the absence
of unidimensionality, with higher ratios indicating
lower reproducibility.

Strengths and Weaknesses

The major asset of Guttman scaling is its focus on
unidimensionality. Relative to other methods,
Guttman scales are more likely to succeed in tapping
only a single construct. Hence, scores often have
more straightforward interpretations. However,
several drawbacks are also evident. First, because
increasing the number of items makes it more diffi-
cult to satisfy Guttman criteria, scales are necessar-
ily short. Hence, variability among respondents’
scores may be reduced, thereby making it difficult
to discriminate among individuals. Additionally, the
stringent standards of Guttman scaling can them-
selves be a disadvantage. In fact, some strategies
used to overcome these difficulties can lead to
additional problems. Researchers often start the
development process with several items, generally
selected using some rationale. Then, based on the
observed results, items that weaken reproducibility
are eliminated. Because these omissions often occur
without theoretical backing, scale validity can be
compromised.

Because of its challenges, Guttman’s technique is
rarely used. As a result, the reliability and validity of
this approach relative to other methods have not been
established definitively.

—Leandre Fabrigar and
Karen MacGregor

See also Attitude Tests; Likert Scaling; Thurstone Scales
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Applying Ideas on Statistics and Measurement

The following abstract is adapted from Guest, G.
(2000). Using Guttman scaling to rank wealth:
Integrating quantitative and qualitative data. Field
Methods, 12(4), 346–357.

Wealth ranking in given field sites can be
problematic for a number of reasons. This article
explores the usefulness of Guttman scaling and
AnthroPac software in such contexts, using a
small fishing community on the northern coast
of Ecuador as an example. The author provides
a step-by-step description of procedures for
implementing and analyzing Guttman scale
methodology and discusses the issue of construct
validity. The complementary relationship between
qualitative and quantitative data is highlighted
throughout.
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HARMONIC MEAN

The harmonic mean is another way of expressing
central tendency for a set of scores. The harmonic
mean is obtained by dividing the number of observa-
tions by the sum of the reciprocal of the scores. That
is, if we have n observations with scores x1, x2, . . . , xn,
the harmonic mean is computed as follows:

There are certain situations in which the harmonic
mean provides the most appropriate definition of the
“average.” For example, the harmonic mean is useful
when averaging rates of speed. To illustrate, suppose
that a vehicle travels from city A to city B at an aver-
age speed of 40 miles per hour and returns to city A at
an average speed of 60 miles per hour. The average
speed is calculated as 48 miles per hour using the har-
monic mean, as shown below:

In other words, the total amount of time for the round
trip is equivalent to the time it would have taken to
make the trip at a constant speed of 48 miles per hour.
Had we used the arithmetic mean to compute the aver-
age velocity for this example, the result would have
been 50 miles per hour.

The harmonic mean has applications in the behav-
ioral sciences as well. An example can be found in the
context of statistics. Suppose that two group means
are compared using an independent t test. The denom-
inator of the t statistic is the standard error,

which quantifies the sampling error associated with
the mean difference in the numerator of the t formula.
In this formula, s2

pooled represents the pooled variance
and is computed as

where ssk is the sums of squares for the kth group.
After some algebraic manipulation, it is possible to

s2
pooled = ss1 + ss2

n1 + n2 − 2
,

sX̄1−X̄2
=

√

s2
pooled

(
1

n1
+ 1

n2

)

,

h = 2
(

1

40
+ 1

60

) = 48 .

h = n
n∑

i=1

1

xi

.
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rewrite the standard error formula using the harmonic
mean h in place of n1 and n2 as follows:

To illustrate, suppose it was of interest to compute
an independent t test with unequal group sizes, such as
ss1 = 25, n1 = 12, ss2 = 35, and n2 = 20. Using standard
formulae, the pooled variance is s2

pooled = 2, and the
standard error of the mean difference is sX

–
1–X

–
2

= .52.
The harmonic mean sample size in this example is h =
15 (i.e., 2/[1/12][1/20]). Substituting the harmonic
mean into the formula above yields a standard error of
.52—the same result obtained using unequal ns. Thus,
the standard error of the mean difference using two
unequal groups is identical to the standard error that
would have been obtained using two groups with a
common n equal to h (i.e., n1 = n2 = h).

In sum, there are certain situations in which the
harmonic mean provides the appropriate definition of
the “average,” as when averaging rates and when com-
puting the average sample size from a disparate col-
lection of ns.

—Davood Tofighi and Craig K. Enders

See also Average; Mean
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HEALTH INSURANCE PORTABILITY

AND ACCOUNTABILITY ACT

The Health Insurance Portability and Accountability
Act (HIPAA) is considered the most significant health

care legislation since Medicare and Medicaid were
created in the 1960s. It has restructured the delivery
and management of health care in such a way that
nearly all aspects of patient care as well as the busi-
ness of health care are affected. Evaluation and
assessment of such services are included in the act
as well.

Signed into law by President Bill Clinton on
August 21, 1996, HIPAA, as proposed by Senators
Nancy Kassebaum (Republican from Kansas) and
Edward Kennedy (Democrat from Massachusetts),
had a twofold intent: (a) to protect the health insur-
ance coverage of American workers and their depen-
dents by ensuring the ability to renew or obtain health
insurance in the event of a change or loss of jobs,
thereby guaranteeing portability across employment
settings, and (b) to reduce or eliminate discrimination
against employees that is based on preexisting
medical conditions. The legislation was ultimately
expanded to include requirements pertaining to
administrative simplification and health care abuse
and fraud. The overwhelming focus of this part of the
legislation pertains to privacy.

Portability

HIPAA’s portability rules are intended to address a sit-
uation known as job lock, or individuals’ reluctance to
change jobs for fear of losing health coverage for pre-
existing conditions. HIPAA guarantees an individual’s
right to purchase health insurance, providing the indi-
vidual (a) has had 18 months of “creditable coverage”
through a group health plan, (b) does not have other
health insurance and is not eligible for health cover-
age under another group plan (including Medicare or
Medicaid), (c) did not lose health insurance for lack of
payment of premiums or fraud, and (d) has exhausted
coverage provided under the Consolidated Omnibus
Budget Reconciliation Act of 1985. Once individuals
are HIPAA-eligible, HIPAA prohibits denying them
health insurance or charging them higher rates for
health insurance on the basis of their health history or
the health history of their dependents. HIPAA also
places the following limits on exclusions due to pre-
existing conditions:

sX̄1−X̄2
=

√

s2
pooled

(
1

h
+ 1

h

)

.
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• In certain cases, HIPAA may limit the amount of
time to which exclusions for a preexisting medical
condition apply so that the diagnosis or treatment of
medical conditions before this period may not be used
by health plans. This look-back period provision
defines a preexisting condition as a medical condition
that has been diagnosed or treated within 6 months of
the enrollment date. Thus, a medical condition for
which treatment was received prior to that period
would not qualify as a preexisting condition.

• In cases in which a preexisting condition is
determined to exist, HIPAA limits the time during
which exclusions can prevent an individual from
receiving health care for that condition to 12 months.

• Exclusions for preexisting conditions can be
reduced if an individual has had creditable coverage
under another health plan or policy prior to enrollment
in a new health plan. For example, if an employee had
6 months of creditable coverage under another group
health plan, the previous coverage can be applied
to the 12-month period. Thus, the new plan cannot
exclude coverage for more than 6 months.

Exclusions based on preexisting conditions are not
applied to newborns or adopted children who are cov-
ered under group health plans within 30 days after
their birth.

Administrative Simplification

The goals of administrative simplification fall into
two general categories: (a) improving the efficiency
and effectiveness of health care by standardizing
shared electronic information and (b) protecting the
privacy and security of patient information that is
stored and exchanged electronically. In addition,
administrative simplification has four specific stan-
dards or rules that pertain to the handling of health
data by covered entities, that is, health plans or insti-
tutions, health care providers, and other individuals
who handle medical records and other health care
information. The U.S. Department of Health and
Human Services requires that these rules meet three
basic criteria: they must be comprehensive, they must
be suitable for any size or type of covered entity, and

they must not be negatively impacted (i.e., rendered
inoperative or obsolete) by evolving technologies.

TThhee  PPrriivvaaccyy  RRuullee

Because patients, or their legal designees, have the
ultimate authority to make health care decisions on
their own behalf, HIPAA provides them with control
over medical records. The Privacy Rule stipulates
HIPAA’s regulations with regard to organizations or
individuals (i.e., covered entities) involved with pro-
tected health information (PHI; defined below) in any
and all capacities. The Privacy Rule went into effect in
April 2003 for larger entities and April 2004 for
smaller ones. Already existing state privacy protec-
tions at least as stringent as HIPAA’s remained in
effect. Covered entitles that do not comply with
HIPAA’s Privacy Rule risk civil or criminal monetary
penalties and imprisonment.

PHI refers to any type of information (transmitted
or maintained by electronic or other media) that iden-
tifies an individual with respect to the provision of, or
payment for, past, present, or future physical or men-
tal health conditions. Under HIPAA, physicians are
required to ensure the privacy of patients’ medical
information by controlling how that information is
used and disclosed. Specifically, PHI may be used or
disclosed only for work-related purposes and only to
the extent necessary for achieving those purposes. For
example, when a patient is referred from one medical
office to another, only information relevant to the
patient’s medical history should be conveyed (and not,
for example, billing information).

Health care providers must also provide patients
with a Notice of Privacy Practices, in writing, inform-
ing them of patients’ rights with respect to PHI. These
rights include the following:

• the right to access and copy personal medical records
• the right to request that medical information be

amended
• the right to an accounting concerning individuals or

institutions to which health information has been
disclosed

• the right to request that access to sensitive informa-
tion be limited
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The Notice of Privacy Practices may also be used to
inform patients of the intended use of certain informa-
tion and to provide patients with the opportunity to
refuse disclosure of that information. This provision
applies most often to large medical facilities (e.g., hos-
pitals) that routinely make certain information avail-
able, such as in patient directories, lists of the religious
affiliations of patients, and the disclosure of certain
medical information to family members or friends.

Physicians are also required to provide privacy pro-
tections on an administrative level by designating a
privacy officer within their medical facility who is
responsible for the training of staff and the implemen-
tation of necessary security policies and procedures.
Patients must be informed of their right to complain to
a facility’s privacy officer in the event of problems
related to the privacy of PHI and, if a complaint is not
resolved, to pursue the complaint with the Department
of Health and Human Services Office of Civil Rights.

Health care providers are not required to obtain
explicit authorization from patients in order to dis-
close PHI for purposes of providing treatment, obtain-
ing payment for treatment, or as needed as part of the
operations of the provider. In addition, patient autho-
rization is not required under circumstances when the
law requires disclosure. These circumstances include
compliance with public health policies, judicial pro-
ceedings, law enforcement, and emergency health
care, among others. On the other hand, there are situ-
ations under which HIPAA extends extra protections
regarding the disclosure of PHI. Specifically, this
protection pertains to information contained in psy-
chotherapy notes and requires separate authorization
for their release. In fact, restrictions may be imposed
even on patients’ access to this type of information.

Providers must also have contracts with any indi-
viduals or companies who conduct business on behalf
of the provider if that business entails access to PHI.
These contracts specify compliance with HIPAA’s
privacy rule, particularly with regard to the use or
disclosure of PHI.

The Privacy Rule also protects health information
when used for research purposes. Guidelines stipulate
how researchers can access and subsequently use that
information. For example, in addition to requiring

researchers to obtain informed consent in order to use
PHI from current patients, the rule also applies to pre-
viously collected health care data that may exist in
clinical records or registries. Investigators cannot use
these data without first obtaining consent from former
patients who are still alive.

TThhee  SSeeccuurriittyy  RRuullee

This rule, which overlaps in some ways with com-
ponents of the Privacy Rule, took effect in April 2005
for larger entities. It stipulates the minimum security
standards for PHI that is stored or transmitted elec-
tronically, including by e-mail, by requiring that safe-
guards be in place in order to ensure the integrity and
confidentiality of health information. Although these
regulations do not mandate encryption in order to
secure PHI that is electronically stored or transmitted,
most covered entities do encrypt this information in
some way in order to be in compliance with HIPAA
regulations.

All safeguards must incorporate three major com-
ponents: (a) the assessment of potential risk to and
vulnerability of electronic PHI; (b) the development,
implementation, and maintenance of necessary secu-
rity measures to reduce or eliminate risk; and (c) the
documentation thereof. Although HIPAA specifies the
safeguards for protecting PHI, covered entities are left
to decide how those safeguards will be implemented.
These decisions take into account the types of services
an entity provides and the types of technology it uses,
as well as its operational needs and its resources.

Administrative Safeguards

Administrative safeguards incorporated into
HIPAA require that covered entities adopt written pro-
cedures that identify employees who will have access
to PHI and designate a privacy officer to implement
those procedures. In addition, covered entities must
have procedures in place for both routine and emer-
gency data backup and recovery. Finally, there should
be policies and procedures for routine internal audits,
the purpose of which is to review potential violations
of security.
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Physical Safeguards

Additional safeguards are meant to prevent
unauthorized access to protected information. They
include controls over the installation and removal of
software and hardware and the careful placement of
workstations and patient files in high-traffic public
areas in order to reduce unauthorized access to pro-
tected information.

Technical Safeguards

Technical safeguards provide controls over access
to computer systems and the security of electronic
transmission of PHI over networks. Covered entities
must ensure the integrity of data stored in their sys-
tems and provide the government with evidence of
compliance with these HIPAA provisions.

TThhee  IIddeennttiiffiieerr  RRuullee

This rule proposes a standard for identifying health
care providers and for improving the efficiency of
transmitting health information electronically. Under
this rule, all providers receive a national provider
identifier, which is a number that is unique to a partic-
ular health care provider or insurer and which must
then be used in all electronic transactions identified
in the HIPAA regulations. This number may also be
used as a way of identifying a provider in external cor-
respondence, on prescriptions, in internal communi-
cations, and so on. With a set of national identification
numbers in place, processes such as eligibility deter-
mination and claims processing may improve. In addi-
tion, it is believed that the national provider identifier
will help identify the fraudulent use of multiple iden-
tifiers by both individuals and providers.

TThhee  TTrraannssaaccttiioonn  aanndd  CCooddee  SSeettss  RRuullee

The Transaction and Code Sets Rule took effect
in October 2003 for all covered entities. Like the
Security Rule, it pertains only to PHI in its electronic
form. HIPAA authorized the Department of Health
and Human Services to mandate use of Electronic
Data Interchange (EDI) in order to standardize
medical records and to simplify the use of electronic

transactions for claims, remittances, eligibility verifi-
cations, referrals, and such. In addition, the Depart-
ment of Health and Human Services was permitted to
identify organizations called designated standards
maintenance organizations to develop, maintain, and
modify EDI standards. In general, EDI applies to the
exchange of data between or among computer sys-
tems. A subcommittee of the American National
Standards Institute provides the standardized data
format for health insurance transactions (e.g., claims,
payment, eligibility). Within these transactions, med-
ical diagnoses are coded according to the International
Classification of Diseases, and procedures are catego-
rized according to coding systems, such as Current
Procedural Terminology, Healthcare Common
Procedure Coding System, and the Code on Dental
Procedures and Nomenclature. It is expected that the
Transaction and Code Sets Rule will result in the
anticipated efficiency and savings of administrative
simplification.

HIPAA is important health care legislation meant
to ensure continued health coverage as well as the
privacy and security of personal health information.
However, the practical and financial impact of HIPAA
on the practice of medicine and clinical research has
been considerable and remains a matter of contention
between the medical community and the government.

—Carole E. Gelfer

See also Measurement

Further Reading

National standards for health care: http://www.hhs.gov/
ocr/hipaa/

U.S. Department of Health and Human Services, Centers
for Medicare & Medicaid Services. HIPAA—General
Information: http://www.cms.hhs.gov/hipaa/hipaa2/

U.S. Department of Health and Human Services. Summary of
the HIPAA Privacy Rule: http://www.hhs.gov/ocr/privacy
summary.pdf

HELLO-GOODBYE EFFECT

The Hello-Goodbye Effect refers to the bias caused
by patients who exaggerate their problems before a
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treatment (or any intervention), hoping to be eligible
for the therapy, and minimize their problems at the
end of the treatment, hoping to please the therapist.
The Effect has two components. The first is related
to the Faking Bad Bias, whereby participants try to
appear sick to qualify for support. The second is
related to the Faking Good Bias (or Social Desir-
ability Bias or Obsequiousness Bias), whereby partic-
ipants may systematically respond in the direction
they perceive to be desired by the investigator. 

An example of the Hello-Goodbye Effect is found
in a review of pain measures of patients before and
after acupuncture treatment. Pain is the most frequent
complaint of patients referred for acupuncture.
However, it is difficult to measure because it cannot
be measured directly and must be measured on
the basis of the patients’ response. For example, the
patient may be asked to select from five pain cate-
gories ranging from none to intense or from a numer-
ical rating scale ranging from 0 to 10. Results of the
measurement can be greatly influenced by the individ-
ual’s genotype, culture, conditioning, education, and
so on. The review suggested that, when patients first
present for treatment, they need to justify their request
for help, so there is a subconscious tendency to exag-
gerate symptoms. After patients have received treat-
ment, they may want to please the therapist, or at least
not hurt the therapist’s feelings, so there is a
tendency to minimize symptoms. 

The Hello-Goodbye Effect may result in surprising
improvements in the symptoms after a treatment. In
extreme cases, even totally ineffective treatments can
produce an improvement in treatment results. 

In clinical practice, it is difficult to prevent or min-
imize the Hello-Goodbye Effect. But in research, it
can be minimized by letting participants know that the
information they provide (as recorded on the forms or
questionnaires) will not be seen by the therapist. 

One must be careful not to confuse the Hello-
Goodbye Effect with other, distinctly different effects,
which in some cases may produce similar outcomes.
These effects may include Apprehension Bias (certain
measures may alter systematically from their usual
levels when the participant is apprehensive; e.g.,
blood pressure may change during medical inter-
views); Attention Bias (or the Hawthorne Effect;

study participants may systematically alter their
behavior when they know they are being observed);
Culture Bias (participants’ responses may differ
because of culture differences); and the placebo effect
(measurable, observable, or felt improvement in
health attributable not to treatment but to a placebo,
which is a medication or treatment believed by the
therapist to be inert or innocuous). 

—Bernard C. K. Choi and Anita W. P. Pak

See also Measurement
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Applying Ideas on Statistics and Measurement

The following abstract is adapted from Walters,
G. D., Trgovac, M., Rychlec, M., Di Fazio, R., &
Olson, J. R. (2002). Assessing change with the Psy-
chological Inventory of Criminal Thinking Styles: A
controlled analysis and multisite cross-validation.
Criminal Justice and Behavior, 29(3), 308–331. 

Lee Cronbach, a famous measurement special-
ist, coined the term Hello-Goodbye Effect to
explain how participants in programs create an
overly positive image of the effects of a program



HETEROSCEDASTICITY AND

HOMOSCEDASTICITY

Homoscedasticity and heteroscedasticity refer,
respectively, to whether the variances of the pre-
dictions determined by regression remain constant or
differ. Heteroscedasticity is perhaps most often
considered in cases of linear regression through the
origin, although that is by no means the limitation of
its usefulness. This is, however, a good example with
which to explain the concept. Consider a linear
regression to predict tree height for a certain species
of tree as a function of a single regressor: tree diam-
eter at the trunk. When the tree trunk diameter is
nearly zero, the height of that tree is nearly zero. Thus
we could consider linear regression through the ori-
gin. Predictions of tree height, y, say ŷ, using the tree
trunk diameter, x, as a single regressor, may vary
greatly in accuracy as x and y become larger. This is
reasonable because it would not be expected that at a
given confidence level, one would have predicted tree
heights of, say, 1.8 meters ±0.5 meter, 9.7 meters
±0.5 meter, and 17.6 meters ±0.5 meter. It would be
more logical to expect that the smaller values of ŷ

would have smaller variances (thus smaller standard
errors), and the larger predictions would have larger
variances.

Similarly, a factory that produces y “widgets” a day
while employing x workers would be expected to have
larger variances in predictions for larger y with larger
x than would be the case for smaller factories. Variance
could be explained due to differences in factory equip-
ment type, age, efficiency and varying policies, as well
as the quality of the widgets produced. It is intuitive
that when there are zero employees, zero widgets will
be produced, and that larger predictions of widgets will
have larger variances. Let us once again consider lin-
ear regression through the origin and describe this with
the following equation: yi = bxi + ei, where ei = e0i x

γ
i.

Note that as x becomes larger, the estimated residuals,
ei, would generally be larger, and thus the variance is
larger. Let e0i be the random factor of the residual.
(More than one regressor could be involved, but this
possibility is not shown here.)

When we assume that variance is constant and that
the regression is not necessarily through the origin,
linear regression in that case is referred to as ordinary
least squares (OLS) regression. Linear regression that
allows for variance that is not constant is called
weighted least squares (WLS) regression. The weights
are not the same as design-based sample weights used
in survey estimation (the inverse of the probabilities
of selection) and should not be confused with them
when dealing with surveys. (Linear regressions are
often used in model-based approaches to survey sta-
tistics.) The weights at hand are instead those that
indicate how much confidence we have in the various
data points when using them to estimate a regression
line. Mathematically, the weights in the above equa-
tion are wi = xi

–2γ (not derived here but shown in 
many econometrics and statistics books and other
resources). When γ = 0, the weights are all equal (OLS
regression). When γ = 0.5, with regression through the
origin, this case provides us with the classical ratio
estimate (CRE), such that 

b =

n∑

i=1
wixiyi

n∑

i=1
wix

2
i

=

n∑

i=1
yi

n∑

i=1
xi

.
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when exiting that program. In this study, the
sensitivity of the Psychological Inventory of
Criminal Thinking Styles (PICTS) to psychothera-
peutically assisted change was evaluated in a
series of three studies. In the first study, a repeated
measures ANOVA revealed significant group
(participant-waiting list) and time (pretest-posttest)
effects, and a paired t test indicated significant
reductionson the PICTS Current CriminalThinking
scale in group participants. In the second study,
inmates from four different settings who were
participating in programs of differing length and
content achieved statistically significant temporal
reductions on the Current and Historical Criminal
Thinking scales. Results from the third study
showed that significant pretest-posttest reductions
on the Current Criminal Thinking scale were spe-
cific to good-prognosis participants. There is also
some reason to believe that the Hello-Goodbye
Effect may have had a stronger impact on those
who participated in the shorter group.



Many practitioners and academicians seem to
avoid WLS regression, or adjustments for it, because
they know assumptions must be made about the
regression weights. However, OLS regression assumes
constant variance, which also assumes something
about regression weights. In OLS regression, regres-
sion weights are all equal, which is often a very
bad assumption. Thus, choosing to ignore what the
weights might be is to assume they are all equal,
which might be a decision one would not make con-
sciously. There are methods to estimate the value of
gamma above, based on the data available, but often
the CRE or another specific WLS estimate may be
robust (i.e., flexible or generally accurate) for a prac-
titioner’s purposes.

—James Randolph Knaub, Jr.

See also Variance
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HIERARCHICAL LINEAR MODELING

Researchers across various disciplines often deal
with data that have multilevel, hierarchical, or
nested structure. Methodologists from various
disciplines refer to the statistical methods for
analyzing hierarchically structured data differently.
Researchers in behavioral and social sciences refer
to them as hierarchical linear modeling (HLM) 
or multilevel modeling. In statistics, the process 
is referred as covariance components modeling. 
In biometrics, it is referred as random-effects mod-
eling and mixed-effects modeling, and in econo-
metrics, it is referred to as random-coefficient
regression modeling.

These hierarchical models explicitly model lower
and higher levels in the hierarchy by taking into
consideration the interdependence of individuals
within the groups. For example, in a two-level HLM
analysis, the emphasis is on how to model the effects
of explanatory variables (predictors) at one level on
the relationships occurring at another level. These
multilevel structured data present analytical chal-
lenges that cannot be handled by traditional linear
regression methods, because there is a regression
model for each level.
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Figure 1 A Heteroscedastic Linear Regression
Relationship Between Widgets Produced
and Workforce Size
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Applications of HLM

HLM is usually applied to different kinds of hierar-
chically structured data. One of the most common
applications involves multilevel data with continuous
outcomes. In such data, individuals have continuous
outcomes, and they are clustered (nested) within
groups or organizations. An example of such basic
two-level data would be students nested within class-
rooms, with math achievement as the outcome of
interest. Multilevel models can have more than two
levels; students nested within classrooms, which are
nested within schools, would be an example of
a three-level model. A second application involves
modeling hierarchically structured data with other
types of outcomes, such as binary responses, count
data, or multinomial data. A third application
involves modeling growth-structured data for which
longitudinal measurements on each individual consti-
tute the first level and individuals constitute the
second level in a two-level growth model. A logical
extension of this application to a three-level growth
model is individuals nested within organizations. A
fourth application involves measurement models
wherein responses to a set of items are nested within
individuals. A fifth application is multilevel modeling
of meta-analytic data sets, with variations in the
effect sizes from collected primary studies modeled
by study and sample characteristics. Applications of
HLM can be extended beyond those listed above
depending on an appropriate conceptualization of
the investigated problem within the HLM structure.
Given the potential complexity of multilevel model-
ing and its many analytical applications, with unique
hierarchical linear model conceptualizations for each
application, a two-level hierarchical linear model is
presented below.

Two-Level Full Hierarchical
Linear Model 

The full two-level hierarchical linear model is charac-
terized by two levels, individuals nested within groups
or organizations, and measured predictors for each
level. In this full hierarchical linear model, researchers

are primarily interested in assessing the effects of both
individuals’ characteristics and groups’ characteristics
on the outcome (e.g., performance, achievement, or
any other continuous outcome).

LLeevveell--11  ((IInnddiivviidduuaall--LLeevveell))  MMooddeell

The individual-level model specifies the relation-
ships between various individual characteristics, as
independent explanatory variables (predictors), Xij,
and the outcome (dependent) variable, Yij. Given that
we have p predictors for nj individuals within j groups,
the Level-1 model takes the form 

Yij = βoj + βpj Xpij + rij, (1)

where 

i equals 1, 2, 3, . . . , nj individuals within group j,

j equals 1, 2, 3, . . . , J groups,

βoj represents the intercept for the Level-1 model,

βpj represents p regression coefficients capturing the
effect of the p predictors Xpj on the outcome, and 

rij is a random error assumed to be normally distributed
with mean zero and a common variance, σ 2. 

Thus, the Level-1 model yields j separate sets of
regression estimates for the intercept and the p slopes.
These regression estimates are then modeled as out-
comes in Level-2 models.

LLeevveell--22  ((GGrroouupp--LLeevveell))  MMooddeell

The j estimates for each of the regression coeffi-
cients (intercept and the p slopes) from Level 1
become an outcome in the Level-2 model, which can
be modeled by Level-2 characteristics (predictors).
This Level-2 regression model takes the forms 

β0j = γ00 + γ0qGqj + Uoj (2)

βpj = γpo + γpqGqj + Upj, (3)
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where

Gqj are Level-2 predictors (e.g., organization size, orga-
nization type),

γ00, γ 0q, γp0, and γpq are Level-2 fixed effects regression
coefficients, and 

Uoj and Upj are the Level-2 residuals that have a multi-
variate normal distribution with a zero mean vector and
variance-covariance matrix T with τ00, τpp, τ0p, and τp′ p

components where p′ ≠ p.

No-Predictors Two-Level
Hierarchical Linear Model 

A much simpler model than the full hierarchical linear
model presented above is a two-level no-predictors
hierarchical linear model, in which there are no
explanatory variables in either level of the model. This
no-predictors model is referred to in the literature as a
one-way random effects analysis of variance model,
unconditional model, null model, or empty model.

NNoo--PPrreeddiiccttoorrss  IInnddiivviidduuaall--LLeevveell
((LLeevveell--11))  MMooddeell

A no-predictors individual-level model is repre-
sented as

Yij = β0j + rij, (4)
where 

Yij is the outcome for individual i,

i = 1, 2, . . . , nj in group j,

j = 1, 2, . . . , J,

βoj is the mean of the outcome in group j, and 

rij is Level-1 random error with a mean of zero and a
variance of σ 2.

NNoo--PPrreeddiiccttoorrss  GGrroouupp--LLeevveell
((LLeevveell--22))  MMooddeell

At the second level (group level), βoj is allowed to
vary randomly across groups, with a mean γ00 and
error term Uoj as follows:

βoj = γ00 + Uoj, (5)

where 

γ00 is the overall grand mean of the outcome across all
schools, and 

Uoj is the error term representing the deviation of the each
organization’s mean outcome from the grand mean, γ00. 

The variance of Uoj is τ00 .

Amount of Variance (R2) Explained 

The variance estimates from the no-predictors and a
particular full hierarchical linear model provide esti-
mates of R2 for the Level-1 and Level-2 models. R2 for
the Level-1 model represents the percentage of vari-
ance in the Level-1 outcome accounted for by the
Level-1 predictors, and it is equal to 

(6)

There are (p + 1) estimates of R2 for the Level-2
model, one for the Level-1 intercept and one for each
of the p predictors used to predict the outcome in
Level 1. R2 for the Level-1 intercept represents the
percentage of the intercept variance accounted for by
the Level-2 predictors, and it is equal to

(7)

Each of the p R2s for Level-1 slopes represents the
percentage of a particular p slope variance accounted
for by the q Level-2 predictors, and it is equal to

(8)

Hierarchical Linear Model
Estimation and Statistical Testing

Generally, hierarchical linear model analyses provide
three kinds of estimates of parameters. First are

R2
Level-2 slope model

= τpp - No predictors in Level-2 model − τpp - Full Level-2 model

τpp - No predictors in Level-2 model
.

R2
Level-2 intercept model

= τoo - No predictors in Level-2 model − τoo - Full Level-2 model

τoo - No predictors in Level-2 model
.

R2
Level-1 Model = σ 2

No-predictors model − σ 2
Full model

σ 2
No-predictors model

.
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estimates for the Level-2 fixed effect parameters,
γ (Equations 2, 3, and 5). HLM provides a t test for
testing the hypothesis that each of these parameters is
significantly different from zero. The second are
empirical Bayes estimates of Level-1 regression coef-
ficients, βs. The third are Level-1 residuals variance
(σ2) and the variances-covariances of the Level-2
residuals (τ00 representing the variance of U0j, τpp

representing the variance of Upj, τ0p representing the
covariance between U0j and Upj,, and τp’p representing
a covariance between Up’j and Upj where p’≠ p). A chi-
square test statistic tests the null hypothesis that a
particular Level-2 residual variance (τ00 or τpp) is sig-
nificantly different from zero.

Assumptions of the
Hierarchical Linear Model

As any statistical method, HLM analysis requires sev-
eral statistical assumptions to ensure the validity of
estimating and testing the fixed and random effects’
coefficients. The assumptions for a two-level hierar-
chical linear model are as follows:

Level-1 residuals and predictors are uncorrelated.

Level-1 residuals are independent and normally distrib-
uted with mean zero and common variances σ2.

Level-2 residuals are independent, multivariate, and
normally distributed, with a mean vector of zero and a
variance-covariance matrix T.

Level-2 residuals and predictors are uncorrelated.

Level-1 and Level-2 residuals are uncorrelated.

Intraclass Correlation Coefficient 

One advantage of doing HLM analysis is to accom-
modate the violation of the assumption of independent
observations. Intraclass correlation assesses the
degree of violating such an assumption. It measures
the degree of dependency among individuals within
groups due to common experiences of individuals
within groups. It is the ratio of the Level-2 variance
for an unconditional model,τ00, to the total variance
(τ00 + σ2):

ICC = τ00/(τ00 + σ2). (9)

Centering Level-1 Predictors

In a traditional multiple regression model, the inter-
cept represents the expected value of the outcome
measure when all predictors have zero values. There
are situations in which some predictors do not have
meaningful zero value. For example, it does not make
sense to say that a person has zero intelligence
or achievement. Thus, centering Level-1 predictors
becomes necessary in order to have an interpretable
and meaningful intercept. Two kinds of centering are
available in hierarchical linear models:

1. Grand mean centering, in which all values of a
particular predictor, Xij, are centered on its grand
mean, X

—
, across all j groups as follows:

Xij – X
—

. (10)

2. Groups mean centering, in which all values of a par-
ticular predictor, Xij, are centered on its group mean,
X
—

j, as follows:

Xij – X
—

j . (11)

HLM Software Packages

Advancements in statistical methods and computer
technologies within the past two decades have led
to many specialized software packages for analyzing
hierarchically structured data. Examples include
HLM, MLnWin, VARCL, SAS, SPSS, Proc Mixed,
MIXOR, and MIXREG. 

—Sema A. Kalaian and Rafa M. Kasim

See also Multivariate Analysis of Variance (MANOVA)
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Hox, J. (2002). Multilevel analysis: Techniques and applica-
tions. Mahwah, NJ: Erlbaum. 

Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear
models: Applications and data analysis methods. Thousand
Oaks, CA: Sage. 

HIGH-STAKES TESTS

Standardized achievement tests carry high stakes
if serious consequences are attached to student
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performance on them. High-stakes tests are typically
given in the three core academic subjects, reading,
writing, and mathematics, and serious consequences
are attached to individual student performance or
student performance averaged at the classroom
(teacher), school, or school district level.

For individual students, high test scores bring
college scholarships and other forms of recognition,
including academic awards and marks of distin-
guished achievement on high school diplomas. Low
test scores bring retention in grade at the elementary
level or denial of a high school diploma at the sec-
ondary level. If a third-grade student does not pass a
third-grade test assessing reading acuity, the student
could be retained in (i.e., expected to repeat) third
grade. These tests are known as grade-to-grade pro-
motion exams. If a high school student does not pass
a high school test assessing mathematics acuity, a
high school diploma could be denied until the student
passes the math test. These tests are known as high
school graduation or exit exams and, to date, are the
most frequently used form of high-stakes tests in the
country.

Students’ high test scores bring teachers financial
bonuses, salary increases, and more professional free-
doms (e.g., choices in classes taught or scheduling
preferences). Low test scores may cause a teacher to
be fired or transferred to a different school and may be
assumed to indicate that the teacher needs to undergo
professional development to become better equipped
to improve student performance.

High test scores merit monetary awards for local
administrators, schools, and school districts. They
also draw public acclaim for schools, districts, and
school administrators when scores are published in
local newspapers. Conversely, low test scores bring
public scrutiny. They may be used as an indication
that a school administrator should be terminated or
that a school or school district should be reconstituted;
taken over by a state, private, or charter school entity;
no longer accredited; or simply closed. If students
attend schools with a history of low test scores, the
students may choose to transfer to schools with higher
test scores. 

High-Stakes Tests in Theory

The aforementioned stakes have been attached to tests
by educational policymakers who believe that attach-
ing incentives to learning and sanctions to poor per-
formance will increase academic achievement. It is
their belief that raising academic standards and attach-
ing serious consequences to tests that measure the
extent to which students meet these standards will
inspire students to learn more and motivate teachers
and administrators to implement more effective
educational programs.

It is also their belief that these measures will
help states target the students, teachers, schools, and
school districts that are most and least successful—
success being defined by student performance in read-
ing, writing, and mathematics on high-stakes tests.
The most successful schools may be examined and
their practices replicated to help the least successful
schools meet higher standards. Students in the least
successful schools may be targeted for special pro-
grams to help them achieve higher standards.
Theoretically, such efforts will help otherwise failing
students pass and may reduce the achievement gap
between traditionally marginalized students—students
from racial minority, non-English-speaking, and eco-
nomically disadvantaged families—and their more
affluent, predominantly White peers. 

A Brief History of High-Stakes Tests

In the 1970s, many feared that students in the United
States were not matching the levels of performance
posted by students in other industrialized nations—
nations with which the United States was in global
competition. A general sense of educational medioc-
rity was blamed for jeopardizing the United States’
global superiority. The general public was dissatisfied
with the education system and disappointed in most
reform efforts, which failed to demonstrate significant
improvements in student achievement.

Florida implemented the first high-stakes testing
policy known to educational reformers. Florida imple-
mented a high school graduation exam that students
had to pass in order to receive a high school diploma.
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The test included very basic skills (also known as
minimum competency skills). A few other states fol-
lowed Florida’s lead, implementing minimum compe-
tency tests of the same sort.

In the 1980s, the National Commission on
Education, in its publication A Nation at Risk, called
for an end to minimum competency testing. Tests that
ensured minimum competency levels of learning were
accused of promoting a low level of achievement and
a diluted set of curriculum standards. According to the
Commission, improving the condition of education
in the United States should mean holding students
accountable for meeting higher standards, to be set
forth by state departments of education.

In the 1990s, the standards-based movement arose.
Students were increasingly held accountable for meet-
ing higher, more rigorous curriculum standards. A
flood of legislation mandating standardized testing
reforms spurred more states to rely on what we now
know as high-stakes tests.

By 2002, more than half the nation had imple-
mented or had plans to implement high-stakes testing
policies when President George W. Bush signed the
No Child Left Behind (NCLB) Act into law. NCLB
requires that all states implement stronger account-
ability policies to ensure that elementary students in
Grades 3–8 and high school students meet higher
academic standards by the year 2014. Under NCLB,
states were forced to execute stronger accountability
policies or lose federal education funds.

Benefits of High-Stakes Tests

Some research studies have provided evidence that
high-stakes tests have increased student achievement.
Other research studies have presented counterevidence
showing that states that have implemented high-stakes
testing policies have fared no better in terms of student
achievement than other states that have not yet imple-
mented such policies. High-stakes tests have not done
much to increase academic achievement and, if any-
thing, might be increasing the achievement gap between
White students and their less affluent, minority peers.
This, the primary question with which most educators

are concerned, causes the fiercest debates. Researchers
have yet to agree on what effects high-stakes tests have
had on increasing academic achievement.

Perhaps the greatest benefit associated with high-
stakes testing policies is that states have revisited,
revised, and raised their standards to meet what
professional teacher organizations (e.g., the National
Council of Teachers of Mathematics) regard as essen-
tial subject knowledge. Because teachers are being
held accountable for teaching the content included in
these standards, more consistency across subjects and
better uniformity across classrooms, schools, and
even state borders has ensued. However, not everyone
in the greater education profession agrees that this
consistency is a benefit. Along with an increase in
standardization has come a decrease in the profes-
sional autonomy a teacher has in the classroom.

Another benefit of implementing high-stakes test-
ing policies is that monies are being targeted toward
students most in need of help. Remediation programs
have been developed to help students who fail high-
stakes tests learn the material necessary to pass each
test. Although teaching students how to pass high-
stakes tests is of questionable utility and principle,
these remediation efforts are being targeted toward
students who went without them before NCLB. 

A final benefit may be that student test scores can
be used for diagnostic purposes, helping teachers
better understand student comprehension and identify
students for individualized instruction. However, in
most states, high-stakes tests are administered in the
spring, and the test results are returned during the
summer, after school is out. In the fall, students start a
new school year with a new teacher. To date, the diag-
nostic benefits of high-stakes tests have gone unreal-
ized and, ironically, may be attained only as greater
numbers of students are held back in grade.

Negative Effects of High-Stakes Tests

Most students who are subjected to the negative effects
of high-stakes tests are students from traditionally mar-
ginalized backgrounds. These students have the most to
lose if they fail high-stakes tests, and they cause the
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most worry when teachers, administrators, and schools
are held accountable for their substandard results.
Consequently, teachers of these students and some
administrators have employed a multitude of question-
able test preparation practices to help their schools and
students perform well on high-stakes tests.

Teaching to the test occurs when teachers teach
students only those things the teachers know will be on
the high-stakes test. A teacher who has administered a
few high-stakes tests may gain some understanding of
the test content and teach students only those concepts
likely to be tested. A teacher may rehearse students for
a high-stakes test with clone items, which look exactly
like the items on previous forms of the high-stakes test
but with the names and the numbers changed. A
teacher may also copy an actual test and use it to drill
students for the upcoming test.

Narrowing of the curriculum occurs when teachers
teach less than they are supposed to, omitting what will
not be included on the high-stakes test. State standards
may state that a tenth-grade mathematics teacher must
teach graphing of equalities and inequalities. A teacher
aware that questions requiring students to graph
inequalities are never included on the high school grad-
uation exam might simply omit this lesson in order to con-
centrate more effort on graphing equalities instead. Two
months before high-stakes tests are administered, a prin-
cipal may omit recess, art, and music and replace science
with mathematics and social studies with language arts
to intensify math, reading, and writing instruction. 

Traditionally marginalized students are also sub-
jected to creative exclusion and exemption practices.
Students with histories of poor academic performance
may be encouraged to stay home and miss high-stakes
tests or might be suspended or expelled before
high-stakes tests are administered. Students may be
exempted from high-stakes testing by being desig-
nated English language learners even though they
speak English fluently enough to participate. Students
may be purposely designated severely handicapped
when by law their handicap should not prevent them
from taking the test. School personnel would rather
these students not take part in high-stakes tests for
fear their scores would bring down the school’s aver-
age scores, placing the school, the administrators, and
the teachers in jeopardy.

In addition, faced with the increasing pressures
associated with high-stakes tests, traditionally mar-
ginalized students are likely to leave school early.
Researchers have shown that these students are more
likely than other students to drop out of school after
failing high-stakes tests, only to enter the workforce
or an alternative high school diploma program. 

High-stakes tests have also been shown to have
a negative impact on teachers and administrators.
Countless newspaper articles have described ways
teachers and administrators have cheated on high-
stakes tests. A teacher may allow students more time
than mandated to complete a high-stakes test; may
walk around the classroom providing students with
hints, definitions, or answers; may tell students to
rethink particular questions; and may manually
change students’ answers. There is also evidence that
teachers are leaving the grades in which high-stakes
tests are given in favor of grade levels not yet sub-
jected to the tests. Other teachers may be leaving
public schools to teach in the private sector. 

Administrators may brief teachers on what will be
included on an upcoming high-stakes test; may make
copies of secure tests and distribute them to teachers
before the official high-stakes test is administered; or
may change certain students’ identification numbers,
making their score sheets invalid and therefore
excluded from the school’s composite statistics.
Administrators may hire consultants who encourage
teachers to focus instruction only on those students
who the teachers feel have a fighting chance of
passing the high-stakes test. Administrators may use
funds, oftentimes entire textbook budgets, to purchase
test preparation booklets filled with test practice
worksheets guaranteed to boost test scores provided
students rehearse one activity after the other.
Administrators may also concentrate all their efforts
in one subject area—and celebrate significant gains in
test scores—only to realize that significant losses in
the other subjects were posted simultaneously.

All these tactics result in spurious test score gains
unrelated to true gains in learning. So when consider-
ing whether high-stakes tests help students meet
higher standards, one must consider the factors
related to true gains in academic achievement.
The validity of test score gains is increasingly
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compromised as serious consequences are increasingly
attached to tests.

—Audrey Amrein-Beardsley

See also Measurement; Reliability Theory; Validity Theory
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Applying Ideas on Statistics and Measurement

The following abstract is adapted from Norris,
S. P., Leighton, J. P., & Phillips, L. M. (2004). What
is at stake in knowing the content and capabilities
of children’s minds? Theory and Research in
Education, 2(3), 283–308. 

Many significant changes in perspective have
to take place before efforts to learn the content
and capabilities of children’s minds can hold
much sway in educational testing. The language
of testing, especially of high-stakes testing,
remains firmly in the realm of “behaviors,” “per-
formance,” and “competency,” defined in terms of
behaviors, test items, or observations. What is on
children’s minds is not taken into account as inte-
gral to the test design and interpretation process.
The point of this article is that behaviorist-based
validation models are ill founded and that tests
should be based on cognitive models that theo-
rize the content and capabilities of children’s
minds in terms of such features as metacognition,
reasoning strategies, and principles of sound
thinking. This approach is the one most likely to
yield the construct validity for tests long endorsed
by many testing theorists. The implications of
adopting a cognitive basis for testing, which might
upset many current practices, are explored.

HISTOGRAM

A histogram is nothing more than a graphical repre-
sentation, or picture, of a set of data. In that sense, it
is like a pie chart. However, while most pie charts
show the relative size of various categories of a qual-
itative variable (e.g., favorite flavor of ice cream), a
histogram provides a picture of data that are quantita-
tive in nature (e.g., examinees’ earned scores on an
examination).

A histogram reveals three things about a set of
scores: the place(s) where scores tend to congregate
along the score continuum, the degree to which the
scores are spread out, and the possibility that the full set
of scores can be referred to by a term such as normal or
skewed or rectangular. Stated differently, three impor-
tant questions can be answered (at least in an approxi-
mate fashion) by quickly glancing at a histogram:

1. What is the average score?

2. How much variability is there among the scores?

3. What kind of shape does the distribution have?

Example

Figure 1 contains an example of a histogram. This his-
togram was created to show the published weight of
players on a professional football team. In this his-
togram, the abscissa (i.e., the baseline) corresponds to
the variable of interest, player weight, and the ordi-
nate (i.e., the vertical axis, on the left) represents the
frequency of the team’s players who have a given
weight. There are nine bars in this histogram, and the
height of each bar indicates how many football play-
ers were in the weight interval indicated on the
abscissa beneath the bar. Thus, this histogram shows
that 3 of the team’s players weighed somewhere
between 160 and 179 pounds that 11 of the players
weighed between 180 and 199 pounds, and so on.

A quick glance at Figure 1 allows us to answer the
three questions concerning average, variability, and
shape. More players were in the 200- to 219-pound
interval than in any other interval, so that interval is the
modal interval. The weight intervals, in combination
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with the heights of the bars, make it clear that there is
a great deal of variability among the players’ weights.
Finally, the shape of the distribution appears to be
skewed to the right (i.e., positively skewed).

Histograms Versus Bar Graphs

Although a histogram resembles a bar graph (mainly
because both are made up of bars), there is one impor-
tant difference between these two kinds of graphical
representations. Like a pie chart, a bar graph displays
data that correspond to a qualitative variable. A his-
togram, in contrast, displays data corresponding to a
quantitative variable. This difference has an important
influence on the ordering of the bars that make up a
histogram or a bar graph. With bar graphs, the order-
ing of the bars is fully arbitrary. With histograms, the
positioning of the bars cannot be scrambled; instead,
they must follow (from left to right) the small-to-large
feature of the baseline’s variable. Because the order-
ing of bars is arbitrary in a bar graph, the concept of
distributional shape does not apply to a bar graph.

Different Kinds of Histograms

There are many types of histograms. The two most com-
mon types are simply pictures of frequency distribu-
tions. The histogram shown in Figure 1 has intervals on
the abscissa, so it corresponds to a grouped frequency

distribution. A slightly different kind of histogram has a
separate bar over each individual score along the contin-
uum of earned scores. That kind of histogram corre-
sponds to an ungrouped frequency distribution.

Other kinds of histograms can be created. Many
histograms have the vertical axis marked off so as to
indicate proportions (or probabilities) rather than fre-
quencies. Sometimes (but not often), the scores or
intervals of scores are put on the vertical axis, with the
horizontal axis marked off to indicate frequencies or
proportions; here, the bars extend horizontally to the
right from the ordinate. Occasionally, bars will be
replaced by thin lines (because bar width in a his-
togram has no meaning).

Sometimes, two histograms will be merged. For
example, a histogram for males and a histogram for
females could be put into a single histogram, and there
are two ways to do this. The more frequently seen
method for combining histograms is to have two
bars—one for each of the separate groups—over each
score or score interval (with different colors or
patterns indicating which bar corresponds to which
group). A second way to merge two histograms is to
create what’s called a bihistogram. This kind of his-
tograms has bars going up from the abscissa for one
of the two groups and bars extending down from the
abscissa for the other group.

Warnings

It is appropriate to offer three “warnings” to those who
create or interpret histograms. First, remember that, in
histograms like that shown in Figure 1, varying the
interval width can alter the shape of the histogram.
Second, realize that the difference among the bars’
heights can be exaggerated if the vertical axis is “cut.”
(This would happen, for example, if every bar had a fre-
quency greater than 75 and if the ordinate therefore was
set up to show only those values between 75 and 100.)

Finally, it should be noted that there are more pre-
cise ways to answer the queries that one can answer
by looking at a histogram. By putting gathered scores
into any of several existing formulas, it is possible
to provide numerical measures of the average score
(e.g., by computing the arithmetic mean or median),
the amount of variability (e.g., by computing the
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standard deviation or interquartile range), and the
distribution’s shape (e.g., by computing indices of
skewness and kurtosis). Whereas the advantage of a
histogram is its ability to provide quick answers to the
questions about average, variability, and shape, the
histogram’s limitation is that it provides only “eye-
ball” answers to these questions.

—Allison Huck

See also Bar Chart; Line Chart; Pie Chart
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HISTORIOMETRICS

Historiometrics (or historiometry) is a quantitative
method for studying eminent individuals at a distance.
The method is most often applied to persons who can-
not be subjected to direct psychological assessment.
For example, historiometrics was first used to study
deceased leaders in a variety of fields. Yet the method
may also be applied to persons who are still living but
who are otherwise unreceptive to direct psychological
examination. For instance, it can be used to study con-
temporary politicians, such as presidents and prime
ministers, who for various reasons may not be willing
to volunteer their time (or risk their reputations) to par-
ticipate in empirical studies. Whether the subjects are
alive or not, the method does require that the individu-
als possess a substantial historical record that can pro-
vide a reliable source of data. Thus, historiometrics can
be considered a specific form of archival data analysis.

Although the term historiometrics was not coined
until 1909, the technique itself is among the oldest in
the behavioral sciences. The first historiometric investi-
gation was published in 1835 by Adolph Quételet, the
same statistician who established the normal curve as
the basis for describing individual differences. The first
book-length historiometric study was Francis Galton’s
Hereditary Genius, which appeared in 1869. Other pio-
neering historiometric inquiries were conducted by

James McKeen Cattell, Lewis M. Terman, Edward L.
Thorndike, and R. B. Cattell. The majority of the
researchers who have applied the technique have been
motivated by an interest in individual differences.

Like most other empirical studies, the typical
historiometric investigation begins by collecting a
representative sample of subjects. However, rather
than gathering a random sample from the larger
human population, historiometric samples are usually
nonrandom. Either the sample exhausts the entire
population (e.g., all Nobel laureates, all Olympic gold
medalists, all presidents of the United States), or the
sample includes the most eminent figures in a given
field (e.g., the composers who have had the biggest
impact on the classical repertoire, the generals who
have fought the most decisive battles). Once the sam-
ple is determined, variables can be defined and mea-
sured by using raw biographical and other historical
information as well as by applying content analysis to
speeches, correspondence, or creative products.
Frequently, the sampled individuals are measured on
the same variables on which more-everyday samples
can be evaluated. For instance, historical figures have
been assessed on such variables as intelligence or IQ;
the NEO Personality Inventory; Cattell’s Sixteen
Personality Factor Questionnaire; and power, achieve-
ment, and affiliation motives derived from the
Thematic Apperception Test. Because historiometric
data are necessarily correlational, they are then sub-
jected to such statistical techniques as regression
analysis, factor analysis, time series analysis, path
analysis, and structural equation models.

—Dean Keith Simonton

See also Galton, Sir Francis; Nomothetic Versus Idiographic;
Path Analysis; Structural Equation Modeling; Time Series
Analysis
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HOLDEN PSYCHOLOGICAL

SCREENING INVENTORY

The Holden Psychological Screening Inventory
(HPSI, published by Multi-Health Systems, www
.mhs.com) is a brief screening instrument designed
with contemporary health care demands such as speed
and ease of use in mind. It was developed by Ronald
R. Holden in response to growing practical concerns
involved with other, much larger instruments that
require a great deal of time to administer. The HPSI
consists of 36 self-report items, each on a 5-point
scale; takes approximately 7 minutes to administer;
and measures three broad dimensions of psy-
chopathology: psychiatric symptomatology, social
symptomatology, and depression. The scales have 12
items each and were developed from factor analysis of
11 of the 12 scales of the Basic Personality Inventory
(BPI), which in turn were constructed from the scales
of the Differential Personality Inventory, although
each test makes use of original items.

The psychiatric symptomatology scale is associ-
ated with the BPI scales of hypochondriasis, anxiety,
thinking disorder, persecutory ideas, and deviation.
This scale can be thought of as measuring general
maladjustment and includes items asking about ill-
ness, pain, simple coordination (such as standing or
walking), tension, and panic. The social symptomatol-
ogy scale draws from the BPI scales of alienation,
interpersonal problems, impulse expression, persecu-
tory ideas, and deviation. It measures externalizing
traits and includes items regarding alcohol, drugs, ille-
gal activity, authority, and response to others. The
depression scale is related to the BPI scales of depres-
sion, social introversion, and self-depreciation. The
HPSI depression scale measures general self-esteem
and mood. It includes items about life satisfaction,
social activity, and feelings of self-worth and ability.
The three scale scores are added to yield a total
psychopathology score that can then be used as a
validity scale, with extremely high or low scores indi-
cating potentially invalid responses. All four of the
HPSI scales can be converted to T scores (standard

scores with a mean of 50 and standard deviation of 10)
or percentiles with reference to normative data.

The HPSI should not be given to children under the
age of 14, and caution is recommended with physically
disabled or acutely psychotic individuals. Normative
data is available for general adult, psychiatric adult,
male adult psychiatric offender, high school, and uni-
versity populations. The test does not require extraor-
dinary skill to administer or score and is amenable to
group administration. The HPSI is ideal for identifying
people who may require further diagnostic testing or
attention as well as monitoring clinical change or
progress in the domains measured. It has also been
used in the evaluation of treatment programs.

—John R. Reddon and Vincent R. Zalcik

See also Basic Personality Inventory; Personality Tests
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assessment: Honoring Douglas N. Jackson at seventy
(pp. 97–121). Boston: Kluwer.

Ronald R. Holden’s Web site: http://psyc.queensu.ca/faculty/
holden/holden.html

HOMOGENEITY OF VARIANCE

Homogeneity of variance refers to the assumption that
the variance of one variable is stable at all levels of
another variable. If a predictor variable is categorical,
then the variance of the outcome variable or variables
should be the same in each of these categories or
groups. With continuous data (such as in cross-
sectional research designs), this assumption means
that the variance of one variable should be the same
for all values of the other variable.

442———Holden Psychological Screening Inventory



An Example

One study looked at the processes underlying obsessive-
compulsive disorder by inducing a negative mood, a
positive mood, or no mood in people and then asking
them to imagine they were going on holiday and to gen-
erate as many things as they could that they should
check before they went away. The data are in Table 1.

Three different groups participated in this experi-
ment, each group representing a level of the indepen-
dent variable, mood: negative mood, positive
mood, and no mood induced.
Homogeneity of variance would
mean that the variances of scores
on the dependent variable (in
this case the number of items
people generated that needed
to be checked) would be
approximately the same in the
three different mood condi-
tions. For participants in a
negative induced mood, the
variance of the number of items

generated was 36.27 (see Table 1), but the variances
for the positive-mood and no-mood-induced groups
were 8.89 and 5.57, respectively.

Testing Homogeneity of Variance

To see whether variances are roughly equal across
different levels of a variable, we compare the ratio of
the largest and smallest variance. This variance ratio
should be less than 2 if homogeneity is to be assumed.
In this example, the largest variance is 36.27 and the
smallest is 5.57; the variance ratio is 36.27/5.57 =
6.51, and because this value is greater than 2, homo-
geneity of variance cannot be assumed.

Homogeneity of variance can also be tested with
Levene’s test, which tests the null hypothesis that the
difference between the variances is zero. If Levene’s
test is significant at p ≤ .05, then the variances are
significantly different, and homogeneity of variances
cannot be assumed. Figure 1 shows the SPSS output
for Levene’s test for the data in our example; because
the significance of the test statistic is less than the
conventional level of significance of .05, homogene-
ity of variance cannot be assumed.

It has been noted that the power of Levene’s test to
detect differences in variances across levels of a variable
depends on the amount of data collected: With large
samples, small differences in variances will give rise to
a significant Levene’s test; conversely, in small samples,
relatively large differences between variances may
remain undetected.

—Andy P. Field
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Table 1 Numbers of Things People in Negative or
Positive Mood or No Induced Mood
Thought They Should Check Before
Going on Holiday 

Negative Positive No Induced
Mood Mood Mood

7 9 8
5 12 5

16 7 11
13 3 9
13 10 11
24 4 10
20 5 11
10 4 10
11 7 7
7 9 5

X
—

12.60 7.00 8.70
S2 36.27 8.89 5.57

Source: From Davey et al., 2003.

Note: X
—

= mean; S2 = variance.

Levene  
Statistic df1 df2 sig.

Number checks listed Based on Mean 3.628 2 27 .040
Based on Median 3.456 2 27 .046
Based on Median and 3.456 2 15.658 .057

with adjusted df
Based on trimmed 3.631 2 27 .040

mean

a. Stop rule condition = As many as can

Figure 1 Test of Homogeneity of Variancea



See also Dependent Variable; Heteroscedasticity and
Homoscedasticity; Independent Variable; Variance
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& Field, A. P. (2003). Perseveration of checking thoughts
and mood-as-input hypothesis. Journal of Behavior
Therapy & Experimental Psychiatry, 34, 141–160.

Field, A. P. (2005). Discovering statistics using SPSS (2nd
ed.). London: Sage.

HYPERGEOMETRIC DISTRIBUTION

The hypergeometric distribution is used to model the
probability of occurrence of events that can be classi-
fied into one of two groups (usually defined as
success and failure) when sampling from a finite pop-
ulation without replacement. It is a discrete probabil-
ity distribution, in which the number of possible
values taken on by the random variable (the number of
successes observed in the sample) is finite, with indi-
vidual probabilities being between 0 and 1. Further,
the sum of the probabilities associated with the ran-
dom variable’s taking on all the possible values is
equal to 1. The hypergeometric distribution has appli-
cations in acceptance sampling, in which items are
produced in finite batches and a decision to accept or
reject the batch is made on the basis of a random sam-
ple selected from the batch and the observed number
of nonconforming items.

Formulas

Suppose a finite population or batch has items that are
either conforming or nonconforming. Let us define a
nonconforming item to be a “success.” The probabil-
ity distribution of the number of nonconforming items
in the sample, denoted by X, is hypergeometric and is
given as follows:

where

D is the number of nonconforming items in the population,

N is the size of the population,

n is the size of the sample,

x is the number of nonconforming items in the sample, and

is the combination of D items taken x at a time and  
is given by

where the factorial of a positive integer x is written as x!
and is given by x(x − 1) (x − 2) . . . 3.2.1.

Further, 0! is defined to be 1.

The mean or expected value of a hypergeometric
random variable is expressed as 

The variance, a measure of dispersion, of a hyper-
geometric random variable is given by 

Example

A batch of 20 DVDs includes, unknown to the com-
pany, 3 nonconforming ones. If an inspector randomly
samples 5 DVDs, what is the probability of getting 2
nonconforming DVDs? What are the mean and vari-
ance of the number of nonconforming DVDs in the
sample?

Using the previously defined notation, and assum-
ing that finding a nonconforming DVD is a “success,”
we have N = 20, D = 3, n = 5, and x = 2:

P(X = 2) =

(
3

2

) (
17

3

)

(
20

5

)

σ 2 = Var(X) = nD

N

(

1 − D

N

) (
N − n

N − 1

)

.

µ = E(X) = nD

N
.

D!

x!(D − x)!
,

(
D

x

)

P(X = x) =

(
D

x

) (
N − D

n − x

)

(
N

n

) ,

x = 0, 1, 2, . . . , min (n, D),
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The complete probability distribution of X, the
number of nonconforming DVDs in the sample, may
be found using the formula, described previously, for
values of X being 0, 1, 2, and 3. The results are shown
below:

Note that the sum of all the probabilities equals 1.
Suppose an acceptance sampling plan calls for

choosing a random sample of 5 from the batch of 20
DVDs. The batch is to be accepted if no nonconform-
ing DVDs are found in the sample. To determine the
chance of accepting the batch, as described previ-
ously, we use the calculated probability distribution
values. Here, since the batch is accepted if the value
of X = 0, the acceptance probability of the batch
is 0.3991.

Approximations to the
Hypergeometric Distribution

When the batch size (N) becomes large, which may
also lead to taking larger samples, the combination
terms in the hypergeometric distribution probability
computation formula may become very large and may
cause round-off errors. In such circumstances, an

approximation of the hypergeometric distribution may
be considered. When the ratio of the sample size to the
population size is small, i.e., n/N ≤ 0.10 (as a rule of
thumb), the binomial distribution serves as a good
approximation of the hypergeometric distribution.

—Amitava Mitra

See also Acceptance Sampling 

Further Reading

Mendenhall, W., Beaver, R. J., & Beaver, B. M. (2006).
Introduction to probability and statistics (12th ed.). Mason,
OH: Brooks/Cole.

Hypergeometric distribution articles: http://mathworld
.wolfram.com/HypergeometricDistribution.html and http://
en.wikipedia.org/wiki/Hypergeometric_distribution

HYPOTHESIS AND

HYPOTHESIS TESTING

Suppose a gambler flips a coin and counts 20 heads
out of 30 tosses. Unsure whether this is a fair coin
with an equal probability of heads or tails or a coin
with a bias toward heads, the gambler may reason
something like this: If the coin was fair, I would
expect 15 heads and 15 tails, but I wouldn’t always get
this result. Sometimes I might get 16 heads and
14 tails or 13 heads and 17 tails or 20 heads and 10
tails, and so forth. It is even possible that I could get
30 heads and no tails with a fair coin if I was
extremely lucky. While I can never be certain, I can
make some reasoned statistical arguments about the
likelihood of any of the possible combinations of
heads and tails. Since I am a gambler, I will gamble in
a rational manner. If a given number of heads, say
20 or more, is unlikely enough given my model of ran-
dom tosses, I will decide the coin is not fair.
Otherwise, I will decide that the coin could be fair.

These competing hypotheses about the random or
nonrandom nature of obtained statistical results form
the basis for hypothesis testing. The purpose of hypoth-
esis testing is to make rational decisions about the real-
ity of effects. The basic question is that after collecting

X 0 1 2 3

P(X = x) 0.3991 0.4605 0.1316 0.0088

Variance of X = (5)(3)

20

(

1 − 3

20

) (
20 − 5

20 − 1

)

= 0.5033

=
3!

2!1!
· 17!

3!14!
20!

5!15!

= (3)(680)

15504
= 0.1316

Mean of X = µ = (5)(3)

20
= 0.75
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data and describing it using statistical methods, one
doesn’t know whether the obtained results indicate a
real relationship or a chance happening. For example,
half the time, by chance, treatment Group A will have a
higher mean than control Group B even though the
treatment had absolutely no effect. The statistician
doesn’t want to waste time interpreting results that
could have been due to chance (a random generating
process). In a like manner, journals want to avoid pub-
lishing papers whose results are not real, as science
makes little progress when it attempts to give meaning
to haphazard or coincidental events. In another sense,
policymakers do not want to invest in innovations that
do not work, simply because a researcher was unable to
distinguish between real and random results. Because
chance can never be eliminated as an explanation of a
phenomenon, statisticians have developed hypothesis
testing procedures to assist in making decisions about
the reality of effects. Knowing they can never be right
100% of the time, statisticians have developed proce-
dures to measure the likelihood of many statistical
results relative to a chance model and make rational
decisions based on that measure.

Hypothesis Testing Procedure

The hypothesis testing procedure can be counterintu-
itive to many people. It requires constructing a model
of what the world would look like given that chance or
random processes alone were responsible for
the results and that these processes were done an infi-
nite (or at least a very large) number of times. The
hypothesis that chance alone is responsible for the
results is called the null hypothesis, and the model of
the result of the application of the random process
alone is called the distribution under the null hypoth-
esis. The obtained results are then compared with the
theoretical model of the distribution of results under
the null hypothesis, and the likelihood of finding
the obtained results is measured. This likelihood or
probability is called the exact significance level and
is the likelihood of finding the obtained result given
that the null hypothesis (random model) is true. If
the probability of the chance model describing the

obtained results is small, then the results are said to be
statistically significant. In more technical terminol-
ogy, the null hypothesis is rejected and the alternative
hypothesis (that the effects are real, not due to a ran-
dom process alone) is accepted.

One issue in the hypothesis testing procedure is,
How small must small be in order to find statistical
significance; for example, should it be .1, .01, or .001?
To use the hypothesis testing procedure in a scientifi-
cally responsible manner, a criterion, called the alpha
level or α, must be set before the hypothesis test is
performed. A default value of alpha set to p = .05 is
generally accepted in the social sciences, although
other values of alpha should be considered based on
the cost of making a decision error. For example, if the
cost of deciding the effects are real when they are not
is high relative to deciding that the random process
could be responsible for the results, then the value of
alpha should be set lower than the default value of .05.
A common practice is to report both the exact signifi-
cance level and the level of alpha used to make the sta-
tistical decisions but allow the reader to set a different
value of alpha to make possibly different statistical
decisions if so desired.

The Random Generating Process

The hypothesis testing procedure requires the con-
struction of a model of what the world would look like
if a random generating process was solely responsible
for the results. There are two commonly accepted
methods for construction of such models.

PPrroobbaabbiilliittyy  MMooddeellss

Probability models are a result of a thought exper-
iment done using mathematical techniques. For
example, using mathematical methods, it is possible
to answer the question “What would the distribution
of number of heads look like if I flipped a fair coin 30
times and I repeated this an infinite number of times?”
The answer can be found as an application of the
binomial theorem and is illustrated in Figure 1.
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It is possible using mathematical methods to derive
the results of many different types of such thought
experiments. Sampling distributions or theoretical
distributions of sample statistics are extremely useful
for such purposes.

MMoonnttee  CCaarrlloo  MMeetthhooddss

At times, mathematical thought experiments are not
available for hypothesis testing purposes, and brute-
force methods must be used. Rather than performing a
thought experiment, Monte Carlo methods construct
probability models with actual or simulated experiments.

It would be possible, but extremely tedious, for
example, to take a known fair coin, flip it 30 times,
record the number of heads, and repeat the procedure
a very large number of times. The distribution of the
number of heads could be used as the model of a ran-
dom process.

A much less tedious method would be to write a
computer program that simulated the flipping of 30
fair coins and recorded the number of heads in each
set. While not providing the precision of the infinite
number of theoretical tosses available in the probabil-
ity models, this method can often provide a useful
approximation of the theoretical models and allows
much greater flexibility in the construction of poten-
tial models. An example of the application of this

technique is presented in Figure 2 using 10,000
samples of 30 coin tosses.

Decisions

The result of an application of a hypothesis-testing
procedure is one of two decisions:

1. It is unlikely the random process generated the
obtained results.

In this case, the likelihood of the obtained result
given the distribution under the random process (the
exact significance level) is smaller than the value that
was set for alpha. Alternative ways of expressing this
result include the following:

Reject the null hypothesis and accept the alternative
hypothesis. 

Statistical significance was found. 

Real effects were discovered.

2. The results are not unlikely enough to say the
random process did not generate the results.

This decision is stated as a double negative because
when statisticians discover that the random process
could have generated the results, they are not willing to
conclude that it did in fact generate the results. This
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Figure 1 Theoretical Distribution of the Number
of Heads in 30 Coin Tosses of a Fair Coin

15.0%

12.0%

9.0%

6.0%

3.0%

0.0%

P
er

ce
n

t

5 6 7 9 1011121314151617181920212223248

Heads

Figure 2 Monte Carlo Distribution of the Number
of Heads in 30 Tosses of a Fair Coin



decision is in fact a type of statistical limbo in which the
statistician is not willing to decide either that the effects
are real or that they are random. Alternative methods of
expressing this decision include the following:

Retain both the null and the alternative hypothesis. 

Statistical significance was not found. 

No effects were discovered.

A Simple Example Using
Hypothesis Testing to

Test Whether a Coin Is Fair

A person flips a coin 30 times, obtains 20 heads out of
the 30 tosses, and asks “Is this a fair coin, whose like-
lihood of heads is .50?” Using a hypothesis testing
procedure to assist in answering the question, the sta-
tistician assumes that the coin is fair (the null hypoth-
esis is true) and proceeds to create a model of what the
world would look like in that event (see Figure 1).
Before performing the hypothesis test, the statistician
sets the alpha level or decision criterion to .05.
Comparing the obtained result (20 heads) with what
would be expected if chance alone was operating, the
statistician concludes that the probability of obtaining
20 or more heads in 30 tosses of a fair coin is .0494,
less than the exact significance level. Thus the statis-
tical decision would be to reject the random generat-
ing process and conclude that something other than
this process was responsible for the results. Note that
there is uncertainty about the decision; the statistician
knows that 20 heads out of 30 tosses is possible if one
is lucky (or unlucky, as the case may be) but that there
needs to be a rational basis for making one decision
over the other. The hypothesis testing procedure pro-
vides that rational basis.

Implications

1. A hypothesis testing procedure can assist in
deciding only whether the statistical results are not
likely to be due to chance. If statistical significance
is found, the hypothesis test generally says nothing

about why chance or randomness was not a good
explanation of the results. A careful examination of
the data is necessary to explain the results. In some
cases, as in a t test, this examination requires a simple
comparison of two means. In other cases, such as
multiple regression, the pattern of nonrandomness is
much more difficult to discern.

2. If statistical significance is not found, the only
interpretation is that the selected random process
could have generated the results, not that the random
process did in fact generate the results. There are any
number of reasons that a given obtained result would
not be statistically significant, including low statistical
power (the probability of discovering real effects
when in fact the effects are real) and measurement
issues.

3. If a result is statistically significant, or nonran-
dom, it does not follow that the result has any practi-
cal or utilitarian value. In other words, it is possible to
discover statistical significance by using a highly sen-
sitive significance test (e.g., one having a very large
sample size) and not find the results useful. For
example, an expensive new teaching technology
might show a statistically significant increase in
student performance using a large test sample, but the
increase might be too small to justify implementing
the technique. For this reason, the results of a hypoth-
esis test should not be presented in isolation but
should be reported in conjunction with a measure of
the size of the effects.

4. One can never “prove” anything using a hypoth-
esis test. The best one can say is that the selected ran-
dom generating process is an unlikely explanation of
the obtained results, not that the random generating
process explanation is impossible. The procedures can
provide evidence that a real relationship exists but
cannot prove the existence of such a relationship.

—David W. Stockburger

See also Alternative Hypothesis; Null Hypothesis Significance
Testing 
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ILLINOIS TEST OF

PSYCHOLINGUISTIC ABILITIES

The Illinois Test of Psycholinguistic Abilities—Third
Edition (ITPA-3) consists of 12 subtests that take
approximately 45 to 60 minutes to administer. This
edition of the ITPA is designed to assess spoken and
written features of language. Norms are provided that
permit evaluation of whether a child is developing
normally or is at risk for school failure. The scoring
system provides information on overall strengths and
weaknesses in the general areas of spoken and written
language as well as in specific features of language.
This information may be used in identifying areas for
further in-depth testing or tracking the effects of inter-
vention over time.

The ITPA-3 represents a substantial revision. An
experimental version first appeared in 1961, and an
expanded version appeared in 1968. Unlike the previ-
ous versions, the third edition contains only subtests
that measure some aspect of language performance. 
In addition, the subtests require reading and writing.
Thus, the age range has been revised to 5 years,

0 months through 12 years, 11 months of age. Only
children 6 years, 6 months of age or older may be
administered the written subtests.

Half of the 12 subtests are presented auditorily and
require verbal responses. Two subtests assess word
knowledge (semantics) by analogies (e.g., birds have
nests, lions have ___) and definitions (e.g., I am think-
ing of something that has paws—possible answer
“dog,” “cat”). Two subtests assess knowledge of
morphology and grammar through a cloze procedure
(e.g., one dog, two ____) and verbatim imitation of
grammatical but semantically anomalous sentences
(e.g., Cats like to ice skate). Awareness of the phono-
logical (sound) structure of words is assessed in two
subtests: one requiring deletion of sounds within a
word and another requiring repetition of sequences of
rhyming words.

The remaining six subtests require reading and for-
mulation of written responses. Ability to read sen-
tences and comprehend word meaning is required in
two subtests: One involves organizing sentences into
logical sequences, and a second involves writing
nouns that may be combined with specific adjectives
(e.g., a giant _____). This latter subtest requires
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I
During my 18 years I came to bat almost 10,000 times. I struck out about 1,700 times and walked
maybe 1,800 times. You figure a ballplayer will average about 500 at bats a season. That means
I played seven years without ever hitting the ball.

—Mickey Mantle



knowledge of restrictions on the combination of
nouns and adjectives. The final four subtests assess
the ability to pronounce and spell words with irregu-
lar and regular forms.

The scoring system provides composite scores that
identify general as well as specific abilities. The raw
scores for each subtest may be converted to standard
scores and percentile ranks as well as age and grade
equivalents. Composite scores for general and specific
abilities are derived by adding scores from selected
subtests. The composite scores can be converted to
quotients and percentile ranks. Both the standard
scores for each subtest and the quotients for all of the
composite scores may be plotted on a profile that indi-
cates whether the scores are within, above, or below
one standard deviation from the mean.

The test is based on Osgood’s model of communi-
cation, which postulates multiple levels of organiza-
tion and processing as well as multiple channels of
input and output. The test assesses features of linguis-
tic knowledge; expressive and receptive skills, includ-
ing auditory memory; and some cognitive abilities.
Early decoding skills for print-to-sound correspon-
dences and orthographic knowledge are assessed by
four of the written subtests. 

The test includes new normative data for a sample
of 1,522 children that is representative of the 2000
U.S. population of school-aged children. New relia-
bility and validity data are provided. The data indicate
that the test has adequate reliability. The extent to
which the test predicts school failure, especially when
administered to older age groups, still needs to be
established. The test is not useful for identifying treat-
ment goals.

—Jennifer R. Hsu

See also Woodcock Johnson Psychoeducational Battery

Further Reading
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and language as cognitive phenomena. In J. S. Bruner,
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Osgood, & D. Rapaport (Eds.), Contemporary approaches
to cognition: A report of a symposium at the University of

Colorado, May 12–14 (pp. 75–118). Cambridge,
MA: Harvard University Press.

Towne, R. L. (2003). Review of Illinois Test of Psycholin-
guistic Abilities—Third Edition. In L. L. Murphy
(Ed.), The fifteenth mental measurements yearbook
(pp. 458–462). Lincoln: University of Nebraska Press.

Psycholinguistics definition: http://www.answers.com/
psycholinguistics&r=67 and http://en.wikipedia.org/wiki/
Psycholinguistics

IMMEDIATE AND

DELAYED MEMORY TASKS

The Immediate and Delayed Memory Tasks (avail-
able from Donald M. Dougherty, PhD, at NRLC@
wfubmc.edu) are a set of computerized behavioral
measures of impulsivity and attention. In the
Immediate and Delayed Memory Tasks (IMT/DMT),
individuals are instructed to click a mouse button
when a target letter or number sequence appears on a
computer monitor. Typically, five-digit numbers
appear rapidly and briefly. When two consecutive sets
of numbers appear and match (e.g., 19701 and
19701), individuals taking the test should click the
button. These responses are interpreted as a measure
of attention. However, in other trials, the numbers
closely match but are not identical. Responses to these
trials are interpreted as measures of impulsivity,
because they are thought to reflect responding before
information processing is completed.

The test is composed of two similar portions, the
IMT and DMT, that differ in the length of time
required to compare matching numbers. In both tasks,
all number sets appear on the computer monitor 
for 0.5 second, with a 0.5-second break between
numbers. In the IMT condition, individuals are
instructed to compare successive stimuli, so that they
must remember numbers spanning a 0.5-second
period. But in the DMT, the numbers to be compared
are separated by “distracters,” which are five-digit
numbers presented three times between the numbers
to be compared. For example, a DMT sequence could
read 48593, 12345, 12345, 12345, 48593. As a result,
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the IMT requires remembering and comparing data
for 0.5 second, whereas in the DMT, it is 3.5 seconds.
Typically, the test is administered in four alternating
testing blocks of IMT and DMT. The entire sequence
takes about 20 minutes to complete.

In addition to the default testing conditions
described here, this software package includes
adjustable parameters allowing for testing across
various samples and conditions. For instance, the
IMT/DMT is suitable for assessment of children,
adolescents, or adults; also, it is sensitive to state-
dependent changes in impulsivity induced by situa-
tions such as drug use, medications, or stage of illness.
The IMT/DMT is widely used in research settings, and
it has excellent psychometric characteristics and
extensive validity across a variety of populations.

—Charles W. Mathias, Dawn M. Marsh,
and Donald M. Dougherty

Further Reading

Dougherty, D. M., Marsh, D. M., & Mathias, C. W. (2002).
Immediate and Delayed Memory Tasks: A computerized
measure of memory, attention, and impulsivity. Behavioral
Research Methods, Instruments, and Computers, 34,
391–398.

Dougherty, D. M., Mathias, C. W., & Marsh, D. M. (2003).
Laboratory measures of impulsivity. In E. F. Coccaro (Ed.),
Aggression: Psychiatric assessment and treatment (pp.
247–265). New York: Marcel Dekker.

Immediate and Delayed Memory Tasks description and the
laboratory where they were developed: http://www1
.wfubmc.edu/psychiatry/Research/NRLC/

INDEPENDENT VARIABLE

Any research endeavor, accompanied by the use of
statistical and measurement tools, often finds one 
of several different types of variables present, referred
to as independent variables.

An independent variable is the variable that is
manipulated or changed to gauge the effects on some
outcome or dependent variable—it is the “force” that
is hypothesized to cause change in the outcome of the

experiment. It is also sometimes called a treatment
variable because it is often the treatment or the exper-
imental condition that is applied at different levels
(hence, it is a variable) to a selected group, and then
the effects of that application are evaluated through an
examination of the outcome or the effects on the
dependent variable.

For example, one can think of a set of independent
variables (in this example, three) acting alone and
together (in their interaction) to influence some out-
come (usually called an independent variable) as
follows:

DV = f(IV1, IV2, IV3)

where

DV is the value of the dependent variables

f is the function of sign

IV1 is the first independent variable, with other indepen-
dent variables (IVs) such as IV2 and IV3 to follow.

Table 1 is a simple experimental design where the
one independent variable is number of hours of read-
ing per week that a group of children receives in an
after-school program. The dependent variable is the
children’s comprehension, which is evaluated using a
test that assesses that variable.

Each of the three groups (one for each level of the
independent variable) receives one of the three treat-
ments, and each level of treatment represents one 
of the levels of the independent variable, which is
labeled Amount of Extra Reading.
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Table 1 An Experimental—Control Group Comparison

Amount of Extra Reading

No Extra 5 Hours 10 Hours
Reading Extra Reading Extra Reading

Control
Group

Experimental
Group



What are independent variables independent of?
One another—the most efficient independent vari-
ables are those that act on their own and contribute a
better understanding of the dependent variable.
Ideally, each independent variable is unrelated to the
others, so that its contributions are unique. If the vari-
ables are related to one another, it is difficult to sepa-
rate the effects of each one on the dependent variable
and, therefore, to clearly conclude that the change to
the dependent variable is a function of any one inde-
pendent variable rather than a combination.

—Neil J. Salkind

See also Dependent Variable; Moderator Variable

Further Reading

Independent variables further definition and examples: http://
en.wikipedia.org/wiki/Independent_variable

Independent and dependent variables further examples and
discussion: http://www.cs.umd.edu/~mstark/exp101/expvars
.html

Applying Ideas on Statistics and Measurement

The following abstract is adapted from Mohr, 
W. K., Lutz, M. N., Fantuzzo, J. W., & Perry, M. A.
(2000). Children exposed to family violence: A
review of empirical research from a developmental-
ecological perspective. Trauma, Violence, &
Abuse, 1(3), 264–283.

There are many different types of variables,
independent or treatment variables being one of
them. In this review, Wanda Mohr and her col-
leagues focused on a developmental-ecological
model to evaluate the past decade of research on
children exposed to family violence, and a coding
system was applied to all empirical studies pub-
lished in this area since 1987. This coding system
allowed for inspection of the current state of the
knowledge base from this perspective and the
ability to determine the progress that has been
made in this research area. A total of 21 quantita-
tive studies and one qualitative study were
reviewed. Despite progress over the past 10 years,
foundational issues related to definitions of the
independent variable, substantiation of exposure,
developmental sensitivity, and methodology
remain. The authors also present recommenda-
tions for future research studies.

INDIVIDUALS WITH

DISABILITIES EDUCATION ACT

After being enacted in 1975 as the Education for All
Handicapped Children Act, the IDEA was reautho-
rized and revised in 1986, 1990, 1997, and 2004.
Moreover, the IDEA is still sometimes referred to as
P.L. (Public Law) 94-142, indicating that it was the
142nd piece of legislation introduced during the 94th
Congress. The IDEA and its regulations require states,
through local educational agencies or school boards,
to identify, locate, evaluate, and serve all children with
disabilities (34 C.F.R. § 300.125), including those in
nonpublic schools, regardless of the severity of their
needs. Insofar as the child-find provisions are
included as a related service in the IDEA’s regula-
tions, many school systems screen preschool children
to assist in the early identification of students with
disabilities (34 C.F.R. § 451). Changes in the 2004
version of the IDEA now require not only that public
school officials identify children who attend nonpub-
lic schools in the districts where they attend classes
rather than the districts within which they live, but
also that child-find activities for these students in pri-
vate schools be comparable to those used in public
schools. At the same time, public school officials must
record and report to state education agencies the
number of children from private schools who are eval-
uated, determined to have disabilities, and served 
(§ 1412(a)(10)(A)(ii)).

In order to be covered by the IDEA, children must
meet three requirements. First, students must be
between the ages of 3 and 21 (20 U.S.C.A. §
1412(a)(A)). Second, students must have a specifi-
cally identified disability. Third, they must be in need
of special education (20 U.S.C.A. § 1401(3)), mean-
ing that the children must be in need of a free appro-
priate education (20 U.S.C.A. § 1401(8)) in the 
least restrictive environment that is directed by an
individualized education program (IEP) (20 U.S.C.A.
§ 1401(3)). Related services covers developmental,
supportive, or corrective services such as transporta-
tion, speech pathology, audiology, psychological
services, physical therapy, occupational therapy,
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recreation (including therapeutic recreation), social
work services, and counseling services (including
rehabilitation counseling), among others. Moreover,
as children near graduation or begin to age out of spe-
cial education, school officials must develop individu-
alized transition services plans to promote their
movement to postschool activities (20 U.S.C.A. §
1414(d)(1)(A)(vii)(II); 20 U.S.C.A. § 1401(30)).

IEPs must describe students’ current levels of edu-
cational performance, annual goals, and short-term
objectives, the specific services that they will receive,
the extent to which they can take part in general edu-
cation, the date services are to begin and for how long
they will be offered, and criteria to evaluate whether
they are achieving their goals (20 U.S.C.A. §
1414(d)(1)(A)). IEPs must also discuss how students’
disabilities affect their ability to be involved in and
progress in inclusive settings and necessary modifi-
cations to allow them to take part in the general
curriculum. In addition, IEPs must detail any related
services that students need to benefit from their IEP
(20 U.S.C.A. § 1401(3)(A)(ii)).

The IDEA includes extensive due process protec-
tions to protect the rights of qualified children (20
U.S.C.A. § 1415), particularly when dealing with dis-
ciplining students with disabilities and determining
whether their misbehavior is a manifestation of their
disability. Among other protections, parents have the
right to take part in developing IEPs that direct 
the education of their children (20 U.S.C.A. §§
1414(d)(1)(B)(i) and 1414(f)). In such a case, the
Fourth Circuit ruled that parents in South Carolina
who chose not to participate in its formulation could
not render school officials liable for not having an IEP
(MM ex rel. DM v. School Dist. of Greenville County,
2002) completed and signed, because their failure to
do so was caused by the parents’ lack of cooperation.
Moreover, officials must provide parents with notice
and obtain their consent prior to evaluating or placing
children (20 U.S.C.A. § 1414(a)(1)(2), 20 U.S.C.A. §
1414(b)(3)). Once students are placed in special edu-
cation, school officials must notify parents before
trying to change their placements (20 U.S.C.A. §
1415(b)(3)(A)). IEPs must be reviewed at least annu-
ally (20 U.S.C.A. § 1414(d)(4)(A)), and children must

be reevaluated completely at least every 3 years
(20 U.S.C.A. § 1414(a)(2)(A)). However, a provision
in the recently reauthorized IDEA allows up to 15
states to pilot comprehensive, multiyear IEPs that do
not exceed 3 years and that are designed to coincide
with natural transition points in a child’s education
(§ 1414(d)(5)(A)(i)). Another change with regard to
IEPs permits minor changes to IEPs to be made by
means of conference calls or letters (§ 1414(f)). The
IDEA also includes provisions, supplemented by
the Family Education Rights and Privacy Act (29
U.S.C.A. § 1232g) and its regulations (34 C.F.R.
§§ 300.560–577), protecting the confidentiality of
all information used in the evaluation, placement, and
education of students (20 U.S.C.A. § 1417(c)).

Parents may be entitled to an independent evaluation
at public expense if they disagree with a board’s evalu-
ation (20 U.S.C.A. § 1415(b)(1)). If parents success-
fully challenge the assessment of their children, they
can be reimbursed for the costs of doing so. Conversely,
if a board’s evaluation was appropriate, parents are not
entitled to further testing at public expense.

At the heart of the IDEA is the requirement that all
children with disabilities receive a free, appropriate
public education in the least restrictive environment.
But because neither the IDEA nor its regulations
include a definition of appropriate, it was necessary 
to seek judicial intervention for such an understand-
ing. In Board of Education of the Hendrick Hudson
Central School District v. Rowley (hereafter Rowley),
its first case involving the IDEA, the Supreme 
Court interpreted “appropriate” as providing a floor of
opportunities rather than as a vehicle to maximize
a child’s potential. In Rowley, parents of a kinder-
garten student in New York who was hearing impaired
challenged their school board’s refusal to provide
their daughter with a sign-language interpreter. A
federal trial court and the Second Circuit agreed that
officials had to provide the child with an interpreter on
the basis that an appropriate education was one that
would have allowed her to achieve at about the
same level as her peers who were not disabled. The
Court, recognizing that the child earned passing
marks and advanced academically without the sign-
language interpreter, reversed. The Court ruled that
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an appropriate education was one that met the IDEA’s
procedures and was “sufficient to confer some educa-
tional benefit (at 200)” on the child. Insofar as the
Court was convinced that the child received “some
educational benefit” without the sign-language inter-
preter, the Court concluded that she was not entitled to
one even though she might have achieved at a higher
level had officials provided her with such assistance.

Rowley’s interpreting the IDEA as having set a
minimum level of appropriateness does not prevent
states from setting higher standards. To date, courts
have upheld higher state requirements in such juris-
dictions as California, Massachusetts, Michigan,
Missouri, New Jersey, and North Carolina. Some of
these courts acknowledged that the higher state stan-
dards replaced the federal requirements because the
IDEA expects special education programs to meet the
standards of state educational agencies.

Other courts have interpreted Rowley’s “some edu-
cational benefit” criterion as requiring more than min-
imal growth, adding that one must be meaningful or
appreciable. Regardless of which criteria apply, under
the IDEA’s so-called zero-reject approach, reflected
most notably by a seminal case from New Hampshire
(Timothy W. v. Rochester, N.H., School Dist.), school
boards must provide services to all eligible children
regardless of the severity of their disabilities.

At the same time, students with disabilities must 
be educated in the least restrictive environment (20
U.S.C.A. § 1401(8)(A)). To this end, the IDEA
requires school boards to provide a continuum of
alternative placements from least to most restrictive
for children with disabilities (34 C.F.R. § 300.551).
The first four choices are typically in a child’s home
school, beginning with the goal of full inclusion in 
a regular class, to inclusion with help such as a
teachers’ aide, to partial inclusion, to partial resource
room placement, to a self-contained placement in a
resource room. The final, more restrictive options are
special day schools, hospital or homebound instruc-
tion, or residential placements.

In a dispute from California, the Ninth Circuit
expanded the existing criteria with regard to least
restrictive environment, stipulating that IEP teams had
to take four factors into account in placing students:

the educational benefits of placing children in regular
classrooms, the nonacademic benefits of such place-
ments, the effect that their presence would have on the
teacher and other children in classes, and the costs 
of inclusionary placements (Sacramento City Unified
School Dist. Bd. of Educ. v. Rachel H.). Furthermore,
in a case dealing with cost, the federal trial court in
Utah held that when school officials consider two
different programs, either one of which offers an
appropriate education, they can take expense into con-
sideration when making a placement (L.B. and J.B. v.
Nebo School Dist.).

The IDEA’s goal of full inclusion notwithstanding,
not all students with disabilities must be placed in reg-
ular education classes. Courts have approved more
restrictive placements where students could not func-
tion in regular classes, even with supplementary aids
and services, or inclusion did not succeed.

—Charles J. Russo

Further Reading
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District v. Rowley, 458 U.S. 176 (1982).
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1232g).

Individuals with Disabilities Education Act (IDEA) (20
U.S.C.A. §§ 1400 et seq. L.B. and J.B. v. Nebo School
Dist., 214 F. Supp.2d 1172 (D. Utah 2002).

MM ex rel. DM v. School Dist. of Greenville County, 303 F.3d
523 [169 Educ. L. Rep. 59] (4th Cir. 2002).

Osborne, A. G., & Russo, C. J. (2006). Special education and
the law: A guide for practitioners (2nd ed.). Thousand
Oaks, CA: Corwin.

Russo, C. J., Osborne, A. G., & Borreca, E. (2005). Special
education update: The 2004 revisions of the IDEA. School
Business Affairs, 71(5), 41–44.
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INFERENTIAL STATISTICS

Inferential statistics allow researchers to make gener-
alizations about how well results from samples match
those for populations. Because samples are parts of
populations, samples do not include all of the popula-
tion information. Thus, no inference can be perfect
because samples cannot represent completely their
parent populations.

Imagine that a population is defined as all students
enrolled in U.S. schools. Suppose researchers want to
study how well students in that population enjoy
school. A survey is developed, and researchers pre-
pare to collect response data. Researchers estimate 
the target population consists of 3 million students.
Because the population encompasses the entire United
States, the team of researchers must include all geo-
graphic areas from Maine to Hawaii. However, actu-
ally collecting data for all U.S. students is too
massive, so a sample is selected. Ideally, this sample
would be randomly selected, which means that all
U.S. students have the same chance of being selected.
This makes the sample representative of the popula-
tion. Essentially, this means that although the sample
may represent only a small percentage of the students
who comprise the complete population, that sample 
is assumed to reflect the characteristics of all U.S.
students, including those not selected.

Parameters, Statistics,
and Probability

A key component of inferential statistics is the degree
to which error in estimating population values from
sample values can be minimized. Probability theory, a
branch of mathematics, plays a central role in infer-
ential statistics. Probability theory serves as the
backdrop for two important inferential statistics pro-
cedures. One is estimation, and the other is hypothe-
sis testing. Estimation focuses on the degree to which
sample values indicate true population values. For
populations, computed values such as means, standard
deviations, and variances are called parameters. For
samples, those values are called statistics. Therefore,

questions of estimation address the degree that statis-
tics are equivalent to parameters.

Hypothesis testing pertains to investigators’
attempts to answer specific research questions 
based on theoretical premises. For instance, when
researchers want to determine the relationship
between two variables—“Is there a relationship
between Scholastic Aptitude Test scores and college
grade point average?” or “Do males and females dif-
fer in their reading ability?”—hypothesis testing con-
verts the research questions into predictive statements
so that they can be subjected to empirical testing.
Before we describe procedural steps used in hypothe-
sis testing, let’s take a very brief look at the history of
probability theory in inferential statistics.

Probability Theory and
Inferential Statistics

In his classic text titled Probability, Statistics, and
Truth, Richard von Mises places the onset of probabil-
ity theory in statistics in the early 1900s. Although
properties of distributions, such as those of the normal
curve, had been deduced mathematically by the early
1800s, there was limited research on the degree to
which the normal curve reflected phenomena observed
in the real world. In the early 20th century, the use of
probability and the normal curve became important in
fields such as agriculture, genetics, and medicine. At
this time, R. A. Fisher, a British statistician, introduced
the term likelihood. This term essentially means
probability. Sample data could yield likelihoods of
responses that are then compared to what is expected
for the population based on properties of mathematical
distributions such as the normal curve.

Estimation and Hypothesis
Testing Procedures

To illustrate the procedures of estimation and hypo-
thesis testing in inferential statistics, consider the
following situation. Suppose high school principals
in one district want to answer the following questions
about their students’ performance on a high-stakes
assessment:
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1. Did our students perform the same as students
nationwide with a mean of 120?

2. Did our students perform differently from students
attending a neighboring school district?

3. Did our current students perform better than district
students who took the test 4 years ago?

There are four basic inferential statistics steps
needed to address any one of the questions. First,
researchers must translate each research question into
a pair of hypotheses. The first hypothesis, the null
hypothesis, addresses the question as if the expected
answer were “no.” The second hypothesis, the alter-
native or researcher’s hypothesis, addresses the ques-
tion as if the expected answer were “yes.”

In the second step, researchers choose the statisti-
cal technique that can help them address each specific
question, along with an acceptable error rate with
which they justify their conclusion. This error rate is
referred to as the alpha level. The alpha level (symbol-
ized as α-level) is the degree of Type I error. Type I
error represents the probability that the null hypothe-
sis will be rejected when the null hypothesis is true for
the population. Usually, the alpha level for the social
sciences is preset at .05. What this means is that for
every 100 times the research question is addressed by
a unique sample of data drawn randomly from the
same population, there are 5 times when the results
are purely attributable to chance.

In the third step of hypothesis testing, researchers
actually compute the statistical values given their
sample data. Computer programs such as the
Statistical Package for the Social Sciences (SPSS)
report estimates of the alpha level given the size of the
statistical value computed as well as the sample size.
Logically, the larger the sample size, the less error in
inferring what the population value is based on the
sample estimate. This should make sense because
larger sample sizes mean that more information about
the population is available to the researchers.

In the last step of hypothesis testing, researchers
make a decision and state a conclusion. The decision
is made in reference to the null hypothesis.
Researchers either reject or fail to reject the null
hypothesis. If they fail to reject the null hypothesis, it

means the answer to the initial research question was
“no.” If they reject the null hypothesis, then they are
actually supporting the alternative hypothesis. This
means that the answer to the research question is
“yes.” The conclusion essentially restates the decision
but in less statistical terms. It is usually in their con-
clusion that researchers also use the word significant.
This means that if researchers rejected the null
hypothesis, then they believe there is a strong likeli-
hood that a result or relationship exists for the popula-
tion as it does for the sample. We will now take a look
at the four steps in answering the principals’ research
questions.

To answer Question 1, the researcher would set up
the following hypotheses:

H0 : µ1 = 120
Ha : µ1 ≠ 120

Although the notation may be unfamiliar to some
readers, the statistical symbols are easy to interpret.
The symbol H0 stands for the null hypothesis, whereas
the symbol Ha stands for the alternative hypothesis.
For both hypotheses, the Greek letter µ (mu) is used
because the high school principals are interested in an
average or a mean. All hypotheses must be written to
reference parameters, not statistics. When researchers
state their conclusion, it is a generalization or infer-
ence from the sample results to what is expected for
the population. Parameters are symbolized with letters
from the Greek alphabet. Therefore, all null and alter-
native hypotheses should be written in notation form
with letters like µ (for means), ρ (rho, for correlation
coefficients), or β (beta, for regression coefficients).

In Step 2, the researchers state that a sample mean
will be computed for the school district. The alpha
level or Type I error level is set at .05. In Step 3, the
computed sample mean value is compared to a critical
value using the mathematical properties of the normal
curve. The critical value depends on the sample size
and the alpha level, and it is determined based on
the theoretical properties of the normal curve. These
properties have been derived from mathematical
calculations using a formula from calculus. There
are infinitely many critical values, just as there are
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infinitely many points that represent the score
continuum under the normal curve. Mathematicians
typically present critical values in appendix tables.
Researchers look at their computed sample value and
compare it to the critical value given their specific
sample size and set alpha level.

In Step 4 of hypothesis testing, if the mean com-
puted for the sample is larger than the critical value,
then the researchers reject the null hypothesis. The
conclusion would then be drawn that the school dis-
trict’s test score mean is not equal to the nationwide
population with its mean of 120.

For Questions 2 and 3, the pairs of hypotheses
would be presented in slightly different notational
form. For Question 2, two sample means are com-
pared. The first mean represents one school district,
and the second mean represents the neighboring
school district. Therefore, these two school districts
provide two samples of data. We want to know if the
two samples represent the same population or differ-
ent ones. Therefore, the following pair of hypotheses
is recorded:

H0 : µ1 = µ2

Ha : µ1 ≠ µ2

The school principals are still interested in means,
so µs are used to represent population parameters;
however, the subscripts 1 and 2 beside the parameters
indicate that there are two samples of means. As was
done for the first research question, statisticians would
proceed with Steps 2 through 4 of the basic set of
hypothesis testing procedures. They would state
which statistic should be used and then set the alpha
level (i.e., Step 2). This time, a t-test value for inde-
pendent samples would be computed to compare
means (i.e., Step 3). The t-test value would be com-
pared to a critical value, and finally, a decision and
conclusion about the significance of the results would
be made (i.e., Step 4).

It is important to note that for Questions 1 and 2, the
investigators used an equality sign when stating the
hypotheses. This is because the hypotheses are consid-
ered nondirectional. This means that if we reject the
null hypothesis for the first research question, then we

are inferring only that the mean is
different from 120, not whether it is below or above
120. Likewise, for Question 2, if we reject the null
hypothesis, then we know only that the two sample
means likely represent two different populations. We
are not testing which population assumedly has the
greater mean.

For Question 3, however, the principals are inter-
ested in the direction of the results. Thus, these direc-
tional hypotheses are written with inequality signs:

H0 : µ1 ≤ µ2

Ha : µ1 > µ2

where Group 1 consists of the population from which
scores from the school are drawn this year, and Group
2 consists of the population from which scores from
this school were drawn 4 years ago. If the null hypoth-
esis is rejected, then the researchers will infer that the
current average for their school district is significantly
greater than the average reported 4 years ago.

Controversies Surrounding
Inferential Statistics

There are contemporary debates surrounding the use
of inferential statistics. One debate pertains to statisti-
cal power. We mentioned that there is always error in
inferential statistics, and Type I error is one example.
Statisticians must simultaneously deal with Type II
error, given every null hypothesis tested. Type II error
occurs when researchers fail to reject the null hypoth-
esis, and the null hypothesis was wrong. Statistical
power is based on Type II error given the simple for-
mula 1 – β, where β stands for the probability of Type
II error. Thus, statistical power reflects the degree to
which a decision is made without error.

Currently, many investigators think that stating the
decision and conclusion is insufficient in inferential
statistics because statistical power is not addressed
directly. What these researchers know is that as sam-
ple size increases, there is a greater likelihood of
rejecting the null hypothesis. However, the statistical
value may be very small and meaningless given
researchers’ interests. With a large school district, the
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test mean might be only 122, and the null hypothesis
presented for Question 1 could be rejected. Practically
speaking, 122 and 120 are not that different when
comparing standardized test scores in schools.

Therefore, many researchers also compute effect
sizes. Effect sizes tell the direction and magnitude 
of differences between means in standard deviation
units. As stated, as sample size increases, it is easier to
reject a null hypothesis. Likewise, in some fields,
researchers may not be able to sample large numbers
of participants. Consequently, they may not be able to
reject the null hypothesis, yet they may be able to
compute large effect sizes. For that reason, many jour-
nal editors recommend reporting the level of statisti-
cal significance and the effect size.

—Jonna M. Kulikowich and
Maeghan N. Edwards

See also Hypothesis and Hypothesis Testing; Significance
Level
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INFORMATION REFERENCED TESTING

A method that has been slow in acceptance by the
academic world is an evaluation method called
Information Referenced Testing (IRT). Dr. James E.
Bruno at the University of California, Los Angeles has
been the major proponent of this method. It is not to be
confused with Item Response Theory. Item Response
Theory is an item analysis method. Although academia
has yet to fully embrace this potentially valuable mea-
surement method, industry has been using it for
years for purposes of assessment, recertification, and

placement. It has had other names, such as admissible
probability measurement and probability scoring.
Currently it is referred to as confidence-based learning.
Its basis is not new. However, its implementation is made
feasible by the advent of high-speed, reliable computers.
The computations involved with this method are quite
extensive and should be done with a computer. Bruno has
provided the measurement community with the tools
necessary for using this method. He has written a series
of computer programs that will enable a person to carry
out the computational aspects of this method, as well as
two types of answer forms for recording the responses.
One of the forms is a simplification of the other.

A staple within the educational and evaluation
process is the multiple-choice test. It is simple to
implement and score. In fact, the answer sheets
designed for this type of testing work very well with
the computer technology in scoring. It is considered
objective in that the scoring is preset. There is only
one right answer to each question. Contrary to this is
the essay test, which is subjectively evaluated but at
times has the advantage of allowing the student more
freedom to show what he or she really knows. The
essay test usually has mixed criteria for evaluation and
is costly (time-consuming) to grade. The traditional
right-wrong multiple choice is a one-dimensional sys-
tem. Each student’s score is compared either to other
students’ scores or to some criterion of percent cor-
rect. In the traditional multiple-choice-type question,
a person with partial knowledge may be undecided
between two of the choices, let’s say choices a and d
(and say that choice d is the correct answer). This
person has learned enough to know that the other
choices (b, c, e) in the question are definitely not cor-
rect. However, the student must make one selection
only. If she chooses a, she will get the item incorrect.
In essence, she would be classified along with the
students who picked b, c, or e and suffer the same con-
sequences as they do. Yet she knows more than they
do. Wouldn’t it be nice if that student could admit that
she has only partial knowledge and get to choose both
a and d for a small penalty? Wouldn’t it be desirable
to have a testing system that allows that and more? By
more, we mean using a scoring and evaluation system
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that could tell each student on which items they have
full knowledge, partial knowledge, no knowledge, or
the wrong knowledge. IRT, when used properly, can
provide these. It could also provide for each student an
individualized educational plan that tells them where
they are weak and where they are strong. (See Table 1.)
Additionally, it would also provide teachers with feed-
back on what the class as a whole knows and doesn’t
know. This system can provide both a summative and
formative evaluation. When we say wrong knowledge,

we mean that the person has misinformation.
Misinformation can be considered more severe than
no information because the person usually has a high
level of confidence in the wrong answer. Bruno’s
research and system has provided educators and
students with the means of doing this. IRT is a two-
dimensional scoring system in which students are
measured against an information standard. Tests using
this system are objectively scored, and the student’s
confidence in his or her answer can be assessed.
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Table 1 Sample IEP Output

EXAMINEE INDIVIDUAL EDUCATION PLAN (IEP)
EXAMINEE NAME
EXAM NAME DIAGNOSTIC 90 AUDIT FOR EXPERIMENT
SCHOOL NAME Cognitive
INSTRUCTOR NAME PROFESSOR 
NUMBER OF QUESTIONS 30
PROCESSING CODE(A<<MCW-APM B-MCW-APM AND RW) = A

FORMATIVE EVALUATION
Examinee misinformation on examination concepts where you were sure of an answer but were wrong. Have instructor
explain why the answer you thought was correct was wrong and why another answer was correct.

Item State DESCRIPTION—INSTRUCTIONAL CROSS REFERENCE
2 M Discrimination Between Types of Variables
6 M Characteristics of Validity: Common Problems
7 M Confounding of Independent and Dependent Variables

10 M Identification of Causal Relationships: Balancing
12 M Use of Random Number Table
18 M Confounding in an Experiment
24 M Planned Comparison-Scheffé Test
28 M Identification of Main Effects From a Table or Graph
29 M Identification of Interaction Effects From a Table or Graph

Examinee uninformed (lacks information): items on examination concepts where you said you didn’t know. Have your
instructor explain these concepts to you.

Item State DESCRIPTION—INSTRUCTIONAL CROSS REFERENCE
5 U Validity Definition in Experimental Designs

15 U Difference Between Randomize vs. Factorial Randomized Group
20 U Definition of Counter Balance Design
22 U Recognition of a Reversal Design

(Continued)



With Bruno’s development, multiple-choice tests
are created with three choices: a, b, and c. However,
the test taker is allowed to make one of 13 choices 
(a, b, c, d, . . . . , m) with the standard form and seven
choices (a, b, c, ab, bc, ac, ?) on the simplified form.
The choice triangle developed by Bruno is given in
Figure 1.

The test taker can choose any of the letters. The let-
ters in between a and b allow the test taker to state that
he or she feels the right answer is between a and b.
Letters closer to a indicate that the person is “leaning”
more toward a. The same interpretation applies for the
triangle leg a and c and the leg for b and c. Choice m
would be chosen if the test taker does not know

enough to answer the question. This choice enables
the person to say that he or she “does not know.”
Unlike other testing methods that have no real correc-
tion for guessing, Bruno’s IRT does. Test takers are
encouraged not to guess and to use choice
m if they have to. With choice m, there is no penalty.
However, a person who chooses the wrong answer
or the wrong leg of the triangle is severely penalized.
Using this method of testing, a correct answer is
assigned a weight of 30 points, and an incorrect
answer is given a weight of –100 points. Bruno
and his associates have worked out the theory and
mathematics of this; it is complex and beyond the
level of discussion here. However, there is proof that
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(Continued)

Examinee partially informed: Have your instructor review these concepts with you.

Item State DESCRIPTION—INSTRUCTIONAL CROSS REFERENCE
4 P Reliability Definition in Experimental Design

11 P Definition of a Double Blind Study
16 P Definition of Quasi-Experimental Design
17 P Identify Type of Design Used in an Experiment
19 P Characteristics of an Independent Variable
21 P Controlling a Single Subject Design
25 P One-Way ANOVA Definition

Examinee fully informed concepts. Concepts that you said you were sure of the answer and that answer was correct. You
have reliable information in these areas. Keep up the good work.

Item State DESCRIPTION—INSTRUCTIONAL CROSS REFERENCE
1 I Definitions Independent and Dependent Variables
3 I Identification of Independent and Dependent Variables
8 I Misuse of Correlation Statistic
9 I Definition of a Control Variable in an Experiment

13 I Concept of Random Sample and Randomization
14 I Controlling Extraneous Variables in an Experiment
23 I Identifying a Type of Research Design
26 I Definition of Nonparametric Test
27 I Recognition of Possible and Impossible r Values
30 I Identification of Simple Effects From a Table or Graph

Student Cognitive Map

Percent Informed 0.333
Percent Uninformed 0.133
Percent Part Informed 0.233
Percent Misinformed 0.300



three-choice items are theoretically sound, and that
the penalty for obtaining the wrong answer is appro-
priate. In fact, the mathematics of the scoring system
has been worked out so that if the test taker elects
not to use the partial information choices and answers
every item with an a, b, or c choice, the final score
will be exactly equivalent to the traditional right-
wrong scoring. Using this method of testing, a correct
answer is assigned a weight of 30 points, and an

incorrect answer is given a weight of –100 points.
Partially correct answers are assigned +10, +20,
or –10 points.

Bruno has successfully applied this method with
flight controllers at the Federal Aviation Admini-
stration, critical care nursing, and defense systems
such as NATO. On the academic level, it has been
used to properly place introductory biology students
into appropriate labs and discussion sections. It has
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Point Awards for Information
Referenced Testing TM

Response
ABC
EHK
(DL), (FG), (IJ)
M

Correct
+ 30 
+ 10 
+ 20 or −10 
0

Incorrect
− 100 
− 100 
− 100 
0

Letter If If

IMPORTANT DIRECTIONS
FOR MARKING ANSWERSEXAMPLES

WRONG

A B C D E1

WRONG

A B C D E3

RIGHT

A B C E4

WRONG

A B C D E2

Use black feed pencil
only (No. 2)

Do NOT use ink or 
ballpoint pens

Make heavy black marks
that fill the circle completely

Erase cleanly any answer
you wish to change

Make no stray marks on
the answer sheet 

Figure 1 Sample Answer Sheet With Response Triangle



helped instructors determine what the students lack in
information from prerequisite courses. It has also
been used to help the low-achieving student.

The IRT can be considered a controversial method
because it is not based on classical test theory or the
traditional methods of evaluation and test construction.

—Howard B. Lee

See also Measurement
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Abedi, J., & Bruno, J. E. (1989). Test-retest reliability of com-
puter based MCW-APM test scoring methods. Journal of
Computer-Based Instruction, 16, 29–35.

Adams, T. (2005, October). Eliminating the guesswork in assess-
ment. Retrieved July 5, 2006, from http://www.wpsmag.com/
content/templates/wps_article.asp?articleid=344&zoneid=38

Bruno, J. E. (1986). Assessing the knowledge base of students
with admissible probability measurement (APM): A micro-
computer based information theoretic approach to testing.
Measurement and Evaluation in Counseling and Develop-
ment, 19, 116–130.

Bruno, J. E. (1989). Monitoring the academic progress of low
achieving students: A analysis of right-wrong (R-W) versus
Information Referenced (MCW-APM) formative and sum-
mative evaluation procedures. Journal of Research and
Development in Education, 23, 51–61.

Bruno, J. E., & Dirkzwager, A. (1995). Determining the opti-
mal number of alternatives to a multiple-choice test item:
An information theoretic perspective. Educational &
Psychological Measurement, 55, 959–966.

Cronbach, L. J. (1970). Essentials of psychological testing (3rd
ed.). New York: Harper & Row.

Confidence-based learning: http://www.knowledgefactor.com
Information Referenced Testing research program: http://www

.gseis.ucla.edu/faculty/bruno/rassessment.htm

INFORMATION SYSTEMS

INTERACTION READINESS SCALES

The Information Systems Interaction Readiness
(ISIR) Scales are a set of self-reported scales that take
about 10 minutes to complete and assess user attitudes
toward interacting with given information systems
(IS). Because the scales provide an overall picture of
user experiences related to various mediated actions

in interacting with IS, they can be used to evaluate and
compare IS usability in terms of (input) interface,
output (interface), and (interaction) rules.

Corresponding to three mediated actions involved
in user-system interaction (i.e., using interface to enter
input, reading output to receive information, and fol-
lowing rules to communicate with a system), ISIR
Scales assess three subconstructs: Input Willingness,
Output Receptivity, and Rule Observance. For each, a
set of same items measures the affective, cognitive,
and behavioral components of user attitudes. To eval-
uate users’ typical feelings, beliefs, and intentions, all
items take the semantic differential (SD) form. That
is, each item is a pair of bipolar adjectives that elicits
responses over a seven-level range in between (from −
3 to 3, including zero).

There are 14 different SD items for each subcon-
struct: six affective, six cognitive, and two behavioral.
The selection of affective and cognitive items was
based on an understanding of users’ typical beliefs
and feelings in interacting with IS from a survey
study. These items are categorized into Evaluation,
Power, and Activity (EPA) dimensions as commonly
found in SD scales, in addition to the Intention dimen-
sion for the behavioral component (Table 1).

The implications of these dimensions in the context
of user-system interaction are specified in the instruc-
tions so that subjects can clearly understand the mean-
ing of each item. For example, part of the instructions
for Input Willingness scales reads: When I use [system
name] interface to enter my input, . . . I am _____ to
do so (disinclined/inclined; hesitant/ eager); . . . I feel
_____ toward the interface (dislike/like; rejecting/
accepting); . . . I find that the utilization of my input is
_____ (foolish/wise; harmful/ beneficial). The word-
ing in the above example indicates, subsequently, the
Intention dimension of the behavioral component, the
Evaluation dimension of the affective component, and
the Power dimension of the cognitive component.

ISIR Scales have exhibited excellent psychometric
properties in terms of content, predictive, and construct
validities. An overall ISIR score, as well as subscores at
different levels, can be calculated by summing the indi-
vidual item scores or taking simple/weighted averages.
The direction (− or +) and magnitude of the ISIR
scores indicate whether and how the users are prepared
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and willing to interact with given IS. Moreover, the SD
items and structure (Table 1) may also be applied to the
study of other mediated human activities.

—Jun Sun

See also Semantic Differential Scale

Further Reading

Crites, S. L., Jr., Fabrigar, L. R., & Petty, R. E. (1994).
Measuring the affective and cognitive properties of atti-
tudes: Conceptual and methodological issues. Personality
and Social Psychology Bulletin, 20(6), 619–634.

Sun, J. (2005). User readiness to interact with information
systems—A human activity perspective. In ProQuest
Digital Dissertations (www.umi.com).

INFORMED CONSENT

Informed consent refers to permission granted by a
legally competent person to participate in a research

investigation involving human subjects.
In health care settings, informed con-
sent also refers to a communication
process used when seeking permission
to provide physical or psychological
health care services. Informed consent
promotes human dignity by upholding
the ethical principles of autonomy,
beneficence, and justice.

Moreover, effective informed con-
sent procedures enhance public trust in
the scientific enterprise. From ethical
and legal perspectives, consent is not
considered to be truly informed unless
the following criteria have been met:
(a) disclosure, (b) comprehension, (c)
voluntary decision, (d) legal compe-
tence, and (e) documentation. This arti-
cle provides a historical overview
followed by a discussion of the five cri-
teria necessary for obtaining informed
consent.

Legal protection for human research
participants is a recent historical devel-

opment. In the early 20th century, research and med-
ical consent were typically constrained to verbal
assent or a brief written permission agreement. Most
physicians and researchers operated under the benev-
olence model, also known as the “doctor knows best”
doctrine. From 1900 to the 1940s, it was thought that
lay people were unable to fully comprehend complex
procedures. Explanations of intended research objec-
tives and procedures were cursory, at best. Human
rights abuses sometimes occurred, and ethnic,
cultural, and religious minority populations were
particularly vulnerable. The Tuskegee experiment
illustrates potential problems when consent is not
fully informed. From the 1920s to the early 1960s, a
longitudinal study examining the naturalistic course
of syphilis was conducted at the Tuskegee Institute.
Full disclosure was not provided to the 400 African
American male volunteers who were offered free
medical treatment in exchange for their participation.
Although the participants were aware that the purpose
of the study was to examine “bad blood” over several
years, they were not explicitly informed that some
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Table 1 Semantic Differential (SD) Items and Structure for an
ISIR Subconstruct

Component Dimension-Implication SD Items

Affective Evaluation—mediator* dislike/like; rejecting/
accepting

Activity—operation tense/relaxed; bored/
on mediator** excited

Power—goal annoyed/content; sad/
accomplishment*** happy

Cognitive Evaluation—mediator useless/useful; imperfect/
perfect

Activity—operation difficult/easy; unsafe/safe
on mediator

Power—system foolish/wise; harmful/
cooperativeness beneficial

Behavioral Intention—overall disinclined/ inclined;
mediated action hesitant/eager

Notes: *A mediator can be interface, output, or rules. **An operation on
mediator can be using interface, reading output, or following rules. ***A goal
is the purpose of an operation; for example, using interface is for the purpose
of entering input as one wishes. In a similar way, the power dimension for
the cognitive component is related to how well users perceive that information
systems help them attain the goal.



volunteers would be injected with syphilis. Research
findings were published in several prestigious medical
journals without ethical questions being raised. When
eventually confronted, the white investigators argued
that they had mistakenly believed that African
American recruits understood that “bad blood” specif-
ically referred to syphilis.

During World War II, concentration camp inmates
were involuntarily subjected to horrendous medical
research, including experimental surgeries, exposure
to extreme heat and cold, and other cruel acts. Many
painful deaths ensued. These atrocities were later
revealed during war crime trials and contributed to the
development of the highly influential Nuremberg
Code (1946). The Code declared voluntary consent to
be a universal human right and also described ele-
ments necessary to ensure knowledgeable decision
making in what is now known as informed consent.
This decisive document had a far-reaching influence
on research practice. The Universal Declaration of
Human Rights (1948), Declaration of Helsinki
(1964), and Belmont Report (1979) further supported
human participant rights, including informed consent.
Professional ethical codes, such as those developed by
the American Psychological Association, also empha-
sized the need for informed consent. In 1972, govern-
ment regulation of human research was formalized
with the establishment of the Department of Health
and Human Services. This agency ensures compliance
with federal regulations and policies, including
informed consent for human research participation. It
also oversees local institutional (or internal) review
boards (IRBs) authorized to review research proto-
cols, including informed consent procedures.
Currently, informed consent must be obtained before
an individual participates in a research protocol unless
the project meets federal exemption criteria or has
been granted an IRB exception. When written consent
is required, the research investigator maintains the
responsibility for ensuring that the five fundamental
elements of informed consent were met.

Disclosure is the first basic element of the
informed consent process. The investigator must be
committed to providing the prospective research
subject with sufficient information to make a rational

and informed choice about whether or not to partici-
pate. The purpose of the research and types of proce-
dures should be described. The classic Milgram
Obedience Studies and Zimbardo Stanford Prison
Study failed to meet current disclosure expectations;
such deception is rarely justified in human research
today. If experimental deception is necessary, the
investigator should consider alternative procedures. If
alternative procedures are untenable, a justification
for the reasons why deception is necessary should be
prepared for IRB review. Consultation with federal
regulations and professional codes is recommended
when experimental deception is necessary. After dis-
closing the aims and procedures, information relevant
to the participation risk-benefit analysis is presented.
Disclosure of any reasonably foreseeable risks, dis-
comforts, or inconveniences is mandated. If experi-
mental procedures involve more than minimal risk,
federal regulations mandate that the investigator pro-
vide an explanation of whether compensation or med-
ical treatments will be available if an injury occurs.
Then, reasonable benefits of participation are
described. The investigator should not amplify or
exaggerate the potential benefits. Confidentiality
assurances and exceptions, such as intentions to harm
self or others, mandated reports of suspected child
abuse, or elder/dependent adult abuse, must also be
explained. For example, when conducting parent-
child communication research, prospective partici-
pants should be made that aware that confidentiality
would be breached if child abuse is suspected. Court-
compelled disclosures should also be explained as a
potential confidentiality exception. Research commu-
nications on the use of illegal substances could be
subpoenaed unless the investigator has obtained spe-
cial federal confidentiality assurance documentation.
Federal regulations also require disclosure of a con-
tact person in the event of questions about the experi-
mental procedures or the participant’s rights as a
human subject, or to report a research-related injury.
Some states impose additional disclosure require-
ments, such as the name of the sponsor or funding
source, the name of an impartial third party for regis-
tering complaints, or a separate Participant Bill of
Rights form.
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Comprehension is the second basic element of the
informed consent process. Both oral and written
explanations should be easy to understand. Compre-
hension may be facilitated by presentation of the aims
of the research near the beginning of the document,
followed by a logical, chronological explanation of
the sequence of events. If the procedures are complex
or involve substantial time, the use of easy-to-under-
stand and meaningful flow charts, time lines, outlines,
or infographics (an illustrational explanation of exper-
imental procedures or process) is highly recom-
mended to enhance understanding. Careful review of
the written informed consent document is recom-
mended to ensure that a reading level of 8th grade or
below is used for all explanations. Clear definitions
for scientific, medical, or legal terminology are
needed. If photographs or drawings are included in
brochures or infographics, culturally diverse models
are recommended. A type size of 12 points or larger
will enhance ease in reading for those with visual
impairments. During the disclosure process, the
prospective participant should be encouraged to read
the document thoroughly and ask questions. When the
experimental procedure is complex, the potential
subject should be encouraged to reread the form.
Time to discuss the intended research with family or
friends may also be valuable in facilitating under-
standing and alternative opinions on the intended
research. Asking the prospective participant brief
questions such as, “Tell me in your own words what
this research is doing,” “What do you think will hap-
pen during this study?” and “What are the risks you
might deal with if you take part in this study?” can be
useful for determining whether the person truly under-
stands the aims, procedures, risks, and benefits. In
some medical research trials, video presentations or
interactive computer demonstrations are used to sup-
plement the oral and written explanations of the
researchers.

Voluntary decision is the third element in the
informed consent process. Coercion, or undue influ-
ence, must be avoided at all costs. Although financial
reimbursements for time, travel, and other expenses
are permissible, the amount should be reasonable.
When excessive, such reimbursements will be

viewed as undermining autonomous decision mak-
ing. For incarcerated populations, research participa-
tion should not be tied to favorable parole
judgments. Federal regulations mandate that the
written statement must explicitly state that participa-
tion is voluntary and that refusal to participate will
involve no penalty or loss of benefits to which the
subject is otherwise entitled. A parallel statement
that subjects may discontinue participation at any
time without penalty or loss of benefits is also
required by federal regulations. Once the informa-
tion has been disclosed and comprehended, the
prospective participant can decide whether or not to
participate. Ample time should be provided so that
the prospective subject can fully evaluate the infor-
mation presented and engage in a meaningful risk-
benefit utility analysis. Some ethicists advocate that
there be at least a one-day deferral between the time
the study is explained and the actual granting of
written consent by the prospective participant.
Investigators uphold the ethical principle of auton-
omy by fully supporting the invited party’s indepen-
dent decision making and choice to decline or
participate in the research protocol.

Competence to make an informed decision is the
fourth element of the consent process. It refers to the
ability to understand the aims and procedures as well
as the ability to make a rational utility judgment that
weighs anticipated risks relative to anticipated bene-
fits. Legal capacity is determined by a court of law,
rather than investigator opinion or judgment. Adults,
aged 18 and above, are typically capable of making
financial and health care decisions unless cognitively
impaired. A legal or personal representative may be
assigned when a person has long-lasting cognitive
impairments (such as dementia, severe brain damage,
or moderate to profound mental retardation) or deci-
sion making is temporarily impaired (active suicide
ideation, imminent violence potential, or currently
psychotic). In such cases, the legal jurisdiction may
permit substitute consent by the party who is legally
responsible for the impaired person. Moreover,
minors, unless legally emancipated, require the sig-
nature of a parent or legal guardian on informed con-
sent documents. When working with minors, it is
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important to consult state regulations because minors
are sometimes permitted to consent to medical or
psychological outpatient care under certain limited
circumstances. In cases of substitute consent, it is rec-
ommended that the investigator attempt to disclose
information about the study and, when possible,
follow the desires and preferences of the legally inca-
pacitated party.

Consent, or approval to participate, is the fifth
essential element of the informed consent process. In
most cases, IRB approval will require written docu-
mentation that permission was granted. However, an
IRB may waive written documentation in accordance
with certain government exceptions (see 45 CFR
46.17 and 21 CFR 56.109). When written documenta-
tion is required, approval by the subject or legally
authorized representative is indicated by a signature
and date. The investigator retains the original docu-
ment while providing a copy to the subject or legally
authorized representative.

Some bioethicists argue that the informed consent
process is inherently flawed. In complex clinical
trials often found for new medical procedures or
consideration of investigational medical devices, the
invited subject may not fully understand the medical
information presented. Moreover, consent forms may
run four pages or longer. In such cases, the prospec-
tive participant may not fully engage in a personal
risk-benefit utility analysis. The prospective partici-
pant may rely on a credible investigator or a trusted
physician. This may lead to a decision to agree to
participate in the research protocol without fully
understanding or weighing out the consequences.
Furthermore, clinical research trials often are held in
large university-affiliated hospitals. Prospective
subjects may trust the integrity of the university cre-
dentials and feel an altruistic expectation to partici-
pate. Furthermore, a lengthy and complex research
procedure requires patience and time to evaluate. In
some settings, there may be pressure to shorten the
decision-making time if a frustrated person says, “I’ll
sign these papers even though I don’t understand
exactly what you’ll be doing.” Despite these potential
problems, disclosure, comprehension, voluntary deci-
sion, legal competence, and documented permission

are invaluable in promoting human dignity and
maintaining confidence in the integrity of scientific
endeavors.

—Carolyn Brodbeck

See also Ethical Issues in Testing; Ethical Principles in the
Conduct of Research With Human Participants

Further Reading

American Medical Association. (2004). Code of medical
ethics: Current opinions with annotations, 2004–2005.
Chicago: Author.

American Psychological Association. (2002). Ethical princi-
ples of psychologists and code of conduct. Washington,
DC: Author.

Arnold, R., & Lidz, C. (1995). Informed consent: Clinical
aspects of consent in health care. In W. Reich (Ed.),
Encyclopedia of bioethics (Vol. 3, Rev. ed., pp. 1250– 1256).
New York: Macmillan.

Beauchamp, T., & Childress, J. (1994). Principles of biomed-
ical ethics (4th ed.). New York: Oxford University Press.

Faden, R., & Beauchamp, T. (1986). A history and theory of
informed consent. New York: Oxford University Press.

Fischman, M. (2000). Informed consent. In B. Sales & 
F. Susan (Eds.), Ethics in research with human participants
(pp. 35–48). Washington, DC: American Psychological
Association.

U.S. Food and Drug Administration. (1998). Information
sheets: A guide to informed consent. Retrieved on August
27, 2005, from http://www.fda.gov/oc/ohrt/irbs/informed-
consent.html

Simplification of informed consent documents: http://www
.cancer.gov/clinicaltrials/understanding/simplification-of-
informed-consent-docs

INSTRUMENTAL VARIABLES

For a linear regression model, the consistency of the
ordinary least squares (OLS) estimator depends heav-
ily on the assumption that the explanatory variables
and the statistical disturbances are uncorrelated. When
the regressors are uncorrelated with the disturbance
term, we say that we have exogenous explanatory
variables, whereas a regressor correlated with the
error term is said to be endogenous. The terms
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exogenous and endogenous originated in simultane-
ous equations analysis, but the term endogenous
explanatory variable covers any case where a regres-
sor is correlated with the disturbance term. A usual
source of endogeneity is omission of important vari-
ables. Other sources include simultaneity with one
equation forgotten and autoregressive models with
serially correlated errors.

When an explanatory variable is endogenous, it is
not plausible to separate variation in the explanatory
variable from variation in the disturbance term, and as a
result, OLS yields a biased and inconsistent estimator.
In order to separate the variation in the explanatory vari-
ables from the variation in the error term, we need more
information, called instrumental variables or simply
instruments. In linear models, any variable uncorrelated
with the error term is an instrumental variable.

Example

Suppose that we are interested in estimation of the
demand curve for a good, and gather data for the price
P and the quantity purchased Q of the good. One might
set up the following model for the demand curve:

1nQD = α + β1nP + u D,

and run a regression of log quantity on log price.
However, although the above equation describes the
functional relationship between the price P and the
quantity demanded QD, the collected price and quantity
data are equilibrium prices and equilibrium quantities,
that is, the solutions to the simultaneous equations

1nQD = α + β1nP + uD,

1nQS = γ + δ1nP + uS,

1nQD = 1nQS,

where the first equation is the demand equation, and
the second is for supply. In other words, although we
are interested in the slope of the demand curves D1,
D2, D3, and so on in Figure 1, the observed data are
the equilibria E1, E2, E3, and so on, which are affected
by the demand shocks uD and the supply shocks uS.
Therefore, least squares regression using the observed

data is unlikely to yield an unbiased estimator for the
demand function.

An intuitive solution to this problem is to consider 
a third variable that shifts the supply curve but
does not affect the demand. Then, the equilibrium prices
and quantities trace out the demand curve as shown in
Figure 2, and proper exploitation of the additional vari-
able will lead to a consistent estimator. This variable,
the instrumental variable, is correlated with the price P,
but is uncorrelated with the demand shocks uD.
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Figure 1 Demand and Supply When Both Demand
and Supply Shocks Are Present

Figure 2 Demand and Supply With Only Supply
Shocks

Note: A variable that affects only supply is an instrumental
variable.



Instrumental Variable Estimation

Consider the linear regression model

yt = xt′ β + ut = x′1t β1 + x′2t β2 + ut, t = 1, . . . ,Τ,

where the variables in x1t are exogenous and x2t is 
the vector of endogenous regressors. By definition,
the exogenous variables x1t are all uncorrelated
with the error term, so these are all instruments. In
addition, we may consider collecting additional vari-
ables z2t, which are also uncorrelated with the errors.
Together, the instruments are zt = (x′1t, z′2t)′, and by
assumption, these are uncorrelated with the errors ut;
that is, Eztut = 0, or equivalently,

Ezt(yt – x′t β) = 0. (1)

We assume that this condition is satisfied at a unique
parameter vector β, in which case β is said to be iden-
tified by the instruments. We also assume that the vari-
ance-covariance matrix of zt is nonsingular, meaning
that no elements of zt are perfectly correlated.

EExxaaccttllyy  IIddeennttiiffiieedd  CCaassee

If the number of instruments is the same as the total
number of explanatory variables (exogenous and
endogenous), then the system is said to be exactly
identified, and we can estimate β using the method of
moments based on Equation 1:

An explicit form solution is available in this case,
with

where ∑T
t=1ztx′t is required to be invertible. This

estimator β̂ is called the instrumental variable (IV)
estimator.

TTwwoo--SSttaaggee  LLeeaasstt  SSqquuaarreess

When there are more instruments than explanatory
variables, the system is said to be overidentified,
and there are a few distinct ways of generalizing
IV estimation. The most widely used method is two-
stage least squares (TSLS) estimation or generalized
instrumental variable (GIV) estimation, which esti-
mates the parameter β using the following two-stage
procedure:

1. First-stage regression: Regress each endogenous
explanatory variable individually on the instruments
(i.e., the exogenous regressors and any additional
instruments), and compute its fitted values.

2. Second-stage regression: Regress the dependent
variable yt on the exogenous regressors and the fitted
values for each of the endogenous variables obtained
from the first-stage regressions; that is, using OLS,
estimate

yt = x′1t β1 + x̂′2t β2 + ut ,

where x̂2t are the fitted values from the first-stage
regressions. The TSLS estimator is the estimator
β̂ ′ = (β̂ ′1, β̂ ′2) from the second-stage regression.

Letting X, y, and Z denote the matrix of regressors,
the vector of the dependent variable, and the matrix of
instruments, respectively, the TSLS estimator is

β̂ = (X ′PZX)–1X′PZy, (2)

where PZ = Z(Z′Z)−1Z′. When the number of instru-
ments equals the number of exogenous and endo-
genous variables (i.e., the number of additional
instruments equals the number of endogenous vari-
ables), the TSLS estimator is algebraically equivalent
to the IV estimator of the exactly identified case.

LLiimmiitteedd  IInnffoorrmmaattiioonn
MMaaxxiimmuumm  LLiikkeelliihhoooodd

The TSLS estimator makes use of the information
that the instruments are uncorrelated with the dis-
turbance term. We can make a further assumption
that the endogenous variables are jointly normally

β̂ =
(

T∑

t=1

ztx
′
t

)−1
T∑

t=1

ztyt ,

1

T

T∑

t=1

zt(yt − x ′
t β̂) = 0.
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distributed and use maximum likelihood estimation
under proper constraints. The resulting estimator is a
limited information maximum likelihood (LIML)
estimator, which was derived by Anderson and
Rubin in 1949 in their paper published in the Annals
of Mathematical Statistics. In matrix form, the
model is

y = X1β1 + X2β2 + u,

where X1 is the matrix of exogenous regressors and X2

is the matrix of endogenous regressors (all with T
rows). Let Z2 be the matrix (with T rows) of extra
instrumental variables. Then the LIML estimator for
β2 equals the least variance ratio estimator, which
minimizes the variance ratio

where MA = 1 – A(A′A)−1A′ for any matrix A such that
(A′A)−1 exists. The LIML estimator for β1 is β̂1 =
(X′1X1)

–1X′1(y – X2 β̂2), where β̂2 is the LIML estimator
for β2.

When the number of instruments is equal to the
number of regressors, the LIML estimator is identical
to both the IV (of the exactly identified case) and
TSLS estimators. However, when there are more
instruments than regressors, the LIML estimator is
different from the TSLS estimator. The TSLS and
LIML estimators have the same limit distribution, and
therefore TSLS is efficient when the normality
assumption is true. Because of the efficiency of TSLS,
its simplicity, and because it relies on much weaker
assumptions, TSLS is usually preferred by practition-
ers. However, when the correlation between the
endogenous regressors and the extra instruments is
weak, it has been shown that LIML is less biased than
TSLS, so in this case, the LIML estimator is preferred.

In the case where the estimation equation is nonlin-
ear in the parameters—for example, ut = f(xt , yt , β)
with Eztut = 0—we use nonlinear IV estimation,
which is an application of generalized method 
of moments based on the moment conditions 

Ezt f(xt,yt,β) = 0. When a system of equations is
considered, the TSLS estimation is extended to three-
stage least squares estimation, and the LIML estima-
tion to full information maximum likelihood (FIML)
estimation. Details can be found in William Greene’s
econometrics textbook, among others.

Properties of the IV Estimators

The sampling distribution of the TSLS estimator is
straightforwardly obtained from Equation 2. More
specifically, under the condition that the observations
are iid and Eztut

2z′t = σ2Σzz, where σ2 = Eut
2 and Σzz =

Eztz′t, we have β̂ →p β and

where σ2 is consistently estimated by σ̂ 2 = T–1ΣT
t=1

(yt – x′tβ̂)2, and Σzz and Σzx = Eztx′t are consistently esti-
mated by T–1 ΣT

t=1zt z′t and T–1 ΣT
t=1zt x′t , respectively.

Asymptotically valid tests are implemented naturally
from these results. The asymptotic distribution of
the LIML estimator is the same as that of the TSLS
estimator.

For the above asymptotic behavior of the IV esti-
mators (such as consistency and asymptotic normal-
ity), we require that the limit Σzx of T –1 ΣT

t=1ztx′t be
nonsingular. If the observations are iid, then it follows
that Eztx′t is nonsingular, that is, each instrument has
some nonnegligible explanatory power for at least one
regressor (with the other instruments held fixed), and
all the regressors are sufficiently explained by the
instruments.

When the additional instruments z2t are weakly cor-
related with the endogenous regressors, it follows that
Σzx is nearly singular, and the problem of so-called
weak instruments arises. In this case, the IV estima-
tors are biased and the inferences based on the above
asymptotic results are invalid. In addition to the pres-
ence of weak instruments, if some instruments are
mildly endogenous (i.e., they are slightly correlated
with the errors), the bias of the IV estimator may be
larger than the bias of the OLS estimator, and there-
fore special caution is required. The problem of weak
instruments is well explained in J. Bound, D. Jaeger,

√
T (β̂ − β) ∼̇ N

(
0, σ 2(�′

zx�
−1
zz �zx)

−1
)
,

� = (y − X2β2)
′MX1(y − X2β2)

(y − X2β2)′M[X1,Z2](y − X2β2)
,
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and R. Baker’s paper in the Journal of the American
Statistical Association.

Specification Tests

TTeessttiinngg  tthhee  VVaalliiddiittyy  ooff  IInnssttrruummeennttss

The consistency and limit normality properties of
the IV estimators rely on the validity of the instru-
ments. In particular, we require that (a) the instru-
ments are uncorrelated with the errors (legitimacy)
and (b) the instruments and the regressors are strongly
correlated (relevance).

When there is a single endogenous regressor
(together with an arbitrary number of exogenous
regressors), relevance of the instruments reduces to
the condition that the extra instruments and the
endogenous regressor are strongly correlated after the
exogenous regressors are controlled for. This can be
tested statistically by regressing the endogenous
regressor on all the instruments and testing the null
hypothesis that the extra instruments z2t have no
impact on the endogenous regressor. More specifi-
cally, let x2t be the single endogenous regressor and 
zt = (x′1t, z′2t)′ be the instruments. The first-stage regres-
sion is run on

x2t = π ′1x1t + π ′2z2t + vt ,

and an F test is conducted to test H0: π2 = 0. If this null
hypothesis is rejected with a large F test statistic, then
the extra instruments are relevant for the endogenous
regressor. This test is usually called the first stage 
F test.

Testing the legitimacy of the instruments (H0: Eztut

= 0) is also possible if there are more instruments than
regressors, that is, if the system is overidentified. A
widely used method is an LM test, which computes
TR2, where T is the sample size and R2 is the 
R-squared in the regression of the residuals ût = yt –
x′t β̂ on the exogenous variables zt. Here, β̂ may be the
TSLS estimator, or any other efficient estimator, such
as LIML. The resulting LM test statistic is approxi-
mately χ2 distributed with degrees of freedom equal to
the degree of overidentification, that is, the number of
instruments minus the number of regressors. A large
value is taken as evidence that some instruments

are not exogenous. This test is available only under
overidentification, which is the reason the test is
called the overidentification test. Under exact identifi-
cation, the test statistic is equal to zero, so no testing
is available.

TTeessttiinngg  EEnnddooggeenneeiittyy  ooff  RReeggrreessssoorrss

If all the regressors are exogenous, then the OLS
estimator is consistent (and so are the instrumental
variable estimators). If some regressors are endoge-
nous, then the OLS estimator is inconsistent while the
IV estimators remain consistent. However, because
the instrumental variable estimators make use of
information about the regressors indirectly through
the instruments, whereas the OLS estimator directly
uses the regressors themselves, when there is no endo-
geneity, the OLS estimator is more efficient than the
IV estimators. Therefore, it is useful to test whether or
not the regressors are exogenous (H0: Extut = 0).

A general test from Hausman that compares the
OLS estimator and the TSLS estimator is available,
because

where V̂OLS and V̂TSLS are the estimated covariance
matrices of β̂OLS and β̂TSLS, respectively, and K is the
number of regressors. If the test statistic is large, we
conclude that some regressors are endogenous and
that the OLS estimator is inconsistent; if the test sta-
tistic is small, there is no endogeneity and OLS is
consistent.

When only one regressor is endogenous, a simpli-
fied test is available based on the idea that the part of
the endogenous regressor correlated with the error
term is in the disturbance term of the first-stage
regression equation. This test is implemented by per-
forming a simple t test for H0: δ = 0 for the regression

yt = x′tβ + δ v̂t + errort ,

where v̂t are the first-stage regression residuals.

—Chirok Han and John Randal

See also Generalized Method of Moments

(β̂TSLS − β̂OLS)
′(V̂TSLS − V̂OLS)

−1(β̂TSLS − β̂OLS) → χ 2
K,
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INTELLIGENCE QUOTIENT

Few terms generate as much anxiety, or as much
controversy, as intelligence quotient (IQ). The term
is emotionally loaded and carries with it the conno-
tation of a fixed entity that resides in each person
to varying degrees and that, to a large extent, deter-
mines a person’s worth in the larger society. Yet, as so
often happens, the connotation of IQ today, 100 years
after the term was coined, represents something quite
different from the original meaning and spirit behind
the phrase.

Historical Background

Before Alfred Binet (1857–1911) and, to some extent,
Francis Galton (1822–1911), gradations of mental
worth were generally determined by physiological
indices, such as cranial capacity. Galton extended the
psychometric assessment of human qualities in many
directions, including the assessment of intellect with
various response time measures; however, Binet’s
work had the single most significant impact on the
conceptualization of IQ.

Binet was commissioned by the French govern-
ment to assist with the identification of students who
were unlikely to benefit from ordinary schooling and

therefore should be offered remedial or special
education. Having become quite discontented with the
utility of cranial measures, Binet searched for some-
thing more definitive. His early ideas for developing a
test of intelligence drew heavily from one of his coun-
trymen, Blin, who had developed a series of structured
questions that were designed to assess the judgment
abilities of the individual.

It is important to note that Binet was very explicit
in stating that the scores derived from his tests were
rough, that they were not intended for use in ranking
normal children, and above all else, they were indica-
tors of current functioning and did not speak to the
past or future capabilities of the child. An educator at
heart, Binet was a strong believer in cognitive modifi-
ability, a view that suggests that intelligence is not 
a fixed quantity, but one that can be modified and
enhanced. This view tends to sit in stark contradiction
with many modern theories of intellectual ability,
which suggest that intelligence is an innate and rela-
tively fixed capacity.

As part of his remedial education programs, Binet
advocated what he called exercises in “mental
orthopaedics.” These were based on the belief that one
first needed to learn how to learn. He linked increased
academic performance as a function of training to an
increase in intelligence. Binet was also concerned that
scores on his tests should not be misinterpreted, and
he cautioned overzealous teachers against the tempta-
tion to use the test results to get rid of unruly or unin-
terested students.

The Problems of
Measuring Intelligence:

The Appearance of Mental Age

Binet recognized that when he added up the marks on
his scales, the score in and of itself was unable to tell
him very much about the ability of the individual.
What was needed was some way to compare a child’s
score with some benchmark. Binet was particularly
interested in disentangling native intelligence from
the effects of schooling; thus, tests of educational
achievement would not serve as an appropriate com-
parison. Binet recognized that this benchmark needed
to be empirical, because he was rightfully cautious
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about accepting the evaluations of parents and
teachers too literally, believing they were susceptible
to any number of biases (e.g., the protective parent
might exaggerate the capacity of his or her child; a
teacher wanting to minimize troubles in his or her
classroom may provide an underwhelming evaluation
of the child). Furthermore, without some clearly
defensible and replicable criterion that could be
agreed upon, meaningful assessment of change would
not be possible.

With this in mind, Binet set out to establish a
replicable, empirical criterion for grading intelli-
gence. The first problem that needed to be addressed
was the generally accepted observation that intelli-
gent behavior tends to increase with age. The line of
reasoning that Binet pursued to deal with this is
very illuminating and, although subsequently modi-
fied and improved, serves as an exemplary model of
the application of sound logic and experimentation
to the investigation of human ability. Binet, along
with his student Theodore Simon, administered his
tests to children of different ages and collated their
scores. They then ranked the tests according to diffi-
culty. Out of this work, the term mental age was
coined. Mental age was defined as the average age of
a child of normal intelligence who could pass the test.
It is significant that the chosen comparisons were
normally functioning children. Hence, regardless of
his or her age, a child who was able to pass a test that
a normal child was able to pass at 5 years old 
was assigned a mental age of 5. This meticulous
process of establishing benchmarks for comparing
individuals still informs modern methods of test
development, albeit in more sophisticated forms. We
call this process test standardization, and the bench-
marks norms.

Problems With Mental Age
and the Advent of the IQ

Almost immediately, mental age ran into problems.
Consider two individuals with the same mental age of
9 years; the first is 18 years old and the second is 6.
The 18-year-old is likely to think qualitatively differ-
ently from the 6-year-old, even though they have the
same mental age—their behaviors, judgments, and

processes are simply different. The solution as to how
to evaluate such differences meaningfully was to
consider the ratio of mental age to chronological
age—this ratio was called the intelligence quotient, or
IQ. Using this transformation, an 18-year-old with a
mental age of 9 would have an intelligence quotient of
0.50. The 6-year-old with the same mental age would
have an intelligence quotient of 1.50. To remove the
decimal and simplify reporting, the quotient was
multiplied by 100, and hence, the 18-year-old was
assigned an IQ of 50, and the 6-year-old an IQ of 150.
The lay person’s understanding of the IQ scale has
generally stayed the same ever since.

A more fundamental problem influenced the reli-
able application of IQ scores based on mental age.
This problem was particularly apparent when, con-
trary to Binet’s original intentions, the scale was
modified for use in the United States to rank normal
and superior children and adults. As mentioned
earlier, performance on the cognitive tests of Binet
increased with age. But intelligence does not keep
increasing indefinitely. At some point, an increase in
age will not contribute to any significant improve-
ment in performance on the test. Hence, to apply the
IQ to adults, the chronological age needed to be trun-
cated at a suitable point to allow the IQ scale to
remain meaningful. Determining the appropriate
point to truncate was complicated by the fact that the
mental age of a test is determined by its difficulty. An
easy test will have a low mental age and a harder test
a higher mental age. Researchers presented various
arguments to support their chosen point of truncation,
and for practical purposes, this seemed to address the
problem. However, the IQ score has an even more
troublesome limitation.

Problems With IQ and the
Advent of the Deviation IQ

One of the proposed benefits of the IQ over mental
age was that it facilitated comparison of individuals at
different ages. It was recognized that the useful inter-
pretation of IQ required a constancy of scores across
ages. That is, the ratio of mental age to chronological
age should be the same (i.e., 100) for a normal func-
tioning child no matter how old he or she is. However,
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Wechsler reports that in the 1937 version of the
Stanford-Binet intelligence scale, there was consider-
able variability in mean IQ scores across different
ages—the mean IQ for 2½-year-old children was
109.9, but only 100.5 at 14 years. Furthermore,
Wechsler argued that the variability (standard devia-
tion) in IQ scores also differed considerably at differ-
ent ages. The standard deviation in IQ scores for
12-year-olds was 20 IQ points, yet the standard devi-
ation was only 12.5 points for 6-year-olds. The reason
for this variation might be interpreted to lie with the
particular characteristics of the standardization sam-
ple chosen as the comparison group, and there is evi-
dence that this was recognized by researchers at the
time. However, the problem this presented remained a
significant obstacle to the reliable interpretation of IQ
scores and had the potential to render any compar-
isons of individuals over time or at different ages
meaningless.

The solution was an act of statistical ingenuity. As
Wechsler describes, scores on the test were just that—
scores. The numbers used to represent the scale are
always arbitrary in the sense that there is no fixed
point of origin—zero on the scale did not imply no
intelligence, and each test’s mean score depended on
its difficulty. Hence, mental age and IQ were just
numbers on some arbitrary scale determined by the
researcher. However, it is possible to mathematically
transform the scores on one scale to any other scale
without changing the rank ordering of individuals or
the relative distance between them. This is what we do
when we convert raw scores to standardized scores
(i.e., z scores) in, for instance, the process of testing
for statistically significant differences between two
population means. z scores always have a mean of
zero and a standard deviation of one, regardless
of what the original raw score scale is. Furthermore,
if we have two groups of people, say, 5- and 10-year-
olds, and we convert the raw scores of each group
separately to z scores, then the mean and standard
deviation will be the same (0 and 1, respectively) for
both groups. Herein lies the ingenuity. With this
simple transformation, we now have a scale that we
can set to have the same mean and standard deviation
for any number of subgroups. Furthermore, it is a simple
mathematical calculation to convert any z score to

have any other mean and standard deviation we
choose. In the context of assessing intelligence, the
obvious choice was the one that practitioners had
become accustomed to. Hence, raw scores were trans-
formed so that the mean for each age subsample of the
standardization group was set to be 100, and the stan-
dard deviation was set to be around 15 (different test
developers set slightly different standard deviations).
This new IQ is referred to as the deviation IQ. It does
not depend on a concept of mental age, and chrono-
logical age is used only for grouping.

An important caveat to this applies. The appropri-
ateness of the linear transformation to z scores and 
the subsequent interpretations are premised on the
assumption that the original raw scores fall along an
equal interval scale. Equal interval scaling between
scores is required if we are to make meaningful com-
parisons of differences. This has continued to be a
major controversy in psychological assessment gener-
ally and one that is rarely questioned in clinical appli-
cations of IQ.

Contemporary Perspectives on IQ:
A Cautionary Concluding Note

IQ is an aggregated score. To the extent that it is
meaningful to aggregate scores across disparate tasks,
such as Binet presented and as used in modern tests,
such a single score is potentially appropriate.
However, the current dominant theories suggest that
intelligence is multifaceted and composed of distinct,
though related, classes of ability. For instance, using
sophisticated statistical techniques, McArdle, Ferrer-
Caja, Hamagami, and Woodcock investigated the
developmental trajectories of a range of different cog-
nitive abilities. They interpreted significant deviations
in the trajectories of these separate abilities from the
IQ-equivalent trajectory to suggest that a description
of the cognitive system with only a single factor is
overly simplistic. Hence, although the notion of IQ
has become deeply ingrained in modern language,
great care is required with interpretation.

—Damian P. Birney and Steven E. Stemler

See also Intelligence Tests
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INTELLIGENCE TESTS

An intelligence test is a structured situation designed
to elicit information about the cognitive abilities of an
individual. The test may be administered individually
or in a group. Scores are usually reported on a scale in
which 100 indicates average intelligence. Scores are
scaled so that about the top 16% of the population will
receive scores of 115 or above, the top 2.5% will
receive scores of 130 or above, the bottom 16% 
will receive scores of 85 or below, and the bottom
2.5% will receive scores of 70 or below.

The typical intelligence test will have a variety of
items designed to tap different aspects of the person’s
cognitive abilities. Some of the items may ask for spe-
cific pieces of information, such as how many years
there are in a decade or how much change you would
receive if you bought an article costing $18.67 and

you gave the clerk a $20 bill. Other questions might
ask about objects missing or out of place in a picture;
still others would be tests for memory, such as repeat-
ing a list of 5 digits that have been read, or tests of
reasoning such as finding the right pattern piece to
complete a design. In an individually administered
test, the examiner asks each question, records the
answer, and makes a judgment as to the answer’s cor-
rectness or quality. Testing stops when the examinee
has failed to answer a specified number of questions
correctly. When the test is administered to a group, the
questions are often in multiple-choice format, and
responses are usually recorded by filling in bubbles on
the answer sheet. Answers are compared to a key, so
judgment as to correctness is avoided.

History of Intelligence Testing

Alfred Binet is generally given credit for creating the
first modern intelligence test in 1905. In the 1908 ver-
sion of his test, Binet introduced the idea of “mental
level” as a way to express the cognitive ability of a
child. The mental level of an item was the age at which
the average child could solve that particular problem.
An item that could be solved by the average child of
age 7 or above, but not by a child of age 6, was given
a mental level of 7 years. Items were grouped by men-
tal level, and testing ended at the first level where a
child could not answer any items correctly.

Henry Goddard popularized Binet’s 1908 test in
the United States. Several English-language versions
of the Binet scale were quickly developed by Goddard
and others. In 1916, Louis Terman published an
American edition that came to be called the Stanford-
Binet and soon replaced all competitors. This test pop-
ularized the term intelligence quotient, or IQ, because
scores were expressed as the ratio of mental level or
mental age, divided by actual or chronological age. A
child who tested “at age” received an IQ of 1.00. This
ratio came to be multiplied by 100 to remove the dec-
imal point, resulting in a scale where the average IQ is
100, the reference point still in use.

During World War I, American psychologists under
the leadership of Robert Yerkes produced two new
group-administered tests for screening Army draftees:
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a verbal form, Form Alpha, for those who could read
English, and a nonverbal form, Form Beta, for the
illiterate and those who did not speak English. Form
Alpha had eight subtests and Form Beta had seven.
Subtest scores were combined to produce a total 
IQ. After the war, the use of intelligence tests 
in schools, for college admissions, and in industry
spread rapidly. Soon, several million tests, mostly of
the group variety, were being administered each year.

In the 1930s, David Wechsler applied intelligence
testing in the psychiatric clinic of Bellevue hospital.
The Stanford-Binet had been developed for use with
children and Wechsler needed a test for adults. He
adapted for individual administration the tests from
the Army testing program, grouped the tests into a
verbal scale and a performance scale, and collected
norms for adults. The resulting test battery was called
the Wechsler-Bellevue Intelligence Scale. The verbal
subtests were combined to produce a verbal IQ, or
VIQ, and the nonverbal subtests yielded a perfor-
mance IQ, or PIQ. The verbal and performance scores
were combined to produce an overall description of
cognitive ability called full-scale IQ, or FSIQ. At the
same time, Wechsler rejected the IQ as the ratio of
mental age to chronological age and introduced the
scale that all intelligence tests use today, a scale with
a mean of 100 and a standard deviation of 15.

Theories of Intelligence

Binet had viewed intelligence as a unitary concept
that he equated with judgment. In 1904, Charles
Spearman had suggested that all cognitive perfor-
mances depended on a person’s level of general
cognitive ability, which he labeled g, and a specific
ability required by that task and no other, called s.
Spearman’s “two-factor theory” (of g and s) agreed
with Binet’s ideas and his test, but it was rejected and
harshly criticized by many American psychologists,
particularly Edward L. Thorndike and his students.

A major factor in the debate was the nature of the
battery of tests that each camp analyzed. Spearman
usually had a small sample of subjects, each of whom
had taken one test for each aspect of mental ability,
much like those included in the Army testing

program. Thorndike usually had a large sample who
had taken a much larger set of tests, several for each
type of ability. When L. L. Thurstone developed the
methods of factor analysis in the 1930s and analyzed
a very large battery of tests, he found that there were
about eight identifiable dimensions of cognitive
ability that he called the Primary Mental Abilities.
However, he also found that these primary mental
abilities were all positively correlated. Spearman
interpreted this finding that all mental abilities were
positively correlated as vindication of his theory.

The debate over the structure of cognitive abilities
continued through World War II. Thurstone’s factor
analytic results led to the development of batteries of
tests to assess his ability factors as well as others. The
most extreme of the multifactor theories was proposed
by J. P. Guilford in the 1950s. Guilford’s Structure of
Intellect model eventually postulated 120 relatively
independent abilities organized along the dimensions
of Contents, Products, and Operations. Today, the
main remaining parts of Guilford’s theory are the con-
cepts of divergent and convergent thinking. Divergent
thinking is the ability to see nontraditional solutions to
problems and is offered as a major component of
creativity, whereas convergent thinking, the ability to
extract a single correct solution to a problem, is seen
as key to performance on most intelligence tests.

Development of CHC Theory
and Related Tests

In the 1940s, Raymond B. Cattell identified two broad
classes of intellectual functioning: the ability to solve
new problems, which he labeled Fluid intelligence 
or Gf, and the fund of knowledge and information 
one had acquired from experience, which he called
Crystallized intelligence or Gc. Starting in the 1960s,
Cattell and his student, John Horn, expanded this
theory to include eight or nine broad abilities. A mas-
sive factor reanalysis of more than 400 previous stud-
ies led John Carroll to offer a similar theory in 1993.
Carroll’s three-stratum theory postulated about 70
narrow, specific abilities that could be grouped into
nine broad abilities, which in turn gave rise to a single
general ability factor at the highest level. Cattell,
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Carroll, and Horn agreed that they had arrived at
essentially the same place, and their unified theory is
now referred to as the Cattell-Horn-Carroll or CHC
theory. CHC theory now forms the theoretical basis
for almost all of the commercially available intelli-
gence tests.

Reaction-Time Theory

Beginning about 1980, a new line of research into
intelligence began in the work of Earl Hunt and Arthur
Jensen. A century earlier, Sir Francis Galton had pro-
posed that reaction time could be used to measure
intelligence, but the primitive instruments available
lacked sufficient accuracy to detect differences. With
the advent of computers capable of accurately timing
both stimulus presentation and response time, speed
of neural processing became a potent area of research
on intelligence. As research using these methods pro-
gressed, speed of information processing (called the
chronometric approach to intelligence) and the extent
and efficiency of working memory were found to cor-
relate substantially with scores on traditional intelli-
gence tests. The massive body of work by Jensen has
been particularly influential. He and his colleagues
have shown that the aspect of traditional intelligence
tests that correlates most highly with processing
speed/working memory is the single general ability
factor most similar to Spearman’s g.

One of the characteristics of processing speed that
makes it attractive as a measure of intelligence is its
relative freedom from cultural influences. One of the
enduring criticisms of intelligence tests is that they are
culturally biased, thereby resulting in lower scores for
individuals who are not from the culture producing
the test (generally upper middle-class Whites in the
United States). Critics of intelligence testing claim
that the tests measure exposure to the majority culture
and therefore underpredict the success of members of
minority groups. Various lines of evidence do not sup-
port these claims, but the claims continue nonetheless.
Because information processing tasks can be designed
to separate reaction time and movement speed from
decision speed, relatively pure measures of an individ-
ual’s ability to process information that are largely

independent of experience are possible. The fact that
these measures correlate most highly with those tradi-
tional intelligence measures that are least influenced
by culture, such as Raven’s Progressive Matrices, sug-
gests that information processing and fluid intelli-
gence are similar.

Contemporary Intelligence Tests

A large number of intelligence tests have been devel-
oped over the years to measure various aspects of
cognitive ability. Those that are offered for sale are
reviewed in the Mental Measurements Yearbooks,
published about every 2 years by the Buros Institute
for Mental Measurements at the University of
Nebraska. Some, such as the Stanford-Binet Fifth
Edition and the Woodcock-Johnson Third Edition, are
intended for use with the full range of ages from 2
years to more than 80, although the specific tests used
at each age may differ. Others, such as the Wechsler
Scales, have different tests for young children 
(the Wechsler Pre-School and Primary Scale of
Intelligence), school-age children (the Wechsler
Intelligence Scale for Children), and adults (the
Wechsler Adult Intelligence Scale). Others, such as
the Kaufman Ability Battery for Children, are only for
a specific and limited age range, but almost all of
them make an effort to measure some or all of the
group factors in the CHC model. They all also offer a
single index of general cognitive ability.

Intelligence or cognitive ability tests can be differ-
entiated from achievement tests chiefly in the use to
which the scores are put. Achievement tests measure
the fund of knowledge one has acquired in a specific
academic or occupational domain, such as language
arts or mathematics. Achievement tests are postin-
struction measures, and interpretation of the scores
should normally be restricted to the domain and
instructional experiences of interest. Identical items
might appear on the quantitative or verbal ability sub-
tests of an intelligence test battery, but in this context,
the items are not linked to specific instructional objec-
tives or curricula. Rather, they are seen as samples of
larger domains of tasks, and the purpose of the testing
is to assess potential for further learning. Thus, the
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primary difference between achievement tests and
some aspects of intelligence tests is the interpretation
of the scores rather than their form or content.

—Robert M. Thorndike

See also Intelligence Quotient
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Applying Ideas on Statistics and Measurement

The following abstract is adapted from Richardson,
K. (2002). What IQ tests test. Theory & Psychology,
12(3), 283–314.

And isn’t the title of this article the question
that everyone asks? Kenneth Richardson contends
that there is still little scientific agreement about
how human intelligence should be described,
whether IQ tests actually measure it, and if they
don’t, what they actually do measure. The contro-
versies and debates that result are well known,
and this paper brings together results and theory
rarely considered in the IQ literature. It suggests
that all of the population variance in IQ scores
can be described in terms of a nexus of socio-
cognitive-affective factors that differentially
prepares individuals for the cognitive, affective,
and performance demands of the test—in effect,
that the test is a measure of social class back-
ground, and not one of the ability for complex
cognition as such. The rest of the paper discusses 

how such factors can explain the correlational
evidence usually thought to validate IQ tests,
including associations with educational attain-
ments, occupational performance, and elemen-
tary cognitive tasks, as well as the intercorrelations
among tests themselves.

INTERNAL EXTERNAL

LOCUS OF CONTROL SCALE

The Internal External Locus of Control Scale (I-E
Scale) is a researcher-constructed scale published by
Julian B. Rotter in 1966. Social Learning Theory pro-
vides the theoretical background for which the scale
provides a measure of generalized expectancy. The
scale relates general expectancy as being either inter-
nally or externally controlled. An internally controlled
person will perceive his or her destiny as controlled
from within, whereas the externally controlled person
perceives his or her destiny as controlled by outside
forces such as chance, fate, or luck.

Rotter conceived the scale from earlier attempts by
Phares and James to create a generalized expectancy
scale in which they constructed their scales using the
Likert format. Attempting to broaden the test, addi-
tional subscales were developed by Rotter for areas
including achievement, affection, and general social
and political attitudes. What resulted was a 100-item
scale containing items comparing an internal belief to
an external belief. In order to provide greater control
for social desirability, the Likert format was discarded
in favor of the forced-choice format. Using item
analysis and factor analysis, this test was further
reduced to 60 items by Liverant. Item analysis of 
the 60-item scale resulted in abandoning efforts to
measure specific subareas. These items were then
excluded. Additional items were also removed if they
had a high correlation with the Marlowe-Crowne
Social Desirability Scale, had an alternative endorsed
more than 85% of the time, had no significant rela-
tionship with other items, or had little correlation
with one of two criteria. The criteria used to provide
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validity for the items involved a laboratory task
and the coping behavior of tuberculosis patients. This
reduced the scale to 23 items, to which six filler
items were added for purposes of ambiguity, all in a
forced-choice format. Two separate factor analyses
determined that one factor accounted for most of
the variance.

To score the test, a summation of external choices
is made. High scores indicate externality and low
scores indicate internality. The distribution of scores
tends to be normal, and dividing groups about the
median score is commonly used to indicate the split
between externals and internals.

The I-E Scale can be used in a variety of situations.
Since its conception, the I-E Scale has generated
considerable interest and subsequent research. For
example, externals have been associated with field
dependence and internals with field independence.
Interestingly, it has been posited that moderate inter-
nal scores should have some relationship to good
adjustment. Accordingly, it has been reported that
therapeutic outcomes are related to shifts in locus of
control; that is, those who improve generally show a
shift toward the internal end of the spectrum.

—John R. Reddon and Shane M. Whippler

See also Personality Tests
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INTERNAL REVIEW BOARD

Internal Review Boards (IRBs), also known as
Institutional Review Boards, are present at many

educational and health service institutions (e.g.,
universities and hospitals). The purpose of IRBs is to
provide an objective and impartial review of research
that is being conducted at the institution that involves
human participants. The purpose of this review is to
protect the welfare and well-being of those who are
participating in the research.

History

TThhee  NNuurreemmbbeerrgg  CCooddee

The formal origin of human subject protections and
the initiation of events leading to the formation of
IRBs can be traced to the mid-20th century. During the
Nuremberg Trials (1946–1949) that followed the end
of World War II, it came to light that prisoners of war
were required to take part as subjects in experimenta-
tion that sought to examine the effects of high altitude,
drugs, experimental surgeries, poisons, and different
types of explosive ordnance on human subjects. Many
prisoners of war and civilians were required to take
part in these activities against their will, and without
any understanding of the procedures and their long-
term effects. Furthermore, an examination of the
research itself indicated that much of the experimenta-
tion was not scientifically justifiable. In 1947, concur-
rent with the Nuremberg Trials, 10 rules were set forth
as essential principles in the conduct of research with
human participants. These rules came to be known as
the Nuremberg Code (1947/1996), and form the basis
for the governance of human experimentation today.
They represented the first codification of the principles
of obtaining voluntary and informed consent from par-
ticipants, the participants’ right to withdraw from the
research, the necessity of scientific justification and
scientifically trained personnel in the conduct of the
work, and the moral imperative to seek an experimen-
tal design that minimizes risk to participants.

EEvveennttss  LLeeaaddiinngg  ttoo  tthhee
NNaattiioonnaall  RReesseeaarrcchh  AAcctt  ooff  11997744

Shortly thereafter, the protection of human sub-
jects became an important issue in U.S. research
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communities. In the 1950s, the NIH established an
internal ethics board for the review of intramural clin-
ical research. In 1966, with concerns mounting from
reviews of the ethics of clinical medicine, the U.S.
Public Health Service (USPHS) issued a policy memo
that mandated the formation of “review committees”
and the requirement that research be reviewed from a
human subjects protections perspective as a prerequi-
site for the receipt of federal funding for research.
Clarifications and additions to this policy followed. In
the early 1970s, however, public disclosure of clear
ethical violations at the Willowbrook State School for
the Retarded in New York and the USPHS Tuskegee
studies resulted in the National Research Act of 1974,
which established the National Commission for the
Protection of Human Subjects of Biomedical and
Behavioral Research. The charge of the commission
was to identify basic ethical principles to govern 
the conduct of biomedical and behavioral research
involving human subjects, and the means by which
these principles might be followed and enforced. The
Commission produced The Belmont Report, which
eventually evolved into the current federal code that
governs the operation of IRBs in the United States.

EEssttaabblliisshhmmeenntt  ooff  tthhee
CCooddee  ooff  FFeeddeerraall  RReegguullaattiioonnss

In the United States, the purpose, necessity, and
operation of IRBs was established by law in 1980 by
the passage of Title 45 Code of Federal Regulations
Part 46, Protection of Human Subjects (45 CFR 46).
These federal regulations grew out of the Belmont
Report. With leadership from the Department of
Health and Human Services, the Federal Policy for the
Protection of Human Subjects or the “Common Rule”
was published in 1991 and subsequently adopted by
many federal departments and agencies.

Basis for IRB Review and Approval:
The Risk/Benefit Ratio

IRBs seek to protect human subjects who are
participating in institutional research primarily by

evaluating research protocols (summaries of the
purposes and procedures of research) that are pre-
pared by researchers prior to the initiation of the
research itself. In this evaluation, the IRBs weigh the
benefits of the research to society and to the individ-
ual participants against the risks of the research to the
participants. This Risk/Benefit analysis initially
derives from the Nuremberg Code and provides the
fundamental framework for all IRB decisions.
Legally, IRBs place human experimentation into three
levels of risk. Risk may be defined in terms of the
probability of either physical or psychological harm to
the participants, and may take many forms. For
example, subjects may be put at risk because of the
side effects of a new experimental drug or medical
procedure, or because of the inadvertent release of
confidential personal information provided to
researchers during the course of the study.

In the no risk category, procedures are judged to be
completely innocuous and present no foreseeable risk.
In the category of minimal risk, the procedures may
present some level of risk to participants, but no more
than that which is normally encountered in the partic-
ipants’ everyday lives. If the IRB judges the research
to be greater than minimal risk, then the IRB must
closely consider the benefits of the research. If the risk
to participants is judged to exceed the perceived ben-
efit of the research, then the IRB should not provide
institutional approval for the conduct of the research.
If, however, benefit exceeds risk, then the study may
be approved.

Operation of IRBs

The federal regulations governing IRB operations are
quite specific in how the IRB is to be constituted and
the criteria on which it must base its decisions. These
federal regulations also specify the minimum stan-
dards for research oversight; local boards may impose
more rigorous criteria, owing to standards or norms
that may be prevalent in the surrounding community.
Although IRBs are to meet a minimum of one time a
year, most IRBs meet more often than that, usually
monthly.
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IIRRBB  MMeemmbbeerrsshhiipp  aanndd  AAuutthhoorriittyy

The IRB must have at least five members. These
members must be drawn from various backgrounds,
and members must have sufficient experience and
expertise to review research applications. IRBs may
not consist entirely of men or entirely of women,
and no IRB may consist entirely of members of one
profession. The IRB must include at least one
member whose primary concerns are in scientific
areas, at least one member whose primary concerns
are in nonscientific areas, and at least one member
not affiliated with the institution, other than being a
member of the IRB. The IRB generally has ultimate
authority over the conduct of research with human
participants at any institution. For example, although
an institution may decide not to allow IRB-approved
research to be carried out, the institution may not
allow the conduct of research that has not been
approved by the IRB.

TTyyppeess  ooff  IIRRBB  RReevviieeww

IRBs conduct two basic kinds of review prior to the
initiation of research activity: administrative and full
board review. After research has been approved, IRBs
maintain oversight over research by conducting mean-
ingful continuing review.

Administrative Review

Administrative review includes a determination of
whether proposed research meets criteria for exemp-
tion or expedited review; in such cases, the review is
not conducted by the full IRB, although the board 
is apprised of the outcomes of such administrative
review, and any member can call for a project
reviewed administratively to be brought before the
full IRB at a convened meeting. Research activity may
be deemed as exempt (i.e., not subject to the federal
regulations, and thus not subject to IRB approval) if it
falls into a set of predefined categories described in 45
CFR 46.101. However, individual researchers may not
make judgments or determinations as to whether their

own research falls into this category: It remains with
the IRB to verify that the exempt category is appropri-
ate. Another type of administrative review that IRBs
may use is expedited review; this is for certain kinds
of minimal risk research that fall into one of eight cat-
egories described in 45 CFR 46.110. The Chair of the
IRB may review such research or may designate one
or more members of the IRB to provide the expedited
review.

Full Board Review

Research that involves vulnerable populations,
such as children in a noneducational setting, prison-
ers, pregnant women, or cognitively impaired
individuals, or research that involves nonvulnerable
populations in research of greater than minimal
risk to participants, requires full board review. This
means that the research application is at some point
submitted to the entire board for its review and
comment. Many IRBs use a primary reviewer
system, which means that several (usually three)
IRB members are asked to provide formal reviews of
the project. The project is then put in a disposition
category (e.g., approved, disapproved), and the full
board is apprised of that disposition. Other board
members may ask that a project be discussed at a
convened meeting and may comment on applica-
tions in the primary reviewer system during those
discussions.

Depending upon the IRB, the reviews that are
reported to the research applicant may result in
approval, a request for minor changes or clarification,
or a call for more information or major changes 
in order to meet board approval. Applications that
seem to pose an unacceptable risk to participants or
that do not provide enough information to adequately
review the application may require discussion by
the convened IRB. Some IRBs may invite researchers
to attend discussion of their projects by the IRB
in order to provide additional insight to the research.
Regardless of the type of review, IRBs are to notify
researchers and the institution in writing of its
decision to approve or disapprove the proposed
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research activity, or of modifications required to
secure IRB approval of the research activity. IRB
approval of research activities is typically limited to a
1-year period.

Continuing Review

The fact that IRB approval is ephemeral allows
for the conduct of meaningful continuing review,
in which approvals may be reconsidered on an
annual basis in light of changing local standards. In
addition, IRBs monitor approved projects for the
occurrence of adverse events within research studies,
and they can suspend approval of a study if it is
determined that the research activities may be
causing harm to participants. Alternatively, if the
evidence for the effectiveness of an experimental
procedure is so robust that the project need not con-
tinue, such a decision would allow participants
receiving placebo or control treatments to be given
the actual treatment.

—David Hann and John Colombo

See also Ethical Issues in Testing; Ethical Principles in the
Conduct of Research With Human Participants
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INTERNATIONAL ASSESSMENT

OF EDUCATIONAL PROGRESS

The International Assessment of Educational Progress
(IAEP) was created in 1988 for the purpose of inter-
national comparative studies. The IAEP collects and
reports data on what students around the world can
achieve academically.

The first IAEP was conducted to evaluate achieve-
ment in math and science of samples from students 
in five countries—Ireland, Korea, Spain, United
Kingdom, and the United States—and four Canadian
provinces. In 1991, the second assessment was con-
ducted to assess math and science skills of 9- and 13-
year-old students from as many as 20 countries.

The earlier version of the International Assessment
of Educational Progress (IAEP-I) consisted of math
and science questions derived from the National
Assessment of Educational Progress (NAEP). The
NAEP is an ongoing, congressionally mandated pro-
ject designed to conduct national surveys of the educa-
tional attainments of students in the United States.
Besides assessing math and science, the IAEP-I
included questions about students’ school experiences
and attitudes. Measurement specialists from the United
States and participating countries worked in translating
and adapting the techniques used in the United States
for the National Assessment of Educational Progress.

Like the previous version, the IAEP-II assessed
math and science and included questions about
students’ backgrounds and home and school experi-
ences. To assemble the tests, curriculum experts
focused on common curriculum elements across
countries to reach a consensus that produced the
mathematics and science frameworks used in the
development of the IAEP-II. However, some critics
would argue that making comparisons of school qual-
ity across cultures is very difficult to interpret because
each country has its own educational traditions and
practices. For instance, the comparability of the
student samples has been questioned because students
in the United States remain in school for longer
periods of time and are therefore part of the high
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school test sample. In other countries, only the top
students remain in school and are tested.

Despite the opinions of the critics, each of the
countries that participated in these international com-
parative studies did so for its own reasons: to compare
its results with those of other countries, to learn about
the educational policies and practices of countries
whose students seem to regularly achieve academic
success, and to establish a baseline of data within its
own country against which progress could be mea-
sured in the future.

—Romilia Domínguez de Ramírez
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INTERRATER RELIABILITY

Although there is no single definition of interrater
reliability that is uniformly agreed upon in the statis-
tical literature, there are generally two meanings asso-
ciated with the term. The first meaning is represented
by techniques that Stemler has classified as consensus
estimates of interrater reliability. Consensus estimates
of interrater reliability are used when the researcher
is interested in examining the degree to which two
or more independent raters can come to exact
agreement about how to assign scores to observations

(or participants) based on a pre-established scoring
protocol (or rubric).

The second meaning of the term is represented by
techniques classified as consistency estimates of inter-
rater reliability. Consistency estimates of interrater
reliability are used when it is not critical for indepen-
dent raters to agree exactly so long as the differences
in how they apply the scoring rubric are systematic.
For example, if one rater gave scores that were always
two points lower than the second rater, the two raters
would have low consensus estimates of interrater reli-
ability, but high consistency estimates.

Consider the following data set in which two inde-
pendent raters (Rater 1 and Rater 2) have assigned
scores on a creativity scale (ranging from 1 to 5) to 15
students.

Student Rater 1 Rater 2

1 1 2

2 1 1

3 1 2

4 1 2

5 2 3

6 2 3

7 2 3

8 2 4

9 3 4

10 3 3

11 3 4

12 3 5

13 4 5

14 4 4

15 4 5

Running the Crosstabs procedure in SPSS results
in an output file with a table that provides a useful
visual representation of the pattern of agreement
between raters (see Figure 1).

Although a variety of statistical techniques may be
used to compute consensus estimates of interrater reli-
ability (e.g., Cohen’s kappa, Jaccard’s J), the most
common consensus estimate of interrater reliability is
the percent agreement statistic. Percent agreement is
calculated by running a crosstab analysis and summing
the values on the diagonals (3 in the example above)
and dividing that value by the total number of
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observations (15 in the example). This results in a
percent agreement value of  3–

15
= 20%.

The most common consistency estimate of inter-
rater reliability is the Pearson product-moment corre-
lation coefficient; however, a variety of other
consistency techniques also exist (e.g., Spearman’s
rho, Cronbach’s alpha). The formula for computing
the Pearson correlation is shown below:

where

∑XY is the cross product of the raw scores;

∑X is the sum of all raw scores on variable X;

∑Y is the sum of all raw scores on variable Y;

∑X2 is the sum of all squared raw score values on vari-
able X;

∑Y2 is the sum of all squared raw score values on vari-
able Y;

(∑X)2 is the sum of all raw scores on variable X, squared;

(∑Y)2 is the sum of all raw scores on
variable Y, squared;

n is the number of observations
(participants) in the data set.

The SPSS output file above
reveals that Raters 1 and 2 in the
example have a low consensus
estimate of interrater reliability
(percent agreement = 20%) and a
high consistency estimate (r = .88).
Values greater than 70% or .70 are
typically considered acceptable by
the field.

If two raters have a high con-
sensus estimate of interrater relia-
bility, then the scores from the
two raters may be treated as if
they were equivalent and scores
could be subsequently averaged,

or the scores of one rater randomly selected. By con-
trast, if two raters exhibit high consistency esti-
mates of interrater reliability and low consensus
estimates, the researcher must perform a correction
to the data (e.g., add or subtract a constant) prior to
summing or averaging the scores assigned by the two
raters.

—Steven E. Stemler

See also Cohen’s Kappa; Pearson Product-Moment Correlation
Coefficient; Reliability Theory; Validity Theory
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Case Processing Summary

Cases

Valid Missing Total

N Percent N Percent N Percent

Rater_1 * Rater_2 15 100.0% 0 .0% 15 100.0%

Rater_1 * Rater_2 Crosstabulation

Rater_2

1.00 2.00 3.00 4.00 5.00 Total

Rater_1 1.00 1 3 0 0 0 4
2.00 0 0 3 1 0 4
3.00 0 0 1 2 1 4
4.00 0 0 0 1 2 3

Total 1 3 4 4 3 15

Figure 1 Crosstabs Procedure Output
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Applying Ideas on Statistics and Measurement

The following abstract is adapted from Johnson, 
R. L., McDaniel, F., II, & Willeke, M. J. (2000).
Using portfolios in program evaluation: An inves-
tigation of interrater reliability. American Journal
of Evaluation, 21(1), 65–80.

Portfolios and other open-ended assessments
are increasingly incorporated into evaluations and
testing programs. However, questions about the
reliability of such assessments continue to be
raised. After reviewing forces that may be leading
to increased interest in and use of portfolio assess-
ment, Robert Johnson and his colleagues investi-
gated the interrater reliability of a portfolio
assessment used in a small-scale program evalua-
tion. Three types of portfolio scores were investi-
gated—analytic, combined analytic (formed by
summing across analytic scores), and holistic. The
interrater reliability coefficient was highest for
summed analytic scores (r = .86). Results indicate
that at least three raters are required to obtain
acceptable levels of reliability for holistic and
individual analytic scores.

INTERVAL LEVEL

OF MEASUREMENT

The interval level of measurement falls between the
ordinal and ratio levels on the hierarchy of measure-
ment and is considered the second “highest” or sec-
ond most precise measurement scale. Interval scales
are less exact than only ratio-level data. Interval data
are more precise than nominal and ordinal data
because the interval scale contains meaningful
distances.

For instance, whereas in a nominal scale we can
say only that certain traits or values belong to differ-
ent mutually exclusive categories, and in an ordinal
scale we can say only that a score or performance
ranks above or below another one, with the interval
scale, we can conclude how much higher one score is
than another score. The unique characteristic of the
scale that allows this determination of meaningful

distances (or the quantification of “how much”) is the
equidistance of the intervals it contains.

To conceptualize the use of an interval scale, let’s
explore an example that compares interval-level mea-
surement to the two less precise measurement levels.

Five students took a 10-question true-or-false
history quiz, and each question was worth one point.
The students received the following scores:

Kevin—10 points

Jaime—6 points

Sara—5 points

Jen—3 points

Bill—0 points

In this example, the teacher could grade the students
using a nominal scale and give each student a score of
either “pass” or “fail” that corresponds to the student’s
score. If the teacher decided to grade this way, Kevin
and Jaime would receive the same grade, even though
Kevin correctly answered four more questions than
Jaime. Sara, Jen, and Bill would also earn equal
grades of “fail” even though Sara got five more ques-
tions correct than did Bill and even though Sara’s
score was only 1 point below Jaime’s.

The teacher could also decide to grade the quizzes
using an ordinal scale. With this method, she would
rank the students and give Kevin an “A” because he
obtained the highest score, Jaime a “B,” Sara a “C,”
Jen a “D,” and Bill an “F.”

However, the most precise way to grade the
history quizzes would be to use an interval scale that
corresponds directly to the number of questions the
students answered correctly. Each interval along the
scale would be worth the same amount: one point.
Kevin would receive 10 points (100%), since he
answered all questions correctly, Jaime would receive
6 points (60%), and so on. In this respect, we can say
that Kevin’s score of 10 is 4 points higher than
Jaime’s score of 6. An important point to remember,
though, is that we are unable to say that Jaime has
“twice” as much knowledge of history as Jen even
though Jaime earned a 6 and Jen earned a 3. Because
the interval scale has an arbitrary zero point (i.e., a
score of 0 on the quiz does not indicate a complete
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lack of knowledge about history), we cannot produce
this ratio.

Using this interval scale for grading would highlight
the most variability among the five students, telling us
more about their knowledge of history than would
nominal or ordinal grading methods. As Kevin would
likely agree, the interval scale is probably the fairest
grading method as well, because it clearly distin-
guishes the scores of 10 and 6 in a meaningful way. In
the social sciences, especially because true ratio-level
data are rare, interval-level data are desirable because
of the amount of information they can provide.

—Kristin Rasmussen

See also Nominal Level of Measurement; Ordinal Level of
Measurement; Ratio Level of Measurement

Further Reading

Lane, D. (2003). Levels of measurement. Retrieved from
http://cnx.rice.edu/content/m10809/latest/

Salkind, N. J. (2004). Statistics for people who (think they)
hate statistics. Thousand Oaks, CA: Sage.

Sirkin, R. M. (Ed.). (2005). Statistics for the social sciences.
Thousand Oaks, CA: Sage.

Trochim, W. M. K. (2002). Levels of measurement. Retrieved
from http://www.socialresearchmethods.net/kb/measlevl
.htm

IOWA TESTS OF BASIC SKILLS

The Iowa Tests of Basic Skills (ITBS), created at the
University of Iowa, measures year-to-year growth of
students’ academic skills. Every year, thousands of
students in states throughout the country take this
battery of tests. The ITBS, formerly referred to as the
Iowa Every-Pupil Tests, was first developed for high
school students in 1931 by Hoover, Dunbar, and
Frisbie. Shortly after, in 1935, this test was extended
to the primary grades. The Iowa Every-Pupil Tests
were renamed the Iowa Test of Basic Skills in 1955.

The ITBS was created as an achievement test to
show the year-to-year progression of students. It also
allows students, parents, and teachers a glimpse into
an individual student’s academic strengths and weak-
nesses, and it provides teachers with information

about the specific levels of their class compared to
other tests in that district, state, and country to aid 
in teaching. Finally, the test is used to describe the
student’s developmental level, and the ITBS provides
three types of scoring with each test: percentile ranks,
grade equivalent, and standard scores.

The structure of the test is a basic multiple-choice
test offering four possible answer options. The ITBS
is taken in several subsections lasting approximately
30 minutes each, and the test authors suggest this 
5.5-hour test be administered over 6 days. As with any
test, revisions have been made over the years, with the
2001 version of the Iowa Test of Basic Skills being the
most recent.

The ITBS contains questions in the areas of read-
ing, language arts, mathematics, social studies, and
science. The skills tested at the majority of levels
include, but are not limited to, vocabulary, reading
comprehension, language, an understanding of maps
and graphs, categorizing, and math concepts and
problems. Grades 3 through 8 also test the areas of
history, economics, geography, and the life sciences.
The scoring for the ITBS also provides subscores for
each specific skill.

Below is an example of a potential math problem
in the ITBS for Grade 5:

What is the value of m?

6 + 2 (m – 4) = 16

A. 8   B. 6   C. 2   D. 10

Currently, the ITBS test is published by Riverside
Publishing.

—Sarah Peterson

See also Ability Tests; Achievement Tests

Further Reading

Cummings, O. W. (1981). Validation of a diagnostic interpre-
tation technique for the Iowa Test of Basic Skills: Final
report to the National Institute of Education. Grant Wood
Area Education Agency.

Hieronymus, A. (1973). Iowa Test of Basic Skills: Manual for
administrators, supervisors, and counselors. Chicago:
Houghton Mifflin.
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Hieronymus, A. (1986). Iowa Test of Basic Skills: Forms G and
H. Chicago: Riverside.

Iowa Tests of Basic Skills information: http://www.education
.uiowa.edu/itp/itbs/index.htm

IOWA TESTS OF

EDUCATIONAL DEVELOPMENT

The most recent edition of the Iowa Tests of
Educational Development (ITED) was published in
2001 (Form A) and 2003 (Form B) by Riverside
Publishing Company. It is the 10th edition since the
tests were first published in 1942. The tests provide
objective information about high school (Grades 9–12)
students’ development in the skills that are the long-
term goals of secondary education—skills such as

• Comprehending a wide variety of reading materials
(both literary and informational)

• Solving quantitative problems
• Recognizing the essentials of correct and effective

writing
• Critically analyzing discussions of social issues and

reports on scientific matters
• Recognizing sound methods of scientific inquiry

The nine tests that comprise the ITED are
Vocabulary, Reading Comprehension, Language:
Revising Written Materials, Spelling, Mathematics:
Concepts and Problem Solving, Computation,
Analysis of Social Studies Materials, Analysis of
Science Materials, and Sources of Information. About
4 hours of testing time are required to administer all
nine tests. All questions are in the multiple-choice for-
mat and have four or five options each. Students mark
their answer choices on a separate answer folder. The
answer folder also contains space for students to
respond to Interest Explorer (IE), an instrument that
helps students identify career areas of interest to them.
When students are exploring career options, the com-
bined ITED/IE results can be a useful guidance tool.

The ITED were designed to fulfill three main
educational purposes: (a) to obtain information that
can be used to support instructional decisions (i.e., to

describe a student’s developmental level within a test
area and to identify a student’s areas of relative
strengths and weaknesses in the tested areas), (b) to
examine the progress of grade groups as they pass
through the school’s curriculum from year to year, and
(c) to provide information to students and their
parents that helps them monitor a student’s growth
from grade to grade.

The ITED are standardized, norm-referenced
achievement tests. The normative information was
obtained in 2000 by administering the tests to thou-
sands of students in Grades 9–12 across the nation.
The normative data for the Iowa Test of Basic Skills (a
battery of tests intended for students in Grades K–8)
were gathered at the same time, and the two batteries
are linked through their score scales. Thus, the two
tests can be used to provide longitudinal achievement
data for students in Grades K–12.

The ITED is developed at the University of Iowa.
Over its long history, it has been known for its consis-
tently rigorous measurement properties. A critical
evaluation of the ITED can be found at the Buros
Institute of Mental Measurements: Test Reviews
Online (www.unl.edu/buros).

—Robert A. Forsyth

See also Ability Tests; Achievement Tests

Further Reading

Iowa Tests of Educational Development: Guide to research
and development. (2003). Itasca, IL: Riverside.

Iowa Tests of Educational Development: Interpretive guide for
teachers and counselors. (2001). Itasca, IL: Riverside. 

IPSATIVE MEASURE

Data are ipsative if a given set of responses always
sums to the same total. In practice, the term ipsative is
used roughly as a synonym for “interdependent” and
refers to some type of dependency among the vari-
ables measured on a survey, scale, test, or other mea-
sure. An example of data that are ipsative can be seen
by asking respondents to choose between two items
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that measure different psychological constructs. For
example, a choice between “I am the life of the party”
(extraversion) and “I am always prepared” (conscien-
tiousness) will result in ipsative data because a choice
of the extraversion item necessitates that the conscien-
tiousness item is not chosen.

Many different properties of data collection and
analysis exist that can create ipsative relationships
between scale scores. For example, Likert scale data
can be made to be ipsative by simply subtracting the
grand mean of each individual’s scale scores (aver-
aged across all scales) from each of his or her individ-
ual scale scores (i.e., ipsatized data). With this type of
data, scores for each respondent will always sum to
the same total across scales. However, there is no con-
straint on the variability of responses because respon-
dents are free to choose any point on the scale without
constraint. Data can also be ipsative via the properties
of the item response format, such as rank-ordered
scales, or through forced-choice responses from a set
of items. With forced-choice and rank-order data,
respondents are more constrained in their response
options, and thus more interdependence exists in these
types of ipsative data.

There are two primary types of interdependence
that arise from ipsative data. The first type, covariance-
level interdependence, relates to constraints that are
placed on covariance matrices via the properties found
in all types of ipsative data. Mathematically,
(a) the sums of the columns, or rows, of an ipsative
covariance matrix must equal zero; (b) the sums of the
columns, or rows, of an ipsative intercorrelation
matrix will equal zero if the ipsative variances are
equal; (c) the average intercorrelations of ipsative vari-
ables have –1/(m – 1) as a limiting value where m is the
number of variables; (d) the sum of the covariances
obtained between a criterion and a set of ipsative
scores equals zero; and (e) the sum of ipsative validity
coefficients will equal zero if the ipsative variances are
equal. A second type of interdependence, item-level
interdependence, occurs in rank-order and forced-
choice scales because choosing any one item from a
set is contingent upon the content of the other items.

Generally speaking, increasing the number of
scales appearing on a survey will serve to lessen the

amount of covariance-level interdependence among
constructs. Similarly, decreasing the percentage of
measured scales that are used in analyses will also
lessen the covariance-level interdependence. How-
ever, not using some scales in subsequent analyses
will have no effect on the item-level interdependence
of forced-choice and rank-order data. Although the
issue remains controversial, these interdependencies
can affect reliability estimates and factor analyses.

—Adam W. Meade

See also Measurement; Personality Tests

Further Reading

Johnson, C. E., Wood, R., & Blinkhorn, S. F. (1988).
Spuriouser and spuriouser: The use of ipsative personality
tests. Journal of Occupational Psychology, 61, 153–162.

Meade, A. W. (2004). Psychometric problems and issues
involved with creating and using ipsative measures for
selection. Journal of Occupational and Organizational
Psychology, 77(4), 531–552.

ITEM AND TEST BIAS

Item and test bias have received much attention from
the legal system, policymakers, test consumers, edu-
cational and psychological researchers, test develop-
ers, and the general public. This attention is well
deserved because the essence of the issue is an ethical
concern. Bias refers to differential validity across
subgroups (e.g., males vs. females, minority vs.
majority) and suggests that scores have different
meanings for members of these subgroups. The Code
of Professional Responsibilities in Educational
Measurement states that test developers should make
their products “as free as possible from bias due to
characteristics irrelevant to the construct being mea-
sured, such as gender, ethnicity, race, socioeconomic
status,disability, religion, age, or national origin”
(Section 1.2a). However, there is no such thing as a
“nonbiased test” or a test that is “fair” or “valid” for
all subgroups under all conditions. This fact should
not deter test developers from going to extensive
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lengths to create instruments that are free of bias
against intended subgroups.

To study whether performance may be influenced
by factors specific to group membership (e.g., lan-
guage, culture, gender), the psychometric properties
of a test can be investigated for invariance (equality)
across groups. The type of invariance investigation
depends on the suspected nature of bias and can
include a variety of methods to detect (a) differential
item functioning (DIF), (b) factor structure invariance,
and (c) differential prediction.

Item Bias and Differential
Item Functioning

Although the terms item bias and DIF often are used
interchangeably, DIF refers to differences in the
statistical properties of an item between groups of
examinees of equal ability. Two types of DIF can
exist. Uniform DIF is a difference in item perfor-
mance that is consistent across the ability distribution,
whereas nonuniform DIF is a difference that is not
consistent across the ability distribution (i.e., a group
by ability-level interaction). Groups often are referred
to as the reference (e.g., majority) and focal (e.g.,
minority or studied) groups. The concept of compar-
ing groups of equal ability is a cardinal feature sepa-
rating DIF from the traditional item bias detection
methods. Traditional methods, because they do not
control for ability differences, are affected by dif-
ferences in the examinee group ability distributions.
Overall ability differences may explain differential
item performance, resulting in an item appearing to
be, for example, more difficult when the examinees in
the focal group are less able overall. Impact is a more
appropriate term to refer to differences in item perfor-
mance that can be explained by group ability differ-
ences. DIF detection methods “condition on” or
control for ability, meaning that examinees are neces-
sarily matched on ability; thus, only examinees of
equal ability (e.g., total test score) in the reference and
focal groups are compared.

Items that exhibit DIF threaten test score validity
and may have serious consequences for groups as 
well as individuals, because correct responses are

determined by the trait claimed to be measured and
factors specific to group membership. The most obvi-
ous consequence is the potential impact of DIF on the
observed score distributions of specific groups. The
less obvious consequence of DIF, yet critically impor-
tant to the construct validity of a test, is its impact on
the meaning and interpretation of test scores, even in
the absence of mean score differences between
groups. DIF items may cancel and result in similar
score distributions across groups. However, when
scores are composed of different items systematically
scored as correct, it is invalid to infer that “equal”
scores are comparable or have the same meaning. In
fact, the Standards for Educational and Psychological
Testing (Section 7.10) states that mean score differ-
ences are insufficient evidence of bias.

Many methods have been developed to detect DIF
(e.g., SIBTEST, logistic regression, Mantel-Haenszel,
item response theory methods). Generally, compar-
isons of methods reveal similar results given similar
measurement models and testing conditions. Detailed
descriptions of the various DIF methods can be found
in Zumbo and Hubley’s 2003 review. However, the
item response theory (IRT) likelihood ratio test is
described to assist with understanding the general DIF
detection process.

IIRRTT  DDIIFF

With IRT methods, the model conceptualizes abil-
ity as a latent trait compared to the typical observed
test score. Formal tests of model-data fit provide
greater confidence in the results, because a lack of
model-data fit does not facilitate item parameter com-
parisons. Of particular interest to DIF are some of the
IRT assumptions. First, IRT models assume invari-
ance; that is, item parameters do not differ across
groups unless DIF is present. In addition, IRT models
generally assume unidimensionality (the test mea-
sures one dominant latent trait); however, the presence
of DIF could signal multidimensionality in that
construct-irrelevant factors related to group member-
ship could influence item responses. Unfortunately,
IRT methods require relatively large sample sizes
(ranging from 100 to about 3,000), depending on the
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model, than often are available for DIF studies with
clinical tests.

Figure 1 shows what are known as trace lines. The
lines trace the probability (from zero to perfect proba-
bility) of a correct response to an item for persons from
low to high ability. The first set of trace lines repre-
sents an invariant item (does not exhibit DIF), because
the trace lines for males and females overlap. The sec-
ond set of trace lines represents a DIF item. Notice that
the lines are separated, and the probability of a correct
response differs for males and females across all levels
of ability. Following a multistep procedure, items
found to be invariant across groups are used as a puri-
fied, or anchor, subtest to match examinees of equal
ability, often based on an initial DIF screening
with another DIF method (e.g., Mantel-Haenszel).
Purification is recommended, for obvious theoretical
reasons, to remove DIF items that might contaminate
matching, although it is more labor intensive and thus
more expensive. The items not included in the purified
subtest are then individually tested for DIF using the
following IRT likelihood ratio DIF detection method,
similar to the method proposed by Thissen, Steinberg,
and Wainer in 1993. Hypotheses are tested by compar-
ing freely estimated difficulty or discrimination para-
meters to parameters constrained to be invariant across
groups, using a likelihood ratio chi-square difference
test. A nonsignificant test indicates no DIF. In addition
to reporting effect sizes, exact probability values
should be reported along with significance tests,
given that numerous significance tests are reported.
However, because power calculations are not yet avail-
able, it is recommended that a baseline estimate of the
number of items that would exhibit DIF due to chance
be obtained by dividing the sample in half at random
and repeating all DIF analyses, and then calculating a
z test of proportion differences.

Test Bias

Test bias refers to the differential validity of test
scores. Investigations of test bias usually include stud-
ies of (a) unequal psychometric properties, including
unequal factor structures; or (b) differential prediction
of performance between groups.

Factor invariance suggests that test constructs are
conceptualized and measured similarly across groups.
Multisample confirmatory factor analysis can be used
to test the invariance of factor structures, as described
by Bollen in 1989, and allows for a chi-square test of
model fit across two samples. The general form of the
theoretical model is tested for invariance to obtain
model fit statistics across groups. If the general form
does not fit across groups, test constructs are measured
differently across the groups. If the model adequately
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fits across groups, progressively more restrictive
models are then tested for invariance. Three progres-
sively more restricted models may be tested by adding
one additional constrained matrix of (a) factor load-
ings, describing the relationships between the latent
variable and an observed variable; (b) error variances;
and (c) factor variances and covariances. Each element
of a matrix can be individually tested for invariance to
determine the sources of the lack of invariance.

Latent means structures (LMS) analysis is con-
ducted when the measurement model is invariant. The
group-measured variable mean is separated into two
components: the intercept of the measured variable
and the mean of the latent variable, where the inter-
cept represents examinees’ predicted subtest scores.
Measured variable intercepts must be invariant to con-
clude that expected subtest score differences can be
attributed to differences in the underlying ability and
not potential systematic measurement bias, with one
group systematically scoring higher or lower on a
measured variable. If intercepts are invariant, group
latent means are compared.

Multiple indicator, multiple cause modeling is a
structural equation modeling procedure that can serve
as an alternative to LMS to test for latent mean differ-
ences and potential measurement bias, and is espe-
cially useful for small samples. Specifically, groups
are not divided, and thus, latent mean differences can
be tested without the estimation of separate covari-
ance matrices.

The model is composed of the following three
components: (a) measurement model, (b) regression
model, and (c) a “direct effects” path between the
observed independent (group) and dependent vari-
ables (e.g., subscales). The measurement model repre-
sents the relationship between the observed and latent
variables. The regression model consists of the effect
of the dichotomous (0, 1) group indicator on the latent
variables. A direct effect of the group variable to a
subscale suggests that variance in the measure is
explained by group membership in addition to the
latent trait, thus indicating test-level bias. Such an
effect is determined by a statistically significant
improvement in model fit, based on the chi-square dif-
ference test.

Prediction bias, or the examination of differential
predictive validity, is especially important when tests
are used for placement and selection decisions.
Prediction bias may occur when (a) validity coeffi-
cients significantly differ between groups, or (b) a test
systematically under- or overestimates a criterion for
a given group. That is, examinees from different sub-
groups, but with comparable predictor scores, obtain
different scores on the criterion test. Differential
prediction is investigated by comparing focal and ref-
erence groups’ regression lines for criterion and pre-
dictor scores. A lack of differential prediction does not
guarantee that a test will show item and test invari-
ance. Moreover, criterion-related validity coefficients
may be spuriously correlated because of systematic
factors attributable to group membership. Thus, dif-
ferential prediction should not be investigated without
evidence of item and test invariance.

Current Issues and
Future Directions

There has been much progress over the past two
decades in the development and evaluation of bias
detection methods. Several challenges, however,
remain. First, much of the development to date has
been on detection methods and less on the reasons for
bias in applied settings. Second, uncertainty remains
about how much bias is practically too much. That is,
questions such as, What percentage or magnitude of
item or test bias does it take to influence score-based
decisions? and Does testing condition play a role—
that is, paper-and-pencil scale, computer adaptive test,
and test adaptations for special populations? deserve
attention. Theoretical psychometric work has gone on
to address this question, but more work needs to be
done focusing on applied issues. Third, refinement of
methods must continue. For instance, theoretically
preferred methods (e.g., IRT methods) require rather
large sample sizes. Continued evaluation and develop-
ment of such preferred methods that allow use with
sample sizes often seen with low-incidence popula-
tions (and other restrictive situations) are needed.
Issues such as these, as well as others identified in the
suggested readings, will keep both practitioners and
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researchers quite busy over the next decade as the next
generation of item and test bias methods are devel-
oped and implemented.

—Susan J. Maller, Brian F. French,
and Bruno D. Zumbo

See also Measurement
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ITEM RESPONSE THEORY

Item response theory (IRT) has many attractive fea-
tures and advantages over classical test theory, which
has contributed to its popularity in many measurement
applications. Although IRT relies upon some strong
assumptions, it is useful and practical in many situa-
tions, such as educational and psychological testing.
IRT posits a probabilistic relationship between the
response an examinee provides on a test item, or
items, and some latent trait, such as ability or some
personality trait. Although the topic of IRT is vast, this
entry will attempt to discuss the assumptions of IRT,
some of the more popular IRT models used for

dichotomously scored items, and some applications of
the theory.

Popular IRT Models

Among the most popular IRT models used are those
that are designed for applications where the test or test
items measure a single underlying trait (unidimen-
sional trait) by items that can be scored as 0 or 1
(dichotomous items). More complex models do exist
for the cases where the items can be scored using mul-
tiple response categories (polytomous IRT models)
and/or where the trait is multifaceted or multidimen-
sional (multidimensional IRT models).

The most general of the models in this class is the
three-parameter logistic model,

where Pi(θ) is the probability of a correct response to
item I, given an ability level of θ. The item parameters
are ai, bi, and ci and refer to characteristics of the items
themselves. The b parameter is often referred to as the
item difficulty, and it is the point on the curve where
the examinee has a probability of (1 + ci)/2 of answer-
ing the item correctly. In the case where ci is zero, that
corresponds to the point where the examinee has a
50% chance of getting the item correct. The a parame-
ter is commonly referred to as the item discrimination
parameter, and it is the slope of the tangent line at the
point on the θ scale equal to the b parameter. The c
parameter is the pseudo-guessing parameter, or often,
the guessing parameter, and is the height of the lower
asymptote of the curve. This point provides the prob-
ability of a person of very low ability getting a correct
response to the item. The curve generated by these
item parameters is referred to as the item
characteristic curve (ICC) or the item characteristic
function (ICF). A graphical representation of an ICC
with the corresponding parameters is presented in
Figure 1.

Other popular IRT models are special cases of 
the more general three-parameter logistic model. The

Pi(θ) = ci + (1 − ci)
e 1.7ai (θ−bi )

1 + e 1.7ai (θ−bi )
,
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two-parameter model is the case where the c parame-
ter is set equal to zero. This model is used primarily in
cases where guessing is not assumed to be a factor in
the response to the item. The one-parameter model, or
the Rasch model, is obtained when the c parameter is
zero and the a parameter is set equal to 1 for all items.
In this instance, items are assumed to be equally
discriminating as well.

Assumptions and Features of IRT

IRT is often criticized for requiring strong assump-
tions that are difficult to attain in practice. Although it
is true that IRT does rely upon strong assumptions, it
has been applied successfully in many measurement
applications. The assumptions are dependent on the
type of IRT model chosen. In this case, we are refer-
ring to a particular class of IRT models: unidimen-
sional models for dichotomous items.

In the case of unidimensional, dichotomous IRT
models, which are the most commonly used models in
measurement involving IRT, it is clear that there is an
assumption that the underlying trait being measured is
unidimensional. That is, there is one single trait that
explains the behavior (responses) of the examinee to
the test item(s). This assumption is testable, and tech-
niques such as factor analysis, principal component
analysis, and multidimensional scaling are often used

to test this assumption. Although most
traits are typically not strictly unidimen-
sional, in practice, this assumption is
often relaxed to the case where the trait
is “essentially” unidimensional, and this
relaxation is usually not problematic in
most applications.

The assumption of unidimensional-
ity implies another assumption, namely,
that of local item independence. Local
item independence states that the
response to one item is independent of
the response to every other item, once
the latent trait is taken into account. For
example, in the case of a mathematics
test, the responses to the items should
depend only upon the mathematical

ability of the examinee, and no other factor. Once the
mathematical ability of the examinee is taken into
account, the responses to the items are independent of
each other. This assumption likely would not hold in
the case where the items required the examinee to
read large amounts of text, because in that case, the
reading ability of the examinee is likely to have an
effect on the responses as well. In this instance, the
items are not locally independent, and the trait being
measured is not unidimensional because it consists of
both math and reading ability.

The second major assumption of IRT models is that
the model chosen adequately reflects the data, or that
the model fits the data. There are several IRT models
available for use, and the choice of the most appropri-
ate model is critical for meaningful inferences to be
drawn from the use of the model. Again, there are
many techniques available for assessing the model-
data fit, and the reader is referred to Hambleton,
Swaminathan, and Rogers for more detail on this topic.

If the assumptions of IRT are met, however, there
are many desirable measurement properties associ-
ated with the models. Among them is the invariance
of the parameters. In IRT, the item parameters are
inherent to the items themselves, and as such do not
depend upon the sample of examinees responding
to the items. Similarly, the level of the latent trait 
in the examinee is inherent to the examinee and is
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not dependent upon the items that the examinee is
administered. This feature of IRT allows for elegant
methodologies for many measurement applications
such as test construction, computer-based testing,
equating, and identifying bias in items. Some of these
applications will be discussed briefly below. Due
to space limitations, the topics are not covered
thoroughly, but rather are an attempt to illustrate
how the properties of IRT can enhance certain assess-
ment practices.

Some Applications of IRT

TTeesstt  CCoonnssttrruuccttiioonn

IRT can be a particularly valuable tool in construct-
ing tests. The invariance of the item parameters allows
parameters to be estimated using one sample, and then
transferring the item characteristics to other, poten-
tially unknown, samples of examinees. As such, once
item characteristics are known, a test can be con-
structed with known difficulty, and other characteris-
tics. Other test characteristics, such as the test
information, can also be known a priori, which allows
for the construction of a test with known precision, or
reliability. To fully understand this topic, a discussion
of test information is warranted.

Test information is determined by the items that
comprise the test. Each item contains a certain amount
of information about examinees along the ability
scale. The item information for the three-parameter
model is given by

As can be seen, the higher the a parameter, the
more information that the item contains, and that the
information is maximal for examinees with latent trait
values near the value of the b parameter. Thus, infor-
mation is not equal for all examinees, but rather differ-
ent items provide differing amounts of information for
each examinee; that is, information is a function of the
ability of the examinee. As a result, Equation 2 is
referred to as the item information function. The test

information function is formed by adding together the
individual item information functions. Once the test
information function is formed, the amount of infor-
mation that exists at different points of ability can be
assessed. The value of determining the amount of
information is related to the precision of the test score;
the more information that exists, the more precise the
estimate of the latent trait. Because information is a
function of θ, so too is the standard error. Therefore, a
standard error can be determined for each level of the
latent trait, rather than estimating one standard error
that is common to every score. In fact, the standard
error of the estimate of θ is given by the inverse of the
information function; that is,

By understanding the item parameters and the item
and test information functions, tests can be con-
structed by choosing items that best suit the purpose
and features of the test, such as precision, and diffi-
culty can be known before the test is administered. If
it is important to have equal precision across the scale
of the latent trait, then items can be selected so that the
test information function is uniform. On the other
hand, if the assessment is used for a pass/fail decision,
it is necessary to minimize error at the cut score, and
precision at either extreme is not necessary. In that
case, items with maximum information at the cut
score can be chosen, leading to a test with maximum
information at the cut score, and hence maximum pre-
cision at the cut score. Therefore, depending on the
purpose of the test, items can be selected in a purpose-
ful manner to meet not only content requirements, but
also statistically desirable characteristics.

SSccoorree  EEqquuaattiinngg  aanndd  SSccaallee  LLiinnkkiinngg

Because of the invariance of IRT item parameters,
equating test scores is done fairly simply in the IRT
context. Equating, or linking, is done when scores are
to be compared on different versions of the same test.
For example, in a test that is administered each year,
the same test items may not be used every year, but it

SE(θ) = 1√
I (θ)

.

Ii(θ) = (1.7)2a2
i (1 − ci)

(ci + e1.7ai (θ−bi ))(1 + ci + e−1.7ai (θ−bi ))2
.
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is desirable to compare the scores on the two assess-
ments. Therefore, the scores must be made compara-
ble to each other before they can be compared. In the
event that the tests are of identical difficulty, compar-
ing scores can be done without any statistical adjust-
ment. However, given the difficulty of achieving test
forms that are identical in difficulty, it is unrealistic to
assume that this case exists in practice. Therefore, the
difficulties of the test forms must be made comparable
first, through a statistical adjustment known as scale
linking. Once the scales are made to be of the same
difficulty, the scores can be adjusted in the process of
score equating. Details of this process can be found in
Kolen and Brennan.

The most difficult case of linking and equating
occurs when the tests are different in difficulty and the
examinee groups are different in ability. In this case,
linking occurs by administering a common block of
items to both groups of examinees. Because of the
invariance property of the item parameters, the para-
meters should be the same in both groups of exami-
nees. Granted, item parameter estimates cannot be
assumed to be equivalent, but if the estimates are
good, treating the estimates as the parameters is

usually adequate. Because of a scale indeterminacy
issue in IRT, item parameters are invariant only up to
a linear transformation, and the item parameters may
not be identical if the two groups of examinees are
different in ability. Thus, when differences are found,
the linear transformation needed to put the parameters
on the same scale can be found and the parameters
can be adjusted to be equal. By applying this same
transformation to the remaining item (and person)
parameters, all parameters can be placed on the same
scale, and scores can be equated. Without the invari-
ance property of IRT, this process becomes much
more complex.

—Lisa Keller

See also Measurement; Reliability Theory; Validity Theory

Further Reading

Hambleton, R. K., Swaminathan, H., & Rogers, H. J. (1991).
Fundamentals of item response theory. Newbury Park, CA:
Sage.

Kolen, M. J., & Brennan, R. L. (2004). Test equating, scaling
and linking: Methods and practices. New York: Springer.
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JACKSON, DOUGLAS N.
(1929–2004)

Douglas N. Jackson made significant contributions to
the field of psychometrics, particularly in the areas 
of construct validity, test construction, and response 
bias. He was also a prolific writer and test publisher
with a commitment to free speech and academic
independence.

He was born in Merrick, New York, and was dis-
suaded from pursuing an early interest in chemistry by
career testing. The testing sparked a fascination with
psychometrics and influenced the eventual decision to
choose psychology as his profession. Graduating from
Cornell University in 1951 with a bachelor of science
degree in industrial relations and then from Purdue
University in 1955 with a PhD in clinical psychology,
he completed a postdoctoral internship at the
Menninger Foundation. He was then at Pennsylvania
State University and at Stanford University before
taking a position at the University of Western Ontario,
where he spent the rest of his career as senior profes-
sor of psychology.

A great deal of his work was focused on test con-
struction and more specifically on method variance,
which deals with the effects of such factors as format
and wording on test results as opposed to the actual test-
specific content that was to be measured. This work led
to his concept that response styles influenced test out-
comes and reflected traits of the respondent unrelated to
those that were being measured. He was also a pioneer
in the area of construct validity with an emphasis on
theory, measurement model, and then data. He high-
lighted the importance of convergent and discriminant
validity for the items of test scales. As a consequence,
he advocated eliminating items that may be measuring
more than one trait in an attempt to keep the scale as
pure as possible. In addition to testing, he was well
known for his work with person perception and deter-
mining how accurate our judgments of others are.

His interest in psychometrics did not end at the
theoretical level. He constructed many tests in the
field of personality and career planning, even found-
ing his own publishing company (Sigma Assessment
Systems, www.sigmaassessmentsystems.com) to pro-
duce and distribute his tests.

—John R. Reddon and Vincent R. Zalcik
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See also Basic Personality Inventory; Jackson Personality
Inventory–Revised; Jackson Vocational Interest Survey;
Multidimensional Aptitude Battery

Further Reading

Goffin, R. D., & Helmes, E. (Eds.). (2000). Problems and solu-
tions in human assessment: Honoring Douglas N. Jackson
at seventy. Boston: Kluwer.

Jackson Vocational Interest Survey online at http://www.jvis
.com/

JACKSON PERSONALITY

INVENTORY–REVISED

The Jackson Personality Inventory–Revised (JPI-R;
publisher: Sigma Assessment Systems) was developed
for assessing interpersonal, cognitive, and value
domains of personality. Moreover, the JPI-R, which
is used primarily with normal populations, also was
designed to predict behaviors in a variety of contexts.
The application of the JPI-R is most appropriate in
career counseling and work settings that strive to
improve person-environment fit; thus, the JPI-R fre-
quently is used in schools, colleges, and career centers.
In addition to applications in practice settings, the JPI-R
is used in research settings to identify the relationship
between certain personality constructs and behaviors.

The 300 items are presented in a true-false format
that takes approximately 35–45 minutes to administer.
The profile reports 15 content scales: complexity,
breadthof interest, innovation, tolerance, empathy,anx-
iety, cooperativeness, sociability, social confidence,
energy level, social astuteness, risk taking, organiza-
tion, traditional values, and responsibility.A high score
reflects the particular dimension the scale tries to mea-
sure; for instance, a high score on the Social Confidence
scale indicates that an individual is confident in social
situations. On the other hand, a low score on the Social
Confidence scale suggests that a person will exhibit vis-
ible discomfort and embarrassment in most social situ-
ations. The 15 content scales were theoretically derived
and constructed. They are classified into five clusters
on the profile: Analytical, Emotional, Extroverted,

Opportunistic, and Dependable.The five clusters repre-
sent specific traits measured by the scales. For example,
the Emotional cluster includes content scales such as
empathy, anxiety, and cooperativeness. Factor analyses
were applied to extract these five clusters.

The original JPI, published in 1976, was revised in
1994. The changes included renaming six scales, reor-
ganizing profiles on the basis of newer research stud-
ies, removing the Infrequency scales, renorming the
scales based on demographic samples that better rep-
resent the current population, adding and modifying
current items, adding carbonless-form answer sheets,
and adding new features to the manual.

The profile reports standardized scores that com-
pare the test taker’s score with a comparison norm
group. The normative sample was collected from the
general North American adult population. In addition,
norm groups were collected for three main population
groups: college students, blue-collar workers, and
white-collar workers. Participants employed in a wide
range of occupations were included in the blue-collar
and white-collar samples. If an individual test taker is
not a member of one of these three normative groups,
the manual recommends that the individual’s score be
compared with the general population norm.

Evidence of reliability reported in the manual 
is limited to internal consistency coefficients, which
ranged from r = .78 to r = .93. The manual also
reported construct validity of the JPI-R. Studies that
used multitrait-multimethod matrices showed evi-
dence of convergence and discriminant validity at
the factorial level. Overall, adequate evidence of
validity and reliability has been collected for the 
JPI-R scales.

—W. Vanessa Lee and Jo-Ida C. Hansen

See also Personality Assessment Inventory; Personality
Research Form; Personality Tests

Further Reading

Jackson, D. N. (1994). Jackson Personality Inventory–Revised
manual. Port Huron, MI: Sigma Assessment Systems. 

Jackson Inventory information: http://www.sigmaassessment
systems.com/assessments/jpir.asp 
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JACKSON VOCATIONAL

INTEREST SURVEY

The Jackson Vocational Interest Survey (JVIS; pub-
lisher: Research Psychologists Press) was developed
by Douglas N. Jackson to assist high school students,
college students, and adults with career and educa-
tional planning. The survey is a self-report instrument
that takes around 45 to 60 minutes to complete. The
survey provides information on areas and patterns of
vocational interests, together with indications of the
similarity of a test taker’s interests to those of individ-
uals in various occupational and academic areas.

The JVIS profile includes 34 Basic Interests
Scales. The definitions of these scales are based on a
conceptualization of occupational preferences in
terms of work roles and work styles. Work roles refer
to relatively homogeneous samples of work activity,
such as Teaching and Law. Work styles refer to
preferences for working environments that require
demonstration of behaviors such as Planfulness and
Independence. The 34 Basic Interests Scales have
been factor analyzed to identify 10 underlying 
dimensions. These dimensions, labeled as General
Occupational Themes Scales on the JVIS profile, rep-
resent broad patterns of vocational interests, such as
Expressive and Conventional.

In addition, an Academic Satisfaction Scale was
empirically derived by comparing the average scores
of high school and university students on the Basic
Interests Scales. This scale may be useful in predict-
ing degree of satisfaction in traditional academic set-
tings. The profile also reports indices of the similarity
between the test taker’s Basic Interests Scales profile
and the profiles of college students in 17 broad clus-
ters of academic majors and employees in 32 job
groups. The extended JVIS report contains further
information related to career exploration.

Three useful administrative scales are the
Unscorable Response, the Response Consistency
Index, and the Infrequency Index. Internal consistency
reliability of individual profiles can be determined on
the basis of the Response Consistency Index. A com-
bination of the Response Consistency Index and the

Infrequency Index provides evidence of validity for
the profile scores.

The most recent normative sample was collected in
1999. The sample consisted of 1,750 males and 1,750
females from Canada and the United States. Among
these 3,500 individuals, 2,380 were secondary students
and 1,120 were university and college students and
adults seeking career-interest assessment.

The internal consistency reliability (coefficients
alpha) of the Basic Interests Scales based on the
normative sample ranges from .54 to .88, with a
median of .72. The internal consistency reliability for
the 10 General Occupational Themes Scales ranges
from .81 to .93, with a median of .88. The median
test-retest reliability of the Basic Interests Scales
and the General Occupational Themes Scales, based
on a sample of university students, is .84 and .89,
respectively.

One exemplary characteristic of the JVIS is the
method used to construct the scales. Items on the JVIS
were selected on the basis of a combination of con-
struct and internal consistency criteria from a pool of
more then 3,000 items. Another notable feature of the
JVIS is the equal emphasis on the measurement of
interests of women and men.

—Shuangmei (Christine) Zhou
and Jo-Ida C. Hansen

See also Armed Services Vocational Aptitude Battery; Career
Assessment Inventory; Career Development Inventory;
Career Maturity Inventory

Further Reading

Juni, S., & Koenig, E. J. (1982). Contingency validity as a
requirement in forced-choice item construction: A critique
of the Jackson Vocational Interest Survey. Measurement
and Evaluation in Guidance, 14(4), 202–207.

JOURNAL OF THE AMERICAN

STATISTICAL ASSOCIATION

The Journal of the American Statistical Association
(JASA) is the first serial publication of the American
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Statistical Association (ASA), founded in 1839, and it
remains the flagship publication of the association.

JASA began as Publications of the American
Statistical Association, a series of tracts on statistical
topics. The first appeared in March 1888 and con-
tained only one 44-page article, “Statistics of Water
Power Employed in Manufacturing in the United
States,” by George F. Swain. The next issue (vol. 1,
nos. 2–3, June and September 1888) became more
journal-like in character: It contained two articles by
different authors, the second one a history of the U.S.
Census, including an extensive bibliography and a
key to U.S. Census publications. Subsequent issues
grew rapidly in terms of the numbers of articles (most
considerably shorter) and the scope of topics consid-
ered. The series continued through 16 volumes com-
prising 128 issues from 1888 to 1919. At that point,
the series was renamed Quarterly Publications of the
American Statistical Association, but only one
volume (vol. 17, 1920–1921) was published under
that title.

Volume 18 (1922–1923, issues 137–144) is the first
that bears the title Journal of the American Statistical
Association. That volume contained 70 full-length
articles, 30 short notes, 63 book reviews, and 28
reviews of reports. Beginning in 1924, various sup-
plements began to appear sporadically: proceedings of
meetings and ASA handbooks that contained the con-
stitution and bylaws, membership directory, and an
index of past issues of JASA.

Francis A. Walker, the ASA president in the late
1880s, is credited with providing the impetus to pub-
lish a journal. The early volumes were edited by ASA
secretary Davis R. Dewey, who served until 1908. The
next ASA secretary was Carroll W. Doten, who appar-
ently also edited the journal. Subsequent editors
were William F. Ogburn (1920–1925), Frank A. Ross
(1926–1934), Frederick W. Stephan (1935–1940),
again Ross (1941–1945), and William G. Cochran
(1945–1950). Starting in 1968, separate editors were
appointed for applications and methodology papers (in
addition to the review editor), and beginning in 1970
(vol. 65), the research articles were divided into two
sections, titled “Applications” (later “Applications and
Case Studies”) and “Theory and Methods.” The same

basic organization remains to the present day: three
editors and separate boards of associate editors.

Today, JASA is universally considered to be one of
the top nonspecialized journals in statistics. In terms
of total citations in the science literature through
2003, the ISI Web of Knowledge ranks JASA at the top
of all journals in the mathematical sciences. When
journals in behavioral sciences, psychology, and edu-
cation are included, JASA’s total citations rank behind
those of Psychological Bulletin and Animal Behavior
and about equal with Psychological Review’s.

—Russell V. Lenth

See also American Statistical Association; Journal of Modern
Applied Statistical Methods; Journal of Statistics
Education 

Further Reading

ISI Web of Knowledge: http://www.isiwebofknowledge.com/ 
Journal of the American Statistical Association and its prede-

cessors are archived on the JSTOR Web site: www.jstor.org
Journal of the American Statistical Association and other ASA

publications information: www.amstat.org

JOURNAL OF MODERN

APPLIED STATISTICAL METHODS

The Journal of Modern Applied Statistical Methods
(JMASM) was incorporated in 2000 and published its
first issue in 2002. The founding editor is Shlomo S.
Sawilowsky of the College of Education at Wayne
State University, Detroit, Michigan.

The appearance of JMASM continues a long tra-
dition of journal activity in Sawilowsky’s academic
genealogy. Excluding copious ad hoc editorial
reviews, some examples include Gottfried Wilhelm
Leibniz (1646–1716), cofounder of Acta Eruditorum
in 1682 and founding editor of Monatliche Auszug in
1700; Joseph Liouville (1809–1882), founding edi-
tor of Journal de Mathématiques Pures et Appliqués
in 1836; Eugène Catalan (1814–1894), founding
editor of Nouvelle Correspondance Mathématique
in 1874; Jules Tannery (1848–1910), coeditor of
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Bulletin des Sciences Mathématiques beginning 
in 1876; and David Lee Hanson, associate editor of
Annals of Mathematical Statistics/Annals of Statistics
beginning in 1967 and the Annals of Probability 
in 1973.

JMASM is an independent journal. It is not supported
by any professional or scholarly society or organization.
It is a peer-reviewed print and “open access” electronic
journal (http://tbf.coe.wayne.edu/jmasm). Open access
means the journal is based on a funding model that does
not charge readers or institutions for electronic access,
and the electronic version is released simultaneously
with the print version. It is published twice a year (May
and November). Each issue contains about 295 pages.
There have been more than 5,750 downloads for each of
the first nine issues of the journal.

More than 250 universities and colleges worldwide
receive the print journal, and more than 350 list the
electronic version in their library. JMASM is a core
journal in the Current Index to Statistics and is also
indexed in Elsevier Bibliographic Database, EMBASE,
Compendex, Geobase, Scopus, and ScienceDirect.

The inaugural editorial team of JMASM includes
associate editors Bruno D. Zumbo of the University
of British Columbia, Canada, and Harvey J. Keselman
of the University of Manitoba, Canada, and assis-
tant editors Alan Klockars of the University of
Washington, Todd C. Headrick of the University of
Southern Illinois–Carbondale, and Vance W. Berger of
the National Cancer Institute, Bethesda, Maryland.
The international editorial board represents about 50
universities and institutions, with about 85% of the
members from the United States or Canada and the
remaining from Greece, India, Israel, Italy, Jordan,
Malaysia, Saudi Arabia, and the United Kingdom.

The primary purposes of JMASM are to promote
the following:

1. The development or study of new statistical tests or
procedures, or the comparison of existing statistical
tests or procedures, using computer-intensive Monte
Carlo, bootstrap, jackknife, or resampling methods 

2. The development or study of nonparametric, robust,
permutation, exact, and approximate randomization
methods 

3. Applications of computer programming related to
statistical algorithms, pseudorandom number gener-
ators, simulation techniques, and self-contained exe-
cutable code (e.g., Fortran) to carry out new or
interesting statistical methods 

4. Applied problems in statistics and data analysis;
experimental and nonexperimental research design;
psychometry, testing, and measurement; and quanti-
tative or qualitative evaluation in all disciplines of
systematic inquiry 

Articles from renowned scholars appear in the
Invited section. To date, these authors include Ralph
D’Agostino, Sr.; James Algina; Peter Bentler; 
R. Clifford Blair; Robert Boik; Walt Brainerd;
William J. Conover; C. Mitchell Dayton; Philip 
I. Good; Gregory R. Hancock; Harvey J. Keselman;
Thomas R. Knapp; George Marsaglia; S. James Press;
Pranab K. Sen; Ronald C. Serlin; Juliet P. Shaffer;
Judith M. Tanur; Neil H. Timm; and Rand R. Wilcox.

The main section contains about 16 regular arti-
cles. Following are Brief Reports, Statistical Software
and Applications Review, and Statistical Algorithms
and Code, with about three articles in each. An innov-
ative and important section, Early Scholars, provides
journal space for doctoral students and is peer
reviewed by the same.

There is an occasional section, compiled by the edi-
tor, called Statistical Pronouncements, which attempts
to capture the philosophy, insight, wit, humor, and
even the inevitable faux pas of mathematicians and
statisticians. Other occasional sections include invited
debates and interviews with mathematicians and sta-
tisticians. The concluding section contains both paid
and pro bono advertisements from vendors of statisti-
cal software and products and many pro bono publico
announcements pertaining to statistics and research
journals and to professional and academic societies.

The mailing address is JMASM, PO Box 48023,
Oak Park, MI 48237. Address e-mail not related 
to submissions, including requests for advertising
requirements, to jmasm@edstat.coe.wayne.edu.

—Shlomo S. Sawilowsky

See also Journal of the American Statistical Association
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Further Reading

Sawilowsky, S. S. (2004). A conversation with R. Clifford
Blair on the occasion of his retirement. Journal of Modern
Applied Statistical Methods, 3(2), 518–566.

JOURNAL OF

STATISTICS EDUCATION

The Journal of Statistics Education (JSE) is a rigor-
ously refereed electronic journal on teaching statis-
tics. Its goal is to provide useful and interesting
information, ideas, materials, software, and data sets
to teachers of statistics at all levels. The intended audi-
ence includes both members of university statistics
departments and faculty who teach statistics in other
disciplines, such as mathematics, psychology, or soci-
ology. The journal also publishes articles of interest to
teachers of statistics at the primary or secondary level
or in the workplace. It is available free of charge to
any interested reader.

JSE has published articles on diverse topics,
including assessment of students’ understanding and
attitudes, teaching inference and experimental design,
distance learning, curriculum guidelines, cooperative
learning, and using activities and projects. Regular
features of JSE are “Data Sets and Stories” and
“Teaching Bits: A Resource for Teachers of Statis-
tics.” Articles in the “Data Sets and Stories” depart-
ment describe interesting data sets and their
pedagogical features. The data sets themselves may be
downloaded for analysis or use with students.
“Teaching Bits” summarizes articles from news-
papers, magazines, and other publications that can be
used as examples in the statistics classroom.

The idea of establishing a journal on statistics edu-
cation arose during a strategic planning effort in the
Department of Statistics at North Carolina State
University (NCSU) in 1991. We felt that a lack of
publication outlets for work on teaching statistics
made it difficult for statistics educators to exchange
ideas and also discouraged statisticians from investing
time in the scholarship of teaching. We were intrigued

by the possibility of publishing innovative content—
interactive teaching materials, dynamic graphics,
video, or sound—by using an electronic medium. At a
planning workshop with 22 participants held at NCSU
in 1992, the decision was made to establish a refereed
electronic journal on teaching statistics.

The table of contents of the inaugural issue of JSE
was sent by e-mail to 403 subscribers in July 1993.
The first issue contained plain-text articles that were
accessible by e-mail or gopher. The technological
capabilities of the journal increased rapidly; the sec-
ond issue contained the first graphic, the third issue
was distributed via the World Wide Web, and the
fourth issue included a brief animation. JSE was
supported initially by the Department of Statistics
at NCSU and a grant from the Fund for the
Improvement of Postsecondary Education, U.S.
Department of Education, and later by a grant from
the Exxon Education Foundation. In 1999, JSE
became an official journal of the American Statistical
Association—the association’s first electronic journal
and its first journal devoted to statistics education.
The journal now resides on the Web site of the
American Statistical Association and is published in
HTML format.

The first three editors of JSE were E. Jacquelin
Dietz (1993–2000), Thomas Short (2001–2003), and
W. Robert Stephenson (2004–2006). An international
editorial board sets policy and handles the review
process. Articles that pass an initial screening by the
editor are sent to a member of the editorial board, who
in turn sends the article to two additional reviewers.
Refereeing is double blind. Refereeing criteria include
quality of exposition, originality or novelty, and use-
fulness to teachers of statistics.

—E. Jacquelin Dietz

See also American Statistical Association; Journal of the
American Statistical Association; Journal of Modern
Applied Statistical Methods

Further Reading

Journal of Statistics Education home page: http://www.amstat
.org/publications/jse/

502———JJoouurrnnaall  ooff  SSttaattiissttiiccss  EEdduuccaattiioonn



k-MEANS CLUSTER ANALYSIS

Many different cluster analysis methods are available
to the researcher for classifying observations and vari-
ables. Most of these methods fall into one of two 
categories: hierarchical and nonhierarchical. The non-
hierarchical methods are occasionally referred to as
iterative partitioning methods. Hierarchical methods
usually begin the clustering process by forming 
a matrix of similarities between entries. Clusters are
formed by putting together those entries that are the
most similar. This method is an agglomerative process
that yields the results in the form of hierarchical trees
or denograms. The nonhierarchical methods of itera-
tive partitioning usually begin with an arbitrary classi-
fication, and through an iterative revision process,
they attempt to find a classification that minimizes the
within-cluster variation or equivalently maximizes 
the between-cluster variation.

Each of the two categories of method has its appro-
priate domain of applications and corresponding 
advantages and disadvantages. The nonhierarchical
method appears to be especially appropriate in the
reduction of large databases, in the analyses of group
similarities, in nonlinear predictions, and in estimation

of multivariate distributions for high-dimensional
metric data often found in the social sciences.

The purpose of this summary is to describe the
algorithm for one particular method of nonhierarchi-
cal clustering. The method is known as k-means.
Computer programs such as SPSS and SAS are set up
to perform this type of clustering. The algorithm 
presented here is the one developed by James B.
MacQueen. Also, we will discuss proposed enhance-
ments to the algorithm that would provide the user 
of this method better information about the cluster
solution.

The k-means algorithm was originally developed
as a method of computing an optimal partitioning in
the sense of within-class variance of an n-dimensional
population on the basis of a sample. The k-means pro-
cedure is faster than most nonhierarchical methods,
but it does not, in general, converge to a global opti-
mum partition. There are, however, special cases for
which convergence to an optimal partition can be
achieved. There does not seem to be any feasible, gen-
eral method that will always yield an optimum cluster
solution except in one dimension. The k-means proce-
dure appears to give clusters that are reasonably efficient
in a within-class variance sense. The efficiency is
dependent to some extent on the researchers’ intuition
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in picking the “correct” number of clusters (k) corrob-
orated by mathematical analysis and practical compu-
tational experience.

Features of the Clustering Algorithm

To sort m data units into k clusters, the following steps
are used:

1. The first k data units are taken as the first k clus-
ters with one point in each cluster.

2. The following (or remaining) m – k data units
are assigned (one after another) to one of the k clus-
ters on the basis of the shortest distance between the
data unit and the centroid (mean) of the cluster. The
distance can be computed using a number of formu-
las. The most popular is the Euclidean distance
squared:

This formula is the squared Euclidean distance
between the centroid of cluster k and the jth data unit
in that cluster.

After each assignment, the centroid is recomputed
(updated) for that cluster, gaining a member. In situa-
tions where there are an extremely large number of
cases, this step may be omitted in order to speed up
the computations.

3. After the assignment of each data unit to one of
the k clusters has been completed, the cluster cen-
troids are taken as fixed seed points, and each data
unit is again assigned to one of several clusters
according to the closest distance to a centroid. After
all data units have been reassigned, the centroid for
each cluster is recomputed and stored for possible
usage in future reclassifications.

Step 3 can be performed a specified number of
times to help refine the classification of data units to
clusters, or until there is no further reduction in the
within-class variance. As with the updating of the
cluster centroids, the reclassification step can be omit-
ted in order to obtain a quicker solution.

AA  NNeeeeddeedd  FFeeaattuurree

In order to make the k-means clustering routine
more useful than just a simple data reduction method,
an additional feature is suggested here to help the
researcher find “better” clusters.

A Randomization Test for Clusters

A feature needed in clustering programs is the capa-
bility for approximate (nonparametric) permutation or
randomization tests. (NCSS 2004 [Number Cruncher
Statistical Systems] can do this.) The values of any
selected variables or any subgroup of variables can be
put in random order to form a new sample in which
the relationship between the selected variables of
groups is completely randomized. For example, in
two dimensions, the original sample (X1, Y1),
(X2, Y2) . . . (Xn, Yn) becomes (Xi1, Yj1), (Xi2, Yj2)
. . . (Xin, Yjn), where (i1, i2, . . . , in) and ( j1, j2, . . . , jn)
are independent random permutations of the integers
1, 2, 3, . . . , n. For each such randomization
requested, the computer program is applied to the
transformed data set as in the first instance.

A number of applications of this feature are possi-
ble. For example, to search for a better clustering, the
whole data set is put in a random order. Because the
within-cluster variance is related to the starting order,
it may be possible to obtain a clustering with lower
variance by such a search. Experience shows, roughly,
that a 5% to 15% decrease in the variance may be
expected from the worst to the best of a half-dozen
such randomized starting positions.

Another use is to employ clustering with the ran-
domization to perform an approximate nonparametric
permutation test for association among all the vari-
ables. The idea is that the within-cluster variance of
the clusters tends to be lower when the variables are
related, and this circumstance is true even if the rela-
tionship is highly nonlinear. Under the hypothesis of
independence, the original data set is considered a
randomization. Hence, in 19 randomizations, for
example, if the original data have a lower within-
cluster variance than the within-cluster variance from
the randomizations, rejection of the hypothesis of
independence at the 5% level is valid. This decision

D =
n∑

i=1

(Xijk − X
---

ik)
2
.



would be true for any measure of association. The test
that can be applied to blocks of variables equally well,
also provides significance tests for a sort of nonlinear
method of canonical correlation. For example, all of
the health variables could be randomized against all of
the socioeconomic variables for a global nonlinear
test of their association. Whenever complex statistical
operations are performed, and whenever there is prac-
tically no hope of obtaining analytical distributions of
the test statistics under a reasonable null hypothesis,
the distribution-free character and ease of interpreta-
tion of these approximate randomization tests are
extremely valuable.

UUssiinngg  tthhee  CCoommppuutteerr

The data in the entry’s tables were taken from the
NEA Higher Education Advocate. The data consist of
the average state faculty salaries from public 2-year
and 4-year institutions from 2002–2003 to
2003–2004. Included are data on whether the state has

collective bargaining, and salary trends. The higher
the trend number, the greater the ratio of faculty
salaries to a four-person household income. Those
with collective bargaining received a score of “1,”
those without received a “2.”

The analysis called for three clusters. From the
results given using SPSS, it appears that there are five
states in which institutions of higher learning are dis-
tinct from the other 44 states. These have collective
bargaining, higher trends, and higher salaries. Among
the 44 states, 29 of them are in the lower salary clas-
sification, usually with no collective bargaining and
with a lower level trend. There are 15 in the middle
classification. These have a higher salary than the
other 29, as well as collective bargaining. These 15
states, however, have a higher trend value for 2-year
institutions than for 4-year institutions.

—Howard B. Lee

See also Distance; Metric Multidimensional Scaling
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Table 1 State Faculty Salary Average and Grade for
Public 2- and 4-Year Institutions, 2002–03 to
2003–04

State Two-Year Trend2 Four-Year Trend4 Barg

AK 62,220 2 55,865 0 1
AL 43,829 3 56,122 3 2
AR 37,873 2 50,313 3 2
AZ 58,799 4 68,410 4 1
CA 70,305 4 78,168 4 1
CO 42,137 0 61,461 0 1
CT 59,729 2 73,402 1 1
DE 53,773 1 76,762 2 1
FL 47,306 3 63,391 4 1
GA 43,609 1 61,773 2 2
HI 52,506 1 65,832 1 1
IA 42,663 1 69,378 4 1
ID 41,988 2 51,125 1 2
IL 56,984 4 63,188 1 1
IN 41,821 1 63,277 2 2
KS 43,163 1 60,840 2 1
KY 44,428 2 58,220 3 1
LA 41,049 3 56,255 3 2
MA 55,574 2 67,076 1 1
MD 55,357 0 67,780 0 1
ME 44,745 3 56,215 2 1
MI 65,895 4 69,351 3 1
MN 54,285 0 67,915 0 1

(Continued)

MO 47,010 1 56,335 0 1
MS 42,595 4 52,275 4 2
MT 37,419 2 53,141 3 1
NC 37,906 0 62,267 4 2
ND 37,282 1 50,308 1 2
NE 40,775 0 61,893 1 1
NH 41,906 0 66,716 0 1
NJ 62,795 3 77,462 2 1
NM 41,224 2 57,978 4 1
NV 51,508 2 70,304 2 1
NY 59,421 4 67,474 3 1
OH 50,642 2 66,655 3 1
OK 40,689 2 52,798 2 2
OR 51,719 3 56,900 1 1
PA 54,213 4 69,441 3 1
RI 52,688 3 68,317 3 1
SC 40,498 1 58,918 3 2
SD 38,981 1 50,859 0 1
TN 41,841 2 58,493 4 2
TX 46,190 2 61,194 2 2
UT 41,746 0 57,385 0 2
VA 45,912 0 66,161 1 2
WA 48,153 2 63,240 1 1
WI 61,199 4 65,470 2 1
WV 40,497 4 51,934 4 2
WY 44,273 2 61,721 2 2

(Continued)
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(Continued)

Output from SPSS

Quick Cluster

Initial Cluster Centers

Cluster

1 2 3

twoyear 62220.00 70305.00 37282.00
trend2 2.00 4.00 1.00
fouryear 55865.00 78168.00 50308.00
trend4 .00 4.00 1.00
barg 1.00 1.00 2.00

Iteration Historya

Change in Cluster Centers

Iteration 1 2 3

1 12102.413 8413.128 9282.466
2 .000 .000 .000

a. Convergence achieved due to no or small change in cluster
centers. The maximum absolute coordinate change for any center
is .000. The current iteration is 2. The minimum distance
between initial centers is 23723.218.

Cluster Membership

Case Number State Cluster Distance

1 AK 1 12102.413
2 AL 3 2718.484
3 AR 3 8984.476
4 AZ 1 4716.247
5 CA 2 8413.128
6 CO 3 3228.451
7 CT 2 3212.826
8 DE 2 8896.817
9 FL 3 7317.664

10 GA 3 3842.429
11 HI 1 2523.389
12 IA 3 11158.810
13 ID 3 7108.768
14 IL 1 3104.953
15 IN 3 5052.980
16 KS 3 2809.855
17 KY 3 2312.345
18 LA 3 2246.956
19 MA 1 1585.596
20 MD 1 2214.985
21 ME 3 3314.222
22 MI 2 6615.874
23 MN 1 2436.690

(Continued)

24 MO 3 5249.309
25 MS 3 5976.871
26 MT 3 6927.012
27 NC 3 5830.755
28 ND 3 9282.466
29 NE 3 3898.183
30 NH 3 8485.971
31 NJ 2 2450.891
32 NM 3 927.333
33 NV 1 5876.247
34 NY 1 4788.818
35 OH 1 4503.335
36 OK 3 5618.767
37 OR 1 9296.145
38 PA 1 3933.102
39 RI 1 3585.893
40 SC 3 1756.891
41 SD 3 8012.276
42 TN 3 378.491
43 TX 3 5036.842
44 UT 3 924.737
45 VA 3 8790.402
46 WA 1 7256.323
47 WI 1 6182.320
48 WV 3 6503.291
49 WY 3 4101.558

Final Cluster Centers

Cluster

1 2 3

twoyear 55017.87 62499.40 42115.69
trend2 2.47 2.80 1.59
fouryear 65591.13 75029.00 58232.62
trend4 1.67 2.40 2.21
barg 1.00 1.00 1.59

Distances between Final Cluster Centers

Cluster 1 2 3

1 12043.532 14853.076
2 12043.532 26412.384
3 14853.076 26412.384

Number of Cases in each Cluster

Cluster 1 15.000
2 5.000
3 29.000

Valid 49.000
Missing .000
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KAUFMAN ASSESSMENT

BATTERY FOR CHILDREN

The Kaufman Assessment Battery for Children,
Second Edition (KABC-II), published by American
Guidance Service, is designed to measure cognitive
processing and aptitude in children ages 3 through 18.
It can be administered nonverbally to children who
have hearing impairments, limited English proficiency,
or language disorders, and it can be adapted for use
with children from diverse cultural backgrounds. The
instrument can be used in combination with other
assessment tools to identify children with cognitive
and academic deficits such as mental retardation or
learning disabilities; children with cognitive process-
ing difficulties; and children who have cognitive gift-
edness. Interpretation of KABC-II scores can also help
identify a child’s cognitive strengths and weaknesses.

The KABC-II may be administered in 30–90 min-
utes, depending upon the age and ability of the child.
Altogether, the instrument contains 18 subtests. For
each age group, 5–10 of the subtests are identified as
“core” subtests and are recommended to obtain an
optimal measure of cognitive functioning across five
main areas (or scales). The Sequential Processing
Scale contains short-term memory tasks; for example,
children listen to a series of simple words and recite
them in order. The Simultaneous Processing Scale
focuses on children’s ability to process visual stimuli.
Tasks include using a two-dimensional diagram to
construct a tower of blocks. The Learning Scale

measures long-term memory by presenting novel
learning tasks and measuring the child’s ability to
remember and apply new knowledge. The Planning
Scale includes fluid reasoning tasks; for example,
children are required to solve problems logically.
Finally, the Knowledge Scale measures vocabulary
and other verbal skills by having the child complete
tasks such as naming pictures. The results from these
scales also produce a global scale, which represents a
measure of the child’s overall cognitive functioning.

This instrument was updated in 2004 and includes
significant changes from the first edition. The age
range has been expanded to include children up to age
18, and stimulus items have been revised to engage
very young children as well as to challenge adoles-
cents. The first edition of the KABC was firmly
grounded in Luria’s simultaneous-sequential cognitive
processing model, which separates intelligence into
two parts: (a) processing that leads to finding interrela-
tionships and (b) processing that allows for arranging
information logically. The KABC-II preserves Luria’s
model, but also introduces a “dual theoretical model”
by incorporating the Cattell-Horn-Carroll (CHC)
theory of cognitive processing. The CHC theory also
separates intelligence into two parts: (a) fluid intelli-
gence, which incorporates both pieces of Luria’s
model, and (b) crystallized intelligence, which reflects
acquired knowledge. This change has resulted in
several new subtests, as well as the addition of the
Learning, Planning, and Knowledge Scales.

—Carrie R. Ball

See also Stanford-Binet Intelligence Test

Further Reading

Kaufman, A. S., Lichtenberger, E. O., Fletcher-Janzen, E., &
Kaufman, N. L. (2005). Essentials of K-ABC-II assess-
ment. Circle Pines, MN: American Guidance Service.

Samuda, R. J. (1998). Advances in cross-cultural assessment.
Thousand Oaks, CA: Sage.

Alan S. Kaufman and Nadeen L. Kaufman (test developers)
biographical information: http://www.mhhe.com/mayfield
pub/psychtesting/profiles/karfmann.htm

American Guidance Service: http://www.agsnet.com
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KENDALL RANK CORRELATION

The Kendall rank correlation coefficient evaluates the
degree of similarity between two sets of ranks given to
the same set of objects. This coefficient depends upon
the number of inversions of pairs of objects that would
be needed to transform one rank order into the other.
In order to do so, each rank order is represented by the
set of all pairs of objects (e.g., [a,b] and [b,a] are the
two pairs representing the objects a and b), and a
value of 1 or 0 is assigned to this pair when its order
corresponds or does not correspond to the way these
two objects were ordered. This coding schema pro-
vides a set of binary values that is then used to com-
pute a Pearson correlation coefficient.

Notations and Definition

Let S be a set of N objects,

S = {a, b, . . . , x, y}. (1)

When the order of the elements of the set is taken
into account, we obtain an ordered set that can also be
represented by the rank order given to the objects of
the set. For example, with the following set of N = 4
objects,

S = {a, b, c, d}, (2)

the ordered set O1 = [a, c, b, d] gives the ranks 
R 1 = [1, 3, 2, 4]. An ordered set on N objects can be
decomposed into ½N(N – 1) ordered pairs. For example,
O1 is composed of the following six ordered pairs:

P1 = {[a, c],[a, b],[a, d],[c, b],[c, d],[b, d]}. (3)

In order to compare two ordered sets (on the same
set of objects), the approach of Kendall is to count the
number of different pairs between two ordered sets.
This number gives a distance between these sets
called the symmetric difference distance (the symmet-
ric difference is a set operation that associates to two
sets the set of elements that belongs to only one set).

The symmetric difference distance between two sets
of ordered pairs P1 and P2 is denoted d∆(P1, P2).

The Kendall coefficient of correlation is obtained
by normalizing the symmetric difference such that it
will take values between −1 and +1, with −1 corre-
sponding to the largest possible distance (obtained
when one order is the exact reverse of the other order)
and +1 corresponding to the smallest possible distance
(equal to 0, obtained when both orders are identical).
Taking into account that the maximum number of
pairs that can differ between two sets with ½N(N – 1)
elements is equal to N(N – 1), this gives the following
formula for the Kendall rank correlation coefficient:

(4)

How should the Kendall coefficient be interpreted?
Because τ is based upon counting the number of dif-
ferent pairs between two ordered sets, its interpreta-
tion can be framed in a probabilistic context.
Specifically, for a pair of objects taken at random,
τ can be interpreted as the difference between the
probability of these objects being in the same order
[denoted P(same)] and the probability of these objects
being in a different order [denoted P(different)].
Formally, we have

τ = P(same) − P(different). (5)

An Example

Suppose that two experts order four wines called {a, b,
c, d}. The first expert gives the following order: O1 = [a,
c, b, d], which corresponds to the following ranks: R 1

= [1, 3, 2, 4]; and the second expert orders the wines as 
O2 = [a, c, d, b], which corresponds to the following
ranks: R 2 = [1, 4, 2, 3]. The order given by the first
expert is composed of the following six ordered pairs:

P1 = {[a, c],[a, b],[a, d],[c, b],[c, d],[b, d]}. (6)

τ =
1
2N(N − 1) − d�(P1, P2)

1
2N(N − 1)

= 1 − 2 × [
d�(P1, P2)

]

N(N − 1)
.
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The order given by the second expert is composed
of the following six ordered pairs:

P2 = {[a, c],[a, b],[a, d],[c, b],[c, d],[d, b]}. (7)

The set of pairs that are in only one set of ordered
pairs is

{[b, d][d, 1 287.6294 692.9885 Tm
[(b)] TJ
ET
-0.0002 TcET
-0.0002 Tc
.9885 Qf 87)



this requires computing N! coefficients of correlation,
and therefore, it becomes practically impossible to
implement these computations for even moderately
large values of N. This problem, however, is not as
drastic as it seems because the sampling distribution
of τ converges toward a normal distribution (the con-
vergence is satisfactory for values of N larger than
10), with a mean of 0 and a variance equal to

(11)

Therefore, for N larger than 10, a null hypothesis test
can be performed by transforming τ into a Z value as

(12)

This Z value is normally distributed with a mean of
0 and a standard deviation of 1.

For example, suppose that we have two experts
rank ordering two sets of 11 wines. The first expert
gives the following rank order:

R1 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11],

and the second expert gives the following rank order:

R2 = [1, 3, 4, 5, 7, 8, 2, 9, 10, 6, 11].

With these orders, we find a value of τ = .6727. When
it is transformed into a Z value, we obtain

(13)

This value of Z = 2.88 is large enough to reject the
null hypothesis at the α = .01 level, and therefore, we
can conclude that the experts are showing a significant
agreement between their evaluations of the set of wines.

KKeennddaallll  aanndd  PPeeaarrssoonn  
CCooeeffffiicciieennttss  ooff  CCoorrrreellaattiioonn

The Kendall coefficient of correlation can also be
interpreted as a standard coefficient of correlation
computed between two sets of N(N – 1) binary values,
where each set represents all the possible pairs
obtained from N objects; it assigns a value of 1 when
a pair is present in the order and 0 if not.

EExxtteennssiioonnss  ooff  tthhee  KKeennddaallll  CCooeeffffiicciieenntt

Because the Kendall rank order coefficient relies
on a set distance, it can be generalized easily to other
combinatoric structures such as weak orders, partial
orders, or partitions. In all cases, the idea is similar:
first compute the symmetric difference distances
between the two sets of pairs representing the binary
relation, and then normalize this distance so that it
will take values between −1 and +1.

—Hervé Abdi

See also Distance; z Scores
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KINETIC FAMILY DRAWING TEST

The Kinetic Family Drawing (KFD) is a projective
test used to understand and assess the perspectives 
of children and adolescents on their families.

Zτ = .6727
√

2(2 × 10 + 5)

9 × 11 × 10

= .6727
√

54

990

≈ 2.88.

Zτ = τ

στ

= τ
√

2(2N + 5)

9N(N − 1)

.

σ 2
τ = 2(2N + 5)

9N(N − 1)
.
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Table 2 Critical Values for τ for α = .05 and α = .01

N = Size of Data Set

4 5 6 7 8 9 10 

α = .05 1 .8000 .7333 .6190 .5714 .5000 .4667
α = .01 – 1 .8667 .8095 .7143 .6667 .6000



Interpretation of the KFD is based on the “projective
hypothesis,” which is an assumption that an individ-
ual, when drawing a picture on a blank page, will
project his or her thoughts, concerns, conflicts,
needs, motivations, and frustrations into the picture.
According to one of the originators of the KFD,
Robert C. Burns, the KFD allows us to see the self as
it is reflected and expressed in the family; it enables
the young person to depict the family as a functioning,
active unit and allows us to see the child’s impressions
of these dynamic interactions among family members.
Administration of the test is simple, requiring the
individual to “draw a picture of your whole family,
including yourself, doing something” on a sheet of
plain white paper. 

According to Burns, scoring of the picture uses four
major categories: Actions; Distances, Barriers, and
Positions; Physical Characteristics of the Figures; and
Styles. Actions refers to the content or theme of the
drawing and it may symbolize cooperation, communi-
cation, masochism, narcissism, nurturance, sadism, or
tension. Physical Characteristics represents formal
aspects of the drawings (e.g., inclusion/exclusion and
size of essential body parts, the relative sizes of the
figures, and facial expressions). Distances, Barriers,
and Positions refers to the barriers between figures, the
direction faced by each figure, and the distances
between figures. Styles refers to the organization of
the figures on the page and includes descriptors such
as Compartmentalization (intentional separation of
family figures using lines); Edging (placement of all
figures on the perimeter of the paper); Encapsulation
(encapsulating one or more figures by lines or
objects); and Underlining individual figures (lines
immediately below a standing individual or individu-
als). The various categories are scored and then inter-
preted. For example, Burns suggested that tension and
instability in the family may be demonstrated by com-
partmentalization, subgroups as opposed to a united
family, or barriers between people. Feelings of isola-
tion or rejection may be evidenced by no face on the
self, a distorted self-figure, or orientation of one or
both parents away from the self.

A review of the reliability and validity studies of
the KFD is complicated by the fact that there have

been several scoring systems proposed for the KFD,
sometimes with additional scoring variables. Thus,
the KFD remains a clinical instrument with inade-
quate norms and questionable validity. Numerous
authors have criticized the somewhat arbitrary inter-
pretations of drawing variables based upon factors
that have not been validated empirically. Therefore,
the clinical skill of the interpreter is very important in
the interpretation of the drawings, possibly account-
ing for the disparate results found by researchers who
are not first and foremost clinicians. Most researchers
have treated the scoring variables independently of
each other, finding nonsignificant or contradictory
results, whereas a qualitative, integrative, holistic
scoring system has shown more promise. Clinicians
tend to use the KFD as an icebreaker with clients and
as a starting point for conversations about family. It is
added to a range of clinical techniques and psychome-
tric tests to provide more information about the indi-
vidual’s perspectives on the self in the family.

Robert C. Burns has written most prolifically about
the KFD, but a large number of books are available
about the KFD by other authors, applying the test to
different populations of children. The KFD has no
copyright and is in the public domain.

—Fran Vertue
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KINGSTON STANDARDIZED

COGNITIVE ASSESSMENT

The Kingston Standardized Cognitive Assessment−
Revised (KSCA-R) is a Canadian-developed demen-
tia screen. This measure was designed to fill an
important gap between rating scales that are too brief,
nonspecific, or narrowly focused, such as the Mini
Mental State Examination (MMSE), and more com-
prehensive but lengthy and expensive neuropsycho-
logical assessments. The KSCA was designed to be
administered by clinicians who do not necessarily
have specialty training in psychometrics or test
interpretation.

Like the original KSCA, the Revised KSCA, pub-
lished in 2003, generates a total score and three sub-
total scores: Memory, Language, and Visual-Motor. The
revised version takes approximately 20 to 30 minutes
to administer. The most notable content change in the
revised version is the replacement of the four-word
memory task with a list-learning task in the Memory
subscale. In addition, the new Assessment Form has
been improved to facilitate scoring and interpretation.
A separate manual provides detailed administration
and scoring procedures as well as the new normative
data. Furthermore, an interpretive section has been
added to the end of each subtest section in the manual.

The KSCA-R is normed on a community living
outpatient sample that has met the Diagnostic and
Statistical Manual of Mental Disorders, Fourth
Edition, and National Institute of Neurological and
Communication Disorders and Stroke criteria for
probable Alzheimer’s disease and a sample of normal,
healthy, community dwelling elderly. The inclusion of
the new word list memory task has dramatically
enhanced the KSCA-R’s ability to detect early-stage
dementia, long before the MMSE can do so.

The KSCA-R has been compared to traditional neu-
ropsychological measures [i.e., the Wechsler Adult
Intelligence Scale-III (WAIS-III) and the Wechsler
Memory Scale-III]. As predicted, strong positive corre-
lations were obtained (e.g., KSCA-R Total Score ×
WAIS-III Verbal IQ = 0.85; KSCA-R Memory Subtotal
× WAIS-III Immediate Memory Index = 0.76).

The KSCA-R has a new set of “score analysis
pages” that uses a combination of flow charts and tables
to guide the user through the process of converting the
scores to percentiles and descriptive ranges. These
pages also help the user make clinical decisions.

The KSCA-R is made available by the authors free
of charge and may be obtained by contacting them at
hopkinsr@post.queensu.ca. A training video has also
been developed.

—Lindy Kilik, Robert Hopkins,
and Duncan Day
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(2004). The Revised Kingston Standardized Cognitive
Assessment. International Journal of Geriatric Psychiatry,
19, 320–326.
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KOLMOGOROV-SMIRNOV

TEST FOR ONE SAMPLE

Generally, Kolmogorov-Smirnov tests are aimed at
testing the hypothesis that two or more distributions
are identical. The one-sample version tests the hypo-
thesis that observations were sampled from a speci-
fied distribution. For example, one could test the
hypothesis that observations arise from a normal dis-
tribution having mean 3 and standard deviation 6. Or
one could test the hypothesis that sampling is from a
chi-squared distribution with 6 degrees of freedom.
So the one-sample version does not test the hypothe-
sis that observations follow some normal distribution
having some unknown mean and variance; rather, it
can be used to test the hypothesis that observations
follow a precisely specified distribution. However, a
simple extension of the method can be used to test the
hypothesis that observations follow a normal distrib-
ution with unknown mean and variance. The two-
sample version tests the hypothesis that two unknown

512———Kingston Standardized Cognitive Assessment



distributions are identical. Certain advances make it 
a potentially useful method for getting a detailed
description of how distributions differ that goes
beyond any technique based on a single measure of
location.

For the one-sample version considered here,
let F0(x) = P(X ≤ x) be the known (specified) distri-
bution, and let X1, . . . , Xn be a random sample of
size n from the unknown distribution F1(x). Letting
IXi≤x = 1 if Xi ≤ x, otherwise IXi≤x = 0, F1 is estimated
with

the proportion of observations less than or equal to x.
The two-sided version is designed to test

H0 : F1(x) = F0(x), all x

versus

H0 : F1(x) ≠ F0(x), for at least one x.

The test statistic is based on what is sometimes
called the Kolmogorov distance, which is just the
maximum absolute difference between the two distri-
butions under consideration. More formally, the test
statistic is

T = max | F1 (Xi) – F0(Xi) |,

the maximum being taken over all i = 1, . . . , n.

There are one-sided versions of the test as well.
The first tests

H0 : F1(x) ≥ F0(x), all x

versus

H1 : F1(x) < F0(x), for at least one x.

The test statistic is

T + = max⏐F0(Xi) – F1(Xi)⏐.

The other one-sided version tests

H0 : F1(x) ≤ F0(x), all x

versus

H1 : F1(x) > F0(x), for at least one x.

The test statistic is

T – = max⏐F1(Xi) – F0(Xi)⏐.

For all three versions, the null hypothesis is
rejected if the test statistic is sufficiently large.

Using a recursive algorithm described by Conover,
the probability of a Type I error can be determined
exactly assuming random sampling only. For n > 40,
an approximate critical value can be used, which is
tabled by Conover when testing at the α level for 
α = .2, .1, .05, .02, and .01.

The following example illustrates the calculations
and a situation where the test might have practical
value. Imagine that 10 independent studies are per-
formed. To be concrete, suppose these 10 tests are
based on Student’s T. Further imagine that p values
from these studies are available, but the data used to
compute the p values are not. For illustrative pur-
poses, imagine the p values are .621, .503, .203, .477,
.710, .581, .329, .480, .554, and .382. So, in particu-
lar, none of the tests is significant at the .05 level. The
issue here is that if we assume that for each study, the
groups being compared do not differ, is it the case that
Student’s T provides adequate control over the proba-
bility of a Type I error? If it does, and the groups do
not differ, the p values follow a uniform distribution.
The ability of Student’s T to control the probability of
a Type I error is a serious concern because many
recent papers have demonstrated that practical prob-
lems can arise, even with fairly large sample sizes.
Moreover, problems with controlling the probability
of a Type I error can translate into poor power when
using Student’s T.

Here, F0(x) = x, 0 ≤ x ≤ 1. For x < 0, F0(x) = 0 and
for x > 1, F0(x) = 1. Focus on the first observation,
X1 = .621. The estimate of F1(.621) is F̂1(.621) = 9/10,

F̂ (x) = 1
n

n∑

i=1

IXi≤x,
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because there are nine instances where the p values
are less than or equal to .621. Then |F1(.621) −
F0(.621)| = .9 − .621 = .279. Repeating this for the
other nine p values, we see that T = .29. The .05 criti-
cal value for T is .409, so we fail to reject the hypoth-
esis that the p values follow a uniform distribution. 
Of course, this does not mean that the hypothesis of a
uniform distribution should be accepted. Failing to
reject might be because the null hypothesis is true, or
because the null hypothesis is false but the power of
the Kolmogorov-Smirnov test is relatively low, result-
ing in a Type II error.

Let X
_

and s2 be the usual sample mean and vari-
ance, respectively. The modification that allows one to
test the hypothesis that F1 has a normal distribution
stems from Lilliefors. Letting

one merely tests the hypothesis that Z has a standard
normal distribution using the test statistic previously
described, only computed with the Xi values replaced
by the Zi values. The critical values differ from the
case where the population mean and variances are
specified, rather than estimated, but again, exact criti-
cal values can be determined. 

A criticism of the one-sample version of the
Kolmogorov-Smirnov test is that the Kolomogorov
distance between two distributions can be small, mean-
ing that T is relatively small, even when, in some sense,
there is a substantial difference between the distribu-
tions that might have practical importance. Consider,
for example, the contaminated normal distribution

H(x) = .9Φ(x) + .1Φ(x/10),

where Φ is the standard normal distribution. Although
this contaminated normal has a relatively small
Kolmogorov distance from the standard normal, its
variance is 10.9 versus 1 for the standard normal. In
practical terms, if the goal is to test the hypothesis that
observations are sampled from a standard normal, the
power of the Kolmogorov-Smirnov test to detect the
true difference is relatively low. For example, if 

n = 200, power is only about .15 when testing at the
.05 level.

—Rand R. Wilcox

See also Distance; Lilliefors Test for Normality
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KOLMOGOROV-SMIRNOV

TEST FOR TWO SAMPLES

The two-sample Kolmogorov-Smirnov test is designed
to test the hypothesis that two independent groups
have identical distributions. A possible appeal of the
method is that it can be sensitive to differences
between groups that might be routinely missed when
using means, medians, or any single measure of loca-
tion. For example, it might detect differences in the
variances or the amount of skewness. More generally,
it can detect differences between percentiles that
might be missed with many alternative methods for
comparing groups. Another positive feature is that it
forms the basis of a graphical method for characteriz-
ing how groups differ over all the percentiles. That is,
it provides an approach to assessing effect size that
reveals details missed by other commonly used tech-
niques. Moreover, the test is distribution-free, meaning
that assuming random sampling only, the probability
of a Type I error can be determined exactly based on
the sample sizes used. Historically, the test has been
described as assuming that distributions are continu-
ous. More precisely, assuming that tied values 
occur with probability zero, a recursive method for

Zi = Xi − X
---

s
,
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determining the exact probability of a Type I error is
available. But more recently, a method that allows tied
values was derived by Schroër and Trenkler.

The details are as follows. Let X1, . . . , Xn be a ran-
dom sample from the first group and Y1, . . . , Ym be a
random sample from the second. Let IXi≤ x = 1 if Xi ≤ x,
otherwise IXi≤ x = 0. F1 is estimated with

the proportion of observations less than or equal to x,
and F2 is estimated in a similar manner. The null
hypothesis is

H0 : F1(x) = F2(x), all x

versus

H1 : F1(x) ≠ F2(x), for at least one x.

The test statistic is based on what is sometimes
called the Kolmogorov distance, which is just the
maximum absolute difference between the two distri-
butions under consideration. For convenience, let
Z1, . . . , ZN be the pooled observations where N =
m + n. So the first m Z values correspond to X1, . . . ,
Xm. The test statistic is

T = max |F1(Zi) – F2(Zi)|,

the maximum being taken over all i = 1, . . . N.
A variation of the Kolmogorov-Smirnov test is

sometimes suggested when there is interest in detect-
ing differences in the tails of the distributions. Let 
M = nm/N, λ = n/N, and

Ĥ(x) = λF̂1(x) + (1–λ)F̂2(x).

Now, the difference between any two distributions,
at the value x, is estimated with

(1)

Then the hypothesis of identical distributions 
can be tested with an estimate of the largest weighted
difference over all possible values of x. The test
statistic is

(2)

where again the maximum is taken over all values of
i, i = 1, . . ., N, subject to Ĥ(Zi)[1–Ĥ(Zi)] > 0.

Simply rejecting the hypothesis of equal distribu-
tions is not very informative. A more interesting issue
is where distributions differ and by how much. A
useful advance is an extension of the Kolmogorov-
Smirnov test that addresses this issue. In particular, it
is possible to compute confidence intervals for the dif-
ference between all of the quantiles in a manner where
the probability of at least one Type I error can be
determined exactly.

Suppose c is chosen so that P(D ≤ c) = 1 − α.
Denote the order statistics by X(1) ≤ . . . ≤ X(n) and Y(1)

≤ . . . ≤ Y(m). For convenience, let X0 = −∞ and X(n+1) = ∞.
For any x satisfying X(i) ≤ x < X(i+1), let

where M = mn/(m + n) and the notation [x]+ means 
to round up to the nearest integer. For example, [5.1]+

= 6. Let

where k* is rounded down to the nearest integer. Then,
a level 1 − α simultaneous, distribution-free confi-
dence band for ∆(x) (−∞ < x < ∞) is

[Y(k*) – x, Y(k*+1) – x), (3)

where Y(k*) = –∞ if k* < 0 and Y(k*) = ∞ if k* ≥ m + 1.
That is, with probability 1 − α, Y(k*) – x ≤ ∆(x) < Y(k*+1)

– x for all x. The resulting confidence band is called an
S band.

k∗ =
[

m

(
i
n

+ c√
M

)]

,

k∗ =
[

m

(
i
n

− c√
M

)]+
,

Dw = max

√
M|F̂ (Zi) − Ĝ(Zi)|

√

Ĥ (Zi)(1 − Ĥ (Zi))

,

√
M|F̂1(x) − F̂2(x)|

√

Ĥ (x)[1 − Ĥ (x)]
.

F̂1(x) = 1
m

m∑

i=1

IXi≤x,

Kolmogorov-Smirnov Test for Two Samples———515



Example: A portion of a study conducted by Salk
dealt with weight gain in newborns who weighed at
least 3,500 grams at birth. The experimental group
was continuously exposed to the sound of a mother’s
heartbeat. The weight gains were

190 80 80 75 50 40 30 20 20 10 10 10 0 
0 −10 −25 −30 −45 −60 −85

For the control group, the weight gains were

140 100 100 70 25 20 10 0 –10 −10 −25 −25 
−25 −30 −30 −30 −45 −45 −45 −50 −50 −50 
−60 −75 −75 −85 −85 −100 −110 −130 −130 

−155 −155 −180 −240 −290

For the sake of illustration, consider computing the
confidence band at x = 77. Because n = 36 and m = 20,
M = 12.86. Note that the value 77 is between Y(33) = 70
and Y(34) = 100, so i = 33. From Wilcox (2005), the .05
critical value is approximately c = .38, so

Similarly, k* = 20. The 17th value in the exper-
imental group, after putting the values in ascending
order, is X(17) = 75, X(20) = 190, so the interval around 
∆(77) is

(75 – 77, 190 – 77) = (–2, 113).

—Rand R. Wilcox
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KR-20 AND KR-21

According to classical measurement theory, instru-
ment reliability is the consistency that a test measures
whatever it measures. A primary objective for piloting
and field testing in the test construction process is to
obtain an estimate of the test’s reliability based on a
randomly selected sample of examinees.

The reliability estimate is portable, meaning that it
is a psychometric property of the test. However, it is a
sound measurement practice to reassess the reliabil-
ity estimate when an instrument is administered to a
group that may not have been sampled randomly. 
It should be expected that trivial differences in the
magnitude of the estimate may appear because of
sampling error. This is overlooked by proponents of
so-called reliability generalization, the currently pop-
ular incogitancy of conducting meta-analytic studies
on reliability estimates of a test obtained in practice.

There are a variety of techniques for capturing
evidence of the consistency of a test. One technique 
is based on internal consistency obtained within a
single administration of the test. For example, con-
sider splitting a test of N items into two parts. 
Let X = N1, . . . , N/2 and Y = NN/2+1, . . . , N. The Pearson
product-moment coefficient of correlation, rXYsplithalves

,
is called the split-halves internal consistency reliabil-
ity estimate.

Internal consistency techniques have underlying
assumptions. The primary assumption is that the 
test (or subscale of the test) is measuring a univocal
factor or homogeneous construct. Statistically, internal

k∗ =
[

20

(
33

36
− .38√

12.86

)]+
= 17.
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consistency depends on the parallel test assumption of
classical measurement theory. This means that all
pairs of item subsets of the test have equal means.
Tests for homoscedasticity exist, but their necessity is
questionable due to the practical extent that violation
of this assumption inflates the magnitude of the relia-
bility estimate, and equal intercorrelations (or correla-
tion with the set of classical measurement theory true
scores).

Another assumption of internal consistency meth-
ods is that the test is a power test rather than a speed
test, which tends to inflate the magnitude of the relia-
bility estimate. A power test is one in which sufficient
time is allotted to ensure that every examinee has the
opportunity to respond to every question. A speed test
has a specific allotment of time to complete the test,
and that amount requires quickness in order to
respond to the complete set of questions. There are a
variety of statistical tests to determine the “speedness”
of a measurement instrument, and in its presence,
there are concomitant adjustment formulas to use with
internal consistency measures.

Splitting a test into two parts also assumes N is even.
However, there are adjustments that permit N to be odd.
These adjustments may also be used if, for some other
reason, the test had to be split into unequal parts.

The most notable limitation of the split-halves
approach occurs if the items in the upper half of the
test represent easier material in comparison with the
items appearing on the lower half of the test. This arti-
ficially depresses the reliability estimate. The problem
surfaces, for example, with achievement tests because
of the tendency to order items based on some logical
progression, such as the sequence in which the topics
are taught. One method to determine the presence of
this problem is to compare the average item difficulty
for the upper and the lower halves of the test.

A common index of item difficulty (P, the per-
centage of examinees obtaining the correct result) is
obtained by P = , where U and L are the number
of examinees in the upper 27.5% and lower 27.5%,
respectively, who obtained the correct answer to the
test item, and N = 27.5% + 27.5% = 55% of the total
number of examinees. The value of 27.5% probably
evolved through trial and error in an effort to retain

as much information from the data set as possible,
while decreasing the probability that the perfor-
mance of an examinee might be classified into the
wrong group. (A median split is not used to classify
scores into the upper or lower group because of the
high probability that a score near the median may
lead to an erroneous classification.) A quick estimate
useful for small samples, such as the number of
students in a single classroom or the number of
clients in group therapy, may be obtained by defin-
ing U and L to represent the top and bottom 10
scores, respectively, and N = 10 + 10 = 20.

Then, the average P value is computed for all of the
items in the upper and lower halves of the test. A dif-
ference in average P value indicates that the reliability
estimate will be artificially deflated. This indicates that
the magnitude not only represents inconsistency of test
scores due to measurement error, but also inappropri-
ately reflects the extent to which the two parts of the
test differ in terms of item difficulty.

An alternative, designed to avoid this problem, is to
compute the Pearson correlation on X = N1,3,5, . . . N−1

and Y = N2,4,6, . . . N , N = even. In this case, rXYodd even
is

called the odd-even estimate of internal consistency
reliability. This will balance easy and difficult items
on both X and Y. Short-cut formulas exist for rXYodd even
that require scoring only the odd or even half of the
test, and the total test score.

Nevertheless, the odd-even technique may also fail
if there are multiple objectives with two items per
objective on the test. Consider a five-objective test
with two test items per objective. The reliability esti-
mate may be artificially depressed if, within each
objective, the first (i.e., odd) item is easy and the sec-
ond (i.e., even) item is difficult.

Another suggested alternative is based on a tetrad
technique, where the test is split into fourths.
However, there is no psychometric gain from splitting
the test into more than two parts.

A compromise between split-halves and odd-even
is to compute the average of the internal consistency
reliability estimates obtained from both techniques.
The averaged correlation will mitigate, to some
extent, the impact of placement of test items, with
regard to their item difficulty. Now, consider every

U + L

N
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possible combination obtained by
splitting the test into N parts of one 
item each. Conceptually, this is the 
idea behind the technique of Kuder-
Richardson, which is known as the 
KR-20 or KR (20) because it was the
20th numbered formula in their article.
The formula, in current symbols, is

where N is the total number of test
items, σ 2

T is the variance of the total cor-
rect per examinee, p is the proportion of
correct responses, and q = 1 − p. An
algebraically equivalent method of
determining the KR-20 is readily avail-
able and is based on a two-way analysis
of variance without replication.

As an example, consider a test of 
N = 6 items taken by five examinees. The following
small subset of scores was obtained during the early
piloting of a subscale of the Self-Determination
Knowledge Scale (SDKS). The SDKS was developed
as part of a U.S. Department of Education, Office of
Special Education funded initiative to develop curric-
ula to help adolescents with and without disabilities
learn to achieve their goals and become self-
determined. The results are tabled below. Note that 
σ 2

T = 5.44 (the computation of population variance is
not shown).

Thus, the KR-20 is

and because it is customary to round to two significant
digits, the KR-20 is reported as .92.

Kuder and Richardson gave an approximation to
the KR-20, known as KR-21, that is based on the aver-
age p and q. It simplifies the computation, given the
assumption that the item difficulty is similar for all
items. It obviates the need to compute indices of item

difficulty. The computational formula, applied to the
data in the above table, yields

and the KR-21 would be reported as .88.
Items are sometimes assigned different weights

when scoring an instrument. There are a variety of
reasons for this practice (e.g., to reflect importance).
Another common scoring procedure assigns different
weights to a wrong response versus a missing
response. An adjustment to the KR-21 to handle both
of these conditions is available.

Despite the ease of computation, and the frequency
that the KR-21 is reported, it assumes equal item
difficulty, which, if true, would seem to obviate the
need to avoid the simpler split-halves estimate.
Nevertheless, the KR-21 is preferred because it is a
closer approximation of the KR-20 than is the split-
halves estimate of reliability.

rKR-21 = Nσ 2
T − X

---
T (N − X

---
T )

(N − 1)σ 2
T

= (6 × 5.44) − [3.6 × (6 − 3.6)]

(6 − 1) × 5.44

= .8824

rKR-20 = 6

6 − 1
× 5.44 − 1.28

5.44

= .9176

rKR-20 = N

N − 1
× σ 2

T − �pq

σ 2
T

,
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Table 1 Results for Five Examinees on a Six-Item Subscale 
of the SDKS

Item

XT

Examinee 1 2 3 4 5 6 (Total Correct)

1 1 1 1 1 1 1 6
2 1 1 1 1 1 1 6
3 1 1 1 1 0 0 4
4 1 1 0 0 0 0 2
5 0 0 0 0 0 0 0

Correct 4 4 3 3 2 2
Incorrect 1 1 2 2 3 3
p .8 .8 .6 .6 .4 .4
q .2 .2 .4 .4 .6 .6
pq .16 .16 .24 .24 .24 .24 Σpq = 1.28

Note: SDKS = Self-Determination Knowledge Scale; 0 = incorrect, 1 = correct.



The KR-20 is the upper bound of the KR-21. In the
example from the data in the table, the KR-20 is about
4.5% larger than the KR-21. An adjustment to the KR-
21 is available to close the gap, but it requires nearly
as much computation as does the KR-20.

The obtained magnitude pertains to half the test
length. Test length affects internal consistency relia-
bility estimates, because as the test length decreases,
the Pearson correlation decreases. The method for
projecting internal consistency reliability for the com-
plete test is known as the Spearman-Brown prophecy
formula. This technique depends on the parallel test
assumption of classical measurement theory and that
the test is not a speed test.

The formula is rSB = , where rIC is the value
obtained via a method of internal consistency. For
example, based on the KR-20 computed from the data
in the table above, the estimated reliability for the
entire test is

and would be reported as rSB = .96.
The KR-20 is restricted to test items that are scored

dichotomously (including the semantic differential,
such as “agree-disagree” or “introverted-extroverted”).
An extension is necessary when items are scored on a
Likert scale for N > 2 levels (e.g., a 5-point Likert
might be a scale where 1 = strongly disagree, 2 =
somewhat disagree, 3 = neutral, 4 = somewhat agree,
5 = strongly agree). The generalization is called coef-
ficient alpha, or Cronbach’s alpha, which is the lower-
bound estimate of a Likert-scored test’s reliability.

Rules of thumb abound on what magnitude
constitutes an adequate level of KR-20 or KR-21
internal consistency reliability. Obviously, as the mag-
nitude increases, the evidence for consistency of the
test increases. Commercially published tests pertain-
ing to achievement tests, such as arithmetic or conju-
gation of verbs skills, are often reported to have
internal consistency reliability estimates from .85 to
.95 or better. Tests of less maturely developed con-
structs, such as giftedness, typically present much
lower estimates of internal consistency reliability.

Reliability estimates are available in many statis-
tical software packages. For example, in SPSS,
select the pull-down menu sequence of Analyze |
Scale | Reliability Analysis. A variety of choices,
such as split-halves and Cronbach’s alpha, are read-
ily available. Note that it is necessary to enter either
correct or incorrect (i.e., 0 or 1) data into the data
editor, or to write SPSS syntax to score the raw
responses, prior to using the split-halves technique.
This does not apply to Cronbach’s alpha if entering
Likert scaled data.

—Shlomo S. Sawilowsky
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KRUSKAL-WALLIS ONE-WAY

ANALYSIS OF VARIANCE

Kruskal-Wallis analysis of variance is a statistical
technique that is used to test the difference between
three or more independent samples when they are of

rSB = 2 × .92

1 + .92
= .9583

2rIC

1 + 2rIC
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disparate size. Remember that one of the assumptions
of analysis of variance (even though the test statistic is
fairly robust) is that the size of the various samples
must be roughly similar and that the variances must be
homogeneous.

In the case that these assumptions are not met, the
Kruskal-Wallis analysis of variance technique can be
used. This technique is roughly similar in use to 
one-way ANOVA with two or more levels of one inde-
pendent variable, except that in the case of Kruskal-
Wallis, this nonparametric or distribution-free statistic
is very often used to test for differences between
ranks.

In the following example, 30 participants are asked
to rate three different types of chocolate candies:
plain, peanut, and almond. The rating scale is yum,
OK, and average. The hypothesis being tested is that
there is a difference in ratings across the three differ-
ent types of candies.

Using SPSS, the data set appears as shown below
in Figure 1. As you can see, each of the 30 participants
rates one of three types of candies along the three-
point rating scale described above.

The procedure is performed and the output is
shown in Figure 2.

Chi square is the appropriate distribution against
which this test is compared for a test of the signifi-
cance of the difference between the three average
ranks. The output shows that there are 10 observa-
tions in each group with mean ranks ranging from
14.75 to 15.9. The chi-square value is .125, and the
probability that a value of this magnitude, with 2
degrees of freedom, occurred by chance is .940. In
other words, there is not a significant difference
between the average ranking in each of the three
groups.

—Neil J. Salkind

See also Analysis of Variance (ANOVA)

Further Reading

Smerz, J. M. (2005). Cognitive functioning in severe dementia
and relationship to need driven behaviors and functional
status. Dissertation Abstracts International: Section B: The
Sciences and Engineering, 66(3B), 1737.
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Figure 1 The Data Set Where Candies Are Ranked
by 30 Participants

Mulch color N Mean Rank

Taste scale Peanut 10 14.75

Plain 10 15.85

Almond 10 15.90

Total 30

Taste scale

Chi-Square .125

df 2

Asymp. Sig. .940

Ranks

Test Statisticsa,b

a. Kruskal-Wallis Test

Figure 2 The Results of the Kruskal-Wallis Test



Woo, J., Ho, S. C., & Wong, E. M. C. (2005). Depression is the
predominant factor contributing to morale as measured by
the Philadelphia Geriatric Morale Scale in elderly Chinese
aged 70 years and over. International Journal of Geriatric
Psychiatry, 20(11), 1052–1059.

KUDER OCCUPATIONAL

INTEREST SURVEY

The Kuder Occupational Interest Survey (KOIS; pub-
lished by National Career Assessment Services) is a
self-report measure of vocational interests designed to
inform the educational and vocational planning and
decision making of individuals in education, rehabili-
tation, industry, and private practice settings. The
current KOIS, Form DD, evolved from continuous
research and revision that began in the 1930s under
the direction of Frederic Kuder.

The KOIS is appropriate for use with individuals
who are high school age and older. The inventory can
be administered in individual or group settings; self-
administration is possible, but availability of a coun-
selor is recommended for nuanced interpretation of
scores. The items consist of 100 forced-choice triads,
each requiring respondents to indicate which of three
activities they prefer most and which they prefer least.
The pattern of item responses is used to compute
scores for scales presented in four sections of the
KOIS report form: Dependability, Vocational Interest
Estimates (VIEs), Occupations, and College Majors.

The first section of the KOIS report form provides
a statement of the dependability of inventory results
for the respondent according to indices that assess the
typicality of the individual’s responses. The second
section of the report form presents scores for 10 VIEs,
representing the following areas of vocational inter-
ests: Outdoor, Mechanical, Scientific, Computational,
Persuasive, Artistic, Literary, Musical, Social Service,
and Clerical. Two sets of VIE scores are provided in
descending rank order, one based on female norms
and one on male norms.

The third and fourth sections of the KOIS report
form present scores for 109 Occupational scales and
40 College Major scales. These scores are computed

using Clemens’s lambda coefficient and represent
the correlation between the individual’s item
responses and the modal responses provided by cri-
terion groups of satisfied women and/or men repre-
senting a specific occupation or college major. The
Occupational and College Major scales also are pre-
sented in rank order (as opposed to being grouped
according to some classification scheme) because
the KOIS emphasizes specific information about
individual occupations and majors rather than infor-
mation about average relationships existing in
groups. Scores within .06 lambda points of a respon-
dent’s highest score are labeled “most similar to” the
interests of the criterion groups for those scales,
those between .07 and .12 lambda points below the
high score are labeled “next most similar,” and the
remaining scores are listed in order of similarity.
Separate sets of scores are presented using norms for
women and men.

Evidence for the reliability and validity of KOIS
scale scores is generally strong and is reviewed in the
KOIS general manual. In keeping with the precedent
Kuder set in responding to the evolving needs of
inventory users, a new instrument, the Kuder Career
Search Schedule (KCSS), recently was introduced.
The KCSS uses the KOIS items, but matches individ-
ual response patterns to those of a number of criterion
persons (instead of criterion samples) to identify sat-
isfied individuals whose interests are most similar to
the respondent. This information is used to generate a
narrative report describing the careers of the closest
matching criterion persons.

—Bryan J. Dik

Further Reading

Kuder, F. (1977). Activity interests and occupational choice.
Chicago: Science Research Associates.

Kuder, F., & Zytowski, D. G. (1991). Kuder Occupational
Interest Survey general manual (3rd ed.). Monterey, CA:
CTB/McGraw Hill.

Zytowski, D. G. (1992). Three generations: The continuing
evolution of Frederic Kuder’s interest inventories. Journal
of Counseling and Development, 71, 245–248.

Kuder Career Planning System: http://www.kuder.com/
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KURTOSIS

Kurtosis is commonly thought of as a measure of 
the “pointyness” of a frequency distribution. This is
because kurtosis is the degree to which scores cluster
in the tails of a frequency distribution: A platykurtic
distribution has many scores in the tails (often called
a heavy-tailed distribution) and so is typically quite
flat, whereas a leptokurtic distribution is relatively
thin in the tails and so looks quite pointy. Figure 1
shows both leptokurtic and platykurtic distributions.
The leptokurtic distribution is pointier than a normal
distribution; conversely, the platykurtic distribution is
flatter than a normal distribution.

Kurtosis is typically measured using a scale that 
is centered on zero (the value of kurtosis in a normal
distribution). Negative values of kurtosis represent
platykurtic distributions, and positive values indicate
leptokurtic distributions. If a frequency distribution
has positive or negative values of kurtosis, this tells
you that this distribution deviates somewhat from a
normal distribution.

Values of kurtosis have associated standard
errors, and these can be used to convert the value of
kurtosis to a z score using the standard equation for
a z score,

which, if we replace the symbols with those for kurto-
sis, becomes

The mean value of kurtosis in the population is
zero, and so the equation reduces to

The utility of this conversion is that deviations
from normality can be assessed using conventions that
can be applied to any data set (regardless of the unit of

zKurtosis = K

SEK
.

zKurtosis = K − K
---

SEK
.

z = X − X
---

s
,
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Figure 1 A Leptokurtic (top), Normal (middle),
and Platykurtic (bottom) Distribution



measurement). For example, if the z associated with
the value of kurtosis is greater than 1.96 (when the
plus or minus sign is ignored), it is significant at 
p < .05; if it is above 2.58, then it is significant 
at p < .01; and if it is above 3.29, it is significant at 
p < .001. Although these criteria for “significant”
deviations from normality can be useful, large sam-
ples will give rise to small standard errors; therefore,
when sample sizes are big, significant values of kurto-
sis will arise from small deviations from normality.
Field suggests that although these criteria can be
applied to small samples, if the sample size is larger

than about 200, it is more important to look at the
shape of the distribution visually (using a histogram)
and to look at the value of the kurtosis statistic rather
than calculating its significance.

—Andy P. Field

See also Frequency Distribution; Skewness; z Scores

Further Reading

Field, A. P. (2005). Discovering statistics using SPSS
(2nd ed.). London: Sage.
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LABORATORY BEHAVIORAL

MEASURES OF IMPULSIVITY

The Laboratory Behavioral Measures of Impulsivity
(available from Donald M. Dougherty, PhD, at
NRLC@wfubmc.edu) are a set of four computerized
measures of behavioral impulsivity: the GoStop
Impulsivity Paradigm, Two Choice Impulsivity
Paradigm, Single Key Impulsivity Paradigm, and
Time Paradigm. This set of tests allows researchers to
integrate testing of distinct types of impulsivity within
a single assessment battery. The tests are widely used
in research settings, and they have excellent psycho-
metric characteristics and validity across a variety of
populations (e.g., children to adults) and conditions
(e.g., medication).

The GoStop Impulsivity Paradigm measures the
ability to inhibit responding. Individuals taking the
test are instructed to click a mouse button at a “go”
stimulus (consecutive matching 5-digit numbers that
appear in black against a white computer back-
ground), and to withhold responding when they see a
“stop” stimulus (consecutive numbers that change in
color from black to red). Responses to numbers pre-
sented with the “stop” signal reflect a failure in the
ability to inhibit responding.

The Two Choice Impulsivity Paradigm (TCIP)
measures the ability to forgo immediate gratification
for greater rewards at a later time. Individuals taking
the test must choose between shapes appearing on a
computer monitor. The choices result in either a small
reward (points) delivered after a short delay (e.g.,
5 seconds), or a larger reward after a long delay (e.g.,
15 seconds). A tendency to select more of the smaller
rewards is considered impulsive, because these
choices result in less optimal consequences.

The Single Key Impulsivity Paradigm (SKIP) also
measures the ability to forgo immediate gratification,
but does not use the forced-choice procedure of the
TCIP. Instead, in the SKIP, individuals taking the test are
informed that they earn rewards (points) whenever they
press a button, and that these rewards are earned in pro-
portion to how long they wait between button presses.
For instance, waiting 5 seconds between presses may
earn 5 points, whereas waiting 15 seconds earns 15
points. The tendency to respond more frequently for
smaller rewards is considered impulsive, because these
choices result in less optimal consequences.

The Time Paradigm measures the perception of 
the passage of time. Individuals taking the test are
instructed to estimate the passage of time by pressing
a button to start and stop a timer, or to hold the 
button continuously during the estimation interval. 
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A tendency to underestimate the passage of time is
associated with impulsivity.

—Charles W. Mathias, Dawn M. Marsh,
and Donald M. Dougherty

Further Reading

Dougherty, D. M., Mathias, C. W., Marsh, D. M., & Jagar, A. A.
(2005). Laboratory behavioral measures of impulsivity.
Behavior Research Methods, 37, 82–90.

Dougherty, D. M., Mathias, C. W., & Marsh, D. M. (2003).
Laboratory measures of impulsivity. In E. F. Coccaro (Ed.),
Aggression: Psychiatric assessment and treatment.
Medical Psychiatric Series No. 22 (pp. 247–265). New
York: Marcel Dekker.

Laboratory Behavioral Measures of Impulsivity tasks and the
laboratory where they were developed: http://www1
.wfubmc.edu/psychiatry/Research/NRLC/

LATENT CLASS ANALYSIS

Latent class analysis (LCA) is a method or technique
for identifying unlabeled groups of individuals or cases
in a data set based on multivariate categorical data.
LCA is used in psychology, sociology, and many other
areas of application to cluster, or partition, individuals
into underlying groups. The data recorded on each
member of the sample are a series of measurements on
categorical or qualitative variables that record discrete
characteristics of the units. In many social science
applications, the data consist of responses on a discrete
scale to a series of questions. The latent class model
(LCM) is a probability model that describes the dis-
tribution of responses in the separate groups to the sev-
eral questions. Estimation of the model parameters
leads to a characterization of the underlying groups in
terms of likely patterns of responses to the questions.

LCA is implemented by estimating the parameters,
or proportions, of the LCM. Suppose there are G
latent groups in the model, and three categorical vari-
ables (A, B, and C) are measured on each case. The
latent class model can be expressed as

pABC
abc = sum over index g from 1 to G

pG
g pAG

ag pBG
bg pCG

cg.
(1)

On the left-hand side of this formula, pABC
abc is the

probability of observing the values a, b, and c on vari-
ables A, B, and C, respectively. On the right-hand side,
pG

g is the proportion of the units in class g, pAG
ag is the

probability of a response a to Variable A among units
in class g, pBG

bg is the probability of response b to
Variable B in class g, and pCG

cg is the probability of
response c to Variable C in class g. In the LCM, the
Variables A, B, and C are assumed to be conditionally
independent within the various groups indexed by g.
This assumption is expressed in Equation 1 by the fact
that the probability of response (a,b,c) in g is found by
multiplying probabilities pAG

ag, pBG
bg, and pCG

cg.
None of the proportions in Equation 1 needs to be

known a priori in order to use LCA. If nabc is the
number of respondents giving response (a,b,c) to
Variables (A,B,C), then the statistical likelihood for
the model probabilities is a product over all patterns
(a,b,c) that have been observed of pABC

abc raised to the
nabc power. The maximum likelihood estimates of 
the probabilities pG

g, pAG
ag, pBG

bg, and pCG
cg can be

produced using numerical methods, such as the
Expectation-Maximization (EM) algorithm. The term
mixture models refers to the class of statistical models
that is appropriate for populations with unlabeled sub-
populations. Latent class models are mixture models
that are appropriate when data are categorical and,
typically, include the assumption of conditional
independence.

As a hypothetical example, suppose that a group 
of 400 college seniors is asked to rate their level of
agreement on a 3-point scale (1 = disagree or strongly
disagree, 2 = somewhat agree or somewhat disagree,
3 = agree or strongly agree) with the following three
statements: “I worry about my grades,” “I worry about
whether people like me,” “I worry about money.” The
largest two counts in Table 1 correspond to disagree-
ing with all three statements (98) and agreeing with all
three statements (109).

Results of fitting a latent class model to these data
are presented in Table 2.

Fifty-six percent of the observations are estimated
to arise from the first class; 44% are estimated to
come from the second class. Members of the first
class have high probabilities of worrying about grades
(80% agree or strongly agree), friends (83%), and
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money (79%). The second class has high probabilities
of not worrying about grades (84% disagree or
strongly disagree), friends (81%), and money (79%).
These data are hypothetical and extreme, but the data
and results illustrate the application of latent class
models. Further analysis might relate membership in
these two clusters to information on grades; participa-
tion in extracurricular activities; financial aid; family
income; place of origin (small, medium, or large);
family status; gender; and other factors.

It is possible to compute the probability that a
respondent giving responses (a,b,c) belongs to latent
class g. Using Bayes’ theorem, a formula from ele-
mentary probability theory, the probability is pG

g pAG
ag

pBG
bg pCG

cg divided by the value of Equation 1. Thus,
the latent class analysis results can be used to cluster
the response patterns and, hence, the respondents into
latent classes or clusters. In practice, the number of

latent groups G is usually unknown.
Some researchers approach this
problem by testing the goodness-of-
fit produced by latent class models
with various numbers of groups.
Larger models with more groups fit
the observed data better, of course,
but the extra groups might not be
necessary to produce reasonable fit.
If the groups are not needed to
adequately model the data, then a
smaller, more parsimonious model
with fewer classes is likely a better
choice. Other researchers look to 
the substantive interpretation of the
latent classes and their probabilities
to help decide on a value of G. In
general, deciding on the number of
classes can be a challenging problem
that can be examined in various
ways.

Record linkage, or exact match-
ing, refers to the activity of linking
together two or more databases on a
single population. The U.S. Bureau
of the Census uses record linkage in
its efforts to estimate the population
undercount of the decennial census.

The two files that Census links together are a sample
of the decennial census and a second, independent
enumeration of the population areas covered by the
sample. Some individuals are enumerated in both the
census and the second enumeration, whereas others
are absent from one or both of the canvasses. Latent
class models are used in record linkage to estimate
probabilities that pairs of records, one from each of
two files, correspond to a single person. The data
observed for each pair of records consist of a string of
zeros (indicating disagreement on a comparison of,
say, last names for records in the files) and ones (indi-
cating agreement on a comparison). The data for a
particular pair of records then consist of values of sev-
eral binary indicators (a type of categorical variable).
Latent class analysis has been used by the U.S. Bureau
of the Census to divide the pairs into groups of record
pairs that are likely to be matches corresponding 

Latent Class Analysis———527

Table 1 Number of Responses to Three Questions by 400 College
Students

Worry About Money

Disagree Neutral Agree

Worry Disagree 98 19 6
Disagree About Neutral 24 5 3

Friends Agree 7 0 11

Worry Disagree 18 4 2
Neutral About Neutral 3 1 3

Friends Agree 2 2 20

Worry Disagree 8 0 7
Agree About Neutral 4 3 15

Friends Agree 7 19 109

Worry
About
Grades

Table 2 Latent Class Proportions and Probabilities

Worry About . . . Grades Friends Money

Class 1 Disagree 0.05 0.05 0.06
Proportion Neutral 0.15 0.12 0.15
0.56 Agree 0.80 0.83 0.79

Class 2 Disagree 0.84 0.81 0.79
Proportion Neutral 0.15 0.13 0.15
0.44 Agree 0.01 0.06 0.06

Hypothetical Numbers of Respondents
in Each of 27 Cells of a Three-Way Table



to a single person and those that are likely to be
nonmatches corresponding to two different people.
The matches have probabilities of agreeing on com-
parisons that are quite high, whereas the nonmatches
have lower estimated probabilities of agreement.

—Michael D. Larsen

See also Cluster Analysis; Discriminant Analysis; Mixture
Models; Record Linkage

Further Reading

Clogg, C. C., & Goodman, L. A. (1984). Latent structure-
analysis of a set of multidimensional contingency-tables.
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Biometrika, 61(2), 215–231.

Haberman, S. J. (1974). Log-linear models for frequency
tables derived by indirect observation: Maximum likeli-
hood equations. Annals of Statistics, 2(5), 911–924.

Haberman, S. J. (1977). Product models for frequency tables
involving indirect observation. Annals of Statistics, 5(6),
1124–1147.

Hagenaars, J. A., & McCutcheon, A. L. (Eds.). (2002). Applied
latent class analysis. Cambridge, UK: Cambridge
University Press.

McCutcheon, A. L. (1987). Latent class analysis. Newbury
Park, CA: Sage.

LAW OF LARGE NUMBERS

In research, a common activity is to collect a random
sample of data for the purposes of estimating a para-
meter. As a typical example, we calculate the sample
mean, or x

_
, in order to estimate the unknown mean µ

of a population. Often, this is followed up by the use
of some method of statistical inference; this could
include the calculation of a confidence interval and/or
the running of a hypothesis test. In order for our infer-
ences to be accurate, we need some sort of assurance
that our sample statistic will estimate accurately the
true value of the parameter.

The Law of Large Numbers is usually described 
in a nonmathematically rigorous way in elementary

statistics textbooks. Essentially, if we draw a random
sample from a population of any shape with a finite
mean and specify how close we would like our esti-
mate x

_
to be to µ, eventually we can get that close as

our sample size increases.

Advanced Definitions

Mathematical statisticians and probabilists define the
Law of Large Numbers more precisely. First, consider
the Weak Law of Large Numbers (Mood, Graybill, &
Boes, 1974):

Let f(x) be a probability density function with mean
µ and finite variance σ2. Let  x

_

n be the sample mean
of a random sample of size n from f(x). Choose con-
stants α and ε such that ε > 0 and 0 < α < 1. If n is
an integer where then P(–ε < x

_

n – µ < ε) ≥ –α.

Typically, the constant ε is chosen to be very close
to zero and the theorem is used to demonstrate that as
the sample size approaches infinity, the sample mean
will eventually get ε- close to µ. So the formal Weak
Law of Large Numbers is just the mathematical
description of the Law of Large Numbers that appears
in lower-level textbooks. The Strong Law of Large
Numbers strengthens the Weak Law by proving that
the sample means converges to µ with probability one.

Misconceptions and Application

Many people in everyday life confuse the Law of
Large Numbers with a number of mistaken notions,
including the so-called Law of Averages or Law of
Small Numbers, where people think probabilities will
even out over the short term. For instance, suppose I
flip a fair coin and obtain tails five straight times. The
coin is no more likely to be heads on the sixth toss,
despite the Law of Averages. However, the Law of
Large Numbers would tell us that the probability of
obtaining heads will approach 0.50 as we flip the coin
many, many times (Figure 1). In addition, Mecklin
and Donnelly illustrated a novel application of the
Law of Large Numbers as it applies to the Powerball
lottery game (see Further Reading). 

n ≥ σ 2

ε2α
,
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—Christopher J. Mecklin

Further Reading

Evans, M. J., & Rosenthal, J. S. (2004). Probability and sta-
tistics: The science of uncertainty. New York: Freeman.

Mecklin, C. J., & Donnelly, R. G. (2005). Powerball, expected
value, and the law of (very) large numbers. Journal of
Statistics Education, 13(2). Available at: http://www
.amstat.org/publications/jse/v13n2/mecklin.html

Mood, A., Graybill, F., & Boes, D. (1974). Introduction to the
theory of statistics (3rd ed.). New York: McGraw-Hill.

Moore, D. S., & McCabe, G. P. (2003). Introduction to the
practice of statistics (4th ed.). New York: Freeman.

LAW SCHOOL ADMISSIONS TEST

The Law School Admissions Test (LSAT) is a half-
day standardized test required for admission to all
American Bar Association-approved law schools,
most Canadian law schools, and many other law
schools as well. The test is administered four times a
year at hundreds of locations around the world. The
purpose of the LSAT is to measure reasoning and
logic skills thought to be essential for success in law
school. These skills include the reading and compre-
hension of complex passages, the organization and
understanding of information and the ability to draw

proper inferences from the information, the ability to
think in a critical manner, and the ability to evaluate
the inferences and reasoning made by others. The
LSAT is among the most difficult standardized tests
currently administered, with the emphasis on reason-
ing skills rather than knowledge.

Four sections of the test are given in a written
multiple-choice format, and they have a time limit of
35 minutes each. The number of items in each section
varies but is always less than 30. These four sections
are used to calculate the overall score of the individual.
The mean score is arbitrarily set at 150 with a standard
deviation of 10, with actual scores varying from a low
of 120 (–3 SD) to a high of 180 (+3 SD). These four
sections consist of one reading comprehension section,
one analytical reasoning section, and two different
analytical reasoning sections. The test does not include
any mathematical or scientific reasoning component.
Due to the fact that the test norms are developed from
those who actually take the test, test takers will find
that their scores are generally much lower than scores
on tests like the Scholastic Aptitude Test (SAT), whose
normative populations are much more similar to the
general population. Scores on the LSAT may vary on
average as much as 1 standard deviation below scores
on other standard tests, such as IQ or SAT, based on the
differences in the standardization samples.

In addition, the test consists of a fifth section that
is used to pretest new test items or establish the equiv-
alence of different forms of the test. The test taker
does not know which section is the experimental,
unscored section. This section is not sent to law
schools. Finally, the test includes a written essay ques-
tion that is not scored, but which is sent to law schools
along with the candidate’s scores from the test. The
written essay was a 30-minute, one-page test until
2005, when it was revised to a two-page, 35-minute
test in which applicants receive one of two different
kinds of writing prompts on a random basis.

The LSAT is administered by the Law School
Admission Council (LSAC), a nonprofit organization
whose members are most of the law schools in the
United States and Canada. LSAT provides a number
of other admission services to the member law
schools, including putting together a comprehensive
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packet on each applicant that includes the LSAT
materials, transcripts, and letters of recommendation.
Admission decisions, however, are made by each indi-
vidual law school using its own criteria.

—Charles Golden

Further Reading

Law School Admission Council: http://www.lsac.org/

LEAST SQUARES, METHOD OF

The least squares method (LSM) is probably the most
popular technique in statistics. This is due to several
factors. First, most common estimators can be casted
within this framework. For example, the mean of a
distribution is the value that minimizes the sum of
squared deviations of the scores. Second, using
squares makes LSM mathematically very tractable
because the Pythagorean theorem indicates that, when
the error is independent of an estimated quantity, one
can add the squared error and the squared estimated
quantity. Third, the mathematical tools and algorithms
involved in LSM (derivatives, eigendecomposition,
singular value decomposition) have been well studied
for a relatively long time.

LSM is one of the oldest techniques of modern
statistics, and even though ancestors of LSM can be
traced up to Greek mathematics, the first modern pre-
cursor is probably Galileo. The modern approach was
first exposed in 1805 by the French mathematician
Legendre in a now-classic memoir, but this method is
somewhat older because it turned out that, after the
publication of Legendre’s memoir, Gauss (the famous
German mathematician) contested Legendre’s prior-
ity. Gauss often did not publish ideas when he
thought that they could be controversial or not yet
ripe, but would mention his discoveries when others
published them (the way he did, for example, for 
the discovery of non-Euclidean geometry). And in
1809, Gauss published another memoir in which he
mentioned that he had previously discovered LSM
and used it as early as 1795 in estimating the orbit of
an asteroid. A somewhat bitter anteriority dispute

followed (a bit reminiscent of the Leibniz-Newton
controversy about the invention of calculus), which,
however, did not diminish the popularity of this
technique.

The use of LSM in a modern statistical framework
can be traced to Galton, who used it in his work on the
heritability of size, which laid the foundations of cor-
relation and (also gave the name to) regression analy-
sis. The two antagonistic giants of statistics, Pearson
and Fisher, who did so much in the early development
of statistics, used and developed LSM in different
contexts (factor analysis for Pearson and experimental
design for Fisher).

Today, the least squares method is widely used to
find or estimate the numerical values of the parame-
ters to fit a function to a set of data and to character-
ize the statistical properties of estimates. It exists
with several variations: Its simpler version is called
ordinary least squares (OLS), and a more sophisti-
cated version is called weighted least squares (WLS),
which often performs better than OLS because it can
modulate the importance of each observation in the
final solution. Recent variations of the least squares
method are alternating least squares and partial least
squares.

Functional Fit
Example: Regression

The oldest (and still the most frequent) use of OLS
was linear regression, which corresponds to the prob-
lem of finding a line (or curve) that best fits a set of
data points. In the standard formulation, a set of N
pairs of observations {Yi, Xi} is used to find a function
relating the value of the dependent variable (Y) to the
values of an independent variable (X). With one vari-
able and a linear function, the prediction is given by
the following equation:

Ŷ = a + bX. (1)

This equation involves two free parameters that
specify the intercept (a) and the slope (b) of the
regression line. The least squares method defines 
the estimate of these parameters as the values that
minimize the sum of the squares (hence the name
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least squares) between the measurements and the
model (i.e., the predicted values). This amounts to
minimizing the expression,

(2)

where E stands for “error,” which is the quantity to be
minimized. The estimation of the parameters is
obtained using basic results from calculus and, specif-
ically, uses the property that a quadratic expression
reaches its minimum value when its derivatives van-
ish. Taking the derivative of E with respect to a and b
and setting them to zero gives the following set of
equations (called the normal equations):

(3)

and

(4)

Solving the normal equations gives the following
least square estimates of a and b as

a = MY – bMX, (5)

where MY and MX denote the means of X and Y, and

(6)

OLS can be extended to more than one indepen-
dent variable (using matrix algebra) and to nonlinear
functions.

TThhee  GGeeoommeettrryy  ooff  LLeeaasstt  SSqquuaarreess

OLS can be interpreted in a geometrical framework
as an orthogonal projection of the data vector onto the
space defined by the independent variable. The pro-
jection is orthogonal because the predicted values and
the actual values are uncorrelated. This is illustrated in
Figure 1, which depicts the case of two independent
variables (vectors x1 and x2) and the data vector (y),
and shows that the error vector (y – ŷ ) is orthogonal

to the least square (ŷ ) estimate, which lies in the
subspace defined by the two independent variables.

OOppttiimmaalliittyy  ooff  LLeeaasstt  SSqquuaarree  EEssttiimmaatteess

OLS estimates have some strong statistical proper-
ties. Specifically, when (a) the data obtained consti-
tute a random sample from a well-defined population,
(b) the population model is linear, (c) the error has a
zero expected value, (d) the independent variables are
linearly independent, and (e) the error is normally dis-
tributed and uncorrelated with the independent vari-
ables (the so-called homoscedasticity assumption),
then the OLS estimate is the best linear unbiased esti-
mate, often denoted by the acronym “BLUE” (the five
conditions and the proof are called the Gauss-Markov
conditions and theorem). In addition, when the Gauss-
Markov conditions hold, OLS estimates are also max-
imum likelihood estimates.

WWeeiigghhtteedd  LLeeaasstt  SSqquuaarreess

The optimality of OLS relies heavily on the
homoscedasticity assumption. When the data come from
different subpopulations for which an independent
estimate of the error variance is available, a better
estimate than OLS can be obtained using WLS, also
called generalized least squares. The idea is to assign

b =
∑

(Yi − MY)(Xi − MX)
∑

(Xi − MX)2
.

∂E
∂b

= 2b
∑

X2
i + 2a

∑
Xi − 2

∑
YiXi = 0.

∂E
∂a

= 2Na + 2b
∑

Xi − 2
∑

Yi = 0

E =
∑

i

(Yi − Ŷi)
2 =

∑

i

[Yi − (a + bX i)]
2,
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ŷ

y

x1
y _

x2

Figure 1 The Least Square Estimate of the Data Is the
Orthogonal Projection of the Data Vector
Onto the Independent Variable Subspace



to each observation a weight that reflects the uncer-
tainty of the measurement. In general, the weight wi,
assigned to the ith observation, will be a function 
of the variance of this observation, denoted σi

2. A
straightforward weighting schema is to define wi = σi

−1

(but other, more sophisticated weighted schemes can
also be proposed). For the linear regression example,
WLS will find the values of a and b minimizing:

(7)

IItteerraattiivvee  MMeetthhooddss::  GGrraaddiieenntt  DDeesscceenntt

When estimating the parameters of a nonlinear func-
tion with OLS or WLS, the standard approach using
derivatives is not always possible. In this case, iterative
methods are very often used. These methods search in
a stepwise fashion for the best values of the estimate.
Often, they proceed by using at each step a linear
approximation of the function and refine this approxi-
mation by successive corrections. The techniques
involved are known as gradient descent and Gauss-
Newton approximations. They correspond to nonlinear
least squares approximation in numerical analysis and
nonlinear regression in statistics. Neural networks con-
stitute a popular recent application of these techniques.

Problems With Least 
Squares, and Alternatives

Despite its popularity and versatility, LSM has its
problems. Probably the most important drawback of
LSM is its high sensitivity to outliers (i.e., extreme
observations). This is a consequence of using squares,
because squaring exaggerates the magnitude of differ-
ences (e.g., the difference between 20 and 10 is 10,
but the difference between 202 and 102 is 300) and
therefore gives a much stronger importance to
extreme observations. This problem is addressed by
using robust techniques, which are less sensitive to 
the effect of outliers. This field is currently under
development and is likely to become more important
in the future.

—Hervé Abdi

See also Eigendecomposition; Partial Least Square Regression;
Singular and Generalized Singular Value Decomposition
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LIFE VALUES INVENTORY

The Life Values Inventory, published by Applied
Psychology Resources, contains 42 items, measures
14 relatively independent values, and takes 20 minutes
to administer. The LVI was designed to help individu-
als clarify and prioritize their values and serve as a
blueprint for decision making.

Values have long been viewed as important deter-
minants of human behavior. Research has linked the
essential aspect of values to organizational behavior,
career decision making, academic performance, rela-
tionship satisfaction, and life role planning. They have
also been identified as central determinants of cultur-
ally unique behavior and thus are critical to the under-
standing of cultural differences. The LVI was developed
to provide an empirically based, easily administered
values inventory with cultural sensitivity and practical
utility. Applications of the LVI include career devel-
opment, life role planning, adjustment and transition,
retirement and leisure counseling, team building 
and organizational development, couples counseling,
stress management, substance abuse counseling and
education, and sport/performance psychology.

Ew =
∑

i

wi(Yi − Ŷi)
2 =

∑

i

wi[Yi − (a + bXi)]
2.
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The 14 scales measured by the LVI are
Achievement, Belonging, Concern for the Environment,
Concern for Others, Creativity, Financial Prosperity,
Health and Activity, Humility, Independence, Interde-
pendence, Objective Analysis, Privacy, Responsibility,
and Spirituality. The scales of the LVI were selected
on the basis of a series of factor analytic studies. The
scales were also reviewed for cultural sensitivity
through two rounds of reviews by knowledgeable rep-
resentatives of several cultural groups and subgroups.

In the process of taking the LVI, respondents are
asked to both rate the strength of their values and rank
them in order of importance. Respondents are first asked
to rate the degree to which the beliefs contained in the
42 items are current guides to their behavior based on a
5-point Likert scale with markers for 1, 3, and 5. The
markers are 1 = seldom guides my behavior, 3 = some-
times guides my behavior, and 5 = frequently guides my
behavior. The next step in the assessment process is for
individuals to rank order their most important values
using the rating section as a guide. The final step is to
rank the importance of the values they hope to have sat-
isfied in each of three life roles: Work, Important
Relationships, and Leisure and Community Activities.
The test was updated in 2002 to improve the utility of
the LVI for counseling and consulting purposes while
trying to maintain the empirical validity of the 14 scales.

—R. Kelly Crace and Duane Brown

Further Reading

Brown, D., & Crace, R. K. (2002). Facilitator’s guide to 
the Life Values Inventory. Williamsburg, VA: Applied
Psychology Resources.

Crace, R. K., & Brown, D. (2002). Understanding your values.
Williamsburg, VA: Applied Psychology Resources.

Life values inventory: http://www.lifevaluesinventory.com

LIKELIHOOD RATIO TEST

The likelihood ratio test is a test of a statistical hypoth-
esis that uses the likelihood ratio as a test statistic. 
It is available in a broad class of hypothesis-testing

problems where the underlying statistical model
involves a parametric family of distributions. Many
well-known statistical tests are, in fact, likelihood
ratio tests. In some cases, it has desirable optimality
properties. For large samples, a convenient approxi-
mation is available for computing approximate p val-
ues, subject to some regularity conditions. In some
less regular cases, approximate p values can be
obtained via computer simulation.

Suppose that data y = (y1, y2, . . . , yn) are modeled
as a realization of a random vector whose distribution
depends on unknown parameters θ = (θ1, θ2, . . . , θk).
If the distribution is discrete, let f(x;θ ) denote the
probability mass function; if continuous, let f(x;θ)
denote the probability density function as a function
of a real vector x and the unknown parameters.

The likelihood function is

L(θ;y) = f(y;θ);

that is, f(x;θ ) is evaluated at the data and viewed then
(primarily) as a function of the unknown parameters.
When the distribution is discrete, this is precisely the
probability of getting the observed data as a function
of the parameters; in the continuous case, the inter-
pretation is similar, so in a certain sense, larger values
of the likelihood function indicate better agreement
between parameters and data.

Let Θ denote the set of all possible parameter vec-
tors under the model, and let Θ0 denote the set of those
parameter vectors in Θ permitted under the hypothe-
sis (this hypothesis is sometimes called the null
hypothesis). Also, let Θ1 denote the alternative, that is,
the set of those parameter vectors in Θ not permitted
under the hypothesis. The likelihood ratio is defined
in several different but essentially equivalent ways.
One is

Because larger likelihood means better agreement
between parameters and data, the denominator mea-
sures the best agreement possible under the hypothe-
sis. If the best agreement over all Θ is attained under

� = supθ∈� L(θ;y)

supθ∈�0
L(θ;y)

.

Likelihood Ratio Test———533



the hypothesis, Λ = 1. Otherwise, it is greater than 1,
with better performance of the alternative over the
hypothesis giving a bigger likelihood ratio. Thus,
larger values of L provide more evidence against the
hypothesis.

An alternate definition is

where the numerator measures only the best agreement
under the alternative. Thus, Λ = max (Λ1, 1), so when
there is any evidence against the hypothesis, they coin-
cide. The likelihood ratio is also sometimes defined as
1/Λ or 1/Λ1, in which case smaller values of the statis-
tic provide more evidence against the hypothesis.

If two test statistics are increasing functions of one
another, then because they always give the same p
value, the tests based on them are equivalent. In many
common problems, the likelihood ratio turns out to be
an increasing function of a more familiar test statistic.
Some examples are one-sample, two-sample, and
regression t tests; analysis of variance F tests; and cer-
tain tests based on the mean of the data for binomial
and Poisson models.

Power Properties

When the hypothesis and alternative each consists of a
(different) single distribution, the likelihood ratio test 
is the most powerful test; no other test is more sensi-
tive at detecting when the hypothesis is false. This
optimality result is the essential message of the
Neyman-Pearson Lemma. When the alternative and/or
hypothesis consists of infinitely many points, the cor-
responding optimality result no longer holds in general,
except in the special case when the underlying model
forms a one-parameter exponential family and we are
performing a one-sided test. In some other cases, the
likelihood ratio test is the most powerful test among a
larger group of sensible tests, but it is possible to con-
struct examples where the likelihood ratio test has no
power at all, so one should be careful in unusual situa-
tions. The book by Lehmann is a good reference for
theoretical properties of the likelihood ratio test.

Calculating pp Values

Once the value of the likelihood ratio statistic is
obtained, the next step is to calculate the p value. 
In some cases, an exact p value can be computed,
whereas in others, a large sample approximation is
available, and in still others, computer simulation can
be used to obtain an approximate p value.

If the statistic is an increasing function of another
statistic with a known distribution under the hypothe-
sis for which tail probabilities are available, we can
convert to the appropriate scale and compute the p
value directly. This is possible in many of the tradi-
tional tests already mentioned, where tabulated (or
numerically computed) tail probabilities for distribu-
tions such as the normal, chi-squared, binomial,
Poisson, F, and t distributions are readily available.

LLaarrggee--SSaammppllee  BBeehhaavviioorr  ooff  22  lloogg  ΛΛ

In many models (those displaying so-called regu-
larity), the maximum likelihood estimator is asymp-
totically normal. If so, and the hypothesis imposes m
restrictions on possible values of θ, the asymptotic
distribution of 2 log Λ is a finite mixture of chi-
squared distributions of the form

where P{χ
0

2 ≤ x} = 1{x ≥ 0} is the degenerate dis-
tribution function at 0. In general, the mixing pro-
portions pk depend on the geometry of the model in
a neighborhood of the true value θ0. However, under
the additional condition that all points in Θ0 are
interior points of the model Θ, p0 = L = pm–1 = 0 and
pm = 1, giving a pure χ

m

2 asymptotic distribution 
for 2 log Λ.

For the maximum likelihood estimator to be
asymptotically normal, the information matrix I(θ0)
must be nonsingular; here, θ0 is the true value and I(θ)
has an (i, j)th element equal to

Iij(θ) = E

(
ḟi(X;θ)

f (X;θ)

ḟj (X;θ)

f (X;θ)

)

,

P{2 log � ≤ x} =
m∑

k=0

pkP
{
χ 2

k ≤ x
}
,

�1 = supθ∈�1
L(θ;y)

supθ∈�0
L(θ;y)

,
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where X has distribution f(x;θ) and f(x;θ) =
(f1(x;θ), . . . , fk(x;θ)) is a vector of partial derivatives
of f(x;θ) with respect to components of θ.

As an example where the information matrix 
is singular, consider the contamination model

The 2 × 2 infor-
mation matrix has a zero on the diagonal and on the
off-diagonal at either p = 0 or θ = 0, that is, when there
is no contamination and so is singular. It is known
that, for certain forms of g(x;θ) in this model, under
the hypothesis of no contamination 2 log Λ diverges
very slowly to infinity as the sample size grows.

PPaarraammeettrriicc  BBoooottssttrraapp  
AApppprrooxxiimmaattee  p VVaalluueess

An approximate p value can be obtained through a
parametric bootstrap procedure. The idea is that for
two parameter values θ and θ ′ that are close together,
the distribution of Λ when θ is the true value should
be close to the distribution of Λ when θ ′ is the true
value. Let p(λ|θ ) represent the probability that Λ
exceeds λ when θ is the true value, let λobs denote the
observed value of Λ. Then the exact p value is

because for large samples, if the hypothesis is true, the
restricted (to Θ0) maximum likelihood estimate θ̂0(y)
should be close to θ0. The probability p(λobs | θ̂0(y)) is
the parametric bootstrap approximate p value. In gen-
eral, it is difficult to obtain directly, but can itself be
approximated by computer simulation.

Using the Computer

Most of the standard tests that are also likelihood ratio
tests, such as t tests, F tests, and so on, can be
performed on a wide variety of mathematical and
statistical software systems. Even most spreadsheet
programs have a facility for performing elementary
statistical tests of this nature.

In nonstandard cases, one can proceed using one of
the statistical systems that have a built-in program-
ming capability, allowing users to write programs in a

simplified programming environment to perform any
statistical analyses not already available. For likeli-
hood ratio tests, this generally requires the use of
optimization routines. In such cases, add-on packages
are often available for nonstandard models. For
example, in the R software system, the add-on library
MASS has a function fitdistr that fits various
models to univariate data by maximum likelihood. We
illustrate the use of this in the example below.

Example

The twelve numbers below give time in hours
between failures of the air-conditioning equipment in
a Boeing 720 jet aircraft, originally cited in an article
by F. Proschan.

3   5   7   18   43   85   91   98   100   130   230   487
If the failure rate is constant over time, then such

times should follow an exponential distribution with
density of the form θe–θy, for y > 0. One way to test for
constant failure rate is to embed the exponential den-
sities in a larger model and test for exponentiality.
One choice of larger model is the two-parameter
family of gamma densities:

g(y;Κ,θ) = yΚ–1 e–θy θ k/ Γ(Κ), for y > 0.

Note that setting the shape parameter κ = 1 gives 
an exponential density. With κ fixed, log L(κ, θ;y) =
∑i log g(yi; κ,θ) is maximized at θ = κ/ y

_
, where 

y
_

=
1–
n ∑n

i = 1 is the mean of the data. So if κ̂ maximizes
log L(κ,κ/y

_
;y), then the unrestricted maximum likeli-

hood estimates are (κ̂, κ̂/y
_
), whereas the restricted

estimates are (1, 1/y
_
), and so log Λ = log L(κ̂, κ̂/y

_
; 

y) – log L(1, 1/y
_
;y).

There is no closed form for κ̂; however, the maxi-
mization can be performed numerically, or we can use
fitdistr:

> library(MASS)
> y <- c(3,5,7,18,43,85,91,98,100,130,230,487)
> mle <- fitdistr(y, "gamma")$estimate
> mle

shape rate
0.706796220 0.006537295

sup
θ∈�0

p(λobs |θθθ) ≈ p(λobs |θθθ 0) ≈ p(λobs | θ̂θθ 0(y)),

f (x;p, θ) =
∏n

i=1

[
(1 − p)g(xi;0) + pg(xi;θ)

]
.
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The R function dgamma computes the gamma
density so the value of log Λ is given as follows:

> logNumer <- sum(log(dgamma(y,shape=mle[1],rate=
mle[2])));

> logDenom <- sum(log(dgamma(y,shape=1, rate=
1/mean(y))));

> logLam <- (logNumer-logDenom)
> logLam
[1] 0.5494047

The chi-squared approximation to the p value is

> 1-pchisq(2*logLam,df=1)
[1] 0.2945276

Is the sample size large enough to trust this approx-
imate p value? The parametric bootstrap is performed
by repeating the steps above on simulated exponential
samples, using the restricted maximum likelihood
estimate as the rate, and computing the statistic for
each simulated sample:

> logLamsim <- 0
> for(i in 1:1000){
+ ysim <- rexp(12,rate=1/mean(y))
+ mlesim <- fitdistr(ysim,“gamma”)$estimate
+ logNumersim <- sum(log(dgamma(ysim,shape=

mlesim[1],rate=mlesim[2])))
+ logDenomsim <- sum(log(dexp(ysim,rate=1/mean

(ysim))))
+ logLamsim[i] <- (logNumersim-logDenomsim)
+ }
> sum(logLamsim>logLam)
[1] 333

So, 333 of the 1,000 simulated versions of log Λ
exceeded our observed value of 0.549, giving an
approximate parametric bootstrap p value of 0.333, in
reasonable agreement with the large-sample approxi-
mation of 0.295.

—Bruce Lindsay and Michael Stewart
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LIKERT SCALING

Likert scaling (also called the method of summated
ratings) is a multiple-item procedure for measuring
attitudes. Scales resulting from the Likert method
consist of a set of statements (items) implying
favorable or unfavorable reactions to the attitudinal
object. Respondents indicate their agreement to
each item on a response scale most frequently rang-
ing from 1 (representing strong disagreement) to 5
(representing strong agreement). Respondents’ rat-
ings are then summed across all items on the scale
(after having reverse coded negative items), result-
ing in a composite score that reflects the valence
and extremity of attitudes toward the object.
Typical instructions and sample items are provided
in Figure 1.

History and Development

Rensis Likert, in collaboration with Gardner Murphy,
began development of his method of summated rat-
ings in 1929 in response to Louis L. Thurstone’s
equal-appearing intervals method. Despite the
strengths of Thurstone’s approach, the method was
criticized for its unwieldiness. Specifically, the
method required burdensome calculations in a time
before the advent of computers and required a sample
of participants to act as judges in the pretesting of
potential items. As a result, creating scales using the
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Thurstone method proved to be time-consuming. The
method was also criticized by Likert and others for
making a number of statistical assumptions that were
unverified at the time (e.g., that the scale values of the
items are independent of the attitudes of the pretesting
judges). Likert developed his method with the goal of
creating a reliable and valid attitude scaling procedure
that was less time-consuming to construct and that did
not require unnecessary assumptions. The procedure
that Likert presented in 1932 has changed little
throughout the years, apart from capitalizing on the
statistical computation advantages offered by modern
computers.

Constructing a Likert Scale

The first step in creating a Likert scale is to specify
the attitudinal object. The more well-defined the
subject under consideration is, the better. Once the
attitudinal object has been determined, the researcher
generates a pool of potential items. The aim of this
phase is to create statements reflecting a broad diver-
sity of viewpoints on the topic. Although belief or
cognitive items (e.g., Items 1, 3, 4, and 6 in Figure 1)
are most typical, feeling or affective items (e.g., Item
2) and behavioral tendency or conative items (e.g.,
Item 5) are also common. In contrast with some
methods that use statements varying along the
favorable-unfavorable continuum (e.g., Thurstone
scaling), only statements that are clearly positive or
negative (although not at the most extreme) should be
selected for a Likert scale. The reasoning behind this
recommendation is that extremely worded or neutral
statements do not discriminate among respondents,
that is, they do not distinguish people with very pos-
itive attitudes from people with moderately positive
attitudes, negative attitudes, and so forth. Care should
be taken to avoid biased or leading statements,
extremely worded or neutral items, and items con-
taining well-known facts.

The item pool usually consists of at least 25 state-
ments, and can be as many as 50 or more. The primary
reason for using multiple items rather than a single
statement is that each statement may have ambiguities
and subtle biases, leading people to respond in a cer-
tain way. By summing or averaging across multiple
related items, the impact of biases and imperfections
contained in individual items can be minimized. A
secondary reason for using multiple items concerns
breadth. Attitudes are often multifaceted, involving
cognitions, emotions, and behavioral tendencies. A
single item is unlikely to capture the full scope of the
attitude in question; using multiple items potentially
ameliorates this problem.

Once the researcher has generated an initial pool 
of items such as those illustrated in Figure 1, the 
third step in creating the scale is to administer the
items to a sample from the population of interest. 
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Instructions: Please answer each item by circling the response that
best reflects your level of agreement or disagreement with the
statement.

1. Crime rates in this country would be significantly reduced if we
had stricter gun control laws.

Strongly Disagree Neither Agree Agree Strongly
Disagree nor Disagree Agree

2. It makes me nervous to think of how easy it is for anyone to
buy a firearm in this country.

Strongly Disagree Neither Agree Agree Strongly
Disagree nor Disagree Agree

3. Gun control legislation punishes law-abiding citizens rather
than criminals.

Strongly Disagree Neither Agree Agree Strongly
Disagree nor Disagree Agree

4. Having access to a gun would make me better able to protect
my family.

Strongly Disagree Neither Agree Agree Strongly
Disagree nor Disagree Agree

5. Given the opportunity, I would definitely purchase a firearm.

Strongly Disagree Neither Agree Agree Strongly
Disagree nor Disagree Agree

6. It is more difficult to obtain a firearm in the United States than
in most other industrialized countries.

Strongly Disagree Neither Agree Agree Strongly
Disagree nor Disagree Agree

Figure 1 Sample Instructions and Items for a Likert
Summated Ratings Scale



The researcher has the respondents indicate their level
of agreement to each item. Next, each item is scored
for each respondent. For positive items, “strongly
agree” receives five points, “agree” receives four, and
so on; for negative items, the scoring is reversed.
Although a 5-point response scale is most commonly
employed in Likert scaling, 7-point scales are also
common. Some researchers prefer to eliminate the
middle, neutral category by using 4 or 6 points.

Next, each respondent’s scores are summed to
obtain a total score for that individual. The highest
possible score is five times the number of items, and
indicates an extremely positive attitude. The lowest
possible score is simply the number of items, and
indicates an extremely negative attitude.

The final step in Likert’s method involves item
analysis and elimination. The goal of this step is to
determine which items adequately discriminate
among individuals and to eliminate those that do not.
Before the advent of computers, researchers com-
monly accomplished this task by testing whether there
was a statistically significant difference between those
with total scores in the top quartile and those with
total scores in the bottom quartile on each particular
item. With the wide availability of computers and sta-
tistical software packages, the preferred contemporary

method is to examine the correlations between
respondents’ scores on individual items and their cor-
rected total scores (i.e., the total score not including
the item in question). The higher the item-total score
correlation, the better the item is discriminating. The
goal is to select items that each make a significant
contribution to the variability within the total score.
Items with low or no correlation with the total scores
are regarded as poor items, because they contribute
little to the variability in the overall score. These items
do not display a strong relationship with the other
items in the scale, and thus may assess a construct
different from that intended by the researcher. As a
result, they are discarded.

Table 1 displays hypothetical means, standard
deviations, and item-total score correlations for our
sample items. Examining the table, it can be seen that
the mean scores for the first five items hover around
the neutral point, and that the standard deviations are
all in excess of one scale point, indicating a reasonable
diversity of opinion among the respondents. However,
the mean for the sixth item is rather low, indicating
that most people strongly disagreed with this state-
ment. In addition, the standard deviation is quite low,
suggesting that the respondents in this sample did not
vary greatly in their opinions. Both extreme means
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Table 1 Hypothetical Means, Standard Deviations, and Discrimination Indices (r) for Gun Control Legislation Items

r With 40- r With 20-
Item M SD Item Scale Item Scale

1. Crime rates in this country would be significantly
reduced if we had stricter gun control laws. 3.55 1.24 .80 .79

2. It makes me nervous to think of how easy it
is for anyone to buy a firearm in this country. 3.90 1.28 .22 −

3. Gun control legislation punishes law-abiding
citizens rather than criminals. −2.78 1.20 −.69 .67

4. Having access to a gun would make me
better able to protect my family. 2.37 1.15 .90 .87

5. Given the opportunity, I would definitely
purchase a firearm. 3.05 1.97 .08 –

6. It is more difficult to obtain a firearm in the United
States than in most other industrialized countries. 1.34 0.42 .12 –



and low variability are warning signs that an item does
not discriminate well among respondents.

The next column displays the correlations between
the items and the total scores. It can be seen that both
the first and fourth items correlate highly and posi-
tively with the total score, and thus discriminate well
among respondents. These items contribute signifi-
cantly to the overall scores and should probably be
retained. The second and fifth items correlate rather
weakly with the total score, suggesting that they may
be measuring something different from the other
items, and are therefore eliminated. The third item is
interesting in that it shows a moderate to strong corre-
lation, but it is in the wrong direction. Thus, it is actu-
ally working against the discrimination desired by the
researcher. This may indicate an error in scoring, and
if this proves to be the case, the item can be rescored
and retained. In some cases, negative correlations can
result from poorly worded items that may imply
something different from what was intended. If
respondents consistently misunderstand a statement,
an extremely low or negative correlation can result. In
instances of this sort, the item may be discarded or
subsequently corrected and allowed to remain in the
scale if the item-total correlation is as expected. The
sixth item, like the second and fifth, shows a rather
weak correlation. In contrast, however, this is likely due
to the extremity and low variability of the responses
rather than (or in addition to) the item measuring
something other than what the researcher intends.

After analyzing the remaining 34 items, the
researcher must decide which items to keep and which
to discard. In general, the items with the highest item-
total score correlations are usually kept, and these
items should have reasonable variability (as indicated
in our example by standard deviations). Care should
be taken to maintain a balance of positive and negative
items, because respondents may have a greater ten-
dency to agree with items than to disagree (this is
known as acquiescence bias). As well, enough items
should be included in the final version of the scale 
to maintain adequate reliability (often measured by
Cronbach’s alpha). In this example, the researcher
obtains a scale consisting of 10 positive and 10 negative
items. The recomputed item-total score correlations in

the refined scale (as illustrated in the final column 
of Table 1) should be fairly similar to those in the
original scale. The result of the procedure is usually a
succinct, easy-to-administer, reliable, and valid 
attitude measure that is ready for application (and
cross-validation) on other samples.

Evaluating the Likert Procedure

The reliability and validity of Likert’s method has
been demonstrated many times in the years since its
conception. Mueller, for example, confirmed the
method’s validity and obtained very high interitem
and test-retest reliabilities. However, the method is not
without its limitations. One disadvantage of Likert
scaling is that it creates a scale that is object specific.
That is, the scale resulting from the procedure is valid
only as a measure of attitudes toward the object for
which it is intended. In contrast, semantic differen-
tials, another type of multiple-item scaling, produce
general measures that can be used with little or no
alteration for a broad variety of attitudinal objects.
Another criticism is that Likert’s method assumes uni-
dimensionality. It attempts to rate individuals on a
single dimension of favorability; however, subsequent
analyses sometimes reveal multiple dimensions.
Finally, like many self-report attitude measures, the
actual “neutral” point is unknown in the Likert
method because this point is unlikely to correspond
precisely to the midpoint of the resulting scale. This 
is only a problem if one is attempting to determine
whether an individual respondent’s score falls in an
objectively favorable or unfavorable dimension; it is
not of concern if one’s intention is to compare the
mean attitude scores of two or more groups, or to
compare the mean attitude change resulting from an
experimental manipulation.

Despite its limitations, the Likert procedure is
generally regarded as a reliable and valid approach 
to measuring attitudes that is simpler to implement
than the Thurstone procedure. Likert’s method
remains a popular and widely used method of attitude
measurement.

—Leandre Fabrigar and Jay K. Wood
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LILLIEFORS TEST FOR NORMALITY

The normality assumption is at the core of a majority
of standard statistical procedures, and it is important
to be able to test this assumption. In addition, showing
that a sample does not come from a normally distrib-
uted population is sometimes of importance per se.
Among the many procedures used to test this assump-
tion, one of the most well known is a modification of
the Kolmogorov-Smirnov test of goodness of fit, gen-
erally referred to as the Lilliefors test for normality (or
Lilliefors test, for short). This test was developed
independently by Lilliefors and by Van Soest. The null
hypothesis for this test is that the error is normally
distributed (i.e., there is no difference between the
observed distribution of the error and a normal distri-
bution). The alternative hypothesis is that the error is
not normally distributed.

Like most statistical tests, this test of normality
defines a criterion and gives its sampling distribution.
When the probability associated with the criterion is
smaller than a given α level, the alternative hypothe-
sis is accepted (i.e., we conclude that the sample does
not come from a normal distribution). An interesting
peculiarity of the Lilliefors test is the technique used
to derive the sampling distribution of the criterion. 

In general, mathematical statisticians derive the
sampling distribution of the criterion using analytical
techniques. However, in this case, this approach fails,
and consequently, Lilliefors decided to calculate an
approximation of the sampling distribution by using
the Monte Carlo technique. Essentially, the procedure
consists of extracting a large number of samples from
a normal population and computing the value of the
criterion for each of these samples. The empirical dis-
tribution of the values of the criterion gives an approx-
imation of the sampling distribution of the criterion
under the null hypothesis.

Specifically, both Lilliefors and Van Soest used,
for each sample size chosen, 1,000 random samples
derived from a standardized normal distribution to
approximate the sampling distribution of a Kolmogorov-
Smirnov criterion of goodness of fit. The critical val-
ues given by Lilliefors and Van Soest are quite similar,
the relative error being of the order of 10−2.

According to Lilliefors, this test of normality is
more powerful than other procedures for a wide range
of nonnormal conditions. Dagnelie indicated, in addi-
tion, that the critical values reported by Lilliefors can
be approximated by an analytical formula. Such a for-
mula facilitates writing computer routines because it
eliminates the risk of creating errors when keying in
the values of the table. Recently, Molin and Abdi
refined the approximation given by Dagnelie and
computed new tables using a larger number of runs
(i.e., K = 100,000) in their simulations.

Notation

The sample for the test is made of N scores, each of
them denoted Xi. The sample mean is denoted MX and
is computed as

(1)

the sample variance is denoted

(2)S2
X =

N∑

i
(Xi − MX)2

N − 1
,

MX = 1
N

N∑

i

Xi ,
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and the standard deviation of the sample, denoted SX,
is equal to the square root of the sample variance.

The first step of the test is to transform each of the
Xi scores into z scores as follows:

(3)

For each Zi score, we compute the proportion of
score smaller or equal to its value: This is called the
frequency associated with this score and it is denoted
S(Zi). For each Zi score, we also compute the proba-
bility associated with this score if it comes from a
“standard” normal distribution with a mean of 0 and a
standard deviation of 1. We denote this probability by
N(Zi), and it is equal to

(4)

The criterion for the Lilliefors test is denoted L. It
is calculated from the z scores, and it is equal to

L = m
i
ax{|S (Zi) – N (Zi)|, |S (Zi) – N (Zi–1)|}. (5)

So L is the absolute value of the biggest split between
the probability associated with Zi when Zi is normally
distributed, and the frequencies actually observed.
The term |S(Zi) – N(Zi–1)| is needed to take into
account that, because the empirical distribution is dis-
crete, the maximum absolute difference can occur at
either endpoint of the empirical distribution.

The critical values are given by Table 2. Lcritical is
the critical value. The null hypothesis is rejected when
the L criterion is greater than or equal to Lcritical.

Numerical Example

As an illustration, we will look at an analysis of vari-
ance example for which we want to test the so-called
normality assumption, which states that the within-
group deviations (i.e., the residuals) are normally dis-
tributed. The data are from Abdi and correspond to
memory scores obtained by 20 subjects who were
assigned to one of four experimental groups (hence,

five subjects per group). The score of the sth subject
in the ath group is denoted Ya,s, and the mean of each
group is denoted Ma.. The within-group mean square
MSS(A) is equal to 2.35, and it corresponds to the best
estimation of the population error variance.

G. 1 G. 2 G. 3 G. 4 

3 5 2 5 

3 9 4 4 

2 8 5 3 

4 4 4 5 

3 9 1 4 

Ya. 15 35 16 21 

Ma. 3 7 3.2 4.2 

The normality assumption states that the error is
normally distributed. In the analysis of variance
framework, the error corresponds to the residuals,
which are equal to the deviations of the scores to the
mean of their group. So, in order to test the normality
assumption for the analysis of variance, the first step
is to compute the residuals from the scores. We denote
Xi the residual corresponding to the ith observation
(with i going from 1 to 20). The residuals are given in
the following table:

Yas 3 3 2 4 3 5 9 8 4 9 

Xi 0 0 −1 1 0 −2 2 1 −3 2 

Yas 2 4 5 4 1 5 4 3 5 4 

Xi −1.2 .8 1.8 .8 −2.2 .8 −.2 −1.2 .8 −.2 

Next we transform the Xi values into Zi values
using the following formula:

(6)

because MSS(A) is the best estimate of the population
variance, and the mean of Xi is zero. Then, for each Zi

value, the frequency associated with S(Zi) and the
probability associated with Zi under the normality
condition N(Zi) are computed [we use a table of the
normal distribution to obtain N(Zi)]. The results are
presented in Table 1.

Zi = Xi√
MSS(A)

,

N (Zi) =
∫ Zi

−∞
1√
2π

exp
{
−1

2
Z2

i

}
.

Zi = Xi − MX

SX
.
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The value of the criterion is

L = m
i
ax{|S(Zi) – N (Zi)|,| S (Zi) – N (Zi–1)|} = .250. (7)

Taking an α level of α = .05, with N = 20, we find
that the critical value is Lcritical = .192 (as found in
Table 2). Because L is larger than Lcritical, the null
hypothesis is rejected and we conclude that 
the residuals in our experiment are not distributed
normally.

Numerical Approximation

The available tables for the Lilliefors test for normal-
ity typically report the critical values for a small set of
alpha values. For example, the present table reports the
critical values for α = [.20,.15,.10,.05,.01]. These val-
ues correspond to the alpha values used for most tests
involving only one null hypothesis, because this was
the standard procedure in the late 1960s. The current
statistical practice, however, favors multiple tests
(maybe as a consequence of the availability of statisti-
cal packages). Because using multiple tests increases
the overall Type I error (i.e., the familywise Type I

error or αPF), it has become customary to
recommend testing each hypothesis with
a corrected α level (i.e., the Type I error
per comparison, or αPC) such as the
Bonferroni or Šidák corrections. For
example, using a Bonferroni approach
with a familywise value of αPF = .05, and
testing J = 3 hypotheses requires that
each hypothesis is tested at the level of

(8)

With a Šidák approach, each hypoth-
esis will be tested at the level of

αPC = 1 – (1 – αPF)
1_
J

= 1– (1–.05)
1_
3 = .0170.

(9)

As this example illustrates, both proce-
dures are likely to require using differ-
ent α levels than the ones given by the

tables. In fact, it is rather unlikely that a table could
be precise enough to provide the wide range of
alpha values needed for multiple testing purposes. A
more practical solution is to generate the critical
values for any alpha value, or, alternatively, to
obtain the probability associated with any value of
the Kolmogorov-Smirnov criterion. Such an
approach can be implemented by approximating the
sampling distribution “on the fly” for each specific
problem and deriving the critical values for unusual
values of α.

Another approach to finding critical values for
unusual values of α is to find a numerical approxima-
tion for the sampling distributions. Molin and Abdi
proposed such an approximation and showed that it
was accurate for at least the first two significant 
digits. Their procedure, somewhat complex, is better
implemented with a computer and comprises two
steps.

The first step is to compute a quantity, A, obtained
from the following formula:

(10)A = −(b1 + N) +
√

(b1 + N)2 − 4b2(b0 − L−2)

2b2
,

αPC = 1
J

αPF = 1
3

× .05 = .0167.
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Table 1 How to Compute the Criterion for the Lilliefors Test
for Normality

Xi Ni Fi Zi
S(Zi) N(Zi) D0 D−1 max 

−3.0 1 1 −1.96 .05 .025 .025 .050 .050 
−2.2 1 2 −1.44 .10 .075 .025 .075 .075 
−2.0 1 3 −1.30 .15 .097 .053 .074 .074 
−1.2 2 5 −.78 .25 .218 .032 .154 .154 
−1.0 1 6 −.65 .30 .258 .052 .083 .083 
−.2 2 8 −.13 .40 .449 .049 .143 .143 
.0 3 11 .00 .55 .500 .050 .102 .102 
.8 4 15 .52 .75 .699 .051 .250 .250 

1.0 2 17 .65 .85 .742 .108 .151 .151 
1.8 1 18 1.17 .90 .879 .021 .157 .157 
2.0 2 20 1.30 1.00 .903 .097 .120 .120 

Notes: Ni stands for the absolute frequency of a given value of Xi, Fi stands for the
absolute frequency associated with a given value of Xi (i.e., the number of scores
smaller than or equal to Xi), Zi is the z score corresponding to Xi, S(Zi) is the
proportion of scores smaller than Zi, N(Zi) is the probability associated with Zi for
the standard normal distribution, D0 = |S(Zi) − N(Zi)|, D−1 = |S(Zi) − N(Zi−1)|, and
max is the maximum of {D0, D−1}. The value of the criterion is L = .250.



with

b2 = 0.08861783849346
b1 = 1.30748185078790 (11)
b0 = 0.37872256037043.

The second step implements a polynomial approx-
imation and estimates the probability associated to a
given value L as

Pr(L) ≈ –.37782822932809 + 1.67819837908004A
–3.02959249450445A2 + 2.80015798142101A3

–1.39874347510845A4 + 0.40466213484419A5

–0.06353440854207A6 + 0.00287462087623A7

+0.00069650013110A8 – 0.00011872227037A9

+ 0.00000575586834A10. (12)

For example, suppose that we have obtained a value
of L = .1030 from a sample of size N = 50. (Table 2
shows that Pr(L) = .20.) To estimate Pr(L), we need first
to compute A, and then use this value in Equation 12.
From Equation 10, we compute the estimate of A as

Plugging in this value of A in Equation 12 gives

Pr(L) = .19840103775379 ≈ .20. (14)

A = −(b1 + N) +
√

(b1 + N)2 − 4b2(b0 − L−2)

2b2

= −(b1 + 50) + √
(b1 + 50)2 − 4b2(b0 − .1030−2)

2b2

= 1.82402308769590.
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Table 2 Critical Values for the Kolmogorov-Smirnov/
Lilliefors Test for Normality Obtained With 
K = 100,000 Samples for Each Sample Size

N α = .20 α = .15 α = .10 α = .05 α = .01

4 .3027 .3216 .3456 .3754 .4129
5 .2893 .3027 .3188 .3427 .3959
6 .2694 .2816 .2982 .3245 .3728
7 .2521 .2641 .2802 .3041 .3504
8 .2387 .2502 .2649 .2875 .3331
9 .2273 .2382 .2522 .2744 .3162

10 .2171 .2273 .2410 .2616 .3037
11 .2080 .2179 .2306 .2506 .2905
12 .2004 .2101 .2228 .2426 .2812
13 .1932 .2025 .2147 .2337 .2714
14 .1869 .1959 .2077 .2257 .2627
15 .1811 .1899 .2016 .2196 .2545
16 .1758 .1843 .1956 .2128 .2477
17 .1711 .1794 .1902 .2071 .2408
18 .1666 .1747 .1852 .2018 .2345
19 .1624 .1700 .1803 .1965 .2285
20 .1589 .1666 .1764 .1920 .2226
21 .1553 .1629 .1726 .1881 .2190
22 .1517 .1592 .1690 .1840 .2141
23 .1484 .1555 .1650 .1798 .2090
24 .1458 .1527 .1619 .1766 .2053
25 .1429 .1498 .1589 .1726 .2010
26 .1406 .1472 .1562 .1699 .1985

N α = .20 α = .15 α = .10 α = .05 α = .01

27 .1381 .1448 .1533 .1665 .1941
28 .1358 .1423 .1509 .1641 .1911
29 .1334 .1398 .1483 .1614 .1886
30 .1315 .1378 .1460 .1590 .1848
31 .1291 .1353 .1432 .1559 .1820
32 .1274 .1336 .1415 .1542 .1798
33 .1254 .1314 .1392 .1518 .1770
34 .1236 .1295 .1373 .1497 .1747
35 .1220 .1278 .1356 .1478 .1720
36 .1203 .1260 .1336 .1454 .1695
37 .1188 .1245 .1320 .1436 .1677
38 .1174 .1230 .1303 .1421 .1653
39 .1159 .1214 .1288 .1402 .1634
40 .1147 .1204 .1275 .1386 .1616
41 .1131 .1186 .1258 .1373 .1599
42 .1119 .1172 .1244 .1353 .1573
43 .1106 .1159 .1228 .1339 .1556
44 .1095 .1148 .1216 .1322 .1542
45 .1083 .1134 .1204 .1309 .1525
46 .1071 .1123 .1189 .1293 .1512
47 .1062 .1113 .1180 .1282 .1499
48 .1047 .1098 .1165 .1269 .1476
49 .1040 .1089 .1153 .1256 .1463
50 .1030 .1079 .1142 .1246 .1457

>50 0.741 0.775 0.819 0.895 1.035
fN fN fN fN fN

Notes: The intersection of a given row and column shows the critical value Lcritical for the sample size labeling the row and the 
alpha level labeling the column. For N > 50, the critical value can be found by using fN = 83 + N√

N
− .01.

(13)



As illustrated by this example, the approximated
value of Pr(L) is correct for the first two decimal values.

—Hervé Abdi and Paul Molin

See also Bonferroni Test; Shapiro-Wilk Test for Normality
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LINE CHART

Line charts are ideally used to demonstrate trends for
data and to show how one variable is affected by
another variable. Data points are connected by lines.
A minimum of three points is required to make a line.

Figure 1 is a line chart illustrating the cost of
homes (principal place of residence) and cottages in
the past 5 years. This graph was created using Excel.
Note that even though the graph is made of discrete
sets of data points, a trend is implied.

The following are recommendations for creating a
line chart:

1. Gridlines help the reader estimate the value of the
points.

2. The x- and y-axes are clearly labeled.

3. A legend is necessary when more than one line is
presented.

4. The legend may be placed outside or inside the chart.

5. Each line is different as well as the points that make
up each line in order to easily distinguish one trend
from the other.

6. Too many lines (particularly if they overlap) would
make the chart difficult to read.

—Adelheid A. M. Nicol

See also Bar Chart; Scattergram

Further Reading

Bowen, R. W. (1992). Graph it! How to make, read, and inter-
pret graphs. Upper Saddle River, NJ: Prentice Hall.

LINEAR REGRESSION

Linear regression is a powerful tool for testing theories
about relationships among observables, and it is also
useful for researchers interested in the predictive
power of a set of variables. The terms linear regression
analysis and general linear model are often used in the
same contexts. The general linear model (GLM) is a
broad class of interrelated statistical procedures focus-
ing on linear relationships among variables or variable
composites. The term linear is used because these
techniques can be represented visually by plotting one
variable against another on two-dimensional charts
and using mathematical formulae for determining
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where to draw one or more lines that will represent the
relationships visually among the variables.

Regression analysis is the most broad, or general,
form of the GLM. Hence, regression analysis forms the
basis for many other statistical techniques, or, stated
differently, a number of other common statistical pro-
cedures (e.g., analysis of variance, analysis of covari-
ance, t test, Pearson product-moment correlation,
Spearman rho correlation) are all specially designed
versions of regression analysis. Furthermore, regres-
sion serves as a general framework for understanding a
host of related multivariate statistics, most generally
subsumed under canonical correlation analysis. An
excellent nontechnical introduction to linear regression
is provided by Schroeder, Sjoquist, and Stephan, and
additional useful information may be found on the
Web site of the Multiple Linear Regression Special
Interest Group of the American Educational Research
Association (http://www.coe.unt.edu/mlrv/).

Simple Linear Regression

Simple linear regression examines the relationship
between two variables, one of which is referred to as
the predictor variable (i.e., the variable that usually
precedes the other), and the other of which is referred
to as the criterion variable (i.e., the variable that the
researcher is interested in explaining, predicting, or
better understanding). Because simple regression
results provide an understanding of the patterns of
relationships between the two variables of interest in
a given context, we often use the term prediction in
describing the relationship. The procedure is called
“simple” because it includes only one predictor
variable.

As in studies employing Pearson product-moment
correlation (r), the linear relationship between the pre-
dictor (X) and the criterion (Y) variables can be shown
on a two-way scatterplot. A line of best fit drawn
through the scatterplot is called the regression line,
and the statistic representing the relationship between
the two sets of points is called multiple R. In Pearson
product-moment correlation, the coefficient r is used
to show the strength and directionality of a relation-
ship between two variables. A value of r close to zero

indicates a low or negligible correlation between two
variables, whereas a value closer to |1| indicates a
more appreciable amount of correlation between the
variables. Negative r values depict inverse relation-
ships between variables, whereas positive r values
depict direct relationships. Multiple R is very similar
to the Pearson r with the exception that it is always
positive in value (0 < R < 1) because of a set of vari-
able weights developed as part of the analysis.
Because there is only one predictor in simple linear
regression, R will be equivalent to the absolute value
of the Pearson correlation coefficient (|r|) between the
two variables.

PPrreeddiiccttiivvee  EEqquuaattiioonnss

Predictive equations are used to determine the
degree of accuracy in prediction for any given obser-
vation in the regression data set. The predictive equa-
tion in simple linear regression applies both additive
(a) and multiplicative (b) weights to one variable (the
predictor variable, X) so as to “reproduce” maximally
the other variable (the criterion, or dependent vari-
able, Y). The predicted Y score (Ŷ, or “Y-hat”) for each
observation in the sample is derived from this predic-
tive equation. The simple regression equation
(“regression of Y on X”) is

Ŷ = a + bX. (1)

This equation is the mathematical formula for a
straight line. Hence, the visual resulting from the for-
mula is called the regression line. Because Ŷ is the
predicted estimate of Y, this is often represented in the
formula as follows:

Y ← Ŷ = a + bX. (2)

EErrrroorr  SSccoorreess

It is important to note that the Ŷ values are based on
the average goodness of prediction across Y scores in
the entire data set. Thus, some Ŷ values will be better
approximations of their corresponding Y than others.
The accuracy of prediction for any given case in the
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analysis can be found by subtracting Ŷ from Y. The
difference is the error of prediction (Ye):

Ye = Y – Ŷ. (3)

AAssssuummppttiioonnss  iinn  SSiimmppllee  LLiinneeaarr  RReeggrreessssiioonn

As with any statistical procedure, simple regres-
sion analysis is based on certain assumptions about
the data. As noted in various treatises on regression
analysis, these assumptions include, but are not lim-
ited to, the following:

1. Simple linear regression analysis assumes that all 
of the variables are normally (or at least quasi-
normally) distributed.

2. Regression analysis also assumes that the sample
employed is randomly drawn from (or at least repre-
sentative of) the population of interest.

3. Simple linear regression further assumes that a
straight line will be the best way to capture the nature
of the relationship between the two variables of inter-
est. Forcing regression lines on data relationships
that are curvilinear will lead to a misunderstanding
about the relationship between the predictor and
criterion variables.

4. Regression also is based on the assumption of
“homoscedasticity” (i.e., that the conditional distrib-
ution of the Ye scores for each value of X is an
approximately normal distribution). This is also
called the constancy of error variance assumption.

Multiple Linear Regression

Multiple linear regression is an extension of simple
regression with the difference being the number of pre-
dictor variables employed. Multiple regression analyses
will include at least two predictor variables (X1, X2, . . . ,
Xk). The linear equation for multiple regression is
simply an extension of the simple regression equation:

Y ← Ŷ = a + b1X1 + b2X2 + . . . + bkXk. (4)

Notice that there is a single additive (a) weight (or
constant) for the equation and that each of the predictor
variables (X1 to Xk) has its own multiplicative (b) weight.

Multiple linear regression allows the researcher to
look simultaneously at a host of predictor variables of
interest and to examine the collective ability of these
variables to predict the criterion variable. The multi-
ple linear regression equation shown in Equation 4
above simply combines all of the predictor variables
into one composite variable (Ŷ), and this composite
variable then serves as a single (synthetic) predictor
variable representing the host of predictors. Once the
researcher determines the degree of multiple correla-
tion (R) between the composite of predictor variables
and the criterion variable, methods are then typically
employed to understand further the complex set of
relationships among the variables.

Holzinger and Swineford collected data on 24 tests
of ability from 301 middle school students. A multiple
linear regression example using scores on two of these
tests (word meaning and word recognition) as predic-
tor variables and scores on a third test (paragraph
completion) as the criterion variable will be used here
to illustrate the interpretation of results of a regression
analysis. All output was generated using SPSS soft-
ware. Linear regression results and a scatterplot
depicting the relationship between Y and Ŷ appear in
Figure 1 and Figure 2, respectively.

The two predictor variables collectively account
for 50.7% (R2 = .507) of the variance in the criterion
variable. The analysis of variance breakdown indi-
cates that the relationship between the predictor and
criterion variables (i.e., the regression sum of squares)
is statistically significant at the .001 level.

Correlations, Weights, and 
Coefficients in Linear Regression

Linear regression yields a variety of statistical indices
that aid in making interpretations of the data. We discuss
here three types of indices commonly used in social
science literature employing regression analyses,
namely, correlations, weights, and structure coefficients.

CCoorrrreellaattiioonnss

There are essentially two types of correlations that
one might generate and interpret when conducting 
a regression analysis, namely, simple correlations
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(Pearson r values) and the multiple correlation (R).
Pearson r is used to express a simple linear relationship

between two variables of interest, whereas R, as pre-
viously indicated, expresses the relationship between

the composite of predictor variables 
and the single criterion variable. In 
the simple regression case, only one
Pearson r can be generated, and the
value of this r will be the same as the
multiple R (except, possibly, for the sign
of the r coefficient). In the two-predictor
(multiple linear regression) case illus-
trated here, there are three different r
values: (a) correlation between X1 (word
recognition) and Y (paragraph compre-
hension), (b) correlation between X2

(word meaning) and Y, and (c) correla-
tion between X1 and X2. Correlations
among these three variables and the Ŷ
generated by the analysis appear in
Figure 3.
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Model Summaryb

Adjusted Std. Error of
Model R R Square R Square the Estimate

1 .712a .507 .504 2.461

a. Predictors: (Constant), word recognition, word meaning

b. Dependent Variable: paragraph comprehension

ANOVAb

Sum of Mean 
Model Squares df Square F Sig.

1 Regression 1854.535 2 927.267 153.139 .000a

Residual 1804.415 298 6.055

Total 3658.950 300

a. predictors: (Constant), word recognition, word meaning
b. Dependent Variable: paragraph comprehension

Coefficientsa

Unstandardized Standardized
Coefficients Coefficients

Model B Std. Error Beta t Sig.

1 (Constant) −1.144 2.169 −.528 .598

Word meaning .313 .019 .687 16.625 .000

Word recognition .032 .013 .104 2.526 .012

a. Dependent Variable: paragraph comprehension

Figure 1 SPSS Regression Output for Holzinger and Swineford Data

20

15

10

5

0

−1−2 0 1 2 3 4

YHAT

R Sq Linear = 0.507

P
ar

ag
ra

p
h

 C
o

m
p

re
h

en
si

o
n
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Figure 2 Scatterplot Depicting the Relationship Between Paragraph
Comprehension and Predicted Value



Simple correlations between each of the predictors
and the criterion variable should be reported routinely
in regression studies. Based on these values, the
researcher might determine whether a variable should
be discarded prior to conducting the regression analy-
sis (e.g., in the case in which the correlation with the
criterion variable is nearly zero). We wish to warn,
however, that this should not be simply a “fishing
expedition” designed to select a set of promising vari-
ables from an array of variables for which the
researcher just so happens to have data. Variables
should always be selected for consideration in an
analysis because they have theoretical importance, not
because they are available. In the present example,
word meaning is clearly the better predictor of para-
graph completion.

Examining the correlations (rs) between each pair
of predictor variables also can be useful. These values
help the researcher to determine the degree to which
the predictors are collinear with one another.
Collinearity introduces a variety of problems into the
regression analysis, most of which are associated with
the derivation of the statistical weights for the various
predictor variables. When collinearity exists, the sta-
tistical weights yielded by the regression analysis will
not be uniquely determined. Furthermore, including
two predictor variables in the regression analysis that
are nearly perfectly collinear (i.e., that are correlated

at or near |1.0|) is not sensible considering that, once
one of the variables is included, the second variable
will offer no information that is not already provided
by the first. In the present example, the correlation
among the predictors is only .172, indicating that
collinearity is not a major problem with this data set.

Once the Pearson rs have been consulted (and, if
necessary, variables have been eliminated from the
analysis), the regression analysis is then conducted.
The most important correlational statistic yielded by
the regression analysis is multiple R. The squared
value of multiple R (R2) represents the statistical effect
size, and, as noted previously, it can be interpreted as
a percent of relationship between the predictor vari-
able set and the criterion variable. In the absence of
other information, R2, along with the total sum of
squares and the sample size, provides enough infor-
mation to calculate an F statistic used in testing for
statistical significance. As previously noted, the R2 for
this analysis is large and statistically significant.

WWeeiigghhttss

Unstandardized and standardized weights yielded
by the analysis appear in Figure 4. The unstandardized
a and b weights yielded by the regression analysis
each can be useful in interpreting the results. The
multiplicative weight (b) used in the equation is also
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Correlations

Word Word Paragraph
recognition meaning comprehension YHAT

Word recognition Pearson Correlation 1 .172** .222** .312**
Sig. (2-tailed) .003 .000 .000
N 301 301 301 301

Word meaning Pearson Correlation .172** 1 .704** .990**
Sig. (2-tailed) .003 .000 .000
N 301 301 301 301

Paragraph Pearson Correlation .222** .704** 1 .712**
comprehension Sig. (2-tailed) .000 .000 .000

N 301 301 301 301

YHAT Pearson Correlation .312** .990** .712** 1
Sig. (2-tailed) .000 .000 .000
N 301 301 301 301

**Correlation is significant at the 0.01 level (2-tailed).

Figure 3 Correlations Among Word Recognition,Word Meaning, Paragraph Comprehension, and Predicted Value



called the slope and the regression coefficient. The
additive weight (a) is also called the Y-intercept, the
constant, and the regression constant. The a weight
represents the point at which the regression line will
cross the y-axis (the value of y when x = 0); hence, the
a weight estimates the value of the dependent variable
when all predictors have a value of zero. The value of
the b weight indicates the number of units that the cri-
terion value is predicted to change if the given predic-
tor variable is increased by one unit. If the b weight is
negative, the value of the predicted dependent variable
will decrease by b units when x is increased by one
unit. Conversely, if b is positive, the value of the pre-
dicted dependent variable will increase when x is
increased. In the present example, the b weight for
word meaning (i.e., .313) is appreciably larger than
that for word recognition (i.e., .032).

If all of the variables in the analysis are standard-
ized (i.e., converted to z scores), the regression equa-
tion for k variables takes the following form:

zY = β1zX1 + β2zX2 + . . . + βkzXk + e. (5)

Note that with standardized data, there is no longer
an additive weight (e in the equation represents the
error [Ye] score, not a statistical weight). The beta (β)
weights shown in Equation 5 are also known as stan-
dardized regression coefficients and are often used
over the b weights derived using the raw data because
it is easy when comparing betas to make direct com-
parisons as to the relative amount of weight each vari-
able is being assigned. The b weights, on the other
hand, are not as easily comparable as they are affected
by the metric in which the particular predictor

variable is measured. Note that the β for word
meaning is more than six times larger than that for
word recognition.

RReeggrreessssiioonn  SSttrruuccttuurree  CCooeeffffiicciieennttss

As explained by Thompson and Borrello, a struc-
ture coefficient (rs) is the correlation between each of
the predictors and Ŷ. For the present example, rs val-
ues are shown in the last column of the correlation
matrix presented previously. Structure coefficients
express the degree of relationship of a predictor with
the predicted values of the dependent variable, or,
stated differently, express the degree to which a
given predictor is “reproduced” in the computation
of Ŷ. In the simple regression case, the structure
coefficient for the single predictor is |1.00|, consider-
ing that the Ŷ is simply a linear transformation of the
predictor. In multiple regression, structure coeffi-
cients are often larger for some predictors and
smaller for others. In the present example, the struc-
ture coefficient for word meaning is .99, indicating
that the variable is almost perfectly correlated with
Ŷ. Word recognition has a much smaller structure
coefficient (rs = .31).

CCoonnssuullttaattiioonn  ooff  BBeettaa  WWeeiigghhttss  
aanndd  SSttrruuccttuurree  CCooeeffffiicciieennttss

There is a tendency for researchers to use beta
weights when assessing variable contributions in lin-
ear regression. As noted earlier, these are the statisti-
cal weights applied to the standardized predictor
variables in a regression. Although it seems logical to
conclude that a larger beta weight implies a greater
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Coefficientsa

Unstandardized Standardized
Coefficients Coefficients

Model B Std. Error Beta t Sig.

1 (Constant) −1.144 2.169 −.528 .598

Word meaning .313 .019 .687 16.625 .000

Word recognition .032 .013 .104 2.526 .012

a. Dependent Variable: paragraph comprehension

Figure 4 Unstandardized and Standardized Weights Yielded by the Regression Analysis



contribution, this is not necessarily the case. This is
particularly problematic when predictor variables are
collinear. In fact, in cases in which collinearity among
predictors is moderate to large, beta weights are
extremely subject to distortion and can lead to erro-
neous conclusions about the importance of variables.
By contrast, regression structure coefficients are not
as prone to distortion. Therefore, in determining
which variables are most instrumental in regression,
structure coefficients generally provide more reliable
evidence than do beta weights.

—Larry Daniel, Anthony J. Onwuegbuzie,
and Nancy L. Leech
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Regression applet: http://www.stat.wvu.edu/SRS/Modules/
Applets/Regression/regression.html (allows you to enter
pairwise data and observe applet compute regression
statistics)

Regression applet: http://www.stattucino.com/berrie/dsl/
regression/regression.html (allows you to add one or more
points to a scatterplot and observe applet draw the regres-
sion line and the correlation coefficient)

Regression applet: http://www.mste.uiuc.edu/activity/regres
sion/#simulation (allows you to add up to 50 points to a
scatterplot and observe applet draw the line of best fit)

LOGISTIC REGRESSION ANALYSIS

Logistic regression is a flexible tool when one vari-
able is identified as the response (dependent) variable
and it is categorical. Contingency table analysis and
loglinear models can handle only categorical vari-
ables, which becomes a constraint when both categor-
ical and continuous variables should be included in a
model. Also, most of the time, researchers are inter-
ested in a particular variable as the response. More
importantly, the total number of variables that can be
handled by a contingency table will easily reach a
limit—a table with five variables and each variable
having only two values will have 25 = 32 cells. Unless
for a very large sample, many cells will have very few
cases.

Logistic regression is better equipped than ordinary
regression for modeling on a categorical response
variable. The simplest categorical variable has only
two different values (“dichotomous” or “binary”),
such as pass or fail. A variable with multiple values
without any order is multinominal, and a variable with
multiple ordered values is multiordinal. Different
logistic regression models should be used according
to the measurement nature of the response variable.
Here, the focus is on logistic regression with a binary
response variable. There can be as many explanatory
(independent) variables as needed, and they can be
either continuous or categorical.

Several problems will arise if we still use ordinary
regression analysis when the response variable is cat-
egorical. Consider the following simple linear regres-
sion model:

Yi = α + βXi + εi.

Note that Y can take only two possible values, say,
1 and 0, which will put a constraint on its predicted
values. That is, this model will generate many pre-
dicted values that are neither 1 nor 0. And this will
cause another problem when there is more than one
explanatory variable. Any one of the explanatory vari-
ables may explain the majority of the very limited
variation of the response variable, leaving little room
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for others. In addition, the distribution of the error
terms cannot be normal because the terms have only
two possible values: when Y = 1, ε = 1 − α − βX, and
when Y = 0, ε = −α −βX. Another assumption to be
violated is constant error variance—the variance of X
will change at different levels of X (formal expres-
sions omitted).

These problems arise because the relationship
between X and Y is not linear anymore. A transforma-
tion is needed on the categorical response variable so
that it can be predicted by a linear relationship with
the explanatory variables. Several transformations
have been suggested, but statisticians have found the
logit transformation very useful.

Odds and the Logit Transformation

In essence, logistic regression does not directly model
on the value of the response variable, but on the prob-
ability that a particular value occurs. Let π be the
probability that a value occurs; then 1 − π is the prob-
ability that it does not occur. The odds is the ratio of
these two probabilities:

After taking the natural logarithm of the odds, a
linear relationship between the transformed variable
and the explanatory variables can be established,
which is called the logistic transformation, or logit,
for short:

The Simple Logistic 
Regression Model

This model has only one explanatory variable:

The coefficient β can be interpreted in several ways.
First, following the usual interpretation in ordinary

ln

(
π

1 − π

)

= α + βX.

logit[π ] = ln

(
π

1 − π

)

.

Odds = π

1 − π
.
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Table 1 Data for Logistic Regression

Respondent Support Income Ownership

1 1 35 0
2 0 38 0
3 0 42 0
4 0 45 0
5 1 46 0
6 1 47 0
7 0 50 0
8 0 52 0
9 0 55 1

10 1 56 0
11 0 56 1
12 1 57 0
13 1 58 0
14 0 60 1
15 0 60 0
16 0 62 0
17 1 63 1
18 1 64 0
19 1 64 0
20 1 65 0
21 0 65 0
22 0 65 1
23 1 68 0
24 1 68 1
25 1 69 0
26 0 70 1
27 1 71 0
28 0 74 1
29 1 74 0
30 1 75 0
31 1 76 1
32 1 76 0
33 1 76 1
34 0 78 1
35 1 78 0
36 1 78 1
37 1 79 1
38 1 80 0
39 0 81 1
40 1 81 1
41 1 84 1
42 1 85 0
43 1 88 1
44 0 90 1
45 1 91 0
46 0 93 1
47 1 98 1
48 0 101 1
49 0 109 1
50 0 122 1



regression, we can say that with a one-unit change of
X, the natural log of odds shall change by β. To many
people, however, “log odds” does not make much
intuitive sense.

The second interpretation comes after taking the
antilog, It says that with a one-unit
change of X, the odds will change multiplicatively by eβ.

Further calculations may lead to a third interpreta-
tion. When X = 1, When X = 0,

The difference (or the change) of the two odds
is eα(eβ − 1). Because eα is constant, eβ − 1 represents
the change of odds. This can be written as %∆ = (eβ −
1)*100, where ∆ is the change of the
odds. With a one-unit change in X, the
odds will change by ∆%.

Note that these are the interpreta-
tions when X is continuous. When it 
is categorical, the change of odds
becomes the odds ratio. Suppose X
has only two values, 0 and 1. Again,
when X = 1, and when
X = 0, This time, the change
is measured by the  ratio rather than
the difference between the two odds,
or the odds ratio, which is
also used in the aforementioned
second interpretation. This is why
computer programs like SPSS auto-
matically produce eβ, but one should
note that its interpretation changes
according to whether X is continuous
or categorical.

An Example

A survey was conducted on local resi-
dents’ support for the adoption of renew-
able energy in a British town. Part of the
results are shown in Table 1 with 50
cases and three variables.

Let π = the probability that a resident
supports renewable energy, X1 = the
resident’s annual household income 
in thousand pounds, and X2 = 1 if the
respondent owns a property and 0 if not.

We can have two simple logistic regression
models, each with a different explanatory variable:

Here are the SPSS procedures: Analyze →
Regression → Binary Logistic. Bring in “support” as
the dependent variable. Then, for the first model, put
“income” as a covariate (because it is continuous). For
now, there is no need to change other default settings,
so click OK.

ln

(
π

1 − π

)

= α + βX1 and ln

(
π

1 − π

)

= α + βX2.

eα(eβ)

eα
= eβ,

π

1 − π
= eα.

π

1 − π
= eα+β = eα(eβ),

π

1 − π
= eα.

π

1 − π
= eα+β = eα(eβ).

π

1 − π
= eα+βX = eα(eβ)X.
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Table 2 SPSS Output for Simple Logistic Regression 
With Income 

Variables in the Equation

B S.E. Wald df Sig. Exp(B)

Step 1(a) Income −.002 .016 .020 1 .886 .998

Constant .569 1.182 .232 1 .630 1.767

a. Variable(s) entered on step 1: income.

Table 3 SPSS Output for Simple Logistic Regression With 
Property Ownership

Variables in the Equation

B S.E. Wald df Sig. Exp(B)

Step 1(a) Ownership(1) 1.312 .608 4.656 1 .031 3.714

Constant −.262 .421 .389 1 .533 .769

a. Variable(s) entered on step 1: ownership.

Table 4 SPSS Output for Multiple Logistic Regression

Variables in the Equation

B S.E. Wald df Sig. Exp(B)

Step 1(a) Ownership(1) 1.788 .752 5.652 1 .017 5.978

Income .024 .020 1.389 1 .239 1.024

Constant −2.208 1.708 1.671 1 .196 .110

a. Variable(s) entered on step 1: ownership, income.



According to the output in Table 2, we have

The last column in the output shows the value of eβ,
0.998. With a one-unit change of income (1,000
pounds), the odds change by almost 1. The percentage
of change (decrease) of the odds is (0.998 – 1)*100,
or 0.2%, showing nearly no effect of income on the
probability of supporting renewable energy.

The number under “Wald” is equal to (β̂ /ASE)2,
where  β̂ is the estimated coefficient and ASE stands
for asymptotic standard error, especially calculated
for nonnormally distributed variables. When the sam-
ple size is large (say, more than 100), the Wald statis-
tic has a chi-squared distribution with 1 degree of
freedom. We can use it to test the null hypothesis 
β = 0. For this model, the Wald statistic is 0.02.
Therefore, the probability of not rejecting the null
hypothesis is very high (0.886). We do not have
enough evidence for rejecting the hypothesis that
income has no effect on the probability of supporting
renewable energy.

The explanatory variable in the second model,
property ownership, is categorical. In using SPSS,
remember to click the “Categorical” button and put
“ownership” into the “Categorical Covariates” box.

Based on Table 3, the model is

The last column of Table 3 shows that the odds
ratio is 3.714. In other words, the odds of support for
property owners is about 3.7 times of the odds of
support for non-property owners. The effect is also
statistically significant, with a p value of 0.031,
smaller than the usual threshold of 0.05. Thus, we
will reject the null hypothesis that ownership has 
no effect.

We can also construct a 95% confidence interval
for the odds ratio. First, calculate the confidence inter-
val for β: (1.312 – 1.96*0.608, 1.312 + 1.96*0.608),
or (0.12, 2.50). The confidence interval for the odds

ratio is (eb–z*SE, eb+z*SE) = (e0.12, e2.5) = (1.13, 12.18). The
further away the odds ratio is from 1, the more con-
siderable the effect. Therefore, ownership has a con-
siderable and significant effect on the probability of
supporting renewable energy.

Multiple Logistic Regression Model

This is a natural extension of simple logistic regres-
sion with two or more explanatory variables. Here is a
model without interaction term:

SPSS output is shown in Table 4.
Because the effect of income remains insignifi-

cant after controlling that of ownership, we may
want to use the simple model with ownership only.
This can be confirmed by comparing the −2 log
likelihood values from the two models (Table 5).

These values are an overall measurement of the
difference between the observed values and the

ln

(
π

1 − π

)

= α + β1
∗ Income + β2

∗ ownership.

ln

(
π

1 − π

)

= −0.262 + 1.312 ∗ ownership.

ln

(
π

1 − π

)

= 0.569 − 0.002 ∗ Income.
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Table 5 Model Comparison

Simple logistic regression with ownership only:

Model Summary

−2 Log Cox & Snell Nagelkerke 
Step likelihood R Square R Square

1 62.396(a) .093 .126

a. Estimation terminated at iteration number 4 because parameter
estimates changed by less than .001.

Multiple logistic regression:

Model Summary

−2 Log Cox & Snell Nagelkerke 
Step likelihood R Square R Square

1 60.950(a) .119 .161

a. Estimation terminated at iteration number 4 because parameter
estimates changed by less than .001.



predicted values, which indicate the performance of
the models. It is clear that by adding income to the
simple logistic regression model with ownership
only, the predicted values become closer to the
observed values, but not very much (formal proce-
dures are omitted here). Logistic regression does not
have something like the R2 in ordinary regression.
The Cox & Snell R Square and the Nagelkerke R
Square were thus invented to give people a sense of
the model performance.

—Keming Yang

Further Reading

Hosmer, D., & Lemeshow, S. (2001). Applied logistic regres-
sion (2nd ed.). New York: Wiley.

Pampel, F. (2000). Logistic regression: A primer. Thousand
Oaks, CA: Sage.

SPSS regression models: http://www.spss.com/regression/
data_analysis.htm (contains a downloadable spec sheet)

Applying Ideas on Statistics and Measurement

The following abstract is adapted from Ferris, 
K. R., Jackofsky, E. F., & Breckenridge, B. G.
(1986). Evidence for a curvilinear relationship
between job performance and turnover. Journal of
Management, 12(1), 105–111.

Regression, in general, is a technique for pre-
dicting an outcome based on a variety of variables,
alone and in combination with one another. In this
study, the researchers investigated the possibility 
of a curvilinear relationship between job perfor-
mance and turnover in two diverse employee
groups, using samples of 169 male accountants
and 107 owner-operator truck drivers. Measures of
performance for the two samples were obtained
from company records. Testing for a curvilinear
effect within each sample was done by regressing
performance and the performance squared term
on turnover, and confirming the findings by using
logistic regression. The resulting standardized
regression equations were plotted for each sample,
using scores one to three standard deviations
above and below the mean of the independent
variables. Results indicated that performance was
related to turnover in a curvilinear fashion in both
professional and nonprofessional samples.

LOGLINEAR ANALYSIS

There are two general types of variables in a numeric
data set, continuous (or quantitative), such as annual
income, and categorical (or qualitative). Categorical
variables themselves have two types, nominal, such as
gender, and ordinal, such as levels of education. For a
particular analysis, there may be a combination of
different types of variables, which, to a large extent,
determines the choice of statistical techniques.
Loglinear analysis is used when (a) all the interested
variables are categorical and (b) the objective is to
find out which one of the interactive relationships
among the variables can best explain the observed fre-
quencies rather than explain one variable’s variation
with other variables. Because data with categorical
variables can be presented in a contingency table,
loglinear analysis is sometimes called multiway
frequency analysis (MFA). It is also a multivariate
version of chi-square analysis, dealing with variations
and interactions between three or more categorical
variables. Unlike in ordinary regression analysis, in
loglinear analysis none of the variables is treated as a
dependent variable. Rather, it is the cell count that is
to be explained. Logistic regression should be used if
a dependent variable is assigned and it is categorical.

Like chi-square analysis, loglinear analysis does
not make any specific assumptions of distributions in
the population. It only assumes that observations are
independent. There is a potential problem, however,
with analyzing frequencies: Especially for a small
data set, some frequencies can be very small or even
zero, making it very difficult to assess the reliability of
results. Therefore, it is usually required that (a) there
be at least five times as many cases as the number of
cells in a table, and (b) when examining two variables
at a time, there be an expected frequency (to be
explained below) of greater than one for all cells and
an expected frequency of five or more in 80% of the
cells. Empty cells are usually replaced with 0.5 to
avoid using the meaningless 0 as a denominator.
Obviously, this is arbitrary, so a better strategy is to
combine some categories in order to increase the
number of cases in a particular cell.
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An Example

Table 1 contains results from a survey on the students
in a university. There are three categorical variables:
level of study (undergraduate or postgraduate),
nationality (American or international), and part-time
employment during term time (employed or unem-
ployed). The objective is to find out which model of
the relationships between the variables can best pre-
dict the observed cell frequencies.

We shall use SPSS 12 to carry out the following
analysis. Because the entry of cross-tabulated data is
different from the entry of individual-level data, it is
necessary to show all the steps here. The first is to cre-
ate the variables in the “Variable View”: level of study
(1 = undergraduate, 2 = postgraduate); nationality 
(1 = American, 0 = international); employment (1 =
part-time employed, 0 = not part-time employed); and
frequency. (Coding values can be different.) Then go
to the “Data View” to key in the coding values and fre-
quencies. Now you should have what is shown in
Figure 1.

The last step is very important: Do not forget to go
to Data → Weight Cases → Select “Weight case by”
and bring in the variable “Frequency.” To check
whether the data have been correctly entered, reproduce
the table by the following procedures: Analyze →
Descriptive Statistics → Crosstabs and move “Nation-
ality” as the row variable, “Employment” as the column
variable, and “Level of study” as the “Layer 1 of 1”
variable. The output is shown in Table 2.

Table 2 also shows the expected values. SPSS can
calculate them after you click “Cells” and select

“Expected” below “Counts.” Below is the formula for
calculating the expected value of a particular cell:

For example, the first expected frequency, 34.8, is
the result of (42 × 112)/135. 

The Loglinear Model

The basic idea of loglinear analysis is to compare the
observed frequency of a cell with its expected fre-
quency, that is, the frequency expected to be purely by
chance. Here is the logic: The bigger the difference
between the two frequencies, the less likely it is that
the difference arises from chance; in other words, the
more likely it is that the difference is an effect of inter-
actions between the variables. If the frequencies are

purely due to chance, then there should
be no or little variation across the rows
or columns. Thus, the row totals and
column totals at the margin (marginal
totals) should be sufficient for deter-
mining the frequency in each cell.
Therefore, by measuring how far away
the observed frequencies are from the
expected frequencies, we have a basis
for discovering which variables and
their interactions can best predict the
observed frequencies.

expected frequency =
column total × row total

overall total
.
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Table 1 Number of Students by Level of Study, Nationality, 
and Employment

Employment Status

Part-Time Not Part-Time 
Level of Study Nationality Employed Employed

Undergraduate American 15 78
International 8 34

Postgraduate American 26 55
International 9 26

Figure 1 Data Entry of Cross-Tabulated Data in SPSS



The effect of each variable is decomposed into the
effect of its own (the main effect) and the effect of 
its interactions with other variables (the interaction
effects). These effects are then connected in a linear
fashion to predict the log transformation of the
observed frequencies, hence the phrase “loglinear
analysis.” Different combinations of the effects lead to
different models.

For the above example,

Fijk is the cell frequency,

λX is the effect of level of study,

λY is the effect of nationality,

λZ is the effect of employment status,

λ is the baseline effect (when all other effects are zero).

Here are some of the possible models:

1. log Fijk = λ + λX + λY + λZ, which includes only the
main effects and is based on the theory that all vari-
ables are mutually independent.

2. log Fijk = λ + λX + λY + λZ + λXY + λXZ + λYZ, which
includes both the main effects and the interaction

effects of all pairs of variables, suggesting that the
association between any two variables remains the
same at each level of the third variable.

3. log Fijk = λ + λX + λY + λZ + λXY + λXZ + λYZ + λXYZ,
which includes all the possible effects and is thus
called the saturated model.

Note the hierarchical structure in the models. If a
higher order interaction term is included, then all the
lower order interactions and the main effects should
be included.

Our objective is to make an informed decision on
which of these models we should use for predicting
the observed cell frequencies. The saturated model is
of little use because it virtually says, “All effects
matter.” Like any modeling process, we aim to find a
model that is parsimonious, statistically rigorous, and
substantively meaningful. Let’s focus on the first two
criteria and leave the third to the researcher. We are
searching for a model that fits two requirements: (a) It
must have the least number of effects (or parameters),
and (b) the difference between the observed frequen-
cies and the expected frequencies must not be
statistically significant. The difference is measured by
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Table 2 Reproduction of Example Data by SPSS

Nationality * Employment Status * Level of Study Crosstabulation

Employment Status

Not Part-Time Part-Time 
Level of Study Employed Employed Total

Undergraduate Nationality International Count 34 8 42
Expected Count 34.8 7.2 42.0

American Count 78 15 93
Expected Count 77.2 15.8 93.0

Total Count 112 23 135
Expected Count 112.0 23.0 135.0

Postgraduate Nationality International Count 26 9 35
Expected Count 24.4 10.6 35.0

American Count 55 26 81
Expected Count 56.6 24.4 81.0

Total Count 81 35 116
Expected Count 81.0 35.0 116.0
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Table 3 SPSS Outputs of Loglinear Models for the Example Data 

If Deleted Simple Effect is      DF   L.R. Chisq Change    Prob  Iter

level*employ                     1               6.062   .0138 2
national          1              38.480   .0000 2

Step 4
The best model has generating class

level*employ
national

Likelihood ratio chi square =      .67890    DF = 3  P =  .878

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
* * * * * * * *  H I E R A R C H I C A L   L O G   L I N E A R  * * * 

The final model has generating class

level*employ
national

The Iterative Proportional Fit algorithm converged at iteration 0.
The maximum difference between observed and fitted marginal totals is     
.000 and the convergence criterion is     .250

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Observed, Expected Frequencies and Residuals.

Factor       Code           OBS count  EXP count  Residual  Std Resid

level       Undergra
national        Internat
employ          Not part         34.0       34.4      -.36       -.06

employ          Part-tim      8.0        7.1   .94        .36
national        American
employ          Not part     78.0       77.6  .36        .04
employ          Part-tim     15.0       15.9      -.94  -.24

level           Postgrad
national        Internat
employ          Not part     26.0       24.8      1.15        .23
employ          Part-tim      9.0       10.7     -1.74       -.53

national        American
employ          Not part     55.0       56.2     -1.15       -.15
employ          Part-tim     26.0       24.3      1.74        .35

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Goodness-of-fit test statistics

Likelihood ratio chi square =      .67890    DF = 3  P =  .878
Pearson chi square =      .67002    DF = 3  P =  .880

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
Abbreviated  Extended
Name         Name

national     nationality



either the likelihood ratio chi-square (G2) or Pearson’s
chi-square (X2):

G2 is usually preferred because of its mathematical
robustness.

As an interactive procedure, model selection usu-
ally starts with the saturated model, eliminates the
highest order of interaction term, and then compares
the new model with the saturated model; if the new
model is still not good enough, the selection moves on
to eliminate another effect, and so on (so-called step-
wise backward elimination).

Here are the SPSS steps: Analyze → Loglinear →
Model Selection, then bring the three categorical vari-
ables into “Factor(s).” Define the range of each vari-
able: for level of study, key in 1 for minimum and 2
for maximum; for nationality and employment, key in
0 for minimum and 1 for maximum. Click OK to
obtain the results. (Technical details of how to calcu-
late the effects have been omitted.)

Results and Interpretations

Limited space does not allow all SPSS outputs to be
shown here. For this example, there are four steps, and
only the last one is presented in Table 3.

What we are looking for is the evidence of statis-
tical significance after each effect term is removed.
If the removal of a particular effect will make a
statistically significant difference on the fitness of
the model to the observed data, this effect will be
retained in the model; otherwise, it will be removed
in the next step. The process stops when all of the
effects are statistically significant, which is indicated
by the p values. For this example, two terms are kept
in the final step⎯the interaction effect between
study level and employment, and nationality. This 
is so because the p values are 0.0138 and 0.0000,
respectively, meaning that the probability of the

values predicted by the model being equal to the
observed data is very low if the term is removed.
Therefore, our statistical analysis ends with the
following model:

log Fijk = λ + λX + λY + λZ + λXZ.

—Keming Yang

Further Reading

Agresti, A. (1996). An introduction to categorical data analy-
sis. New York: Wiley.

Tabachnick, B. G., & Fidell, L. S. (2001). Using multivariate
statistics (4th ed.). New York: HarperCollins.

Loglinear analysis is part of the advanced modules added 
to the basic procedures of SPSS: http://www.spss.com/
advanced_models/data_analysis.htm

LONGITUDINAL/REPEATED

MEASURES DATA

Longitudinal/repeated measures data arise in situa-
tions where we have multiple measures on a subject
taken over time (growth over time) or a change under
different treatment conditions. A simple example
of longitudinal research design is when the
research setting involves multiple follow-up mea-
surements on a random sample of individuals, such
as their achievement, performance, or attitude,
over a period of time with logically spaced time
points. Researchers across different disciplines
have used different terms to describe the analysis
of data obtained from repeatedly observing the
same subjects. Some of the terms they have used
are longitudinal data analysis, within-subjects
design, repeated-measures design, growth modeling,
multilevel growth modeling, or individual change
model.

The simplest form of a repeated measures design 
is a one-way repeated measures design, one-way
repeated measures ANOVA design, or within-subjects
repeated measures design, when repeated measures
on a dependent variable are observed either over time

G2 = 2
∑

(observed) log

(
observed

fitted

)

X2 =
∑ (observed − fitted)2

fitted
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(e.g., time, grade level) or under different treatment
conditions (different type of medication for long-term
illness). These times, grade levels, or treatment condi-
tions serve as the repeated measures independent vari-
ables in the analysis.

More complex repeated measures designs have at
least one between-subjects factor (e.g., gender, ethni-
city) in addition to having repeated measures as within-
subjects factors (e.g., time). These repeated designs
with both within-subjects factors and between-
subjects factors are called repeated measures ANOVA
with between-subjects factors designs or factorial
repeated measures designs. Below, a detailed descrip-
tion, assumptions, a hypothetical data set, and SPSS
analysis and results of only the one-way repeated-
measures ANOVA design are provided because of
space limitations.

One-Way Repeated Measures 
ANOVA Design

In the one-way ANOVA design, all subjects are mea-
sured on all levels of the repeated measures indepen-
dent variable (e.g., time or treatment conditions).
Table 1 shows the representation of five subjects (S1,
S2, S3, S4, S5) in a one-way design with three time
points (T1, T2, T3).

SSoouurrccee  ooff  VVaarriiaannccee  iinn  OOnnee--WWaayy  
RReeppeeaatteedd  MMeeaassuurreess  DDeessiiggnn

In this design, total variability (SSTotal) in the mea-
sured dependent variable is partitioned into a part due
to time (SSTime), a part due to subjects (SSSubjects), and

error (SSTime × Subject), which is an interaction between
subject and time. Thus,

SSTotal = SSTime + SSSubjects + SSTime × Subject. (1)

The associated degrees of freedom in this design
are partitioned as

dfTotal = dfTime + dfSubjects + dfTime × Subject, (2)

where total degrees of freedom are the total number of
measurements (N = T × S) minus one. So,

dfTotal = N – 1. (3)

The degrees of freedom for time effect are the
number of measurements over time and are repre-
sented as

dfTime = T – 1. (4)

The degrees of freedom for subjects effect are the
number of subjects minus one and are represented as

dfSubjects = S – 1. (5)

The degrees of freedom for the error term are

dfTime × Subject = (T – 1)(S – 1). (6)

The corresponding mean squares (MS) are calcu-
lated by dividing sum of squares (SS) by their associ-
ated degrees of freedom (df). Thus,

MSTime = SSTime / dfTime, (7)

MSSubjects = SSSubjects / dfSubjects, (8)

MSTime × Subject = SSTime × Subject / dfTime × Subject. (9)

The F ratio for testing the null hypothesis that 
µT1 = µT2 = . . . = µTj, j = 1, 2, . . . , T time points is the
ratio of MSTime and MSTime × Subject. Thus,

F = MSTime / MSTime × Subject, (10)

with df = (T – 1), (T – 1)(S – 1).
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Table 1 One-Way Repeated Measures Design

Time

T1 T2 T3

S1 S1 S1

S2 S2 S2

S3 S3 S3

S4 S4 S4

S5 S5 S5



Assumptions

Three assumptions underlie the one-way repeated
measures design:

1. Measurements for each time point are normally
distributed.

2. Subjects are independent.

3. The variances of the differences between each pair of
levels of the repeated measures factor are equal. This
assumption is called the “sphericity assumption,”
and it is tested using Mauchly’s test. A significant
Mauchly’s test indicates that the assumption of
sphericity is not met. Violating this assumption
inflates Type I error rate.

Analysis of Hypothetical 
Repeated Measures Data

Table 2 presents a small hypothetical data set in which
five first-grade students are tested weekly for 3 weeks
on their vocabulary learning in terms of the number of
words they learn each week. The research question 
of interest is whether or not, on average, first-grade
students’ vocabulary learning changes over the 3
weeks. Similarly, is there growth in first-grade
students’ vocabulary learning over the 3 weeks?

The above hypothetical data values are entered in
the SPSS data editor, where each line of data repre-
sents a subject and contains three columns of sequen-
tial dependent variable values (e.g., number of words
learned each week) for each level of the repeated-
measures independent variable (e.g., week1, week2,
week3). To analyze these data, select the General

Linear Model option from the analysis tab of SPSS.
Next, select the Repeated Measures submenu window
and define “week” as the within-subjects factor. You
can also request Descriptive Statistics, Eta-Square
(estimate of the repeated measures effect size),
Mauchley’s Test of Sphericity, and Power from the
Options window.

Table 3 shows the means, standard deviations, and
number of data points (subjects) in each level of the
within-subjects factor (week).

The results of analyzing these hypothetical data
indicate that the Mauchley’s test of sphericity is not
significant (Mauchly’s W = .918, approximate chi-
square value = .255, df = 2, p = .880). Thus, assuming
sphericity, the partial eta-square value is .972 with
observed power of 1.0. Also, because the assumption
of sphericity is met, the results of the analysis for test-
ing the null hypothesis of no differences between pop-
ulation means over the 3-week period (H0: µW1 = µW2

= µW3) using the ANOVA tests with Type III sum of
squares (SS) and mean squares (MS) for within-
subjects and between-subjects effects are summarized
in Table 4. The results of testing the week variable
reveal that there are significant differences in the
means of the number of words learned over the 
3-week period (SS = 32.4, df = 2, MS = 16.2, F = 216,
and p = .000).

SPSS output also provides three alternatives for
testing the same hypothesis (equality of the means
over time) when the Mauchly’s test of sphericity
assumption is violated. The first alternative is using
the multivariate tests (e.g., Pillai’s Trace, Wilks’s
Lambda, Hotelling’s Trace, Roy’s Largest Root). The
second alternative is using the Greenhouse-Geisser,
Huynh-Feldt, or lower-bound test adjustments. The
third alternative is using a separate test of linear and
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Table 2 Hypothetical Data Set for a One-Way
Repeated Measures Design 

Time

Subjects Week1 Week2 Week3

S1 3 5 7
S2 2 4 5
S3 4 6 8
S4 5 7 9
S5 4 6 8

Table 3 Descriptive Statistics for the Hypothetical
Data

Weeks Mean Standard Deviation N

Week1 3.8 1.30 5
Week2 5.6 1.14 5
Week3 7.4 1.51 5



quadratic trends. Because the data in the above
example support the sphericity assumption, we do not
need to use any of these three alternatives.

Limitations of the Traditional 
Repeated Measures Analysis

The above-described simple repeated measures design
and other, more complex designs require the avail-
ability of the complete data, where every individual
has all the measurements for all the time points as
well as equal time intervals. A common problem in
analyzing repeated measures/longitudinal data is that
the complete data for all measurements taken at dif-
ferent time points for all individuals may not be avail-
able for different reasons, such as absentee at the time
of data collection, drop out from the study, or any
other reason. Missing data for some individuals or
variations in time between consecutive measurements
pose a great complication using traditional repeated-
measures statistical methods.

Hierarchical linear modeling (HLM) and multi-
level analysis are alternative methods to overcome the
limitations of the traditional repeated measures analy-
sis. The HLM approach is generally more flexible
than the traditional repeated measures analysis in
terms of its data requirements because the repeated
measurements are viewed as nested within the indi-
vidual rather than as the same fixed set of measure-
ments for all individuals. Thus, both the repeated
measurements and the timing of measurements may
vary randomly within subjects and across subjects.
Also, HLM is capable of handling longitudinal data
sets with more than two levels. For instance, repeated
measures for each individual (level-1) are nested

within classroom levels (level-2), which in turn could
be nested within school levels (level-3). In addition,
HLM is flexible in terms of fitting a polynomial
growth model to the longitudinal data, where the rela-
tionship between time and the repeated measures over
time is not linear. Furthermore, it is able to fit a piece-
wise linear growth model to a longitudinal data set for
comparing growth rates during two or more different
longitudinal data collection periods. Finally, HLM can
include level-1 time varying covariates in the repeated
data set. For example, if the repeated measures data
collection points are grades (e.g., Grades 3, 4, 5), we
can add to the level-1 model the number of days the
students were absent in each grade as a predictor.

—Sema A. Kalaian and Rafa M. Kasim

Further Reading

Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear
models: Applications and data analysis methods. Thousand
Oaks, CA: Sage.

Singer, J. D., & Willett, J. B. (2003). Applied longitudinal data
analysis: Modeling change and event occurrence. Oxford,
UK: Oxford University Press.

LURIA NEBRASKA

NEUROPSYCHOLOGICAL BATTERY

The extensive work of the Russian neuropsychologist
A. R. Luria has long been recognized as a major con-
tribution to clinical neuropsychology. However, his
work was largely qualitative rather than quantitative
in nature. The development of a standardized version
of Luria’s neuropsychological assessment procedures
was an attempt to provide a version that could be
used to generate both quantitative and qualitative
information.

This undertaking was facilitated by the publication
in 1975 of materials by Anne-Lise Christensen that
were useful in developing the original standardized
version of the Luria Nebraska Neuropsychological
Battery (Form I) (LNNB). In addition, Luria summa-
rized his investigative technique in an important paper
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Table 4 Summary Table for One-Way Repeated
Measures Analysis

Source SS df MS F p

Week 32.4 2 16.2 216 .000
Subjects 20.3 4 5.1
Week × Subjects 0.9 8 0.1
Total 53.6 14



titled “The Neuropsychological Investigation of
Patients With Localized Brain Lesions,” which was
translated into English by Dr. Lawrence Majovski.

The resulting test consisted of 269 items in Form
I or 279 items in Form II. The actual number of
administered procedures for each form is more than
700, because many of the items include numerous
repetitions of the specific procedures. In the LNNB,
qualitative as well as quantitative observations are
scored and used to interpret the results. The battery
allows the user to make generally the same qualita-
tive observations made by Luria and others, using
more formal administration and scoring procedures.
As with other, more qualitative methods, the test user
is encouraged to administer each item flexibly and to
continuously test the limits of the client’s cognitive
abilities. The original scales for the LNNB were
derived from Luria’s basic classification of his items
into broad skill categories, such as motor, nonverbal
auditory, visual-spatial, receptive language, and
intellectual.

Form II of the battery was designed with several
goals in mind. The first goal was to establish a paral-
lel version of the battery that could be used for 
test-retest purposes. The second goal was to make
available a set of stimulus cards that would have sev-
eral advantages over the cards used in Form I. These
advantages were (a) a larger size for clients with pos-
sible peripheral sensory deficits; (b) an organization
that allows the examiner to use the cards more effi-
ciently, thus reducing administration time; (c) reduc-
tion of the number of loose cards so as to further ease
administration problems; (d) correction of some items
that were either too difficult or too easy; (e) some
changes in administration and scoring of the battery
that increase the ability of the items to specify deficits

within particular areas; and (f) modifications in some
items and stimuli to make the test material more
familiar to users in the United States and Canada.

Since its introduction, the LNNB has generated
several hundred research studies. It has been the
subject of controversy from both qualitative theorists,
who see the battery as too fixed and rigid, and quanti-
tative theorists, who see the LNNB as too flexible and
criticize the variation in item content within the scales
of the test. Despite this, the battery is one of the most
used standardized test batteries in neuropsychology
and is especially useful for bedside evaluations and
evaluations of clients with focal injuries as well as
those who have extensive impairments that make
other standard tests impractical.

—Charles Golden

Further Reading

Christensen, A. L. (1974). Luria’s neuropsychological investi-
gation. Copenhagen: Munksgaard.

Golden, C. J., & Freshwater, S. M. (2001). Luria-Nebraska
Neuropsychological Battery. In W. I. Dorfman & 
M. Hersen (Eds.), Understanding psychological assess-
ment: Perspectives on individual differences. New York:
Kluwer Academic/Plenum.

Golden, C. J., Freshwater, S. M., & Vayalakkara, J. (2000).
The Luria-Nebraska Neuropsychological Battery. In 
G. Groth-Marnat (Ed.), Neuropsychological assessment in
clinical practice: A guide to test interpretation and inte-
gration. New York: Wiley.

Moses, J. A., Jr., Golden, C. J., Ariel, R., & Gustavson, J. L.
(1983). Interpretation of the Luria-Nebraska Neuropsycho-
logical Battery, Volume 1. New York: Grune & Stratton.

Alexander Luria biographies: http://www.marxists.org/archive/
luria/comments/bio.htm and http://en.wikipedia.org/wiki/
Alexander_Luria
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MALE ROLE NORMS INVENTORY

Ronald F. Levant and colleagues developed the Male
Role Norms Inventory (MRNI), which measures
seven theoretically derived norms of traditional mas-
culinity ideology: Avoidance of Femininity, Fear and
Hatred of Homosexuals, Self-Reliance, Aggression,
Achievement/Status, Non-Relational Attitudes Toward
Sex, and Restrictive Emotionality. It also includes a
Non-Traditional Attitudes subscale.

The MRNI consists of 57 normative statements to
which subjects indicate their degree of agreement/
disagreement on 7-point Likert-type scales. Examples
of MRNI items: “A man should do whatever it takes
to be admired and respected.” “A boy should be
allowed to quit a game if he is losing.”

Scores are obtained by adding up the raw scores on
individual items for each subscale and then dividing
by the number of items for that subscale. For each tra-
ditional subscale, the range is 1–7, with higher scores
indicating greater endorsement of traditional mas-
culinity ideology. To obtain the Total Traditional
score, add up raw scores on the six traditional sub-
scales (i.e., excluding the Non-Traditional Attitudes
subscale) and divide by 45. For the Non-Traditional
Attitudes subscale, the range is also 1–7, but higher

scores indicate greater endorsement of nontraditional
masculinity ideology.

The Cronbach alpha coefficients of the subscales
of the original MRNI and the newly developed
MRNI-R are, respectively, Avoidance of Femininity
(.77, .85); Fear and Hatred of Homosexuals
(.54, .91); Self-Reliance (.54, .78); Aggression
(.52, .80); Achievement/Status (.67, .84.); Non-
Relational Attitudes Toward Sex (.69, .79); Restrictive
Emotionality (.75, .86); Non-Traditional Attitudes
Toward Masculinity (.57, not used in MRNI-R); and
Total Traditional scale (.84, .96).

The test-retest reliability of the MRNI (Total
Traditional scale) over a 3-month time period for men
was .65, and for women, .72.

Discriminant construct validity was assessed
by examining the correlation of the MRNI Total
Traditional scale with a theoretically distinct measure
of gender—the short form of the Personal Attributes
Scale (PAQ). We hypothesized that the MRNI would
not be significantly correlated with PAQ and found
that the MRNI Total Traditional scale was not related
to the PAQ in a college student sample (for men,
r = .06 with M, or the Masculinity scale; for females,
r = .08 with F, or the Femininity scale). Convergent
construct validity was assessed by examining the cor-
relation of the MRNI Total Traditional scale with two
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theoretically related measures of gender. We hypothe-
sized that the MRNI would be correlated with each of
these two measures and did find significant moderate
correlations between the MRNI Total Traditional
scale and both the Gender Role Conflict Scale-I (r =
.52 , p < .001) and the Masculine Gender Role Stress
Scale (r = .52 , p < .001).

—Ronald F. Levant

Further Reading

Levant, R. F., & Fischer, J. (1998). The Male Role Norms
Inventory. In C. M. Davis, W. H. Yarber, R. Bauserman,
G. Schreer, & S. L. Davis (Eds.), Sexuality-related mea-
sures: A compendium (2nd ed., pp. 469–472). Thousand
Oaks, CA: Sage.

Levant, R. F., & Richmond, K. (n.d.). A program of research
on masculinity ideologies using the Male Role Norms
Inventory. Manuscript submitted for publication.

Dr. Levant: http://www.DrRonaldLevant.com

MALTHUS, THOMAS

(1766–1834)

Malthus could be described as England’s first acade-
mic economist. He became famous for his 1798 pam-
phlet “An Essay on the Principle of Population as
It Affects the Future Improvement on Society, With
Remarks on the Speculation of Mr. Godwin,
M. Condorcet and Other Writers.” His claim, sensa-
tional at the time, was that any growing population
would eventually be unable to sustain itself.

Malthus was born in Dorking, Surrey, on
February 13, 1766. He was the second son in a
prosperous family of eight (two boys, six girls).
Educated at home, he went up to Jesus College,
Cambridge, in 1784, becoming a college fellow in
1793. He was ordained a minister of the Church of
England in 1788, and in 1796, he became curate of
Okewood Chapel near Albury in Surrey. For the
next 8 years, he divided his time between Surrey
(living with his parents) and Cambridge. When at
home, he and his father had long debates on the

nation’s economy, and they are what led to his
famous pamphlet.

Publication of the pamphlet, which was expanded
in subsequent editions by the inclusion of population
data that confirmed his reasoning, turned Malthus into
an intellectual celebrity. In the 1803 edition of his
work, Malthus suggested that one way of reducing
population would be to give to the poor those rights
possessed by the middle class, such as universal suf-
frage, state-run education, the elimination of the Poor
Laws, and the establishment of a national labor
market. In effect, he was arguing that an increase in
income would lead to a decrease in family size. These
were controversial views, unpopular with many, yet
acknowledged by others as having merit.

In 1804, Malthus gave up his fellowship and got
married. The following year, he was appointed
Professor of Modern History and Political Economy
at the East India College in Haileybury (now
Haileybury College), a position he held for the rest of
his life. Malthus remained prominent in economic dis-
cussions for the rest of his life. In 1814 he published
Observations on the Effects of the Corn Laws, and of
a Rise or Fall in the Price of Corn on the Agriculture
and General Wealth of the Country, which presented
both sides of the argument for these laws. By the fol-
lowing year, however, it was clear that he personally
was in favor of restrictions on the importation of
foreign corn.

In 1820, he published Principles of Political
Economy, in which he disagreed with the “classical
approach” proposed by David Ricardo, a good friend.

Malthus died in Bath on December 29, 1834, fol-
lowing a Christmas visit to his in-laws.

—Graham Upton

See also Probability Sampling

Further Reading

Jensen, A.-M., Knutsen, T., & Skonhoft, A. (Eds.). (2003).
Visiting Malthus: The man, his times, the issues.
Copenhagen: Copenhagen Business School Press.

Thomas Malthus biography with comprehensive links to other
sites: http://cepa.newschool.edu/het/profiles/malthus.htm
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MANN-WHITNEY U TEST

(WILCOXON RANK-SUM TEST)

The Wilcoxon Rank-Sum Test was developed by
Wilcoxon in 1945, and it is useful when comparing
the location of two independent samples. A slightly
different version of the test was later introduced by
Mann and Whitney in 1947. Therefore, it is some-
times referred to as the Wilcoxon Mann-Whitney
test.

The underlying assumptions of the Wilcoxon
Rank-Sum Test are that the scores are independent
and come from a continuous probability distribution.
The null hypothesis is H0: fi(x) = gi(x), or the two sam-
ples come from identical distributions. The alternative
hypotheses are Ha: fi(x) ≠ gi(x) (two-tail), Ha: fi(x) <
gi(x) (lower-tail), or Ha: fi(x) > gi(x) (upper-tail).

The null hypothesis suggests that the Wilcoxon
Rank-Sum is a test of general differences. Even
though the Wilcoxon procedure is a test of stochastic
ordering, it is particularly powerful in detecting differ-
ences between group means. As a rank-based proce-
dure, it is not useful in testing for differences in scale
(variance).

The Wilcoxon test is nonparametric. This means
that it preserves the Type I error rate (i.e., false posi-
tive rate) to nominal alpha regardless of the popula-
tion shape. This is a fundamental advantage over its
parametric counterpart, the Student’s t test, which
relies on the normality distribution assumption.

When sampling from nonnormal distributions, the
Wilcoxon Rank-Sum Test is often more powerful than
the t test when the hypothesis being tested is a shift in
location parameter. This was suggested by the large
sample property known as the asymptotic relative
efficiency (ARE). The ARE of the Wilcoxon (Mann-
Whitney) relative to the t test under population
normality is 0.955. However, under population non-
normality, the ARE of the Wilcoxon Rank-Sum Test
can be as high as ∞.

Small-sample Monte Carlo studies confirmed
the comparative statistical power advantage of the
Wilcoxon Rank-Sum Test over the t test for departures
from nonnormality. It is often three to four times more

powerful for sample sizes and treatment effect sizes
common in education and psychology.

Because of the relationship between statistical
power and sample size, research studies may be
designed with considerably fewer participants when
using the Wilcoxon Rank-Sum Test instead of the t test.
It provides a considerable efficiency advantage in terms
of cost, time, and effort in conducting an experiment.

In order to compute the Wilcoxon Rank-Sum Test,
combine the two samples, order the scores from lowest
to highest, and keep track of the score’s group member-
ship. The ordered scores are assigned ranks. If there are
tied values, the average of the ranks is assigned to each
of the tied scores. The Wilcoxon formula is

(1)

where Ri are the ranks and Sn is the sum of the ranks
for a sample of size n.

The rank-sum statistic can be converted to a Mann-
Whitney U in order to use commonly available tabled
critical values for the U statistic. The formula for the
conversion is

(2)

If a table of critical values is not available, the
Wilcoxon Rank-Sum Test can be evaluated with a large-
sample approximation using the following formula:

(3)

where m and n are the sample sizes of the two groups
and Sn is the rank sum for sample n. The large-sample
approximation for the critical value to test the
obtained Mann-Whitney U statistic is

(4)z =
U + 1

2
− 1

2
mn

√
mn(m + n + 1)

12

.

z =
Sn − n(n + m + 1)

2√
mn(m + n + 1)

12

,

Un = Sn − 1
2
n(n + 1).

Sn =
n∑

i=1

Ri,
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The large-sample approximation maintains the Type I
error rate at nominal α when each sample size is greater
than 14 for α = .05, and greater than 29 for α = .01,
unless the data are heavily tied. In this case, each sample
should be at least n = 17 (α = .05) and n = 44 (α = .01).

If there are few ties, they can be handled using
average ranks. However, for heavily tied data, it is
advisable to use a tie correction formula. The follow-
ing expression is used to replace the denominator
in the large sample approximation formula, either
Equation 3 or Equation 4, as appropriate:

(5)

where τi is the number of ties at the ith tied score.

Example

Twenty students are randomly assigned into Group 1
(treatment group) or Group 2 (comparison group).
Group 1 receives a new curriculum, whereas Group 2
receives the traditional curriculum. Their test scores are
displayed in Table 1. The ranked scores are presented in
Table 2. For ease of computation, Group 1 is referred to
as A and Group 2 is referred to as B in this table.

The sum of the ranks for Group 1 is 133, and the
sum of the ranks for Group 2 is 77. For convenience,
the smaller of the rank sums is taken as the obtained
value and compared with the critical value. Because
tabled critical values are not often available, this value
is converted to a z score based on Equation 3.

The result is z = –2.12. The p value associated with
this z is 0.034. Therefore, we can conclude that the
new curriculum produced statistically significant
higher scores than the traditional curriculum at the
α = .05 level. In comparison, Student’s t test for these
data yields t = 1.87. With df = 18, p = .078. Thus, had
the parametric t test been conducted, we would have
concluded incorrectly that the new curriculum was no
more effective than the traditional curriculum.

Mann-Whitney U Test

The Mann-Whitney U statistic is calculated as
follows. For each score in Group 1, count the number
of Bs that precede it, or count the number of As that
precede each Group 2 score.

U1 = 3 + 4 + 7 + 8 + 8 + 8 + 10 + 10 + 10 + 10
= 77.

U2 = 0 + 0 + 0 + 1 + 2 + 2 + 2 + 3 + 6 + 6
= 22.

√
mn

12N(N − 1)

[
N(N 2 − 1) −

(∑
τ 3

i −
∑

τi

)]
,
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Table 1 Scores for Groups 1 and 2

Group 1 Group 2

21 18
33 19
56 20
69 32
70 35
71 54
74 55
75 68
76 72
77 73

Table 2 Sorted Data for Groups 1 and 2 With
Original Ranks

Wilcoxon Mann-Whitney

Score Group Rank U1 U2

18 B 1 0
19 B 2 0
20 B 3 0
21 A 4 3
32 B 5 1
33 A 6 4
35 B 7 2
54 B 8 2
55 B 9 2
56 A 10 7
68 B 11 3
69 A 12 8
70 A 13 8
71 A 14 8
72 B 15 6
73 B 16 6
74 A 17 10
75 A 18 10
76 A 19 10
77 A 20 10



The U test is significant if the larger U1 (77) is
greater than the critical value or if the smaller U2 (22)
is less than the critical value. Tables of critical values
are commonly available. They are constructed for
convenience based on whichever value (U1 or U2) is
smaller, which in this case is U2 = 22. The critical
value for a one-sided test with n1 = n2 = 10 and α = .05
is 27. Because the obtained value 22 is less than the
critical value of 27, the null hypothesis is rejected.

SPSS

To compute the Wilcoxon Rank-Sum Mann-Whitney
U test via SPSS, enter the data into a column. In the
next column, indicate if the score’s membership
is Group 1 or Group 2. Then, choose Analyze
|Nonparametric Tests| 2 Independent Tests.

Highlight the scores variable and click on the arrow
to move it to the Test Variable List. Highlight the
grouping variable and click on the arrow to move it to
the Grouping Variable. Click on Define Groups to
identify Groups 1 and 2. Finally, click on OK. The
output appears as Figure 1.

—Shlomo S. Sawilowsky

See also Inferential Statistics; t Test for Two Population Means
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MARKOV, ANDREI ANDREEVICH

(1856–1922)

Much of what is known regarding Andrei Andreevich
Markov comes from two sources. The first is a short biog-
raphy provided by Ahiezer and Volkobyskii, which was
written in Russian 25 years after Markov’s death. The
second resource is an obituary written by Vladimir A.
Stekloff (or Steklov, 1864–1927) and Ya. V. Uspenskii.

Markov was born in Ryazan, Russia. He had two
sons from two different marriages, both of whom were
mathematicians, but especially noted was the first son,
Andrei, Jr. (1903–1979). Markov completed his under-
graduate work in 1878 and his master’s degree in 1880
as a student of A. N. Korkin (d. 1908) and Egor
Ivanovich Zolotarev (1847–1878). That same year,
Markov accepted a lecturer’s position in mathematics 
at St. Petersburg University. Four years later, he
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Group N Mean Rank Sum of Ranks

Score 1.00 10 13.30 133.00

2.00 10 7.70 77.00

Total 20

Score

Mann-Whitney U 22.000
Wilcoxon W 77.000
Z −2.117
Asymp. Sig. (2-tailed) .034
Exact Sig. [2*(1-tailed Sig.)]

.035(a)

Test Statistics(b)

a. Not corrected for ties.
b. Grouping Variable: Group

Figure 1 SPSS Output for the Wilcoxon W and
Mann-Whitney U Test

Ranks



defended his doctoral dissertation, “On Certain Applica-
tions of Algebraic Continuous Functions,” under the
tutelage of Pafnuty Lvovich Chebyshev (or Tchebichef,
1821–1894).

Markov rose through the professorial ranks from
Adjunct (1886), to Extraordinary (1890), and to
Ordinary Academician (1896) of the Imperial Academy
of Science of St. Petersburg, which was later renamed
the Russian Academy of Sciences after the revolution of
1917. Two of his most well-known students were
Georgy F. Voronoy (or Voronoi, 1868–1908) and
Stanislaw Zaremba (1863–1942). In 1905, Markov
retired from the university with the title of Distinguished
Professor, but continued lecturing until his death.

Markov worked on analysis, approximation theory,
converging series, continuous fractions, integrals,
interpolation, number theory, limits, and probability
theory. Building on the work of Chebyshev, Markov
made major advances in the methods of moments in
probability theory. Two of his primary pedagogical
works were “Calculus of Finite Differences” and
“Calculus of Probabilities.”

Markov is best known for his work on extensions
from the law of large numbers that led to the develop-
ment of Markov chains. It is a set of finite or discrete
states (e.g., on vs. off) and an associated matrix that
determines the probability of moving from one state to
another. The primary feature, called the Markov prop-
erty, is that the future state is determined by a random
process based on the present state, but independent from
all previous states, meaning that it has no memory.

A Markov process may be discrete or continuous,
such as displacement over continuous time. A Markov
process of the nth order means that both the memory
and future probability state of the process are fully
articulated by n elements. A Markov field pertains to
multidimensional space.

A simple example of a Markov chain is a random
walk, such as Brownian motion. The Markov chain is
the progenitor and special case of stochastic processes,
and led to the application of Liouville’s theorem (Joseph
Liouville, 1809–1882) to the ergodic hypothesis.

—Shlomo S. Sawilowsky and Boris Shulkin

See also Markov Chain Monte Carlo Methods
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MARKOV CHAIN MONTE

CARLO METHODS

Markov chain Monte Carlo (MCMC) is a modifica-
tion of the Monte Carlo simulation method. In a typi-
cal Monte Carlo simulation, we are trying to compute
the expectation of some random variable, which we
do by sampling and using the law of large numbers.
However, often, it is either impossible or intractable to
obtain enough independent samples from the desired
distribution. The basic modification in MCMC from
Monte Carlo is that in MCMC we use dependent sam-
ples, which are generated by a Markov chain. Under
suitable and very general conditions, averages com-
puted from the trajectory of a Markov chain will also
converge to the desired expectation.

Because MCMC was motivated by Monte Carlo
simulation methods, we start with a short discussion
of Monte Carlo methods.

Monte Carlo Simulation

The basic problem in Monte Carlo simulations is to
estimate a target density π on some (usually very com-
plicated and large) state space. This estimation is done
by drawing independent and identically distributed
samples from π and using the empirical distribution as
an approximation to the true distribution.
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Clearly, the central concern in a Monte Carlo
simulation is drawing a random sample from the tar-
get distribution π. Because of this, many sampling
methods have been devised.

RReejjeeccttiioonn  SSaammpplliinngg

Many MCMC algorithms are strongly related to
rejection sampling, and this is the main reason for our
discussion of rejection sampling.

A simple example best illustrates the idea behind
rejection sampling. Let π is a distribution on [0,1]
with density p(x). Now, suppose that there is another
distribution with density q(x) on [0,1] such that p(x) <
Mq(x) for all x and such that we can sample from q.
To get one sample X from π, let Y be a sample from q
and U be a sample from U[0,1]. If U < p(Y)/(Mq(Y)) =
p(Y)/M, then we accept Y as a sample from q and set
X = Y, else we reject and try again (see Figure 1 for an
illustration of this).

We see that the infinitesimal probability that X = x
is returned is

so this gives a perfect sample from p(x). Notice, how-
ever, that the efficiency is 1/M, because only one out
of every M samples will be accepted.

In general, any distribution q with p(x) ≤ Mq(x)
will do (not just uniform), and the efficiency will
again be 1/M.

GGeenneerraalliittiieess  oonn  MMCCMMCC

For Monte Carlo simulation, we require samples
from the distribution π. This is very often either
impossible or highly impractical to do. Even if it is
possible to generate one perfect sample, we need
many independent samples for a Monte Carlo simula-
tion. MCMC eases this problem by giving up the
requirement for independent samples from π and gen-
erating instead many correlated approximate samples
from π, with the approximation improving as the
simulation continues.

The ergodic theorem gives some very general
conditions under which MCMC will work. A
Markov chain with state space Ω is irreducible if it
is possible for the chain to get from any state in Ω to
any other state in Ω, and it is positively recurrent if
the expected time for transition from state i to state j
is finite for every i,j ∈ Ω. Clearly if Ω is finite and
the chain is irreducible, then it is also positively
recurrent.

Ergodic Theorem for Markov Chains

Let {Xn} be an irreducible positively recurrent
Markov chain on the state space Ω with stationary dis-
tribution π. If f : Ω → IR is π-summable (in the sense
that Σω | f(ω) | π(ω) < ∞), then

Notice that the ergodic theorem also yields P(Xn =
ω) → π(ω) by considering f to be the characteristic
function of {ω}.

Of course, in practice, the rate of convergence is a
critical issue.

DDeettaaiill  BBaallaannccee

Let π be a distribution on Ω. A very important way
of finding a Markov chain on Ω with transition matrix

1

N

N∑

i=1

f (Xi) →
∑

ω∈�

f (ω)π(ω) = Eπ(f ).

Pr(X = x)dx = Pr(Y = x and x is returned)

Pr(something is returned)
dx

= q(x)dx p(x)

Mq(x)
∫

x
q(x)

p(x)

Mq(x)
dx

= p(x)dx,
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P, which has invariant distribution π, is to ensure that
the detail balance condition

π(x)P(y | x) = π(y)P(x | y), for all x, y ∈ Ω,

holds. It is easy to see that this condition is sufficient;
simply sum both sides over all possible x ∈ Ω to get

∑
x

P(y | x)π(x) = π(y).

Markov chains that satisfy the detail balance con-
dition are called reversible chains.

Metropolis Sampler

In 1953, Metropolis, Rosenbluth, Rosenbluth, Teller,
and Teller published the paper “Equations of State
Calculations by Fast Computing Machines,” thereby
introducing to the world the incredibly useful
Metropolis simulation algorithm. This algorithm has
been cited as among the top 10 algorithms having the
greatest influence on the development of science and
engineering.

The basic idea, like many great ideas, is rather
simple. Given a desired distribution π on Ω, we split
the chain into a proposal phase and an acceptance
phase (like rejection sampling). For the proposal
phase, the Metropolis algorithm uses a symmetric
irreducible Markov chain Q (so Q(x | y) = Q(y | x)).
Given the current state x, we use Q to generate a new
state y and accept y with probability

Thus, the transition matrix P for the Metropolis
algorithm is a product of the form P(y | x) =
Q(y | x)A(y | x) for y ≠ x (the diagonal terms of P are
forced by the fact that P is a transition matrix). From
this, we see that (without loss of generality, π(y) ≤ π(x)),

so the Metropolis chain satisfies detail balance and
has π as invariant distribution.

The Metropolis algorithm will produce many
repeated states in the chain Xn. In computing expecta-
tions using this chain, it is important to keep these
repeats because this is one way the algorithm corrects
the bias from the proposal process, thus allowing it to
converge to π.

The separation of the proposal and acceptance
phases makes designing a chain much simpler,
because the proposal process can be virtually any
process. The choice of proposal process is often
guided by the structure of the state space. The con-
dition that Q be irreducible and symmetric is rarely
much of a problem in practice. For Ω finite, the
proposal process is often defined by first giving a
local (symmetric) neighborhood structure and then
choosing y uniformly from the neighbors of the cur-
rent x, and the resulting Q is irreducible as long as
the given neighborhood system is reasonable. We
are free to let the structure of the problem guide the
neighborhood system (or proposal process) and use
the acceptance phase to correct the proposal process
in such a way as to ensure the desired stationary
distribution.

Another very important feature of the Metropolis
algorithm is that one need know π only up to a multi-
plicative factor, because only ratios are used in com-
puting the acceptance probability. This can be very
important in situations where we want specific rela-
tive probabilities but the state space is too large or
complicated to allow us to compute a normalizing
constant. Optimization by simulated annealing is
often such a situation.

Simulated Annealing 
for Global Optimization

Given an energy function E on the state space Ω and
a temperature T > 0, the Boltzmann distribution is the
probability distribution

π(x) = e−E(x)/T

ZT

,

π(x)P (y | x) = π(x)Q(y | x)
π(y)

π(x)
= π(y)Q(y | x)

= π(y)Q(x | y) = π(y)P (x | y),

A(y | x) = min

{

1,
π(y)

π(x)

}

.
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where ZT is a normalizing constant called the partition
function. Clearly, this distribution peaks at the states
with the lowest temperature, and this peaking
becomes more pronounced as T → 0. Given this fact,
one way to find the minima of the energy E might be
to try to lower the temperature in a controlled way
(clearly, setting T = 0 won’t work). This is the basic
idea of simulated annealing.

Simulated annealing typically uses the Metropolis
sampler, with corresponding acceptance

A(y | x) = min{1,e(E(y)–E(x))/T},

where we notice that the partition function has
canceled out. This is a clear advantage to using the
Metropolis algorithm, because the partition function
is almost always impossible to compute.

The interpretation of the Metropolis acceptance in
this context is that if the energy of the proposed state is
smaller than the energy of the current state, we always
accept the transition, whereas if the energy of the pro-
posed state is greater than the energy of the current
state, we accept the transition only with some proba-
bility that decreases to zero as T decreases to zero.
Care must be taken in lowering the temperature that it
is not lowered too quickly, or the process will “freeze.”
Conceptually, one fixes the temperature at some level,
allows the Markov chain to approach the Boltzmann
distribution for that temperature, and then lowers the
temperature. At lower temperatures, it takes longer for
the Markov chain to converge to the Boltzmann distri-
bution (for that temperature). In practice, one usually
lowers the temperature on each iteration of the chain
(so that the chain is a nonhomogeneous Markov chain
with transition matrix depending on time), but follow-
ing a very slow cooling schedule. Theoretical results
indicate that a cooling schedule of the form

is sufficiently slow to guarantee convergence to the
minimum energy states. Because this cooling sched-
ule is incredibly slow, most actual simulated anneal-
ing algorithms use a faster cooling schedule.

Metropolis-Hastings

W. K. Hastings’s 1970 paper generalized the work
of Metropolis et al. and introduced the Metropolis-
Hastings algorithm. This algorithm is the most fre-
quently used algorithm in MCMC, and most of the
other algorithms are instances or modifications of it.

The Metropolis-Hastings algorithm also splits the
chain into a proposal and acceptance phase. However,
the proposal process Q is not assumed to be symmet-
ric, but it does have to satisfy Q(x | y) > 0 whenever
Q(y | x) > 0 and be irreducible. This time, the accep-
tance probability is

where S(y | x) = S(x | y) is any symmetric Markov
kernel. Using these definitions it is easy to see that
P(y | x) = Q(y | x)A(y | x) satisfies detail balance for π.
The advantages of the Metropolis-Hastings algorithm
over the Metropolis algorithm are that Q need not be
symmetric and the flexibility in choosing S.

Because A(y | x) ∈ [0,1], we must have that S(y | x)
≤1 + min{T(y | x),T(y | x)}. The Metropolis algorithm
corresponds to the case of equality in this inequality.
In fact, over the class of all possible Metropolis-
Hastings transition matrices, the Metropolis algorithm
has the maximum chance of accepting a move (so it
minimizes the diagonal elements). A theorem of P.
Peskun then implies that the asymptotic variance of
the Metropolis algorithm is optimal (in the sense of
being smallest) among the class of all Metropolis-
Hastings chains with a fixed proposal process. Thus,
even though the general Metropolis-Hastings algo-
rithm gives more flexibility in the design of the chain,
the Metropolis algorithm is, in some ways, optimal
when it is feasible.

Another special case of the Metropolis-Hastings
sampler is Barker’s algorithm, where we choose
S(y | x) = 1 and get the nice acceptance probability

A(y | x) = π(y)Q(y | x)

π(x)Q(x | y) + π(y)Q(y | x)
.

A(y | x) = S(y | x)

1 + π(x)Q(y|x)

π(y)Q(x|y)

= S(y | x)

1 + T (y | x)
,

T = c

log(iteration count)
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Another useful modification to the generic
Metropolis-Hastings sampler is the Langevin
Metropolis-Hastings algorithm. The generic Metropolis-
Hastings sampler uses the acceptance phase to correct
the bias from the proposal process. This often results
in many rejections and a slow convergence to π.
Partly, this is due to the fact that the proposal process
can be independent of π. The Langevin Metropolis-
Hastings is motivated by a stochastic differential
equation and introduces a bias into the proposal
process that is influenced by the derivative of the den-
sity of π, which often speeds up the convergence.

Gibbs Sampler

The Gibbs sampler is especially designed for situa-
tions where Xn is multivariate and we can easily (or
more easily) sample from the marginal distributions
than from the full distribution. This is best explained
by the following example.

Take a 10 × 10 grid with each site being in the
state 0 or in the state 1 (see Figure 2 where we
shade all 1 states). For each site, we consider the
four adjacent sites (with wraparound for the edges)
and count the number of neighbors in state 0. We
want to have the marginal distributions given in
Table 1. The problem is to sample a “random” 10 ×
10 grid that has these local marginal distributions.

The Gibbs sampler solves this problem by the
following steps in cycles. First, we randomly initialize
the states in the grid, and then for each cycle do the
following:

• Choose a (random) ordering of the grid points.
• For each grid point in turn in the order chosen, sam-

ple the value of the current grid point according to
the distribution given by its four neighbors.

Sometimes, we keep a copy of the “old” grid
around for the marginal draws and update the entire
grid only at the end of the sample. It is also possible
to simplify the algorithm by eliminating the cycles
and randomly choosing a site to update at each itera-
tion. These different choices shouldn’t affect the
limiting distribution but might influence the speed
of convergence. The grid in Figure 2 was generated
using this model.

The Gibbs sampler can also incorporate a Metro-
polis or Metropolis-Hastings proposal/acceptance
scheme.

Other Methods and Discussion

There are many variations on these basic samplers and
other general Monte Carlo and MCMC algorithms.
Among these, we mention the EM algorithm (an algo-
rithm for ML and MAP point estimates), the Slice
sampler (a generalized Gibbs sampler), Reversible
Jump MCMC, and Sequential Monte Carlo.

A useful property of MCMC is the ability to com-
bine several samplers. If P1 and P2 are transition ker-
nels that both have π as an invariant distribution, then
so do λP1 + (1 – λ)P2 (for 0 ≤ λ ≤ 1) and P1P2. The
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Figure 2 Simple Grid for Gibbs Sampler Example

Table 1 Marginal Distributions for Gibbs Sampler
Example

# 0 neighbors Prob. of being 0

0 .1
1 .3
2 .5
3 .7
4 .9



Gibbs sampler can be thought of as an example of the
second kind of combination, where each factor
changes only one component of X at a time.

Obtaining good estimates of the convergence rate
is usually difficult but extremely useful. One major
problem in running an MCMC simulation is the prob-
lem of how long is long enough. There is a large (and
growing) literature on bounding the mixing rate of a
Markov chain, and these estimates can give useful
guidelines on the required length of a run. In simple
cases, the running time is shown to be polynomial in
the dimension of the state space.

A recent and very exciting development in MCMC
is the existence of algorithms for perfect sampling.
These completely answer the question of how long you
need to run the MCMC chain. Two such algorithms are
Coupling From the Past and Fill’s Algorithm.
Although they are limited to certain types of Markov
chains, the class of possible chains is steadily growing,
and in these instances, these algorithms guarantee a
perfect draw from π. Essentially, these two algorithms
provide a computable stopping criterion.

—Franklin Mendivil

See also EM Algorithm; Markov, Andrei Andreevich; Monte
Carlo Methods; Simulated Annealing
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MATRIX ANALOGIES TEST

The Matrix Analogies Test (published by Harcourt
Assessment) consists of two forms: the Matrix
Analogies Test–Expanded Form (MAT-EF) and the
Matrix Analogies Test–Short Form (MAT-SF).
Stimulus items on both tests employ abstract designs
of the standard progressive matrix type. The matrix
design of the stimulus items of both the MAT-EF and
the MAT-SF require minimal verbal comprehension
and no verbal response on the part of the examinee.

The MAT-EF is an individually administered test
of nonverbal reasoning ability designed for children
and adolescents 5 to 17 years old. The MAT-EF is
reported to be appropriate for assessing the abilities of
children with learning disabilities, mental retardation,
hearing or language impairments, physical disabili-
ties, those who may speak more than one language,
and those with the ability to perform at the gifted
level. It may be used as a stand-alone measure or as
part of a comprehensive battery of tests.

The MAT-EF is organized into four specific item
groups (Pattern Completion, Reasoning by Analogy,
Serial Reasoning, and Spatial Visualization). The
author claimed that these item groups were developed
based on the results of item factor analysis. The MAT-
EF was designed in such a way as to reduce the effects
of impaired color vision. The colors (blue, yellow,
black, and white) were used in the stimulus materials
to reduce the influence of impaired color vision.
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When administering the MAT-EF, a maximum 
of 12 minutes is allowed for each item group. The
MAT-EF yields an overall standard score (M = 100,
SD = 15) and item-group standard scores (M = 10,
SD = 3). The MAT-EF is reported to yield similar
scores for boys and girls, whites and African
Americans, and Hispanics and non-Hispanics.
Additionally, research has shown that similar scores
are obtained across samples from different countries.

The MAT-SF is a group-administered version of
the MAT-EF that is also used to obtain a measure of
nonverbal reasoning ability. The MAT-SF consists of
34 items. It yields stanines and percentile scores for
the total test score. As with the MAT-EF, the MAT-
SF requires minimal motor involvement and a mini-
mal level of verbal comprehension. The MAT-SF is
appropriate for use with the same age group as the
MAT-EF. The primary use of the MAT-SF is as a
quick screening device to help identify students who
may be at risk and students who may be gifted and
are performing above age expectations. The MAT-SF
uses self-scoring answer sheets that eliminate the
need for scoring keys and provide immediate results.

—Thomas O. Williams, Jr.

See also Culture Fair Intelligence Test; Intelligence Tests;
Matrix Operations; Raven’s Progressive Matrices
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MATRIX OPERATIONS

A matrix is a rectangular array of numbers, and is
called m by n when it has m rows and n columns.
Examples include the matrices A (which is 2 by 3),
M (3 by 2), and S (4 by 4) below:
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A =
⎡

⎣0 −3
2

5

1 −7 2

⎤

⎦ , M =
⎡

⎢
⎣

3 2

−π 0

1 1

⎤

⎥
⎦ , S =

⎡

⎢
⎢
⎢
⎣

2 −1 3 0

0 2 −1 3

3 0 2 −1

−1 3 0 2

⎤

⎥
⎥
⎥
⎦

Given an m by n matrix A, for each i = 1, . . . , m, and j = 1, . . . , n, the symbol aij denotes the entry of A in
row i, column j .

For m by n matrices A and B, their sum, A + B, is the m by n matrix such that for all i = 1, . . . , m,

j = 1, . . . , n, the entry in row i, column j is given by aij + bij . The sum of two matrices is defined only when
both the number of rows and the number of columns of the summands agree. For example,

⎡

⎣0 −3
2

5

1 −7 2

⎤

⎦ +
⎡

⎣
1
2

1 −3

−2 6 0

⎤

⎦ =
⎡

⎣
1
2

−1
2

2

−1 −1 2

⎤

⎦ .

For any m by n matrix A and any scalar x, the scalar multiple xA is the m by n matrix such that for all
i = 1, . . . , m, j = 1, . . . , n, the entry in row i, column j is given by xaij . For example, if

A =
⎡

⎣0 −3
2

5

1 −7 2

⎤

⎦ , then − 4A =
[

0 6 −20

−4 28 −8

]

.
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Addition and scalar multiplication can be combined for two m by n matrices A and B, so that the matrix
xA + yB has the entries xaij + ybij for all i = 1, . . . , m, j = 1, . . . , n. Thus, if

A =
⎡

⎣0 −3
2

5

1 −7 2

⎤

⎦ and B =
⎡

⎣
1
2

1 −3

−2 6 0

⎤

⎦ , then 3A − 2B =
⎡

⎣−1 −13
2

21

7 −33 6

⎤

⎦ .

For an m by n matrix U and an n by k matrix V , the matrix product UV is the m by k matrix such that for each
i = 1, . . . , m, j = 1, . . . , k, the entry in row i, column j of UV is given by

∑n
p=1 uipvpj. The matrix product UV

is defined only when the number of columns of U agrees with the number of rows of V . For example, if

U =
[

1 −1 2

3 0 1

]

, V =
⎡

⎢
⎣

2 −1

−3 4

0 −2

⎤

⎥
⎦ , then UV =

[
5 −9

6 −5

]

whereas VU =
⎡

⎢
⎣

−1 −2 3

9 3 −2

−6 0 −2

⎤

⎥
⎦ .

If a matrix S has an equal number of rows and columns, we say that S is square. Given a square matrix S, for
each natural number k,the kth power of S, denoted Sk, is the k-fold product of S with itself. For example, if

S =
⎡

⎢
⎣

0 1 0

−1 1 1

−1 0 2

⎤

⎥
⎦ , then S2 =

⎡

⎢
⎣

−1 1 1

−2 0 3

−2 −1 4

⎤

⎥
⎦ , and S3 =

⎡

⎢
⎣

−2 0 3

−3 −2 6

−3 −3 7

⎤

⎥
⎦ .

For each natural number n, the identity matrix of order n, denoted by In, is the n by n matrix with diagonal
entries equal to 1 and all other entries equal to 0. For example,

I3 =
⎡

⎢
⎣

1 0 0

0 1 0

0 0 1

⎤

⎥
⎦ .

For any m by n matrix A and any n by k matrix B, we have AIn = A and InB = B. Given an n by n matrix S,
we say that S is invertible if there is an n by n matrix T such that ST = In and TS = In . If such a T exists, it is
the inverse of S and is denoted by S−1. For any natural number k, the k-fold product of S−1 with itself is denoted
S−k. For each natural number k, we have (Sk)−1 = S−k. For example if

S =
⎡

⎢
⎣

0 1 0

−1 1 1

−1 0 2

⎤

⎥
⎦ , then S−1 =

⎡

⎢
⎣

2 −2 1

1 0 0

1 −1 1

⎤

⎥
⎦ and S−2 =

⎡

⎢
⎣

3 −5 3

2 −2 1

2 −3 2

⎤

⎥
⎦ .

Because of their computational utility and well-
developed theory, matrices arise throughout the math-
ematical sciences and have numerous applications in
science and engineering.

—Steve Kirkland

See also Eigenvalues

MAXIMUM LIKELIHOOD METHOD

The maximum likelihood method is applicable to any
scientific problem in which it is desired that unknown
or unobservable quantities, called parameters, be
estimated based on observed data. Thus, maximum



likelihood is a method of solving the statistical
problem of estimation.

Under the maximum likelihood principle, a para-
meter is estimated by the value that maximizes the
likelihood of the observed data. In other words, the
maximum likelihood estimate (MLE) of a parameter
is the value that gives the observed data the highest
probability possible. Depending on the complexity of
the underlying model, MLEs may be solvable by ele-
mentary calculus, or they may require sophisticated
computational methods. The former instance is illus-
trated in the following example.

In a survey of 6,000 randomly selected U.S. high
school students, 2,166 knew that Geoffrey Chaucer
wrote The Canterbury Tales. What is the MLE for the
percentages of all U.S. high school students who
know this fact?

Let n denote the number of subjects surveyed, and X
the number who knew the correct answer. Let p denote
the proportion of all U.S. high school students who
know the answer. The sample size n and population
percentage p are fixed quantities, or parameters, the for-
mer known and the latter unknown. The observed quan-
tity X is a random variable—it can assume any integer
value between 0 and n, depending on the result of the
random sample—and follows the binomial distribution.
For any realizable value x, the probability is given by

(1)

where k! = k (k – 1) ··· 2 • 1 for any integer k.
The MLE of p, denoted by p̂, is the number

between 0 and 1 that maximizes the value of Equation
1. In Equation 1, the quantity p is held fixed, and a
probability is evaluated for any possible value of x
from 0 to n. The method of maximum likelihood
involves fixing x at the observed value and consider-
ing Equation 1 a function of the unknown success
probability p. Consider the Chaucer question. Based
on the results of the survey, the values p = 0 and p = 1
can be eliminated, but any number between 0 and 1
remains a possibility. Here, n = 6,000 and x = 2,166;
the probability of the observed result is given as
follows for selected values of p.

p Pr(X = 2166) where X ~ Binomial(6000, p)

.35 .00219

.36 .01058

.37 .00377

This probability is maximized at p = .361. More
generally, elementary calculus will show that the
MLE is given by p̂ = x/n; hence, the MLE of the pop-
ulation percentage is just the sample percentage.
Thus, by the maximum likelihood method, it is esti-
mated that 36.1% of students know that Chaucer
wrote The Canterbury Tales.

Of course, few problems admit such straightforward
solutions. Indeed, the development of efficient algo-
rithms for finding MLEs is an active area of research.

—Ronald Neath

See also Binomial Distribution/Binomial and Sign Tests;
Parameter
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MCNEMAR TEST FOR

SIGNIFICANCE OF CHANGES

It is often of interest to examine changes in the
dichotomous categorical responses taken from subjects
before and then after some treatment condition is
imposed (i.e., evaluating repeated measurements of
the same subjects using them as their own controls).
In 1947, the psychologist Quinn McNemar developed
a simple and valuable technique for comparing differ-
ences between the proportions in the responses before
and after. McNemar’s procedure is the categorical

Pr(X = x) = n!
x!(n − x)!

px(1 − p)n−x,
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data counterpart of the t test for the mean difference in
matched, paired, or related samples.

McNemar’s procedure has enjoyed widespread
usage in both behavioral and medical research and
some attention in business, particularly with applica-
tions in advertising or marketing research, wherein
it may be desirable to evaluate the significance of
changes in attitudes and opinions.

Development

The dichotomous responses from a sample of n′ indi-
viduals over two periods of time may be tallied into a
2 × 2 table of cross-classifications as follows:

With respect to the population from which the
aforementioned sample was taken, let pij be the prob-
ability of responses to the ith category before the
treatment condition was imposed and the jth category
after. The pairs of marginal probabilities before and
after treatment sum to unity; that is, p1. + p2. = 1 and
p.1 + p.2 = 1.

Testing for Significance 
of Changes in Related Proportions

In order to investigate changes in repeated dichoto-
mous measurements, the null hypothesis is that of
symmetry:

H0: pij = pji for i ≠ j.

That is, the null hypothesis tested is conditioned
on those n = x12 + x21 individuals whose responses
change, where the probability (p21) of a switch to a
more favorable position is equal to the probability
(p12) of a switch to a less favorable position, and that
this probability is 0.5.

Under the null hypothesis the random variable x12

is binomially distributed with parameters n and 0.5,
as is the random variable x21. The expected value of
each of these binomial distributions is 0.5n, and the
variance for each is 0.25n. McNemar’s procedure
enables an exact test of the null hypothesis using the
binomial probability distribution with parameters n
and p = 0.5.

The McNemar test statistic M, written as
Min[x12,x21], is defined as the minimum of the
response tallies x12 or x21 in the cross-classification
table.

For a two-tailed test, the null hypothesis can be
rejected at the α level of significance if

For a one-tailed test, the null hypothesis may be
rejected if

Using Microsoft Excel’s BINOMDIST function,
exact p values of the McNemar test are obtained for
all n ≤ 1,000.

P(M ≤ Min[x12, x21] | n and p12 = p21 = 0.5)

=
Min[x12,x21]∑

M=0

n!
M!(n − M)!

(0.5)n ≤ α.

P(M ≤ Min[x12, x21] | n and p12 = p21 = 0.5)

=
Min[x12,x21]∑

M=0

n!
M!(n − M)!

(0.5)n ≤ α/2.
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Table 1 2 × 2 Table of Cross-Classifications for a
Sample of n′ Subjects

II
I + − Totals

+ x11 x12 x1

− x21 x22 x2

Totals x.1 x.2 n′

where 
I = Time period I (before treatment) in a repeated measurements

experiment
II = Time period II (after treatment) in a repeated measurements

experiment
+ = positive classification
− = negative classification

x11 = number of subjects with a positive response both before and
after treatment

x12 = number of subjects with a positive response before treatment
and a negative response after treatment

x21 = number of subjects with a negative response before treatment
and a positive response after treatment

x22 = number of subjects with a negative response both before and
after treatment

n′ = sample size



For studies where n > 1,000 a simple normal
approximation formula for the test statistic M is 
given by

where Z = N(0,1), the standardized normal distribu-
tion. The decision rule for testing the null hypothesis
(H0: pij = pji for i ≠ j) depends on whether the test is
two-tailed or one-tailed. Based on its definition, M
cannot exceed 0.5n, so the test statistic Z can be
rejected only in the left tail of a standardized normal
distribution. For a two-tailed test against the alterna-
tive H1: pij ≠ pji, the decision rule is to reject H0 if
Z ≤ Zα__

22
. For a one-tailed test, the decision rule is

to reject H0 if Z ≤ Zα.

Applying the McNemar Procedure

The following hypothetical example is presented:
Suppose a consumer panel of n′ = 500 participants is
selected, and the panel members are initially asked to
state their preferences for two competing Internet ser-
vice providers, say, AOL versus EarthLink. Suppose
290 panelists initially say they prefer AOL. After
exposing the entire panel to a newly designed adver-
tisement as part of some intensive marketing cam-
paign strategy for EarthLink, the same 500 panelists
are again asked to state their preferences. Suppose that
of the 290 panelists who previously preferred AOL,
260 maintain their brand loyalty but 30 switch to
EarthLink. Moreover, suppose that of the 210 pan-
elists who initially preferred EarthLink, 200 remain

brand loyal but 10 switch to AOL. The results are
displayed in Table 2.

To test the null hypothesis of symmetry

H0: pij = pji for i ≠ j

(that is, the marketing campaign strategy has no
effect—Internet users are just as likely to shift their
preference from AOL to EarthLink as they are to
switch from EarthLink to AOL), it may be tested
against the two-tailed alternative

H1: pij ≠ pji

(that is, exposure to the advertisement does influence
one’s disposition to switch from one Internet service
provider to the other).

For these data, the McNemar procedure enables an
exact test of the null hypothesis using the binomial
probability distribution with parameters n = x12 + x21 = 40
and p = 0.5 and with a stated level of significance α/2
in each tail. For a two-tailed test, the McNemar test
statistic M—defined here as 10, or the minimum of
the response tallies x12 and x21 from the cross-
classification table—can be rejected at the α = 0.05
level of significance if

P(M ≤ 10 | n = 40 and p12 = p21 = 0.5) ≤ 0.025.

Using Microsoft Excel’s BINOMDIST,

Thus, the null hypothesis is rejected. The p value is
0.00222. The advertisement significantly increased
EarthLink’s market share at the expense of its arch
rival AOL.

Had Microsoft Excel not been readily available, the
normal approximation formula could have been
employed. For these data,

P(M ≤ 10 | n = 40 and p12 = p21 = 0.5)

=
10∑

M=0

40!
M!(40 − M)!

(0.5)40 = 0.00111 < α/2

= 0.025.

Z = M − 0.5n

0.5
√

n
,
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Table 2 Hypothetical Results of a Marketing
Campaign

After
Before EarthLink AOL Totals

EarthLink x11 = 200 x12 = 10 x1. = 210

AOL x21 = 30 x22 = 260 x2. = 290

Totals x.1 = 230 x.2 = 270 n′ = 500
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For a two-tailed test at the α level of significance,
H0 is rejected if Z ≤ Zα_

2
. Using the traditional .05 level

of significance, because Z = –3.16 < Z0.025 = –1.96, H0

is rejected, and it is concluded that the advertisement
significantly influenced Internet provider preference.
A significantly greater number of users switched to
EarthLink from AOL than switched from EarthLink to
AOL. The p value, or size of this test, is approximated
to be 0.00158, a highly significant result, but more lib-
eral than the exact p value obtained from the binomial
distribution, 0.00222.

Discussion

TTeessttiinngg  ffoorr  MMaattcchheedd  oorr  
PPaaiirreedd  DDiiffffeerreenncceess  iinn  PPrrooppoorrttiioonnss

The McNemar test may also be used to compare
differences in the dichotomous categorical responses
from a set of matched or paired subjects when one
member of each pair is exposed to a particular treat-
ment condition and the other member to a different
treatment condition. The null hypothesis of equality of
marginal probability distributions

H0: pi. = p.i for i = 1, 2

is equivalent to testing the hypothesis of symmetry in
the 2 × 2 table of cross-classifications. If p1. = p.1, then
p11 + p12 = p11 + p21 so that p12 = p21 (i.e., symmetry).

UUssiinngg  DDiirreeccttiioonnaall  oorr  NNoonnddiirreeccttiioonnaall  TTeessttss

Aside from justification through ethical arguments,
biostatistician Joseph Fleiss proposed that a two-tailed
test be used in lieu of a one-tailed test “in the vast
majority of research undertakings . . . to guard against
the unexpected.” In the hypothetical application
presented here, if the advertisement copy is seen by the
user as effective, EarthLink would be expected to gain
market share at the expense of AOL. However, if the
advertisement is deemed unrealistic, the strategy may
backfire and EarthLink could lose market share to AOL.

FFoorrmmiinngg  MMccNNeemmaarr’’ss  
CCoonnffiiddeennccee  IInntteerrvvaall  EEssttiimmaattee

A (1 – α)% confidence interval estimate of the dif-
ferences in related population proportions (p.1 – p1.)
was given by Marascuilo and McSweeney as

where p̂.1, p̂1., p̂.2, p̂2. are the estimators of the respective
parameters, p.1, p1., p.2, p2..

To form a 95% confidence interval estimate of the
differences in related population proportions (p.1 – p1.),
representing increase in support for EarthLink over
AOL following an intense marketing campaign, the
estimates from the hypothetical data in Table 2 are
summarized as follows:

For these data

(0.46 − 0.42) 

± 1.96 

and 

0.016 ≤ (p.1 – p1.) ≤ .065

It can be concluded with 95% confidence that the
gain in support for EarthLink at the expense of AOL
as a result of the marketing campaign is between 1.6%
and 6.5%.

CCoommmmeennttss

It is essential to a good data analysis that the appro-
priate statistical procedure be applied to a specific
situation. When comparing differences in two propor-
tions based on related samples, the McNemar test

√
(0.46)(0.54)

500
+ (0.42)(0.58)

500
− 2[(0.40) − (0.46)(0.42)]

500

Before Marketing After Marketing
Campaign Campaign

EarthLink: p̂1. = 210
500

= 0.42 p̂.1 = 230
500

= 0.46

AOL: p̂2. = 290
500

= 0.58 p̂.2 = 270
500

= 0.54

(p̂.1 − p̂1.) ± Z1− α
2

√
p̂.1p̂.2

n′ + p̂1.p̂2.

n′ − 2(p̂11 − p̂.1p̂1.)

n′ ,

Z = M − 0.5n

0.5
√

n
= 10 − 20

0.5
√

40
= −3.16.



should always be used. Failure to do so will often lead
to erroneous conclusions. A researcher unaware of the
magnitude of the correlated proportions that are
accounted for in the standard error term shown in the
McNemar confidence interval formula may erro-
neously treat the paired responses as independent and
thus inflate the standard error, causing a loss of preci-
sion in the confidence interval estimate or a loss in
statistical power when testing inappropriately for
differences in the two proportions.

The pedagogical advantage to the confidence inter-
val approach to McNemar’s procedure over the signif-
icance testing approach derives from the fact that the
former makes use of all 500 repeated responses,
whereas the corresponding hypothesis test statistic is
conditioned on the reduced set that contains only
the brand-switching panelists off the main diagonal of
the cross-classifications table; the fact that the test sta-
tistic discards the brand-loyal panelists unaffected by
the advertisement is not palatable to some researchers.
On the other hand, the major advantage of the hypoth-
esis test procedure over the confidence interval is its
inherent simplicity, be it using the binomial probabil-
ity distribution for an exact test result or the quick and
easy normal approximation formula for an approxi-
mate test result.

Conclusions

The McNemar procedure is quick and easy to per-
form. The only assumption is that the outcome of each
response is categorized into a dichotomy. For studies
involving multichotomous categorical responses, an
extension developed by the statistician Albert Bowker
may be employed if the objective is to evaluate pat-
terns of symmetry in the changes in response.

When evaluating the worth of a statistical proce-
dure, famed statistician John Tukey defined “practical
power” as the product of statistical power and the util-
ity of the statistical technique. Based on this, the
McNemar test enjoys a high level of practical power.

—Mark L. Berenson and Nicole B. Koppel

See also Inferential Statistics; Nonparametric Statistics; Paired
Samples t Test (Dependent Samples t Test)
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MEAN

Of all the measures of central tendency, the mean is
the most often used and can be defined in a variety of
ways. It can be defined as the sum of all the scores in
a data set divided by the number of observations, and
can also be defined as the point about which the sum
of the deviations is equal to zero.

The formula for the computation of the mean is as
follows:

where

X
_

(also called “X bar”) is the mean value of the group of
scores or the mean;

Σ (sigma) is the summation sign, which directs you to
add together what follows it;

X is each individual score in the group of scores;

n is the size of the sample from which you are comput-
ing the mean.

X
--- = �X

n
,
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For example, the data set in Table 1 consists of 25
cases with two variables, Test Score 1 and Test Score 2.

To compute the mean, follow these steps:

1. List the entire set of values in one or
more columns such as you see in the
table. These are all the Xs.

2. Compute the sum or total of all the
values.

3. Divide the total or sum by the number
of values.

Applying the above formula to the
sample data results in the following two
means:

The mean is sometimes represented by the letter M
and is also called the typical, average, or most central
score.

More About the Mean

In the formula, a small n represents the sample size for
which the mean is being computed. A large N repre-
sents the population size.

• The sample mean is the measure of central tendency
that most accurately reflects the population mean.

• The mean is like the fulcrum on a seesaw. It’s the
centermost point where all the values on one side of
the mean are equal in weight to all the values on the
other side of the mean.

• The mean is very sensitive to extreme scores. An
extreme score can pull the mean in one direction or
another and make it less representative of the set of
scores and less useful as a measure of central tendency.

Analysis Using SPSS

Figure 1 is a simple output using SPSS’s descriptive
feature.

—Neil J. Salkind

See also Measures of Central Tendency; Median; Mode
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XTest1 = 162
25

= 6.48

XTest2 = 589
25

= 23.56
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Table 1 Sample Data for Computation of the Mean

Observation Test Score 1 Test Score 2

1 7 14

2 8 13

3 6 15

4 7 21

5 5 31

6 6 27

7 4 28

8 7 21

9 6 32

10 8 25

11 9 23

12 7 24

13 8 21

14 9 18

15 7 19

16 6 25

17 6 22

18 7 23

19 4 27

20 5 31

21 6 21

22 5 25

23 4 29

24 8 34

25 7 20

Figure 1 Results of SPSS Descriptives Analysis

N Minimum Maximum Mean Std. Deviation

TestScore1 25 4 9 6.48 1.447

TestScore2 25 13 34 23.56 5.553

Valid N (listwise) 25

Descriptives

Descriptive Statistics



MEASUREMENT

It seems reasonable to expect that within the context
of the Encyclopedia of Measurement and Statistics,
one of the first questions that a reader might ask him-
self or herself would be, “What is the relationship
between measurement and statistics?” Are these two
terms synonymous, or is a distinction implied?
Because the title of this encyclopedia uses both terms,
perhaps we should attempt to understand the distinc-
tion between these two concepts. And perhaps it is for
this reason that you have found yourself looking 
up the definition of measurement within this very
volume.

Historical Perspectives 
on Measurement

For some, measurement is simply a tool of statistics, a
necessary predecessor. We cannot perform statistical
analyses if we have not measured anything. Conse-
quently, some would say that measurement is simply
the handmaiden of statistics. They might be inclined
to take the point of view of S. S. Stevens, who defined
measurement as “the assignment of numerals to
objects or events according to a rule.” Stevens went on
to propose four scales of measurement: nominal, ordi-
nal, interval, and ratio.

Nominal scales are made up of variables with
levels that are qualitatively different from one another.
For example, consider the variable “ethnic back-
ground.” This variable could consist of any number of
levels, but for the purposes of this example, let us
consider just a few possibilities. A participant might
report being Asian, African American, Latino, or
Native American. Each of these different levels of the
ethnic background variable represents a qualitatively
different category. More specifically, each category is
mutually exclusive of the others.

A second scale of measurement is an ordinal scale.
Within the context of ordinal scales, the researcher is
typically interested in knowing something about the
rank order of the levels of the variable; however, there
is no implication that these levels differ by any fixed

amount. Perhaps the classic example of ordinal-level
measurement is found in the Olympic Games, where
athletes receiving medals are ranked from 1st to 3rd
place. It does not matter whether the gold medalist
beat the silver medalist to the finish line by a fraction
of a second or by 10 minutes. What matters is the
order in which the athletes reached the finish line. The
first one to cross the finish line receives a ranking of
1, and the second one across receives a ranking of 2.
The assumption within an ordinal scale of measure-
ment is that the fundamental quantity of interest is the
relative placement and not the absolute difference
between points on the scale. Another practical
example of an ordinal scale of measurement would be
the percentile ranking a student receives on an
examination.

A third scale of measurement proposed by Stevens
is the interval scale. Interval scales of measurement
have several useful properties. For example, the dif-
ference between any two points on the scale is always
the same. This is not always true within the context
of an ordinal scale (e.g., percentile rankings). It is
important to note, however, that interval scales do not
have a true zero point—that is, a zero does not neces-
sarily imply the complete absence of the construct of
interest. Consider, for example, the measurement of
intelligence. A person may receive a score of zero on
a particular intelligence test if he or she answered all
items incorrectly. Even if a person were to answer
incorrectly every item on the test and receive a score
of zero, this does not imply that the person has
absolutely no intelligence. His or her intelligence was
simply not captured by the items on that particular
test (e.g., consider a Western intelligence test that is
administered to participants from a very different
culture).

By contrast, consider an example from the fourth
scale of measurement, the ratio scale. Height is on a
ratio scale, which is to say, there is a true zero point.
Nothing exists that has a height of zero. A height
of zero implies a total lack of the construct (i.e.,
absolutely no height). Other examples of ratio scales
include temperature and weight. Besides retaining the
desirable properties of the interval-level scale in
which the difference between any points on the scale
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is the same regardless of the placement on the contin-
uum, the ratio-level scale has the desirable property of
having a meaningful zero point. Most inferential sta-
tistical techniques assume that variables are measured
at least on an interval-level scale, with the ideal being
a ratio scale.

Modern Perspectives 
on Measurement

Although Stevens’s definition of measurement and the
corresponding four scales of measurement he set out
continue to enjoy the limelight in the field of psychol-
ogy as the popular conception of measurement, these
ideas do not reign supreme. Modern theorists have
suggested that measurement is not simply an opera-
tion that is performed on data in order to prepare them
for statistical analysis. Rather, measurement and sta-
tistics themselves are fundamentally different con-
cepts with different assumptions and different
implications, as well as different rules about how best
to approach analysis and interpretation.

Within such an alternative framework, the funda-
mental distinction between measurement and statis-
tics is that in measurement, the researcher starts
out with a predefined theoretical model of how the
world looks. The researcher then collects some data
and performs statistical tests to see whether the data
fit the theoretical expectations of the theoretical
model. If the data do not fit the model, then there are
two options: (a) the data are bad, or (b) the theoret-
ical model needs to be revised. By contrast, within
the context of statistics, the researcher starts by
gathering data related to a construct of interest and
then attempts to use statistics to build a model that
fits, or best explains, the patterns observed in the
data. 

Notice that these are radically different approaches
to data analysis. Within the context of measurement,
the theoretical models are falsifiable, which is a
highly desirable property. Within the context of statis-
tics, data analytic tools are used to help develop a
theory about why the world (and the data) is (or are) a
certain way. Michell outlines many of the limitations
of psychological measurement in general when one

takes this latter atheoretical perspective. He argues
that it is often assumed without evaluation that the
measures used to develop and validate theories
have quantitative structure. The implication is that
when the measurement properties of the scores are
unknown, the appropriateness of the conclusions is
also unknown.

Unfortunately, the covert nature of the constructs
in educational and psychological research means
that it is very unlikely that a situation would exist
where quantitative measurement can be assessed
directly. In its stead, Michell advocates the work of
Luce and Tukey on additive conjoint measurement
as a means of assessing quantity indirectly. Conjoint
measurement is concerned with the way the order-
ing of a dependent variable varies with the joint
effect of two or more independent variables. For
example, assume that C (complexity) represents the
ordering of differences in task complexity, and that
I (intelligence) represents the ordering of differ-
ences in intelligence (note that only ordering is
assumed here). The dependent variable, P (perfor-
mance), represents performance on an appropriate
measure along which the effect of C and I is
assessed. Therefore, the ordering of C and I is nec-
essarily dependent upon the order of P. That is, their
orders are relative to their effect on P, and if appro-
priate conditions hold, the variables C and I are
quantified relative to their effects on P. Michell out-
lines the sufficient experimental conditions that
satisfy conjoint measurement and therefore presents
one approach for testing the presence of interval
measurement.

The strongest advocates of the additivity concept
of measurement within contemporary psychomet-
rics are associated with the field of Rasch measure-
ment. Wright, and Bond and Fox, have argued that
there are at least two properties of the Rasch model
central to fundamental measurement. The first is
that the Rasch model tests the core assumption of
conjoint additivity. The second property of the
Rasch model essential to pure measurement is spe-
cific objectivity. Specific objectivity occurs when
(a) estimates of the person’s trait level (e.g., ability)
are freed from the effects of the actual items
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attempted, and (b) estimates of item difficulty are
freed from the effects of the particular sample of
people who answered the items. Sample-free esti-
mates of test characteristics are important if one
wants to generalize interpretations of measurements
beyond the sample on which the test was developed.
Specific objectivity is a function of the unique
mathematical characteristics of the Rasch measure-
ment model and is not present in other item
response theory models.

In summary, Michell argues that fundamental
measurement requires the presence of an additive
structure in the data. Raw scores (i.e., numbers that
are assigned to objects according to rules) may or
may not represent interval (additive) levels of mea-
surement, and the assumption that they do must be
tested. Bond and Fox argue that most often, by
simply following the assignment of numbers to
objects according to rules—the dominant but naïve
view of measurement inculcated by Stevens—the
researcher is left with a score that is at best measured
at the ordinal level. Unfortunately, researchers almost
invariably then treat this score as if it represented
interval-level measurement (a typical requirement for
subsequent statistical analyses) without recognizing
that there is a way to empirically test the assumption
of additivity via the Rasch measurement model (or
using the procedures advocated by Michell).
Assuming that variables are measured at an interval
level and summing them to create a composite score
will potentially lead to invalid and misleading results.
That is, interpretation of the statistics applied to the
analysis of test scores, no matter how carefully con-
structed the test is, will be qualified to the extent that
the scores deviate from an interval scale measure.
Rather than simply assuming additivity, we are
obliged to test the limits of this assumption before
applying our statistics.

Conclusion

Measurement and statistics represent fundamentally
different approaches to analysis. Measurement is con-
cerned with examining the extent to which data fit a
model, and statistics is concerned with building a

model to fit the data. But the concepts of measurement
and statistics do have a symbiotic relationship. At
best, when fundamental measurement is achieved, the
researcher is able to develop a set of variables that
meets the strict assumptions of her or his preferred
theoretical model. When this kind of pure measure-
ment is achieved, the researcher is then in a position
to use various statistical techniques to analyze the data
and will be in a strong position to contribute valid,
replicable findings to the research community.

—Steven E. Stemler and Damian P. Birney

See also Reliability Theory; Validity Theory
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Applying Ideas on Statistics and Measurement

The following abstract is adapted from Essex, C.,
& Smythe, W. E. (1999). Between numbers and
notions: A critique of psychological measure-
ment. Theory & Psychology, 9(6), 739–767.

When certain mathematical machinery is
applied to ideas from psychology or education,
that machinery imposes certain requirements in
the relationship between numbers and notions.
The result can be a theory-neutral approach to
research, where commitments in response to the
options are made unknowingly, thus becoming
instead a theory-by-default endeavor. This paper
catalogs some of these mathematical choices
to help make theoretical commitments more
explicit.

MEASUREMENT ERROR

Measurement error can be described as the variability
in measurements of the same quantity on the same
item. These errors occur for a variety of reasons,
including inadequate survey design, sampling vari-
ability, inherent biological variation, and laboratory
error analysis. Measurement error is often classified
into two broad categories: random error and system-
atic error.

Random error refers to any random influence
on the measurement of a variable. Consider, for
example, a person whose weight is taken at a hos-
pital. If two different nurses see the patient, they
may not record the same weight, or if the same nurse
takes two measurements only minutes apart, different
eye positions may cause different scale readings.
There is no discernible pattern, so the measurement
may be higher or lower than the true value. Therefore,
the sum of all random error in a series of measure-
ments on the same variable should, in theory, equal
zero. Thus, random error does not strongly influence
the average value of the measurement. This type of
error is sometimes referred to as noise.

Systematic error causes measurements to be
consistently higher or lower. For example, suppose
that the scale used to weigh patients consistently

shows readings that are five pounds heavier than the
true value. This suggests that the scale should be
recalibrated. Systematic errors can be minimized or
completely eliminated by the use of careful planning
in an experiment. This type of error is commonly
referred to as bias.

The statistical models and methods for analyzing
data measured with error are called measurement
error models. A typical problem in statistics is to
determine the linear relationship between two
quantitative variables, say, X and Y, in order to use
X to explain or predict Y. In this case, we assume
that X cannot be observed, and a substitute variable
W is used. Often, we write W = X + U, where U is
the measurement error. One problem of interest is
how the linear relationship between W and Y differs
from the relationship between X and Y. It can be
shown that the best-fitting line that relates W to Y is
biased toward zero. Thus, using W as a substitute
restricts one’s ability to accurately assess the true
linear relationship between X and Y. Various tech-
niques have been developed to correct for such
problems.

It is difficult to completely avoid measurement
error; however, one can take several steps to reduce it.
First, make sure that any instruments used are tested
initially, monitored over time, and recalibrated as
needed. Second, if possible, use only one instrument
or set of instruments to do all of the measuring in
an experiment. Third, use statistical methods that
account for the presence of measurement error when
analyzing data. Finally, take repeated measurements
on the same variable.

—Kimberly Weems

See also Measurement; Reliability Theory
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MEASURES OF CENTRAL TENDENCY

Measures of central tendency are measures of the
location of the center or middle of a distribution.
However, the definition of “center” or “middle” is
deliberately left broad, such that the term central ten-
dency can refer to a wide variety of measures. The
three most common measures of central tendency are
the mode, the mean, and the median.

Mode

The mode for a collection of data values is the data
value that occurs most frequently (if there is one).
Suppose the average number of colds in a family of
six in a calendar year is as presented in Table 1.

Then, the mode is 1 because more family members
(i.e., n = 2) caught one cold than any other number of
colds. Thus, 1 is the most frequently occurring value.
If two values occur the same number of times and
more often than the others, then the data set is said to
be bimodal. The data set is multimodal if there are
more than two values that occur with the same great-
est frequency. The mode is applicable to qualitative as
well as quantitative data.

With continuous data, such as the time patients
spend waiting at a particular doctor’s office, which
can be measured to many decimals, the frequency of
each value is most commonly 1 because no two scores
will be identical. Consequently, for continuous data,
the mode typically is computed from a grouped fre-
quency distribution. The grouped frequency distribu-
tion in Table 2 shows a grouped frequency distribution
for the waiting times of 20 patients. Because the

interval with the highest frequency is 30 – <40
minutes, the mode is the middle of that interval (i.e.,
35 minutes).

Mean

AArriitthhmmeettiicc  MMeeaann

The arithmetic mean, or average, is the most
common measure of central tendency. Given a collec-
tion of data values, the mean of these data is simply
the arithmetic average of these data values. That
is, the mean is the sum of observations divided by 
the number of observations. If we use the following
notation:

x is the variable for which we have data (e.g, test scores),

n is the number of sample observations (sample size),

x1 is the first sample observation (first test score),

x2 is the second sample observation (second test score),

xn is the nth (last) sample observation (last test score),

then the sample mean of a sample x1, x2, . . . , xn is
denoted by

To find the average number of colds in the family
presented earlier, we compute

x--- = 5 + 4 + 1 + 2 + 1 + 3
6

= 16
6

= 2.67.

x--- = x1 + x2 + . . . + xn

n
= �x

n
.
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Table 1 Number of Colds in a Selected Family

Family Member Frequency

Father 5
Mother 4
First Son 1
Second Son 2
First Daughter 1
Second Daughter 3

Table 2 Grouped Frequency Distribution

Range Frequency

0 − <10 2
10 − <20 2
20 − <30 3
30 − <40 7
40 − <50 3
50 − <60 2
60 − <70 1



The arithmetic mean is not the only “mean” available.
Indeed, there is another kind of mean that is called the
geometric mean, which is explained below. However,
the arithmetic mean is by far the most commonly
used. Consequently, when the term mean is used, one
can assume that it is the arithmetic mean.

WWeeiigghhtteedd  MMeeaann

The weighted mean of a set of measurements x1,
x2, . . . , xn with relative weights w1, w2, . . . , wn is
given by

The weighted mean has many applications. In
effect, it is used to approximate the mean of data
grouped in a frequency distribution. In order to
approximate the mean waiting time of the 20 patients
presented above, the class mark is used to represent
the waiting time of each person falling within that
class. A weighted mean is then calculated, where the
xs are the class marks and the weights are the corre-
sponding class frequencies, as in Table 3.

Thus, the weighted mean is 33.5 minutes. The
mean has two important properties. First, the sum of
the deviations of all scores in the distribution from the
mean is zero. Second, the sum of squares of devia-
tions about the mean is smaller than the sum of

squares of deviations about any other value.
Consequently, the mean is the measure of central ten-
dency in the least squares sense inasmuch as the sum
of the squared deviations is a minimum.

TTrriimmeeaann

The trimean is another measure of central ten-
dency. It is computed by adding the 25th percentile
plus twice the 50th percentile plus the 75th percentile,
and then dividing by four. The 25th, 50th, and 75th
percentile of the cold data set is 1, 2.5, and 4.25,
respectively. Therefore, the trimean is computed as

The trimean value of 2.56 is close to the arithmetic
mean value of 2.67. The trimean has logical appeal as a
measure of central tendency. However, it is rarely used.

TTrriimmmmeedd  MMeeaann

The trimmed mean is computed by discarding a
certain percentage of the lowest and the highest scores
in a ranked (i.e., ordered) set of data and then comput-
ing the mean of the remaining scores. For example, a
mean trimmed 50% is computed by discarding the
highest and lowest 25% of the scores and taking the
mean of the remaining scores. The mean trimmed 0%
provides the arithmetic mean. Trimmed means are
used in certain sporting events (e.g., ice skating, gym-
nastics) to judge competitors’ levels of performance
and to prevent the effects of extreme ratings possibly
caused by biased judges. Before scores are discarded,
the analyst must first rank the data. For the cold data,
the mean trimmed 33% would result in the highest
value (i.e., 5) and lowest value (i.e., 1) being dis-
carded, resulting in the following trimmed mean:

GGeeoommeettrriicc  MMeeaann

The geometric mean of n numbers is obtained by
multiplying all of them together, and then taking the

x--- = 1 + 2 + 3 + 4
4

= 10
4

= 2.5.

1 + (2 × 2.5) + 4.25
4

= 2.56.

x--- = �xw
�w

= 670
20

= 33.5

x--- = �xw
�w

.
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Table 3 Computation of Weighted Mean

Waiting Time Class Mark (x) Frequency (w) x·w

0 – <10 5 2 10
10 – <20 15 2 30
20 – <30 25 3 75
30 – <40 35 7 245
40 – <50 45 3 135
50 – <60 55 2 110
60 – <70 65 1 65



nth root of them. In other words, the geometric mean
is the nth root of the product of the n scores in the
dataset. Thus, the geometric mean of the cold data—
5, 4, 1, 2, 1, and 3—is the sixth root of 5 × 4 × 1 × 2
× 1 × 3, which is the sixth root of 120 (because there
are six numbers), which equals 2.22. The formula can
be written as

Geometric mean = (ΠX)1/n,

where ΠX means to take the product of all the values
of X, and the superscript value (i.e., 1/n) indicates
the nth root. The geometric mean can also be com-
puted by

1. computing the logarithm of each number,

2. computing the arithmetic mean of the logarithms,

3. raising the base used to take the logarithms to the
arithmetic mean.

Thus, if the natural logarithm (i.e., Ln) is used,
then raising this base would necessitate use of the
exponent. For the cold data, the computation would be
as in Table 4.

The base of natural logarithms is 2.718. The
expression EXP[0.7979] means that 2.718 is raised to
the 0.7979th power. Ln(X) is the natural log of X.

An identical result can be obtained by using logs
base 10 as shown in Table 5.

If any one of the scores is zero, then the geometric
mean is zero. If any scores are negative, then the
geometric mean is meaningless. The geometric mean

is an appropriate measure to use for averaging rates.
However, it is one of the least used measures of
central tendency.

HHaarrmmoonniicc  MMeeaann

The harmonic mean is the mean of n numbers
expressed as the reciprocal of the arithmetic mean of
the reciprocals of the numbers. The harmonic mean
typically is used to take the mean of sample sizes. For
the cold data, the harmonic mean is defined as

where i is the number of scores from which the
harmonic mean is computed. For the cold data, the
harmonic mean is

This is less than the arithmetic mean of 2.67, the
trimean of 2.56, and the geometric mean of 2.22.

Median

The median is the midpoint of a distribution such that
the same number of scores is above the median as
below it. In other words, the median is the 50th
percentile. More specifically, the median for a
collection of data values is the number that is exactly

x---h = 6
1
5 + 1

4 + 1
1 + 1

2 + 1
1 + 1

3

= 1.83.

x---h = i
1

n1
+ 1

n2
+ . . . + 1

ni

,
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Table 4 Computation of Geometric Mean Using
Natural Logarithms

Family Members Frequency (x) Ln(X)

Father 5 1.6094
Mother 4 1.3863
First Son 1 0.0000
Second Son 2 0.6931
First Daughter 1 0.0000
Second Daughter 3 1.0986

Arithmetic mean 0.7979
Exponential EXP[0.7979] = 2.22
Geometric mean 2.22

Table 5 Computation of Geometric Mean Using Base
10 Logarithms

Family Members Frequency (x) Ln(X)

Father 5 0.6990
Mother 4 0.6021
First Son 1 0.0000
Second Son 2 0.3010
First Daughter 1 0.0000
Second Daughter 3 0.4771

Arithmetic mean 0.3465
Exponential 100.3465 = 2.22
Geometric mean 2.22



in the middle position of the list when the data are
ranked (i.e., arranged in increasing order of magni-
tude). The formula for the median (Md) is

where

L is the lower limit of the interval within which the
median lies,

N is the number of cases in the distribution,

cfb is the cumulative frequency in all intervals below the
interval containing the median,

fw is the frequency of cases within the interval contain-
ing the median,

i is the interval size.

In order to compute the median for the cold data,
the first step is to rank the data:

1, 1, 2, 3, 4, 5.

Because there are six numbers (i.e., an even
number of data points), there are two middle numbers,
namely, 2 and 3. Therefore, L = 1.5 (i.e., the lowest of
the two middle numbers – 0.5). Also, N = 6 (number
of observations), and cfb = 2 (i.e., the number of
observations that lie below the lower limit of 1.5).
Also, fw = 2 (i.e., the number of observations that are
equal to the middle numbers) because the two middle
numbers (i.e., 2 and 3) do not appear anywhere else in
the data set. Finally, i = 2 (i.e., the highest middle
number – the lowest middle number + 1 = 3 – 2 + 1 = 2).
(Please note that i = 1 if the middle numbers are all the
same.) Thus, the median is

Thus, the median cold is 2.5. When the number of
observations is relatively small and the data are not
grouped in class intervals—as is the case with the cold
data—the median can be computed using the follow-
ing steps:

1. Order the n observations from smallest to largest,
including any repeated observations, so that every
observation appears in the list.

2. Determine the location of the sample median, which
is given by (n + 1)/2. Thus, for example, for a sam-
ple size of 5 (i.e., n = 5), (n + 1)/2 = 3, and the
median is represented by the third number in the
series. For a sample size of 6, (n + 1)/2 = 3.5, and 
the median can be located somewhere between the
third and fourth number in the series.

3. If the number of scores is odd, the median is the mid-
dle score. Consider the following ranked distribution
of scores: 1, 3, 3, 5, 6, 7, 8, 8, 9. Because there are
nine scores (i.e., N = 9), the median is 6.

4. If the number of scores is even, the median is the
average of the two middle values. Thus, because the
cold data have an even number of scores, the two
middle numbers are 2 and 3, and the median is the
average of 2 and 3 (i.e., the average of the third and
fourth observations), which is 2.5.

It can be seen that the simpler method of calculat-
ing the median yielded exactly the same number as
did using the more general formula. However, for
relatively large sample sizes, the simpler formula can
distort the true value of the median represented by the
more general formula.

Computer Applications

When using SPSS, there are a few ways to compute
measures of central tendency. The Frequencies com-
mand can be used to compute the mean, median, and
mode. The Descriptives command can be used to
compute the mean. The Explore command can be
used to compute the median, mean, and trimmed
mean. The Means command can be used to compute
the median, mean, harmonic mean, and geometric
mean. Finally, the Reports command can be used to
compute the mean and median.

The SPSS output for the Frequencies command
pertaining to the cold data set is presented in Figure 1.

The SPSS output for the Descriptives command
pertaining to the cold data set is in Figure 2.

The SPSS output for the Explore command
pertaining to the cold data set is in Figure 3.

Md = 1.5 +
(

6(0.50) − 2
2

)

(2) = 2.5.

Md = L +
(

N(0.50) − cfb

fw

)

(i)
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The SPSS output for the Means command pertain-
ing to the cold data set is in Figure 4.

The SPSS output for the Reports command
pertaining to the cold data set is in Figure 5.

Comparisons of Measures 
of Central Tendency

To some extent, selection of the most appropriate
measure of central tendency is dependent on the scale
of measurement of the variable. Specifically, if the

data are nominal, then only the mode is appropriate. If
the data are ordinal, either the mode or the median
may be appropriate. If the data are interval or ratio, the
mode, median, or mean may be appropriate.

For distributions that are symmetrical and uni-
modal, the three major measures of central tendency
(i.e., mean, median, mode) are all the same. When
the distribution is symmetrical and bimodal, the
mean and the median coincide, but two modes are
present. The less symmetrical the distribution, the
greater the differential between the mean, the
median, and the mode. For skewed distributions,
they can differ markedly. Specifically, in positively
skewed distributions, the mean is higher than the
median, whereas in negatively skewed distributions,
the mean is lower than the median. Thus, comparing
the mean and median can provide useful informa-
tion about the level of skewness inherent in the
distribution.

Of the eight measures of central ten-
dency discussed, the mean is by far the
most widely used because it takes every
score into account, is the most efficient
measure of central tendency for approx-
imately symmetric (normal) distribu-
tions, and uses a simple formula. Also,
because the mean requires that the dif-
ferences between the various levels of
the categories on any part of the distrib-
ution represent equal differences in the
characteristic or trait measured (i.e.,
equal unit or interval/ratio scale), it can
be manipulated mathematically in ways
not appropriate to the median and
mode. Thus, the mean is mathemati-
cally appealing, making it possible for
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COLDS

N Valid 6
Missing 0

Mean 2.67
Median 2.50
Mode 1

Figure 1 Measures of Central Tendency Using
Frequencies Command

N Mean

COLDS 6 2.67
Valid N (listwise) 6

Figure 2 Measures of Central Tendency Using
Descriptives Command

Statistic Std. Error

COLDS Mean 2.67 .67
95% Confindence Lower Bound .95
Interval for Mean Upper Bound

4.38

5% Trimmed Mean 2.63
Median 2.50
Variance 2.667
Std. Deviation 1.63
Minimum 1
Maximum 5
Range 4
Interquartile Range 3.25
Skewness .383 .845
Kurtosis –1.481 1.741

Figure 3 Measures of Central Tendency Using Explore Command

Harmonic Geometric
SAMPLE Mean Median Mean Mean

1 2.67 2.50 1.83 2.22
Total 2.67 2.50 1.83 2.22

Figure 4 Measures of Central Tendency Using
Means Command

COLDS



researchers to develop statistical procedures for
drawing inferences about means. However, the mean
does have several disadvantages. In particular, the
mean is sensitive to skewed data. It is also sensitive to
outliers. Thus, the mean often is misleading in highly
skewed distributions and is less efficient than other
measures of central tendency when extreme scores
are possible.

The trimean is almost as resistant to extreme scores
as is the median, and it is less subject to sampling
fluctuations than the arithmetic mean in extremely
skewed distributions. However, it is less efficient than
the mean for normal distributions. The trimmed mean,
which generally falls between the mean and the
median, is less susceptible to the effects of extreme
scores than the arithmetic mean and, in turn, is less
susceptible to sampling fluctuation than the mean for
extremely skewed distributions. However, like the
trimean, the trimmed mean is less efficient than the
mean for normal distributions. The geometric mean is
less affected by extreme values than the arithmetic
mean and is useful as a measure of central tendency
for some positively skewed distributions. However,
the geometric mean is rarely used because (a) it equals
zero if any one of the scores is zero, regardless of how
large the remaining scores are; (b) it is meaningless if
any scores are negative; and (c) it is more difficult
to compute than the arithmetic mean. The weighted
mean does not use any of the actual scores in the
distribution.

The median is useful because of its ease of interpre-
tation and because it is more efficient than the mean in
highly skewed distributions. That is, the median is not
sensitive to skewed data. However, it does not take into
account every score, relying only on the middle
value(s) in an ordered set of data. Also, the median

generally is less efficient than the mean,
the trimean, and the trimmed mean. The
mode can be informative, is easy to
interpret, and is the only measure of cen-
tral tendency that can be used with
nominal data; however, it should almost
never be used as the only measure of
central tendency because it depends only
on the most frequent observation and is

highly susceptible to sampling fluctuations. Another
disadvantage of the mode is that many distributions
have more than one mode, thereby complicating inter-
pretation. Also, the mode does not always exist.

—Anthony J. Onwuegbuzie,
Larry Daniel, and Nancy L. Leech

See also Mean; Median; Mode

Further Reading

Leech, N. L., Barrett, K. C., & Morgan, G. A. (2005). SPSS for
intermediate statistics: Use and interpretation (2nd ed.).
Mahwah, NJ: Erlbaum.

Morgan, G. A., Leech, N. L., Gloeckner, G. W., & Barrett, K. C.
(2004). SPSS for basic statistics: Use and interpretation
(2nd ed.). Mahwah, NJ: Erlbaum.

Means and medians graphical comparison applets: http://www
.ruf.rice.edu/~lane/stat_sim/descriptive/ and http://standards
.nctm.org/document/eexamples/chap6/6.6/

MEDIAN

The median is a measure of central tendency and is the
point in a group of values with an equal number of
values above and below that point.

The computation of the median is as follows.

• For an odd number of values, the position of the
median is given by (N + 1)/2. If we have 15 cases, the
median is the 8th case.

• For an even number of cases (N + 1)/2 does not give
a whole number. In this case, the median is the (arith-
metic) mean of the two values immediately above
and below.
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Harmonic Geometric Grouped
N Mean Median Mean Mean Median

6 2.67 2.50 1.83 2.22 2.50



For example, the data set in Table 1
consists of 11 test scores.

First of all, the values need to be
sorted from smallest to largest value: 4,
5, 6, 6, 6, 7, 7, 7, 8, 8, 9. Then, the mid-
point needs to be found that splits the
sample into two halves. In this example
we have an odd number of participants,
so we will have a midpoint that repre-
sents the point on which an equal
number of values on each side is present. To the left of
the midpoint, the values 4, 5, 6, 6, and 6 are present,
and to the right, the values 7, 7, 8, 8, and 9. In this
example, the midpoint of the row of numbers has a
value of 7, so the median is 7.

Consider also a sample of an even number of par-
ticipants who have achieved the test scores 4, 5, 6, 6,
6, 6, 7, 7, 7, 8, 8, and 9. The midpoint has to be com-
puted by finding the two values in the middle—here,
6 and 7—and the mean of the two will be the median,
so the median is 6.5.

More About the Median

• In a group with an odd number of values, the median
is a specific value (an identifiable individual) in the
group. It is not computed by directly taking the other
values of the group into account. In a group with an
even number of values, the mean of the two middle
values is taken. Other than these two, no other values
enter the equation.

• The median is a midpoint that splits a group into two
halves equal in their number of values but not equal
in their actual values.

• The median is not sensitive to extreme scores. The
magnitude of the other values in the group and their
relative magnitude in comparison to the median are
not taken into account. In a group with the values 1,
2, and 99, 2 is the median. An extreme score can pull
the mean in one or another direction and make it less
representative of the set of scores and less useful as a
measure of central tendency.

• The median can be a more useful descriptor in a
skewed distribution than the mean.

Analysis Using SPSS

Figure 1 shows a simple output using SPSS’s descrip-
tive feature.

—Susanne Hempel

See also Average; Estimates of the Population Mean; Mean;
Measures of Central Tendency; Mode

Further Reading

Salkind, N. J. (2004). Statistics for people who (think they)
hate statistics. Thousand Oaks, CA: Sage.

MEDIAN TEST

Many statistical procedures test for differences in
location parameter, where the measure of location
pertains to the median (θ), or the 50th percentile.
Hypotheses can be tested about a single or multiple
medians.
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Table 1 Sample Data Set

Participant Test Score

1 7
2 8
3 6
4 7
5 5
6 6
7 4
8 7
9 6

10 8
11 9

N Valid 12
Missing 0

Median 6.50

Figure 1 SPSS Output

N Valid 11
Missing 0

Median 7.00

Frequencies Frequencies

Statistics Statistics

testscore testscore



kk == 1 Median

Testing hypotheses about a single sample median pre-
sents two problems. First, and perhaps more debilitat-
ing, the sample median is not the best unbiased
estimate of the population median. (Therefore, the
question arises as to the efficacy of testing this
hypothesis.)

The Harrell-Davis (θHD) is one statistic, among
many, that is a better estimate of the population
median than the sample median. The θHD is computed
by drawing N ordered deviates from the beta distribu-
tion. Sort the original scores (xi), and multiply the first
score by the first beta deviate (b1), the second score by
the second beta deviate, and so forth. The Harrell-
Davis estimator of the population median is

(1)

The second problem is that the sampling distribution
is intractable. Thus, it is only possible to estimate the
standard error of θ. One suitable estimate of the stan-
dard error is the Maritz-Jarrett, s, which in turn may be
based on the Harrell-Davis estimator of the median.

Thus, for k = 1, the null hypothesis is H0: θ = θ0,
where θ is the sample median and θ0 is some hypoth-
esized population value. This is tested against the
alternative H1: θ ≠ θ0. The test is

(2)

where s is the Maritz-Jarrett estimate. Wilcox
provided algorithms and computer code to automate
computing the Maritz-Jarrett estimate. The signifi-
cance of Z for a specified α level is determined by a
table of the standard normal distribution.

kk >> 1 Medians

A classical test for a difference in two or more (k ≥ 2)
independent medians is due to Mood. The two-sample
case is analogous to Fisher’s exact test and the k > 2 is
based on the chi-square, and they share the assump-
tions of the analogous tests.

Consider the case of k = 3. The null hypothesis
H0: θA = θB = θC, which is tested against the alternative
hypothesis Ha: at least one θ is different from the rest.
The grand median is computed. The number of scores
above and below the median is tabulated. The expected
value for each group is half the sample size for that
group. The chi-square test is computed, and significance
is determined by comparing the obtained chi-square
statistic with the critical value based on df = k – 1.

EExxaammppllee

Three groups of test scores are presented in Table 1.
The grand median is 65.5 (Fay has provided advice
concerning values tied with the grand median).

Count the number of scores greater than 65.5 and
the number of scores less than or equal to 65.5 for
each group. The frequencies are displayed in Table 1.

Z = θ − θo

s
,

θHD =
N∑

i=1

bixi.
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Table 1 Test Scores for Groups 1, 2, and 3

Group 1 Group 2 Group 3

63 69 35
99 73 38
89 47 61
44 33 84
88 63 74
70 68 26
66 70 49
84 53 89
93 83 68
66 73 66
96 40 40
37 58 36
46 82 32
78 48 73
95 25 50
49 92 52
61 64 30
97 42 70
95 71 39
75 75 69
65 72 37
70 34 62
44 28 87
67 64 44
48 76 89
54 31 84



The expected value for each cell is 13. This was
found by dividing the sample size for each group
(n1 = n2 = n3 = 26). The values for each of the six cells
are calculated based on

(3)

where O is the observed value, E is the expected
value, i is the row, j is the column, and k is the number
of groups. The 16 participants in Group 1 had a score
above 65.5. Thus,

χ2 = the sum for the six cells, as indicated in Table 3.
χ2 is 2.154, and df = (k – 1) = 3 – 1 = 2. The critical

value for χ2 is 5.991. Because 2.154 < 5.991, the deci-
sion is to fail to reject the null hypothesis that there is
no difference in the medians of the three groups.

CCaallccuullaattiioonn  UUssiinngg  SSPPSSSS

The data must be entered into one variable—in this
case, “scores”—using a grouping variable. Table 4
shows how to use the grouping variable for the first
few data points.

To conduct Mood’s test (called the median test in
SPSS), select the following: Analyze | Nonparametric

Tests | K Independent Samples. Then, enter the depen-
dent variable into the area designated as “Test Variable
List.” Enter the grouping variable into the area
“Grouping Variable.” Click the button “Define Range”
and enter the minimum and maximum numbers for
the grouping variables. In the rectangle titled “Test
Type,” select the median test using the checkbox to
the left. The SPSS output for the median test includes
the frequency table and test statistic, as indicated in
Tables 5 and 6.

—Gail F. Fahoome and Shlomo S. Sawilowsky

(16 − 13)2

13
= (3)2

13
= 9

13
= 0.692.

χ 2 =
2∑

i=1

k∑

j=1

(Oij − Eij)
2

Eij
,
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Table 2 Frequencies Above and Below the Grand
Median

Group 1 Group 2 Group 3

>65.5 16 12 11
<65.5 10 14 15

Table 3 Results of the Calculations for Each Cell

Group 1 Group 2 Group 3 Total

>65.5 0.692 0.077 0.308 1.077
≤65.5 0.692 0.077 0.308 1.077
Total 1.385 0.154 0.615 2.154

Table 4 Using a Grouping Variable in SPSS

Group Score

1 67
1 48
1 54
2 69
2 73
2 47
3 35
3 38
3 61

Table 5 Frequencies

group

1 2 3

score > Median 16 12 11
<= Median 10 14 15

Table 6 Test Statistics

Score

N 78
Median 65.50

Chi-Square 2.154a

df 2
Asymp. Sig. .341

a. 0 cells (.0%) have expected frequencies less than 5. The
minimum expected cell frequency is 13.0.



See also Estimates of the Population Median; Inferential
Statistics; Nonparametric Statistics
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META-ANALYSIS

Meta-analysis is a method of analysis that allows for
the statistical aggregation of data from individual
empirical findings. This is conducted by transform-
ing results from a pool of studies into one common
metric, the effect size (ES). The earliest form of
research synthesis was performed as early as 1904
by biometrician Karl Pearson in order to review the
empirical basis for the routine use of the typhoid
vaccine in the British army for soldiers at risk for the
disease. Pearson estimated inoculation effectiveness
by averaging correlations reported in five studies
about the relationship between inoculation status and
typhoid immunity as well as those reported in six
studies about the relationship between inoculation
status and mortality among those who suffered from
the condition. The modern usage of this statistical
procedure and the coining of the term meta-analysis
began with the work of Gene Glass in 1976.
Applications of the method by individuals such as
Mary L. Smith and Gene Glass to psychotherapy,
John E. Hunter and Frank L. Schmidt to validity of
employment tests, and Robert Rosenthal and Donald
B. Rubin to interpersonal expectancy effects high-
lighted the utility of the meta-analysis in the social
sciences. In 1985, Larry V. Hedges and Ingram
Olkin, with the publication of Statistical Methods for

Meta-Analysis, helped to introduce the method as a
statistical specialty.

Stages of Research 
Synthesis in a Meta-Analysis

Conducting a systematic review involves the aggrega-
tion and comparison of findings across empirical
research studies presenting quantitative data.
Although this continues to be an important issue of
debate in the field of meta-analysis, many experts
agree that a useful research synthesis should be based
on findings from high-quality studies with method-
ological rigor. Relaxed inclusion standards for studies
in a meta-analysis may lead to a problem that Hans J.
Eysenck in 1978 labeled as “garbage in, garbage out.”
Several technical objections have been noted by crit-
ics of meta-analysis such as John S. Searles: (a) The
meta-analysis approach mixes apples and oranges
in combining the findings of studies with varying
methodological quality; (b) the meta-analysis approach
aggregates the findings of poor studies, thus setting
low standards of judgment for quality of outcome
study; (c) the meta-analysis approach is problematic
in light of shortcomings and flaws in the published lit-
erature (e.g., selective reporting, bias, insufficient
reporting of primary data); (d) the meta-analysis
approach has used “lumpy,” nonindependent data
(i.e., multiple uses of the same data in several studies);
and (e) the meta-analysis approach has given equal
weighting to all studies regardless of methodological
rigor.

According to Harris Cooper and Larry V. Hedges,
a methodologically robust meta-analysis needs to be
completed in five organized stages. The first stage of
research synthesis in meta-analysis is to formulate
an appropriate research hypothesis. For instance, one
may question whether a specific independent variable
causes systematic changes in specific dependent or
outcome variables. Other issues of interest may be the
generalizability or the external validity of findings from
specific populations, settings, and procedures to a
larger set of studies. Answers to such research questions
can then advance the theoretical understanding of a
specific phenomenon in a meaningful manner.
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The second stage of research synthesis focuses on
identification of studies and subsequent data collec-
tion from these primary sources. Clear eligibility
guidelines in terms of inclusion and exclusion criteria
will be helpful in identifying appropriate studies.
Several methods may be used to locate and retrieve
empirical reports. One strategy is to perform keyword
searches of selected computerized bibliographic data-
bases such as Psychological Abstracts (PsycINFO or
PsychLit), Sociological Abstracts, ERIC (Educational
Resources Information Center), SSCI (Social Science
Citation Index), or MEDLINE. Computer searches,
however, have been criticized for their unreliability
and inaccuracy in locating relevant studies in meta-
analyses. Additional methods may be employed for
retrieval of appropriate studies: (a) manual search of
journals that routinely publish research relevant to the
topic selected; and (b) usage of the ancestry approach
(i.e., “footnote chasing”) where the reference sections
of relevant literature are reviewed for eligible studies.
In order to effectively minimize publication bias or
the “file drawer” effect (i.e., low publication prob-
ability for nonsignificant research findings), a com-
prehensive search of fugitive literature may also be
conducted. For instance, one may search for master’s
theses and dissertations by using the Dissertation
Abstracts International (ProQuest Digital Disserta-
tions) database. Obvious advantages in using this
method are the availability of theses and dissertations
as well as their detailed description of methodology
and results.

Data collection, through the process of coding, is
one of the most demanding tasks involved in the
conduct of a meta-analysis. In order to extract
information from each eligible study, a coding
manual may be developed by the meta-analyst(s). A
coding protocol is conceptualized as consisting of
two major parts, with the first part designed to col-
lect data about the factors that may potentially
influence the nature and value of the overall effect
size (i.e., study descriptors) and the second part
designed to collect information about specific study
findings (i.e., effect size values for dependent vari-
ables). Because each study is expected to report
varying numbers and forms of effect size statistics,

the coding form may be constructed in such a way
as to offer the coder the flexibility of recording sta-
tistical information in a number of different for-
mats. Reliability checks of the coding can then be
performed during the continuous training of study
coders. In cases of meta-analyses performed by a
single analyst, Mark W. Lipsey and David B.
Wilson recommend that coder reliability could be
verified by selecting a subsample of coded studies
and coding them again after sufficient time has
passed since the first coding. Coder reliability (i.e.,
agreement rate) can then be obtained by dividing
the number of observations agreed upon by the total
number of observations, as suggested by Robert G.
Orwin.

The third stage of research synthesis involves a
careful evaluation of the data collected. A compre-
hensive review of these evaluation strategies is
beyond the purpose of this entry, and the reader
should refer to the reading list provided. The fourth
stage is analysis and interpretation (see section
below on statistical methods of effect size estima-
tion). The fifth stage is the public presentation of the
findings.

Statistical Methods 
of Effect Size Estimation

Two types of effect sizes have been described by
Robert Rosenthal: the r family and the d family. The
r family consists of the Pearson product moment cor-
relation, whereas the d family includes Hedges’s g,
Glass’s ∆, and Cohen’s d. An effect size for each
study is calculated, and the mean effect size is then
obtained from averaging all effect sizes calculated for
each study. A widely used convention of evaluating
the magnitude of an effect size is based on Jacob
Cohen’s d estimates of small, moderate, and large
effect sizes as 0.20, 0.50, and 0.80, respectively. Once
effect sizes are calculated from a number of different
studies, then particular attention is given to detecting
any variability across these findings. In cases of
observed variability, specific moderators that might
have had an impact on effect sizes are consequently
examined.
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Effect sizes may be calculated based on the stan-
dardized mean difference index (ESsm) or Cohen’s d,
which is used to synthesize data from studies that con-
trast two independent groups on measures that have a
continuous distribution. A formula for ESsm is the
difference between the posttreatment group means
divided by the posttreatment pooled standard deviation,

(1)

where X
_

G1 is the posttreatment Group 1 mean, X
_

G2 is
the posttreatment Group 2 mean, and Spooled is the post-
treatment pooled standard deviation, which is esti-
mated by Equation 2 presented below:

(2)

where n1 and n2 are posttreatment sample sizes (i.e.,
completers) for Group 1 and Group 2, respectively;
standard deviations for Groups 1 and 2 are represented
by s1 and s2.

Cohen’s d is a biased estimate of the population d
effect size and needs to be corrected. In particular, for
this effect size index, the upward bias may become
non-negligible when sample sizes are less than about
20. Larry V. Hedges’s and Ingram Olkin’s d, which is
an unbiased estimate, may be calculated by the inves-
tigator for correcting this bias.

Methods of Identifying 
and Correcting Publication Bias

Publication bias can have rather deleterious effects on
the validity of a meta-analysis and consequent infer-
ences drawn from its results. According to Colin
Begg, publication bias occurs when a study is selected
to be published because it has estimated the largest
effect size. This, however, provides an overly opti-
mistic estimate of the “true (mean) effect,” whose
magnitude is a function of the sample size of the study
as well as the number of studies from which the effect
size is estimated. Robert Rosenthal describes this

failure of journal editors to publish or the failure of
original investigators to report their nonsignificant
findings as a censorship of effect size estimates.
Unpublished nonsignificant results are placed in the
“file drawers” of the researchers.

A possible strategy to detect potential publication
bias is to obtain a “funnel plot.” A funnel plot is a scat-
terplot of sample size versus estimated effect size
for all included studies in a meta-analysis. If the plot
obtained does not resemble the shape of a funnel, then
the possibility of a publication bias is considered
highly likely. Some meta-analysts comment that fun-
nel plots may be difficult to interpret. Another method
of detecting publication bias involves an examination
of the correlation between sample size and effect
size. A Fail-Safe-N (FSN) may also be calculated.
According to Robert Rosenthal, this approach calcu-
lates the number of studies with an effect size of zero
needed to reduce the mean obtained effect size to the
point of nonsignificance.

Ruling Out Other Explanations 
for Significant Effect Sizes

Joseph A. Durlak has recommended that prior to mak-
ing interpretations about effect sizes, other explana-
tions that may have accounted for positive effects
should be analyzed. Four areas of investigation have
been outlined: (a) sampling error, (b) study artifacts,
(c) methodological features, and (d) confounded study
features.

Tests of homogeneity are often carried out in order
to determine whether effect sizes are actually attribut-
able to treatment effects or sampling error. In other
words, in meta-analysis, it is necessary to find whether
the various combined effect sizes all estimate the
same population effect size. A homogeneous distribu-
tion suggests that a given effect size differs from the
population effect size only by sampling error. In cases
where a significant heterogeneity is obtained for the
effect sizes, an analysis of preselected moderating
variables is conducted in order to account for the
observed variability in effect sizes.

Although corrections for study “artifacts” (imper-
fections) may be carried out, some meta-analytic

Spooled =
√

(n1 − 1)s2
1 + (n2 − 1)s2

2

n1 + n2 − 2
,

ESsm = X
---

G1 − X
---

G2

Spooled
,
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experts have argued that study imperfections should
not be corrected in order to estimate what would have
been found in a perfect study because these proce-
dures are at odds with the true purpose of a meta-
analysis, which is to reflect study findings accurately
in a given field of research.

—Marjan Ghahramanlou-Holloway

See also Effect Size
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METRIC MULTIDIMENSIONAL SCALING

Metric multidimensional scaling (MDS) transforms a
distance matrix into a set of coordinates such that the
(Euclidean) distances derived from these coordinates
approximate as well as possible the original distances.
The basic idea of MDS is to transform the distance
matrix into a cross-product matrix and then to find its
eigendecomposition, which gives a principal compo-
nent analysis (PCA). Like PCA, MDS can be used
with supplementary or illustrative elements that are
projected onto the dimensions after they have been
computed.

An Example

The example is derived from O’Toole, Jiang, Abdi,
and Haxby, who used a combination of principal
component analysis and neural networks to analyze
brain imaging data. In this study, 6 subjects were
scanned using fMRI when they were watching pic-
tures from 8 categories (faces, houses, cats, chairs,
shoes, scissors, bottles, and scrambled images). The
authors computed for each subject a distance matrix
corresponding to how well they could predict the
type of pictures that the subject was watching from
his or her brain scans. The distance used was d′,
which expresses the discriminability between
categories.

O’Toole et al. give two distance matrices. The first
one is the average distance matrix computed from the
brain scans of all 6 subjects. The authors also give a
distance matrix derived directly from the pictures
watched by the subjects. The authors computed this
distance matrix with the same algorithm that they
used for the brain scans; they just substituted images
for brain scans.

We will use these two matrices to review the
basics of multidimensional scaling: namely, how to
transform a distance matrix into a cross-product
matrix and how to project a set of supplementary
observations onto the space obtained by the original
analysis.

Multidimensional Scaling: 
Eigenanalysis of a Distance Matrix

PCA is obtained by performing the eigendecomposi-
tion of a matrix. This matrix can be a correlation
matrix (i.e., the variables to be analyzed are centered
and normalized), a covariance matrix (i.e., the
variables are centered but not normalized), or a
cross-product matrix (i.e., the variables are neither
centered nor normalized). A distance matrix cannot
be analyzed directly using the eigendecomposition
(because distance matrices are not positive semi-
definite matrices), but it can be transformed into an
equivalent cross-product matrix, which can then be
analyzed.
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TTrraannssffoorrmmiinngg  aa  DDiissttaannccee  
MMaattrriixx  IInnttoo  aa  CCrroossss--PPrroodduucctt  MMaattrriixx

In order to transform a distance matrix into a cross-
product matrix, we start from the observation that the
scalar product between two vectors can be transformed
easily into a distance (the scalar product between
vectors corresponds to a cross-product matrix). Let us
start with some definitions. Suppose that a and b are
two vectors with I elements. The Euclidean distance
between these two vectors is computed as

d2(a,b) = (a – b)T(a – b). (1)

This distance can be rewritten to isolate the scalar
product between vectors a and b:

d2(a,b) = (a – b)T(a – b) 
= aTa + bTb – 2 × ( aTb),

(2)

where aTb is the scalar product between a and b.
If the data are stored into an I × J data matrix

denoted X (where I observations are described by J
variables), the between-observations cross-product
matrix is then obtained as

S
I × I

= X
I × J

X
J × I

T. (3)

A distance matrix can be computed directly from
the cross-product matrix as

D
I × I

= s
I ×1

1
×I

T + 1
I ×1

s
×I

T – 2S
I × I

. (4)

(Note that the elements of D gives the squared
Euclidean distance between rows of S.)

This equation shows that an Euclidean distance
matrix can be computed from a cross-product matrix.
In order to perform MDS on a set of data, the main
idea is to “revert” Equation 4 in order to obtain a
cross-product matrix from a distance matrix. There is
one problem when implementing this idea, namely,
that different cross-product matrices can give the same
distance. This can happen because distances are
invariant for any change of origin. Therefore, in order
to revert the equation, we need to impose an origin for

the computation of the distance. An obvious choice is
to choose the origin of the distance as the center of
gravity of the dimensions. With this constraint, the
cross-product matrix is obtained as follows.

First define a mass vector denoted m whose I ele-
ments give the mass of the I rows of matrix D. These
elements are all positive, and their sum is equal to 1:

m
1 ×

T1
I × 1

= 1. (5)

When all the rows have equal importance, each ele-
ment is equal to 1_

I .
Second, define an I × I centering matrix denoted ΞΞ

(read “big Xi”) equal to

ΞΞ
I × Ι

= I
I × I

– 1
I ×1

m
× I

T. (6)

Finally, the cross-product matrix is obtained from
matrix D as

(7)

The eigendecomposition of this matrix gives

S = UΛΛUT (8)

with

UTU = I and ΛΛ diagonal matrix of eigenvalues. (9)

See the “Appendix: Proof” section toward the end
of this entry for a proof.

The scores (i.e., the projection of the rows on
the principal components of the analysis of S) are
obtained as

F = M
−1_

2 UΛΛ
−1_

2(with M = diag{m}). (10)

The scores have the properties that their variance is
equal to the eigenvalues

FTMF = ΛΛ. (11)

Example

To illustrate the transformation of the distance matrix,
we will use the distance matrix derived from the brain
scans given in Table 1:

S
I×I

= −1
2
ΞDΞT.
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(12)D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.00 3.47 1.79 3.00 2.67 2.58 2.22 3.08

3.47 0.00 3.39 2.18 2.86 2.69 2.89 2.62

1.79 3.39 0.00 2.18 2.34 2.09 2.31 2.88

3.00 2.18 2.18 0.00 1.73 1.55 1.23 2.07

2.67 2.86 2.34 1.73 0.00 1.44 1.29 2.38

2.58 2.69 2.09 1.55 1.44 0.00 1.19 2.15

2.22 2.89 2.31 1.23 1.29 1.19 0.00 2.07

3.08 2.62 2.88 2.07 2.38 2.15 2.07 0.00

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The elements of the mass vector m are all equal to 1/8:

mT = [.125   .125   .125   .125   .125   .125   .125   .125]. (13)

The centering matrix is equal to

The cross-product matrix is then equal to

The eigendecomposition of S gives

(14)U =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.60 −0.36 −0.10 0.48 −0.23 0.02 0.30

−0.52 −0.64 0.36 0.14 0.10 −0.06 −0.18

0.48 −0.17 0.10 −0.67 0.24 0.04 −0.30

−0.23 0.16 0.20 −0.38 −0.54 0.29 0.49

−0.02 0.39 0.19 0.28 0.61 0.47 0.14

−0.03 0.32 0.11 −0.00 0.14 −0.83 0.23

0.00 0.38 0.02 0.25 −0.43 0.04 −0.69

−0.28 −0.08 −0.87 −0.09 0.11 0.04 0.02

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

S =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.34 −0.31 0.34 −0.46 −0.25 −0.26 −0.12 −0.29

−0.31 1.51 −0.38 0.03 −0.26 −0.24 −0.37 0.02

0.34 −0.38 1.12 −0.16 −0.19 −0.14 −0.27 −0.31

−0.46 0.03 −0.16 0.74 −0.08 −0.05 0.07 −0.09

−0.25 −0.26 −0.19 −0.08 0.83 0.05 0.09 −0.20

−0.26 −0.24 −0.14 −0.05 0.05 0.71 0.08 −0.15

−0.12 −0.37 −0.27 0.07 0.09 0.08 0.65 −0.13

−0.29 0.02 −0.31 −0.09 −0.20 −0.15 −0.13 1.15

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Ξ
8×8

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

.875 −.125 −.125 −.125 −.125 −.125 −.125 −.125

−.125 .875 −.125 −.125 −.125 −.125 −.125 −.125

−.125 −.125 .875 −.125 −.125 −.125 −.125 −.125

−.125 −.125 −.125 .875 −.125 −.125 −.125 −.125

−.125 −.125 −.125 −.125 .875 −.125 −.125 −.125

−.125 −.125 −.125 −.125 −.125 .875 −.125 −.125

−.125 −.125 −.125 −.125 −.125 −.125 .875 −.125

−.125 −.125 −.125 −.125 −.125 −.125 −.125 .875

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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Table 1 Matrix That Gives the d’ Obtained for the Discrimination Between Categories Based On the Brain Scans

Face House Cat Chair Shoe Scissors Bottle Scrambled

Face 0.00 3.47 1.79 3.00 2.67 2.58 2.22 3.08
House 3.47 0.00 3.39 2.18 2.86 2.69 2.89 2.62
Cat 1.79 3.39 0.00 2.18 2.34 2.09 2.31 2.88
Chair 3.00 2.18 2.18 0.00 1.73 1.55 1.23 2.07
Shoes 2.67 2.86 2.34 1.73 0.00 1.44 1.29 2.38
Scissors 2.58 2.69 2.09 1.55 1.44 0.00 1.19 2.15
Bottle 2.22 2.89 2.31 1.23 1.29 1.19 0.00 2.07
Scrambled 3.08 2.62 2.88 2.07 2.38 2.15 2.07 0.00

Source: O’Toole et al. (2005). These data are obtained by averaging 12 data tables (2 per subject).

and

(15)

As in PCA, the eigenvalues are often transformed into percentage of explained variance (or inertia) in
order to make their interpretation easier. Here, for example, we find that the first dimension “explains” 28%
of the variance of the distances 

We obtain the following matrix of scores:

F =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2.53 −1.35 −0.30 1.36 −0.58 0.04 0.53

−2.19 −2.37 1.13 0.39 0.24 −0.15 −0.32

2.04 −0.63 0.32 −1.90 0.61 0.10 −0.52

−0.97 0.61 0.62 −1.09 −1.35 0.68 0.86

−0.10 1.44 0.59 0.81 1.53 1.10 0.25

−0.13 1.18 0.33 −0.00 0.35 −1.96 0.40

0.02 1.41 0.05 0.70 −1.09 0.09 −1.22

−1.20 −0.29 −2.74 −0.27 0.28 0.10 0.03

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(i.e., 2.22
2.22+...+0.39 = .28 ).

Λ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2.22 0 0 0 0 0 0

0 1.72 0 0 0 0 0

0 0 1.23 0 0 0 0

0 0 0 1.00 0 0 0

0 0 0 0 0.79 0 0

0 0 0 0 0 0.69 0

0 0 0 0 0 0 0.39

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Figure 1a displays the projection of the categories
on the first two dimensions. The first dimension
explains 28% of the variance of the distance, it can be
interpreted as the opposition of the face and cat cate-
gories to the house category (these categories are the
ones most easily discriminated in the scans). The sec-
ond dimension, which explains 21% of the variance,
separates the small objects from the other categories.

MMuullttiiddiimmeennssiioonnaall  SSccaalliinngg::  
SSuupppplleemmeennttaarryy  EElleemmeennttss

After we have computed the MDS solution, it 
is possible to project supplementary or illustrative
elements onto this solution. To illustrate this proce-
dure, we will project the distance matrix obtained
from the pictures (see Table 2) onto the space defined
by the analysis of the brain scans.



The number of supplementary elements is denoted
by Isup. For each supplementary element, we need the
values of its distances to all the I active elements. We

can store these distances in an I × Isup supplementary
distance matrix denoted Dsup. So, for our example,
we have
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2

 τ = 21%

2

1 1

τ = 28%

Figure 1 (a) Multidimensional Scaling of the Subjects’ Distance Table; (b) Projection of the Image Distance Table
as Supplementary Elements in the Subjects’ Space (Distance From Tables 1 and 2)

(a) (b)

Table 2 Matrix That Gives the d’ Obtained for the Discrimination Between Categories Based On the Images
Watched by the Subjects

Face House Cat Chair Shoe Scissors Bottle Scrambled

Face 0.00 4.52 4.08 4.08 4.52 3.97 3.87 3.73
House 4.52 0.00 2.85 4.52 4.52 4.52 4.08 4.52
Cat 4.08 2.85 0.00 1.61 2.92 2.81 1.96 3.17
Chair 4.08 4.52 1.61 0.00 2.82 2.89 2.91 3.97
Shoes 4.52 4.52 2.92 2.82 0.00 3.55 3.26 4.52
Scissors 3.97 4.52 2.81 2.89 3.55 0.00 2.09 3.26
Bottle 3.87 4.08 1.96 2.91 3.26 2.09 0.00 1.50
Scrambled 3.73 4.52 3.17 3.97 4.52 3.26 1.50 0.00

Source: O’Toole et al. (2005).

(16)Dsup =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.00 4.52 4.08 4.08 4.52 3.97 3.87 3.73

4.52 0.00 2.85 4.52 4.52 4.52 4.08 4.52

4.08 2.85 0.00 1.61 2.92 2.81 1.96 3.17

4.08 4.52 1.61 0.00 2.82 2.89 2.91 3.97

4.52 4.52 2.92 2.82 0.00 3.55 3.26 4.52

3.97 4.52 2.81 2.89 3.55 0.00 2.09 3.26

3.87 4.08 1.96 2.91 3.26 2.09 0.00 1.50

3.73 4.52 3.17 3.97 4.52 3.26 1.50 0.00

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.



The first step is to transform Dsup into a cross-product
matrix denoted Ssup. This is done by centering the
rows with the same centering matrix that was used
previously to transform the distance of the active

elements. Specifically, the cross-product matrix is
obtained as

Ssup = −1_
2
ΞΞDsup. (17)
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For our example, this gives

(18)Ssup =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.80 −0.41 −0.83 −0.62 −0.63 −0.54 −0.71 −0.32

−0.46 1.85 −0.21 −0.84 −0.63 −0.82 −0.81 −0.72

−0.24 0.42 1.21 0.62 0.17 0.04 0.25 −0.04

−0.24 −0.41 0.41 1.42 0.22 0.00 −0.22 −0.44

−0.46 −0.41 −0.25 0.01 1.63 −0.33 −0.40 −0.72

−0.18 −0.41 −0.19 −0.02 −0.14 1.44 0.18 −0.09

−0.14 −0.20 0.23 −0.03 0.00 0.40 1.23 0.79

−0.07 −0.41 −0.37 −0.56 −0.63 −0.19 0.48 1.54

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The next step is to project the matrix Ssup onto the
space defined by the analysis of the active distance
matrix. We denote by Fsup the matrix of projection of
the supplementary elements. Its computational for-
mula is obtained by first combining Equations 10 and
8 in order to get

F = STM
−1_

2 UΛΛ
−1_

2, (19)

and then substituting Ssup for S and simplifying
gives

Fsup = ST
supM

−1_
2UΛΛ

−1_
2 = ST

supFΛΛ–1. (20)

For our example, this equation gives the following
values:

(21)Fsup =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2.45 −1.38 −1.18 2.53 −2.05 −0.30 2.56

−1.46 −3.24 2.30 −0.55 1.04 −0.34 −3.68

0.43 0.55 1.19 −3.89 −0.23 0.69 −2.81

0.37 1.98 1.50 −3.74 −1.90 1.61 2.21

0.25 2.74 1.87 −0.19 2.90 3.24 0.79

0.26 2.61 0.06 −1.07 −0.44 −4.43 −0.11

0.08 2.22 −1.79 −1.10 −1.37 −0.99 −5.05

−0.30 0.83 −4.59 −0.59 −1.24 −0.87 −3.72

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Figure 1b displays the projection of the supple-
mentary categories on the first two dimensions.
Comparing plots a and b shows that an analysis of the
pictures reveals a general map very similar to the
analysis of the brain scans with only one major differ-
ence: The cat category for the images moves to the
center of the space. This suggests that the cat category

is interpreted by the subjects as being facelike (i.e.,
“cats have faces”).

Analyzing Nonmetric Data

Metric MDS is adequate only when dealing with dis-
tances. In order to accommodate weaker measurements



(called dissimilarities), nonmetric MDS is adequate. It
derives a Euclidean distance approximation using
only the ordinal information from the data.

Appendix: Proof

We start with an I × I distance matrix D and an I × 1
vector of mass (whose elements are all positive or
zero and whose sum is equal to 1) denoted m and such
that

m
1 ×

T1
I × 1

= 1. (22)

The centering matrix is equal to

ΞΞ
I × Ι

= I
I × I

− 1
I×1

m
× I

T. (23)

We want to show that the following cross-product
matrix,

S
I × Ι

= −1_
2
ΞΞDΞΞT, (24)

will give back the original distance matrix when the
distance matrix is computed as

D
I × I

= s
I×1

1
× I

T + 1
I×1

s
×I

T – 2S
I × I

. (25)

In order to do so, we need to choose an origin for
the coordinates (because several coordinates systems
will give the same distance matrix). A natural choice is
to assume that the data are centered (i.e., the mean of
each original variable is equal to zero). There, we
assume that the mean vector, denoted c, is computed as

c
J × 1

= X
J ×

Tm
I × 1

(26)

(for some data matrix X). Because the origin of the
space is located at the center of gravity, its coordinates
are equal to c = 0. The cross-product matrix can there-
fore be computed as

S
I × Ι

= 
(

X
I × J

– 1
I × 1

c
× J

T
)(

X
I × J

– 1
I ×1

c
× J

T
)

T

=
(

X
I × J

– 1
I × 1

c
× J

T
)(

X
J × I

T – c
J × 1

1
× I

T
) (27)

First, we assume that there exists a matrix denoted
S such that Equation 25 is satisfied. Then we plug
Equation 25 into Equation 24, develop, and simplify
in order to get

−1_
2
ΞΞDΞΞT = −1_

2
ΞΞs1TΞΞT – 1_

2
ΞΞ1sTΞΞT + ΞΞSΞΞT. (28)

Then, we show that the terms ΞΞ(s1T)ΞΞT and ΞΞ(1sT)ΞΞT

are null because

(s1T)ΞΞT = s1T(I – 1mT)T

= s1T(I – m1T)

= s1T – s1Tm1T (but from Equation 22: 1Tm = 1)

= s1T – s1T

= 0
I×1

. (29)

The last thing to show now is that the term ΞΞSΞΞT is
equal to S. This is shown by developing

ΞΞSΞΞT = (I – 1mT)S(I – m1T) 
= S – Sm1T – 1mTS + 1mTSm1T.

(30)

Because

(XT – c1T)m = XTm – c1Tm (cf. Equations 26 and 22)

= c − c

= 0
I× 1

, (31)

we get (cf. Equation 27):

Sm = (X – 1cT)(XT – c1T)m = 0. (32)

Therefore, Equation 33 becomes

ΞΞSΞΞT = S, (33)

which leads to

−1_
2
ΞΞDΞΞT = S, (34)

which completes the proof.

—Hervé Abdi

See also Centroid; Distance; Eigendecomposition; Principal
Component Analysis; Signal Detection Theory; Singular
and Generalized Singular Value Decomposition; STATIS
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MILLON BEHAVIORAL

MEDICINE DIAGNOSTIC

The Millon Behavioral Medicine Diagnostic
(MBMD), published by NCS Assessments in 2001, is
a revision of the 1974 Millon Behavioral Health
Inventory (MBHI). Both are designed to evaluate psy-
chosocial factors that influence the course of medical
disease and to assist health care providers in planning
successful treatment regimens. The MBMD elimi-
nated underperforming scales of the MBHI, widened
the base of medical disorders, and added new scales to
assist case management, including scales responsive
to DSM-IV revisions concerning psychological factors
affecting medical conditions. Recent Stress and
Chronic Tension subscales were eliminated from the
revision even though both factors play major roles in
primary, secondary, and tertiary prevention.

The MBMD contains 165 true/false self-report
items that contribute to 39 scales that inform about
Response Patterns (Disclosure, Desirability, Debase-
ment); Negative Health Habits (Alcohol, Drugs, Eating,
Caffeine, Inactivity, Smoking); Psychiatric Indicators
(Anxiety-Tension, Depression, Cognitive Dysfunction,
Emotional Lability, Guardedness); Coping Styles
(Introversive, Inhibited, Dejected, Cooperative, Sociable,
Confident, Nonconforming, Forceful, Respectful, Oppo-
sitional, Denigrating); Stress Moderators (Spiritual
Absence, Illness Apprehension, Functional Deficits, Pain
Sensitivity, Social Isolation, Future Pessimism); Prog-
nostic Indicators (Interventional Fragility, Medication

Abuse, Information Discomfort, Utilization Excess,
Problematic Compliance); Management Guides
(Adjustment Difficulties, Psychiatric-Psychosocial
Referral); and a Validity Indicator.

The MBMD is administered within 20 to 25 minutes
for medical patients between 18 and 85 years old.
Interpretation of the MBMD is based on prevalence
scores rather than traditional scaling methods. This
approach is intended to increase certainty about patient
evaluation. Prevalence score norms are generic,
although there is no reason to believe that prevalence
scores are the same across medical disorders. Test-retest
reliability was assessed at 7- and 30-day intervals and
resulted in moderate to strong coefficients (.71 to .92).
Most scales obtained a sound Cronbach’s alpha coeffi-
cient (.74 to .89). However, on approximately half of the
Coping Styles scales, lower coefficients were obtained
(.54 to .67). Redundancy of items across 39 subscales is
problematic; that is, 165 items are scored 492 times.

The MBMD manual presents concurrent validity
through comparison of the individual scales against
other measures with well-established validity, such as
the State-Trait Anxiety Inventory, Profile of Mood
States, and Beck Depression Inventory. Moderate to
high (.50 to .87) convergent correlations between the
MBMD and other standard measures were found,
excluding the Problematic Compliance (.38) and
Utilization Excess (.39 to .52) scales. Predictive valid-
ity studies have shown scores on various scales to be
valid for predicting disease adjustment and adapta-
tions, probability of seeking treatment, and the course
of medical illness. The extreme revision of the
MBMD questions the applicability of research that
accrued with the MBHI. Rather, a new empirical base,
presently small but growing, will help guide practi-
tioners in the application of test results.

The MBMD is a novel tool for assessing the com-
plexity of identifying the treatment needs of medical
patients. This tool lends hope for the further integra-
tion of the biopsychosocial model into traditional
medical systems, providing a better understand of the
prognostics, treatment, rehabilitation, and management
of disease.

—Joseph A. Doster and Lyndsi M. Grover
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Millon, T. (1990). Toward a new personology. New York:
Wiley.
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MILLON CLINICAL

MULTIAXIAL INVENTORY-III

The Millon Clinical Multiaxial Inventory-III (MCMI-
III) is a 170-item objective measure of personality
developed by Theodore Millon. It is somewhat unique
among self-report inventories in that it focuses on per-
sonality disorders and their symptoms rather than stan-
dard clinical disorders such as depression and anxiety,
and/or normal variations in personality. In fact, the
focus is exclusively on clinical populations, and it
should not be used with normal populations. First pub-
lished in 1977, the MCMI has undergone two revisions
(currently MCMI-III) and currently reflects a combina-
tion of Millon’s own theory of personality disorders and
the DSM-IV criteria for diagnosis of those disorders. It
is ranked second only to the Minnesota Multiphasic
Personality Inventory (MMPI-2) in frequency of use in
clinical settings for personality assessment.

There are essentially three broad categories of
scores generated on the MCMI: 4 Validity scales, 14
Personality Disorder scales (3 of which are labeled
Severe), and 10 Clinical Syndrome scales (3 of which
are labeled Severe). The Validity scales can help to
determine the degree to which an individual is mini-
mizing or exaggerating symptoms. The Personality
scales cover the 10 personality disorders listed in the
DSM-IV and four others, two of which are listed in the
DSM-IV for further study and two that are derived

from Millon’s theory of personality. The Clinical
Syndrome scales are composed of three that assess
disorders of mood, two that focus on anxiety, two that
deal with disorders of belief and thought, one each for
drug and alcohol problems, and one somatoform
scale. All of these scales use a base rate scoring sys-
tem that adjusts scores based on how frequently the
symptoms measured will occur in a clinical popula-
tion. In this way, disorders whose symptoms are
somewhat common in a clinical population will
require a higher level of symptom reporting than do
disorders whose symptoms are more rare in order to
be considered elevated. Two cut-score points are
established (75BR suggesting the presence of symp-
toms, and 85BR suggesting the presence of the dis-
order). Regardless of the level of elevation, it is
important that the clinician using the test incorporates
additional information into any diagnostic decision,
and should never base a diagnosis on the test results in
isolation.

Millon has also developed inventories for use with
other populations. The Millon Behavioral Medicine
Diagnostic (MBMD) is an updated revision of the
earlier Millon Behavioral Health Inventory (MBHI)
and is designed for use with adults in primary care or
other medical settings. The Millon Adolescent
Clinical Inventory (MACI) is essentially a version of
the MCMI for use with 13- to 19-year-olds, whereas
the Millon Pre-Adolescent Clinical Inventory
(M-PACI) extends coverage to 9- to 12-year-olds. The
Millon Adolescent Personality Inventory (MAPI)
combines assessment of normal personality factors
with the MACI, and finally, the Millon Inventory of
Personality Styles-Revised (MIPS-Revised) is an
assessment of normal personality traits in adults.
Hand scoring, mail-in scoring, and on-site scoring
software is available for all forms, as are both scoring
and interpretive reports. Clinicians are charged a per-
use fee, with the exception of hand scoring. However,
because hand scoring is complicated, time-consuming,
and error prone, it is not recommended.

—Steve Saladin

See also Basic Personality Inventory; Comrey Personality
Scales; Minnesota Multiphasic Personality Inventory

606———Millon Clinical Multiaxial Inventory-III



Further Reading

Jankowski, D., & Millon, T. (2002). A beginner’s guide to the
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MINNESOTA CLERICAL TEST

The Minnesota Clerical Test (published by The
Psychological Corporation) measures perceptual abil-
ities that are commonly used in the performance of
various clerical activities. Most often, the MCT is
used by employers to select employees who can work
with information quickly and accurately, for clerical
positions such as clerks, cashiers, tellers, and typists.

Composed of two parts—Number Comparison and
Name Comparison—the test assesses the accuracy
and speed with which test takers are able to distin-
guish between pairs of numbers or names that are sim-
ilar and those that are identical. For example, an item
including two numbers that are similar (e.g., 12343
and 13243) would be correctly identified as being dif-
ferent, whereas two numbers that are identical (e.g.,
12232 and 12232) would be correctly identified as
being the same. An item including two similar names
(e.g., Davenport Inc. and Davinport Inc.) would be
correctly identified as different, whereas two identical
names (e.g., Smith & Co. and Smith & Co.) would be
correctly identified as the same.

After receiving the test materials, as well as com-
pleting identification information and sample items,
the test taker is given 15 minutes to complete both
parts. Each consisting of 200 items, the two parts
are scored by subtracting the number of incorrect
responses from the number of correct responses.

The MCT was constructed in 1931 by psycholo-
gists at the University of Minnesota and first pub-
lished in 1933. Initially known as the Minnesota
Vocational Test for Clerical Workers, the test was
given its current name in 1946. Remarkably, the

content of the test’s items have not been altered since
the original publication, although the manual has been
revised five times with particular regard to psychome-
tric and normative information. The most recent
manual presents normative data, which enables a
comparison of raw scores with larger groups, for
trainees and employees working at utility companies,
banks, financial institutions, universities, and temp
agencies, as well as male, female, Caucasian, African
American, and Hispanic individuals.

Overall, the MCT has been found to have good
psychometric properties. In particular, test scores pre-
dicted future levels of job performance in clerical
occupations and were related to typing speed, General
Clerical Test scores, and Wechsler Adult Intelligence
Scale scores. Also, the relationships found between
the number and name comparison parts suggest that
the two parts are measuring similar but distinct abili-
ties. Although the MCT is used primarily in voca-
tional settings, the test also is used by counselors to
aid those considering clerical occupations, and by
researchers in areas such as cognitive and vocational
psychology.

—Shawn T. Bubany and Jo-Ida C. Hansen

Further Reading

Andrew, D. M., Paterson, D. G., & Longstaff, H. P. (1979).
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Super, D. E., & Crites, J. O. (1962). Appraising vocational
fitness. New York: Harper & Brothers.

Clerical-type work: www.bls.gov/oco/ocos130.htm#nature
The Psychological Corporation: http://www.psychopr.com

MINNESOTA MULTIPHASIC

PERSONALITY INVENTORY

The Minnesota Multiphasic Personality Inventory
(MMPI) is the most widely used psychological test of
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all time. It is routinely administered to patients in
psychiatric hospitals and mental health clinics,
students in college counseling centers, individuals
involved in the criminal justice system, and applicants
for certain areas of employment (and some graduate
school programs). It is suitable for use with adults
aged 18 and older, and there is an adolescent version
(MMPI-A) for ages 14 to 18.

The MMPI was first published in 1943 by Starke
Hathaway and J. C. McKinley of the University of
Minnesota and revised in 1989 to become the MMPI-2.
It is currently published by the University of Minnesota
Press and marketed through Pearson Assessments. The
MMPI-2 consists of 567 declarative statements that the
examinee indicates as either true or false about herself
or himself and takes approximately 60 to 90 minutes to
complete. The test was originally designed as an objec-
tive measure for obtaining clinical-diagnostic informa-
tion in psychiatric and general medical settings.
Although the original clinical scales no longer match
our current understanding of psychopathology, the vast
amount of research on the MMPI and the MMPI-2 can
lead to an enhanced understanding of how the individ-
ual is functioning (i.e., people with particular patterns
to their scores tend to display particular characteristics).
A skilled clinician can garner information about
symptoms, personality, relationship style, response to
stress, level of distress, self-perception, and many other
aspects of functioning, and then can facilitate treatment
planning and/or differential diagnosis.

The MMPI-2 generates a variety of scores, includ-
ing the 10 original clinical scales, 9 restructured clini-
cal scales, 8 validity scales, 15 content scales, subscales
for many of these scales, and a host of supplementary
scales. These scales cover areas ranging from depres-
sion and anxiety to self-esteem and openness to treat-
ment to gender identity and level of distress. The sheer
volume of information is often confusing and over-
whelming to the novice. In response to this, there are a
number of computerized interpretive programs on the
market, some targeted toward a particular setting (e.g.,
forensic, personnel). The use of these reports has
dramatically increased in recent years, but remains
somewhat controversial among the psychological com-
munity because they cannot take into consideration the

individual’s history and current circumstances. Such
reports typically have a warning stating that the content
should serve as hypotheses that a trained clinician
would use as a starting point.

—Steve Saladin

See also Basic Personality Inventory; Comrey Personality
Scales; NEO Personality Inventory 
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MISSING DATA METHOD

In 1959, Robert E. Dear proposed a missing data
method that used the first extracted principle com-
ponent. This unique method appeared in a technical
report produced by the now-defunct Systems
Development Corporation (SDC) in Santa Monica,
California. For the next two decades, the Dear missing
data method was a subject of much discussion and
research. This report is no longer in print and its avail-
ability is scarce. It is, however, an important method
that was documented in Neil Timm’s doctoral disserta-
tion and subsequent Psychometrika article in 1970.
Terry Gleason and Richard Staelin also discussed it in
their 1975 Psychometrika article. These publications
document the efficiency and statistical properties of
the Dear method. They also compare it to other avail-
able methods such as the ones proposed by Buck and
Wilks. Both Timm and Gleason and Staelin found the
Dear method to be among the best methods in terms of
computational ease and accuracy.
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Dr. Dear created this method because of the prob-
lems that researchers at SDC encountered using mul-
tiple regression with missing data values. A typical
illustration of the missing data problem involves the
prediction of a certain health variable for a sample of
patients given a set of fixed, independent variables
that should have been recorded for each patient in the
study. The set of independent variables might include
case history items. These would include the patient’s
age when she or he may have acquired a given dis-
ease, the age at death of each parent, the number of
siblings who may have acquired a given disease that
has a hereditary basis, and so forth. The set of inde-
pendent variables may also include clinical measure-
ments such as the patient’s blood type, height, and rate
of basal metabolism. In carrying out analyses of the
dependence of some health variable on a set of case
history and clinical measurement variables, it is not
uncommon to find that not all of the variables are
recorded for each of the patients. For some of the
patients in the study, some of the case history items
may not have been obtainable or were not recorded,
and some of the clinical measurements may not have
been made or were not recorded. In such cases, if
these patients’ data are to be included in the study,
some method must be used for estimating the missing
items.

Dr. Dear studied psychometrics and statistics with
Professor Paul Horst at the University of Washington.
One of the foundational cornerstones of the Dear
method is from Horst’s earlier work on estimation
when data values were missing. Both Timm and
Gleason and Staelin have documented the perfor-
mance of the Dear method in estimating missing data
values. These studies compared it to other methods 
of handling missing data in terms of efficiency and
bias. It has fared well enough that researchers who
want to estimate missing data values should consider
it. The method is not difficult from a conceptual and
computational point of view.

Although Dear’s paper was concerned with the
“estimation” of values to use for missing independent
variables in multiple regression models, the method
could be applied to nonregression types of problems
where individual data points need to be estimated.

Dear’s method, however, handles missing data values
for independent variables that are considered as fixed
numbers or nonrandom variables.

In multiple regression, the real statistical estima-
tion problem is the estimation of regression coeffi-
cients for the regression of a dependent variable on a
set of independent variables. However, Dear points
out that there are occasions when missing values
among the independent variables necessitate methods
for constructing or estimating entries for these miss-
ing data before the main regression analysis can be
carried out.

The Regression Model

The multiple regression model is written as

Yi = β0 + β1X1 + β2X2 + . . . + βmXm + εi

or

Yi = ∑
n

j
βjXij + εi , where i = 1, 2, . . . , m.

In this model, the Ys are the observable dependent
variable values (Y is assumed to be the random vari-
able). The Xs are the fixed, observable independent
variables. The coefficients, βs, are the regression para-
meters to be estimated, and the random variables, εs,
are the errors or differences between observed and
predicted Y values.

The only assumptions that are made about the ran-
dom variables of this model are (a) the expected value
of the errors is zero, (b) the expected value of covari-
ance between error terms is zero, and (c) the expected
value of each error value squared is some fixed value
σ2 across all values of i.

If Xij
(k) represents the values where X is known and

Xij
(u) represents the values where X is unknown, the

regression model equation can be written as

Yi = ∑
n

j
βjXij

(k) + ∑
n

j
βjXij

(u) + εi.

Using matrices, the equation becomes

Y == X(k)B ++ X(u)B ++ E.
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The description of the missing-data model explic-
itly requires the rewriting of the X matrix in an
expanded form and the definition of several auxiliary
weighting matrices.

The regression model can now be written in terms
of the newly defined matrices as

Y == (I′ – C)′ X*B + C′X*B + E,

where I is the identity matrix with dimensions
(mn × m) and C is the matrix of indicator variables
with dimensions (mn × m). The missing values will be
accounted for by elements of the C matrix. The indi-
cator variables, cij, are specified, where

cij is 0 if the value for Xij is known,

cij is 1 if the value for Xij is unknown (missing).

We can rewrite some terms that will assist in set-
ting up the missing data method:

X(k) == (I* – C)′ X* and X(u) == C′X*.

A Principal-Component 
Missing-Data Method

This method involves developing a certain kind of
average for each person or element in the total
sample of observations using the available inde-
pendent variables. A prediction coefficient will
also be developed for each of the independent vari-
ables to reflect differences among these variables
in scale values. The missing elements in the inde-
pendent variable matrix will be represented as
products of these average scores for persons and
the prediction coefficients for the available inde-
pendent variables.

Let the mathematical model for this missing-data
method be

X(k) = AP′ + G.

X(k) is an (m × n) matrix. The A matrix is (m × l), the
P matrix is (n × 1), and the G matrix is (m × n).

The A matrix consists of a special kind of average
constructed from the available independent variables

for each sample element. The P matrix consists of the
prediction coefficients for each of the independent
variables, and the G matrix consists of errors or dis-
crepancies between the matrix of observed values of
independent variables, X(k), and the matrix of pre-
dicted values, AP′′.

To find the roots and the subsequent estimates for
the missing values, we first form the X(k)′′ X(k) sym-
metric matrix. We then find the eigenvalues (charac-
teristic roots) for this matrix. A number of different
versions of computer programs are available to solve
for this characteristic root. In the example given in this
write-up, the MATRIX function within SPSS is used.
The vector associated with the largest characteristic
root is chosen for the vector labeled P̃. The values of
P̃ are used to obtain the other set of least-squares
estimates, Ã.

Least-squares matrices of estimates, Ã, are deter-
mined using the following formula:

The values within vectors Ã and P̃ are then
used to set up two matrices, Au and Pu, whose
structures are

Pu =

⎡

⎢
⎢
⎢
⎣

p̃1 0 · · · 0

0 p̃2 · · · 0

· · · · · · · · · · · ·
0 0 · · · p̃n

⎤

⎥
⎥
⎥
⎦

.

Au =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ã1 0 · · · 0

ã2 0 · · · 0

· · · · · · · · · · · ·
ãm 0 · · · 0

· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·
0 0 · · · ã1

0 0 · · · ã2

· · · · · · · · · · · ·
0 0 · · · ãm

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Ã = 1

P̃′P̃
X(k)P̃.
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The construction or estimation of the matrix of
unknown X values that this method yields is com-
puted as

X(U) = C′AuPu,

where X(U) is an (m × n) matrix, C is an (mn × m) matrix,
Au is an (mn × n) matrix, and Pu is an (n × n) matrix.

Example

Consider the following data, where two data points
are missing for variable X3.

Y X1 X2 X3

10 2 4
6 1 3 2

15 6 5
14 5 6 3
5 2 1 1
6 1 1 2
8 2 3 3

10 3 4 4
11 4 4 4
9 2 3 3

The SPSS syntax for using the matrix procedure is

matrix.
compute
xa={2,4,0;1,3,2;6,5,0;5,6,3;2,1,1;1,1,2; 
2,3,3;3,4,4;4,4,4;2,3,3}.

compute xax=transpos(xa)*xa.
print xax.

/*Find characteristic roots and vectors */
call eigen(xax,evec,eva).
print evec.
print eva.

/*Form P-vector from the eigenvector 
corresponding to largest characteristic 
root */

compute p=evec(:,1).
print p.
print xa.
compute pp=transpos(p)*p.
print pp.

/*Compute the A-vector using the p-vector
values */

compute a1=inv(pp)*xa*p.
print a1.

/* Set up indicator matrix */

compute c1=make(10,10,0).
compute c2=make(10,10,0).
compute c3=make(10,10,0).
compute c3(1,1)=1.
compute c3(3,3)=1.
compute c={c1;c2;c3}.
print c.

/* Set Up Structure of A-Matrix and 
P-matrix */

compute am = make(30,3,0).
compute am(1:10,1)=a1.
compute am(11:20,2)=a1.
compute am(21:30,3)=a1.
print am.

compute pt=mdiag(p).
print pt.

/*Compute the Missings value estimates */
compute xu= transpos(c)*am*pt.
print xu.

end matrix.

The two missing values are estimated as 1.649 and
2.922.

The SPSS output produces the following matrices:

Ã =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

3.946

3.501

6.992

8.350

2.287

2.117

4.508

6.207

6.795

4.508

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

X(u) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 1.649

0 0 0

0 0 2.922

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

X(k)′X(k) =
⎡

⎢
⎣

104 114 61

114 138 77

61 77 68

⎤

⎥
⎦ P̃ =

⎡

⎢
⎣

.5884

.6921

.4179

⎤

⎥
⎦
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—Howard B. Lee

See also Data Collection; Data Mining; Secondary Data
Analysis
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MIXED MODELS

A mixed-effects model, or just mixed model, is a sta-
tistical model in which the set of predictor variables
includes both fixed and random effects. A common
application of mixed models is to longitudinal, or
repeated measures, data in which the data consist of
multiple observations on each subject. Here, observa-
tions on different subjects can be treated as indepen-
dent, but observations on the same subject cannot. The
inclusion of random effects in the model induces

a correlation among repeated measures on a given
subject. More generally, mixed-effects models are
potentially useful any time a practitioner is faced with
grouped data, in which observations are correlated
within groups but independent across groups.

Whether a predictor term is to be treated as a fixed
or random effect depends on the desired scope of
inference, as well as the mechanism by which factor
levels were chosen for inclusion in the study. If the
investigator is concerned only with the factor levels
included in the data set, then that factor should be
treated as a fixed effect. If the investigator wishes to
draw inference about the population from which the
observed levels were drawn, the factor should be
modeled as a random effect. Alternatively, the analyst
can ask, If the experiment were to be repeated, would
the observed levels of this factor be the same or pos-
sibly different? If the same, then the factor is a fixed
effect; otherwise, it should be treated as a random
effect.

The mixed model most commonly encountered in
applications is the linear mixed-effects (LME) model
with normally distributed random effects. A mathe-
matical formulation of the model is given here. Let yi

denote the mi-dimensional vector of responses for the
ith subject in the study, for i going from 1 to M, the
total number of subjects. Under the LME model,
we have

yi = Xiβ + Zibi + ei,

where Xi and Zi are known matrices of dimension
mi by p and mi by q respectively, β is the
p-dimensional vector of unknown fixed effects, bi is
the q-dimensional vector of random effects associated
with the ith subject, and ei is a random error term. The
random vectors bi and ei, for i going from 1 to M, are
assumed to be mutually independent and multivariate
normally distributed with a mean of zero. The
unknown parameters in this model consist of the vec-
tor of coefficients β and whatever parameters deter-
mine the covariance matrices of the random vectors bi

and ei. The usual statistical inference consists of the
estimation of unknown parameters and prediction of
the unobserved random effects.

Pu =
⎡

⎢
⎣

.5884 0 0

0 .6921 0

0 0 .4179

⎤

⎥
⎦

Au =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

3.946 0 · · · 0

3.501 0 · · · 0

· · · · · · · · · · · ·
4.508 0 · · · 0

· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·
0 0 · · · 3.946

0 0 · · · 3.501

· · · · · · · · · · · ·
0 0 · · · 4.508

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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Following are two examples of the general LME
model. Both data sets are included in the “nlme”
library within the free statistical software package R.

Example 1: An Ergometric Experiment

This experiment involved nine human subjects and
four types of stools. Each subject was asked to arise
from each of the stools, and the effort exerted (Borg
scale) was recorded. The data are available with the
R package, as the object “ergoStool” in the “nlme”
library.

Let yij denote the effort exerted by the ith subject in
arising from the jth stool—that will be the response
variable. The model should include two categorical
predictors: subject (9 levels) and stool type (4 levels).
Are they fixed or random effects? The four stool types
were selected by the experimenters; thus, stool type is
a fixed effect. As for the subjects, there is no particu-
lar interest in these nine individuals; rather, the goal
is to study the person-to-person variability in effort
required by all persons. The nine subjects are just
a random sample from some human population, so
subject is a random effect. Another way to reach the
same conclusion is to note that if the experiment were
repeated, the same four stool types would be used
because they are part of the experimental design. But
another random sample would yield a different set of
nine individuals. Thus, stool type is a fixed effect and
subject is a random effect.

A reasonable LME model for this experiment is
given by

yij = βj + bi + eij,

where the subject random effects b1, . . . , b9 are inde-
pendent and identically distributed (i.i.d.) as normal
with mean 0 and variance σb

2, and the random error
terms eij are i.i.d. as normal with mean 0 and variance
σe

2. The model parameters are the four stool means β1,
β2, β3, and β4, and the variance components σb

2 and σe
2.

One of the reasons mixed-effects models are so
widely applicable is that they naturally and elegantly
induce correlation among repeated measures on the
same subject. For the model given here, it can be

shown that this correlation is given by σb
2/(σb

2 + σe
2),

which, depending on the values of σb
2 and σe

2, can be
anything between 0 and 1. Of course, the correlation
between measurements on different subjects is 0, as
the subjects are assumed to be independent.

In Example 1, we assume an additive effect (i.e., no
interaction) between subject and stool type. This may
be an unreasonable assumption, but it is necessary for
these data because there is only one observation at
each subject-stool type combination. The experiment
in Example 1 is said to be unreplicated. For replicated
experiments, an interaction term can be included in
the model. Of course, the interaction between a fixed
effect and a random effect is a random effect, as the
following example illustrates.

Example 2: An Industrial Experiment

Six workers in a plant were randomly selected, and
each worker was tested on each of three different
machine types. The data are summarized in an inter-
action plot (see Figure 1). Each point in the graph
represents the average score for a particular worker-
machine combination—18 such points total. The posi-
tion on the horizontal axis indicates the machine, and
the six lines correspond to the six workers. That the
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lines are not parallel indicates the presence of an inter-
action effect in predicting the response score from the
predictor variables machine and worker.

Employing the same logic as in Example 1, we
conclude that machine is a fixed effect and worker a
random effect—the three machine types were pre-
cisely those the experimenter wished to compare,
whereas the six workers were drawn at random from
a population of plant workers. What about the interac-
tion term? Is that a fixed or a random effect? There are
18 levels of worker-machine combination, and they
are only a random sample of those that might have
been observed. A different random sample of workers
would have yielded different observed levels of
worker-machine combination, and thus the interaction
term is random. This result is true in general: The
interaction between a fixed main effect and a random
main effect is a random effect.

Let yijk denote the score for worker i on machine j in
trial k, where i runs from 1 to 6 and j and k go from 1
to 3. A common model for this experiment is given by

yijk = βj + bi + cij + eijk,

where the random worker effects bi, the random inter-
action effects cij, and the random error terms eijk are
mutually independent, normally distributed with
mean 0 and variances σb

2, σc
2, and σe

2, respectively.
According to this model, the scores of a particular

worker are positively correlated, with a higher corre-
lation between two tests on the same machine than
between tests on different machines. More precisely,
it can be shown that the correlation between two tests
of the same worker on the same machine is equal
to (σb

2 + σc
2)/(σb

2 + σc
2 + σe

2), and the correlation
between two tests of the same worker but on different
machines is equal to σb

2/(σb
2 + σc

2 + σe
2). Of course,

the scores of two different workers are uncorrelated
because the workers were tested independently in the
experiment.

Estimation

In fitting mixed-effects models to data, we distinguish
between the estimation of unknown parameters and

the prediction of unobserved random effects. The
parameters in an LME model include the fixed-effects
coefficients (the βj in the examples) and the variance-
covariance parameters (the σ2 terms in the examples).
These are unknown but fixed quantities, and they can
be estimated from the data using one of the methods
discussed below. The unobserved random effects are
likewise unknown, and the investigators may wish to
make an intelligent guess of their value. Because these
are random quantities, this is a problem not of estima-
tion but of prediction.

The two most common approaches to estimation
are the methods of maximum likelihood (ML) and
restricted maximum likelihood (REML). Both meth-
ods are available in the R software, in function “lme”
(library “nlme”), with REML as the default method.
Some authors have noted the tendency for ML to
underestimate the variance components, and thus we
will focus on REML in the example.

EExxaammppllee  11  CCoonnttiinnuueedd::  EEssttiimmaattiioonn

The R commands needed to produce REML
estimates are given here. First, we must create an
“lme object”—we call it “ergoStool.lme.” On the
R command line, enter “library(nlme)” to
load the “nlme” library, then “ergoStool.lme <-
lme (effort~Type-1, data=ergoStool,
random=~1|Subject)” to create the object.
Entering the name of the object on the command line
produces the following output:

> ergoStool.lme
Linear mixed-effects model fit by REML
Data: NULL
Log-restricted-likelihood: -60.5654
Fixed: effort ~ Type - 1
TypeT1 TypeT2 TypeT3 TypeT4
8.555556 12.444444 10.777778 9.222222

Random effects:
Formula: ~1 | Subject
(Intercept) Residual
StdDev: 1.332465 1.100295

Number of Observations: 36
Number of Groups: 9
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Thus, the REML estimates of β1, β2, β3, and β4 are
8.56, 12.44, 10.78, and 9.22, respectively. The stan-
dard deviations σb and σe are estimated as 1.33 and
1.10, respectively.

Prediction

The usual method of predicting unobserved random
effects is based on an empirical Bayes approach.
The method produces the Best Linear Unbiased
Predictors, or BLUPs. In R, BLUPs can be obtained
from the function “lme,” as we now demonstrate.

EExxaammppllee  11  CCoonnttiinnuueedd::  PPrreeddiiccttiioonn

Once an “lme object” is created in R, the command
“random.effects” produces BLUPs of the random
effects. For the stool data, the BLUPs based on REML
estimates are as follows:

> random.effects(ergoStool.lme)
(Intercept)
8 -1.708716e+00
5 -1.495127e+00
4 -8.543581e-01
9 -2.135895e-01
6 -1.912893e-15
3 4.271791e-01
7 4.271791e-01
1 1.708716e+00
2 1.708716e+00

We see that Subject 8 rose from the stools with the
least effort, and Subject 2 required the greatest effort.
BLUPs based on the ML estimates are similar.

Other Mixed-Effects Models

We have thus far discussed the inclusion of random
effects only in linear statistical models. Generalized
linear models (GLMs), such as the logistic regression
model, can also have random effects among the pre-
dictors. A GLM with fixed and random effects is
called a generalized linear mixed model, or GLMM.

An important application of GLMMs is to item-
response models, which are widely used in educa-
tional and psychological assessment. The best-known

item-response model is the Rasch model, illustrated
here. Suppose 30 students are to take the same
10-question quiz, and let pij denote the probability of
a correct answer by the ith student to the jth question.
The Rasch model posits that

where bi represents the ith student’s ability, a random
effect, and βj represents the difficulty of the jth ques-
tion, a fixed effect.

Computing for GLMMs is often challenging and
requires high-speed computers and sophisticated
algorithms. Indeed, the development of such algo-
rithms is currently an active area of research among
statisticians.

Other Software

Although we have used the R software in our
examples, many other software packages exist. For
example, the MIXED procedure in SAS is a popular
alternative to the R “lme” package. S-PLUS is a
commercially available package similar to R—the
R commands given above will work in S-PLUS
as well.

—Ronald Neath and Galin L. Jones

See also Logistic Regression Analysis; Longitudinal/Repeated
Measures Data; Multivariate Normal Distribution; Rasch
Measurement Model
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log(
pij

1 − pij
) = bi − βj ,
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NLME: Software for mixed-effects models: http://cm
.bell-labs.com/stat/NLME (also the home page for the
Pinheiro and Bates reference given above, which was the
source of the examples included in this entry)

Statistical software package R: http://www.r-project.org

Applying Ideas on Statistics and Measurement

The following abstract is adapted from Blitstein,
J. L., Murray, D. M., Lytle, L. A., Birnbaum, A. S.,
& Perry, C. L. (2005). Predictors of violent behav-
ior in an early adolescent cohort: Similarities and
differences across genders. Health Education &
Behavior, 32(2), 175–194.

The authors assessed a cohort of 2,335
students from the Minneapolis, Minnesota, area
to identify predictors of violent behavior and to
determine whether the predictors varied by gen-
der. The sample was 76% White; boys and girls
were equally represented. The majority lived with
two parents. A measure of violent behavior col-
lected at the end of the eighth-grade year was
entered into Poisson regression against baseline
data collected at the beginning of the seventh-
grade year. The analysis followed a general linear
mixed model where there are multiple sources of
random variation. Predictors of violent behavior
influencing both boys and girls included depres-
sive symptoms, perceived invulnerability to
negative future events, paternal nonauthoritative
behavior, and drinking alcohol. Additional pre-
dictors of violent behavior specific to girls
included both risk and protective factors.

MIXTURE MODELS

This entry discusses statistical models involving mix-
ture distributions. As well as being useful in identify-
ing and describing subpopulations within a mixed
population, mixture models are useful data analytic
tools, providing flexible families of distributions to fit
to unusually shaped data. Theoretical advances in the
past 30 years, as well as advances in computing tech-
nology, have led to the wide use of mixture models in
applications as varied as ecology, machine learning,
genetics, medical research, psychology, reliability,
and survival analysis.

Suppose that F = {Fθ :θ ∈ S} is a parametric family
of distributions on a sample space X, and let Q denote
a probability distribution defined on the parameter
space S. The distribution

is a mixture distribution. An observation X drawn
from FQ can be thought of as being obtained in a two-
step procedure: First a random Θ is drawn from the
distribution Q and then conditional on Θ = θ, X is
drawn from the distribution Fθ. Suppose we have a
random sample X1, . . . , Xn from FQ. We can view this
as a missing data problem in that the “full data” con-
sist of pairs (X1,Θ1), . . . , (Xn,Θn), with Θi ∼ Q and
Xi | Θi = θ ∼ Fθ, but then only the first member Xi of
each pair is observed; the labels Θi are hidden.

If the distribution Q is discrete with a finite number
k of mass points θ1, . . . , θk, then we can write

where qj = Q{θj}. The distribution FQ is called a finite
mixture distribution, the distributions Fθ are the com-
ponent distributions, and the qj are the component
weights.

There are several reasons why mixture distribu-
tions, and in particular finite mixture distributions, are
of interest. First, there are many applications where
the mechanism generating the data is truly of a mix-
ture form; we sample from a population that we know
or suspect is made up of several relatively homoge-
neous subpopulations, in each of which the data of
interest have the component distributions. We may
wish to draw inferences, based on such a sample,
relating to certain characteristics of the component
subpopulations (parameters θj) or the relative propor-
tions (parameters qj) of the population in each subpop-
ulation, or both. Even the precise number of
subpopulations may be unknown to us. An example is
a population of fish, where the subpopulations are the
yearly spawnings. Interest may focus on the relative
abundances of each spawning, an unusually low

FQ =
k∑

j=1

qjFθj ,

FQ =
∫

Fθ dQ(θ)
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proportion possibly corresponding to unfavorable
conditions one year.

Second, even when there is no a priori reason to
anticipate a mixture distribution, families of mixture
distributions, in particular finite mixtures, provide us
with particularly flexible families of probability distri-
butions and densities that can be used to fit to unusu-
ally shaped (skewed, long-tailed, multimodal) data
that would be difficult to describe otherwise with a
more conventional parametric family of densities.
Also, such a fit is often comparable in flexibility to a
fully nonparametric estimate but structurally simpler,
and often requires less subjective input, for example,
in terms of choosing smoothing parameters. As
another example, it has been shown that the very
skewed log-normal density often can be well approx-
imated by a two- or three-component mixture of
normals, each with possibly different means and
variances.

Formal interest in finite mixtures dates back to at
least Karl Pearson’s laborious method-of-moments
fitting of a two-component normal mixture to data on
physical dimensions of crabs in the late 19th century.
The mathematical difficulties inherent in fitting mix-
tures have been greatly eased with the advent of
the Expectation-Minimization (EM) algorithm in the
1970s. This algorithm yields an iterative method for
computing maximum likelihood estimates (or very
accurate approximations thereof) in a general miss-
ing-data situation. As mentioned above, mixtures have
a natural missing-data interpretation and so the EM
algorithm, together with improved computing tech-
nology, has made the task of fitting mixtures models
to data much easier, leading to a renewal of interest 
in them.

Fitting Finite Mixtures 
Using Maximum Likelihood

The EM algorithm generates a sequence of parameter
estimates, each of which is guaranteed to give a larger
likelihood than its predecessor. It can be used when-
ever the original log-likelihood log fX(x;θ) is difficult
to maximize over θ for given x, but fX(x;θ) can be
expressed as the marginal distribution of X in a pair

(X,J) whose corresponding log-likelihoood log
fXJ(x,j;θ) is easier to maximize over θ for a given
x and j. Given a “current estimate” θ0, the next in
the sequence, θ1, is defined as the maximizer of the
EM-log-likelihood EM(θ; x), which is defined as
the conditional expectation of log fXJ(x,J;θ) over the
“missing data” J given X = x computed under θ0; that is,

EM(θ; x) = E log f (x,J;θ) where
J has density fJ|X(j | x;θ0) = fXJ(x, j; θ0)/fX(x;θ0).

It is guaranteed that log fX(x;θ1) ≥ log fX(x;θ0).
If we wish to fit a finite mixture

where the number of components k is known, the EM
algorithm works in almost the same way for either one
or both of the qjs or θjs unknown. We regard the xis as
the observed first members of random pairs
(X1,J1), . . . , (Xn,Jn), but the Jis are unobserved. We
can write the full data log-likelihood as

(here qj = P{Ji = j}). We now outline how to go from
an initial set of estimates q01, . . . , q0k, θ01, . . . ,θ0k to
the next in the EM sequence q11, . . . , q1k, θ11, . . . ,θ1k.
If some of these values are known, then they of course
remain unchanged. The first step is to compute the
posterior probabilities

πj|i = P{Ji = j | Xi = xi} computed under the q0js and θ0js

The EM-log-likelihood is then obtained by replac-
ing the 1{Ji = j}s in the full data log-likelihood with
the πj|is; note that the EM-log-likelihood thus obtained
separates into a term involving the qjs only and one
involving the θjs only.

= q0jf (xi;θ0j )
∑k

j=1 q0jf (xi;θ0j )
.

n∑

i=1

k∑

j=1

1{Ji = j} {
log qj + log f (xi;θj )

}

f (x;Q) =
k∑

j=1

qjf (x;θj )
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If the qjs are unknown, we maximize

with respect to the qjs; this is maximized at

simply the averages of the posterior probabilities over
the data.

If the θjs are unknown, we maximize

with respect to the θjs. Differentiating with respect to
each θj and setting to zero yields k weighted score
equations:

In many common models, these are easily solved.
For example, in one-parameter exponential families
of the form f(x;θ) = eθx–K(θ) f0(x) (e.g., normal with
known variance, Poisson), let θ̂ (t) be that value of θ
that solves K′(θ) = t. Then, for each j, one can explic-
itly find the EM update as

a known function of a πj|i-weighted average of the xis.

FFuurrtthheerr  IInnffeerreenncceess

Once the model has been fitted, further inferences
may consist of confidence intervals for or hypothesis
tests concerning the component parameters θj and/or
the mixing proportions qj. When the model is cor-
rectly specified (i.e., there really are k components
and all the qjs are positive), the parameter estimates
behave more or less in a standard fashion: They are

asymptotically normal with an estimable covariance
matrix, subject to the component densities f(x;θj)
being suitably regular. Hence, confidence regions can
be computed in a standard fashion, bearing in mind
the restrictions on the qjs: They are nonnegative and
add to 1. In addition, one should be aware that when
the weights qj are small or the parameters θj for two
or more groups are similar, there is a sharp loss of 
estimating efficiency as well as a good reason to be
doubtful of accuracy of asymptotic approximations.
This occurs because of the near loss of identifiability
of the parameters near the boundaries of the parame-
ter space.

Hypothesis tests are perhaps not so standard, at
least not for tests concerning the qjs. If one wishes
to test whether an estimate q̂ j is significantly differ-
ent from zero, the nonnegativity constraints have a
significant impact, at least when it comes to using
large-sample χ2 approximations to the p values.
Because such a hypothesis constrains a parameter to
be on the boundary of the parameter space, the
asymptotic distribution of twice the log-likelihood
ratio will be a mixture of χ2 distributions rather than
a pure χ2, assuming the model is otherwise suitably
regular. In such a case, a parametric bootstrap
approach can be used to obtain an approximate p
value.

AAnn  UUnnkknnoowwnn  NNuummbbeerr  ooff  CCoommppoonneennttss,,  
oorr  CCoommpplleetteellyy  UUnnkknnoowwnn  Q

If the number of components of a putatively finite
mixture is unknown, we are essentially on the same
footing as knowing absolutely nothing about Q, for
reasons we now explain.

For any given data set x1, . . . , xn with d ≤ n distinct
xis and any prespecified Q, no matter whether it is dis-
crete or continuous, so long as the likelihoods f(xi;θ)
are bounded in θ, we can find a discrete Q̃ with m ≤ d
support points such that Q and Q̃ provide exactly the
same density values at the observed data. That is, for
any mixing distribution Q, there is a possibly different
Q̃ yielding a finite mixture such that Q and Q̃ cannot
be distinguished, at least in terms of the data x1, . . . ,
xn. So it suffices to restrict attention to such Q̃ s.

θj1 = θ̂

(∑n

i=1 πj |ixi
∑n

i=1 πj |i

)

,

n∑

i=1

πj |i
∂log f (xi;θj )

∂θj

= 0.

k∑

j=1

n∑

i=1

πj |i log f (xi;θj )

q1j = n−1
n∑

i=1

πj |i ,

k∑

j=1

log qj

{
n∑

i=1

πj |i

}
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An implication of this, when the likelihoods are
bounded in θ, is that the maximum likelihood estimate
of Q over all distributions, which we denote by Q̂,
exists and is finite with at most d (the number of dis-
tinct xis) support points. So we need never leave the
realm of finite mixtures in this setting.

This is not to say, however, that an estimate of an
unknown k is readily available. The number of compo-
nents in Q̂ may be an overestimate in that some support
points (respectively mixing proportions) may be so
close together (small) that combining them into a single
point (removing them) hardly decreases the likelihood.
This and other issues related to trying to infer some-
thing about the number of components in a mixture,
like hypothesis tests concerning k, are difficult prob-
lems. Some problems are still open, and others have
solutions that are possibly too complex to be useful.

TThhee  NNoonnppaarraammeettrriicc  EEssttiimmaattee  ooff  Q

When the estimate Q̂ discussed above exists, it is
discrete with at most d support points. Hence, a strat-
egy for computing it is to try to fit a finite mixture
with d components using the EM algorithm. In many
situations, this yields a sensible result. More sophisti-
cated algorithms exist, however, that are related to the
following gradient function characterization.

The gradient function

measures the rate of increase in the log-likelihood if
we remove a small amount of weight from the mixing
distribution Q and put it at the point θ. Hence, for a
candidate estimate Q, if for some θ we have DQ(θ) >
0, we know that we can increase the log-likelihood by
putting some weight at θ.

In light of this, the following result is not surpris-
ing: If the nonparametric maximum likelihood esti-
mate Q̂ exists, then DQ̂(θ) ≤ 0 for all θ, and the support
points of Q̂ are included in the set of values θ where
DQ̂(θ) = 0. The fact that DQ̂(θ) > 0 for no θ makes
sense; moving mass around from Q̂ to any other θ
cannot increase the likelihood.

The nonparametric version of the mixture model
falls into the class of convex models, a subject with its
own independent literature. Often, convex models can
be written as mixture models. For example, a distrib-
ution function that is concave on the positive half-line
can also be written as a nonparametric mixture of the
form 

∫
f(x;θ) dQ(θ) with component density f(x;θ) =

1{0 < x < θ }/θ. One can deduce that the nonparamet-
ric likelihood estimator is the least concave majorant
of the empirical distribution function using the above
gradient characterization.

—Bruce Lindsay and Michael Stewart

See also Likelihood Ratio Test
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MIXTURES OF EXPERTS

It is often the case that the analysis of the values of a
set of random variables becomes simpler if one posits
that these variables are related to another set of vari-
ables, called latent variables, whose values are unob-
served. Consider, for example, the two-dimensional
data in Figure 1. This data set is complicated in the
sense that it is multimodal and, thus, cannot be sum-
marized by a standard distribution such as those com-
prising the exponential family. A way of simplifying
the analysis is by assuming that the distribution of these
data is a combination of two simple distributions,
namely, two Gaussian distributions. Each data item
was generated as follows. First, a value for a latent
variable was sampled from a Bernoulli distribution.
Next, if the latent variable was set to 0, then the data
item was sampled from the first Gaussian distribution

DQ(θ) =
n∑

i=1

[
f (xi;θ)

f (xi;Q)
− 1

]
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(e.g., with mean vector [3 3]T ); if the latent variable
was set to 1, then the data item was sampled from the
second Gaussian distribution (with mean vector
[7 7]T ). Although the value of the latent variable is not
observed, it is easy to use Bayes’s rule to compute the
distribution of the variable given the data item.

This model is a latent variable model known as a
mixture model. Mixture models provide a principled
way of combining two or more simple distributions
(e.g., unimodal distributions such as Gaussian distrib-
utions) into a single complicated (e.g., multimodal)
distribution. As this example illustrates, mixture mod-
els are “piecewise estimators” in the sense that dif-
ferent components are used to summarize different
subsets of the data. The subsets do not, however, have
hard boundaries; as discussed below, a data item might
be a member of multiple subsets simultaneously.

Mixtures-of-experts (ME) models are an extension
of mixture models. They differ from conventional
mixture models in that their mixture components are
conditional probability distributions. Consequently,
they are suitable for summarizing data sets in which
the distribution of output or response variables
depends on the values of input or covariate variables.
Such data sets arise in the context of regression or
classification tasks, for example.

ME models perform tasks using a “divide and
conquer” strategy—complex tasks are decomposed
into simpler subtasks. ME models can be character-
ized as fitting piecewise models to the data. The data
are assumed to form a countable set of paired vari-
ables X = {(x(t),y(t))}T

t=1, where x is a vector of explana-
tory variables, also referred to as covariates, and y is a
vector of responses. ME models divide the covariate
space, meaning the space of all possible values of the
explanatory variables, into regions, and then they fit
simple surfaces to the data that fall in each region.
Unlike many other piecewise approximators, these
models use regions that are not disjoint. The regions
have “soft” boundaries, meaning that data points may
lie simultaneously in multiple regions. In addition, the
boundaries between regions are themselves simple
parameterized surfaces whose parameter values are
estimated from the data.

ME models combine properties of generalized lin-
ear models with those of mixture models. Like gener-
alized linear models, they are used to model the
relationship between a set of covariate and a set of
response variables. Unlike standard generalized linear
models, however, they assume that the conditional
distribution of the responses (given the covariates) is a
finite mixture distribution. Because ME models
assume a finite mixture distribution, they provide a
motivated alternative to nonparametric models and
provide a richer class of distributions than standard
generalized linear models.

Mixtures-of-Experts Model

To define the mixtures-of-experts model, suppose that
the process generating the data is decomposable into a
set of subprocesses defined on possibly overlapping
regions of the covariate space. For each data item,
a subprocess is selected, conditional on the covariate
x(t), and the selected subprocess maps x(t) to the
response y(t). Specifically, for each covariate x(t),

• a label i is selected from a multinomial distribution
with probability P(i | x(t),V), where V = [v1, . . . , vI] is
the matrix of parameters underlying the multinomial
distribution
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• a response y(t) is generated with probability P(y(t) |
x(t),Ui, Φi), where Ui is a parameter matrix and Φi

represents other parameters, for i = 1, . . . , I.

To explicitly relate this approach to the generalized
linear models framework, it is supposed that the con-
ditional probability distribution P(y(t) | x(t),Ui, Φi) is a
member of the exponential family of distributions.
The expected conditional value of the response y(t),
denoted µµi

(t), is defined to be a generalized linear func-
tion f of x(t), as well as the parameter matrix Ui.
The quantities ηi = f –1(µµi) and Φi are, respectively, the
natural parameter and dispersion parameter of the
response’s distribution P(y(t) | x(t),Ui, Φi). The total
probability of generating the response y(t) from x(t) is
given by the mixture density

(1)

where ΘΘ = [v1, . . . , vI, U1, . . . ,UI, Φ1, . . . , ΦI]
T is the

matrix of the parameters. Assuming independently
distributed responses, the total probability of the
data set X is the product of T such densities, with
likelihood

(2)

Figure 2 presents a graphical representation of the
mixtures of experts model. The model consists of n
modules referred to as expert networks. These net-
works approximate the data within each region of the
covariate space: Expert network i maps its input, the
covariate vector x, to an output vector µµi. It is sup-
posed that different expert networks are appropriate
in different regions of the covariate space. Thus, the
model requires a module, referred to as a gating net-
work, that identifies for any covariate x the expert or
mixture of experts whose output is most likely to
approximate the corresponding response vector y.
The gating network outputs are a set of scalar
coefficients gi that appropriately weights the contri-
butions of each expert. For each covariate x, these
coefficients sum to one and are constrained to be

nonnegative. The total output of the mixtures of
experts model, given by

(3)

is a combination of the expert outputs for each x.
From the point of view of mixture modeling, we

identify the gating network with the selection of a par-
ticular subprocess. That is, the gating outputs gi are
interpreted as the covariate dependent, multinomial
probabilities of selecting subprocess i. Different
expert networks are identified with different sub-
processes, and each expert models the covariate
dependent distributions corresponding to its particular
subprocess.

The expert networks map their inputs to their out-
puts in a two-stage process. During the first stage,
each expert multiplies the covariate vector x by a
matrix of parameters. (The vector x is required to
include a fixed component of one to allow for an inter-
cept term.) For expert i, the matrix is denoted as Ui

and the resulting vector is denoted as ηηi, where

ηηi = Uix. (4)

µ =
n∑

i=1

giµi ,

L(Θ | X) =
∏

t

∑

i

P(i | x(t),V)P(y(t) | x(t),Ui,�i).

P(y(t) | x(t),Θ) =
∑

i

P(i | x(t),V)P(y(t) | x(t),Ui,�i),
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During the second stage, ηηi is mapped to the expert
output µµi by a monotonic, continuous nonlinear func-
tion f.

The selection of the nonlinear function f is based
on the nature of the problem. For regression problems,
f may be taken as the identity function (i.e., the
experts are linear) and the probabilistic component of
the model may be Gaussian. In this case, the likeli-
hood is a mixture of Gaussians:

(5)

The expert output µµi
(t) and expert dispersion para-

meter Σi are the mean and covariance matrix of expert
i’s Gaussian distribution for response y(t) given covari-
ate x(t). The output of the entire model µµ(t) is inter-
preted as the expected value of y(t) given x(t).

For binary classification problems, f may be the
logistic function

(6)

In this case, ηi may be interpreted as the log-
odds of “success” under a Bernoulli probability
model. The probabilistic component of the model
is generally assumed to be the Bernoulli distribu-
tion. The likelihood is a mixture of Bernoulli
densities:

(7)

The quantity µi
(t) is expert i’s conditional probabil-

ity of classifying the covariate x(t) as success, and µ is
the expected success of x(t). Other problems (e.g.,
multiway classification, counting, rate estimation,
survival estimation) may require other choices for f.
In all cases, the inverse of f is taken to be the canon-
ical link function for the appropriate probability
model.

The gating network also forms its outputs in 
two stages. During the linear stage, it computes the

intermediate variables ξi as the inner product of the
covariate vector x and the vector of parameters vi:

(8)

The ξi are mapped to the gating outputs gi during
the nonlinear stage. This mapping is performed by
using a generalization of the logistic function:

(9)

In the neural network literature, this function is
known as the softmax function. Note that the inverse
of this function is the canonical link for a multinomial
response model.

Maximum likelihood estimates of an ME model’s
parameter values can be obtained using the Expectation-
Maximization algorithm. Alternatively, Bayesian infer-
ence regarding an ME model’s parameters can be
performed using Markov chain Monte Carlo methods.
Furthermore, the basic ME model can be extended to a
hierarchical mixtures-of-experts model that divides
tasks into subtasks, and subtasks into sub-subtasks. The
recursive nature of this hierarchical extension makes it
an efficient and appealing model for many data sets.

—Martin A. Tanner and Robert A. Jacobs

See also Poisson Distribution

Further Reading

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., & Hinton, G. E.
(1991). Adaptive mixtures of local experts. Neural
Computation, 3, 79–87.

Jacobs, R. A., Tanner, M. A., & Peng, F. (1996). Bayesian
inference for hierarchical mixtures of experts with applica-
tions to regression and classification. Statistical Methods in
Medical Research, 5, 375–390.

Jordan, M. I., & Jacobs, R. A. (1994). Hierarchical mixtures of
experts and the EM algorithm. Neural Computation, 6,
181–214.

Peng, F., Jacobs, R. A., & Tanner, M. A. (1996). Bayesian infer-
ence in mixtures of experts and hierarchical mixtures of
experts models with an application to speech recognition.
Journal of the American Statistical Association, 91, 953–960.

gi = eξi

∑
j eξj

.

ξi = vT
i x.

L(Θ | X) =
∏

t

∑

i

g
(t)

i [µ(t)

i ]y(t)

[1 − µ
(t)

i ]1−y(t)

.

µi = eηi

1 + eηi
.

L(Θ | X) =
∏

t

∑

i

g
(t)

i |�i|− 1
2 e− 1

2 [y(t)−µ
(t)
i

]T �−1
i

[y(t)−µ
(t)
i

].

622———Mixtures of Experts



MODE

The mode is one characteristic of a distribution. It is
the most frequently occurring value in a group of
values. The mode can be an informative description
when one value occurs noticeably more often than
other values. In addition, the mode is the only mea-
sure of average, or central tendency, that is appropri-
ate for nominal (categorical) data.

For example, the age distribution in a group of 12
children is 3, 3, 4, 4, 4, 4, 4, 5, 6, 6, 7, and 8. To com-
pute the mode, the frequency of all occurring values
has to be calculated.

Value Frequency

Age 3 2

Age 4 5

Age 5 1

Age 6 2

Age 7 1

Age 8 1

The value that occurs most frequently is a mode
of the distribution. In this example, 4 is the modal age
of the children. The mode tells us
which age occurred more often than
others.

In distributions of continuous vari-
ables, the mode can be computed as
the midpoint of the histogram with the
highest peak. It can be useful to revert
to modal classes, sometimes called
“bins” (e.g., a class of values between
1.1 and 2, 2.1 and 3), which can sub-
sume the individual values 1.23, 1.76,
2.11, or 2.89. Note that this can cause
ambiguity, because the choice of class
boundaries can have a dramatic effect
on the mode.

A distribution that has two peaks is
called bimodal; when there are more
than two peaks, it is called multimodal.

For the distribution to be bimodal, the two peaks do
not necessarily have to be of equal height.

More About the Mode

• A histogram is an easy method to spot modes.
• If no value occurs more often than another in the

group of values, any and every value can be consid-
ered a mode of the distribution.

• The mode is independent of the range and the shape
of distribution of the represented values. Unlike the
mean, it is not affected by extreme values because it
does not take other values of the distribution into
account. If three people had a score of 3 on a test, the
mode is 3 regardless of the fact that other people’s
test scores ranged from 1 to 100 (because only one or
two people had the same score).

Analysis Using SPSS

Figure 1 is a simple output using SPSS’s descriptive
feature.

—Susanne Hempel

See also Average; Mean; Measures of Central Tendency;
Median
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Frequencies

Statistics

age

N Valid 12
Missing 0

Mode 4

age

Valid Cumulative
Frequency Percent Percent Percent

Valid 3 2 16.7 16.7 16.7
4 5 41.7 41.7 58.3
5 1 8.3 8.3 66.7
6 2 16.7 16.7 83.3
7 1 8.3 8.3 91.7
8 1 8.3 8.3 100.0

Total 12 100.0 100.0 100.0

Figure 1 SPSS Output
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MODERATOR VARIABLE

A moderator variable is an independent or predictor
variable (e.g., Z) that interacts with another indepen-
dent or predictor variable (e.g., X) in predicting
scores on and accounting for variance in a dependent
or predicted variable (e.g., Y). Note that the terms
independent variable and dependent variable are
appropriate only in the case of experimental
research. In nonexperimental research, the appropri-
ate, analogous terms are predictor variable and
predicted variable.

Moderator variables (referred to hereinafter as
moderators) imply conditional relations. That is,
the strength and/or form (e.g., linear, quadratic) of the
relation between X and Y varies as a function of
the value of the moderator, Z. There are many
examples of moderators in both theory and research in
such disciplines as psychology, sociology, manage-
ment, education, political science, biology, epidemiol-
ogy, and medicine. For instance, in industrial and
organizational psychology, extant theory specifies that
the relation between ability and performance is mod-
erated by motivation. The greater the level of motiva-
tion, the stronger the relation between ability and
performance.

By studying moderators, researchers learn about
how relations between variables of interest vary
across levels of the moderator. Interestingly, it has
been argued that the amount of progress in any dis-
cipline can be indexed by the degree to which its
theory and research have considered the role of
moderators.

An Important Distinction

A review of the literature reveals that moderators are
often confused with mediator variables (referred to
below as mediators). In contrast to the just noted role

played by moderators, mediators transmit the effects
of independent variables to dependent variables. This
is illustrated in the causal chain shown in Figure 1,
which depicts M as a mediator of the relation
between X and Y. There are many examples of medi-
ation. In psychology, for instance, stress (M) has been
shown to mediate the relation between stressors (X)
and strain (Y).

Strategies for Detecting Moderators

Over the years, a number of strategies have been
proposed for the detection and description of mod-
erators. Unfortunately, many strategies are unsound
(e.g., single group validity). In addition, others
(e.g., comparing correlation coefficients for artifi-
cially created subgroups) have lower levels of sta-
tistical power than others (e.g., moderated multiple
regression). In the interest of brevity, only three
strategies are described here: (a) the analysis 
of variance based test for an interaction, (b) the
multiple regression based test for an interaction,
and (c) the test for the homogeneity of correlation
coefficients.  

TThhee  AAnnaallyyssiiss  ooff  VVaarriiaannccee  SSttrraatteeggyy

A commonly used technique for testing interaction
effects in experimental research is analysis of variance
(ANOVA). Assuming a 2 × 2 experimental design
involving independent variables A (a1, a2, . . . aj) and
B (b1, b2, . . . bk), ANOVA tests for an interaction by
determining if the A × B effect explains variance over
and above the additive effects of A and B. The respec-
tive population and sample effect models for a two-
way ANOVA are as follows:

yijk = µ + αj + βk + (αβ )jk + eijk

yijk = y + aj + bk + (ab)jk + eijk
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In terms of the population model, a main effect of
A is implied by the rejection of the null hypothesis of
αj = 0, a main effect of B is indicated by the rejection
of the null hypothesis of βj = 0, and an interaction
effect is signaled by the rejection of the null hypothe-
sis of (αβ)jk = 0.

Figure 2 shows a plot of cell means for a 2 × 2
experimental design in which (a) there are main
effects for both A and B, and (b) there is an A × B
(interaction) effect. In terms of moderation, the effect
of A on Y is stronger at B2 than B1, as is suggested by
the fact that the line at B2 has a steeper slope than the
line at B1.

TThhee  MMooddeerraatteedd  RReeggrreessssiioonn  SSttrraatteeggyy

In nonexperimental research, moderated multiple
regression (MMR) is an appropriate and commonly
used strategy for testing moderating effects. Note that
MMR also may be used for the same purposes when a
researcher is dealing with data from an experimental
study. It merits adding that when MMR is used for the
analysis of data from nonexperimental research, the
term effects is used in a statistical (model testing)
sense, not to imply that causal relations are being
tested.

The MMR strategy relies on the test of a linear
model having terms for hypothesized main (X, Z) and
interactive (X × Z) effects. A sample-based regression

equation for a model involving predictors X and Z (the
hypothesized moderator) and a product term that
carries information about the interaction (XZ) is as
follows:

Ŷ = b0 + b1X + b2Z + b3XZ.

It is important that X and Z scores be centered (e.g.,
standardized) prior to the computation of the X × Z
product term. Moderation is signaled by the rejection
of the null hypothesis of β3 = 0. This hypothesis is
tested using the sample based regression coefficient
for b3 in the just noted equation.

The moderator (Z) can be nominal (k groups) or
continuous. When nominal, the moderator is repre-
sented in the regression equation uses by k – 1 dummy
variables. For example, if the moderator is sex (e.g.,
female, male), Z is represented in the regression equa-
tion by a single dummy variable. When Z is continu-
ous, it is represented in the regression equation by a
single variable.

Information produced by an MMR analysis can be
used to show the nature of the moderating effect.
Figure 3 illustrates the regression lines for a discrete
moderator. As can be seen in the figure, the slope of
the regression line is steeper when Z equals 1 than
when it equals zero. Figure 4 depicts the regression
surface for a continuous moderator. Regression lines
are shown for four illustrative levels of Z. Note that
the greater the value of Z, the steeper the slope of the
Y on X regression.
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TThhee  HHoommooggeenneeiittyy  ooff  
CCoorrrreellaattiioonn  CCooeeffffiicciieennttss  SSttrraatteeggyy

When a moderator is nominally scaled naturally
(e.g., fields of psychology, religious sects), moderat-
ing effects can be assessed by testing the equality of
XY correlation coefficients for k groups. The null
hypothesis is as follows:

H0 : ρ1 = ρ2 = ρ3 = . . . = ρk.

This hypothesis is tested using sample estimates of the
k population correlation coefficients. A moderating
effect is inferred when the test allows for the rejection
of the null hypothesis.

Some Other Considerations

This entry provides a brief summary of some major
issues surrounding the detection of moderators and
the description of moderating effects. There are a host
of other issues surrounding moderators. For example,
the ability to detect moderators is a function of such
factors as sample size, strength of moderating effect,
reliability of measures of the moderator, range restric-
tion on the moderator, and the interaction of several of
these factors. Readers are encouraged to learn more

about these issues before doing research
that involves moderators.

—Eugene F. Stone-Romero

See also Independent Variable; Tests of
Mediating Effects 
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MONTE CARLO METHODS

The probability of an obverse surfacing was estimated
by George Louis Leclerc, Comte de Buffon
(1707–1788), by flipping a coin 4,040 times. He
obtained 2,048 heads, which produced an estimate of 

= 50.69%. As part of a genetics experiment, Walter
2048

4040
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Frank Raphael Weldon (1860–1906) tossed 12 dice at
the same time, recorded the results, and repeated the
process 26,306 times. (Due to the tediousness and
error-prone method of physically counting the results,
Karl Pearson (1857–1936) supported the veracity of
the outcome with the χ2 test.) William Sealy Gosset
used repeated sampling with slips of stiff paper to find
the distribution of the correlation coefficient and to
support the development of the t distribution.

These experiments are examples of the Monte
Carlo method. It is a resampling approximation tech-
nique. The name is derived from the casinos of the
principality of Monte Carlo.

The utility and accuracy of the Monte Carlo method
was greatly enhanced with the advent of the computer
and software. Stanislaw Marcin Ulam (1909–1984)
wrote a Monte Carlo computer simulation of the soli-
taire card game in 1946. In a more important applica-
tion, along with his boss John (János) von Neumann
(1903–1957) and Enrico Fermi (1901–1954), Ulam esti-
mated the eigenvalues for the Schrödinger equation
(Erwin Schrödinger, 1887–1961) using Monte Carlo
methods. Subsequently, he developed a Monte Carlo
computer simulation of random neutron diffusion in
fissile material to construct dampers and shields for
the atomic bomb as part of the Manhattan Project.

Pseudo Random Number Generators

Initially, the basis of the Monte Carlo method was the
use of uniform pseudo random numbers on the inter-
val [0,1]. Today, Monte Carlo methods (plural) apply
to the use of any pseudo random number generator,
such as variates obtained from the exponential distri-
bution, or repeated sampling from large, real data sets.

Programming Environment

Since its commercial release by the IBM Corporation
in 1957, FORTRAN (FORmula TRANslator) remains
the fastest high-level programming language for
Monte Carlo simulation work. This is because execu-
tion time is an essential component for realistic, applied
problems. Higher level programming environments,

such as SAS IML, S+, and Lucent Technology’s R
(which is available at no cost from http://www.rpro
ject.org/), are serviceable for simple Monte Carlo sim-
ulations and classroom demonstrations.

Simulating Tossing a Die

A Monte Carlo computer solution easily simulates the
tossing of a fair die with a variate drawn from a uni-
form [0,1] pseudo random number generator and a
table of assigned outcomes, such as indicated in Table 1.
For example, if the value obtained from the generator
is .1770, it simulates the throwing of a fair die and
obtaining two spots. Counting the results of repeating
this simulation is tremendously faster and more accu-
rate than physically tossing a die.

Estimating the Area
of a Regular Figure

Consider the area (A) of a well-defined geometric
shape, such as that in the shaded area depicted in
Figure 1. The area of interest is bounded by the two
equations f(x) = x and g(x) = x2 over the interval (0, 1).

The shaded area can be estimated via the Monte
Carlo method by repeatedly drawing pairs (x and y) of
pseudo random uniform numbers. If x > y, the coordi-
nate pair (x, y) is below the line f(x) = x. If x2 < y, then
(x, y) is above g(x) = x2. If both conditions are true, the
ordered pair (x, y) falls within the shaded region. The
number of times the paired coordinate (x, y) falls in 
the shaded region, divided by the total number of
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Table 1 Simulation of a Fair Die Using Uniform
Variates on the Interval [0,1]

Outcome Assignment

.0000 − .1666 1 spot

.1667 − .3333 2 spots

.3334 − .5000 3 spots

.5001 − .6666 4 spots

.6667 − .8333 5 spots

.8334 − 1.000 6 spots

Source: Sawilowsky (2003, p. 219).



iterations, multiplied by the total area (which in this case
is 1.0), is an estimate of the area of the shaded region.

By inspection, f(x) bisects the unit square, meaning
that the area above or below the diagonal line f(x) = x
is .5. The Monte Carlo results indicate the area below
g(x) = x2 ≈ .33, and the shaded area (A) ≈ .17.

Estimating the Area 
of an Irregular Figure

The shaded area in the previous example is obtained
easily and precisely through elementary calculus. The
Monte Carlo method is useful, however, in determin-
ing the area of an irregular figure where the calculus
either proves difficult or is intractable. For example,
consider a unit square with an inscribed arbitrary
figure with a curvilinear boundary. The figure need
not be contiguous.

Draw a pair (x and y) of pseudo random uniform
[0,1] numbers to represent a coordinate pair (x,y). If it
falls within the inscribed figure, increase a counter (N′).
Repeat the process N times. The ratio N′_

N
is the Monte

Carlo estimate of the area of the inscribed figure.

Estimating Irrational Numbers

Monte Carlo methods can be used to estimate irra-
tional numbers, such as π. In 1777, Buffon posed a
problem pertaining to a surface marked with parallel

lines, with the distance d from each line. If a needle of
length L < d is dropped at random on the surface, the
probability that it will cross a line is

where θ is the angle between the needle and the lines.
This leads to a Monte Carlo estimate of π as

Buffon dropped a needle 2,000 times on the above-
described surface. Measurements yielded an estimate
for π = 3.143.

An estimate of π may be obtained more simply via
Monte Carlo methods on a computer by considering
Figure 2. It represents the upper right quadrant of a
Cartesian plane where a sector of a circle with the cen-
ter at (0, 0) has been inscribed in a unit square. Obtain
two pseudo random uniform variates on the interval
(0, 1), letting the first value represent the x coordinate
and the second value represent the y coordinate (x, y).

The radius of the circle is 1. The length L of the line
from the origin to the coordinate pair is determined by

π = 2nL
Md

.

π∫

0

Lsin θ∫

0

1
dπ

dAdθ,
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Source: Sawilowsky & Fahoome (2003, p. 120).
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Figure 2 Estimating π

Source: Sawilowsky & Fahoome (2003, p. 123).



the Pythagorean theorem L = . If the length is
less than the radius of 1, then the point lies within the
circle. Otherwise, it is outside the circle but within the
square.

The area of a circle, A = πr2, reduces to A = π when
the radius is 1. Because the sector represents 1/4 of a
circle, π can be estimated by multiplying this area by
4. As the number of repetitions (e.g., pairs of pseudo
random uniform variates) increases, the accuracy of
the estimate of π increases.

Monte Carlo Option 
in Statistics Software Packages

Modern statistical practice has been heavily affected
by the availability of high-speed computers that per-
mit hypothesis tests based on permutation methods.
However, many statistical problems remain beyond
current capabilities. An alternative is to conduct an
approximate permutation statistic, which is based on a
specific subset of all possible permutations.

Approximate permutation methods require keeping
a record of permutations that have been used in the
analysis, which can be as burdensome as performing
all possible permutations. An estimation procedure
that is easily implemented is a Monte Carlo option,
where a subset of permutations are randomly selected.
Although there may be some overlapping of selected
permutations, as the number of repetitions increases,
the impact of duplicated permutations becomes trivial.

Many statistical software packages have a Monte
Carlo option, such as StatXact, SAS, and SPSS.
Subroutines (called macros) can be written for
Minitab, and well as for spreadsheet software such as
Excel. For example, to compute a stratified 2 × C
Wilcoxon Mann Whitney test using the Monte Carlo
option in StatXact, select Statistics | 2 × C Tables |
Exact using Monte Carlo | OK.

Accuracy of Monte Carlo

Reconsider the problem of estimating the area (A) of
an irregular figure. As N → ∞ N ′_

N
→ Α. Because 

N must increase by a factor of 102 to obtain a new
significant digit. Sobol recommended the Monte
Carlo method where the desired level of accuracy is
no less than 5%–10%, because an increase in N by a
factor of 102 was somewhat daunting in the early years
of computing. However, increasing the number of rep-
etitions is trivial with modern computers and soft-
ware, permitting nearly any desired level of accuracy.

In general, stochastic (and nonstochastic) Monte
Carlo studies can be reduced to

where the random variable f(U) is the mean, and U =
(U[1], . . . ,U[n]) is an n dimensional uniform [0,1] vari-
ate. The standard error σn decreases with the square
root of the sample size n:

Thus, the utility of Monte Carlo methods becomes
evident in considering a family of all numerical meth-
ods in m dimensional space that are functions of r point
estimations (repetitions). The absolute errors decrease
at the rate of only r–1/m, whereas the Monte Carlo
method’s absolute error decreases at the rate of r–1/2.

Monte Carlo Study Versus 
Monte Carlo Simulation

Sawilowsky differentiated between a Monte Carlo
study and a Monte Carlo simulation. Determining
that the expected value E[x] of a uniform [0,1] con-
tinuous variable is 

∫
1
0 f(x)dx = .5 via a Monte Carlo

study can be accomplished by drawing N variates
from the uniform distribution, summing them, and
dividing the total by N. This does not necessarily sim-
ulate any real phenomenon. Because the probability
P[x] of two spots surfacing on a die is 1_

6
, drawing

variates from the uniform distribution and assigning
spots according to Table 1 is a Monte Carlo simula-
tion of throwing a die.

Four important characteristics of high-quality
Monte Carlo study are the following:

σn = σ√
n
.

θ̄ = 1

n

n∑

i=1

f (U [i]),

error ≈
√

A(1 − A)

N
,

√
x2 + y2
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1. The pseudo random number generator has desirable
characteristics (e.g., a long period before repeating
values).

2. The pseudo random number generator produces
values that pass tests for randomness.

3. The number of repetitions of the experiment is suffi-
ciently large to ensure accuracy of results.

4. The proper sampling technique is used (e.g., sampling
with replacement vs. sampling without replacement).

When Monte Carlo methods are used in simulation
work, the following two characteristics must be
added:

1. The algorithm is valid.

2. The simulation is realistically modeled.

Applications of 
Monte Carlo Simulation

A Monte Carlo simulation of the probability of sur-
viving a heart attack under various conditions was
developed by Sawilowsky and Fahoome. A population
of heart attack victims was identified in a certain
county of a midwestern state of the United States.
Information was collected on their age, where the
heart attack occurred, who was present when the heart
attack occurred, if the witness to the event was trained
in cardiopulmonary resuscitation (CPR), if CPR was
administered, if the heart presents a rhythm conducive
to electric shock, decrease in survival rate per minute
after incident to receiving shock, and the length of
time between the attack and when the patient received
electric shock treatment by medical personnel.

Probabilities for these conditions were obtained
from published sources in the county where the study
was undertaken. A software program was coded in
Fortran 90 to conduct a Monte Carlo simulation of a
heart attack victim’s probability of survival based on
the conditions surrounding the incident. The simula-
tion provides estimates of survival rates when any of
the above mentioned criteria are modified.

The plethora of applications using Monte Carlo
simulation is very rich. A small subset of examples

from the applied literature include annealing,
consumer behavior of switching brands, controlling
dam water, cooling temperature of coffee, customer
product ordering behavior, development of ability to
perform push-ups, ecology of the Kaibab Plateau on
the rim of the Grand Canyon, electromagnetism, esti-
mating migration patterns, expected waiting times,
genetic linkage, growth of yeast in a sugar solution,
heroin addiction’s impact on a community, image pro-
cessing, inventory control, management planning, mass
supply systems, material or time delays, projection of
discovery of natural gas reserves, quality and reliabil-
ity of products, queuing sale and consumption of com-
modities, systems at a 2-minute car wash, short-term
forecasting, and urban growth. The list is growing.

—Shlomo S. Sawilowsky

See also Conditional Probability; Probability Sampling
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MOSAIC PLOTS

Mosaic plots were introduced by Hartigan and Kleiner
as a means of visualizing contingency tables. As the
name suggests, mosaic plots are pieced together from
smaller rectangular tiles. Each tile corresponds to one
cell of a contingency table. Its area is proportional to
the size of the cell, and shape and location are deter-
mined during the construction process. We will
explain the construction process using data from the
Titanic (see Table 1 for the numbers). In this data set,
age, gender, and passenger information is available
for all 2,201 persons on board the MS Titanic on her
fatal maiden voyage. Additionally, survival informa-
tion is recorded for each person. We start with a sin-
gle variable: Figure 1 shows a bar chart of Survival.
The bars are colored according to the outcome. On the

right, a spineplot is drawn. Spineplots are variations of
bar charts, where the width instead of the height of
each bar is proportional to the number of cases.

Additionally, the coloring shows survival within
class. We can see that survival rates go down from left
to right, that is, first class passengers had the highest
rate of survival (about 62%), whereas third class pas-
sengers and crew members had the lowest survival rate
(about 24%). The spineplot of Figure 1 is an example
of a one-dimensional mosaic plot. Mosaic plots can
show many variables and are limited only by practical
issues, such as screen space and interpretability.

To make the mosaic of Figure 1 two-dimensional,
we can include the information on age (classified as
adult or child) and draw two separate mosaic plots on
top of each other, as shown in Figure 2.

The top row in this mosaic plot shows survival
rates of children within the classes. It becomes appar-

ent that there were no children in the
crew—obviously a structural zero.
There also were no deaths in the first
two passenger classes. We can now
incorporate gender in the mosaic plot
by placing the mosaic of Figure 2 for
each gender separately side by side,
as is shown in Figure 3.

Survival rates by class, age, and
gender are shown. Overall, a lot
more men were on board than
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Table 1 Titanic Data Set

Child Adult

Sex Survived 1st 2nd 3rd Crew 1st 2nd 3rd Crew Total

Male No 0 0 35 0 118 154 387 670 1364
Yes 5 11 13 0 57 14 75 192 367

Female No 0 0 17 0 4 13 89 3 126
Yes 1 13 14 0 140 80 76 20 344

Total 6 24 79 0 319 261 627 885 2201
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women. Survival rates for women are significantly
higher than for men. The pattern within class also
looks different for women than for men. Women have
a strong class/survival association: With higher class,
survival improves dramatically. This is not true for

men. Survival rates of men in the second
passenger class are curiously low and
have led to many speculations.

The construction of mosaic plots is
strictly hierarchical, which emphasizes
the order of variables. Figure 4 shows
the same data as the mosaic in Figure 3
with different order of the variables.
The variables of class and gender are
exchanged. This enables us to better
compare the differences in survival rates
between female and male persons on
board.

Properties

Mosaic plots have excellent mathemati-
cal properties:

• The cells’ sizes are visual estimates of the joint dis-
tribution of all the variables.

• Various conditional distributions are preserved.
• Links to log linear models have been established.
• Extensions of mosaics include tree maps and trellis

displays.

—Heike Hofmann

Further Reading

Cleveland, W. S., & McGill, M. E. (Eds.).
(1988). Dynamic graphics for statistics.
Pacific Grove, CA: Wadsworth.
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views of categorical data. Journal of 
Computational and Graphical Statistics, 8,
373–395.
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the loss of the S.S. Titanic: The official
government enquiry. New York: Picador.
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MOVING AVERAGE

A moving average is a simple but powerful technique
that can be used on time series data or any data
recorded in equal intervals, such as time. The history
of moving averages goes back at least to 1924, well
before computers or hand calculators were in exis-
tence. In its simplest form, it is a progressive and
repetitive calculation of simple averages and does not
require sophisticated computation power. However,

using a computer to do the simple calculations and to
draw related graphs allows the user to focus on the
interpretation of the results. The moving average has
uses limited only by the imagination of the user.

It has been used as a technique to smooth data to
reveal a trend and as a forecasting technique. It is part
of the ARMA methodology for forecasting, where the
MA stands for moving average The use in the sophis-
ticated ARMA forecasting process is more of a histor-
ical interpretation than an actual implementation.

The theory behind moving averages allows free
interpretation and application with few details relat-
ing to theory associated with underlying statistical
assumptions. It should be viewed as a descriptive sta-
tistical technique with many potential theoretical and
practical uses. Because it is a very intuitive and prac-
tical technique, it is best explained by example.

Moving Average 
Computation and Use

The software used for illustration purposes is Minitab,
a well-known, easy-to-use, and reliable software
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package that runs on a PC. To start out, consider the
following ordered data that were created to illustrate
the calculation of a moving average (Figure 1).

The order refers simply to the fact that the data are
in order. If the data are time series, then the order vari-
able would be time at equally spaced intervals.

Because moving averages are often used to smooth
data in the sense of eliminating nonmeaningful irreg-
ularities in the data, the best practice is to first plot the
data to see what they look like. The questions that a
plot can answer are, Are there any irregularities in the
data that are not meaningful? Do the data display
some sort of trend that might be meaningful?

The plot in Figure 2 was produced in Minitab by
simply selecting Graph from the main menu and then
Time Series Plot. Notice that the data have a slight
upward trend with one valley and a couple of peaks.

To explore a moving average, consider a five-term
moving average; the number of terms in the moving
average is usually determined by trial and error if no
other insight is available.

The hand calculations for the first term of the mov-
ing average are to simply average the first five data
points:

where MA(1) is the first smoothed value and data(n)
is the data column value at Period or Order 1.

The second smoothed value is

Thus, the calculations continue by shifting down
one step and computing the average of the next five
terms—thus the term moving average.

MA(2) =
data(2)+data(3)+data(4)+data(5)+data(6)

5

=
3+5+7+8+9

5
=

33
5

= 6.6.

MA(1) =
data(1)+data(2)+data(3)+data(4)+data(5)

5

=
2+3+5+7+8

5
=

25
5

= 5,
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When does the calculation stop? When there are no
longer five terms to average.

Once the moving average is computed, it needs to
be associated at some point with the original data.
There are several ways to do this depending on what
the purpose of the moving average is.

One practice is to place the new moving average
series of numbers one step beyond the period of the
average. Thus, in the above example, MA(1) would be
positioned at Order 6.

Another practice, which is, in fact, called that, is to
center the moving average, so in the case of a five-
term moving average, data point MA(1) would be
moved to Order 3.

To see what this does in practice to the smoothing
characteristics of the moving average, Minitab is used
to compute both the five term moving average and the
five-term centered moving average. Figure 3 shows
the results of those calculations.

Note that the calculated moving averages are the
same for the centered and noncentered moving aver-
ages. The only difference is with what order the series
is associated. A comparison graph (Figure 4) is useful
in seeing the implications of the position of the mov-
ing average.

It is clear from the graph that the moving average
has indeed smoothed the original data.

If the data represented a cycle—repeating
pattern—then this smoothed version might be more
representative of the true pattern. If the intent of
smoothing the data is to use it to forecast a single
future value, then the noncentered moving average
would most likely be preferred. A naive forecasting
rule, for one period beyond the actual data, is to use
the last smoothed value. In this case, the forecast for
Period 21, which is a future value with no data, is 5.4,
the last smoothed value.

Suppose that the intent of smoothing the data is
to draw out the simple upward trend. The question
then is, What period of moving average is best? The
answer is usually generated by trying various orders
or periods (vary the number of data points averaged)
of moving averages. Figure 5 shows the results of this
investigation.
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Figure 3 Worksheet

Figure 4 Time Series Plot of Data, MA Period 5,
Centered MA Period 5



The first graph shows a two-period moving average
with forecasts generated three periods ahead. Note
that the moving average is less smooth for two terms

than with five. Also note that the forecasts generated
by Minitab for three periods ahead are basically
highly related to the last smoothed value. Also note
that the three forecasts are identical. Thus, it can be
correctly concluded that forecasts beyond one period
from the original data might become less accurate.
The 95% prediction interval is quite wide and indi-
cates that the forecasts are highly variable.

Next, look at the result of using a very large
number of terms in the moving average. A first guess
might be that it should be smoother because it aver-
ages over many more periods. (See Figure 6.)

As might be expected, the larger period moving
average results in a much smoother line, which is
reflecting the trend of the data without the peaks and
valleys of the original data. The forecasts for three
periods ahead are still the same values for all three
forecasts; a moving average is not considered useful
for more than short term forecasts.
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If the goal of using a moving average is to simply
smooth the data to pull out the trend, then that has cer-
tainly happened with these data. The moving average
line is seen to be a very linear trend that is increasing
slightly.

To get an overall look at the result of adding
more terms to the moving average, Figure 7 is
useful.

The trend is obviously most appar-
ent when many terms, 10, are aver-
aged. The centered moving average 
is very good at simply smoothing 
the existing series and representing
the smoothed data consistent with the
original data—that is, not shifted.
What is correct? Well, there are no
incorrect or absolutely correct results.
It depends on the use of the moving
average. If the goal is to smooth the
data to help interpretation or to fit
future models, then centering the data
is best. If the goal is to produce a gen-
eral trend in the data, then a higher
order number of terms is most likely
the best solution.

Applications

Aside from a simple technique to smooth the data or
to smooth and produce a simple trend, what are mov-
ing averages good for?

There is a classical result that has proved by usage
to be very profound for moving averages. The typical
application has been in the stock market, where it is
desirable to predict changes over time in the upward
or downward direction. Although complex statistical
models have some use in predicting instantaneous
changes (turning points) in stock market performance,
few simple techniques can give advice on price move-
ments. Moving averages have been used to give stock
performance information with relatively little techni-
cal analysis or input.

Consider the following moving average that repre-
sents a 50- and 100-period moving average on stock
price (Figure 8).

When the stock price falls below the 50- or 100-
day moving average, it is recommended that the stock
owner sell. Note that if the owner had sold at the
point at which the stock went below the moving aver-
age, a long period of low prices would have been
avoided.
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When the stock goes above the 50- or 100-period
moving average, the stock may be purchased with the
hope of a long upward trend, as shown on the graph.

How does the individual use this information? The
investor can update and plot the moving average, usu-
ally over a 49 or longer (days or months as appropri-
ate) period of time. This long period will give a
general trend for the data, as seen in the previous
example. It is easy to update a long-term moving aver-
age one day at a time because one has to remove only
the first number and add the last new period to the
total and divide by the number averaged. Dedicated
investors have used this type of updating along with
hand plotting of the averages for many years without
calculators or computers. The rule of thumb is that
when the stock price drops below the long-term mov-
ing average, sell, and when it goes above the long-
term moving average, buy. Although this will hardly
ever hit the exact turning points in stock prices, over
the long term, it has proved to be a very good decision
rule that is easy to use. It works especially well with
mutual funds, which are a mixture of stocks.

How would these results apply to other ordered
data? It might prove very useful in evaluating educa-
tion systems. Some states require all students in grade
school to take end-of-year performance tests. Over a
period of time these tests could be recorded and
smoothed. The moving average could be used to show
trends in the data: A long-term moving average could
be used to indicate potential trouble when scores fall
below the moving average, or improvement when
scores rise above a moving average.

Another example might be in monitoring student
weight gain or loss as related to the removal or addi-
tion of soft drink dispensing machines in public
schools. Suppose student average weight is recorded
for several months and years for a particular school.
Then suppose at some point in time, soft drink
machines were introduced in the school. If the average
student weight went above the long-term moving
average around the point that the soft drink machines
were introduced, that would be an indication that they
might be contributing to weight gain among students.
If soft drink machines are removed from schools and
the average weight goes below the long-term moving

average, that would supply evidence that the program
was working.

Conclusions

A moving average is a simple statistical method that
can prove very useful in monitoring and predicting
data that are recorded in an ordered or time based
manner. The basic calculations can be done easily by
hand but are also aided by computer calculation. It is
a technique that can deal with time or ordered data in
an intuitive manner and should be part of the data
analysis toolbox of anyone involved in working with
data. It has few theoretical restrictions, and its appli-
cation is limited only by the ingenuity of the user.
Several statistical software packages that include
spreadsheets can compute moving averages, but if a
computer isn’t available, they can be computed by
hand.

—Marietta J. Tretter

See also Mean; Measures of Central Tendency

Further Reading

Hanke, J. E., & Wichern, D. W. (2005). Business forecasting.
Upper Saddle River, NJ: Pearson.

Kendall, M. G., & Stuart, A. (1966). The advanced theory of
statistics, Vol. 3. New York: Hafner.

Moving averages: http://www.investopedia.com/university/
movingaverage/default.asp

MULTICOLLINEARITY

Multicollinearity is a phenomenon that may occur in
multiple regression analysis when one or more of the
independent variables are related to each other. The
relationship between the independent variables could
be expressed as near linear dependencies.

A simple form of multicollinearity could be due to
high correlation between some pair(s) of independent
variables. Assuming that there are five independent
variables, X1, X2, X3, X4, and X5, that are being used to
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develop a model for the dependent variable, Y,
suppose that the correlations between X2 and X3, and
between X4 and X5, are high (≥ 0.90). In such a case,
maybe one of the two variables X2 or X3, and one of
the two variables X4 or X5, could be used in the model.
The rationale is that there is very little independent
contribution of the variable that is left out, in the pres-
ence of the one that is retained, in explaining the vari-
ation in the dependent variable.

More complex forms of multicollinearity may exist
when three or more independent variables are nearly
linearly related, even though there might not be a high
pair wise correlation among them. This could be rep-
resented by the approximate relation X1 + 2X2 – X3 � 0.

Effects of Multicollinearity

The impact of multicollinearity on the development
of a multiple regression model and drawing infer-
ences from it is multifaceted. First, the variance
of the estimated model coefficients is large, which
leads to their instability. Small perturbations of the
observations and/or omission of an independent vari-
able from a large set of independent variables may
cause large fluctuations in the estimated regression
coefficients.

Second, the signs associated with the regression
coefficients may be somewhat contrary to what is
expected, given the setting of the problem. For
example, in predicting resource requirements (Y),
using production quantity (X1), direct labor (X2), and
raw material (X3), it is normally expected that the
coefficients associated with X1, X2, and X3 will be pos-
itive. However, given that X1 and X2 are highly corre-
lated, and so are X1 and X3, it is possible for one of the
estimated coefficients to turn out negative.

Third, it is possible for the full model to be statis-
tically significant, even though none of the individ-
ual coefficients is significant. Thus, all of the
independent variables, taken collectively, may pro-
vide a good fit to the response variable, leading to
a small value of the residual sum of squares. On
the contrary, individual coefficients are estimated
poorly. In the presence of multicollinearity, a given
regression coefficient may not reflect the inherent

effect of the particular regressor. It is influenced by
the variables that are in the model.

Detection of Multicollinearity

All of the three possible effects, previously dis-
cussed, may be examined closely for the possible
presence of multicollinearity. These are as follows:
high pairwise correlation among some of the inde-
pendent variables; wide confidence intervals associ-
ated with the regression coefficients; opposite sign
of estimated regression coefficients based on theo-
retical knowledge of the problem; nonsignificant
tests on individual coefficients while the model as a
whole is significant; and large changes in the esti-
mated coefficients when an observation is slightly
changed or deleted, or when an independent variable
is added or deleted.

Another method of detecting multicollinearity is
through computation of the variance inflation factors
(VIFs). A VIF measures the degree to which an inde-
pendent variable is related to the other independent
variables. Consider regressing the independent vari-
able (Xk) to the other independent variables (X1,
X2, . . . Xk−1, Xk+1, . . . Xp). The variance inflation factor
for Xk is given by

where

p represents the number of independent variables and

R2
k is the coefficient of multiple determination when the

variable Xk is regressed on the other remaining indepen-
dent variables.

It is observed that when R2
k = 0, implying that Xk is

not linearly related to the other independent variables,
(VIF)k is equal to 1. As R2

k becomes large and closer
to 1, (VIF)k becomes large. In the extreme case when 
R2

k = 1 (i.e., Xk is perfectly linearly related to the other
independent variables), (VIF)k is unbounded. The
largest (VIF)k, among all the regressors, is frequently
used as an indicator of the degree of multicollinearity.
As a rule of thumb, a maximum (VIF)k of 10 or

(VIF)k = 1
1 − R2

k

, k = 1, 2, . . p,
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more is considered an indication of the presence of
multicollinearity.

Remedial Measures 
for Multicollinearity

On examination of the correlation matrix of the inde-
pendent variables, one or more independent variables,
which are highly correlated to others, may be dropped
from the model. This measure has some drawbacks.
First, if data have been collected on all the regressor
variables, by dropping one or more of these, no direct
information is obtained about the dropped variables.
Furthermore, the magnitude of the regression coeffi-
cients retained in the model is affected by the corre-
lated regressors not included in the model.

In polynomial models, expressing the independent
variable in the form of deviation from the mean may
reduce multicollinearity among the first, second, or
higher order terms.

Another approach could be to use a biased estimation
process compared to least squares regression. In this
context, ridge regression is an alternative. Although it
introduces some bias in the estimator, this procedure has
a much smaller variance. The net impact, as measured
by the mean squared error, which is the expected value
of the squared difference between the estimator and the
true parameter value, could be smaller. The mean
squared error can be expressed as the sum of the vari-
ance and the squared bias of the estimator. For an unbi-
ased estimator, such as the least squares estimator, the
mean squared error equals the variance of the estimator.

—Amitava Mitra

See also Assessment of Interactions in Multiple Regression;
Curvilinear Regression; Partial Least Square Regression;
Regression Analysis

Further Reading

Myers, R. A. (2000). Classical and modern regression with
applications. Boston: Duxbury.

Multi-collinearity—Variance inflation and orthogonalization
in regression: http://creative-wisdom.com/computer/sas/
collinear.html

MULTIDIMENSIONAL

APTITUDE BATTERY

The Multidimensional Aptitude Battery (published by
Sigma Assessment Systems) was developed by
Douglas N. Jackson and is currently in its second edi-
tion (MAB-II). Following the tradition established by
Robert Yerkes during World War I with the Army
Alpha and Beta for testing literate and illiterate
recruits, respectively, the MAB categorizes abilities
into verbal and nonverbal components. The MAB con-
tains five verbal subtests (Information, Compre-
hension, Arithmetic, Similarities, and Vocabulary) and
five nonverbal subtests (Digit Symbol, Picture
Completion, Spatial, Picture Arrangement, and Object
Assembly). Each of these 10 subtests is in a five-point
multiple-choice format and has a 7-minute time limit.
With instructions and practice items, the MAB-II takes
about 90 minutes to complete. With the exception of
Digit Span, which Wechsler adapted from the Binet,
the MAB contains the same subtests as included in the
Wechsler Bellevue, Wechsler Adult Intelligence Scale
(WAIS), and Wechsler Adult Intelligence Scale
Revised (WAIS-R). Correlations between correspond-
ing subtests of the MAB and WAIS-R are of the same
order of magnitude as the correlations between sub-
tests of the WAIS and WAIS-R.

Subtest raw scores are converted to scaled scores
with a T score metric (i.e., mean of 50, standard devi-
ation of 10). The five verbal and five nonverbal scale
scores are summed to produce a sum of scale scores
for Verbal and Performance IQ, respectively. The sum
of all 10 scale scores is used to calculate Full Scale
IQ. Age groups for obtaining the three IQ scores are
categorized into 16–17, 18–19, 20–24, 25–34, 35–44,
45–54, 55–64, 65–69, and 70–74. These nine age
groups are also used to obtain age corrected scale
scores for the 10 subtests. The three IQ scores have a
mean of 100 and a standard deviation of 15.

The MAB-II can be administered in paper and pen-
cil format with reusable question booklets and answer
sheets to individuals or to groups. Where large vol-
umes of clients are assessed comprehensively (i.e., 10
subtests) in contexts such as employee selection or
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research, group administration makes such testing
feasible. There are separate question booklets for the
verbal subtests and performance subtests. In addition
to hand scoring and mail in scoring, computerized
administration with automated scoring and reporting
is also available. Reports generated by the software
are either clinical with some limited interpretation 
or ASCII (text) data file reports for research. The
MAB-II is available in French and English.

—John R. Reddon

See also Ability Tests; Aptitude Tests; Intelligence Quotient;
Intelligence Tests 

Further Reading

Bracy, O. L., Oakes, A. L., Cooper, R. S., Watkins, D.,
Watkins, M., Brown, D. E., et al. (1999). The effects of
cognitive rehabilitation therapy techniques for enhancing
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grade children. International Journal of Cognitive
Technology, 4, 19–27.
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personality using Jackson’s Multidimensional Aptitude
Battery and Personality Research Form. In R. D. Goffin &
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ment: Honoring Douglas N. Jackson at seventy (pp.
195–212). Norwell, MA: Kluwer.

Multidimensional Aptitude Battery-II: http://www.sigmaassess
mentsystems.com/assessments/mab.asp

MULTIPLE AFFECT ADJECTIVE

CHECKLIST–REVISED

The Multiple Affect Adjective Checklist–Revised
(MAACL-R, published by EdiTS/Educational and
Industrial Testing Service) is a trait state test for the
measurement of negative and positive affects. Both
forms consist of 132 adjectives, but the instructions
for the state form are to “check all adjectives which
describe how you feel ‘now’ or ‘today,’” whereas
those for the trait form say “check all the adjectives
which describe how you ‘generally feel.’” Scales for
both forms are provided for anxiety (A), depression

(D), hostility (H), dysphoria (Dys = the total A + D + H),
sensation seeking (or surgency) affect (SS), and total
positive affect (PASS = PA + SS). The negative affect
scales were originally developed using an empirical
item selection method, but the scales in the revised
version are a result of factor analyses of both state and
trait forms. In order to control acquiescence response
set (total number of items checked), T scale norms are
provided for each of three ranges of numbers checked.
Norms are available for general adult, adolescent, col-
lege student, and elderly populations. The general
adult norms are based on a national representative
sample. There are also scales for random responding
and intentional response manipulation (faking). The
median reading level for the 132 adjectives is sixth
grade, and 90% of the adjectives in the scales are at or
below the eighth grade level.

Reliability

Internal (alpha) reliabilities have been determined
within a wide variety of populations for both the state
and trait forms. These reliabilities are high; most are
.80 or higher. The highest reliability is for the Dys
scale, which is .90 or higher in nearly all of the sam-
ples for the state form and all for the trait form. In
conformance with the trait state distinction, retest reli-
abilities are expected to be high for the trait form but
not for the state form. The state form of the
PA scale is the only one showing low but consistently
significant retest reliability. In contrast, retest reliabil-
ities for the trait are moderately high even after
an 8 week interval. Correlations between correspond-
ing state and trait scales on a single day are significant
but low, with the exception of the PA scale, which is
high. Aggregated or averaged state scores over a few
days to a week correlate more highly with trait scores.

Validity

The state scales have been used to measure change in
many situations, including examination induced anxi-
ety, aggression provocation, group therapy, listening
to music, exercise, videos, and Air Force basic train-
ing, where it predicts discharge status after training.
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The trait form correlates with many other scales for
emotions, and peer and observer ratings. In a clinical
diagnostic study, a combination of scales differenti-
ated normals, schizophrenics, depressives, and
patients with anxiety disorders.

—Marvin Zuckerman

Further Reading

Lubin, B., Zuckerman, M., Hanson, P. G., Armstrong, T.,
Rinck, C. M., & Seever, M. (1986). Reliability and validity
of the Multiple Affect Adjective Check List–Revised.
Journal of Psychopathology and Behavioral Assessment,
8(2), 103–117.

EdiTS/Educational and Industrial Testing Service: http://www
.edits.net

MULTIPLE-CHOICE ITEMS

The multiple-choice (MC) item is the most common
format for questions on educational tests. MC items
are also used in other domains, including personality,
interest, and attitude inventories and surveys. There
are several forms of MC items and many guidelines
available to item writers. Thomas Haladyna has pro-
vided leadership in this area, promoting a systematic
approach to the development and validation of MC
items.

In the design of any measurement instrument, two
primary issues must be addressed early: what to mea-
sure and how to measure it. Both questions inform the
choice of item format. Clearly, the construct being
measured and the nature of the cognitive task required
to measure the construct will play a role in deciding
whether the MC format is appropriate.

The strengths of MC items were first debated in
the literature shortly after the introduction of the
Army Alpha test, a recruit screening and classifica-
tion instrument used during World War I. Previously,
aptitude and intelligence related measurement proce-
dures included interactive tests administered one on
one. It was proposed that test items could be con-
structed to be self-administered and yield sufficient

information about knowledge, skill, or level of ability
or some other trait. The MC item allowed test devel-
opers to cover a wide range of content and skills and
design instruments that could be group administered.
With advances in machine scoring during the 1950s,
the MC item quickly became the predominant testing
format.

Measurement specialists now caution test designers
and argue that validity, not convenience, should deter-
mine what types of item formats should be employed
on a given measurement instrument. The objective is to
craft the item in order to obtain the best measure of the
construct or cognitive task of interest. The MC item
offers a great deal to test designers because of its flex-
ibility. However, as with any measurement procedure,
MC items can be poorly written, leading to confusion
and misinterpretation by the test taker, and thus scores
of limited reliability and validity.

Forms of MC Items

The typical MC item consists of a stem and three or
more options, where one option is the correct option
and the others are incorrect options or distractors. The
stem is the question or opening statement that is
answered or completed by the options. Consider the
following item:

1. What ratio of variances describes the reliability of
test scores?
A. Errors of measurement and observed scores
B. Errors of measurement and true scores
C. True scores and observed scores

The question “What ratio of variances . . .” is the
stem. The three choices that follow (A, B, and C) are
the options. Option C is the correct option, and
Options A and B are distractors or incorrect options. 
It is possible to construct this item as a completion
statement:

2. The reliability of scores is regarded as the ratio
between the variances of
A. errors of measurement and observed scores.
B. errors of measurement and true scores.
C. true scores and observed scores.
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Both forms of the typical MC item have gained
support from the measurement community, and
neither is viewed as yielding greater validity than the
other. However, there is some preference for the com-
plete question format because the stem is more likely
to contain the main idea of the item (an important
guideline for MC items).

A slight variant of the typical MC item is the alter-
nate choice item. This is identical to the typical MC
item except that there are only two options. Another
variant is the multiple true false, where there may be
many options and each is evaluated in terms of being
true or false. Another MC format is the complex MC
or Type K format. In this format, there is a stem fol-
lowed by potential answers, followed by a set of
options to which the test taker responds. Consider this
example:

3. When considering the need to design a test that will
cover a lot of content in a brief period of time, which
of the following item types could be employed 
effectively?
1. Completion items
2. Essay items
3. Multiple-choice items
4. True-false items

A. 1 and 2
B. 1, 3, and 4
C. 3 and 4

In this example, the options (A, B, and C) are com-
posed of combinations of the potential answers to the
question (1 to 4). This MC item format tends to be
more difficult and is commonly found in the health
sciences, where the object is to differentiate the appro-
priateness of various combinations of options (for
example, combinations of health related symptoms).

On the question of optimal number of options,
there is substantial evidence suggesting that for most
purposes and in most settings, three options are opti-
mal. The evidence suggests that three option items
provide no greater chance of correct guessing than
items with more options because, more so than not,
additional options are less plausible and are not con-
sidered by most students, and that few, if any, individ-
uals actually engage in blind guessing. Empirical

research has provided evidence that few four- or five-
option items have that many functional distractors,
essentially making the item a three-option or, in many
cases, a two-option item. In addition, item writing
effort and time can be reduced and more three-option
MC items can be asked, allowing the test designer to
include more items and improve content coverage.

MC Item Writing Guidelines

Guidelines are available for the MC item writer that
consist of issues related to the stem, the options, and
other general editorial and content concerns. These
guidelines are covered to various extents by mea-
surement textbook authors. Haladyna provides the
most thorough review of guidelines available. Some
of the guidelines include concerns about clarity of
word choice and writing style. Content concerns
include the idea that each item should regard a single
idea on an important topic that is not opinion based
(unless the focus of the item regards a specific opin-
ion). Guidelines regarding the stem focus on the
stem containing the main idea of the item without
excessive wordiness and the selective use of format-
ting to bring attention to words that might be missed,
such as NOT.

Most of the available guidelines cover issues
related to the options. This points to the relative
importance that most measurement specialists place
on the role of the options in the quality of the item.
Options should be independent, similar in content and
grammatical structure, equal in length, and free of
clues to the correct option (e.g., options that resemble
or contain words also present in the stem). In most
cases, options such as “none of the above” and “all of
the above” should be avoided, as should negative
options or options containing words such as “not.”
Perhaps most importantly, only one option should be
correct, and distractors (incorrect options) should be
plausible. One of the best ways to achieve this is to
use typical errors or misconceptions as distractors. It
is also recognized that one way to control item diffi-
culty is to vary the proximity or plausibility of the dis-
tractors. The closer in similarity the options, the more
difficult the item.
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Advantages and 
Disadvantages of MC Items

MC items have several advantages and disadvantages
compared to constructed response item formats.
Among the advantages, MC items can provide direct
assessment of a wide range of skills, including higher
order thinking and complex cognitive tasks. To
achieve these goals, item writers need training and
experience. MC items are efficient to administer and
objectively scored, and they provide a mechanism for
broad sampling of the content domain or the con-
struct. Analysis of distractors selected by test takers
provides a way to obtain diagnostic information.
When distractors are designed to include common
misconceptions or errors, knowing which distractors
are being selected provides information on which mis-
conceptions are still held or where additional instruc-
tion may be helpful.

Among the disadvantages, MC items provide
limited or indirect measurement of some skills, includ-
ing the abilities to recall, provide an explanation or
examples, express or organize ideas, generate a novel
solution, or construct something. Other formats are
better suited for these skills. Because the number of
MC options is typically small, the content of any one
item tends to be based on artificially structured knowl-
edge and is rather closed to interpretation; however, we
recognize that a series of well constructed MC items
may approach these objectives effectively. When read-
ing is not the target objective, reading skills may inter-
fere with responses to MC items and the possibility of
correctly guessing is always present (but may be
minimized with the use of effective distractors).

—Michael C. Rodriguez

See also Completion Items; Essay Items; True/False Items

Further Reading

Haladyna, T. M. (2004). Developing and validating multiple
choice test items (3rd ed.). Mahwah, NJ: Erlbaum.

Haladyna, T. M., Downing, S. M., & Rodriguez, M. C. (2002).
A review of multiple choice item writing guidelines for
classroom assessment. Applied Measurement in Education,
15(3), 309–334.

Rodriguez, M. C. (2005). Three options are optimal for multi-
ple choice items: A meta analysis of 80 years of research.
Educational Measurement: Issues and Practice, 24(2),
3–13.

MULTIPLE COMPARISONS

In data analysis, the question of interest rarely can be
answered by a single statistical test or comparison.
The term multiple comparisons describes an analysis
that involves more than one statistical test or compar-
ison based on the same set of data.

Why Multiple Comparisons 
Need Special Treatment

Multiple comparisons add an additional level of com-
plexity to the analysis. For any individual comparison
or test, you set an alpha level that determines the prob-
ability of a Type I error (i.e., concluding that the dif-
ference is significant when, in reality, it is not).

Suppose you choose a customary alpha of .05
(5%). Now, if you perform two independent compar-
isons using the same alpha, the chance of making a
Type I error on each of them is 5%, and the chance of
avoiding a Type I error on each is 95%. So, the chance
of avoiding a Type I error altogether is 0.95 × 0.95 =
0.9025 = 90.25%. The complement of this, 9.75%,
represents the probability of making at least one Type
I error somewhere in the set of comparisons. This
probability is sometimes called the familywise alpha
level (or the familywise error rate).

You can see that the familywise alpha is signifi-
cantly higher than the nominal alpha we specified as
5%. The situation gets worse as the number of com-
parisons increases: With five comparisons, the family-
wise alpha is about 22.6%. The general formula for
calculating the familywise alpha is

αfamilywise = 1 – (1 – αnominal)
k,

where k is the number of comparisons.
Figure 1 shows how familywise alpha varies in

relation to the number of comparisons. By the time
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you perform about 50 comparisons, you are almost
certain to commit at least one Type I error. Fifty com-
parisons may sound like a lot, but consider that if you
scan a correlation matrix for 10 variables for signifi-
cant correlations, you are performing 45 tests.

Figure 2 shows the expected number of Type I
errors based on the number of comparisons. The more
comparisons, the more Type I errors. In the hypothet-
ical example of a correlation matrix for 10 variables,
you should expect to find two to three significant 
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(but spurious) correlations by chance alone, even if all
the variables are independent.

Approaches for 
Handling Multiple Comparisons

To avoid the problem of familywise alpha exploding as
the number of comparisons increases, various methods
have been developed to control the familywise alpha.
Most methods center around selecting a conservative
nominal alpha level, so that the familywise alpha is con-
trolled given the number of comparisons to be made.

In controlling the familywise alpha, it is important to
account for the right number of comparisons. In some
cases, this will not be the same as the actual number of
tests or comparisons performed, as explained below.

PPllaannnneedd  VVeerrssuuss  PPoosstt  HHoocc  CCoommppaarriissoonnss

Comparisons or tests in a statistical analysis can be
broken down into two categories, planned and post
hoc, based on how and when the decision is made to
perform the specified comparisons or tests.

Planned comparisons are comparisons that are
specified before the data are collected or analyzed,
based on the theoretical foundations of the research
(or the results of previous studies). A typical example
would be a clinical study where each of several treat-
ment groups is compared to a baseline or control
group. In this case, there are possible compar-
isons, but you are only performing (k – 1) of them,
where k is the number of groups including the control
group. Because you are restricting the number of
comparisons, you needn’t be as conservative as you
would if you were performing all possible compar-
isons. In fact, some researchers argue that as long as
the number of planned comparisons is small, no spe-
cial handling of multiple comparisons is needed.

Post hoc comparisons are comparisons that are
made after the data have been analyzed and examined
for patterns. To extend the example above, suppose we
have five treatments and a control. After performing
the planned comparisons as described above, we find
that two of the five treatments show significant
improvement over the baseline condition. If we want
to test whether those two specific treatments are sig-
nificantly different from each other, this is considered

a post hoc comparison because we didn’t decide to
make the comparison until after we noticed that those
two treatments were significantly different from
the control. In the case of post hoc comparisons, you
should be more conservative than with planned com-
parisons. Because you didn’t know what comparisons
you were going to make up front, any of the possible
comparisons might have looked interesting depending
on the data, so you need to plan as if all possible com-
parisons were under consideration. In this case, you’d
need a method that considered all potential
comparisons in adjusting the familywise alpha level,
even though you’re making only one post hoc
comparison.

Familywise Error Rate and Power

As in the case of individual hypothesis tests, in a mul-
tiple comparison situation there is a trade off between
Type I error rate and power. As you reduce your Type
I error rate (alpha), you also reduce your power, or
ability to detect true differences. This is especially true
for multiple comparison procedures, where the nomi-
nal alpha often must be quite small to control the fam-
ilywise alpha. Most multiple comparison procedures
attempt to maximize power by using dependence
among tests and other characteristics of the research
design, while still controlling the familywise error rate.

Specific Procedures

Several popular procedures for performing multiple
comparisons are briefly described below. Some of these
methods have their own entries in the encyclopedia.

BBoonnffeerrrroonnii

A very conservative approach that sets the per
comparison alpha to αfamilywise/k, where k is the number
of comparisons. This is also known as the Dunn test or
Dunn correction.

FFiisshheerr’’ss  LLeeaasstt  SSiiggnniiffiiccaanntt  DDiiffffeerreennccee

Fisher’s least significant difference test takes a dif-
ferent approach to comparing multiple group means.

k!
2(k − 2)!

k!
2(k − 2)!
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It is a two stage test. First, the overall analysis of vari-
ance (ANOVA) test is performed. If the overall test
(the omnibus test) is not significant, then no specific
mean comparisons are made. If the omnibus test is
significant, then the means are compared using unad-
justed test values. The significance of the omnibus test
provides some protection against Type I errors by
ensuring that at least some of the mean differences are
definitely significant.

TTuukkeeyy’’ss  HHoonneessttllyy  SSiiggnniiffiiccaanntt  DDiiffffeerreennccee

This test involves calculating the smallest differ-
ence that would be significant, controlling for family-
wise alpha. The formula is

where qT is the studentized range statistic based on
the desired familywise alpha, the number of groups
(not the number of comparisons), and the sample
size; MSE is the mean squared error for the overall
ANOVA; and n is the sample size for each group. Any
mean difference that is larger than this value is
deemed significant.

TTuukkeeyy--KKrraammeerr

This is an adaptation of the Tukey test to handle
comparisons where the groups being compared
have unequal sample sizes. In this case, the recipro-
cal of the harmonic mean of the individual group
sample sizes is used in place of the equal sample
size n:

The test value dTukey is calculated as described above
using n′ instead of n, and testing proceeds as usual.

SScchheefffféé

This procedure controls the familywise error
rate by adjusting the critical F value used to perform

the post hoc tests. The test F statistic is calculated
in the usual way for each comparison, and the
critical value is calculated by multiplying the crit-
ical value for the overall test of differences among
all the means (the omnibus test) by (k – 1), where
k is the number of groups (not the number of
comparisons).

DDuunnnneetttt

This test applies to planned comparisons in the spe-
cific case where the mean for each of a set of treat-
ment groups is being compared to the mean for a
control group. This test is similar to the Tukey HSD
test and involves calculating the smallest difference
that would be significant, controlling for familywise
alpha, assuming the specific set of control treatment
comparisons. The formula is

where qD is the critical value for Dunnett’s test based
on the desired familywise alpha, the number of groups
(not the number of comparisons), and the sample size;
MSE is the mean squared error for the overall
ANOVA; and n is the sample size for each group. Any
mean difference between a treatment group and the
control group that is larger than this value is deemed
significant.

—Clay Helberg

See also Bonferroni Test; Dunn’s Multiple Comparison Test;
Fisher’s LSD; Tukey-Kramer Procedure
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Toothaker, L. E. (1993). Multiple comparison procedures
(Sage University Paper series on Quantitative
Applications in the Social Sciences, 07-089). Newbury
Park, CA: Sage.

Multiple Comparison Procedures outline, by Gerald Dallal:
http://www.tufts.edu/~gdallal/mc.htm

MULTIPLE CORRELATION COEFFICIENT

The multiple correlation coefficient generalizes the
standard coefficient of correlation. It is used in multiple
regression analysis to assess the quality of the prediction
of the dependent variable. It corresponds to the squared
correlation between the predicted and the actual values
of the dependent variable. It can also be interpreted as
the proportion of the variance of the dependent variable
explained by the independent variables. When the inde-
pendent variables (used for predicting the dependent
variable) are pairwise orthogonal, the multiple correla-
tion coefficient is equal to the sum of the squared coef-
ficients of correlation between each independent
variable and the dependent variable. This relation does
not hold when the independent variables are not orthog-
onal. The significance of a multiple coefficient of corre-
lation can be assessed with an F ratio. The magnitude of
the multiple coefficient of correlation tends to overesti-
mate the magnitude of the population correlation, but it
is possible to correct for this overestimation. Strictly
speaking, we should refer to this coefficient as the
squared multiple correlation coefficient, but current
usage seems to ignore the adjective “squared,” probably
because mostly its squared value is considered.

Multiple Regression Framework

In linear multiple regression analysis, the goal is to
predict, knowing the measurements collected on N
subjects, a dependent variable Y from a set of J inde-
pendent variables denoted

{X1, . . . , Xj, . . . , XJ}. (1)

We denote by X the N × (J + 1) augmented matrix
collecting the data for the independent variables (this

matrix is called augmented because the first column is
composed only of ones), and by y the N × 1 vector of
observations for the dependent variable. These two
matrices have the following structure:

(2)

The predicted values of the dependent variable Ŷ
are collected in a vector denoted ŷ and are obtained as

ŷ = Xb with b = (XTX)–1XTy. (3)

The regression sum of squares is obtained as

(4)

(with 1T being a row vector of 1s conformable with y).
The total sum of squares is obtained as

(5)

The residual (or error) sum of squares is obtained as

SSerror = yTy – bTXTy. (6)

The quality of the prediction is evaluated by
computing the multiple coefficient of correlation,
denoted R2

Y.1, . . . , J. This coefficient is equal to the
squared coefficient of correlation between the
dependent variable (Y) and the predicted dependent
variable (Ŷ).

An alternative way of computing the multiple
coefficient of correlation is to divide the regression
sum of squares by the total sum of squares. This

SStotal = yTy − 1
N

(1Ty)2.

SSregression = bTXTy − 1
N

(1Ty)2

X =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 x1,1 · · · x1,j · · · x1,J

...
...

. . .
...

. . .
...

1 xn,1 · · · xn,j · · · xn,J

...
...

. . .
...

. . .
...

1 xN,1 · · · xN,j · · · xN,J

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and y =

⎡

⎢
⎢
⎢
⎢
⎣

y1
...
yn

...
yN

⎤

⎥
⎥
⎥
⎥
⎦

.
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shows that R2
Y.1, . . . , J can also be interpreted as the

proportion of variance of the dependent variable
explained by the independent variables. With this
interpretation, the multiple coefficient of correlation
is computed as

(7)

SSiiggnniiffiiccaannccee  TTeesstt

In order to assess the significance of a given
R2

Y.1, . . . , J, we can compute an F ratio as

(8)

Under the usual assumptions of normality of the
error and of independence of the error and the scores,
this F ratio is distributed under the null hypothesis as
a Fisher distribution with ν1 = J and ν2 = N – J – 1
degrees of freedom.

EEssttiimmaattiinngg  tthhee  PPooppuullaattiioonn  CCoorrrreellaattiioonn::
SShhrruunnkkeenn  aanndd  AAddjjuusstteedd  R

Just like its bivariate counterpart r, the multiple
coefficient of correlation is a descriptive statistic
that always overestimates the population correla-
tion. This problem is similar to the problem of the
estimation of the variance of a population from a
sample. In order to obtain a better estimate of the
population, the value R2

Y.1, . . . , J needs to be corrected.
The corrected value of R2

Y.1, . . . , J goes by different
names: corrected R, shrunken R, or adjusted R
(there are some subtle differences between these
different appellations, but we will ignore them
here), and we denote it by R̃ 2

Y.1, . . . , J. There are 
several correction formulas available; the one most
often used estimates the value of the population
correlation as

(9)

Example 1: Multiple 
Correlation Coefficient 

With Orthogonal Predictors

When the independent variables are pairwise orthogo-
nal, the importance of each of them in the regression is
assessed by computing the squared coefficient of corre-
lation between each of the independent variables and
the dependent variable. The sum of these squared coef-
ficients of correlation is equal to the multiple coeffi-
cient of correlation. We illustrate this case with the data
from Table 1. In this example, the dependent variable
(Y) is the number of sentences recalled by participants
who learned a list of unrelated sentences. The first inde-
pendent variable or first predictor, X1, is the number of
trials used to learn the list. It takes the values 2, 4, and
8. It is expected that recall will increase as a function of
the number of trials. The second independent variable,
X2, is the number of additional interpolated lists that the
participants are asked to learn. It takes the values 2, 4,
and 8. As a consequence of retroactive inhibition, it is
expected that recall will decrease as a function of the
number of interpolated lists learned.

Using Equation 3, we found that Ŷ can be obtained
from X1 and X2 as

Ŷ = 30 + 6 × X1 – 4 × X2. (10)

R̃2
Y.1, . . . ,J = 1 −

[
(
1 − R2

Y.1, . . . ,J

)
(

N − 1
N − J − 1

)]

.

F = R2
Y.1, . . . ,J

1 − R2
Y.1, . . . ,J

× N − J − 1
J

.

R2
Y.1, . . . ,J = SSregression

SSregression + SSerror
= SSregression

SStotal
.
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Table 1 A Set of Data

Number of
Number of Interpolated Lists (T)

Learning Trials (X) 2 4 8

2 35 21 6
39 31 8

4 40 34 18
52 42 26

8 61 58 46
73 66 52

Source: Data from Abdi et al. (2002).

Notes: The dependent variable Y is to be predicted from two
orthogonal predictors X1 and X2. These data are the results of a
hypothetical experiment on retroactive interference and learning.
Y is the number of sentences remembered from a set of
sentences learned, X1 is the number of learning trials, and X2 is
the number of interpolated lists learned.



Using these data and Equations 4 and 5, we find
that

SSregression = 5824, SStotal = 6214, and SSerror = 390. (11)

This gives the following value for the multiple
coefficient of correlation:

(12)

In order to decide if this value of R2
Y.1, . . . , J is large

enough to be considered significant, we compute an
F ratio equal to

(13)

Such a value of F is significant at all the usual
alpha levels, and therefore we can reject the null
hypothesis.

Because X1 and X2 are orthogonal to each other
(i.e., their correlation is equal to 0), the multiple coef-
ficient of correlation is equal to the sum of the squared
coefficients of correlation between the independent
variables and the dependent variable:

R2
Y.1, . . . , J = .9372 = r2

Y,1 + r2
Y,2 = .6488 + .2884. (14)

A better estimate of the population value of the
multiple coefficient of correlation can obtained as

(15)

Example 2: Multiple 
Correlation Coefficient 

With Nonorthogonal Predictors

When the independent variables are correlated, the
multiple coefficient of correlation is not equal to the

sum of the squared correlation coefficients between
the dependent variable and the independent vari-
ables. In fact, such a strategy would overestimate
the contribution of each variable because the vari-
ance that they share would be counted several times.

For example, consider the data given in Table 2,
where the dependent variable is to be predicted from
the independent variables X1 and X2. The prediction of
the dependent variable (using Equation 3) is found to
be equal to

Ŷ = 1.67 + X1 + 9.50X2 , (16)

which gives a multiple coefficient of correlation of
R2

Y.1, . . . , J = .9866. The coefficient of correlation
between X1 and X2 is equal to rX1 . X2

= .7500, between X1

and Y is equal to rY.1 = .8028, and between X2 and Y is
equal to rY.2 = .9890. It can easily be checked that the
multiple coefficient of correlation is not equal to the
sum of the squared coefficients of correlation between
the independent variables and the dependent variables:

R2
Y.1, . . . ,J = .9866 

≠ r2
Y.1 +r2

Y.2

= .665 + .9780 = 1.6225.
(17)

Using the data from Table 2 along with Equations
4 and 5, we find that

SSregression = 1822.00,

SStotal = 1846.83, and (18)

SSerror = 24.83.

R̃2
Y.1, . . . ,J = 1 −

[
(
1 − R2

Y.1, . . . ,J

)
(

N − 1
N − J − 1

)]

= 1 − (1 − .9372)
17
15

= .9289.

F = R2
Y.1, . . . ,J

1 − R2
Y.1, . . . ,J

× N − J − 1
J

= .9372
1 − .9372

× 15
2

= 111.93.

R2
Y.1, . . . ,J = SSregression

SStotal
= 5824

6214
= .9372.
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Table 2 A Set of Data

Y (Memory span) 14 23 30 50 39 67 
X1 (Age) 4 4 7 7 10 10 
X2 (Speech rate) 1 2 2 4 3 6 

Source: Data from Abdi et al. (2002).

Notes: The dependent variable Y is to be predicted from two
correlated (i.e., nonorthogonal) predictors: X1 and X2. Y is the
number of digits a child can remember for a short time (the
“memory span”), X1 is the age of the child, and X2 is the speech
rate of the child (how many words the child can pronounce in a
given time). Six children were tested.



This gives the following value for the multiple
coefficient of correlation:

(19)

In order to decide if this value of R2
Y.1, . . . , J is large

enough to be considered significant, we compute an F
ratio equal to

(20)

Such a value of F is significant at all the usual
alpha levels, and therefore we can reject the null
hypothesis.

A better estimate of the population value of
the multiple coefficient of correlation can be
obtained as

(21)

—Hervé Abdi

See also Coefficients of Correlation, Alienation, and
Determination; Correlation Coefficient
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MULTIPLE CORRESPONDENCE

ANALYSIS

Multiple correspondence analysis (MCA) is an exten-
sion of correspondence analysis (CA), which allows
one to analyze the pattern of relationships of several
categorical dependent variables. As such, it can also
be seen as a generalization of principal component
analysis when the variables to be analyzed are cate-
gorical instead of quantitative. Because MCA has
been (re)discovered many times, equivalent methods
are known under several different names, such as opti-
mal scaling, optimal or appropriate scoring, dual
scaling, homogeneity analysis, scalogram analysis,
and quantification method.

Technically, MCA is obtained by using a standard
correspondence analysis on an indicator matrix (i.e.,
a matrix whose entries are 0 or 1). The percentages
of explained variance need to be corrected, and the
correspondence analysis interpretation of inter-point
distances needs to be adapted.

When to Use It

MCA is used to analyze a set of observations
described by a set of nominal variables. Each nomi-
nal variable is composed of several levels, and each
of these levels is coded as a binary variable. For
example, gender (F vs. M) is one nominal variable
with two levels. The pattern for a male respondent
will be 01, and 10 for a female. The complete data
table is composed of binary columns with one and
only one column taking the value “1” per nominal
variable.

MCA can also accommodate quantitative vari-
ables by recoding them as “bins.” For example, a
score with a range of –5 to +5 could be recoded as a
nominal variable with three levels: less than 0, equal
to 0, or more than 0. With this schema, a value of 3
will be expressed by the pattern 001. The coding
schema of MCA implies that each row has the same
total, which for CA implies that each row has the
same mass.

R̃2
Y.1, . . . ,J = 1 −

[
(
1 − R2

Y.1, . . . ,J

)
(

N − 1
N − J − 1

)]

= 1 − (1 − .9866)
5
2

= .9776.

F = R2
Y.1, . . . ,J

1 − R2
Y.1, . . . ,J

× N − J − 1
J

= .9866
1 − .9866

× 3
2

= 110.50.

R2
Y.1, . . . ,J = SSregression

SStotal
= 1822.00

1846.83
= .9866.
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An Example

We illustrate the method with an example from wine
testing. Suppose that we want to evaluate the effect of
the oak species on barrel aged red Burgundy wines.
First, we aged wine coming from the same harvest of
Pinot Noir in six different barrels made with two types
of oak. Wines 1, 5, and 6 were aged with the first type
of oak, whereas wines 2, 3, and 4 were aged with the
second. Next, we asked each of three wine experts to
choose from two to five variables to describe the
wines. For each wine and for each variable, the expert
was asked to rate the intensity. The answer given by
the expert was coded either as a binary answer (i.e.,
fruity vs. non fruity) or as a ternary answer (i.e., no
vanilla, a bit of vanilla, clear smell of vanilla). Each
binary answer is represented by 2 binary columns
(e.g., the answer “fruity” is represented by the pattern
10 and “nonfruity” is 01). A ternary answer is repre-
sented by 3 binary columns (i.e., the answer “some
vanilla” is represented by the pattern 010). The results
are presented in Table 1. The goal of the analysis is
twofold. First, we want to obtain a typology of the
wines, and second, we want to know if there is an
agreement between the scales used by the experts. We
will use the type of oak as a supplementary (or illus-
trative) variable to be projected on the analysis after
the fact. Also, after the testing of the six wines was
performed, an unknown bottle of Pinot Noir was
found and tested by the wine testers. This wine will be
used as a supplementary observation. For this wine,

when an expert was not sure of how to use a descrip-
tor, a pattern of response such as .5.5 was used to
represent the answer.

Notations

There are K nominal variables, each nominal variable
has Jk levels, and the sum of the Jk levels is equal to J.
There are I observations. The I × J indicator matrix is
denoted X. Performing CA on the indicator matrix
will provide two sets of factor scores: one for the rows
and one for the columns. These factor scores are, in
general, scaled such that their variance is equal to
their corresponding eigenvalue (some versions of CA
compute row factor scores normalized to unity).

The grand total of the table is noted N, and the first
step of the analysis is to compute the probability
matrix Z = N –1X. We denote r the vector of the row
totals of Z (i.e., r = Z1, with 1 being a conformable
vector of 1s), c the vector of the column totals,
and Dc = diag{c}, Dr = diag{r}. The factor scores 
are obtained from the following singular value
decomposition:

Dr
– 1_

2 (Z – rcT)Dc
– 1_

2 = P∆∆QT. (1)

∆∆ is the diagonal matrix of the singular values, and ΛΛ
= ∆∆2 is the matrix of the eigenvalues. The row and
(respectively) column factor scores are obtained as

F = Dr
– 1_

2P∆∆ and G = Dc
– 1_

2Q∆∆ . (2)
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Table 1 Data for the Barrel-Aged Red Burgundy Wines Example

Expert 1 Expert 2 Expert 3

Oak Red
Wine Type Fruity Woody Coffee Fruit Roasted Vanillin Woody Fruity Butter Woody

W1 1 1 0 0 0 1 0 1 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1
W2 2 0 1 0 1 0 1 0 0 1 1 0 0 1 0 1 0 0 1 1 0 1 0
W3 2 0 1 1 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 1 0 1 0
W4 2 0 1 1 0 0 1 0 0 1 1 0 1 0 0 1 0 1 0 1 0 1 0
W5 1 1 0 0 0 1 0 1 1 0 0 1 0 0 1 0 1 1 0 0 1 0 1
W6 1 1 0 0 1 0 0 1 1 0 0 1 0 1 0 0 1 1 0 0 1 0 1

W? ? 0 1 0 1 0 .5 .5 1 0 1 0 0 1 0 .5 .5 1 0 .5 .5 0 1

Notes: “Oak Type” is an illustrative (supplementary) variable, The wine W? is an unknown wine treated as a supplementary observation.



The squared (χ2) distances from the rows and
columns to their respective barycenters are obtained as

dr = diag{FFT} and dc = diag {GGT}. (3)

The squared cosines between row i and factor � and
column j and factor � are obtained respectively as

(4)

(with d 2
r,i and d 2

c, j being, respectively, the ith element
of dr and the jth element of dc). Squared cosines help
locate the factors important for a given observation or
variable. The contribution of row i to factor � and of
column j to factor � are obtained respectively as

(5)

Contributions help locate the observations or variables
important for a given factor.

Supplementary or illustrative elements can be pro-
jected onto the factors using the so called transition
formula. Specifically, let iT

sup be an illustrative row and
jsup be an illustrative column to be projected. Their
coordinates fsup and gsup are obtained as

(6)

Performing CA on the indicator matrix will pro-
vide factor scores for the rows and the columns.
However, the factor scores given by a CA program
will need to be rescaled for MCA, as explained in the
next section.

The J × J table obtained as B = XTX is called the
Burt matrix associated to X. This table is important in
MCA because using CA on the Burt matrix gives the
same factors as the analysis of X but is often compu-
tationally easier. But the Burt matrix also plays an
important theoretical role because the eigenvalues
obtained from its analysis give a better approximation
of the inertia explained by the factors than do the
eigenvalues of X.

Eigenvalue Correction for 
Multiple Correspondence Analysis

MCA codes data by creating several binary columns
for each variable with the constraint that one and only
one of the columns gets the value 1. This coding
schema creates artificial additional dimensions
because one categorical variable is coded with several
columns. As a consequence, the inertia (i.e., variance)
of the solution space is artificially inflated, and there-
fore, the percentage of inertia explained by the first
dimension is severely underestimated. In fact, it can
be shown that all the factors with an eigenvalue less or
equal to 1_

K simply code these additional dimensions 
(K = 10 in our example).

Two correction formulas are often used; the first
one is due to Benzécri, and the second one to
Greenacre. These formulas take into account that the
eigenvalues smaller than 1_

K are coding for the extra
dimensions and that MCA is equivalent to the analysis
of the Burt matrix, whose eigenvalues are equal to the
squared eigenvalues of the analysis of X. Specifically,
if we denote by λ

�
the eigenvalues obtained from the

analysis of the indicator matrix, then the corrected
eigenvalues, denoted cλ, are obtained as

(7)

Using this formula gives a better estimate of the iner-
tia extracted by each eigenvalue.

Traditionally, the percentages of inertia are com-
puted by dividing each eigenvalue by the sum of the
eigenvalues, and this approach could be used here also.
However, it will give an optimistic estimation of the per-
centage of inertia. A better estimation of the inertia has
been proposed by Greenacre, who suggested instead to
evaluate the percentage of inertia relative to the average
inertia of the off diagonal blocks of the Burt matrix.
This average inertia, denoted I

_
, can be computed as

(8)I = K

K − 1
×

(
∑

�

λ2
� − J − K

K

)2

.

cλ� =

⎧
⎪⎪⎨

⎪⎪⎩

[(
K

K − 1

) (
λ� − 1

K

)]2

if λ� >
1
K

0 if λ� ≤ 1
K

.fsup = (
iT
sup1

)
iT
supG∆−1 and gsup = (

jT
sup1

)
jT

supF∆−1.

ti,� = f 2
i,�

λ�

and tj,� = g2
j,�

λ�

.

oi,� = f 2
i,�

d2
r,i

and oj,� = g2
j,�

d2
c,j
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According to this approach, the percentage of
inertia would be obtained by the ratio

(9)

Interpreting MCA

As with CA, the interpretation in MCA is often based
upon proximities between points in a low-dimensional
map (i.e., two or three dimensions). As well as for CA,
proximities are meaningful only between points from
the same set (i.e., rows with rows, columns with
columns). Specifically, when two row points are close
to each other, they tend to select the same levels of the

nominal variables. For the proximity between variables,
we need to distinguish two cases. First, the proximity
between levels of different nominal variables means
that these levels tend to appear together in the observa-
tions. Second, because the levels of the same nominal
variable cannot occur together, we need a different type
of interpretation for this case. Here, the proximity
between levels means that the groups of observations
associated with these two levels are themselves similar.

TThhee  EExxaammppllee

Table 2 lists the corrected eigenvalues and
proportion of explained inertia obtained with the
Benzécri/Greenacre correction formula. Tables 3 and 4

τc = cλ

I instead of cλ∑
cλ�

.
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Table 2 Eigenvalues, Corrected Eigenvalues, Proportion of Explained Inertia, and Corrected Proportion of
Explained Inertia

Indicator Burt Benzécri Greenacre
Matrix Matrix Correction Correction

Factor Iλ τI Bλ τB zλ τz cλ τc

1 .8532 .7110 .7280 .9306 .7004 .9823 .7004 .5837
2 .2000 .1667 .0400 .0511 .0123 .0173 .0123 .0103
3 .1151 .0959 .0133 .0169 .0003 .0004 .0003 .0002
4 .0317 .0264 .0010 .0013 0 0 0 0

Σ 1.2000 1 .7822 1 .7130 1 .7130 .5942

Notes: The eigenvalues of the Burt matrix are equal to the squared eigenvalues of the indicator matrix. The corrected eigenvalues for
Benzécri and Greenacre are the same, but the proportion of explained variance differs. Eigenvalues are denoted by λ, proportions of
explained inertia by τ.

Table 3 Factor Scores, Squared Cosines, and Contributions for the Observations (I set)

Wine 1 Wine 2 Wine 3 Wine 4 Wine 5 Wine 6 Wine ?

F cλ %c Factor Scores

1 .7004 58 0.86 −0.71 −0.92 −0.86 0.92 0.71 0.03
2 .0103 1 0.08 −0.16 0.08 0.08 0.08 −0.16 −0.16
F Squared Cosines

1 .62 .42 .71 .62 .71 .42 .04
2 .01 .02 .01 .01 .01 .02 .96
F Contributions × 1000

1 177 121 202 177 202 121 −
2 83 333 83 83 83 333 −

Notes: The eigenvalues and proportions of explained inertia are corrected using the Benzécri/Greenacre formula. Contributions corre-
sponding to negative scores are in italic. The mystery wine (Wine ?) is a supplementary observation. Only the first two factors are reported. 
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give the corrected factor scores, cosines,
and contributions for the rows and
columns of Table 1. Figure 1 displays
the projections of the rows and the
columns. We have separated these two
sets, but because the projections have
the same variance, these two graphs
could be displayed together (as long as
one keeps in mind that distances
between points are meaningful only
within the same set). The analysis is
essentially unidimensional, with wines
2, 3, and 4 clustered on the negative side
of the factors and wines 1, 5, and 6 on
the positive side. The supplementary
wine does not seem to belong to either
cluster. The analysis of the columns
shows that the negative side of the factor
is characterized as being nonfruity, non-
woody, and coffee by Expert 1; roasted,
nonfruity, low in vanilla, and woody by
Expert 2; and buttery and woody by
Expert 3. The positive side gives the
reverse pattern. The supplementary ele-
ments indicate that the negative side is
correlated with the second type of oak,
whereas the positive side is correlated
with the first type of oak.

Alternatives to MCA

Because the interpretation of MCA is more delicate than
simple CA, several approaches have been suggested to
offer the simplicity of interpretation of CA for indicator
matrices. One approach is to use a different metric from
χ2, the most attractive alternative being the Hellinger
distance. Another approach, called joint correspondence
analysis, fits only the off-diagonal tables of the Burt
matrix and can be interpreted as a factor analytic model.

—Hervé Abdi and Dominique Valentin

See also Centroid; Correspondence Analysis; Distance; DIS-
TATIS; Eigendecomposition; Metric Multidimensional
Scaling; Multiple Factor Analysis; Singular and
Generalized Singular Value Decomposition; STATIS
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Figure 1 Multiple Correspondence Analysis—Projections on the
First Two Dimensions
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been corrected with the Benzécri/Greenacre formula. (a) The I set: rows 
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projection points have been slightly moved to increase readability).
(Projections from Tables 3 and 4.)
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MULTIPLE FACTOR ANALYSIS

Multiple factor analysis (MFA) analyzes observations
described by several “blocks” or sets of variables.
MFA seeks the common structures present in all or
some of these sets. MFA is performed in two steps.
First, a principal component analysis (PCA) is per-
formed on each data set, which is then “normalized”
by dividing all its elements by the square root of the
first eigenvalue obtained from its PCA. Second, the
normalized data sets are merged to form a unique
matrix, and a global PCA is performed on this matrix.
The individual data sets are then projected onto the
global analysis to analyze communalities and discrep-
ancies. MFA is used in very different domains such as
sensory evaluation, economy, ecology, and chemistry.

MFA is used to analyze a set of observations
described by several groups of variables. The number
of variables in each group may differ, and the nature
of the variables (nominal or quantitative) can vary
from one group to the other, but the variables should
be of the same nature in a given group. The analysis
derives an integrated picture of the observations and
of the relationships between the groups of variables.

The goal of MFA is to integrate different groups of
variables describing the same observations. In order to
do so, the first step is to make these groups of variables

comparable. Such a step is needed because the straight-
forward analysis obtained by concatenating all variables
would be dominated by the group with the strongest struc-
ture. A similar problem can occur in a non-normalized
PCA: Without normalization, the structure is dominated
by the variables with the largest variance. For PCA, the
solution is to normalize (i.e., to use z scores) each vari-
able by dividing it by its standard deviation. The solu-
tion proposed by MFA is similar: To compare groups of
variables, each group is normalized by dividing all its
elements by a quantity called its first singular value,
which is the matrix equivalent of the standard deviation.
Practically, this step is implemented by performing a
PCA on each group of variables. The first singular value
is the square root of the first eigenvalue of the PCA.
After normalization, the data tables are concatenated
into a data table that is submitted to PCA.

An Example

To illustrate MFA, we selected six wines, coming
from the same harvest of Pinot Noir, aged in six dif-
ferent barrels made with one of two different types of
oak. Wines 1, 5, and 6 were aged with the first type of
oak, and wines 2, 3, and 4 with the second. Next, we
asked each of three wine experts to choose from two
to five variables to describe the six wines. For each
wine, the expert rated the intensity of the variables on
a 9 point scale. The results are presented in Table 1
(the same example is used in the entry for STATIS).
The goal of the analysis is twofold. First, we want to
obtain a typology of the wines, and second, we want
to know if there is an agreement between the experts.
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Table 1 Raw Data for the Wine Example

Expert 1 Expert 2 Expert 3 

Wines Oak Type Fruity Woody Coffee Red Fruit Roasted Vanillin Woody Fruity Butter Woody

Wine 1 1 1 6 7 2 5 7 6 3 6 7
Wine 2 2 5 3 2 4 4 4 2 4 4 3
Wine 3 2 6 1 1 5 2 1 1 7 1 1
Wine 4 2 7 1 2 7 2 1 2 2 2 2
Wine 5 1 2 5 4 3 5 6 5 2 6 6
Wine 6 1 3 4 4 3 5 4 5 1 7 5



Notations

The raw data consist in T data sets. Each data set is
called a study. Each study is an I × J[t] rectangular data
matrix denoted Y[t], where I is the number of observa-
tions and J[t] the number of variables of the tth study.
Each data matrix is, in general, preprocessed (e.g.,
centered, normalized), and the preprocessed data
matrices actually used in the analysis are denoted X[t].

For our example, the data consist in T = 3 studies.
The data (from Table 1) were centered by column
(i.e., the mean of each column is zero) and normalized
(i.e., for each column, the sum of the squared ele-
ments is equal to 1). So the starting point of the analy-
sis consists in three matrices:

. (1)

Each observation is assigned a mass that reflects its
importance. When all observations have the same
importance, their masses are all equal to mi = 1_

I . The
set of the masses is stored in an I × I diagonal matrix
denoted M.

Finding the Global Space

CCoommppuuttiinngg  tthhee  SSeeppaarraattee  PPCCAAss

To normalize the studies, we first compute a PCA
for each study. The first singular value (i.e., the square
root of the first eigenvalue) is the normalizing factor
used to divide the elements of the data table. For
example, the PCA of the first group gives a first
eigenvalue 1�1 = 2.86 and a first singular value of

This gives the first normalized
data matrix, denoted Z[1]:

(2)

Matrices Z[2] and Z[3] are normalized with their 
first respective singular values of 2ϕ1 = 1.91 and 3ϕ1 =
1.58. Normalized matrices have a first singular value
equal to 1.

BBuuiillddiinngg  tthhee  GGlloobbaall  MMaattrriixx

The normalized studies are concatenated into an
I × T matrix called the global data matrix, denoted Z.
Here we obtain

Z[1] =1 ϕ−1
1 × X[1] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.33 0.34 0.45

0.11 −0.04 −0.16

0.22 −0.30 −0.28

0.33 −0.30 −0.16

−0.22 0.21 0.08

−0.11 0.08 0.08

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

1ϕ1 = √
1�1 = 1.69.

and X[3] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.03 0.31 0.57

0.17 −0.06 −0.19

0.80 −0.61 −0.57

−0.24 −0.43 −0.38

−0.24 0.31 0.38

−0.45 0.49 0.19

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

X[1] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.57 0.58 0.76

0.19 −0.07 −0.28

0.38 −0.50 −0.48

0.57 −0.50 −0.28

−0.38 0.36 0.14

−0.19 0.14 0.14

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

X[2] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.50 0.35 0.57 0.54

0.00 0.05 0.03 −0.32

0.25 −0.56 −0.51 −0.54

0.75 −0.56 −0.51 −0.32

−0.25 0.35 0.39 0.32

−0.25 0.35 0.03 0.32

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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(3)Z = [Z[1] Z[2] Z[3]] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.33 0.34 0.45 −0.26 0.18 0.30 0.28 −0.02 0.19 0.36

0.11 −0.04 −0.16 0.00 0.03 0.02 −0.17 0.11 −0.04 −0.12

0.22 −0.30 −0.28 0.13 −0.29 −0.27 −0.28 0.51 −0.39 −0.36

0.33 −0.30 −0.16 0.39 −0.29 −0.27 −0.17 −0.15 −0.27 −0.24

−0.22 0.21 0.08 −0.13 0.18 0.20 0.17 −0.15 0.19 0.24

−0.11 0.08 0.08 −0.13 0.18 0.02 0.17 −0.29 0.31 0.12

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.



CCoommppuuttiinngg  tthhee  GGlloobbaall  PPCCAA

To analyze the global matrix, we use standard
PCA. This amounts to computing the singular value
decomposition of the global data matrix

Z = U∆∆VT with UTU = VTV = I, (4)

where U and V are the left and right singular vectors
of Z, and ∆∆ is the diagonal matrix of the singular
values.

For our example, we obtain

(5)

and

diag{∆∆} = [1.68   0.60   0.34   0.18   0.11]

and

diag{ΛΛ} = diag{∆∆2} 
= [2.83   0.36   0.11   0.03   0.01] (6)

(ΛΛ gives the eigenvalues of the PCA) and

(7)

The global factor scores for the wines are obtained as

F = M– 1_
2U∆∆ (8)

(9)

In F, each row represents an observation (i.e., a
wine) and each column a component. Figure 1 dis-
plays the wines in the space of the first two principal
components. The first component has an eigenvalue
equal to λ1 = 2.83, which corresponds to 84% of the
inertia The sec-
ond component, with an eigenvalue of .36, explains
11% of the inertia. The first component is interpreted
as the opposition between the first (wines 1, 5, and 6)
and the second oak type (wines 2, 3, and 4).

Partial Analyses

The global analysis reveals the common structure of
the wine space. In addition, we want to see how
each expert “interprets” this space. This is achieved
by projecting the data set of each expert onto 
the global analysis. This is implemented by multi-
plication of a cross product matrix by a projection
matrix. The projection matrix is obtained by

(
2.83

2.83+0.36+0.11+0.03+0.01 = 2.83
3.35 ≈ .84

)
.

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2.18 −0.51 −0.48 −0.02 0.08

−0.56 −0.20 0.41 0.23 0.15

−2.32 −0.83 0.01 −0.16 −0.07

−1.83 0.90 −0.40 0.07 0.01

1.40 0.05 0.13 0.17 −0.20

1.13 0.58 0.34 −0.29 0.03

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

V =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.34 0.22 0.03 0.14 0.55

0.35 −0.14 −0.03 0.30 0.02

0.32 −0.06 −0.65 −0.24 0.60

−0.28 0.34 −0.32 0.31 −0.18

0.30 −0.00 0.43 0.11 0.19

0.30 −0.18 −0.00 0.67 0.11

0.30 0.09 −0.22 −0.36 −0.38

−0.22 −0.86 0.01 −0.12 −0.00

0.36 0.20 0.45 −0.30 0.19

0.37 0.01 −0.21 0.18 −0.28

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

U =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.53 −0.35 −0.58 −0.04 0.31

−0.13 −0.13 0.49 0.51 0.54

−0.56 −0.57 0.01 −0.36 −0.25

−0.44 0.62 −0.48 0.15 0.03

0.34 0.04 0.16 0.39 −0.73

0.27 0.40 0.40 −0.65 0.11

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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Figure 1 Global Analysis: Plot of the Wines on the
First Two Principal Components

Notes: First component: λ1 = 2.83, explains 84% of the inertia;
second component: λ2 = 2.83, explains 11% of the inertia.



rewriting Equation 8 to show that the global factor
scores could be computed as

F = M– 1_
2U∆∆ = (ZZT) × (M– 1_

2U∆∆–1). (10)

This shows that P = M– 1_
2U∆∆–1 is a projection matrix

that transforms the matrix ZZT into factor scores.
Here, we obtain

(11)

which is then used to project the studies onto the
global space. For example, for the first expert we
obtain

F[1] = T × (Z[1]Z[1]
T )P (12)

(13)

(Multiplying by T is needed in order to scale one
expert with all T = 3 experts of the global solution.)
The same procedure is used for Experts 2 and 3:

(14)

and

(15)

Figure 2 shows the first two principal compo-
nents of the global analysis along with the wine
projections for the experts. Note that the position of
each wine in the global analysis is the barycenter
(i.e., centroid) of its positions for the experts. To
facilitate the interpretation, we have drawn lines
linking the expert wine projection to the global wine
position. This picture shows that Expert 3 is at vari-
ance with the other experts, in particular for Wines 
3 and 6.

TThhee  OOrriiggiinnaall  VVaarriiaabblleess  
aanndd  tthhee  GGlloobbaall  AAnnaallyyssiiss

As in standard PCA, the variable loadings are the
correlation between the original variables and the
global factor scores (cf. Table 2). These loadings are
plotted in Figure 3 along with the “circles of correla-
tion.” This figure shows that Expert 3 differs from the
other experts and is mostly responsible for the second
component of the compromise.

TThhee  OOrriiggiinnaall  PPCCAAss  
aanndd  tthhee  GGlloobbaall  AAnnaallyyssiiss

MFA starts with a series of PCAs. Their relation-
ship with the global analysis is explored by computing
loadings (i.e., correlations) between the components
of each study and the components of the global analy-
sis. These loadings, given in Table 2, are displayed in
Figure 3. They relate the original PCA and the global
analysis.

Analyzing the 
Between-Study Structure

The relationships between the studies and between 
the studies and the global solution are analyzed by

F[3] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.54 0.44 0.09 0.07 −0.47

−0.61 −0.76 0.06 −0.17 0.19

−2.85 −3.80 −0.69 −0.07 0.19

−1.12 0.56 −0.55 0.42 0.11

1.43 1.27 0.26 0.03 −0.22

1.62 2.28 0.82 −0.28 0.20

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

F[2] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2.21 −0.86 0.74 0.27 0.06

−0.28 −0.13 0.35 0.55 0.52

−2.11 0.50 −0.77 −0.49 −0.01

−2.39 1.23 −1.57 −0.20 −0.68

1.49 −0.49 0.62 0.40 0.13

1.08 −0.24 0.63 −0.53 −0.03

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2.76 −1.10 −2.29 −0.39 0.67

−0.77 0.30 0.81 0.31 −0.27

−1.99 0.81 1.48 0.08 −0.39

−1.98 0.93 0.92 −0.02 0.59

1.29 −0.62 −0.49 0.10 −0.51

0.69 −0.30 −0.43 −0.07 −0.08

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

P = M− 1
2 U∆−1

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.77 −1.43 −4.20 −0.55 6.68

−0.20 −0.55 3.56 6.90 11.71

−0.82 −2.33 0.05 −4.85 −5.53

−0.65 2.54 −3.46 2.01 0.66

0.50 0.15 1.13 5.27 −15.93

0.40 1.61 2.91 −8.78 2.43

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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computing the partial inertia of each study
for each dimension of the global analysis.
This is computed, for each study, as the sum
of the squared projections of the variables on
the right singular vectors of Z (cf. Equation 7)
multiplied by the corresponding eigenvalue.
Because the singular vectors are normalized,
the sum of the partial inertias for all the
studies for a given dimension is equal to its
eigenvalue. For example, for Study 1 
and Component 1, the partial inertia is
obtained as

λ 1 × ∑
Jk

j
qj,1 = 2.83 × [(–.34)2

+ (.35)2 + (.32)2] (16)
= 2.83 × .34 = .96.

Similar computations give the values
reported in Table 3. These values are
used to plot the studies as shown in
Figure 4. The plot confirms the original-
ity of Expert 3 and its importance for
Dimension 2.
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6

5

12

3

4

Figure 2 Projection of the Experts Onto the Global Analysis

Notes: Experts are represented by their faces. A line segment links the
position of the wine for a given expert to its global position. First
component: λ1 = 2.83, explains 84% of the inertia; second component:
λ2 = 2.83, explains 11% of the inertia.

Table 2 Loadings on the Principal Components of the Global Analysis of the Original Variables and the Principal
Components of the Study PCAs

Loadings With Original Variables

Expert 1 Expert 2 Expert 3

Axis λ % Fruity Woody Coffee Fruit Roasted Vanillin Woody Fruity Butter Woody

1 2.83 85 −0.97 0.98 0.92 −0.89 0.96 0.95 0.97 −0.59 0.95 0.99
2 .36 11 0.23 −0.15 −0.06 0.38 −0.00 −0.20 0.10 −0.80 0.19 0.00
3 .12 3 0.02 −0.02 −0.37 −0.21 0.28 −0.00 −0.14 0.08 0.24 −0.11

Loadings With First Two Components From Study PCAs

Expert 1 Expert 2 Expert 3

Axis λ % PC1 PC2 PC1 PC2 PC1 PC2

1 2.83 85 .98 .08 .99 −.16 .94 −.35
2 .36 11 −.15 −.28 −.13 −.76 .35 .94
3 .12 3 −.14 .84 .09 .58 .05 −.01

Note: Only the first three dimensions are kept.
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—Hervé Abdi and Dominique Valentin

See also Centroid; DISTATIS; Eigendecomposition; Metric
Multidimensional Scaling; Multiple Correspondence
Analysis; Principal Component Analysis; RV and
Congruence Coefficients; Singular and Generalized
Singular Value Decomposition; STATIS
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MULTIPLE IMPUTATION

FOR MISSING DATA

In many, if not most, studies, some data that were
meant to be collected are missing. For example, in a
survey, some people may not respond to all the ques-
tions. Or, in a randomized experiment, some units’
outcomes may not be measured because of equipment
failure. Multiple imputation is one principled method
for handling such missing data. The general idea is to
fill in the missing data with plausible values, analyze
the completed data set, and repeat the process multi-
ple times. The analyses from each completed data set
are combined to result in inferences that properly
account for the missing data. Multiple imputation has
been used in large governmental surveys such as the
National Health and Nutrition Examination Survey and
the Survey of Consumer Finances, and in numerous
studies by individual researchers.

Before we review multiple imputation, it is worth-
while to consider the most common and convenient
approach to handling missing data: Analyze only the
cases that have complete data for the variables of
interest. This available cases approach can lead to
inaccurate estimates. For a simple illustration of this
point, consider the hypothetical data in Table 1 for a
random sample of five people. Suppose that weights
of all people over 6 feet tall are missing—so that the
observed data are 130, 140, and 150—because the
height/weight instrument is unable to record informa-
tion for people over 6 feet tall. Researchers interested
in estimating the population average weight are in
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Dimension 1 λ1 = 2.83

λ2 = 0.36

τ2 = 11%

τ1 = 85%
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Figure 4 Partial Inertia: Plot of the Experts on the
First Two Components

Table 3 Partial Inertias for the First Three Dimensions

Axis 1 Axis 2 Axis 3 Axis 4 Axis 5 

Expert 1 0.96 0.03 0.05 0.01 0.01
Expert 2 0.98 0.06 0.04 0.02 0.00
Expert 3 0.90 0.28 0.03 0.00 0.00

∑ 2.83 .36 .12 .03 .01

λ1 λ2 λ3 λ4 λ5

Table 1 Hypothetical Data for Illustrating Multiple
Imputation

Height (inches) Weight (pounds)

65 130
68 140
70 150
72 160
75 170



trouble if they use only the three available cases: their
sample average is a severe underestimate.

Many times, researchers are interested in relation-
ships among variables, such as regression coefficients.
In the hypothetical example, the fitted regression of
weight on height obtained using the three available
cases results in reasonable (unbiased) estimates of the
slope and intercept, because the regression holds for
all heights. However, in data sets with many variables
and complicated missing data patterns, using only the
available cases might exclude a large fraction of 
the observations, which could dramatically increase
the variability of the estimates. Additionally, different
specifications of models may use different units 
for estimation, making theoretical properties of result-
ing inferences nearly impossible to understand and
practical comparisons of different models difficult.

Illustration of Multiple Imputation

In contrast to available cases analyses, multiple impu-
tation uses all records for estimation, which takes
advantage of the information from partially completed
records. To illustrate multiple imputation, we again
use the hypothetical example. We first demonstrate
how to analyze a set of multiply imputed data sets,
and then discuss methods of generating imputations.

Suppose that five plausible values for each missing
weight have been generated to create five completed
data sets. These are displayed in Table 2, along with
the estimated slope and its variance obtained from fit-
ting standard linear regression in each completed data
set. Inferences for the population regression slope β

are based on three quantities. First, compute the aver-
age of the five estimated slopes, which equals 4.01.
Second, compute the variance of these five estimated
slopes, which equals .0523. Third, compute the aver-
age of the variances of the slopes, which equals .0209.
The point estimate of the population slope is 4.01, and
the variance associated with this point estimate is 
(1 + 1/5)(0.0523) + 0.0209 = 0.0836. An approximate 
95% confidence interval for β is 
A similar process can be followed to obtain inferences
for the population average weight, using the 
sample average weights and their variances. This 
resulting approximate 95% confidence interval is

Generically, suppose the goal is to estimate some
parameter Q, such as a population mean or a regres-
sion coefficient. Let q be the estimator of Q, and let u
be the estimator of the variance of q. In each
completed data set l, where l = 1, . . . , m, let ql and ul

be the values of q and u obtained from that data set.
The following quantities are required for inferences:

The point estimate of Q is q
_

m, and its variance is
estimated by

Tm = (1 + 1/m)bm +u
_

m.

An approximate 95% confi-
dence interval is

The use of a normal distribution
for confidence intervals is most
appropriate when the number of
records in the completed data set is
large, say, 40 or more, and the
number of completed data sets m is

q---m ± 1.96
√

Tm .

q---m =
m∑

l=1

ql

bm =
m∑

l=1

(ql − q---m)2/(m − 1)

u---m =
m∑

l=1

ul .

149.5 ± 1.96
√

48.63.

4.01 ± 1.96
√

.0836.
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Table 2 Five Completed Data Sets After Imputations

Weight Weight Weight Weight Weight 
Height Completed 1 Completed 2 Completed 3 Completed 4 Completed 5

65 130 130 130 130 130
68 140 140 140 140 140
70 150 150 150 150 150
72 157 166 155 157 156
75 171 169 167 171 168
Estimated 

Slope 4.12 4.26 3.71 4.12 3.83
(Variance) (0.025) (0.346) (0.024) (0.025) (0.018)



large, say, 20 or more. When the number of records is
large but m is moderate, inferences should be made
using a t distribution with degrees of freedom νm , where

When the number of records and m are moderate,
we use a t distribution with a complicated degrees of
freedom formula that can be found in the references
below. Using these t distributions rather than normal
distributions improves the coverage properties of the
confidence intervals.

Imputing missing values is a complicated process
for complex patterns of missing data. In general, the
analyst first specifies a statistical model relating all the
variables in the data set. The analyst then uses that
model and the observed data to estimate the distribu-
tions of the model parameters (e.g., the intercept, slope,
and regression variance in the hypothetical data). Based
on these estimated distributions, the analyst generates
plausible values of the model parameters. Using these
values and the observed data, the analyst generates val-
ues of the missing data. This creates one completed
data set. The process is repeated m times.

Generating imputations from scratch requires knowl-
edge of Bayesian statistics and Markov chain Monte
Carlo methods. Fortunately, software exists that makes
it unnecessary to generate imputations from scratch.

Software for Multiple Imputation

When data can be reasonably described by a multi-
variate normal distribution, analysts can use the free
software package NORM, written by Joe Schafer, to
generate and analyze multiply  imputed data sets. This
is a standalone package that runs on PCs. The NORM
Web site also has links to software that does multiple
imputation for purely categorical data (CAT), data
that are mixed categorical and multivariate normal
(MIX), and longitudinal data (PAN). These packages
run within the S Plus software environment.

Another approach is to construct a series of regres-
sion models, using each variable with missing values as
the outcome variable in one of the regressions. For
example, suppose age is measured in the hypothetical

data set, and its value is missing for some people.
Missing weights are imputed from a regression of
weight on height and age, and missing ages are imputed
from a regression of age on height and weight. This
approach allows analysts to specify models one variable
at a time, which eases computations. This approach is
implemented in the free software IVEWARE for SAS,
written by Trivellore Raghunathan. It is also imple-
mented in the free software package MICE for S Plus.

Assumptions of Multiple Imputation

Two conditions are needed for inferences from the
multiply imputed data sets to be valid, in the sense that
95% of all 95% confidence intervals contain their para-
meter of interest over repeated application. First, if
there were no missing data, the estimator q and its vari-
ance u should produce a valid 95% confidence interval
for the parameter of interest. For example, the relation-
ship between weight and height needs to be well
described by a linear regression if we are to trust the
95% confidence interval for the slope. Second, the
imputations need to be plausible values, in the sense
that they come from a model that faithfully reflects the
relationships in the data. For example, if weights are
implausibly imputed by plugging in the average weight
rather than using the regression on heights, the rela-
tionship between weight and height would be distorted.

The imputation process does not affect the validity
of the first condition, but it is central to the second
condition. It is essential that imputations be made
from expansive models. For example, include as many
predictors as possible in the regression models. This
ensures that those relationships will be reflected in the
imputations.

It is necessary that m > 1; otherwise, it is not pos-
sible to estimate bm. Intuitively, if the analyst imputes
just one data set and then analyzes it, the analyst
essentially would be acting as if the imputed values
were genuine values, when in reality, they were simu-
lated from probability models. Generating multiple
plausible values allows the uncertainty due to imputa-
tion to be passed on to inferences. In general, the
larger m is, the more accurate inferences tend to be.
Research has shown that m = 5 is often adequate,
especially when the fraction of missing values is not
large.

vm = (m − 1)

(

1 + u---m

(1 + 1/m)bm

)2

.
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Extensions to Multiple Imputation

In addition to the inferential methods for scalar esti-
mands presented here, researchers have developed
methods for doing significance tests for multi compo-
nent estimands. For example, it is possible to perform
likelihood ratio tests of nested models using multiply
imputed data sets. Multiple imputation also has been
suggested as a way to protect data confidentiality.

—Jerome Reiter

See also Missing Data Method
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MULTITRAIT MULTIMETHOD

MATRIX AND CONSTRUCT VALIDITY

A multitrait multimethod matrix (MTMM) refers to a
matrix of correlations derived from a factorial design
in which each of a set of constructs has been assessed
with each of a set of different methods of measure-
ment. Originally developed by Donald T. Campbell
and Donald W. Fiske, the MTMM was proposed to
assess construct validity (i.e., the degree to which 
an operationalization reflects its intended construct)
using two subcategories of validity. “Convergent
validity” is the extent to which measures intended to
assess the same construct are associated with one
another. “Discriminant validity” is the extent to which
measures designed to assess different constructs are,
in fact, distinct from one another.

The goal of the MTMM is to provide a framework
to assess the effects of trait variance (variance
attributed to the intended construct of interest) and

method variance (variance attributable to the specific
method of measurement) by examining convergent
and discriminant validity. More generally, the MTMM
also provides information about patterns of associa-
tions between methods, and patterns of associations
between constructs and possible interactions between
methods and constructs.

Selecting Traits 
and Methods for an MTMM

The selection of traits and methods for an MTMM
analysis should follow a set of guidelines. First, each
method should be well suited to evaluating all of the
constructs of interest. Second, measurement methods
should be as independent of each other as possible.
Finally, constructs should be included that are
expected to vary in their degree of association. In
other words, the matrix should include some con-
structs postulated to be highly related and some
constructs thought to be unrelated. This range of asso-
ciation is recommended in order to provide a basis of
comparison for discriminant validity.

Organization of an MTMM

Once MTMM data are collected, correlations among
the observed scores are computed and arranged with a
specific organization. This can be illustrated with a
hypothetical example (see Table 1). This example has
three traits (feelings, beliefs, and intentions to act),
each of which has been assessed using three measure-
ment methods: a Thurston equal appearing interval
scale, a Likert summated ratings scale, and a Semantic
Differential scale. Thus, there are nine observations
for each person, thereby producing a 9 × 9 correlation
matrix.

The MTMM is organized by method, with each 
of the three constructs embedded in each method
block. The interpretation of the MTMM involves
identifying the four different types of construct
method pairings within the matrix, which take the
form of either a diagonal or a triangle. These pairings
are evaluated using a set of guidelines.

The first type of construct method pairing is 
the monotrait heteromethod diagonals, which are
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correlations between different measures of the same
construct. These correlations are in bold and include,
for example, the correlation between feelings evalu-
ated by both the Likert Scale and the Thurstone scale
(r = .75). These correlations are also known as the
validity diagonals.

The second type of construct method pairing is
the heterotrait heteromethod triangles, which are the
correlations between different measures of different
traits (i.e., correlations between pairings that have
neither trait nor measure in common). These correla-
tions are unmarked in the matrix and include, for
example, the correlations between feelings evaluated
by the Likert scale and beliefs evaluated by the
Thurstone scale (r = .60).

The third type of construct method pairing is 
the monotrait monomethod diagonals, which are the
correlations between the same constructs using the
same measures. These correlations are highlighted
in the matrix via parentheses and include feelings
evaluated by both measures of the Thurstone scale
(r = .98). These are essentially the correlation of the
measure with itself, and for that reason, these corre-
lations are estimates of the reliability of each
measure.

The fourth type of construct method pairing is the
heterotrait monomethod triangles, which are the cor-
relations between different constructs evaluated using
the same measure. These correlations are underlined
in the matrix and include feelings and beliefs evalu-
ated by the Thurstone scale (r = .62).

Interpreting the MTMM

The guidelines for interpreting an MTMM begin by
evaluating the monotrait monomethod (reliability)
diagonal. These coefficients should be consistently
the highest in the matrix because it is unlikely that a
measure will correlate more highly with anything 
but itself. Following our example, the monotrait
monomethod correlations are indeed the highest of the
matrix, ranging from .92 to .99.

Second, the monotrait heteromethod correlations
are used to assess convergent validity. Large correla-
tions of this sort indicate convergent validity because
the different methods are in agreement on the same
underlying constructs. In our example, the monotrait
heteromethod correlations are high (ranging from .74
to .88), thereby suggesting that different methods
produce similar results for the three constructs.
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Table 1 Example of a Multitrait-Multimethod Matrix

Measure Thurstone Likert Semantic Differential

F B I F B I F B I

Thurstone
Feeling (.98)
Belief .62 (.95)
Intentions .19 .17 (.93)

Likert
Feeling .75 .60 .18 (.95)
Belief .59 .86 .17 .60 (.94)
Intentions .19 .18 .74 .21 .20 (.95)

Semantic Differential
Feeling .78 .59 .20 .76 .60 .17 (.99)
Belief .60 .88 .19 .59 .84 .19 .64 (.95)
Intentions .19 .20 .77 .18 .18 .77 .20 .20 (.92)

Note: Monotrait-monomethod values are in parentheses; heterotrait-monomethod values are underlined; monotrait-heteromethod values
are in bold; heterotrait-heteromethod values are unmarked.



Although high monotrait heteromethod correla-
tions are a necessary condition for convergent valid-
ity, they are not sufficient for its existence.
Specifically, even when monotrait heteromethod cor-
relations are large, it is possible that they may be
artificially inflated based on an irrelevant factor
(e.g., different measures may be highly correlated
because of method variance). Thus, the values in the
monotrait heteromethod diagonals should be com-
pared to the values in the heterotrait heteromethod
triangles. Specifically, the values of the monotrait
heteromethod diagonal should be higher than those
of the heterotrait heteromethod correlations that
share the same column or row. Essentially, if these
different methods are truly measuring the same con-
struct (i.e., it is mainly trait variance responsible for
the high monotrait heteromethod correlations), these
values should be correlated more strongly than unre-
lated constructs that are measured using different
methods (i.e., values having neither construct or
method in common). For example, in the sample
matrix, the correlation between the Thurstone and
Likert scales evaluating feelings (r = .75) is higher
than the correlation between the Likert scale evaluat-
ing feelings with the Thurston scale evaluating
behavior (r = .60), the Likert scale evaluating feel-
ings with the Thurstone scale evaluating intentions (r
= .18), and so on. A visual examination reveals that
the monotrait heteromethod values are higher than
the heterotrait heteromethod values for each compar-
ison in the matrix. Furthermore, heterotrait het-
eromethod correlations for constructs hypothesized
to be related should be higher than for those not
hypothesized to be related.

Next, monotrait heteromethod values should be
compared to the heterotrait monomethod triangles.
Specifically, the values in the monotrait het-
eromethod diagonal should be higher than those of
heterotrait monomethod triangles, because different
methods measuring the same trait should be more
highly correlated than the same methods measuring
different traits. If the heterotrait monomethod corre-
lations are larger, it suggests that the method of mea-
surement may account for a larger proportion of 
the observed variance in the scores. In our example,

the correlation between the Thurstone and Likert
evaluations of feelings (r = .75) is higher than the
Thurstone values for feelings and belief (r = .62), the
Thurstone values for feelings and intentions (r = .19),
and the Thurstone values for beliefs and intentions 
(r = .17). This criterion is met for each comparison in
the matrix.

Finally, researchers should evaluate both the het-
erotrait monomethod and the heterotrait heteromethod
triangles. If two traits are correlated, this relationship
should hold irrespective of the method used to evalu-
ate them, and therefore, the same pattern of interrela-
tionships between different traits should be visible in
all of the monomethod and heteromethod blocks. In
examining the sample matrix, this criterion is satisfied
(e.g., feelings and beliefs are always more highly
correlated than are feelings and intentions).

Limitations of the MTMM

Although the MTMM remains a popular and useful
approach, it does have limitations. For example,
many key underlying assumptions are not clearly
defined (e.g., the MTMM assumes the existence of
both method and trait factors but does not specify
their relationships with each other). It also provides
no manner of testing its underlying assumptions and
is unrealistic in that it neglects to account for ran-
dom measurement error. Additionally, there are
practical problems associated with the use of
MTMM. For example, complete cross factoring of
methods and constructs is not always possible, and
very large matrices can be difficult to evaluate. The
MTMM approach has also been criticized for its
ambiguity. MTMM matrices sometimes produce
conflicting results within a given matrix. Thus, in
practice, some aspects of the matrix may be consis-
tent with the guidelines, whereas others may not. In
such cases, evaluations of the matrix can be very
subjective.

In order to address the difficulty of quantifying the
extent to which MTMM criteria have been satisfied,
statistical procedures have been proposed to comple-
ment the visual evaluations of the matrix. The most
common approach is the use of confirmatory factor
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analysis. A number of different factor analytic models
have been proposed to evaluate MTMM data.
Unfortunately, many of these models have conceptual
and practical limitations. Research evaluating the
strengths and weaknesses of these models remains an
active area of inquiry in the quantitative methods lit-
erature, and some promising techniques have been
identified (e.g., the Composite Direct Product Model).
However, definitive comparisons of many of these
models have yet to be conducted.

— Leandre R. Fabrigar 
and Marie Joelle Estrada

See also Construct Validity; Validity Theory 
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MULTIVARIATE ANALYSIS

OF VARIANCE (MANOVA)

Multivariate analysis of variance, or MANOVA, is a
data-modeling technique that is a powerful alternative
to its univariate analysis of variance (ANOVA) coun-
terpart. With traditional ANOVA, mean differences
between groups on a single quantitative variable can
be analyzed. For instance, consider a school psychol-
ogist who is interested in examining the average per-
formance of Asian, Caucasian, and Hispanic children
on a standardized test of intelligence that yields

continuous scores on three subscales: Mathematics,
Verbal, and Processing Speed. Adopting a univariate
frame of mind, the psychologist could conduct three
separate ANOVAs to determine if the means of the
ethnic groups are equivalent on each of the three sub-
scales. If the psychologist viewed the data from a mul-
tivariate standpoint, however, he or she could conduct
a single MANOVA to examine differences between
the Asian, Caucasian, and Hispanic children on linear
combinations of the three intelligence subscales. 
In other words, he or she could combine the
Mathematics, Verbal, and Processing Speed scores to
form one or more multivariate composites on which
the three ethnic groups could be compared. Perhaps a
combination of high Mathematics, high Processing
Speed, and low Verbal scores will provide the most
effective composite for discriminating among the
three groups? Perhaps the simple difference between
the Mathematics and Verbal subscale scores will
instead provide the most effective composite? Such
questions are multivariate in nature because they
address the interrelationships among the continuous
measures of intellectual ability.

The primary strength of MANOVA is thus the
capability to examine group differences on linear
combinations of quantitative variables. For the sake of
convenience, grouping variables will herein be
referred to as independent variables, and the quantita-
tive variables will be referred to as dependent vari-
ables. In the example above, ethnicity (with three
levels: Asian, Caucasian, and Hispanic) is the inde-
pendent variable, and the three intelligence subscales
are the dependent variables. Mathematically speaking,
there are no limits to the number of independent vari-
ables or dependent variables that can be included in
the analysis, and the independent variables can be
composed of two or more groups. When only one
independent variable is included, the analysis is
referred to as a one-way (or one-factor) MANOVA,
and when two or more independent variables are
included, the analysis is referred to as a factorial
MANOVA. In the special case of one independent
variable with two levels, the analysis is often referred
to as a Hotelling’s T, which is the multivariate gener-
alization of the independent samples t test. Regardless
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of the study design, the goal of the
MANOVA is to determine if the inde-
pendent variable groups differ in their
means on at least one linear combina-
tion of the dependent variables.

An Example

Consider a study of the Sesame Street
television series reported by James P.
Stevens. Children in the 3–5 year age
range were studied and assessed on a
variety of measures both before and
after watching episodes of Sesame
Street. One question that could be
addressed in this data regards differ-
ences between boys and girls prior to
viewing the episodes. Measures of knowledge in four
areas are of particular interest: body parts, letters,
forms, and numbers. Scale values on these measures
range from 0–58, 0–20, 0–54, and 0–32, respectively.
Are the mean performances of the boys and girls sim-
ilar on these scales? Gender, with two levels (boys and
girls), will be treated as the independent variable, and
the four knowledge scales will serve as the dependent
variables.

For pedagogical reasons only, the data are first ana-
lyzed with four ANOVAs, examining each knowledge
area separately. The null hypothesis for each analysis
represents equality between population means on the
variable; H0: µboys = µgirls, where µ represents the pop-
ulation mean. The resulting F values and associated
statistics computed from SPSS are shown in Table 1.
Using an unadjusted a priori p value of .05, it can be
seen that the ANOVAs are not statistically significant
(all observed, “Sig.,” observed p values
> .05). The results therefore suggest that
the population means for the boys and
girls are equal in each of the four knowl-
edge areas.

These data are also suitable for a one
way MANOVA given the single inde-
pendent variable and multiple depen-
dent variables. The null hypothesis for
this analysis states that the two groups

are equal on a linear combination of all four depen-
dent variables—H0: µlinear,boys = µlinear,girls. The mathe-
matics underlying the MANOVA will produce the
linear combination in such a way as to maximize the
mean difference between the boys and girls. The mean
difference on the linear combination then can be
tested for statistical significance, as shown in Table 2.

Four tests of statistical significance are commonly
available for MANOVA, and three of these tests have
well known sampling distributions from which p val-
ues can be estimated. The significance level of the
remaining test, Roy’s greatest characteristic root (or
g.c.r., with s, m, and n degrees of freedom from Table
2), can also be estimated with special software devel-
oped by Richard J. Harris.

In this example, the tests show that the results of
the MANOVA are statistically significant; in other
words, the population means for the boys and girls
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Table 1 Univariate ANOVA Results

Sum of  Mean 
Variable Squares df Square F Sig.

Body Parts Gender Effect 81.809 1 81.809 2.011 .157
Residual 9679.791 238 40.671
Total 9761.600 239 40.844

Letters Gender Effect .639 1 .639 .009 .926
Residual 17415.423 238 73.174
Total 17416.063 239 72.871

Forms Gender Effect 16.153 1 16.15 1.157 .283
Residual 3321.343 238 13.955
Total 3337.496 239 13.964

Numbers Gender Effect 10.417 1 10.417 .091 .763
Residual 27277.978 238 114.613
Total 27288.396 239 114.177

Table 2 MANOVA Results

Multivariate Tests of Significance (s = 1, m = 1, n = 116 1/2)

Test Name Value Exact F Hyp. df Error df Sig. F

Pillais .04493 2.76403 4.00 235.00 .028
Hotelling .04705 2.76403 4.00 235.00 .028
Wilks .95507 2.76403 4.00 235.00 .028
Roy .04493



are judged to be different on a linear combination of
the four areas of knowledge. The F values and p val-
ues are all identical because only one independent
variable with two levels is included in the analysis.
In other study designs, these values will not neces-
sarily be equal. Furthermore, in this example, only
one linear combination of the dependent variables
(to be shown below) is being tested. With more com-
plex designs, two or more linear combinations will
be simultaneously computed and included in these
statistical tests, and the four multivariate tests above
will not be equivalent. In such instances, one of the
four tests must be used, and Wilks’s Lambda is the
most popular choice. Roy’s g.c.r., however, is
arguably most suitable for conducting follow-up
statistical tests on the linear combinations of
dependent variables. The readings cited below
provide explanations of the differences among 
the tests.

The next crucial step in the analysis is to deter-
mine how the dependent variables are combined to
significantly discriminate between the boys and
girls. A number of methods are available for deter-
mining the importance or relevance of each depen-
dent variable to the multivariate effect. The
approach adopted here relies on the discriminant
function coefficients produced from the MANOVA.
These coefficients are regression weights derived to
maximally discriminate between the groups that
comprise the independent variable. The coefficients
can be computed in both raw and standardized form,
and the values for the current example are reported
in Table 3.

If the dependent variables are measured on differ-
ent scales, as in this example, the standardized coeffi-
cients should be examined; otherwise, the raw

coefficients can be used. In either case, the absolute
relative magnitudes of the coefficients are examined,
and the current results indicate that the Forms and
Body Parts dependent variables are contributing most
to the multivariate effect. The signs of the discrimi-
nant function coefficients for the important variables
are next considered to interpret the linear combina-
tion. In this example, the multivariate composite
clearly conveys a discrepancy effect; specifically, the
boys and girls differ in their mean discrepancy
between the Forms and Body Parts variables. The
nature of this effect can be understood by examining
the means of the standardized dependent variables for
both boys and girls in Figure 1.

As can be clearly seen, compared to the girls,
the boys performed better on the Forms knowledge
scale and worse on the Body Parts knowledge scale.
This effect is also reflected in the means for the boys
(M = –.22, SD = .85) and girls (M = .21, SD = 1.12)
on the standardized multivariate composite (i.e., the
standardized linear combination). The lower mean
value for the boys indicates superior performance on
the Forms scale relative to the Body Parts scale. This
intriguing multivariate effect was completely missed
by the univariate ANOVAs reported above!

Additional Issues

The example above includes four dependent vari-
ables and only a single independent variable with
two groups. It is therefore among the simplest of
designs for a MANOVA, and it yielded only a single
multivariate composite (linear combination). For
more complex designs, additional composites will be
produced from the analysis depending on the number
of groups in the independent variables, the number
of independent variables, and the number of depen-
dent variables. The multivariate tests, except Roy’s
g.c.r., will then address a null hypothesis that posits
equality among population group means on all of the
multivariate composites, considered simultaneously.
Roy’s g.c.r. addresses the null hypothesis that the
groups differ in the population means on only the first
multivariate composite. When multiple composites
are produced, the first will maximally discriminate
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Table 3 Discriminant Function Coefficients

Variable Raw Standard

Body Parts .22671 1.44580
Letters .03172 .27134
Forms −.28492 −1.06436
Numbers −.05452 −.58372



among the groups, and the remaining composites
will be ordered according to the magnitudes of group
differences they yield. The composites will all be
orthogonal (or uncorrelated), however, and thus can
be examined and interpreted separately, using the
techniques described above. To make matters even
more complex, factorial MANOVAs yield tests of
interactions and main effects. For each interaction
and main effect, a unique set of multivariate compos-
ites will be generated that must be evaluated. With
complex study designs, it is easy to see that perform-
ing a MANOVA is no simple task.

Regardless of study design, it should be stressed
that the heart of MANOVA is the multivariate com-
posite or set of composites generated from the
analysis. Unfortunately, many investigators fail to
examine the linear combinations of the dependent
variables. Instead, two misuses of the analysis are
common. First, univariate ANOVAs are conducted
after a MANOVA to determine the importance of
the dependent variables in the multivariate effect.
This strategy is gravely erroneous because, as was
clearly demonstrated in the example above, the
multivariate effect conveyed in the discriminant

function coefficients will not necessar-
ily correspond to the univariate effects
found in the separate ANOVAs.
Second, MANOVA is often used as a
method for controlling Type I error
inflation. Many investigators will first
conduct a MANOVA, and if the result
is statistically significant, they will
then conduct separate ANOVAs and
judge the results using an unadjusted a
priori p value of, for example, .05.
Unfortunately, conducting a MANOVA
alone will not normally provide pro-
tection against Type I error inflation,
and this analysis strategy is not to be
condoned.

Finally, MANOVA is a statistical
modeling technique and thus involves
inferential judgments about population
parameters. As with all statistical tests,
the validity of such inferential leaps

relies on a number of assumptions. In MANOVA,
these are (a) independence of observations, (b) the
dependent measures follow a multivariate normal dis-
tribution for each level of the independent variable,
and (c) the population covariance matrices for the
dependent variables are equal for all levels of the
independent variable. Assessing each of these
assumptions is an important part of any MANOVA.

—James W. Grice

See also Analysis of Covariance (ANCOVA); Analysis of
Variance (ANOVA)
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MULTIVARIATE NORMAL

DISTRIBUTION

In 1984, Anderson stated, “A major reason for basing
statistical analysis on the normal distribution is that
this probabilistic model approximates well the distri-
bution of continuous measurements in many sam-
pled populations.” He goes on to mention that
normality based methods have the advantage that the
theory is developed in great detail. In univariate
analysis, the central limit theorem steers us toward
the normal distribution. Similarly, we are steered
toward the multivariate normal distribution in multi-
variate analysis by the general, or multivariate, cen-
tral limit theorem.

As its name would indicate, the multivariate nor-
mal distribution is the multidimensional extension of
the familiar univariate normal distribution, or “bell
curve.” The bivariate normal distribution will arise
when a pair of variables X and Y has not just individ-
ual (or marginal) distributions that are normal, but
also a joint distribution that is normal. The bivariate
normal distribution can be visualized as a three-
dimensional bell. The distribution can be extended

with three or more variables sharing this relation-
ship.

Properties

The probability density function for a univariate nor-
mal distribution is f(x) = where –∞ <
x < ∞; µ represents the mean of the distribution and
can take on any real number value; and σ represents 
the standard deviation of the distribution, which 
can take on any positive value. This formula is
extended to the multivariate distributions as f(x) =

Many online sites, including
Weisstein’s MathWorld, cover many of the mathemat-
ical properties of this distribution.

For the bivariate distribution, p = 2, and in general,
p is the number of variables. µ is a vector of size p × 1
that contains the means, and Σ is the variance covari-
ance matrix of size p × p. In this matrix, the main diag-
onal elements are the variances of the p component
variables, and the off diagonal elements are the covari-
ances. For example, if we let σij represent the element
in the ith row and jth column of this matrix, then σ11

would represent the variance of the first variable, σ12 is
the covariance between the first and second variables,
and the correlation between these two variables would
be r12 = or the covariance divided by the prod-
uct of the two standard deviations.

Some properties of the multivariate normal distrib-
ution are very important to consider when performing

multivariate analyses. When considering
a random vector X that follows a multi-
variate normal distribution, the follow-
ing properties will hold:

1. All linear combinations of the compo-
nents of X are normally distributed.

2. All possible subsets of the com-
ponents of X will be normally
distributed.

3. Zero covariance between two compo-
nents implies that those components
are independent.

4. The conditional distributions of the
components are normal.

σ12√
σ11σ22

,

1
(2π)p/2|�|0.5

e−(x−µ)′�−1(x−µ)/2.

1√
2πσ 2

e−[(x−µ)/σ ]2/2,
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It is important to realize that even though each uni-
variate component of X follows the univariate normal
distribution, the univariate normality of each compo-
nent of some other random vector X* does not neces-
sarily imply that X* is multivariate normal. In other
words, the univariate normality of each variable is
necessary but not sufficient to establish multivariate
normality. Thus, a strategy of assessing multivariate
normality that merely assesses each component vari-
able separately will not be successful in detecting 
all deviations from multivariate normality. The
relationship between the variables, numerically
expressed in the variance covariance matrix, must be
considered for the problem of testing multivariate
normality.

Implications for Analysis

Looney stated that “the assumption of multivariate
normality underlies many commonly used multivari-
ate statistical procedures.” Examples include multi-
variate analysis of variance (MANOVA), discriminant
analysis, and canonical correlation. Looney com-
mented that several Monte Carlo studies found that
the performance of these multivariate procedures can
be adversely affected by a violation of the assumption
of multivariate normality.

It is evident that the question of testing for multi-
variate normality is significant for several reasons.
First, ignoring the assumption of multivariate normal-
ity when conducting multivariate analyses that call
upon that assumption can lead to either increased
Type I error rate or a reduction in power. Neither of
these possibilities is desirable; in fact, we wish to
avoid Type I error and also highly favor statistical
methodology that will maximize power. Testing the
assumption of multivariate normality will help avoid
these undesirable outcomes.

Testing for Goodness of Fit

Many tests exist that will test for multivariate normal-
ity. Henze and Mecklin and Mundfrom have provided
recent reviews summarizing the dozens of tests that
exist. Henze focused primarily on a certain class of

tests that is “affine invariant” and is mathematically
consistent against all possible alternatives (i.e., possi-
ble deviations from multivariate normality). Although
this property of consistency stressed by Henze is
mathematically desirable, Mecklin and Mundfrom’s
paper also considered many other procedures as well.
They felt that other factors besides theoretical proper-
ties such as consistency against alternatives should be
considered. Mecklin and Mundfrom tended to favor
tests that had strong performances in comparison to
other candidates in Monte Carlo simulation studies,
had test statistics with good asymptotic null distribu-
tions and did not require specialized tables, and tests
simple enough that those who are not specialists 
in goodness of fit could perform them. Mecklin and
Mundfrom would also value test statistics such as
Mardia’s measure of skewness and kurtosis (i.e., mul-
tivariate analogues of univariate skewness and kurto-
sis) that can also serve as multivariate descriptive
measures over procedures whose results do not led
themselves well to describing the data.

Many Monte Carlo studies have looked to compare
the relative effectiveness of these procedures. Mecklin
and Mundfrom compared the Type I and Type II error
rates of 13 of these procedures against  25 alternative
distributions. As others in the past had found, no sin-
gle test of goodness  of  fit to the multivariate distrib-
ution is the most powerful in all circumstances. The
Henze Zirkler statistic was identified as a test that has
both strong theoretical properties and strong perfor-
mances in Monte Carlo studies. Because the value of
the Henze Zirkler test statistic does little to help the
researcher diagnose the reason for the deviation from
normality, Mecklin and Mundfrom suggested that
researchers complement the Henze Zirkler test with
the chi square plot described by Healy, and also
Mardia’s measures of skewness and kurtosis. Mardia’s
measures, particularly kurtosis, are frequently used by
structural equation modelers.

Despite the plethora of methods for testing multi-
variate normality and several power studies assessing
their performance, many users of multivariate analy-
ses do not use these tests or seriously consider the
assumption of multivariate normality that is made by
many multivariate methods. Looney gave five reasons
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why he felt that many practitioners do not test for
multivariate normality:

1. The practitioner does not know of the existence of
tests for multivariate normality.

2. Software for easily calculating the test statistic or p
value for a test of multivariate normality is not read-
ily available.

3. Even if software is used to calculate the test statistic,
often the significance can be determined only by ref-
erencing a special table, which may not be readily
available.

4. The practitioner does not want to use a procedure
(such as a test of multivariate normality) when little
is known about the statistical power of the test.

5. The practitioner is reluctant to test for multivariate
normality because he or she does not know how to
proceed if non normality is detected.

One reason that an investigator doing applied
research in a field outside of statistics might be inter-
ested in conducting a test of normality upon a multi-
variate data set would be to determine the validity of
the assumption of normality. Determining whether
or not multivariate normality is a tenable assumption
is important for deciding on how to proceed in the
data analysis. If the assumption is tenable, then the
investigator can feel confident in employing the
usual parametric techniques of multivariate analysis.
However, if the assumption is not tenable, alterna-
tives to parametric statistics need to be considered.
Some available options include robust methods,
nonparametric procedures, transformations of the 
data, or computer intensive techniques such as
bootstrapping.

—Christopher J. Mecklin
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MYERS-BRIGGS TYPE INDICATOR

The Myers-Briggs Type Indicator (MBTI), a self-
report, forced-choice questionnaire, assesses person-
ality according to typologies proposed by Carl Jung.
Administration of the MBTI takes approximately 10
minutes. The MBTI is used worldwide in diverse set-
tings; most commonly, it assists in career develop-
ment, professional team building, personnel selection,
and counseling.

Isabel Myers and Katharine Briggs authored the
first version of the MBTI in 1962 to measure individ-
ual preferences between Jung’s personality types. The
test, most recently updated in 2001, identifies 16 types.
Each is designated by its four-letter code. Each letter 
of the code indicates a preference for one manner of
experiencing the world over another. For instance, an
INTJ shows preferences for Introversion (over
Extraversion), Intuition (over Sensing), Thinking (over
Feeling), and Judging (over Perceiving).

The Introversion Extraversion dimension charac-
terizes how people direct their energy. Introverts
direct it internally, toward ideas and the subjective,
and extraverts direct it externally, toward people and
materials. The Intuition Sensing dimension identifies
how people focus their perception. Intuitive types
focus readily on abstraction and pattern, whereas
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Sensing types focus on concrete stimuli perceived 
by the senses. Individuals’ scores on the Thinking
Feeling dimension indicate the types of information
on which they base decisions. Thinking types base
decisions on attempted rationality and objectivity,
whereas Feeling types prioritize maintenance of har-
mony with others and with their own values. The last
dimension, Judging Perceiving, characterizes people’s
preferences for resolution, among Judging types, or
open-ended situations, among Perceiving types. In the
most recent revision, each dimension has been parsed
into five facets for more nuanced interpretation.

These dimensions allow organizations, for
instance, to use the MBTI for team building. After
administering the test to a group, members’ results can
be used to stimulate conversation about their similari-
ties or differences in work style and preferred level of
socializing in completing tasks, among other topics.
The MBTI provides a common vocabulary with which
members can introduce themselves.

Scores are calculated for each dimension based on
forced choices between the two sides of the dimen-
sion; for example, each item that loads on the
Introversion Extraversion scale offers one choice that
is weighted in favor of Introversion, and another
weighted toward Extraversion. The sides of the four

dimensions for which people most frequently show a
preference comprise their type codes. Data used to
select items and to provide evidence of validity for
MBTI scores were collected from a nationally  repre-
sentative sample. The psychometric qualities for the
scales and type codes are somewhat equivocal.
Indicators of consistency over time for both scales and
type codes and item to item on scales show poorer
consistency than other measures frequently used to
similar ends.

—Matthew E. Kaler

See also Minnesota Multiphasic Personality Inventory; NEO
Personality Inventory; Personality Tests

Further Reading
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Psychology Journal: Practice and Research, 52, 117–132.

Myers, I. B., McCaulley, M. H., Quenk, N. L., & Hammer,
A. L. (1998). MBTI manual: A guide to the development
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NATIONAL COUNCIL ON

MEASUREMENT IN EDUCATION

According to the National Council on Measurement in
Education (NCME) bylaws, “NCME is an organization
that is incorporated exclusively for scientific, educa-
tional, literary, and charitable purposes.” One primary
purpose of NCME is the encouragement of scholarly
efforts (a) to “advance the science of measurement in
the field of education”; (b) to “improve measurement
instruments and procedures for their administration,
scoring, interpretation, and use”; and (c) to “improve
applications of measurement in assessment of individ-
uals and evaluation of educational programs.”

In addition, NCME has a second primary purpose,
the dissemination of information about assessment
theory and practices. According to its Web site, NCME
disseminates information about (a) “theory, tech-
niques, and instrumentation available for the measure-
ment of educationally relevant human, institutional,
and social characteristics”; (b) “procedures appropriate
to the interpretation and use of such techniques and
instruments”; and (c) “applications of educational mea-
surement in individual and group evaluation studies.”

NCME is a professional organization for persons
who are involved in assessment, evaluation, and
related aspects of the assessment process. These
persons might be involved in test construction; test
evaluation; or the generation of new theories and
methods for constructing and evaluating tests and
test scores, equating test scores, and managing test-
ing at computers, among other things. The member-
ship is diverse, including university faculty, test
developers, state and federal testing and research
directors, persons working for credentialing organi-
zations, graduate students in measurement and
assessment programs, and others who work in the
testing field. About 10% to 15% of the 2,000 or so
members are from outside the United States, most of
them from Canada.

Formation

NCME was established in 1937 and was called the
National Association of Teachers of Education
Measurement. In 1942, the name was changed to
National Council on Measurements Used in Educa-
tion. The change to the current name came in 1969,
along with incorporation.
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Publications

NCME publishes through five organs:

1. Journal of Educational Measurement
• Quarterly
• Publishes technical and theoretical developments

in measurement and improvements in the applica-
tions of measurement methods 

2. Educational Measurement: Issues and Practice
• Quarterly 
• Promotes better understanding of educational

measurement and focuses on timely issues and
debates in the educational measurement field 

3. Instructional Topics in Educational Measurement
Series
• Occasional
• Provides instruction on timely educational mea-

surement topics for practitioners and graduate
students 

4. Newsletter 
• Quarterly 
• Keeps the membership up to date on current

events in the educational measurement field and
disseminates information about the activities of
the NCME Board and its committees 

5. Web site 
• Contains information about the organization, mem-

bership, history, awards, publications, and more

Annual Convention

In March or April the organization holds an annual
3-day meeting in conjunction with the American
Educational Research Association annual meeting. A
high percentage of the membership attends, and one
of the highlights is the NCME Breakfast, with atten-
dance of 300 to 400 members. The annual meeting
also includes a brief business meeting, awards, and a
presidential address. 

Achievement Awards

The number of awards given by NCME each year
has been on the increase. Currently the following
awards are given: Brenda H. Loyd Dissertation Award;
Brad Hanson Award; Jason Millman Promising

Measurement Scholar Award; Award for Career
Contributions to Educational Measurement; and
awards for such things as Outstanding Dissemination of
Educational Measurement Concepts to the Public,
Outstanding Example of an Application of Educational
Measurement Technology, and Technical Contribution
to a Field of Educational Measurement. More details
about these awards are available at the NCME Web site.

—Ronald K. Hambleton

See also Measurement

Further Reading

Lehmann, I. J. (1990). The state of NCME: Remembering
the past, looking to the future. Educational Measurement:
Issues and Practice, Spring, 3–10.

National Council on Measurement in Education Web site:
www.ncme.org

NATIONAL SCIENCE FOUNDATION

The National Science Foundation (NSF) is an inde-
pendent federal agency created by the U.S. Congress
in 1950 to promote scientific progress; advance the
health, prosperity, and welfare of the nation; and
secure national defense. The NSF’s motto, “where
discoveries begin,” reflects the goal of the foundation,
which is to support the people, ideas, and tools that
make new knowledge possible. The foundation sup-
ports all fields of fundamental science and engineer-
ing except the medical sciences. With a current annual
budget of $5.5 billion, the NSF funds one fifth of all
federally supported basic research conducted in U.S.
colleges and universities and supports more than
200,000 scientists each year. The NSF issues about
10,000 new limited-term (typically 3-year) grants
annually, as well as funding for research centers, other
research facilities, and scientific equipment.

Organizational Structure

Management at the NSF has two major components:
the director, who oversees the staff responsible for
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the creation and administration of programs, merit
review, and daily operations of the foundation, and the
24-member National Science Board, which estab-
lishes the policies of the NSF. The director and all
board members serve 6-year terms; they are appointed
by the President of the United States and confirmed
by the U.S. Senate. The foundation currently employs
1,700 individuals at its headquarters in Arlington,
Virginia.

The NSF comprises seven directorates: Biological
Sciences; Computer and Information Science and
Engineering; Education and Human Resources;
Engineering; Geosciences; Mathematics and Physical
Sciences; and Social, Behavioral and Economic
Sciences. Each directorate has its own assistant direc-
tor, who oversees its subdivisions. Special divisions,
such as the Office of International Science and
Engineering, fall under the director’s portfolio. 

Grants and Merit Review

Grant proposals are submitted by individual scientists
or research teams and then assessed through a rigor-
ous merit review system. The NSF offers a number of
annual workshops and conferences to discuss scien-
tific discoveries and explore areas requiring new
research. The foundation publishes notices (or “solic-
itations”) for new funding opportunities each year 
and also encourages scholars to submit unsolicited
requests for funding in any existing or emerging field
of research. The NSF currently receives 40,000 pro-
posals per year, all of which are reviewed by panels of
experts not employed by the NSF or by an institution
employing a scientist whose proposal is under review.
Reviewers are selected from a national pool of experts
in each field and asked to provide confidential reviews
of proposals.

A Legacy of Discovery

In 2000, in honor of its 50th anniversary, the NSF pub-
lished America’s Investment in the Future, providing a
history of the organization and its support of science
and innovation, including details about more than 100
NSF-funded Nobel Prize winners. The foundation

publishes annual reports on its Web site, as well as the
“Nifty 50,” a list of NSF-funded inventions, innova-
tions, and discoveries, including the development of
the American Sign Language dictionary, nanotechnol-
ogy, and speech recognition technology.

—Lisa M. Given

Further Reading

National Science Foundation Web site: www.nsf.gov

NEO PERSONALITY INVENTORY

The NEO Personality Inventory–Revised (NEO PI-R;
published by Psychological Assessment Resources) is
a revision of the NEO PI first published by Paul Costa
and Robert McCrae in 1985. The instrument was
constructed to measure the “Big Five” personality
domains: neuroticism, extroversion, openness, consci-
entiousness, and agreeableness. In addition to the
global measures of these domains, the NEO PI-R
includes 30 facet scales, which are subscales related to
each of the five major domains.

Two versions of the test booklet are available: a
self-report version (Form S) and an observer-report
version (Form R). The item content of the two ver-
sions is identical, but questions are worded in the first
person in Form S and in the third person in Form R.
The options of hand scoring and machine scoring are
available for both forms, and a computer-based ver-
sion of the NEO PI-R, which includes administration,
scoring, and interpretation, is also available. The most
recent manual has been translated into 12 languages
other than English.

The NEO PI-R is recommended for use with per-
sons 17 years old and older who do not have psy-
chological disorders that would impair completion
of a self-reported measure. Recent research, which
included the rewording of some items to increase
understanding by adolescents, suggested the NEO
PI-R also may be useful with students in high
school. To interpret scores, an extensive norm group
that includes men and women, including those of
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college age, has been collected. The college-age
sample is recommended for use with test takers between
the ages of 17 and 20 because of elevated scores on
the excitement-seeking scale for this age group.

Evidence of validity and reliability has been col-
lected for the NEO PI-R. Extensive research about the
structure of the factors (construct validity), as well as
correlational data with other measures of personality
(convergent validity) and theoretically unrelated con-
structs (discriminant validity), has been published.

Short-term test-retest reliability coefficients are
around .80 for each of the five domains. A 6-year test-
retest study found stability coefficients of .68 to .83
for neuroticism, extroversion, and openness. Another
study, spanning 7 years, found stability coefficients
ranging from .63 to .81 for all five domains. Interitem
reliability alpha coefficients for the facet scales range
from .86 to .92 for Form S and from .89 to .95 for
Form R.

The NEO PI-R has many uses for clients, coun-
selors, and researchers, including increasing clients’
self-awareness and helping counselors develop appro-
priate treatment plans. Additionally, results from a
self-report that diverge from a significant other’s rat-
ings can give clients insight into the way in which
others see them. Coupled with vocational assess-
ments, the NEO PI-R can help clients and counselors
discuss possible career decisions on the basis of
clients’ personality and interests. Furthermore,
researchers can benefit by including a measure of per-
sonality in their studies.

—Melanie Leuty and Jo-Ida C. Hansen

Further Reading

Costa, P. T., Jr., & McCrae, R. R. (1992). Revised NEO
Personality Inventory and NEO Five Factor-Inventory
Professional Manual. Odessa, FL: Psychological Assess-
ment Resources. 

NEONATAL BEHAVIORAL

ASSESSMENT SCALE

The Neonatal Behavioral Assessment Scale (NBAS,
published by MacKeith Press) assesses the full range

of neonatal behavior by describing infants’ competen-
cies and identifying potential areas of difficulty. The
scale was originally developed in 1973 by T. Berry
Brazelton on the premise that rather than being pas-
sive recipients of their environments, infants actively
contribute to the parent-infant relationship. In addi-
tion, the scale was designed not only to identify
abnormal infant behavior but also to describe the full
range of normal infant behavior—a departure from
most assessments of neonatal behavior at the time,
which focused on identifying developmental delays.

The most recent edition of the NBAS scale takes 20
to 30 minutes to administer and is used to assess full-
term infants up to the end of the second month of life.
The scale may be adapted to assess preterm and 
at-risk infants as well. The NBAS is administered by
a trained individual, who scores 53 items based on
infants’ behavior and state. These items assess infants’
level of functioning in seven primary domains: (a)
infants’ reflexes, including the sucking reflex, the
plantar reflex, and the rooting response, are assessed;
(b) the motor system is assessed by, for example,
examining the range of motion and the resistance of
infants’ limbs; (c) the autonomic system is assessed
by examining the degree to which infants are startled
during the procedure, how much they tremble during
the procedure, and the color of their skin; (d) the
capacity of infants to habituate to disturbing stimuli is
assessed by shaking a bell nearby or shining a light in
the eyes and examining how long it takes infants to
disregard the stimulus; (e) infants’ state organization
is assessed by examining how irritable and excited
they are during the procedure, as well as how much
their state changes during the procedure; (f) the
degree to which infants are capable of state regulation
is assessed by examining how cuddly they are in
response to being held, how consolable they are while
crying, and how well they can quiet themselves while
crying; and (g) the social interaction of infants is
assessed by examining how well they track both audi-
tory stimuli (e.g., an adult voice) and visual stimuli
(e.g., a face).

The NBAS has proven to be a valid and reliable
measure of infant behavior in early life and has been
used extensively in both research and clinical con-
texts. Researchers, for example, have used the NBAS
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to investigate the effects of maternal substance abuse,
cross-cultural differences in infant behavior, the possi-
ble developmental outcomes of children, the effects of
tactile stimulation on preterm infants, and the effects
of obstetric medication on later development. In clini-
cal settings, the NBAS has been administered in the
presence of parents to help them better understand the
capacities of their infants. By administering the scale
in the presence of parents, clinicians can stress
the uniqueness of an infant, share concerns about the
infant, and foster a positive relationship between the
family and themselves. In sum, the NBAS is a valid
assessment of infant behavior that has been used
widely in both research and clinical contexts.

—Matthew J. Hertenstein and Jennifer L. Porter

Further Reading

Brazelton, T. B., & Nugent, J. K. (1995). Neonatal Behavioral
Assessment Scale (3rd ed.). London: MacKeith Press.

Neonatal Behavioral Assessment Scale and T. Berry Brazelton
description: http://www.brazelton-institute.com

NEWMAN-KEULS TEST

Newman and Keuls proposed a procedure for pairwise
testing of means in a one-way analysis of variance.
The procedure is routinely applied after a significant
overall F test. A series of critical differences (CDs) is
used to evaluate the significance of the difference
between each pair of means. The pairs are investigated
systematically from the largest to the smallest differ-
ence. CDs are all based on the Studentized range dis-
tribution. The largest CD is applied to the difference
between the largest and smallest means and is the
same as the CD of Tukey’s honestly significant differ-
ence procedure.

The second largest CD is applied to two differ-
ences: (a) the difference between the largest mean and
the next-to-smallest mean and (b) the smallest mean
and the next-to-largest mean. If there are k means alto-
gether, there will be k − 1 CDs. The second largest CD
is identical to the CD for Tukey’s honestly significant
difference, which would be applied to a set of k − 1

means. Testing is continued until all pairs are tested,
but with the restriction that no pair can be significantly
different if that pair is between two means that are not
significantly different. This restriction requires careful
ordering of the testing of each pair. However, with
equal sample sizes, the process is not too difficult.

Even when applied correctly, the original Newman-
Keuls procedure has several problems. First, it can
have excessively high Type I error rates. Second, it
can have lower power (i.e., higher Type II error rates)
that procedures that have good control of Type I
errors. Third, when it appears to be more powerful
than alternative methods, it may actually be less
powerful than an alternative that provides equivalent
Type I error control. Fourth, it is not suited for data
sets with unequal sample sizes, and some approxima-
tion must be considered.

In the case of exactly k = 3 means, Fisher’s least
significant difference procedure can be more powerful
than the original Newman-Keuls, and least significant
difference limits the probability of a Type I error rate
to the nominal level α of the test. For k ≥ 4, Roy
Welsch provided a table of modified values from the
Studentized range distribution. Those values produce
CDs that limit the probability of one or more Type I
errors to the level α of the statistical test. The Welsch
CDs remove most of the objections to the original
Newman-Keuls procedure.

The Welsch modification of the Newman-Keuls
can be slightly modified further to give an additional
increase in power. The original Newman-Keuls
and the Welsch modified Newman-Keuls use the
Studentized range statistic to test the full null hypoth-
esis that all k population means are equal. That is, the
overall F test is not required for either of these proce-
dures. However, Juliet Shaffer noted that a step-down
procedure such as the Newman-Keuls can be modified
to test the full null hypothesis with the overall
F test of the analysis of variance. In that case, the
largest and smallest means are tested for a significant
difference with the CD for k − 1 means, provided the
overall F test is significant. All other pairs are tested
as before. This Shaffer-Welsch version of the
Newman-Keuls eliminates all Type I error problems
in the equal-sample-size case and is more powerful
than most other procedures of equal difficulty.
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All versions of the Newman-Keuls procedure dis-
cussed above become excessively complex with
unequal sample sizes. However, the harmonic means
of sample sizes (illustrated below) covers many
empirical data sets. If the largest sample size is no
more than twice the smallest sample size, then the har-
monic means of sample sizes provides a good approx-
imate solution to the testing of pairwise differences.

Illustrative Example

Consider the following data, in which four treatment
groups are being compared to a control. Lower scores
indicate better performance.

The within-groups mean square (MSWG) for these
data is 3.0326, with degree of freedom (dfWG) = 179.
The harmonic mean of sample sizes is

For this example, we get

Thus, we approximate all five groups as having a sam-
ple size of approximately 35.2629. The analysis
of variance for these data would give F = 5.75 >
2.43 = F.65(4,160) > F.65(4,179) = critical value (CV).
Therefore, we reject the full null hypothesis at the .05
level and proceed to pairwise testing.

The largest CD is obtained with the Welsch critical
value (WCV) and the formula

For smaller differences, we have

Table 2 shows the differences between ordered
means. 

The largest difference is 1.81 between Treatment 4
and the control. This exceeds the largest CD of 1.08
and is therefore significant. The individuals in
Treatment 4 have significantly lower average scores
than does the control. The two second differences are
1.28 and .90. The value of 1.28 also exceeds 1.08 and
is significant. Those in Treatment 4 are significantly
lower than are those in Treatment 1. However, .90 is
less than the CD of 1.08 and is not significant. There
is no significant difference between the mean for
Treatment 3 and the control.

At this point, all further testing of the step-down
procedure must be done very carefully. The next set of

CD3 = 3.33

√
MSE

Ñ

CD3 = 3.33(.29325)

CD3 = 0.97652 = .977.

CD2 = 3.64

√
MSE

Ñ
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CD2 = 1.0674 = 1.07

CD = WCV

√
MSE

Ñ

CD = 3.68
√

3.0326/35.2629 = 3.68
√

0.8600

CD = 3.68(.29325) = 1.07918 = 1.079.

Ñ = 5
1
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= 5

.14179
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Ñ = k
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+ . . . + 1
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Table 1 A Control and Several Treatment Means 

Control Treat 1 Treat 2 Treat 3 Treat 4

Mean 4.05 3.25 3.18 3.15 2.24
N 42 24 38 40 40

Note: Treat = treatment group.

Table 2 Difference Between Ordered Means 

Tr 4 Tr 3 Tr 2 Tr 1 Control
2.24 3.15 3.18 3.52 4.05 CD

Tr 4 = 2.24 — .91 .94 1.28* 1.81* 1.08
Tr 3 = 3.15 — .03 .37 .90 1.08
Tr 2 = 3.18 — .34 .87 1.07
Tr 1. = 3.52 — .53 .975

Note: Tr = treatment group; CD = critical difference.
*p < .05 



differences is .94, .37, and .87. The difference of .94
is compared to the CD of 1.07 and is not significant.
The mean for Treatment 4 is not significantly different
from the mean of Treatment 2. The differences .37 and
.87 cannot be significant because they are smaller than
.90, which was nonsignificant.

The final four differences, .91, .03, .34, and .53,
would ordinarily be compared to the CD of .975 for
significance. However, they are nonsignificant with-
out comparison to .975 because they are all contained
within a nonsignificant difference.

—Philip H. Ramsey
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NOMINAL LEVEL OF MEASUREMENT

As its name suggests, nominal (“in name”) level mea-
surement refers simply to labeling or classifying data
that belong to different categories within one variable.
Some common examples of nominally measured vari-
ables in social research include sex, race, political
party, religious preference, geographical location, and
college major. In these variables, each response fits
into one and only one category. A respondent is either
female or male, Republican, Democrat, or Indepen-
dent. To evaluate each of these variables, a researcher

would assign a different number to all categories
belonging to the variable. For example, all females
might be labeled “1” and all males “2.”

It is important to keep in mind that these values
are arbitrary and are only placeholders for longer
names. The example above would not mean that
males are twice as gendered as females; it simply
asserts that female is different from male. The labels
easily could be reversed or could be 3s and 9s and
still provide the exact same information. Likewise,
we would not say that a Native American does not
have more race than an African American or that an
English student is more majored than a biology
student. In fact, the only reason to measure data
nominally is if the different categories within one
variable do not differ in any “direction”—that is to
say, we cannot determine which category represents
more or less of a trait or variable. The numbers
simply help shorten the category names and often are
more convenient when researchers use statistical
software to analyze data.

Because the only information we can gain from
nominal data is “same” or “different,” nominal is con-
sidered the “weakest” or least precise level of mea-
surement (followed by ordinal, interval, and then the
most precise level, ratio). Beyond the fact that mathe-
matical operations do not apply to them, nominal data
are limited because the only appropriate measure
of central tendency to use with them is the mode.
Similarly, no notion of standard deviation exists with
such data. Analysis of nominal data should never
include a mean or a t test, which would quantitatively
compare one category to another.

One should use a more precise level of measure-
ment whenever possible. For instance, when evaluat-
ing high school football teams’ performances, finding
out how many more points the Mustangs scored
per game this season than the Broncos (interval mea-
surement) would provide more useful information
than finding out only which team had more points
per game but not knowing how many more points
(ordinal measurement) or than merely stating that
the Mustangs and the Broncos are different teams
without specifying a direction that indicates which,
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on average, scored more points per game this season
(nominal measurement). Only when different respon-
ses to an item measuring the same variable cannot
reveal any directionality is nominal the most appropri-
ate level of measurement to employ.

—Kristin Rasmussen

See also Interval Level of Measurement; Ordinal Level of
Measurement; Ratio Level of Measurement
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NOMOTHETIC VERSUS IDIOGRAPHIC

The nomothetic (from the Greek term for lawgiving)
approach to science seeks lawfulness by testing
hypotheses. It applies research-supported general for-
mulations to particular cases and uses deductive
reasoning. The idiographic (from the Greek term for
oneself, one’s own) approach seeks lawfulness by
inspecting individual cases and accounting for them;
it uses inductive reasoning. General rules are inferred
from individual cases.

The nomothetic approach to assessment interprets
measurements and observations by comparing them
with group norms. The individual case is understood
as an instance of a hypothetical general case. The idio-
graphic approach seeks to understand measurements
and observations as a function of the individual’s
history and environment. The individual case is under-
stood in its own context. For example, a newborn
might weigh 5 pounds at birth. Nomothetic data show
that this is in the 2nd percentile; since 6% of babies
weigh too little for their own good, this weight may be

cause for concern. Idiographic data—which may
include behavioral and other physiological observa-
tions of the infant, along with information about the
due date—can be used to understand whether this
particular baby needs intervention. Nomothetic and
idiographic data can thus be used integratively.

Psychological science currently favors the nomo-
thetic approach over the idiographic. A study that
shows that, in general, siblings placed together in fos-
ter care fare better than siblings placed apart is seen
these days as more scientific than a study that exam-
ines whether a particular sibling pair should be placed
together or apart. Psychological assessment is simi-
larly inclined at this time, with behavior analysis and
projective testing disfavored in comparison with
scores on scales that have meaning only in relation
to normative data. The nomothetic approach decreases
variation associated with any given psychologist, but
it applies to the individual case only roughly. The
idiographic approach, conversely, highlights the
case at hand but depends for validity on the particular
psychologist.

No assessment device or strategy is entirely nomo-
thetic or idiographic. Even personality inventories,
whose individual items are ignored by psychologists
in favor of scaled scores, show idiographic features
when the psychologist considers whether a particular
individual is adequately represented by group norms.
Sources of inadequate representation might include
some distinguishing feature of the individual or of the
situation or of the way the test was administered. Can
a personality test normed on the general population be
used to categorize or describe a woman of Icelandic
heritage? A man recently diagnosed with diabetes?
Custody litigants?

Even purely idiographic, unnormed assessment
techniques, such as asking about childhood memories
or about hobbies, reveal nomothetic features when
psychologists consider whether their own personal or
cultural backgrounds are affecting their interpreta-
tions. In this context, cultural competence might be
defined as awareness of one’s personal norms and
their potential inapplicability to other people.

—Michael Karson
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NONPARAMETRIC STATISTICS

A common statistical problem is to estimate a parame-
ter of the population (such as the mean) or to test
whether a parameter is different from some specified
value. To carry out inferences, some specific assump-
tions are made about the distribution of the population;
the most common assumption is that the population
follows the normal distribution. The various statistical
methods developed for these situations are collectively
known as parametric statistical methods.

Many of the most widely used nonparametric pro-
cedures provide an alternative to a standard paramet-
ric procedure. These nonparametric methods are valid
under assumptions more general than those required
for parametric inference. In particular, many of these
nonparametric procedures are distribution-free; they
do not require one to make specific assumptions about
the form of the distribution of the population. Usually,
the only assumption needed to carry out nonparamet-
ric procedures is that the population distribution is
continuous and, in certain cases, symmetric. In some
cases, a nonparametric procedure is not an analogue
to a given parametric procedure. This occurs in statis-
tical problems in which one might want to make infer-
ences more general than those involving an individual
parameter. For example, there exist nonparametric
procedures to test whether two populations have the
same underlying distributions or to determine a confi-
dence band for a distribution function.

Advantages of
Nonparametric Procedures

When one is presented with the choice between a
nonparametric procedure and its parametric coun-
terpart, the former has several advantages. When a

distribution-free nonparametric method exists, exact p
values for tests and exact coverage probabilities for
confidence intervals can be calculated under fairly
general assumptions about the population. Conversely,
the p values reported for parametric tests under the
assumption of normality are exact only when the
population distribution is normal; for other distribu-
tions, typically the p values are approximate, with the
approximation being better for larger sample sizes.
Many nonparametric statistics are relatively simple
functions of the ranks of the observations. This implies
that one can make inferences about the population
without having to know the magnitudes of the sample
observations. In addition, when a nonparametric pro-
cedure is only a function of the ranks of the observa-
tions, the procedure will be insensitive to outliers.

One can compare the performance of a nonpara-
metric method to its parametric counterpart (if one
exists) by examining the asymptotic relative efficiency
of the two techniques. A given estimator of a parame-
ter (say, the sample average for the center of a sym-
metric population) is more efficient than a competing
estimator if the variance of the former is less than
the variance of the latter when the sample size is
extremely large. When the underlying population dis-
tribution is normal, nonparametric analogues of many
of the classical procedures based on the assumption of
normality are only slightly less efficient. That is, as
the sample size gets large, the variance of the non-
parametric estimator is not much larger than the vari-
ance of the parametric estimator. When the population
distribution is not normal, the nonparametric method
can be significantly more efficient than the competing
parametric method.

Standard Nonparametric Methods

The more common nonparametric procedures used
in practice will be described briefly below. Many of
these techniques are discussed in more detail in their
respective entries in this encyclopedia. The following
description of nonparametric procedures is limited to
the context of hypothesis testing. For most of the
problems discussed here, methods exist to estimate
a population parameter and to form a confidence
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interval about the parameter. For information on those
topics, as well as nonparametric procedures not listed
here, the reader is referred to the textbook Nonpara-
metric Statistical Methods by Myles Hollander and
Douglas Wolfe. 

When one is conducting a hypothesis test, nonpara-
metric test statistics are generally calculated by count-
ing, ranking, or both. Counting statistics involve
counting the number of observations that exceed a
specified value. Statistical tests based on counting sta-
tistics are referred to as sign tests. For ranking statis-
tics, the observations are ordered from least to
greatest. The test statistic is then a function of the
ranks of the observations. Tests based on ranking sta-
tistics are called rank tests. Signed rank tests utilize a
statistic that involves both counting and ranking.

OOnnee--SSaammppllee  LLooccaattiioonn  PPrroobblleemm

A common problem in statistical inference is to
determine whether the center of the population distri-
bution equals some particular value. For normal pop-
ulations, one uses the mean as a measure of the center
and the t test for a population mean for making
inferences. In nonparametric statistics, the median
(denoted θ) is used as a measure of the center. The
question of interest is then whether θ equals some
specified value θ0. Two nonparametric tests that can
be used are the sign test and the Wilcoxon test (also
know as the Wilcoxon rank-sum test). For both tests,
we assume we have a set of n observations Z1,
Z2, . . . , Zn obtained via random sampling from a con-
tinuous population. For the Wilcoxon test, we add the
assumption that the underlying distribution is also
symmetric.

To test the null hypothesis that θ equals θ 0 with the
sign test, we count the number of observations greater
than or equal to θ 0. Our test statistic is

B = number of Zis greater than θ 0.

The total number of observations greater than θ 0

has a binomial distribution with parameters n and p,
where p = P(Zi ≥ θ 0 ), the probability that Zi is greater
than or equal to θ 0. This result holds because of the

independence of the observations. Under the null
hypothesis that θ 0 is the true population median,
p = 1/2 (since by definition of the median, one half
of the population distribution is above θ 0 ). Exact
p values for the test can then be calculated from this
null distribution and will provide a distribution-free
test of the null hypothesis that θ equals θ 0 .

If one is willing to impose the assumption that the
underlying population distribution is both continuous
and symmetric, one can use the Wilcoxon test. This
procedure tends to be more efficient than the sign test
for testing the null hypothesis that θ equals θ 0 , but is
less general since it carries an additional assumption
about the population distribution. For our random
sample of n observations Z1, Z2, . . . , Zn, the test
procedure is (a) identify the observations that exceed
θ 0, (b) calculate |Zi − θ0| for each observation, and
(c) rank the differences calculated in step (b) from
smallest to largest. The Wilcoxon test statistic is then
the sum of the ranks of the differences for only the
observations that exceed θ 0 .

The theoretical basis of the Wilcoxon test arises
from the distribution of ranks. Let Ri denote the
rank of the ith value of |Zi − θ0|. The set of ranks R1,
R2, . . . , Rn are a specific permutation of the integers
from 1 to n; there are n! possible permutations.
The set of ranks has a jointly uniform distribution,
where the probability of a particular set of ranks
is 1/n!. Moreover, whether a particular observation is
greater than or equal to θ 0 is independent of the
magnitude of the difference between that observa-
tion and θ0 when the observations are taken from a
symmetric distribution. Thus, the Wilcoxon test is
distribution-free with a null distribution that can be
found by means of the uniformity of the ranks, the
binomial nature of the counting, and the indepen-
dence of the counting and ranking procedures.
Tables of the null distribution are available in most
nonparametric texts.

Both the sign test and the Wilcoxon test can be
applied to problems involving paired replicates data;
paired replicates data would occur if two measure-
ments were taken from the same group of participants
at two different times. For example, one can measure
opinions about a political candidate before and after a
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debate or patients’ medical condition before and after
a treatment. One generally wishes to test whether the
characteristic in question changed systematically
from the first measurement to the second. Let (X1, Y1),
(X2, Y2), . . . , (Xn, Yn) represent our n pairs of mea-
surements, where Xi represents the first measurement
and Yi represents the second measurement. Then we
can define Zi to equal (Yi − Xi) and carry out the sign
or Wilcoxon test using these Zis. In parametric infer-
ence, the standard approach to this type of problem is
to use the paired samples t test.

TTwwoo--SSaammppllee  PPrroobblleemmss

Suppose we have two independent random samples
from two different populations. Several nonparamet-
ric procedures exist to test whether the two underlying
population distributions are identical against the alter-
native that one population tends to have larger values
than the other.

The Mann-Whitney U test (Wilcoxon rank-sum
test) is the most commonly used nonparametric pro-
cedure for this problem. Its comparable test in para-
metric inference is the t test for two population
means. Let X1, X2, . . . , Xm and Y1, Y2, . . . , Yn denote
our two independent random samples. Note that the
sample sizes need not be equal. We assume that the
samples were taken from populations with continu-
ous distributions and that the distributions of both
populations have the same shape. The only difference
between the two population distributions is that one
may be a shifted version of the other. The shift in the
distribution may be attributable, for example, to one
group’s receiving a medical treatment and another
group’s being a control group. To test the null
hypothesis that there is no shift in the distributions,
we first rank the combined group of m + n observa-
tions. The test statistic is then

W = sum of the ranks for the Yi observations.

Since this test statistic involves the ranking of
observations, the theoretical basis for the null distrib-
ution is similar to that used for the Wilcoxon test.
Here, there are possible sets of ranks for Y,

each equally likely, and the Wilcoxon test is 
distribution-free.

Let U denote the test statistic for the Mann-
Whitney U test. Then U can be computed from W by
the relationship

The two tests are therefore equivalent. Tables of the
null distribution of W or U are available in most non-
parametric texts.

Other nonparametric tests exist for detecting differ-
ences in population distributions. One popular test is
the Kolmogorov-Smirnov test for two samples. This
procedure tests the null hypothesis that the population
distributions are identical against the null hypothesis
that the distributions differ at one or more points.
Tests also exist for detecting differences in the disper-
sion parameter of two distributions, including one
based on the jackknife.

OOtthheerr  SSttaattiissttiiccaall  PPrroobblleemmss

Nonparametric procedures exist to address numer-
ous other statistical problems. For one-way analysis of
variance problems, several distribution-free methods
exist, and the choice depends on the alternative
hypothesis of interest. To test the null hypothesis that
all treatment effects are equal against the alternative
that at least two treatment effects differ, the most com-
mon nonparametric procedure is the Kruskal-Wallis
one-way analysis of variance. The Jonckheere Terpstra
test is applicable when the alternative hypothesis is
that the treatments are ordered. For the two-way lay-
out, the Friedman two-way analysis of variance is a
nonparametric alternative to the two-way layout proce-
dure based on the normal distribution.

Two nonparametric methods are commonly used to
test for the independence between two variables from
a bivariate distribution. Kendall’s tau statistic allows
for a nonparametric test based on the number of
concordant and discordant pairs of observations.
Spearman’s rank correlation is an alternative to the
Pearson product-moment correlation, which uses the

W = U + n(n + 1)

2
.

(
m + n

n

)
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ranks of the observations in place of the actual
data values.

The bootstrap is a computationally intensive tech-
nique that can be used to obtain confidence intervals
for complicated estimators. The procedure resamples
from the data to approximate the standard error of the
estimator. The bootstrap is nonparametric in that it
does not require any assumptions about the form of
the underlying distribution.

Nonparametric methods have also been adapted to
regression problems. One approach is to use tradi-
tional least squares procedures for estimation but
remove the assumption of normality of the errors
when making inferences. A significant amount of
recent nonparametric research has been devoted to
nonparametric regression. This approach does not
assume a prior regression model; rather, the data are
used to develop the regression relationship. Nonpara-
metric regression relies on computational methods to
“smooth” the data and does not generally utilize rank-
ing procedures.

Computer Software

Most of the major software packages for statistical
analysis can perform nonparametric procedures.
Minitab Release 14 can conduct one-sample sign
and Wilcoxon tests, the Wilcoxon rank-sum test, and
analysis of variance using the methods of Kruskal-
Wallis and Friedman. These procedures are generally
based on large sample approximations. SAS Version
9, StatXact, and SPSS Exact are three packages that
can compute exact p values and coverage probabili-
ties. For SAS, the default is to use approximations,
but the user can specify an exact test in the option
statement. StatXact is a specialized software pack-
age available from the Cytel Corporation for
nonparametric and categorical data analysis. It is
available as a stand-alone package or as a series of
PROCs that can be used in SAS. The Web site for
Cytel at the end of this entry compares the proce-
dures that can be performed by StatXact, SPSS
Exact, and SAS.

—Christopher J. Sroka

See also Binomial Distribution/Binomial and Sign Tests;
Bivariate Distributions; Confidence Interval; Hypothesis
and Hypothesis Testing; Kendall Rank Correlation;
Kolmogorov-Smirnov Test for Two Samples; Kruskal-
Wallis One-Way Analysis of Variance; Mann-Whitney
U Test (Wilcoxon Rank-Sum Test); Median; One-Way
Analysis of Variance; Paired Samples t Test (Dependent
Samples t Test); Pearson Product-Moment Correlation
Coefficient; Random Sampling
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Applying Ideas on Statistics and Measurement

The following abstract is adapted from Du, Y.,
Akritas, M. G., Arnold, S. F., & Osgood, D. W.
(2002). Nonparametric analysis of adolescent
deviant behavior. Sociological Methods & Research,
30(3), 309–340. 

There are many different models of quantitative
analysis, parametrics and nonparametrics just



NONPROBABILITY SAMPLING

Nonprobability sampling includes several versions of
survey sampling that often are expedient to implement
but do not allow calculation of the probability of
selection of the sample from among possible samples
from a population. The goal of a survey is to gather
data in order to describe the characteristics of a popu-
lation. A population consists of units, or elements,
such as individuals, households, businesses, tracts of
land, or inventory records. A survey collects informa-
tion on a sample, or subset, of the population. In some
surveys, specific units or elements are chosen by the
survey designers to be in the sample. Interviewers are
assigned to interview the members of or gather data
on the units in the selected sample. Sometimes multi-
ple attempts at contacting and collecting data from the
selected sample members are made. In many situa-
tions, it is possible to compute the probability that any
member of the population is in a sample of a certain
size selected with a specified design or protocol. It
also is possible in many situations to compute the

probability overall that the sample is selected from the
population. Such a design is a probability sampling
design. Examples of probability sampling include
simple random sampling, stratified random sampling,
and cluster sampling.

In nonprobability sampling designs, it is not possi-
ble to compute the probabilities of selection for the
samples overall or, usually, for individuals. Examples
of nonprobability sampling include convenience sam-
pling and quota sampling. In convenience sampling,
interviewers themselves are given some latitude in
selecting the population members to interview or the
units on which to record data. That is, the survey
designers and planners do not strictly control the
selection of the sample. Convenience sampling occurs
in many forms, including selection by an interviewer
of people at a shopping mall, selection by a waiter of
customers at a restaurant, and Internet and call-in
polls. Quota sampling is similar to convenience sam-
pling but requires interviewers to collect certain data
on certain numbers of individuals from each of several
population subgroups or strata. For example, a quota
sample could require interviewers to interview a spec-
ified number of females and males within age groups
in administrative regions within a state. One could
implement such a study by randomly calling phone
numbers from a telephone book, asking to speak to a
person in the household who belongs to one of the
available strata, and conducting an interview if possi-
ble. If no one is available at a household in an allow-
able stratum, then the interviewer simply calls the
next telephone number.

Estimates of population characteristics based on
nonprobability samples are affected by selection
bias. Since the interviewers choose respondents that
they want to interview, there is a potential for selec-
tion bias. If the respondents in the survey are system-
atically different from the general population on
the variables being measured, then estimates of char-
acteristics will be different on average from what
they would have been with a controlled probability-
sampling scheme. In probability sampling, the survey
planner or researcher controls which units are
in the sample and selects the sample using known
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being two. In this study, Yunling Du and his
colleagues studied the impact of certain personal
characteristics on marijuana use while controlling
for routine everyday activities. The assumptions
underlying several logistic regression models, as
well as the parametric analysis of covariance
(ANCOVA) model, are violated in this example.
More critical from the practical point of view is
the fact that the covariate is measured on an ordi-
nal (noninterval) scale, implying that the results
from such analyses depend on the chosen scale.
The analysis of main effects and interactions is
compared with similar analyses by means of the
parametric ANCOVA and logistic regression mod-
els. The formal analysis is supplemented by new
exploratory data analysis plots. Significance tests
for certain ordered and other patterned alterna-
tives are proposed and evaluated via simulations.
Results are compared with those from logistic
regression models treating the levels of the factors
as ordinal.



probabilities of selection. The probabilities
of selection can be used to produce esti-
mates of population characteristics with-
out the problem of selection bias.

Probability sampling is the standard
methodology for large-scale surveys
intended to support scientific studies and
decision making for government policy.
Nonprobability sampling, on the other
hand, is quite common in marketing sur-
veys and less formal studies. Nonprob-
ability sampling certainly can produce
useful information for some purposes. One
attempt to adjust for the fact that probabil-
ities of selection are unknown is to use weights, usu-
ally called survey weights, in analysis. These weights
are computed so that the weights for sampled individ-
uals in a particular stratum sum to a number propor-
tional to the actual number of people known to exist in
the population in the stratum. Although this adjustment
can help make the sample more representative of the
population in analysis, it cannot overcome the fact that
there could be a remaining bias due to noncontrolled
random selection of the sample.

—Michael D. Larsen

See also Convenience Sampling; Quota Sampling
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NORMAL CURVE

A normal curve is the graph of the probability den-
sity function (PDF) for a normal distribution (see
Figure 1). It is not just one but a family of curves of
the same general form characterized by two parame-
ters: the location parameter, or mean, and the scale
parameter, or standard deviation. The formula for this
family of curves is 

where

mean µ ∈ (−∞, +∞),

standard deviation σ ∈ (0, +∞).

For a continuous random variable X that is
normally distributed with parameters µ and σ 2 , the
distribution is usually denoted by X ~ N (µ , σ 2 ).

A Brief History of
the Normal Curve

The discovery of the normal curve, also known as
the “bell-shape” curve or the Gaussian curve, can be
dated to the 17th century, when Galileo Galilei, an
Italian physicist and astronomer, noted that the measure-
ment errors in astronomical observations were very sys-
tematic and that small errors were more likely to occur
than large errors. In 1778, Pierre-Simon Laplace, while
working on his famous central limit theorem, noted that
the sampling distribution of the sample mean approxi-
mated a normal distribution and that the larger the sam-
ple size, the closer the distribution would be to a normal
distribution, no matter what the population distribution
might be. Also in the 18th century, a French statistician,
Abraham de Moivre, who was often asked to do statisti-
cal consulting for gamblers, found that when the number

f (x) = 1

σ
√

2π
e
-- (x−µ)2

2σ2 for −∞ < x < +∞,
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of events (e.g., coin flips) increased, the shape of the
binomial distribution would approximate a symmetrical
and smooth curve. However, the mathematical formula
for this curve was not discovered until the 19th century,
by Adrian Marie Legendre in 1808 and Carl Friedrich
Gauss in 1809. The German 10 deutsche mark bill (see
Figure 1) had Gauss’s picture on it, along with the well-
known bell-shaped normal curve and its formula.

Important Properties
of a Normal Curve

This family of curves has the following characteris-
tics, which are important to know. For those who are
unfamiliar with the calculus calculation, all functions
involving integration can be safely skipped. Graphical
illustrations are used to facilitate an understanding
of the concepts presented, and knowledge of basic
algebra is assumed.

1. The mode, the mean, and the median are all at
the same point on the abscissa, the horizontal axis of
the curve (see Figure 2). That is to say, mode = mean
= median for a normal distribution.

2. The curve is symmetrical about the point on
the abscissas that denotes the mean, the mode, or the
median, with equal numbers of observations above
and below the point (see Figure 2).

3. The skewness and the kurtosis for a normal
distribution are both 0. However, statisticians who
omit the subtraction of 3 from the kurtosis formula
will report the kurtosis value to be 3 for a normal
distribution.

4. The area jointly determined by two points (a, b)
on the abscissa and the normal probability density
curve indicates the probability that an observation
falls within the intervals of [a, b], [a, b), (a, b], or
(a, b). In other words,

Note that the probability associated with a particu-
lar value of a continuous variable is 0. For example,
when X ~ N ( µ, σ 2), p(X = a) = 0. Thus,

5. When a → −∞, b → +∞, the probability men-
tioned in Paragraph 4 approaches 1. In other words,
the total probability under the normal curve is always
1, or

which also indicates that the probability of a sure
event that X ∈ (−∞, +∞) is 1.

6. Based on the probability theory, the cumulative
distribution function (CDF) F(x) is defined as the
probability that a random variable X takes on a value
that is less than or equal to a given x. For X ~ N
( µ, σ 2), the corresponding CDF is calculated as
follows:

+∞∫

−∞
f (x)dx = 1,

p(a ≤ X < b) = p(X = a) + p(a < X < b)

= 0 + p(a < X < b)

= p(a < X < b).

p(a ≤ X ≤ b) = p(a ≤ X< b) = p(a < X ≤ b)

= p(a < X < b) =
b∫

a

f (x)dx.
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Note that the normal PDF is substituted for f(t) in
the formula. A normal PDF, along with its CDF, is
illustrated in Figure 3, with the solid curve represent-
ing the PDF and the dashed curve the CDF. The area
under the normal probability density curve when x ≤ a
is equal to the value F(x) assumes when x = a, or F(a)
in the normal CDF curve. This is an important prop-
erty of the normal curve in that it relates the normal
PDF to the normal CDF. 

7. The normal curve indicates that all values of x
are normally distributed with mean µ and standard
deviation σ . In a statistical analysis, it is not uncom-
mon that some normal random numbers have to be
generated. In that case, those normal random numbers
should be generated from the x-axis in a normal curve
by means of a random number table or a computer
software package.

8. When X ~ N ( 0,1) or µ = 0, σ = 1, the nor-
mal distribution is known as the standard normal

distribution. The standard normal curve is centered
at 0, and the standard deviation is 1.

9. Any normal distribution X ~ N (µ, σ 2) can be
transformed to a standard normal distribution by the
following formula:

When standardization is performed, the normal
curve will change its shape, with standard deviation
increasing or decreasing to 1, and its location on the
abscissa, with the midpoint of the normal curve mov-
ing to 0.

10. If the normal curve is divided into standard
deviation units, a known proportion of observations
fall within each portion of the curve. An empirical rule
states that

• About 68.26% of the observations fall within 1
standard deviation below and above the mean.

• About 95.44% of the observations fall within
2 standard deviations below and above the
mean.

• About 99.73% of the observations fall within
3 standard deviations below and above the
mean.

To find out the proportion of observations that fall
under a normal curve, not necessarily the standard
normal one, between any arbitrary pair of points,
we can consult a table containing the areas under a
standard normal curve. Such a table can be found
at the end of most statistics books as an appendix.
Software packages containing modules or pro-
cedures for computing the areas are also widely
available.

A Typical Problem

A typical example is illustrated below to demonstrate
what people usually do with a normal curve. Notice
that, for a normal curve, what is usually of interest is
not the value of the function f (x) but the area, or the
probability, under the curve.

Z = X − µ

σ
∼ N(0, 1).

F (x) = p(X ≤ x) =
x∫

−∞

f (t)dt

= 1

σ
√

2π

x∫

−∞

e
-- (t−µ)2

2σ2 dt.
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Suppose that the grades in a statistics exam have
an X ~ N (70,102) distribution and that the grading
scale is as follows:

91 to 100: Excellent

60 to 90: Good

Below 60: Fail

What is the proportion of students passing the exam?
Solution:
Figure 4 is a graphical illustration of this problem.

The proportion of students passing the exam is the
area under the curve between x = 60 and x = 100,
which is indicated by the shaded area in Figure 4.

An alternative method is to use the probability of
Fail to solve this problem:

It should be noted that, in the solution to the prob-
lem, the area under a nonstandard normal curve, as
indicated by the shaded area in Figure 4, is expressed
in terms of the area under a standard normal curve by
the transformation 

Although the two areas are different in shape, they are
equal in size, indicating that the probabilities are
equal. After the transformation is performed, the stan-
dard normal areas table could be employed to find the
corresponding probability under the standard normal
curve, which should be equal to the probability under
the original normal curve.

Impact on Psychological
Measurement

The importance of the normal curve can never be
emphasized enough in the field of measurement and
statistics. First, many variables in the science of psy-
chological measurement are at least approximately
normally distributed, and the approximation is very
close. Measures of reading ability, job satisfaction,
and memory are only a few examples in this field.
Second, most statistical tests work well even if the
distributions are only approximately normal. Third,
assuming normality simplifies the mathematical pro-
cedures required to compute probabilities.

Caveats

1. Although the normal curve appears to be bell
shaped, not all bell-shaped curves come from a
normal distribution. A case in point is the Student t
distribution, which is the ratio of a standard 

Z = X − µ

σ
.

p(Pass) = 1 − p(Fail) = 1 − p(X < 60)

= 1 − p

(

Z = X − 70

10
<

60 − 70

10

)

= 1 − p(Z < −1) = 0.84.

p(Pass) = p(Good) + p(Excellent)

= p(60 ≤ X ≤ 100)

= p

(
60 − 70

10
≤ Z = X − 70

10
≤ 100 − 70

10

)

= p(−1 ≤ Z ≤ 3) = 0.84.
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normal random variable to the square root of an
independently distributed chi-square random vari-
able divided by its degrees of freedom. The t PDF
also features a family of curves depending on only
one parameter: the degrees of freedom v, with each
one of them being bell shaped and symmetric around
0. Figure 5 compares a Student t distribution with v
= 5 (solid line) to the standard normal distribution
(dashed line). As can be seen, the curve for the t dis-
tribution appears to be very similar to that for a nor-
mal distribution.

2. Although most normal curves appear to be mod-
erately sharp and moderately spread out, like the one
in Figure 2, some normal curves could be the other
way around, depending on the value of the scale para-
meter or standard deviation σ . Figure 6 shows two of
them that do not fit the stereotype of a normal curve.
As can be seen, as the value of σ goes down, the
steepness of the normal curve goes up. Observations
cluster more and more in the middle of the distribu-
tion. The steeper normal curve, on the top, has a rela-
tively small σ value of 1 while the normal curve on the
bottom is the opposite case, with its σ value being 8
times as large, hence a flat curve. However, although
one normal curve may be different from another in
terms of steepness, the total area under the curve, or
the probability that x assumes a value between nega-
tive infinity and positive infinity, or the probability of
a sure event, or

is always 1.

3. Nowadays, most computations involving a nor-
mal curve or a normal distribution can be performed
with a computer software package. Generally speak-
ing, five types of problems are related to this topic.

• Find the cumulative probability p that a value from
a normal distribution with specified mean and stan-
dard deviation is equal to or less than a specified
value x0. This type of problem is often related to the
concepts of percentile and quantile.
• Find the value from a normal distribution with
specified mean and standard deviation at which the
cumulative probability is a specified value p0. This
type of problem also is often related to the concepts
of percentile and quantile.
• Find the value of the PDF of a normal distribution
with specified mean and standard deviation at a spec-
ified value x0.
• Generate random numbers from a normal distrib-
ution with specified mean and standard deviation.
• Plot a normal probability density curve with spec-
ified mean and standard deviation.

Many available software packages could be utilized
for these five types of problems. Table 1 summarizes
the packages.

+∞∫

−∞
f (x)dx,
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For some of the most popular software packages,
Table 1 provides the names of functions, modules,
and procedures that can be applied to the five very
typical problems related to the normal curve and the
normal distribution. Note that none of the names
is case sensitive, with the exception of Matlab
functions and modules, which have to be used in
lowercase letters.

4. The family of normal curves that are bell shaped
is only for the univariate case, in which only one vari-
able x is involved. However, in the case of multivari-
ate data analysis, the multivariate normal model,
which extends the univariate normal distribution
model, is commonly used. One example is a bivariate
normal distribution model, which applies to two vari-
ables. In that case, the bell-shaped normal curve
becomes a bell-shaped surface in three dimensions.
Accordingly, the probability is indicated by the vol-
ume under the bivariate normal distribution surface.

—Hongwei Yang

Further Reading
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Patel, J. K. (1982). Handbook of the normal distribution. New
York: Dekker.
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NULL HYPOTHESIS

SIGNIFICANCE TESTING

Null hypothesis significance testing (NHST) domi-
nates experimental and correlational methods in
psychological research. Investigators are typically
concerned with demonstrating the existence of an
effect, that is, systematic variation in the data that can
be distinguished from random noise, sampling error,
or variation due to uncontrolled or nuisance variables.
The null hypothesis is often, but does not have to be,
identified with chance, and a p value is computed to
express how improbable observed empirical data are
under the assumption that the null hypothesis is true.
When this probability falls below the conventional
value of .05, it is concluded that the null hypothesis is
false and that it is safe to presume the presence of a
systematic source of variation. This inference is not
strictly logical because modus tollens is not valid
when stated probabilistically: From the statement
“If the null hypothesis is true, then extreme data are
improbable,” it does not follow that “If the data are
probable, the null hypothesis is false.” Because NHST
is a method of inductive, not logical, inference,
researchers nevertheless believe that the rejection of
the null hypothesis indicates the presence of an effect.
In the long run, the argument goes, decisions reached

Null Hypothesis Significance Testing———695

Table 1 Related Functions Available in Four Popular Software Packages

Names Problem 1 Problem 2 Problem 3 Problem 4 Problem 5

Excel NORMDIST NORMINV NORMDIST N/A CHART
SPSS CDF.NORMAL IDF.NORMAL PDF.NORMAL RV.NORMAL N/A
SAS CDF QUANTILE PDF RAND PROC PLOT
Matlab normcdf norminv normpdf normrnd plot



by NHST will generate knowledge faster than would
guessing or doing nothing.

Variants of NHST have been developed by various,
and sometimes warring, schools of statistical thought.
These schools differ in the assumptions they make
about the nature of the data and the hypotheses
and about how to make inferences. The following
illustrations of possible inference strategies begin
with information- and assumption-rich scenarios and
proceed to the more degraded scenarios typical of
most psychological research.

Full-Suite Analysis

Suppose extensive testing has revealed that average
self-esteem scores are µ = 68 and 72 for women and
men, respectively, and that the standard deviation
within each gender is σ = 20. A sample of 200 scores
with a mean of 71 is drawn from one of the two
populations. The null hypothesis H0 is that women
were sampled, and the alternative hypothesis H1 is
that men were sampled. Analysis begins with the cal-
culation of the probability of obtaining a mean of 71
or higher if H0 is true. The z score for the sample
mean is

and the probability of a score at least this extreme
is .017.

Evaluation of the data under the alternative hypoth-
esis H1 yields z = .71, p = .24. That is, the data are not
improbable under the assumption that men were
sampled. The likelihood ratio (LR) of the two
p values, p(D|H1)/p(D|H0), is 14.12, meaning that it is
more than 14 times more likely that a sample of men
rather than women would yield data of the kind found
in the empirical sample. But how likely is it that the
sample consisted of men? It is necessary to be explicit
about the prior probability of sampling men. A simple
intuition is that women and men were equally likely to
be sampled, that is, p(H0) = p(H1) = .5. The summed

products of these prior probabilities and their respective
p values is the overall probability of the observed data.
Here, p(D) = p(H0)p(D|H0)+p(H1)p(D|H1) = .13. This
probability is critical for the calculation of the probabil-
ity of the null hypothesis given the observed data.
Bayes’ theorem gives p(H0|D) as p(H0)p(D|H0)/p(D) =
.07. Because the prior probabilities of the two hypothe-
ses are the same, the ratio of the two posterior probabil-
ities is the same as the LR. It can now be said that the
sample is more than 14 times more likely to comprise
men than women. The assumption of equal priors was
just that, an assumption. Suppose the researcher knew
that self-esteem scores were collected at four different
sites, only one of which comprised men. Now p(H0|D)
= .18, meaning that it is only 4.7 times more likely for
the sample data to come from men than from women.
Although the prior probability that men were sampled
was low, the evidence is still strong enough to reject the
null hypothesis that women were sampled and to accept
the alternative.

Now consider a study in which 200 women and
200 men are sampled. The null hypothesis is that there
is no gender difference in average self-esteem scores
(H0: µwomen = µmen = 70, σ = 20), and the alternative is
that there is a 4-point difference (H1: µwomen = 72, µmen

= 68, σ = 20). During the early phase of the research
program, the two hypotheses may appear to be equally
likely to be true. If the gender difference in the sam-
ple means is 3.5 points, the revised probability
of the null hypothesis is p(H0|D) = .09. As evidence
accumulates, researchers become aware that some
hypotheses are riskier than others. Suppose gender
differences in self-esteem have become well estab-
lished, so that p(H0) = .1. Now a 3.5 gender difference
still renders the null hypothesis less probable (p(H0|D)
= .01), but there is less room to move.

These examples are idealized: The properties of the
two populations (µ and σ) are known, and credible
estimates of their prior probabilities are available.
Scientific research must often proceed without this
full suite of information. Researchers handle the lack
of information by suspending certain kinds of
inference or by making defensible assumptions where

(71 − 68)
√

200/20 = 2.12,
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good information is missing. If the prior probabilities
of competing hypotheses are unavailable in a quantifi-
able and agreed-on format, they can sometimes be
estimated on the basis of prior research or derived
from theory.

Power

Many researchers are careful to situate their findings
within the context of relevant empirical or theoretical
work but refrain from making explicit estimates for
their hypotheses to be true. Suppose again that a 3.5
gender difference in self-esteem is found. Evaluation
of the data under the two hypotheses yields p(D|H0) =
.04 and p(D|H1) = .401, and thus LR = 10. With prior
probabilities barred from quantitative inferences,
researchers can still estimate their study’s statistical
power to detect a 4-point gender difference. The
power of the study is the probability that the null
hypothesis will be rejected if it is indeed false. To
obtain this probability, it is necessary to find the min-
imum gender difference leading to the rejection of H0.
This difference is given by the product of the z score
at which p(D|H0) = .05 and the standard error of
the difference. (The standard error of the difference
between means X

—

1 and X
—

2 is

here, 1.65 × 2 = 3.3.)
The power of the study is the complement of the

probability of such an effect under the alternative
hypothesis. Here, 1 − p(D|H1) = .64. In other words,
the prior odds that this study would detect an existing
difference of 4 points were about 5 to 3.

In principle, many researchers agree that the null
hypothesis should not be rejected when p(D|H0) > .05.
In practice, however, they tolerate a good number of
exceptions, thus opening the door to the murky world
of “marginal significance.” Researchers typically care
more about limiting the probability that a true
null hypothesis is rejected than about increasing the

probability that a true effect is detected. Designing a
study with a power of .8 is a widely held but seldom
attained ideal. One reason for this shortfall is that
power consumes resources. In the present example, a
total sample of 1,152 individuals would be required to
reach the ideal.

Making Decisions

In the decision-theoretic school of hypothesis testing,
p(D|H0) = .05 signifies the probability with which a
true null hypothesis is rejected. This decision out-
come constitutes a Miss (M). Conversely, p(D|H1) is
the probability that a false null hypothesis is not
rejected, a circumstance called a False Positive (FP).
The complement of an M is a Hit (H), that is, the
retention of a true null hypothesis; the complement of
an FP is a Correct Rejection (CR), that is, the rejec-
tion of a false null hypothesis. The probability of CR
is the power of the study. If there are no resources to
increase power, it is tempting to admit more FP. If the
null hypothesis is rejected with p(D|H0) as high as
.10, power increases from .64 to .76. The practice of
adjusting p(D|H0) is frowned on, however, when it
reflects, not the state of the field and thus appropriate
prior probabilities, but rather the researcher’s desire
to obtain significant results.

Without prior beliefs, there is no way of estimating
how probable the four outcomes are. It is only possi-
ble to state the conditional probability of p(H) relative
to p(M) and of p(FP) relative to p(CR). To illustrate
what can be gained from estimating the prior of the
null, consider p(H0) = .75, .5, and .25. The top panel
of Figure 1 shows the four conditional probabilities
obtained in a high-powered study. Each quadrant of
the bottom panel gives three unconditional probabili-
ties that are obtained as products of the conditional
probabilities and the prior probabilities of the
hypotheses. When, as in the typical empirical case, the
probability of rejecting a true null hypothesis (M) is
smaller than the probability of accepting a false one
(FP), any decrease in the prior probability of H0

decreases the overall probability of correct decisions

σx̄1 − σx̄2 =
√

σ 2
x̄1 + σ 2

x̄2 ;
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(here, p(H) + p(CR) = .91, .88, and .84, respectively,
for p(H0) = .75, .5, and .25). This is an odd, but logi-
cal, result. As an area of research becomes more
mature, null hypotheses become less probable, and the
typical conservatism of decision making (i.e., power
< 1 − desired significance level) makes it more likely
that true effects are missed. Failures to replicate then
accumulate, not because previously demonstrated
phenomena do not exist, but because studies lack
power. Hence, even the principled use of NHST
delays scientific progress. The data of solidly
designed but underpowered studies are dismissed for
ad hoc reasons, or worse, they are seen to add up to a
store of anomalies that potentially undermines hard-
won knowledge.

Filling In

When a new area of research opens up, it is marked by
great uncertainty. The null hypothesis may not have a
defensible prior probability, and there may not be a
well-formulated alternative hypothesis. Without being
able to estimate the posterior probability of the null
and with no opportunity to estimate the power of the
study, researchers seek to collect only enough data to
reject the null. When they do, they can declare only
that an effect has been found, and they can report its
size (for example with Cohen’s d or Pearson’s r).
Power analyses can be performed with the obtained
effect size, but the wisdom of this practice is a matter
of debate. Nevertheless, when enough empirical effect
sizes have been reported to justify their aggregation
by meta-analysis, these combined effect sizes can
serve as point-specific research hypotheses for repli-
cation and extension studies. 

The life course of a typical research area entails a
paradox. In the early stages, NHST can be performed
only in its most rudimentary form. At this stage, mis-
information and miseducation are most likely to
contribute to fallacious conclusions, such as the wide-
spread belief that the p value of the data signifies the
improbability of the null hypothesis. In the late stages,
when specific alternative hypotheses are available,
when the power of a study can be determined, and
when the probability of hypotheses can be estimated,
new data contribute little incremental knowledge.
Although NHST can then be used with great preci-
sion, its purpose is now to produce judgments about
the acceptability of the data and not about the truth or
falsity of the hypotheses.

—Joachim I. Krueger
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Reality of Ho

True False

1−p(D|Ho)P(HO) p(D|Ho)P(HO)

.7125 .0375

.475 .025

.24 .0125

p(D|H1)P(H1) 1−p(D|H1)P(H1)

.05 .2

.1 .4

.15 .6
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Decision Regarding Ho
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Hit Miss
1−p(D|Ho) = .95 p(D|Ho) = .05

Figure 1 A Decision-Theoretic Scheme for Null
Hypothesis Significance Testing
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O’BRIEN TEST FOR

HOMOGENEITY OF VARIANCE

The homogeneity of variance assumption is one of the
critical assumptions underlying most parametric sta-
tistical procedures, such as the analysis of variance
(ANOVA), and it is important to be able to test this
assumption. In addition, showing that several samples
do not come from populations with the same variance
is sometimes of importance per se. Among the many
procedures used to test this assumption, one of the
most sensitive is the O’Brien test, developed by Ralph
G. O’Brien. The null hypothesis for this test is that the
samples under consideration come from populations
with the same variance; the alternative hypothesis is
that the populations have different variances.

Compared with other tests of homogeneity of vari-
ance, the advantage of the O’Brien test resides in its
versatility and its compatibility with standard ANOVA
designs. It is also optimal because it minimizes both
Type I and Type II errors. The essential idea behind the
O’Brien test is to replace, for each sample, the original
scores by transformed scores such that the trans-
formed scores reflect the variance of the sample. Then,
a standard ANOVA based on the transformed scores
will test the homogeneity of variance assumption.

Motivation and Method

Several tests are available for detecting whether sev-
eral samples come from populations having the same
variances. In the case of two samples, the ratio of the
population estimates (computed from the samples) is
distributed as a Fisher distribution under the usual
assumptions. Unfortunately, there is no straightfor-
ward extension of this approach to designs involving
more than two samples. By contrast, the O’Brien test
is designed to test the homogeneity of variance
assumption for several samples at once and with the
versatility for ANOVA designs, including contrast
analysis and analysis of subdesigns. 

The main idea behind the O’Brien test is to trans-
form the original scores so that the transformed scores
reflect the variation of the original scores. An ANOVA
on the transformed scores will then reveal differences
in the variability (i.e., variance) of the original scores,
and therefore this analysis will test the homogeneity
of variance assumption. A straightforward application
of this idea will be to replace the original scores with
the absolute value of their deviation to the mean of
their experimental group. So, if we denote by Yas the
score of participant s in experimental condition a
whose mean is denoted by Ma., this first idea amounts
to transforming Yas into vas as follows:
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This transformation has the advantage of being
simple and easy to understand, but unfortunately, it
creates some statistical problems (i.e., the F distribu-
tion does not model the probability distribution under
the null hypothesis), and in particular, it leads to an
excess of Type I errors (i.e., we reject the null hypoth-
esis more often than the α level indicates). 

A better approach is to replace each score by
its absolute distance to the median of its group.
Specifically, each score is replaced by

where Mda . = median of Group a. This transformation
gives very satisfactory results for an omnibus testing
of the homogeneity of variance assumption. How-
ever, in order to implement more-sophisticated statis-
tical procedures (e.g., contrast analyses, multiples
comparisons), an even better transformation was pro-
posed by O’Brien. Here, the scores are transformed
as follows:

where

Na is the number of observations of Group a,
Ma. is the mean of Group a,
SSa is the sum of the squares of Group a:

When all the experimental groups have the same size,
this formula can be simplified as

where N = number of observations per group.

One Is a Bun . . .

To detail the computation of the median and the
O’Brien transforms, we will use data from a memory
experiment reported by Hunter. In this experiment,
Hunter wanted to demonstrate that it is easier to
remember an arbitrary list of words when we use a
mnemonic device such as the peg-word technique.
In this experiment, 64 participants were assigned to
either the control or the experimental group. The task
for all participants was to learn an arbitrary list of pairs
of words such as “one-sugar,” “two-tiger,” . . . “ten-
butterfly.” Participants in the control group were told
to try to remember the words as best as they could.
Participants in the experimental group were given the
following instructions: A good way to remember a list
is to first learn a “nursery-rhyme” such as “One is a
bun, two is a shoe, three is a tree, four is a door, five is
a hive, six is a stick, seven is heaven, eight is a gate,
nine is a mine, and ten is a hen.” When you need to
learn a pair of words, start by making a mental image
of the number, and then make a mental image of the
second word and try to link these two images. For
example, in order to learn “one-cigarette,” imagine a
cartoon-like bun smoking a cigarette.

Ten minutes after they had received their list, all
the participants were asked to recall as many pairs as
they could. The results are given in Table 1.

The results of this experiment are illustrated in
Figure 1; they show that the participants from the
experimental group did better than the participants
from the control group did. To confirm this interpreta-
tion, an ANOVA was performed (see Table 2), and
the F test indicates that, indeed, the average number of
words recalled is significantly larger in the experi-
mental group than in the control group.

Figure 1 also shows that a large proportion of the
participants of the experimental group got a perfect
score of 10 out of 10 words (cf. the peak at 10 for this
group). This is called a ceiling effect: Some of the
participants of the experimental group could have per-
formed even better if they had had more words
to learn. As a consequence of this ceiling effect, the
variance of the experimental group is likely to be

uas = N(N − 1.5)(Yas − Ma.)
2 − .5SSa

(N − 1)(N − 2)
,

SSa =
∑

s

(Yas − Ma.)
2.

uas = Na(Na − 1.5)(Yas − Ma.)
2 − .5SSa

(Na − 1)(Na − 2)
,

was = |Yas − Mda.|,

vas = |Yas − Ma.|.
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smaller than it should be because the ceiling effect
eliminates the differences between the participants
with a perfect score. In order to decide whether this
ceiling effect does in fact reduce the size of the vari-
ance of the experimental group, we need to compare
the variance of the two groups. 

The first step to test the homogeneity of variance is
to transform the original scores. For example, the
transformation of Yas into was for Observation number
5 from the control group gives

The transformation of Yas into uas for Observation
number 5 from the control group gives

The recoded scores are given in Tables 3 and 4.
The ANOVA table obtained from the analysis of

uas = N(N − 1.5)(Yas − Ma.)
2 − .5SSa

(N − 1)(N − 2)

= 32(32 − 1.5)(5 − 6.75)2 − .5 × 58

31 × 30

= 3.1828.

was = |Yas − Mda.| = 5 − 6.5 = 1.5.
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Table 2 ANOVA Table for the Experiment of Hunter 

Source df SS MS F Pr(F)

Experimental 1 92.64 92.64 60.96** .000000001
Error 62 94.22 1.52 

Total 63 186.86 

Source: Hunter (1964).

Note:**p < α = .01. R2
A.Y = .496.
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Figure 1 Results of the “Peg-Word” Experiment
(One Is a Bun) From Hunter

Table 1 Frequency of Subjects Recalling a Given
Number of Words*

Number of Control Experimental
Words Recalled Group Group

5 5 0
6 11 1
7 9 2
8 3 4
9 2 9

10 2 16

Ya· 216 293
Ma· 6.750 9.156

Mda· 6.500 9.500
SSa 58.000 36.219

Source: Hunter (1964).

* For example, 11 participants in the control group recalled
6 words from the list they had learned.

Table 3 Recoded Scores: Control Group

Control Group
Number of
Words Recalled Frequency was uas

5 5 1.5 3.1828
6 11 0.5 0.5591
7 9 0.5 0.0344
8 3 1.5 1.6086
9 2 2.5 5.2817

10 2 3.5 11.0538



transformation was is given in Table 5. The ANOVA
table obtained from the analysis of transformation uas

is given in Table 6.
A comparison of Tables 5 and 6 indicates that we

cannot show that the ceiling effect observed in Figure 1
significantly reduces the variance of the experimental
group compared to the control group.

—Hervé Abdi

See also Analysis of Covariance (ANCOVA); Analysis of
Variance (ANOVA); Homogeneity of Variance
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OBSERVATIONAL STUDIES

Both observational and experimental studies attempt
to provide a valid estimate of the causal effect of some
independent variable. Major differences exist, how-
ever, between these two types of investigation with
respect to design, practicality, interpretation, and
appropriate methods of analysis. For the sake of expo-
sition, we will primarily consider two-group situa-
tions, although these two types of studies can involve
comparisons of more than two groups. The principles
and issues involved easily generalize to situations
with more than two groups.

Design and Practicality Issues

Two key design issues distinguish observational and
experimental studies: (a) the method used to form
the comparison groups and (b) the nature of the
process that determines whether a participant receives
the treatment condition or the control condition. The
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Table 4 Recoded Scores: Experimental Group

Experimental Group
Number of
Words Recalled Frequency was uas

5 0 4.5 
6 1 3.5 10.4352
7 2 2.5 4.8599
8 4 1.5 1.3836
9 9 0.5 0.0061

10 16 0.5 0.7277

Table 5 ANOVA Homogeneity of Variance Test
(Recoded Scores: was. [Median])

Source df SS MS F Pr(F)

Experimental 1 0.77 0.77 1.16ns .2857 
Error 62 41.09 0.66 

Total 63 41.86 

Note: ns = no significant difference. 

Table 6 ANOVA Homogeneity of Variance Test
(Recoded Scores: uas. [O’Brien Test])

Source df SS MS F Pr(F)

Experimental 1 7.90 7.90 1.29ns .2595 
Error 62 378.59 6.11 

Total 63 386.49 

Note: ns = no significant difference. 



two-group experiment involves two essential charac-
teristics: (a) random assignment of available partici-
pants to form two comparison groups and (b)
experimenter-dictated assignment of the treatment
condition to all participants in one group and the
control condition to all participants in the other group.
Because random assignment yields two groups that
are probabilistically equivalent on all variables (before
treatments are applied), a simple comparison of
the group means (or medians) usually provides a
meaningful estimate of the causal effect. In many
situations, however, random assignment and experi-
menter-controlled treatment manipulation are imprac-
tical or unethical. For example, if one suspects that
cocaine use by mothers causes brain damage in
neonates, it would be unethical to randomly assign a
sample of pregnant mothers to two groups, with one
group receiving cocaine and the other (cocaine-free)
group serving as the control group. Observational
studies are often useful in such situations.

The observational study has neither random assign-
ment of participants to form comparison groups nor
experimenter-controlled assignment of treatment and
control conditions to the groups. Rather, data are
obtained from participants in nonrandomly formed
groups: one that received the treatment condition and
one that did not receive the treatment condition.
Participants’ exposure to the treatment occurs for
some reason(s) other than the action of an experi-
menter. Suppose, for example, that two samples of
mothers are identified: One sample used cocaine dur-
ing pregnancy and the other did not. Although a com-
parison of the two samples on a measure of neonatal
brain damage may seem interesting, this comparison
does not necessarily provide an estimate of the causal
effect. Such a comparison is often called the naive
effect estimate because it almost certainly provides an
invalid (biased) estimate of the causal effect.

Key Interpretational Concern

Naive estimates almost always contain bias because
differences between treatment and control groups on
the outcome may exist for many systematic reasons
other than causal effects of treatments. Consequently,
one does not know how much of this difference

should be attributed to initial group differences and
how much (if any) should be attributed to treatment
effects. It is naive to presume that the outcome differ-
ence reflects only treatment effects.

Analytic Issues

A thorough evaluation of an observational study will
include statistical analyses that go beyond naive esti-
mation to yield better estimates of the putative causal
effect of the treatments. These analyses focus on two
types of bias-producing variables: overt, which have
been accurately measured on each participant before
treatments were applied, and hidden, which have not
been so measured.

OOvveerrtt  BBiiaass  AAddjjuussttmmeenntt

The analysis of covariance (ANCOVA or the
equivalent regression model), simple matched sam-
pling, and subclassification are the traditional meth-
ods of adjusting for overt bias. Modern approaches
represent extensions and refinements of these meth-
ods. One of the more useful modern approaches
involves the propensity score, a number that indicates
the propensity for a participant to fall in the treatment
group rather than in the control group. Propensity
scores can identify participants who are essentially
equivalent on a very large number of variables. Once
appropriate comparison participants are identified by
means of propensity scores, the outcome analysis may
take the form of a simple comparison by means of
conventional parametric or nonparametric methods or
may involve a more complex strategy that uses a mod-
ified form of ANCOVA. The latter approach often
leads to a solution that is both less biased and more
powerful than that of the simpler methods.

A classic example of observational research
involved a large study of the effects of smoking. Three
groups were compared: The average mortality rates
were 13.5, 13.5, and 17.4 for nonsmokers, cigarette
smokers, and cigar and pipe smokers, respectively. A
comparison of these rates (i.e., the naive estimates)
suggested that there was no effect of cigarette smok-
ing relative to not smoking and that cigar and pipe
smoking increased mortality. After adjusting the
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mortality rates for age, however, these rates were 13.5,
21.2, and 13.7 for nonsmokers, cigarette smokers, and
cigar and pipe smokers, respectively. Hence, after
adjusting for overt bias associated with age differ-
ences among groups, cigarette smoking appeared to
increase mortality.

HHiiddddeenn  BBiiaass  AAddjjuussttmmeennttss

Although modern methods of analysis provide sat-
isfactory solutions to the problem of overt bias, one
always has to acknowledge that unknown but impor-
tant (i.e., bias-causing) variables probably have been
left out of the overt bias adjustments. For example, Sir
Ronald Fisher seriously entertained the notion that
there may be genetic differences between smokers
and nonsmokers before they begin to smoke. If
unmeasured genetic characteristics have a causal
influence on the between-group difference on mortal-
ity rates, they qualify as sources of hidden bias.

Because the exclusion of such variables can com-
pletely change the size and sign of the treatment-
effect estimate, a statement acknowledging this
possibility should be included in every document
reporting the results of an observational study. It is
often possible, however, to apply additional methods
to examine the plausibility of the hidden variable
explanation for the results. Consequently, many
observational studies rely on assembling information
outside the group comparison to bolster causal con-
clusions. This additional information often takes the
form of (a) a second control group, (b) additional
results that are consistent with a theory, and (c) sensi-
tivity analysis.

Suppose an observational study of two methods of
teaching reading has found an important difference
between the treatment and control groups on the out-
come reading measure. Further, suppose that the vari-
able of age, which was not included in the original
analysis (and can no longer be obtained), is a source
of hidden bias. In this case, it would be reasonable
to identify an additional group (the second control),
believed to differ in age relative to the original control
group. A comparison is then made between the two
control groups on the outcome measure; if the two

differ on the reading outcome in the suggested
direction (i.e., the control group with the higher aver-
age age also has the higher reading score), this infor-
mation provides support for the hypothesis that age is
a hidden bias in the comparison of the treatment and
control groups. In this case, the original interpretation
of a differential treatment effect is in doubt.

One can often use a theory to predict a pattern of
differences between the means of certain groups. For
example, suppose that the reading study mentioned
above involved a direct instruction group and a con-
ventional reading (control) group. Perhaps the amount
of time a person is exposed to a specific aspect of
direct reading instruction is the critical component of
the causal mechanism, and the observational study
supports the superiority of this treatment. If existing
evaluative data comparing three other reading pro-
grams are available, and if each of these programs dif-
fers on a measured amount of the critical component,
a pattern of results can be predicted from this informa-
tion. If the pattern reveals a clear association between
the amount of critical component of the direct reading
method and the effectiveness of the three treatments,
the claimed treatment effect in the observational study
is supported. Alternatively, if both the difference in
the original observational study and the differences
found among the means in the supplemental data are
associated with age, the hidden bias explanation is
supported.

The third approach for considering hidden bias
requires no additional data. Instead, the original obser-
vational study data are subjected to what is known as
a sensitivity analysis. This type of analysis evaluates
how large a potential hidden bias would have to be
to produce meaningful changes in the results of the
observational study. Some versions of sensitivity
analysis produce bounds on p values that are associ-
ated with a specified size of hidden bias. Other meth-
ods provide a measure of how much two groups must
differ on a hidden variable for the results to change
from statistically significant to nonsignificant.

—Bradley E. Huitema
and Sean Laraway

See also Authenticity; Interrater Reliability
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OCKHAM’S RAZOR

Ockham’s razor is a methodological principle intro-
duced by the medieval Franciscan friar and philoso-
pher-theologian William of Ockham. He was born in
1285 in the village of Ockham, in Sussex, England,
and died probably around 1347, during the plague epi-
demic in Munich, where he had spent his latter years
at the court of the outlawed German-Roman emperor
Ludwig of Bavaria as one of his theological-political
advisers.

The razor principle was stated by Ockham several
times in his writings. It is introduced as a kind of
theorem or axiom that is never proven but taken as
evident and hence not in need of further proof. In
a well-known version, it reads “pluralitas non est
ponenda sine necessitate—a plurality [of entities]
should not be postulated without necessity.” To under-
stand what Ockham meant by that, it is necessary to
introduce very briefly the theological and philosophi-
cal background discussions during his time, as well as
key aspects of his life.

Historical Background

At the beginning of the 13th century, two new spiritual
movements arose within a very short period of two
decades and grew to a powerful position in medieval
society: the so-called mendicant friars of the
Franciscan and Dominican orders. The key elements of

the Dominican calling were preaching to Christians
and heretics alike and most important, converting
all who were considered “heathens” (i.e., people of
Jewish, Muslim, or nonorthodox Christian faiths) and
establishing the knowledge, background, and learning
to be able to do so. Therefore, Dominicans pressed into
the newly founded universities in Paris, Oxford, and
Cambridge to install a pertinent training, teaching, and
research base for their enterprise. They were soon fol-
lowed by the Franciscan friars. Although learning and
academic work had not been a primary aspect of early
Franciscan spirituality, Franciscans, too, soon under-
stood that the Franciscan order also had to train its new
members well if they were to complete their mission of
reinvigorating Christian life and service to the commu-
nity. Thus, the academic life and debates in the 13th
century were largely dominated by these new move-
ments and their academic beacons at the universities.
One major challenge for these academics was to
integrate Aristotelian science and philosophy into
the traditional Christian teaching. Knowledge about
Aristotle’s philosophy had been scarce and based on
only a few writings known to the West. Through both
peaceful contacts with Islamic science, mainly in
Spain and Sicily, and the combats surrounding the
Crusades, such as the crusaders’ sacking of
Constantinople, more Aristotelian writings came to
the West, and as a consequence, Aristotelian teaching
became known. Thomas Aquinas (1225–1274), the
mastermind of the Dominican order at that time,
clearly saw that only a Christian reinterpretation of
Aristotle would save a coherent picture of the world
and give enough rational appeal to Christian theology,
both for the satisfaction of critical Christian thinkers
and philosophers and for armament against the Muslim
theologians who had already integrated Aristotle into
their worldview. Thus, Thomas Aquinas devoted his
academic career to interpreting and amendingAristotle
and reconciling him with Christian teachings. Part of
this enterprise was the adoption of Aristotle’s theory of
perception and mental activity as expounded in his
book De Anima [On the Soul]. The theory, briefly, sup-
poses that in visual perception, for instance, the eyes
extract what in Latin was called a species sensibilis, a
perceptual template, if we may interpret freely. This
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template is presented to the mind, which from it
abstracts another template, which in this case is men-
tal. This second template is the basis for further opera-
tions. Thus, a whole series of intermediaries were
introduced that would mediate between the object of
perception and the mental operations of the mind.

The Franciscan calling was, in general, different
from that of the Dominicans, and a latent competition
ran through all the two orders’ activities. Franciscans
put more emphasis on personal piety, inner experience,
and the fostering of a religious life in general. One
group in particular, whose members called themselves
“Spirituals,” tried to go back to what was seen as Saint
Francis’s original testament: a poor life as a mendicant
order, little interaction with the authorities of church or
world, and a support of private piety through prayer
and contemplation, which should lead each Christian
to an intimate personal relationship with Christ.

When William of Ockham entered the Franciscan
order, presumably around the age of 14, and his schol-
arly training started, this debate was reaching a first
climax, and it can be safely assumed that he was
drawn into it. He was sent to Paris by his order, as
every intelligent and promising young student would
have been in those days, to finish his studies. When he
arrived there, the debates around the Aristotelian-
Thomasic theory of perception were at their height.
Ockham, however, had had other training: One of his
teachers, Roger Bacon, another Franciscan, advocated
experiential knowledge and in particular inner experi-
ence as an important way to know both the world and
God’s will. Experience always had an element of
immediacy, of unmediated access to its object. Now,
if you were to apply the then-current general
Aristotelian theory of knowledge to direct experi-
ences, say of an inner mystical relationship with God,
what would that entail? You would have to abstract
from your own inner experience a species, which would
again be abstracted by another inner act until it reached
your mind as a diluted and colorless mental template
of what originally was a rich experience. Even with
very simple personal experiences, such as hunger,
thirst, or pleasure, the Aristotelian concept of percep-
tion would distort experience by abstractions. And
thus, a systematic philosophical and epistemological

place for direct experience could not be had as long as
this philosophy of perception was the generally
accepted one.

This state of the debate was certainly one motive
for Ockham’s critique, for he had understood a very
important precondition: If there should ever be a sys-
tematic place for a direct inner (and outer) experience
of mental events in any epistemology, then the
Scholastic concept of perception introduced by
Thomas Aquinas must be critiqued. If there were to be
any possibility of a direct inner contact of a soul with
God, as Franciscan piety was striving for, then the
Scholastic theory of perception must be replaced by
something simpler. Thus, one very powerful motive,
among others, for Ockham was the wish to establish a
place for direct inner experience within epistemology
and for experience in general as an access both to the
world and to one’s inner being. Thus, as a theorem
from which to start his critiques, he introduced his
razor principle: No entities beyond necessity.

Consequences and Place Within
the Scientific Enterprise

This principle of parsimony, as it is also called, is intu-
itively appealing. It was introduced as a guideline
that should inform our thinking and theorizing.
Ockham used it to deconstruct the Thomistic and
Scholastic theory of perception and to find a place for
experience and immediate access to reality.

Another important debate of the time pitted the
theory of universals against nominalism. While a uni-
versalist can sit in a study thinking about universals
and their relationship with the world, a nominalist
eventually has to go outside and study all individual
specimens of, say, horses to understand what it is to be
a horse. Ockham’s razor, applied to this debate, led
directly to an empiricist approach to reality. Thus,
Ockham’s endeavor, philosophical and abstract as it
might seem today, was the very precondition for
modern science as an empirical enterprise.

This might be the reason that the principle of
parsimony is held dear by modern science. Whenever
someone announces the discovery of something
new—a new species of animal, energy, or any other
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entity—science as a body reacts skeptically, sharpen-
ing Ockham’s razor. (In this way, Ockham’s razor is
perhaps also a way to keep jerks and quacks out of
science.) It is at the base of science’s inherently reduc-
tionist approach: Whenever some seemingly unknown
phenomenon is discovered or whenever something is
not well understood, the historically most promising
approach is not to postulate a new entity but to try to
understand it through already known principles and
reduce the phenomenon to a set of theories or rules
that are already understood.

An Example

A well-known historical example is the explanation of
mesmerism as hypnotic effects. In the 18th century,
the German physician Franz Anton Mesmer had pos-
tulated a new type of energy, which he called “animal
magnetism.” He thought that this energy would
emanate from every living being, with humans being
especially endowed with it, and that in illness, this
energy was disturbed. Consequently, he used his own
“animal magnetism” to heal sick patients. He was a
center of attention in pre-Revolutionary Paris, with
poor people and the aristocracy alike using his healing
powers, apparently quite successfully. Mesmer’s
claims were scrutinized by the French Academy of
Sciences. When shielded by a curtain, the purported
magnetic phenomena did not occur, but they were
clearly evident provided the healer was able to stay in
visual contact with his patient. The Academy con-
cluded that animal magnetism had not been proven
and that the phenomena were likely due to suggestion
and hypnotism. In other words, Ockham’s razor was
implicitly used to “cut out” the newly introduced
notion of animal magnetism and reduce it to known
phenomena: suggestion and hypnotism.

Thus, the razor principle introduces a sound ele-
ment of skepticism and in fact conservatism into the
scientific debate, although it had been used by its
inventor as a weapon against conservative mainstream
theorizing and as a motor of progressive methodology.
It is quite fitting that William Ockham was called
inceptor venerabilis (venerable initiator) in his day.
Nowadays, the razor principle has turned from a

sword of the vanguard to a shield of the establishment.
Now Ockham’s razor has to be balanced with a stance
that is true to what we see and experience. 

Thus, Ockham’s razor, the methodological princi-
ple of parsimony, has to be seen in context. Its
function is to prevent scientists and the scientific com-
munity at large from leaping to accept new expla-
nations for phenomena before it is clear that the
phenomena cannot be explained by existing models.
Only if these models fail can new categories of
phenomena, new theories, or a new worldview be
considered. 

Ockham’s razor is the first methodological princi-
ple introduced by a medieval scholar without an
apparent source in earlier or antique writings. It marks
the beginning of a modern era of potentially unpreju-
diced investigation and discovery and has served
scholars and scientists well for more than 700 years. It
is part and parcel of the scientific enterprise. In order
not to be perverted into an instrument of hegemony 
of one doctrine, it needs balancing by a generic stance
of openness toward phenomena, a stance some of us
refer to as Plato’s Life Boat. 

—Harald Walach

See also Chance; Significance Level; Type I Error
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OGIVE

An ogive is a line plot of the cumulative frequency
distribution against values of the random variable.
Francis Galton coined the term ogive to describe the
shape of the normal cumulative distribution function,
as it has a form similar to the S-shaped Gothic ogival
arch.

The ogive can display the population cumulative
frequency distribution or an estimate from a sample.
The random variable can be continuous or discrete
(as long as there is a natural ordering of the out-
comes). The range of possible outcomes is divided
into classes. A line is drawn to connect points at the
upper limit of each class interval and the cumulative
frequency distribution. For a discrete random vari-
able, each possible outcome can be a class, and
therefore the upper limit of the class is the outcome
itself.

The student test scores in Table 1 are split up into
five class intervals. The ogive is often overlaid with
the frequency distribution, as in Figure 1. The solid
line is the empirical cumulative distribution, and the
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Figure 1 Ogive Plot of Student Test Scores With
Frequency Distribution and Normal
Cumulative Distribution Curve

Note: Solid line is ogive plot of student test scores with
frequency distribution, and dashed line is normal cumulative
distribution curve

Table 2 Frequency Distribution of a Discrete Data 
Set With Number of Minor Accidents 
in a Factory per Year

Number of 
Accidents 0 1 2 3 4 5 6

Frequency 3 5 6 3 2 1 0
Relative 

frequency 0.15 0.25 0.30 0.15 0.10 0.05 0
Cumulative

frequency 0.15 0.40 0.70 0.85 0.95 1 1

Table 1 Student Test Scores

Test Scores 0–19 20–39 40–59 60–79 80–100

Frequency 1 6 22 17 4
Relative

frequency 0.02 0.12 0.44 0.34 0.08
Cumulative

frequency 0.02 0.14 0.58 0.92 1.00
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dashed line is an estimate of the population distribu-
tion assuming normality (notice the distinctive S shape
observed by Galton).

Table 2 summarizes the frequency distribution of a
discrete data set consisting of the number of minor
accidents recorded in a factory per year. The corre-
sponding ogive is shown in Figure 2, which was cre-
ated with Excel. Notice that the ogive points are now
at the outcome values rather than at the upper limit,
which was the case in the previous data set.

—Carl J. Scarrott

See also Cumulative Frequency Distribution; Frequency
Distribution 

Further Reading

Kenney, J. F., & Keeping, E. S. (1962). Mathematics of statis-
tics: Part I (3rd ed.). Princeton, NJ: Van Nostrand.

Ogive (history and definition): http://www.pballew.net/arithm
12.html#ogive

ONE- AND TWO-TAILED TESTS

The one-tailed or two-tailed test is a part of a much
more elaborate procedure called hypothesis testing
or tests of statistical significance. Prior to doing a
hypothesis test, a researcher will have formulated a
problem, identified the variables, formulated the
hypotheses, and collected the data.

In hypothesis testing, there are five basic steps:

• Stating the null hypothesis
• Stating the alternative hypothesis
• Computing the test statistic
• Formulating the decision rule and making a decision
• Drawing a conclusion 

At the very basic level, the researcher would be
comparing either a sample mean against a population
mean or the difference between two sample means.
Hypothesis tests are not restricted to tests on means.
Other comparisons and evaluations could involve

variances, proportions, and correlations, to name a
few. Furthermore, these tests are not restricted to
comparing only two means.

The statement of the alternative hypothesis is a
statement expressed in statistical terms concerning
an investigator’s research interest. For example, the
investigator may have a question concerning the
effects of alcohol consumption on perceptual judg-
ment. If the investigator feels from personal experi-
ence or observation that alcohol would have a
negative effect on perceptual ability, the alternative
hypothesis would reflect that. For research problems
in which the data are considered parametric, the null
and alternative hypotheses would be expressed by the
use of population parameters. The simplest case
would be between two means, µ1 and µ2.

In the example, alcohol is given to an experimental
group of participants, µ1 and a placebo, an inactive
simulation of alcohol, is given to a control group, µ2.
Each participant is measured on the number of correct
judgments made on a perceptual task. The alternative
hypothesis would state that the group receiving alco-
hol (the experimental group) would perform worse
than the group receiving the placebo (the control
group). Statistically, the alternative hypothesis would
be written as H1: µ1 − µ2 < 0 or H1: µ1 < µ2. The alter-
native hypothesis is not directly testable. Note that it
just says that one group is worse than the other. It does
not say by how much. To test this hypothesis directly
would require a large, perhaps infinitely large, number
of tests in which each difference was to be tested. It is
much easier to create a hypothesis that is the opposite
of the alternative hypothesis and, with empirical evi-
dence, demonstrate that it cannot be tenable. If this
opposite hypothesis is not tenable, then by inference,
the alternative hypothesis must be true. This opposite
hypothesis is called the null hypothesis. Some part of
the null hypothesis points directly to a testable value,
such as zero. So for this example, the null hypothesis,
written as H0, is H0: µ1 − µ2 ≥ 0. Note that the null
hypothesis contains the equal sign.

The null hypothesis is used to help direct the
hypothesis test. The investigator would assume the
null hypothesis to be true and then, through empirical
data, demonstrate that it cannot be tenable. As a result
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of this, the alternative hypothesis is shown to be
tenable. However, it is the alternative hypothesis that
dictates whether the test against the null hypothesis
should be one-sided or two-sided. Whenever the
investigator’s research question indicates that one
treatment group is better, more improved, more
impaired, weaker, faster, or something else along
these lines, than another group, the alternative hypoth-
esis would be considered as one-tailed, or one-sided.
When no direction is given by the investigator as to
which group will be better or worse than the other
group, the alternative hypothesis would be two-tailed.
Consider the example given. The investigator had
hypothesized that alcohol consumption would lead to
impaired performance compared to the performance
of those who did not consume alcohol. The alternative
hypothesis was H1: µ1 < µ2. This is a one-tailed test. If
the investigator had hypothesized that those that con-
sumed alcohol would demonstrate improved perfor-
mance over those with no alcohol, the alternative
hypothesis would have been written as H1: µ1 > µ2.
This still would have been a one-tailed test. However,
if the investigator had stated uncertainty as to whether
or not alcohol consumption would lead to a positive or
negative change in performance in comparison to
those that did not consume alcohol, the test would be
two-tailed. It is two-tailed because the uncertainty
would make it possible that either µ1 < µ2 or µ1 > µ2

could be true if the null hypothesis were shown not to
be tenable. For this situation, the null hypothesis
would have been stated as H0: µ1 − µ2 = 0 or H0: µ1 =
µ2. Such a test is also called a nondirectional test.

A two-tailed, or two-sided, test is so named
because if the normal distribution, or the t distribution,
is used, the two tails, or the two sides, of the
distribution are employed in the estimation of proba-
bilities. Consider a .05 probability of a Type I error.
With a normal-shaped sampling distribution, .025 of
the area of the curve falls to the right of 1.96 standard
deviation units above the mean, and .025 falls to the
left of 1.96 standard deviation units below the mean
(See Figure 1). The sum of these areas is 5% of the
total area under the curve (α = .05). In a hypothesis
test, the chances are 2.5 in 100 of getting a difference
of 1.96 standard deviation units in one direction due to

chance factors alone, and 2.5 in 100 in the other direc-
tion. Hence the total by chance alone in both direc-
tions is 5 in 100. For significance at the 1% level, a
value of 2.575 is required for a nondirectional test. For
one-tailed tests, if the normal, or t, distribution is
used, only one of the tails is used to estimate the
required probabilities. For a Type I error probability
of .05, the entire amount is placed into one of the tails
of the distribution. For a right-tailed, one-tailed test,
the required critical value needed to reject the null
hypothesis is +1.645 (see Figure 2). For a left-tailed
test, the critical value is –1.645 (see Figure 3). With
one-tailed tests, the investigator could make an error
in choosing the wrong direction or tail contrary to the
statement made by the alternative hypothesis.

In summary, for a one-tailed case, an investigator
has only one critical value to contend with when
doing the hypothesis test, and the two-tailed test has
two critical values. For a fixed probability of a Type I
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error, α, the chances of rejecting the null hypothesis
are higher for a one-tailed test than for a two-tailed
test. The reason is that the α value is divided in half
and placed across two tails of distribution in the two-
tailed situation whereas in the one-tailed case, the
entire amount is spread over only one of the tails of
the distribution. In terms of statistical power, the one-
tailed test is more powerful than the two-tailed test
provided the investigator has hypothesized the proper
direction of the statistical test.

In the social and behavioral sciences, there has
been much discussion concerning the use of one- and
two-tailed tests. One of the major issues these discus-
sions have centered on is an investigator’s decision to
change from an originally stated two-tailed test to a
one-tailed test after the hypothesis test has been done.
The two-tailed test yielded a nonsignificant result, but
on reflection, the investigator decided a one-sided test
would have produced a significant result. Some have
claimed that the decision to choose the alternative and
null hypotheses post hoc is unethical. Plus, investiga-
tors should always remind themselves that significant
results could still be due to chance.

Another issue is what an investigator should do if a
two-tailed test turns out significant. With a significant
nondirectional test, the investigator knows only that
the two groups are different. A very stringently agreed
on nondirectional test does not allow the investigator
to make statements of a negative or positive effect
when inspecting the group means. Some statisticians
have proposed a “three-decision procedure.” In this
procedure, the investigator has three possibilities:

• Do not reject H0.
• Reject H0 in favor of alternatives on one side.
• Reject H0 in favor of alternatives on the other side.

In this three-decision procedure, however, there are
six kinds of possible errors instead of two, with the
probabilities of the errors varying. In some cases, the
probabilities are small enough to ignore. Some have
considered this three-decision procedure to be a com-
posite of two one-tailed tests.

—Howard B. Lee

Further Reading

Comrey, A. L., & Lee, H. B. (1995). Elementary statistics:
A problem solving approach (3rd ed.). Dubuque, IA:
Kendall-Hunt.

Statistical significance discussion: http://www.statpac.com/
surveys/statistical-significance.htm

ONE-WAY ANALYSIS OF VARIANCE

One-way analysis of variance is part of the family
of tests known as analysis of variance (ANOVA).
Typically, it is used to analyze experimental designs in
which only one independent variable has been manip-
ulated. Usually, one-way ANOVA is used to test
whether differences exist between three or more
means; however, it can be applied to situations in
which there are only two means to be compared.
Although the t test is preferred by many in such situ-
ations, the F test produced in one-way ANOVA is a
direct function of t, and so it also is a legitimate way
to compare two means. 

The two types of one-way ANOVA differ in terms
of the experimental design to which they are applied.
If data representing different levels of an independent
variable are independent (i.e., collected from differ-
ent entities), then a one-way independent ANOVA
(also called a between-groups ANOVA) can be used.
When data are related, such as when different entities
have provided data for all levels of an independent
variable, a one-way repeated measures ANOVA (also
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called a within-subjects ANOVA) can be employed.
In both cases, the underlying principal is the same: A
test statistic F is calculated that is the ratio of system-
atic variance (variance explained by the independent
variable, that is, the experimental manipulation) to
unsystematic variance (variance that cannot be
explained, or error). If the observed value exceeds the
critical value for a small probability (typically .05),
we tend to infer that the model is a significant fit of
the observed data or, in the case of experiments, that
the experimental manipulation has had a significant
effect on performance.

An Example

One study looked at the processes underlying
obsessive-compulsive disorder by inducing a negative
mood, a positive mood, or no mood in people and then
asking them to imagine they were going on holiday
and to generate as many things as they could that they
should check before they left. The data are in Table 1.
Three different groups of people participated in this
experiment, each group representing a level of the
independent variable, mood: negative mood, positive
mood, and no mood induced. These data are indepen-
dent because they came from different people. The
dependent variable was the number of items that
needed to be checked.

The starting point for ANOVA is to discover how
much variability there is in the observed data. To do
this, the difference between each observed data point
and the grand mean is calculated. These values are
then squared and added together to give us the total
sum of squared error (SST):

Alternatively, this value can be calculated from the
variance of all observations (the grand variance) by
multiplying it by the sample size minus 1:

SST = s2 (N − 1).

The degrees of freedom for this value are N – 1,
where N is the total number of observations (in this
case, 30). For these data, the total degrees of freedom
are 29. For the data in Table 1, we get 

SST = s2
grand (N − 1) = 21.42(30 − 1) = 621.18.

Having established the total variance to be
explained, this variance is partitioned into two parts:
variance explained by the linear model fitted to the
data (expressed as the model sum of squared error,
SSM) and variance that the model cannot explain
(expressed as the residual sum of squared error,
SSR). The model sum of squares is the squared dif-
ference between the grand mean and the values pre-
dicted by the linear model. When analyzing data
from groups (i.e., when an experiment has been
conducted), the linear model takes the form of the
group means. The variance explained by the model
is, therefore,

SST =
n∑

i=1

(xi − x̄grand)
2.

714———One-Way Analysis of Variance

Table 1 Numbers of Things People in Negative or
Positive Mood or No Induced Mood
Thought They Should Check Before
Going on Holiday

Negative Positive No Mood
Mood Mood Induced

7 9 8
5 12 5

16 7 11
13 3 9
13 10 11
24 4 10
20 5 11
10 4 10
11 7 7
7 9 5

x– 12.60 7.00 8.70
S2 36.27 8.89 5.57

Grand Mean = 9.43 Grand Variance = 21.43

Source: Davey et al. (2003).

Note: x– = mean; S2 = variance. 



in which k is the number of groups. For the data in
Table 1, we would get 

SSM = 10(12.60 − 9.43)2 + 10(7.00 − 9.43)2

+ 10(8.70 − 9.43)2 = 164.87.

The degrees of freedom (dfM) for this sum of
squared error are 1 less than the number of parameters
estimated: When data from groups are analyzed, this
is the number of groups minus 1 (denoted as k − 1), in
this case 2, and when continuous predictors are used,
it is the number of predictors.

Finally, we need to establish the error in the model,
or the variance not explained by the model. This is
simply the squared difference between the values pre-
dicted by the model and the observed values. When
analyzing data from groups, the model used is the
group means, so we are looking at the squared differ-
ence between the observed value and the mean of the
group from which that observation came:

This can be simplified by using the variance within
each group (S 2

j ) and reexpressing the equation as

For the data in Table 1, this gives us 

SSR = 36.27(10 − 1) + 8.89(10 − 1) + 5.57(10 − 1)
= 326.43 + 80.01 + 50.13
= 456.57.

Alternatively, the value can be derived from SSR =
SST − SSM (which gives the same answer to within

rounding error). The degrees of freedom for SSR (dfR)
is the total degrees of freedom minus the degrees of
freedom for the model (dfR = dfT − dfM = 29 − 2 = 27).
Put another way, it is N – k (the total sample size, N,
minus the number of groups, k).

SSM tells us how much variation the model (e.g., the
experimental manipulation) explains, and SSR tells us
how much variation is due to extraneous factors.
However, because both of these values are summed
values, they will be influenced by the number of
scores that were summed. To eliminate this bias, we
can calculate the average sum of squared error (known
as the mean squared error, MS), which is simply the
sum of squares divided by the degrees of freedom:

MSM represents the average amount of variation
explained by the model (e.g., the systematic variation
attributable to the experimental manipulation),
whereas MSR is a gauge of the average amount of
variation explained by extraneous variables (the
unsystematic variation).

The F ratio is a measure of the ratio of the variation
explained by the model and the variation explained by
unsystematic factors. It can be calculated by dividing
the model mean squared error by the residual mean
squared error:

The F ratio is, therefore, a measure of the ratio of
systematic variation to unsystematic variation, or a
comparison of how good the model is compared to
how bad it is. In experimental scenarios, it is the ratio
of the experimental effect to the individual differences
in performance. The observed value of F is compared
to critical values of F from a special distribution
known as the F distribution with dfM and dfR degrees
of freedom, which represents the values of F that can

F = MSM

MSR
= 82.44

16.90
= 65.54.

MSM = SSM

dfM
= 164.87

2
= 82.44

MSR = SSR

dfR
= 456.57

27
= 16.90

SSR =
k∑

j=1

s2
j (nj − 1).

SSR =
n∑

i=1

k∑

j=1

(xij − x̄j )
2.

SSM =
k∑

i=1

ni(x̄i − x̄grand)
2,
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be expected at certain levels of probability. If this
value is significant, then the model is a good fit of the
data, or in experimental designs, the independent vari-
able is believed to have had an effect on the dependent
variable.

Following Up One-Way ANOVA

ANOVA is an omnibus test and so tells us only that the
means of the groups differ from one another. When
more than two means have been compared, the F test
indicates only whether two or more of those means
differ. Therefore, one-way ANOVA is usually fol-
lowed up either with planned comparisons of specific
sets of means or with post hoc tests, which compare all
combinations of pairs of means (see, for example, the
entries on Bonferroni Test and Newman-Keuls Test).

Assumptions

For the F ratio to be accurate, the following assump-
tions must be met: (a) Observations should be statisti-
cally independent, (b) data should be randomly
sampled from the population of interest and measured
at an interval level, (c) the outcome variable should
be sampled from a normal distribution, and (d) there
must be homogeneity of variance.

Differences With Repeated Measures

When data are related (i.e., the independent variable
has been manipulated by use of the same entities), the
basic logic described above still holds true. The result-
ing F can be interpreted in the same way, although the
partitioning of variance differs somewhat. However,
when a repeated measures design is used, the assump-
tion of independence is violated, and this gives rise to
an additional assumption of sphericity. This assump-
tion requires that the variances of difference scores
between conditions be roughly equal. When this
assumption is not met, the degrees of freedom associ-
ated with the F value must be corrected with one of
two estimates of sphericity: the Greenhouse-Geisser
estimate or the Huynh-Feldt estimate. 

—Andy P. Field

See also Analysis of Variance (ANOVA); Bonferroni Test;
Dependent Variable; Homogeneity of Variance; Indepen-
dent Variable; Newman-Keuls Test; Normal Curve

Further Reading

Davey, G. C. L., Startup, H. M., Zara, A., MacDonald, C. B.,
& Field, A. P. (2003). Perseveration of checking thoughts
and mood-as-input hypothesis. Journal of Behavior
Therapy & Experimental Psychiatry, 34, 141–160.

Field, A. P. (2005). Discovering statistics using SPSS
(2nd ed.). London: Sage.

Howell, D. C. (2002). Statistical methods for psychology
(5th ed.). Belmont, CA: Duxbury.

ORDINAL LEVEL OF MEASUREMENT

The ordinal level of measurement refers to measure-
ment in which the distances between observed values
are irrelevant and only the order relations of <, >,
and = should be considered. 

Consider the Likert-type item common in the social
sciences. Typically, such an item consists of a state-
ment that captures the essence of the construct being
measured (e.g., depression), followed by adjectives or
adjectival response phrases indicating degree of
endorsement of the statement. Very often, the adjecti-
val phrases are coded by increasing integer values, an
example being 0 = not at all, 1 = a little bit, 2 = mod-
erately, 3 = a lot, 4 = quite a bit. It is important to real-
ize that considered in isolation (e.g., not in the context
of a scaling model), the statements are inexact to the
extent that they do not imply distances between them.
Equidistant interpretations such as quite a bit − a lot =
moderately − a little bit, characteristic of interval-level
measurement, are not justified. On the other hand,
ordinal interpretations such as not at all < quite a bit
are justified. Suppose there is no response error for
an item and Respondent A selects not at all and
Respondent B selects quite a bit. Then the empirical
ordering with respect to endorsement is Respondent
A < Respondent B, which is represented by 0 < 4. The
empirical ordering of the respondents is accurately
represented by the order relations of the observed
values. The representation is limited to the relations 

716———Ordinal Level of Measurement



of <, >, and =, because 4 − 3 = 2 − 1, for example, is not
a valid representation for ordinal level of measurement.

An interesting characteristic of the ordinal level of
measurement is invariance under any order-preserving
transformation such as the natural log transformation.
Suppose we obtain the following observed values from
five people using our Likert-type item: 1, 2, 2, 3, 4.
Ordinal level of measurement dictates that the values of
the number are irrelevant and only their order is impor-
tant. Thus, any other set of numbers with the same order
will be an equally valid ordinal representation. For
example, taking the natural log of the original values,
we obtain 0, .6932, .6932, 1.0986, 1.3863. The log-
transformed values look quite different from the origi-
nal numbers but retain the same ordinal information.

Depending on an analyst’s epistemology, the
monotonic invariance property may proscribe certain
statistical methods for ordinal-level data. Methods
such as the Spearman rank correlation coefficient yield
invariant results under any monotonic transformation
whereas methods such as Pearson’s correlation coeffi-
cient do not. When one is analyzing ordinal data, it may
be desirable to use a statistical method that considers
only ordinal relations so that test statistics and p values
do not change under order-preserving transformations.

—Jeffrey D. Long

See also Interval Level of Measurement; Nominal Level of
Measurement; Ratio Level of Measurement 

Further Reading

Hand, D. M. (1996). Statistics and the theory of measurement.
Journal of the Royal Statistical Society, Series A (Statistics
in Society), 159, 445–492.

Michell, J. M. (1990). An introduction to the logic of psycho-
logical measurement. Mahwah, NJ: Erlbaum.

Stevens, S. S. (1951). Mathematics, measurement and psy-
chophysics. In S. S. Stevens (Ed.), Handbook of experi-
mental psychology (pp. 1–49). New York: Wiley.

ORTHOGONAL PREDICTORS

IN REGRESSION

In multiple regression, a single dependent variable
(y, the criterion) is predicted from a number of

independent variables. If there were only a single
independent variable (x1), the regression coefficient
b is simply a rescaling of the correlation coefficient
rxy (i.e., b = rxy). Therefore, rxy can be used to
gauge the importance of the single predictor vari-
able. With multiple predictor variables, the correla-
tions among these predictors (i.e., multicollinearity),
as well as the correlations of the predictors with the
criterion, influence the regression weights. If one is
interested only in optimizing the overall fit of the
model (i.e., R2), then the regression coefficients do
not require much interpretation. However, under-
standing the effect of each individual variable is very
difficult. It can also be the case that variables signif-
icantly correlated with the criterion do not enter the
model because another variable is more strongly
associated with the criterion and the additional vari-
ance explained is insufficient to achieve statistical
significance.

One approach to this problem is to conduct a prin-
cipal component analysis. All dimensions are inde-
pendent but, unfortunately, hard to interpret with
respect to the original variables. Alternatively, the
predictor variables can be orthogonalized by means
of a transformation so that all predictor variables
are uncorrelated with each other, but simultaneously
each transformed predictor variable is maximally
correlated with the corresponding original variable. If
the correlations of the transformed variables with the
original predictor variables are high, the results of the
orthogonal regression analysis are easy to interpret.
The transformation provides variables that are pure in
that no variable shares any common variance with any
other in the explanatory set. The regression model
with the orthogonal predictors is insensitive to the
order in which the independent variables are entered
into the equation. The explanatory power of each pre-
dictor is directly interpretable as the squared criterion
correlation.

The transformation of the original variables is
obtained from the matrix equation Z* = ZR – 1/2 so
that the correlation matrix (R*) for the orthogonalized
predictors in the columns of Z* is (Z*)’Z* / N = I
the identity matrix (i.e., indicates orthogonality or
0 correlation), where Z is the 0 mean and standard
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deviation of 1 (i.e., z score) matrix of original vari-
ables and R – 1/2 is the square root of the inverse of
the correlation matrix R among the original variables.
The correlation of the orthogonally transformed pre-
dictor variables with the original predictor variables is
the square root of the correlation matrix R among the
original predictor variables R1/2.

The amount of predictable variance accounted for
by each predictor variable in orthogonal regression is
the correlation between the orthogonalized predictor
and the criterion, and the overall fit of the model

(i.e., R2) is simply the sum of the individual r2 for each
variable in the model.

—John R. Reddon and James S. Ho

See also Correlation Coefficient; Multicollinearity; Regression
Analysis

Further Reading

Cawsey, T. F., Reed, P. L., & Reddon, J. R. (1982). Human
needs and job satisfaction: A multidimensional approach.
Human Relations, 35, 703–715.
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PAGE’S L TEST

When comparing c populations in randomized complete
block designs, researchers are often interested in exam-
ining ordered treatment effects among the c groups. The
c levels of the treatment are either categorically ordered,
as in the treatment condition “undergraduate class
designation” with levels “freshman,” “sophomore,”
“junior,” and “senior,” or the c levels are numerically
ordered, as in the treatment condition “drug dosage”
with levels “20mg,” “25mg,” “30mg,” and “35mg.” For
situations where the researcher is interested in testing
specifically for monotonically increasing or monotoni-
cally decreasing treatment effects, and either collects
data only in ordinal form or collects data that are either
interval- or ratio-scaled but does not desire to make the
stringent assumptions necessary for employing a para-
metric procedure, the nonparametric L test devised by
Ellis B. Page in 1963 may be selected.

Development

Let xij be the observed value under the jth treatment in
the ith block (where j = 1, 2, . . . , c and i = 1, 2, . . . , n).

In each of the n independent blocks, replace the
c observations by their corresponding ranks such that
a rank of 1 is given to the smallest observation in the
block and a rank of c is given to the largest. Thus, Rij

is the rank (from 1 to c) associated with the jth treat-
ment in the ith block.

The layout for the ranked responses from a sample
of either n subjects or n blocks of matched subjects
over c levels of a treatment condition are shown in
Table 1.

Note that under the null hypothesis of no treatment
effects, each ranking within a block is equally likely, so
there are c! possible rankings within a particular block
and (c!)n possible arrangements of ranks over all 
n blocks. The sum of the ranks within each block is 
c(c + 1)/2, the sum of the ranks assigned to each of the
c treatment levels. If the null hypothesis were perfectly
true, the sum of the ranks for each of the c treatment
levels would be n(c + 1)/2. On the other hand, if the
alternative hypothesis is true and there is a perfect
ordering in the c rankings among all n subjects, the sum
of the ranks for each of the c treatment levels would
respectively be n, 2n, . . . , cn if the treatment effects
were monotonically increasing, and cn, (c – 1)n, . . . , n
if the treatment effects were monotonically decreasing.
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I wanted to have a career in sports when I was young, but I had to give it up. I’m only six feet tall, so
I couldn’t play basketball. I’m only 190 pounds, so I couldn’t play football. And I have 20–20 vision,
so I couldn’t be a referee.

—Jay Leno



To develop the Page test statistic L, the ranks
assigned to each of the c treatment levels are totaled
over all n blocks. That is, R. j = ∑

n

i==1
Rij is obtained for

each of the treatments (where j = 1, 2, . . . , c). Page’s
test statistic L is

L = ∑
c

j=1
j ·R. j

where j is the hypothetical “ranking” (1 to smallest
and c to largest) given to the jth treatment based on the
alternative hypothesis of ordered treatment levels.
Page shows that the test statistic L is approximately
normally distributed with mean

and standard deviation 

For a nonparametric analysis, M.j represents some
location parameter, typically the median of level j
(where j = 1, 2, . . . , c). The Page L procedure may be
used to test the null hypothesis of no treatment effect

H0 : M.1 = M.2 = . . . = M.c

against either the ordered alternative that a monotoni-
cally increasing treatment effect is present

H1 : M.1 ≤ M.2 ≤ . . . ≤ M.c

(with at least one inequality strict)

or against the ordered alternative that 
a monotonically decreasing treatment
effect is present

H1 : M.1 ≥ M.2 ≥ . . . ≥ M.c

(with at least one inequality strict)

Note that the monotonic effects
expressed by these two ordered alter-
native hypotheses are built into the cal-
culation of the Page test statistic L,
which correlates the hypothesized
monotonic ordering of the c treatment
levels with the sum of the ranks given
by the n subjects in the c treatment
levels. Thus, the Page L test statistic is
related to Spearman’s coefficient of
rank correlation ρ.

To test the null hypothesis of no differences
among the c treatment levels against the ordered
alternative that differences among treatment levels
are monotonically increasing, the decision rule 
is to reject the null hypothesis at an α level of
significance if

where Z1–α is the upper-tailed critical value from the
standardized normal distribution. On the other hand,
to test against monotonically decreasing treatment
effects, the decision rule is to reject the null hypothe-
sis at an α level of significance if Z < Zα where Zα is
the lower-tailed critical value from the standardized
normal distribution.

Applying Page’s LL Test

The following hypothetical example is based on a
behavioral investigation of visual pattern recognition.
The practical ramifications of the actual physiological
research are in advertising and communications
theory.

Z ∼= L − µL

σL

=
L − nc(c + 1)2

4√
nc2(c2 − 1)(c + 1)

144

> Z1−α,

σL =
√

nc2(c2 − 1)(c + 1)

144
.

µL = nc(c + 1)2

4
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Table 1 Data Layout for the Page L Test

Treatments

Block 1 2 … c Totals

1 R11 R12 … R1c c(c + 1) / 2

2 R21 R22 … R2c c(c + 1) / 2
. . . . . .
. . . . . .
. . . . . .

n Rn1 Rn2 … Rnc c(c + 1) / 2

Totals R.1 R.2 … R.c nc(c + 1) / 2

where
c = the number of treatment levels (i.e., columns)
n = the number of blocks (i.e., rows of subjects)
Rij = the rank assigned to the jth treatment in the ith block
R.j = the sum of the ranks for treatment level j



Suppose 10 subjects placed in front
of a monitor are each presented with a
single numerical digit (0–9) for a vari-
able on-time of 10, 14, 18, or 22 mil-
liseconds, immediately followed by the
presentation of a randomly selected
masking noise field that, for one-half
second, may confound what digits the
subjects had been shown. A computer
program randomly generates the order
in which the numerical digits appear as
well as the particular on-time treatment
level until 20 trials of each combination
of digit and on-time level are observed
by each subject. Based on this random-
ization process, each subject is given
different sequences of digit and on-time
level combinations until he or she com-
pletes the experiment.

To investigate the effects of different on-time levels
on the percentage of correct responses, a randomized
complete block design with but one observation per
cell is used. The observation in each cell, xij, corre-
sponds to the percentage of correct responses out of
200 trials under the jth on-time treatment level by the
ith subject (where j = 1, 2, . . . , c = 4 and i = 1, 2, . . . ,
n = 10).

Given these different numerical on-time levels, it
may be of primary interest for the researcher to test
for ordered treatment effects. Transforming each
subject’s percentage of correct responses across the
four treatment levels into ranks, the Page L test can be
employed.

The original data values xij along with the trans-
formed ranks Rij are displayed in Table 2.

To test the null hypothesis of no treatment effect
(that is, each of the four on-time levels results in sim-
ilar pattern recognition abilities across subjects, and
any observed differences are due to chance),

H0 : M.1 = M.2 = M.3 = M.4

against the ordered alternative that a monotonically
increasing treatment effect is present

H1 : M.1 ≤ M.2 ≤ M.3 ≤ M.4

(with at least one inequality strict)

the Page L procedure may be used. From the rank
sums over the j treatment levels in Table 2, the Page L
statistic is computed as follows:

Moreover,

and

To perform the Page L test,

Z ∼= L − µL

σL

= 273 − 250
9.129

= 2.52.

σL =
√

nc2(c2 − 1)(c + 1)

144

=
√

(10)(42)(42 − 1)(5)

144

= 9.129.

µL = nc(c + 1)2

4
= (10)(4)(52)

4
= 250

L =
c∑

j=1

j · R.j

= (1)(20) + (2)(21) + (3)(25) + (4)(34)

= 273.
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Table 2 Hypothetical Results of Visual Pattern Recognition
Experiment

On-Times in msec

Subjects 10 14 18 22 Totals

1=AA 63% → 1 69% → 2 76% → 4 75% → 3 10
2=AB 38% → 2 37% → 1 40% → 3 50% → 4 10
3=KB 43% → 1 45% → 2 47% → 3 53% → 4 10
4=LB 54% → 4 51% → 2 48% → 1 52% → 3 10
5=ED 43% → 2 48% → 4 41% → 1 47% → 3 10
6=KG 29% → 3 26% → 1 28% → 2 36% → 4 10
7=RK 69% → 1 75% → 2 79% → 3 85% → 4 10
8=DM 48% → 2 45% → 1 61% → 4 55% → 3 10
9=MM 17% → 1 20% → 2 22% → 3 30% → 4 10
10=GT 59% → 3 63% → 4 56% → 1 57% → 2 10

Rank Totals 20 21 25 34 100

Note: Each cell contains the measured response and the transformation to ranks.



Using a .05 level of significance, given that Z = 2.52
> Z.95 = 1.645, the upper-tail critical value from the
standardized normal distribution, the null hypothesis
is rejected. A significant ordered treatment effect is
present. The p value for Page’s L test is 0.0059.

Discussion

In order to examine a set of c ordinal responses
pertaining to the levels of some treatment condition
provided either by a sample of subjects used as their
own controls to make these assessments or by a
sample of c matched subjects randomly assigned to
each treatment level as members of a block, in 1937
the economist Milton Friedman developed a non-
parametric competitor of the two-way randomized
block F test. This test should be useful for 
testing against general alternatives when the data
collected are only ordinal or when the researcher
does not desire to make the more stringent assump-
tions underlying the classical parametric ANOVA
procedure.

When employing the Friedman test, a rejection of
the null hypothesis of no differences in the c treatment
levels leads to the generalized conclusion that a treat-
ment effect is present. This implies that at least one of
the groups is different from another group or from all
other groups. Owing to the general nature of the con-
clusions that would be drawn, it becomes imperative
for the researcher to employ a posteriori an appropri-
ate multiple comparisons procedure in order to deter-
mine where the actual significant differences in the
treatment levels are.

The Page L test is, in a sense, a nonparametric
extension of the more general Friedman test. If inter-
est centers on global or generalized findings, the
Friedman should be selected. However, if the treat-
ment levels are ordered and interest is in monotonic
effects, the Page L test is much preferred.

Comment: The Impact of 
Testing for Ordered Alternatives

It is essential to a good data analysis that the appro-
priate statistical procedure be applied to a specific
situation. If the Friedman test were used on the data

displayed in Table 2, the null hypothesis of no differ-
ences in treatment effects

H0 : M.1 = M.2 = . . . = M.c

would be tested against the more general alternative

H1: Not all M.j are equal (where j = 1, 2, . . . , c).

From Table 2, it is observed that n = 10, c = 4, and
the rank sums for the four treatment levels are 20, 21,
25, and 34, respectively.

For these data, the Friedman test statistic T = 7.32
< χ2

0.05,(c–1=3) = 7.815, the upper-tailed critical value
under the chi-square distribution with 3 degrees of
freedom. Thus, it is important to note that in using a
.05 level of significance, the null hypothesis is not
rejected. The Friedman test fails to detect a significant
treatment effect, and no a posteriori analysis on the 
c = 4 levels can be undertaken. The p value for the
Friedman test is 0.0624.

Conclusions

The Page L test is quick and easy to perform. The only
assumptions are that either the n subjects providing
the repeated measurements (i.e., the ranks) across the
c treatment levels are independently and randomly
selected, or the n blocks of homogeneous subjects
examining the c treatment levels are independently
and randomly selected.

When evaluating the worth of a statistical proce-
dure, statistician John Tukey defined “practical power”
as the product of statistical power and the utility of 
the statistical technique. Based on this, the Page L test
enjoys a very high level of practical power under many
useful circumstances. Although some competing tests
may provide slightly more statistical power than the
Page L test, no other test of this type can match its
distinct simplicity and computational ease.

—Mark L. Berenson

Further Reading

Berenson, M. L. (1982). Some useful nonparametric tests 
for ordered alternatives in randomized block experiments.
Communications in Statistics: Theory and Methods, 11,
1681–1693.
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PAIRED SAMPLES t TEST

(DEPENDENT SAMPLES t TEST)

Paired samples t test, also known as dependent sam-
ples t test, is used when there are two groups to com-
pare, wherein the scores in one group are linked or
paired with scores in the other group. In this situation,
the assumption of independence has been violated, so
an independent t test cannot be used.

An example of when to use a paired samples t test
is a study examining happiness of twins (based on a
survey with a composite score ranging from 1 to 100),
with both twins involved in the study. Because the
scores are paired or dependent (each twin’s score is
related to the other twin’s score), these data would be
analyzed using a paired samples t test. This is the best
choice of statistic to use because the scores from one
twin are linked, or might be similar, to the scores from
the other twin.

Another example of when it would be appropriate
to use the paired samples t test is with repeated
measures. For example, to understand if a teaching
method is effective, a pretest could be given on the
first day of class and then again on the last day of
class. The scores from these tests (the data) would be
considered linked for each student. Therefore, in the
case of repeated measures with two sets of scores, the
paired samples t test would be an appropriate choice
for a statistic.

Table 1 shows an example of data that would be
appropriate on which to use the paired samples t test.
The first variable is “twin 1 happiness scores” and the

second variable is “twin 2 happiness scores.”
Happiness is measured on a scale of 1 to 100, where 1
is very unhappy and 100 is extremely happy.

Assumption of the 
Paired Samples tt Test

There is one important assumption or condition for
the paired samples t test: The variables should be nor-
mally distributed. This can be tested with a computer
program such as SPSS with the skewness and kurtosis
values with the Explore command. A graphical repre-
sentation of the normal distribution can be obtained
through the Q-Q plot.

If the assumption of normality is not met, the
Signed Rank Test should be computed instead.

Research Hypothesis

The null hypothesis analyzed with the paired samples
t test is similar to the hypothesis used with the inde-
pendent samples t test:

H0 : µ1 = µ2

This hypothesis is testing that the means are equal.
The alternative hypothesis would be that the means
are not equal:

H0 : µ1 ≠ µ2.

Paired Samples tt Test (Dependent Samples tt Test)———723

Table 1 Data of Twin 1 and Twin 2 Happiness Scores

Twin 1 Twin 2
Happiness Happiness

Scores Scores

88 92
75 84
45 52
95 90
50 52
79 80
69 75
48 50
59 64
58 58



Computing the Value for 
the Paired Samples tt Test

The formula for the paired samples t test is as follows:

where X
_

is the mean for the first variable and Y
_

is the
mean for the second variable. The denominator, sD

_

is the standard error of the difference between the
means. It is calculated with the following formula:

The sD
_ is the standard error of the difference between

the means. The sD is the standard deviation of the
difference between the means, the D
is the difference between each paired
score (X – Y), and N is the number of
paired scores.

Using the Computer to
Compute the Value

The data used in the above example
were entered into SPSS. To check
whether the data for each variable are
normally distributed, the skewness
values can be computed through the
Explore command and the Q-Q plot
can be generated in the computer pro-
gram SPSS. The output is in Figures
1 and 2.

Next, the paired samples t test is
computed with the Paired Samples t
Test command found under Compare
Means. The output is in Figure 3. As
shown in the last table of the output,
there is a statistically significant dif-
ference between the twins’ happiness
scores, t(9) = –2.44, p = .037, d = .77.
By examining the means in the first
table, we see that Twin 2 has a higher

mean happiness score (M = 69.70) than Twin 1 
(M = 66.60). The effect size is calculated by d =
where the Mean is the paired differences mean and SD
is the paired differences standard deviation. Thus, for
this example, d = = .77.

There are advantages to using dependent samples.
Dependent samples tend to reduce the effects of vari-
ability between the elements in a sample that can con-
found the results. For example, suppose the sample
obtained is an independent sample of students, one
group of students who took a course and one group
who did not. One of the students who did not take the
course has an extremely high score. If we examine the
sample means of the scores for each group, this
student’s score might distort the results, thus making
the sample mean for the students who have not taken
the course unrealistically high. Dependent samples

3.1
4.012

Mean
SD

,

sD
--- = sD√

N
, where sD =

√
√
√
√
√�D2 − (�D)2

N
N − 1

.

t = X
--- − Y

---

sD---
,
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Descriptives

Statistic Std. Error

twin 1 happiness scores Mean 66.60 5.492
95% Confidence Lower Bound 54.18
Interval for Mean Upper Bound

79.02

5% Trimmed Mean 66.22
Median 64.00
Variance 301.600
Std. Deviation 17.367
Minimum 45
Maximum 95
Range 50
Interquartile Range 32
Skewness .346 .687
Kurtosis –1.194 1.334

twin 2 happiness scores Mean 69.70 5.198
95% Confidence Lower Bound 57.94
Interval for Mean Upper Bound

81.46

5% Trimmed Mean 69.56
Median 69.50
Variance 270.233
Std. Deviation 16.439
Minimum 50
Maximum 92
Range 42
Interquartile Range 34
Skewness .097 .687
Kurtosis –1.836 1.334

Figure 1 Output From the Explore Command in SPSS



would create a different situation. In this example, the
data would include a “before the course” and “after
the course” score for each student. If one student in
the study scores high, this should appear in both sam-
ples and therefore will not distort just one of the sam-
ples. In other words, things would balance out. Thus,
the effects of variability among the participants in the
sample will be reduced.

Whereas some studies involve using the same
group of individuals with measurements recorded
before and after some intervening treatment, some
other studies use naturally occurring pairs by match-
ing on factors with an effect that might otherwise
obscure differences (or the lack of them) between the
two populations of interest. Paired samples often pro-
vide more information than would independent sam-
ples because extraneous effects are ruled out. It is
important to remember that the matching needs to be
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Normal Q-Q Plot of twin 1 happiness scores

Figure 2 Q-Q Plots Generated With the Computer
Program SPSS

Figure 3 Paired Samples t Test Output Generated With the Computer Program SPSS

Paired Samples Statistics

Std. Error 
Mean N Std. Deviation Mean

Pair twin 1 happiness scores 66.60 10 17.367 5.492

1 twin 1 happiness scores 69.70 10 16.439 5.198

Paired Samples Correlations

N Correlation Sig.

Pair twin 1 happiness
1 scores & twin 2 10 .973 .000

happiness scores

Paired Samples Test

Paired Differences

95% confidence
Interval of the

Std. Error
Difference

Mean Std. Deviation Mean Lower Upper t df Sig.(2-tailed)

Pair twin 1 happiness scores
–3.100 4.012 1.269 –5.970 –.230 –2.443 9 .037

1 twin 2 happiness scores



undertaken accurately, because the samples will then
be considered equal.

—Nancy L. Leech, Anthony J. Onwuegbuzie,
and Larry Daniel

Further Reading

Glass, G. V, & Hopkins, K. D. (1995). Statistical methods in
education and psychology (3rd ed.). Boston: Allyn & Bacon.

Huck, S. W. (2004). Reading statistics and research (4th ed.).
Boston: Pearson Education.

Morgan, G. A., Leech, N. L., Gloeckner, G. W., & Barrett, K. C.
(2004). SPSS for basic statistics: Use and interpretation
(2nd ed.). Mahwah, NJ: Erlbaum.

Urdan, T. C. (2001). Statistics in plain English. Mahwah, NJ:
Erlbaum.

SPSS tutorial: How to do a paired samples t test: http://acade
mic.uofs.edu/department/psych/methods/cannon99/level2c
.html

PAIRWISE COMPARISONS

For psychological variables, the operations of addition
and multiplication—and therefore most elementary
statistics—cannot be applied to scales that are con-
structed from pairwise comparison data. Pairwise
comparisons may be used to construct ordinal scales,
but because the operations of addition and multiplica-
tion are not applicable to ordinal data, the construc-
tion of scales from ordinal data is problematic,
especially in the multicriteria and multiple decision
makers cases. In those cases where the construction of
ordinal scales is possible, the operations of addition
and multiplication are not applicable to scale values.

Operations on Scale Values

The application of elementary statistics—such as
standard deviation—to scale values requires the avail-
ability of the operations of addition and multiplication
as well as order and the limit operation of calculus.
Psychological variables to which addition, multiplica-
tion, order, and the limit operation are applicable must
be modeled in the same manner—and for the same
mathematical reasons—as such familiar physical

variables as time, position of points on a straight line,
potential energy, and temperature on the Fahrenheit or
Celsius (but not Kelvin) scales.

Reference Objects

The building blocks for such scales require three or
four rather than two objects. Consider, for example,
the statement that the temperature of a certain object
is 100 degrees on the Fahrenheit scale. As can be seen
in Figure 1, this statement involves three empirical
objects, three mathematical objects, and three corre-
spondences: The empirical objects are freezing water,
boiling water, and the object under measurement; the
mathematical objects are the numbers 32, 100, and
212; and the correspondences are the assignments 
of the temperatures—{freezing water, 32}, {object
under measurement, 100}, and {boiling water, 212}.
It should be noted that this statement requires two
empirical reference objects (freezing water and boil-
ing water) and two corresponding mathematical refer-
ence objects (the numbers 32 and 212).

Removing one of these empirical reference
objects and its corresponding mathematical refer-
ence object results in an ordinal pairwise comparison
where neither differences nor ratios are defined. If
both empirical reference objects are removed and the
numerical ones are not, the statement “on a scale 
of 32 to 212, an object scores 100” is obtained.
Statements of this form, such as the common phrase
“on a scale of 1 to 10, an object scores 7,” have no
mathematical meaning. No mathematical operations
or statistics are applicable to numbers produced from
such statements.
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Boiling point of water

Object

Freezing point of water

212

100

32

Figure 1 Example of Scale Values and Reference
Objects



Ratios

Ratios of the type T1/T2 have become defined for
temperature only after it has been established that tem-
perature has an absolute zero. Conversely, for variables
where the existence of an absolute zero has not been
established, such ratios are undefined. For example,
for time, the ratio t1/t2 where t1 and t2 are two points in
time is undefined, whereas the ratio of two time differ-
ences, (i.e., time periods or time intervals) (∆t)1/ (∆t)2,
is well-defined. It follows that the ratio v1/v2 is unde-
fined for any psychological variable because the exis-
tence of an absolute zero has not been established for
such variables. In particular, decision methodologies
such as the Analytic Hierarchy Process that depend on
data in the form of ratios of preferences are not valid
methodologies. In general, a ratio of differences
depends on four points, but this ratio may depend on
three variables rather than four when two of the four
points are identical. Although the number of variables
in this expression can be reduced from four to three, it
cannot be further reduced to a pairwise comparison.

Ordinal Comparisons

Pairwise comparisons are applicable to ordinal data,
but the operations of addition and multiplication and
the concepts of cancellation and trade-off do not apply
to ordinal scales. For example, ordinal methodologies
ignore the question “By how much is Object A pre-
ferred to B?” because the concepts of difference, slight
difference, large difference, or “twice as preferable”
are inapplicable in the ordinal case.

Mathematical Structure

In technical terms, in the case of physical or mathe-
matical variables, for addition, multiplication, order,
and limits to be applicable, the measured objects must
correspond to scalars in the ordered complete field of
real numbers, to vectors in a one-dimensional vector
space over this field, or to points in a one-dimensional
affine space over the real numbers. The zero vector in
a vector space is an absolute zero because it is a fixed
point of the automorphisms of the space. For psycho-
logical variables where the existence of an absolute
zero is not established, the only possibility for addition,

multiplication, order, and limits to be applicable is the
model where the measured objects correspond to
points in a one-dimensional affine space over the
ordered real numbers. In such a space, the ratio of two
points is undefined, whereas their difference is a vec-
tor and the ratio of two vectors is a scalar.

—Jonathan Barzilai

Further Reading

Barzilai, J. (1998). On the decomposition of value functions.
Operations Research Letters, 22, 159–170.

Barzilai, J. (2001). Notes on the analytic hierarchy process.
Proceedings of the NSF Design and Manufacturing
Research Conference (pp. 1–6). Tampa, Florida.

Barzilai, J. (2004). Notes on utility theory. Proceedings of 
the IEEE International Conference on Systems, Man, and
Cybernetics, pp. 1000–1005.

Barzilai, J. (2005). Measurement and preference function
modelling. International Transactions in Operational
Research, 12, 173–183.

Barzilai, J. (2006). Preference modelling in engineering design.
In K. Lewis, W. Chen, & L. Schmidt (Eds.), Decision mak-
ing in engineering design. New York: ASME Press.

Jonathan Barzilai Web page: http://myweb.dal.ca/barzilai/

PARALLEL COORDINATE PLOTS

Parallel coordinate plots were first introduced by
Inselberg and by Wegman. The main idea of parallel
coordinate plots is to switch from Cartesian coordi-
nates, where points are plotted along orthogonal axes,
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Parallel Coordinate Plots in a 2D Data
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to a projective geometry, where axes are plotted side
by side.

Figures 1 and 2 show this principle for three 
data points in two and three dimensions. On the left-
hand side of Figure 1, the scatterplot shows the three
points (2, 8), (7, 7), and (8, 2) plotted as +, x, and o,
respectively. The same data points are
plotted on the right-hand side: The
first observation (2,8) is shown by first
putting a “+” at the 2 of the x-axis,
then a “+” at the value 8 of the y-axis.
Both of these markers are then con-
nected by a line. This way, each obser-
vation corresponds to a single line.

The advantage of this approach
becomes visible in Figure 2. Measure-
ments in a third variable are added to
our previous example. Although 
we would need interactive tools, such
as rotation, to be able to see the

relationship between the three points in
the three-dimensional scatterplot on the
left, the parallel coordinate plot on the
right is extended naturally to three
dimensions by putting another axis
alongside the other two, drawing mark-
ers for each of the measurements and
connecting them by lines to the corre-
sponding values of the neighboring axis.

Obviously, this principle is applicable
far beyond the (usually up to three)
dimensions of Cartesian displays.

The disadvantage of parallel coordinate plots is that
we lose our familiar coordinate system. Because the
two systems show the same information, it is a matter of
a little practice to get used to the new coordinate system.

Properties

The basic properties of a principal coordinate plot are
based on the duality between projective and Euclidean
geometry: Points in one system correspond to lines in
the other. The scatterplot on the left-hand side of
Figure 3 shows 10 data points on a straight line. The
same points are shown in the parallel coordinate plot
on the right. All 10 lines meet in the same point, indi-
cating the linear relationship.

Example

Parallel coordinate plots are used mostly to find and
explore high-dimensional clusters in data. Figure 4
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Note: Left line translates to the common intersection point on
the right. 

Figure 4 Parallel Coordinate Plot of the Swiss Bank Note Data

Note: Forged bank notes are marked in black. 



shows a parallel coordinate plot of the Swiss bank
note data set by Flury and Riedwyl. Measurements of
100 genuine and 100 forged Swiss bank notes were
taken, with the goal of identifying forgeries. Six dif-
ferent measurements are available to us: the horizon-
tal length of a bill at the top (Length), left and right
vertical width (Lwidth, Rwidth), vertical width of the
margin at center bottom (Bmargin) and center top
(TMargin), as well as the diagonal length of the image
on the bill. Marked in grey are genuine bills. From the
parallel coordinate plot, we can see that the forged
bills tended to have larger margins at the bottom and
top, and the diagonal length of the image seemed to be
smaller than those measurements of genuine bills.

Among the forgeries, we can find a “knot”
between the axes BMargin and Tmargin, indicating a
negative linear relationship between bottom and top
margin. What is strange, though, is a very tiny sec-
ond knot among the forgeries between the same axes
a little bit further down closer to the genuine bills.
The smaller knot is marked in black in Figure 5. The
two knots clearly identify two different types of
forged bills. Marked by the unfilled circle on the left
and the white line on the right of Figure 5 is another
bill, classified as genuine; from its overall measure-
ments, it seems to fit into the second class of forg-
eries very well.

—Heike Hofmann
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Association, 85, 664–675.

Wegman, E. J., & Luo, Q. (1997). High dimensional clustering
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The Apoala project is an offspring of GeoVista and is a
dynamic parallel coordinate plot, implemented in TCL,
designed to show the relationships between multiple vari-
ables in large data sets: http://www.geovista.psu.edu/
products/demos/dsall/Tclets072799/pcpdescription.html

Parallel coordinate plots software, including CASSATT, a
stand-alone Java application: http://www.rosuda.org/
software/
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Figure 5 Two Different Classes of Forgeries

Note: The two classes of forgeries (marked in dark grey and black, respectively) are visible in the Swiss bank note data set. Marked in
white is another bill. From its measurements it fits very well into the smaller group of forged bills. It was classified as genuine by the
bank, however. 



ExplorN software for touring through high-dimensional data
using parallel coordinate plots: ftp://www.galaxy.gmu
.edu/pub/software/ (It is now replaced by its commercial
evolution, CrystalVision)

PARALLEL FORMS RELIABILITY

All observations and all measurements contain error.
The focus of much work in measurement is to mini-
mize and estimate the amount of error in any given
measurement. In classical test theory, X is an observed
score that is composed of T, the true score, and E, the
error score: X = T + E. The true score is never known,
but can be thought of as the long-range average of
scores from a single instrument administered to an
individual an infinite number of times (the expected
value or expected score). The error score is random and
may have many sources, including testing conditions,
individual characteristics that fluctuate from adminis-
tration to administration, differences in forms, or insta-
bility of an individual’s ability or trait over time.

This random error score is quite different from sys-
tematic sources of error, like testwiseness, which may
systematically increase an individual’s score on each
administration. Because testwiseness is systematic or
constant, it finds its way into the true score and creates
problems regarding validity, in that the trait being
measured inadvertently may be influenced by test-
wiseness. Random error, because it varies randomly,
influences the consistency of scores, but not the
expected value of a score (the true score), and thus
influences reliability, not validity.

Theoretically, we can estimate the amount of error
if we know how much of a given score is due to errors
of measurement. If we were able to test a single
person repeatedly without the effects of recall and
fatigue, variation in his or her scores would be con-
sidered measurement error. If there was no measure-
ment error, he or she would get the same score on each
administration. Because it is not possible to test indi-
viduals repeatedly without the interference of recall
and fatigue, we employ groups to estimate measure-
ment error variance. This allows us to estimate the
standard error of measurement, the typical amount of
measurement error in a set of scores.

If we take the classical test theory model of scores
and consider groups of scores and their variances, we
see that the variance of the observed scores equals the
sum of the variance of true scores and the variance of
error scores: S 2

X = S2
T + S 2

E (in sample notation).
This is the long way of introducing the need for

reliability; reliability is a tool used to estimate the
standard error of measurement, but it also has some
intrinsic benefits in and of itself. Theoretically, relia-
bility is considered the correlation between scores on
two parallel forms of a test. The idea is that if there is
no measurement error at work, scores from two paral-
lel forms administered to the same group of individu-
als should be perfectly correlated—each individual
should obtain the same score. It can be shown that the
correlation between two parallel forms of a test is
equal to the ratio of true score variance to observed
score variance—the proportion of variance in
observed scores that is due to true individual differ-
ences: rtt = This reliability coefficient then can be
used in estimation of the standard error of measure-
ment, because it tells us the proportion of observed
variance that is true variance; the standard error of
measurement is a function of the proportion of
observed variance that is true variance.

Estimating Reliability

Based on the classical test theory conception of relia-
bility, scores are reliable to the extent that individuals’
scores remain constant on repeated measurements.
One way to estimate the degree of consistency of
scores is to employ parallel forms—two or more
forms of a measurement instrument that are built to
the same specifications in terms of the content domain
or construct definition. Each form provides a separate
sample from the domain.

This form of reliability is best estimated when the
actual measurement procedure employs multiple
forms, because if scores vary between forms for a sin-
gle individual, we are likely to attribute this to differ-
ences in content—error results from item or content
sampling error. This is typically done by administer-
ing two forms to each individual during the same
administration time. To avoid order effects, subjects
can be randomly assigned one form first and the other

S2
T

S2
X

.
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second. The scores resulting from the two forms are
then correlated; this correlation is the parallel forms
reliability coefficient.

Formal Conditions for 
Parallel Forms Reliability

Parallel forms reliability is estimated from the admin-
istration of two forms simultaneously. This is appro-
priate when the measurement procedure includes
multiple forms or when the inference from scores is
based on the ability to generalize in terms of the items
selected for a given form. Knowledge of parallel form
reliability allows one to generalize from one sample
of items to a larger domain of items. To be a coeffi-
cient of reliability, the parallel forms should be built to
the same content specifications and have equal means,
variances, and item intercorrelations.

This form of reliability is also called alternate
forms reliability or the coefficient of equivalence.
This form of reliability can be estimated from forms
that are parallel or equivalent, where equivalent forms
are similar in content but not statistical quality. Note
that if scores are uniformly different between two
forms by a constant (perhaps because one test is more
difficult than the other), the correlation between two
scores is potentially perfect (1.0). This does not mean
that the measures are exchangeable in any practical
sense; such tests are often equated to adjust for differ-
ences in difficulty. In this context, the parallel condi-
tions of the forms have not been met (form means are
not equal), and the reliability coefficient or resulting
correlation is more difficult to interpret.

General Issues Regarding Reliability

Because the parallel forms estimate of reliability is
based on a correlation, it is not simply a characteristic
of the measurement instrument itself. Score variabil-
ity directly influences correlations, such that all else
being equal, the more score variance present, the
higher the correlation and thus the higher the reliabil-
ity. Correlational forms of reliability are sample spe-
cific and thus not necessarily generalizable to other
samples. They do, however, provide an estimate of
score consistency for the scores at hand.

In any estimate of reliability, conditions present
during the specific administration of the measure-
ment instrument can affect performance and scores in
random ways, leading to lower consistency of scores
and lower reliability. Each type of reliability estimate
(e.g., parallel forms reliability) also captures a spe-
cific form of random error. The parallel forms relia-
bility primarily captures measurement error due to
sampling items from a domain, a form of sampling
error. If this source of error is important to estimate
given the measurement procedure (because multiple
forms are used and we assume they are equivalent
random samples of the domain), then it is an appro-
priate form of reliability. Technically speaking, an
estimate of reliability should be obtained for each set
of scores because any one estimate is sample specific,
and the argument of generalizability across samples
is difficult to make.

Finally, because sampling error is a function of
sample size, all else being equal, longer forms will
yield higher reliability coefficients. Better, larger sam-
ples of items from the domain will reduce the likeli-
hood that two forms differ in their ability to cover the
domain. There is a functional relation between form
length and reliability that is represented by the
Spearman-Brown prophecy formula.

—Michael C. Rodriguez

See also Coefficient Alpha; Reliability Theory; Standard Error
of Measurement

Further Reading

Feldt, L. S., & Brennan, R. L. (1989). Reliability. In R. L. Linn
(Ed.), Educational measurement (3rd ed.). New York:
American Council on Education; Macmillan.

Thorndike, R. M. (2005). Measurement and evaluation in psy-
chology and education (7th ed.). Upper Saddle River, NJ:
Pearson Education.

PARAMETER

A parameter is a characteristic that describes the
elements in a population. It represents a collective
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measure that summarizes the data elements, which
comprise the population. Such measures may indicate
the central tendency, dispersion or variability, symme-
try, or the degree of peakedness in the distribution of
the data points in the population. Because a parameter
is always associated with a population, it is vital to
define the population first.

Population

A population is the set of all items possessing a
characteristic of interest, as defined by the problem.
Suppose the objective is to study the distribution of
income of all working people in a given state. The
population in this case is the set of all working people
(with an income) in the chosen state.

Parameter Examples

In relation to the population of all working people in
the selected state, a parameter that represents the 
central tendency of the income distribution could be
the mean income or the median income. Typically,
parameters are denoted by Greek letters. For
example, the mean income of all working people in
the chosen state could be $40,000, which would be
represented by µ.

Another example of a parameter that represents the
variability in the income could be the range. The pop-
ulation range is defined as the difference between the
maximum and minimum value, when all elements in
the population are considered. Hence, the population
range could be $500,000, a measure that depicts the
spread in the population values.

Note that in order to come up with the value of the
parameter (i.e., population mean µ), one needs to take
into consideration each and every data point in the
population. Sometimes, this may be a time-consuming
and costly process, as it may be accomplished only
through a census. The population mean is calculated as
follows:

where

Xi denotes the value of the ith element in the population;

∑, the Greek letter sigma, is the summation sign, which
directs us to add the value of all the elements (1, 2, . . . ,
N) in the population;

N represents the total number of elements in the popula-
tion, and is also known as the population size.

Differences Between 
Parameter and Statistic

Whereas a parameter represents a characteristic of a
population, a statistic represents a characteristic of a
sample chosen from the defined population. The value
of a parameter remains constant, for a static problem,
whereas the value of a statistic may change from sam-
ple to sample.

Consider the previously defined problem of
income distribution of working people in a state for
the month of September 2005. Suppose there were
5,000 working people during that month. The popula-
tion mean, µ, would be the average income of all
5,000 people for that month, which would be a con-
stant value. On the other hand, if a random sample of
500 people is selected from the population, and the
average income of those in the sample is calculated, it
would be a statistic. The sample mean, X

_
, a statistic,

could be $38,000, which necessarily may not 
equal the value of the corresponding parameter, µ.
Furthermore, the value of the sample mean will usu-
ally change from sample to sample.

In practice, because a census is not always feasible,
a sample statistic is used to estimate the value of a cor-
responding population parameter. Thus, the sample
mean, X

_
, serves as an estimator of the population

mean, µ.

—Amitava Mitra

Further Reading

Mendenhall, W., Beaver, R. J., & Beaver, B. M. (2006).
Introduction to probability and statistics (12th ed.). Pacific
Grove, CA: Brooks/Cole.

µ =

N∑

i=1
Xi

N
,
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Parameter definition: http://www.animatedsoftware.com/
statglos/ sgparam.htm

Parameters: http://davidmlane.com/hyperstat/A12328.html

PARAMETER INVARIANCE

According to Webster’s New Universal Unabridged
Dictionary, invariant simply means “constant,” and,
in mathematics more specifically, “a quantity or expres-
sion that is constant throughout a certain range of
conditions” (p. 1003). Furthermore, a parameter in a
statistical model is an explicit component of a mathe-
matical model that has a value in one or multiple
populations of interest; its value is estimated with a
certain estimation routine based on sample data to
calibrate the model. Therefore, parameter invariance
simply means that a certain parameter in a certain sta-
tistical model is constant across different measure-
ment conditions such as examinee subgroups, time
points, or contexts.

From a decision-making viewpoint, parameter
invariance is a desirable characteristic of a statistical
model, because it implies that identical statistical
decisions can be made across different measure-
ment conditions. In this sense, parameter invariance is 
one of the preconditions for the generalizability of
inferences.

Four aspects of parameter invariance warrant a sep-
arate highlighting because they are easily overlooked
by practitioners. First, parameter invariance is an
abstract ideal state, because parameters are either
invariant or not. If a parameter varies across measure-
ment conditions, then a lack of invariance is present,
which is a continuum of differing values. However,
it is always open to debate and secondary assessment
whether the difference between parameter values
across conditions affects practical decision making.
Second, parameter invariance is always tied to a spe-
cific statistical model that contains parameters as ele-
ments. Therefore, the issue of whether parameters are
invariant cannot be answered abstractly without refer-
ence to a certain statistical model. Third, parameter
invariance implies a comparison of parameter values

across measurement conditions, making discussions
about invariance without a reference frame for what
constitutes different conditions similarly irrelevant.

The Mathematical Formalization
of Parameter Invariance

In the psychometric literature, particularly in the area
of confirmatory factor analysis, parameter invariance
has had a long tradition, and important groundwork
was laid in the middle of the previous century. In the
early 1990s, when models in Item Response Theory
(IRT) became more popular and accessible, the work
of Meredith and colleagues expanded the rich basis of
work by Jöreskog and McDonald. At the end of the
1990s, procedures for assessing parameter invariance
had become fully integrated into many software
programs for latent variable models, such as BILOG-
MG, Mplus, LISREL, or AMOS.

Today, parameter invariance has also become fully
conceptually integrated into comprehensive and uni-
fying treatments of modeling frameworks in the area
of psychometrics and, sometimes, does not appear to
have any particular importance for authors that merits
a treatment in separate chapters or even books.

Methodological Approaches for
Assessing Parameter Invariance

The following common approaches are organized 
by the type of comparison that is being done (i.e.,
across subgroups of items, persons, or time points).
Moreover, this entry will focus on parameter invari-
ance for psychometric assessment as it is investi-
gated with both observed- and latent-variable models.
Although the issue of what constitutes a latent variable
is complex itself, for the purpose of this entry, latent
variable models are defined as statistical models that
contain continuous or discrete unobservable variables
whose values are estimated with a specific algorithm.

Parameter Invariance Across Items

In classical test theory (CTT), the total test score is
used to rank-order examinees or to make mastery
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decisions about them, and its value typically gets
supplemented with information about its precision at
different score levels. Moreover, measurement models
can be specified in terms of how the true scores of dif-
ferent items are related to each other and how error
variances are related to one another (e.g., parallel
items, τ-equivalent items, congeneric items). Within
the framework of structural equation modeling
(SEM), the assumptions that these different measure-
ment models postulate about the true score relation-
ship, error variances, and covariances can be
estimated today. The added analytical power, how-
ever, comes at the price of requiring data structures
that make the estimation of such models computation-
ally feasible.

Parameter Invariance Across
Examinee Subgroups

The most common setup for investigating parameter
invariance is one where the properties of an assess-
ment instrument are compared for different subgroups
of examinees such as different ethnic or gender
groups. It is important to highlight that the definition
of these groups is by no means “natural” in any com-
mon sense of the term; rather, it is typically driven by
either legislative or theoretical needs. Alternatively,
one can view the problem of which groups to compare
as an empirical one such that the grouping structure
should be data driven. In this case, one works within
the area of latent class models, where models such as
a mixture Rasch model are employed. Of course,
additional parameters such as group membership
proportions get estimated along the way, but if the
same measurement model is postulated across groups,
the core of the model is concerned with parameter
invariance.

If parameters for individual items are investigated
for invariance, such research is more commonly
known under the label differential item functioning
(DIF); for sets of items (i.e., item bundles or testlets),
such research is known under the labels differential
bundle functioning (DBF) and differential test func-
tioning (DTF), respectively. A wide range of tech-
niques for assessing DIF have been proposed, some of

which condition on manifest variables such as the
observed total score, whereas others condition on
latent variables such as θ in an IRT model.

The first class of models includes procedures such
as the traditional Mantel-Haenszel χ2 statistic,
loglinear models, logistic regression models, and
discriminant function analysis models. The second
class of models leads to a variety of approaches that
compare, for example, the area between item
response curves for dichotomous and polytomous
scoring models or compute an adjusted weighted
difference in proportions of examinees at different
score levels, as in the SIBTEST, Poly-SIBTEST, and
MULTISIB packages.

Common to all of the procedures is that a variety of
decisions have to be made to implement them in prac-
tice. Specifically, examinees need to be matched on 
a criterion so that the performance of the different
groups of interest can be conducted for people with
identical characteristics on the construct that is to be
measured. This matching criterion can be internal
(e.g., observed total score or estimated latent variable
score) or external (e.g., intelligence score, secondary
test score). Furthermore, if it is internal, a decision has
to be made about whether items that hold the potential
for a lack of invariance should be included or
excluded in the computation of the criterion because
they may potentially contaminate its value; multiple
procedures for purifying internal criteria exist.

An important distinction is made between bias and
impact, uniform, nonuniform, and crossing lack of
invariance, as well as item-, bundle-, and test-level
lack of invariance. The first distinction between bias
and impact allows one to distinguish between unde-
sirable psychometric properties of the items (i.e., bias)
and true average differences in abilities between the
subgroups of interest (i.e., impact). This intuitively
appealing and necessary distinction became more
properly formalized in the research program of
William Stout and colleagues, which is based on non-
parametric IRT. The second distinction is best under-
stood in the context of IRT or logistic regression
analyses because smooth response curves can be con-
sidered. Here, uniform effects manifest themselves in
parallel curves, nonuniform effects in curves that are
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nonparallel but do not cross, and crossing effects in
curves that do cross. The practical relevance of this is
that, in the case of a set of curves that crosses, differ-
ent groups are proportionally disadvantaged in differ-
ent ranges of the score continuum, whereas otherwise,
the effects always favor one or multiple groups over
others. The third distinction between item- and test-
level effects underscores that an item-level lack of
invariance may be present that could either augment
or vanish at higher levels, such as bundles or the test.
This can result in the fact that effects of differing mag-
nitudes are detected at the item level but may not
affect practical decision making when sum scores are
used if they cancel out; in practice, different levels of
effects should be investigated.

Because of the multitude of methodological
choices that are available to the practitioner, it can be
difficult to synthesize results from various DIF stud-
ies. Moreover, the current literature has augmented
the demands on researchers to go beyond empirically
and rationally justifiable lack-of-invariance detection
to provide potential explanations for its causes. In this
respect, the use of variables that operationalize com-
ponents of cognitive response processes to items may
prove fruitful but are just beginning to be joined with
lack-of-invariance analyses. Their use, along with the
use of other noncognitive predictor variables, can be
integrated eloquently into hierarchical logistic regres-
sion models.

If one integrates cognitive predictor variables into
cognitive psychometric models, these parameters 
are also subject to an investigation of invariance. For
some models, such as the DINA or the NIDA model,
the linear logistic test model, as well as the rule-space
methodology, these parameters are provided a priori
by specialists so that the issue of parameter invariance
can be resolved primarily theoretically. For other
models, such as the reparameterized unified model,
decisions about parameter inclusion and exclusion are
made empirically so that the issue of parameter invari-
ance should now be resolved through a synthesis of
theoretical and empirical findings. How this can be
accomplished in practice and whether a parameter
invariance perspective is at all called for, is not yet
agreed upon at this time.

Invariance Across Time Points

Less common, but equally important for large-scale
testing companies in particular, is an investigation of
parameter invariance over time. Due to the fact that 
a separate time point can be viewed abstractly as a
mechanism that induces another grouping structure,
many of the methods in the previous section for DIF,
DBF, or DTF can be applied for this purpose with
sometimes only minor modifications or, perhaps, even
no modifications at all. However, the assessment of a
lack of invariance in longitudinal models gets more
complex when the models themselves get more
complex. For example, in nonlinear growth models,
some assumptions about a lack of invariance manifest
themselves in very subtle parameter differences 
and, in some instances, may not be detectable with
current software programs because of identification
problems.

Conclusions

In conclusion, a lack of parameter invariance is
somewhat of a paradox. It is simple to understand
conceptually, but challenging to assess practically.
Furthermore, even though methods for its assessment
are either direct or slightly modified applications of
existing statistical routines—with the exception of 
a few selected cases—understanding its nature, its
directionality and the magnitude of its effects, and its
potential causes is a challenging endeavor. But it is an
indispensable endeavor to ascertain, from both empir-
ical and rational perspectives, the validity of infer-
ences about examinees and assessment instruments
and the degree to which they are generalizable across
measurement conditions.

—André A. Rupp
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PART AND PARTIAL CORRELATIONS

The semi-partial regression coefficient—also called
part correlation—is used to express the specific por-
tion of variance explained by a given independent
variable in a multiple linear regression (MLR) analy-
sis. It can be obtained as the correlation between the
dependent variable and the residual of the prediction
of one independent variable by the other ones. The
semi-partial coefficient of correlation is used mainly
in nonorthogonal multiple linear regression to assess
the specific effect of each independent variable on the
dependent variable.

The partial coefficient of correlation is designed to
eliminate the effect of one variable on two other vari-
ables when assessing the correlation between these
two variables. It can be computed as the correlation
between the residuals of the prediction of these two
variables by the first variable.

Multiple Regression Framework

In MLR, the goal is to predict, knowing the measure-
ments collected on N subjects, a dependent variable Y
from a set of K independent variables denoted

{X1 , . . . , Xk , . . . , XK}. (1)

We denote by X the N × (K + 1) augmented matrix
collecting the data for the independent variables (this
matrix is called augmented because the first column is
composed only of ones), and by y the N × 1 vector of
observations for the dependent variable. These two
matrices have the following structure:

(2)

The predicted values of the dependent variable Ŷ
are collected in a vector denoted ŷ and are obtained
using MLR as

y = Xb with b = (XT X)–1XTy. (3)

The quality of the prediction is evaluated by com-
puting the multiple coefficient of correlation, denoted
R 2

Y.1, . . . , K. This coefficient is equal to the coefficient of
correlation between the dependent variable (Y) and
the predicted dependent variable (Ŷ).

Partial Regression Coefficient 
as Increment in Explained Variance

When the independent variables are pairwise ortho-
gonal, the importance of each of them in the regression
is assessed by computing the squared coefficient of

X =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 x1,1 · · · x1,k · · · x1,K

...
...

. . .
...

. . .
...

1 xn,1 · · · xn,k · · · xn,K

...
...

. . .
...

. . .
...

1 xN,1 · · · xN,k · · · xN,K

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and y =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y1

...

yn

...

yN

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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correlation between each of the independent variables
and the dependent variable. The sum of these squared
coefficients of correlation is equal to the squared mul-
tiple coefficient of correlation. When the independent
variables are correlated, this strategy overestimates
the contribution of each variable because the variance
that they share is counted several times; and therefore,
the sum of the squared coefficients of correlation is
not equal to the multiple coefficient of correlation
anymore. In order to assess the importance of a par-
ticular independent variable, the partial regression
coefficient evaluates the specific proportion of vari-
ance explained by this independent variable. This is
obtained by computing the increment in the multiple
coefficient of correlation obtained when the indepen-
dent variable is added to the other variables.

For example, consider the data given in Table 1,
where the dependent variable is to be predicted from
the independent variables X and T. The prediction
equation (using Equation 3) is

Ŷ = 1.67 + X + 9.50T; (4)

it gives a multiple coefficient of correlation of R 2
Y.XT =

.9866. The coefficient of correlation between X and T
is equal to rX.T = .7500, between X and Y is equal to 
rY.X = .8028, and between T and Y is equal to 
rY.T = .9890. The squared partial regression coefficient
between X and Y is computed as

r 2
Y.X⏐T = R 2

Y.XT – r 2
Y.T = .9866 – .98902 = .0085; (5)

this indicates that when X is entered last in the regres-
sion equation, it increases the multiple coefficient of

correlation by .0085. In other words, X contributes a
correlation of .0085 over and above the other depen-
dent variable. As this example shows, the difference
between the correlation and the part correlation can be
very large. For T, we find that

r 2
Y.T⏐X = R2

Y.XT – r 2
Y.X = .9866 – .80282 = .3421. (6)

Partial Regression Coefficient
as Prediction From a Residual

The partial regression coefficient can also be obtained
by first computing for each independent variable the
residual of its prediction from the other independent
variables and then using this residual to predict the
dependent variable. In order to do so, the first step is
to isolate the specific part of each independent vari-
able. This is done by first predicting a given indepen-
dent variable from the other independent variables.
The residual of the prediction is by definition
uncorrelated with the predictors, hence, it represents
the specific part of the independent variable under
consideration.

We illustrate the procedure by showing how to
compute the semi-partial coefficient between X and Y
after the effect T has been partialed out. We denote by
X̂T the prediction of X from T.

The equation for predicting X from T is given by

X̂T = aX.T + bX.TT, (7)

where aX.T and bX.T denote the intercept and slope of
the regression line of the prediction of X from T.

Table 2 gives the values of the sums of squares and
sum of cross-products needed to compute the predic-
tion of X from T.

We find the following values for predicting X from T:

(8)

aX.T = MX – bX.T × ΜΤ = 7 – 1.125 × 3 = 3.625. (9)

So, the first step is to predict one independent vari-
able from the other one. Then, by subtracting the pre-
dicted value of the independent variable from its actual
value, we obtain the residual of the prediction of this

bX.T = SCPXT

SST
= 18

16
= 1.125;

Part and Partial Correlations———737

Table 1 A Set of Data: Y Is to Be Predicted From 
X1 and X2

Y (Memory span) 14 23 30 50 39 67
X1 (age) 4 4 7 7 10 10
X2 (Speech rate) 1 2 2 4 3 6

Source: Data from Abdi et al. (2002).

Notes: Y is the number of digits a child can remember for a 
short time (the “memory span”), X1 is the age of the child, and
X2 is the speech rate of the child (how many words the child 
can pronounce in a given time). Six children were tested.



independent variable. The residual of the prediction of
X by T is denoted eX.T, and it is computed as

eX.T = X – X̂T . (10)

Table 3 gives the quantities needed to compute
r 2

Y.X⏐T . It is obtained as

(11)

In our example, we find

FF and tt Tests for the Partial
Regression Coefficient

The partial regression coefficient can be tested by
using a standard F test with the following degrees of
freedom v1 = 1 and v2 = N – K – 1 (with N being the
number of observations and K being the number of
predictors). Because v1 is equal to 1, the square root of
F gives a Student t test. The computation of F is best
described with an example: The F for the variable X in
our example is obtained as

The relations between the partial regression coeffi-
cient and the different correlation coefficients are
illustrated in Figure 1.

AAlltteerrnnaattiivvee  FFoorrmmuullaass  ffoorr  tthhee
SSeemmii--PPaarrttiiaall  CCoorrrreellaattiioonn  CCooeeffffiicciieennttss

The semi-partial coefficient of correlation can also
be computed directly from the different coefficients 
of correlation of the independent variables and the
dependent variable. Specifically, we find that the

FY .X|T = r2
Y.X|T

1 − R2
Y.XT

× (N − 3)

= .0085

1 − .9866
× 3 = 1.91.

r2
Y .X|T = 15.752

1,846.83×15.75
= .0085.

r2
Y .X|T = r2

Y.eX.T
= (SCPYeX.T

)2

SSY SSeX.T

.
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Table 2 The Different Quantities Needed to Compute
the Values of the Parameters aX.T, bX.T

X x x2 T t t2 x × t

4 –3 9 1 –2 4 6
4 –3 9 2 –1 1 3
7 0 0 2 –1 1 0
7 0 0 4 1 1 0

10 3 9 3 0 0 0
10 3 9 6 3 9 9

∑ 42 0 36 18 0 16 18

SSX SST SCPXT

Note: The following abbreviations are used: x = (X – MX),
t = (T – MT).

Table 3 The Different Quantities to Compute the Semi-Partial Coefficient of Correlation Between Y and X After
the Effects of T Have Been Partialed out of X

Y y y2 X X̂
T

e
X.T

e2

X.T
y × e

X.T

14 −23.1667 536.69 4 4.7500 −0.7500 0.5625 17.3750
23 −14.1667 200.69 4 5.8750 −1.8750 3.5156 26.5625
30 −7.1667 51.36 7 5.8750 1.1250 1.2656 −8.0625
50 12.8333 164.69 7 8.1250 −1.1250 1.2656 −14.4375
39 1.8333 3.36 10 7.0000 3.0000 9.0000 5.5000
67 29.8333 890.03 10 10.3750 −0.3750 0.1406 −11.1875

∑ 223 0 1,846.83 42 42.0000 0 15.7500 15.7500

SSY SSe
X.T

SCPYe
X.T

Note: The following abbreviations are used: y = Y – MY , e
X.T

= X − X̂
T
.



semi-partial correlation between Y and X can be
computed as

(12)

For our example, taking into account that

rX.T = .7500,

rY.X = .8028, and

rY.T = .9890,

we find that

(13)

Partial Correlation

When dealing with a set of dependent variables,
sometimes we want to evaluate the correlation
between two dependent variables after the effect of a
third dependent variable has been removed from both
dependent variables. This can be obtained by comput-
ing the coefficient of correlation between the residuals
of the prediction of each of the first two dependent
variables by the third dependent variable (i.e., if you
want to eliminate the effect of, say, variable Q from
variables Y and W, you first predict Y from Q and W
from Q, and then you compute the residuals and cor-
relate them). This coefficient of correlation is called a
partial coefficient of correlation. It can also be com-
puted directly using a formula involving only the
coefficients of correlation between pairs of variables.
As an illustration, suppose that we want to compute
the squared partial coefficient of correlation between
Y and X after having eliminated the effect of T from
both of them (this is done only for illustrative pur-
poses because X and T are independent variables, not
dependent variables). This coefficient is noted r 2

(Y.X)⏐T

(read “r square of Y and X after T has been partialed
out from Y and X”), and it is computed as

(14)

For our example, taking into account that

rX.T = .7500,

rY.X = .8028, and

rY.T = .9890,

we find the following values for the partial correlation
of Y and X:

(15)

—Hervé Abdi

r2
(Y .X)|T = (rY.X − rY.T rX.T )2

(1 − r2
Y.T )(1 − r2

X.T )

= (.8028 − .9890 × .7500)2

(1 − .98902)(1 − .75002)
≈ .3894.

r2
(Y .X)|T = (rY.X − rY.T rX.T )2

(1 − r2
Y.T )(1 − r2

X.T )
.

r2
Y .X|T = (rY.X − rY.T rX.T )2

1 − r2
X.T

= (.8028 − .9890 × .7500)2

1 − .75002
≈ .0085.

r2
Y .X|T = (rY.X − rY.T rX.T )2

1 − r2
X.T

.

Part and Partial Correlations———739

Independent Variables

Variance
Specific to

T = .44

Variance
Specific to

X = .44

.3421.6364

.0
08

5

Variance
Common to
X & T = .56

.9866
of

Dependent variableY

LeftoverPredictsPredictsPredicts PredictsPredictsPredicts PredictsPredictsPredicts

.0134

Figure 1 Illustration of the Relationship of the
Independent Variables

Notes: The dependent variable shows which part of the
independent variables explains what proportion of the
dependent variable. The independent variables are represented
by a Venn diagram, and the dependent variable is represented
by a bar.



Further Reading

Abdi, H., Dowling, W. J., Valentin, D., Edelman, B., &
Posamentier, M. (2002). Experimental design and research
methods. Unpublished manuscript, University of Texas at
Dallas, Program in Cognition.

PARTIAL LEAST SQUARE REGRESSION

Partial least square (PLS) regression is a recent tech-
nique that generalizes and combines features from
principal component analysis and multiple regression.
Its goal is to predict or analyze a set of dependent vari-
ables from a set of independent variables or predic-
tors. This prediction is achieved by extracting from
the predictors a set of orthogonal factors called latent
variables, which have the best predictive power.

PLS regression is particularly useful when we need
to predict a set of dependent variables from a (very)
large set of independent variables (i.e., predictors). It
originated in the social sciences (specifically econom-
ics) with Herman Wold, but became popular first in
chemometrics (i.e., computational chemistry), due in
part to Herman’s son Svante, and in sensory evalua-
tion. But PLS regression is also becoming a tool of
choice in the social sciences as a multivariate tech-
nique for nonexperimental and experimental data
alike (e.g., neuroimaging). It was first presented as an
algorithm akin to the power method (used for com-
puting eigenvectors) but was rapidly interpreted in a
statistical framework.

Prerequisite Notions and Notations

The I observations described by K dependent vari-
ables are stored in a I × K matrix denoted Y, and the
values of J predictors collected on these I observations
are collected in the I × J matrix X.

Goal

The goal of PLS regression is to predict Y from X and
to describe their common structure. When Y is a vec-
tor and X is full rank, this goal could be accomplished
using ordinary multiple regression. When the number

of predictors is large compared to the number of
observations, X is likely to be singular and the regres-
sion approach is no longer feasible (i.e., because of
multicollinearity). Several approaches have been
developed to cope with this problem. One approach is
to eliminate some predictors (e.g., using stepwise
methods); another one, called principal component
regression, is to perform a principal component analy-
sis (PCA) of the X matrix and then use the principal
components (i.e., eigenvectors) of X as regressors on
Y. Technically, in PCA, X is decomposed using its
singular value decomposition as X = S∆∆VT with STS =
VTV = I, and ∆∆ being a diagonal matrix with the sin-
gular values as diagonal elements. The singular vec-
tors are ordered according to their corresponding
singular values, which correspond to the square root
of the variance of X explained by each singular vec-
tor. The left singular vectors (i.e., the columns of S)
are then used to predict Y using standard regression
because the orthogonality of the singular vectors elim-
inates the multicollinearity problem. But the problem
of choosing an optimum subset of predictors remains.
A possible strategy is to keep only a few of the first
components. But these components are chosen to
explain X rather than Y, and so, nothing guarantees
that the principal components, which “explain” X, are
relevant for Y.

By contrast, PLS regression finds components
from X that are also relevant for Y. Specifically, PLS
regression searches for a set of components (called
latent vectors) that performs a simultaneous decom-
position of X and Y with the constraint that these
components explain as much as possible of the
covariance between X and Y. This step generalizes
PCA. It is followed by a regression step where the
decomposition of X is used to predict Y.

Simultaneous Decomposition of
Predictors and Dependent Variables

PLS regression decomposes both X and Y as a prod-
uct of a common set of orthogonal factors and a set of
specific loadings. So, the independent variables are
decomposed as X = TPT with TTT = I, with I being the
identity matrix (some variations of the technique do
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not require T to have unit norms). By analogy, with
PCA, T is called the score matrix and P the loading
matrix (in PLS regression, the loadings are not orthog-
onal). Likewise, Y is estimated as Ŷ = TBCT, where 
B is a diagonal matrix with the “regression weights”
as diagonal elements and C is weight matrices for the
dependent variables (see below for more details on
these two matrices). The columns of T are the latent
vectors. When their number is equal to the rank of X,
they perform an exact decomposition of X. Note,
however, that they only estimate Y (i.e., in general, Ŷ
is not equal to Y).

PLS Regression and Covariance

The latent vectors could be chosen in a lot of different
ways. In fact, in the previous formulation, any set of
orthogonal vectors spanning the column space of X
could be used to play the role of T. In order to specify
T, additional conditions are required. For PLS regres-
sion, this amounts to finding two sets of weights w
and c in order to create (respectively) a linear combi-
nation of the columns of X and Y such that their
covariance is maximum. Specifically, the goal is to
obtain a first pair of vectors t = Xw and u = Yc with
the constraints that wTw = 1, tTt = 1, and tTu is maxi-
mal. When the first latent vector is found, it is sub-
tracted from both X and Y, and the procedure is
reiterated until X becomes a null matrix (see the algo-
rithm section for more).

A PLS Regression Algorithm

The properties of PLS regression can be analyzed
from a sketch of the original algorithm. The first step
is to create two matrices: E = X and F = Y. These
matrices are then column centered and normalized
(i.e., transformed into z scores). The sum of squares of
these matrices are denoted SSX and SSY. Before start-
ing the iteration process, the vector u is initialized
with random values (in what follows, the symbol ∝
means “to normalize the result of the operation”).

Step 1. w ∝ ETu (estimate X weights)

Step 2. t ∝ Ew (estimate X factor scores)

Step 3. c ∝ FTt (estimate Y weights)

Step 4. u = Fc (estimate Y scores)

If t has not converged, then go to Step 1; if t has
converged, then compute the value of b, which is used
to predict Y from t as b = tTu, and compute the factor
loadings for X as p = ETt. Now subtract (i.e., partial
out) the effect of t from both E and F as follows: E =
E – tpT and F = F – btcT. The vectors t, u, w, c, and p
are then stored in the corresponding matrices, and the
scalar b is stored as a diagonal element of B. The sum
of squares of X (respectively, Y) explained by the
latent vector is computed as pTp (respectively, b2), and
the proportion of variance explained is obtained by
dividing the explained sum of squares by the corre-
sponding total sum of squares (i.e., SSX and SSY).

If E is a null matrix, then the whole set of latent
vectors has been found; otherwise, the procedure can
be reiterated from Step 1 on.

PLS Regression and the 
Singular Value Decomposition

The iterative algorithm presented above is similar to
the power method, which finds eigenvectors. So PLS
regression is likely to be closely related to the eigen
and singular value decompositions, and this is indeed
the case. For example, if we start from Step 1, which
computes w ∝ ETu, and substitute the rightmost term
iteratively, we find the following series of equations:
w ∝ ETu ∝ ETFc ∝ ETFFTt ∝ ETFFTEw. This shows
that the first weight vector w is the first right singular
vector of the matrix XTY. Similarly, the first weight
vector c is the left singular vector of XTY. The same
argument shows that the first vectors t and u are the
first eigenvectors of XXTYYT and YYTXXT.

Prediction of the 
Dependent Variables

The dependent variables are predicted using the
multivariate regression formula as Ŷ= TBCT = XBPLS

with BPLS = (PT+)BCT (where PT+ is the Moore-Penrose
pseudo-inverse of PT). If all the latent variables of 
X are used, this regression is equivalent to principal
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component regression. When only a subset of the
latent variables is used, the prediction of Y is optimal
for this number of predictors.

An obvious question is to find the number of latent
variables needed to obtain the best generalization for
the prediction of new observations. This is, in general,
achieved by cross-validation techniques such as boot-
strapping.

The interpretation of the latent variables is often
helped by examining graphs akin to PCA graphs (e.g.,
by plotting observations in a t1 × t2 space; see Figure 1).

A Small Example

We want to predict the subjective evaluation of a set of
five wines. The dependent variables that we want to
predict for each wine are its likeability and how well
it goes with meat or dessert (as rated by a panel of
experts) (see Table 1). The predictors are the price
and the sugar, alcohol, and acidity content of each
wine (see Table 2).

The different matrices created by PLS regression
are given in Tables 3 to 11. From Table 11, one can

find that two latent vectors explain 98% of the
variance of X and 85% of Y. This suggests keeping
these two dimensions for the final solution. The exam-
ination of the two-dimensional regression coefficients
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Figure 1 PLS Regression

Note: (a) Projection of the wines and the predictors on the first two latent vectors (respectively, matrices T and W); (b) circle of
correlation showing the correlation between the original dependent variables (matrix Y) and the latent vectors (matrix T).

Table 2 The X Matrix of Predictors

Wine Price Sugar Alcohol Acidity

1 7 7 13 7
2 4 3 14 7
3 10 5 12 5
4 16 7 11 3
5 13 3 10 3

Table 1 The Y Matrix of Dependent Variables

Wine Hedonic Goes With Meat Goes With Dessert

1 14 7 8
2 10 7 6
3 8 5 5
4 2 4 7
5 6 2 4

a b
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Table 3 The Matrix T

Wine t1 t2 t3

1 0.4538 –0.4662 0.5716
2 0.5399 0.4940 –0.4631
3 0 0 0
4 –0.4304 –0.5327 –0.5301
5 –0.5633 0.5049 0.4217

Table 4 The Matrix U

Wine u1 u2 u3

1 1.9451 –0.7611 0.6191
2 0.9347 0.5305 –0.5388
3 –0.2327 0.6084 0.0823
4 –0.9158 –1.1575 –0.6139
5 –1.7313 0.7797 0.4513

Table 5 The Matrix P

p1 p2 p3

Price –1.8706 –0.6845 –0.1796
Sugar 0.0468 –1.9977 0.0829
Alcohol 1.9547 0.0283 –0.4224
Acidity 1.9874 0.0556 0.2170 

Table 8 The Matrix BPLS When Two Latent Vectors
Are Used

Goes With Goes With 
Hedonic Meat Dessert

Price –0.2662 –0.2498 0.0121
Sugar 0.0616 0.3197 0.7900
Alcohol 0.2969 0.3679 0.2568
Acidity 0.3011 0.3699 0.2506

Table 9 The Matrix C

c1 c2 c3

Hedonic 0.6093 0.0518 0.9672
Goes with meat 0.7024 –0.2684 –0.2181
Goes with dessert 0.3680 –0.9619 –0.1301

Table 10 The b Vector

b1 b2 b3

2.7568 1.6272 1.1191

Table 11 Variance of X and Y Explained by the Latent Vectors

Cumulative Cumulative
Percentage of Percentage of Percentage of Percentage of

Explained Explained Explained Explained
Latent Vector Variance for X Variance for X Variance for Y Variance for Y

1 70 70 63 63
2 28 98 22 85
3 2 100 10 95

Table 6 The Matrix W

w1 w2 w3

Price –0.5137 –0.3379 –0.3492
Sugar 0.2010 –0.9400 0.1612
Alcohol 0.5705 –0.0188 –0.8211
Acidity 0.6085 0.0429 0.4218

Table 7 The Matrix BPLS When Three Latent Vectors
Are Used

Goes With Goes With 
Hedonic Meat Dessert

Price –1.0607 –0.0745 0.1250
Sugar 0.3354 0.2593 0.7510
Alcohol –1.4142 0.7454 0.5000
Acidity 1.2298 0.1650 0.1186



(i.e., BPLS, see Table 8) shows that sugar is mainly
responsible for choosing a dessert wine, and that price
is negatively correlated with the perceived quality of
the wine, whereas alcohol is positively correlated with
it (at least in this example). Looking at the latent vec-
tors shows that t1 expresses price and t2 reflects sugar
content. This interpretation is confirmed and illus-
trated in Figure 1a, which displays the projections on
the latent vectors of the wines (matrix T) and the pre-
dictors (matrix W), and in Figure 1b, which displays
the correlation between the original dependent variables
and the projection of the wines on the latent vectors.

Relationship With Other Techniques

PLS regression is obviously related to canonical cor-
relation, STATIS, and to multiple factor analysis. The
main originality of PLS regression is to preserve the
asymmetry of the relationship between predictors and
dependent variables, whereas these other techniques
treat them symmetrically.

Software

PLS regression necessitates sophisticated computa-
tions, and therefore, its application depends on the
availability of software. For chemistry, two main pro-
grams are used: the first one, called SIMCA-P, was
developed originally by Wold; the second one, called
the Unscrambler, was first developed by Martens, who
was another pioneer in the field. For brain imaging,
SPM, which is one of the most widely used programs
in this field, has recently integrated a PLS regression
module. Outside these domains, SAS PROC PLS is
probably the most easily available program. In addition,
interested readers can download a set of MATLAB
programs from the author’s home page (www.utdal
las.edu/~herve). Also, a public domain set of MATLAB
programs is available from the home page of the N-Way
project (www.models.kvl.dk/source/nwaytoolbox/),
along with tutorials and examples. From brain
imaging, a special toolbox written in MATLAB is
freely available from www.rotman-baycrest.on.ca.
And finally, a commercial MATLAB toolbox has also
been developed by Eigenresearch.

—Hervé Abdi

See also DISTATIS; Eigendecomposition; Multicollinearity;
Multiple Correspondence Analysis; Multiple Factor
Analysis; Principal Component Analysis; Regression
Analysis; RV and Congruence Coefficients; Singular and
Generalized Singular Value Decomposition; STATIS;
Structural Equation Modeling; z Scores
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PASCAL, BLAISE

(1623–1662)

Pascal was born at Clermont-Ferrand in France on June
19, 1623. His mother died when he was 3 years old. He
was an obviously bright child, and his father initially
forbade his study of mathematics, preferring that he
become fluent in the classics instead. Of course, this
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merely spurred Pascal’s curiosity, and he swiftly began
solving geometric problems for himself. By the age of
17, he had published a paper (on conic sections), and at
18, he invented his first calculator. This was the first of
several adding machines, some of which cleverly
worked to different bases (e.g. both 12 and 20).

From mathematics, Pascal turned to physics,
observing that the atmospheric pressure was lower at
the top of the mountain than at the bottom. This obser-
vation had followed a visit by Descartes, in which the
two had discussed whether a vacuum could exist.
Apparently, Descartes left, remarking that Pascal “had
too much vacuum in his head.”

When Pascal’s father injured his leg, religious
brothers cared for Pascal, and this marked the begin-
nings of Pascal’s religious conversion. In 1650, he took
a break from science to consider religion, but following
the death of his father in 1653, he returned to scientific
and mathematical studies. At this time, he introduced
the numerical configuration now called Pascal’s trian-
gle. His correspondence with Fermat laid the founda-
tions for the modern treatment of probability.

Once again, however, fate took a hand. In 1654, he
had a traffic accident: his carriage veered off the road,
and he escaped death only because the harness straps
broke. Shortly afterwards, Pascal had a vision: He
wrote an account of this vision that he kept on his
person for the rest of his life. He then began writing
philosophical and theological pieces. The last and best
known of these was entitled Pensées (Thoughts),
which was unfinished at the time of his premature
death in Paris on August 19, 1662. It is in the Pensées
that Pascal argued that it is always a better “bet” to
believe in God than not to believe in God. This is
because the expected value to be gained from believ-
ing in God must be greater than the expected value for
nonbelievers!

—Graham Upton
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PATH ANALYSIS

Path analysis is a method of describing and quantify-
ing the relationship of a dependent variable Y to a set
of other variables. Each of the variables may have a
direct effect on Y, as well as indirect effects via other
variables. It is difficult to infer causation without an
experiment, but by describing a system of interrela-
tionships, path analysis can take a step to support
cause-and-effect inference.

Path analysis was originally developed by Sewall
Wright for the field of genetics. It has since been
adopted by virtually all the behavioral sciences and
applied to a variety of research questions. Properly
applied, it can be an aid to scientific, business, gov-
ernmental, and educational policy decisions.

Examples

One well-known example relates income to occupa-
tion, education, father’s education, father’s occupa-
tion, and number of siblings. In another example, a
professor wants to relate students’ scores on the final
exam to those on the two exams during the term.
Exam 1 can be related to the final exam score either
directly or indirectly via Exam 2. What are the sizes of
these effects of Exam 1? If both are small, then the
professor might give only a midterm and a final next
semester. In a third example, Profit can be studied as
a function of Sales and Assets. Assets support Sales,
and hence indirectly contribute to Profit. But Assets
can also contribute directly to Profit, via interest and
rents. What are the relative sizes of these effects? 
(See Table 1.)

In considering the relationship between Profit,
Sales, and Assets, it becomes apparent that Assets, by
supporting Sales, contribute indirectly to Profit.
Assets also contribute directly to Profit via dividends
on investments, interest on savings, and rents on prop-
erty. The prediction equation for Profit based on Sales
and Assets, estimated by the statistical technique of
multiple linear regression, is

predicted Profit = 1464 + 0.010348 Sales 
+ 0.010069 Assets ($M).
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The fitting of such a relationship is called regressing
Profit on Sales and Assets. The interpretation of the
coefficient (multiplier) of Assets is that if Assets
increase by one unit (1 $M) and Sales remain the same,
Profit is predicted to increase by 0.010069. But if Assets
increase by one unit, what are Sales expected to do?
Would not higher Assets possibly mean higher Sales?
We need also to regress Sales on Assets. This gives

predicted Sales = 21097 + 0.507 Assets ($M).

So, in view of our understanding of Assets as
contributing both directly and indirectly to Profit, we
really need this system of two regression equations,
one for Sales on Assets, the other for Profit on Sales
and Assets. Now we can see that if Assets increase by
1 unit, Sales are expected to increase by 0.507, and the
expected change in Profit is

0.010348(0.507) + 0.010069(1) = 0.015315 ($M).

The system can be described by the paths

Assets → Sales → Profit, Assets → Profit;

The variable Assets has a direct connection to
Profit and also an indirect connection via Sales.

Regression

In more general terms, path analysis employs a system
of regression equations. Regression is a method of
studying the dependence of a variable Y on several
explanatory variables X1, X2, . . . , Xp. The data set is of
the form

{(x1i, x2i , . . . , xpi, yi ), i = 1, 2, . . . , n cases}.

A prediction equation of the form

Y′ = a + b1X1 + b2X2 + . . . + bpXp,

where Y′ is the predicted value of Y, is obtained.
The coefficients a, b1, . . . , bp are obtained from the
data set by a method such as least squares. Values
of the Xs for a new individual can be substituted
into the equation to predict the value of Y for that
individual. But regression usually raises more ques-
tions than it answers. It does not deal explicitly
with relationships among the Xs. The coefficient of
an X gives the predicted change in Y corresponding
to a unit change in that X, given that the other Xs
remain constant. But usually if the value of one X
changes, some of the other Xs, correlated with it,
will change too.

A System of Relationships

In path analysis, variables explained in terms of others
are called endogenous and denoted by Ys; variables
not predicted by others are called exogenous and
denoted by Xs. Causation can be illustrated by paths.
Even in a system of one dependent variable and two
other variables, there are several possibilities, includ-
ing the following:

X → Y1 → Y2

This path indicates that X affects Y1, and Y1 affects
Y2. An alternative model is the following system of
two paths:

X → Y1 → Y2, X → Y2
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Table 1 Sales, Profits, and Assets of the 10 Largest
U.S. Industrial Corporations (in millions of
dollars)

Company Sales Profits Assets

GM 126974 4224 173297
Ford 96933 3835 160893
Exxon 86656 3510 83219
IBM 63438 3758 77734
GE 55264 3939 128344
Mobil 50976 1809 39080
Philip Morris 39069 2946 38528
Chrysler 36156 359 51038
Du Pont 35209 2480 34715
Texaco 32416 2413 25636

Source: “Fortune 500,” Fortune, 121 (April 23, 1990), 346–367.
© 1990 Time Inc. All rights reserved.



This indicates that X affects Y1, and Y1 affects Y2,
but also X has a direct effect of its own on Y2 .

From a postulated model, specifying relationships
among the variables, one can derive estimates of the
path coefficients, the weights on the arcs of the paths.
These are obtained by estimating the system of equa-
tions corresponding to the paths. Each endogenous
variable is regressed on all the variables pointing
directly to it in paths.

For the model consisting of a single path, there
would be two simultaneous equations, one showing
dependence of Y2 on Y1; the other, that of Y1 on X:

[1]: Y2′ = a + bY1

[2]: Y1′ = c + dX

For the model consisting of two paths, in which X
has both a direct and an indirect effect on Y2, there
would again be two equations, but now one shows
dependence of Y2 on both Y1 and X:

[1]: Y2′ = a + bX + cY1

[2]: Y1′ = d + eX

The input for path analysis can be the set of corre-
lations between the pairs of variables. Use of correla-
tions is equivalent to standardizing the data to z scores
at the outset. The z score is the raw score, minus the
mean for the variable, divided by the standard devia-
tion for the variable.

Assumptions 
Underlying Path Analysis

The sample size needs to be adequate; guidelines for
the minimum range from at least 5 cases per variable
to at least 10 cases per variable. (The sample size 
in the Assets-Sales-Profit example is purposefully
small.) The usual assumptions of linearity and con-
stant variance (variance not dependent upon the val-
ues of the explanatory variables) underlying the use 
of multiple linear regression apply to each of the
regressions in the model. For use of the t distribution
for hypothesis tests, the errors should be at least

approximately normally distributed. Path analysis is
not without its detractors, at least in part because of
the difficulty of checking these assumptions for a
whole set of equations.

Related Techniques

The variables in path analysis are observable (mani-
fest). Structural equation modeling (SEM) includes
models with hidden (latent) variables. In SEM, con-
cepts (constructs) are linked via the structural model.
Each construct is entered via its measurement model,
involving a factor analysis of several indicators, which
are observable variables that relate to it. The factor
analysis produces a combination of the indicators for
that construct.

EExxaammppllee

Sears, Roebuck & Co. used SEM in a new
employee-customer-profit corporate model developed
in the early 1990s. The constructs were employee
satisfaction, customer satisfaction, and profit. Each
construct was measured by several indicators; for
example, profit was measured by the customary
accounting variables. The indicators for each con-
struct are combined by factor analysis into an index of
that construct. Profit in each fiscal quarter was pre-
dicted from customer satisfaction in the preceding
quarter, which in turn was related to employee satis-
faction in the quarter before that.

Path Diagrams

The paths for a larger model, such as the first example
given above, look like this.

Let FE be father’s education, FO be father’s occu-
pation, S be number of siblings, E be education, O be
occupation, and I be income. These paths might be
those considered.

FE → FO → S → E → O → I

FE → FO → S → E → O

FE → FO → S
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A path diagram is a way of drawing the system.
The diagram, made up of paths like the ones above, is
constructed as follows:

1. A straight arrow is drawn to each endogenous vari-
able from each of its sources.

2. A straight arrow is drawn to each dependent variable
from its residual. Each endogenous variable has a
residual because it is the dependent variable in a
regression.

3. A curved, double-headed arrow is drawn between
each pair of exogenous variables thought to have
nonzero correlation.

Conditions for Estimability

To estimate the path coefficients, equations are set up
between the path coefficients and the variances and
covariances of the p endogenous and q exogenous
variables. The complexity of the model considered is
limited by the number of variables in the data set. It is
necessary that the number t of path-model parameters
be no more than the number (p + q)(p + q + 1)/2 of
variances and covariances of the p + q variables. If this
condition is satisfied, then, by a process analogous to
checking whether a system of linear equations con-
sists of independent equations, it is determined
whether the system is solvable.

Comparing Alternative Models

Note that path analysis and SEM are mainly con-
cerned with estimating the sizes of effects in an
already postulated model. However, sometimes, there
is a search among a number of models. Members of a
research team may propose competing models. Path
diagrams provide a way of brainstorming to organize
a research project into the exploration of competing
models. Then there is the problem of choosing among
them.

Model-selection criteria are figures of merit for
scoring alternative models. Prominent among these
are criteria equal to a measure of lack of fit of 
the model (analogous to residual sum of squares in

regression), plus a multiple of the number of
parameters used to achieve that fit. The smaller the
score on such a criterion, the better the model.

Using the Computer

Although there was path analysis software before
graphical user interfaces, these can be used now to
draw and modify diagrams. Given the diagram,
the software checks estimability of the model and 
then fits the model. Then, the diagram can be dis-
played with the path coefficients on it. Software for
path analysis and SEM includes AMOS, EQS, and
LISREL.

—Stanley L. Sclove

Further Reading

Byrne, B. M. (2001). Structural equation modeling with
AMOS: Basic concepts, applications, and programming.
Mahwah, NJ: Erlbaum.

Duncan, O. D., Featherman, D. L., & Duncan, B. (1972).
Socioeconomic background and achievement. New York:
Seminar Press.

Duncan, O. D., & Hodge, R. W. (1963). Education and occu-
pational mobility: A regression analysis. American Journal
of Sociology, 68, 629–644.

Li, C. C. (1975). Path analysis: A primer. Pacific Grove, CA:
Boxwood Press.

Rucci, A. J., Kirn, S. P., & Quinn, R. T. (1998, January-
February). The employee-customer-profit chain at Sears.
Harvard Business Review, pp. 82–97.

Path diagrams and software for path analysis and SEM:
http://www.spss.com/amos/

PEABODY PICTURE VOCABULARY TEST

The Peabody Picture Vocabulary Test, now in its third
edition (PPVT-III), is an individually administered,
untimed, norm-referenced, wide-range test of listen-
ing comprehension for the spoken word in standard
English. The test serves as both an achievement test of
receptive vocabulary attainment for standard English
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and a screening test of verbal ability, but only when
English is the language of the examinee’s home,
community, and school. The test is designed for use
with persons aged 2½ through 90+ years, and the
average administration time is 10–15 minutes. Two
types of normative scores are provided. Deviation-
type norms tell you how far the individual’s perfor-
mance deviates from the average person of the same
age group on whom the test was standardized.
Developmental-type norms tell you how the individ-
ual’s performance compares to others on a growth or
development curve.

Two forms are available, Form IIIA and Form IIIB,
that allow for reliable testing and retesting. Each form
contains four training items and 204 test items. Items
are grouped into 17 sets of 12 items, arranged in order
of increasing difficulty. Each item contains four
black-and-white illustrations arranged on a page. The
examinee selects the picture that best represents the
meaning of a stimulus word presented orally by 
the examiner. A sample item for the stimulus word
carpenter could contain a picture of a carpenter with
three distracter pictures of various workers such as a
doctor, a chef, and a farmer.

The PPVT-III is useful with diverse populations.
Reading or writing are not required from the exami-
nee; therefore, it is useful with nonreaders and people
with written-language problems. The examinee can
respond orally, by pointing, or by signaling “yes” or
“no” as the examiner points to each choice in turn.
Because an oral, written, or point response is not
required from the examinee, the test may be used
with people with language impairments, and disabil-
ities such as autism or cerebral palsy. The test can aid
in the detection of language impairments, such as
aphasia. The PPVT-III can be useful as a screening
measure for both giftedness and mental retardation
for people with English-language backgrounds.
When English is a second language, the test can pro-
vide a measure of English-language proficiency. The
ease of administration and high reliability at young
ages makes the test useful in testing preschool
children’s vocabulary acquisition. The extensive
adult norms make the test useful in testing adults’

listening comprehension and possible vocabulary
deterioration.

—Ann M. Weber

Further Reading

Campbell, J. (1998). Test reviews. Journal of Psychoedu-
cational Assessment, 16, 334–338.

Campbell, J., Bell, S., & Keith, L. (2001). Concurrent validity
of the Peabody Picture Vocabulary Test-Third Edition as an
intelligence and achievement screener for low SES African
American children. Assessment, 8(1), 85–94.

Pankratz, M., Morrison, A., & Plante, E. (2004). Difference 
in standard scores of adults on the Peabody Picture
Vocabulary Test (Revised and Third Edition). Journal of
Speech, Language, & Hearing Research, 47(3), 714–718.

Peabody Picture Vocabulary Test authors Lloyd M. Dunn and
Leota M. Dunn biographies: http://www.slpforum.com/
bio/dunn.asp

PEARSON, KARL

(1857–1936)

Karl Pearson was judged by his contemporaries to be
among the most influential university teachers of his
time. The modern statistician sees him as a founding
father of what are now considered to be elementary
statistical methods.

Pearson, the son of a barrister, was born in London,
on March 27, 1857. In 1875, he gained a scholarship
to study mathematics at King’s College, Cambridge.
A somewhat rebellious student, Pearson spent much
of his time studying other subjects. His wide range 
of interests was further extended when he spent time
studying physics, metaphysics, and German literature
at the Universities of Heidelberg and Berlin. It was in
Germany that he changed his first name from Carl to
Karl, retaining that spelling thereafter.

Returning to England, Pearson rejected the offer 
of a post in the German Department at Cambridge
University, opting instead to study law. He was called
to the Bar in 1882, but never practiced law. Instead, in
1885, he was appointed Goldsmid Professor in the
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Applied Mathematics Department at University
College, London.

In 1890, Pearson’s career changed direction once
again, with the appointment of Raphael Weldon as
Professor of Zoology. Pearson’s interaction with
Weldon was stimulated by the publication of Francis
Galton’s Natural Inheritance. By the time of his first
statistical publication (The Chances of Death and Other
Studies in Evolution), he already had 100 publications
to his name (including many on German history and
folklore). However, between 1893 and 1912, Pearson
wrote 18 papers under the general title of Mathematical
Contributions to the Theory of Evolution. These papers
resulted in the introduction of such familiar concepts as
standard deviation, regression, correlation, and the 
chi-square goodness-of-fit test.

In 1901, Pearson was a co-founder (with Weldon
and Galton) of the journal Biometrika. The intention
was to provide a vehicle for the mathematical treat-
ment of biological problems. Pearson remained 
the journal’s editor until his death more than 30 
years later. In 1911, Pearson, remaining at University
College, became its first Galton Professor of
Eugenics.

A feature of statistics in the early 20th century was
the long-running disagreements between Pearson and
his distinguished younger contemporary, Ronald
Fisher, in their approaches to data analysis. Pearson
favored the use of large data sets, whereas Fisher 
was prepared to look for causation through small 
data sets.

As early as 1919, Fisher turned down a job oppor-
tunity so as to avoid working with Pearson. However,
when Pearson retired in 1933, it was Fisher who suc-
ceeded him as head of the Department of Eugenics. In
a Solomon-like judgment, Egon Pearson (Karl’s son)
was simultaneously appointed head of the Department
of Statistics.

Pearson was elected a Fellow of the Royal Society
in 1896 and a Fellow of the Royal Society of
Edinburgh in 1934. He died on April 27, 1936, in
Coldharbour, Surrey, England.

—Graham Upton

Further Reading

Porter, T. M. (2004). Karl Pearson: The scientific life in a
statistical age. Princeton, NJ: Princeton University Press.

Pearson biography: http://www-groups.dcs.st-and.ac.uk/~
history/Mathematicians/Pearson.html

PEARSON PRODUCT-MOMENT

CORRELATION COEFFICIENT

Among his many accomplishments, Sir Francis
Galton first introduced the concept of correlation in a
book titled Natural Inheritance, which was published
in 1889. However, Karl Pearson is credited for extend-
ing the concept of correlation and for developing 
the product-moment correlation coefficient. Pearson’s
product-moment correlation coefficient is by far the
most common index of the relationship between two
variables, or bivariate relationship.

Pearson’s product-moment correlation coefficient
measures the degree to which the points in the scatter-
plot tend to cluster about a straight line. In other words,
the product-moment correlation coefficient measures
the degree of linear relationship between two vari-
ables. If we label the two variables of interest as x and
y, then Pearson’s product-moment correlation coeffi-
cient, denoted by r, is given by the following formula:

(1)

where

(2)

The first element of Equation 1 indicates that
Pearson r is the ratio of the covariance between vari-
ables X and Y to the square root of the product of the
x and y variances. Interestingly, only the numerators

x--- = �x

n
and y--- = �y

n
.

r = �(x − x--- )(y − y--- )√
�(x − x--- )2

√
�(y − y--- )2

= Cov(xy)√
Var(x)Var(y)

= �xy − nx--- y---√
�x2 − nx--- 2

√
�y2 − ny--- 2

,
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of the variance and covariance equation appear in the
latter part of Equation 1 because the denominators
cancel each other out. Furthermore, Equation 2 could
be used to rewrite the Pearson r formula as

(3)

However, an even more interpretable way of
expressing Pearson r is as follows:

(4)

where

That is, Sx and Sy are the standard deviations of the
two variables. Thus, Equation 4 indicates that Pearson
r is the average cross-product of the standardized x
and y variable scores. The fact that Pearson r can be
expressed as a product of two variables measured in
standard units means that we can express the relation-
ship between two variables even if they are measured
on different scales. For example, x can be measured in
inches and y can be measured in acres, or in pounds, or
in dollars. Provided that both variables are converted to
standard units, r can measure their association.

If only the numerator in Equation 4 was used to
compute Pearson r, then r would increase as the
number of observations in the data set increased,
regardless of the true relationship between the two
variables. Therefore, n – 1 is needed in the denomina-
tor of Equation 4 to provide a statistic that is indepen-
dent of the sample size. This denominator guarantees
that r always lies between –1 and +1, inclusive.

Pearson’s correlation coefficient helps to determine
both the magnitude and direction of pairwise variable
relationships. The sign of the coefficient tells us
whether the relationship is positive or negative. 

A positive correlation means that as the values of one
variable increases, so do the values of the second vari-
able. Conversely, a negative relationship indicates 
that an increase in one variable is associated with a
decrease in the other variable. The numerical part of
the correlation coefficient indicates the magnitude of
the relationship. A value of zero indicates no linear
relationship between the two variables, whereas 
the closer the correlation coefficient is to 1 or –1, the
greater the relationship between the variables.

A key assumption pertaining to Pearson r is that
the relationship between the two underlying variables
is linear. An effective way of assessing the linearity of
relationships is via bivariate scatterplots.

Pearson rr as a Descriptive Statistic

When Pearson r is needed solely for the purpose 
of describing a relationship between two variables,
then other than the linearity assumption, three other
assumptions should be checked before deciding
whether the use of Pearson’s correlation coefficient is
appropriate. These assumptions are as follows:

1. At least one of the variables should represent a con-
tinuous variable.

2. Each observation of the dependent variable (Y)
must be statistically independent of every other
observation.

3. The variability in scores for one variable is approxi-
mately the same at all values of the other variable
(i.e., the homoscedasticity assumption).

Example With Real Data

Any of the formulae in Equation 1, Equation 3, or
Equation 4 can be used to compute Pearson r.
Onwuegbuzie was interested in determining a rela-
tionship between the total number of points scored 
(x) by all 30 professional National Football League
(NFL) teams and their winning percentages (y) during
the 1997–1998 football season. (Both variables are
continuous.) These data are presented in Table 1.
Also, the scatterplot is displayed in Figure 1.

Zx = x − x---

Sx
and Zy = y − y---

Sy

and Sx =
√

�(x − x--- )2

n − 1
and Sy =

√
�(y − y--- )2

n − 1
.

r = �Zx Zy

n − 1
,

r = n�xy − (�x)(�y)√
n�x2 − (�x)2

√
n�y2 − (�y)2

.
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New York Giants

Washington Redskins

Philadelphia Eagles

Dallas Cowboys

Arizona Cardinals

Green Bay Packers

Tampa Bay Buccaneers

Detroit Lions

Minnesota Vikings

Chicago Bears

San Francisco 49ers

Carolina Panthers

Atlanta Falcons

New Orleans Saints

St. Louis Rams

New England Patriots

Miami Dolphins

New York Jets

Buffalo Bills

Indianapolis Colts

Pittsburgh Steelers

Jacksonville Jaguars

Tennessee Oilers

Cincinnati Bengals

Baltimore Ravens

Kansas City Chiefs

Denver Broncos

Seattle Seahawks

Oakland Raiders

San Diego Chargers

50.00

37.50

18.75

62.50

56.25

68.75

50.00

31.25

93.75

25.00

75.00

25.00

87.50

37.50

25.00

56.25

62.50

75.00

62.50

18.75

43.75

68.75

50.00

18.75

37.50

43.75

87.50

50.00

50.00

31.25

82369.00

101761.0

25921.00

145161.0

105625.0

166464.0

98596.00

93636.00

309136.0

76176.00

229441.0

112896.0

195364.0

93025.00

81225.00

113569.0

103041.0

173056.0

160000.0

96100.00

69169.00

153664.0

108900.0

71824.00

72361.00

106929.0

251001.0

138384.0

82944.00

58081.00

2500.00

1406.25

351.56

3906.25

3164.06

4726.56

2500.00

976.56

8789.06

625.00

5625.00

625.00

7656.25

1406.25

625.00

3164.06

3906.25

5625.00

3906.25

351.56

1914.06

4726.56

2500.00

351.56

1406.25

1914.06

7656.25

2500.00

2500.00

976.56

14350.00

11962.50

3018.75

23812.50

18281.25

28050.00

15700.00

9562.50

52125.00

6900.00

35925.00

8400.00

38675.00

11437.50

7125.00

18956.25

20062.50

31200.00

25000.00

5812.50

11506.25

26950.00

16500.00

5025.00

10087.50

14306.25

43837.50

18600.00

14400.00

7531.25

287

319

161

381

325

408

314

306

556

276

479

336

442

305

285

337

321

416

400

310

263

392

330

268

269

327

501

372

288

241

Totals ∑ x ∑ Y ∑ x2 ∑ y2 ∑ xy
10215.00 1500.00 3675819.00 88281.25 555100.00

Means X
—

Y
—

340.50 50.00

Table 1 Descriptive Statistics for National Football League Data

No. Points
Scored Winning %

NFL Football Team (X) (y) x2 y2 xy



Thus, r = .87 indicates a positive linear relationship
between the total number of points scored by NFL
teams and their winning percentage, which is consis-
tent with the scatterplot in Figure 1. A useful feature
of Pearson r is that if we square it, we obtain r2,
the coefficient of determination, which indicates that
75.69% (i.e., .872 ) of the variance in winning

percentage is explained by the total number of points
scored by teams. Although the correlation coefficient
is extremely large, we cannot use terms such as statis-
tically significant relationship because, as yet, we
have not conducted a null hypothesis significance test
(NHST) for this correlation coefficient.

Pearson rr as an Inferential Statistic

When a researcher’s goal is to use the observed
Pearson r to make inferences, then a further assump-
tion is needed than for when Pearson r is used for
descriptive purposes only—namely, that the depen-
dent variable is normally distributed. The normality
assumption should be assessed by both graphical and
statistical means. With regard to the former, fre-
quency histograms could be used. In addition to
graphical checks of normality, the skewness and kur-
tosis can be assessed for direction and magnitude.
Scores with large positive or negative skewness
coefficients and/or large positive (i.e., leptokurtic dis-
tribution) or negative (i.e., platykurtic distribution)
kurtosis coefficients indicate violations to the
normality assumption. It should be noted that large
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It can be seen from this plot that the relationship is linear, and that homoscedasticity is present. Table 1
presents the summary statistics. From this table, we can use Equation 1 to compute Pearson r, as follows:

r = �xy − nx--- y---√
�x2 − nx--- 2

√
�y2 − ny--- 2

= 555100 − 30(340.50)(50.00)√
3675819.00 − (30)(340.50)2

√
88281.25 − (30)(50.00)2

= 555100 − 510750.00√
3675819.00 − 3478207.50

√
88281 − 75000.00

= 44350.00√
197611.50

√
13281.00

= 44350.00

(444.54)(115.24)

= 44350.00

51228.79

= 0.87
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Figure 1 Scatterplot of Number of Points Scored
Against Winning Percentage



skewness and kurtosis coefficients
affect Type I and Type II error rates.

If the normality assumption holds,
the researcher is ready to use Pearson
r to determine whether a relationship
between two variables is statistically
significant—that is, whether the
derived Pearson r represents a finding
that is sufficiently different from zero
to reject the null hypothesis. The
NHST concerning a population
correlation coefficient (ρ) takes the
general form:

Using the fact that R2 is the proportion of variance
explained, and 1 – R2 is the proportion of variance
unexplained, the test statistic (t) for Pearson r gener-
alizes to

(5)

The test statistic in Equation 5 is then compared to
the associated t critical value based on n – 2 degrees
of freedom and is determined by the
desired level of statistical significance
α. The three possible types (two one-
tailed and one two-tailed) of NHSTs
involving the correlation coefficient and
the decision rules for determining
whether the null hypothesis is rejected
(and a statistically significant relation-
ship inferred) are presented in Table 2.

A close examination of the numera-
tor of the right-hand side of Equation 5
indicates that, holding the correlation
constant, as the sample size (n)
increases so does the t value, and, con-
sequently, the probability of rejecting
the null hypothesis. This probability is

commonly known as the p value. Conveniently, vir-
tually all statistical software automatically com-
putes this p value, thereby making the use of t tables
obsolete. As can be seen from the output generated
by SPSS in Figure 2, for the NFL football data set,
the p value is less than .0001, which is less than .05
(the typical nominal value). Thus, the null hypothe-
sis that the population correlation is zero is rejected,
and we conclude that there is a statistically signifi-
cant relationship between the total number of points
scored by a NFL team and the team’s winning
percentage.

Effect Size for Pearson r

Because of the influence that the sample size has on p
values associated with tests of bivariate correlations,
as well as on all other NHSTs, it is not sufficient to

t =
√
√
√
√
√

R2

1 − R2

n − 2

= r
√

1 − r2

n − 2

= r
√

n − 2√
1 − r2

.

ρ = Proportion of variance explained

Proportion of variance unexplained
.
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Table 2 Decision Rules for Determining Whether the Null Hypothesis
Is Rejected 

Alternative Hypothesis Rejection Region

Ha: ρ > hypothesized value Reject H0 if t > t critical value (upper-tail test)
Ha: ρ < hypothesized value Reject H0 if t < −t critical value (lower-tail test)
Ha: ρ ≠ hypothesized value Reject H0 if either

t > t critical value
or t < –t critical value

(two-tailed test)

Figure 2 Pearson r for NFL Data

Correlations

Total
Winning Number

% of Points

Winning Pearson Correlation 1.000 .866**
% Sig. (2-tailed) . .000

N 30 30

Total Pearson Correlation .866** 1.000
Number Sig. (2-tailed)
of Points .000 .

N 30 30

**. Correlation is significant at the 0.01 level



report the r value and p value corresponding to each
relationship tested. The magnitude of the r value also
should be interpreted. By interpreting the r value, this
statistic also serves as an effect size value, resulting 
in the delineation of the practical significance of the
findings. The r value can be interpreted by using
Cohen’s criteria of .1 for a small correlation, .3 for a
moderate correlation, and .5 for a large correlation.
Using Cohen’s criteria, the relationship found for the
NFL data set (i.e., r = .87) is extremely large.

—Anthony J. Onwuegbuzie,
Larry Daniel, and Nancy L. Leech

Further Reading

Goodwin, L. D., & Leech, N. L. (2006). Understanding corre-
lation: Factors that affect the size of r. The Journal of
Experimental Education, 74(3). 251–266.

Morgan, G. A., Leech, N. L., Gloeckner, G. W., & Barrett,
K. C. (2004). SPSS for basic statistics: Use and interpreta-
tion (2nd ed.). Mahwah, NJ: Erlbaum.

Onwuegbuzie, A. J. (1999). Defense or offense? Which is the
better predictor of success for professional football teams?
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PERCENTILE AND PERCENTILE RANK

The terms percentile and percentile rank are con-
sidered by some people to mean the same thing.
However, these two terms are different in conceptual
meaning and should not be used interchangeably.

Percentile Rank

A percentile rank describes the standing, or position,
of an earned score in comparison to a reference group.
The percentile rank for that earned score indicates the
percentage of scores in the reference group that are

lower than the earned score. Thus, an examinee whose
test performance earns him or her a percentile rank of
72 would have scored higher than 72 percent of those
in the reference group who took the same test.

Percentile ranks are reported in terms of whole
numbers between 1 and 99 (inclusive). No decimals
are used, and percentile ranks never assume the values
of 0 or 100. These extreme values are not used
because the percentile rank for any earned score con-
siders that earned score to be in the reference group.
Considered in that way, it is logically impossible for
an earned score to be higher than no scores or all of
the scores.

It is important to note that a percentile rank indi-
cates relative (not absolute) standing. Thus, knowing
the nature of the reference group is exceedingly
important if one is to properly interpret an exami-
nee’s percentile. An examinee’s percentile rank
might be 92 when the reference group is a nation-
wide group of test takers, 81 when the reference
group is defined as those in the examinee’s state, but
only 47 if the reference group is test takers in the
examinee’s school.

Percentile

A percentile is a point along the score continuum that
divides the reference group’s distribution of earned
scores into two parts such that a desired percentage of
the group’s scores lie below that point. For example,
if we are dealing with a normal distribution of IQ
scores (with a mean of 100 and a standard deviation of
15), then 75% of the IQ scores would fall below
110.1. Thus, that score value (110.1) would be the
75th percentile.

In computing percentiles, we state a percentage
(such as 75% in the above example) and then examine
the distribution of scores in the reference group to
determine what particular value of the score contin-
uum has that particular percentage of scores below it.
This sequence of steps is different from that used in
determining a percentile rank, for in the latter case, we
begin with a given earned score and then determine
what percentage of the reference group’s scores are
below that earned score. Because of this difference,
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a percentile can assume a value that’s not the same as
any earned score. For example, if the earned scores of
six examinees on a 20-item quiz in which quiz scores
are determined simply as “number correct” are 19, 17,
16, 14, 13, and 12, the 50th percentile would be equal
to 15, a score no one earned. (The value of 15 comes
from taking the arithmetic average of the two middle
scores, 16 and 14.) Pretend that the two lowest-
scoring examinees are not part of the group, and in
this situation, the 50th percentile for the remaining
four scores is 16.5, a score that not only was not
earned but also was not earnable!

The primary difference between percentile ranks
and percentiles can be conceptualized as a “figure-
ground” difference. In both cases, the “ground” is the
reference group. The figure, however, is different.
With percentile ranks, the figure is an earned score. In
contrast, the figure for a percentile is a point on the
score continuum.

For any group of scores, there are 99 percentile
points. These percentiles divide the scores in the ref-
erence group into 100 parts, each containing 1% of
the total. Because of this definitional feature of per-
centiles, certain percentiles are equivalent to other
concepts in statistics and measurement. For example,
the 50th percentile is equal to the median. Also,
the 25th, 50th, and 75th percentiles are equal to the
lower, middle, and upper quartile points (Q1, Q2, and
Q3), respectively. Terciles are the two points that
divide the reference group’s scores into three equal
parts.

Comments

It is important to keep three things in mind when deal-
ing with percentile ranks and percentiles. If these
“warnings” are overlooked, it is easy to misinterpret
and misuse these concepts.

First, percentile ranks are not the same thing as
ranks, even though both involve whole numbers. A
rank indicates a person’s relative position in a group,
with the rank of 1 given to the person who did the
best, a 2 given to the person who did second-best,
and so on. Thus, a low rank (e.g., 2) indicates that a
person has a very high standing in the reference

group. With percentile ranks, high rather than low
numbers indicate a high standing.

Second, percentile ranks and percentiles are ordi-
nal in nature and lack the “equal interval” characteris-
tic that’s embodied in interval measurement scales. 
To illustrate this point, suppose four examinees in a
larger group of test takers are A, B, C, and D, and fur-
ther suppose that their percentile ranks on an ability
test are 45, 55, 85, and 95, respectively. Because per-
centile ranks are ordinal, it would be improper to state
(or to think) that the difference in ability between
Examinees A and B is the same as the ability differ-
ence between Examinees C and D. If the reference
group’s ability scores are normally distributed, the
earned test scores from Examinees A and B would be
much closer together (along the scale of earnable raw
scores) than the earned test scores from Examinees 
C and D.

Finally, those who interpret test scores need to
remember that percentile ranks indicate relative, not
absolute, positioning in a group. If an examinee’s test
performance leads to a percentile rank of 97, for
example, that does not indicate that he or she correctly
answered 97% of the test questions or has very little
more to learn. Likewise, a very low percentile rank
should not be interpreted to mean that an examinee
has no knowledge or skill.

Percentiles and percentile ranks are very popular in
educational systems. With them, educators can com-
pare different students who take the same test in dif-
ferent backgrounds with their percentiles or percentile
ranks in a more reasonable manner. Also, in a large-
scale standardized test, students can take past results
of the overall data about the relation between raw
scores and percentiles or percentile ranks as refer-
ences to predict their testing achievements.

—Ping-Lun Tu
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OECD handbook for internationally comparative education
statistics: Concepts, standards, definitions and classifica-
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PERFORMANCE IQ

Performance IQ is a measure of intelligence that does
not require the use of words or language and is asso-
ciated with the Wechsler Intelligence Scales. When
David Wechsler developed his IQ test in 1939, he
divided it into two components: tasks that required
mainly verbal abilities and tasks that required mainly
perceptual-manipulative skills. The Performance IQ
can be considered mainly a measure of visual-spatial
processing, novel problem solving, attentiveness to
visual detail, and visual-motor integration and speed.
Recent editions of the Wechsler scales have broken
down the Performance IQ into a perceptual organiza-
tion component and a processing speed component.
The perceptual organization scale most closely repre-
sents what has been traditionally thought of as
Performance IQ.

Another way of thinking about Performance IQ is
that it is that aspect of intelligence that does not
depend upon experience and learning, sometimes
referred to as fluid intelligence. Because experience is
not heavily weighted, Performance IQ is considered to
be relatively free of cultural bias. For this reason, the
Performance IQ is sometimes used in place of the Full
Scale IQ with minorities and individuals whose first
language is not English as the overall indicator of
intelligence. Although the research is far from defini-
tive, there is some indication that skills measured by
Performance IQ tend to decline with age, whereas
those measured by Verbal IQ tend to stay the same or
actually increase. Attempts to tie Performance IQ to
the right hemisphere of the brain and Verbal IQ to the
left hemisphere generally have not been successful.

—Steve Saladin

See also Wechsler Adult Intelligence Scale
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Gregory, R. J. (1999). Foundations of intellectual assessment:
The WAIS-III and other tests in clinical practice. Boston:
Allyn & Bacon.

Kaufman, A. S., & Lichtenberger, E. O. (2005). Assessing ado-
lescent and adult intelligence (3rd ed.). New York: Wiley.

PERFORMANCE-BASED ASSESSMENT

Tests come in many forms, and in a real sense, the act
of completing any test items, regardless of their 
format, constitutes a performance of some type.
However, the term performance-based assessment
(also, performance assessment or sometimes authen-
tic assessment) has come to possess a specific mean-
ing in the context of measuring cognitive abilities.
Although Linn and others have noted that perfor-
mance tasks are sometimes described relative to what
they are not (as in, not selected-response, and not
norm-referenced), performance-based tests can be
characterized fundamentally by extended-length,
highly interactive tasks that call for answers or prod-
ucts to be uniquely generated by the test taker. These
tasks are often open-ended in nature and, to the extent
possible, are framed in contexts approximating real-
life applications of knowledge, skills, and abilities.
Furthermore, performance-based assessments often
involve complex, multistep problems requiring differ-
ent types of performance, and, depending on the con-
text for testing, may be intended to be completed by
individuals working independently or in small groups.

Performance-Based Assessment
Methods: Processes and Tasks

Many kinds of activities are commonly considered to
be performance-based tasks. A (nonexhaustive) list of
performance-based assessment activities includes
presentations, research projects, role-plays, Web
pages, experiments, portfolios, extended written
responses, performance demonstrations, exhibitions,
and working through case studies. Although the pre-
cise nature of the activity and the format of a perfor-
mance-based assessment will vary widely by testing
program and testing purpose, it is clear that the listed
assortment of performance tasks gives test takers the
opportunity—within whatever parameters might be
defined by the assessment’s developer—to produce
rather than select. This range can reflect the individu-
ality of test takers and their unique engagement with
the specific nature of the assessment task.
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Of course, the actual evaluation products could
take any of a variety of actual forms, such as some-
thing written (here, think of formats such as short or
extended-length essays and also reports, brochures,
articles, transcripts of conversations, or letters); a live
presentation (that may or may not be recorded for
multimedia storage and later re-viewing); or the cre-
ation of other objects to be assessed according to spe-
cific criteria. For example, the creation of a Web site,
the production of a working computer program, and
the fabrication of a model or prototype object are
items to be evaluated that likewise might be generated
in response to a performance task. Furthermore, in
addition to this range of products that may be gener-
ated, some applications of performance-based testing
consider the process by which the intended product or
answer is created to be on equal footing with the prod-
uct or answer itself.

Indeed, in some cases, performance-based ass-
essment might be described more accurately as
performance-and-product assessment. Recognizing
that process sometimes is and sometimes is not part of
what is evaluated through performance-based assess-
ments, Messick identified three kinds of performance
tasks: (a) those in which the performance and product
are essentially the same thing (i.e., a dance recital), (b)
those where the end product is what mainly counts
(i.e., an essay), and (c) those in which the perfor-
mance and the product are distinctly separate but
equally important elements to be evaluated (i.e., a
science experiment).

There is one other attribute of performance-based
assessment often regarded as a critical aspect of these
formats: across applications, performance task users
strive to incorporate a high degree of fidelity to real-
ism. Performance tasks tend to be constructed so as 
to couch questions and activities within situations
where the skills, knowledge, and abilities being
tested would be commonly used. Think here of the
road test for a driver’s license: In many states, to
make a pass-fail decision about granting the license,
examiners ride in cars driven by candidates, on local
streets, where other motorists are going about their
business. The assessment task in this example pro-
vides the scorer with a direct observation of the

underlying skill of interest in a naturalistic setting.
Although it could be said that the circumstance of
performing for the purpose of being evaluated makes
the performance by its very nature artificial, perfor-
mance-based tasks are intended to inject realism back
into the assessment process by setting the perfor-
mance conditions in a context approximating typical
use of the skill to the extent possible.

Although performance-based tasks have long been
used by test developers in selected testing contexts
such as professional certification and licensure, inter-
est in including performance tasks across test uses 
has increased over recent years. Indeed, performance-
based testing tasks can be appropriately created and
adapted for many standardized and classroom testing
purposes, from diagnosis and remediation to certifica-
tion, selection, and accountability. Boodoo and Miller
and Linn characterized this broadening use of
performance-based assessments as concerted efforts
to enhance the depth of measurement information,
because performance tasks offer test users the possi-
bility of capturing an array of examinee knowledge
and skill in a richer, more realistic context than could
be done ordinarily with traditional, selected-response
approaches. This is not to say that multiple-choice and
other such selected-response formats cannot be used
for assessing complex cognitions, but performance
tasks are typically characterized by elaborate, multi-
step activities that entail considerable investment of
time and involvement with the task.

Validity and Reliability 
Considerations for 

Performance-Based Assessment

Although substantial realism in measuring the skill or
ability of interest and a high level of engagement with
the task are among the valued qualities that contribute
to making performance-based assessments appeal-
ing to many, there are likewise several psychometric
issues that users should keep in mind with respect 
to the development, scoring, and use of such tasks.
Performance-based assessments are unique enough
that there are specific considerations that users need 
to take into account when they implement such tests
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for most large-scale testing purposes, and many
classroom applications as well.

Validity concerns specific to performance-based
assessment have been the focus of many researchers.
Although integrating a high degree of realism is an
important part of performance-based assessment, the
appearance of fidelity to real-life contexts (i.e., face
validity) is not enough. The expectation is that perfor-
mance tasks have meaning, require complex cogni-
tions applicable to real-life problems, minimize the
extent to which they draw on ancillary skills, and are
rated according to explicit standards. Linn, Baker, and
Dunbar describe several potential sources of validity-
related evidence supporting the proposed uses of
performance tasks, including consequences, fairness,
transfer and generalizability, cognitive complexity,
content quality, content coverage, meaningfulness, and
cost and efficiency.

Another measurement issue for performance-based
assessment concerns generalizability across tasks 
and topics and task specificity. As mentioned above,
administrative limitations on testing time often result
in performance-based tests that consist of just one or
a very small number of tasks. This, in turn, offers a
limited sample of behaviors to generalize to the larger
domain of knowledge being tested, and it calls into
question how broadly or narrowly the larger domain is
defined and the extent to which the submitted perfor-
mance is representative of (or generalizes to) tasks 
in that larger domain. Similarly, the limited number of
tasks included in many performance assessments
raises the potential for examinee by task interactions:
Because examinees interact with most tasks in some
depth for an extended length of time, care must be
taken to ensure that tasks are general enough so that
the performances are not affected negatively by an
unfairly constrained context. For example, on a writ-
ing assessment where the skill of interest is descrip-
tive writing, rather than insisting that all test takers
expound about highly individual interest-specific
topics such as ice hockey or favorite Montana resort
towns, tasks should be defined more broadly to ensure
that each test taker can reasonably draw from personal
experience to complete the task (such as writing about
hobbies enjoyed or vacations taken). These concerns

of generalizability and task specificity can be viewed
as potential sources of invalidity because they can
limit the extent to which inferences about individuals’
proficiency in particular content areas can be made.

Another important consideration for performance-
based assessment is reliability. Reliability concerns the
consistency of test scores across both the administra-
tion of testing tasks and the scoring of test takers’
responses. In terms of reliability, many performance-
based tests are often composed of just one or a small
number of highly involved tasks, and although exami-
nees may engage in those tasks in great depth for an
extended length of time, in terms of actual measure-
ment opportunities, the yield may be minimal. For 
this reason, performance-based assessments may not
appear to measure up favorably to other assessment
formats in terms of traditional reliability expectations,
because statistical approaches to reliability (such as
computing internal consistency and split-halves) try to
estimate how much variability in scores is due to ran-
dom and systematic error, and how much is due to true
ability. These indices benefit from lots of observations:
When low reliability estimates are observed on tests
composed of multiple-choice items or other such
selected-response formats, one common solution is 
to increase the number of items administered. But
because performance tasks are often elaborate in terms
of both time and resources, adding tasks may not be
feasible in some performance-based testing contexts
for practical reasons. In this way, the validity challenge
for test developers is to balance traditional expecta-
tions about efficiency, reliability, and comparability
with other desired assessment qualities advanced 
by the use of performance-based assessments (e.g.,
fidelity, complexity, and response freedom).

Whether the performances submitted for evalua-
tion are to be scored using holistic or analytical scor-
ing rubrics, test developers must work to standardize
the scoring process as much as possible to ensure that
scorers apply the standards for judging performance
in a consistent way, and to reduce the opportunities
where subjectivity may enter into the scoring process.
Procedures should be in place to train individual scor-
ers and thoroughly familiarize them with the rubric
being used (including what it does and does not
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include), focusing on how to apply it uniformly across
all of the performances they rate. Scorers should be
monitored throughout for systematic and random
deviations from the rubric, and spiraling in previously
scored anchor responses can be helpful in this regard
for monitoring purposes. Where necessary, remedia-
tion should be provided to realign scorers with the
rubric. It should be explicit in the rubric what factors
of the performance are to be reflected in the score and
which are defined as extraneous. For example, is
spelling or neatness explicitly defined as a part of the
construct being assessed and therefore given weight in
scoring? Cost permitting, each performance should be
considered by more than one scorer, and another
aspect of consistency for test developers to monitor is
the extent to which scorers provide ratings of the per-
formances that are consistent with one another. By
putting these kinds of measures in place, comparabil-
ity in scoring across different test takers’ perfor-
mances and across scorers can be maximized to the
extent possible.

Conclusions

Ultimately, when performance-based assessments are
constructed carefully, administered appropriately, and
interpreted properly, they can provide a distinctive,
in-depth window into how individuals apply knowl-
edge, skills, and abilities in realistic ways. The possi-
bilities for what can be evaluated encompass a wide
range of products and processes, positioning perfor-
mance-based assessment at the least-constrained end
of the continuum of assessment methods ranging from
most constrained (multiple-choice and other selected-
response formats) to least constrained. Of course, as
assessments, performance tasks must aspire to high
standards of test quality, but by balancing methodolog-
ical rigor with construct-driven task development,
performance-based assessments permit test takers to
engage more thoroughly in many respects with assess-
ment tasks than most tests generally permit, and thus
offer test users perspectives on proficiency informed
by such engagement, to the benefit of test takers and
users alike.

—April L. Zenisky
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PERITZ PROCEDURE

The Peritz procedure can be applied after a significant
overall F test in a one-way ANOVA. A series of addi-
tional F tests can be used to determine the signifi-
cance of the difference between each of the possible
pairs of means. Among k means, there will be 
k(k – 1)/2 pairs of means. If the usual assumptions of
an ANOVA are satisfied, then the probability of one 
or more Type I errors is limited to the nominal level,
α, of the overall F test. This will be true when each
mean is based on the same sample size, N, and when
sample sizes differ no matter how large the difference

760———Peritz Procedure



in sample sizes may be. For a wide variety of conditions,
the Peritz procedure is more powerful than any other
procedure for pairwise testing of means.

The application of the Peritz procedure can be
accomplished by testing all partitions of the k means
into subsets. For a particular pair of means to be
found significantly different, it must be the case that
a significant F test is found for every partition of the
k means in which the two means in question are
included in the same subset. However, progressively
smaller subsets must be tested at more stringent
levels. For example, if five means are partitioned into
two subsets of the first three means and the last two
means, a separate F test would be applied to the two
subsets. The first subset would be tested at level
(3/5)α and the second subset at level (2/5)α. That is,
the first subset of three means includes three of the
five means. It is tested at 3/5 times α. The second
subset of two means includes two of the five means.
It is tested at 2/5 times α.

If either of these tests is significant at the
designated level, then the partition is rejected.
Nonsignificance of the partition requires that a
number of pairs cannot be significantly different. For
example, there are three pairs among the means in the
first subset (1, 2), (1, 3), and (2, 3). There is also the
single pair in the second subset, (4, 5). All four pairs
must fail to differ significantly if both F tests for this
partition fail to be significant. Of course, all other par-
titions must be tested as well.

If the five means are partitioned into three subsets of
the first two means, the third and fourth means, and the
single fifth mean, then the first two means would be
tested at level (2/4)α and the second subset at (2/4)α.
The denominator of each fraction is taken as the number
of means included in subsets of at least two means.

Slightly greater power can be obtained for the Peritz
procedure by using slightly less stringent levels in each
subset of the partition. For example, consider the case
of five means partitioned into two subsets of the first
three means and the last two means. Instead of testing
the first subset of three means at level (3/5)α, it is pos-
sible to test that subset at level 1 – (1 – α)3/5. Similarly,
instead of testing the second subset at level (2/5)α,
it would be tested at level 1 – (1 – α)2/5. Again, the

partition would be rejected if and only if at least one of
the F tests is significant at the designated level.

Consider the data in Table 1, in which four
treatment groups are being compared to each other
and to a control. Lower scores indicate better 
performance.

The MSWG for these data is 3.0326 with dfWG = 179.
The ANOVA for these data would give F = 5.75 >
2.42 = F.95(4,179) = CV. Therefore, we reject the full
null hypothesis at the .05 level and proceed to pair-
wise testing. Suppose we consider the requirements
for finding means 3.18 and 2.24 to be significantly
different.

A total of 15 possible partitions must be tested and
found significant in order for the difference between
these two means to be significant. The first partition is
the one in which all five means are together and the
full null is tested. In the present case, the second par-
tition has means 1, 2, and 3 together, and means 4 and
5 form a second subset. As shown in Table 2, the
second subset of two means also produces a signifi-
cant F at the appropriate level.

The differences between ordered means are 
in Table 3. The largest difference is 1.81 between
Treatment 4 and the control. The individuals in Treat-
ment 4 have significantly lower average scores than
does the control. The second largest difference is 1.28.
Those in Treatment 4 are significantly lower than
those in Treatment 1.

The difference of .94 between Treatment 4 and
Treatment 3 is significant, as demonstrated by the 15
partitions shown above. The original Newman-Keuls
procedure cannot be applied because it does not
provide accurate control of Type I errors. This differ-
ence of .94 would not be found significant when 
the Shaffer-Welsch modification is applied to the
Newman-Keuls using the harmonic mean of sample
sizes. The Peritz procedure is shown to be more
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Table 1 Data for Five Groups in an ANOVA

Control Treat 1 Treat 2 Treat 3 Treat 4

Mean 4.05 3.52 3.15 3.18 2.24
N 42 24 38 40 40



powerful while keeping the Type I error control to be
exact even with unequal sample sizes.

—Philip H. Ramsey
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PERSONAL PROJECTS ANALYSIS

Personal projects are extended sets of personally rele-
vant action with important implications for human
well-being and adaptation. Personal projects analysis
(PPA) is a methodology that allows researchers and
practitioners to assess the content, appraisal, hierar-
chical nature, and impact of personal projects.
Developed by Brian R. Little in the late 1970s, PPA
has been widely adopted as the standard for assessing
personal action and goal constructs in diverse fields of
study. It is not a test, but an integrated set of flexible
assessment modules. PPA is based upon a set of 12
foundational criteria that are prescribed as important
to meet before orthodox psychometric criteria such as
reliability and validity are addressed. Eight of these
are discussed here as being particularly relevant to
quantitative assessment methodology.

By way of brief overview, PPA provides a set of
modules for (a) eliciting an individual’s personal pro-
jects, (b) appraising these projects on a set of dim-
ensions that has been selected for both theoretical
relevance and applied utility, and (c) assessing addi-
tional features of project systems such as their hierar-
chical structure and impact. We will first discuss the
foundational assumptions of the methodology, then
describe two of the modules, and conclude with brief
comments on the significance of the methodology for
contemporary basic and applied research.

Eight Foundational Criteria for PPA

PPeerrssoonnaall  SSaalliieennccyy

The personal saliency criterion requires that the
units be personally significant to the individual being
assessed and that these units be expressed in their 
own idiosyncratic language. In contrast with standard
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Table 3 Differences Between Ordered Means of Table 1

Tr 4 Tr 2 Tr 3 Tr 1 Control
2.24 3.15 3.18 3.52 4.05

Tr 4 = 2.24 — .91 .94* 1.28* 1.81*
Tr 2 = 3.15 — .03 .37 .90
Tr 3 = 3.18 — .34 .87
Tr 1 = 3.52 — .53

*p < .05.

Table 2 Partitions for Testing Groups 4 and 5 of Table 1

Partition Grouping Group Size F CV

1 1  1  1  1  1 5 6.42* 2.422
2 1  1  1  2  2 3 2.70 3.566

2 5.83* 5.483
3 1  1  2  1  1 4 7.65* 2.655
4 1  1  2  2  2 2 1.41 5.483

3 3.74 3.566
5 1  1  2  3  3 2 1.42 5.087

2 5.83* 5.187
6 1  2  1  1  1 4 7.38* 2.655
7 1  2  1  2  2 2 5.33 5.483

3 4.91* 3.566
8 1  2  1  3  3  2 5.33* 5.087

2 5.83* 5.087
9 1  2  2  1  1 3 11.07* 3.566

2 0.66 5.483
10 1  2  2  2  2 4 3.47* 2.655
11 1  2  2  3  3 2 0.66 5.087

2 5.83* 5.087
12 1  2  3  1  1 3 11.07* 3.046
13 1  2  3  2  2 3 4.91* 3.046
14 1  2  3  3  3 3 3.74* 3.046
15 1  2  3  4  4 2 5.83* 3.894

*p < .05.



inventories, PPA does not supply instances of the unit
of analysis, but elicits them. The personal saliency cri-
terion ensures that individuals can generate examples
of the plans and actions they deem important to know
if we are to understand their lives.

EEccoollooggiiccaall  RReepprreesseennttaattiivveenneessss

Projects are not just personal constructions, they
are contextually embedded actions. This criterion
requires that an assessment procedure afford an
understanding of the person’s everyday social ecol-
ogy. Whereas the personal saliency criterion high-
lights the subjective importance of personal projects,
this criterion illuminates the contextual factors that
frustrate or facilitate project pursuit.

SSoocciiaall  IInnddiiccaattoorr  PPootteennttiiaall

Besides providing information relevant to individu-
als, we believe that assessment can also provide infor-
mation relevant to the social ecologies (e.g., workplace,
rural area) within which individuals carry out their
projects. In short, data derived from PPA have the
potential to contribute to the development of social
indicators—such as which projects are difficult for
elderly people living in rural areas, or which are most
enjoyable for inner-city youth. This criterion ensures
that the data we gather on individuals and their pursuits
are relevant to policy makers who design the contexts
within which these pursuits take place.

TTeemmppoorraall  EExxtteennssiioonn

Many assessment devices use units that take “snap-
shots” of human characteristics; PPA allows the tem-
porally extended nature of daily lives to come into
focus. Personal projects typically proceed through
stages of inception, planning, action, and termination,
although there are individual differences in the extent
to which these stages are negotiated. Although much
of the research on personal projects is cross-sectional,
there is increasing use of longitudinal designs using
hierarchical analysis in which we can examine
projects embedded within persons, who in turn are
embedded in different ecologies.

JJooiinntt  IIddiiooggrraapphhiicc  aanndd  
NNoorrmmaattiivvee  MMeeaassuurreemmeenntt

PPA was based on the assumption that both indi-
vidual-level and aggregate-level information are
important aspects of measurement. When projects are
rated on appraisal dimensions such as stress and
enjoyment, we can measure the relationship between
these variables within the single case (measuring
across the individual’s projects) or between cases
(using the mean of the ratings on each dimension per
individual). Unnecessarily divisive debates have
characterized assessment methodology in terms of
whether the appropriate measurement focus ought 
to be on idiographic or normative concerns. PPA
assumes that each approach provides distinctive infor-
mation of value to the basic researcher and applied
analyst.

SSyysstteemmiicc  MMeeaassuurreemmeenntt

In their daily lives, people are typically engaged in
multiple projects, and these projects form systems.
This criterion requires that the measurement device
provide ways in which these systemic features of our
unit of analysis can be accessed. PPA modules allow
us to explore the conflicts and synergies that charac-
terize complex human lives. Although projects are the
equivalent of test items in conventional measurement,
it is not meaningful to consider the systemic relations
among test items in the same way as one does with
projects. The latter have a reality status that is dis-
cernibly different from that of items.

MMoodduullaarriittyy

The modularity criterion requires a method to be
flexible enough that it can be adapted readily to
research situations. For example, unlike conventional
testing, where items and scales are fixed, the dimen-
sions upon which individuals appraise their projects
can be selected from a standard set of approximately
20 that have broad theoretical utility, or create ad hoc
dimensions specially chosen to reflect the particular
person and social ecological context being assessed.
The appraisal matrix therefore serves as a kind of
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system board into which standard or special dimen-
sions can be plugged for appropriate use. Among ad
hoc dimensions used in PPA have been “age you feel
when engaged in this project” in a study of mid-life
transitions and “extent of benefit to others” in studies
of volunteering.

IInntteeggrraattiivvee  UUnniittss

Assessment of cognitive, affective, and conative
aspects of human conduct is typically carried out with
different instruments, each with its own unit of analy-
sis. In contrast, personal projects provide a natural
base for integrating these interrelated features of daily
life. In this respect, we think of personal projects 
as carrier units—a given project carries information
about construed action, experienced affect, and chal-
lenges to volitional capacity. Similarly, projects carry
information about both the individual and the context
and can be regarded as transactional units of analysis.
The integrative criterion is central to the project ana-
lytic endeavor because one of the central problems in
contemporary social research is the difficulty of con-
joining information derived from different specialty
areas. By its modular, systemic, and integrative fea-
tures, personal projects analysis offers direction for
synthesis in diverse fields.

Assessment Modules in PPA

There are four major assessment modules used in
PPA, two of which are particularly relevant to mea-
surement issues—the project elicitation and project
appraisal modules.

PPrroojjeecctt  EElliicciittaattiioonn  MMoodduullee

This requires respondents to generate a list of their
personal projects. These can range from “taking out the
trash” to “trashing a political opponent.” The content 
of projects listed is informative and can be examined
through traditional procedures of content analysis. The
most frequently elicited personal projects are interper-
sonal projects and either academic or work projects.

PPrroojjeecctt  AApppprraaiissaall  MMaattrriixx

In this module, the participant rates each personal
project on a set of standard as well as any desired ad
hoc dimensions.

More formally, a j × k matrix is completed by the
participant, in which j personal projects are rated on
an 11-point Likert scale that ranges from 0 to 10,
across k features or dimensions (such as Importance,
Difficulty, Challenge, Stress, etc.). Both j and k are
variable, with j typically being between 8 and 12, and
k between 17 and 24, although these constraints can
be varied to suit the particular research question. The
data can be analyzed at the single-case level or norma-
tively, the latter approach involving the derivation of k
total scores (often taken as the mean of each of the k
features across the j projects).

PPA dimension mean scores are often used as pre-
dictor variables with diverse measures of well-being,
flourishing, and competency as outcome measures.
Five theoretically relevant factors emerged from early
factor-analytic studies of the correlations among pro-
ject dimensions: project meaning, structure, commu-
nity, efficacy, and stress. In meta-analyses of studies
using these factors as predictors of well-being and
depression, project efficacy and (absence of) project
stress were the most reliable predictors. In recent
years, in response to the interest in affective processes
and project pursuit, we have augmented the appraisal
matrix with a larger number of positive and negative
affect dimensions. Factor analyses of these matrices
have reliably produced dimensions of project mean-
ing, manageability, support, positive affect, and nega-
tive affect.

The use of PPA at both idiographic and normative
levels raises some important psychometric issues.
Until the late 1990s, the studies of PPA that used
factor analysis had primarily examined mean-level
data within the same study, and so the extent to which
between-study differences at the project-system level
exist had not been mapped out. Some project-level
data had been so analyzed, but results were viewed 
as possibly biased because of the violation of the
assumption of independence of observations. Little
pointed out the possibilities inherent in the ipsative
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analysis of PPA features and noted that individual
correlations within a matrix do not necessarily follow
the pattern that obtains normatively. This problem is
known more generally as Simpson’s paradox, wherein
generalizations made on the basis of data analyzed at
one level of aggregation may be invalid at different
levels of aggregation. For continuous data, correla-
tions computed at the normative level do not logically
imply that such correlations must obtain at the indi-
vidual level. The magnitude, and even the sign, of the
correlations can theoretically change when the data
are disaggregated, and the mapping is an empirical,
rather than a logical, issue. Travis Gee, in a detailed
psychometric analysis of the properties of what he
termed “project space,” demonstrated that there is, in
fact, a high degree of isomorphism between the rela-
tionship among dimensions analyzed normatively and
those analyzed at the individual level. Indeed, in the
rare cases where there is a lack of fit with the norma-
tive project space, one might be detecting a case of
clinical interest.

Implications for 
Contemporary Basic and 

Applied Research and Practice

PPA has generated a number of related techniques 
for the assessment of life tasks, personal strivings, and
personal goal pursuit. These have been generally
referred to as personal action construct (PAC) units
and are a legitimate alternative to more conventional
units of analysis, such as traits. PAC units are, in some
respects, closely related to some of the social cogni-
tive learning units of analysis that are flourishing both
as theoretical constructs and as aids to clinical assess-
ment. Personal projects and other PAC units, however,
are pitched at a somewhat higher level of molarity. A
priority for both theoretical and applied research is the
integration of middle-level units and more molecular
cognitive social learning units.

At the applied level, researchers have adopted or
adapted PPA to explore problems in areas as diverse
as environmental planning, developmental transitions,
and moral philosophy. Among the most active
adopters of PPA methodology have been researchers

and practitioners in rehabilitation and occupational
therapy, where personal projects have been adopted to
explore the factors that lead to therapeutic compliance
and coping with illness. Notable too, at the other end
of the spectrum of human well-being, is that human
flourishing can be understood as the sustainable pur-
suit of core projects. In short, personal projects analy-
sis is a flexible suite of methodological tools designed
for the integrative study of human lives in the worst of
times and the best.

—Brian R. Little and Travis L. Gee
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PERSONALITY ASSESSMENT INVENTORY

The Personality Assessment Inventory (published 
by Psychology Assessment Resources) is a self-
administered, objective measure of adult personality
and psychopathology designed to aid in the identifica-
tion of critical client variables in therapeutic settings.
The PAI consists of 344 items and four sets of
scales: four validity scales (Inconsistency, Infre-
quency, Negative Impression, and Positive Impression);
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11 clinical scales covering the major categories of
pathology corresponding to the DSM nosology (i.e.,
Somatic Complaints, Anxiety, Anxiety-Related Disorders,
Depression, Mania, Paranoia, Schizophrenia, Border-
line Features, Antisocial Features, Alcohol Problems,
and Drug Problems); five treatment scales measuring
constructs related to treatment and case manage-
ment (i.e., Aggression, Suicidal Ideation, Stress,
Nonsupport, and Treatment Rejection); and two inter-
personal scales (i.e., Dominance and Warmth).
Respondents are asked to read each item and decide
the self-accuracy of the statements on a 4-point
Likert-type scale (i.e., False–Not at All True, Slightly
True, Mainly True, or Very True). The PAI generally
takes respondents 45–50 minutes to complete.

Unlike similar objective measures of personality
and psychopathology (e.g., Minnesota Multiphasic
Personality Inventory-2), all of the PAI scales are
independent, with no item overlap. Among the com-
bined normative sample, test-retest reliability of PAI
clinical scales over an average of 24 days ranged from
.79 to .92. This reflects the fact that the instrument
taps relatively enduring patient characteristics rather
than current clinical state alone. Validity studies have
generally found the PAI scales to represent the
domains of interest, sufficiently discriminate among
clinical symptoms, and correlate with alternate exis-
tent measures of personality and psychopathology.
Comparative norms exist for general adults, adult
psychiatric inpatients, and college students (ages 18
and older).

Although a relatively new assessment instrument,
the PAI has gained wide support from researchers,
professional trainers, and practitioners. Since its intro-
duction in 1991, the PAI has been included in more
than 300 published studies. In addition, the PAI ranks
fourth among personality tests employed by graduate
training programs and predoctoral internships accred-
ited by the American Psychological Association. With
regard to practice applications, and in addition to tra-
ditional psychotherapeutic settings, the PAI is widely
used in forensic settings and in legal cases involving
emotional injury.

—Jacob J. Levy

Further Reading

Morey, L. C. (1991). The Personality Assessment Inventory
professional manual. Odessa, FL: Psychology Assessment
Resources.

Morey, L. C. (1996). An interpretive guide to the Personality
Assessment Inventory. Odessa, FL: Psychology Assessment
Resources.
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NJ: Wiley.

Psychology Assessment Resources: http://www.parinc.com

PERSONALITY RESEARCH FORM

The Personality Research Form (published by Sigma
Assessment Systems) was developed by Douglas N.
Jackson to assess Murray’s comprehensive system of
human needs. The PRF can be viewed as tapping fun-
damental features of motivation with broad relevance
to human behavior across diverse contexts.

Various forms of the PRF are available. A and B
are parallel forms and shorter, with only 15 scales.
Forms AA and BB are also parallel forms and, like
E, contain an additional 7 scales. Form G is the same
as Form E but does not contain the Infrequency
scale. The scales for forms A, B, AA, and BB contain
20 items each, whereas the scales of E and G contain
16 items each. Forms E and G are by far the most
commonly used. The PRF-E contains 20 content
scales for assessing human needs and two validity
scales (Infrequency and Desirability). Infrequency
was designed to assess random or careless respond-
ing or invalidity due to poor language comprehen-
sion. The Infrequency items are unlikely but not
impossible. A score of 4 out of 16 indicates invalid-
ity. Desirability is a measure of the evaluative good-
bad dimension in which low scores can indicate an
insensitivity to evaluation and high scores represent
a propensity to appear favorable. The Desirability
scale was also used for item selection. There is no
item overlap between any of the 22 scales, and, with
the exception of Infrequency, items were selected
that correlated more highly with their own scale than
any other scale.
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The 22 scales of Form E contain 8 items true keyed
and 8 items false keyed. Items are ordered to foster
local independence by presenting one item from each
of the 22 scales, and then this block of 22 items repeats
in the same sequence with alternative keying. The 20
bipolar content scales of Form E can be categorized
into the following: (a) impulse expression and control
(Impulsivity and Change vs. Harm Avoidance), (b)
work and play (Achievement and Endurance vs. 
Play), (c) direction from other people (Succorance 
vs. Autonomy), (d) intellectual and aesthetic pursuits
(Understanding and Sentience), (e) ascendance
(Dominance vs. Abasement), and (f) interpersonal
relationships (Affiliation, Nurturance, Exhibition, and
Social Recognition vs. Aggression and Defendence).

The PRF can be administered in paper-and-pencil
format with reusable question booklets to individuals or
to groups and takes about 35 minutes. In addition to
hand scoring, mail-in scoring, and Internet scoring,
computerized administration with automated scoring
and reporting is also available. Software reports are
either clinical with some interpretation or ASCII (text)
data file reports for research. The PRF is available in
English, French, and Spanish. The reading level is
between Grades 5 and 6. Normative data stratified by
gender are available separately for juveniles and adults.

—John R. Reddon

See also Jackson, Douglas N.; Personality Assessment Inventory
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PERSONALITY TESTS

The term personality is conventionally defined in broad
terms to reflect the enduring internal and manifested

features of one’s character that influence behavior
across different situations and settings. In measuring
these internal and manifested features, personality
tests are used to assess one’s affective, motiva-
tional, interpersonal, and attitudinal characteristics,
as opposed to one’s abilities or achievements.
Personality tests can be categorized by the method in
which data are obtained (e.g., self-report vs. projec-
tive methods) as well as by the type of personality
information one wishes to assess (e.g., psychopatho-
logical personality assessment vs. nonpathological or
normal personality assessment). This entry will pro-
vide a brief overview of the issues pertinent to both
methods and types of personality tests.

Self-Report Personality Tests

Personality is most commonly assessed by asking
respondents to endorse, rank, or otherwise acknowl-
edge that they possess certain characteristics, hold
certain attitudes and beliefs, or exhibit certain behav-
iors by administering one or more self-report person-
ality inventories. Self-report measures provide
specific stimulus materials, usually in terms of ques-
tions, statements, and descriptor lists. For example,
one of the earliest self-report personality tests is the
Adjective Checklist. This test consists of a list of more
than 300 adjectives or personality descriptors in
which the respondent is asked to “check” the ones 
that are generally accurate descriptions of themselves
(examples of adjectives are happy, sad, anxious,
depressed, friendly, etc.). Over the years, self-report
inventories expanded beyond simple descriptors to
include questions and statements about beliefs,
attitudes, and behaviors, including broad measures 
of personality (e.g., the Minnesota Multiphasic
Personality Inventory, the 16 Personality Factors
Questionnaire, California Personality Inventory, etc.)
as well as more narrowly focused personality mea-
sures (e.g., Beck Depression Inventory, State-Trait
Anxiety Inventory, State-Trait Anger Expression
Inventory).

Development of self-report measures generally
involves some combination of rational (or theoretical)
empiricism. Items for self-report tests are generated
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because they fit what one rationally (or theoretically)
believes represents the domain of interest. For
example, if one is interested in developing a self-
report measure of extraversion, one would begin by
constructing items that rationally describe what it
means to be extraverted (e.g., I enjoy interacting with
a large group of people; I am a very sociable person).
Other instruments are designed to measure a specific
theory of personality. For example, items on the
Millon Clinical Multiaxial Inventory reflect Theodore
Millon’s theory of personality. Once items are con-
ceptualized (rationally or theoretically), they are then
empirically examined within the population. Items are
included on the final version of the test because they
discriminate consistently and significantly between
people who possess or represent the domain of inter-
est (e.g., extraverts) and those who do not possess 
or represent the domain of interest (e.g., introverts).
Thus, self-report personality tests rely heavily on
psychometric properties (i.e., reliability, content and
construct validity).

One of the most critical issues regarding self-report
personality testing is unfair test bias. Test bias is
defined as the statistical difference found on test
results among groups (e.g., difference found between
women and men, difference found among racial or eth-
nic groups). Bias becomes unfair when the differences
in test results among groups are not due to actual dif-
ference in the domain of interest, but rather due to
some extraneous factor. For example, if the domain of
interest is competitiveness, and the test item states, “I
like to race in regattas,” only people who have knowl-
edge of and had opportunities to engage in yacht
racing would endorse this item. Respondents without
such knowledge of and opportunities to participate in
regattas would not endorse this item, but very well may
be as competitive as those who do endorse this item. In
this case, the bias may be unfair on the basis of socio-
economic status, and possibly race, ethnicity, gender,
and geographic origin. That is not to say that the item
does not measure the domain of interest, but rather that
the item has differential validity based on various
social, cultural, and demographic variables. Thus, when
selecting a self-report personality test, it is crucial to
inquire about the standardization sample on which the

test was normed, as well as which populations the test
has been found to appropriately represent. In addition,
self-report inventories are not always appropriate for
groups of people who may have difficulty understand-
ing or responding to test material (e.g., children, the
elderly, or people with below-average cognitive func-
tioning). In these cases, alternative means of assess-
ment may include interviews, behavioral assessments,
or other-report inventories (from teacher, parents,
partner, peer).

Projective Techniques

Another method of assessing personality avoids the
potential pitfall of having test material that may be
more or less familiar to certain groups—projective
techniques. Projective personality tests involve pre-
senting respondents with ambiguous stimuli (e.g.,
inkblots, pictures) and having them provide (or pro-
ject) meaning or interpretation for the stimuli. The
underlying assumption of this method is that the way
in which the respondent perceives and interprets the
ambiguous stimuli reflects one’s personality. Thus,
the respondent is free to project any thoughts, feel-
ings, attitudes, or beliefs onto the stimuli and is not
limited to responding to a specific set of questions or
statements.

Projective techniques evolved out of the psychoan-
alytic tradition. One of the defense mechanisms for
anxiety identified by Sigmund Freud was projection,
which is described as placing (or projecting) anxiety-
arousing impulses onto other objects (in Freud’s
theory, these objects were other people). For example,
if one is frightened by seeing a snake while walking in
the woods with a friend, one may react by saying, “We
need to leave because you are scared.” Projective tech-
niques operate in a similar manner. For example, on
the Thematic Apperception Test, pictures of people in
ambiguous situations are presented, and respondents
are to tell a story about what is happening in the pic-
ture. It is believed that the respondents will project
their own feelings, attitudes, and beliefs onto the char-
acters in the pictures.

Although many projective techniques are not scored
numerically, as with self-report measures, psychometric
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properties remain relevant. Interpretations of one’s
responses to projective materials need to be consistent
across test administrators (i.e., interrater reliability 
is crucial). With regard to validity, projective stimuli
rarely (if ever) have content validity because they are
designed to be ambiguous. The type of validity that is
most crucial in projective testing is criterion-related
validity (i.e., concurrent and predictive). Results of
projective testing should yield correspondence to
other evidence associated with the domain of interest
and should also be predictive of future behavior.
Potential test bias is also a critical issue; however, the
nature of test bias in projective testing differs from
self-report inventories. For projective techniques, bias
does not exist with the item or stimulus object, but
rather in the interpretation of responses. In interpret-
ing responses to projective material, consideration of
cultural, social, and other salient factors must be
included. The lack of agreement among professionals
about how to interpret projective techniques remains
one of the biggest problems with this method of per-
sonality testing.

Testing for Psychopathology

In clinical contexts, personality testing is typically
used to assess for the presence of psychopathology 
as well as issues of emotional adjustment. The most
widely used measure of personality and psychopath-
ology is the Minnesota Multiphasic Personality
Inventory (MMPI; now in its second edition—MMPI-2;
also available in an adolescent version—MMPI-A).
This is a self-report test designed to assess a broad
array of psychological symptoms and is primarily
employed as a diagnostic aid (it should be noted that
no single test or assessment technique should be the
only criterion for assigning psychiatric or psycho-
logical diagnoses). Other commonly used broad self-
report measures of personality and psychopathology
are the Personality Assessment Inventory (PAI); the
Personality Diagnostic Questionnaire (PDQ; now in its
fourth edition—PDQ-4); the Personality Inventory for
Children (PIC; now in its second edition—PIC-2; this
inventory is completed by the child’s parent or
guardian); and the Millon Clinical Multiaxial Inventory

(MCMI, now in its third edition—MCMI-III; this
measure has a strong focus on assessing personality
disorders). In addition to broad measures of personal
pathology and psychopathology, many self-report
measures have been developed to assess for specific
psychopathological symptoms and disorders. Some of
the most common self-report measures used to assess
narrow personality constructs are the Beck Depression
Inventory (BDI; now in its second edition—BDI-II);
the State-Trait Anxiety Inventory (STAI); the State-
Trait Anger Expression Inventory (STAXI; now in 
its second edition—STAXI-2); and the Hamilton
Depression Rating Scale (HAMD).

Several projective techniques are also commonly
used to assess personality and psychopathology.
Projective techniques may be preferable to self-report
measures with clients who may have a tendency to
misrepresent themselves (regardless of intention).
Because projective techniques lack face validity, it is
difficult for respondents to fake the “correct” answer.
Also, the content of projective responses is gener-
ally less important than the themes or patterns of
responses. The two most popular projective tech-
niques used to assess for psychopathology are the
Rorschach Inkblot Method (RIM) and the Thematic
Apperception Test (TAT). Other common projective
techniques include sentence completion tests, graphic
techniques, and assessments of early memories.

Nonpathological Personality Testing

Personality tests are not always used to assess psy-
chopathology or what is “wrong” with one’s personal-
ity. Many tests have been developed to assess one’s
“normal” personality or how one generally interacts
with his or her environment. This type of nonpatho-
logical, or normal, personality testing arose out of the
work of trait theorists, such as Gordon Allport,
Raymond Cattell, and others. The underlying philoso-
phy of trait theory is that all people are born with
distinguishing personal characteristics and qualities
called traits. These traits interact with one’s environ-
ment, resulting in a variety of outcomes (e.g., satisfy-
ing or unsatisfying). The current state of the field
generally endorses a five-factor model of personality
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(referred to as the “Big Five”): Neuroticism (also
referred to by its inverse, Emotional Stability);
Extraversion; Openness; Agreeableness; and Con-
scientiousness. Some of the most popular tests for
assessing one’s normal personality traits include the
NEO Personality Inventory (NEO-PI, now revised—
NEO-PI-R), the 16 Personality Factor Questionnaire
(16PF), and the Myers-Briggs Type Indicator (MBTI).
In addition to trait-based tests of normal personality,
other tests have also been designed to measure salient
psychological issues in normal populations. The 
most prominent of these measures is the California
Personality Inventory (CPI). One context in which
these types of personality tests have been very popu-
lar is in educational and vocational counseling.

—Jacob J. Levy
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PIE CHART

Pie charts are used to illustrate proportions for cate-
gorical variables (nominal or ordinal data). An entire
pie represents 100% of the measured variable. The
sectors of a pie are proportional to the total number.
Negative numbers and percentages over 100 are not
presented in a pie chart. These charts are sometimes
labeled as 100%, cake, circle, or percentage charts.

Figure 1 is a pie chart created with Microsoft
PowerPoint that illustrates the percentage of time day
cares devote to various activities during a 9-hour day.

The following are options that can be considered
when creating a pie chart:

1. Each pie sector has a color and/or pattern that distin-
guishes it from other pie sectors.

2. The smallest pie sectors must be distinguishable.

3. The largest pie sector starts at the 12 o’clock position.

4. A legend is provided to the right of the pie chart.

5. The percentages can be included either inside or out-
side each pie sector. They may be placed outside if
the small sectors are not large enough to accommo-
date their size.

—Adelheid A. M. Nicol

See also Bar Chart
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413–431.
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Information Technology, 22, 421–426.

Spence, I., & Lewandowsky, S. (1991). Displaying proportions
and percentages. Applied Cognitive Psychology, 5, 61–77.

PIERS-HARRIS CHILDREN’S
SELF-CONCEPT SCALE

The Piers-Harris Children’s Self-Concept Scale
(PHCSCS), published by Psychological Assessment
Resources, is also titled “The Way I Feel About Myself.”
It is a self-reported instrument that was designed to be
used in research as well as in clinical and educational
settings. Thus, the purpose of the PHCSCS is to mea-
sure conscious self-perceptions in children rather than
drawing inferences from perceptions of other people
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or behavioral observations. The PHCSCS is an impor-
tant contribution to the field of self-concept’s measur-
ing instruments, because its items portray global as
well as particular areas of self-concept prior to the
current focal point of multidimensionality.

The test was conceived as a unidimensional mea-
surement device of children’s self-concept in connec-
tion with six areas of their everyday functioning:
Behavior (BEH), Intellectual and School Status (INT),
Physical Appearance and Attributes (PHY), Anxiety
(ANX), Popularity (POP), and Happiness and Satis-
faction (HAP). However, the multidimensional status of
the scale has been pointed out in the most recent
research. The PHCSCS includes two additional scales,
the Inconsistency Index and the Response Bias Index.

The original scale contained 80 items, but a second
edition consists of 60 items. Both are answered by 
a dichotomous “yes” or “no” response (e.g., “I am a
happy person . . . yes no”). All the domains of the
scale have the same names in both editions, except for
two: Behavior has changed to Behavioral Adjustment
(BEH), and Anxiety has changed to Freedom from
Anxiety (FRE).

The theoretical rationale of its construction is based
on the notion that the self-concept expresses both an
overall aspect of self and special perceptions that are
formed through interaction with other people. More
specifically, the reasoning is derived from the follow-
ing assumptions: (a) The self-concept has a phenome-
nological nature, (b) the self-concept has global and
social elements, (c) the self-concept is relatively stable,
(d) the self-concept has appraisable and descriptive
elements, (e) the self-concept is affected by develop-
mental considerations, and (f) the self-concept is orga-
nized and plays a leading part in motivation.

The PHCSCS measures the self-concept of
children ages 8–18 years (Grades 4 through 12), and
the test taker will need 30 minutes to complete it. The
test can be administered individually or in groups. The
scale yields a total score and separate scale scores,
both of which are converted to stanines, percentile
ranks, and T scores.

The PHCSCS has adequate internal consistency
reliability, although its test-retest reliability is low and
its construct validity is modest.

The instrument is useful for screening purposes in
clinical, educational, and research settings.

—Demetrios S. Alexopoulos
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POISSON, SIMÉON DENIS

(1781–1840)

Siméon Denis Poisson was born in Pithiviers, France.
In 1825, he was awarded the title Baron, and in 1837,
Peer of France.

The story is told that when Poisson was a child, his
nanny once suspended him from a nail to protect him
from animals prior to leaving him to conduct house-
hold errands. In swinging back and forth to release
himself, he became interested in the properties of the
pendulum, which he later studied extensively.

His mathematical talents were first noticed by
Adrien-Marie Legendre (1752–1833) when Poisson
was only 17. With Legendre’s support, Poisson pub-
lished a paper on finite differences in Recueil de
Savants Étranges when he was only 18.

Poisson graduated from École Polytechnique. His
teachers were Joseph Louis Lagrange (1736–1813)
and Pierre Simon Laplace (1749–1827). He accepted
a position at Polytechnique and rose through the ranks
as Lecturer (Deputy Professor) in 1802, Professor
(1806), and Examiner (1816). In 1808, he gained an
appointment as Astronomer at Bureau des Longitudes,
and he obtained a joint appointment as Chairman of
Mechanics at the Faculté des Sciences in 1809. He
was elected to the physics section of the Institut
National des Sciences et des Arts (Académie des
Sciences) in 1812. He became an Examiner for the
École Militaire in 1815.

He published about 400 works, most of which
appeared in Journal de l’École Polytechnique, Mémoires
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de l’Académie, and Connaissance des Temps. Poisson
published in applied subjects, such as heat, celestial
mechanics, and magnetism. His name is associated
with the Poisson integral (potential theory), Poisson
ratio (elasticity), and Poisson constant (electricity).
Among his most important works are the Traité de
Méchanicque, with Volume 1 published in 1811 and
Volume 2 published in 1833. This masterpiece is
remarkable considering Poisson was never involved in
conducting experiments.

He also published extensively in pure mathematics.
His name is associated with Poisson brackets (differ-
ential equations). His major work in probability theory
was Recherches sur la Probabilité de Jugements, pub-
lished in 1837, in which he coined the phrase “law of
large numbers,” derived from the work of Bernoulli.
The major implication is that the binomial distribution
tends toward the normal distribution as the number of
trials increases, but as the number of successes
decreases, the limit becomes the Poisson distribution.

Poisson was a gifted mathematician and teacher.
His students included Michel Chasles (1793–1880),
Gustav Peter Lejeune Dirichlet (1805–1859), and Joseph
Liouville (1808–1882), who led the next generation’s
mathematicians.

—Shlomo S. Sawilowsky
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POISSON DISTRIBUTION

A genesis of Poisson distribution with a misnomen-
clature is interesting and intriguing. It was first intro-
duced by de Movire (1718) rather than French

probabilist Siméon D. Poisson (1837), although the
distribution is named Poisson. The Poisson distribu-
tion has been frequently employed to explain uncer-
tainty in count data such as radioactive decay, traffic
congestion, molecular motions, and so on, as long as
it is about rarity. For an example, the number of incor-
rect answers in a series of questions in item response
theory is considered to follow a Poisson distribution
by psychologists.

For a chance mechanism to be governed and
explained by a Poisson distribution, three assump-
tions should be validated: (a) The chance of an
event occurring is proportional to the size of the
time interval, which is usually infinitely small; (b)
the chance of two or more events occurring together
in that smaller time interval is slim; and (c) what
happens in one time interval is stochastically
independent of what happens in any other time
interval. The probability mass function of Poisson
distribution is

p(y) = e–λ λy / y!,

where y = 0, 1, 2, . . . , a collection of observables in
the sample space 0 < λ < ∞ constitutes parametric
space. The factorial moments E[Y(Y – 1) . . . (Y – k +
1)] of order k are simply λk. Both Poisson events Y =
Ymode and Y = Ymode – 1 are equally probable when the
parameter λ is an integer and equal to Ymode.
Otherwise, only the event Ymode is the most probable
event.

The Poisson distribution is a member of the linear
exponential family. The Poisson probability model
for counts data is popularly used to describe rare
events, arrival patterns in queuing systems, particle
physics, number of cancerous cells, reliability
theory, risk, insurance, toxicology, bacteriology,
number of accidents, number of epileptic seizures,
and number of cholera cases in an epidemic, among
others.

A unique property of Poisson distribution is the
equality of mean and variance. That is, var(Y) = λ =
E(Y). In reality, this unique Poisson property is falsi-
fied by Poisson-like data. To match such an anomaly,
several extensions of Poisson distribution have been
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suggested and used. One such extension is incidence
rate restricted Poisson distribution, which was intro-
duced by Shanmugam. However, a square root
transformation √Y

__
stabilizes the Poisson variability. 

When the Poisson parameter, λ, in repeated studies is
noticed to be stochastically fluctuating and following
a gamma probability density curve, the Poisson ran-
dom variable, Y, is convoluted with a gamma density
curve, and it yields an unconditional probability dis-
tribution called an inverse binomial distribution. The
zero truncated inverse binomial distribution, with 
its scale parameter becoming negligible, approaches
what is called logarithmic series distribution. Ecologists,
including the well-known R. A. Fisher, applied loga-
rithmic series distribution to illustrate the diversity of
species on earth.

The sum Y1 + Y2 + . . . + Yn of two or more (n ≥ 2)
independent Poisson random variables follows a
Poisson distribution with parameter equal to the 
sum of the parameters, ∑

n

i=1
λi . Also, the conditional dis-

tribution of any one Yi = yi, given the sum ∑
n

i=1
Yi = t of

Poisson observations, follows a binomial distribution

,

where yi = 0, 1, 2, . . . , t. Using this property,
Shanmugam devised a simple and powerful test statis-
tic to verify whether collected observations have come
from an intended Poisson population or a size-biased
Poisson population. Actually sampled population
sometimes differs from the intended population. In a
random sampling, every unit in the population should
have an equal chance of being observed. Instead, the
unit with a larger value has a greater chance of being
observed in the sample, and such imbalanced impor-
tance of observing is recognized as size-biased sam-
pling. The size-biased data are realizations of a not
intended but actually sampled population.

Whether the Poisson parameters are equal (that is,
λ1 = λ2 = . . . = λn) is tested using what is known as
dispersion test statistic D = ∑

n

i=1
(yi – y

_
)2 / y

_
, which

follows a chi-squared distribution with n – 1 degrees

of freedom. The maximum likelihood (also,
moment) estimator of the Poisson parameter is λ

_
= y

_
.

When λ1 = λ2 = . . . = λn is true, the sum ∑
n

i=1
Yi = t is

called complete sufficient statistic because the
conditional (binomial) distribution p(yi |t,n) is free of
parameter.

Suppose that Poisson distributed counts Y11, Y12,
Y21, and Y22 with their parameters λ11, λ12, λ21, and λ22

constitute entries in a 2 × 2 categorical table in case-
control studies. Then, the random variable Y11 for
given sums Yi1 + Yi2 = ri and Y1j + Y2j = cj follows a
noncentral, hypergeometric distribution with noncen-
tral parameter δ = λ11λ12λ21λ22.

The mean and variance are equal only in Poisson
distribution. Using this property, several characteriza-
tions of Poisson distribution within a specified class of
distributions have been done. This property is also
used as a baseline value to identify and explain the
occurrence of a phenomenon called overdispersion
in data.

Poisson is an extreme case of a binomial chance
mechanism under extremely large sample size when
the chance of an event is slim in each case. In a ran-
dom sample of n persons from a neighborhood, the
number (Y) of persons among them might have a spe-
cific disease if the chance of contracting the disease is
0 < p < 1. That is, the binomial distribution

converges to Poisson probability mass function as
shown below.

lim
n→∞
p→0
np=λ

n!

y!(n − y)!
py(1 − p)n−y

= λy

y!

[

lim
n→∞

(

1 − λ

n

)]n [

lim
n→∞

(

1 − λ

n

)]y

[

lim
n→∞

(

1 − 1

n

)

. . .

(

1 − y − 1

n

)]

= e−λλy

y!

Pr[Y = y|n, p] =
(

n

y

)

py(1 − p)n−y,

y = 0, 1, 2, . . . , n,

p(yi|t, n) =
(

t

yi

)
⎛

⎜
⎝

λi

n∑

i=1
λi

⎞

⎟
⎠

yi
⎛

⎜
⎝1 − λi

n∑

i=1
λi

⎞

⎟
⎠

t−yi
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Likewise, the inverse binomial distribution

converges to Poisson distribution when the so-called
convolution parameter k is large. In a health screening,
suppose a clinical researcher is engaged in searching
for persons in a general population until a collection of
k persons with a specified illness is identified.

The coefficient of variation (CV) is the ratio σ /µ
of the standard deviation to the mean. The CV is scale
free and illustrates the variability in the data as a per-
centage of its mean value. Applied scientists are fond
of CV to compare several populations. For examples,
CV portrays the effect of a gene in molecular studies,
financial risk in stock market studies, income
inequality in economics, and ecological improvement
in aquatic systems. In Poisson distribution, the CV is
λ–1/2. Poisson and inverse binomial distributions are
alternatively used to fit count data, but a comparison
of their performances in terms of CV becomes diffi-
cult because their domain of possibilities is different
in the scale. The CV of inverse binomial and Poisson
distributions are respectively (0, 1) and (0, ∞). For the
sake of comparing the performances of Poisson and
inverse binomial distributions, Shanmugam and
Singh introduced a new way of defining CV, and it is
e−λ(1 – e−λ) for the Poisson distribution. The CV for
the inverse binomial distribution is (1 – p)−k[1 – (1 –
p)k+1]. Notice that the domain of Shanmugam and
Singh’s CV for Poisson and inverse binomial distrib-
utions are (0, 1), making the comparison easier and
meaningful.

For the collected Poisson distributed data on Y and
predictor variables x, a Poisson regression or so-called
log linear regression can be built with the relation 
λ = exp(β0 + β1x), which is called link function. An
interpretation of this link function is that when the
predictor x increases by one unit, the count on Y is
expected to increase by an amount eβ1.

When the expected value of Poisson observation,
Y(t), in time interval of length t is a time-varying rate
λ(t), then it is called nonhomogeneous Poisson

process, and λ(τ ) = ∫
g(τ)

0
λ(t)dt is called Poisson

intensity function. Suppose for the ith sampling unit,
there is a relation like λi(t) = λ0 exp(∑

k

j=1
βjxj) with

covariates x1, x2, . . . , xk, then λ0 is called the baseline
value and the corresponding λ0[g(τ)] is the baseline
intensity function. Special cases include exponential,
Weibull, or extreme-value intensity functions if h(τ) =
τ, τη, eατ, respectively.

Like in several discrete distributions of the mean
exponential family, the standardized Poisson variate

also approaches the standard Gaussian distribution.
The cumulative distribution function Pr[Y ≤ c] is
simply the chi-squared survival function Pr[χ2

2(c+1)df >
2λ] with 2(c + 1) degrees of freedom. Based on the
property

ln(y!Pr[Y = y]) = −λ + y lnλ,

D. C. Hoaglin and his colleagues devised a graphical
technique to verify whether collected data are from a
Poisson population. The data are from a Poisson
population if the plot of 

versus y is a linear line with intercept and slope equal
to −λ and ln λ. The so-called damage model estab-
lishes that unless the damaged part D and the undam-
aged part Y – D follow independently a Poisson
distribution with parameters λp and λ(1 – p) respec-
tively, the complete observation Y = D + undamaged
follows a Poisson distribution with parameter λ where
p denotes the chance for an observation to be dam-
aged. For an example, note that Y and D might be the
number of cancerous and successfully eliminated can-
cerous cells in a laser therapy.

In spite of being the natural choice for data on
rare events, the Poisson distribution has failed many
times. Shanmugam stated that there is only a 4%
chance that the chance mechanism regarding the

ln

(

y!
# observations = y

SampleSize

)

Z = Y − E(Y )√
var(Y)

= Y − λ√
λ

Pr[Y = y|k, p] =
(

k + y − 1
y

)

pk(1 − p)y,

y = 0, 1, 2, . . . ,∞,
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number of accidents per day in a location near
Virginia State will be a Poisson. With respect to the
number of chromatid aberrations in gene mutation
analysis, the performance of Poisson distribution has
been reported to be worse, even though the data are
about rareness. Where does the fallacy occur? Is it
due to the lack of equality of mean and variance? To
combat such mistrust, what is commonly done in the
Bayesian approach is that the Poisson parameter is
assumed to follow a probability distribution. This
approach results in an inverse binomial distribu-
tion, but we part company with Poissonness. Instead,
Shanmugam recommends using what is known as
incidence rate restricted Poisson distribution with a
probability mass function

where the incidence parameter λ is restricted by β on
the upper side and y = 0, 1, 2, . . . . The moment esti-
mate of mean and variance of the incidence rate
restricted Poisson are respectively λ̂ = y

_
3/2/ s and

β̂ = λ̂ / (1–( y
_

/s2)1/2) where y
_ 

and s2 are sample mean
and variance, respectively. When β̂ = ∞, or, equiva-
lently, s2 = y

_
, the above probability mass function of

the incidence rate restricted Poisson distribution
simplifies to Poisson distribution. This implies that
the usual Poisson distribution is appropriate when the
incidence parameter is unrestricted. The size-biased
incidence rate restricted Poisson distribution with
probability mass function

was found to fit well with international terrorism data
by Shanmugam, where y = 0, 1, 2, . . . .

When both the probability mass and the mean
functions can be expressed in an exponential format,
it has been defined by Shanmugam to be mean
exponential family (MEF) distributions. A Poisson 
distribution is a member of the MEF. Using a
characterization of MEF, Shanmugam devised a

goodness-of-fit test for an unbiased and a size-biased
Poisson sample. That is, a nonnegative random sam-
ple y1, y2, . . . , yn of size n could be considered to have
come from an intended (or size-biased) Poisson pop-
ulation with 100(1 − α)% confidence level if the stan-
dardized score

or,

is less than or equal to za / 2, respectively, where n* = 
n – # zero observations and y

_
* = # nonzero observa-

tions over n*.

—Ramalingam Shanmugam
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PORTFOLIO ASSESSMENT

A portfolio is a systematic, purposeful, and ongoing
collection of students’ work that exhibits their efforts
and achievements in one or more skill domains. The
content of a portfolio is created in response to specific
instructional objectives and evaluated in relation to
those objectives. Although teacher guidance and sup-
port are provided, portfolio development is primarily
the responsibility of the learner. Portfolio assessment
is not a single assessment method, but rather a process
of collecting, compiling, and maintaining information
from multiple sources to evaluate students’ learning
and development. This type of assessment places an
emphasis on what the learner can do, not on identify-
ing deficits or comparing performance and work prod-
ucts with those of other students. Portfolio assessment
is also an effective communication system for
conveying information to students, other teachers,
and parents about students’ progress and unique
accomplishments.

Although approaches to portfolio development and
assessment may vary, all share several key character-
istics. Portfolios reflect explicit learner outcomes,
identified in the curriculum and/or by teachers, that
students are expected to achieve; they focus on
students’ performance-based learning experiences as
well as their acquisition of knowledge and skills; they
contain samples of work that range over an entire
grading period, rather than a single point in time (e.g.,
a single test score); and they include a variety of dif-
ferent types and formats of evidence (e.g., written,
oral, graphic, media-based).

Benefits of Portfolio Assessment

Portfolio assessment is an alternative to the use 
of traditional grading systems and standardized

testing procedures, which may not provide teachers
with a clear understanding of students’ accomplish-
ments and, often, are not directly linked to instruc-
tion. The development of portfolio assessment
resulted from concerns surrounding traditional
assessment procedures and addressed the need for
an assessment method capable of demonstrating
what individual students know and what they can
accomplish. Traditional assessment practices mea-
sure students’ ability at one point in time, are usu-
ally conducted outside the context of classroom
instruction, and may not capture the full range of
students’ abilities. In contrast, portfolio assessment
measures students’ ability over time, is embedded
within instructional activities, and captures multi-
ple facets of students’ performance across diverse
skill areas.

There are multiple advantages to portfolio assess-
ment, especially for instructional planning and student
progress monitoring. First, portfolio assessment links
assessment information directly to teaching and
instructional outcomes. Portfolio artifacts are authen-
tic examples of classroom work, not divorced from
instructional activities as some test items can be.
Portfolio assessment is viewed as embedded assess-
ment, that is, assessment in which the assessment
tasks are actually part of instruction. As such, portfo-
lio assessment is an effective method to bring assess-
ment in line with instructional goals and provides
teachers with valuable information on which to base
their instructional decisions.

Second, because the products and evidence are
collected over time, portfolios serve as a record of
students’ growth and progress. Portfolio assessment is
longitudinal and continuous, providing both formative
(ongoing) and summative (culminating) opportunities
for monitoring students’ progress toward achieving
essential learning outcomes. It provides a comprehen-
sive body of student work that is used to evaluate
performance over time.

Third, using portfolio assessment enables
teachers to broaden their curriculum to include areas
they traditionally could not assess with standardized
testing or classroom exams. Portfolio assessment
complements teachers’ use of innovative instructional
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strategies centered around the use of teamwork,
group projects, and applied learning. Portfolio
assessment is also compatible with individualized
instruction and teaching strategies that focus on
unique learning styles. Rather than teaching “to the
test” and gearing instruction toward achieving high
test scores, portfolio assessment encourages teaching
and learning to help students acquire and apply new
knowledge.

Fourth, a portfolio is a form of assessment that
students complete together with teachers. An
important dimension of portfolio assessment is that
it encourages teacher-student collaboration and
actively involves students in the process of assess-
ment. Students are involved in choosing and justify-
ing the portfolio pieces to be included. Portfolio
assessment enables teachers to get to know students
and promotes joint goal setting and negotiation of
grades. It affords opportunities for students and
teachers to discuss learning goals and progress toward
these goals through both structured and informal
conferences.

Fifth, a portfolio enables students to demonstrate
their highest quality work, without the pressure of
high-stakes testing or time constraints. Portfolios are
multidimensional and include many different types
of artifacts that demonstrate various aspects of
students’ learning and a range of skills. Students can
include work at their own level and related to their
personal interests; portfolios accommodate different
learning styles and allow for demonstration of indi-
vidual learner strengths. Furthermore, students 
are empowered to select and justify their portfolio
entries, monitor their own progress, and establish
learning goals. The empowerment of students to
demonstrate their achievements and personal accom-
plishments through portfolio assessment has been
shown to enhance student motivation. Few tradi-
tional assessment practices afford students the
opportunity to assume an integral role in their own
learning and evaluation. Students feel a pride of
ownership of their portfolio work, and they see the
personal and academic relevance of the work they
have completed. Most importantly, students value
themselves as learners as they proceed through the

portfolio process of selecting work and reflecting on
each piece.

Implementation of
Portfolio Assessment

Implementation of portfolio assessment involves two
basic components, portfolio development and port-
folio evaluation. The development of a portfolio
occurs across three distinct phases. During Phase 1,
Organization and Planning, students and teachers col-
laborate to organize and plan the development of a
student’s portfolio. Questions for students to address
during this planning phase include the following: How
do I select work samples to reflect what I am learn-
ing? How do I organize and present the work I have
collected? How will I maintain and store my portfo-
lio? Phase 2, Collection, involves the collection and
compilation of work products that reflect the student’s
accomplishments and attainment of educational goals.
Portfolios may consist of a variety of written, oral,
graphic, or media content that demonstrate progress
over time, including notes, videotapes of presenta-
tions, photographs, logs, written summaries, and
samples of work. Students may also be evaluated on
projects or assignments completed in pairs or small
groups of students. Phase 3, Reflection, is a critical
feature of portfolio development. During this phase,
students engage in self-reflection on the learning
process and their developing knowledge and skills.
Students are required to evaluate their own progress
and the quality of their work in relation to targeted
goals or competencies. By reflecting on their own
learning, students begin to identify their strengths and
weaknesses. Identified weaknesses become goals for
improvement and future learning. Student reflections
may take the form of learning logs, reflective journals,
or self-ratings. When possible, teacher and parent
reflections on the student’s products and learning are
also included in a portfolio.

For effective evaluation of a portfolio to occur,
teachers must have scoring criteria in place that are
clearly communicated and understood by students.
The criteria for assessment of the portfolio contents is
articulated at the outset of the process. Portfolio
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evaluation is based on multiple criteria, such as the
student’s growth and development in relationship to
curriculum expectations and goals; his or her under-
standing of key concepts; the comprehensiveness,
accuracy, and relevance of work products; diversity of
entries; and thoughtfulness of self-reflections and jus-
tification of the selected artifacts. Scoring keys, rules,
or rubrics are designed for portfolios and shared with
students prior to evaluation. Letter grades, combined
with evaluative feedback, may be assigned to port-
folios based on the scoring rubric. Finally, a form of
oral interview or discussion between the teacher and
student is often included as part of the portfolio eval-
uation process.

Conclusion

Portfolio assessment fits well with the growing trend
in education toward monitoring and promoting all
students’ progress toward achievement of targeted
outcomes. Portfolio assessment improves upon tradi-
tional student testing practices by revealing a range of
skills and understandings. Portfolio assessment sup-
ports instructional goals, reflects students’ progress
and growth over a period of time, and encourages
students’ self-assessment and self-directed learning.

—Maribeth Gettinger
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POST HOC COMPARISONS

Post hoc comparisons among sample means from
three or more groups are generally performed only
after obtaining a significant omnibus F when we use
an ANOVA. After we find the various means are not
all equal, the second step is using post hoc compar-
isons to find out exactly which means are significantly
different from which other ones. In contrast to a priori
comparisons, which are chosen before the data are
collected, post hoc comparisons are tested after the
researcher has collected the data.

Post hoc comparisons include pairwise compar-
isons and nonpairwise comparisons. Pairwise compar-
isons compare two sample means at a time, whereas
nonpairwise comparisons compare more than two
sample means at a time.

The main post hoc comparison procedures include
Scheffé procedure and Tukey HSD (honestly signifi-
cant difference) procedure. The Scheffé procedure
allows for a comparison of all possible paired
comparisons and complex comparisons between
combined means.

The formula for the Scheffé test is as follows:

where

Σ, the Greek letter sigma, is the summation sign;

Cj is the coefficient used for any group;

Fc =
(∑

CjX
---

j

)2

(MSW)

(
∑ Cj

2

nj

) ,
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X
_

j is the mean of the corresponding group;

MSW is the mean square within from the analysis of
variance.

The Tukey HSD procedure only allows for a com-
parison of the possible pairs of means. The formula
for the Tukey HSD test is as follows:

where

X
_

1 and X
_

2 are two sample means that are needed for
comparison,

MSW is the mean square within from the analysis of
variance,

n1 is the number of scores of Group 1,

n2 is the number of scores of Group 2.

For example, the data set in Table 1 consists of 10
cases with two variables, Group and Test Score.

To produce the post hoc comparison, follow these
steps:

1. Compute the sample mean for each group.

Group 1 Group 2 Group 3 Group 4

Mean 9.70 10.70 9.80 7.10

2. Check the assumption of equal variance.

Levene Statistic df1 df2 Sig.

1.429 3 36 .250

To test the null hypothesis that groups come from
populations with the same variance, the Levene test
is produced. The observed significance level is larger
than .05. The null hypothesis is not rejected. Four
groups come from populations with the same variance.

3. Produce ANOVA to get the omnibus F test.
The null hypothesis of the F test is that all the

population means are the same.
The alternative hypothesis is that the population

means are not all equal.

HSD = X
---

1 − X
---

2√
(MSW/2)(1/n1 + 1/n2)

,

Post Hoc Comparisons———779

Table 1 Post Hoc Comparison Data Set

Group Test Score

1 10
1 9
1 13
1 13
1 9
1 8
1 5
1 10
1 9
1 11
2 13
2 12
2 10
2 11
2 13
2 14
2 12
2 9
2 8
2 5
3 11
3 10
3 10
3 12
3 10
3 8
3 7
3 11
3 10
3 9
4 7
4 9
4 5
4 7
4 6
4 5
4 6
4 8
4 9
4 9



Use a .05 significant level.

Sum of Mean
Squares df Square F Sig.

Between
Groups 72.075 3 24.025 5.382 .004

Within Groups 160.700 36 4.464
Total 232.775 39

According to the results of the F test, F(3,36) =
5.382, p = .004, p < .05, so we reject the null hypoth-
esis, and the four population means are not all equal.

4. Use post hoc comparison to determine which
means are significantly different from each other.

The results of the Scheffé procedure show that only
Group 2 and Group 4 are significantly different from

each other, whereas the results of the Tukey HSD
procedure show that Group 4 is significantly different
from Group 1, Group 2, and Group 3. The reason is
that the Scheffé test is more considerate than the
Tukey HSD test in holding Type I error low.

The SPSS output is shown in Tables 2 and 3.

—Bixiang Ren
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Table 2 Test of Homogeneity of Variances

testscore

Levene
Statistic df1 df2 Sig.

1.429 3 36 .250

Table 3 Post Hoc Tests: Multiple Comparisons

Dependent Variable: testscore

(I)group (J)group Mean Difference (I - J) Std. Error Sig.

Tukey HSD 1.00 2.00 −1.00000 .94487 .717
3.00 −.10000 .94487 1.000
4.00 2.60000(*) .94487 .044

2.00 1.00 1.00000 .94487 .717
3.00 .90000 .94487 .777
4.00 3.60000(*) .94487 .003

3.00 1.00 .10000 .94487 1.000
2.00 −.90000 .94487 .777
4.00 2.70000(*) .94487 .034

4.00 1.00 −2.60000(*) .94487 .044
2.00 −3.60000(*) .94487 .003
3.00 −2.70000(*) .94487 .034

Scheffé 1.00 2.00 −1.00000 .94487 .773
3.00 −.10000 .94487 1.000
4.00 2.60000 .94487 .073

2.00 1.00 1.00000 .94487 .773
3.00 .90000 .94487 .823
4.00 3.60000(*) .94487 .006

3.00 1.00 .10000 .94487 1.000
2.00 −.90000 .94487 .823
4.00 2.70000 .94487 .059

4.00 1.00 −2.60000 .94487 .073
2.00 −3.60000(*) .94487 .006
3.00 −2.70000 .94487 .059

* The mean difference is significant at the .05 level.



Further Reading

Poisson distribution definitions and illustrations: http://www
.stats.gla.ac.uk/steps/glossary/probability_distributions
.html#poisdistn

Poisson distribution generating applet: http://www.math.csusb
.edu/faculty/stanton/probstat/poisson.html

POSTERIOR DISTRIBUTION

The term posterior distribution refers to a probability
density function for an unobserved or latent variable,
θ, based on the observed data, x, used in Bayesian sta-
tistical analysis. In Bayesian data analysis, inferences
are made on the basis of the posterior distributions of
parameters. Bayes’ theorem is generally phrased in
terms of distributions of observed and unobserved
variables:

By using this formulation of Bayes’ theorem, statis-
ticians are able to make inferences about some para-
meter of interest, θ, given the observed data, x.
Therefore, under the framework of a Bayesian data
analysis, statistical inferences are based on a quantity
that is of direct interest to the analyst (i.e., θ), not some
proxy for that quantity of interest (i.e., the data, x).

In order to estimate the posterior distribution and
make inferences about it, three pieces of information
are required: (a) estimation of the function, f(x |θ),
often termed the “likelihood function,” which repre-
sents a statistical model that has been fit to the distrib-
ution of observed data, x, given the underlying
parameter, θ; (b) estimation of f(θ), referred to as the
“prior distribution,” which represents either the empir-
ical or expected distribution of the parameter, θ, in the
population, and (c) estimation of f(x), which represents
the empirical distribution of the observed data, x.

Inferences from the posterior distribution are typi-
cally made by determining point estimates for θ,
either by finding the mean of the posterior distribution
(referred to as an “expected a posteriori” estimate) or
by determining the mode of the posterior distribution

(referred to as a “modal a posteriori” estimate). The
standard error of θ is determined by estimating the
standard deviation of the posterior distribution.

—William P. Skorupski

See also Bayesian Statistics; Prior Distribution

Further Reading

Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (1995).
Bayesian data analysis. Boca Raton, FL: Chapman & Hall.

PREDICTIVE VALIDITY

There are several different types of validity, all of
which are used to establish a test’s “truthfulness,” or
whether the test does what it is supposed to do (the
main claim of validity). Among the many different
kinds of criterion validity, a subset is concurrent and
predictive validity.

Predictive validity allows the measurement special-
ist to judge how well a test predicts future perfor-
mance. The interest is in whether the instrument can
predict what it theoretically should be able to predict.

For example, the following outcomes would char-
acterize test and measurement tools that have predic-
tive validity.

• A math test predicts future performance in an occu-
pation where sophisticated mathematical skills are
essential, such as engineering or computer science.

• A test of spatial skills predicts future performance in
an occupation where the ability to visualize in more
than two dimensions is essential, such as mechani-
cally oriented tasks and professions.

• A test of personality predicts the configuration of
personal skills that might be needed to succeed in a
particular profession, such as hotel management.

What these three hypothetical statements have in
common is that each of the tests that is developed is
predictive of a later outcome (which is the criterion)
and hence, if they do their job, they have predictive
validity.

Predictive validity is most often established through
the simple Pearson product-moment correlation

f (θ | x) = f (x | θ)f (θ)

f (x)
.
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computed between the test itself and the criterion. To
then establish the predictive validity of the mathemat-
ics test mentioned above, test scores would be col-
lected and then correlated with some criterion used to
evaluate engineering skills a certain number of years
later. That simple zero-order correlation indicates the
strength of the association between the test and the
criterion and, hence, the predictive validity of the test.

—Neil J. Salkind

See also Concurrent Validity; Criterion Validity; Validity Theory

Further Reading

Predictive validity of the Graduate Management Admissions
Test report: http://www.gmac.com/gmac/NewsCenter/
Resources/FactSheetGMATValidity.htm

Predictive validity of the Graduate Record Examinations
advanced psychology test for grade performance in gradu-
ate psychology courses: http://www.findarticles.com/p/
articles/mi_m0FCR/is_1_36/ai_85007765

PRESCHOOL LANGUAGE

ASSESSMENT INSTRUMENT

The Preschool Language Assessment Instrument
(PLAI-2), published by PRO-ED (www.proedinc.com),
is a nationally standardized tool for assessing
children’s discourse abilities. It consists of 70 items
that are classified in terms of four levels of abstraction
(matching, selective analysis, reordering, and reason-
ing) and two modes of responding (receptive and
expressive). Items from each category are interspersed
to simulate the demands of classroom discourse. The
test, which takes about 30 minutes to administer, is
intended for children between 3 years, 0 months to 
5 years, 11 months. Scoring procedures classify
responses according to the levels of abstraction and
modes of responses yielding scores for six subtests for
4- to 5-year-olds. Reordering and reasoning are com-
bined for the 3-year-olds, resulting in five subtests.
The inclusion of normative data permits evaluation of
whether children’s classroom discourse skills are devel-
oping normally. The test also permits identification 

of strengths and weaknesses and documentation of
change over time.

The four levels of abstraction represent increasing
levels of difficulty encountered in classroom dis-
course. Receptive and expressive items are included
in each level. Matching, the lowest level of abstrac-
tion, involves naming items (e.g., “What is this?”),
pointing to named items (e.g., “Find me a cup”), fol-
lowing directions, or imitating. Some items require
visual matching and visual memory. Selective
Analysis, the next level of abstraction, requires selec-
tive attention to visual detail. The receptive items
require understanding descriptions (e.g., given a pic-
ture, “show me what we use for cleaning dishes” or
“find something we could eat with”), following
multistep directions, and identifying differences. The
expressive items involve answering a variety of Wh
questions (e.g., who, what, where, how, which, and
what is happening) in response to pictures or a brief
narrative. Auditory memory, integration, and classifi-
cation are required for successful responses at this
level. The third level of abstraction, Reordering,
requires overriding perceptual clues while selecting
or identifying multiple features in a picture (e.g., “If
I wanted to paint a picture, show me all the things I
don’t need”). This level also requires identifying sim-
ilarities, defining words (e.g., “Tell me what a fork
is”) or solving class inclusion problems. The highest
level of abstraction, Reasoning, requires predicting
events under specified conditions (e.g., “Given a
stack of blocks, select the picture that shows what
will happen if the bottom block is removed”). The
responses at this highest level specify predictions,
logical justifications, and causal relations.

Raw scores for each subtest are converted into
scaled standard scores, percentile ranks, descriptive
ratings, and age-equivalent scores. Scaled scores for
the receptive and expressive subtests are converted
into an overall Discourse Ability Score. The expres-
sive responses are also scored in terms of four levels
of adequacy and six types of interfering behaviors.
The authors describe these latter types of scores as
measures of pragmatic aspects of communication.

An original 165-item version and a more practical
60-item experimental edition of the test were
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developed in 1978. The original versions and the
current revised test are based on a model of class-
room discourse in which a child is required to
respond to varying levels of abstraction. At the low-
est level, language is connected to concrete percep-
tions, whereas at the highest level, language is used to
reflect upon perceptions. The PLAI-2 has expanded
the number of items from 60 to 70. It has added nor-
mative data representative of the 2000 U.S. popula-
tion, full-color illustrations, new reliability and
validity data, as well as two additional scales related
to adequacy of responses and interfering behaviors.
Reported data indicate that the overall Discourse
Ability Score meets current minimum standards for
test-retest reliability.

At the present time, published literature on the test
refers to the original versions. A positive feature of 
the test is the focus on assessing classroom discourse
skills. Issues regarding validity are discussed in
Skarakis-Doyle, Miller, and Reichheld.

The manual for the PLAI-2 addresses some of the
issues raised in the review.

—Jennifer R. Hsu

Further Reading

Blank, M., Rose, S. A., & Berlin, L. J. (1978). The language 
of learning: The preschool years. New York: Grune &
Stratton.

Haynes, W. O. (1985). Review of Preschool Language
Assessment Instrument, Experimental Edition. In J. V.
Mitchell (Ed.), The ninth mental measurements year-
book (pp. 1190–1192). Lincoln: University of Nebraska
Press.

Skarakis-Doyle, E., Miller, L. T., & Reichheld, M. (2000).
Construct validity as a foundation of evidence-based prac-
tice: The case of the Preschool Language Assessment
Instrument. Journal of Speech-Language Pathology and
Audiology, 24(4), 180–191.

Skarakis-Doyle, E., Miller, L. T., & Reichheld, M. (2001).
Construct validity as a foundation of evidence-based prac-
tice: The case of the Preschool Language Assessment
Instrument: Erratum. Journal of Speech-Language Pathology
and Audiology, 25(1), 40.

Marion Blank biography: http://www.laureatelearning.com/
professionals602/LLSinfo/authors.html#anchor30704660

PRINCIPAL COMPONENT ANALYSIS

Principal component analysis (PCA) is a multivariate
analysis technique whose goal is to reduce the dimen-
sionality of a large number of interrelated variables. 
It belongs to the class of projection methods and
achieves its objective by calculating one or more lin-
ear combinations of the original set of maximum vari-
ance. This criterion implies that the directions of
maximum variability in the data are those of interest.
PCA is a fairly old technique, because its basic formu-
lation can be traced back to the work of Pearson,
whereas its usual algebraic derivation is found in the
work of Hotelling. Moreover, for time series data, it
corresponds to the Karhunen-Loeve decomposition of
Watanabe. In its basic formulation, PCA is most suit-
able for numerical data; however, extensions to cate-
gorical data have been proposed in the literature,
together with some generalizations suitable for data
exhibiting nonlinearities. PCA has been proven to be
a very successful dimension reduction technique,
widely used in many scientific fields.

PCA Formulation

Data on K variables have been collected for N objects.
The data are organized in an N × K matrix X. We will
denote the variables by x1, x2, . . . , xK that correspond
to the columns of the data matrix x. It is customary to
work with standardized versions of the variables—
that is, Mean(Xk) = 0 and Var(Xk) = 1, k = 1, . . . , K,
the reason being to avoid the scale (range) of the vari-
ables to affect the results.

PCA constructs linear combinations of the original
variables yj = Xwj, j = 1, . . . , K that have maximum
variance. Collecting the yj variables in a matrix Y =
XW, the PCA problem can be written as

max
W

Cov(Y) = max
W

(WTRW), (1)

where R denotes the correlation matrix of the data
matrix X. It is further required that WTW = I, in
order to identify a unique solution. An application
of the Rayleigh-Ritz theorem shows that by per-
forming an eigenvalue decomposition of R = UΛΛUT
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and setting W = U, the optimal weight matrix W is
obtained. Hence, the jth column of W corresponds
to the eigenvector of R associated with the jth
largest eigenvalue.

The yj variables are called the principal compo-
nents. Some of their properties useful for understand-
ing and interpreting PCA are outlined next.

• The principal components have mean zero and are
uncorrelated.

• The variance of the jth principal component is given
by the corresponding eigenvalue; that is, Var(yj) = λj.

• The correlation of the jth principal component with
original variables is given by 
The latter quantity is called the factor loading.

• The proportion of total variance explained by 
each principal component is given by λj / ∑

p

j=1
λj. 

Remark: The above presentation took a data centric
point of view. An alternative derivation could have
been based on a population point, with R correspond-
ing to a known population correlation matrix.

Remark: Over the years, a considerable amount of
work has been devoted to deriving the probability dis-
tribution of sample principal components and their
variances. The results are mostly asymptotic, and 
they are often based on the assumption that the origi-
nal set of variables follows a multivariate normal
distribution.

Remark: The derivation of PCA was based on
the sample correlation matrix. However, if one
decided not to standardize the data, then the opti-
mal weights W correspond to the eigenvectors of
the sample covariance matrix. Unfortunately, there
is no straightforward mathematical relationship that
links the two analyses, namely, that based on the
correlation matrix and that based on the covariance
matrix.

PCA is illustrated next using a data set that gives
crime rates per 100,000 people for the 72 largest U.S.
cities in 1994. The variables correspond to the follow-
ing seven crimes: murder, rape, robbery, assault,
burglary, larceny, and motor vehicle thefts (MVTs).
Because of the disparity in the scale of the variables,
PCA was based on the correlation matrix of the data.
The first two eigenvalues accounted for 54% and 17%
of the total variance, respectively.

The optimal weights W of the crime variables for
the first two principal components are given in Table 1.

A projection of the 72 cities on the space spanned
by the first two principal components is shown in
Figure 1.

Looking at the weights of the first two principal
components, it can be seen that the first one can be
interpreted as an overall measure of crime activity.
With this interpretation in mind, the cities on the right
side of the plot, such as St. Louis, Atlanta, Tampa Bay,
Newark, Detroit, and Miami, can be characterized as
high-crime cities, whereas cities appearing on the left
side, such as Virginia Beach, San Jose, Colorado, and
Honolulu, can be characterized as low-crime cities. On
the other hand, the second principal component distin-
guishes between cities with high rape and larceny inci-
dents (and to some degree, burglaries) and cities with
high murder, robbery, and MVT incidents. So, on the
bottom of the picture, we find cities such as Newark;
Jersey City; Philadelphia; Santa Ana; Detroit;
Washington, DC; New York City; Chicago; and Long
Beach characterized by relatively more murder, rob-
bery, and MVT crimes, whereas in Oklahoma City,
Corpus Christi, Tucson, and Minneapolis, rapes and
larcenies are more frequent. However, one should be
careful regarding how far to proceed with this interpre-
tation. For example, it is appropriate to make such
statements for Newark and Detroit, which score high
on the first component as well. On the other hand, the
situation is not that clear for cities like Santa Ana,
whose score is fairly low on the first component.
Nevertheless, the second component allows one to dis-
tinguish between Corpus Christi and Santa Ana, which
score similarly on the first component. Therefore, the

Corr(yj , xi) = √
λjwi,j.
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Table 1 Optimal Weights (Loadings) for the Crimes
for the PCA of the 1994 U.S. Crime Rates

Variable PC1 PC2

Murder 0.370 –.339
Rape 0.249 0.466
Robbery 0.426 –.387
Assault 0.434 0.042
Burglary 0.449 0.238
Larceny 0.276 0.605
MVT 0.390 –.302



plot suggests that there are many more rapes in Corpus
Christi compared to Santa Ana or New York City,
whereas the latter two cities have more murders.

Generalizations of PCA

A variation of PCA is suitable for performing dimen-
sion reduction to categorical data. The corresponding
version of the technique is known as multiple corre-
spondence analysis.

Other generalizations try to deal with the presence
of nonlinearities in the data. Some of these approaches
are principal curves, local PCA, and kernel PCA.

Hastie and Stuetzle proposed the concept of a prin-
cipal curve, where the data are mapped to the closest
point on the curve, or, alternatively, every point on the
curve is the average of all the data points that are pro-
jected onto it (a different implementation of a centroid-
like principle). The regular PCA solution produces the
only straight lines possessing the above property.

Local PCA attempts to preserve the conceptual
simplicity and algorithmic simplicity of PCA in 
the presence of nonlinearities. One implementation 
first uses cluster analysis to group the data and
subsequently applies different principal component
analyses to the various clusters.
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Figure 1 PCA of the 1994 U.S. Crime Rates

Source: Michailidis & de Leeuw (1998).

Note: Projection of the 72 American cities on the first two principal components.



Finally, the main idea behind kernel PCA is that
nonlinearities in the original data essentially disappear
if the data are projected onto some higher dimensional
space, at which point regular PCA becomes an effec-
tive solution. Although this idea is contrary to the
spirit of PCA as a dimension reduction technique, it
has nevertheless enjoyed some success in application
areas such as handwritten digit recognition. In order
to make this idea computationally tractable, kernels
(to some extent, they can be thought of as generaliza-
tions of a covariance function) are used, which essen-
tially calculate inner products of the original
variables. It should be noted that kernels are at the
heart of support vector machines, a very popular and
successful classification technique.

—George Michailidis

See also Eigendecomposition; Correspondence Analysis;
Factor Analysis; Multiple Correspondence Analysis;
Multiple Factor Analysis; Singular and Generalized
Singular Value Decomposition; STATIS

Further Reading

Bregler, C., & Omohundro, M. (1994). Surface learning with
applications to lipreading. In J. D. Cowan, G. Tesauro, &
J. Alspector (Eds.), Advances in neural information pro-
cessing systems. San Mateo, CA: Morgan Kaufman.

Gifi, A. (1990). Nonlinear multivariate analysis. Chichester,
UK: Wiley.

Golub, G. H., & van Loan, C. F. (1989). Matrix computations.
Baltimore: Johns Hopkins University Press.

Hastie, T., & Stuetzle, W. (1989). Principal curves. Journal of
the American Statistical Association, 84, 502–516.

Liu, Z. Y., & Xu, L. (2003). Topological local principal com-
ponent analysis. Neurocomputing, 55, 739–745.

Michailidis, G., & de Leeuw, J. (1998). The Gifi system of
descriptive multivariate analysis. Statistical Science, 13,
307–336.

Scholkopf, B., Smola, A., & Muller, K. R. (1998). Nonlinear
component analysis as a kernel eigenvalue problem. Neural
Computation, 10, 1299–1319.

PRIOR DISTRIBUTION

The term prior distribution refers to an empirical 
or expected probability density function used in

Bayesian statistical analysis, which represents an
analyst’s belief about the distribution of an unob-
served parameter, θ, in the population. In Bayesian
data analysis, inferences are made on the basis of esti-
mated probability distributions for unobserved or
“latent” variables based on observed data. Bayes’ the-
orem is generally phrased in terms of distributions of
observed and unobserved variables:

By using this formulation of Bayes’ theorem, statis-
ticians are able to make inferences about some parame-
ter of interest, θ, given the observed data, x. This
density function, f(θ |x), is referred to as the posterior
distribution of θ, and it represents a probability density
function for the latent variable, θ, based on the
observed data, x. In this formulation, f(x |θ) is the “like-
lihood function,” which represents a statistical model
that has been fit to the distribution of observed data, x,
given the underlying parameter, θ. f(x) is the empirical
distribution of the observed data, x, and f(θ) is the prior
distribution for the unobserved parameter, θ.

Whereas f(x |θ) and f(x) are quantities estimated
using observed data, the prior distribution, f(θ), is typi-
cally unobserved and therefore must be selected by the
analyst based on a belief about how the parameter θ is
distributed in the population. Selection of an appropriate
value for a prior distribution is therefore critical to the
accuracy of results from a Bayesian statistical analysis.

Bayesian procedures incorporate information from
the prior distribution in order to make inferences.
Generally speaking, the prior distribution for θ is an
unobserved probability density function that must be
estimated somehow by the analyst. Often, this can be
done by making some reasonable assumptions about
the distribution of θ in the population, or by collecting
data and empirically estimating this function. Because
the statistician can never be sure that the particular
choice of a prior distribution is accurate, one criticism
of Bayesian statistics is that one cannot be sure how
well the posterior distribution represents the distribu-
tion of θ given x. The impact of the prior distribution
on the final results of the analysis (i.e., the posterior

f (θ | x) = f (x | θ)f (θ)

f (x)
.
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distribution) will vary depending on the statistician’s
choice for the distribution. Prior distributions that
have significant influence on the posterior distribution
are referred to as relatively “informative,” whereas
prior distributions with relatively little influence are
called “non-informative” priors. For this reason, ana-
lysts tend to choose relatively non-informative prior
distributions in situations where they are less confi-
dent about the distribution of θ in the population.

—William P. Skorupski

See also Bayesian Statistics; Posterior Distribution

Further Reading

Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (1995).
Bayesian data analysis. Boca Raton, FL: Chapman & Hall.

PROBABILITY SAMPLING

Probability sampling is the term used to describe sam-
pling where the probability of a population unit being
selected in the sample is known. In nonprobability
sampling, this probability is not known. When proba-
bility sampling is used to survey a population, popula-
tion parameters can be inferred from the sample.
Examples of probability sampling are simple random
sampling, stratified sampling, and cluster sampling. In
all of these examples, the probability that an individual
unit is selected in the sample can be calculated.

For simple random sampling (without replace-
ment), the probability that a unit appears in the sam-
ple is the same for every unit and is n/N. Consider a
population of size five, say, five children. A simple
random sample of size three is selected. This could be
done by writing the children’s names on five separate
balls and putting the balls in an urn. The balls are
mixed well and three balls are drawn out. The balls are
all equal in size, shape, and weight, and so each ball
will have an equal chance of being selected. The
number of possible samples that could be selected is

The probability that an individual unit i is selected in
the sample is

where

πi = number of samples that include the unit,

i = number of possible samples.

The numerator in this equation uses N – 1 and n –
1. If the sample includes unit i, then there are N – 1
units left in the population from which to choose the
remaining sample of size n – 1. In the sample of
children, after choosing the first ball out of five, there
are only four balls left to choose the second ball and
three balls left to choose the third ball in the sample.
With probability sampling, sampling theory then can
be used to estimate the sample mean, and the vari-
ance of the sample mean to infer the population
mean.

Nonprobability sampling is called haphazard
sampling, convenience sampling, and judgment sam-
pling, among other terms. Examples of nonprobabil-
ity sampling would be to stand on a street corner and
interview pedestrians who walk by when the popula-
tion of interest is all citizens who live in the city, run-
ning survey lines in a forest adjacent to roads when
the population of interest is all the forest, and sur-
veying only those businesses that appear to be repre-
sentative. The samples could, in fact, give
informative and reliable results. Pedestrians who
walk may be representative of all the citizens, the
forest adjacent to the road may be representative of
the entire forest, and the judgment of what are repre-
sentative businesses may be correct. However,
without using probability sampling, sampling theory
cannot be used, and there is no way of knowing if the
resultant samples are informative and reliable. It is
not possible to estimate how accurate the samples
are or how precise they are.

—Jennifer Ann Brown
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PROFILE ANALYSIS

In psychological research, there are many instances in
which the goal is to classify people as belonging to
certain groups. Personality researchers often search
for evidence of personality types, some intelligence
researchers search for evidence that people exhibit
different types of intelligences, and so on. The term
profile analysis is used to represent a variety of tech-
niques that share the common goal of empirically
classifying individual observations into distinguish-
able groups based on common characteristics mea-
sured by observed variables. Strictly speaking, it is not
a statistical technique because no inferences are being
made to population parameters. Rather, profile analy-
sis is a data reduction technique. It is conceptually
similar to factor analysis, but the difference is that the
focus in profile analysis is on grouping people (or
observations) on the basis of common traits measured
by observed variables.

The two major approaches to profile analysis are
quite different from one another conceptually, but
they share the same goal of grouping cases based on
observed variables. The first approach is based on cor-
relation methods, such as Pearson’s r or Spearman’s
rho. The goal under this approach is to group cases
together that show similar patterns of spikes and dips
across variables (i.e., the same shape), regardless of
the absolute level of the scores (see Figure 1). Under
the correlational approach, Persons A and B would be
classified as belonging to one group (or profile) and
Persons C and D to another.

By contrast, a second approach to profiling partic-
ipants is based on measures of distance, such as
Euclidean distance or Mahalanobis’s distance (see
Figure 1). Here, the emphasis is on creating groups
based on the extent to which case scores are close in
absolute value (i.e., level), regardless of the similarity

of pattern shape. Under the distance approach,
Persons B and C would be classified as belonging to
one group and Persons A and D another.

Key Assumptions

There are two key assumptions of any profile analysis:

1. The sample is representative of the population.

2. There is a minimum of multicollinearity in the data.
The reason that this is problematic is that variables
that are collinear receive more weight in the solution.

The Case Study and the Data

Consider a practical example in which students were
administered an experimental Advanced Placement
test in Psychology. The test consisted of items primar-
ily tapping one of four cognitive processing skills:
memory processing, analytical processing, creative
processing, or practical processing. The researchers
were interested in examining the extent to which
students showed different profiles of strengths and
weaknesses across these four processing skills.
Consequently, a Q-factor analysis (a correlation-based
profile analysis) was performed on the students who
took the test to determine the extent to which different
profiles of achievement were observed. Using a prin-
cipal component analysis (of the cases, not the vari-
ables), the researchers arrived at a solution yielding
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six general profiles in the data. Overall, the
researchers were able to group each of the 1,262 cases
in the data sets as belonging to one of the six empiri-
cally distinguishable profiles.

—Steven Stemler
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PROJECTIVE HAND TEST

The Hand Test is a projective test consisting of a set of
10 cards approximately 3 inches by 5 inches in size. The
first nine cards portray a hand in an ambiguous position,
and the tenth card is blank. The cards are presented one
at a time with the question, “What might this hand be
doing?” The tenth card is blank and is given to the
subject with the instructions: “This card is blank. I would
like you to imagine a hand, and tell me what it might be
doing?” Subjects are not limited in the number of
responses they give to any individual cards or the entire
set; however, subjects are encouraged with the instruc-
tion “anything else?” if they give only one response to
the first card. The Hand Test elicits responses that reflect
behavioral tendencies. Specifically, the Hand Test mea-
sures reactions that are close to the surface of personal-
ity, and reactions that are likely to be expressed in overt
behavior. The administration time is typically brief
(approximately 10 minutes) and the Hand Test is meant
to supplement other material in a test battery. The Hand
Test can be used with anyone old enough to verbalize a
response (age 5+ years).

To score the Hand Test, the clinician simply classi-
fies the responses according to clear-cut quantitative

scores (such as Aggression, Exhibition, Communication,
Dependence, Acquisition, Tension, and Withdrawal),
which reflect the person’s behavioral action tenden-
cies in terms of how they interact with others and the
environment. The qualitative scores generally reflect
feelings and motivations underlying the expressed
action tendencies. The Hand Test also consists of six
summary scales, such as an index of overall pathology
and an acting-out ratio, which is used to predict
aggressive behavior.

Since its development in 1962, the Hand Test has
been administered to more than a million people. The
Hand Test manual was revised in 1983 and provides
means, cutoff scores, and typical score ranges for nor-
mal adults and a number of diagnostic/clinical groups
such as schizophrenia, mental retardation, organic
brain syndrome, anxiety disorders, affective disorders,
somatoform disorders, older adults, and personality
disorders. A manual supplement provides norms for
5- to 18-year-olds and offers guidelines for interpret-
ing child and adolescent responses and for integrating
the Hand Test into a standard psychoeducational
evaluation. Extensive research (more than 40 years’
worth) and independent reviews comment favorably
on the Hand Test’s reliability and validity.

—Paul E. Panek
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PROJECTIVE TESTING

Testing is a form of precise measurement. Some 
tests are merely exact observations. Others involve
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manipulation of the environment and a cataloging of
results or reactions. Projective testing goes one step
further: Stimuli are presented, reactions are monitored
and recorded, and then aspects of personality are
deduced from these responses. The projection
involved here is actually two-fold: It is used to refer,
by some, to the deductive process of the examiner, and
it also is used to hypothesize the process by which the
respondent is assumed to have arrived at the response
by projecting material of which he or she is unaware.

There are areas of behavioral testing where self-
report and observations are heavily relied upon by the
diagnostician. However, the assessment of personal-
ity, psychopathology, and character disorder does not
readily lend itself to observation at an evaluation. At
the same time, reports of symptoms (by significant
others, or even by trained professionals) are often too
inexact and complicated to be reliable. Self-report by
the client himself or herself is subject to distortion,
defensiveness, and misinterpretation. This is the realm
of projective testing.

The logic of projective testing has several founda-
tions. Its logic is inferential, whereas its technique is
psychodynamic. In practice, the process of assessment
relies heavily on the unconscious and, to some extent,
on defense mechanisms. Of the latter, the defense of
projection is most crucial, as one might expect from
the name of the testing approach. The elements of this
defense mechanism entail the tendency for a person to
find unacceptable aspects of his or her personality
manifestations elsewhere. Dynamically, the person is
consciously unaware of these aspects, but is uncon-
sciously troubled by them. The ability to maintain
consistent repression of these threatening aspects is
enhanced by projecting them onto other persons or
situations.

Reality and psychological functioning levels often
dictate the possible breadth and parameters of projec-
tion. Although a nonpsychotic individual who is
unconsciously tormented by repressed aggressive
impulses is not likely to see the devil on the bus, he or
she may interpret comments as more aggressive than
they actually were. However, the more ambiguous or
undefined a situation is, the greater the possibility for
it to become the object of projection.

Projective tests differ in the degree of ambiguity
versus definitiveness of their stimuli. These aspects
circumscribe the realm of these tests respectively.
Below is a presentation of the major contemporary
projective tests, each representing different points on
this continuum.

The Rorschach is perhaps the best known test in
this realm. It consists of 10 (horizontally symmetrical)
inkblots featuring variations in color, shading, and
forms. It represents a fairly nondefined set of stimuli,
where respondents can hardly be “defying reality”
regardless of what they reportedly perceive. As such,
it enhances and encourages projection to a significant
degree.

Contrary to common assumptions, the content 
of Rorschach responses is barely relevant in interpre-
tation. Instead, there exists a complex scoring 
system of many composites and ratios, featuring such
elements as location choice, form accuracy, three-
dimensionality, color categories, shading, texture,
organization of disparate parts, symmetry, and others.
The significance of these elements was originally
spelled out by armchair analysis, essentially reflect-
ing experts’ opinions of the assumed projective origin
of the elements. This is no longer the case. Empirical
correlational research has revolutionalized Rorschach
methodology, so that the interpretations of elements
and ratios are based almost totally on meticulously
collected data. Today, Rorschach enjoys high scoring
reliability and strong interpretive validity. Indeed,
it is reasonable to question whether the Rorschach
should still be classified as a projective test, because
most of its current interpretive base is clearly opera-
tionalized and does not require any projective theory
to formulate findings. It is noteworthy that Rorschach
interpretations have a wide scope: from cognitive
processes, to reality testing, to emotional control, to
psychiatric diagnoses, and beyond. Furthermore, face
validity of the test is not high. This implies that typi-
cal respondents cannot easily intuit what the test ele-
ments are intended to measure. As such, it is less
susceptible to deliberate distortion or “faking” by
respondents.

The Thematic Apperception Test (TAT) is another
classic projective test that has evolved well beyond its
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original intent. It consists of a collection of cards and
drawings, most of which contain people in various
forms of interactions or emotional contexts. First
designed to elicit a hierarchy of psychological needs,
this test has been usurped by psychodynamic diagnos-
ticians of all types, with the assumption that the
attitudes, feelings, and behaviors that a respondent
attributes to the people in the pictures represent
projections of his or her own dynamics.

The TAT has more limited response options than
the Rorschach. First, the forms of its stimuli are actual
representations, not inkblots. Second, the administra-
tion asks respondents to tell a story about the card,
again a more constricting task than the Rorschach
direction, which merely asks, What might this be? As
a result, there is more of an issue of “reality con-
straints” for this test, but, at the same time, there will
be much richer direct emotionality expressed in rela-
tion to the figures as opposed to those expressed to
inkblots. In addition, the scope of the TAT is more ori-
ented to interpersonal relationships and self-reflection,
and is hardly appropriate to elicit a clear picture of
cognitive organization the way the Rorschach does.

The rather straightforward interpretation of pro-
jected attitudes or emotions as representing those of
the respondents’ lends face validity to TAT test inter-
pretation. Ironically, it is probably this face validity
that has shielded the TAT from the kind of sophisti-
cated psychometric development the Rorschach has
witnessed. To date, there is no rigorous or reliable
coding or interpretive method for the TAT. Instead,
there are a host of interpretive schemes that are part of
a larger, poorly operationalized methodology of fan-
tasy interpretation. This renders the precision of the
TAT interpretation not much more scientific than that
of dream interpretation. This lack of a precise coding
strategy for this test has also hampered empirical
validity research for this test. However, some studies
have been published using somewhat reliable method-
ologies, and these have made their way into the diag-
nostic literature. Nonetheless, it remains a popular
diagnostic tool and is featured widely in interpretive
reports because professionals of various disciplines
who are not psychometrically trained can easily relate
to its constructs.

Projective figure drawings come in a wide array of
tests such as Draw a Person, the House-Tree-Person
Test, the Family Kinetic Drawing Test, and others.
The projective hypothesis here is that all of these
drawings are self-representations. The literature here
is not consistently systematized, but there are major
authors whose work is authoritative across tests.
Presently, there are hosts of systems and schemes that
interpret various aspects of drawings. For example,
small human drawings are often taken as evidence of
projected low self-esteem, bare branches as signs of
inefficacy, and the omission of a house entrance as
evidence of defensiveness.

Two major limitations plague figure drawings.
First, empirical data, other than compilations of anec-
dotal reports, are few. Validational studies that are
well designed do not offer empirical support for the
test. Another limitation is the confounding effects that
poor eye-hand (especially graphomotor) coordination
entails in drawings. Distortions that are interpreted
projectively may, in fact, be due to intrinsic inabilities
of examinees to draw properly regardless of what they
are drawing.

Nonetheless, figure drawings are very popular as
projective tests. It is noteworthy that they are progres-
sively more popular in the literature of fields allied
with psychology (e.g., art therapy) than they are in
diagnostic psychology proper.

Incomplete sentence tests mark another point on
the projective testing continuum. The best known
exemplar of this test (by Julian Rotter, a social
learning theorist) was, in fact, not designed as a
projective. It features different 40-item sets of sen-
tences that begin with several words (e.g., “Back
home . . .” or “A mother . . .”), each followed by a
blank that the respondent fills in. There are sepa-
rate sets of items for different developmental/age
ranges.

It should be noted that, other than the basic coding
systems, which were originally designed by Rotter
(and other technical variations), there is no standard
projective scoring and interpretive system for this
instrument. Clinicians who use it as a projective test
often use similar (unstandardized) interpretive strate-
gies here as they do for the TAT.
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There are some psychometricians who question 
the propriety of classifying the Incomplete Sentences
Blank as a test altogether. These critics see the instru-
ment as a standard questionnaire that elicits informa-
tion about one’s attitudes and feelings, and assert that
it might best be described as a typical intake tool one
would use at a clinic instead of, or in conjunction with,
a background interview. There is some evidence,
nonetheless, that some respondents find the task of
completing sentences distracting enough to lower their
defenses. The result is that more information is
revealed than one might expect to discover in a regular
interview structured by a question-and-answer format.

Still, labeling the sentence completion task as a
psychological test is equivocal, at best. Moreover,
classifying the instrument as a projective test is seen
by some as more incongruous yet. (It should be noted
that some diagnosticians emphasize ancillary fea-
tures, such as the significance of omitted responses,
changed responses, or inordinate deliberations/
hesitations for specific items, as the more projective
anchors of this test.)

The critiques that challenge the status of this “test”
are most salient, because the standard printed instruc-
tions for sentence completion tests (i.e., Rotter’s) typ-
ically ask the respondent to answer truthfully in a
manner that reflects his or her true feelings and opin-
ions. Some clinicians sidestep this issue by deleting
the instructions and then presenting alternate instruc-
tions. These alternate instructions present the sen-
tence completion task as an academic exercise
designed to test the respondent’s approach to writing
and sentence construction. The projective hypothesis
is then appealed to, with the assumption that respon-
dents will use the opportunity to project their inner
conflicts and unacceptable emotions into this allegedly
neutral task.

Although this alternative approach can be chal-
lenged as deceptive and as ethically questionable,
many of the other projective tests cross that ethical
line to some extent. Consider, for example, the stan-
dard instructions for the Rorschach, which state that
“there are no right or wrong answers.” In fact, there
are precise statistical frequency tables that the exam-
iner uses in interpreting the reality testing of the

respondent, belying the denial of right and wrong.
Similarly, the TAT is often presented to respondents in
a less-than-transparent approach, usually as a test of
the creativity of the respondent in “making up a
story.” Some of the popular instructions include the
examiner telling the respondent a script, which is
approximately as follows: “You will be the author,
and I will be the secretary. You can make up any story.
There are no right or wrong answers here. All that
matters is your imagination.” Although it is true that
there are no formal tables for the TAT, which resem-
bles the Rorschach Form Quality tables, there are, in
fact, accepted standards of what kinds of stories are
appropriate or inappropriate for each card. Despite the
fact that the appropriateness here is more on the emo-
tional level and less related to reality testing, some
deception seems to be present here. It is not surpris-
ing, however, that many diagnosticians are partial to
projectives, and these specialists justify the misin-
formation as a necessary aspect of testing that puts
respondents off guard to allow access to dynamics that
are typically inaccessible and hidden—even from the
respondent.

Projective testing—from the mystery-shrouded
and infamous Rorschach, to the more intuitive TAT,
to the somewhat obscure figure drawings, to straight-
forward sentence completion—was prominent in the
beginning of the discipline of psychological testing,
when psychometrics were neither systemized nor
operationally defined. As more objective tests, sys-
tematized observations, and behavioral measures
came to dominate diagnostics, projectives were mar-
ginalized in many professional circles and relegated,
at best, to ancillary roles. (This pattern was least evi-
dent in specific urban centers in the United States,
such as New York City, Boston, and San Francisco,
where psychoanalysis still reigns. In addition,
countries from the former Soviet Union, where
Freudian thinking was banned for decades, have seen
a keen interest in psychoanalysis as a theory and
projectives as a methodology.) In response to the
supremacy of objective diagnostics based on the
Diagnostic and Statistical Manual of Mental
Disorders, the past two decades have witnessed a
resurgence of projective testing as a psychometrically
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kosher approach, a move championed by operationally
definitive Rorschach studies accompanied by impres-
sive clinical validational research. Although stereo-
typical dismissive attitudes still prevail in many
psychological circles (particularly in the Midwest
bastions of behaviorism, where psychoanalysis, pro-
jective testing, and astrology are grouped together as
“pseudo-sciences”), projective testing is now a com-
mon feature in clinical diagnostic, which is used in
tandem with more objective psychological measures
to yield a comprehensive picture of personality and
pathology.

—Samuel Juni
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PROPENSITY SCORES

A propensity score is the conditional probability of 
a unit being assigned to a condition given a set of
observed covariates. These scores can then be used to
equate groups on those covariates using matching,
blocking, or ANCOVA. In theory, propensity score
adjustments should reduce the bias created by nonran-
dom assignment, and the adjusted treatment effects
should be closer to those effects from a randomized
experiment.

In a randomized experiment, a unit’s true propen-
sity score is the known probability of being assigned
to either the treatment or comparison condition. For
instance, when using a coin toss, the true propensity
score would be P = .5 for every unit. In nonrandom-
ized studies, we do not know the true probability of

being in a condition; therefore, it must be estimated
using observable variables.

Computing Propensity Scores

Propensity scores are probabilities that range from 0
to 1, where scores above .5 predict being in one
condition (i.e., the treatment group) and those below
.5 predict being in the other condition (i.e., the com-
parison group). Traditionally, propensity scores are
computed using a logistic regression; however, more
recently, other methods have been used, such as clas-
sification trees, bagging, and boosted modeling.

Logistic regression is the most common method for
computing propensity scores. In this method, a set of
known covariates is used in a logistic regression to
predict the condition of assignment (treatment or con-
trol), and the propensity scores are the resulting pre-
dicted probabilities for each unit. The model for this
regression equation is typically based on variables
that affect selection into either the treatment or the
outcome, including interactions among the predictors.
It is not necessary that all predictors be statistically
significant at p < .05 to be included in the model.

Classification and regression trees predict categor-
ical outcomes (often dichotomous) from predictor
variables through a sequence of hierarchical, binary
splits. Each split is determined by the predicted prob-
ability that a unit will select into conditions based on
a single predictor. With each dichotomous split, two
branches result, and the splitting process continues for
each new predictor until a certain number of nodes 
is obtained or all significant predictor variables are
used. The result is a binary tree with terminal nodes
(branches) representing groups of units that have the
same predicted condition, although each node may
have reached the same condition using different pre-
dictors. The predicted outcomes are propensity scores.
A disadvantage of classification and regression trees
is that their results are not very robust. The modeled
trees are highly variable, and splits often change with
minor variations in the data. One way to increase the
stability of trees is to use bagging.

Bagging (bootstrap aggregation) averages results
of many classification trees that are based on a series
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of bootstrap samples. In this case, random samples
(with replacement) are drawn from the observed data
set and additional observations are simulated to mimic
the observed distributions. A new classification tree is
computed for each simulated data set. Bootstrapped
trees are aggregated to form aggregated trees, result-
ing in a more stable prediction model.

Boosted modeling, like bagging, uses an algo-
rithm to create multiple models using different
predictors. Each model is weighted based on the
strength of the model and aggregated to form a sin-
gle, more stable model. It differs from bagging by 
(a) using the full, original sample for each model,
whereas bagging uses bootstrap samples; and (b)
weighting units based on how difficult they are to
classify. Each iteration assesses how well each unit
was correctly classified, and then assigns a greater
weight to that unit for the next iteration. Boosted
modeling is used with either logistic regression
procedures or classification trees.

Regardless of the method used to create propensity
scores, the primary goal is not to optimally predict
assignment to conditions, but to balance the distribu-
tions of covariates over conditions. This is typically
assessed by using a factorial ANOVA to test the inter-
action between the propensity score strata and condi-
tions (as independent variables) on the covariates. A
nonsignificant interaction indicates that the distribu-
tions are balanced.

Predicting Assignment for
More Than Two Conditions

When propensity scores are to be estimated for units
selecting into more than two conditions, devising
these estimates is more complicated. Three methods
for doing so are as follows:

1. Paired comparisons, in which a separate propensity
score model is created for each possible pair of con-
ditions (i.e., three conditions have three possible pairs
and will have three different propensity score models)

2. Ordinal predictions, in which an ordinal logistic
regression is used to predict ordered dose-like levels
of conditions (i.e., no treatment, partial treatment,
full treatment)

3. Multivalued treatments using a generalized propen-
sity score, which computes the probability of
receiving a certain dose or level of the treatment,
but can be used for nominal or ordinal categories
using multinomial or nested logit models.

Adjustments Using Propensity Scores

Once propensity scores are calculated, statistical
adjustments can be made using those scores.
Typically, this is done using matching, stratification,
covariate adjustment, or weighting.

Matching identifies similar cases from experimen-
tal and control groups based on the proximity of their
propensity scores. Methods for matching include exact
matching (cases paired on exactly the same scores),
and caliper, optimal, or greedy matching, in which
scores are paired by proximity. The most preferred
methods of matching are greedy matching, which
selects the closest matches first and then progressively
farther matches, and optimal matching, which finds 
the smallest cumulative distance from all possible
pairs. To prevent dropping treated participants from the
analyses, some researchers recommend using index
matching, which matches treated participants with
multiple control participants. Others recommend
matching proportionately more participants in the con-
trol group to fewer participants in the treatment group.

Stratification divides the entire distribution into
four to seven strata based on propensity scores,
so observed variables are balanced for treated and
control units within each stratum. To estimate the
adjusted treatment effects, treatment and control
group means are computed as the unweighted average
of the cell means over strata for each group. Although
stratification usually permits the inclusion of all cases,
some cells may contain few or no units. Reducing the
number of strata or changing the cut-points that define
the blocks may reduce this problem, but determining
ideal cut-points for strata can be difficult. Despite
these concerns, stratification is often a favored
method because it does not require modeling nonlin-
ear trends, like covariate adjustments and weighting,
and is less complicated than matching.

Covariate adjustment uses propensity scores as
covariates in an analysis of covariance in order to
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remove bias due to the covariates from the effect
estimate. Although some studies have indicated that
covariate adjustment can be an effective method for
removing bias, Paul R. Rosenbaum and Donald B.
Rubin do not recommend this method, particularly
when variances among variables that created the
propensity scores are heterogeneous.

Weighting attempts to balance treatment and con-
trol groups by multiplying (weighting) observations
by the inverse of the propensity score. Weighting
often uses propensity scores that are computed using
nonparametric statistics, such as a series estimator,
or semiparametric statistics, such as binary regression
quantiles, as well as parametric statistics, such as
logistic regression. The adjusted treatment effect, β̂ , is
estimated using a formula, such as this one:

in which Yi is the outcome variable, Ti is the treatment
condition, and e(xi) is the propensity score for each
unit.

Conclusions

Although the effectiveness of propensity scores is still
under scrutiny, some work suggests that when propen-
sity scores are used in accordance with the guidelines
described by Rosenbaum and Rubin, they can reduce
bias in quasi-experiments. However, even when used
properly, propensity scores cannot adjust for hidden
bias, which occurs when relevant covariates are not
included in the propensity score model. Propensity
scores can be only estimated from observed variables;
however, many factors that are not measured may con-
tribute to selection bias.

—M. H. Clark and William R. Shadish
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PSYCHOLOGICAL ABSTRACTS

Psychological Abstracts (PA, 1927–present) is a
monthly publication produced by the American
Psychological Association (APA). The publication
provides bibliographic citations and abstracts of
scholarly literature pertaining to the field of mental
health and behavioral sciences. PA was preceded 
by the Psychological Index (1894–1935). The elec-
tronic version of the Psychological Abstracts is 
the PsycINFO database, first published in 1967.
Literature coverage in PsycINFO spans from 1887 to
present for more than 50 countries and more than 25
languages. It includes journal articles; book chapters
and books; dissertations; technical reports; and other
publications such as conference proceedings, program
evaluations, or psychological assessment instruments.
The database is updated weekly and contains more
than 2 million publication records.

Each monthly issue of PA consists of the following
parts: (a) an author index, (b) a brief subject index
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based on controlled vocabulary, (c) a thesaurus of psy-
chological terms used in the subject index, (d) a book
title index, and (e) abstract volumes that present cita-
tions and nonevaluative summaries. An expanded and
cumulative author and subject index is published
annually and placed at the end of each volume.
Searches on the PA can be conducted by author or
subject by referring to the author and brief subject
indexes in the back of each monthly issue. The main
concepts of each cited document are summarized in
up to five major terms or descriptors printed in the
brief subject index. The subject terms used in this
index are based on controlled vocabulary and scien-
tific terminology provided in the Thesaurus of
Psychological Index Terms.

Each PA record is divided into several fields. For
instance, book entries contain the following ele-
ments in order: (a) record number, (b) author(s) or
editor(s), (c) affiliation of first author, (d) book title,
(e) publisher and bibliographic information, (f)
table of contents listing PA record number for each
chapter, and (e) quoted material indicative of the
content. Abstracts are provided only for journal arti-
cle entries. Because PA uses the same abstract
numbers each year, abstract numbers should be
looked up in the same year/volume as the index
used.

PA is available through individual- or institution-
based subscriptions obtained from the APA. Most
academic institutions provide access to both PA and
PsycINFO to their faculty, staff, and students. PA does
not provide full text of the documented records. Full-
text articles can be obtained through other APA
services such as PsycARTICLES or directly from
libraries or through interlibrary loan services.

—Marjan Ghahramanlou-Holloway
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PSYCHOMETRICS

Psychometrics is the systematic application of math-
ematical principles in order to measure (quantify)
psychological constructs. Measurement consists of
rules for assigning symbols to objects to (a) represent
quantities of attributes numerically (scaling), or (b)
define whether the objects fall in the same or differ-
ent categories with respect to a given attribute (clas-
sification). The objects of study in psychometrics 
are usually people, but many studies involve other
animals, or basic biological or psychological
processes. Accurate measurement is essential for the
development of any science because it permits objec-
tive quantification and communication of findings.
Standardized measurement specifies the concept in
which we are interested so that others can replicate or
refute our work. Psychometric theory has been
applied in a wide range of fields, including the mea-
surement of intelligence, personality, attitudes and
beliefs, and achievement, as well as in health-related
disciplines.

Primary Approaches

Psychometric theory has evolved into several areas of
study. Early psychometric work was in the area of
intelligence testing. This work gave rise to classical
test theory (CTT). More recently, item response
theory has emerged to address some of the shortcom-
ings of the CTT approaches.

CCllaassssiiccaall  TTeesstt  TThheeoorryy

Core to the CTT approach are the concepts of reli-
ability and validity. Reliability is the study of consis-
tency in measurements. All measures contain some
degree of error or imprecision, and CTT procedures
are used to evaluate the amount of error present in a
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measure and whether the observed error is systematic
or random. Reliability is assessed statistically, often
with correlational techniques. For example, test-retest
reliability (stability) of a test or the reliability of alter-
nate forms of a test is evaluated with the Pearson
coefficient.

Validity, which is dependent on a measure first
being reliable, refers to whether a measure is measur-
ing what it is supposed to measure. Validity often is 
a multifaceted and ongoing research process that
involves establishing various aspects of a measure’s
validity. For example, concurrent validity refers to a
measure’s correlation with a known criterion measure
collected at the same time, whereas predictive validity
is the ability of a measure to predict a criterion at
some future point in time.

IItteemm  RReessppoonnssee  TThheeoorryy

Item response theory (IRT) models the relationship
between latent traits and responses to test items. In
contrast to CTT approaches, IRT methods have the
potential to produce measures that are (a) sample
independent—item parameters can be created inde-
pendent of the sample taking a test; (b) falsifiable
models—direct tests are available to evaluate whether
a specific IRT model is appropriate for a particular
data set; and (c) directly addressing measurement bias
at the individual item level before these items are
combined to form a scale score.

SSttaattiissttiiccaall  MMeetthhooddss

The field of psychometrics uses a number of statis-
tical procedures, particularly correlation and regres-
sion techniques. Multivariate descriptive methods
frequently are used and include factor analysis to
uncover underlying dimensions in a test data set, clus-
ter analyses to find test items or test respondents
similar to each other, and multidimensional scaling 
to find simple representations for complex test data.
More complex nonlinear regression models are used
to test IRT models.

—Thomas E. Rudy
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PSYCINFO

PsycINFO, produced and copyrighted by the
American Psychological Association (APA), is an
electronic database of bibliographic citations and
abstracts of scholarly literature pertaining to the field
of mental health and behavioral sciences, and psy-
chology-related aspects of other disciplines. The liter-
ature coverage in PsycINFO, spanning from 1887 
to present, covers more than 50 countries and more
than 25 languages. It includes journal articles; book
chapters and books; dissertations; technical reports;
and other publications such as conference proceed-
ings, program evaluations, and psychological assess-
ment instruments. The database is updated weekly and
contains more than 2 million publication records.
Since its first publication in 1967, PsycINFO has
become one of the most widely used resources for
scholarly and professional research.

The PsycINFO database is an electronic version of
the print publication Psychological Abstracts. As of
August 2005, PsycINFO’s journal coverage accounts
for 78% of the database and includes 1,980 titles, 98%
of which are peer reviewed. The journal coverage list
changes monthly as journals are added or discontin-
ued. Book chapters from edited books make up 7% of
the database; authored and edited books make up 3%.
The final 12% of the database is devoted to disserta-
tions and other secondary publications. Nearly all
publication records, from 1995 to present, provide
abstracts and are provided in APA-style format.

Literature searches on PsycINFO records can be
conducted in various ways. Records are divided into
fields. The content of each field varies depending on
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the type of literature documented within the database.
For instance, one can complete a search by using one
or more of the following fields: author, title, key-
words, document type, language, population group, or
publication year, or by choosing additional fields not
mentioned here. Search results are listed by record
date, beginning with the most recently published.
Each record, at a minimum, generally contains the
name and affiliation of the author, title, source,
abstract, and publication year. To maximize the preci-
sion of research efforts, PsycINFO users can refer to
the Thesaurus of Psychological Index Terms, which
provides the most up-to-date controlled vocabulary
terms and scientific terminology.

Access to PsycINFO is available through individual-
or institution-based subscriptions obtained from the
APA. Most academic institutions provide access to
PsycINFO for their faculty, staff, and students.
PsycINFO does not provide access to the full text of the
documented records. Full-text articles can be obtained
through other APA services such as PsycARTICLES or
directly from libraries or through interlibrary loan ser-
vices. Publishers and/or authors interested in submit-
ting their publication for coverage in PsycINFO may 
do so by following the APA guidelines provided at
http://www.apa.org/psycinfo/about/covinfo.html.

—Kathryn Lou and 
Marjan Ghahramanlou-Holloway
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Applying Ideas on Statistics and Measurement

The following abstract is adapted from Lawrenz, F.,
Keiser, N., & Lavoie, B. (2003). Evaluative site vis-
its: A methodological review. American Journal of
Evaluation, 24(3), 341–352.

Site visits are a commonly employed, but little
discussed, evaluation procedure. The purpose of
this paper is to review the state of the art regard-
ing site visits, as well as to catalyze a discus-
sion of site visits centering on the question of
whether or not existing practices constitute a set
of methods or a methodology. The researchers
define evaluative site visits and review the cur-
rent state of practice (using PsycINFO) in site vis-
its. They also outline the differences between
methods and methodology and consider whether
or not the current state of practice constitutes a
methodology.
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Q METHODOLOGY

Q methodology was invented by British psychologist
and physicist William Stephenson (1902–1989) and
provides both the tools and the philosophy for the
systematic study of subjective behavior. Stephenson
first introduced his innovation in 1935; however, it
was publication of his The Study of Behavior, in
1953, that brought his ideas to a wider audience, and
it is in this book that he fully explores the utility of Q
methodology for researchers interested in studying
subjectivity.

Elements of a Q Approach

CCoonnccoouurrssee  aanndd  QQ  SSaammpplleess

The concept of concourse refers to the stream of
commentary revolving around any topic, be it the
price of gasoline, the war in Iraq, the steroid scan-
dal in baseball, or any other topic. These comments
are matters of opinion and are shared with others in
the culture. Researchers can gather concourses
from a number of sources (e.g., interviews, texts,

etc.), with interview responses having the virtue of
being in the natural language of participants. From
this concourse, a selection of statements is drawn
that constitutes the Q sample, which may be either
structured or unstructured. Whereas an unstruc-
tured sample is composed unsystematically and is
made up of statements relevant to the subject under
consideration, a structured Q sample usually
embodies a theoretical framework, with greater
attention given to coverage of subissues in the
statement selection process. Q samples are typi-
cally structured in terms of the principles of
factorial experimental design, with statements
provisionally placed into categories of the design.
However, unlike the case in scale construction,
there is no assumption that these categories will (or
should) hold together once the participants begin to
respond to these statements.

PP  SSeett

Individuals who serve as study participants are
known as the P set, and their selection is a function of
the research question. Participants may be chosen
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because of theoretical concerns thought to be
relevant. For example, a Q study concerning
health care in the United States might predis-
pose the researcher to try to get doctors,
lawyers, patients, hospital administrators,
politicians, insurance company representa-
tives, and so on as participants. On the other
hand, a Q study of understandings of the
Judy Garland film The Wizard of Oz might
lead the researcher to seek out participants
who are readily available, assuming almost
everyone has a level of familiarity with that
classic film.

P sets in Q studies are typically small,
most often 40 or fewer. The aim is to allow
subjective viewpoints to be revealed, not to make the
claim that all possible viewpoints are represented or
that a certain percentage of the population holds a par-
ticular view.

QQ  SSoorrttiinngg

Participants are given the Q sample (each statement
being printed on an individually numbered card) to rank
order along an established continuum according to a
“condition of instruction,” typically “most agree” to
“most disagree.” However, the condition of instruction
may be “most like me” to “most unlike me” or “most like
my view in 20 years” to “most unlike my view in 20
years” and so on. Conditions of instructions can be used
to create experimental conditions for testing theories. For
example, conditions of instruction might be constructed
to tap into interpersonal dynamics, for example, “most
like the view my father would like me to have” to “most
unlike the view that my father would like me to have.”

It is important for participants to have enough
workspace so that all statements can be arrayed in
front of them. Participants should first read through the
cards in order to gain familiarity with them and then
begin to make piles of statements that they agree or
disagree with or feel neutral toward. The participant
then begins to identify the most agreeable statements
from the “agree” pile, placing them under the most
positive end of the continuum, for example, +4. The

sorter then singles out the next-most-agreeable state-
ments and places them under +3. It is then advisable
to turn to the “disagree” pile and identify those state-
ments with which the person most disagrees (–4). This
process is continued until each statement has found a
place under the continuum. Sorters are then encour-
aged to examine the array and move statements from
one column to another if they choose. Completed Q
sorts are formal models of the sorter’s point of view
with respect to the topic under study. Table 1 shows a
possible scoring form, ranging from –4 to +4 for a Q
sample of size N = 35 statements.

For theoretical purposes, Q sorters are encouraged
to follow a quasi-normal distribution, requiring the
person to think systematically about the statements
and to make more distinctions. Some have criticized
this “forced” distribution as creating an artificial con-
straint on the sorter, arguing for a “free” distribution
in which the sorter can place any number of state-
ments at any point along the continuum. The literature
in Q methodology has consistently demonstrated the
differences in forced-free distributions to be statisti-
cally insignificant; however, a forced distribution is
preferred for the theoretical reasons stated above.

It is also advisable to conduct post-sort interviews
with participants to gain deeper understandings of why
they ordered the statements in the manner that they
did. How did they construe the meanings of the
statements that were of most salience (e.g., +4, –4),

Table 1 Scoring Form

Most Disagree Most Agree

−4 −3 −2 −1 0 +1 +2 +3 +4

(2) (2)

(3) (3)

(4) (4)

(5) (5)

(7)
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and why were they determined to be of such impor-
tance? The statements placed in the more neutral
columns (i.e., +1, 0, –1) may also be important for elic-
iting more information. Generally, these statements are
placed in these middle positions because there is a
feeling of neutrality (in a relative sense) toward these
items. However, at times, statements are placed in
these columns because sorters feel conflicted about
them; that is, they may agree strongly with one part of
the statement and disagree strongly with another part.
Thus, a deeper understanding of why this statement
was placed where it was will inform the researcher.

SSttaattiissttiiccaall  PPrroocceedduurreess  aanndd  
FFaaccttoorr  IInntteerrpprreettaattiioonn

Once collected, the data are entered into dedicated
statistical programs such as PQMETHOD or PCQ
(both accessible at http://www.qmethod.org), and cor-
relations are calculated between persons (not between
items). The correlation matrix is then factor analyzed
to reveal groups of individuals with shared view-
points. In the more conventional R methodology, the
correlating and factoring are performed on traits or
scores on objective tests, whereas in Q, the correlating
and factoring are done on the subjective assessments
of persons. That is, contrary to widespread opinion, a
Q analysis is not simply based on a transposed R data
matrix; rather, R methodology focuses on matrices of
objective scores (e.g., IQ scores, scores on authoritar-
ianism scales), whereas Q focuses on entirely differ-
ent matrices of subjective impressions.

By way of illustration, suppose that 10 individuals
have sorted 35 statements concerning their views of
the war in Iraq, resulting in the hypothetical factor
structure in Table 2. Factor loadings in this case are
statistical measures of the degree of correlation with
that factor.

The data in Table 2 show that persons 1, 2, 4, 6, 7,
8, and 10 have statistically significant factor loadings
on Factor A, while persons 3, 5, and 9 have statistically
significant factor loadings on Factor B. The formula
for determining the significance threshold for a factor
loading at the .01 level is 2.58(1/√35

⎯
) = .44, where 

35 is the number of statements. Fundamentally, this
means that persons with significant factor loadings on
Factor A share a common viewpoint, while those with
significant factor loadings on Factor B share a separate
viewpoint. An array of factor scores (i.e., a composite
Q sort) is estimated for each of the factors, and it is this
array that provides the basis for interpretation.

Note that Factor A is bipolar; that is, that the signifi-
cant loadings run in both positive and negative direc-
tions. This means that the statements judged “most
agreeable” by persons at the positive end of the factor
are the statements considered “most disagreeable” by
those at the negative pole. In other words, Q sorters at
both ends of the factor are responding to the same
themes, but in reverse order. In the hypothetical study of
the Iraq War, for instance, imagine that Factor A arises
from partisanship, with those at the positive end of the
factor (persons 1, 2, 4, and 6) being Republican support-
ers of President Bush’s war against terror and those at
the negative end of the pole (persons 7, 8, and 10) being
Democrats who just as avidly rejectedthe same
statements that were so warmly embraced by the
Republicans (and vice versa). The Q sorters who
defined Factor A were thus seeing the statements
through the prism of their own partisanships, and this
would constitute the theme of Factor A.
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Table 2 Factor Loadings in the Iraq War Study

A B

Person 1 .88 .21

Person 2 .76 .04

Person 3 .15 .81

Person 4 .59 .19

Person 5 .08 .89

Person 6 .71 −.19

Person 7 −.88 .15

Person 8 −.77 .20

Person 9 .12 .75

Person 10 −.70 .14



Factor B is orthogonal to Factor A and thus
represents a wholly different point of view. Once
again, factor interpretations are reached through
examining the array of statements as produced by
Factor B. Assume hypothetically that the statements
rank highest (+4, +3) had to do with concerns over
preemptive war and the standing of the United States
in the world community, and so on. Assume further
that other statements receiving high positive scores
did not hold President Bush responsible for the war
and expressed the view that any U.S. president would
have probably acted in the same manner. The theme of
the factor would thus be concerned with larger, geopo-
litical issues that transcend partisan politics.

Q Methodology and the Single Case

Q methodology is also well suited for use in the study
of single cases. What is of significance in Q methodol-
ogy is the participant’s point of view rendered manifest
by the procedure of Q sorting; consequently, issues of
reliability and validity (in an R-methodological sense)
recede in importance. Single-case studies proceed in
much the same manner as outlined above, the chief dif-
ference being that the individual performs a number of
sorts under multiple conditions of instruction, with the
factors pointing to different tendencies and response
predispositions within the same individual.

—James C. Rhoads

See also Measurement; Questionnaires; Validity Theory
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Q-Q PLOT

The quantile-quantile, or Q-Q, plot is a graphical
procedure used to visually assess goodness of fit to a
particular distribution. While the Q-Q plot will not
provide a numerical measure of the goodness of fit,
unlike such common tests as the chi-square goodness-
of-fit test, the Kolmogorov-Smirnov test, or the
Cramer-von Mises test, the graph can provide insight
into how a given data set deviates from the specified
distribution.

There are two common situations in which a Q-Q plot
is used. The first of these applications is in determining
whether two data sets are from a common distribution.
The following steps are used to construct the plot:

1. Order each of the two samples to obtain the n order
statistics x1:n,x2:n,...,xn:n.and y1:n,y2:n,...,yn:n..

2. Plot the ordered pairs (xi:n,yi:n) and examine the plot
for linearity. If the samples are identical, a line
with slope 1 and intercept 0 is obtained. If the
points come close to fitting such a line, it is con-
cluded the two samples are drawn from a common
distribution.

This use of the Q-Q plot is described in further
detail online both at Eric Weisstein’s MathWorld and
in the National Institute of Standards and Technology
e-Handbook of Statistical Methods.

The second common application of the Q-Q plot is
in testing for univariate normality. This is often referred
to as a normal probability plot. The following steps are
used to construct a Q-Q plot when testing for normality:

1. Order the n original observations x1,x2,...,xn to
obtain the n order statistics x1:n,x2:n,...,xn:n.

2. Find the n normal quantiles q1,q2,...,qn, where qi is
the standard normal quantile associated with the ith
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order statistic. The formula for qi is given by

where 

is a “continuity correction” or a “plotting position.”

Another common plotting position is 

3. When testing for fit to a distribution other than the
normal distribution, the qi’s are found by replacing
the inverse normal function in Step 2 with the
appropriate inverse function.

4. Plot the pairs (qi,xi:n) and examine the plot for lin-
earity. If the data are univariate normal, the plot
will be a straight line.

Example

Consider the data set of 15 numbers in Table 1. These
numbers were generated from a normal distribution
with mean 100 and standard deviation 15, so the Q-Q
plot would be expected to have a linear pattern. The
computations needed are shown in Table 1, using

Blom’s plotting position. In Figure 1, the observed
values xi are on the vertical axis, and the theoretical
quantiles qi are on the horizontal axis. The choice of
axes is arbitrary since the main feature of interest is the
linearity of the plotted points. The Q-Q plot was created
with the free statistical package R. Similar plots can be
made with any standard statistical software package
such as SAS or SPSS. Some handheld graphing calcu-
lators can even make normal probability plots.

While the points do not fall perfectly on a straight
line, particularly in the lower-left and upper-right por-
tions of the Q-Q plot (see Figure 1), this plot does not
indicate a serious deviation from normality that might
prevent an analyst from using a standard statistical
technique that requires the normality assumption. The
Q-Q plot will also identify outliers; they will be seen
as points in the lower-left or upper-right portions of the
plot that deviate from the general linear pattern formed
by the remaining observations. The analyst can then
examine the outliers and decide how to proceed with
the statistical analysis.

Figure 2 demonstrates what a Q-Q plot would look
like when the data are drawn from a heavily right-
skewed distribution. In this case, a random sample size
of 15 was drawn from the exponential distribution,
with the mean equal to 1, and the Q-Q or normal prob-
ability plot was again constructed using R. Notice how
this scatterplot is much more curved in the middle por-
tion of the graph than in the previous example.

i − 1/2

n
.

i − 3/8

n + 1/4
qi = �−1

(
i − 3/8

n + 1/4

)

,
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Table 1 Computations for Q-Q Plot

x_i p_i q_i

57.01 0.041 −1.739

70.14 0.107 −1.245

82.24 0.172 −0.946

90.49 0.238 −0.714

91.31 0.303 −0.515

92.62 0.369 −0.335

95.54 0.434 −0.165

96.61 0.500 0.000

97.19 0.566 0.165

100.45 0.631 0.335

101.92 0.697 0.515

103.16 0.762 0.714

106.90 0.828 0.946

109.03 0.893 1.245

123.35 0.959 1.739
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Figure 1 Normal Q-Q Plot



Discussion

Unfortunately, assessing normality through examination
of the Q-Q plot can be difficult. It is difficult to determine
how much deviation from a straight line is acceptable.
Also, small samples (n < 20) can have a good deal of vari-
ability from linearity, even when the data are known to be
from a normal distribution. However, the Q-Q plot can
indicate the presence of outliers and the possible reason
for departure from univariate normality. When the points
fall roughly on a straight line, with the exception of a few
points at either edge of the plot, then these points are pos-
sible outliers. Rencher gave typical Q-Q plots that one
would encounter if the data were heavy-tailed, light-
tailed, or positively skewed. D’Agostino, Belanger, and
D’Agostino also provided examples of Q-Q plots show-
ing deviations from normality.

—Christopher J. Mecklin

See also Bar Chart; Line Chart; Pie Chart
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QUALITY OF WELL-BEING SCALE

The Quality of Well-Being Scale (QWB) is a generic
measure of health-related quality of life (HRQOL) that
combines preference-weighted values for symptoms
and functioning. The QWB was developed in the early
1970s and is based on the general health policy model.
In the general health policy model, a summary
preference-based quality-of-life score is integrated
with the number of people affected and the duration of
time affected to produce the output measure of quality-
adjusted life years (QALYs). QALYs combine morbid-
ity and mortality outcomes into a single number.

In the original QWB, respondents report whether
or not each of 27 symptoms were experienced on each
of the 6 days prior to the assessment. Functioning is
assessed by questions about the presence of functional
limitations over the previous 6 days, within three sep-
arate domains (mobility, physical activity, and social
activity). Unlike measures that ask about general time
frames such as “the past 4 weeks” or “the previous
month,” the QWB asks whether specific symptoms or
functional limitations did or did not occur on a given
day. Each symptom complex and functional limitation
is weighted using preferences obtained from the
ratings of 856 people randomly sampled from the
general population. The four domain scores (three
functioning, one symptom) are subtracted from 1.0 to
create a total score that provides an expression of
well-being that ranges from 0 for death to 1.0 for
asymptomatic optimal functioning. References on the
validation of the instrument are available from the
University of California, San Diego, Health Outcomes
Assessment Program (see Web site toward the end of
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this entry). The questionnaire must be administered
by a trained interviewer because it employs a some-
what complex system of questions, including branch-
ing and probing. The original questionnaire takes
about 15 minutes to complete on average. The authors
believe the length and complexity of the original mea-
sure has resulted in its underutilization.

In 1996, a self-administered version of the question-
naire was developed to address some of the limitations
of the original version. The Quality of Well-Being
Scale–Self-Administered (QWB–SA) improves upon
the original version in a number of ways. First, the
administration of the questionnaire no longer requires
a trained interviewer and can be completed in less than
10 minutes. Second, the assessment of symptoms
follows a clinically useful review of systems model,
rather than clustering symptoms based on preference
weights. Third, a wider variety of symptoms are
included in the QWB–SA, making it more comprehen-
sive and improving the assessment of mental health.

Both the QWB and QWB–SA are available free of
charge to users from nonprofit organizations. A small
fee is charged to for-profit users. Information on
copyright agreements and user manuals are available
at http://www.medicine.ucsd.edu/fpm/hoap/.

—Erik J. Groessl and Robert M. Kaplan

See also Life Values Inventory; Measurement; Validity Theory
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QUASI-EXPERIMENTAL METHOD

Quasi-experiments, like all experiments, manipulate
treatments to determine causal effects (quasi-experiments

are sometimes referred to as nonrandomized
experiments or observational studies). However,
quasi-experiments differ from randomized experi-
ments in that units are not randomly assigned to condi-
tions. Quasi-experiments are often used when it is not
possible to randomize ethically or feasibly. Therefore,
units may be assigned to conditions using a variety of
nonrandomized techniques, such as permitting units to
self-select into conditions or assigning them based on
need or some other criterion. Unfortunately, quasi-
experiments may not yield unbiased estimates as ran-
domized experiments do, because they cannot reliably
rule out alternative explanations for the effects. To
improve causal inferences in quasi-experiments,
however, researchers can use a combination of design
features, practical logic, and statistical analysis.
Although researchers had been using quasi-experiments
designs long before 1963, that was the year Donald T.
Campbell and Julian C. Stanley coined the term quasi-
experiment. The theories, practices, and assumptions
about these designs were further developed over the
next 40 years by Campbell and his colleagues.

Threats to Validity

In 1963, Campbell and Stanley created a validity typol-
ogy, including threats to validity, to provide a logical
and objective way to evaluate the quality of causal
inferences made using quasi-experimental designs. 
The threats are common reasons that explain why
researchers may be incorrect about the causal inferences
they draw from both randomized and quasi-experiments.
Originally, Campbell and Stanley described only two types
of validity, internal validity and external validity.
Thomas D. Cook and Campbell later added statistical
conclusion validity and construct validity.

Of the four types of validity, threats to internal
validity are the most crucial to the ability to make
causal claims from quasi-experiments, since the act
of randomization helps to reduce the plausibility of
many internal validity threats. Internal validity
addresses whether the observed covariation between
two variables is a result of the presumed cause
influencing the effect. These internal validity threats
include the following:
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• Ambiguous temporal precedence: the inability to
determine which variable occurred first, thereby
preventing the researcher to know which variable is
the cause and which is the effect.

• Selection: systematic differences between unit
characteristics in each condition that could affect the
outcome.

• History: events that occur simultaneously with the
treatment that could affect the outcome.

• Maturation: natural development over time that
could affect the outcome.

• Regression: occurs when units selected from their
extreme scores have less extreme scores on other
measures, giving the impression that an effect had
occurred.

• Attrition: occurs when those who drop out of the
experiment are systematically different in their
responses from those who remain.

• Testing: Repeatedly exposing units to a test may per-
mit them to learn the test, giving the impression that
a treatment effect had occurred.

• Instrumentation: Changes in the instrument used to
measure responses over time or conditions may give
the impression that an effect had occurred.

• Additive and interactive threats to internal validity:
The impact of a threat can be compounded by, or may
depend on the level of, another threat.

The other three types of validity also affect the ability
to make causal conclusions between the treatment and
outcome but do not necessarily affect quasi-experiments
more than any other type of experiment. Statistical con-
clusion validity addresses inferences about the how well
the presumed cause and effect covary. These threats, such
as low statistical power and violation of statistical
assumptions, are essentially concerned with the statistical
relationship between the presumed cause and effect.
Construct validity addresses inferences about higher-
order constructs that research operations represent. These
threats, such as reactivity to the experimental situation
(units respond as they want to be perceived rather than to
the intended treatment) and treatment diffusion (the con-
trol group learns about and uses the treatment), question
whether the researchers are actually measuring or manip-
ulating what they intended. External validity addresses
inferences about whether the relationship holds over vari-
ation in persons, settings, treatment variables, and mea-
surement variables. These threats, such as interactions of

the causal treatment with units or setting, determine how
well the results of the study can be generalized from the
sample to other samples or populations.

Basic Types of Quasi-Experiments

While there are many variations of quasi-experimental
designs, basic designs include, but are not limited to,
(a) one-group posttest-only designs, in which only one
group is given a treatment and observed for effects
using one posttest observation; (b) nonequivalent con-
trol group designs, in which the outcomes of two or
more treatment or comparison conditions are studied,
but the experimenter does not control assignment to
conditions; (c) regression discontinuity designs, in
which the experimenter uses a cutoff score from a
continuous variable to determine assignment to treat-
ment and comparison conditions, and an effect is
observed if the regression line of the assignment variable
on outcome for the treatment group is discontinuous
from that of the comparison group at the point of the
cutoff; and (d) interrupted time series designs, in
which many (100 or more) consecutive observations
on an outcome over time are available, and treatment
is introduced in the midst of those observations to
determine its impact on the outcome as evidenced by
a disruption in the time series after treatment; and (e)
single-group or single-case designs, in which one
group or unit is repeatedly observed over time (more
than twice, but fewer than in a time series), while the
scheduling and dose of treatment are manipulated to
demonstrate that treatment affects outcome.

The causal logic of threats to validity can also be
applied to two other classes of designs that are not
quasi-experiments because the cause is not manipu-
lated, as it is in the previous five designs. These are
case-control designs, in which a group with an out-
come of interest is compared with a group without that
outcome to see how they differ retrospectively in expo-
sure to possible causes, and correlational designs, in
which observations on possible treatments and out-
comes are observed simultaneously to see if they are
related. These designs often cannot ensure that the
cause precedes the effect, making it more difficult to
make causal inferences than in quasi-experiments.
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Design Features

To prevent a threat from occurring or to diagnose its
presence and impact on study results, researchers can
manipulate certain features within a design, thereby
improving the validity of casual inferences made using
quasi-experiments. These design features include (a)
adding observations over time before (pretests) or after
(posttests) treatment to examine trends over time; (b)
adding more than one treatment or comparison group
to serve as a source of inference about the counterfac-
tual (what would have occurred to the treatment group
if they had not received the treatment); (c) varying the
type of treatment, such as removing or varying a treat-
ment; and (d) using nonrandomized assignment meth-
ods that the researcher can control or adjust, such as
using a regression discontinuity design or matching.
All quasi-experiments are combinations of these
design features, chosen to diagnose or minimize the
plausibility of threats to validity in a particular context.

New designs are added to the basic repertoire of
designs using these elements. For example, by adding
pretest observations to a posttest-only, nonequivalent
control group design, existing pretest differences
between the treatment and control groups can better
be measured and accounted for, which helps reduce
effects of selection. Likewise, adding a comparison
group to a time series analysis can assess threats such
as history. If the outcome for the comparison group
varies over time in the same pattern as the treatment
outcome, history is a likely threat.

Examples

In 1983 and 1984, the Arizona State Lottery implemented a
campaign aimed at increasing the sale of state lottery
tickets by offering free tickets to retail customers, who
were not asked if they wanted to buy tickets by store
clerks. While the researchers examined the effects of the
campaign by using various designs, one of the methods
used a nonequivalent control group design with pretests
and posttests. The 44 retail stores that implemented the
campaign were matched with 22 control stores on mar-
ket shares (the proportion of total state ticket sales made
by each retail store for a single game). All stores were
measured on their market shares before the campaign

intervention (pretest) and after the program intervention
(posttest). Results indicated that there were no differ-
ences between the treatment and control groups in mar-
ket shares at pretest. However, stores that participated in
the campaign profited significantly more in market
shares than did the control group at posttest.

In 1974, Cincinnati Bell began charging 20¢ per call
to local directory assistance and found an immediate and
large drop in local directory-assisted calls once this
charge was imposed. One hundred eighty monthly obser-
vations were collected from 1962 through 1976, which
assessed the number of local and long-distance directory-
assisted calls. Results of this study found that the number
of local and long-distance directory-assisted local calls
steadily increased from 1962 (approximately 35,000 calls
per day for local calls and 10,000 calls per day for long-
distance calls) until 1973 (approximately 80,000 calls per
day for local calls and 40,000 calls call per day for long-
distance calls). However, once the charge for the local
calls was imposed, the number of directory-assisted local
calls decreased to approximately 20,000 calls per day in
1974. However, the directory-assisted long-distance calls,
which did not have a fee imposed, continued to slowly
increase over time. This study was an interrupted time
series quasi-experiment using a nonequivalent control
group (directory-assisted long-distance calls).

Statistical Adjustments

While Campbell emphasized the importance of
good design in quasi-experiments, many other
researchers sought to resolve problems in making
causal inferences from quasi-experiments through
statistical adjustments. One such method uses
propensity scores, the conditional probability that a
unit will be in a treatment condition given a set of
observed covariates. These scores can then be used
to balance treatment and control units on predictor
variables through matching, stratifying, covariate
adjustment, or weighting. Another method, selection
bias modeling, attempts to remove hidden bias that
occurs when unobserved covariates influence treat-
ment effects by modeling the selection process. A third
method uses structural equation modeling (SEM) to
study causal relationships in quasi-experiments by
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modeling latent variables to reduce bias caused by
unreliable measures. While these statistical adjust-
ments have been shown to reduce some of the bias
present in quasi-experiments, each of these methods
has limitations that prevent it from accounting for
all of the sources of biased estimates. Therefore, it
is often more effective to obtain less biased esti-
mates through good designs than through elaborate
statistics.

Conclusion

Quasi-experiments may never rule out threats to
internal validity as well as randomized experiments;
however, improving the designs can reduce or control
for those threats, making causal conclusions more
valid for quasi-experiments than they would other-
wise be. This can most easily be done by using
designs that are most appropriate for the research
question and by adding design features to address
particular plausible threats to validity that may exist.
While certain conditions within field studies may
hinder the feasibility of using more sophisticated
quasi-experimental designs, it is important to recog-
nize the limitations of designs that are used. In some
cases, statistical adjustments can be used to improve
treatment estimates; however, even then, causal infer-
ences should be made with caution.

—M. H. Clark and William R. Shadish

See also Dependent Variable; Independent Variable; Inferential
Statistics
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QUESTIONNAIRES

The term questionnaire denotes a collection of items
designed to measure one or more underlying con-
structs. Given that questionnaires are one of the most
widely used research tools in the social sciences, it is
not surprising that a large body of literature has devel-
oped around various design features in their use.

Method of Administration

Researchers who use questionnaires must first decide
what method of administration to employ. One approach
is to use a self-administered questionnaire, such as the
traditional paper-and-pencil-based booklet com-
pleted in a supervised setting or mailed to respondents
and completed at their homes or workplaces. Recently,
it has become popular to post self-administered
questionnaires on Web sites that can be accessed via
the Internet. Alternatively, questionnaires can be
administered using interviewers to conduct telephone
or face-to-face interviews. In choosing one of these
methods, researchers should consider the attributes 
of the project, the possibility of social desirability
effects, and the ease of administration.

SSeellff--AAddmmiinniisstteerreedd  
QQuueessttiioonnnnaaiirreess

Due to their cost-effectiveness and ease of admin-
istration, self-administered questionnaires (in either
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the traditional or Internet-based form) are popular
among social scientists. Because of the sense of
anonymity provided by self-administered measures,
this method lessens the likelihood of social desirabil-
ity effects. Thus, these types of questionnaires are
especially useful when studying highly sensitive
topics. Furthermore, self-administered measures are
self-paced, which ensures that respondents have suf-
ficient time to generate meaningful answers to the
questions. Internet-based questionnaires tend to be
especially cost-efficient, because expenses often
associated with a research project (i.e., photocopying
of materials and payment of research assistants) are
minimized.

Despite such advantages, there are limitations
associated with self-administered measures. If
researchers mail their questionnaires, they may obtain
very low response rates. Furthermore, individuals who
take the time to complete the measure may not be rep-
resentative of the intended sample. Self-administered
questionnaires also may not be suitable for respon-
dents with limited cognitive skills or topics that are
complex and require extensive explanation.

IInntteerrvviieewweerr--AAddmmiinniisstteerreedd  
QQuueessttiioonnnnaaiirreess

One alternative to using self-administered ques-
tionnaires is to conduct telephone interviews.
Telephone interviews are associated with substantially
higher response rates than the use of self-administered
questionnaires, which lessens the possibility that
one’s data will be compromised by nonresponse error.
They also allow researchers to probe respondents’
answers if they are initially unclear. Unfortunately,
there are several drawbacks associated with this
method of administration. These include substan-
tially greater expense relative to self-administered
questionnaires and increased vulnerability to social
desirability effects.

Researchers may also administer their question-
naires via face-to-face interviews. Face-to-face inter-
views are ideal when one’s sample consists of
individuals with limited cognitive or verbal abilities,
as this type of interview allows researchers to clarify

the meaning of more challenging items through the
use of visual props (e.g., show cards). Like telephone
interviews, face-to-face interviews also allow
researchers to clarify the meaning of ambiguous ques-
tions and probe respondents for clarifications to their
answers. However, face-to-face interviews are more
costly and time-consuming than other methods of
administration. Such interviews are also the most vul-
nerable to social desirability effects, potentially mak-
ing them an inappropriate method of administration
when highly sensitive topics are being studied.

Question Construction

OOppeenn--  VVeerrssuuss  CClloosseedd--
EEnnddeedd  QQuueessttiioonnss

One decision that researchers must make in design-
ing the actual questions that make up a survey is
whether to use closed-ended questions (which include
response alternatives) or open-ended questions (which
allow respondents to generate their own answers).
Measures containing closed-ended questions may be
easier to interpret and complete. However, such ques-
tions may fail to provide response options that accu-
rately reflect the full range of respondents’ views.
While open-ended questions eliminate this problem,
they pose other difficulties. To interpret and analyze
responses to open-ended questions, researchers must
engage in the costly and time-consuming process of
developing a coding scheme (i.e., a way to categorize
the answers) and training research assistants to use it.

QQuueessttiioonn  WWoorrddiinngg

There are several guidelines with respect to question
wording that should be followed in generating effec-
tive items. Questions should be short and unambiguous,
and certain types of items should be avoided. These
include “double-barreled questions,” which constrain
people to respond similarly to two separate issues.
Consider the dilemma faced by the respondent who
encounters the following question: “How positively
do you feel about introducing new social programs,
such as government-subsidized day care, to this
state?” The respondent might generally harbor
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negative feelings about social programs but might
view subsidized day care programs quite positively. In
light of such conflicting views, this question would be
difficult to answer.

It is also worth noting that questions that are sub-
stantively identical may yield different answers from
respondents, depending on the specific wording used.
Consider the following two questions:

Is it appropriate for libraries to not be allowed to carry
certain books?

Is it appropriate for libraries to be forbidden to carry
certain books?

Technically, the meaning inherent in these two
questions is the same. However, people might respond
to them very differently, because “forbidden” has
stronger negative connotations than “not allowed.”
Thus, subtle variations in wording can have a dramatic
effect on responses.

RRaattiinngg  VVeerrssuuss  RRaannkk  OOrrddeerriinngg  OObbjjeeccttss

If closed-ended questions are to be used, researchers
must decide on an appropriate response format. When
researchers wish respondents to indicate their relative
preferences for a series of objects, they may choose to
ask respondents to rank order them, instead of rating
each one. The main advantage associated with this
approach is that it eliminates the problem of nondiffer-
entiation between objects. Specifically, when evaluat-
ing numerous objects using a rating scale, respondents
will inevitably be forced to assign the same rating to sev-
eral of them. If respondents rank order the objects, non-
differentiation ceases to be a problem.

However, there are difficulties associated with this
approach. Rank ordering generally does not allow for
the possibility that respondents may feel the same way
toward multiple objects, and it may compel them to
report distinctions that do not exist. Furthermore,
respondents may find the process of ranking a large
number of objects burdensome. Rank-ordered data
can also be difficult to analyze, as it does not lend
itself to many statistical techniques commonly used
by social scientists.

OOrrddeerr  EEffffeeccttss

When researchers employ questions that entail
choosing between alternatives, the order of the
response options may influence answers. The nature of
such order effects depends on the method of adminis-
tration. If self-administered measures are being used,
primacy effects (i.e., biases toward selecting one of the
first options presented) may pose a threat to the valid-
ity of the data. However, if the questionnaire is being
orally administered by an interviewer, recency effects
(biases toward selecting one of the latter options) may
occur. Researchers can safeguard against these issues
by counterbalancing response options across respon-
dents and testing for order effects.

NNuummbbeerr  ooff  SSccaallee  PPooiinnttss

If researchers employ scale-based measures, they
must decide on the number of scale points to include.
If an insufficient number of points are used, the mea-
sure may be insensitive to variability in respondents’
answers. On the other hand, too many scale points
may make the differences between points difficult for
respondents to interpret, thereby increasing random
error. Generally speaking, the optimal length for
unipolar scales (measures used to assess the extremity
or amount of a construct) is 5 points, while the opti-
mal length for bipolar scales (measures in which the
end points reflect opposing responses) ranges from 5
to 7 points.

LLaabbeelliinngg  SSccaallee  PPooiinnttss

Researchers must also decide whether to label the
points on their scales. Labeling scale points generally
helps respondents to interpret them as intended.
However, if the questionnaire is to be administered via
telephone, respondents may have difficulty remem-
bering verbal labels. In such instances, numeric labels
are preferable.

IInncclluuddiinngg  aa  MMiiddppooiinntt

Another decision is whether to include a midpoint
in one’s scale. Although midpoints are useful when
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there is a meaningful neutral position associated with
a question, there are potential disadvantages to includ-
ing one. Because the midpoint of a scale is often inter-
preted as reflecting neutrality, people who are not
motivated to consider the items carefully may auto-
matically gravitate toward the middle of the scale.
Furthermore, the meaning of the midpoint may be
somewhat ambiguous. Unless a researcher stipulates
what the midpoint signifies, respondents can interpret
it in several ways. A midpoint response to an item
could potentially indicate ambivalence, neutrality, or
indifference on the part of the individual completing
the questionnaire. As a result, researchers who fail to
label their scales clearly may find it impossible to
ascertain what midpoint responses signify.

NNoonnrreessppoonnssee  OOppttiioonnss

When people are queried about their attitudes, they
may sometimes generate random, spur-of-the-
moment responses. This is especially likely when
respondents are asked about issues that they think
about infrequently. One method of avoiding this prob-
lem is to incorporate nonresponse options into one’s
questions. This allows respondents to indicate that
they are unsure of their opinions and alleviates the
pressure to generate a substantive response instanta-
neously. The difficulty associated with this technique
is that respondents who actually have opinions about
an issue may simply select the nonresponse option if
they are not motivated to consider the questions care-
fully. An alternative approach is to ask respondents to
indicate how strongly they feel about their answers to
each question (e.g., the certainty of their responses,
how important they consider the issue to be). This
method requires people to respond to each item, while
allowing the researcher to gauge the strength of their
answers.

Questionnaire Construction

TThheemmaattiicc  OOrrggaanniizzaattiioonn  
VVeerrssuuss  RRaannddoommiizzaattiioonn

The way in which researchers structure their ques-
tionnaires can have a profound impact on the types of
responses that people provide. Researchers can either

order questions by thematic content or randomize them.
Often, social scientists have assumed that randomizing
their items is more appropriate. However, studies have
indicated that organizing items by thematic content
makes it easier for respondents to process the content of
the questions, thereby reducing random error.

OOrrddeerr  EEffffeeccttss

Researchers should also minimize the potential for
order effects in their questionnaires. When they com-
plete questionnaire-based measures, people tend to
adhere to conversational norms. More specifically,
they adhere to the same set of implicit rules that keep
regular social interactions running smoothly. For
example, respondents avoid providing redundant
information when they complete questionnaires.
Thus, using questions that overlap in content (e.g., a
question pertaining to how satisfied people are with
their social lives, followed by a question pertaining to
how satisfied people are with their lives in general)
may prompt respondents to generate answers that are
very different from the ones that they would have
given if each question had been posed separately. On
a related note, the initial questions in a measure may
prime certain concepts or ideas, thereby influencing
respondents’ answers to subsequent items.

Several steps can be taken to circumvent the prob-
lems associated with question order effects. For
instance, order effects can be minimized by counter-
balancing items. Filler items (i.e., questions that do
not pertain to the phenomena being studied) can also
be used in order to “isolate” questions that could
influence people’s responses to subsequent items.
Finally, sensitive, controversial questions should be
situated at the end of a measure, so that they do not
affect respondents’ willingness to complete the other
items.

In sum, if researchers exercise forethought in
designing their questionnaires, the end product of
their efforts will likely be a valid measure that is well
suited to its purpose.

—Leandre R. Fabrigar and Anna Ebel-Lam

See also Measurement; Measurement Error; Reliability
Theory; Validity Theory
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QUOTA SAMPLING

Quota sampling is a type of survey sampling in which
interviewers are directed to gather information from a
specified number of members of the population
belonging to certain subgroups. The subgroups are
sometimes called strata or cells. In contrast to strati-
fied random sampling, in which interviewers are given
specific instructions by the survey planners concern-
ing which individuals to interview, interviewers in
quota sampling are given some latitude in selecting
the population members to interview. Quota sampling,
therefore, is similar to convenience sampling in that
the survey designers and planners do not strictly con-
trol the selection of the sample. Some control, how-
ever, is maintained in the distribution of some sample
characteristics.

Suppose an insurance company wants to gather
information on a sample of its policyholders. The com-
pany’s database of clients contains records on the sex,
age, and number of policies of all its policyholders.
Interviews are to be conducted by telephone. The inter-
viewers are directed to interview 75 individuals in each
of 12 strata. The strata are defined by three factors: sex,
age, and number of policies. Specifically, the strata are
formed by grouping policyholders by sex (female or
male), age group (18–35, 36–65, and over 65 years

old), and number of policies (one policy or more than
one policy). These instructions will produce a quota
sample because the interviewers may call as many cus-
tomers as needed in order to quickly find people to
complete the required interviews. In a stratified ran-
dom sample, in contrast, the study planners would ran-
dom select 75 individuals and instruct interviewers to
gather data from the selected individuals.

Quota samples can be implemented in contexts other
than telephone or in-person interviewing. Suppose a
researcher wants to know the amount of herbicide per
acre applied to agricultural land planted with corn and
soybeans in the state of Iowa. The researcher picks 20
counties from around the state. He or she directs data
gatherers to collect information on herbicide application
for five farms growing corn and five others growing soy-
beans in the selected counties. If the data gatherers are
allowed to choose the most convenient farms or the first
farms that will participate, then it is a quota sample. The
cells are defined by county and crop. If the researcher
randomly selects the farms that the interviewers should
visit, then it is not a quota sample.

Quota sampling is an example of nonprobability
sampling. Convenience sampling is another nonprob-
ability sampling scheme. The goal of a survey is to
gather data in order to describe the characteristics of a
population. A population consists of units, or ele-
ments, such as individuals, plots of land, hospitals, or
invoices of purchases or sales for a company. A survey
collects information on a sample, or subset, of the
population. In nonprobability sampling designs, it is
not possible to compute the probabilities of selection
for the samples overall and, usually, for individuals.
The probabilities are unknown, because typically data
gatherers are allowed some freedom in selecting con-
venient units for data collection.

Estimates of population characteristics based on
nonprobability samples can be affected by selection
bias. Since the interviewers choose respondents that
they want to interview, there is a potential for selection
bias. If the respondents in the survey are systematically
different on the variables being measured from the
general population, then estimates of characteristics
will be different on average from what they would
have been with a controlled probability-sampling
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scheme. In probability sampling, the
survey planner or researcher controls
which units are in the sample and selects
the sample using known probabilities of
selection. The probabilities of selection
can be used to produce estimates of pop-
ulation characteristics without the prob-
lem of selection bias. Examples of
probability sampling include simple
random sampling, stratified random
sampling, and cluster sampling.

Probability sampling is the standard
methodology for large-scale surveys
intended to support scientific studies
and decision making for government
policy. Theory supporting the use of
probability sampling was developed
beginning in the 1930s and has come to
be appreciated widely. Quota sampling, on the other
hand, is quite common in marketing surveys and less
formal studies. Nonprobability sampling certainly can
produce useful information for some purposes. One
attempt to adjust for the fact that probabilities of
selection are unknown is to use weights, usually called
survey weights, in analysis. These weights are com-
puted so that the sum of the weights for sampled indi-
viduals in a particular stratum sum to a number
proportional to the actual number of people known to
exist in the population in the stratum or cell. The cells
for which quotas are set are often chosen due to the
fact that the proportions of the population in the cells
are known. Although this adjustment can help make
the sample more representative of the population in
analysis, it cannot overcome the fact that there could
be a remaining bias due to noncontrolled random
selection of the sample.

As an example of weighting or weight adjustment,
suppose a bank conducts a quota sample of its account
holders by selecting 100 individuals from each of four
categories. The four categories are females holding
single accounts, males holding single accounts,
females holding multiple accounts, and males holding
multiple accounts. If the hypothetical proportions of
all account holders in these four categories are as
given in Table 1, then the sample that contains 25% of

the respondents in each category is slightly out of bal-
ance relative to the population counts.

Weights can be computed as the fraction of the sam-
ple in a category divided by the fraction of the population
in the same category. The weights in this example are
given in Table 2. The bank is interested in the amount of
credit card debt held by its account holders. Since the
credit cards might not be issued through the bank, the
bank cannot simply compute the amount of debt; it must
ask members of the sample for the information. A direct
average of the amount of debt among the members of the
sample might not represent the population very well,
because the proportions by category are not exactly equal
to those in the population. Instead, a weighted average
using weights given in Table 2 might be better.

Of course, the selection bias produced by the quota
sample might still lead to a systematic overestimate or
underestimate of credit card debt.

The method of focus groups is another method
of collecting information that can be seen as being
similar in spirit to quota sampling. In focus groups,
researchers meet with representatives of a population,
ask questions, and hold discussions on topics of interest.
Researchers conducting focus group studies and inter-
views with key informants about a population hope to
gain insight into issues, concerns, and terminology rele-
vant to the population’s perception of an issue. Quota
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Table 1 Quota Sample of Account Holders

Percentage in the Population Number of Accounts

Sex of Account Holder One Account More Than One Total

Female 21% 27% 48%

Male 24% 28% 52%

Total 45% 55% 100%

Table 2 Weights

Weights Number of Accounts 

Sex of account holder One account More than one

Female 25/21 = 1.19 25/27 = 0.93

Male 25/24 = 1.04 25/28 = 0.89



sampling, instead of bringing a group together for an 
in-depth discussion, gathers data using a survey from a
sample of individuals. A substantial research project
might use several methods of gathering data, including
focus groups, a pilot survey or a preliminary quota
survey, and then a large-scale probability sample survey.

—Michael D. Larsen

See also Convenience Sampling; Nonprobability Sampling;
Probability Sampling
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RANDOM NUMBERS

Random numbers are useful for a variety of purposes,
such as generating data encryption keys, simulating
and modeling complex phenomena, and selecting ran-
dom samples from larger data sets. They have also
been used aesthetically (e.g., in literature and music)
and are, of course, ever popular for games and gam-
bling. When discussing single numbers, a random
number is one that is drawn from a set of possible val-
ues, each of which is equally probable (i.e., a uniform
distribution). When discussing a sequence of random
numbers, each number drawn must be statistically
independent of the others.

There are two main approaches to generating
random numbers using a computer. Pseudorandom
number generators (PRNGs) are algorithmic approaches
that use mathematical formulae (e.g., the linear con-
gruential method) or simply precalculated tables to
produce sequences of numbers that appear random.
PRNGs are efficient and deterministic, meaning that
they can produce many numbers in a short time and a
given sequence of numbers can be reproduced at a
later date if the starting point in the sequence is
known. PRNGs are typically periodic, meaning that
the sequence will eventually repeat itself. These

characteristics make PRNGs suitable for applications
where many numbers are required and where it is use-
ful that the same sequence can be replayed easily,
such as in simulation and modeling applications.
PRNGs are not suitable for applications where it is
important that the numbers be really unpredictable,
such as data encryption and gambling.

In comparison, true random number generators
(TRNGs) extract randomness from physical phenom-
ena, such as quantum events or chaotic systems. For
example, random numbers can be generated by measur-
ing the variations in the time between occurrences of
radioactive decay (quantum events) or the variations in
amplitude of atmospheric noise (caused by the planet’s
chaotic weather system). TRNGs are generally much
less efficient than PRNGs, taking a considerably longer
time to produce numbers. They are also nondeterminis-
tic, meaning that a given sequence of numbers cannot
be reproduced, although the same sequence may, of
course, occur several times by chance. TRNGs have no
period. These characteristics make TRNGs suitable for
roughly the set of applications for which PRNGs are
unsuitable, such as data encryption, games, and gam-
bling. Conversely, the poor efficiency and nondeter-
ministic nature of TRNGs make them less suitable for
simulation and modeling applications.
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Many statistical tests exist that can be used to
assess the randomness of numbers generated with
either approach. Examples include the Chi-Square
Test, the Run Test, the Collision Test, and the Serial
Test. However, testing for randomness is not straight-
forward, because each possible sequence is equally
likely to appear, and good random number generators
therefore will also produce sequences that look non-
random and fail the statistical tests. Consequently,
it is impossible to prove definitively whether a given
sequence of numbers (and the generator that produced
it) is random. Rather, random numbers from a given
generator are subjected to an increasing number of
tests, and as the numbers pass more tests, the confi-
dence in their randomness (and the generator that
produced them) increases.

—Mads Haahr

See also Chance; Monte Carlo Methods; Random Sampling
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RANDOM SAMPLING

Three concepts that are relevant to understanding
“random sampling” are population, sample, and sam-
pling. A population is a set of elements (e.g., scores of
a group of prisoners on a personality scale, weights of
newborns of mothers younger than 18, longevity of
smokers in New York City, and changes in the systolic
blood pressure of hypertensive patients exposed to
relaxation training) defined by the researcher’s

interests. Populations can be defined narrowly or
broadly and can consist of a few or many elements.
For example, a researcher concerned with effects of
relaxation training on systolic blood pressure might be
interested only in pre- to posttreatment systolic blood
pressure changes (i.e., pre–post) in the small group of
patients included in her study, or she might be inter-
ested in the efficacy of relaxation training in the
collection of all persons who could be classified as
“elderly obese hypertensive patients” by some opera-
tional definitions of these terms.

A sample is a subset of a population, and sam-
pling refers to the process of drawing samples from
a population. Sampling is generally motivated by the
unavailability of the entire population of elements
(or “data”) to the researcher and by her interest in
drawing inferences about one or more characteristics
of this population (e.g., the mean, µ , or variance, σ2,
of the population). Thus, in the hypertension
example, the researcher might be interested in esti-
mating from her sample data the mean (µ ) or vari-
ance (σ2) of pre- to posttreatment changes in systolic
blood pressure of the population consisting of
persons who fit the operational definition of “elderly
obese hypertensive patients.” She might also be
interested in using the sample data to test (the
tenability of) some hypothesis about µ , such as the
hypothesis that the average change in systolic blood
pressure (µ) in the population of hypertensives
exposed to relaxation training is zero. This hypothe-
sis will be called the “null hypothesis” and will be
abbreviated “H0” below. Because characteristics of a
population, such as µ and σ2, are defined as “para-
meters” of the population, the principal objectives of
random sampling can often be described in terms of
(a) estimation of population parameters and (b) test-
ing of hypotheses about population parameters.
Parameters that are often of interest are means (µs)
and linear combinations of means that provide infor-
mation about mean differences, trends, interaction
effects, and so on.

Simple random sampling refers to a method of
drawing a sample of some fixed size n from the pop-
ulation of interest, which ensures that all possible
samples of this size (n) are equiprobable (i.e., equally
likely to be drawn). Sampling can be carried out with
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replacement or without replacement. Sampling is with
replacement if, in the process of drawing the n ele-
ments of the sample consecutively from the popula-
tion, each element is replaced in the population prior
to drawing the next element. For example, if the pop-
ulation of interest consisted of Minnesota Multiphasic
Personality Inventory Depression scores of 60, 65,
and 70, drawing a sample of size n = 2 with replace-
ment involves replacement of the first-drawn score
prior to making the second draw. Sampling is without
replacement in this example if the first-drawn score is
not replaced prior to making the second draw.
Therefore, there would be nine possible samples of
size n = 2 (in this example) when sampling was with
replacement, as shown below:

60,60 60,65 60,70
65,60 65,65 65,70
70,60 70,65 70,70

and six possible samples of size n = 2 if sampling is
without replacement, as shown below:

60,65 60,70
65,60 65,70
70,60 70,65

If, in this example, the sampling is not only with
replacement but also random, the probability or likeli-
hood of drawing any one of the nine possible samples
[e.g., (60,60), (60,65)] would be equal to that of draw-
ing any of the other eight possible samples (i.e.,
1/9 = .111). However, if the sampling is random and
without replacement, the probability of drawing any
one of the six samples that are possible without
replacement [e.g., (60,65), (60,70)] would be equal to
that of drawing any of the other five possible samples
(i.e., 1/6 = 0.167).

Random Sampling and
Representativeness

Authors sometime state or imply that random sam-
pling generates samples that are representative of the
populations from which they have been drawn. If this
is true, then two random samples of size n drawn
from the same population should be very similar. But

in fact, randomly drawn samples can have a non-
negligible probability of being very unrepresentative
of the population from which they were drawn, and
two random samples drawn from the same population
can be very dissimilar, especially when these samples
are small. For example, suppose that relaxation train-
ing was ineffective in the sense that the average
(pre-post) systolic blood pressure change was zero
(µ = 0) in the population of interest, and assume
that the distribution of blood pressure changes of
this population was actually bell-shaped (normal,
Gaussian) with a standard deviation of σ = 22 mm
Hg. Then it can be shown (using the central limit
theorem) that (a) the mean (M) of a random sample
of n = 4 drawn from this population would have the
nonnegligible probability of .36 of under- or overes-
timating the population mean (i.e., µ = 0) by more
than 10 mm, and (b) a random sample of that size
would have a probability of 0.18 of having a mean
M > 10 mm. Furthermore, two independently drawn
random samples of this size could, with nonnegligi-
ble probability, yield very different sample means.

Suppose that the probability that the two sample
means differ by more than 10 mm Hg is 0.52.
Because systolic blood pressure changes of 10 or
more mm are associated with important health bene-
fits or risks (for example, it has been estimated that
every 10 mm Hg increase in systolic blood pressure
is associated with a 30% increase in the risk of heart
attack), nonnegligible overestimation or underestima-
tion of effects of relaxation training on systolic blood
pressure, as well as important nonequivalence of
samples with respect to average blood pressure
changes, could occur quite frequently with random
samples of that size. Clearly, random sampling need
not ensure representativeness or equivalence of sam-
ples. However, random sampling generally permits
drawing useful inferences about population charac-
teristics from sample data, regardless of the sizes of
the samples (as illustrated below).

Random Sampling and the
Estimation of Parameters

When a sample of size n is drawn at random from a
population with mean µ, the mean of that sample (M)
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will be an unbiased estimator of µ. This means that if
this sampling “experiment” (the drawing of the ran-
dom sample) was repeated an infinitely large number
of times, the mean (also called the “expected value”)
of the Ms would be equal to µ . Thus, if the mean of
change scores in a population of hypertensive
patients who were exposed to relaxation training was
in fact µ = 5 mm, and if independent random sam-
ples of size 4 were to be drawn an infinitely large
number of times from this population, the mean or
expected value of the sample means would be 5 mm;
in this situation, random sampling would result in
“absence of bias” of the statistic M in the sense that
the average M would be equal to 5. The sample mean
M would be described as a “point estimate” of the
parameter µ. [The expression “point estimate” refers
to the fact that the M of a sample is a single value or
point, as opposed to a range of values or intervals 
(see below).]

Given that the distribution from which the sample
of size n has been randomly selected is normal and
that its mean is µ and its standard deviation is σ, it
can be shown that an interval that is defined as
extending from [M – z.025 σ/n.5] to [M + z.025 σ/n.5] has
a probability of 0.95 of including µ (where z.025 is
1.96, the 97.5th centile of the standard normal distri-
bution). This interval estimate of µ is called a two-
sided 95% confidence interval. The probability that
a 95% confidence interval constructed in this way
includes the parameter that it is used to estimate is
0.95. For example, given that n = 49, σ = 22, and 
M = 10, the 95% confidence interval would extend
from [10 − 1.96(22/7)] to [10 + 1.96(22/7)], that is,
from 3.84 to 16.16. The researcher could be quite
sure or confident that the average drop in systolic
blood pressure in the population of hypertensives
would be somewhere between 3.84 and 16.16.
However, if the sample size had been n = 4, the same
sample mean of M = 10 would yield a much larger
95% confidence interval. With n = 4, σ = 22, and
M = 10, the 95% confidence interval would extend
from [10 – 1.96(22/2)] to [10 + 1.96(22/2)], that
is, from –11.56 to 31.56. A much wider range of
values of µ would be consistent with the sample
data. It should be noted that in these examples, the

construction of the confidence intervals required
knowledge not only of sample data but also of σ, a
parameter that is often unavailable to the researcher.
However, given random sampling, confidence inter-
vals for µs can also be constructed (using methods
discussed in most statistic textbooks) without
knowledge of σ. These examples illustrate the fact
that, irrespective of the representativeness of random
samples, random sampling generally permits inter-
pretable inferences about parameters of interest to
the researcher.

Random Sampling and
Parametric Hypothesis Testing

Testing a hypothesis about the value of a parameter
(e.g., H0: µ = 0) can be viewed as determining
whether this value is or is not consistent with the
sample data. Thus, a researcher who tests H0: µ = 0 in
the above example in effect determines whether µ =
0 is or is not plausible given the observed sample
data. What is apparent from this perspective on
hypothesis testing is that confidence intervals, whose
construction assumes random sampling, can provide
the information needed for hypothesis testing by
explicitly specifying a range of values of the parame-
ter that would be plausible given the sample data.
Thus, the fact that the 95% confidence interval for the
sample of n = 49 excluded zero would usually lead to
a decision to reject the null hypothesis that µ = 0
because this interval did not include zero. On the
other hand, the fact that the 95% confidence interval
for the sample of n = 4 included zero would generally
lead to the conclusion that µ = 0 was consistent with
the sample data—that is, consistent with the possibil-
ity that the average change in systolic blood pressure
of patients in the population could be zero. Clearly,
because the methods used to construct the confidence
intervals assume random sampling, the hypothesis
tests based on information yielded by the confidence
intervals also require tenability of the random sam-
pling assumption. Random sampling implies models
that make possible both estimation (point and interval
estimation) and hypothesis testing about parameters
of interest to researchers.
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Random Sampling Versus
Randomization

Random sampling, as noted above, refers to a method
of drawing a sample of size n from a population,
which ensures that all possible samples of that size are
equiprobable. Randomization, on the other hand,
refers to a method of assigning or allocating n = n1 +
n2 + . . . + nk participants in a study to k groups where
n1 subjects are assigned to Group 1, n2 subjects to
Group 2, . . . , and nk subjects to Group k, which
ensures that all of the possible ways of making the
assignments are equiprobable. For example, with
n = 5 participants (ABCDE) and two groups, there
would be 10 ways of making the assignments so that
n1 = 2 and n2 = 3: (AB,CDE), (AC,BDE), (AD,BCE),
(AE,BCD), (BC,ADE), (BD,ACE), (BE,ACD),
(CD,ABE), (CE,ABD), (DE,ABC); random assign-
ment or randomization would refer, in this example, to
a method that would ensure equiprobability (1/10 =
0.10) of the 10 possible allocations. Randomization
is feasible with a “sample of convenience,” that is, a
sample of n available subjects all of whom will be
used in a study, and inferential statistical methods
(e.g., hypothesis testing) can be used both with ran-
dom sampling (from populations whose characteris-
tics are of interest to researchers) and with random
assignment of subjects from a sample of convenience
(i.e., randomization). However, although random sam-
pling allows statistical inferences to be drawn (from a
study’s sample data) about characteristics of popula-
tions from which random samples have been drawn,
randomization (without random sampling) allows sta-
tistical inferences only about the participants of the
study. Nevertheless, nonstatistical inferences about
individuals not included in the study are often possi-
ble with randomization.

—Louis M. Hsu

See also Sample

Further Reading

Edgington, E. S. (1966). Statistical inference and nonrandom
samples. Psychological Bulletin, 66, 485–487.

Hays, W. L. (1981). Statistics (3rd ed.). New York: Holt,
Rinehart and Winston.

Hsu, L. M. (1989). Random sampling, randomization, and
equivalence of contrasted groups in psychotherapy out-
come research. Journal of Consulting and Clinical
Psychology, 57, 131–137.

Hunter, M. A., & May, R. B. (2003). Statistical testing and null
distributions: What to do when samples are not random.
Canadian Journal of Experimental Psychology, 57, 176– 188.

Maxwell, S. E., & Delaney, H. D. (2004). Designing experi-
ments and analyzing data (2nd ed.). Mahwah, NJ: Erlbaum.

Reichardt, C. S., & Gollob, H. F. (1999). Justifying the use and
increasing the power of a t test for a randomized experi-
ment with a convenience sample. Psychological Methods,
4, 117–126.

Siemer, M., & Joorman, J. (2003). Power and measures of
effect size in analysis of variance with fixed versus random
nested factors. Psychological Methods, 8, 497–517.

Stilson, D. W. (1966). Probability and statistics in psycholog-
ical research and theory. San Francisco: Holden-Day.

Random sampling versus randomization—different implica-
tions: http:/www.tufts.edu/~gdallal/rand.htm

Applying Ideas on Statistics and Measurement

The following abstract is adapted from Gershater-
Molko, R. M., Lutzker, J. R., & Wesch, D. (2002).
Using recidivism to evaluate Project SafeCare:
Teaching bonding, safety, and health care skills to
parents. Child Maltreatment, 7(3), 277–285.

Project SafeCare was an in-home research and
intervention, grant-funded program designed to
teach parents who were reported for child abuse
and neglect. Parents who participated in Project
SafeCare received training in three aspects of child
care: treating illnesses and maximizing their health
care skills (health), positive and effective parent-
child interaction skills (bonding), and maintaining
hazard-free homes (safety) for their children. True
random sampling was used to select families for
participation. Postcontact (after initial intake was
made and the program began) incidents of child
abuse and neglect for maltreating parents who
participated in and completed Project SafeCare
were compared to a comparison groupof maltreat-
ing families from the point of initial intake through
a 24-month follow-up period. The comparison
group (the Family Preservation group) received
intervention from Family Preservation programs.
Families who participated in Project SafeCare had
significantly lower reports of child abuse and
neglect than did families in the comparison group.
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RANGE

Among all the measures of variability, the range is the
most general and is an overall picture of how much
variability there is in a group of scores. It provides an
impression of how far apart scores are from one
another and is computed by simply subtracting the
lowest score in a distribution from the highest score in
the distribution.

In general, the formula for the range is

R = H − L,

where

R is the range,

H is the highest score in the data set,

L is the lowest score in the data set.

Take the following set of scores, for example
(shown here in descending order):

98, 86, 77, 56, 48

In this example, 98 – 48 = 50. The range is 50.
Although the formula you see above is the most

common one for computing the range, there is another
definition and formula as well. The first is the exclu-
sive range (as shown above), which is the highest
score minus the lowest score (or h – l) and the one that
was just defined. The second kind of range is the
inclusive range, which is the highest score minus the
lowest score plus 1 (or h – l + 1). The exclusive range
is the most common, but the inclusive range is also
used on occasion. There are other types of ranges as
well, such as the semi-interquartile range.

The range is used almost exclusively to get a very
general estimate of how wide or different scores are
from one another—that is, the range shows how much
spread there is from the lowest to the highest point in
a distribution. So, although the range is fine as a gen-
eral indicator of variability, it should not be used to
reach any conclusions regarding how individual
scores differ from one another.

Shortcomings of the range as a measure of variabil-
ity are two. First, because the range reflects the differ-
ence between only two numbers (and not any others),
the only thing we know about the set of scores is these
two numbers and nothing about potential outliers or
scores that are far beyond the general characteristics of
the distribution. For example, a range of 60 (100–40)
may very well include only one number above 80
(which is 100), while the same range might reflect a
distribution of scores with 20 data points above 80 (83,
92, and 97, for example). Second, because only two
numbers are used, there is no discerning the shape or
meaning or patterns of a set of data. Knowing the
range tells us nothing about the shape of a distribution.

—Neil J. Salkind

Further Reading
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RASCH MEASUREMENT MODEL

A Rasch measurement model is an example of addi-
tive, conjoint, fundamental measurement by which one
can create linear, objective measures applicable to the
human sciences (such as in, but not limited to, educa-
tion, psychology, medicine and health, marketing and
business, and judging in sports). Rasch measurement
models show how to determine what is measurable on
a linear scale, how to determine what data can be used
reliably to create a linear scale, and what data cannot
be used in the creation of a linear scale. In a linear
scale, equal differences between the numbers on the
scale represent equal amounts of the measure. 

Raw Scores to Linear Measures

Rasch measurement models can be used to convert
many different types of raw score data to a linear
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scale, such as dichotomous data; rating response
scores; partial credit scores; skills or achievement
judging scores (from, say, 1 to 10); essay marks; par-
tial skills development; quality levels or levels of suc-
cess; and so on. They can be applied to achievement
data (as in subjects at schools and universities); atti-
tude data; personality data; quality of life data; levels
of health data; behavioral data; data given by groups
of judges on tasks or skills (such as in diving, dancing,
and ice skating); and so on.

“Scale-Free” Measures and
“Sample-Free” Item Difficulties

An important point to understand is that when the data
fit a Rasch measurement model, the differences
between the person measures and the item difficulties
can be calibrated together in such a way that they are
freed from the distributional properties of the inciden-
tal parameter, because of the mathematics involved in
the measurement model. This means that “scale-free”
measures and “sample-free” item difficulties can be
estimated with the creation of a mathematically objec-
tive linear scale with standard units. The standard
units are called logits (the log odds of successfully
answering the items).

A requirement for measurement is that the units
should be the same size across the range of the vari-
able measures, and this is not true with percentage
scores, or summed scores from a set of achievement
or attitude items, where small changes in the probabil-
ity of success are related to large changes in person
abilities at the bottom and top of percentage scales, all
of which are nonlinear. By converting the probability
of success to log odds and logits as the unit in Rasch
measurement, the nonlinear problem is greatly
reduced, particularly at the top of the scale.

The Simple Logistic Model of Rasch

The simplest Rasch measurement model for creating
a linear scale was developed by Georg Rasch
(1901–1980) and published in 1960. The simple logis-
tic model (SLM) of Rasch has two parameters: one
representing a measure for each person on a variable

and the other representing the difficulty for each item
(it is sometimes called the one-parameter model in the
literature).

RReeqquuiirreemmeennttss  ooff  tthhee  SSLLMM  ooff  RRaasscchh

1. Items are designed to be conceptually ordered
by difficulty along an increasing continuum from easy
to harder for the variable being measured. 

2. In designing the items (using three as an
example), one keeps in mind that person measures of
the variable are conceptualized as being ordered along
the continuum from low to high according to certain
conditions. The conditions in this example are that
persons with low measures will have a high probabil-
ity of answering the easy items positively, and a low
probability of answering the medium and hard items
positively. Persons with medium measures will have a
high probability of answering the easy and medium
items positively, and a low probability of answering
the hard items positively. Persons with high measures
will have a high probability of answering the easy,
medium, and hard items positively. These conditions
are tested through a Rasch analysis.

3. Data are collected from persons on the items and
scored dichotomously (0/1 or 1/2), as in, for example,
wrong/right, no/yes, none/a lot, or disagree/agree.

4. Each item is represented by a number, estimated
from the data that represent its difficulty (called an
item parameter in the mathematical representation of
the Rasch model) that does not vary for persons with
different measures of the variable. Persons with differ-
ent measures responding to the items have to agree on
the difficulty of the items (such as easy, medium, and
hard, as used in this example). If the persons do not
agree on an item’s difficulty, then this will be indi-
cated by a poor fit to the measurement model, and
then the item may be discarded as not belonging to a
measure on this continuum.

5. Each person is represented by a number, esti-
mated from the data that represent his or her measure
of the variable (called a person parameter in the math-
ematical representation of the Rasch model) that does
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not vary for items of different difficulty along the
continuum. If different items do not produce agree-
ment on a person measure, then this will be indicated
by a poor fit to the measurement model, and then one
examines the person response pattern (and the items).

6. Rasch measurement models use a probability
function that allows for some variation in answering
items such that, for example, a person with a high atti-
tude measure sometimes might give a low response to
an easy item, or a person with a medium achievement
measure sometimes might answer a hard item cor-
rectly. If the person response pattern shows too much
disagreement with what is expected, then it may be
that the person has not answered the items properly or
consistently, and that person’s results may be dis-
carded, or the item may be too hard or too easy.

EEqquuaattiioonnss  ffoorr  tthhee  SSiimmppllee
LLooggiissttiicc  MMooddeell  ooff  RRaasscchh

Probability of answering

positively (score 1)

for person n

Probability of answering

negatively (score 0)

for person n

where

e is the natural logarithm base (e = 2.7318),

Bn is the parameter representing the measure (ability,
attitude, performance) for person n,

Di is the parameter representing the difficulty for item i.

These equations are solved from the data by taking
logarithms and applying a conditional probability
routine with a computer program such as the Rasch
Unidimensional Measurement Models (RUMM),
Winsteps, or ConQuest. The RUMM program is
currently the best of the main computer programs 
for Rasch measures for two reasons. One is that the
RUMM program provides a comprehensive set of

output data to test many aspects of the conceptual
model of the variable, the answering consistency of
the response categories, both item and person fit to the
measurement model, and targeting. And second, the
RUMM program produces a wonderful set of colored,
graphical maps for many aspects of the measurement.

The Partial Credit Model of Rasch

The partial credit model (PCM) of Rasch can be
thought of as an extension of the SLM from two
response categories to three or more response cate-
gories or outcomes. The conditions, requirements, and
output of the PCM are similar to the SLM, except that
there are now more item parameters and more item
output, and the equations are more complicated. The
PCM can be applied to any set of data scored, judged,
or answered in three or more ordered outcome cate-
gories where the level of outcome is conceptualized
on a continuum from low to high. Seven examples of
data that can be analyzed with the PCM are listed.

1. Ordered levels of knowledge, understanding, or
skills, such as school tests in which questions (items)
are marked in a set of categories, such as 0, 1, 2, 3,
4, 5, depending on the level of understanding dis-
played. One might have a standard for each of the six
levels to help with consistency of scoring.

2. Ordered levels of tasks in problem solving where, for
example, completion of a complex problem requires
three intermediate ordered tasks to be completed, so
the problem is scored 0,1, 2, 3, 4, depending on the
level completed.

3. Ordered levels of health after an operation where, for
example, patients describe their level of well-being
on a scale from 1 (unable to eat and move without
pain) to 10 (able to eat and walk around without
discomfort)

4. Rated level of marks, for example, by one teacher
assigning scores of 0 to 10 on a task such as writing
an essay or completing an assignment

5. Respondents’ self-ratings on attitude, personality, or
behavior items using, for example, a unipolar set of
responses such as no agreement (0), weak agreement
(1), strong agreement (2), and very strong agreement
(3), or using a bipolar set of responses such as strongly
disagree (0), disagree (1), agree (2), strongly agree (3)

= 1
1+ e(Bn−Di)

= e(Bn−Di)

1+ e(Bn−Di)
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6. A single judge, teacher, or coach providing a judgment
on the level of skill achieved in a sport or activity

7. A computerized test item that is programmed to
provide a series of ordered feedback hints to allow
further chances to answer correctly and ordered
scores given accordingly

EEqquuaattiioonnss  ffoorr  tthhee  PPaarrttiiaall
CCrreeddiitt  MMooddeell  ooff  RRaasscchh

Probability of person n scoring

in outcome category x of item i =
(for x = 1,2,3,4, . . . , Mi)

Probability of person n scoring

in outcome category x of item i =
(for x = 0)

where

e is the natural logarithm base (e = 2.7318),

∑ (Bn − δij) is the sum of Bn − δij,

Bn is a parameter representing the measure (ability, atti-
tude, skill or performance) for person n,

δi1, δi2, δi3, . . . δiMi are a set of parameters for item i
that jointly locate the model probability curves for 
item i. There are Mi item parameters for an item with
Mi +1 outcome categories.

Rasch Data Analysis With the
RUMM Computer Program

Using the PCM of Rasch with the RUMM computer
program, there are eight data analysis tests (output)
provided in the creation of a linear, unidimensional
scale. This output is similar for the PCM, the ELM,
the RRM, and the SLM (except that for the SLM,
there are no ordered thresholds, just one threshold).

1. Testing that the response categories are
answered consistently and logically. The RUMM
program does this with two outputs: (a) It calculates

threshold values between the response categories for
each item (where there are odds of 1:1 of answering in
adjacent categories), and (b) it provides response
category curves showing the graphical relationship
between the linear measure and the probability of
answering each response category.

2. Testing for dimensionality. An item-trait test of
fit is calculated as a chi-square with a corresponding
probability of fit. It tests the interaction between the
responses to the items and the person measures along
the variable and shows the collective agreement for all
items across persons of different measures along the
scale. If there is no significant interaction, one can
infer that a single parameter can be used to describe
each person’s response to the different item difficul-
ties, and thus we have a unidimensional measure.

3. Testing for good global item-person fit statistics.
The item-person test of fit examines the response pat-
terns for items across persons, and the person-item test
of fit examines the response patterns for persons across
items using residuals. Residuals are the differences
between the actual responses and the expected
responses as estimated from the parameters of the mea-
surement model. When these residuals are summed
and standardized, they will approximate a distribution
with a mean near zero and standard deviation near one,
when the data fit a Rasch measurement model.

4. Person Separation Index. Using the estimates of
the person measures and their standard errors, the
RUMM program calculates a Person Separation Index
that is constructed from a ratio of the estimated true
variance among person measures and the estimated
observed variance among person measures. This tests
whether the standard errors are much smaller than the
differences between the person measures.

5. Testing for good individual item and person
residuals. Residuals are the differences between the
observed values and the expected values estimated
from the parameters of the Rasch measurement
model. It is instructive to examine these outputs
because they give an indication of whether persons are
answering items in a consistent way, and they also
give an indication of individual person and individual
item fit to the measurement model.

1

1 +
Mi∑

k=1
e

k∑

j=1
(Bn−δij)

e

x∑

j=1
(Bn−δij)

1 +
Mi∑

k=1
e

k∑

j=1
(Bn−δij)
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6. Item characteristic curves. Item characteristic
curves examine how well the items differentiate
between persons with measures above and below the
item location. It also shows a comparison between the
observed and expected proportions correct for a
number of class intervals of persons.

7. Person measure/item difficulty map. The RUMM
program produces two types of person measure/item
difficulty maps. These maps show how the person mea-
sures are distributed along the variable and how the
item difficulties are distributed along the same variable
(measured in logits). They show which items are easy,
which ones are of medium difficulty, and which ones
are hard. They show how well the item difficulties are
targeted at the person measures. That is, they show
whether the items are too easy or too hard for the
persons being measured and whether new items need to
be added, or whether there are too many items of simi-
lar difficulty (some of which are thus not needed).

8. Testing for construct validity. Suppose that your
items are conceptually ordered by increasing diffi-
culty (downward) and the perspectives are ordered by
increasing difficulty (to the right), and this represents
the structure behind your variable. In Rasch measure-
ment, all the item difficulties are calculated on the
same linear scale, and so the item difficulties can be
compared with their conceptualized order. In this
case, the item difficulties increase vertically down-
ward for each perspective by item and they increase
horizontally to the right for each item by perspective.
This provides strong support for the structure of the
variable because it was postulated before the data
were collected and analyzed.

The Many-Facets Model of Rasch

The Many-Facets Model of Rasch (MFMR) applies to
situations where judges rate persons on, for example,
skills, items, essays, or behaviors. The model states that
persons have an estimated probability of being given
any rating on an ordinal scale (e.g., 1–10, as given by
judges of diving) on any item by any judge. Each obser-
vation is modeled by an ordinal rating from a loglinear
combination of the measures of one element from the
appropriate facets, for example, a person performance

from the person ability facet, a judge severity from the
judge facet, and an item difficulty from the item facet.
True to Rasch measurement, the measures are esti-
mated from the data but are statistically independent of
observations comprising the data. These measures form
a linear scale on which the elements of all the facets are
located. Estimates of fit to the measurement model can
be made by examining the differences between the
actual observations and the predicted observations esti-
mated from the parameters of the measurement model,
as is done in the other Rasch models.

AAnn  EEqquuaattiioonn  ffoorr  aa
MMaannyy--FFaacceettss  MMooddeell  ooff  RRaasscchh

The following equation applies to an example
where persons are rated by judges on three or more
items, each of which has its own ordinal rating scale:

Ln (Pnijk /Pnijk – 1) = Bn – Di – Cj – Fik,

where

Ln is the natural logarithm (to the base e),

Pnijk is the probability that person n will gain a rating of
category k from judge j on item i,

Bn is a parameter representing the ability, skill, or perfor-
mance of person n,

Di is a parameter representing the difficulty of item i,

Cj is a parameter representing the severity of judge j,

Fik is a parameter representing the additional difficulty
of being rated in category k beyond that of being rated in
category k – 1 for item i,

Ki is the highest rating scale category. Zero is the lowest.

Some Special Applications
of Rasch Measurement

The creation of linear measures in the human sciences
through Rasch measurement and the development of
personal computers has allowed for the use of two
special applications: item banks and computerized
adaptive testing. Item banks involve the collection of
thousands of school achievement items relating to a
topic, such as algebra, that have been calibrated on a
linear scale. Teachers can choose a set of items on the
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topic, calibrated from easy to hard, and use the items
to test their students. If an appropriate computer pro-
gram has been created, students can use a computer to
select items appropriate to their level of understanding
and attempt only those. Because all the items have
been calibrated on the same linear scale, students (and
their teachers) can obtain a measure of their level of
understanding.

—Russell F. Waugh
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RATIO LEVEL OF MEASUREMENT

The most precise of the four levels of measurement
is called the ratio level. The ratio scale is unique
because, unlike the interval scale, it contains an
absolute rather than arbitrary zero. In other words, a
score of 0 on a ratio-level measure indicates a com-
plete absence of the trait or construct being measured.
Whereas at a temperature of 0° on a Fahrenheit scale,
some molecules are still moving (because the zero of
the scale is arbitrary), a reading of 0° on a Kelvin
temperature scale signifies a total lack of molecular
movement. Therefore, the Fahrenheit scale is an
example of interval measurement, whereas the Kelvin
scale is considered ratio-level measurement.

The reason the absolute zero makes the ratio scale
unique is that it allows us to make meaningful fractions.
On the Kelvin scale, 20° is twice as “hot” (has twice the
amount of moving molecules) as 10°, and 150° is three
times as “hot” as 50°. Using the Fahrenheit scale, we
cannot make such a comparison; 20° is not twice as hot
as 10° because the zero point on the scale does not indi-
cate a complete absence of molecular movement and
because temperatures below 0° are possible.

Whereas ratio-level data are fairly common in
physical sciences (zero molecular movement, zero
light, zero gravity), they are rarer in behavioral and
social science fields. Even if someone scores a zero
for whatever reason on an IQ test, the tester would not
declare that the test taker has no intelligence. If a
student receives 0 points on a vocabulary quiz,
the teacher still cannot claim the student has no
vocabulary.

An example of a case in which ratio data could be
used in the behavioral sciences is if a researcher is
using as a variable the amount of practicum hours
students have logged during a semester. The
researcher would give a score of 0 to any student who
has seen no clients and logged no hours. Likewise, the
researcher could accurately say that a student who has
logged 50 hours of client contact during practicum has
had twice the amount of client contact as a student
who has logged 25 hours.

Although ratio-level measurement is not common
in the behavioral and social sciences, its advantages
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make it a desirable scale to use. Because it is the most
precise level of measurement, and because it contains
all of the qualities of the three “lower” levels of mea-
surement, it provides the richest information about the
traits it measures.

Ratio data let us know that Person A, who earns an
annual income of $1 million, makes 100 times the
amount of money as Person B, who earns an annual
income of $10,000. We can tell more from this com-
parison than we could if we knew only that Person B
makes $990,000 less per year than Person A (interval-
level measurement), that Person A has a larger income
than Person B (ordinal-level measurement), or that the
incomes of Person A and Person B fall under different
socioeconomic categories (nominal-level measure-
ment). This information would give us a more accu-
rate conception of the construct being measured.

—Kristin Rasmussen

See also Interval Level of Measurement; Nominal Level of
Measurement; Ordinal Level of Measurement
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RAVEN’S PROGRESSIVE MATRICES

Raven’s Progressive Matrices, published by Lewis, is
a test that was originally introduced in 1938. Its
purpose is to measure Spearman’s g factor or general
intelligence. For this reason, Raven chose a spatial
format for the test, which required the education of
relations among abstract items, that is, the visualizing
of relationships that are based on perceptual similari-
ties between stimuli.

It is a nonverbal test of reasoning ability that comes
in three forms; Coloured Progressive Matrices,
Standard Progressive Matrices, and Advanced
Progressive Matrices (Sets I and II). The test can be
administered in groups or individually, and each form
takes from 15 to 30 minutes to complete.

The Coloured Progressive Matrices is a 36-item test
that can be used mainly with children from 5 to 11 years
of age. In this form, the figures are in color in order to
appeal to the children and sustain their attention. The
Standard Progressive Matrices consists of 60 items that
are presented in five sets, with 12 items per set. The test
is employed mostly with persons from 6 to 14 years
of age. The Advanced Progressive Matrices is appropri-
ate for older adolescents and adults, primarily for indi-
viduals with higher than average intellectual ability.
It contains 12 items in Set I and 36 in Set II.

In each form of the test, the examinee is presented
with a design or matrix from which a part has been
removed. The testee has to look through the matrix and
decide which of six or eight pieces given below the
matrix is the right one to complete the matrix. The first
item in a set is intended to be self-evident, and it is fol-
lowed by another 11 items of increasing difficulty.

The items referred to are (a) consecutive patterns, (b)
analogies between pairs of figures, (c) progressive mod-
ifications of patterns, (d) transformations of figures, and
(e) disentangling of figures into component parts. Thus,
the test estimates the ability to make comparisons, to
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deduce by analogy, and to organize spatial patterns into
wholes.

The test items can be solved by employing problem-
solving strategies. The principle that has to be used to
solve each item is either to put forward orally or to
draw information from visual perceptual recognition of
the stimulus. In the first occasion, an analytical method
is used, whereas in the second, a Gestalt procedure
involving visual perception is used to solve the items.

The reliability and validity of the test is excellent,
but the construct validity of the test is not supported
by research because the very easy and very difficult
items of the test measure different operations.

Although the test does not respond to the initial
Raven’s intentions of measuring Spearman’s g factor, it
is a useful indicator of nonverbal reasoning ability.
More specifically, it is easy to administer and useful for
screening the intelligence of children and adults with
language difficulties and auditory or physical disabili-
ties. Furthermore, it is useful for testees who do not
speak English or have a restricted command of English.

—Demetrios S. Alexopoulos
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RECORD LINKAGE

Record linkage, or exact matching, refers to the activity
of linking together two or more databases on a
single population. The U.S. Bureau of the Census uses
record linkage in its efforts to estimate the population
undercount of the decennial census. The two files that
Census links together are a sample of the decennial
census and a second, independent enumeration of the
population areas covered by the sample. Some individuals
are counted in both the census and the second enumer-
ation, whereas others are absent from one or both of the

canvasses. Suppose that the numbers of individuals who
are enumerated are given in Table 1. The question
marks indicate counts of individuals that are not known.

The total size of the population can be estimated if
assumptions about the two enumeration efforts and the
population are made. Under standard assumptions of
capture-recapture models, the total size of the
population can be estimated as ncensusnsecond/nyy. If
250 people were counted in the census sample, 200
were counted in the second enumeration, and 125 were
common to both lists, then the population size would
be estimated as 250(200)/125 = 400. However, if only
100 people were common to both lists, then one would
estimate the population size to be 250(200)/100 = 500.

Record linkage is challenging when the sizes of the
files being linked are very large and unique identifying
information on every individual is not available.
Examples of unique identifiers (IDs) include Social
Security numbers (SSNs); U.S. passport numbers;
state driver’s license numbers; and, except for identical
twins, a person’s genetic code. The decennial census
does not collect SSNs or any other unique ID number.
The number of people in the census undercount sam-
ple is a few hundred thousand. Thus, record linkage in
this context needs to be computerized and automated.

Entries in the two databases are compared on the
fields of information common to two files. Consider
the following hypothetical records in the two files
called File A and File B:

File A Record File B Record
Wayne Feller W. A. Fuller
Male, Married, Age 70 Male, Married, Age 71
202 Snedecor Rd. 202 Snedecor, Apt. 3
Ames, Iowa Aimes, IA
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Second Enumeration
Yes No Total

Census Yes nyy nyn ncensus

Enumeration No nny ? ?
Total nsecond ? ?



These records, although containing clear 
differences, could correspond to the same person.
Alternate versions of names and addresses, nick-
names and abbreviations, and misspellings and typo-
graphical errors are frequently encountered in large,
population databases. The U.S. Bureau of the Census
and other U.S. and foreign statistical agencies use
sophisticated methods to address these and other
challenges.

Large-scale record linkage operations typically
standardize information such as names and
addresses, create groups or blocks of records by
geography and other factors, and score the degree of
agreement between pairs of potential matches.
Scores can be based on rules for adding points, also
called weights, for agreements and subtracting
points for disagreements. A pair of records with a
high score is likely to correspond to a single person,
whereas a pair with a low score is likely to represent
two different people. The weights can be based on
characteristics of records in the two files or esti-
mated using statistical models, such as latent class
models. The accumulation of similarities and dissim-
ilarities, such as those found when comparing the
two hypothetical records above, lead one to believe
that a pair of records represents either one person or
two different people.

Record linkage, or exact matching, is different
from statistical matching. A use of statistical matching
is to create matched pairs of people who are similar to
one another on key variables, such as age, sex, race,
and health status. Matched pairs can be used, for
example, in experiments and observational studies to
compare medical treatments.

Record linkage (RL) is used in many applications.
Besides population undercount estimation, Census
and major survey organizations use RL in the cre-
ation of sample frames of addresses, businesses, and
establishments. The National Center for Health
Statistics uses RL for comparing employment records
and historical survey records to the National Death
Index, a compilation of state death certificate records.
Health insurance and medical organizations can use
record linkage to link patient records over time in
order to form cumulative health histories. Record
linkage in these and other applications enable

statistical analyses and studies that otherwise would
not be possible. Of course, there is a great concern for
the confidentiality of respondent information and the
privacy of individuals that must be protected when
RL is used.

—Michael D. Larsen

See also Latent Class Analysis; Mixture Models

Further Reading

Alvey, W., & Jamerson, B. (1997). Record linkage
techniques—1997, Proceedings of an International
Workshop and Exposition. Federal Committee on
Statistical Methodology, Office of Management and
Budget. Retrieved from http://www.fcsm.gov/working-
papers/RLT_1997.html

Belin, T. R., Ishwaran, H., Duan, N., Berry, S., & Kanouse, D.
(2004). Identifying likely duplicates by record linkage in a
survey of prostitutes. In A. Gelman & X. L. Meng (Eds.),
Applied Bayesian modeling and causal inference from
incomplete-data perspectives. New York: Wiley.

Fellegi, I. P., & Sunter, A. B. (1969). A theory for record link-
age. Journal of the American Statistical Association, 64,
1183–1210.

Jaro, M. A. (1995). Probabilistic linkage of large public health
data files. Statistics in Medicine, 14, 491–498.

Lahiri, P., & Larsen, M. D. (2005). Regression analysis
with linked data. Journal of the American Statistical
Association, 100, 222–230.

Larsen, M. D., & Rubin, D. B. (2001). Iterative automated
record linkage using mixture models. Journal of the
American Statistical Association, 96, 32–41.

Newcombe, H. B. (1988). Handbook of record linkage:
Methods for health and statistical studies, administration,
and business. Oxford, UK: Oxford University Press.

Newcombe, H. B., Kennedy, J. M., Axford, S. J., & James,
A. P. (1959). Automatic linkage of vital records. Science,
pp. 954–959.

Winkler, W. E. (1994). Advanced methods for record linkage.
1994 Proceedings of the American Statistical Association,
Survey Research Methods Section (pp. 467–472).
Alexandria, VA: American Statistical Association.
Retrieved from http://www.amstat.org/sections/SRMS/
Proceedings/papers/1994_077.pdf

Winkler, W. E. (2000). Machine learning, information retrieval,
and record linkage. 2000 Proceedings of the American
Statistical Association, Survey Research Methods Section
(pp. 20–29). Alexandria, VA: American Statistical
Association. Retrieved from http://www.amstat.org/
sections/SRMS/Proceedings/papers/2000_003.pdf

828———Record Linkage



REGRESSION ANALYSIS

Regression analysis is the name for a family of tech-
niques that attempts to predict one variable (an
outcome or dependent variable) from another vari-
able, or set of variables (the predictor or independent
variables).

We will illustrate this first with an example of
linear regression, also called (ordinary) least squares
(OLS) regression. When people say “regression”
without any further description, they are almost
always talking about OLS regression. Figure 1 shows
a scatterplot of data from a group of British ex-miners,
who were claiming compensation for industrial injury.
The x-axis shows the age of the claimant, and the
y-axis shows the grip strength, as measured by a
dynamometer (this measures how hard the person can
squeeze two bars together).

Running through the points is the line of best fit, or
regression line. This line allows us to predict the con-
ditional mean of the grip strength—that is, the mean
value that would be expected for a person of any age.

The line of best fit, or regression line, is calculated
using the least squares method. To illustrate the least
squares method, consider Figure 2, which is simpli-
fied, in that it has only four points on the scatter-
plot. For each point, we calculate (or measure) the
vertical distance between the point and the regression

line—this is the residual, or error, for that point. Each
of these errors is squared and these values are
summed. The line of best fit is placed where it mini-
mizes this sum of squared errors (or residuals)—
hence, it is the least squares line of best fit, which is
sometimes known as the ordinary least squares line of
best fit (because there are other kinds of least squares
lines, such as generalized least squares and weighted
least squares). Thus, we can think of the regression
line as minimizing the error (note that in statistics, the
term error is used to mean deviation or wandering, not
mistake).

The position of a line on a graph is given by two
values—the height of the line and the gradient of
the line. In regression analysis, the gradient may be
referred to as b1 or β1 (β is the Greek letter beta). Of
course, because the line slopes, the height varies
along its length. The height of the line is given at the
point where the value of the x-axis (that is, the pre-
dictor variable) is equal to zero. The height of the
line is called the intercept, or y-intercept, the
constant, b0 (or β0), or sometimes α (the Greek letter
alpha).

Calculation of the regression line is straightfor-
ward, given the correlation between the measures. The
slope of the line (b1) is given by

b1 = r × sy

sx

,
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where 

r is the correlation between the two measures,

sy is the standard deviation of the outcome variable, and 

sx is the standard deviation of the predictor variable.

The intercept is given by

b0 = y
_

− b1x
_
,

where 

i is the intercept,

y
_

is the mean of the outcome variable, and 

x
_

is the mean of the predictor variable.

In the case of the data shown in Figure 1, the inter-
cept is equal to 50.9, and the slope is −0.41. We can
calculate the predicted (conditional mean) grip
strength of a person at any age, using the equation

ŝ  = 50.9 + a × –0.41,

where ŝ  is the predicted strength and a is the age of
the individual. Notice the hat on top of the s, which
means that it is predicted, not actual. A very similar
way to write the equation would be

ŝ  = 50.9 + a × –0.41 + e

s = ŝ + e.

In this equation, we are saying that s is the person’s
actual strength, which is equal to the expected value
plus a deviation for that individual. Now we no longer
have the hat on the s, because the equation is stating
that the person’s actual score is equal to that calcu-
lated, plus e, that is, error.

Each of the parameters in the regression analysis
can have a standard error associated with it, and hence
a confidence interval and p value can be calculated for
each parameter.

Regression generalizes to a case with multiple pre-
dictor variables, referred to as multiple regression. In
this case, the calculations are more complex, but
the principle is the same—we try to find values for the

parameters for the intercept and slope(s) such that 
the amount of error is minimized. The great advantage
and power of multiple regression is that it enables us
to estimate the effect of each variable, controlling for
the other variables. That is, it estimates what the slope
would be if all other variables were controlled.

We can think of regression in a more general sense
as being an attempt to develop a model that best
represents our data. This means that regression can
generalize in a number of different ways.

Types of Regression

For linear regression as we have described it to be
appropriate, it is necessary for the outcome (depen-
dent) variable to be continuous and the predictor
(independent) variable to be continuous or binary. It is
frequently the case that the outcome variable, in par-
ticular, does not match this assumption, in which case
a different type of regression is used.

CCaatteeggoorriiccaall  OOuuttccoommeess

Where the outcome is binary—that is, yes or no—
logistic or probit regression is used. We cannot esti-
mate the conditional mean of a yes/no response,
because the answer must be either yes or no—if the
predicted outcome score is 0.34, this does not make
sense; instead, we say that the probability of the indi-
vidual saying yes is 0.46 (or whatever it is). Logistic
or probit regression can be extended in two different
ways: For categorical outcomes, where the outcome
has more than two categories, multinomial logistic
regression is used. Where the outcome is ordinal, ordi-
nal logistic regression is used (SPSS refers to this 
as PLUM – PoLytomous Universal Models) and mod-
els the conditional likelihood of a range of events
occurring.

CCoouunntt  OOuuttccoommeess

Where data are counts of the number of times an
event occurred (for example, number of cigarettes
smoked, number of times arrested), the data tend to be
positively skewed, and additionally, it is only sensible
to predict an integer outcome—it is not possible to be
arrested 0.3 times, for example. For count outcomes
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of this type, Poisson regression is used. This is similar
to the approaches for categorical data, in that the
probability of each potential value is modeled—for
example, the probability of having been arrested
0 times is 0.70, one time is 0.20, three times 0.08, and
four times 0.02.

CCeennssoorreedd  OOuuttccoommeess

Some variables are, in effect, a mixture of a cate-
gorical and a continuous variable, and these are called
censored variables. Frequently, they are cut off at
zero. For example, the income an individual receives
from criminal activities is likely to be zero, hence it
might be considered binary—it is either zero or not.
However, if it is not zero, we would like to model how
high it is. In this situation, we use Tobit regression—
named for its developer, James Tobin, because it is
Tobin’s Probit regression (Tobin himself did not call it
this, but it worked so well that it stuck). Another type
of censoring is common where the outcome is time to
an event, for example, how long did the participant
take to solve the problem, how long did the patient
survive, or how long did the piece of equipment last.
Censoring occurs in this case because, for some rea-
son, we didn’t observe the event in which we were
interested—the participant may have given up on the
problem before he or she solved it, the patient may
have outlived the investigator, or the piece of equip-
ment may have been destroyed in a fire. In these
cases, we use a technique called Cox proportional
hazards regression (or often simply Cox regression).

Uses of Regression

Regression analysis has three main purposes: predic-
tion, explanation, and control.

PPrreeddiiccttiioonn

A great deal of controversy arises when people
confuse the relationship between prediction in regres-
sion and explanation. A regression equation can be
used to predict an individual’s score on the outcome
variable of interest. For example, it may be the case
that students who spend more time drinking in bars
perform less well in their exams. If we meet a student

and find out that he or she never set foot inside a bar,
we might predict that he or she will be likely do better
than average in his or her assessment. This would be
an appropriate conclusion to draw.

EExxppllaannaattiioonn

The second use of regression is to explain why
certain events occurred, based on their relationship.
Prediction requires going beyond the data—we can
say that students who spend more time in bars achieve
lower grades, but we cannot say that this is because
they spend more time in bars. It may be that those
students do not like to work, and if they didn’t spend
time in bars, they would not spend it working—they
would spend it doing something else unproductive.
Richard Berk has suggested that we give regression
analysis three cheers when we want to use it for
description, but only one cheer for causal inference.

CCoonnttrrooll

The final use of regression is as a control for other
variables. In this case, we are particularly interested in
the residuals from the regression analysis. When we
place the regression line on a graph, everyone above
the line is doing better than we would have expected,
given his or her levels of predictor variables. Everyone
below the line is doing worse than we would have
expected, given his or her levels of predictor variables.
By comparing people’s residuals, we are making a
fairer comparison. Figure 2 reproduces Figure 1, but
two cases are highlighted. The case on the left is
approximately 40 years old, the case on the right
approximately 70 years old. The 40-year-old has a
higher grip strength than the 70-year-old (approxi-
mately 31 vs. approximately 28 kg). However, if we
take age into account, we might say that the 40-year-
old has a lower grip strength than we would expect for
someone of that age, and the 70-year-old has a higher
grip strength. Controlling for age, therefore, the
70-year-old has a higher grip strength.

We will give a concrete example of the way that
this is used. The first example is in hospitals in the
United Kingdom. Dr Foster (an organization, rather
than an individual) collates data on the quality of care
in different hospitals—one of the most important
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variables that it uses is the standardized mortality ratio
(SMR). The SMR models an individual’s chance of
dying in each hospital. Of course, it would be unfair
to simply look at the proportion of people treated in
each hospital who died, because hospitals differ. They
specialize in different things, so a hospital that spe-
cialized in heart surgery would have more patients die
than a hospital that specialized in leg surgery. Second,
hospitals have different people living near them. A
town that is popular with retirees will probably have
higher mortality than a hospital in a town that is pop-
ular with younger working people. Dr Foster attempts
to control for each of the factors that is important in
predicting hospital mortality, and then calculates the
standardized mortality ratio, adjusting for the other
factors. It does this by carrying out regression, and
examining the residuals.

—Jeremy Miles
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RELATIVE RISK

The relative risk (RR) is the most common measure
epidemiologists use to quantify the association
between a disease and a risk factor. It may be most
easily explained in the case where both the disease
and the risk factor may be viewed as binary variables.
Let p1 and p0 denote the probabilities that a person
with the risk factor develops the disease and that an
unexposed person develops the disease, respectively.
Then the relative risk is given by RR = p1/p0. In the

following discussion, we will take risk factors to be
exposures. These could be toxic substances to which
a subject is exposed, such as cigarette smoke or
asbestos, or potentially beneficial foods, such as cru-
ciferous vegetables. But risk factors can also refer to
the expression of the disease in relatives or to genetic
polymorphisms, to name a few examples. Regardless
of the disease or risk factor, an RR greater than one
indicates an association between the risk factor and
development of the disease, whereas an RR less than
one indicates that the risk factor has a protective
effect. An important feature of the RR is its multi-
plicative interpretation—if the RR for a particular
exposure is 5, then an individual with that exposure is
five times more likely to develop the disease than an
unexposed individual.

The most direct way to estimate the relative risk is
through a prospective study. In such a study, exposed
and unexposed individuals who are free of the disease
are recruited into the study and then followed
for disease information. After a period of time long
enough for sufficient numbers of the patients to
develop the disease, the relative risk may be calcu-
lated as the ratio of the proportion of exposed
subjects who develop the disease to the proportion of
unexposed subjects who develop it. A well-known
example is a study of lung cancer and smoking
among British doctors. The study, reported in the
British Medical Journal by Doll and Peto in 1976,
with a follow-up in 1994, involved recruiting 34,440
British doctors in 1951. The subjects filled out ques-
tionnaires on smoking habits and were followed for
40 years. The risks of death from lung cancer among
smokers and lifelong nonsmokers were, respectively,
209 and 14 per 100,000. The relative risk is thus 14.9.
As this example illustrates, prospective studies
require large numbers of subjects who are followed
for long periods of time, often decades. Such studies
are often the most definitive in establishing a causal
relationship, and they allow one to study the effects
of the exposure on a variety of diseases. But the time
and expense of conducting them can be prohibitive.
Furthermore, for very rare diseases, it may not be
possible to recruit enough healthy subjects to produce
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enough disease cases to calculate a reliable estimate
of the RR.

Case control (or retrospective) studies are an
alternative form of study that can be used to estimate
the RR for an exposure and a rare disease. In a case
control study, the sampling is the reverse of that in a
prospective study. One starts by sampling a set of
individuals who have already developed the disease
and a set of control patients who have similar charac-
teristics to the cases, but who haven’t developed the
disease. One then compares the proportion of cases
exposed to the risk factor to the proportion of controls
who were exposed.

To understand how a case control study can esti-
mate the RR requires an understanding of two key
concepts. The first is the odds ratio (OR), which we
will explain in terms of a prospective study. The odds
of developing the disease among exposed individuals
are p1/(1 – p1), and the odds among unexposed indi-
viduals are p0/(1 – p0). Then the odds ratio is given by
the ratio of these two quantities, which may be
expressed as OR = p1(1 – p0)/p0(1 – p1). If the disease
is rare, so that both p1 and p0 are small, then the OR is
a good approximation of the RR.

The second key concept underlying case control
studies is that the odds ratio of exposures estimated
for cases and controls from a case control study equals
the odds ratio of disease for exposed and unexposed
individuals that would be estimated from a prospec-
tive study. To see this, let P1 denote the probability of
exposure to the risk factor among the cases and P0 the
probability of exposure among the controls. Then it
may be shown that

That is, the odds ratio for exposure for cases versus
controls, computed from a case control study, is equal
to the odds ratio for disease for exposed versus nonex-
posed individuals from a prospective study. Thus, for a
rare disease, the odds ratio computed from a case con-
trol study is a good approximation to the relative risk.

Case control studies require far fewer individuals
than do prospective studies, and they can be carried
out in a much shorter period of time. For these
reasons, case control studies are the most common
observational tool epidemiologists use for measuring
relative risks. Bear in mind that the validity of case
control studies depends on the assumption that the
sampling of cases and controls are random samples
from the population of interest. Thus, identifying and
adjusting for potential confounding factors is essential
to a successful case control study.

Logistic regression is the main statistical tool for
estimating odds ratios that adjust for risk factors. The
binary outcome is disease status, and the primary
predictor is exposure. The exposure variable may be
binary, as discussed above, or it could be a quantitative
measure of the level of exposure. Other covariates may
be included in the model to adjust for other factors.
The parameter estimate associated with exposure is the
log-odds ratio, which may be interpreted as the log
relative risk for rare diseases. A related form of epi-
demiological study that one may use to estimate the
RR is the matched case control study. A simple version
of this uses multiple sets of one case and one control
each, matched for potential confounding factors. A
common variation is to create sets with one case and
two to five controls each. With matched designs, a
modified form of logistic regression known as condi-
tional logistic regression is necessary to obtain unbi-
ased estimates of the RR. The suggested readings
contain more details about these methodologies.

—Dirk F. Moore

Further Reading

Breslow, N. E., & Day, N. E.  (1980). Statistical methods in
cancer research, Volume I. The analysis of case-control
studies. Lyon, France: International Agency for Research
on Cancer.

Doll, R., Peto, R., Wheatley, K., Gray, R., & Sutherland, I.
(1994). Mortality in relation to smoking: 40 years’ observa-
tions on male British doctors. British Medical Journal,
309(6959), 901–911.

Jewell, N. P. (2004). Statistics for epidemiology. New York:
Chapman & Hall/CRC.

OR = p1(1 − q0)
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RELIABILITY THEORY

Reliability and validity are two major requirements
for any measurement. Validity pertains to the correct-
ness of the measure; a valid tool measures what it is
supposed to measure. Reliability pertains to the con-
sistency of the tool across different contexts. As a rule,
an instrument’s validity cannot exceed its reliability,
although it is common to find reliable tools that have
little validity.

There are three primary aspects to reliability: (a) A
reliable tool will give similar results when applied by
different users (such as technicians or psychologists).
(b) It will also yield similar results when measuring
the same object (or person) at different times. In psy-
chometrics, reliability also implies a third feature,
which is relevant to scales (measures that include var-
ious submeasures or items). Specifically it entails the
requirement that (c) all parts of the instrument be
interrelated.

1. Interrater Reliability: Some measurements
require expertise and professional judgments in their
use. The reliability of such a tool is contingent on the
degree to which measurements of the same phenome-
non by different professionals will yield identical
results. What we want to avoid is a test that essentially
relies on undefined judgments of the examiner, with-
out concrete criteria that are clearly spelled out.

Statistically, this aspect of reliability is usually
determined by having several raters measure the same
phenomena, and them computing the correlations
between the different raters. For typical measures that
yield numerical data, a correlation index needs to be
high (e.g., in the .90s) to demonstrate good interrater
reliability.

2. Test-Retest Reliability: This feature, often
referred to as temporal stability, reflects the expec-
tancy that the measurement of a specific object will
yield similar results when it is measured at different
times. Clearly, this is based on an assumption that one
does not expect the object to be changing between the

two measurements. In fact, this may not be the case for
many constructs. (Consider, for example, blood pres-
sure or stress, both of which would be expected to vary
from one time to another—even for the same person.)
Specifically within psychology, it is important to
understand that this aspect of reliability pertains only
to measures that refer to traits (aspects of personality
that are constant regardless of environmental events or
context); it does not pertain to states (specific aspects
of behavior or attitudes that vary based on situations
and interactions at the moment).

Statistically, this aspect of reliability is usually
determined by having a group of people measured
twice with the instrument. The time interval can vary,
based on specific studies, from several weeks to a year
or two. Unfortunately, testing experts often choose a
short duration between tests (there are published test-
retest time periods of only 6 hours!), which make their
claim of testing an actual trait equivocal. Correlations
are computed between the two trials. For typical
measures that yield numerical data, a correlation
index needs to be high to demonstrate good interrater
reliability (although .70 would be sufficient).

3. Internal Consistency: This usually entails the
reliability of measures that have multiple items; such
measures are known as scales.

Consider, for example, a scale of irritability. Such
a scale might include 20 items that focus on different
aspects of this construct. One might ask how often
the person gets into arguments, another might look
into how often the person changes doctors, whereas a
third could ask about the person’s rejection patterns
of potential dates. Obviously, the experts who con-
structed this scale believed that all of these items are
indicative of irritability. Indeed, it may well be true
that irritable people would show high scores on all of
these items. However, it is feasible that the major rea-
son most people reject dates differs significantly from
the reason people change doctors.

Another aspect of the problem of internal consis-
tency might be understood from the perspective of the
meaning of the score on a scale. Take, for example, the
case of a firm that is interested in hiring interviewers
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who will be pleasant to potential customers. Such a
firm might decide to use a 100-item scale of pleasant-
ness, which contains imagined scenarios that are pre-
sented to respondents, each having a specific response
that is considered “pleasant.” In the real world, the firm
cannot expect to find sufficient interviews that will
score 100, so the firm decides to hire those candidates
who score highest. Say that two candidates scored 98;
one of the respondents “failed” two items indicating
that she would ask loud people to keep it down in a
theater and that she would not allow someone to cut in
line in front of her at a bank. The other respondent
“failed” two items indicating that she has been a party
to a lawsuit and that she would hang up on a telemar-
keter. By assigning these respondents equal scores, the
instrument implies that they are at an equivalent level
of pleasantness. But what evidence is there that the
items they failed are just as meaningful in terms of the
overall scale? Furthermore, is it possible that there are
different factors in unpleasantness, and that these items
don’t really speak to the same construct?

There are several methods of establishing internal
consistency, all of which are based on intercorrelations
between items. One method is called split half, where
the scale is divided into different sets, each containing
half the items, and the halves are then tested for an
acceptable relationship using the correlation statistic.
Often, item-total correlations are used to establish
internal consistency (that is, correlations between each
of the items and the total scale score). Typically, an
item must correlate .3 or higher with the total score in
order to remain part of the scale. A popular overall sta-
tistic that takes into account all of the possible item
intercorrelations is Cronbach’s alpha (alternatively, the
Kuder Richardson-20 formula for dichotomous items),
where an alpha of .70 or higher is considered accept-
able to establish this form of reliability.

Scaling issues that are related to internal consis-
tency often are found in weighting procedures. Some
tests contain items that are given more weight in the
total score than others. These features introduce statis-
tical complications in the process of establishing
consistency, which are often solved through multiple
regression methods.

All in all, reliability is a major part of the prepara-
tory work that goes into scale construction, often in
conjunction with factor analysis. It is not featured
emphatically in test descriptions, but poor reliability
will doom a test’s validity and its usefulness to mea-
sure anything meaningful.

—Samuel Juni
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REPEATED MEASURES

ANALYSIS OF VARIANCE

In a repeated measures analysis of variance, we are
faced with the task of comparing means of groups that
are dependent. Unlike the usual analysis of variance
(ANOVA), where the groups are independent, in
repeated measures ANOVA, the groups and the group
means are dependent. Because the group means are
dependent, we must adjust the usual statistical and
inferential processes to take the dependencies into
account. Before going on with our discussion of
repeated measures ANOVAs, let’s consider two situa-
tions that are likely to yield correlated means.
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To begin with, consider a situation in which we
have 10 raters (judges) and five job applicants. In this
situation, each rater would rate each candidate, but the
five ratings generated by a rater are very likely to be
dependent. If we were to create a table with candi-
dates making the columns and raters making the rows,
then the observations in each column would be inde-
pendent, but not so across each row. The mean ratings
for the candidates would then be dependent; compar-
ing the means requires a procedure that takes into
consideration the dependencies.

Consider another example where individuals are
observed over time. In this type of experimental
design, one or more groups of individuals are
observed before and after a treatment. This design is
traditionally called a pre-post design, and the number
of posttreatment observations is usually greater than
one. For instance, the individuals can be observed at
3-month intervals for a period of a year, yielding four
posttreatment observations and one pretreatment
observation. Just as in the previous example, these
five means are likely to be correlated, and comparing
them necessitates a procedure that takes the correla-
tion into account.

We have seen two examples in which the means are
probably dependent. However, there are many addi-
tional situations that can generate dependent means.
For instance, using groups that have been matched
along specific criteria to make them equivalent can
also undermine the assumption of independence.
Researchers must be vigilant and always look for
design characteristics or constraints that may
render the means dependent.

When repeated measures designs are compared to
other designs, we see a number of advantages and dis-
advantages. Some of the advantages are that (a) they
use fewer subjects; (b) they tend to be more efficient
(subject variability is controlled better, which often
increases power); and (c) they cost less to implement.
Of course, not all studies can use repeated measures.
There are many situations that preclude the use of
repeated measures. For instance, if a prior treatment
affects performance on a subsequent treatment—due
to contrast effects, fatigue, emotional reaction, and so
on—and one can’t control for this nuisance effect, a

repeated measures design would not be appropriate.
(Keppel and Wickens have provided more information
on nonstatistical problems that may affect the
interpretation and execution of repeated measures
studies.)

These advantages do not come without disadvan-
tages. The major disadvantages of repeated measures
designs are that they are harder to analyze and inter-
pret. They are harder to analyze because the groups
are not independent, and they are harder to interpret
and design because of the possibility of carryover or
similar effects.

Traditionally, the data in most analyses of variance
(ANOVAs) have been analyzed with the F test. The
assumptions for the F test are normality, homogeneity
of variances, and independence. As it works out,
however, the F test is capable of handling certain
dependencies between groups. These dependencies
are subsumed under what is called the circularity or
sphericity assumption. The repeated factors and the
interactions involving repeated factors require the cir-
cularity assumption for the validity of the F ratios.
(The assumption in essence transfers the indepen-
dence requirement to the contrasts implicitly tested by
the F test.) Thus, the assumptions for the repeated
factors are normality and circularity.

The most restrictive form of the circularity
assumption demands that the observations between
any two levels of the repeated factor be equally corre-
lated. In a simple repeated measures design with three
levels in the repeated factor T, this restrictive form of
the assumption requires that the three correlations
between the levels of the repeated factor be equal:

r(T1,T2) = r(T1,T3) = r(T2,T3).

This extreme form of the circularity assumption is
known as the compound symmetry assumption. If the
circularity assumption is met, the usual F tests are
valid and the repeated measures analysis resembles
the usual ANOVA procedure.

It is not unusual, however, for the circularity
assumption to fail. In these situations, we must reduce
the degrees of freedom (df) of the F test before look-
ing up the critical value in the F table. Alternatively,
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we could have our computer package find the p value
for the F ratio with the reduced degrees of freedom.
The degrees of freedom are reduced to the degree that
we violate the circularity assumption. More severe
violations reduce the df more than less severe viola-
tions. The F tests based on reduced df are approximate
in that they depend on the unknown population
variances and covariances between the levels of the
repeated factors, which are never known in practice.
However, it has been found that procedures are very
accurate when they are based on sample estimates of
these parameters.

Many computer packages, in addition to providing
tests that reduce the df, provide multivariate tests of
the univariate repeated measures hypotheses. If one
conceptualizes a repeated measures design as a multi-
variate analysis of variance (MANOVA), we can test
the univariate hypotheses by creating a set of depen-
dent variables that represents the differences between
the levels of the repeated factor. By conceptualizing a
repeated measures design as a multivariate analysis of
variance, we get around the circularity assumption.
The MANOVA makes no structural assumption about
the variance-covariance matrix.

With the new advances in the analysis of mixed
model designs, we can yet provide another approach to
the analysis of repeated measures data. We can estimate
the structure of the variance-covariance matrix underly-
ing the repeated measures and carry out a large-
sample maximum likelihood analysis of the repeated
factor; such approach can be found in SAS’s Proc
Mixed and in other computer packages. The maximum
likelihood approach is generally more efficient than the
multivariate approach when we have missing data.

All of these approaches to the analysis of repeated
measures have different strengths and weaknesses.
The choice of what technique to use depends on
the assumptions that one can make, the availability
and familiarity with computer packages, and the
researcher’s preference. To this date, no clear winner
has been identified. However, it is clear that routinely
we should carry out more than one procedure and
never assume that we have met the circularity
assumption. Next, we provide an example in which
the circularity assumption is met, because there are

only two levels of the repeated factor. Although the
example is computationally simple in that we do not
need to be concerned with circularity, it illustrates the
fundamental ideas behind the analysis of a repeated
measures design.

Example

Does flexibility training help improve spinal extension
(bending backward) in elderly women? Based loosely
on research by Rider and Daly, this research had 20
female volunteers with an average age of 71.8, who
were in moderately good health including no orthope-
dic problems. Ten women were randomly assigned to
the experimental condition, a 10-week program with
3 days per week of spinal mobility and flexibility exer-
cises. The other 10 women were randomly assigned
to a control condition, which was a regular exercise
program without flexibility training. All women were
measured before and after the 10-week program. Table 1
shows the scores on a spinal extension measure (higher
scores mean better extension).
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Table 1 Spinal Extension Scores

Pretest Posttest

S1 13 26
S2 19 27
S3 21 28
S4 15 26
S5 12 17

Experimental S6 26 30
S7 25 29
S8 11 15
S9 16 25
S10 21 27

S11 15 19
S12 18 20
S13 26 26
S14 23 23
S15 24 26

Control S16 19 19
S17 14 16
S18 20 20
S19 11 9
S20 20 25



Table 2 shows the F tests from an SAS ANOVA on
these data, with F ratios for g (experimental vs. con-
trol), t (pretest vs. posttest), and the g × t interaction.

The results show that trial effect and the group-by-
trial interaction are significant. There was no group
effect. The significant F ratio for the group-by-trial
interaction shows that spinal extension flexibility dif-
ferences between the pretest and posttest depend upon
whether the women were in the experimental group or
control group. Using multiple comparison procedures,
we can explain this interaction by showing a signifi-
cant gain in flexibility from pretest to posttest for the
experimental group but not for the control group.

This example illustrates that in pre–posttest
designs, the hypothesis of interest is often the interac-
tion hypothesis and not the main effects. In this
example, we met the circularity assumption. Had we
presented an example in which the circularity assump-
tion had not been met, we would have proceeded in
the same manner except that we would have evaluated
the interaction and trials effects with corrected F
ratios (or multivariate tests).

—Jorge L. Mendoza and Larry Toothaker
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RESIDUALS

Residuals play an important role in statistical model-
ing. The most common definition of residual is the
difference between the observed and expected
response based on the estimated model so that each
observation has a corresponding residual. This defini-
tion of residual is frequently encountered in most
regression models and analysis of variance models.
Loosely speaking, residual is interpreted as the por-
tion of the observed response not explained by the
model with the set of predictor variables.

Use of Residuals

A key step in modeling is the examination of the
residuals for the purpose of checking if the model
is a good fit in light of the data. In particular, residu-
als are used to check the validity of the assumptions
of the model and to identify observations that are
considered outliers (unusually large or small observa-
tions) and influential in estimating the model. These
may be achieved through graphical techniques or
performing formal statistical tests applied to resid-
uals. One may work with raw residuals or standard-
ized residuals. Standardized residuals are obtained
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Table 2 The ANOVA Procedure

Dependent Variable: spinalext
Tests of Hypotheses Using the ANOVA MS for s(g) as an Error Term

Source DF ANOVA SS Mean Square F Value Pr > F

g 1 32.40000000 32.40000000 0.68 0.4201

Tests of Hypotheses Using the ANOVA MS for t*s(g) as the Error Term
Source DF ANOVA SS Mean Square F Value Pr > F

t 1 176.4000000 176.4000000 49.23 <.0001
g*t 1 84.1000000 84.1000000 23.47 0.0001



by dividing the raw residuals by their estimated
standard error.

An Illustration

In ordinary regression modeling, a response variable
(denoted by Y) is modeled using a linear relationship
with a single variable, known as the predictor variable
(denoted by X). Mathematically, this model is repre-
sented by the following equation:

Y = β0 + β1X + ε,

where β0 and β1 are the intercept and slope of the line,
respectively, and ε is the random error term. As an
example, suppose it is of interest to model job satis-
faction (Y) based on the number of years on the job
(X). The data are given in Table 1. A scatterplot of the
data is displayed in Figure 1, represented by dots. The
estimated model is given by

Ŷ = 4.83 + 0.17 X,

which is represented by the solid line in Figure 1.
Residual is graphically represented as the difference
between a given observation and the fitted line, as
illustrated by the vertical line in Figure 1. For this
particular observation, Y = 5.2 and X = 7, so that the
estimated response is given by

Ŷ = 4.83 + (0.17)*(7) = 6.02.

Consequently, the residual for this observation is

e = Y – Ŷ = 5.2 – 6.01 = –0.82.

A plot of the residuals versus the predictor variable
checks the assumption that the relationship between X
and Y is linear. This residual plot applied to the current
example is displayed in Figure 2. If the assumption of
linearity is appropriate, there should not be any obvi-
ous systematic pattern in this residual plot, which is
true in this case. Hence, there is no evidence to reject
the linearity assumption of the model.

Other Types of Residuals

In more complex statistical models, residuals are
defined differently, and, in some cases, there may be
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Table 2 Data on Job Satisfaction and Number of
Years on the Job

Number of Years Job Satisfaction

7 5.2

4 6

13 7

10 5.9

15 7

12 7.3

9 6.5

14 8.1

20 8
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Figure 1 Scatterplot of Job Satisfaction Data With
Best Fit Line
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more than one type of residual. For instance, in logis-
tic models, there are deviance residuals in addition
to the commonly defined residuals. In survival mod-
els, where the response variable of interest is time
until an event occurs, there are also deviance, Cox-
Snell, martingale, and score residuals, to name a few.
The definitions of these residuals are no longer as
simple as observed minus expected. However, no mat-
ter how these residuals are defined, their main purpose
is still the same, that is, checking the appropriateness
of the model.

—Inmaculada Aban

See also Goodness-of-Fit Tests; Regression Analysis
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RESPONSE TO INTERVENTION

Response to Intervention (RTI) refers to a student-
centered assessment and intervention model that has
been proposed recently as an alternative approach to
the identification of specific learning disabilities
(SLDs) under the 2004 reauthorization of Individuals
with Disabilities in Education Improvement Act
(IDEIA). The IDEIA eliminates the longstanding
requirement (i.e., since 1977) that a significant discrep-
ancy between IQ and achievement must be demon-
strated to classify a child as a child with an SLD.
Although states may still use the IQ-achievement dis-
crepancy model, the U.S. Department of Education, in
its proposed IDEIA regulations, is encouraging adop-
tion of the RTI model instead. RTI reflects a reconcep-
tualization of how learning disabilities are assessed and
identified by determining whether a child responds to

scientific, research-based interventions as part of the
evaluation criteria used to determine if the child has
a learning disability, regardless of the existence of an
IQ-achievement discrepancy.

Background

The term RTI was first conceptualized in 1982 by
leaders in the field of education, who proposed that
the validity of a special education classification be
judged according to three criteria. The first criterion
was whether the quality of the general education
program was such that adequate learning might be
expected. The second criterion was whether the
special education program would lead to academic
improvements justifying the classification. The third
criterion was whether the assessment process was
accurate and meaningful. Under this model, all three
criteria must be met for the classification to be consid-
ered valid. This new framework required judgments
about the quality of instruction in both the general
education and special education settings as well as
judgments about the way students responded to these
learning environments, all based on accurate and
meaningful assessments.

The main premise of RTI is that students are iden-
tified as having an SLD when their response to effec-
tive academic interventions is significantly lower than
that of peers. The inference is that students who fail
to make adequate progress in response to scientific
interventions that are proven successful for most
students must have a deficit that requires specialized
treatment beyond what general education programs
can offer. RTI is sometimes referred to as the problem-
solving method because it focuses on applying a
problem-solving framework to identify and address
student difficulties.

Prior to the RTI conceptualization, SLD was
viewed exclusively as a within-child deficit, despite
awareness that learning is influenced by the context in
which instruction takes place. Instead of making the
assumption that the underlying cause of the learning
difficulty lies within the child, RTI models recognize
that the difficulty may also lie within instruction,
within the child, or a combination of the two. Thus,
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the new approach focuses on early identification/
prevention of learning problems and the contribution
of the instructional environment to the child’s acade-
mic growth. Instead of measuring a student’s skills
at a single point in time and identifying the student
as SLD, assessment and intervention occur on an
ongoing basis.

RTI Models

Currently, there are many ways to implement RTI;
however, there some common elements that distin-
guish a RTI model from other approaches to SLD
identification. The core characteristics of RTI include
the following:

• Students receive high-quality instruction by their
classroom teacher in their general education class-
rooms while their progress is monitored.

• Those who do not respond receive additional or alter-
native instruction while their progress continues to be
monitored.

• Students who still do not respond may qualify
for comprehensive special education evaluation or
special education services.

This multiple-step process may vary in terms of the
number of levels or tiers in the process; the person(s)
responsible for the assessments and interventions; and
whether the process is a forerunner to a formal com-
prehensive evaluation for special education eligibility,
or if RTI is itself considered the eligibility evaluation.
Several components are necessary to enhance the
effectiveness of RTI approaches: (a) ongoing, fre-
quent assessment of student progress, (b) knowledge
and skill in implementing evidence-based instruction,
(c) a system to screen and track the progress of a large
number of students, and (d) systematic assessment of
the fidelity or integrity with which the assessments
and interventions are implemented.

The Three-Tier RTI Model

Among the most well-conceptualized RTI models is
the three-tier model proposed by L. S. Fuchs from
Vanderbilt University, also known as “treatment

validity.” Tier I uses classwide assessment to deter-
mine whether the overall rate of responsiveness to
instruction for the general education environment is
generally effective so that adequate student progress is
expected. Tier II assessment consists of identifying
those students whose level of performance and rate of
improvement are significantly below those of class-
room peers. These children are identified as dually
discrepant because their level of performance and
their rate of performance (i.e., slope) fall below the
level and rate of classmates. In Tier III, alternative or
additional evidence-based interventions are imple-
mented in the general education setting to enhance the
quality of education. If intervention fails to promote
student growth, comprehensive special education
evaluation is considered.

Curriculum-Based
Measurement in RTI

Curriculum-based measurement (CBM) is a multiple-
probe, brief-duration (e.g., 1 minute) assessment
method designed to measure student performance over
time to identify students whose level and rate of
performance are below those of the reference group.
Equal importance is given to skill level (low achieve-
ment) and progress (slope). A student who is achieving
significantly below level and whose rate of progress is
similarly deficient is considered to be at risk. This
dual discrepancy of low achievement and low rate of
progress becomes the index by which responsiveness
to instruction is judged. Students who are dually dis-
crepant undergo additional interventions in the general
education classroom while being monitored with CBM
“probes” (i.e., student brief, timed samples) to deter-
mine if they will respond to the additional instruction.
Special education evaluation or placement is consid-
ered only if they continue to demonstrate a dual dis-
crepancy after an evidence-based intervention has
been tried for some time (e.g., 8 weeks).

RTI Models Address Poor Instruction

RTI models address an often overlooked criterion in
the IDEIA regulations—whether the student has
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received adequate instruction in general education but
failed to benefit from it. Under RTI, students cannot
be identified as dually discrepant unless there is indi-
cation that most students in the classroom are
responding to the curriculum. If the classroom as a
whole is not performing at the same level and rate as
other classrooms, then a classroom-level intervention
geared to improving the academic performance of all
students occurs before individual deficits are consid-
ered. In this way, RTI proponents maintain that they
can rule out poor-quality instruction as a cause of a
child’s learning difficulty.

On the other hand, if a student responds inade-
quately to instruction that benefits the majority of
students, poor-quality instruction can be ruled out as a
feasible explanation for poor academic progress, sug-
gesting instead that a disability is responsible for a
child’s lack of progress. In other words, the possibil-
ity of a neurological deficit (a within-the-child deficit)
is not ruled out until the child is unresponsive to qual-
ity instruction.

Advantages of RTI Models

RTI models can provide assistance more quickly to
a greater number of low-performing students than is
possible with IQ-achievement discrepancy models.
RTI models emphasize classwide assessment, enabling
early identification of struggling students. Because
RTI focuses on effective instruction and early interven-
tion, it may benefit all children, including those who
enter school with limited literacy and language profi-
ciency who may be at risk for failure, as well as
children with disabilities. RTI proponents argue that
RTI represents a switch from assessment for eligibility
purposes to assessment for instructional purposes, and
that RTI ensures that student progress is monitored and
instructional interventions are tested. Using an RTI
model as part of an overall universal screening may
also reduce the reliance on teacher referral, thereby
decreasing possible referral bias. Finally, because RTI
relies on ongoing data collection, this approach can
reduce the influence of measurement error that charac-
terizes assessments administered at a single point in
time. A more accurate picture of the student may be

possible because the focus is not only on level of
performance but also on growth over time.

Controversial Aspects of RTI

In spite of the increasing popularity and acceptance of
RTI, there are many controversial issues that require
resolution. Critics assert that children who are identi-
fied with an SLD under the RTI-only model may not
have a true disability, particularly because no descrip-
tion of cognitive deficits can be identified within
the RTI framework, although the IDEIA definition
of SLD specifically requires cognitive processing
deficits. Opponents of RTI argue that if dual discrep-
ancy is a valid SLD marker, then children identified as
SLD should be distinguishable from other groups
(e.g., low-achievement children). Yet when RTI has
been studied, the distributions of children defined as
learning disabled and low achievers overlap substan-
tially, and reading improvement is basically the same
for both groups.

Another controversial issue is whether failure to
RTI may be attributable to other causes (e.g., mental
retardation, emotional disturbance) rather than SLD.
Critics also point out that RTI requires arbitrary cut-
off points to identify those who fail to RTI. However,
the arbitrary cut-off point is a limitation for other
approaches for SLD identification as well.

Durability of response to instruction is another
controversial area. If a student responds to relatively
intensive but short-term instruction treatment, the
assumption under RTI is that a disability has been
ruled out. Although this may be true for many
students, research evidence suggests that the difficulty
will reemerge for others when the intensive instruc-
tion ceases. Feasibility of evidence-based instruction
for the general education classroom is another issue.
Interventions that are research-based but not feasible
are not likely to be implemented with fidelity, which
would undercut the validity of RTI decision making.

Implementing RTI in a way that enables procedural
standardization across classrooms, schools, districts,
and states is also a challenge for RTI. In addition,
research support for RTI is uneven. Adequate research
support exists for RTI with reading fluency, particularly
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in the early elementary grades. CBM probes for assess-
ing growth have been established in mathematics,
spelling, and written expression, but research-based
intervention methods for these areas await develop-
ment. Finally, adequately trained personnel are not yet
available on a nationwide basis. A growing number of
school districts in Florida, Iowa, Kansas, Minnesota,
Ohio, Pennsylvania, South Carolina, and Wisconsin
already use RTI to identify students for special educa-
tion services. Yet most efforts have been implemented
on a small scale, and most states lacked personnel
trained and skilled in RTI when the IDEIA took effect
on July 1, 2005. Perhaps more importantly, RTI imple-
mentation requires a paradigm shift for many profes-
sionals in conceptualizing assessment and intervention,
and resistance to change is to be expected.

In spite of the enormity of the task, and the many
accompanying challenges, RTI is at the forefront of a
nationwide change in the SLD identification process.

—Romilia Domínguez de Ramírez
and Thomas Kubiszyn
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REVERSE SCALING

Scales are sets of items measuring similar constructs
on questionnaires. For example, a questionnaire

designed to measure students’ satisfaction with a
course might contain scales on the instructor, content,
course workload, and so on. Generally, scale items are
constructed so that participants who have a favorable
disposition toward the construct being measured
would agree, or strongly agree, with the statements.
Examples of such items include the following:

• The instructor’s explanation of concepts was clear.
• The instructor responded well to student questions.
• The instructor is competent in his/her area.

Reverse coded items are items phrased in the
semantically opposite direction. Examples of reverse
coded items are as follows:

• The instructor is impatient with students.
• The instructor did not present concepts clearly.

Reverse scaling is the use of reverse coded items
on scales.

Purpose of Reverse Scaling

In his presentation of scaling, Likert recommended
constructing scales to balance the item wording and
phrase approximately half the items in the reverse.
The recommendation to use reverse scaling continues
because many psychometricians believe that the
inclusion of reverse coded items motivates partici-
pants to process items more carefully and prevents
negative respondent behaviors such as response set,
satisficing, and acquiescence. Response set is the ten-
dency of participants to respond to the set of scale
items rather than individual items. For example, a
respondent may have a positive impression of an
instructor being evaluated and simply respond to the
entire set of items positively rather than processing
the nuances of each item individually. The inclusion
of an item worded in the opposite direction could
encourage participants to read and process each item
more carefully. Psychologists contend that people pre-
fer to answer in agreement rather than disagreement;
therefore, participants may acquiesce or simply agree
with an item out of some form of social desirability.
Furthermore, participants may also satisfice or agree
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with an item because doing so requires minimal
cognitive effort. Therefore, reverse coded items are
prescribed to force participants to process individual
items more carefully and accommodate participants
who wish to vary their responses and not always
provide the same answer.

Coding and Scoring of
Reverse Coded Items

For initial coding purposes, it is best to code reverse
coded items in the same way that the traditional
items are coded (i.e., strongly agree = 5, agree = 4,
neutral = 3, disagree = 2, and strongly disagree = 1).
However, once the data have been entered, the scores
for all reverse coded items should be recoded to
facilitate consistent interpretation of the data and
must be recoded if items are to be combined to form
scales. Suppose a scale contained four traditionally
worded items and one reverse coded item. If a
respondent strongly agreed with the construct mea-
sured by the scale, they should respond strongly
agree to the four traditionally worded items and
strongly disagree to the reverse coded item. Thus,
the raw scale score for the respondent would be 21
(i.e., 5 + 5 + 5 + 5 + 1 = 21). This score of 21 is mis-
leading because of the score of 1 for the reverse
coded item. The score of 21, rather than 25, indicates
less than strong agreement with the scale items.
Therefore, the scores for all reverse coded items
must be recoded. Researchers using any instrument
must always search for reverse coded items that
might be included in the instrument.

To recode reverse coded items, the numerical val-
ues assigned to each category must be reversed (i.e.,
strongly agree = 1, agree = 2, neutral = 3, disagree = 4,
and strongly disagree = 5). If the data are analyzed
with Statistical Package for the Social Sciences
(SPSS), then you can either recode into the same vari-
able or recode into a different variable. If you choose
to recode into the same variable, then your original
data will be overwritten. Therefore, a safer practice
is to recode into a different variable. To begin the
recoding process,

• On the top tool bar, click Transform.
• From the drop-down menu, click Recode.
• From the next drop-down menu, click Into Different

Variable.

Now, a dialog box should appear to Recode into
Different Variables. The first steps are to select and
rename any variables that need recoding. To do this,

• Select the first variable to be recoded from the vari-
able list on the far right column, and then click the
arrow to send the variable into the Numeric Variable
→ Output Variable box.

• Enter the information for the new variable in the
Output Variable area on the far left of the dialog box.

Enter the name for the new variable in the Name
box (e.g., the original variable name with the let-
ter r added to the end to indicate that it has been
reverse coded).
If you choose, enter the label for the new variable
in the Label box.
Click Change.

• Repeat this process for all variables to be recoded
with the same codes.

• To enter the new codes, click the button Old and New
Values . . . .

Now, a dialog box should appear to Recode into
Different Variables: Old and New Values. To recode
the values,

• On the left side of the box, in the area marked Old
Value, enter the initial value in the box labeled Value.

• On the right side of the box, in the area marked New
Value, enter the new value in the box labeled Value.
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• Click Add.
• Repeat this process for all values (i.e., 5 = 1, 4 = 2,

3 = 3, 2 = 4, and 1 = 5). Check the list that appears in
the Old→ New box. This is the only time to view the
changes that will be made to the variables.

• Click Continue.

The Recode into Different Variables should reap-
pear. To complete the recoding, click OK.

Finally, you may verify that the recoding was 
done correctly by computing a correlation coefficient
between the initial variable and the new, recoded vari-
able. If the recoding was conducted properly, there
should be a perfect negative correlation of −1 between
the variables.

Cautions

Recent evidence suggests that the use of scales with a
mixed format, traditionally and reverse coded items
on the same scale, can adversely affect the psychome-
tric properties of scales. If participants misinterpret a
reverse coded item, then the score used in the analysis
is not a true measure; in fact, the score is in error by
the maximum amount detected on the scale (i.e., a
score of 1 instead of a score of 5). The inclusion of
reverse coded items on an instrument necessitates the
assumption that participants both interpret and
respond to the items in the same manner, irrespective
of item wording. However, researchers have found
that mixed format scales may potentially confound
factor structure; result in a separate factor for the

reverse coded items; result in significant differences
from responses to traditionally worded items; reduce
scale reliability; and result in less accurate responses,
therefore hindering the validity of the results.

If participants do interpret and/or react differently
to negatively worded items, then what contributes to
this difference? Participants may overlook the word or
phrase that reversed the meaning of the item (e.g., The
instructor did not present concepts clearly) or may
have difficulty with the mental processing required to
strongly disagree to a reverse coded item in an effort
to give a positive rating to the construct under
measurement (e.g., The instructor is impatient with
students). To date, researchers have attributed differ-
ential response patterns to mixed item wordings to
age, careless responses, culture, educational level,
insufficient cognitive ability, instrument wording,
interest in topic, personality traits, reading ability, and
the actual measurement of a different construct.

Therefore, when using reverse coded items,
researchers must determine if the potential benefits
outweigh potential costs. Recommendations made
from research in the area of scales with a mixed for-
mat include using only positively stated items, avoid-
ing the comparison of scores from scales with
different numbers of reverse coded items, and con-
ducting separate analyses for the reverse coded items.

—Gail Weems
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REYNOLDS, CECIL R. 
(1952– )

Cecil R. Reynolds earned his doctoral degree from the
University of Georgia in 1978, with a major in school
psychology and minors in statistics and clinical 
neuropsychology. Dr. Reynolds studied under Alan
Kaufman, author of various tests, including the
Kaufman Assessment Battery for Children (KABC).

Dr. Reynolds was a faculty member at the
University of Nebraska−Lincoln (1978–1981), where
he served as Associate Director and Acting Director of
the Buros Institute of Mental Measurement following
the death of its founder, Oscar Buros. Dr. Reynolds is
currently a professor in the School Psychology
Program at Texas A&M University in College Station,
Texas, where he has been a professor since 1981.

Dr. Reynolds has authored more than 300 scholarly
publications and has been the author or editor of 

39 books, including The Clinician’s Guide to the BASC,
Clinical Applications of Continuous Performance
Tests, Handbook of School Psychology, the Encyclo-
pedia of Special Education, and the Handbook of
Clinical Child Neuropsychology. Dr. Reynolds has
been actively involved in test development since 1978,
working as research or psychometric consultant for
tests such as the KABC, Kaufman Adolescent and
Adult Intelligence Test for Adolescents and Adults,
and the revision of the Detroit Tests of Learning
Aptitude. Dr. Reynolds is also the author of several
widely used tests of personality and behavior, includ-
ing the Behavior Assessment System for Children and
the Revised Children’s Manifest Anxiety Scale. He
is also senior author of the Test of Memory and
Learning, the Clinical Assessment Scales for the
Elderly, the forthcoming Elderly Memory Schedule,
and co-author of several computerized test interpreta-
tion systems. He is senior author of the Reynolds
Intellectual Assessment Scales.

Dr. Reynolds has been president of various pro-
fessional organizations, including the American
Board of Professional Neuropsychology. He is also a
past president of the National Academy of Neuropsy-
chology; APA Division 5 (Evaluation, Measurement,
and Statistics); and APA Division 40 (Clinical
Neuropsychology). Most recently, in 2004 and 2005,
he was President of APA Division 16 (School Psy-
chology). Dr. Reynolds has received numerous honors
and awards. Among his awards are the Distinguished
Research Scholar Award from Texas A&M University
(1995), Senior Scientist Award by the American
Psychological Association, Division 16 (1999),
Distinguished Clinical Neuropsychologist Award by
the National Academy of Neuropsychology (2000),
Lifetime Achievement Award in Neuropsychology by
the National Association of School Psychologists
Neuropsychology Interest Group (2003), and Distin-
guished Alumnus Award for Lifetime Achievement by
the University of Georgia (2005).

—Wilda Laija-Rodriguez

Further Reading

Cecil Reynolds and BASC-2: http://www.agsnet.com/psych/
oct04a.asp
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ROBERTS APPERCEPTION

TEST FOR CHILDREN

The Roberts Apperception Test for Children (RATC),
published by Western Psychological Services, is a
projective test used to assess children’s psychological
development. Its primary purpose is to assess
children’s perceptions of common interpersonal situa-
tions as an aid to general personality description and
clinical decision making. Interpretation of the RATC
is based on the “projective hypothesis,” an assumption
that children, when presented with ambiguous draw-
ings of children and adults in everyday interaction,
will project their characteristic thoughts, concerns,
conflicts, and coping styles into the stories they cre-
ate. During the test, the individual is presented with a
series of drawings and is asked to create stories
describing what is happening in each situation, what
led up to it, and how it will end. Usually, the child is
asked to explain what the main characters are thinking
and feeling. For example, a child is pictured sitting at
a desk, surrounded by books and papers, apparently
engaged in homework. In another picture, a child is
pictured kneeling in front of, and clasping, a female
figure who has her arms around the child in an appar-
ently comforting posture.

The test’s standardized and formally coded content
scales indicate where the child is on a continuum of
social understanding. Typically, as children become
more socially experienced, their stories reflect greater
awareness of social convention, more differentiated
themes, and clearer resolution of themes and conflicts.
Moreover, the inclusion of clinical scales calls atten-
tion to the likely presence of social and emotional
problems that are outside the norm. Thus, the RATC
assesses two independent dimensions: adaptive social
perception and the presence of maladaptive or atypi-
cal social perception. The RATC takes approximately
20–30 minutes to administer when all stimulus cards
are presented. After recording the stories, the clinician
scores the responses for the presence or absence of
specific characteristics. Stories are rated on seven
scales: Theme Overview, Problem Identification,
Emotion, Available Resources, Resolution, Outcome,
and Unusual or Atypical Responses. Scores are

plotted onto a profile sheet that shows T-score equiv-
alents of raw scores and a shaded area between 40T
and 60T denoting the “normal range.”

The RATC was standardized on a sample of 200
children who had been described as “generally well
adjusted” by their teachers. This standardization sam-
ple has been criticized by a number of researchers
who have shown that the RATC is of questionable
value for distinguishing between clinical and nonclin-
ical populations, and they have suggested that the
norms not be used for clinical diagnosis. There have
also been debates about the reliability and validity
research on the RATC, despite it being the second
most popular projective test used with children in the
USA. However, in the Roberts-2 (the second edition
of the RATC, which was published in late 2005), new
norms, grouped by age and sex, are based on a sample
of 1,000 children and adolescents (age extended to 18
years), and this test is better representative in terms of
gender, ethnicity, and parental education than the orig-
inal sample. The Roberts-2 also includes data on a
clinically referred sample of more than 500 children
and adolescents. The authors suggest that this new
evidence supports the use of the Roberts-2 in both
research on the development of social understanding
in normal children, and the clinical assessment of
children experiencing adjustment problems. The
Roberts-2 also includes new test pictures that feature
current hair and clothing styles but retain the thematic
content of the original pictures, as well as three paral-
lel versions of the test pictures—one showing White
children, one featuring Black children, and a third
depicting Hispanic children.

—Fran Vertue

Further Reading

Bell, N. L., & Nagle, R. J. (1999). Interpretive issues with the
Roberts Apperception Test for Children: Limitations of the
standardization group. Psychology in the Schools, 36,
277–283.

Finch, A. J., & Belter, R. W. (1993). Projective techniques. In
T. H. Ollendick & M. Hersen (Eds.), Handbook of child
and adolescent assessment (pp. 224–238). Boston: Allyn &
Bacon.

Louw, A. E., & Ramkisson, S. (2002). The suitability of the
Roberts Apperception Test for Children (RATC), The
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House-Tree-Person (H-T-P), and Draw-a-Person (D-A-P)
scales in the identification of child sexual abuse in the Indian
community: An exploratory study. Southern African Journal
of Child and Adolescent Mental Health, 14, 91–106.

McArthur, D. S., & Roberts, G. E. (1982). Roberts
Apperception Test for Children (RATC) manual. Los
Angeles: Western Psychological Services.

Roberts Apperception Test for Children product information:
www.wpspublish.com

RORSCHACH INKBLOT TEST

The Rorschach is the well-known inkblot technique,
named for its inventor, a Swiss psychiatrist who noticed
that mental patients responded to inkblots differently
from normal people. Published by Hans Huber of Bern,
the 10 inkblots are among the most widely used and
most roundly criticized assessment techniques in psy-
chology. Subjects are asked to find images in the ink,
and their response tendencies are inferred from what
they saw and from how they used the ink.

The Rorschach has three basic uses. One, the
inkblots are standardized stimuli that invite a wide
variety of responses. Complete and leisurely inspec-
tion of the stimulus that occasions a response is a
rarity for psychologists and allows for careful consid-
eration of the functional relationship between the two.
The psychologist infers what kinds of variables were
operating on the subject to produce this particular
response to this particular stimulus. Research
has shown that managing the gradient from abstraction
(they do represent some things) to concreteness (they
are only inkblots) may be particularly difficult for seri-
ously disturbed people. Detractors note that research
has also shown that interpretations sometimes say
more about the psychologist than the subject.

Two, comparison of a subject’s responses with
what the inkblots actually look like provides a test of
the subject’s ability to perceive reality accurately.
Detractors note that it is hard to say what something
actually looks like. Any test of perceptual accuracy,
however, will either produce little variation among
subjects or raise questions about the psychologist’s
subjective evaluation. Clinicians frequently make

judgments about people based on subjective evalua-
tions; the standardized stimuli of the Rorschach at
least allow for a second opinion.

Three, the Rorschach is widely used as a nomothetic
device, meaning that responses are coded for how the
ink was used, the content that was seen, and numerous
other variables. An individual’s codes are then compared
with population averages, and inferences are drawn
about subjects by comparing their performance with
most people’s. Nomothetic use has proliferated since
John E. Exner published the Comprehensive System
(CS) in 1974, with its extensive research base. Critics
have attacked the CS as not meeting nomothetic stan-
dards with respect to reliability, norming, and validity.

Few critics take issue with the utility of examining
a subject’s responses to ambiguous stimuli under con-
trolled conditions. Many Rorschach interpretations,
however, go far beyond this. The CS, for example,
derives 113 codes and 32 indexes, ratios, and percent-
ages from as few as 14 answers. The Rorschach takes
a relatively long time to learn, and critics are also
concerned that this investment makes practitioner
constraint more difficult.

—Michael Karson

Further Reading

Exner, J. (2003). The Rorschach: A comprehensive system
(4th ed.). New York: Wiley.

Karson, M., & Kline, C. (2004, April 4). Two interpretations of
Jim Wood’s specimen Rorschach protocol. WebPsych
Empiricist. Retrieved from http://home.earthlink.net/~
rkmck/vault/karson04/karson04.pdf

Wood, J., Nezworski, M. T., Lilienfeld, S., & Garb, H. (2003).
What’s wrong with the Rorschach? Science confronts the
controversial inkblot test. San Francisco: Jossey-Bass.

Applying Ideas on Statistics and Measurement

The following abstract is adapted from Garb,
H. N., Wood, J. M., & Nezworski, M. T. (2000).
Projective techniques and the detection of child
sexual abuse. Child Maltreatment, 5(2), 161–168.
Projective techniques such as the Rorschach
inkblot test are sometimes used to detect child sex-
ual abuse. A previously conducted meta-analysis
on this topic excluded nonsignificant results. In 
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this article, a reanalysis of that data is presented.
Dr. Garb and his colleagues conclude that projec-
tive techniques should not be used to detect child
sexual abuse. Many of the studies purportedly
demonstrating validity are flawed, and none of the
projective test scores have been well replicated.

RV AND CONGRUENCE COEFFICIENTS

The congruence coefficient was first introduced by
Burt under the name of unadjusted correlation as a
measure of the similarity of two factorial configura-
tions. The name congruence coefficient was later
tailored by Tucker. The congruence coefficient is also
sometimes called a monotonicity coefficient. The con-
gruence coefficient takes values between −1 and +1.

The RV coefficient was introduced by Escoufier as a
measure of similarity between squared symmetric matri-
ces (specifically, positive semi-definite matrices; see the
Appendix section at the end of this entry for a proof) and
as a theoretical tool to analyze multivariate techniques.
The RV coefficient is used in several statistical techniques
such as STATIS and DISTATIS. In order to compare rec-
tangular matrices using the RV coefficient, the first step is
to transform them into square matrices. The RV coeffi-
cient takes values between 0 and +1 (because it is used
with positive semi-definite matrices). 

These coefficients are similar to the correlation
coefficient and are sometimes called vector or matrix
correlation coefficients. This is a potentially mislead-
ing appellation because these coefficients are not
correlation coefficients because contrary to the corre-
lation coefficient, the mean of the observations is not
subtracted prior to the computation.

The computational formulas of these coefficients are
identical, but their usage and theoretical foundations
differ. Also, their sampling distributions differ because
of the types of matrices with which they are used.

Notations and
Computational Formulas

Let X be an I × J matrix and Y be an I × K matrix. The
vec operation transforms a matrix into a vector whose

entries are the elements of the matrix. The trace oper-
ation applies to square matrices and gives the sum of
the diagonal elements.

The congruence coefficient is defined when both
matrices have the same number of rows and columns
(i.e., J = K). These matrices can represent factor load-
ings (i.e., factors by items) or factor projections (i.e.,
observations by factors). The congruence coefficient
is denoted ϕ or sometimes rc, and it can be computed
with three different equivalent formulas:

(1)

(2)

(3)

The RV coefficient was defined by Escoufier as a
similarity coefficient between positive semi-definite
matrices. Escoufier and Robert and Escoufier pointed
out that the RV coefficient had important mathemati-
cal properties because it can be shown that most mul-
tivariate analysis techniques amount to maximizing
this coefficient with suitable constraints. Recall, at
this point, that a matrix S is called positive semi-
definite when it can be obtained as the product of a
matrix by its transpose. Formally, we say that S is
positive semi-definite when there exists a matrix X
such that

S = XXT. (4)

Note that as a consequence of the definition, posi-
tive semi-definite matrices are square and symmetric,
and their diagonal elements are always larger or equal
to zero.

ϕ = rc =
∑

i,j

xi,j yi,j

√
√
√
√

(
∑

i,j

x2
i,j

)(
∑

i,j

y2
i,j

)

= vec{X}Tvec{Y}
√(

vec{X}Tvec{X})(vec{Y}Tvec{Y})

= trace{XYT}
√(

trace
{
XXT

})(
trace

{
YYT

}) .
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If we denote by S and T two positive semi-definite
matrices of same dimensions, the RV coefficient
between them is defined as

(5)

This formula is computationally equivalent to

. (6)

(7)

For rectangular matrices, the first step is to trans-
form the matrices into positive semi-definite matrices
by multiplying each matrix by its transpose. So, in
order to compute the value of the RV coefficient
between the I × J matrix X and the I × K matrix Y, the
first step is to compute

S = XXT and T = YYT. (8)

If we combine Equations 5 and 8, we find that the
RV coefficient between these two rectangular matrices
is equal to

(9)

The comparison of Equations 3 and 9 shows that
the congruence and the RV coefficients are equivalent
only in the case of positive semi-definite matrices.

From a linear algebra point of view, the numerator
of the RV coefficient corresponds to a scalar product

between positive semi-definite matrices, and therefore
gives to this set of matrices the structure of a vector
space. Within this framework, the denominator of the
RV coefficient is called the Frobenius, or Schur, or
Hilbert-Schmidt matrix scalar product, and the RV

coefficient is a cosine between matrices. This vector
space structure is responsible for the mathematical
properties of the RV coefficient.

Sampling Distributions

The congruence and the RV coefficients quantify the
similarity between two matrices. An obvious practical
problem is to be able to perform statistical testing on
the value of a given coefficient. In particular, it is
often important to be able to decide if a value of a
coefficient could have been obtained by chance alone.
To perform such statistical tests, we need to derive the
sampling distribution of the coefficient under the null
hypothesis (i.e., in order to test if the population coef-
ficient is null). More sophisticated testing requires
deriving the sampling distribution for different values
of the population parameters. So far, analytical meth-
ods have failed to characterize such distributions, but
computational approaches have been used with some
success. Because the congruence and the RV coeffi-
cients are used with different types of matrices, their
sampling distributions are likely to differ, and so,
work done with each type of coefficient has been
carried independently of the other.

CCoonnggrruueennccee  CCooeeffffiicciieenntt

Recognizing that analytical methods were unsuc-
cessful, Korth and Tucker decided to use Monte 
Carlo simulations to gain some insights into the sam-
pling distribution of the congruence coefficient. Their
work was completed by Broadbooks and Elmore.
From this work, it seems that the sampling distribu-
tion of the congruence coefficient depends upon sev-
eral parameters, including the original factorial
structure and the intensity of the population coeffi-
cient, and therefore, no simple picture emerges, but
some approximations can be used. In particular, for
testing that a congruence coefficient is null in the

RV = trace{XXTYYT}
√(

trace
{
XXTXXT

})×(
trace

{
YYTYYT

})

=

I∑

i

I∑

j

si,j ti,j

√
√
√
√

(
I∑

i

I∑

j

s2
i,j

)(
I∑

i

I∑

j

t2
i,j

) .

RV = vec{S}Tvec{T}
√(

vec{S}Tvec{S})(vec{T}Tvec{T})

RV = trace{STT}
√(

trace {STS})×(
trace {TTT})

.
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population, an approximate conservative test is to use
Fisher Z transform and to treat the congruence coef-
ficient like a coefficient of correlation. Broadbooks
and Elmore provide tables for population values
different from zero. With the availability of fast
computers, these tables easily can be extended to
accommodate specific cases.

RRVV CCooeeffffiicciieenntt

Statistical approaches for the RV coefficient have
focused on permutation tests. In this framework, the
permutations are performed on the entries of each col-
umn of the rectangular matrices X and Y used to cre-
ate the matrices S and T. Interestingly, work by
Kazi-Aoual, Hitier, Sabatier and Lebreton has shown
that the mean and the variance of the permutation test
distribution can be computed directly from S and T.

The first step is to derive an index of the dimension-
ality or rank of the matrices. This index, denoted βS

(for matrix S = XXT), is also known as ν in the brain
imaging literature, where it is called a sphericity index
and is used as an estimation of the number of degrees
of freedom for multivariate tests of the general linear
model. This index depends upon the eigenvalues of the
S matrix, denoted Sλ 1, and it is defined as

(10)

The mean of the set of permutated coefficients
between matrices S and T is then equal to

(11)

The case of the variance is more complex and
involves computing three preliminary quantities for
each matrix. The first quantity is denoted δS (for
matrix S), and it is equal to

(12)

The second one is denoted αS, for matrix S, and is
defined as

αS = I – 1 – βS. (13)

The third one is denoted CS (for matrix S) and is
defined as

(14)

With these notations, the variance of the permuted
coefficients is obtained as

(15)

The sampling distribution of the permutated coeffi-
cients is relatively similar to a normal distribution
(even though it is, in general, not normal), and there-
fore, we can use a Z criterion to perform null hypoth-
esis testing or to compute confidence intervals. For
example, the criterion

(16)

can be used to test the null hypothesis that the
observed value of RV was due to chance.

AAnn  EExxaammppllee

As an example, we will use two scalar product
matrices from the STATIS example entry (Experts 1
and 3). These matrices are listed as follows:

ZRV = RV − E(RV )√
V(RV )

V(RV ) = αSαT × 2I (I − 1) + (I − 3)CSCT

I (I + 1)(I − 2)(I − 1)3
.

CS = (I − 1)[I (I + 1)δS − (I − 1)(βS + 2)]

αS(I − 3)
.

δS =

I∑

i

s2
i,i

L∑

�
Sλ

2
�

.

E(RV ) =
√

βSβT

I − 1
.

βS =

(
L∑

�
Sλ�

)2

L∑

�
Sλ

2
�

= trace{S}2

trace{SS} .
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To test the significance of a value of RV = .79, we
first compute the following quantities:

βS = 1.0954 αS = 3.9046 δS = 0.2951 CS – 1.3162

βT = 1.3851 αT = 3.6149 δT = 0.3666 CT – 0.7045

(20)

Plugging these values into Equations 11, 15, and
16, we find

E(RV) = 0.2464, V(RV) = 0.0422, and ZRV
= 2.66. (21)

Assuming a normal distribution for the ZRV
gives a

p value of .0077, which would allow for the rejection

of the null hypothesis for the observed value of the RV

coefficient.

Appendix

The RV coefficient takes values between 0 and 1 for
positive semi-definite matrices. 

Let S and T be two positive semi-definite matri-
ces. From the Cauchy-Schwartz inequality, we know
that the absolute value of the numerator is always
smaller or equal to the denominator (and so RV is
smaller than 1); therefore we only need to prove that
the numerator of the RV coefficient is positive or null.
This amounts to showing that
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(17)S =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

29.56 −8.78 −20.78 −20.11 12.89 7.22

−8.78 2.89 5.89 5.56 −3.44 −2.11

−20.78 5.89 14.89 14.56 −9.44 −5.11

−20.11 5.56 14.56 16.22 −10.78 −5.44

12.89 −3.44 −9.44 −10.78 7.22 3.56

7.22 −2.11 −5.11 −5.44 3.56 1.89

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and

(18)T =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

11.81 −3.69 −15.19 −9.69 8.97 7.81

−3.69 1.81 7.31 1.81 −3.53 −3.69

−15.19 7.31 34.81 9.31 −16.03 −20.19

−9.69 1.81 9.31 10.81 −6.53 −5.69

8.97 −3.53 −16.03 −6.53 8.14 8.97

7.81 −3.69 −20.19 −5.69 8.97 12.81

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

We find the following value for the RV coefficient:

RV =
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(19)= (29.56 × 11.81) + (−8.78 × −3.69) + . . . + (1.89 × 12.81)
√[

(29.56) + (−8.78)2 + . . . + (1.89)2
] [

(11.81)2 + (−3.69)2 + . . . + (12.81)2
] = .79.



trace{ST} ≥ 0. (22)

Because T is positive semi-definite, the left part of
Equation 22 can be rewritten as

trace{T
1_
2ST

1_
2}. (23)

Because S is positive semi-definite, the matrix
(T

1_
2ST

1_
2) is also positive semi-definite, and therefore

all its eigenvalues are positive or null. Thus, its trace
being equal to the sum of its eigenvalues is also posi-
tive or null, and this completes the proof.

—Hervé Abdi

See also DISTATIS; Eigendecomposition; Eigenvalues;
Multiple Factor Analysis; STATIS
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SAMPLE

It is very rare that all units in a population can be
measured. More commonly, a selection of units from
a population is chosen, and only these selected units
are measured. A population may be all the people who
live in a city, all the children currently enrolled in a
school, all the trees of a particular species in a forest,
or all the sales transactions of a shop this month. The
selection of elements from a population is called a
sample. In these examples, the samples would be sam-
ples of people, of children, of trees, or of transactions.

Samples are selected according to a sampling
scheme. The size of the sample to be selected should
be defined in the scheme. Summary statistics are cal-
culated from the sample and are used to estimate pop-
ulation parameters. Choosing the best sample scheme
and selecting the most appropriate method to estimate
population parameters are the main interests in
research in sample surveys.

The most elementary sample scheme is simple ran-
dom sampling. With a finite population of N units, the
number of ways the population can be arranged into
subsets of n distinct units can be calculated as follows:

The subsets represent all the possible samples of
size n distinct units that could be taken from a finite
population of size N. In simple random sampling, all
these possible samples have an equal chance of being
selected. For example, consider a population in which
N = 5. For convenience, the units are labeled A, B, C,
D, and E. Ten possible samples of size 3 could be
taken:

A B C
A B D
A B E
B C D
B C E
C D E
A C D
A C E
A D E
B D E

Samples can be chosen so that each unit appears in
the sample only once, or they can be chosen so that
each unit can in the sample more than once. When
units can appear only once in the sample (as in the
example above), the process is called sampling with-
out replacement, and when units can appear more than
once, the process is sampling with replacement.
Drawing names or numbers out of a hat is an example

(
N

n

)

= N !

n!(N − n)!
.
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of sampling without replacement, provided none of
the names or numbers is returned to the hat. Selecting
units from the population by means of a random table
of numbers that correspond to the unit labels is an
example of sampling with replacement because the
same random number can appear more than once, and
hence the same population unit can be selected more
than once. Sampling without replacement may be
more informative than sampling with replacement
because every unit in the sample appears only once
and brings new information. If the same unit appeared
twice, the second occurrence of the unit would not
bring new information.

—Jennifer Ann Brown

Further Reading

Lohr, S. L. (1999). Sampling: Design and analysis. Pacific
Grove, CA: Duxbury.

Thompson, S. K. (1992). Sampling. New York: Wiley.

SAMPLE SIZE

Determination of sample size involves methods for
deciding how much data should be collected in a sta-
tistical study. The sample size is chosen to meet one
or more goals, which could relate to precision of esti-
mation, power, cost, or some other criterion. Sample
size is not equally important in all studies. It is rela-
tively unimportant in planning a pilot study or in cases
in which additional data, if needed, can be collected
quickly with minimal planning. However, when one is
planning a definitive study, sample size determination
can be critical, especially when the process of acquir-
ing subjects or participants, materials, measurements,
budgetary support, or grant funding is lengthy.

It is important to know that in sample-size plan-
ning, science must come before statistics. That is, we
first must establish the scientific goals of the study
and then address the statistical issues in meeting
those goals. There are often a number of intermedi-
ate steps—for example, deciding the target popula-
tion, the way measurements are to be made, and so

forth. Typically, the scientific goals are stated in
terms of a difference (or other measure of effect size)
expressed in the same units as the planned measure-
ments; we choose an effect that would be deemed
important based on substantive considerations. Once
the scientific goals are established, we can address
the statistical design to be used and, finally, the
sample size.

It is seldom possible to do a definitive statistical
study in one step. Unless there is substantial past
experience with the measurements to be used and the
participant populations to be studied, a pilot study is
necessary. The results of the pilot study provide esti-
mates of variances and other quantities needed as
inputs to the calculations to determine sample size. A
pilot study also helps ensure that the planned schedul-
ing and procedures will actually work and that the
training program is adequate for those conducting
interviews and collecting data.

Sample Size for Specified 
Confidence Interval Width

Perhaps the simplest approach to sample-size estima-
tion is to specify the desired width of the confidence
interval for some parameter of interest. For example,
suppose that an achievement test is to be adminis-
tered to selected ninth graders in an alternative
instructional program, and we want to estimate the
mean achievement, µ, to within a margin of error of
±5 points (with 95% confidence); past experience
with this achievement test, when administered to
other populations, suggests that the standard devia-
tion (SD) of the scores is about 15. We plan to use the
usual confidence interval based on the t distribution.
For a confidence coefficient of 1 – α, the sample-size
formula is

where 

tα/2,n–1 is the critical value for an upper tail area of α/2 on
the t distribution with n – 1 degrees of freedom (df),

n =
(

tα/2,n−1σ

δ

)2

,

856———Sample Size



σ is the population SD, and 

δ is the desired margin of error.

The t critical value depends on n, but not strongly;
we can start with, say, 30 df, and iterate once or twice
until it stabilizes. In the example, we use α = .05, start
with tα/2,n–1 = t.025,30 = 2.042 (from standard t tables),
σ = 15, and δ = 5, to obtain a starting value of

which would round to n = 38. For this n, we should
use 37 df or t.025,37 = 2.026, so in a new iteration, we
get n = (2.026 ×15/5)2 = 36.94, rounded to n = 37.
Correcting to 36 df will not change the result enough
to matter, and our conclusion is that 37 participants
are enough to estimate the mean to within 5 points.
Strictly speaking, fractional results for n should
always be taken to the next higher whole number; but
in practice, it makes little difference except when n is
very small. 

Sample Size to Meet 
Power Requirements

In many studies, the primary statistical inferences will
be the results of one or more significance tests. In
those cases, it is common practice to choose sample
size so that the power of the test has at least a speci-
fied value, given a specified significance level and
effect size of scientific or clinical interest. Typically,
for significance level α = .05, one chooses a target
power of π = .8 or π = .9. One rationale for such a
choice is to weigh the severity of a Type I error
(rejecting the null hypothesis when it is true) and a
Type II error (failing to detect an effect of the speci-
fied size). For example, if one chooses α = .05, and
π = .8, the latter is equivalent to a Type II error prob-
ability of β = 1 – π = .20, so there is an implicit state-
ment that a Type I error is 4 times worse than a Type
II error. Another way to look at the same situation
would be to specify α = .05 and π = .8, then specify
the effect size for which a Type II error is one fourth

as bad as a Type I error; or to choose π = .95 and
choose a (larger) effect size such that failing to detect
it would be equally bad as a Type I error.

First, consider a two-sized hypothesis test of the
form

H0 : θ = θ0 versus H1 : θ ≠ θ0,

where θ is a parameter of interest and θ0 is a null
value, and a test statistic of the form

where 

θ̂ is an estimate of θ,

σ(c/√n
⎯

) is the standard error of θ̂ (here, c is some
known value), and 

s is an estimate of σ.

Then an approximate sample-size formula for
achieving power π when θ = θ1 at significance level α is

This formula is exact for the z test, but it underes-
timates sample size somewhat for the t test. In the
latter case, a better approximation is obtained using t
critical values in place of the z critical values, but the
method is still only approximate.

For illustration, suppose that we plan to do a t test
of independent samples to compare the mean reaction
times of laboratory rats under two types of condition-
ing. Based on pilot data collected using the same
instrumentation, we estimate that the SD of reaction
times is 320 msec. It is decided that a difference of
means of 250 msec or more would be regarded as
clinically important, and we want to be able to detect
such a difference with a power of .90 based on a test
with significance level .02. The corresponding
hypotheses are

H0 : µ1 = µ2 versus H1 : µ1 ≠ µ2,

n = c2

(
(zα/2 + z1−π)σ

θ1 − θ0

)2

.

z = θ̂ − θ0

cσ/
√

n
or t = θ̂ − θ0

cs/
√

n
,

n =
(

2.042 × 15

5

)2

= 37.53,
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and the t statistic, based on independent samples of
equal size n and sample means y

_
1 and y

_
2 and SDs s1

and s2, is

where s = √(s 2
1

⎯
++
⎯

s 2
2

⎯
)/2
⎯

is the pooled SD. By examin-
ing the t statistic, we see that c = √2

–
, and hence the

required sample size is

that is, we need 43 rats in each group to meet the
stated goals. Moreover, since we know that the for-
mula underestimates sample size, it makes sense to
adjust it upward slightly, say to 44 or 45.

Use of Software

Most statistical packages provide some capabilities
for sample-size calculations, and some stand-alone
sample-size programs are available commercially or
for free over the Internet. Some of this software uses
approximations such as the formulas above for t tests,
others use exact calculations, and some use simulation
methods, especially in especially complex situations.
Figure 1 shows how the previous example can be done
using Piface software, available online. Piface does
exact calculations, and it is found that with
n = 44, a power of nearly .9 is achieved.

Besides saving labor and producing more-reliable
results for more situations, sample-size software often
affords some flexibility in the way a problem is
defined. For example, suppose that in the previous
example, the sample size of 44 per treatment is not
tractable in terms of available time and resources but
that n = 30 is considered reasonable. By manipulating
the options in the Piface dialog, we can easily find
what power is achieved for the same effect size (the

answer is about .735, which is still reasonable). Or we
could ask the software to solve for effect size instead
of sample size, as shown in Figure 2; it turns out that
we would be able to detect a difference of means of
about 305 msec with a power of .9.

Analysis of Variance

In the analysis of variance (ANOVA), an F test is con-
structed for a null hypothesis that k means are equal:

H0 : µ1 = µ2 = . . . = µk.

n =
(√

2
)2

(
(z.01 + z.10)σ

µ1 − µ2

)2

= 2

(
(2.326 + 1.282) × 320

250

)2

= 42.65 ;

t = ȳ1 − ȳ2

s
√

2/n
,
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Figure 2 Using the Piface Dialog to Solve for 
Effect Size



For studying the power of the F test,
we must specify an alternative hypothe-
sis H1 of substantive interest, that is, a
set of values of µj. The power of the test
depends on the SD of these µj. For
example, when k = 8, consider the
following two sets of µj: {5, 25, 25, 25,
25, 25, 25, 45} and {15, 15, 15, 15, 35,
35, 35, 35}. Since these have the same
SD, the power of the ANOVA F test is
the same when either of these sets is
specified as the alternative hypothesis of
interest, even though the smallest and
largest means differ by 40 in the first set
and only 20 in the second. Unless a
particular relationship among the means is contem-
plated in advance as a likely outcome, it can be quite
difficult to discuss a relevant effect size for the F test
at any kind of practical level. The best strategy is
probably to construct examples of patterns of means
that would be detectable.

An alternative approach, which may be more
accessible for discussion purposes, would be to work
in terms of effect sizes for pairwise comparisons or
contrasts of means. We would then arrive at a suitable
sample size for achieving a specified power for a
particular comparison of two means. Typically, some
type of correction is made for multiple testing, such as
a Bonferroni correction or Tukey’s honestly signifi-
cant difference. A similar approach extends to multi-
factor ANOVA. For illustration, Figure 3 shows the
Piface dialog for a two-factor experiment with factors
“treatment” and “dose,” where it is desired to be able
to detect a difference of 6.0 or more between two cell
means. Tukey’s honestly significant difference is used
to compare the five treatment means at the same dose,
and we find that when the error SD is σ = 3.89, a
sample size of 11 observations per cell is adequate to
exceed a power of .80.

Sample-Size Allocation

Another aspect of sample size is that of allocation;
that is, when there are several groups and we wish to
collect N observations total, how should these N

observations be distributed among the groups? In a
comparison of two independent sample means, each
group should be allocated N/2 observations if an ordi-
nary pooled t test is used; however, if we cannot
assume that the SDs are equal, the test should be done
using the Satterthwaite approximation, and the sample
sizes should be allocated in proportion to the SDs; for
example, if one SD is twice as large as the other, the
group with the larger SD should get twice as many
observations.

Effect-Size Conventions

The approach emphasized here requires one to specify
an effect size in terms of the actual units of measure-
ment; accordingly, one also needs an idea of the error
SD, perhaps based on pilot data. Another popular
approach is to specify effect size in SD units. For
example, in a two-sample t test, a difference of half an
SD is regarded as a “medium” effect size. This
convention is based on a survey of the social science
literature conducted by Cohen. The advantage of this
approach is that it is easy, requires less thinking, and
does not require pilot data. The disadvantage is that it
is an elaborate way to choose a predetermined sample
size. For example, the sample size for a medium effect
is 64 per treatment, regardless of the importance of the
research, the reliability of the instrumentation, or the
breadth of the population under study. By choosing a
medium effect size, we are simply choosing to do a
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medium-size study relative to those published in the
social science literature. A definitive study requires
more stringent scientific standards than that.

—Russell V. Lenth

See also Effect Size; Type I Error; Type II Error
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SAMPLING DISTRIBUTION

OF A STATISTIC

The term sampling distribution of a statistic refers to
the theoretical, expected distribution for a statistic that
would result from taking an infinite number of
repeated random samples of size N from some popu-
lation of interest and calculating the statistic of inter-
est for each sample. The resulting distribution of
values is called the sampling distribution of that statis-
tic. For example, the sampling distribution for a sam-
ple mean could be constructed by obtaining a random

sample of individuals from a population of interest,
computing the mean of observed values, and then
repeating this process. That is, one could theoretically
obtain repeated random samples of individuals from
the population and for each random sample
compute the sample mean of values. If this process
were repeated indefinitely, the resulting distribution of
sample means would be the sampling distribution of
the sample mean. This process could be conducted for
any given statistic (e.g., sample mean, variance, or
correlation). 

In practice, a researcher cannot actually create the
sampling distribution of a statistic, because it is a the-
oretical process that requires the creation of an infi-
nitely large number of random samples from some
population of interest. However, the concept of
the sampling distribution of a statistic is important
because it creates the cornerstone for all of inferential
statistics. All inferential statistics have in common
the process of hypothesis testing. Generally, the
process of hypothesis testing entails the assumption
that some null hypothesis is true, and then a determi-
nation about the likelihood of observing a sample
statistic given the null hypothesis. If the observed
sample statistic appears very unlikely given the null
hypothesis, the analysis results in a p value less than
a predetermined critical value, or “alpha level.” In
this situation, the null hypothesis is rejected in favor
of the alternative hypothesis. For example, a null
hypothesis may state that the treatment and control
groups from a study have equal means in the popula-
tion, which would indicate that the treatment has no
effect on the outcome of interest. To determine if an
observed mean difference is statistically significant, a
standardized mean difference is computed between
the treatment and control groups. Under the assump-
tion that the treatment has no effect, a large difference
between the two groups would be relatively improb-
able. The p value from this analysis indicates the
probability that the null hypothesis is true, given the
observed difference. If that p value is small, it indi-
cates that the null hypothesis is probably not true, and
the null hypothesis is therefore rejected by the
researcher.
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This process is familiar enough to most
researchers, but it depends entirely on knowing the
sampling distribution for the statistic of interest.
Without knowing how sample mean differences
were distributed in the population, it would be
impossible to determine the likelihood of a given
mean difference’s occurring under the assumption
of the null hypothesis. Knowing how a statistic is
distributed in the population allows the statistician
to make an inference about how likely or unlikely
it is that any given sample statistic would have
come from some population of interest. This is
possible because when a researcher obtains a sam-
ple of data and computes some statistic of interest,
this value can be treated as one of the possible infi-
nite number of random values that could have been
drawn from the population. Then, if the sampling
distribution of the statistic is known, the observed
sample statistic can be compared to this distribu-
tion to determine the probability of its occurring.
The sampling distribution of a statistic can be
properly thought of as the probability density func-
tion for the statistic.

Any inferential statistical analysis requires knowl-
edge of the sampling distribution for that statistic.
Different sample statistics, such as sample means,
sample mean differences, sample variances, and sam-
ple correlations, all follow different sampling distrib-
utions, and those sampling distributions may fluctuate
depending on the details of a particular analysis, such
as sample size, population variability, and population
effect sizes. When the parameters that govern the
shape of the sampling distribution for a statistic are
known, inferences can then be made on the basis of
the observed sample statistics.

—William P. Skorupski

See also Hypothesis and Hypothesis Testing; Inferential
Statistics
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SAMPLING ERROR

The process of sampling, while essential to the theory
and use of inferential statistics, is not perfect, and
there is almost always a difference between the sam-
ple statistics and the population parameters that are
collected. For example, if a population of 1,000 data
points has a mean of 14.5, and a sample consisting of
50 data points from that population has an average of
14.1 on the same measure, then the difference is .4.
That difference is the error in sampling. The popula-
tion value is often seen as the true value, and any devi-
ation from that value is seen as an error.

Sampling errors are better understood when they
are considered as standard errors, which are simply a
standard deviation of the sampling distribution of the
statistic under consideration.

For example, the standard error of the mean (SEM)
is the standard deviation of the sample mean for n
observations reflecting the variability in sampling
error and is computed as follows:

where

σ is the standard deviation of the original set of scores,
and

n is number of sample observations.

For a sample of 9 scores with a standard deviation
estimate of 2, the SEM is

Given what we know about any normal distribu-
tion, one would expect that 68% of simple means
would fall within ±1 SEM or ± .67 units from the
grand, or overall, mean.

As one would expect, sampling error decreases as
the sample gets larger and the sample more closely
approximates the characteristics of the population.

SEM = σ√
n

= 2√
9

= 2
3

= .67.

SEM = σ√
n
,
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For an infinitely large sample, there would be no
sampling error (indeed, σ would equal 0 because the
sample and the population values would be identical).

—Neil J. Salkind

SCALING

Scaling is the activity of attempting to measure or
quantify psychological attitudes or attributes. The term
can also refer to attempts to measure people on some
dimension, but here we are concerned with the first-
mentioned meaning. The roots of the scaling enterprise
go back notably to the German scientist and mystic
Gustav Theodor Fechner, who on October 22, 1850 (so
he recounted), had an idea that he thought could con-
nect the psychological and the physical realms. Simply
phrased, his idea was this: We all know that physical
sensory stimuli give rise to perceptions that seem to be
quantitative. For example, if two rocks differ in weight
by a sufficient amount, one will feel heavier than the
other when they are lifted. There were good physical
methods for measuring weight. Was there a way to
measure the rocks’ felt “heavinesses,” and could we
connect by some mathematical formula the felt heavi-
nesses of the rocks to their weights? Fechner thought
he saw a theoretical argument that would connect the
physical and psychological magnitudes and concluded
that psychological magnitudes were related to the
logarithms of their inducing physical intensities. His
theoretical argument hinged on some observations of
the “just noticeable difference,” roughly the minimum
difference in stimuli that could be reliably detected.
This just noticeable difference appeared in some set-
tings to be a constant proportion of the stimuli’s val-
ues. So, for example, two rocks could reliably be
distinguished in weight if their weights differed by
approximately 3%. Combining this observation with
the theoretical notion that all just noticeable differ-
ences between stimulus weights gave rise to the same
constant heaviness difference, Fechner adduced his
logarithmic formula connecting physical to psycholog-
ical magnitudes. The dol scale for pain is an applica-
tion of this approach.

All the schemes for scaling discussed here provide
values that are relative. That is, they permit assess-
ment of how different two rated objects are without
providing an absolute location on the scale for any
single object.

Discriminability Scaling

One early schematic approach to scaling, following on
Fechner’s interest in discriminability, stems largely
from the work of Louis Leon Thurstone and explicitly
utilizes some statistical ideas. It relies on the fact that
there are comparisons that people make with less than
perfect reliability. For example, when repeatedly
presented with two objects that differ only a little in
physical weight and asked which of the two is the
heavier, a person will not always make the same selec-
tion. Thus we can theorize that although each object’s
physical weight is constant, its psychological heavi-
ness undergoes some variation from encounter to
encounter. That variation in heaviness is presumed to
be the source of the unreliability in a person’s selec-
tions. The variation takes place in the psychological
dimension of heaviness, and it can be presumed to
follow a normal distribution. In the simplest version
of his work (Case V of the Law of Comparative
Judgment), Thurstone added some assumptions that
entailed the plausible idea that if stimulus A is judged
heavier than stimulus B 80% of the time and stimulus
X is judged heavier than stimulus Y 67% of the time,
then the heavinesses of A and B differ by more than
do the heavinesses of X and Y. A final assumption was
that the variation in heaviness had as its form the nor-
mal distribution, allowing the translation of the prob-
ability with which one stimulus was judged heavier
than another into the difference between their heavi-
nesses measured as z scores in a normal distribution.
Thus a person’s performance in an elaborate experi-
ment involving the comparative judgments of many
weights can give rise to a scale of heavinesses in
which the difference between two weights’ scale val-
ues accurately predicts the likelihood that one will be
judged heavier than the other. Applications of this
approach might include having students who had
experience with a group of teachers indicate their
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favorite in every possible pair of teachers; this could
produce scale values for the teachers’ “goodnesses.”
Notice that these scales say nothing about the
“absolute” heaviness or goodness of any particular
things; they inform us only about the separations
among the things being judged.

Magnitude Scaling

Another approach to scaling involves the procedure
called magnitude estimation, in which people give
numerical ratings to stimuli based on some attribute.
For example, people might be asked to heft objects of
different weights and to assign numbers to the objects
so that the numbers are “proportional” to the percep-
tual experiences of heaviness. This approach pre-
sumes that people can make ratio-like comparisons
among their sensations in a consistent and unbiased
way. (Often, but not necessarily, this is carried out
with some particular weight [the standard] being
assigned a particular numerical value [the modulus]
and more recently, verbal labels such as “very strong”
being attached to some numbers.) The extensive tradi-
tion of work in this vein stems largely from the work
of Stanley Smith Stevens (who also created the typol-
ogy of measurement scales—nominal, ordinal, ratio,
and interval; he championed the use of magnitude
estimation though he did not introduce it). The aver-
age (usually the geometric mean) of the numbers
assigned to an object is taken to be a measure of its
perceived heaviness. In a wide variety of situations
involving stimuli that vary in “intensity” (such as
lights, sounds, smells, etc.), a simple form of alge-
braic equation characterizes the relation between the
physical intensities of the stimuli and the numbers
people assign to them. The numbers people assign
vary as some power of the physical intensities of the
stimuli, or equivalently, the numbers are a power
function of the physical intensities. So, for example,
the loudness ratings of 1,000 Hertz tones are linearly
related to approximately the cube roots of the sounds’
physical intensities (i.e., to the intensities raised to the
1/3 power, or to intensities with an exponent of 1/3).
Such relations, called power functions, are found in
many studies of this sort (e.g., the brightness of lights,

the saltiness of salt solutions, the painfulness of elec-
tric shocks). Power function relationships are linear
when graphed in double-logarithmic coordinates (i.e.,
when both axes of the graph [the stimulus intensities
and the numbers people say] are logarithmic; this
arrangement makes it easy to determine whether a
given set of data is consistent with that algebraic
form). The power to which the intensities are raised is
equal to the slope of the line that connects the data in
double-logarithmic coordinates and is usually the
main result of interest (although its value may vary
with, among other things, the range of stimulus inten-
sities employed in any particular investigation). The
sone scale of loudness, adopted by the International
Organization for Standardization, is based on this
approach. Magnitude estimation has been profitably
applied in the assessment of how one’s degree of stage
fright is related to the size of a prospective audience
and of the analgesic value of hypnosis. It has also
been used to evaluate the diminution of fear experi-
enced by phobic persons over the course of therapy
for their condition.

A procedure that should be equivalent to magni-
tude estimation is magnitude production, in which
people are given a number and told to adjust a stimu-
lus so that its attribute level is equal to that number.
For example, a person might be told to adjust the
intensity of a sound so that its loudness was 60.
Results of this procedure also exhibit power function
relations between numbers and stimulus intensities.
However, the exponent relating numbers to stimulus
intensities is rarely the same as that found with mag-
nitude estimation and is usually larger. Where suffi-
cient data are available, averaging the results of the
two methods is often recommended for deriving a
more accurate function relating stimulus intensities
and sensation magnitudes.

The coherence of magnitude scaling approaches is
seen in the procedure of cross-modality matching, in
which, for example, people hear a sound and are
asked to adjust a light’s intensity so that its brightness
is equivalent to the loudness of the sound. If one
knows the two power functions relating loudness to
sound intensity and brightness to light intensity, then
one can predict the power function that will relate
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sound intensity to light intensity at perceptual equiv-
alence. Agreement of experimental data with these
predictions is very good.

Although doubts remain as to the ultimate validity
of these approaches, magnitude scaling methods
have a central place in the scaling of perceptual
magnitudes.

Category Scaling

More familiar are category scaling procedures, in
which people are asked to rate things using a scale
that ranges from 1 to 10 or from −5 to +5 or over some
other range of numbers. Here again, the average rat-
ings constitute the psychological scale values for the
things being rated. Scale values for the same set of
objects may vary in complicated ways depending not
only on the range of stimuli employed but also on the
particular rating scale used by the observers—both its
range and its location. For example, when people
were asked to rate how successful they had been in
their lives, 34% of them chose a rating in the lower
half of a −5 to +5 scale, but only 13% did so with a 1
to 11 scale, highlighting the fact that these scales do
not provide information on the absolute levels of
people’s perceptions. In addition, people exhibit a
tendency to try to use all available ratings roughly
equally often on category scales; this can give dis-
torted results if the things being rated have a skewed
distribution on the attribute being rated.

Category-based scales and magnitude-based scales
on the same stimuli are often found to be nonlinearly
related, a problem that has not been satisfactorily
resolved in general.

Difference-Based Scaling

Based on work of Roger Shepard and J. B. Kruskal,
nonmetric scaling permits the construction of an inter-
val scale using people’s assessments of differences
between objects. An exhaustive ranking of the sizes of
the pairwise differences among objects can give rise
to an interval scale for the values of the objects on 
the dimensions along which they vary (and to the
number of dimensions, or attributes, being measured);

multidimensional differences can be handled with this
approach. If there are n objects, then there are
n(n – 1)/2 pairwise differences between them. Having
10 objects that vary in one dimension provides suffi-
cient constraint to adduce interval-scale values for the
10 objects. This approach has been used successfully in,
for example, the measurement of occupational prestige.

Item Response Theory

Georg Rasch, building on the work of Thurstone,
developed item response theory (IRT), a scheme for
measuring attributes such as knowledge of some
domain in a way that can give rise to interval scales.
IRT, unlike many other schemes, does not treat all
items on a test as equivalent (and hence does not
simply rely on a total score for its measure) but recog-
nizes that the questions vary in difficulty so that there
are some questions that only the most knowledgeable
test taker will answer correctly and others that most
people will answer correctly. Easy questions allow us
to distinguish among the knowledge levels of people
who know little because some such people will get
more easy questions right than others will; easy
questions cannot help us distinguish among the very
knowledgeable, who will get all of them right.
Similarly, hard questions will be gotten wrong by all
those who know little but can help us distinguish
among those who know a lot. The probability that
someone will get a question right grows with that
person’s knowledge level. We can imagine, then, for
any question, a graph relating the probability of a cor-
rect answer on the ordinate to the test taker’s knowl-
edge level on the abscissa. For easy questions, the
probability of a correct answer rises to near 1.0
“early” in the graph, that is, at low knowledge levels.
For a hard question, the probability will remain at zero
until knowledge level is fairly high, at which point the
probability will start to rise toward 1.0. Wherever
along the abscissa the curve rises steeply defines a
range of knowledge levels that the question helps us
distinguish among; where the curve is flat or shallow,
the question provides little discrimination among
knowledge levels. IRT uses these ideas to produce
simultaneous measurement of (a) question difficulty
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and (b) knowledge levels, utilizing as input the ques-
tion-by-question performance of a large number of
testees. A person’s pattern of correct and incorrect
answers permits measurement of the person’s knowl-
edge level. In many cases, these are interval-scale
measures.

—Scott Parker

See also Item Response Theory; Thurstone Scales
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SCAN STATISTIC

Scan statistics are used for detecting unusual clusters
of points scattered randomly on a line or events occur-
ring randomly over time. Traditionally, the scan statis-
tic is defined as the maximum number of points
contained in a window of fixed length w sliding along
a continuous interval of real numbers, say, from 0 to 1.
The points on the interval may represent events over

time. An exceptionally large value for the scan statis-
tic will indicate the presence of a cluster.

In 1965, Joseph Naus showed that the scan statistic
is the test statistic in a generalized likelihood ratio test
for the null hypothesis of n points independently sam-
pled from a uniform distribution on [0,1] versus an
alternative of the existence of a cluster. Naus proved
that among a class of tests for the presence of clusters
among uniformly distributed points, Nw is the most
powerful test statistic. Since then, there have been
numerous applications of scan statistics in mathemat-
ics, science, and industry, such as the generalized
birthday problems, clustering of diseases in time,
clustering of defective items in manufacturing
processes, and many more.

How large a value must the scan statistic of a clus-
ter have before it can be declared unlikely to occur by
chance? To answer this question, one needs a mathe-
matical formula for the probability distribution of the
scan statistic. Finding the distribution function of the
scan statistic has become an object of intense interest.
In 1977, F. K. Hwang derived the general formula
for the distribution of the scan statistic. However,
the practical use of this elegant formula is severely
restricted because of the formidable computations
involved in the complicated sum of matrix determi-
nants. Considerable efforts, therefore, have been
channeled to finding accurate approximate distribu-
tions that are computationally more tractable. A
number of these approximations are presented in the
book Scan Statistics and Applications by J. Glaz and
Balakrishnan, published in 1999.

In applying the scan statistics, choosing an appro-
priate value of the window size w is usually not
a straightforward matter. In many cases, significant
clusters may not be detected because the window size
is either too small or too big. It is generally advisable
to perform the analysis using a variety of window
sizes in any application of scan statistics to detect
clusters. It has been noticed that the repetitive applica-
tions of scan statistics on the computer can be carried
out more conveniently if we use an equivalent form 
of scan statistics known as r-scan, put forth
by Amir Dembo and Samuel Karlin at Stanford
University in 1992, while the original form of scan
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statistics is called w-scan. We present the definitions
of both the w-scan and the r-scan below with an expla-
nation of their duality relationship.

Let X1, X2, . . . , Xn be n points independently sam-
pled from the unit interval of real numbers between 0
and 1, and let X(1), X(2), . . . , X(n) be their order statis-
tics from the smallest to the largest. That is, X(1) is the
smallest one among X1, X2, . . . , Xn, X(2) the second
smallest, and so on. Let

Si = X(i+1) − X(i), i = 1 , . . . , n − 1

denote the spacing between adjacent points, and let

Ar (i) = Si + . . . + Si + r − 1

be the sum of the r adjoining spacings starting at X( i).
Also let Nw(i) stand for the number of points contained
in a window of length w beginning at X(i). 

For a fixed window length 0 < w < 1, the traditional
scan statistic is the largest number of points contained
in a window of size w scanning over the unit interval.
Mathematically, it can be defined as Nw = max{Nw(i):
i = 1, . . . ,n}. For a fixed positive integer r, the r-scan
statistic is Ar = min{Ar(i): i = 1, . . . , n – r}. In other
words, the r-scan statistic Ar is the smallest of the
aggregated r-spacings of the n points.

It is not hard to see that if there is a window of
length w containing r + 1 points or more, then there
must be r adjoining spacings whose sum is less than
w. The converse of this is also true. So Nw and Ar are
related by a duality relation

{Nw ≥ r + 1} = {Ar ≤ w}.

Consequently, if the distribution function of either
one is known, so will the other. The traditional w-scan
statistics and the new r-scan statistics can be used
interchangeably.

An Application to Molecular Biology

In the early 1990s, advances in biotechnology gener-
ated an exponential growth of biomolecular sequence
data. Scan statistics have played critical roles in

analyzing these data and extracting useful biological
information. They have helped predict important
functional sites in the genome and scan markers for
disease susceptibility genes. We shall illustrate how
the scan statistics were used in a specific example.

DNA is deoxyribonucleic acid, which consists of
four different nucleotide bases: adenine (A), thymine
(T), cytosine (C), and guanine (G). A large number
of these bases are strung together to form a giant
sequence with a backbone composed of deoxyribose
(a sugar) and phosphate groups. The nucleotide bases
A and T form a complementary pair, as do C and G.
Because of this pairing, the DNA molecule forms a
double helix of two strands with complementary base
sequences.

Viral genomes are small, each of them comprising
a DNA molecule ranging from a few thousand to sev-
eral hundred thousand bases. Early studies in molecu-
lar virology have reported that the nucleotide
sequences around replication origins of certain her-
pesviruses have a high concentration of palindromes.
A DNA palindrome can be defined as a word pattern
of the form b1 . . . bLbL′ . . . b1′, where b′ denotes the
complement of base b and L is the half-length of the
palindrome. For example, the sequence of bases
GCAATATTGC is a palindrome of length 10.

As the central step in the reproduction of her-
pesviruses, viral DNA replication has been the target
for a number of antiherpesvirus drugs (e.g., acy-
clovir). Understanding the molecular mechanisms
involved in DNA replication is of great importance in
further developing strategies to control the growth
and spread of viruses. Since replication origins are
regarded as major sites for regulating genome replica-
tion, labor-intensive laboratory procedures have been
used to search for replication origins. With the
increasing availability of genomic DNA sequence
data, one way that may save time and resources would
be to scan the viral genome sequence for the expected
sequence features by a computer program before
an experimental search for replication origins is
launched.

The human cytomegalovirus (HCMV) is a member
of the herpesvirus family, which includes several
well-known viruses, such as herpes simplex and
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chicken pox. The HCMV genome is a DNA molecule
of 229,354 base pairs. The computerized search for
replication origins began by scanning through the
genome sequence for palindromes of length 10 or
more and located 296 such palindromes. Idealizing
the occurrences of these palindromes on the genome
sequence as 296 points randomly scattered on the
interval of numbers between 0 and 1, scientists have
made calculations based on the scan statistics that
indicate the presence of a statistically significant
(p value < 0.01) cluster of palindromes in the segment
from 92,001 to 93,000 bases. Highly sensitive experi-
mental assays performed around this part of the
genome confirmed that the segment between 92,210
and 93,175 bases is the OriLyt of HCMV.

In 1994, Leung and coworkers first attempted to
formalize the mathematical ideas behind the success-
ful prediction of the OriLyt in HCMV using scan sta-
tistics to identify unusual clusters of palindromes and
confirmed the feasibility of using palindrome clusters
for predicting replication origins in general for the
herpesvirus family. In 2005, based on the scan statis-
tics with compound Poisson approximation, Leung
and coworkers reported the details of the mathemati-
cal theory, suggesting possible ways to improve the
reliability of their prediction method of replication
origins.

The Assumptions Underlying 
the Scan Statistics

In the definition of scan statistics, one has to assume
that a certain number n of points are sampled indepen-
dently from the interval of real numbers between
0 and 1 according to a uniform distribution. That is,
each point is selected independently and equally
likely from anywhere in the interval. It is generally
advisable to make a probability plot of the data points
against the uniform quantiles to verify that this
assumption is satisfied overall to a reasonable degree.

The Research Hypothesis

The scan statistics are used when the researcher sus-
pects that among the observed data points, there is an

unusual cluster that is unlikely to occur by chance. In
the test of clustering by the scan statistics, the null
hypothesis assumes that all the points are independent
and identically distributed according to a uniform dis-
tribution. Assuming that the null hypothesis is true,
the probability (p value) of observing a value of the
scan statistics as high as the value in the data is
assessed. If the p value is too small, say, less than
0.05, the null hypothesis will be rejected, and we shall
then say that a nonrandom cluster exists among the
points.

Computations Involved

Computations involved in the scan statistics are quite
complicated. Many different programs based on dif-
ferent approximations of the probability distribution
of the scan statistics have been developed. (See, for
example, the ones described in Scan Statistics and
Applications, by Glaz and Balakrishnan.) To fit the
different needs of specific applications, it is quite
common for researchers to develop their own com-
puter codes. For example, Josephine Hoh and Jurg Ott
developed their Scanstat program for gene mapping,
available online. Other application codes not online
can usually be obtained from the authors directly.

—Ming-Ying Leung
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SCATTERGRAM

A scattergram is a visual summary demonstrating
the relation between two variables; it illustrates the
scores on one variable plotted against scores on
another variable. The scattergram is usually drawn
before working out a linear correlation coefficient or
fitting a regression line. It is used as an aid to interpret
the data. For instance, the scattergram can illustrate
whether there are any outliers or gaps in the data or
whether the data follow a straight or a curved line.

The pattern obtained from the scattergram illustrates
the type and strength of the relation between two vari-
ables. If the data points make an upward trend going
from bottom left to top right (positive slope), then the
association is positive (the relation is direct; as one
variable increases, so does the other). If the straight line
goes down from top left to bottom right (negative
slope), then the association is negative (the relation is
indirect; as one variable increases, the other decreases).
The closer the points follow a straight line, the higher
the correlation. No visible trend from the scattergram
implies no association; the points are scattered ran-
domly. If the data points form a curved line, then a lin-
ear correlation cannot be used to describe the data.

In Figure 1, the scattergram illustrates a negative
relation between age and traffic tickets. The scatter-
gram was created using Excel.

When creating a scattergram, observe the follow-
ing conventions:

1. There are no gridlines for the X or Y axis.

2. The axes are clearly labeled.

3. The points are not connected by a line.

—Adelheid A. M. Nicol

See also Correlation Coefficient; Histogram; Line Chart;
Regression Analysis
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SCREE PLOT

In an explorative data analysis, principal component
analysis and factor analysis are often applied for the
purposes of data reduction or structure detection or
simplification. In these analyses, it is important to
decide the number of components or factors to be
retained. While there is no set rule, there are a few
common conventions. One common practice is to
consider only those factors having variance of factors
(or eigenvalues) greater than 1. This method is
referred to as the eigenvalue criterion method. The
other common practice is to use a scree plot. In this
case, the plot and the eigenvalue criterion method are
often used in combination.

868———Scattergram

0

1

2

3

4

5

6

0 10 20 30 40 50 60

N
u

m
b

er
 o

f 
T

ra
ff

ic
 T

ic
ke

ts

Age

Figure 1 Total Number of Traffic Tickets Issued to
Individuals Age 20 to 50 in 2005



A scree plot is a two-dimensional plot with the
number of factors on the horizontal axis and eigen-
values on the vertical axis. Its purpose is to provide
a useful visual aid for determining an appropriate
number of components to retain. The plot shows the
fraction of total variance in the data as explained, or
represented, by each factor or component. The plot
is called a scree plot because it looks like a sloping
mass of loose rocks (scree) at the base of a cliff.
The scree plot allows one to pick the number of
components or factors on the basis of the point at
which “elbow,” or separation, is observed or where
a plateau begins. The plot in Figure 1 shows eigen-
values versus number of factors with annotation of
the first five values of the eigenvalues and their cor-
responding cumulative percent of variance. The
eigenvalues are based on the results from Proc
Factor in SAS, and the plot is created by Minitab
software.

In this plot, an elbow occurs at the third point and
is followed by a plateau. That is, the eigenvalues
after the third value are all relatively small. Thus,
we see that three principal components should be
retained for further use. There is a clear separation
between the first two components and the remaining
components. 

—Kyoungah See

See also Eigenvalues; Factor Analysis; Factor Scores
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SECONDARY DATA ANALYSIS

If locating a sample on which to conduct research
poses problems, it might be worthwhile to consider
conducting a secondary data analysis. During the past
25 years, an increasing number of researchers in the
United States have turned to secondary data rather
than collecting original data for their research. More
recently, some researchers have begun to explore uses
of secondary data for qualitative research.

At its most basic level, secondary data analysis
involves using data collected in previous research to
address a different research question. Special consid-
erations in any secondary analysis include differences
in operational definitions, unavailability of raw data,
and various ethical issues. This entry explores these
issues as well as the uses, advantages, and disadvan-
tages of secondary data analysis. To demonstrate how
secondary data analysis has been used to address var-
ious topics, summaries of some secondary analysis
studies have been included at the end of this entry.

Similarities and Distinctions 
Between Secondary Data 

Analysis and Meta-Analysis

Graves considered meta-analysis to be a special case
of secondary analysis. However, because of differ-
ences in the two methods, some researchers do not
agree with Graves. A comparison of these two
methods reveals both similarities and distinctions.
Regarding similarities, both methodologies use data
collected by others. Both also offer the temptation to
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rely on published findings, which means that each
method can be subject to publication bias.

However, at least two distinctions exist between
secondary analysis and meta-analysis. First, sec-
ondary data analysis uses previously collected data to
address problems other than those for which the data
were collected. In contrast, meta-analysis combines
results from multiple studies with similar hypotheses
to clarify findings on the same problem. Second,
whereas meta-analysis entails using data from multi-
ple studies, secondary data analysis might use data
from a single (usually large) study. Because of
these differences between the two methods, some
researchers have viewed secondary analysis as distinct
from all other types of research.

Practical Basis for 
Secondary Data Analysis

Governments, businesses, schools, and other organi-
zations have gathered much quantitative information.
Therefore, when available information gathered for
primary research can serve other research purposes, it
has made sense to use that information, rather than
repeatedly attempting massive data collection efforts.
Researchers have highlighted at least four practical
reasons for using secondary data.

EEffffiicciieennccyy

Secondary data has been less costly and frequently
more easily available than primary data. This has been
confirmed by a variety of researchers. Other sec-
ondary data analysis scholars concurred that, with
research funding shortages, secondary data banks
have provided a cost-efficient source of data.

SSttrreennggtthheenneedd  CCoonnffiiddeennccee

Both Brannigan and Cowton noted that similar
trends found by different sources strengthen confi-
dence in findings. This phenomenon, known as
triangulation, often can be achieved efficiently
through multiple secondary sources. For triangula-
tion purposes, K. J. Kiecolt and L. E. Nathan also

recommended combining original research with
analysis of secondary data.

SSppeecciiaall  NNeeeedd  ffoorr  SSoommee  SSttuuddiieess

The textual data found in newspaper accounts, let-
ters, and other qualitative sources has been essential
for historical research. Katz (in “How satisfied are the
self-employed: A secondary analysis approach”; see
the last research example in this entry) made the point
that secondary data might be less biased than some
types of primary data, such as self-report interviews.
The reason proposed for reduced bias was that self-
report is more subjective than third-party reporting.

Another example of using qualitative data to meet
special research needs is found in Lindenmann’s
award-winning public health study. Since public health
information often is presented to general audiences in
qualitative form, Lindenmann chose newspaper arti-
cles as the venue for his study. To learn how news-
papers reported on matters affecting public health, he
studied two national and five regional newspapers’
articles that related to public health issues.

PPrrootteeccttiioonn  ooff  RReesseeaarrcchh  PPooooll

Finally, secondary data analysis might have partic-
ular application for graduate students. Fitzpatrick
claimed that by using the analysis from secondary
information while learning to do research, potential
research participants are protected. 

Research Uses of
Secondary Data Analysis

Quantitative researchers have found broad applica-
tions for secondary analysis because of the availabil-
ity of summative data in national data banks. These
data can help in addressing a host of educational,
organizational, medical, environmental, and social
problems. Also, as noted elsewhere in this article,
graphic and textual secondary data have become
widely available to address qualitative research ques-
tions. Qualitative data banks include those found in
periodicals, newspapers, and other print media.
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QQuuaannttiittaattiivvee  UUsseess

Trochim and Van Dierendonck, Schaufeli, and
Buunk noted that multiple secondary sources were
used for some research questions. For example,
Trochim noted that a researcher could study crime
patterns in different parts of the United States using
both census and crime data; likewise, a study reported
by Van Dierendonck and colleagues noted use of five
sources of secondary data for their examination of
causal relationships among the three dimensions of
burnout. Similarly, census data could be combined
with discipline-specific databases to examine relevant
issues in other fields. Some recent examples of uses of
quantitative secondary analysis are studies of job
satisfaction, work environment, gender, and worker
decision making.

QQuuaalliittaattiivvee  UUsseess

Historical studies, obviously, have depended on
secondary sources. Common sources for secondary
data have included ethnographies, legislation, treaties,
annual reports of various agencies, and letters and
diaries. These sources have been used to study such
topics as trends in social behavior; effects of sub-
stance abuse; health care; business; and work, school,
and family issues. Also, mixed-methods studies have
used both qualitative and quantitative as well as pri-
mary and secondary data.

Secondary Data Analysis Process

The process for secondary data analysis, as noted in
Figure 1, is similar to that for other types of research
except for the methods of gathering and working with
the data. For original research, researchers (a) formu-
late research questions, (b) conduct literature reviews,
(c) develop research designs, (d) collect data, (e) ana-
lyze data, and (f) report findings. For secondary analy-
ses, they (a) formulate research questions, (b) conduct
literature reviews, (c) establish criteria for inclusion,
(d) locate summarized data collected by others or use
their own primary data for a different research pur-
pose, (e) analyze data, and (f) report findings.

In the data gathering and recording stages of
secondary data analysis, researchers establish size of
study, research design, quality controls, and so forth,
for the data to be included. Next, they search data
archives for data meeting their criteria. These data,
frequently subsets of larger data sets, are transported
into SPSS or another statistical program. Variables are
established, often by combining other variables or by
constructing new variables. Once the secondary data
have been analyzed, secondary researchers compare
their findings with findings of primary researchers
and report their findings. 

Variations of the Basic 
Secondary Data Analysis Process

There have been some variations, or modifications,
of the basic secondary data analysis process. These
process changes have arisen from the unique needs of
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research projects. A few of these modifications are
discussed in this section, including (a) use of sec-
ondary and primary data in the same study, (b) sec-
ondary data analysis using one’s own data, and (c)
studies that include both qualitative and quantitative
secondary data.

Using secondary data analysis to complement
primary data studies. Heaton (“Children and Families
Team”) used a combination of primary and secondary
data. This approach can strengthen confidence in the
findings of secondary data analysis while adding
depth to answers to research questions.

Secondary data analysis of researcher’s own data.
Researchers can also reuse their own data for a new
research purpose. Using this variation, researchers
could avoid some of the challenges ordinarily
involved in secondary data analysis because they
would understand the primary research fully and
would have access to the complete data set.

Studies using both qualitative and quantitative
secondary data. Finally, Janet Heaton, in “Secondary
analysis of qualitative data,” discussed the option of
including both qualitative and quantitative secondary
data in studies. For example, a researcher might use
secondary data analysis to identify aspects of job sat-
isfaction in middle-management positions in the
accounting industry. The researcher might then con-
duct interviews with several middle managers in
selected accounting firms to add another dimension to
the study. This variation can reinforce and clarify the
findings of primary studies.

Major National Archives

Several large databases have been developed and made
available to researchers. These may be classified
according to research disciplines or by agency; some
examples are included in this discussion. However,
Mertens advised that some national databases have
limitations relating to ways they can be manipulated.
For example, a researcher might find it impossible to
disaggregate data according to demographic variables
such as gender or race. Also, some demographics that

interested a researcher—such as type of disability,
educational level, and so forth—might not even be
included in the study.

NNoonnggoovveerrnnmmeenntt  DDaattaabbaasseess

ISI Web of Knowledge

Developed by ISI (http://www.isinet.com/), this
site was introduced in 2001. ISI, which is owned by
the Thomson Corporation, has provided resources to
researchers since the 1950s. It has become a world-
wide organization with offices in the United States,
Ireland, Japan, and China. The site contains qualita-
tive and quantitative data banks on a variety of scien-
tific, business, and social topics, and information is
available in several languages.

Shuji Kaneko, an employee of Thomson, believes
that a major advantage of data on the Web is its direct
connection to related information through the link
function. ISI, he said, can create links from secondary
databases to primary sources. Kaneko also believes
that ISI used adequate critical selection criteria to pro-
vide reliable and useful information. The criteria he
listed were authority, accuracy, currency, navigation
and design, applicability and content, scope, audience
level, and quality of writing.

General Social Survey

The General Social Survey was one of three data-
bases for social science research recommended by
researchers. The General Social Survey is updated
every year or so through major national surveys con-
ducted through the University of Chicago. The pur-
pose of the surveys has been to make fresh data
available to researchers. Data has included interna-
tional information as well as that collected in the
United States.

Poll Service Databases

The Roper Center for Public Opinion Research,
with facilities located at the University of Connecticut,
has conducted public opinion polls on a variety of
socially relevant issues, including information from
the United States as well as 70 other nations. Other
well-known opinion poll services include the Gallup
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Poll and national news service polls. While sharing
agreements for these data vary, interested researchers
could find helpful information through these and other
poll services.

Commercial Databases

In “Secondary analysis in entrepreneurship: An
introduction to databases and data management,” Katz
recommended marketing databases for research in
appropriate areas. Some of those included Dun and
Bradstreet, TriNet, and BRS. Katz also recommended
that researchers consider the Interuniversity Consortium
for Political and Social Research (http://www.icpsr
.umich.edu/) Guide to Resources and Services for
data-sharing opportunities.

HHaarrdd  CCooppyy  DDaattaa  SSoouurrcceess

According to Lawrence Neuman, excellent hard
copy sources for social and political research include
the Almanac of American Politics, America Votes:
A Handbook of Contemporary American Election
Statistics, and Vital Statistics on American Politics.
These sources are available to researchers through
their national congressional representatives. The
Almanac of American Politics publishes congres-
sional voting records, America Votes has county
voting information for most statewide and national
offices, and Vital Statistics provides information on
campaign spending and a variety of related issues.
Information gathered from these databases could be
used to amend current practices or to develop policy
for new initiatives.

GGoovveerrnnmmeenntt  DDaattaabbaasseess

Unlike some of the databases mentioned earlier,
government databases can be accessed without
charge. Another advantage of government data has
been that it may be less biased than other data sources.
A description of some government databases follows.

The Data Archive

This is a United Kingdom site. It is a major storage
for quantitative computer files and their documentation

in the United Kingdom, according to the University of
Southampton. The Data Archive also contains qualita-
tive material—primarily research reports in the broad
areas of humanities and social sciences (i.e., educa-
tion, labor, history, politics, household finance, child
development, crime, and public health).

FedWorld

This site (http://www.fedworld.gov/) promises to
make it easy to locate government information. It has
links to countless resources for secondary data analy-
sis. These resources include the census and education
databases, discussed next.

Census Databases

The U.S. Bureau of the Census database could be
useful to researchers in a variety of disciplines,
including business, social science, politics, health, and
education. The national census conducted at the
beginning of each decade gathers information on pop-
ulation numbers, ages, educational and income levels,
housing, employment, and other areas. Inferential sta-
tistics can be derived from the vast store of current
and past information from the censuses made avail-
able through the U.S. Departments of Commerce,
Education, and Labor as well as directly through the
U.S. Bureau of the Census.

Survey of Income and Program Participation

The Survey of Income and Program Participation
database is available through a collaborative effort
between the U.S. Census Bureau and the U.S. Social
Services Administration. This database contains fre-
quently updated information on income, employment,
and participation in various government financial
assistance programs.

Education Databases

The National Center for Education Statistics has
developed a special database that has been of great
assistance to persons preparing grant proposals for
educational programs. This database can be found
through the U.S. Department of Education Web site
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(at http://www.ed.gov/index.jhtml). It provides infor-
mation on demographics according to state, age, level
of education, and so forth. 

Another valuable resource for education research is
the database for the Higher Education Research
Institute (http://www.gseis.ucla.edu/heri/heri.html). It
has information available at a minimal charge.

Advantages of Secondary 
Data Analysis

Various authors, such as Katz (in “Secondary analysis
in entrepreneurship: An introduction to databases and
data management”) and Trochim, have discussed
advantages of secondary data analysis. This section
contains a discussion of some of the most notable
reasons for those advantages. Those reasons are
efficiency, conservation of participant pools, and the
advantage of using unobtrusive measures to obtain the
data.

EEffffiicciieennccyy

Some authors, including Jean Barclay, A. Dale and
colleagues, E. J. Graves, R. Katz (in “Secondary
analysis in entrepreneurship: An introduction to
databases and data management”), and Kiecolt and
Nathan, have stated that conservation of time, effort,
and money is the strongest reason for secondary
analysis. They pointed out that, especially for studies
involving very large populations, individual researchers
did not have the necessary money or access to obtain
data firsthand. For example, Katz recommended sec-
ondary analysis for business studies involving entre-
preneurial issues.

CCoonnsseerrvvaattiioonn  ooff  PPaarrttiicciippaanntt  PPoooollss

J. Fitzpatrick noted that large numbers of gradu-
ate students could “wear down” significant pools
of potential research participants. Wimmer and
Dominick noted that although novice researchers,
such as students, can gain benefits from developing
and conducting research, this particular type of
analysis doesn’t usually produce results that are
externally valid.

UUnnoobbttrruussiivvee  MMeeaassuurreess

Several researchers noted that, since secondary
data analysis involves data collection in an indirect
manner, they could avoid some contamination of the
data. This observation might apply especially to quan-
titative data. However, it also could invite some of the
challenges of secondary analysis because the burden
of selecting high-quality studies would become
increasingly important.

Challenges of Secondary 
Data Analysis

In addition to being a very useful tool, secondary
analysis presents challenges to the researcher. 

Getting a good fit. Accessing data collected for one
research purpose and using it for a different purpose
require carefully thought-out criteria for selection to
assure the validity of the secondary analysis study.
Also, there are limitations on the kinds of research
questions and hypotheses that can be used for sec-
ondary data analysis purposes. A researcher must
adapt the study to questions that can be answered
using available data, and the primary study or studies
must meet criteria for responsible research.

Loss of control of data collection. Obviously, when a
researcher has not been involved in developing the
research design or in the collection of data, a loss of
control over the process of collecting the data neces-
sarily occurs. In addition, the secondary analyst usu-
ally has access only to summarized data.

Ethical issues. Heaton (in “Secondary analysis of
qualitative data”) noted that ethical issues could
become important in secondary analysis. For example,
should participants be contacted for permission to
use their information for a different research purpose?
Would the new study involve any compromise of
either the identity of participants or the integrity of
the data?

Establishing new variables. To meet the objectives
of a new research purpose, a researcher often must
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manipulate the secondary data. This could involve
taking subsets of data from databases. It also could
require a researcher to collapse information into new
variables.

Research Applications 
of Secondary Data Analysis

Internationally, researchers have used secondary data
to study education, business, and social issues. This
section contains a review of human resource studies,
including decision making at the middle management
level, job satisfaction among volunteers, and job satis-
faction among entrepreneurs. 

MMaannaaggeerriiaall  DDeecciissiioonn  MMaakkiinngg

An applied ethics study by Harris examined rela-
tionships between courage and middle management
decision making. Harris used secondary qualitative
data from 610 newspaper items he found in four lead-
ing international newspapers. Specifically, the data
were examples of courageous behavior and situations
in which the virtue of courage was needed for making
management decisions. He stated he used reporter
accounts because he believed that the data sources
were less biased than self-reporting data would have
been.

Harris conducted a content analysis of the gathered
data. The process involved him in (a) selecting news-
paper reports that provided the necessary data, (b)
using special software to code the data, and (c) ana-
lyzing and evaluating the data. Harris also conducted
a check for face validity using the phrases he had
coded, noting that the percentage, reliability coeffi-
cient, and agreement coefficient were calculated.
Reliability coefficients ranged from 77% to 97%;
agreement coefficients ranged from 70% to 90%.
According to Harris, his validity and reliability results
were consistent with or superior to those of other
researchers on the variable of courage.

Findings from this study indicated that accounts of
courage could be recognized in the descriptions of
courage and courageous activity in major news-
papers throughout the world. However, Harris found

insufficient data to provide useful information relative
to differences in professions or particular ethical val-
ues or choices.

JJoobb  SSaattiissffaaccttiioonn  ooff  VVoolluunntteeeerrss

Silverberg and his colleagues studied job satisfac-
tion among volunteers in the public parks and recre-
ation industry. The purpose of their study was to
check the reliability and the validity of the question-
naire used in a primary study of almost 6,000 volun-
teers who responded to a “modified employee job
satisfaction scale.” Silverberg and colleagues noted
that 50% of American adults are volunteers in non-
profit organizations and that volunteer effectiveness
depended on competence of volunteers and low
turnover.

They determined that the instrument was a reliable,
valid instrument for making inferences about volun-
teer job satisfaction in the parks and recreation indus-
try. They also found that volunteer satisfaction was
related to job setting and to the psychological needs
met through the volunteer job function. Specifically,
volunteers in this study wanted to increase their
understanding of governmental and organizational
operations. Working to benefit others was not seen as
a prime motivator.

Recommendations from the study by Silverberg
and colleagues included (a) instituting regular meet-
ings between managers and volunteers to gain the
feedback necessary to ensure high job satisfaction
among volunteers and (b) trying to ensure a good
match between volunteer assignments and volunteer
motives.

JJoobb  SSaattiissffaaccttiioonn  AAmmoonngg  EEnnttrreepprreenneeuurrss

In “How satisfied are the self-employed: A
secondary analysis approach,” Katz used secondary
analysis of three previous studies involving more than
1,200 participants to study job satisfaction among the
self-employed. He concluded that self-employed
workers had higher job satisfaction rates than did
salaried workers. Katz also noted that having access 
to secondary data was insufficient for secondary
analysis. Also necessary was detailed information on
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(a) how the primary researcher handled missing data,
(b) the procedures followed in sample and subsample
selection, and (c) coding variations that would affect
analysis. Katz recommended that journal editors
allow more space so that researchers could report the
details needed for secondary analysis. He also sug-
gested that there be changes in research practices
in the area of entrepreneurship to enable other
researchers to use their data to best effect.

—Ernest W. Brewer
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SECTION 504 OF THE

REHABILITATION ACT OF 1973

Section 504 of the Rehabilitation Act of 1973, which
traces its origins to the wake of World War I, at which
time the U.S. government sought to provide voca-
tional rehabilitation to injured soldiers, is the oldest
federal law addressing the needs of the disabled.
According to Section 504, in language that is similar
to that in Title VI of the Civil Rights Act of 1964 and
Title IX of the Educational Amendments of 1972:
“[n]o otherwise qualified individual with a disability
in the United States . . . shall, solely by reason of her
or his disability, be excluded from the participation in,
be denied the benefits of, or be subjected to discrimi-
nation under any program or activity receiving [f]ederal
financial assistance . . . ” (29 U.S.C.A. § 794(a)).

Section 504 differs significantly from the Individuals
with Disabilities Education Act (IDEA). For example,
while Section 504 applies to school systems that
receive federal financial assistance in the form of
money, books, or free lunches, school systems do not
receive additional funds under its provisions, as do
boards that serve children who qualify for IDEA ser-
vices. Further, Section 504 protects individuals under
the broader notion of impairment rather than the
IDEA’s reliance on the statutorily concept of disabil-
ity, and Section 504 has no age limitation. Moreover,
Section 504 covers students, employees, and others,
including parents, while the IDEA focuses on the
rights of children.

Section 504 defines an individual with a disability
as one “who (i) has a physical or mental impairment
which substantially limits one or more of such
person’s major life activities, (ii) has a record of such
an impairment, or (iii) is regarded as having such an
impairment” (29 U.S.C.A. § 706(7)(B)). In order to
have “a record of impairment,” one must have a
history of, or have been identified as having, a mental
or physical impairment that substantially limits one or
more major life activities, including learning and
working (45 C.F.R. § 84.3(j)(2)(i)). Once an individ-
ual is identified as having an impairment, educators
must consider whether the child is “otherwise quali-
fied.” Unlike the IDEA, Section 504 neither requires
that individuals submit to psychological or other
examinations nor affords extensive due process
protections.

In order to be “otherwise qualified,” persons must
be “(i) of an age during which nonhandicapped
persons are provided such services, (ii) of any age
during which it is mandatory under state law to pro-
vide such services to handicapped persons, or (iii)
[one] to whom a state is required to provide a free
appropriate public education [under the IDEA]” (45
C.F.R. § 84.3(k)(2)). Individuals who are “otherwise
qualified” (meaning that, impairment aside, they are
eligible to participate in programs or activities) must
be permitted to partake as long as they can be pro-
vided with “reasonable accommodations.”

Even if one appears to be “otherwise qualified,” edu-
cators can rely on three defenses to avoid being charged
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with noncompliance with Section 504 (another major
difference between Section 504 and the IDEA, which
does not recognize defenses). First, educators can be
excused from making accommodations that would
result in “a fundamental alteration in the nature of [a]
program” (Southeastern Community College v. Davis).
The second defense allows educators to avoid making a
modification if it imposes an “undue financial burden”
(Southeastern Community College). The third defense
is that otherwise qualified individuals can be excluded
from programs if their presence creates a substantial
risk of injury to themselves or others (School Bd. of
Nassau County v. Arline).

—Charles J. Russo
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SELF-REPORT

Self-report is one of the most commonly utilized
methods of data collection. Surveys, questionnaires,
and interviews are all forms of self-report that rely 
on individuals’ subjective evaluations and reports of
their thoughts, feelings, behaviors, or experiences.
Most often, self-report is used to gather personal

information that cannot be obtained objectively. An
individual’s self-report may also be of interest in cir-
cumstances in which some degree of objective evalu-
ation is possible (e.g., a patient’s subjective reports of
symptoms). In many settings, such as medicine, pol-
icy making, and opinion polls, important decisions are
made on the basis of self-report data.

There are two broad categories of self-report 
data: (a) unstructured, open-ended responses, and 
(b) structured, fixed-response questions. Open-ended
reports have the advantage of soliciting detailed
information that may not be captured using closed-
response formats. In many cases, this approach is
optimal because it provides a wealth of qualitative
data. However, such responses do not easily lend
themselves to statistical analysis without the use of
coding procedures, which can be labor intensive and
difficult to develop.

Closed-response formats generate quantitative data
much more easily. However, decisions regarding
the use of checklists, number scales, or categorical
endorsements can have a dramatic impact on response
distributions and the subsequent presence or absence
of significant statistical effects. Research has demon-
strated that by simply altering the response format of
a questionnaire, one can generate different responses
to the same questions. For instance, decisions regard-
ing whether to anchor a response scale with a mid-
point, whether to use a bipolar (−5 to +5) or unipolar
(0 to 10) number scale, and whether to label responses
with verbal quantifiers like “frequently” or “very
often” can influence one’s perception of the questions
and subsequently the responses one endorses.

A number of cognitive constraints can also inter-
fere with one’s ability to generate accurate self-
reports. Both the time scale and the regularity of a
behavior can alter the memory retrieval strategy used
to recall events, while the accessibility of recent
experiences may influence more general estimates.
Similarly, measures designed to evaluate emotional
traits or memories are often biased by the influence of
current mood states. Research on such contextual
effects has also demonstrated that responses to self-
report items may be directly influenced by the content
and placement of previous self-report items (i.e., later
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answers are influenced by earlier answers). Further-
more, respondents’ conscious beliefs regarding the
confidentiality of their reports can affect their disclo-
sure of personally sensitive information (especially
regarding threatening or stigmatized topics).

Critically evaluating questions to ensure that they are
presented clearly, framed in the proper context, and
accompanied by appropriate response formats can help
prevent self-report data from being compromised by
measurement constraints or response biases. Clearly
informing respondents as to the intended use, privacy,
and protection of self-report information can also reduce
self-presentation concerns and facilitate more veridical
reporting. A number of innovative self-report method-
ologies, such as daily diaries and ecological momentary
assessment, have addressed some of these concerns by
considerably limiting the recall periods (i.e., to a day or
even a few minutes) and providing an ecologically valid
alternative to lengthy retrospective reporting. By care-
fully considering these issues, researchers can effec-
tively use self-report as a fast, cheap, and practical
method for collecting personal information across a
variety of research and applied settings.

—Joshua Smyth and Christopher P. Terry

See also Measurement; Personality Tests
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SEMANTIC DIFFERENTIAL

Semantic differential is a term used to refer to a
method of measuring different dimensions of meaning
underlying responses toward an object. This proce-
dure involves presenting individuals with opposing
adjective pairs (e.g., good-bad, strong-weak, fast-slow)
and asking them to identify where on the scale they
feel the object fits in relation to the two adjectives.

Semantic differential scales can be used to capture
three broad dimensions of meaning underlying reac-
tions to an object: evaluation, potency, and activity.
However, in practice, most researchers use the proce-
dure to assess global attitudes toward an object. Thus,
in most situations, researchers focus exclusively on
the evaluation dimension.

Development of the 
Semantic Differential Method

The origins of the semantic differential method can be
traced to the pioneering work of Charles Osgood and
his colleagues. Osgood was interested in understand-
ing the meaning that people attached to words. He
noted that words have both a denotative meaning and
a connotative meaning. Denotative meaning refers to
the literal dictionary definition of a word. Connotative
meaning, on the other hand, refers to the associations
of meaning that are attached to a word that are not,
strictly speaking, part of its formal definition.

Osgood was interested in identifying the basic
dimensions of connotative meaning underlying words.
To explore this issue, he constructed pairs of opposing
adjectives and then had respondents rate objects on
these adjective pairs. Using factor analyses, he found
that adjectives seemed to reflect one or more of the
three basic underlying dimensions of connotative
meaning mentioned above: evaluation, potency, and
activity. Evaluation refers to the good-bad continuum
of meaning underlying words. Potency reflects the
strong-weak continuum. Activity represents the
active-passive dimension. These dimensions of mean-
ing have consistently been replicated, and analyses by
Osgood and subsequent researchers have identified
certain adjective pairs as highly representative of
the evaluation (e.g., good-bad, valuable-worthless),
potency (e.g., large-small, strong-weak), and activity
(e.g., fast-slow, hot-cold) dimensions.

Constructing Semantic 
Differential Scales

Drawing on this research on connotative meaning,
Osgood and others have proposed that semantic
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differential items (i.e., adjective pairs) can be used
to construct scales assessing people’s attitudes (i.e.,
evaluations) toward objects, as well as the extent to
which people associate activity and potency with an
object. A semantic differential scale typically consists
of 4 to 10 items selected to assess the dimension of
interest. Figure 1 presents an example of a semantic
differential scale designed to assess attitudes toward
vegetarianism.

When creating such scales, a researcher must keep
several issues in mind. For instance, the researcher
must ensure that the adjective pairs are strongly
reflective of the dimension of interest and do not tap
into unintended dimensions. Thus researchers often
use published results of factor analyses of adjective
pairs as a guide to item selection. Of course, if selec-
tions are to be based on past analyses, it is important
to carefully consider whether the meaning of word
pairings will hold constant across groups and be rele-
vant to the population being sampled.

Item selection also requires the researcher to keep
in mind that adjective pairs must be easily related to
the object being rated. Some adjective pairs are quite
generic and are likely applicable to nearly any object.
For example, good-bad could probably be sensibly
applied to almost any physical object, person, social
group, or concept. Other adjective pairs may reflect
somewhat more specific meaning and thus be less eas-
ily applied to some objects than others. For instance,
beautiful-ugly is highly evaluative in content and
could quite sensibly be applied to a person (e.g., one’s
spouse) and many physical objects (e.g., a car, a work
of art). This pair might be less meaningfully applied to
other objects or concepts (e.g., magnetic resonance
imaging, social security).

After selecting the items, the researchers must 
then decide how the items will be presented. Most
commonly, these items are presented as 7-point rating
scales (although 5-point scales are sometimes used).
Participants are asked to identify where on the scale
they feel the object is in relation to the two adjectives.
For example, the object may be DOG, and items might
include good-bad and valuable-worthless. Participants
then respond to each item by indicating where on the
continuum they would place the object in terms of
direction and intensity, with a neutral response being in
the middle of the scale. The precise manner in which
the response scale is presented varies, with some
researchers using spaces to represent the 7-point scale,
others numerical values from 1 to 7, and still others
numerical values from –3 to +3. Figure 2 illustrates
these three common response scale formats.

Some methodologists have also recommended that
the positive and negative adjective positions be varied
across items such that the left end of the scale is some-
times a positive adjective and other times a negative
adjective. This procedure is designed to encourage
respondents to consider items more carefully. Of
course when varying adjective position, it is important
to ensure that the numerical values of the rating scale
intuitively fit with the adjectives (e.g., it would be
confusing to have the positive adjective associated
with –3). For this reason, the physical spacing scale is
often more convenient when varying adjective position.

When presenting semantic differential items to
assess multiple objects, several strategies can be used.
First, an object may be presented and then followed
with the items seeking to measure that object. For
example, DOG may be presented at the top of a page,
and underneath it are the descriptive items such as

good-bad, like-dislike, and others.
Alternatively, the object and one item
that the object is to be rated on can be
presented. The object then changes but
the item remains the same. For example,
DOG is presented with a good-bad
scale. This item is followed by CAT,
which is also presented with a good-bad
scale, and so on. In yet another method
of presentation, objects being rated on
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Check the position between each adjective pair that best describes the meaning 
of vegetarianism to you.

Dislike :______:______:______:______:______:______:______: Like  

Good :______:______:______:______:______:______:______: Bad

Wise :______:______:______:______:______:______:______: Foolish  

Pleasant :______:______:______:______:______:______:______: Unpleasant

Figure 1 Sample of Semantic Differential Scale Measuring Attitudes
Toward Vegetarianism 



different adjective pairs may be presented randomly.
Research suggests that results do not vary consider-
ably between these methods, although the first method
of presentation allows for easier organization and cod-
ing of data.

Once responses to items have been collected, an
overall score for ratings of the object on the dimension
of interest is computed. For instance, when scoring a
semantic differential scale assessing evaluation,
researchers usually code responses from 1 to 7 or
from –3 to +3, with higher numbers reflecting more
positive evaluations. Responses to individual items
are then summed or averaged to provide an overall
attitude score. Scoring is similar for scales assessing
potency and activity, with higher numbers typically
reflecting greater potency or activity.

Strengths and Weaknesses 
of Semantic Differential

The greatest strengths of the semantic differential
method are its ease and versatility. Because previous
analyses have identified adjective pairs that are highly
representative of the dimensions of evaluation,
potency, and activity, it is reasonably easy to select
items to construct a semantic differential scale. More-
over, many adjective pairs are quite general and thus
can be broadly applied to a wide range of objects (e.g.,
people, groups, concepts, and physical objects). These
features make constructing a semantic differential
scale a relatively easy process. They also permit rea-
sonably direct comparisons of attitudes toward differ-
ent objects because the same set of items can be used
to assess attitudes toward the objects being compared.
Yet another strength of the semantic differential scales
is that they have been found to perform well with
as few as four items. This efficiency permits quick
measurement of attitudes and makes it feasible to

assess attitudes toward numerous topics
in a short period of time.

In contrast, other well-known attitude
scaling techniques are more cumber-
some and less flexible. For example,
some of these methods (e.g., Thurstone
scales and Guttman scales) require sig-
nificant item pretesting and evaluation.

These alternative methods also typically produce
items that are attitude object specific (i.e., items are
applicable to only a single target of judgment, such as
a specific social issue, a particular person, or single
product). Hence, these alternative methods often
require more time and effort for developing a scale,
and the scale is usually useful only for a single attitude
object or a narrow class of attitude objects. Some of
these alternative methods also typically require more
items for assessing attitudes. For instance, Thurstone
and Likert scales usually involve no less than 10 items
and generally as many as 20 or 30 items. Given the
practical advantages of the semantic differential
method, it is not surprising that semantic differential
scales are perhaps the most popular method of attitude
measurement.

Formal evaluations of the semantic differential
method have suggested that it is a reasonably effective
method of attitude measurement. Semantic differen-
tial scales are routinely highly correlated with attitude
measures constructed using other scaling techniques.
Moreover, because of the popularity of the method,
semantic differential scales have been used exten-
sively in basic and applied attitude research. In these
contexts, they have been found to be sufficiently sen-
sitive for detecting experimental manipulations
designed to alter attitudes and for predicting outcomes
postulated to be influenced by attitudes.

Although semantic differential scales have proven
useful, methodologists also point out potential limita-
tions. For example, respondents who read each item in
a strictly literal sense may miss out on the implied
meaning within the adjective pairing. For example, if
the object were SELF and the item included dirty-
clean, the respondent might be confused and not know
how to answer. To help remedy this potential problem,
participants are often told to go with their first
instinct. In addition, careful selection of adjective
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Check the position between each adjective pair that best describes the meaning 
of vegetarianism to you.

Bad :_______:_______:_______:________:_______:_______:_______: Good

Bad 1 – 2 – 3 – 4 – 5 – 6 – 7 Good

Bad −3 −2 −1 0 +1 +2 +3 Good

Figure 2 Sample of Semantic Differential Response Formats 



pairs can help ensure that very general items are used
or that the specific items used are clearly applicable to
the object being judged.

A second potential problem is that semantic differ-
ential scales are fairly obvious in their objectives.
Thus, respondents may figure out what is being mea-
sured and may report their attitudes in a self-enhancing
light. Of course, such a limitation is true of nearly all
self-report measures and can sometimes be reduced
with assurances of anonymity.

Another proposed limitation of the method is that
semantic differentials allow only for overall analysis of
the evaluative dimension of meaning. However, some
researchers have explored the possibility of identifying
word adjective pairs that are highly affective or cogni-
tive in nature in addition to being highly evaluative.
This research suggests that constructing more-specific
semantic differential measures of affect and cognition
(and perhaps other specific dimensions) is possible.

Finally, it is important to note that the bipolar
structure of semantic differentials does present some
ambiguity in interpreting scores. Specifically, mid-
point responses can reflect one of several reactions to
the object. It could imply that a respondent is ambiva-
lent toward the object (i.e., the respondent has strong
conflicting positive and negative evaluations), that the
respondent truly is neutral (i.e., the respondent’s reac-
tions are mostly nonevaluative), or that the respondent
has no opinion.

—Leandre R. Fabrigar and Meghan E. Norris

See also Attitude Tests; Guttman Scaling; Likert Scaling;
Thurstone Scales
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SEMANTIC DIFFERENTIAL SCALE

A semantic differential scale is an efficient method of
measuring various dimensions of meaning underlying
responses toward an object. This procedure involves
presenting individuals with opposing adjective pairs
and asking them to locate the object on a rating scale
anchored by the opposing adjectives. Semantic differ-
ential scales can be used to capture three broad dimen-
sions of meaning underlying reactions to an object:
evaluation, potency, and activity. Evaluation represents
the good-bad continuum with respect to an object,
potency reflects the strong-weak continuum, and activ-
ity represents the active-passive continuum. Although
the method can be used to assess all three of these
dimensions, in practice many researchers choose to
measure only the evaluation dimension. When the
scale consists only of evaluation items, it can be con-
ceptualized as a measure of attitudes. Indeed, semantic
differentials are among the most widely used methods
of attitude measurement in the social sciences.

A semantic differential scale usually consists of
4 to 10 items (i.e., adjective pairs). Each descriptive
item contains two adjectives, opposite in meaning, on
either end of a continuous scale that typically has
seven levels of response. Participants are asked to
identify where on the scale they feel the object fits in
relation to the two adjectives. For example, the object
may be DOG, and items might include good-bad and
valuable-worthless. Participants then respond to each
item by indicating where on the continuum they
would place the object in terms of direction and
intensity, with a neutral response being in the middle
of the scale.
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When scoring a semantic differential scale assess-
ing evaluation, responses are coded from 1 to 7 or
from –3 to +3, with higher numbers reflecting more
positive evaluations. Responses to individual items
are then summed or averaged to provide an overall
score. Scoring is similar for scales assessing potency
and activity.

When creating a semantic differential scale,
researchers should ensure that appropriate adjective
pairs have been selected to assess the dimensions of
interest. Published factor analyses of word meanings
can help determine which dimensions adjective pairs
best reflect. In addition, researchers need to consider
the appropriateness of word pairs for the specific
object of interest. Some adjective pairs are quite gen-
eral and are probably appropriate for virtually any
object. For example, good-bad could probably be
meaningfully applied to virtually any physical object,
person, social group, or abstract idea. Other adjective
pairs may be somewhat more specific and thus per-
haps less readily applied to some objects than others.
For instance, beautiful-ugly could quite sensibly be
applied to a person but less meaningfully applied to an
object such as magnetic resonance imaging.

—Leandre R. Fabrigar 
and Meghan E. Norris

See also Semantic Differential
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SEMI-INTERQUARTILE RANGE

Briefly, the semi-interquartile range is a measure of
the dispersion or spread of a variable; it is the distance
between the 1st quartile and the 3rd quartile, halved. 

It is common to describe a variable using a mea-
sure of central tendency, or average, most commonly
the mean or median. However, in order to make sense
of a measure of average, we need to have a measure of
dispersion. When the mean is used as a measure of
average, the standard deviation is usually used as the
measure of dispersion. When the median is used, it is
more appropriate to use the semi-interquartile range. 

The semi-interquartile range is preferred over
the range because it is not affected by extreme scores.
The range is calculated using only two data points: the
highest and the lowest. If one of these values were
to change, the range would change dramatically.

Example of the Calculation 
of the Semi-Interquartile Range

Table 1 shows the data contained in one variable,
sorted in order of magnitude and numbered, to make
life easier.

There are 21 values, and the middle point, which is
the median, is the middle one. This is the 11th point
and is equal to 9. To find the exact point, add 1 to the
sample size and multiply by 0.5. Thus, the median
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Table 1 Sample of Semantic Differential Evaluation Items

Vegetarianism

Dislike 1 – 2 – 3 – 4 – 5 – 6 – 7 Like  
Good 1 – 2 – 3 – 4 – 5 – 6 – 7 Bad
Wise 1 – 2 – 3 – 4 – 5 – 6 – 7 Foolish
Pleasant 1 – 2 – 3 – 4 – 5 – 6 – 7 Unpleasant



point is given by (21 + 1) × 0.5 = 11; it is the 11th
point. There are 10 people who score higher than this
and 10 who score lower. 

For the quartiles, we want the points that are one
quarter and three quarters of the way through the dis-
tribution. We use a procedure similar to the one we
used for the mean, except multiplying by .25 and .75.
The points are therefore obtained as follows:

lower quartile = (21 + 1) × .25 = 5.5;
upper quartile = (21 + 1) × .75 = 16.5.

The obvious problem we encounter is that these
values do not exist. To solve this problem, as we
would with the median, we take the mean of the near-
est two values, weighted by their distance from the
value that we want. For the 1st quartile, we want the
value in the 5.5th position. We therefore find the mean
of the fifth and sixth values. The mean of 4 and 5 is
4.5, so the 1st quartile is 4.5. Similarly, for the 3rd
quartile, we want the value that is in 16.5th place, and

so we use the mean of the 16th and 17th values. The
mean of 13 and 14 is 13.5.

Finally, the semi-interquartile range is the differ-
ence between these two values, halved:

(13.5 – 4.5) / 2 = 4.5.

Additional Notes

The calculation of the quartiles is complicated when
the values for the quartiles do not land exactly in
between two potential values. For example, if we have
a sample of size 32, the 1st quartile will be the 8.25th
position. If the 8th value is 4 and the 9th value is 5, the
interquartile range should be closer to the 8th value
than the 9th and hence will be 4.25, not 4.5. 

In a symmetrical distribution, the range given by the
median plus or minus the semi-interquartile range will
include approximately half of the values. In our case,
this would be 11 ± 4.5, giving a range of 6.5 to 15.5. In
our data set, this range includes 13, slightly more than
half. (The semi-interquartile range is used instead of
the interquartile range because of this property.)

When the data are normally distributed, the sam-
pling distribution of the semi-interquartile range is
wider than the sampling distribution of the standard
deviation, and hence it is not used when the standard
deviation is appropriate.

—Jeremy Miles
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SHAPIRO-WILK

TEST FOR NORMALITY

The most popular nongraphical procedure for testing
for fit to the normal distribution is the Shapiro-Wilk
test. The test can be obtained easily from leading sta-
tistical packages such as R, SAS, and SPSS. This is
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Table 1 Finding the Quartiles of the Distribution

1. 0
2. 1
3. 2
4. 3
5. 4

1st quartile, (25th centile) = 4.5
6. 5
7. 5
8. 8
9. 9

10. 9
9 Median (2nd quartile, 50th centile) = 9

11. 12
12. 12
13. 12
14. 13
15. 13

3rd quartile (75th centile) = 13.5
16. 14
17. 14
18. 15
19. 18
20. 22



fortunate because the Shapiro-Wilk test statistic W is
laborious to calculate by hand. The Shapiro-Wilk test
statistic is obtained by dividing the square of an
appropriate linear combination of the sample order
statistics by the sum of squares error. The formula is 

where ai represents special coefficients obtained from
a table in Shapiro and Wilk’s 1965 report or a source
such as Conover. A computer algorithm given by
Royston will also approximate these coefficients. The
formulas are also found online in the Wikipedia. After
W is calculated, the hypothesis of normality is
rejected if W is less than a quantile from a value in
another special table.

One major flaw in the original form of the Shapiro-
Wilk test was that the table with the necessary coeffi-
cients and percentage points was available only for
samples of size 50 or less. To deal with this flaw,
Shapiro and Francia adapted the W statistic so that the
necessary coefficients for the linear combinations
depended only on the expected values of the normal
order statistics, which are more readily available.
Another table of empirically obtained percentage
points was given. Royston extended the Shapiro-Wilk
test for sample sizes up to 2,000. Royston’s method
involves an approximate normalizing transformation on
the W statistic, which is not asymptotically normal. The
calculations are tedious by hand but easily programmed
into a computer. In 1989, Royston provided a correc-
tion for cases in which ties are present in the data.
Royston’s version of the Shapiro-Wilk test is available
on SAS.

In the Shapiro-Wilk test, the null hypothesis is
defined to be that the data are normally distributed
(with some unspecified mean and standard deviation),
and the alternative hypothesis is that the data are not
normal. Therefore, a rejection of the null hypothesis,
which will occur when the value of the W statistic is
small and the p value is less than the specified level of
significance (usually α = .05), indicates a significant
deviation from normality. A value of W close to its

maximum of 1 indicates a close fit to normality, which
is indicated by a p value that is above α = .05, and a
failure to reject the null.

Unfortunately, the Shapiro-Wilk test shares many of
the standard flaws of most goodness-of-fit tests. When
the sample is small, the test lacks power, and often the
test will fail to reject a sample that arises from a non-
normal population. This is troublesome because it is
these small sample situations in which most analysts
are the most concerned with testing for normality. The
usual reason to perform a goodness-of-fit test for nor-
mality is to determine whether the assumption of nor-
mality is met well enough for the analyst to perform
standard parametric tests (e.g., t test, ANOVA). If the
assumption is not met, then the researcher may need to
make a transformation or pursue alternatives such as
nonparametrics, bootstrapping, or Bayesian methods.
Also, the Shapiro-Wilk test will almost always reject
its null hypothesis when the sample is very large. With
a data set of several thousands, even minor deviations
present in data generated from a known normal distri-
bution will lead to rejection of normality.

Example

To avoid extreme tedium, we will rely on a computer
package to perform the calculations. The examples
given here utilize the shapiro.test function in the free
statistical package R. The Shapiro-Wilk test is also
available in virtually all standard statistical software
packages, such as SAS and SPSS. SAS users can
obtain the Shapiro-Wilk test by adding the normal
option to PROC UNIVARIATE.

The first example uses a data set of size 100 ran-
domly generated from a normal distribution of size
100 with mean 100 and standard deviation 15. In this
case, W = 0.9889 and the p value = 0.5775. We do not
have enough evidence to reject normality. Figure 1 is
a density plot (or essentially a smoothed histogram) of
these data.

The second example (Figure 2) uses a data set of
size 100 randomly generated from an exponential dis-
tribution of size 100 with mean 1. In this case, W =
0.8646, and p value = 4.254 × 10–8. Notice that the
smaller value of the W statistic leads to a p value so
small that we will reject the null hypothesis for any

W =

{
n∑

i−1
ai(x(n−i+1):n − xi:n)

}2

n∑

i=1
(xi − x̄)2

,
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reasonable alpha level and therefore conclude that
these data are not normally distributed.

Power

The power of the Shapiro-Wilk test has been compared
with several competitors, such as the chi-square,
Cramer-von Mises, and Kolmogorov-Smirnov tests
and tests based on the standardized third moment
(skewness) and fourth moment (kurtosis). It was found
to be generally superior to the other tests across a 

wide range of possible alternatives. The empirical
distribution function tests such as Kolmogorov-
Smirnov and Cramer-von Mises, which are based on
distance, had lower power. A combination of the skew-
ness and kurtosis tests had more power but was still
usually outperformed by the Shapiro-Wilk W statistic.

Recommendations for 
Testing Univariate Normality

D’Agostino, Belanger, and D’Agostino recommended
that the skewness and kurtosis tests should always be
calculated as descriptive statistics and that the tests
based on √b1

—
and b2 should be used, along with Q-Q or

normal probability plots. Pearson, D’Agostino, and
Bowman compared the √b1

—
test, the b2 test, the Shapiro-

Wilk W test, the Shapiro-Francia W ′ test, D’Agostino’s
Y test, and the D’Agostino-Pearson K2 test against
dozens of alternative distributions. While no test is uni-
formly the most powerful against all possible distribu-
tions, the W test of Shapiro and Wilk was generally the
best performer. D’Agostino noted that while the
Shapiro-Wilk test is a very sensitive omnibus test against
skewed alternatives, one may wish to use a directional
test, such as the √b1

—
test, if the direction of deviation

from normality in terms of skewness is known a priori.
The b2 test is more powerful than Shapiro-Wilk’s W or
D’Agostino’s Y if the direction of deviation from
normality in terms of kurtosis is known. D’Agostino
recommended against the use of chi-square or
Kolmogorov-Smirnov tests because of their low power.

—Christopher J. Mecklin

See also Lilliefors Test for Normality
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SIGNAL DETECTION THEORY

Signal detection theory (SDT) is used to analyze data
coming from experiments in which the task is to cat-
egorize ambiguous stimuli that can either be gener-
ated by a known process (in which case the stimuli
are called the signal) or be obtained by chance (in
which case they are called the noise in the SDT
framework). For example, radar operators must
decide whether what they see on a radar screen indi-
cates the presence of a plane (the signal) or the pres-
ence of parasites (the noise). This type of application
was the original framework of SDT (see the founding
work by Green & Swets). But the notion of signal and
noise can be somewhat metaphorical is some experi-
mental contexts. For example, in a memory recogni-
tion experiment, participants have to decide whether
the stimulus they currently see was presented before.
Here the signal corresponds to a familiarity feeling
generated by a memorized stimulus whereas the
noise corresponds to a familiarity feeling generated
by a new stimulus.

The goal of detection theory is to estimate two main
parameters from the experimental data. The first para-
meter, called d′, indicates the strength of the signal
(relative to the noise). The second parameter, called C
(a variant of which is called β), reflects the strategy of
response of the participant (e.g., saying easily Yes

rather than No). SDT is used in disparate domains,
from psychology (psychophysics, perception, mem-
ory) to medical diagnostics (do the symptoms match a
known diagnostic or can they be dismissed as irrele-
vant?) to statistical decision (do the data indicate that
the experiment has an effect or not?).

The Model

It is easier to introduce the model with an example, so
suppose we have designed a face memory experiment.
In the first part of the experiment, a participant is
asked to memorize a list of faces. At test, the partici-
pant is presented with a set of faces one at a time.
Some faces in the test were seen before (these are old
faces) and some were not seen before (these are new
faces). The task is to decide for each face whether this
face was seen (response Yes) or not (response No) in
the first part of the experiment.

What are the different types of responses? A Yes
response given to an old stimulus is a correct response,
and it is called a Hit, but a Yes response to a new stim-
ulus is a mistake, and it is called a False Alarm (abbre-
viated as FA). A No response given to a new stimulus
is a correct response called a Correct Rejection, but a
No response to an old stimulus is a mistake, called a
Miss. These four types of response (and their fre-
quency) can be organized as shown in Table 1.

The relative frequency of these four types of
response is not all independent. For example, when
the signal is present (first row of Table 1), the propor-
tion of Hits and the proportion of Misses add up to 1
(because when the signal is present, the participant
can say either Yes or No). Likewise, when the signal
is absent, the proportion of FAs and the proportion of
Correct Rejections add up to 1. Therefore, all the
information in a table such as Table 1 is given by the
proportion of Hits and FAs.
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Table 1 The Four Possible Types of Response in
Signal Detection Theory

Decision (Participant’s Response)
Reality Yes No

Signal present Hit Miss
Signal absent False Alarm Correct Rejection



Even though the proportions of Hits and FAs pro-
vide all the information in the data, these values are
hard to interpret because they crucially depend on
two parameters. The first parameter is the difficulty
of the task: The easier the task, the larger the propor-
tion of Hits and the smaller the proportion of FAs.
When the task is easy, we say that the signal and the
noise are well separated or that there is a large dis-
tance between the signal and the noise. (Conversely,
for a hard task, the signal and the noise are close, and
the distance between them is small.) The second
parameter is the strategy of the participant: A partici-
pant who always says No will never commit an FA
(and will never get any Hit either); on the other hand,
a participant who always says Yes is guaranteed all
Hits (but will also have all FAs). A participant who
tends to give the response Yes is called liberal, and a
participant who tends to give the response No is
called conservative.

The SDT Model

So the proportions of Hits and FAs reflect the effect of
two underlying parameters: the first one reflects the
separation between the signal and the noise, and the
second one the strategy of the participant. The goal of
SDT is to estimate the value of these two parameters
from the experimental data. In order to do so, SDT
creates a model of the participant’s response. The
SDT model assumes that the participant’s response
depends on the intensity of a hidden variable (e.g.,
familiarity of a face) and that the participant responds
Yes when the value of this variable for the stimulus is
larger than a predefined threshold.

SDT also assumes that the stimuli generated by the
noise condition vary naturally for that hidden variable.
As is often the case elsewhere, SDT, in addition,
assumes that the hidden variable values for the noise
follow a normal distribution. Recall at this point that
when a variable x follows a Gaussian (also called 
normal) distribution, this distribution depends on two
parameters: the mean (denoted µ) and the variance
(denoted σ2). It is defined as follows:

(1)

In general, within the SDT framework, the values
of µ and σ are arbitrary, and therefore we choose the
simpler values of µ = 0 and σ = 1 (other values will
give the same results but with more cumbersome pro-
cedures). In this case, Equation 1 reduces to

(2)

Finally, SDT assumes that the signal is added to
the noise. In other words, the distribution of the val-
ues generated by the signal condition has the same
shape (and therefore the same variance) as the noise
distribution.

Figure 1 illustrates the SDT model. The x-axis
shows the intensity of the underlying hidden variable
(e.g., familiarity for the face example). As indicated
above, the distribution of the noise is centered at zero
(i.e., mean of the noise is equal to zero, with a standard
deviation of 1). So the standard deviation of the noise
is equivalent to the unit of measurement of x. The dis-
tribution of the signal is identical to the noise distribu-
tion, but it is moved to the right of the noise
distribution. The distance between the signal and the
noise distributions corresponds to the effect of the
signal (this is the quantity that is added to the noise
distribution in order to get the signal distribution):
This distance is called d′. Because the mean of the
noise distribution is 0, d′ is equal to the mean of the
signal distribution.

N (x) = 1√
2π

exp

{

−1

2
x2

}

.

G(x, µ, σ ) = 1

σ
√

2π
exp

{

−(x − µ)2

2σ 2

}

.
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Figure 1 The Model of SDT



The strategy of the participant is expressed via the
choice of the threshold. There are several ways of
expressing the position of this threshold; among the
possible candidates, we will mention four of them,
denoted B, D, C, and β. The first quantity, B (sometimes
called θ), gives the position of the threshold on the x -
axis. In the example illustrated in Figure 1, this value
is equal to 2, and so the participant corresponding to
this figure has decided that any stimulus with a value of
x larger than 2 comes from the signal distribution and is
given the response Yes. The position of the threshold
can also be given relative to the signal distribution
(because the noise has zero mean, B is the distance of
the threshold relative to the noise distribution); as the
mean of the signal is equal to d ′, we can compute D as
D = d′ – B (a value equal to 1 in our example).

The most popular way of expressing the location
of the threshold, however, is from neither the distrib-
ution of the noise nor the distribution of the signal but
relative to what is called the ideal observer. The ideal
observer minimizes conjointly the probability of a
Miss and of an FA. When each type of error has the
same cost, the criterion of the ideal observer is posi-
tioned on the average of the means of the signal and
the noise distribution. In our example, the threshold
of the ideal observer would be equal to 1–2 d′ = 1–2 = .5.
The value of C is the distance from the actual thresh-
old to the ideal observer; it can be computed as C = B
– d′–2 = 2 – .5 = 1.5. The sign of C reveals the partici-
pant’s strategy: when C = 0, we have the ideal
observer; when C is negative, the participant is liberal
(i.e., responds Yes more often than the ideal
observer); when C is positive, the participant is con-
servative (i.e., responds No more often
than the ideal observer).

An alternative way of expressing the
position of the participant’s criterion is
given by the quantity called β. It corre-
sponds to the ratio of the height of the
signal distribution to the noise distribu-
tion for the value of the threshold.
Because the distributions of the noise and
the signal are normal with variance equal
to one, we can compute β from Equation
2 as follows:

(3)

Equation 3 can be rewritten as follows:

β = exp{d′ × C}. (4)

The quantity β has the advantage of being a likeli-
hood ratio and can be used to interpret SDT within a
statistical framework. For practical reasons, it is often
easier to compute the logarithm of β; for example,
from Equation 4, we get

1n β = d′ × C = 1 × 1.5 = 1.5. (5)

The model illustrated by Figure 1 generates a spe-
cific pattern of response probabilities which can be
computed from integrating the normal distribution.
So, for example, the probability of an FA is obtained
as the probability (i.e., area under the normal distrib-
ution) of finding a value larger than 2 with a normal
distribution of mean 0 and variance 1 (this can be
computed with most statistical packages or from
tables such as the ones given in Abdi). This quantity is
also called the probability associated with the value 2;
in our example, it is equal to .0228. Along the same
lines, the probability of a Hit is obtained as the prob-
ability (i.e., area under the normal distribution) of
finding a value larger than 2 with a normal distribution
of mean 1 (i.e., the mean of the signal) and variance 1;
this is equivalent to finding the probability (i.e., area
under the normal distribution) of finding a value
larger than 2 – 1 = 1 with a normal distribution of mean

β = N (D)

N (B)
= N (1)

N (2)
= .2420

.0540
≈ 4.4817.
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Table 2 The Probability of the Four Possible Types of Response
According to Figure 1

Decision (Participant's Response)

Reality Yes No Total

Signal present Hit Miss
Pr {HIT} = .1587 Pr {Miss} = .8413 1

Signal absent False Alarm (FA) Correct Rejection
Pr {FA} = .0228 Pr {Correct Rejection} = .9772 1



1 – 1 = 0 and variance 1. This value is
equal to .1587.

SDT in Practice

The previous example described the per-
formance of a participant who behaved
according to the SDT model. However,
in practice we do not know the values of
the parameters of SDT, but we want to
estimate them from the performance of
the participants. In an experimental par-
adigm, the only observable quantities
are the participant’s responses, from which we can
derive the number of hits and FAs.

To illustrate this problem, suppose we want to eval-
uate the performance of a wine taster whose task is to
detect whether a wine labeled as made from Pinot
Noir has been tempered by the addition of some
Gamay (generally considered an inferior grape). Here
the signal corresponds to the presence of Gamay. Our
wine taster tasted (blindfolded) 20 glasses of Pinot,
half of them tempered with some Gamay and half
without. The results are reported in Table 3 and show
that the proportions of Hits and FAs are .9 and .2,
respectively. In order to find the values of d′ and the
criterion, we need to inverse the formulas given above
(i.e., Equations 3–5). We also need one new notation:
For a normal distribution with zero mean, we denote
by ZP the value of the normal distribution whose asso-
ciated probability is equal to P (e.g., Z.025 = 1.96). We
denote ZH and ZFA the values corresponding to the pro-
portions of Hits and FAs. With these new notations
and after some (minor) algebraic manipulations, we
find the following set of formulas. The estimation of
d′ is obtained as

d′ = ZH – ZFA = Z.9 – Z.2 = 1.28 – (–.84) = 2.12. (6)

The estimation of C is obtained as

(7)

and 1n β is obtained as

1n β = d′ × C = 2.12 × –.22 = –.47 (8)

(β is obtained as exp{1n β} = .63).
How to interpret these results? The taster is clearly

(but not perfectly) discriminating between Pinots and
tempered Pinots (as indicated by a d′ of 2.12). This
taster is also liberal (in case of doubt, the taster would
rather say that the wine has been tempered than that it
has not).

—Hervé Abdi

See also Discriminant Analysis; Discriminant Correspondence
Analysis; Distance; z Scores
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SIGNIFICANCE LEVEL

An integral part of every quantitative research study 
is the need to determine an appropriate statistical

C = −1
2

[ZH + ZFA] = −[Z.9 + Z.2]

= −1
2

[1.28 − .84] = −.22,
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Table 3 The Performance of a Wine Taster Trying to Identify Gamay
in a Pinot Noir Wine

Decision: (Taster's Response)

Reality Yes (Gamay) No (pure Pinot) ∑∑

Signal present Hit Miss
(Gamay) # {Hit} = 9 # {Miss} = 1 10

Pr {Hit} = 9 # {Miss} = .1 1

Signal absent False Alarm (FA) Correct Rejection
(Pure Pinot) # {FA} = 2 # {Correct Rejection} = 8 10

Pr {FA} = .2 Pr {Correct Rejection} = .8 1



significance level, alpha, also referred to as pcritical.
Before data are collected, this level should be selected
(a priori) because this level is logical, and the informa-
tion gleaned from rejecting the null hypothesis is mean-
ingful. In medical studies, it is common to set the
significance level to p < .01, whereas p < .05 is
common in the social sciences. For comparison, a 
pcalculated or Test Statisticcalculated is used. The decision is
the same regardless of whether a pcalculated or Test
Statisticcalculated is used. The pcalculated is now easily
obtained from myriad software packages. These proba-
bilities pcalculated and alpha are interesting in and of them-
selves. First, what do these probabilities mean? What is
the interpretation of pcalculated or Test Statisticcalculated?

The Probabilities: Alpha and 
ppcalculated or TTeesstt  SSttaattiissttiicccalculated

Researchers may correctly use statistical significance
testing in two general cases: (a) they have a random
sample from a population from which an inference is
to be drawn, or (b) they believe their sample approxi-
mates a random sample. Once this decision is made,
the next is to set an alpha level. The setting of the
alpha level, a probability ranging between 0 and 1, can
be interpreted as the percentage chance of making a
sampling error. For instance, an alpha level set at .05
indicates that there is a 5% chance of making an
incorrect inference because sampling error creeps into
all data without exception, barring collecting data
from the entire population. When picking an alpha
level, we set a boundary on the probability of making
this incorrect inference, called a Type I error.
Therefore, alpha is typically set small so that the prob-
ability of this error will be low. Thus, this alpha level,
also termed pcritical, is selected on the basis of judgment
regarding Type I error consequences in any given
research situation, guided by personal values regard-
ing these consequences.

After the data are collected and analyzed, part of
the output is the second probability, often termed 
pcalculated. From this point forward, I treat pcalculated and
Test Statisticcalculated as being the same because the
probabilistic interpretations are similar, and the inter-
pretations are exactly the same. This probability, like

the alpha level probability, ranges between 0 and 1
and is calculated based on study parameters. There are
two absolutely essential aspects impacting the calcu-
lation of the probability pcalculated. First is the assump-
tion that the true population parameters are correctly
described in the null hypothesis. This assumption is
necessary because the actual population parameters
are not known. Therefore, we assume that the null
hypothesis is true for all calculations. Second, as the
sample size approaches the population size, sampling
error decreases, and the statistics calculated from
them become more representative. It is intuitive that
larger samples are more representative. When we
think about this in the opposite direction, small sam-
ples are more likely to be comprised of less represen-
tative data points, and the statistics calculated for
them potentially will be less representative of the pop-
ulation. To illustrate this point, if one were to catch
two fish from a pond and both were catfish, one might
draw the conclusion that the pond contains only cat-
fish. However, with a little more effort and a larger
sample, say 100 fish caught, one might learn that the
pond ecosystem also consists of bass, perch, gar, and
pickerel. So sample size is accounted for in the pcalcu-

lated computations. For example, Experiment 1 consists
of two groups with 10 members each. The mean for
Group 1 is 55 and the mean for Group 2 is 56. The pcal-

culated will be large and probably exceed the a priori
alpha level of p < .05. However, Experiment 2 also
consists of two groups (Groups 3 and 4), but this time
each group contains 110 members. The mean for
Group 3 is exactly the same as Group 1, 55, and the
mean for Group 4 is exactly the same as for Group 2,
56 (see Table 1). This time pcalculated is probably small
and likely to be less than the a priori alpha level p <
.05. Assuming the sample data were randomly
selected from the population where the null hypothe-
sis is true, what is the probability of obtaining the
sample statistics from the given sample size(s)? The
question in both experiments is, “Are the two means
statistically significantly different with alpha = .05?”
In Experiment 1, the pcalculated = .571, so the means are
not statistically different, but in Experiment 2, the 
pcalculated = .043, so the means are statistically signifi-
cantly different even though the difference in the
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means in both experiments is only 1 point (see Table 2).
However, the Cohen’s d effect size does not change
from Experiment 1 to Experiment 2. When pcalculated is
less than pcritical or alpha, we use a decision rule that
says we will reject the null hypothesis. The decision to
reject the null hypothesis is called a statistically
significant result. All the decision means is that we
believe our sample results are relatively unlikely,
given our assumptions, including our assumption that
the null hypothesis is exactly true.

Implications

Quantitative results are often misinterpreted because
few applied researchers understand the purpose of sta-
tistical significance testing. The partial understand-
ings of aspects of statistical significance testing can
result in systemic issues that can negatively impact the
quality of their research reports. For example,
researchers may understand the issue of sample size
but worry only about samples that are too small while
not considering the implications of extremely large
samples or the implications for interpretations based
on test statistics of these large samples. It is essential
to augment null hypothesis testing with measures of
treatment effects.

Statistical Level, Statistical 
Significance Tests, and 
Meta-Analytic Thinking

Statistical significance reporting is still an essential
component of the newest edition of the Publication
Manual of the American Psychological Association
and a legislative reality and will continue to be
reported. However, it is important to understand that
given a large enough sample, one would always
achieve statistical significance. More than a decade
ago, E. N. Pedhazur and L. Schmelkin stated that
few methodological issues have generated as much
controversy as statistical testing. The pcalculated values
in a given study result from specific study character-
istics such as sample size and effect size. The result
is different studies, composed of varying sample
sizes and effect sizes, all possibly having the same
pcalculated value. Second, pcalculated does not infer from
the sample to the population but from the population
to the sample. One possible explanation for the
prevalence of these misconceptions is that textbooks
and graduate courses have been less than ideal in
their treatment of statistical significance testing and
its alternatives.

—Robert M. Capraro
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Table 1 Descriptive Statistics

Group Mean N SD

Experiment 1 1 55.0 10 5.3
2 56.0 10 6.7

Experiment 2 3 55.0 110 5.3
4 56.0 110 6.7

Note: N = group size; SD = standard deviation.

Table 2 Independent Samples  t Test

Groups N Mean Diff. SD T df p (two-tailed) d

Experiment 1 1, 2 20 −1.0 5.4 −.588 9 .571 .166
Experiment 2 3, 4 220 −1.0 5.1 −2.048 109 .043 .166

Notes: N = group size; Mean Diff. = mean difference; SD = standard deviation; T = t test statistic; df = degree of freedom; 
p = associated probability; d = Cohen’s d effect size. 
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SIMPLE MAIN EFFECT

Table 1 presents hypothetical data from a factorial
design. Observations in each cell are averaged to pro-
duce a cell mean. Averaging over all levels of one
factor produces means for the overall main effect of
the other factor. For example, the six values observed
with Drug 1 have a mean of 8.0 averaged over both
dosage levels. Similarly, the six values from Drug 2
have a mean of 3.0. The difference between 8.0 and
3.0 is the overall main effect of the drug factor.

The two drugs could be compared separately for
each dosage level. The difference between Drug 1 and
Drug 2 in the 10 mg condition is 3.0 (= 7.0 − 4.0).
This difference is an example of a simple main effect.
That is, we can define a simple main effect as a dif-
ference in the value of a dependent variable found
between two levels of one factor when another factor
is held constant. The difference between the two drugs
in the 20 mg condition is 7.0 (= 9.0 − 2.0).

Simple main effects can also be defined for the
other factor. The difference between the two dosage
levels for Drug 1 is 2.0 (= 9.0 − 7.0). Similarly, the
difference between the two dosage levels for Drug 2 is
2.0 (= 4.0 − 2.0).

Simple main effects are often tested after finding a
significant interaction in a factorial design. However,
this practice can be misleading. For example,

Berrin-Wasserman, Winnick, and Borod reported a 
2 × 2 design with a significant interaction and no sig-
nificant simple main effects. A more complex problem
is illustrated by Friedman, Putnam, Ritter, Hamberger,
and Berman, who reported a 3 × 4 factorial design with
a significant interaction in which testing simple main
effects led to an incorrect interpretation of the reason
for the significant interaction.

—Philip H. Ramsey
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SIMPSON’S PARADOX

Simpson’s paradox arises in the analysis of cross-
classified categorical data when contradictory
conclusions about the directions of associations
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Table 1 Hypothetical Data, Means, and Sum of
Squares for a 2 × 2 Design

B110 mg B220 mg Overall

A1 8.0 10.0
Drug 1 7.0 9.0

6.0 8.0
Means 7.0 9.0 X

–
A1

= 8.0
SS 2.0 2.0 NA1

= 6

A2 5.0 3.0
Drug 2 4.0 2.0

3.0 1.0
Means 4.0 2.0 X

–
A2

= 3.0
SS 2.0 2.0 NA2

= 6

Overall X
–

B
1

= 5.5 X
–

B
1

= 5.5 X
–

T = 5.5

NB
1

= 6 NB
2

= 6

Note: SS = sum of squares; X
–

= mean. 



between variables are reached as a result of several
groups’ being aggregated into one. A well-known
example of this phenomenon is the graduate school
admissions data from the University of California,
Berkeley. During a particular time, 8,442 men applied
for graduate school, as did 4,321 women. Each depart-
ment made its own admissions decisions. In the end,
approximately 44% of the male applicants and 35% of
the female applicants were admitted. This looks like
evidence of sex bias in admissions, and the university
administration wished to determine which depart-
ments exhibited the most serious bias. Here 
we explore only a subset of the data, namely the six
largest departments. The data, as reported by
Freedman and colleagues, are in Table 1.

Looking at each department individually, it is
apparent that there is no systematic bias against
women; on the contrary, in all six departments, the
percentage of women accepted is higher than, or
almost equal to, the percentage of men accepted.
Indeed, for department A, 82% of female applicants
were admitted, compared to only 62% of male appli-
cants. The department that is least favorable to
women, department E, shows a discrepancy of only
4%. Yet over all six departments together, 45% of the
male applicants were admitted, and only 30% of the
female applicants.

Closer examination of the data reveals the source
of this seemingly paradoxical situation. Departments
A and B were relatively liberal in their admissions
policies, accepting two thirds or more of the applicants.

And most men applied to those two departments. On
the other hand, departments C through F were much
harder to get into, accepting about a third or less of
prospective graduate students. And women applied
mostly to those highly competitive departments. 
The overall effect is that a smaller percentage of
women than men were accepted into the graduate
programs at Berkeley because they were aiming for
more restrictive courses of study. By aggregating 
over departments, university officials lost vital
information. 

This is the source of Simpson’s paradox, namely,
aggregating, or collapsing, over levels in cross-
tabulated data when it is inappropriate to do so
because of interactions among variables. The pres-
ence of interactions means that important and rele-
vant information is lost when the table is collapsed.
In the simple example of the graduate admissions
data, the problem was easy to spot because the data
were subjected to only a two-way classification. As
the number of cross-classifications rises, inducing
more complex and more numerous types of interac-
tions, detection might not be so immediate. Care
should be taken, therefore, when aggregating over
levels of classification.

The phenomenon is called paradoxical because it
allows researchers to make statements such as “The
new treatment is more effective than the old treatment
for men. It also works better than the old treatment for
women. However, overall, the new treatment is not
more effective than the old treatment.” While appar-
ently paradoxical, the result is a simple consequence
of relationships between positive integers, as we will
see in Table 2, a 2 × 2 table that looks at the propor-
tions of males and females who improved with the old
treatment versus the new. 

Simpson’s Paradox———893

Table 1 UC Berkeley Graduate School Admissions
Data

Men Women

Number of % Number of %
Major Applicants Admitted Applicants Admitted

A 825 62 108 82
B 560 63 25 68
C 325 37 593 34
D 417 33 375 35
E 191 28 393 24
F 373 6 341 7

Source: Freedman, Pisani, Purves, & Adhikari (1991).

Table 2 Mathematical Explanation of Simpson’s
Paradox 

Improved With Improved With 
Old Treatment New Treatment

Men a/b c/d
Women e/f g/h
Total (a+e)/(b+f) (c+g)/(d+h)



In this setting, Simpson’s paradox states that it is
possible to find numbers such that a/b < c/d and e/f <
g/h but (a + e)/(b + f) > (c + g)/(d + h). Such values are
not hard to find. For example, suppose the old treat-
ment was tried on 200 men, of whom 30 improved, for
a success rate of 15%, and on 400 women, of whom
300 improved, a success rate of 75%. On the other
hand, the new treatment was tried on 200 men, of
whom 40 improved, a success rate of 20%, and on 100
women, of whom 85 improved, a success rate of 85%.
For both men and women, the new treatment was
more efficacious than the old in terms of proportion
who improved. But the old treatment was tried on a
total of 200 + 400 = 600 people, of whom 30 + 300 =
330 improved, an overall improvement rate of 55%,
whereas the new treatment was tried on only 200 +
100 = 300 people, of whom 40 + 85 = 125 improved,
an overall rate of about 42%. Mathematically, these
numbers fit the constraints described above, and simi-
larly any other eight numbers that fit the constraints
would result in a Simpson’s paradox. Note that it is
not the simple ratio that is relevant—substituting 4 for
40 and 20 for 200 for the men who received the new
treatment would not meet the constraint, and hence
there would be no paradoxical result.

More generally, the values that fit the constraints
fall within two extreme conditions. On one end, we
have situations in which slightly more units of one
type are in a category with much lower probability;
for example, see Table 3. Here, men are much less
likely to improve in response to either treatment than
are women, and the new treatment is given to slightly
more men. As a result, a higher proportion of both
men and women improve with the new treatment, but
overall the old treatment is slightly more effective.

At the other extreme are situations in which many
more units of one type are in a category with slightly
lower probability; for example, see Table 4. Here,
both men and women have good rates of improve-
ment, although the rate for the new treatment is
slightly better. Men, with the lower probability of
improvement, are overwhelmingly given the new
treatment, whereas women, with a slightly better
chance of improvement, are overwhelmingly given
the old treatment. As a result, a higher proportion of
both men and women improve with the new treat-
ment, but overall the old treatment is slightly more
effective.

In short, Simpson’s paradox is the result of ignor-
ing lurking, or background, variables that contain
relevant information. The consequence of ignoring
them is that contradictory conclusions may be reached
regarding the direction of an association between vari-
ables. On an interesting historical note, a case may be
made, according to S. E. Fienberg, that the paradox
should in fact be named after Yule (and is indeed
sometimes called the Yule-Simpson paradox), who
apparently discussed it as early as 1903.

—Nicole Lazar

Further Reading

Agresti, A. (1990). Categorical data analysis. New York: Wiley. 
Fienberg, S. E. (1994). The analysis of cross-classified cate-

gorical data (2nd ed.). Cambridge: MIT Press.
Freedman, D., Pisani, R., Purves, R., & Adhikari, A. (1991).

Statistics (2nd ed.). New York: Norton. 
Simpson, E. H. (1951). The interpretation of interaction in

contingency tables. Journal of the Royal Statistical Society,
Series B, 13, 238–241.

894———Simpson’s Paradox

Table 3 One Scenario in Which Simpson’s 
Paradox Holds

Improved With Improved With 
Old Treatment New Treatment

Men 1/45 5/55
Women 50/55 45/45
Total 51/100 50/100

Table 4 Another Scenario in Which Simpson’s
Paradox Holds

Improved With Improved With 
Old Treatment New Treatment

Men 4/5 90/95
Women 94/95 5/5
Total 98/100 95/100



Simpson’s paradox: http://exploringdata.cqu.edu.au/sim_
par.htm

Simpson’s paradox entry from the Stanford Encyclopedia 
of Philosophy: http://plato.stanford.edu/entries/paradox-
simpson

SIMPSON’S RULE

In order to estimate the integral of a function of one
real variable, f, over a finite interval [a,b], let h = (b −
a)/n for a positive even integer n = 2m. Then the (com-
posite) Simpson’s rule formula is

(1)

with error, assuming f ′′′′ exists on (a,b), given by

− (b − a) h4 f ′′′′ (c)/180 (2)

for some c in (a,b). The key features of the error
term are the dependence on h4 and the f ′′′′ (c) term.
These imply that doubling the number of subinter-
vals (so that h is halved) yields approximately 1/16
the previous error (if the overall interval [a,b] is suf-
ficiently small so that c does not vary too greatly),
and the integral will be exact for polynomials of
degree 3 or less, since f ′′′′ vanishes identically for
such functions.

(Note that a method known as Richardson extrapo-
lation can be used to improve Simpson’s rule integral
estimates even further if two different h values are
used.)

As an example, the probability that a standard nor-
mal random variable has value between z = .5 and 
z = 1 is given by the integral of f(z) = exp(−z2/2)/√(2
π) from z = .5 to z = 1. Choosing n = 10, Simpson’s
rule estimates it to be (.05/3)(f (.5) + 4f (.55) +
2f (.6) + 4f (.65) + . . . + 4f (.95) + f(1)) or
0.14988228478. . . . Now f ′′′′(z) is (z4 – 6z2 + 3)f(z),

and with c between .5 and 1, the error term is bounded
from above by .6(.56)(.054)/180, that is, by 10–8. (The
exact error is, in fact, 1.3 × 10–11.)

The logic underlying Simpson’s rule considers f on
m = n/2 equally spaced contiguous nonoverlapping
subintervals, and on each subinterval of width 2h, it
estimates the integral by using a quadratic interpola-
tion. From the partition {a = x0, x1, . . . , b = x2m},
where xi+1 − xi = h, the integral of f on [x2j , x2j+2] for 
j = 0 to m − 1 is approximated by the integral of the
quadratic function qj satisfying qj(x2j) = f(x2j), qj(x2j+1)
= f(x2j+1), and qj(x2j+2) = f(x2j+2). By elementary calcu-
lus, the integral of qj on [x2j , x2 j+2] is exactly (f(x2j) +
4f (x2j+1) + f (x2j+2))(h/3); it is more difficult to deduce
that the error incurred on the subinterval is − f ′′′′ (c)
h5/90 for some c in (x2j, x2j+2). Summing up estimates
from all the subintervals yields Equation 1; collecting
the errors and using the intermediate value property
for derivatives gives the error term (Equation 2).

In its modern formulation, Simpson’s rule is one of
an infinite family of what are known as (closed-form)
Newton-Cotes integration methods. (The trapezoid
rule is another, less accurate, closed-form Newton-
Cotes method; the midpoint rule is an open-form
Newton-Cotes method.) Each estimates integrals by
computing the exact integral of an appropriate (piece-
wise) interpolating polynomial. Using any degree 
of interpolant, one can quickly deduce any Newton-
Cotes weights, such as the h/3, 4h/3, h/3 for
Simpson’s rule, and so deduce ever more accurate
integration schemes, as follows. Requiring that the
integration method be exact for polynomials of degree
d or lower and that the function be evaluated at
equally spaced intervals leads quickly to linear condi-
tions for the weights. For instance, in order to achieve
exact integration results for polynomial integrands of
degree through d = 2, consider the monomials f(x) = 1,
x and x2 on the interval [0,2h]: Equating the integral
with w0 f (0) + w1 f (1) + w2 f (2) for these functions
yields the system 2h = w0 + w1 + w2 , 2h2 = h w1 + 2h
w2, 8h3/3 = h2 w1 + 4h2 w2, whose solution is w0 = h/3
= w2, w1 = 4h/3. To determine the error term, assum-
ing it has the form K f (n)(c) (b − a)hk for some K, n,
and k, apply the estimation to, for instance, f(x) = x4 on
[0,2h]; since f ′′′′ (c) = 24 for any c, and the error

∫ b

a

f (x)dx ≈ (h/3) (f (a) + 4f (a + h)

+ 2f (a + 2h) + 4f (a + 3h) + 2f (a + 4h)

+ . . . + 2f (b − 2h) + 4f (b − h) + f (b))
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incurred is −4h5/15, the error term must be − h4(b − a) 
f ′′′′ (c)/180. Similarly, considering the related example
of exact results for monomial integrands f(x) = 1,x,x2

and x3 on [0,3h], one obtains the weights w0 = 3h/8, w1

= 9h/8, w2 = 9h/8, w3 = 3h/8 (known as Simpson’s
“3/8” rule). Using f(x) = x4, the overall error term is
found to be –h4(b − a) f ′′′′ (c)/80. (Note that the 3/8
rule, while based on a higher-degree interpolant than
Simpson’s rule, has a larger coefficient in its error
term and ordinarily is not preferred to Simpson’s rule.
Its advantage is that it allows use of three subintervals.
Thus, if data are supplied for an odd number of subin-
tervals, the 3/8 rule can be used for the first three
subintervals, and Simpson’s rule can be applied to the
others.)

Simpson’s rule arguably appeared by 1890 B.C. in
what is known as the Russian papyrus and was used
for measuring volumes of prisms. It was known by
Johannes Kepler (1571–1630) as an aid in estimating
volumes of barrels. James Gregory (1638–1675) pub-
lished an algebraic formulation in 1668. As a method
developed by Isaac Newton, it appeared in Thomas
Simpson’s calculus text A New Treatise on Fluxions in
1737. Variants of Simpson’s rule that have most
weights equal to 1 have been found, and Simpson’s
rule can be used to sum series as well as to estimate
integrals.

—Richard M. Kreminski
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SIMULATED ANNEALING

Simulated annealing (SA) is an optimization tech-
nique that mimics the physical process of thermal
cooling. In physics, annealing is the process in which
one first heats up a solid to a high enough temperature
to liquefy it and then cools the liquid slowly enough

so that the particles arrange themselves in a lattice
arrangement having the lowest energy.
Statistical physics describes this cooling process in
probabilistic terms by describing the probability that a
particle will be in a state with a given energy E and for
a fixed temperature T. This probability is given as

where kB is the Boltzmann constant and Z(T) 
is a normalizing constant, known as the partition func-
tion. This distribution is known as the Boltzmann
distribution.

Looking at this probability, it is clear that as T
tends to zero, the distribution concentrates in the min-
imal energy states. In the limit as T → 0, we see that
the only possible states are the minimal energy states.

The first computer algorithm for simulating the
process of thermal cooling was developed by Metro-
polis and colleagues in 1953. However, not until 1982
was the link between abstract combinatorial optimiza-
tion and the minimization of energy in thermal cool-
ing explicitly made and exploited.

The idea is to exploit the temperature depen-
dence of the Boltzmann distribution to try to force the
current state of our simulation (optimization algo-
rithm) toward one of the globally optimal (minimal
energy) states. The key lies in carefully lowering the
temperature.

The Metropolis Algorithm

In 1953, N. Metropolis, A. Rosenbluth, M.
Rosenbluth, A. Teller, and E. Teller published the
paper “Equations of State Calculations by Fast
Computing Machines,” thereby introducing to the
world the highly useful Metropolis simulation algo-
rithm. This algorithm has been cited as among the top
10 algorithms having the greatest influence on the
development of science and engineering.

This algorithm will yield the Boltzmann distribu-
tion for a given system via simulation.

The basic idea, like many great ideas, is rather
simple. Given the energy function E on the state space

Pr(Energy = E) = 1

Z(T )
exp

(

− E

kBT

)

,
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Ω, we split the chain into a proposal phase and an
acceptance phase. For the proposal phase, the current
state x of the system is subjected to a small perturba-
tion, which generates y, a proposed new state. This
proposal process needs to be symmetric (that is, it is
just as likely to propose x starting from y as it is to
propose y starting from x) and irreducible (it is possi-
ble to transition from any state to any other state using
only the proposal process). Let E(x) and E(y) denote
the energies associated with states x and y. If E(y) <
E(x), then we accept the proposed change, and y
becomes the new current state. If E(y) ≥ E(x), we
accept y with probability

else we reject the new state y and stay with the origi-
nal state x.

The Markov chain Xn generated by the Metropolis
algorithm will produce many repeated states. In com-
puting using this chain, it is essential to keep these
repeated states because this is one way the algorithm
corrects the bias from the proposal process, thus
allowing it to converge to the Boltzmann distribution.

The separation of the proposal and acceptance
phases makes designing a chain much simpler
because the proposal process can be virtually any
process. The choice of proposal process is often
guided by the structure of the state space. The condi-
tions on the proposal process are rarely a problem in
practice. For Ω finite, the proposal process is often
defined by first giving a local (symmetric) neighbor-
hood structure and then choosing y uniformly from
the neighbors of the current x. As long as the neigh-
borhood structure is reasonable, this process will usu-
ally work.

We are free to let the structure of the problem guide
the neighborhood system (or proposal process) and
use the acceptance phase to correct the proposal
process in such a way as to ensure the Boltzmann
distribution. Heuristically, the neighborhood system
defines a type of “topology” on the state space Ω, and
along with the energy function, this gives a type of
“energy landscape.”

The convergence rate of the Metropolis algorithm
is strongly influenced by the proposal process. Thus,
any problem-specific information is very useful in
designing an efficient Metropolis scheme.

Notice that the Metropolis algorithm does not use
the partition function Z(T). This is very important as it
is usually impossible to compute this normalizing
constant because the state space is usually prohibi-
tively large. The Metropolis algorithm uses only
energy differences, so really it uses information about
only relative probabilities (under the Boltzmann dis-
tribution) and not absolute probabilities.

SA as Time-Varying Metropolis

For a fixed temperature T > 0, the Metropolis algo-
rithm gives us a way to simulate a distribution in
which better (lower-energy) states are more likely to
occur than worse (higher-energy) states. As men-
tioned above, clearly lowering the temperature will
concentrate the Boltzmann distribution more in the
low energy states, so the idea behind SA is to lower
the temperature in a careful way.

The simplest way to lower the energy would be to
have a sequence of temperatures T1 > T2 > T3 > . . . that
approaches zero. Start with some state X0 and run the
Metropolis algorithm at temperature T1 until it has
converged to the Boltzmann distribution for tempera-
ture T0, say some number N1 of iterations, so that we
are in state XN1

. Then using XN1
as the initial state, run

the Metropolis algorithm at temperature T2 for N2 iter-
ations until it converges. Continuing, we piece together
runs of the Metropolis algorithm at each different (but
fixed) temperature Ti to get a sequence of states that
should converge to a globally minimal state.

Simulated annealing does something like this, but
with a temperature that decreases every iteration
according to some cooling schedule. Thus, an SA
process never really reaches an equilibrium distribu-
tion because the equilibrium Boltzmann distribution is
changing as a function of the current temperature. The
idea is that if you decrease the temperature slowly
enough, then you track the current Boltzmann distrib-
ution closely enough that the overall process will
converge.

exp

(

−E(x) − E(y)

kBT

)

,
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In general, the relaxation time increases as the
temperature decreases. As we lower the temperature,
the algorithm requires a larger number of iterations to
approach the equilibrium distribution. Thus, the con-
vergence of the algorithm slows down considerably
for lower temperatures.

If the temperature is lowered too quickly, the sys-
tem can be “frozen” into a metastable state. In terms
of the objective function, this means that we are
trapped into a local but not global minimum value of
the function. As the algorithm progresses, the current
point moves around the state space by taking small
steps (the perturbations). If the proposed step is
“downhill,” then the step is always taken. If the pro-
posed step is “uphill,” then we sometimes take it.
Initially, at high temperatures, many uphill steps are
taken. This allows the system to escape from the
energy well of a local minimum. As the temperature
decreases, the probability of taking an uphill step
decreases, so it is more difficult to escape from the
basin of a local minimum. If the temperature is
decreased too fast, it is possible to get stuck in a local
minimum basin, and then the state will converge to the
local minimum.

Convergence Results

One of the very nice things about SA is that there are
theoretical results that guarantee convergence to a
minimal energy state, albeit in the infinite time limit.
The 1988 result of Hajek is one such result. Letting Tn

denote the temperature at iteration n, a logarithmic
cooling schedule is of the form

If c > 0 is large enough, then Hajek’s result says
that using the logarithmic cooling schedule results in
Pr(Xn is an optimal state) → 0 as n → ∞. How large is
large enough? Well, if we think of the objective func-
tion as defining an energy landscape, then c should be
at least as large as the largest “energy barrier” on the
surface, that is, the depth of the largest nonoptimal
local optimal “valley.”

There are other results that guarantee convergence
or give estimates on the convergence rate. However, in

the general situation, all the convergence results
essentially require a logarithmic cooling schedule.

This logarithmic cooling schedule can be under-
stood as saying that, in general, the relaxation times
grow geometrically as the temperature decreases.
Thus, you need something like twice as long at a lower
temperature in order to approach the equilibrium.

EExxaammppllee

It is easy to set up an example in which the
expected time to convergence is infinite. The follow-
ing example was given by Shonkwiler and Van Vleck.
Let Ω = {0,1,2} with function values f(0) = –1, f (1) =
1, and f (2) = 0 and proposal matrix

The Metropolis transition matrix then is

Using the logarithmic cooling schedule Tn =
1/log(n+1), we see that this translates to

Letting hk be the probability that the first time we
are in State 0 is at time k, it can be shown that

for k ≥ 2, and thus the expected hitting time
starting from State 2 is at least as large as

so the expected hitting time for SA is infinite.
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Cooling Schedules

While the logarithmic cooling schedule is sufficiently
slow to guarantee convergence of SA, it is clearly
extremely slow. In fact, using a logarithmic cooling
schedule is in effect often the same as performing 
an exhaustive search (even worse than exhaustive
search, in the above simple three-state example).
Furthermore, in practice one obviously cannot run an
algorithm until the infinite time limit. Thus many
other cooling schedules are used. A particularly
simple one is geometric cooling, of the form Tn =
T0α n, where 0 < α < 1.

It might also be desirable to have the temperature
decrease adaptively. To do this, one can accumulate
statistics about the process (distribution of energy
values encountered, number of proposed steps
accepted/rejected, etc.) and use this information to
derive a model of the energy surface for the problem.

A particularly nice approach to this is one derived
from finite-time statistical mechanics. Since the loga-
rithmic cooling schedule and infinite time runs are not
practical, we use finite-time and nonequilibrium sta-
tistical mechanics to derive “optimal” cooling sched-
ules, such as the constant thermodynamic speed
cooling schedule. However, these cooling schedules
require a fair bit of information about the energy sur-
face. Depending on the optimization problem, it may
be better to run many instances of a simpler cooling
schedule (or longer runs) than one run of an adaptive
cooling schedule.

Application of SA to the 
Traveling Salesman Problem

The traveling salesman problem (TSP) is a classical
combinatorial optimization problem that is NP-
hard. The data for the TSP are the geographical
locations of N cities and a notion of the “cost” of
traveling between any two of these cities. This cost
is typically associated with the distance between the
cities but does not have to be. Given these N cities,
we are to find the tour (list of which cities to visit in
order) that minimizes the total cost. For simplicity,
we assume that we start and end at the first city
(clearly any city on a tour can be thought of as the
“first” city on the tour). The N-city TSP has (N–1)!/2

distinct tours, so the state space is incredibly huge,
even for moderate N.

The first step in designing an SA algorithm for this
problem is to decide on the proposal process. This is 
a crucial step because the convergence rate of the
Metropolis algorithm depends very heavily on the
design of the proposal process. For our example, we
use the 2-opt proposal process for the TSP. To explain
this, given the tour

we choose two positions, a,b ∈ {1, 2, . . . , N}, and
“flip” the part of the tour between these positions to
get the proposed tour

As a more concrete example, the tour 136425
could be perturbed into the tour 132465 by choosing
locations 3 and 5.

This 2-opt proposal process has the feature of
breaking two “links” of the tour and replacing them
with two other (new) links.

Clearly, the energy for the TSP will be the total
cost. Since we are trying to minimize the total cost,
this will work as an energy (SA naturally minimizes;
a maximization problem needs to be converted to a
minimization problem).

Figure 1 shows two typical runs of SA on the TSP.
In both figures, the horizontal axis represents iterations
and the vertical axis represents energy. The bottom
curve is the best energy seen so far, and the top one is
the energy of the current state. These figures illustrate
that when the temperature is high, the energy of the
current state is quite variable, but as the temperature
decreases, the energy of the current state tends to set-
tle down and “freeze.” All the runs used a fixed set of
100 cities distributed somewhat randomly in the plane.

Figure 2 shows the results of 10 runs of SA on the
TSP. These plots show only the trace of the best so far.

Premature Convergence

An individual run of SA will typically have a short
period of rapid decrease followed by long, flat periods

c1c2c3 . . . ca−1
︷ ︸︸ ︷
cb cb−1 . . . ca+1ca cb+1 . . . cN .

c1c2c3 . . . ca−1 ca ca+1 . . . cb−1cb︸ ︷︷ ︸
cb+1 . . . cN
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in which the best energy stays constant. These flat
periods can eat up a majority of the computational
effort, especially for very long runs.

There are several different strategies for dealing
with this problem. One simple problem is to randomly
restart the SA process whenever such a situation
occurs. One method that works well is to restart when-
ever the current state has not changed in some set
number of iterations, the idea being that this indicates
that a large majority of the “neighbors” of the current
state are worse than the current state. Another method,
which is also effective, is to run several versions of the
algorithm in parallel and do some sort of information
sharing.

SA is a natural candidate for parallelization. In
fact, it allows the simplest type of parallelization—
multiple independent runs of the identical algorithm,
but from randomly chosen starting conditions.
Many other types of parallelization involving some
amount of information sharing are also possible and
effective.

—Franklin Mendivil

See also EM Algorithm; Markov Chain Monte Carlo
Methods 
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SIMULATION EXPERIMENTS

Simulation experiments are used to mimic a system
of interest and are typically, although not necessarily,
performed on a computer. A simulation experiment
differs from a “simulator” (e.g., a flight simulator), in
which an operator is immersed in a virtual environ-
ment. In a simulation experiment, the modeler gleans
the appropriate information about the system of inter-
est (which may include data gathering), then devel-
ops equations and algorithms to simulate the system.
These equations and algorithms are then converted to
a computational model, which is typically imple-
mented on a digital computer for analysis.

This brief entry provides a description of the math-
ematical and computational techniques for model-
ing, simulating, and analyzing the performance of
stochastic systems. By definition, the nature of simu-
lation is that one does not actually experiment with or
modify an actual system. Instead, one develops and
then works with a mathematical model of the actual
system. This model allows the modeler to respond to
“what if” questions associated with the model, and
these questions, if the model has been developed
properly, translate to the associated questions con-
cerning the system.

Model Characterization

A simulation model is typically both stochastic and
dynamic, as described in the paragraphs that follow.

A system model is either deterministic or stochas-
tic. A deterministic system model has no stochastic
(random) components. For example, provided the
conveyor belt and machine never fail, a model of a
constant velocity conveyor belt feeding parts to a
machine with a constant service time is deterministic.

At some level of detail, however, all systems have
some stochastic components: Machines fail, people
respond in a random fashion, and so on. One attractive
feature of simulation modeling is that stochastic com-
ponents can be accommodated, usually without a dra-
matic increase in the complexity of the system model
at the computational level.

A system model is static or dynamic. A static sys-
tem model is one in which time is not a significant
variable. Many static models can be analyzed by
Monte Carlo simulation, which performs a random
experiment repeatedly to estimate, for example, a
probability associated with a random event. The
passage of time always plays a significant role in
dynamic models.

A dynamic system model is continuous or dis-
crete. Most of the traditional dynamic systems stud-
ied in classical mechanics have state variables that
evolve continuously. A particle moving in a 
gravitational field, an oscillating pendulum, and a
block sliding down an inclined plane are examples.
In each of these cases, the motion is characterized
by one or more differential equations that model the
continuous time evolution of the system. In con-
trast, models involving queuing, machine repair,
inventory systems, and so forth, are discrete
because the state of the system is a piecewise-
constant function of time. For example, the number
of jobs in a queuing system is a natural state vari-
able that changes value only at those discrete times
when a job arrives (to be served) or departs (after
being served).

A discrete-event simulation model is defined by
three attributes: (a) The model is stochastic—at least
some of the system state variables are random; (b) the
model is dynamic—the time evolution of the system
state variables is significant; and (c) the model has
discrete event times—significant changes in the sys-
tem state variables are associated with events that
occur at discrete time instances only.

We focus the balance of this entry on discrete-
event simulation because of its utility and popularity
as a tool used by practitioners and researchers from
several application areas (e.g., operations research,
computer science, biomathematics, and statistics).
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Simulation Model Development

We present a series of steps that describe, at a high
level, how to develop a discrete-event simulation
model and then conduct a discrete-event simulation
study.

A typical discrete-event simulation model will be
developed consistent with the following six steps.
Steps 2 through 6 are typically iterated, perhaps many
times, until a valid computational model (a computer
program) has been developed.

1. Set goals. Once a target system of interest has
been identified, determine the goals and objectives of
the analysis. These goals and objectives are often
phrased as simple Boolean decisions (e.g., should an
additional server be added to a queuing network
service node?) or numeric decisions (e.g., how many
parallel servers are necessary to provide satisfactory
performance in a multiple-server queuing system?).
Without specific goals and objectives, the remaining
steps lack meaning.

2. Build a conceptual model of the system based
on Step 1. What are the state variables, how are they
interrelated, and to what extent are they dynamic?
How comprehensive should the model be? Which
state variables are important? Which have such a neg-
ligible effect that they can be ignored? In effect,
establish a boundary for what is included in the math-
ematical model of the system and what is considered
part of the external environment.

3. Convert the conceptual model into a specifica-
tion model. This step typically involves collecting and
statistically analyzing data to provide the stochastic
“input models” that drive the simulation. In the
absence of such data, the input models must be con-
structed in an ad hoc manner using stochastic models
believed to be representative.

4. Turn the specification model into a computa-
tional model (a computer program). At this point, a
fundamental choice must be made—to use a general-
purpose programming language or a special-purpose
simulation language.

5. Verify the model. As with all computer pro-
grams, the computational model should be consistent
with the specification model.

6. Validate the model. Is the computational model
consistent with the system being analyzed? Because
the purpose of simulation is insight, some would
argue that the act of developing the discrete-event
simulation model—Steps 2, 3, and 4—is frequently as
important as the tangible product. One popular non-
statistical technique for model validation is to place
actual system output alongside similarly formatted
output from the computational model. This output is
then examined by an expert familiar with the system.
Model validation is indicated if the expert is not able
to determine which is the model output and which is
the real thing. Interactive computer graphics (anima-
tion) can be very valuable during the verification and
validation steps.

The actual development of a complex discrete-
event simulation model may not be as sequential as
the previous steps suggest, particularly if the develop-
ment is a team activity (in which case some steps will
probably be worked on in parallel). The different char-
acteristics of each step should always be kept clearly
in mind, avoiding, for example, the natural temptation
to merge Steps 5 and 6. 

After the successful creation of a computational
model (computer program) by means of Steps 1–6,
the analysis of that computational model involves the
following steps:

7. Design the simulation experiments. If there are
a significant number of system parameters, each
with several possible values of interest, then the
combinatoric possibilities to be studied need to be
managed.

8. Make production runs. The simulation runs
should be made systematically, recording the value of
all initial conditions and input parameters, along 
with the associated statistical output. Point and confi-
dence-interval estimators of measures of performance
of interest are typical discrete-event simulation
outputs.
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9. Analyze the simulation results. The analysis of
the simulation output is statistical in nature because
discrete-event simulation models have stochastic (ran-
dom) components. Common statistical analysis tools
(means, standard deviations, percentiles, histograms,
confidence intervals, correlations, etc.) are used to
draw statistical inferences concerning the model.

10. Make decisions. It is to be hoped that the results
of Step 9 will lead to decisions that result in actions.
If so, the extent to which the computational model
correctly predicted the outcome of these actions is
always of great interest, particularly if the model is to
be further refined in the future.

11. Document the results. This documentation
should include assumptions made concerning the
model, details associated with translating the model
into computer code, and a summary of insights gained
concerning the system. If decisions are made and
associated action taken, then the results of that action
on the system should be documented.

An important benefit of developing and using a dis-
crete-event simulation model is that valuable insight
concerning the system is acquired. As conceptual
models are formulated, computational models devel-
oped, and simulation output data analyzed, subtle sys-
tem features and component interactions are often
discovered that would not have been noticed other-
wise. The systematic application of the 11 steps out-
lined above can result in better actions taken as a
result of insight gained by an increased understanding
of how the system operates.

Simulation Programming Languages

There is a continuing debate in the discrete-event simu-
lation community over whether to use a general-purpose
programming language or a (special-purpose) simula-
tion programming language. For example, two standard
discrete-event simulation textbooks provide the follow-
ing conflicting advice. Bratley, Fox, and Schrage state,
“For any important large-scale real application we
would write the programs in a standard general-purpose

language, and avoid all the simulation languages we
know.” In contrast, Law and Kelton state, “We believe,
in general, that a modeler would be prudent to give seri-
ous consideration to the use of a simulation package.”
General-purpose languages are more flexible and famil-
iar; simulation languages allow modelers to build com-
putational models quickly.

Simulation languages have built-in features that
provide many of the tools needed to write a discrete-
event simulation program. Because of this, simulation
languages support rapid prototyping and have the
potential of decreasing programming time signifi-
cantly. Moreover, animation is a particularly impor-
tant feature now built into most of these simulation
languages. This is important because animation can
increase the acceptance of discrete-event simulation
as a legitimate problem-solving technique. By the use
of animation, dynamic graphical images can be
created that enhance verification, validation, and the
development of insight. (The features and costs of
these languages are surveyed by Swain.) 

—Lawrence Leemis
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SINGLE-SUBJECT DESIGNS

Single-subject designs involve the intensive study of
individual subjects under various conditions, in vari-
ous environments, or some combination thereof.
The subject of interest is often a single organism,



such as a client in a clinical setting, but could also
be a group of individuals acting as a single unit,
such as a department within an organization or 
a school within a district. This focus on the individ-
ual is reflected in the alternative labels for single-
subject designs, including single-case designs,
N of 1 designs, and within-subject designs. Although
single-subject designs focus on the individual, stud-
ies using these designs typically include several
participants.

Single-subject designs can be used in correlational
or experimental studies, but we will focus on experi-
mental designs. These designs share some basic fea-
tures with group (or between-subject) experimental
designs: An independent variable (IV) is manipu-
lated, a dependent variable (DV) is measured, and
nuisance variables (NVs) are controlled. Unlike
participants in group designs, participants in single-
subject designs receive all levels of the IV, while the
DV is measured repeatedly under those levels. The
values of the DV under each level of the IV (e.g., a
control condition and one or more treatment condi-
tions, or interventions) are compared, and causal
inferences regarding the effects of the intervention(s)
are then made. In these designs, each participant
serves as its own control.

Single-subject designs provide useful and flexible
methodological options when (a) one cannot obtain
appropriate numbers of participants for group designs
(e.g., the population of interest is relatively small,
such as persons with a rare medical condition), (b)
one seeks to assess treatment effectiveness in partic-
ular individuals (e.g., the progress of specific clients
is of interest), or (c) one cannot ethically use group
designs (e.g., withholding treatment from individuals
in a control group is not an option). Practical reasons
may also necessitate the use of single-subject
designs.

The specific details of single-subject designs
vary, but most such designs share two common fea-
tures. First, the DV is measured repeatedly across
time; how often it is measured depends on many
factors, including available resources and the nature
of the study. Repeated measurement permits the
researcher to track changes in the DV and, if

necessary, to modify treatment conditions if the DV
does not change in the desired direction. Second, the
level of the DV in the absence of treatment is estab-
lished during a baseline (or A) phase, which typi-
cally occurs at the beginning of the study, before
treatment is administered, although there are some
exceptions.

The baseline phase serves three important func-
tions: (a) It provides information regarding the pre-
treatment level of the DV; (b) it provides information
on the predicted level of the DV if treatment is not
applied; and (c) it provides control data with which
treatment data will be compared, with differences in
the DV between baseline phase and the treatment (or
B) phase providing evidence for the effects of the
intervention. Figure 1 presents fictitious data to illus-
trate these functions. The DV is the number of acci-
dents per week at a job site, and the intervention is a
program that provides workers with incentives for
every day without an accident. Panel A shows that the
baseline level of the DV hovers around 15 accidents
per week. From these data, we can predict that the
number of accidents would probably remain the same
if the intervention were not introduced. Panel B
depicts a decrease in the number of accidents on intro-
duction of the intervention. The change in the DV
from the baseline phase to the treatment phase pro-
vides evidence, albeit limited, of the intervention’s
effectiveness.

To aid the interpretation of an intervention’s
effectiveness, baseline data should show stability.
Stability means the data show neither a systematic
upward or downward trend (i.e., the data have 
a slope near zero) nor excessive variability (i.e., the
data hover around a consistent value, showing only
minor fluctuations from one measurement occasion
to the next). Stable baseline data provide a relatively
clear benchmark against which to assess the effects
of the intervention and information about the steady-
state level of the DV. There are no simple rules 
for deciding when baselines are sufficiently stable,
for such a decision depends on several factors,
including the nature of the DV, the subject matter,
and practical considerations. Notice that Panels A and
B of Figure 1 depict stable data. Panels C and D of
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Figure 1 depict baseline data that are unstable and
extremely variable, respectively.

Withdrawal Designs

The example in Figure 1 represents a quasi-experimental
single-subject design that consists of two phases, a
baseline (A) phase followed by a treatment (B) phase.
Such A-B designs are vulnerable to several threats to
internal validity. It is possible that some NV, and not
the intervention, caused the observed changes in the
DV during the B phase. For example, these changes
could have resulted from the coincidental occurrence
of some external event or from changes in the partici-
pants themselves. To increase confidence that the

intervention was responsible for changes in the DV,
the researcher could withdraw the intervention and
return to baseline conditions, yielding an A-B-A
design. Such designs are often termed withdrawal
designs because the current condition is withdrawn
and replaced with another condition.

Withdrawal designs help one rule out the possible
effects of NVs on the DV by demonstrating system-
atic changes in the DV following introduction and
withdrawal of the intervention. If the level of the DV
in the second baseline phase returns to a level similar
to that seen in the first baseline, one can be more con-
fident that the intervention alone caused the observed
change during the treatment phase, for it is unlikely
that the actions of an NV happened to coincide with
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Figure 1 Data Illustrating Functions of Baseline Phase

Note: Panel A depicts a two-phase withdrawal design with baseline data and the level of the dependent variable predicted from the
baseline data. It is assumed that in the absence of an intervention, the level of the dependent variable will remain similar to that seen in
the baseline phase. Panel B depicts the same design with the addition of data demonstrating an effective treatment. The dashed line
indicates the predicted level of the dependent variable in the absence of a treatment effect. The difference in the predicted level and the
observed level of the dependent variable represents the size of the treatment effect (in this case, approximately 12 points). Panel C
depicts a downward trend in the baseline data. Panel D depicts highly variable data.



both changes in phases. When changing phases, one
should change only one condition at a time. Changing
multiple conditions simultaneously makes the deter-
mination of the relative influence of each condition on
the DV difficult, if not impossible.

One problem with A-B-A designs is that they leave
participants in an untreated baseline phase. Thus, one
may wish to reinstate the treatment after the second
baseline phase, yielding an A-B-A-B design. In addi-
tion to leaving participants in a treatment phase,
A-B-A-B designs can provide further evidence for
treatment effects by demonstrating another change in
the DV following the intervention’s reintroduction.
Two limitations of withdrawal designs are that (a)
they cannot be used to study interventions with irre-
versible effects (e.g., skills training programs, certain
medical procedures), and (b) they may require the
repeated withdrawal of an effective treatment, which
may be impractical, unethical, or impossible. In such
situations, other single-subject designs can be used.
One such design is the multiple-baseline design.

Multiple-Baseline Designs

As their name implies, multiple-baseline designs
assess the effects of the intervention across separate
baselines. These baselines can involve (a) different
DVs in the same participant in one setting, (b) the
same DV in the same participant in different situa-
tions, or (c) the same DV in different participants
under similar or different conditions. In all three vari-
ations, measurements are made simultaneously on all
baselines. When the DV on one baseline shows stabil-
ity, the intervention is introduced (i.e., the treatment
phase begins) while measurements continue on the
other baselines. If the intervention produces changes
only on the DV in the treatment phase and not on DVs
in other baseline phases, we can feel more confident
that the intervention, and not some other variable, was
responsible for the observed change. If this is the case,
and if the data are stable in the next baseline, then the
intervention is introduced on the next baseline. In this
way, the introduction of the intervention is staggered
across baselines, and the multiple-baseline design
thus comprises a collection of A-B designs. Figure 2
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Figure 2 A Multiple-Baseline Design Across Settings

Note: Baseline data are collected on all baselines, and the
intervention is introduced in a staggered manner. As with the
withdrawal design, the baseline data provide a predicted level of
the dependent variable in absence of the treatment. This figure
shows an effective intervention in that the level of the dependent
variable (the number of accidents) decreases when the treatment
is applied. We can rule out coincidental variables as causes for
the change because the dependent variable changes only when
the intervention is applied and not at other times.



depicts a multiple-baseline design across settings
using the same details as in Figure 1. Each baseline
represents a different job site.

Unlike withdrawal designs, multiple-baseline
designs can be used to study irreversible treatments
and treatments that, because of their effectiveness,
would be undesirable to withdraw. Nevertheless,
multiple-baseline designs have the following short-
comings: (a) They require the withholding of treat-
ment for extended periods of time, which may be
undesirable in some cases; (b) they require that the
DVs measured across the different baselines be
independent of each other; and (c) they may yield
ambiguous data regarding treatment effects when
changes occur during some treatment phases and not
during others.

—Bradley E. Huitema 
and Sean Laraway
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SINGULAR AND GENERALIZED

SINGULAR VALUE DECOMPOSITION

The singular value decomposition (SVD), a general-
ization of the eigendecomposition, can be used to

analyze rectangular matrices (the eigendecomposition
is defined only for squared matrices). By analogy with
the eigendecomposition, which decomposes a matrix
into two simple matrices, the main idea of the SVD is
to decompose a rectangular matrix into three simple
matrices: two orthogonal matrices and one diagonal
matrix.

Because it gives a least square estimate of a given
matrix by a lower rank matrix of the same dimen-
sions, the SVD is equivalent to principal components
analysis (PCA) and metric multidimensional scaling
and is therefore an essential tool for multivariate
analysis. The generalized SVD (GSVD) decomposes
a rectangular matrix and takes into account con-
straints imposed on the rows and the columns of the
matrix. The GSVD gives a weighted generalized
least square estimate of a given matrix by a lower
rank matrix, and therefore, with an adequate choice
of the constraints, the GSVD implements all linear
multivariate techniques (e.g., canonical correlation,
linear discriminant analysis, and correspondence
analysis). 

Definitions and Notations

Recall that a positive semidefinite matrix can be
obtained as the product of a matrix by its transpose.
This matrix is obviously square and symmetric, and
(less obviously) its eigenvalues are all positive or
null, and the eigenvectors corresponding to different
eigenvalues are pairwise orthogonal. Let X be a
positive semidefinite matrix; then its eigendecompo-
sition is expressed as

X = UΛΛUT, (1)

with U being an orthonormal matrix (i.e., UTU = I)
and ΛΛ being a diagonal matrix containing the eigen-
values of X.

The SVD uses the eigendecomposition of a posi-
tive semidefinite matrix in order to derive a similar
decomposition applicable to all rectangular matrices
composed of real numbers. The idea here is to decom-
pose any matrix into three simple matrices, two ortho-
normal matrices and one diagonal matrix. When applied
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to a positive semidefinite matrix, the SVD is equivalent
to the eigendecomposition.

Formally, if A is a rectangular matrix, its SVD
decomposes it as 

A = P∆∆QT, (2)

with 

P is the (normalized) eigenvectors of the matrix AAT

(i.e., PTP = I). The columns of P are called the left sin-
gular vectors of A.

Q is the (normalized) eigenvectors of the matrix ATA
(i.e., QTQ = I). The columns of Q are called the right
singular vectors of A.

∆∆ is the diagonal matrix of the singular values, ∆∆ = ΛΛ
1–2,

with ΛΛ being the diagonal matrix of the eigenvalues of
matrix AAT and of the matrix ATA (they are the
same).

The SVD is a consequence of the eigendecomposi-
tion of a positive semidefinite matrix. This can be
shown by considering the eigendecomposition of 
the two positive semidefinite matrices that can be
obtained from A: namely AAT and ATA. If we express
these matrices in terms of the SVD of A, we obtain the
following equations:

AAT = P∆∆QTQ∆∆PT = P∆∆2PT = PΛΛPT, (3)

and

ATA = Q∆∆PTP∆∆QT = Q∆∆2QT = QΛΛQT. (4)

This shows that ∆∆ is the square root of ΛΛ, that P are
the eigenvectors of AAT, and that Q are the eigenvec-
tors of ATA.

For example, the matrix 

(5)

can be expressed as 

(6)

We can check that 

(7)

and that 

(8)

TTeecchhnniiccaall  NNoottee::  AAggrreeeemmeenntt  BBeettwweeeenn  SSiiggnnss

Singular vectors come in pairs made of one left
and one right singular vector corresponding to 
the same singular value. They could be computed

ATA =
[

0.7071 0.7071

−0.7071 0.7071

] [
22 0
0 12

]

[
0.7071 −0.7071

0.7071 0.7071

]

=
[

2.5 −1.5

−1.5 2.5

]

.

AAT =
⎡

⎢
⎣

0.8165 0

−0.4082 −0.7071

−0.4082 0.7071

⎤

⎥
⎦

[
22 0

0 12

]

[
0.8165 −0.4082 −0.4082

0 −0.7071 0.7071

]

=
⎡

⎢
⎣

2.6667 −1.3333 −1.3333

−1.3333 1.1667 0.1667

−1.3333 0.1667 1.1667

⎤

⎥
⎦

A = P∆QT

=
⎡

⎢
⎣

0.8165 0

−0.4082 −0.7071

−0.4082 0.7071

⎤

⎥
⎦

[
2 0

0 1

]

[
0.7071 0.7071

−0.7071 0.7071

]

=
⎡

⎢
⎣

1.1547 −1.1547

−1.0774 0.0774

−0.0774 1.0774

⎤

⎥
⎦ .

A =
⎡

⎢
⎣

1.1547 −1.1547

−1.0774 0.0774

−0.0774 1.0774

⎤

⎥
⎦



separately or as a pair. Equation 2 requires comput-
ing the eigendecomposition of two matrices.
Rewriting this equation shows that it is possible, in
fact, to compute only one eigendecomposition. 
As an additional bonus, computing only one eigede-
composition prevents a problem that can arise 
when the singular vectors are obtained from two sep-
arate eigendecompositions. This problem follows
from the fact that the eigenvectors of a matrix are
determined up to a multiplication by –1 but that sin-
gular vectors, being pairs of eigenvectors, need to
have compatible parities. Therefore, when computed
as eigenvectors, a pair of singular vectors can fail to
reconstruct the original matrix because of this parity
problem.

This problem is illustrated by the following
example: The matrix

(9)

can be decomposed in two equivalent ways:

(10)

But when the parity of the singular vectors does not
match, the SVD will fail to reconstruct the original
matrix, as illustrated by

(11)

By computing only one matrix of singular vectors,
we can rewrite Equation 2 in a manner that expresses
that one matrix of singular vectors can be obtained
from the other:

(12)

For example:

(13)

Generalized Singular 
Value Decomposition

For a given I × J matrix A, generalizing SVD
involves using two positive definite square matrices
with sizes I × I and J × J, respectively. These two

P = AQ∆−1

=
⎡

⎢
⎣

1.1547 −1.1547

−1.0774 0.0774

−0.0774 1.0774

⎤

⎥
⎦

[
0.7071 0.7071

−0.7071 0.7071

]
⎡

⎣
1

2
0

0 1

⎤

⎦

=
⎡

⎢
⎣

0.8165 0

−0.4082 −0.7071

−0.4082 0.7071

⎤

⎥
⎦ .

A = P∆QT ⇐⇒ P = AQ∆−1.

A �=
⎡

⎢
⎣

−0.8165 0

0.4083 0.7071

0.4083 0.7071

⎤

⎥
⎦

[
2 0

0 1

]

[
0.7071 0.7071

−0.7071 0.7071

]

=
⎡

⎢
⎣

−1.1547 −1.1547

1.0774 0.0774

0.0774 1.0774

⎤

⎥
⎦ .

A = P∆QT

=
⎡

⎢
⎣

0.8165 0

−0.4083 −0.7071

−0.4083 0.7071

⎤

⎥
⎦

[
2 0

0 1

]

[
0.7071 0.7071

−0.7071 0.7071

]

=
⎡

⎢
⎣

−0.8165 0

0.4083 0.7071

0.4083 0.7071

⎤

⎥
⎦

[
2 0

0 1

]

[−0.7071 −0.7071

0.7071 −0.7071

]

=
⎡

⎢
⎣

1.1547 −1.1547

−1.0774 0.0774

−0.0774 1.0774

⎤

⎥
⎦ .

A =
⎡

⎢
⎣

1.1547 −1.1547

−1.0774 0.0774

−0.0774 1.0774

⎤

⎥
⎦
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matrices express constraints imposed on the rows
and the columns of A, respectively. Formally, if M is
the I × I matrix expressing the constraints for the
rows of A and W the J × J matrix of the constraints
for the columns of A, then the matrix A is now
decomposed into

A = U
∼∼ ∆∆∼∼V

∼∼ T with: U
∼∼ TMU

∼∼
= V

∼∼ TWV
∼∼

= I. (14)

In other words, the generalized singular vectors are
orthogonal under the constraints imposed by M and W.

This decomposition is obtained as a result of the
standard singular value decomposition. We begin by
defining the matrix Ã as:

(15)

We then compute the standard singular value
decomposition as Ã:

Ã = P∆∆QT with: PTP = QTQ = I . (16)

The matrices of the generalized eigenvectors are
obtained as 

U
∼∼

= M−−1–2 P and V
~ = W−−1–2 Q. (17)

The diagonal matrix of singular values is simply
equal to the matrix of singular values of Ã:

∆∆~ = ∆∆ (18)

We verify that 

A = U
∼∼ ∆∆∼∼V

∼∼ T

by substitution:

A = M −−1–2 A
∼∼

W −−1–2 = M −−1–2 P∆∆QTW −−1–2

(19)
= U

∼∼ ∆∆V
∼∼ T (from Equation 17).

To show that Equation 14 holds, suffice it to show that 

U
∼∼ TMU

∼∼
= PTM−−1–2 MM−−1–2 P = PTP = I (20)

and

V
∼∼ TWV

∼∼
= QTW−−1–2 WW−−1–2 Q = QTQ = I (21)

Mathematical Properties

It can be shown that the SVD has the important
property of giving an optimal approximation of a
matrix by another matrix of smaller rank. In partic-
ular, the SVD gives the best approximation, in a
least square sense, of any rectangular matrix by
another rectangular of the same dimensions but
smaller rank.

Precisely, if A is an I × J matrix of rank L (i.e., A
contains L singular values that are not zero), we
denote by P[K] (respectively Q[K], ∆∆[K]) the matrix made
of the first K columns of P (respectively Q, ∆∆):

P[K] = [p1, . . . ,pk, . . . ,pK] (22)

Q[K] = [q1, . . . ,qk, . . . ,qK] (23)

∆∆[K] = diag{δ1, . . . ,δk, . . . ,δK} (24)

The matrix A reconstructed from the first K eigen-
vectors is denoted A[K]. It is obtained as 

A[K] = P[K]∆∆[K]Q[K]
T = ∑∑

k

K
δ kpkq k

T (25)

(with δk being the k th singular value).
The reconstructed matrix A[K] is said to be optimal

(in a least square sense) for matrices of rank K
because it satisfies the following condition:

(26)

for the set of matrices X of rank smaller than or equal
to K. The quality of the reconstruction is given by the
ratio of the first K eigenvalues (i.e., the squared singu-
lar values) to the sum of all the eigenvalues. This
quantity is interpreted as the reconstructed proportion
or the explained variance; it corresponds to the
inverse of the quantity minimized by Equation 26. The
quality of reconstruction can also be interpreted as 
the squared coefficient of correlation (precisely as the
Rv coefficient, see entry) between the original matrix
and its approximation.

The GSVD minimizes an expression similar to
Equation 26, namely,

∣
∣
∣
∣A − A[K]

∣
∣
∣
∣2 = trace

{(
A − A[K]

) (
A − A[K]

)T
}

= min
X

||A − X||2

Ã = M
1
2 AW

1
2 ⇔ A = M− 1

2 ÃW− 1
2 .
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(27)

for the set of matrices X of rank smaller than or equal
to K.

SSVVDD  aanndd  GGeenneerraall  LLiinneeaarr  MMooddeell

It can be shown that the SVD of a rectangular
matrix gives this PCA of the matrix, with, for
example, the factor scores being obtained as F = P∆∆.

The adequate choice of matrices M and W makes
the GSVD a very versatile tool that can implement the
set of methods of linear multivariate analysis. For
example, correspondence analysis (see entry) can be
implemented by using a probability matrix (i.e., made
of positive or null numbers whose sum is equal to 1)
along with two diagonal matrices, M = Dr and W = Dc,
representing the relative frequencies of the rows and the
columns of the data matrix, respectively. The other
multivariate techniques (e.g., discriminant analysis and
canonical correlation analysis) can be implemented
with the proper choice of the matrices M and W.

An Example of Singular Value
Decomposition: Image Compression

The SVD of a matrix is equivalent to PCA. We illustrate
this property by showing how it can be used to perform
image compression. Modern technology uses digitized
pictures, which are equivalent to a matrix giving the
gray level value of each pixel. For example, the matrix 

(28)

corresponds to the image in Figure 1.
In general, pictures coming from natural images

have rather large dimensions. For example, the pic-
ture shown in Figure 2 corresponds to a matrix
with 204 rows and 290 columns (therefore 204 
× 290 = 59,160 pixels). To avoid the problem of

transmitting or storing the numerical values of
such large images, we want to represent the image
with fewer numerical values than the original
number of pixels. 

Thus, one way of compressing an image is to com-
pute the singular value decomposition and then to
reconstruct the image by an approximation of smaller
rank. This technique is illustrated in Figures 4 and 5,
which show the terms pkqk

T and the terms ∑pkqk
T,

respectively. As can be seen in Figure 4, the image is
reconstructed almost perfectly (according to the
human eye) by a rank 25 approximation. This gives a
compression ratio of 

(29)

—Hervé Abdi

1 − 25 × (1 + 204 + 290)

204 × 290

= 1 − .2092 = .7908 ≈ 80%.

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 2 2 0 2 2 2 0 2 2 2 0 2 2 2 1

1 0 2 0 0 2 0 2 0 0 2 0 0 2 0 2 1

1 0 2 0 0 2 0 2 0 0 2 0 0 2 0 2 1

1 0 2 0 0 2 2 2 0 0 2 0 0 2 2 2 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

A[K] = min
X

[
trace

{
M(A − X)W(A − X)T

}]
,
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Figure 1 The Matrix of Equation 28 Displayed as a
Picture

Figure 2 A Picture Corresponding to a Matrix on the
Order of 204 × 290 = 59,160 Pixels



See also Correspondence Analysis; Discriminant Analysis;
Discriminant Correspondence Analysis; DISTATIS;
Eigendecomposition; Least Squares, Method of; Metric
Multidimensional Scaling; Multiple Correspondence
Analysis; Multiple Factor Analysis; Principal Component
Analysis; RV and Congruence Coefficients; STATIS
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SIX SIGMA

The term Six Sigma may be interpreted in several
ways. To some, it represents a metric denoting the
level of quality of a product or process, such as the
proportion of nonconforming product. This may be
expressed as a proportion or percentage (5% noncon-
forming product, say) or in parts per million (ppm),
such as 5,000 defects per million opportunities. To
others, such as senior management, Six Sigma con-
veys a philosophy of continuous quality improvement.
This is akin to accepting Six Sigma as the organization
motto, with everyone committed to improving prod-
ucts, processes, and services along such dimensions as
quality, price, lead time, and on-time delivery. It is
interpreted as a business strategy. Finally, Six Sigma 
is viewed as a methodology for improving quality. In
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Figure 4 Reconstruction of the Image in Figure 2 

Note: The percentages of explained variance are 0.9347; 0.9512;
0.9641; 0.9748; 0.9792; 0.9824; 0.9846; 0.9866; 0.9881; 0.9896;
0.9905; 0.9913; 0.9920; 0.9926; 0.9931; 0.9936; 0.9940; 0.9944;
0.9947; 0.9950; 0.9953; 0.9956; 0.9958; 0.9961; 0.9963.

Figure 3 The Picture in Figure 2 Built Back With 
25 Pairs of Singular Vectors (Compression
Rate of ≈ 80%)

Figure 5 The Terms pkqk Used to Reconstruct the
Image in Figure 2 (see Figure 4)

Note: The eigenvalues (squared singular values) associated with
each image are 0.9347; 0.0166; 0.0129; 0.0107; 0.0044; 0.0032;
0.0022; 0.0020; 0.0015; 0.0014; 0.0010; 0.0008; 0.0007; 0.0006;
0.0005; 0.0005; 0.0004; 0.0004; 0.0003; 0.0003; 0.0003; 0.0003;
0.0002; 0.0002; 0.0002.



this context, it represents a structured approach to
problem solving using a variety of statistical and
interventional tools and techniques.

Perspective on Six Sigma as a Metric

Six Sigma was coined by Motorola in the 1980s. The
Greek letter sigma (σ) represents the variability in a
process as measured by its standard deviation. The
conceptual perspective of the term Six Sigma is that it
is desirable for a process to be operating such that the
specification limits, which govern customer require-
ments on a selected quality characteristic, are located
6 standard deviations away from the mean value of the
characteristic. It is assumed that the probability distri-
bution of the quality characteristic (X) is normal, and
its density function is given by 

where µ and σ represent the process mean and standard
deviation, respectively. When the assumption of nor-
mality of distribution of the quality characteristic can
be justified, using standard normal tables, it can be
shown that the proportion of nonconforming product is
0.002 ppm. The tail area under the normal curve, above
or below the appropriate specification limit, is 0.001
ppm on each side. Figure 1 demonstrates this concept.

The above interpretation of Six Sigma as a metric
applies in a static situation. However, Motorola
wanted to account for drifts in the process in the long

run. An assumption was made that the drift in the
process mean would be no more than 1.5 standard
deviations from its original location. This assumption
implies that a system of statistical process control will
be in place for detecting when a process goes “out of
control.”

A process could go out of control because of spe-
cial causes. These special causes are not part of the
system as designed but could occur as a result of the
use of a wrong tool, an improper raw material, or an
operator error. Identification of special causes is typi-
cally accomplished through the use of control charts.
Special causes could cause a shift in the process mean
or an increase in the process standard deviation.
Common causes, on the other hand, are inherent to the
system. A process can be redesigned to reduce the
impact of the common causes, but they can never be
eliminated completely. A process with only common
causes is said to be in statistical control.

Motorola made the assumption that if a process
mean drifted more than 1.5 standard deviations from its
initial location, statistical process control methods
should be able to detect the drift and bring the process
back to a state of control. Thus, at the worst, if the
process mean drifts 1.5 standard deviations and the drift
is not detected, the process mean would be 4.5 standard
deviations from the closer specification limit and 7.5
standard deviations from the farther specification limit.
The premise is that the process mean was initially cen-
tered between the specification limits, with each limit
being 6 standard deviations away from the mean. Under
the assumption of normality, it can be shown that the
proportion of nonconforming product outside the closer
specification limit is about 3.4 ppm, and the proportion
nonconforming outside the farther specification limit is
negligible. Thus, the total proportion of nonconforming
product is 3.4 ppm. Figure 2 demonstrates this concept;
it is assumed that the shift in the process mean is 1.5
standard deviations in either direction.

Almost all the Six Sigma literature, when viewed
in the context of a metric, highlights this nonconfor-
mance rate of 3.4 ppm. As explained in Figure 2, the
process mean, in this situation, is really 4.5 standard
deviations from the closer specification limit and not
6 standard deviations, as in the original condition.
Perhaps an appropriate term to denote this situation

f (x) = 1√
2πσ

exp(−(x − µ)2/2σ 2),
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would be Four and a Half Sigma, which would be
consistent with a nonconformance rate of 3.4 ppm.

Inherent Assumptions 
and Their Validity

The use of Six Sigma as a metric includes two inher-
ent assumptions. First, it is assumed that the distribu-
tion of the quality characteristic, which is being
compared to a set of defined specification limits, is
normal. There is no guarantee that this assumption will
be satisfied for all quality characteristics. The propor-
tion nonconforming will be influenced not only by the
location of the process mean and the magnitude of the
process variability but also by the shape of the distrib-
ution. For example, suppose a product quality charac-
teristic is found to follow an exponential distribution
with parameter λ. The probability density function is 

f(x) = λ e−λx,

where the mean and standard deviation are both 1/λ.
Suppose a lower specification limit (LSL) is specified.
The proportion nonconforming is 

P[X < LSL] = 1 − exp ((−1/λ) LSL).

In practice, λ may be estimated from historical data
and replaced by its estimate, λ̂. If so, the proportion
nonconforming found from the above equation will

not necessarily be equal to that obtained using the
normal probability distribution. Thus, the metric of
3.4 ppm nonconformance for a Six Sigma process
may not necessarily be correct, even if the closest
specification limit is 4.5 standard deviations from the
process mean.

The second assumption deals with the process shift
of 1.5 standard deviations from the original location,
assuming that the specifications were initially 6 stan-
dard deviations from the process mean. Motorola
could have made this assumption. Certainly, for all
types of products or services in various industries,
there is no guarantee that such a degree of process
shift takes place. Nor is there evidence that, as a rule,
shifts of 1.5 standard deviations will be detected and
the process mean restored through remedial action to
its original location. It is assumed that shifts greater
than 1.5 standard deviations will not happen, but this
level cannot be guaranteed.

Further, there might be instances whereby, based
on the criticality of the components or the product
quality characteristic, it is not desirable to allow a
shift of 1.5 standard deviations; detection might need
to take place sooner. In addition, on mathematical
grounds, there is no justification that for all processes,
shifts of up to 1.5 standard deviations may take place
prior to detection. 

Six Sigma as a Methodology

One of the major contributions of Six Sigma lies in its
application as a structured approach to problem solv-
ing and improvements. When applied to improving
processes (manufacturing, transactional, or service),
Six Sigma provides a road map. There are five main
phases in this approach: Define, Measure, Analyze,
Improve, and Control. 

The Define phase includes problem statement and
identification of the scope of the project. It may also
include looking at high-level process maps and defin-
ing the metrics to be used, as well as selection of base-
line and improvement goals. Implementation of Six
Sigma is typically accomplished on a project-by-
project basis. The person who serves as the promoter
of the particular project is called a champion and is
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also a liaison to senior management. Top management
support is enhanced through adequate interaction with
the champion, who conveys progress and associated
project needs to senior administration.

The Measure phase involves identifying customer
needs and documenting the process. Customer
requirements are prioritized and measures are estab-
lished with a tool known as quality function deploy-
ment. Key process output variables that impact process
performance are noted, and associated key process
input variables that can be monitored are identified.
All steps involved in the process are placed on a
process map. Here, for each activity, inputs (control-
lable and noise), outputs, ownership, and possible
reasons for failure are clearly delineated. Metrics for
determining process performance levels are also
developed. They may include such measures as defects
per million opportunities or sigma level, which is an
indication of the location of the nearest specification
limit relative to the process mean. The larger the sigma
level, the better. Other measures include short-term
process capability indices such as Cp, Cpk, CPL, and
CPU. Cp is a measure of process potential and should
be used when the process mean, µ, is centered between
specification limits. It is given by the relation 

where USL and LSL denote the upper specification
limit and lower specification limit, respectively, and σ
represents the process standard deviation. Note that,
assuming normality of distribution, the denominator,
6σ, represents the process spread. This is the distance
between the upper natural tolerance limit and lower
natural tolerance limit, each of which is 3 standard
deviations from the process mean. Hence, Cp can be
interpreted as the specification spread divided by the
process spread. Desirable values of Cp are greater than
or equal to 1. Figure 3 demonstrates a capable process
in which Cp > 1.

A drawback of Cp is that it does not consider the
location of the process. Thus, even if the process mean
were to be close to the upper specification limit and the
process variability remained the same as that in Figure 3,
the Cp index would still be greater than 1, indicating a

desirable process. However, in this situation, there
would be quite a bit of nonconforming product.

In some cases, specifications are one-sided only.
For example, the tensile strength of a cable must meet
at least a lower specification limit, or the waiting time
before being served by a teller in a bank must be less
than an upper specification limit. In these instances,
the short-term capability indices for one-sided speci-
fications are given by 

respectively. As before, desirable values of CPL or
CPU are greater than or equal to 1.

To overcome the drawback of the Cp index, the Cpk

index, which uses information on both process mean
and standard deviation, is used. It is given by

It is observed that Cpk represents the scaled dis-
tance, relative to 3 standard deviations, between the
process mean and the closest specification limit.
Desirable values of Cpk are Cpk ≥ 1. Figure 4 shows a

Cpk = min

[
USL − µ

3σ
,
µ − LSL

3σ

]

= min [CPU, CPL].

CPL = µ − LSL

3σ
or

CPU = USL − µ

3σ
,

Cp = USL − LSL

6σ
,

USLLNTL

Characteristic value (X)

Mean UNTLLSL

Process Spread

Specification Spread

3σ 3σ

Figure 3 A Capable Process With Cp > 1



process that is not capable, with nonconforming
product above the upper specification limit. The Cpk

value for this process is < 1.
In the long term, because a process can drift, an

estimate of the process standard is calculated by using
data from subgroups of information collected over a
time span. This estimate is denoted by σLT, as opposed
to the estimate of the short-term process standard
(σST), which is estimated from the variation within
subgroups. Thus, there are equivalent long-term ver-
sions for all the previous process capability indices.
These are denoted Pp, PPL, PPU, and Ppk, with the
only difference in the computation being that the
short-term estimate of the process standard deviation
is replaced by a long-term estimate.

Also in the Measure phase, capability analysis of
the measurement system is conducted to determine its
stability. Such studies are known as gauge repeatabil-
ity and reproducibility studies. Repeatability refers 
to the inherent variation present in the gage system,
implying the variation in measured values when the
same part is measured by the same inspector using the
same gage, over and over again. Reproducibility, on
the other hand, refers to the variability between inspec-
tors or the interaction between inspectors and parts.

The Analyze phase consists of identifying root
causes of variation by collecting data from the process
and analyzing it with tools such as cause-and-effect or
fishbone diagrams. The tools may also include his-
tograms, box plots, scatter diagrams, run charts, mul-
tivariable plots, and distribution plots. Distribution

plots, such as the normal probability plot, are used to
check the validity of the distributional assumptions.
Descriptive statistics on the process-related variables,
such as mean, standard deviation, skewness coeffi-
cient, and kurtosis coefficient, are commonly used.
Inferential statistics is also a focal point of analysis
and may include constructing confidence intervals
and testing hypotheses on population parameters such
as population means, proportions, variances, differ-
ence of two means, difference of two proportions, or
ratio of two variances. In situations involving compar-
ison of more than two population means, analysis of
variance is used. Also, when it is desired to develop a
statistical model for a chosen response variable based
on certain independent variables or predictors, regres-
sion analysis may be used. Software packages can
perform all these analyses.

The Improve phase focuses on how process perfor-
mance may be elevated to reach certain goals not
attainable by the current process. Design-of-
experiments concepts are used. This phase may start
with process characterization, in which key factors or
process variables that impact the response variable are
identified. Screening designs, such as two-level facto-
rial or two-level fractional experiments, or Plackett-
Burman designs may be used in this context. Once the
vital factors are identified, the next step is process
optimization. Here it is of interest to locate the region
in the important factors that leads to the best possible
response. The objective is to determine the optimal
settings of the factors such that a target value of the
response is achieved. Factorial designs or response
surface designs are possibilities, with central compos-
ite designs or Box-Behnken designs being alternatives
to explore when considering polynomial models.
Usually, analysis of variance procedures are used for
the determination of statistical significance of the fac-
tors. The last stage in this phase is the verification 
or validation step. Experiments are conducted at the
identified optimal factor settings, and the observed
response variable values are analyzed to determine
their proximity to the predicted values.

The final phase of the Six Sigma process is the
Control phase. The aim is to sustain the gains identified
in the previous phase. Opportunities for standardizing
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process steps and mistake proofing the process could
be identified. Statistical process control is accom-
plished with control charts, which detect the presence
of special causes in the system and take remedial
action as soon as possible. Rules exist for triggering
the detection of special causes, the most common one
being a single point falling outside the control limits.
Control charts exist for variables as well as for attrib-
utes; charts for the mean and range, mean and stan-
dard deviation, individuals, and moving range are
common. Refinements include the exponentially
weighted moving average, cumulative sum, and con-
trol charts for short production runs. Under attribute
charts, charts for proportion nonconforming, number
nonconforming, number of defects or nonconformi-
ties, and number of nonconformities per unit are 
commonly used.

Conclusions

While the majority of the statistical or nonstatistical
tools used in the Six Sigma approach are not new,
there are a few unique features. First, Six Sigma is
associated with an approach oriented toward bottom-
line results. Financial impact of the project is of major
concern, as is retention of top management commit-
ment. Second, Six Sigma identifies a business strategy
that may be used for continual improvement to keep
abreast of competitors. Third, it utilizes a structured
approach to improve a process, product, or services.
Such an approach facilitates a better understanding of
critical business processes. Fourth, it maintains and
improves communication between operations and
management through project presentations. Fifth, it
demonstrates the value of the various tools in the
organizational context, thus creating a win-win situa-
tion for everyone.

—Amitava Mitra

Further Reading

Breyfogle, F. W., III, Cupello, J. M., & Meadows, B. (2001).
Managing Six Sigma: A practical guide to understanding,
assessing, and implementing the strategy that yields
bottom-line success. New York: Wiley. 

Pyzdek, T. (2001). The Six Sigma handbook. New York:
McGraw-Hill.

Six Sigma article: http://en.wikipedia.org/wiki/Six_Sigma

SIXTEEN PERSONALITY

FACTOR QUESTIONNAIRE

The Sixteen Personality Factor (16PF) Questionnaire
(published by the Institute of Personality and Ability
Testing, www.ipat.com) is a comprehensive self-
report inventory of normal personality that takes 
about 35 minutes to complete. Unlike most test
authors, who try to assess a particular psychological
construct, Raymond B. Cattell designed the 16PF 
to measure personality itself. In the 1940s, Cattell
defined personality as anything about people that
allows us to predict how they will behave in a given
situation. He believed that any normal personality trait
would be reflected in the English language, as people
need adjectives to describe each other. He studied how
adjectives clung together statistically as people used
them to describe themselves and others. A factor
analysis of the results produced the 16 factors; these,
in theory, account for most of what is meant by
personality.

The 16 factors are Warmth, Reasoning, Emotional
Stability, Dominance, Liveliness, Rule-Consciousness,
Social Boldness, Sensitivity, Vigilance, Abstracted-
ness, Privateness, Apprehension, Openness to Change,
Self-Reliance, Perfectionism, and Tension. Cattell
wrote test items to measure these factors. For
example, the item “I would rather be a seal in a seal
colony than an eagle on a cliff” measured the first
factor, Warmth, or sociability. Cattell considered intel-
ligence to be a personality factor because it helps
predict behavior, and the 16PF contains some word
problems to measure reasoning. The test also has
scales that measure the participant’s response style.
The latest version of the test, the fifth edition, was
published in 1993.

After developing the test and collecting profiles
from numerous people, Cattell factor-analyzed 16PF
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results. Not counting intelligence, five factors
emerged, which the Institute of Personality and
Ability Testing has named Extraversion, Anxiety,
Self-Control, Independence, and Tough-Mindedness.
Thus, Cattell started the Big Five theory, but he
always thought that five factors were too few to
describe human personality.

As a test of normal personality, the 16PF-5 is well
suited to industrial uses, and it can be used under the
Americans with Disabilities Act for preemployment
screening. With its excellent psychometrics, it has
become one of the most widely used personality tests
in the world, available in nearly 40 languages. As psy-
chotherapy became destigmatized in the 20th century,
and as normal people seek help more than ever before,
the 16PF has been increasingly used in the clinic 
as well.

—Michael Karson

See also Personality Tests

Further Reading

Goldberg, L. R. (1993). The structure of phenotypic personal-
ity traits. American Psychologist, 48, 26–34.

Karson, M., Karson, S., & O’Dell, J. (1997). 16PF interpreta-
tion in clinical practice: A guide to the fifth edition.
Champaign, IL: Institute for Personality and Ability
Testing.

Institute for Personality and Ability Testing information about
the test, its underlying theory, and interpretive programs:
www.ipat.com

SKEWNESS

Skewness is a measure of the lack of symmetry, or the
lopsidedness, a distribution has. In other words, one
tail of the distribution is longer than another. A posi-
tively skewed distribution has a longer right tail than
left, corresponding to a smaller number of occur-
rences at the high end of the distribution. This might
be the case when you have a test that is very difficult:
Few people get scores that are very high, and many
more get scores that are relatively low. A negatively

skewed distribution has a shorter right tail than left,
corresponding to a larger number of occurrences at
the high end of the distribution. This would be the
case for an easy test (lots of high scores and relatively
few low scores).

Although skewness (and kurtosis) are used mostly
as descriptive terms (such as “That distribution is neg-
atively skewed”), mathematical indicators can indi-
cate how skewed or kurtotic a distribution is. For
example, skewness is computed by subtracting the
value of the median from the mean:

where

Sk is Pearson measure of skewness,

X
_

is the mean,

M is the median, and

s is the standard deviation.

For example, if the mean of a distribution is 100
and the median is 95, the skewness value is 100 − 95
= 5, and the distribution is positively skewed. If the
mean of a distribution is 85 and the median is 90, the
skewness value is 85 − 90 = –5, and the distribution is
negatively skewed. The formula takes the standard
deviation of the distribution into account so that skew-
ness indicators can be compared with one another.

—Neil J. Salkind

See also Kurtosis

Further Reading

Salkind, N. J. (2004). Statistics for people who (think they)
hate statistics. Thousand Oaks, CA: Sage.

SMOOTHING

Smoothing methods attempt to capture the underlying
structure of data that contain noise. Noise in data may
result from measurement imprecision or the effect of

Sk = 3(X
--- − M)

s
,
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unmeasured variables, and noise tends to mask the
structure of a data set or the relationship between two
variables. Smoothers aim to eliminate this noise while
making very few model assumptions about the distri-
bution of the data.

Common smoothing techniques include density
estimation and (nonparametric) regression curve
estimation. Density estimation uses sample data
for a single variable to estimate the population dis-
tribution of that variable. While parametric models
(e.g., normal distribution, exponential distribution)
can be fit for such data, smoothers typically
assume only that the variable is continuous with a
smooth density function. Nonparametric regres-
sion models the relationship between two (or
more) variables without assuming a specific func-
tional form (such as linear or quadratic) for the
regression curve.

The smooth curve (whether a density estimate or
regression curve) is often determined by “local
weighting”—that is, the curve value at any point on
the graph is a weighted average of the observed data
values near that point, with data closest to the point
receiving the greatest weight. Most smoothing meth-
ods incorporate some type of tuning parameter that
allows the user to control the smoothness of the esti-
mated curve.

This following example (Figure 1) relates the top
speed and gas mileage of 82 car models using data
from the U.S. Environmental Protection Agency and
available online at http://lib.stat.cmu.edu/DASL/
Datafiles/carmpgdat.html.

The smooth curve shows the negative association
between speed and mileage, reflecting that mileage
decreases steeply for low top-speed values and more
gradually for large top-speed values. The flat region in
the middle of the plot is a feature that would probably
be invisible on an examination of the raw data. This
graph was produced using the “lowess” function 
(a local regression technique very similar to the 
loess function) of the free-source statistical software
package R.

—David B. Hitchcock

See also Exploratory Data Analysis; Regression Analysis

Further Reading

Bowman, A. W., & Azzalini, A. (1997). Applied smoothing
techniques for data analysis: The Kernel Approach with 
S-Plus illustrations. New York: Oxford University Press.

Simonoff, J. S. (1996). Smoothing methods in statistics. New
York: Springer.

Smoothing methods applet for fitting a regression curve to
simulated data: http://www.spss.com/research/wilkinson/
Applets/smoothers.html

SOCIAL CLIMATE SCALES

The Social Climate Scales comprise 10 separate
scales; each taps the social climate of a different setting.
The first group, the Family Environment Scale, Group
Environment Scale, and Work Environment Scale,
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measure the social climate in community settings. 
The Classroom Environment Scale and University
Residence Environment Scale tap the social climate in
educational settings. The Community-Oriented
Programs Environment Scale, Ward Atmosphere
Scale, and Sheltered Care Environment Scale focus on
treatment and residential care settings, and the
Correctional Institutions Environment Scale and
Military Environment Inventory measure the social
climate in these two settings. The Work Environment
Scale is published by Consulting Psychologists Press
(www.cpp.com), the Sheltered Care Environment
Scale is available in a monograph published by Sage
(www.sagepub.com), and the other scales are pub-
lished by Mind Garden (www.mindgarden.com).

Each of the scales measures relationship, personal
growth or goal orientation, and system maintenance
and change dimensions. Relationship dimensions
assess the quality of personal relationships in a set-
ting. They measure how involved people are in a set-
ting, how much they help each other, and how openly
they express feelings.

Personal growth or goal orientation dimensions tap
how an environment encourages specific goals and
directions of change. For example, in the family, these
dimensions reflect independence, achievement, intel-
lectual and cultural orientation, participation in 
recreation, and moral and religious values. In the
workplace, they assess employees’ autonomy, task
orientation, and work pressure.

System maintenance and change dimensions mea-
sure order and organization in a setting, how clear it is
in its expectations, how much control it maintains, and
how responsive it is to change.

Each of the Social Climate Scales has three forms:
the Real Form (Form R), the Ideal Form (Form I), and
the Expectations Form (Form E). The Real Form asks
people how they see a social environment. The Ideal
Form asks about a preferred or ideal setting. The
Expectations Form asks people to describe what they
imagine a new, unfamiliar environment will be like.
These forms of the scales measure how people see the
settings they are in, what an ideal setting for them
would include, and what they expect a new setting
they are about to enter will be like.

Each of the scales is based on extensive normative
and psychometric data; the subscales have adequate
internal consistency, stability, and construct and
predictive validity. The scales have many practical
applications. They are used to educate clinicians, con-
sultants, and program evaluators about social environ-
ments and to help them describe environments,
formulate clinical case descriptions, facilitate individ-
ual and family counseling, match individuals and
environments, and plan interventions to improve envi-
ronments. With respect to research applications, the
scales are used to compare and contrast environments,
understand the determinants and impacts of social cli-
mate, predict adjustment to life crises, and identify
environmental risk factors.

—Rudolf H. Moos

See also Family Environment Scale

Further Reading

Moos, R. (2003). The Social Climate Scales: A user’s guide
(3rd ed.). Redwood City, CA: Mind Garden.

Moos, R., & Lemke, S. (1996). Evaluating residential facili-
ties. Thousand Oaks, CA: Sage.

SOCIAL SKILLS RATING SYSTEM

The Social Skills Rating System (SSRS) provides a
broad, multirater assessment of student social behav-
iors that can affect teacher-student relations, peer
acceptance, and academic performance. The SSRS
documents the perceived frequency and importance
of behaviors influencing a student’s development of
social competence and adaptive functioning at
school and at home. The SSRS components include
three behavior rating forms (teacher, parent, and
student versions) and an integrative assessment and
intervention planning record. Teacher and parent
forms are available for three developmental levels:
preschool, Grades kindergarten through 6, and
Grades 7 through 12. The SSRS assesses the domains
of social skills, problem behavior, and academic
competence.
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The Social Skills Scale has five subscales:
Cooperation, Assertion, Responsibility, Empathy, and
Self-Control. The Problem Behaviors Scale has three
subscales that measure Externalizing Problems,
Internalizing Problems, and Hyperactivity. The
Academic Competence domain concerns student
academic functioning and consists of a small, yet crit-
ical, sample of relevant behaviors. Items in this
domain are rated on a 5-point scale that corresponds
to percentage clusters (1 = lowest 10%, 5 = highest
10%). This domain includes items measuring reading
and mathematics performance, motivation, parental
support, and general cognitive functioning. The scale
appears on the teacher form at the elementary and
secondary levels.

Scores are based on the results of 3-point ratings on
the Social Skills Scale and the Problem Behaviors
Scale (0 = never occurs, 1 = sometimes occurs, and 
2 = very often occurs). All social skills items are rated
on two dimensions: frequency and importance. The
inclusion of the importance dimension allows raters to
specify how important each social skill is for class-
room success (teacher ratings), for their child’s devel-
opment (parent ratings), and for the student’s
relationships with others (student ratings).

The SSRS was standardized on a national sample
of 4,170 children and used their self-ratings and rat-
ings of them by 1,027 parents and 259 teachers.
Internal consistency estimates for the SSRS across all
forms and levels yielded a median coefficient alpha
for the Social Skills Scale of .90, .84 for the Problem
Behaviors Scale, and .95 for the Academic
Competence Scale. Overall, these coefficients indi-
cate a relatively high degree of scale homogeneity.
The SSRS manual presents a number of studies
investigating the construct, criterion-related, and con-
tent validity of the scale. For example, the SSRS
Social Skills Scale and subscales correlate highly
with other measures of social skills, such as the
Walker-McConnell Scale of Social Competence 
and School Adjustment and the Social Behavior
Assessment. The SSRS Problem Behaviors Scale and
subscales show moderate to high correlations with
the Child Behavior Checklist and the Harter Teacher
Rating Scale. In addition, the SSRS Social Skills,

Problem Behaviors, and Academic Competence
scales reliably differentiate children with mild dis-
abilities (e.g., learning disabilities, behavior disor-
ders, and mild mental or cognitive disabilities) from
students without disabilities.

The SSRS has been used in hundreds of studies of
children’s social behavior. The SSRS has a represen-
tative national standardization and extensive evidence
for reliability and validity. One of the most attractive
features of the SSRS is its utility in selecting target
behaviors for intervention purposes, a feature uncom-
mon to most behavior rating scales. An intervention
guide that provides a manualized approach to teaching
and improving more than 40 social skills coordinates
with the SSRS results.

—Stephen N. Elliott

Further Reading

Achenbach, T. M., & Edelbrock, C. (1983). Manual for the
child behavior checklist and revised child behavior profile.
Burlington: University of Vermont, Department of
Psychiatry.
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children. Denver, CO: University of Denver. 
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OH: Cedars Press.

Walker, H. M., & McConnell, S. (1988). Walker-McConnell
Scale of Social Competence and School Adjustment.
Austin, TX: PRO-ED.

SOCIETY FOR RESEARCH

IN CHILD DEVELOPMENT

The Society for Research in Child Development
(SRCD) is an organization of more than 6,000
members from various academic disciplines concerned
with the study of child development. Disciplines
include, but are not limited to, anthropology, home
economics, linguistics, neuroscience, nursing, nutrition,

Society for Research in Child Development———921



pediatrics, psychiatry, psychology, public health, and
sociology. In addition to being multidisciplinary, the
society’s membership is also international.

The child development movement in the United
States began in the 1920s, but its roots reach back
much further. It arose from external pressures broadly
based on desires for better health, rearing, education,
legal rights, and occupational treatment of children.
Movements related to child health, child study, and
mental hygiene were prominent by the late 19th and
early 20th centuries. From these activities came the
idea that children were the responsibility of the
society at large.

The scientific status of the field of child develop-
ment received formal recognition in 1923 through the
Committee on Child Development, appointed by the
National Research Council, a division of the National
Academies of Science. Its purpose was to integrate
research activities and to stimulate research in child
development. In 1927, Child Development Abstracts
and Bibliography, SRCD’s first publication (which
continued until 2000), was begun.

In 1933, the Committee on Child Development
formed a new, independent organization, and the
Society for Research in Child Development emerged.
Its mission is to promote multidisciplinary research on
infant, child, and adolescent development in diverse
contexts and its life-long implications; to foster the
exchange of information among scientists and other
professionals worldwide; and to encourage applica-
tions of research-based knowledge.

The society currently publishes three journals:

1. Child Development—contains original articles on
development research and theory; six issues a year 

2. Monographs of the Society for Research in Child
Development—consists primarily of comprehensive
reports of large-scale research projects or integrated
programs of research; four issues a year 

3. Social Policy Report—focuses each issue on a single
topic affecting children, youth, or families and
includes analyses of legislation and syntheses of
research on issues of social policy and children; four
issues a year 

The society hosts a biennial meeting with an
attendance of more than 5,500. These internation-
ally attended meetings include individual research
reports, symposia, invited lectures, and discus-
sion sessions, among other timely and historical
programs.

Almost one fifth of SRCD’s members come from
more than 50 nations other than the United States.
Special efforts are made by the society to increase
communication and interaction among researchers 
in human development throughout the world. The
society also has a commitment to research and train-
ing in diversity. A major goal of SRCD is to increase
and disseminate research on children from many
racial and ethnic minorities.

The society maintains the Office of Policy and
Communications in Washington, D.C. The director
supervises the SRCD Fellows Program in Child
Development. The goals of this program are to con-
tribute to the effective use of scientific knowledge, to
educate the scientific community about public policy,
and to establish effective liaisons between scientists
and federal and congressional offices. Fellows spend a
year in federal agencies or congressional offices
working to facilitate the application of research to
societal issues regarding children and families. The
Office of Policy and Communications also has pro-
grams to communicate research to the media and the
public.

The society welcomes persons interested in child
development. Membership is open to any individual
actively engaged in research in human development
or any of the related basic sciences, teaching rele-
vant to human development, or activity otherwise
furthering the purposes of the society. SRCD is
located at 3131 S. State St. Suite 301, Ann Arbor,
MI, 48108.

—John W. Hagen, Mary Ann McCabe,
and Nicholas G. Velissaris

Further Reading

Society for Research in Child Development Web site:
www.srcd.org
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SOCIOLOGICAL ABSTRACTS

Sociological Abstracts, owned by Cambridge
Scientific Abstracts (CSA), is an electronic database
of bibliographic citations and abstracts that provides
access to the world’s literature in theoretical and
applied sociology and related disciplines in the social
and behavioral sciences. Fields covered range from
anthropology to gender studies to substance abuse.
Containing more than 650,000 records as of July
2005, the database provides citations and abstracts of
articles from more than 1,800 journals from 1963 to
the present. It also contains abstracts of books, book
chapters, book reviews, conference papers, and disser-
tations, along with book, film, and software review
citations. Hard-copy records published in the first 10
years of the database (1952–1963) were digitized and
added to the electronic version of Sociological
Abstracts in 2005. The database is updated on a
monthly basis, with roughly 30,000 records added
each year.

The journals presently reviewed for inclusion in
the database are divided into three categories—core
journals, priority journals, and selective sources—on
the basis of the level-of-relevant-coverage rating they
receive. Core journals are those produced by dedi-
cated sociological associations, faculties, and so forth,
or which include sociology in their titles. All signifi-
cant articles appearing in core journals are fully
abstracted and indexed. Priority journals, from disci-
plines such as anthropology and political science,
which frequently address noteworthy sociological
issues, are those that regularly feature the work of
sociologists. More than half of the significant articles
appearing in priority journals are covered in
Sociological Abstracts. Serial periodicals that publish
the works of sociologists intermittently are considered
selective sources; less than half of the significant arti-
cles featured in these works are selected for coverage.

Sociological Abstracts contains both limited and
comprehensive search tools. The Quick Search option
allows users to enter a word or phrase pertaining to a
subject of interest and to delimit the search by date.

The Advanced Search option permits even more
elaborate search strategies through the use of various
parameters. Database users may structure their
searches through any number of combinations of fields,
such as author, keyword, title, publisher, language,
and so forth. They can further refine their searches by
restricting their results to year or to journal articles
only. In addition, Sociological Abstracts contains a
thesaurus function to assist in expanding searches.

On completing a search, the database will display a
list of resulting records, each showing the title, author,
and source of the item, along with an excerpt from the
item abstract. Sociological Abstracts does not provide
access to full-text versions of the listed records. Users
interested in obtaining sociology-related full-text
documents should access an alternate CSA database,
Sociology: A SAGE Full-Text Collection. CSA sells
Sociological Abstracts database licenses to both insti-
tutions and individuals. Numerous academic libraries
provide access to Sociological Abstracts to faculty,
staff, and students.

—Johnny Holloway

Further Reading

Chall, M., & Owen, T. M. (1995). Documenting the world’s
sociological literature: Sociological Abstracts. Publishing
Research Quarterly, 11(3), 83–95.

Sociological Abstracts: http://www.csa.com/factsheets/socioabs-
set-c.php

SPATIAL LEARNING ABILITY TEST

The Spatial Learning Ability Test (SLAT) is a non-
verbal measure of complex spatial manipulations (i.e.,
mental rotation and folding of a two-dimensional item
into a three-dimensional item). A cognitive design
system approach was applied to develop SLAT so that
variations in items reflect variations in spatial pro-
cessing. Both the level and the cognitive source of
SLAT item difficulties are well predicted from a cog-
nitive model that is operationalized by item stimulus
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content. Research has supported SLAT as being a
more pure measure of spatial processing than several
other spatial tests, even when compared with tests
with the same item type. The cognitive design system
approach reduces the role of verbal-analytic process
strategies in item solution, especially with the design
of the distractors. 

SLAT consists of cube-folding tasks, as shown in
Figure 1. The stem of each SLAT item is a two-
dimensional figure consisting of six connected squares
with markings on each side. This two-dimensional
figure can be folded into a cube. The alternatives show
various three-dimensional views of folded cubes. The
examinee must choose which alternative shows the
correct representation of the markings on the sides of
the cube when the cube has been folded.

Three fixed-content test forms and an adaptive
form of SLAT are available for use as computerized
tests. All SLAT items are calibrated by the Rasch item
response theory model. The metric of SLAT scores is
defined by the item response theory model. Norms for
two samples of young adults are available. SLAT is
also available in a dynamic form, which has some
support for incremental validity over the static SLAT.

—Jennifer Ivie and Susan Embretson

Further Reading

Embretson, S. E. (1992). Technical manual for the Spatial
Learning Ability Test (Tech. Rep. No. 9201). Lawrence:
University of Kansas, Department of Psychology. 

Embretson, S. E. (1994). Application of cognitive design
systems to test development. In C. R. Reynolds (Ed.),

Cognitive assessment: A multidisciplinary perspective.
New York: Plenum.

Embretson, S. E. (1996). Cognitive design systems and the
successful performer: A study on spatial ability. Journal of
Educational Measurement, 33, 29–39.

Embretson, S. E. (1997). The factorial validity of scores from
a cognitively designed test: The Spatial Learning Ability
Test. Educational and Psychological Measurement, 57,
99–107.

Adaptive testing Web site including SLAT: http://psychology
.gatech.edu/cml/Adaptive/slat.htm 

Susan Embretson biography: http://www.psychology.gatech
.edu/WhoWeAre/Faculty/bio-SEmbretson.htm

SPATIAL STATISTICS

The terms spatial statistics and spatial analysis refer
broadly to that class of statistical methods used to ana-
lyze spatial data. Spatial data are observations for
which the locations of the observations are an impor-
tant part of the information carried by the data. It is
common to divide the types of spatial data, and the
associated analytical tools, into three groups: point
pattern data, geostatistical data, and lattice data.

Point Pattern Data

For point pattern data, the locations of the observa-
tions constitute the attribute of interest. For example,
such data might consist of the locations of all cases of
childhood leukemia in a given state. Of interest is
whether the data exhibit clustering. That is, do the
locations of cases arise in groups more than would be
expected from a random distribution of locations in
the state? If so, this clustering might suggest an envi-
ronmental cause associated with the disease.

In other instances, the pattern of locations might be
regular. That is, there might be a greater distance
between locations than would occur at random. This
often occurs in cities, for example, with respect to the
locations of elementary schools. Such regularity of
the spatial distribution corresponds to policy decisions
reflecting the inefficiency of grouping schools close
together.
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Figure 1 SLAT Cube-Folding Tasks



Combinations of patterns can also exist. At one
scale, stores often occur in clusters, such as in shop-
ping malls, while at another scale, there is regularity:
Malls tend to be distributed across cities rather than
tightly concentrated in one subregion of a city.

The statistical tools used to analyze point pattern
data range in complexity. Simplest are those that
involve dividing the study region into equal-sized sub-
regions and performing a chi-square test to assess
whether the counts of locations within the subregions
differ significantly from what would be expected under
a random (uniform) distribution of observations. If the
region of interest is divided into a hierarchy of nested
squares, say, the repeated application of such tests can
be used to detect spatial patterns at various scales.

While straightforward, the aforementioned
approaches require the division of the study region
into arbitrary subregions, the choice of which is not
without consequence. Thus, there is interest in meth-
ods that do not require such subdivision. One example
is Ripley’s K function, based on interpoint distances.
In this method, one first calculates the geographic
distance between each pair of points, and then the
cumulative distribution function of these distances is
determined. Finally, by means of Monte Carlo simu-
lations, tests can be constructed to determine whether
there is evidence of clustering, randomness, or regu-
larity, and at what scale or scales these patterns occur.

Still more sophisticated methods exist for describ-
ing point pattern data. One class of these methods
involves the construction of statistical models wherein
the observations are assumed to be from a Poisson
distribution whose intensity varies across the study
area. The focus is then on characterizing the intensity
function. This method is typically quite computation-
ally intense, but it has attracted considerable interest
recently in the study of spatial clustering of human
diseases. More generally, point pattern methods find
applications in a variety of biological, environmental,
physical, and social science settings.

Geostatistical Data

Like point pattern data, geostatistical data include 
the locations of the observations, denoted here as

coordinates (xi, yi), representing, for example, longi-
tude and latitude. However, the focus with geostatisti-
cal data is less on the locations than on the
measurements or observations recorded at the loca-
tions, denoted w(xi, yi).

Geostatistical data arise often in environmental
studies such as the following example. Especially in
rural regions, there is interest in measuring the con-
centration of contaminants such as atrazine in well
water. Such data are collected by assaying water
sampled from numerous wells located on farms
across the region. The concentrations, w, plus the
locations of the observations, (x, y), comprise the
geostatistical data. A goal in analyzing such data
might involve estimating the population mean con-
centration for the region and constructing a confi-
dence interval for that mean or testing a hypothesis
concerning the mean.

The primary concern for geostatistical data is that
the observations w might not be statistically indepen-
dent. Consequently, the usual statistical tools, t tests,
F tests, analysis of variance (ANOVA), and so forth,
which rely on such independence, are not applicable
in their standard form. Instead, new methods must be
used that take into account spatial autocorrelation.

An approach for describing spatial autocorrelation
is based on several assumptions, including that of
anisotropy. Put simply, anisotropy requires the corre-
lation between two w values to depend only on the
distance between observations and not on the direc-
tion from one to the other. Granting such an assump-
tion, consider the value of w at two locations, (x1, y1)
and (x2, y2), a distance apart.
The variogram for observations separated by this dis-
tance is defined to be the expected value of the
squared difference in w values: E[w(x1, y1)–w(x2, y2)]

2.
With appropriate assumptions, it can be shown 
that this equals 2σ2[1–ρ(w(x1, y1),w(x2, y2))], where σ2

represents the variance of a single observation, and ρ
represents correlation. The variogram, therefore, can
be viewed as a measure of correlation in spatial
observations.

It is common to estimate the variogram as a func-
tion of the distance h. With such an estimate available,
it is possible to adapt standard methods, eventually

h = √(x1 − x2)2 + (y1 − y2)2
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yielding the spatial analogs of regression, ANOVA,
confidence intervals, and so forth.

The majority of geostatistical tools apply best to
Gaussian data. Other forms of continuous data might
be approached by making an appropriate transforma-
tion of the observations, but the geostatistical analysis
of categorical data, for example, is not straightfor-
ward, and research into such methods is ongoing.

Lattice Data

Lattice data bear similarities to geostatistical data.
Again, greater interest is focused on some measured
or observed quantity w, and again there is concern that
these observations are spatially correlated, in which
case standard statistical methods cannot be used.
However, instead of focusing specifically on loca-
tions, as for geostatistical data, lattice data are distin-
guished by a neighborhood structure, which forms the
basis for modeling spatial autocorrelation.

For example, consider the number of housing units
for each county in a state. The numbers of housing
units in two neighboring counties might be highly cor-
related, perhaps as a result of latitude (reflecting cli-
mate), amenities (proximity to a sea shore, proximity
to a large urban area), and so forth. To formalize this
spatial autocorrelation requires the definition of
neighboring counties. For example, two counties
might be deemed neighbors if they have an adjacent
boundary. Alternatively, two (possibly nonadjacent)
counties might be declared neighbors if their seats are
not separated by more than 50 miles.

Consider the neighborhood weights matrix A
whose ijth component is 1 if counties i and j are
neighbors and 0 otherwise. Also, let W represent the
vector of w values for all counties, and let 1 be a vec-
tor of 1s. We might postulate the model

W = µ1+e,

where e represents the correlated error variation in the
values of w about µ. One possible model for e takes
the form 

e = ρAe+ε.

Here, the components of ε are assumed to be inde-
pendent, Gaussian variables with variance τ 2, say.
Then, this hierarchical combination of models induces
a spatial autocorrelation among the w values.
Proceeding requires the estimation of µ, ρ, and τ 2.

Numerous extensions of this model exist. The
neighborhood matrix A need not consist only of 0 and
1 values; it is possible to incorporate noninteger and
even negative values to reflect partial or inverse neigh-
borhood associations. Alternative models for e can
also be used, as can models for W, including regres-
sion terms. Moreover, while the resulting model for W
is different, it is possible to apply lattice methods to
categorical data. In such cases, inferences are usually
based on Monte Carlo methods.

The great flexibility of lattice models makes
them appealing tools, and they see considerable use
in demography, economics, public health, and so
on. This flexibility comes at a price, however,
because it is not always clear how to define the
neighborhood matrix A or how to choose among the
many models for e. Perhaps for related reasons,
the contrasting geostatistical methods tend to find
greater favor in environmental, ecological, and
other settings where the definition of a neighbor-
hood structure is less obvious but where the
assumption of autocorrelation being a function
simply of distance is tenable.

Conclusion

As a subdiscipline, spatial statistics is enjoying con-
siderable growth, fueled by several major changes in
the research world. First, the ability to gather spatial
data has greatly increased—the network of earth-
orbiting satellites is a prime example, providing
atmospheric, geographical, biological, and environ-
mental data. Second, the advent of Geographical
Information Systems increases our ability to archive
and process such data. Both of these advances can be
credited in large part to the existence of increased
computing power. A third benefit of such power is the
advance in statistical analysis tools, such as Monte
Carlo simulation, that permit high quality, effective
analyses.
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Despite these advances, numerous open questions
in spatial statistics remain, and the need for additional
and more refined tools persists.

—Murray Clayton

Further Reading

Cressie, N. A. C. (1993). Statistics for spatial data. New York:
Wiley. 

Diggle, P. J. (2003). Statistical analysis of spatial point pat-
terns. London: Hodder Arnold. 

Haining, R. P. (1990). Spatial data analysis in the social and
environmental sciences. Cambridge, UK: Cambridge
University Press.

Ripley, B. D. (2004). Spatial statistics. London: Wiley. 

SPEARMAN’S RHO

Since its inception more than a century ago, the
correlation coefficient has remained one of the most
commonly used statistical indices in empirical
research. A correlation coefficient provides an index
of the relationship between two variables, or bivari-
ate relationship. When both variables are quantita-
tive in nature and either (a) they depart from
normality or (b) they represent ordinal scales of mea-
surement, then a researcher can use Spearman’s rho
(ρ), also known as the Spearman rank correlation
coefficient. Charles Spearman introduced the con-
cept of Spearman’s rho in his seminal article in 1904,
titled “The Proof and Measurement of Association
Between Two Things,” published in the American
Journal of Psychology.

Technically speaking, Spearman’s rho, a nonpara-
metric measure of association, is appropriate when-
ever each variable is measured on at least an ordinal
scale and both variables are taken from any continu-
ous bivariate distribution. Moreover, Spearman’s rho
does not require any assumption about the frequency
distribution of the variables. However, when the vari-
ables are normally distributed, the procedure known
as Pearson’s r, or the Pearson product-moment
correlation, has more statistical power than does
Spearman’s rho and thus is more appropriate. In fact,

the asymptotic relative efficiency of Spearman’s rho
with respect to Pearson’s r is 91.2%. In other words,
Pearson’s r is more efficient than Spearman’s rho in
that for a desired level of statistical significance (i.e.,
Type I error), Pearson’s r has the same power for
detecting statistical significance as does Spearman’s
rho using 91.2% of the sample size needed for
Spearman’s rho. Alternatively stated, if a sample size
of 1,000 is needed for a relationship to be declared
statistically significant for a nominal alpha level using
Spearman’s rho, then a smaller sample size (i.e., 912)
is needed to yield the same p value when using
Pearson’s r. However, when the normality assumption
is violated, the Type I error rate is inflated when
Pearson’s r is used, and thus nonparametric alterna-
tives should be employed.

Spearman’s rho is the second-most-popular
bivariate correlational technique. Computation of
Spearman’s rho is as follows: Suppose we have n pairs
of continuous data. The first step in computing
Spearman’s rho is to rank the X scores in the paired
sample data from 1 (smallest score) to n (largest
score), and independently rank the Y scores in the
paired sample data from 1 (smallest score) to n
(largest score). Therefore, the original (X1Y1),
(X2Y2), . . . , (XnYn) pairs of observations will change
to [Rank (X1), Rank (Y1)], [Rank (X2), Rank (Y2)], . . . ,
[Rank (Xi), Rank (Yi)]. The next step in the process is
to calculate a difference d for each pair as the differ-
ence between the ranks of the corresponding X and Y
variables. The sum of the differences always will
equal zero. The test statistic, denoted by rs, is defined
as the sum of squares of these differences3. The for-
mula for this expression is

(1)

An examination of the extreme cases helps us see
how this formula works. Suppose both X and Y scores
represent identical ordered arrays from smallest to
largest. In this case, each di = 0, and thus Σdi

2 = 0, and
substitution in Equation 1 provides an rs value of +1.
Thus, rs = 1 describes a perfect positive relationship
between ranks. Conversely, if the ranks of the X scores

rs = 1 − 6
∑

d2
i

(n3 − n)
.
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are the complete opposite of the ranks of the Y scores,
then it can be demonstrated that

(2)

Substitution of this value into Equation 1 leads to
an rs value of −1, which describes a perfect negative
relationship. Interestingly, Spearman’s rho is equal to
Pearson’s r with ranks substituted for the original
scores.

If two or more scores within the X or the Y set, or
both, have the same value (i.e., tied observations),
midranks are assigned to these observations. The
midrank of a set of tied scores is defined as the aver-
age of the ranks to which they would have been
assigned if they were not tied. Unfortunately, when
one or more ties prevail, it is no longer possible for rs

to take the values −1 or +1 even when the association
is perfect. As a result, we need to make an adjustment
or correction for ties. The formula for rs then
becomes

(3)

where t′ = (Σt3– Σt)/12 for t, which represents the
number of tied scores at any given rank in the X set,
and the sums ∑ are over all the sets of t tied X ranks.
Similarly, u′ = (Σu3– Σu)/12 for ties in the Y set.
Again, Spearman’s rho in Equation 3 is equal to
Pearson’s r with ranks substituted for the original
scores and with midranks used for ties. It should be
noted that if there are no ties in either set, t′ = u′ = 0,
then the formula for rs in Equation 3 reduces to the
expression in Equation 1. 

Example With Real Data

SSppeeaarrmmaann’’ss  RRhhoo  aass  aa  DDeessccrriippttiivvee  SSttaattiissttiicc

In order to show how r can be computed, we will
introduce some real data. Onwuegbuzie was interested
in determining a relationship between the total
number of points scored (x) by professional National
Football League (NFL) teams and their winning

percentages (y) during the 1997–1998 football season.
(Both variables are continuous.) All NFL teams were
included in the study, yielding a sample size of 30.
These data are presented in Table 1. Also, the scatter-
plot is displayed in Figure 1.

Although the NFL data represented scores that
were normally distributed, with small skewness (.67
and .31 for total number of points scored and winning
percentage, respectively) and kurtosis (.91 and −.69
for total number of points scored and winning per-
centage, respectively) coefficients, as can be seen
from the SPSS output in Figure 2, we will use these
data to demonstrate how to use Spearman’s rho to
assess the relationship between the total number of
points scored (x) and winning percentage (y). The first
step is to rank the X scores in the paired sample data
from 1 (smallest score) to n (largest score), and inde-
pendently rank the Y scores in the paired sample data
from 1 (smallest score) to n (largest score). These
ranks are displayed in Table 2.

Once the scores have been ranked and the difference
in ranks calculated, squared, and summed, the next step
is to compute the correction for ties. There are no ties
in the number of points scored (i.e., x set), and so t = 0.
However, for the winning percentage variable (i.e., y
set), there are 11 sets of ties, as shown in Table 3. From
Table 3, we have u′ = (281 − 29)/12 = 21.00.

rs = n3 − n − 6
∑

d2
i − 6(t ′ + u′)√

n3 − n − 12t ′√n3 − n − 12u′ ,

∑
d2

i = n(n2 − 1)

3
= (n3 − n)

3
.

928———Spearman’s Rho

Total Number of Points Scored

600500400300200100

W
in

n
in

g
 P

er
ce

n
ta

g
e

100

80

60

40

20

0

Figure 1 Scatter Plot of Number of Points Scored
Versus Winning Percentage



Substituting this information and that in Table 1
into Equation 3 gives

SSppeeaarrmmaann’’ss  RRhhoo  aass  aann  IInnffeerreennttiiaall  SSttaattiissttiicc

Because Spearman’s rho represents a descriptive
measure of association, it can be used as a test statistic

rs = 303 − 30 − 6(724.00) − 6(21.00)√
303 − 30 − 0

√
303 − 30 − 12(21.00)

= .8382.
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Table 1 Spearman’s Rho Analysis for National Football League Data, 1997–1998

No. Points Winning % Rank of Rank of 
NFL Football Team Scored (x) (y) x y d d2

New York Giants
Washington Redskins
Philadelphia Eagles
Dallas Cowboys
Arizona Cardinals
Green Bay Packers
Tampa Bay Buccaneers
Detroit Lions
Minnesota Vikings
Chicago Bears
San Francisco 49ers
Carolina Panthers
Atlanta Falcons
New Orleans Saints
St Louis Rams
New England Patriots
Miami Dolphins
New York Jets
Buffalo Bills
Indianapolis Colts
Pittsburgh Steelers
Jacksonville Jaguars
Tennessee Oilers
Cincinnati Bengals
Baltimore Ravens
Kansas City Chiefs
Denver Broncos
Seattle Seahawks
Oakland Raiders
San Diego Chargers

Totals

287
319
161
381
325
408
314
306
556
276
479
336
442
305
285
337
321
416
400
310
263
392
330
268
269
327
501
372
288
241

50.00
37.50
18.75
62.50
56.25
68.75
50.00
31.25
93.75
25.00
75.00
25.00
87.50
37.50
25.00
56.25
62.50
75.00
62.50
18.75
43.75
68.75
50.00
18.75
37.50
43.75
87.50
50.00
50.00
31.25

8
14
1

22
16
25
13
11
30
6

28
19
27
10
7
20
15
26
24
12
3

23
18
4
5

17
29
21
9
2

16.0
10.0
2.0

22.0
19.5
24.5
16.0
7.5

30.0
5.0

26.5
5.0

28.5
10.0
5.0

19.5
22.0
26.5
22.0
2.0

12.5
24.5
16.0
2.0

10.0
12.5
28.5
16.0
16.0
7.5

−8.00
4.00

−1.00
0.00

−3.50
0.50

−3.00
3.50

.00
1.00
1.50

14.00
−1.50
0.00
2.00
0.50

−7.00
−0.50
2.00

10.00
−9.50
−1.50
2.00
2.00

−5.00
4.50
0.50
5.00

−7.00
−5.50

0

64.00
16.00
1.00
0.00

12.25
0.25
9.00

12.25
0.00
1.00
2.25

196.00
2.25
0.00
4.00
0.25

49.00
0.25
4.00

100.00
90.25
2.25
4.00
4.00

25.00
20.25
0.25

25.00
49.00
30.25

724.00

Total Number
Winning of points

% scored

N Valid 30 30
Missing 0 0

Skewness .309 .667
Std. Error of Skewness .427 .427
Kurtosis − .692 .906
Std. Error of Kurtosis .833 .833

Figure 2 SPSS Output: Skewness and Kurtosis
Coefficients for Variables in NFL Data Set

Statistics



for the null hypothesis that x and y are not related 
(i.e., that x and y are independent) versus the alternative
hypothesis that there is a positive relationship between
the total number of points scored and the winning per-
centage. The sampling distribution of rs is provided in
Table 4, for n ≤ 30. In this table, the p values given are
(a) in the right tail if the value of the test statistic 
(i.e., rs) is positive, and (b) in the left tail if the value of

the test statistic is negative. From Table 4, we can see
that the right-tail p value is p < .001. Thus, we conclude
that there is a positive relationship between the total
number of points scored and the winning percentage.

For samples larger than 30, Spearman’s rho that is
uncorrected for ties is approximately normally distrib-
uted. Under the null hypothesis, rs has a mean of zero
and a standard deviation of

(4)

This implies that the z statistic for rs is

(5)

where the p values are obtained from the standard nor-
mal tables. If there are ties in either sample, then the
corrected rs is used with Equation 5. However, when
ties prevail, the exact null distribution typically cannot
be provided because the p values depend on the par-
ticular configuration of ties. Therefore, the p values
obtained from the corrected rs are approximate. For
our NFL data, we have

The approximate p value corresponding to this z
statistic from the standard normal tables is p < .0002.

Z = .84
√

30 − 1 = 4.52.

Z = rs

√
n − 1,

1√
n − 1

.
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Table 2 Spearman’s Rho Analysis for National
Football League Data 

No. Points Winning %
NFL Football Team Scored (x) (y) U U2

Philadelphia Eagles 161 18.75 3 9
San Diego Chargers 241 31.25 3 9
Pittsburgh Steelers 263 43.75 2 4
Cincinnati Bengals 268 18.75 3 9
Baltimore Ravens 269 37.50 2 4
Chicago Bears 276 25.00 5 25
St Louis Rams 285 25.00 2 4
New York Giants 287 50.00 3 9
Oakland Raiders 288 50.00 2 4
New Orleans Saints 305 37.50 2 4
Detroit Lions 306 31.25 2 4
Indianapolis Colts 310 18.75
Tampa Bay Buccaneers 314 50.00
Washington Redskins 319 37.50
Miami Dolphins 321 62.50
Arizona Cardinals 325 56.25
Kansas City Chiefs 327 43.75
Tennessee Oilers 330 50.00
Carolina Panthers 336 25.00
New England Patriots 337 56.25
Seattle Seahawks 372 50.00
Dallas Cowboys 381 62.50
Jacksonville Jaguars 392 68.75
Buffalo Bills 400 62.50
Green Bay Packers 408 68.75
New York Jets 416 75.00
Atlanta Falcons 442 87.50
San Francisco 49ers 479 75.00
Denver Broncos 501 87.50
Minnesota Vikings 556 93.75

Totals 29 85

Notes: t = the number of tied scores at any given rank in the x
set; U = the number of tied scores at any given rank in the y set;
U2 = the square of the number of tied scores at any given rank in
the y set. Because there are no ties in the x set, t = 0.

Table 3 Correction for Tied Data

Winning % U (Frequency) U3

18.75 3 27
25.00 3 27
31.25 2 8
37.50 3 27
43.75 2 8
50.00 5 125
56.25 2 8
62.50 3 27
68.75 2 8
75.00 2 8
87.50 2 8

Total 29 281
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3

4

5

6

7

1.000
.500

1.000
.800
.600
.400
.200
.000

1.000
.900
.800
.700
.600
.500
.400
.300
.200
.100
.000

1.000
.943
.886
.829
.771
.714
.657
.600
.543
.486
.429
.371
.314
.257
.200
.143
.086
.029

1.000
.964
.929
.893
.857
.821
.786
.750
.714

.167

.500

.042

.167

.208

.375

.458

.542

.008

.042

.067

.117

.175

.225

.258

.342

.392

.475

.525

.001

.008

.017

.029

.051

.068

.088

.121

.149

.178

.210

.249

.282

.329

.357

.401

.460

.500

.000

.001

.003

.006

.012

.017

.024

.033

.044

7

8

.679

.643

.607

.571

.536

.500

.464

.429

.393

.357

.321

.286

.250

.214

.179

.143

.107

.071

.036

.000
1.000
.976
.952
.929
.905
.881
.857
.833
.810
.786
.762
.738
.714
.690
.667
.643
.619
.595
.571
.548
.524
.500
.476
.452
.429
.405

.055

.069

.083

.100

.118

.133

.151

.177

.198

.222

.249

.278

.297

.331

.357

.391

.420

.453

.482

.518

.000

.000

.001

.001

.002

.004

.005

.008

.011

.014

.018

.023

.029

.035

.042

.048

.057

.066

.076

.085

.098

.108

.122

.134

.150

.163

8

9

.381

.357

.333

.310

.286

.262

.238

.214

.190

.167

.143

.119

.095

.071

.048

.024

.000
1.000
.983
.967
.950
.933
.917
.900
.883
.867
.850
.833
.817
.800
.783
.767
.750
.733
.717
.700
.683
.667
.650
.633
.617
.600
.583
.567
.550
.533

.180

.195

.214

.231

.250

.268

.291

.310

.332

.352

.376

.397

.420

.441

.467

.488

.512

.000

.000

.000

.000

.000

.001

.001

.002

.002

.003

.004

.005

.007

.009

.011

.013

.016

.018

.022

.025

.029

.033

.038

.043

.048

.054

.060

.066

.074

9

10

.517

.500

.483

.467

.450

.433

.417

.400

.383

.367

.350

.333

.317

.300

.283

.267

.250

.233

.217

.200

.183

.167

.150

.133

.117

.100

.083

.067

.050

.033

.017

.000
1.000
.988
.976
.964
.952
.939
.927
.915
.903
.891
.879
.867
.855
.842

.081

.089

.097

.106

.115

.125

.135

.146

.156

.168

.179

.193

.205

.218

.231

.247

.260

.276

.290

.307

.322

.339

.354

.372

.388

.405

.422

.440

.456

.474

.491

.509

.000

.000

.000

.000

.000

.000

.000

.000

.000

.001

.001

.001

.001

.002

Table 4 Spearman’s Rho Correlation Distribution

n rs p n rs p n rs p n rs p

(Continued)
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10 .830
.818
.806
.794
.782
.770
.758
.745
.733
.721
.709
.697
.685
.673
.661
.648
.636
.624

.002

.003

.004

.004

.005

.007

.008

.009

.010

.012

.013

.015

.017

.019

.022

.025

.027

.030

10 .612
.600
.588
.576
.564
.552
.539
.527
.515
.503
.491
.479
.467
.455
.442
.430
.418
.406

.067

.072

.077

.083

.089

.096

.102

.109

.116

.124

.033

.037

.040

.044

.048

.052

.057

.062

10 .394
.382
.370
.358
.345
.333
.321
.309
.297
.285
.273
.261
.248
.236
.224
.212
.200
.188

.235

.246

.257

.268

.280

.292

.304

.132

.139

.148

.156

.165

.174

.184

.193

.203

.214

.224

10 .176
.164
.152
.139
.127
.115
.103
.091
.079
.067
.055
.042
.030
.018
.006

.316

.328

.341

.354

.367

.379

.393

.406

.419

.433

.446

.459

.473

.486

.500

n rs p n rs p n rs p n rs p

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

.427

.406

.385

.367

.354

.341

.329

.317

.309

.299

.292

.284

.278

.275

.265

.260

.255

.250

.245

.241

.200

.536

.503

.484

.464

.446

.429

.414

.401

.391

.380

.370

.361

.353

.344

.337

.331

.324

.318

.312

.307

.100

.618

.587

.560

.538

.521

.503

.488

.474

.460

.447

.436

.425

.416

.407

.398

.390

.383

.376

.369

.363

.050

.709

.678

.648

.626

.604

.585

.566

.550

.535

.522

.509

.497

.486

.476

.466

.457

.449

.441

.433

.426

.020

.764

.734

.703

.679

.657

.635

.618

.600

.584

.570

.556

.544

.532

.521

.511

.501

.492

.483

.475

.467

.010

.855

.825

.797

.771

.750

.729

.711

.692

.675

.660

.647

.633

.620

.608

.597

.586

.576

.567

.557

.548

.002

For n > 30, the probabilities not found using the normal distribution table by calculating Z = rs %(n − 1). The left- or
right-tail probability for rs can be approximated by the left- or right-tail probability for Z, respectively.

Source: Adapted from Gibbons (1993).

Note: Entries labeled under the p column represent the cumulative probability, right-tail from the value of rs to its maximum value of 1,
for all rs ≥ 0, n ≤ 10. The same probability is a cumulative left-tail probability, ranging from −1 to −rs. For 10 < n ≤ 30, the table yields
the smallest value of rs (largest value of −rs) for which the right-tail (left-tail) probability for a one-sided test is less than or equal to
selected values, .100, .050, .010, .005, .001, shown in the top row. The same values correspond to |rs| for a two-sided test with tail
probability .200, .100, .020, .010, .002, shown on the bottom row. 

(Continued)

Right-Tail (Left-Tail) Probability on rs (−rs) for One-Sided Test

Tail probability on |rs| for two-sided test



Comparison With Pearson’s rr

From the SPSS output in Figure 3, it can be seen that
Pearson’s r is .87. Thus, the Spearman’s rho correla-
tion of .84 represents 96.6% of the Pearson’s r corre-
lation, which reflects the loss in relative efficiency as
a result of applying Spearman’s rho on approximately
normal data. Nevertheless, using Cohen’s criteria of .1
for a small correlation, .3 for a moderate correlation,
and .5 for a large correlation, Spearman’s rho correla-
tion still is extremely large.

—Anthony J. Onwuegbuzie,
Larry Daniel, and Nancy L. Leech

See also Kendall Rank Correlation

Further Reading

Cohen, J. (1988). Statistical power analysis for the behavioral
sciences (2nd ed.). Hillsdale, NJ: Erlbaum.

Gibbons, J. D. (1993). Nonparametric measures of association
(Sage University Paper series on Quantitative Applications
in the Social Sciences, series no. 07B091). Newbury Park,
CA: Sage.

Hollander, M., & Wolfe, D. A. (1973). Nonparametric statisti-
cal methods. New York: Wiley.

Onwuegbuzie, A. J. (1999). Defense or
offense? Which is the better predictor of
success for professional football teams?
Perceptual and Motor Skills, 89, 151–159.

Onwuegbuzie, A. J., & Daniel, L. G. (2002).
Uses and misuses of the correlation coeffi-
cient. Research in the Schools, 9(1), 73–90.

Spearman’s rho applet: http://faculty.vassar
.edu/lowry/corr_ rank.html (allows you to
compute rho and perform a null hypothesis
significance test pertaining to this rho value)

SPLIT HALF RELIABILITY

All observations and all measurements
contain error. The focus of much work
in measurement is to minimize and esti-
mate the amount of error in any given
measurement. In classical test theory, X
is an observed score that is composed of

T, the true score, and E, the error score: X = T + E. The
true score is never known, but it can be thought of as
the long-range average of scores from a single instru-
ment administered to an individual an infinite number
of times (the expected value or expected score). The
error score is random and may have many sources,
including testing conditions, individual characteristics
that fluctuate from administration to administration,
differences in forms, or instability of an individual’s
ability or trait over time.

This random error score is quite different from sys-
tematic sources of error, such as testwiseness, which
may systematically increase an individual’s score on
each administration. Since testwiseness is systematic
or constant, it finds its way into the true score and
creates problems regarding validity because the trait
being measured inadvertently may be influenced by
testwiseness. Random error, since it varies randomly,
influences the consistency of scores but not the
expected value of a score (the true score) and thus
influences reliability, not validity.

Theoretically, we can estimate the amount of error if
we know how much of a given score is due to errors of
measurement. If we were able to test a single person

Split Half Reliability———933

WINPCT TOTPTS

WINPCT Pearson correlation 1.000 .866**

Sig.(2-tailed) . .000
N 30 30

TOTPTS Pearson correlation .866** 1.000
Sig.(2-tailed) .000 .
N 30 30

WINPCT TOTPTS

Spearman’s rho WINPCT Correlation Coefficient 1.000 .838
Sig. (2-tailed) . .000
N 30 30

TOTPTS Correlation Coefficient .838 1.000
Sig. (2-tailed) .000 .
N 30 30

Correlations

Correlations

**. Correlation is significant at the .01 level (2-tailed)

Figure 3 SPSS Output for Pearson’s r and Spearman’s Rho
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repeatedly without the effects of recall and fatigue,
variation in their scores would be considered measure-
ment error. If there were no measurement error, they
would get the same score on each administration. Since
it is not possible to test individuals repeatedly without
the interference of recall and fatigue, we employ groups
to estimate measurement error variance. This allows us
to estimate the standard error of measurement, or the
typical amount of measurement error in a set of scores.

If we take the classical test theory model of scores
and consider groups of scores and their variances, we
see that the variance of the observed scores equals the
sum of the variance of true scores and the variance of
error scores: S2

X = S2
T + S2

E (in sample notation).
This is the long way of introducing the need for reli-

ability: Reliability is a tool used to estimate the stan-
dard error of measurement, but it also has some
intrinsic benefits in and of itself. Theoretically, reliabil-
ity is considered the correlation between scores on two
parallel forms of a test. The idea is that if there is no
measurement error at work, scores from two parallel
forms administered to the same group of individuals
should be perfectly correlated—each individual should
obtain the same score. It can be shown that the corre-
lation between two parallel forms of a test is equal to
the ratio of true score variance to observed score vari-
ance, or the proportion of variance in observed scores
that is due to true individual differences:

This reliability coefficient can then be used in esti-
mation of the standard error of measurement because
it tells us the proportion of observed variance that is
true variance; the standard error of measurement is a
function of the proportion of observed variance that is
true variance. 

Estimating Reliability

Based on the classical test theory conception of relia-
bility, scores are reliable to the extent that individuals’
scores remain constant on repeated measurements.
One way to estimate the degree of consistency of scores
is on the basis of the idea of internal consistency of

performance. One way to think about internal
consistency is to split the test in half and consider
each half a parallel form of the test, evaluating the
consistency of performance on the two halves.

This form of reliability is best estimated when the
actual measurement procedure employs a single form,
in which error results from item or content sampling
error. This is typically done by administering the sin-
gle form to each individual and then selecting some
method of splitting the test in half to obtain two scores
for each individual. The two scores resulting from the
two halves are then correlated. This correlation is the
split half reliability coefficient.

Formal Conditions 
for Split Half Reliability

Split half reliability is estimated from the adminis-
tration of a single form on a single occasion. This is
appropriate when the measurement procedure
includes only one form or the inference from scores is
based on the ability to generalize beyond the items
selected for that form. Knowledge of split half relia-
bility allows one to generalize from one sample of
items to a larger domain of items. To be a coefficient
of reliability, the split halves should be equivalent in
terms of content specifications and statistical proper-
ties (primarily item difficulties).

There are many methods of splitting a test into
halves. One could consider a careful systematic split
securing equivalent halves in terms of content and dif-
ficulty. A more common approach is to divide items
alternately, placing the odd-numbered items into one
half test and the even-numbered items into the other
half test. Since most tests are organized by content
areas and difficulty, this approach provides essentially
equivalent halves. Another method would be to
simply randomly assign items to each half; however,
random sampling could easily lead to nonequivalent
halves. Whatever method is used, the correlation of
scores from the two halves provides the split half reli-
ability estimate.

Because this method of reliability estimation is
based on a single form of a test and the inference
regarding score consistency includes generalizing

rtt = S2
T

S2
X

.



from performance on a sample of items to performance
on the domain of items, sampling error will be
impacted by the number of items. All else equal, more
items provides more consistent scores. Since we know
that test length affects reliability, we need to adjust for
the fact that we have a correlation from a test of half
the length of the test of interest (the complete form).
This is done by employing the Spearman-Brown
prophecy formula. An estimate of the complete-form
reliability is obtained by taking 2 times the split half
reliability divided by 1 plus the split half reliability:

This form of reliability recognizes that reliability
can be estimated from consistent performance within
a single test, based on two parallel or equivalent sub-
tests. Note that the use of any one method to split the
test in half is at least partially arbitrary—there is no
theoretical justification for any given split. If the two
halves are not equivalent, the resulting correlation will
underestimate the reliability of the full test.

General Issues Regarding Reliability

Because the split half estimate of reliability is based
on a correlation, it is not simply a characteristic of 
the measurement instrument itself. Score variability
directly influences correlations, such that all else
equal, the more score variance present, the higher 
the correlation and thus the higher the reliability.
Correlational forms of reliability are sample specific
and thus not necessarily generalizable to other sam-
ples. They do, however, provide an estimate of score
consistency for the scores at hand.

In any estimate of reliability, conditions present
during the specific administration of the measurement
instrument can impact performance and scores in
random ways, leading to lower consistency of scores
and lower reliability. Each type of reliability estimate
(e.g., split half reliability) also captures a specific
form of random error. The split half reliability primar-
ily captures measurement error due to sampling items
from a domain, a form of sampling error. If this source
of error is important to estimate given the measurement

procedure (because a single form is used, and we
assume it is a random, representative sample of the
domain), then it is an appropriate form of reliability.
Technically speaking, an estimate of reliability should
be obtained for each set of scores because any one
estimate is sample specific, and the argument of gen-
eralizability across samples is difficult to make.

Finally, because sampling error is a function of
sample size, all else equal, longer forms will yield
higher reliability coefficients. Better, larger samples
of items from the domain will reduce the likelihood
that two forms differ in their ability to cover the
domain. Also, because of the arbitrary aspect of meth-
ods to split a test form in half, other internal consis-
tency measures are generally thought to be better,
including coefficient alpha.

—Michael C. Rodriguez

See also Coefficient Alpha; Parallel Forms Reliability;
Reliability Theory; Standard Error of Measurement

Further Reading

Feldt, L. S., & Brennan, R. L. (1989). Reliability. In R. L. Linn
(Ed.), Educational measurement (3rd ed.). New York:
American Council on Education, Macmillan.

Thorndike, R. M. (2005). Measurement and evaluation in psy-
chology and education (7th ed.). Upper Saddle River, NJ:
Pearson. 

SPREADSHEET FUNCTIONS

A spreadsheet function is a predefined formula. Excel,
the most popular spreadsheet, has several categories
of functions, including one labeled statistical.

One of the most simple of these functions is
AVERAGE, which computes the average of a set of
values. For example, the following statement averages
the numbers in cells A1 through A3:

=AVERAGE(A1:A3)

The name of the function is AVERAGE, and the
argument is A1:A3n.

r̂tt = 2rAB

1 + rAB
.

Spreadsheet Functions———935



A similar common function produces the sum of a
set of cells:

=SUM(A1:A3)

In both cases, the results of these calculations are
placed in the cell that contains the statement of the
function. For example, to use the SUM (or any other)
function, follow these steps:

1. Enter the function in the cell where you want the
results to appear.

2. Enter the range of cells you want the function to
operate on.

3. Press the Enter key, and voila! There you have it.
Figure 1 shows the function, the argument, and the
result.

Functions can be entered directly when the name of
the function and its syntax are known or by means of
the Insert command. Some selected Excel functions
that perform statistical operations are shown in Table 1.

—Neil J. Salkind

936———Spreadsheet Functions

Table 1 Excel Functions and What They Do

Function Name What It Does

AVERAGE Returns the average of its arguments
CHIDIST Returns the one-tailed probability of the chi-square distribution
CHITEST Returns the test for independence
CORREL Returns the correlation coefficient between two data sets
FDIST Returns the F probability distribution
FORECAST Returns a value along a linear trend
FREQUENCY Returns a frequency distribution as a vertical array
FTEST Returns the result of an F test
GEOMEAN Returns the geometric mean
KURT Returns the kurtosis of a data set
LINEST Returns the parameters of a linear trend
MEDIAN Returns the median of the given numbers
MODE Returns the most common value in a data set
NORMDIST Returns the normal cumulative distribution
NORMSDIST Returns the standard normal cumulative distribution
PEARSON Returns the Pearson product-moment correlation coefficient
QUARTILE Returns the quartile of a data set
SKEW Returns the skewness of a distribution
SLOPE Returns the slope of the linear regression line
STANDARDIZE Returns a normalized value
STDEV Estimates standard deviation based on a sample
STDEVA Estimates standard deviation based on a sample, including numbers, text, and logical values
STDEVP Calculates standard deviation based on the entire population
STDEVPA Calculates standard deviation based on the entire population, including numbers, text, and 

logical values
STEYX Returns the standard error of the predicted y-value for each x in the regression
TDIST Returns the  Student t distribution
TREND Returns values along a linear trend
TTEST Returns the probability associated with a  Student t test
VAR Estimates variance based on a sample
VARA Estimates variance based on a sample, including numbers, text, and logical values
VARP Calculates variance based on the entire population
VARPA Calculates variance based on the entire population, including numbers, text, and logical values



Further Reading

Spreadsheet functions usage instruction: http://spreadsheets
.about.com/od/excelfunctions/

SPURIOUS CORRELATION

In social science research, the idea of spurious corre-
lation is taken to mean roughly that when two vari-
ables correlate, it is not because one is a direct cause
of the other but rather because they are brought about
by a third variable. This situation presents a major
interpretative challenge to social science researchers,
a challenge that is heightened by the difficulty of dis-
entangling the various concepts associated with the
idea of spurious correlation.

Correlation and Causation

Drawing appropriate causal inferences from correla-
tional data is difficult and fraught with pitfalls. One
basic lesson social scientists learn in their undergrad-
uate statistics education is that correlation does not
imply causation. This adage is generally taken to
mean that correlation alone does not imply causation.
A correlation between two variables X and Y is not
sufficient for inferring the particular causal relation-
ship “X causes Y” because a number of alternative
causal interpretations must first be ruled out. For
example, Y may be the cause of X, or X and Y may be

produced by a third variable, Z, or perhaps X and a
third variable, Z, jointly produce Y, and so on.

The statistical practice in the social sciences that is
designed to facilitate causal inferences is governed by
a popular theory of causation known as the regularity
theory. This theory maintains that a causal relation is
a regularity between different events. More specifi-
cally, a relationship between two variables X and Y
can properly count as causal only when three condi-
tions obtain: (a) X precedes Y in time; (b) X and Y
covary; and (c) no additional factors enter into, and
confound, the X-Y relationship.

The third condition requires a check for what social
scientists have come to call nonspuriousness. A rela-
tionship between X and Y is said to be nonspurious
when X is a direct cause of Y (or Y is a direct cause of
X). A relationship between X and Y is judged nonspu-
rious when we have grounds for thinking that no third
variable, Z, enters into and confounds the X-Y rela-
tionship. In this regard, researchers typically seek to
establish that there is neither a common cause of X
and Y nor a cause intervening between X and Y.

Senses of Spurious Correlation

The term spurious correlation is ambiguous in the
methodological literature. It was introduced by Karl
Pearson at the end of the 19th century to describe the
situation in which a correlation is found to exist
between two ratios or indices even though the original
values are random observations on uncorrelated vari-
ables. Although this initial sense of a spurious corre-
lation remains a live issue for some social science
researchers, it has given way to a quite different sense
of spurious correlation. In the 1950s, Herbert Simon
redeployed the term to refer to a situation where, in a
system of three variables, the existence of a mislead-
ing correlation between two variables is produced
through the operation of the third causal variable. 
H. M. Blalock’s extension of Simon’s idea into a test-
ing procedure for more-complex multivariate models
has seen this sense of a spurious correlation come to
dominate in the social sciences. As a consequence, the
social sciences have taken the problem of spurious-
ness to be equivalent to checking for the existence of
third variables.

Spurious Correlation———937

Figure 1 Using the SUM Function as an Example



A Typology of Correlations

In order to understand that this problem of the third
variable is not really a matter of spuriousness, it is
important to be able to identify different types of cor-
relations in terms of their presumed causes. The fol-
lowing is a typology of such correlations identified in
terms of different kinds of presumed causes. These
various correlations are sometimes confused when
considering the problem of spuriousness.

At the most general level, the typology identifies
two kinds of correlation: accidental and genuine.
Accidental correlations are those that cannot be given
a proper causal interpretation. There are two types 
of accidental correlation: nonsense and spurious. By
contrast, genuine correlations are amenable to a
proper causal interpretation. There are two types of
genuine correlation: direct and indirect.

Nonsense correlations are those accidental correla-
tions for which no sensible, natural causal interpreta-
tions can be provided. Statisticians delight in
recounting the more amusing of these cosmic coinci-
dences, such as the high positive correlation between
birth rate and number of storks for a period in Britain
or the negative correlation between birth rate and road
fatalities in Europe over a number of years. In the sta-
tistics literature, these are sometimes called illusory
correlations. These correlations exist, of course, but
they cannot be given a plausible causal interpretation.

As characterized here, spurious correlations are
accidental correlations that are not brought about by
their claimed natural causes. To be true to their name,
spurious correlations cannot be genuine correlations
because they are false. They are artifacts of method
and arise from factors such as sample selection bias;
use of an inappropriate correlation coefficient; large
sample size; or errors of sampling, measurement, and
computation. Karl Pearson’s original sense of spuri-
ous correlation mentioned above belongs here
because the misleading value of ratio correlations
depends, not on the relationship between the variables
in question, but on their sharing of highly correlated
components.

Direct correlations are genuine correlations for
which one of the correlates is said to be a direct cause
of the other. For example, heavy trucks are a direct

cause of road damage, and frequent and intense sun
spots directly cause radio transmission noise. The
social sciences are replete with empirical studies that
are concerned with establishing direct causal rela-
tions. For example, manifest independent variables
are examined in outcome studies on the assumption
that they impact measured dependent variables in a
causally direct way. Just as indirect correlations are
often misleadingly called spurious correlations, so
direct correlations are sometimes misleadingly called
nonspurious correlations.

Indirect correlations are the genuine correlations
that are produced by common or intervening causes
and that we misleadingly call spurious correlations.
However, there is nothing spurious about them at all.
So-called spurious correlations are really genuine
correlations, so their existence can hardly be denied
by claiming that they are brought about by some
underlying third variable. For example, if general
intelligence is the common cause of correlated IQ per-
formance on the verbal and numerical subtests of an
intelligence test, then those subtest performances are
indirectly and genuinely correlated. Clearly, this cor-
related IQ performance is not spurious because gen-
eral intelligence explains why the correlation obtains;
it does not render the correlation nonexistent or give
us grounds for thinking that this is so.

From this analysis, it is clear that spurious correla-
tions, properly named, must be regarded as a class of
accidental correlations; otherwise we cannot sensibly
deny the causal relations they are mistakenly thought
to express.

Generative Causation

Tests for so-called spurious correlations are generally
carried out to determine whether causal relations are
empirical regularities. For this task, the regularity
theory of causation is adequate, but only up to a point.
Its requirements of temporal priority and covariation
capture the idea of regular succession, but in order to
properly understand the so-called problem of spuri-
ousness, it is necessary to go beyond the restrictions
of the regularity theory. A theory that allows us to do this
is the generative theory of causation. The generative
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theory depicts causation as a relation where, under
appropriate conditions, a causal mechanism produces
its effect. For this to happen, the causal mechanism
must connect to its effect and have the power to
generate that effect, usually when stimulated by the
appropriate causal condition. It should be noted that it
is the productivity of a generative mechanism that
makes it a causal mechanism, and for this to be possi-
ble, there must be a naturally necessary connection
that allows for a transmission of power from a cause
to its effect. This causal power exists irrespective of
whether it is currently being exercised. As such, it is
properly viewed as a tendency, that is, an existing
state of an object which, if unimpeded, will produce
its effect. When it is unimpeded, we are able to diag-
nose the presence of the causal mechanism on the
basis of the triggering condition(s) or its presumed
effect(s) or both.

Unlike the regularity theory of causation, the gen-
erative theory is able to accommodate explanatory
theories that are concerned with illuminating unob-
served causal mechanisms. We need a theory of cau-
sation that affords us the conceptual space to do this
because many of the world’s causal mechanisms are
not open to direct inspection. This is certainly true of
the social sciences, where many of the postulated
causal mechanisms are internal states. Intellectual
abilities, personality traits, and emotional states are
obvious cases in point.

Causation and Spuriousness

Simon’s influential analysis of spurious correlation
reveals a commitment to something like the regularity
theory of causation. He notes that in order to distin-
guish true from spurious correlation, the term cause
must be defined in an empiricist manner, with no
reference to necessary connections between events, as
the generative theory of causation makes.

Simon believes that a commitment to empiricist
thinking about causality enables him to distinguish
true from spurious correlations as he understands
them. Ironically, however, this commitment actually
prevents him from drawing his distinction properly.
Recall that, for Simon, correlations are spurious if

they are brought about by common or intervening
causes. Now, given that many of these causes will be
latent or unobserved, it follows from a commitment to
the regularity theory of causation that for a method-
ologically acceptable treatment of these variables to
be possible, Simon and fellow empiricists must focus
on altogether different variables at the manifest level.
But this cavalier ontological attitude threatens to
wreck our efforts to obtain genuine causal knowledge
because the manifest replacement variables cannot act
as surrogates for their latent variables, which are com-
mon and intervening causes. They are ontologically
distinct from such causes and, although as causal con-
ditions they may trigger their latent counterparts, they
do not function as major causal mechanisms that
determine so-called spurious correlations. Clearly, a
coherent perspective on third variables that are latent
variables requires a generative theory of causation.

Conclusion

When addressing the third variable problem, method-
ologists and researchers employ the misleading term
spurious correlation to speak about genuine, indirect
correlations. This practice only muddies the waters.
Drawing causal inferences from correlational infor-
mation is as difficult as it is important, and being clear
about our key concepts can only facilitate such an
undertaking. Not only is the terminology confusing,
and thereby an impediment to understanding, but it
also encourages a misleading view about the relation
between causation and spuriousness that has the
potential to misguide our causal modeling practices.

—Brian Haig

Further Reading

Aldrich, J. (1995). Correlations genuine and spurious in
Pearson and Yule. Statistical Science, 10, 364–376.

Baumrind, D. (1983). Specious causal attributions in the social
sciences: The reformulated stepping-stone theory of heroin
use as exemplar. Journal of Personality and Social
Psychology, 45, 1289–1298.

Blalock, H. M. (1964). Causal inference in nonexperimental
research. Chapel Hill: University of North Carolina Press.

Haig, B. D. (2003). What is a spurious correlation?
Understanding Statistics, 2, 125–132.
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STANDARD DEVIATION

The standard deviation (abbreviated as s or SD) repre-
sents the average amount of variability in a set of
scores as the average distance from the mean. The
larger the standard deviation, the larger the average
distance each data point is from the mean of the
distribution.

The formula for computing the standard deviation
is as follows:

where

s is the standard deviation,

Σ is sigma, which tells you to find the sum of what
follows,

X is each individual score,

X
_

is the mean of all the scores, and

n is the sample size.

This formula finds the difference between each
individual score and the mean X – X

_
, squares each dif-

ference, and sums them all together. Then it divides
the sum by the size of the sample (minus 1) and takes
the square root of the result. As is apparent, the stan-
dard deviation is an average deviation from the mean.

Here is a sample data set for the manual computa-
tion of the standard deviation:

5, 4, 6, 7, 8, 6, 5, 7, 9, 5

To compute the standard deviation, follow these
steps:

1. List each score. It doesn’t matter whether the scores
are in any particular order.

2. Compute the mean of the group.

3. Subtract the mean from each score.

4. Square each individual difference. The result is the
column marked (X – X

_
)2 in Table 1.

5. Sum all the squared deviations about the mean. As
you can see in Table 1, the total is 21.6.

6. Divide the sum by n − 1, or 10 − 1 = 9, so then 
21.6/9 = 2.40.

7. Compute the square root of 2.4, which is 1.55. That
is the standard deviation for this set of 10 scores.

What we now know from these results is that each
score in this distribution differs from the mean by an
average of 1.55 points. 

The deviations about the mean are squared to elim-
inate the negative signs. The square root of the entire
value is taken to return the computation to the original
units. 

Every statistical package available computes the
standard deviation. In Figure 1, Excel’s Data Analysis
ToolPak was used to compute a set of descriptive sta-
tistics, including the standard deviation.

s =
∑ (X − X

---
)2

n − 1
,
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Table 1 Computing the Standard Deviation

X (X − X
_

) (X − X
_

)2

5 −1.2 1.44

4 −2.2 4.84

6 −.2 .04

7 .8 .64

8 1.8 3.24

6 −.2 .04

5 −1.2 1.44

7 .8 .64

9 2.8 7.84

5 −1.2 1.44

Sum 0 21.6



Summary

• The standard deviation is computed as the average
distance from the mean.

• The larger the standard deviation, the more spread
out the values are, and the more different they are
from one another.

• Just like the mean, the standard deviation is sensitive
to extreme scores.

• If s = 0, there is absolutely no variability in the set of
scores, and they are essentially identical in value.
This will rarely happen.

—Neil J. Salkind

Further Reading

Salkind, N. J. (2004). Statistics for people who (think they)
hate statistics. Thousand Oaks, CA: Sage.

Standard deviation computation steps and tutorial: http://
davidmlane.com/hyperstat/desc_univ.html

STANDARD ERROR OF THE MEAN

The standard error of the mean (or standard error, for
short) is a measure of how representative a sample is
of the population from which it was drawn. Using
information about how people vary within a sample
and how big that sample is, we can estimate how

much variation we would expect to see if we drew
multiple samples from a given population.

The concept of the standard error of the mean is
similar to the standard deviation. Just as the standard
deviation allows us to see how much individuals vary
within a sample, so the standard error allows us to
estimate how much samples will vary within a popu-
lation. This is important because in research, it is sel-
dom possible to observe the whole population we are
interested in. We nearly always observe a smaller
sample and make inferences from it to the population.
For example, if we were interested in finding out
whether Americans, on average, have a higher body
mass index (BMI) than Europeans do, then we would
take a sample of Americans and a sample of
Europeans and find out the average BMI of both sam-
ples. It would be unfeasible to get this information for
all members of both populations, but using the infor-
mation we get from our sample, we can build up a
picture about what the distribution of all possible
samples would look like.

Take a look at Figure 1a. This shows a normal dis-
tribution of BMI scores in a sample of 50 Americans
using some hypothetical data. The mean BMI score
for this sample is 24.35. Based on the nature of nor-
mal distributions, the standard deviation of 3.31 tells
us that 68% of all individuals in this sample have a
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Figure 1 Using the Excel Data Analysis ToolPak to
Compute the Standard Deviation

BMI

68%

−1SD

+2SD−2SD

95%

Mean = 24.35 

+1SD

Figure 1a A Normal Distribution of Body Mass Index
Scores From a Hypothetical Sample of 50
Americans



score between 21.04 and 27.66 (±1 standard deviation)
and that 95% have a score between 17.73 and 30.97
(±2 standard deviations).

Now take a look at Figure 1b. This also shows a
normal distribution, but this time it is for all possible
sample means from the population of Americans
(again using hypothetical data). Undoubtedly there
will be some variation between the different pos-
sible samples we could have selected. We may 
have selected a particularly overweight group of
Americans, for instance. Imagine we could take all
possible samples. Each one would have a different
makeup of people and thus would have a slightly dif-
ferent average BMI. The standard error tells us the
degree to which sample means drawn from the same
population are likely to differ.

Notice that the mean score of samples is the same
as the mean score of the sample of 50 individuals.
Notice also that the distribution of all sample means
is narrower. This makes sense when we realize that
we are less likely to observe extreme means than we
are to observe extreme individuals. What is really
important, though, is that we are now able to esti-
mate the upper and lower boundaries of the mean
that we expect to see if the sample has been drawn
from this population. Using the standard error of .47,

we see that 68% of all sample means will be between
23.88 and 24.82, and 95% will be between 23.41 and
25.29. If we find a sample that has a mean score out-
side those limits, then we can assume that it is not
from the same population (using 95% confidence
intervals).

The concept of the standard error of the mean
was first introduced by Ronald Fisher in 1925 in his
book Statistical Methods for Research Workers. 
It is a concept that really underpins the frequentist
philosophy of statistics that dominates the social
sciences. Because if we can estimate the distribution
of all possible sample means, then we can also esti-
mate the probability of observing the mean we have
observed in a given population and thus test
hypotheses.

Assumptions of the 
Standard Error of Mean

1. The data are normally distributed.

2. The data occur at an interval or ratio level.

AAnn  EExxaammppllee

Let’s take the example given earlier regarding BMI
and nationality. Let’s say we took 50 Americans and
50 Europeans and took their height and weight and
then calculated a BMI for each person. The means and
standard deviations appear in Table 1.

We find that the average BMI is 24.35 for the
Americans and 20.69 for the Europeans in our study.
Now let’s calculate the standard error associated with
each of these means. To do this, we need to know how
wide the variability is between the scores in each
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Mean = 24.35 

+1SE−1SE

+2SE−2SE

68%

95%

BMI

Figure 1b A Normal Distribution of Hypothetical
Mean Body Mass Index Sample Scores
From an American Population

Table 1 A Comparison of Hypothetical Average 
Body Mass Index Scores for Americans 
and Europeans

Nationality N Mean SD

American 50 24.35 3.31
European 50 20.69 1.47
Total 100 22.52 3.14



sample (the standard deviation, or σ) and how large
the samples are (N).

Standard error = σ/√N.

You can see that the standard error will increase as
the variability in the data (σ) increases and will decrease
as the sample size (N) increases. So for Americans,

standard error = 3.31/7.07 = .47.

And for Europeans,

standard error = 1.47/7.07 = .21.

According to the principles underlying normal distri-
butions, the standard error shows us that we can be 95%
confident that the population BMI score for Americans
is somewhere between 23.41 (mean − 2 standard errors)
and 25.29 (mean + 2 standard errors) and that for
Europeans, the population mean is somewhere between
20.27 and 21.11. Since the boundaries between the two
groups do not cross, we can be 95% confident that the
two samples are from different populations.

Calculating Standard 
Error Using SPSS

SPSS will calculate the standard error of a mean through
the DESCRIPTIVES option or through the COMPARE
MEANS option. As we have a grouping variable in this
example, we will go through the COMPARE MEANS
option. 

1. Go to ANALYZE, COMPARE MEANS, and then
MEANS. A command box will appear with all your
variables on the left-hand side.

2. Select the variable of interest and arrow it into the
Dependent list box.

3. Select the grouping variable and arrow it into the
Independent list box.

4. Click on OPTIONS, find Std. Error of Mean in the
left-hand box, and arrow it into the right-hand box.

5. Now click CONTINUE and OK. In the output, you
will get a table that shows the standard error, along
with the other descriptive statistics (see Table 2).

If you wanted to look at the standard errors associ-
ated with each mean graphically, you could select the
ERROR-BAR option in GRAPHS. For this example,
we want to create a simple error bar graph for sum-
maries of separate variables. Highlight the variables
of interest and put them into the ERROR-BAR box.
Figure 2 shows the resulting bar graph.

—Siân E. Williams

Further Reading

Fisher, R. A. (1925). Statistical methods for research workers
(1st–13th eds.). Edinburgh, UK: Oliver & Boyd.
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Table 2 The Standard Error and Other Descriptive
Statistics

Report
BMI

Std. Std. Error 
Nationality Mean N Deviation of Mean

American 24.3520 50 3.31073 .46821
European 20.6900 50 1.47250 .20824
Total 22.5210 100 3.14400 .31440

Americans

40

35

30

25

20

95
%

 C
I

Europeans

Figure 2 An Error Bar Graph Comparing
Hypothetical Mean BMI Scores of
Europeans and Americans



STANDARD ERROR

OF MEASUREMENT

In order for the scores produced by a measure
(referred to hereinafter as scores) to prove useful for
the purpose of basic or applied research, it is critical
that the measure be reliable. Reliability can be viewed
from the perspective of systematic versus nonsystem-
atic sources of variability in scores. To the degree that
scores are systematic, they lead to measurement that is
precise. Thus, if the level of an attribute (e.g., verbal
ability) of a measured entity (e.g., person) remains
unchanged, then repeated measurement of the
attribute should produce scores that do not vary from
one measurement occasion to the next. The greater the
degree to which the variability in scores is a function
of systematic variance, the more reliable the measure.

Scores are nonsystematic to the extent that they
contain error variance that is random in nature. The
greater the degree of error variance, the more scores
will vary from one measurement occasion to the next.
Error in the scores will cause them to vary across
occasions even though the level of the measured
attribute remains constant.

Ways of Viewing the 
Reliability of a Measure

There are two basic ways of characterizing the relia-
bility of a measure. One is the reliability coefficient
(ρxx), which varies between 0 (totally unreliable) and
1 (totally reliable).

Conceptually, it is the proportion of variance in
scores that is systematic. It can be estimated through
three general strategies. The test-retest strategy
requires that a number (N) of entities be measured on
two occasions with the same k-item measure. The
alternative forms strategy involves measuring the N
entities at approximately the same time using two
forms of a measure that are designed to assess the
same underlying construct but that have different
items. The internal consistency method relies on
measuring the N entities on a single occasion with a
measure having multiple (k) items.

The reliability of a measure can also be character-
ized in terms of the standard error of measurement,
denoted herein as σmeas, which should not be confused
with the standard error of the mean (σM). Assuming that
an attribute of an entity was measured a large number
of times with a specific measure of the variable x and
that its level remained constant over time, the σmeas

would be the standard deviation of scores produced by
the measure. Alternatively, the σmeas can be thought of
in terms of the standard deviation of scores resulting
from measuring a given entity with j measures of x that
meet the classical test theory requirements of being
mutually parallel. In practice, the estimation of σmeas

requires neither (a) the repeated measurement of the
entity with a single measure of x nor (b) the measure-
ment of the entity with j parallel measures of x.

Assuming the measurement of x across N mea-
sured entities, an estimate of σmeas (denoted hereinafter
as σ̂meas) can be obtained using estimates of the relia-
bility of the measure (rxx) and the standard deviation
of scores produced by the measure (sx):

For example, assume that a researcher measured
the quantitative ability of 30 individuals using a
25-item test and that the resulting scores had a mean
of 18, standard deviation of 5, and an internal consis-
tency-based estimate of reliability of .80. In this case,
σ̂meas would be 

As should be apparent from the formula for the
σ̂meas, it can vary between the values of 0 (when rxx = 1)
and sx (when rxx = 0).

Uses of the Standard 
Error of Measurement

Assuming that the value of rxx is known, the σ̂meas can
be used to establish a confidence interval around an

σ̂meas = sx

√
1 − rxx

= 5
√

1 − .80

= 2.24.

σ̂meas = sx

√
1 − rxx.
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individual’s true (xt), as opposed to the individual’s
observed (xo) score. The estimated value of xt is 
given by 

x̂ t = xorxx.

For example, assume that a person took the above-
described quantitative ability test and obtained a score
of 15. The individual’s estimated true score would be 

x̂ t = xorxx

= 15(.80)
= 12.

Having this estimate, a 95% confidence interval
about it can be established by use of 

x̂ t ± 1.96σmeas.

Thus, the individual’s true score would fall in an
interval having a lower limit of 7.61 = 12 − 1.96(2.24)
and an upper limit of 16.39 = 12 + 1.96(2.24). In view
of the width of the interval, the test would not be very
useful for applied purposes, especially if scores on the
test were used for important decision-making pur-
poses (e.g., employee hiring). Note, however, that if
the same test had a reliability of .90, the confidence
interval would extend from 8.90 to 15.10. The general
notion here is that the smaller the σ̂meas, the narrower
the confidence interval.

Importance of Narrow 
Confidence Intervals

Narrow confidence intervals are important when
scores on one variable (e.g., x) are used to predict
scores on another (e.g., y). For example, GRE scores
are used by most universities to predict success in
graduate school. In this and other prediction contexts,
the narrower the confidence interval, the greater the
degree to which the scores will predict other variables
accurately. The reason for this is that nonsystematic
variance in scores leads to the attenuation of relations
between predictor scores and scores on a predicted
variable.

In practice, σ̂meas can be decreased by increasing
the reliability of a measure. There are several ways of
doing this. In the case of a multi-item measure, two
strategies are (a) increasing the number of items in the
measure, and (b) including items that have a high
degree of correlation with one another.

—Eugene F. Stone-Romero

Further Reading

Hopkins, W. G. (2000). Measures of reliability in sports
medicine and science. Sports Medicine, 30, 1–15. Available
from www.sportsci.org/resource/stats/precision.html

Howard, P. (1996, February). Standard error of measurement
(SEM). Technical assistance paper, Florida Department of
Education, Division of Public Schools, Bureau of Student
Services and Exceptional Education. Retrieved from
http://sss.usf.edu/pdf/standerrmeastap.pdf

Lord, F. M., & Novick, M. R. (1968). Statistical theories of
mental test scores. Reading, MA: Addison-Wesley.

Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric
theory. New York: McGraw-Hill.

STANDARD SCORES

A standard score is a score that uses the same metric
as other standard scores so that they can be compared
to one another easily. Any standard score can be
defined as a converted score (based on the raw score)
with a set mean and standard deviation. Popular
examples are scores on IQ tests and the two types that
we will cover here, are called z scores and T scores.

What both of these, as well as other standard scores,
have in common is that they share the same mean and
standard deviation. It is because of this that standard
scores from different distributions can be compared to
one another. However, the one restriction is that only
the same type of standard scores can be compared.
One can compare z scores from one distribution with z
scores from another, but one cannot compare z scores
from one distribution with T scores from another.

For example, here is a list of 10 raw scores and
their corresponding z scores. All the information needed
to compute the z scores is contained in Table 1.
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The z scores are standard scores with a mean of 0
and a standard deviation of 1. The formula for com-
puting a z score is

where

z is the standard z score,

X is the raw score,

X
_

is the mean of the distribution, and 

s is the standard deviation for the distribution.

For example, where the mean is 77.4 and the stan-
dard deviation is 12.58, the z score for a correspond-
ing raw score of 69 is −.81 (almost one standard score
below the mean). Here’s the formula:

Another popular type of standard score is the T
score. T scores are standard scores with a mean of 50
and a standard deviation of 10. The formula for com-
puting a T score is

T = 50 + 10z,

where 

T is the standard T score and 

z is the standard z score.

Table 2 shows the listing of T scores and z scores
for the raw scores shown earlier.

For example, when the mean is 77.4 and the stan-
dard deviation is 12.58, the T score for a correspond-
ing raw score of 69 is 60.9 (almost one standard score
below the mean):

T = 50 + 10z or 50 – 8.1 or 41.9.

—Neil J. Salkind

See also Mean; Standard Deviation

STANDARDS FOR EDUCATIONAL

AND PSYCHOLOGICAL TESTING

The current revision of the Standards for Educational
and Psychological Testing is the third version of the
Standards and, like its predecessors, it is the collabo-
rative effort of three prominent national associations

z = (69 − 77.4)

12.58
.

z = (X − X
---
)

s
,
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Table 1 Raw Scores and Standard Scores

Raw Score z Score

87 0.66
78 −0.07
93 1.15
69 −0.81
95 1.31
57 −1.79
87 0.66
71 −0.64
69 −0.81
68 −0.89

Mean 77.40
s 12.58

Note: s = standard deviation.

Table 2 Raw Scores, z Scores, and T Scores

Raw Score z Score T Score

87 0.66 56.61
78 −0.07 49.27
93 1.15 61.50
69 −0.81 41.92
95 1.31 63.13
57 −1.79 32.14
87 0.66 56.61
71 −0.64 43.56
69 −0.81 41.92
68 −0.89 41.11

Mean 77.40
s 12.58

Note: s = standard deviation.



interested in educational and psychological tests: the
American Educational Research Association (AERA),
the American Psychological Association (APA), and
the National Council on Measurement in Education
(NCME). The first edition of the Standards appeared
in 1974. It replaced a document published by APA 
in 1966 and prepared by a committee representing the
APA, AERA, and NCME titled Standards for
Educational and Psychological Tests and Manuals.
The 1974 Standards was revised in 1985. 

To identify revisions needed for the Standards, a
rigorous and diligent effort to obtain input from the
broad measurement community was undertaken. In
1993, the presidents of APA, AERA, and NCME
appointed a 15-member Joint Committee with diverse
backgrounds in testing and assessment in a variety of
settings. The Joint Committee completed the revision
during 6 years. Three extended periods of public
review and comment provided the Joint Committee
with more than 8,000 pages of comments from
upwards of 200 organizations and individuals. The
Joint Committee considered all this input and devel-
oped a draft document. An extensive legal review of
this draft was then conducted to explore potential lia-
bility issues and to ensure compliance with existing
federal law. The revised Standards represents a con-
sensus of the Committee and has the endorsement of
each of its three sponsoring organizations. 

Purpose of the SSttaannddaarrddss

The intent of the third edition of the Standards is to
promote sound and ethical use of tests and to provide
a basis for evaluating the quality of testing practices
by providing a frame of reference to assure that all rel-
evant issues are addressed. Like its predecessors, the
third edition attempts to reflect professional consen-
sus regarding expectations for the development, vali-
dation, and use of educational and psychological tests.
The Standards is intended to speak broadly to individ-
uals (e.g., students, parents, teachers, administrators,
job applicants, employees, clients, patients, supervi-
sors, executives, and evaluators, among others), insti-
tutions (e.g., schools, colleges, businesses, industry,
clinics, and government agencies), and society as a

whole about tests and testing. The Standards can be
used to help test publishers decide how to develop,
validate, and present tests. The Standards can also be
used by test users (those who administer tests) to
select, use, and evaluate tests. The Standards does not
attempt to provide psychometric answers to public
policy issues that involve testing. Instead, the
Standards encourages making relevant technical
information about tests and testing available so that
those involved in policy development may be fully
informed.

Organization of the SSttaannddaarrddss

The current revision of the Standards contains three
parts. Part I addresses test construction, evaluation,
and documentation; Part II discusses fairness in test-
ing; and Part III covers testing applications. The stan-
dards that apply to the development of tests and those
that are of interest to test publishers appear primarily
in Part I. The standards identified in Part II and Part III
apply primarily, but not exclusively, to test users.

Part I includes the following chapters:

1. Validity

2. Reliability and Errors of Measurement

3. Test Development and Revision

4. Scales, Norms, and Score Comparability

5. Test Administration, Scoring, and Reporting

6. Supporting Documentation for Tests

Part II includes the following chapters:

7. Fairness in Testing and Test Use

8. The Rights and Responsibilities of Test Takers

9. Testing Individuals of Diverse Linguistic 
Backgrounds

10. Testing Individuals with Disabilities

Part III includes the following chapters:

11. The Responsibilities of Test Users

12. Psychological Testing and Assessment
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13. Educational Testing and Assessment

14. Testing in Employment and Credentialing

15. Testing in Program Evaluation and Public Policy

Each chapter begins with contextual background
intended to facilitate interpretation and application of
the standards in that chapter. An index and a glossary
that defines terms as they are used in the Standards
also are provided.

Major Differences Between 
the Second and Third 

Editions of the SSttaannddaarrddss

The overall number of standards has increased from
the 1985 edition for three reasons. First, new types of
tests and uses for tests evolved after the 1985 revision.
Several of the new standards apply only to these new
developments, unlike the broad applicability that is
characteristic of many of the continuing standards.
Second, some standards are repeated, with context-
relevant wording changes, in multiple chapters to
accommodate users who refer only to those chapters
that have direct relevance to their particular setting 
or purpose for testing. The wording changes enable 
standards to align with the content of the chapter.
Third, standards addressing issues such as conflict of
interest and equitable treatment of test takers have
been added. According to the Standards, “The
increase in the number of standards does not per se
signal an increase in the obligations placed on test
developers and test users.”

The 1985 Standards categorized each standard as
either primary (to be met by all tests before they are
used), secondary (desirable but not feasible in all sit-
uations), or conditional (importance varies with appli-
cation). This distinction was eliminated for the third
edition of the Standards because it was recognized
that the various standards are not absolutes. The
applicability of the standards can vary in relevance
and importance based on the intended use(s) of a test
and the role of the person(s) participating in the test-
ing process (e.g., test taker, test administrator, test
developer, test marketer, and those who make decisions

based on test results). The third edition also clarifies
that some standards are broad and encompassing in
their applicability and others are narrower in scope.
Therefore, the standards should not be applied in a
literal, rigid, or cookbook fashion. Instead, whether a
test or use is judged acceptable may depend on several
interrelated and interacting factors. These can include
(a) the extent to which the test developer has met
relevant standards, (b) the degree to which the test
user has met relevant standards, (c) the availability of
alternative, equally promising measures, (d) the extent
of empirical research that supports the intended use 
of the measure, and (e) professional judgment. The
Standards advises that before a test is operationally
used for a particular purpose, “each standard should
be carefully considered to determine its applicability
to the testing context under consideration.”

Each chapter in the third edition contains more
introductory material than did the second edition. The
purpose of this additional information is to provide
background for the standards specific to the chapter so
that users can more easily interpret and apply the stan-
dards. The language, although prescriptive at times,
“should not be interpreted as imposing additional
standards.”

The third edition defines and clarifies several
important terms. For example, the term test is defined
as an “evaluative device or procedure in which a sam-
ple of an examinee’s behavior in a specified domain is
obtained and subsequently evaluated and scored using
a standardized process.” Thus the term test is broad,
including both instruments that are evaluated for qual-
ity or correctness and instruments that are measures of
attitudes, interests, traits, and dispositions, often
referred to as scales or inventories rather than tests.
Assessment is considered to be a broader concept than
testing, but testing is part of assessment. Assessment
refers to a process that integrates test information with
background and contextual information, whereas test-
ing refers to the results obtained from a specific
instrument or instruments. 

The new Standards broadens the meaning of the
term construct. In previous editions, construct meant
unobservable characteristics that must be inferred
from multiple, related observations, a definition that
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proved confusing and controversial. The third edition
broadens the term to mean the “concept or character-
istic that a test is designed to measure.” This change
requires test professionals to specify the interpretation
of the construct that will be made on the basis of a
score or pattern of scores. This change also reflects a
shift in the third edition of the Standards from dis-
cussing types of validity to discussing various lines of
validity evidence that serve to enhance interpretation
of a score relative to the construct the test is designed
to measure. 

Lines of Validity Evidence

Formerly, the Standards described three types of
validity that a test may demonstrate: content, crite-
rion-related (predictive and concurrent), and con-
struct. The new Standards considers validity to be the
extent to which multiple lines of evidence and theory
“support the interpretations of test scores entailed by
the proposed uses of tests.” According to the new
Standards, then, validity is a function of the extent to
which theory and empirical evidence support 
the assumption that a test score reflects the construct
the test purports to measure. Five sources of 
such evidence of validity are identified in the
Standards: test content, response processes, internal
structure, relations to other variables, and conse-
quences of testing.

Of these five sources of validity, three reflect his-
torical conceptions of validity that have appeared in
previous editions of the Standards. These are test con-
tent (equivalent to content validity), internal structure
(equivalent to construct validity), and relations 
to other variables (equivalent to criterion-related
validity). The two new sources of validity evidence
are response process and consequences of testing.
Evidence of response process validity indicates
whether the test taker used the processes intended by
the test developer, rather than an unintended process,
to respond to a problem. For example, in responding
to a mathematics problem, did the test taker apply the
intended cognitive-mathematical process or an alter-
native process, such as guessing? Validity evidence
related to the consequences of testing emerges when

the outcome and interpretation of the test fulfill the
claims made for the test. For example, if a measure
purports to predict those who will benefit from a par-
ticular psychological treatment, how well does it actu-
ally do so?

A number of advances and developments have
occurred in testing since the Standards was released 
in 1999. Thus, this edition of the Standards should 
be considered a work in progress. AERA, APA, and
NCME have already begun the revision process for
the fourth edition. Although an exact publication date
cannot be determined, it is expected to come early in
the next decade.

—Thomas Kubiszyn

Further Reading 

American Educational Research Association. (1985).
Standards for educational and psychological testing (2nd
ed.). Washington, DC: Author.

American Educational Research Association. (1999).
Standards for educational and psychological testing 
(3rd ed., pp. 3–9).Washington, DC: Author.

Braden, J. P., & Niebling, B. C. (2005). Using the joint test
standards to evaluate the validity evidence for intelligence
tests. In D. F. Flanagan & P. L. Harrison (Eds.),
Contemporary intellectual assessment (2nd ed.). New
York: Guilford. 

Standards for Educational and Psychological Testing: http://
www.apa.org/science/standards.html

STANFORD ACHIEVEMENT TEST

The Stanford Achievement Test Series (publisher:
Harcourt Assessment) is a set of 13 norm-referenced
grade-level assessments of academic achievement 
in mathematics, reading, language, spelling, science,
social science, and listening. The Stanford Early
School Achievement Test levels are designed to assess
initial school learning across kindergarten and the first
half of first grade. The Stanford Achievement Test
(Primary 1–3, Intermediate 1–3, and Advanced 1–2)
spans the second half of first grade through ninth
grade. Finally, the three-level Stanford Test of
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Academic Skills assesses performance on curricula in
Grades 9 through 12.

This typically group-administered test is available
in a number of formats, including general and secure
forms, full-length and abbreviated batteries of multi-
ple choice items, and large-print and Braille editions.
Also, special screening procedures for assigning deaf
and hard of hearing students to test levels have been
developed by the Gallaudet Research Institute.

The test score metrics available to assist with 
the interpretation of student test performance include
individual percentile rank, normal curve equivalent,
stanine, grade equivalent, content cluster and process
cluster performance category, and scaled score. The
scaled score, derived from the vertical equating of test
levels, is particularly useful for monitoring individual
student achievement test results from year to year.

The design and materials for the latest (10th)
edition of the Stanford were developed to conform to
the 1999 AERA, APA, and NCME Standards for
Educational and Psychological Testing. The design
strategy emphasized universal design principles and
visual characteristics that are appealing and resemble
everyday instructional materials. Such features
include full color “lifelike” illustrations, visually dis-
tinct framing of each question, placement of response
bubbles on answer sheets to correspond with page and
subtest location in the test booklet, and the absence of
time constraints (although suggested testing times are
given). Item development was responsive to widely
promulgated national curriculum standards. To satisfy
individual state academic standards, a core subset of
items from the Stanford is augmented with specifically
developed items on a state-by-state contract basis.

The Stanford was first published in 1923 by the
World Book Company and is now published by
Harcourt Assessment, the testing division of Reed
Elsevier, which acquired Harcourt in 2001. The
Stanford was developed for a longitudinal study of
gifted children under the direction of Lewis M.
Terman (1877–1956) and was first offered at only two
elementary grade levels. The most recent update, the
10th edition, was normed in the spring and fall of
2002 and published in 2003. Regarded as the first
standardized academic achievement test, the Stanford

has remained a highly respected assessment instrument
with excellent psychometric characteristics.

—Ross E. Mitchell and Michael A. Karchmer

Further Reading

Carney, R. N., & Morse, D. T. (2005). [Reviews of the
Stanford Achievement Test, 10th Edition]. In R. A. Spies &
B. S. Plake (Eds.), The sixteenth mental measurements
yearbook (pp. 969–975). Lincoln, NE: Buros Institute of
Mental Measurements.

Harcourt Assessment: http://www.harcourt.com/bu_info/
harcourt_assessment.html

STANFORD-BINET

INTELLIGENCE SCALES

The Stanford-Binet Intelligence Scales is one of the
most popularly used measures of intelligence. Around
1905, Parisian Theophilus Simon, in his work with
developmental psychologist Jean Piaget, speculated
about the successes and failures of elementary school
children. As Piaget was becoming increasingly
intrigued by the nature of some normal children’s fail-
ures to read, Simon was working with Alfred Binet to
develop a test (for the school children of Paris) to pre-
dict and distinguish between those who would do well
in school and those who would not.

The result of Simon and Binet’s efforts was the first
intelligence scale (1905) used to identify children who
were mentally retarded (or those who were thought
not to be able to succeed in school). The items were
arranged by difficulty at first and later on by age level,
so by 1916, the test results yielded a mental age (MA)
for test takers, and a ratio of chronological age (CA)
and mental age provided a measure of whether a child
was behind, even with, or ahead of his or her chrono-
logical age. For example, someone who is chronolog-
ically 120 months (10 years) old may have a mental
age of 126 months and therefore be advanced in men-
tal age, compared with chronological age.

The Simon-Binet scale became the Stanford-Binet
scale in the early 20th century, when Lewis Terman
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(then at Stanford University) authored the authorita-
tive book on the administration and scoring of the test.
Also, the IQ score, a ratio of mental age to chronolog-
ical age, was first used. For the 120-month-old with a
mental age of 126 months,

If one’s mental and chronological ages are equal,
then one’s IQ score is 100, just about what we expect
if someone is average.

It was convenient to have one number, a simple
ratio of MA to CA, to express one’s theoretical intel-
ligence quotient. But this approach was never really
embraced because the upper limit depends on the
upper age limit for the test. For example, if the items
go up only to an age level of 21 years, anyone with a
CA greater than 21 years has to have an IQ less than
100. This is in part why we no longer think of intelli-
gence as IQ but use more descriptive and informative
terms for describing someone’s level of intelligence.

The fourth edition of the Stanford-Binet is now the
standard, and it is the result of many revisions over the
past 100 years. The test, based on the g theory of intel-
ligence, assesses three different general areas or types
of intelligence: crystallized intelligence, fluid intelli-
gence, and short-term memory. In theory, these types
are independent of one another.

Crystallized intelligence reflects knowledge that is
acquired or learned, such as the number of elements on
the periodical table or the author of Moby Dick. Fluid
intelligence is that general ability that Charles
Spearman talked about, including such activities as
problem solving, remembering, and learning. A test
item that evaluates fluid intelligence might ask the test
taker to copy a pattern created by the test administrator.

Today’s Stanford-Binet assesses five different fac-
tors, fluid reasoning, knowledge, quantitative reasoning,
visual-spatial processing, and working memory—
outgrowths of the fluid, crystallized, and memory typol-
ogy. Each of these areas is assessed verbally and
nonverbally, resulting in 10 subtests. In the end, each
individual test taker has a score for verbal and nonver-
bal performance and a full-scale intelligence score.

The Stanford-Binet assesses intelligence by begin-
ning with those items that are the easiest and then
finding out which items become so difficult that there
is no need to test further. This range of difficulty helps
define the starting and ending points in the scoring of
performances. 

The basal age is the lowest point on the test at which
the test taker can pass two consecutive items that are of
equal difficulty. The examiner can feel confident that
the test taker is on firm ground at this point and could
pass all the items that are less difficult. Ceiling age is
the point at which at least three out of four items are
missed in succession and is the place to stop testing.

The number correct on the test is then used to com-
pute a raw score, which is converted to a standardized
score and then compared with other scores from test
takers in the same age group. Because the Stanford-
Binet is a standardized test and has been normed
extensively, such comparisons are easy to make and
very useful.

—Neil J. Salkind

Further Reading

Alfred Binet and his contributions: http://www.indiana.edu/~
intell/binet.shtml

Stanford-Binet Intelligence Scales: http://www.riverpub.com/
products/sb5/index.html

STANINE

The term stanine comes from the field of measure-
ment, for a person’s performance on a test can be (and
often is) converted into a stanine score. An examinee’s
stanine score shows the examinee’s position relative
to other test takers’ positions. Because of this focus on
relative performance, stanines are similar to percentile
ranks, T scores, or normal curve equivalent (NCE)
scores. Though like these other kinds of standard
scores in purpose, stanines have many characteristics
that make them unique and quite different from the
others.

A person’s stanine score will be a single-digit
number, and it could be as high as 9, as low as 1, or equal

IQ = MA

CA
× 100 = 126

120
× 100 = 105.
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to any whole number in between. In the group of test
takers that serves as the reference group, fewer indi-
viduals receive the higher and lower stanine scores,
and most people earn stanine scores at or near the
middle of the 9-point scale. Table 1 shows what per-
centage of individuals in the reference group receives
each stanine score. 

Although stanine scores are fairly easy to under-
stand from the information in Table 1, they can be
made even easier to understand by attaching verbal
descriptors to the individual stanine scores or to
groups of adjacent stanine scores. Some people rec-
ommend dividing the stanine scale into three parts 
and using the terms above average, average, and
below average to describe those whose test scores
position them in any of the top three, middle three, or
bottom three stanine categories, respectively. Others

recommend using these descriptors: outstanding for
stanine 9, above average for stanines 7 and 8, average
for stanines 4, 5, and 6, below average for stanines 2
and 3, and poor for stanine 1. A few people recom-
mend using a different label for each stanine category,
as indicated in Table 2.

The Meaning and Origin 
of the Word SSttaanniinnee

The word stanine is an abbreviation of the phrase
standard of nine. With stanines, there is a standard of
nine because the reference group is always divided
into nine categories, or levels, with the specific per-
centages set equal to 4, 7, 12, 17, 20, 17, 12, 7, and 4.
It doesn’t matter whether the reference group is bright
or dull, hard-working or lazy; the reference group’s
top 4% will end up getting a stanine score of 9, the
next best 7% will receive a stanine score of 8, and so
forth. Thus, the percentages in the various stanine cat-
egories are constant regardless of the characteristics
of the reference group.

The term stanine was first used by the U.S. Army
Air Force during World War II. Recruits were given a
battery of placement tests, and each examinee’s per-
formance (on each portion of the test battery) was
converted into a stanine score. At the time, having test
scores converted into single-digit numbers was espe-
cially helpful, for each examinee’s data were entered
into a computer. Back then, however, data were typed
on Hollerith punch cards, and it was far more efficient
during data entry to use one column per score (with-
out the need for any decimal points or negative signs).

Advantages of Stanines 
Over Raw Scores

After a test is administered and the examinees’ work
is scored, each test taker usually earns a raw score
based on the number of questions answered correctly.
Raw scores are useless by themselves. For example, if
Johnny gets a 43 on a math test, there is no way to
know from this raw score how well (or poorly) Johnny
performed. If Johnny’s raw score is converted into a
percentage-correct score or compared to a cut-score
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Table 1 Stanines and Their Respective Percentage
Groupings

% Reference Group in 
Stanine Score Each Stanine Category

9 4
8 7
7 12
6 17
5 20
4 17
3 12
2 7
1 4

Table 2 Stanines and Their Respective Labeling

Stanine Score Label

9 high
8 well above average
7 above average
6 somewhat above average
5 about average
4 somewhat below average
3 below average
2 well below average
1 low



for passing the test, we get a better feel for how
Johnny did. However, simply knowing Johnny’s per-
centage-correct score or whether he did or did not
pass the test provides no information whatsoever as 
to how Johnny’s performance compares with that of
others who took the same test.

When an examinee’s raw score is converted into a
stanine score, we learn how that particular test taker
compares with other test takers. There are different
ways to convert a raw score into some other score that
indicates, in a relative sense, how well or poorly a
person has done when taking a test. Later in this entry,
stanines will be compared with percentile ranks,
T scores, and NCE scores.

Stanines, Norm-Referenced 
Tests, and Criterion-Referenced Tests

As indicated earlier, stanines provide information as
to how a test taker performs relative to others in a
reference group. Because of this inherent feature of
stanine scores, they are used exclusively with norm-
referenced tests. They are not to be used with crite-
rion-referenced tests. With this latter kind of test,
comparisons against others are of little or no interest
to those who deal with the scores examinees earn.

Converting Raw Scores 
Into Stanine Scores

There are two ways to convert an examinee’s raw
score into a stanine score. One of these methods can

be called the ranking procedure. The other method
involves reference to a normal distribution, so this
second method might be called the normal distribu-
tion procedure.

The ranking method for determining stanine scores
is quite simple and straightforward. After the exami-
nees’ raw scores are determined, those scores are
ranked from high to low. Then, the top 4% are given a
stanine score of 9, the next highest 7% are given a sta-
nine score of 8, and so on. Note that this method of
creating stanine scores makes no assumption as to the
distributional shape of the raw scores.

The second procedure for determining stanine
scores is used with tests that have been normed on a
large group of individuals who have already taken the
test and whose scores have been normalized. A nor-
mal distribution is divided into nine sections, with the
upper and lower boundaries of each stanine section set
equal to the z scores shown in Table 3.

Except for stanines 1 and 9, each stanine section
has a width equal to one half of a standard deviation.
Because a normal distribution is considered to have no
upper or lower scores, stanine 9 has a boundary of 
z = +1.75 on the left but no boundary on the right.
Similarly, stanine 1 has a boundary on the right of 
z = −1.75 but no boundary on the left.

Because of the known properties of a normal distrib-
ution, it is possible to define the boundary lines between
adjacent stanine categories in terms of percentiles rather
than z scores. Rounded to whole numbers, these per-
centile boundaries are shown in Table 4.
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Table 3 Stanines z Scores

Stanines Located on the Left Side The Middle Stanine Stanines Located on the Right 
of the Normal Distribution (i.e., Stanine 5) Side of the Normal Distribution

Stanine Lower Upper Lower Upper Stanine Lower Upper 
section boundary boundary boundary boundary section boundary boundary

4 z = −.75 z = −.25 z = −.25 z = +.25 6 z = +.25 z = +.75
3 z = −1.25 z = −.75 7 z = +.75 z = +1.25
2 z = −1.75 z = −1.25 8 z = +1.25 z = +1.75
1 No lower z = −1.75 9 z = +1.75 No upper 

boundary boundary



Each of these percentiles, of course, can be deter-
mined by adding together the stanine percentages for
those stanines located to the left of the boundary line
being considered. For example, the percentile bound-
ary separating stanines 5 and 6 can be determined by
adding 4, 7, 12, 17, and 20.

How Stanines Are Used

Stanines are used in school settings to accomplish
three different goals. In two of these uses, the focus is
on the individual test taker. When stanines are used to
accomplish the third goal, the focus is a group of test
takers rather than a single person.

If a test yields just one score or a “total” score
based on several parts of the test, that score often is
converted into a stanine to show how the test taker
performed relative to others in the reference group.
For example, if the examinee’s stanine score is 8, that
examine would be thought of as having a relatively
high position within the reference group. On the other
hand, a stanine of 1 would indicate that an examinee
was positioned quite low compared to others who
took the same test. Stanine scores such as these are
often used to place students into homogeneous learn-
ing groups.

If a test yields multiple scores, each for a different
skill or competency being measured, a test taker’s
resulting scores can each be converted into a stanine.
Then, the individual’s various stanine scores can be
examined so as to identify areas of strength and areas
of weakness. For example, if a pupil earns a stanine
score of 8 in reading, a score of 7 in writing, a score
of 9 in spelling, and a score of 4 in arithmetic, such
scores can be used to tailor instruction to the places
where the pupil is “ahead” or “behind.”

Stanine scores are also used within statements of
instructional goals. For example, a magnet elementary
school recently articulated this goal for its third-grade

teachers: “In the area of math, the percentage of
students scoring in the high stanines will be 65% or
higher and no more than 5% scoring in the low sta-
nines as measured on the [Iowa Test of Basic Skills].”
In this third use of stanine scores, the focus is on a
group of students rather than on individual pupils.

Stanines Versus Other 
Kinds of Standard Scores

Stanine scores are easier to understand than other
kinds of standard scores, such as z scores, T scores, or
NCE scores. This is because (a) there are only nine
stanine scores, (b) no decimals or negative values are
involved, and (c) people have little difficulty “catch-
ing on” to the fact that most examinees end up in
stanines 4, 5, or 6; that fewer test takers end up in sta-
nines 3 and 4 (or stanines 7 and 8); and that only a
very small percentage of examinees end up in stanines
1 or 9. Thus, it is not surprising that stanine scores are
used in parent-teacher conferences and in reports that
summarize students’ test performance.

Although stanines have certain distinct advantages
over other standard scores, they have one main limita-
tion. Simply stated, the difference between two people
can be completely hidden when their test performance
is reported via stanines, or conversely, two people
who are very similar may end up “looking dissimilar”
because of their stanine scores. To illustrate this disad-
vantage of stanines, suppose four individuals take a
test and perform such that their percentile ranks are
41, 59, 76, and 78. The first two of these test takers
would both have a stanine score of 5 despite the dif-
ference in how they performed on the test. The third
and fourth test takers would end up in different sta-
nines despite the similarity in how they performed.
These two undesirable situations would not occur if
the performance of these four test takers is converted
into z scores, T scores, or NCE scores.
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Table 4 Percentile Boundaries

Adjacent stanines 1 and 2 2 and 3 3 and 4 4 and 5 5 and 6 6 and 7 7 and 8 8 and 9
Percentile of boundary 4 11 23 40 60 77 89 96



Warnings About Stanine Scores

For those who use stanine scores, it is important to
keep four things in mind. First, we should always
know who formed the reference group when we
attempt to interpret an examinee’s stanine score. If
the reference group was quite bright or highly
skilled, an examinee thought to be average (or even
above average) in ability could end up with a low
stanine score. Second, stanine scores should not be
averaged. Third, a comparison of two stanine scores
can be misleading because of the way test scores are
converted into stanines. This third warning applies to
the comparison of two different examinees or to the
comparison of one examinee’s standing at two dif-
ferent times.

Finally, those who use stanine scores should
always be concerned about issues of reliability and
validity. Without much difficulty, one could create a
test, administer that test to a large reference group,
and then create a conversion table that allows test
scores to be easily transformed into stanine scores.
Yet we must ask the critical question whether a new
test taker’s stanine score can be trusted to mean what
we are tempted to think it does. As with other ways
of reporting test performance (such as percentile
ranks or T scores), stanine scores should be inter-
preted only if they are tied to a measuring instru-
ment that has known (and respectable) psychometric
properties.

—Schuyler W. Huck

See also Percentile and Percentile Rank; Standard Scores
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STATIS

STATIS is a generalization of principal component
analysis (PCA), and its goal is to analyze several sets of
variables collected on the same set of observations. It is
attributed to Escouffier and L’Hermier des Plantes. A
related approach is known as procrustes matching by
congruence coefficients in the English-speaking com-
munity. The goal of STATIS is (a) to compare and ana-
lyze the relationship between the different data sets,
(b) to combine them into a common structure called a
compromise, which is then analyzed via PCA to reveal
the common structure between the observations, and
finally (c) to project each of the original data sets onto
the compromise to analyze communalities and discrep-
ancies. STATIS is used in very different domains, such
as sensory evaluation, molecular imaging, brain imag-
ing, ecology, and chemometrics. 

The number or nature of the variables used to
describe the observations can vary from one data set
to the other, but the observations should be the same
in all the data sets.

For example, the data sets can be measurements
taken on the same observations (individuals or objects)
at different occasions. In this case, the first data set
corresponds to the data collected at time t = 1, the sec-
ond to the data collected at time t = 2, and so on. The
goal of the analysis, then, is to evaluate whether the
position of the observations is stable over time.

As another example, the data sets can be measure-
ments taken on the same observations by different par-
ticipants or groups of participants. In this case, the first
data set corresponds to the first participant, the second
to the second participant, and so on. The goal of the
analysis, then, is to evaluate whether there is an agree-
ment between the participants or groups of participants.

The general idea behind STATIS is to analyze the
structure of the individual data sets (i.e., the relation
between the individual data sets) and to derive from
this structure an optimal set of weights for computing
a common representation of the observations, called
the compromise. The weights used to compute the
compromise are chosen to make it as representative of
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all the data sets as possible. The PCA of the compro-
mise gives, then, the position of the observations in the
compromise space. The position of the observations
for each data set can be represented in the compromise
space as supplementary points. Finally, as a by-product
of the weight computation, the data sets can be repre-
sented as points in a multidimensional space.

An Example

A typical example of using STATIS is the description
of a set of products by a group of experts. This type of
data can be analyzed using a standard PCA after the
data have been averaged across experts. However, this
approach neglects the inter-expert differences. STA-
TIS has the advantages of providing a compromise
space for the products as well as evaluating the differ-
ences among experts. We illustrate the method with an
example from wine tasting. 

Red wines often spend several months in oak
barrels before being bottled because oak adds interest-
ing components to the wine. However, only certain
species of oaks seem to work well. Suppose we
wanted to evaluate the effect of the oak species on bar-
rel-aged red burgundy wines. First, we selected six
wines coming from the same harvest of pinot noir and
aged in six different barrels made with one of two dif-
ferent types of oak. Wines 1, 5, and 6 were aged with
the first type of oak, whereas wines 2, 3, and 4 were
aged with the second. Next, we asked each of three
wine experts to choose from two to five variables to
describe the six wines. For each wine, each expert was
asked to rate the intensity of the variables on a 9-point
scale. The results are presented in Table 1. The goal of

the analysis is twofold. First, we want to obtain a
typology of the wines, and second, we want to know
whether there is agreement among the experts.

Notations

The raw data consist of T data sets. For convenience,
we will refer to each data set as a study. Each study
is an I × J[t] rectangular data matrix denoted Y[t],
where I is the number of observations and J[t] the
number of variables collected on the observations for
the tth study. Each data matrix is, in general, pre-
processed (e.g., centered, normalized), and the pre-
processed data matrices actually used in the analysis
are denoted X[t].

For our example, the data consist of T = 3 studies.
The data were centered by column (i.e., the mean of
each column is zero), and the starting point of the
analysis consists of three matrices X[t]:

(1)

X[1] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−3.00 2.67 3.67

1.00 −0.33 −1.33

2.00 −2.33 −2.33

3.00 −2.33 −1.33

−2.00 1.67 0.67

−1.00 0.67 0.67

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

X[2] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2.00 1.17 3.17 2.50

0.00 0.17 0.17 −1.50

1.00 −1.83 −2.83 −2.50

3.00 −1.83 −2.83 −1.50

−1.00 1.17 2.17 1.50

−1.00 1.17 0.17 1.50

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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Table 1 Raw Data for the Barrel-Aged Red Burgundy Wines Example

Expert 1 Expert 2 Expert 3

Wines Oak-type fruity woody coffee red fruit roasted vanillin woody fruity butter woody

wine1 1 1 6 7 2 5 7 6 3 6 7
wine2 2 5 3 2 4 4 4 2 4 4 3
wine3 2 6 1 1 5 2 1 1 7 1 1
wine4 2 7 1 2 7 2 1 2 2 2 2
wine5 1 2 5 4 3 5 6 5 2 6 6
wine6 1 3 4 4 3 5 4 5 1 7 5



Each of the X[t] matrices is then transformed into an
I × I scalar product matrix denoted S[t] and computed as

S[t] = X[t]X[t]
T . (2)

For example, the 6 × 6 between-wine scalar prod-
uct matrix for the first wine expert is denoted S[1]. It is
obtained as 

and X[3] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.17 1.67 3.00

0.83 −0.33 −1.00

3.83 −3.33 −3.00

−1.17 −2.33 −2.00

−1.17 1.67 2.00

−2.17 2.67 1.00

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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(3)

The scalar product matrices for the second and third wine experts are equal to 

(4)

and

(5)S[3] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

11.81 −3.69 −15.19 −9.69 8.97 7.81

−3.69 1.81 7.31 1.81 −3.53 −3.69

−15.19 7.31 34.81 9.31 −16.03 −20.19

−9.69 1.81 9.31 10.81 −6.53 −5.69

8.97 −3.53 −16.03 −6.53 8.14 8.97

7.81 −3.69 −20.19 −5.69 8.97 12.81

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

S[2] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

21.64 −3.03 −19.36 −20.86 13.97 7.24

−3.03 2.31 2.97 1.47 −1.69 −2.03

−19.36 2.97 18.64 18.14 −13.03 −7.36

−20.86 1.47 18.14 22.64 −13.53 −7.86

13.97 −1.69 −13.03 −13.53 9.31 4.97

7.64 −2.03 −7.36 −7.86 4.97 4.64

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

S[1] = X[1]XT
[1] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

29.56 −8.78 −20.78 −20.11 12.89 7.22

−8.78 2.89 5.89 5.56 −3.44 −2.11

−20.78 5.89 14.89 14.56 −9.44 −5.11

−20.11 5.56 14.56 16.22 −10.78 −5.44

12.89 −3.44 −9.44 −10.78 7.22 3.56

7.22 −2.11 −5.11 −5.44 3.56 1.89

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Computing the Compromise Matrix

The compromise matrix is a scalar product matrix
that gives the best compromise (hence its name) of
the scalar product matrices representing each study.
It is obtained as a weighted average of the study
scalar product matrices. The weights are chosen so
that studies agreeing the most with other studies will
have the larger weights. To find these weights, we

need to analyze the relationships between the 
studies.

CCoommppaarriinngg  tthhee  SSttuuddiieess

To analyze the similarity structure of the studies,
we start by creating a between study cosine matrix
denoted C. This is a T × T matrix whose generic term



ct,t′ gives the cosine between studies. This cosine, also
known as the RV coefficient, is defined as

(6)

Using this formula we get the following matrix C:

(7)

PPCCAA  ooff  tthhee  CCoossiinnee  MMaattrriixx

The eigendecomposition of the cosine matrix
reveals the structure between the studies. This amounts
to performing a noncentered PCA of C. Formally, this
matrix has the following eigendecomposition:

C = PΘΘPT with PTP = I, (8)

where P is the matrix of eigenvectors of C and ΘΘ the
diagonal matrix of eigenvalues. An element of a given
eigenvector represents the projection of one study on
this eigenvector. Thus the studies can be represented as
points in the eigenspace and their similarities visually
analyzed. In this case, the projections are computed as

G = PΘΘ
1–2. (9)

For our example, we find that

(10)

(11)

As an illustration, Figure 1 displays the projec-
tions of the experts onto the first and second com-
ponents. It shows that the three studies are
positively correlated with the first component (this
is because all the elements of the cosine matrix are
positive).

CCoommppuuttiinngg  tthhee  CCoommpprroommiissee

The weights used for computing the compromise
are obtained from the PCA of the cosine matrix.
Because this matrix is not centered, the first eigenvec-
tor of C represents what is common to the different
studies. Thus studies with larger values on the first
eigenvector are more similar to the other studies and
therefore will have a larger weight. Practically, the
weights are obtained by rescaling the elements of the
first eigenvector of C so that their sum is equal to 1.
We call the weight vector αα. For our example, we 
find that

αα = [.337 .344 .319]T. (12)

So with αt denoting the weight for the tth study, the
compromise matrix, denoted S[+], is computed as 

(13)S[+] =
T∑

t

αtS[t].

P =
⎡

⎢
⎣

0.58 −0.49 0.65

0.59 −0.29 −0.75

0.55 0.82 0.12

⎤

⎥
⎦

and Θ =
⎡

⎢
⎣

2.70 0.00 0.00

0.00 0.26 0.00

0.00 0.00 0.04

⎤

⎥
⎦

and G =
⎡

⎢
⎣

0.96 0.25 0.14

0.98 0.14 −0.16

0.91 −0.42 0.03

⎤

⎥
⎦ .

C =
⎡

⎢
⎣

1.00 .95 .77

.95 1.00 .82

.77 .82 1.00

⎤

⎥
⎦ .

Rv = [
ct,t′

] = trace
{
ST

[t]S[t ′]
}

√
trace

{
ST

[t]S[t]

} × trace
{
ST

[t ′]S[t ′]
} .
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Figure 1 The Expert Space



In our example, the compromise is obtained as 

(14)

HHooww  RReepprreesseennttaattiivvee  IIss  tthhee  CCoommpprroommiissee??

The compromise is the best aggregate of the origi-
nal scalar product matrices. But how good is this
“best”? An index of the quality of the compromise is
given by the ratio of the first eigenvalue of C to the
sum of the eigenvalues of C:

(15)

For our example, the quality of the compromise is
evaluated as ≈ .91. So we can say that the com-
promise “explains” 91% of the inertia of the original
set of data tables.

Analyzing the Compromise

The compromise matrix is a scalar product matrix,
and therefore its eigendecomposition amounts to a
PCA. From this analysis, we can explore the structure
of the set of observations. The eigendecomposition of
the compromise gives 

S[+] = QΛΛQT (16)

with

(17)

and

(18)

From Equations 17 and 18, we can compute the
compromise factor scores for the wines as 

F = QΛΛ
1–2 (19)

(20)

In the F matrix, each row represents an observation
(i.e., a wine), and each column is a component. Figure
2 displays the wines in the space of the first two prin-
cipal components. The first component has an eigen-
value equal to λ1 = 69.70, which corresponds to 85%
of the inertia because

The second component, with an eigenvalue of 
7.35, explains almost 10% of the inertia. The first

69.70

69.70 + 7.35 + 2.52 + 1.03 + 0.32
= 69.70

80.91
≈ .85.

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

4.52 −0.92 −0.91 −0.03 0.17(36)

−1.13 −0.42 0.78 0.54 0.29(37)

−4.59 −1.53 0.01 −0.40 −0.13(38)

−3.77 1.61 −0.78 0.19 0.01(39)

2.87 0.08 0.27 0.34 −0.43(40)

2.10 1.18 0.63 −0.64 0.09(41)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

diag {Λ} =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

69.70

7.35

2.52

1.03

0.32

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Q =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.54 −0.34 −0.57 −0.03 0.31

−0.14 −0.15 0.49 0.54 0.51

−0.55 −0.57 0.00 −0.40 −0.23

−0.45 0.59 −0.49 0.19 0.01

0.34 0.03 0.17 0.34 −0.75

0.25 0.43 0.39 −0.63 0.16

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

2.74

3

Quality of compromise = ϑ1
∑

�

ϑ�

= ϑ1

trace {Θ} .

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

22.15 −5.42 −19.37 −17.83 12.57 7.90

−5.42 2.45 5.59 3.09 −3.01 −2.71

−19.37 5.59 23.61 14.76 −13.38 −11.21

−17.83 3.09 14.76 17.47 −10.84 −6.65

12.57 −3.01 −13.38 −10.84 8.61 6.05

7.90 −2.71 −11.21 −6.65 6.05 6.62

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.S[+] =
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Figure 2 Analysis of the Compromise: Plot of the
Wines on the First Two Principal
Components



component is easily interpreted as the opposition of
the wines aged with the first type of oak (wines 1, 5,
and 6) to the wines aged with the second type of oak
(wines 2, 3, and 4).

Projecting the Studies Into
the Compromise Space

The analysis of the compromise reveals the structure
of the wine space common to the experts. In addi-
tion, we want to see how each expert “interprets”
this space. This is achieved by projecting the scalar
product matrix of each expert onto the compromise.
This operation is performed by computing a projec-
tion matrix that transforms the scalar product matrix
into loadings. The projection matrix is deduced

from the combination of Equations 16 and 19,
which gives

F = S[+]QΛΛ−1_
2 . (21)

This shows that the projection matrix is equal to
(QΛΛ−1_

2). It is used to project the scalar product matrix
of each expert onto the common space. For example,
the coordinates of the projections for the first expert
are obtained by first computing the matrix

(22)QΛ
− 1

2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.06 −0.12 −0.36 −0.03 0.55

−0.02 −0.06 0.31 0.53 0.90

−0.07 −0.21 0.00 −0.39 −0.41

−0.05 0.22 −0.31 0.18 0.02

0.04 0.01 0.11 0.34 −1.34

0.03 0.16 0.25 −0.63 0.28

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

960———STATIS

12

3

4

5

6

Figure 3 The Compromise: Projection of the Expert Matrices

Note: Experts are represented by their faces. A line segment links the position of the wine for a given expert to the compromise
position for this wine.
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Table 2 Original Variables and Compromise: Loadings (Correlation Between Variables and Components) 

Loadings

Expert 1 Expert 2 Expert 3

Axis fruity woody coffee fruity roasted vanillin woody fruity butter woody

1 –.97 .99 .92 –.90 .95 .96 .97 –.57 .94 .99
2 .19 –.13 –.04 .36 .02 –.19 .13 –.82 .22 .03
3 .00 –.00 –.36 –.22 .29 .01 –.13 .01 .25 –.10
4 .07 .08 –.07 .13 .03 .22 –.13 –.07 –.09 .04
5 .10 .00 .12 –.05 .05 .01 –.07 .00 .05 –.05

EXPERT 1

PC1

PC2

Woody

Coffee

Fruity

Vanillin

Roasted

Woody

Red Fruit

EXPERT 2

PC1

PC2

EXPERT 3

PC1

PC2

Woody

Butter

Fruity

Figure 4 Original Variables and Compromise: The Circle of Correlations for Each Expert



and then using this matrix to obtain the coordinates as 

F[1] = S[1](QΛΛ−1_
2) (23)

(24)

The same procedure is used for experts 2 and 3 
and gives 

(25)

and

(26)

Figure 3 shows the first two principal components
of the compromise space, along with the projections
of wines for each expert. Note that the position of
each wine in the compromise is the barycenter of the
positions of this wine for the three experts. In order to
make this relation clear and also to facilitate the inter-
pretation, we have drawn lines linking the position of
each wine for each expert to the compromise position.
This picture confirms a conclusion obtained from the
analysis of the C matrix: Expert 3 tends to be at vari-
ance with the other two experts.

The Original Variables and
the Compromise

The analysis of the compromise reveals the structure
of the set of observations, but the original data tables

were rectangular tables (i.e., each expert was using
several scales to evaluate the wines). And we want to
be able to relate these specific scales to the analysis of
the compromise.

The original variables can be integrated into the
analysis by adapting the standard approach that
PCA uses to relate original variables and compo-
nents, namely, computing loadings (i.e., correlation
between the original variables and the factor
scores). This approach is illustrated in Table 2,
which gives the loadings between the original vari-
ables and the factors of the compromise. Figure 4
shows the circle of correlation obtained for each
expert (these loadings could have been drawn on 
the same picture). Here we see, once again, that
Expert 3 differs from the other experts and is
mostly responsible for the second component of the
compromise.

—Hervé Abdi and Dominique Valentin

See also DISTATIS; Eigendecomposition; Metric
Multidimensional Scaling; Multiple Correspondence
Analysis; Multiple Factor Analysis; Rv and Congruence
Coefficients; Singular and Generalized Singular Value
Decomposition

Further Reading 

Abdi, H. (2004). Multivariate analysis. In M. Lewis-Beck,
A. Bryman, & T. F. Liao (Eds.), The SAGE encyclopedia of
social science research methods. Thousand Oaks, CA: Sage.

Chaya, C., Perez-Hugalde, C., Judez, L., Wee, C. S., &
Guinard, J. X. (2003). Use of the STATIS method to ana-
lyze time-intensity profiling data. Food Quality and
Preference, 15, 3–12.

Coquet, R., Troxler, L., & Wipff G. (1996). The STATIS
method: Characterization of conformational states of
flexible molecules from molecular dynamics simulation in
solution. Journal of Molecular Graphics, 14, 206–212.

Escoufier, Y. (1980). L’analyse conjointe de plusieurs matrices
de données. In M. Jolivet (Ed.), Biométrie et temps (pp.
59–76). Paris: Société Française de Biométrie.

Kherif, F., Poline, J.-P., Mériaux, S., Benali, H., Flandin, G., &
Brett, M. (2003). Group analysis in functional neuroim-
aging: Selecting subjects using similarity measures.
NeuroImage, 20, 2197–2208.

Korth, B., & Tucker, L. R. (1976). Procrustes matching by con-
gruence coefficients. Psychometrika, 41, 531–535.

F[3] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2.96 1.13 0.45 −0.05 −0.68

−1.10 −1.40 0.06 −0.33 0.35

−5.17 −7.15 −1.78 −0.32 0.05

−2.30 0.55 −1.37 1.00 −0.12

2.65 2.52 0.75 0.04 −0.24

2.96 4.35 1.89 −0.34 0.65

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

F[2] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

4.66 −1.68 1.04 1.33 0.04
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⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣
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1.34 −0.57 −0.75 −0.35 −0.20

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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STATISTICAL SIGNIFICANCE

Before accepting the theoretical importance or real-
life impact of their research findings, psychologists
have to be sure that their findings are statistically sig-
nificant (i.e., that the data are not the result of happen-
stance). Psychologists use the null hypothesis
significance test procedure (NHSTP) to test for statis-
tical significance, which may be explained by explor-
ing (a) the uncertainty inherent in empirical data, (b)
the nature of inferential statistics, (c) the test statistic
that represents a research outcome, and (d) the nature
of the binary decision about chance effects.

Chance Effects on Empirical Data

The substantive population of a research effort con-
sists of all individuals to whom the research conclu-
sions apply. It may consist of all hyperactive boys in a

study of hyperactivity. Any of its characteristics (e.g.,
the mean attention span of all hyperactive boys, u) is
a parameter. Suppose that a psychologist collects data
from a randomly selected sample of 100 hyperactive
boys. A characteristic of the sample is a statistic (e.g.,
the sample’s mean attention span, X

—
). 

The sample mean is unlikely to be identical to the
population mean because of chance influences. For
example, chance factors during data collection 
(a) determine who are included in the sample and (b)
render some boys more attentive than usual while
other boys are being distracted more than usual.
Consequently, different samples of 100 hyperactive
boys selected and tested in exactly the same way pro-
duce different mean attention spans.

Suppose that the psychologist selects randomly
100 hyperactive boys and assigns randomly 50 to
Group 1 and 50 to Group 2. The random selection and
random assignment procedures warrant the suggestion
that Groups 1 and 2 are the respective samples of two
substantive populations with the same mean (i.e., uspanI

= uspanII). Be that as it may, the means of Groups 1 and
2 (X

—
spanI and X

—
spanII, respectively) are not expected to

be literally the same by virtue of happenstance.

Statistical Populations and
Research Manipulation

To test whether Drug D affects the attention span of
hyperactive boys, the psychologist gives Group 1 Drug
D and Group 2 a placebo. The two substantive popula-
tions now become two methodologically defined statis-
tical populations, namely, (a) hyperactive boys given
Drug D and (b) hyperactive boys given a placebo. Their
means are uDrugD and uPlacebo, respectively. The means of
Groups 1 and 2 are X

—
DrugD and X

—
Placebo, respectively.

If Drug D is not efficacious, uDrugD = uPlacebo because
the distinction between the two methodologically
defined populations becomes mute. This equality
implies that X

—
DrugD = X

—
Placebo. However, because of the

aforementioned chance effects, (X
—

DrugD – X
—

Placebo) is
not expected to be exactly zero. 

An efficacious Drug D would change the attention
span, thereby leading to uDrugD ≠ uPlacebo. It follows that
(X

—
DrugD – X

—
Placebo) is not zero. Thus arises the following

conundrum: A nonzero (X
—

DrugD – X
—

Placebo) is expected



regardless of the efficacy of Drug D. Psychologists use
statistical significance to handle the dilemma.

Inferential Statistics

Psychologists use NHSTP to learn something about
population parameters (e.g., uDrugD − uPlacebo) on the
basis of the statistical significance of their corre-
sponding sample statistics (X

—
DrugD – X

—
Placebo). This is

achieved by using the standardized form of an appro-
priate theoretical distribution to make a binary
decision regarding chance effects on the data in
probabilistic terms.

TThhee  TThheeoorreettiiccaall  DDiissttrriibbuuttiioonn

The statistical question is whether or not the
observed X

—
DrugD – X

—
Placebo warrants the conclusion that

uDrugD ≠ uPlacebo. Psychologists answer this question by
appealing to an appropriate random sampling distrib-
ution of differences that describes the probabilities of
all possible values of X

—
DrugD – X

—
Placebo. 

A random sampling distribution of differences is a
theoretical probability density function defined by its
mean (called mean difference) and standard deviation
(called standard error). The two parameters are
mathematically related to the means and standard
deviations of the two underlying statistical popula-
tions, respectively. Specifically, the mean difference
(uDrugD – Placebo) equals (uDrugD − uPlacebo), and the standard
error of differences is a function of the two population
standard deviations. The latter function depends,
moreover, on sample size.

The Test Statistic

Consequently, a different random sampling distribution
is implicated when there is a change in the sample
sizes. This gives rise to an infinite number of proba-
bility density functions. The situation is made less
daunting by standardizing the random sampling distri-
bution, using its standard error as the unit of measure.
The result is a distribution of the t statistic for every
combination of two sample sizes. The t statistic is
given by Equation 1:

(1)

Specifically, for the hyperactivity example,

The t statistic is an example of a test statistic,
namely, the statistic used in making the statistical
decision about chance.

A Binary Decision Task

The rationale of tests of statistical significance may
now be illustrated with a binary decision task. The
decision maker is confronted with two sets of 50
scores each. Set Null is depicted in Table 1. The prob-
ability of every possible score-value is also shown.
Nothing is known about the other set, Set Alternative,
except that (a) its scores overlap with those of the Set
Null to an unknown extent, (b) a score, X, is selected
on any occasion from either set with an unknown prob-
ability, and (c) all scores within the chosen set have an
equal chance of being selected. The decision maker
has to indicate from which set the score is chosen.

The decision is made solely on the basis of 
Set Null because nothing is known about Set
Alternative. A rational rule is to consider Set Null
too unlikely as the source of Score X if its associated
probability (i.e., the probability of obtaining a value
that is equal to, or more extreme than, X) is smaller
than a predetermined value (e.g., 0.04). Specifically,
the decision maker rejects Set Null as the source
when 12 or 2 is chosen because the associated

t = (X
---

1 − X
---

2)(u1 − u2)

Standard error of differences
.

t = Sample statistic − Population parameter
Standard error of the random

sampling distribution
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Table 1 The Simple Frequency Distribution of 25
Scores in Set Null

Score 1 2 3 4 5 6 7 8 9 10 11 12 13

Frequency 1 1 3 4 5 7 8 7 5 4 3 1 1

Probability .02 .02 .06 .08 .1 .14 .16.14 .1 .08 .06 .02 .02



probability of either of them is 0.04. The value 12 or
2 is a criterion value for the decision (hence called a
critical value).

The Statistical Hypotheses

A test of statistical significance is a binary decision
task. Analogous to Score X in the binary decision task
is the result of a research effort, such as (X

—
DrugD

– X
—

Placebo). Analogous to Set Null is the appropriate
chance-dependent t distribution chosen with reference
to the degrees of freedom (df; viz. n1 + n2 − 2 in the
present example). NHSTP begins with two statistical
hypotheses, H0 and H1.

HH0: An Implication 
of Chance Effects

Accepting the inevitability of chance effects, the psy-
chologist allows for a nonzero (XX

—
DrugD – XX

—
Placebo) even

though (uDrugD = uPlacebo) is envisaged when Drug D is
inefficacious. Encapsulating this methodological
frame of reference are the conditional propositions
[CP1-a] and [CP1-b].

[CP1-a]: If the chance effects assumption is true, then
H0: uDrugD = uPlacebo.

[CP1-b]: If H0 is true, then the random sampling distrib-
ution of differences has a mean difference of zero (i.e.,
uDrugD − uPlacebo = 0).

[CP1-a] shows that the statistical null hypothesis
(H0) is an implication of the chance effects assump-
tion. [CP1-b] makes explicit that H0 stipulates the 
to-be-used random sampling distribution of differ-
ences linking (X

—
DrugD – X

—
Placebo) to (uDrugD − uPlacebo).

The statistical decision about chance effects is made
with the standardized form of this ran-
dom sampling distribution (see “The
Test Statistic” section above).

The Complement of
Chance Effects, HH1 

The complement of the chance effects
assumption is the stance that influences

other than happenstance determine (X
—

DrugD – X
—

Placebo).
Its implication is the statistical alternative hypothesis
(H1), as may be seen from [CP2-a] or [CP2-b] or
[CP2-c].

[CP2-a]: If there is more than chance effects, then H1:
uDrugD ≠ uPlacebo.

[CP2-b]: If there is more than chance effects, then H1:
uDrugD > uPlacebo.

[CP2-c]: If there is more than chance effects, then H1:
uDrugD < uPlacebo.

The consequent of [CP2-a] is a two-tailed H1, in
which the direction of (uDrugD − uPlacebo) is not specified.
The consequent of [CP2-b] or [CP2-c] is a one-tailed
H1, in which the direction of (uDrugD − uPlacebo) is spec-
ified (see Table 2 for the exact relationship).

Researchers carry out research such as this
because they do not know the magnitude of (uDrugD −
uPlacebo). This situation is analogous to knowing noth-
ing about Set Alternative. That is, H1 does not stipu-
late a usable random sampling distribution of
differences because (uDrugD − uPlacebo) is not known. It
is for this reason that H1 plays no part in the statisti-
cal-significance decision.

Some psychologists suggest that the ill-defined
sampling distribution implied by H1 serves to inform
the psychologist of the probability of obtaining statis-
tical significance (viz., statistical power). Be that as 
it may, by virtue of the theoretical implication or
pragmatic objective of the research, H1 informs (a)
whether the significance test is directional and (b) the
direction of the difference if it is a directional test. At
the same time, there are reasons to question the valid-
ity of statistical power.
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Table 2 The Pairing of H0 and H1

If the chance effects If there is more than 
assumption is true, then chance effects, then 

Nondirectional test H0: uDrugD = uPlacebo H1: uDrugD ≠ uPlacebo

Directional test H0: uDrugD ≤ uPlacebo H1: uDrugD > uPlacebo

H0: uDrugD ≥ uPlacebo H1: uDrugD < uPlacebo



The Statistical Decision
About Chance Effects

The psychologist adopts a predetermined criterion
(called α, which is by convention 0.05) for rejecting
the chance-effects explanation of the data. The α level
is also known as the level of significance. H0 is
rejected if the computed t equals to, or exceeds, a crit-
ical t (viz., a t whose associated probability is 0.05).
The result is deemed statistically significant at the
0.05 level in such an event. The critical value of t is
analogous to the critical 12 or 2 in the binary decision
task.

Two Types of Errors

It is clear that a statistically significant result is one
that is deemed too unlikely to be due to happenstance.
The “too unlikely” characterization sets in high relief
that the binary decision is liable to be mistaken. There
are two types of errors. A Type I error is committed if
H0 is rejected when H0 is true. A Type II error is made
if H0 is not rejected when H1 is true.

Although psychologists do not know the proba-
bility of the Type II error (because the implication
of H1 is unknown), they can (and do) set the proba-
bility of the Type I error (called α). To say that a
research result is significant at the 0.05 level is to
say that it might be brought about by chance fewer
than five times out of 100 in the long run. It says, at
the same time, that the psychologist would be
wrong five times out of 100 in the long run if H0 is
rejected.

Summary and Conclusions

Statistically significant results are outcomes that are
deemed too unlikely to be due to chance event. The
decision is based on a well-defined random sampling
distribution. The practical value or theoretical impor-
tance of the result is not informed by statistical
significance because statistical decision, value judg-
ment, and theoretical analysis belong to different
domains.

—Siu L. Chow
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Winer, B. J. (1962). Statistical principles in experimental
design. New York: McGraw-Hill.

STEM-AND-LEAF DISPLAY

The stem-and-leaf display is an exploratory data
analysis technique developed by John Tukey to sum-
marize graphically the characteristics of a distribu-
tion. It is especially easy to produce by hand, and it is
effective for examining distributions for small sample
sizes. (All major statistical packages provide point-
and-click routines that can be used readily to examine
the distributions in the case of large sample sizes.) At
the top of the next page are side-by-side stem-and-leaf
displays for 100 randomly selected IQ scores and the
subset of all scores greater than 99.

To construct a stem-and-leaf display, we place the
data in ascending order and break each score into two
parts, a stem (the leading digit[s], which contains the
most salient information) and a leaf (the trailing
digit[s], which contains less salient information). Two
common line depths (i.e., “stem widths”) are created
by forming stems that include the digits 0–4 and 5–9
(see Random IQ display) or by forming stems that
include the digits 0–1, 2–3, 4–5, 6–7, and 8–9 (see
IQ>99 display).

In the stem-and-leaf display for the variable
Random IQ, the first line (1 6 4) indicates there is one
score in the line (“line depth”), the IQ score 64, which
is partitioned into a stem (6) and a leaf (4). For scores
below the median, line depths are calculated by count-
ing the total number of scores from the bottom (low-
est score) of the distribution up to, and including, the
scores in that line. For scores above the median, line
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depths are calculated by counting the total number of
scores from the top (highest score) of the distribution
down to, and including, the scores in that line. For the
line that contains the median (IQ score 104), the depth
of the line is reported in parentheses (20). Note that
the center three depths (31, 20, 49) add to N = 100
since they account for all the scores within the distri-
bution. Note also that some computer programs report
leaf frequency instead of depths for all lines.

We can locate the center of the distribution (i.e.,
find the median) by eye or by counting in from either
end until half of the observations are counted. We can
examine the range of the data by locating the mini-
mum and maximum values. We can locate the quar-
tiles of the distribution either by eye or by counting.
Turned on its side, the stem-and-leaf display forms a
“digital histogram” that can be used to examine distri-
bution shape, locate peaks and gaps, and identify
unusual observations.

For the variable Random IQ, the distribution is
approximately normal. There is a gap in the distribu-
tion and a possible outlier (64). For the variable
IQ>99, the distribution is positively skewed, with a
gap and two possible outliers. If the line depths 
(stem widths) were identical in the two displays, the

stem-and-leaf display for variable IQ>99 would be
identical to the bottom half of the stem-and-leaf dis-
play for variable Random IQ.

—Ward Rodriguez

See also Exploratory Data Analysis; Frequency Distribution

Further Reading

Emerson, J. D., & Hoaglin, D. C. (1983). Stem-and-leaf dis-
plays. In D. C. Hoaglin, F. Mosteller, & J. W. Tukey (Eds.),
Understanding robust and exploratory data analysis (pp.
7–32). New York: Wiley. 

Hartwig, F., & Dearing, B. E. (1979). Exploratory data analy-
sis (pp. 16–19). Beverly Hills, CA: Sage.

Tukey, J. W. (1977). Exploratory data analysis. Menlo Park,
CA: Addison-Wesley. [See Chapter 1, “Scratching down
numbers (stem-and-leaf)”]

Velleman, P. F., & Hoaglin, D. C. (1981). Applications, basics,
and computing of exploratory data analysis. Boston:
Duxbury Press. [See Chapter 1, “Stem-and-leaf displays”] 

STRATIFIED RANDOM SAMPLING

Stratified random sampling is a sampling technique
in which the population is divided into groups called
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Stem-and-leaf of Random IQ N = 100
Leaf Unit = 1.0
Depth Stem Leaf
1 6 4
1 6
3 7 23
6 7 678
7 8 3
13 8 556789
22 9 011133444
31 9 667788999
(20) 10 00011122233333344444
49 10 55555677788888899
32 11 001111122333
20 11 5566788899
10 12 012244
4 12 58
2 13 01

Stem-and-leaf of IQ > 99 N = 69
Leaf Unit = 1.0
6 10 000111
15 10 222333333
25 10 4444455555
29 10 6777
(8) 10 88888899
32 11 0011111
25 11 22333
20 11 55
18 11 667
15 11 88899
10 12 01
8 12 22
6 12 445
3 12
3 12 8
2 13 01



strata. The idea behind stratified sampling is that the
groupings are made so that the population units
within a group are similar. The variance of the 
sample estimator is the weighted sum of the within-
stratum variances. Because the groupings have been
made so that units within a stratum are similar, strata
should be less variable than the population as a
whole. The variance of the sample estimator is a mea-
sure of how different the sample estimates are from
all the theoretically possible samples that could be
taken (given the sample design) and is therefore a
measure of precision of the sample. A sample design
with low variance is more desirable than a design
with high variance. With a stratified random sample
in which each stratum is surveyed using simple
random sampling, provided the population has been
divided into homogeneous strata, the weighted sum
of the within-stratum variances will be less than the
variance from simple random sampling with no strat-
ification. Stratified random sampling is therefore
considered a more precise sampling technique than
simple random sampling.

Example

The data set in Table 1 is the number of possums
caught in traps in a study area in New Zealand. The
area was divided into three strata based on a map of
the area. By looking at the map and studying the
mapped hill slope and aspect, the researcher divided
the study area into three contiguous strata roughly
corresponding to hillside easterly aspect, valley floor,
and hillside westerly aspect.

The mean for stratum h is calculated as 

where nh is the number of units selected from the hth
stratum and xih is the value of the ith sample unit in the
hth stratum.

The sample mean from stratified sampling is the
weighted sum of the stratum means, calculated as 

where N is the size of the population and Nh is the size
of the hth stratum.

The estimated variance of the sample mean is
calculated as 

where sh
2 is the sample variance for the hth stratum.

In this example, the stratum means were X
—

1 =
2.00, X

—
2 = 3.50, and X

—
3 = 1.40, and N1 = 200

hectares, N2 = 150 hectares, and N3 = 450 hectares.
The data show some differences in possum numbers
among the strata, with half again as many possums
caught in stratum 2 as in stratum 3. The sample vari-
ances were s1

2 = 3.80, s2
2 = 5.65, and s3

2 = 1.64. With
these stratum statistics, the stratified sample mean
and estimated variance of the sample mean are cal-
culated as 

X
---

st = 1

800
(200 × 2.00 + 150 × 3.50 + 450 × 1.40)

= 1.94

vâr(X
---

st) = 1

N 2

H∑

h=1

N 2
h

(

1 − nh

Nh

)
s2
h

nh

,

X
---

st = 1

N

H∑

h=1

NhX
---

h,

X
---

h =
h∑

i=1

Xhi

nh

,
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Table 1 Different Strata for Random Sampling

Stratum 1 Stratum 2 Stratum 3

2 2 0
0 4 1
1 2 2
4 0 3
1 2 0
0 0 0
4 4 1
2 0 2
0 6 4
6 1 1



and

If stratified sampling had not been used and instead
the population had been surveyed by simple random
sampling and the resultant sample had the same 30
values, the sample mean would have been 2.30 and
the estimated variance of the sample mean 0.15. The
stratified sample has a lower variance than the equiv-
alent simple random sample and is estimated to be
more precise.

Allocation of Survey
Effort Among Strata

Further gains in sample precision (measured by the
reduction in estimated variance of the sample mean)
could be made by changing how much sample effort
is expended within each stratum. In the possum
example, stratum 3 had the lowest sample variance.
Reducing the sample size within this stratum could
mean that the strata with the higher variances could
have a higher sample size. This should reduce the
variance of the stratified sample. Conversely, stratum
3 is the largest-size stratum, and a large sample
within this stratum could be warranted on this
ground. 

Optimal allocation of survey effort among strata 
to achieve the lowest variance for a given sample 
size incorporates both stratum variance and size.
Differential sample costs among strata can also be
included as a parameter in optimal allocation:

where ch is the cost of sampling a unit in the hth
stratum.

The result of optimal allocation is that strata that
are variable, large, and proportionally cheap to survey
are allocated larger sample sizes compared with strata
that have low variance, are small, and are expensive to
survey.

With the example data set, assuming the cost of
surveying a unit was the same for all strata and that
the within-stratum variances were σ1

2 = 3.80, σ2
2 =

5.65, and σ3
2 = 1.64, the optimal allocation for n = 30

among the three strata can be estimated. Optimal
allocation when the costs of sampling are assumed 
to be equal among the strata is called Neyman
allocation.

For stratum 1,

For stratum 2,

For stratum 3,

Optimal allocation would mean that stratum 1 has
a sample size of 9, stratum 2 has a sample size of 8,
and stratum 3 has a sample size of 13.

A simpler method of allocating survey effort among
strata is to use proportional allocation, in which effort
is allocated according to the relative size of the strata:

n3 = 30 ×
(

450
√

1.64

200
√

3.80 + 150
√

5.65 + 450
√

1.64

)

= 13.07

= 13 (rounded).

n2 = 30 ×
(

150
√

5.65

200
√

3.80 + 150
√

5.65 + 450
√

1.64

)

= 8.09

= 8 (rounded).

n1 = 30 ×
(

200
√

3.80

200
√

3.80 + 150
√

5.65 + 450
√

1.64

)

= 8.84

= 9 (rounded).

nh = n ×
(

Nhσh√
ch

/ H∑

h=1

Nhσh√
ch

)

,

vâr(X
---

st) = 1

8002

(

2002 ×
(

1 − 10

200

)
3.80

10

+ 1502 ×
(

1 − 10

150

)
5.65

10

+ 4502 ×
(

1 − 10

450

)
1.64

10

)

= 0.09.
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If sample effort had been allocated only on the
proportional sizes of the strata, then stratum 1 would have
been allocated a sample size of n1 = 7, stratum 2 a sample
size of n2 = 6, and stratum 3 a sample size of n3 = 17:

and 

The sample size for stratum 1 was rounded to n1 = 7
rather than 8 to ensure the total sample size was 30 
(if it were rounded to 8, then the total sample size
would have been 31).

Proportional allocation is simpler in that estimates 
of within-stratum variances and sample costs are not
needed. However, assuming the estimates of within-
stratum variances and sample costs are accurate, optimal
allocation will result in smaller variance of the stratified
sample estimate than proportional allocation will.

With optimal allocation, in the example data set,
stratum 3 was allocated the largest sample size.
Stratum 3 was the largest stratum (N3 = 450, compared
with N1 = 200 and N2 = 150) but was also the least vari-
able stratum (s3

2 = 1.64, compared with s1
2 = 3.8 and 

s2
2 = 5.65). Optimal allocation resulted in a smaller

sample size for stratum 3 than the proportional
allocation sample size, reflecting the fact that optimal

allocation incorporates stratum variance (and cost)
along with stratum size in allocating survey effort.

Advantages of
Stratified Sampling

Other than improved survey precision, stratified sam-
pling offers the advantage that it is often logistically
easier to divide a population into strata and then plan to
survey within each stratum. For example, in a field sur-
vey for a particular species of plant, if the study area is
very large, it may be convenient to divide the study area
into strata. Separate survey teams can then survey
within each stratum. A further advantage of stratified
sampling is that surveying each stratum separately
allows separate estimates of the mean or total to be cal-
culated for each stratum. In the field study example, it
may be very useful to know the estimated total number
of plants in the separate strata so that stratum-specific
decisions about how to manage the plants can be made.

Defining Strata

Stratum boundaries can be defined on the basis of any
criteria and any number of criteria. The idea behind
stratified sampling is that units within strata should be
as similar as possible, so it is sensible to have stratum
boundaries that relate in some way to the experimen-
tal unit. In the possum survey, the strata were defined
on geographical information and with the knowledge
that possum densities vary among hillsides with an
easterly aspect, valley floors, and hillsides with a
westerly aspect. Stratified random sampling may be
used to estimate how much money commercial busi-
nesses spend on staff training (per staff member), and
in this application, it would be sensible to stratify on
business size. Large and small businesses are likely to
spend different amounts per staff member, whereas it
seems reasonable that most large businesses spend
roughly similar amounts.

—Jennifer Ann Brown

Further Reading

Lohr, S. L. (1999). Sampling: Design and analysis. Pacific
Grove, CA: Duxbury.

n3 = 30 ×
(

450

800

)

= 16.88

= 17 (rounded).

n1 = 30 ×
(

200

800

)

= 7.50

= 7 (rounded),

n2 = 30 ×
(

150

800

)

= 5.63

= 6 (rounded),

nh = n ×
(

Nh
∑H

h=1 Nh

)
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Stratified sampling (and other sampling methods) simulation:
http://www.soc.surrey.ac.uk/samp/

Applying Ideas on Statistics and Measurement

The following abstract is adapted from Lakhani, R.
(2004). Occupational health of women construc-
tion workers in the unorganized sector. Journal of
Health Management, 6(2), 187–200. 

This study assessed the occupational health sta-
tus of women workers in the construction industry
by evaluating incidences of occupational health
disorders. In all, 1,052 workers were selected by
stratified random sampling; medically examined;
and subjected to relevant interviews, examina-
tions, and investigations. More than three fourths
of the women and almost all the men reported
working 10 to 12 hours daily. A majority of the
women reported headaches and backaches, as
well as pain in the limbs. As much as 56% of
women and 16% of men reported injuries result-
ing in work loss and had no social security or other
workers’ benefits. Respiratory, eye, and skin disor-
ders and noise-induced hearing losswere found to
be prevalent among workers exposed to hazards
like dust, noise, heat, cold, nonionizing radiation,
dry cement, glass, adhesives, tar, and paint. About
76% of the women reported gender-specific work
stress factors, such as sex discrimination and
balancing work and family demands, above and
beyond the impact of general job stressors such as
job overload and skill underutilization.

STRONG INTEREST INVENTORY

The Strong Interest Inventory (SII; publisher:
Consulting Psychologists Press, www.cpp.com) first
was published by Edward K. Strong, Jr., in 1927. Over
the decades, this measure of vocational interests 
has been updated and expanded appreciably. By virtue
of its long history, the SII is one of the most well-
documented instruments available for use by assess-
ment experts. Clients find SII scores useful for
making vocational and educational decisions, con-
firming occupational choices, suggesting new direc-
tions within a career, understanding job dissatisfaction,

and developing plans for retirement. The question-
naire, which takes about 30 minutes to complete,
includes 291 items. The profile reports five types of
scales—General Occupational Themes, Basic Interest
Scales, Occupational Scales, Personal Style Scales,
and Administrative Indexes.

The General Occupational Themes are designed to
measure John Holland’s vocational types—Realistic
(building, working with machines), Investigative
(researching, analyzing data), Artistic (creating, writ-
ing, performing), Social (helping others, teaching),
Enterprising (selling, leading), and Conventional (pay-
ing attention to detail, organizing). The Basic Interest
Scales (BIS) cover 30 content areas, each of which is
clustered according to its strongest relation with
Holland’s vocational types. For example, Realistic BIS
includes mechanics and construction, Investigative
BIS includes medical science, Artistic BIS includes
visual arts and design, Social BIS includes counseling
and helping, Enterprising BIS includes entrepreneur-
ship, and Conventional BIS includes office manage-
ment. The General Occupational Themes and the 
BIS are normed on a large sample of employed women
and men.

The Occupational Scales measure the interests of
122 occupations, drawn from a wide array of profes-
sional, technical, and nonprofessional jobs, with sep-
arate sex-normed scales reported for each occupation
(i.e., a total of 244 Occupational Scales). The scores
for these scales reflect the similarity of a client’s inter-
ests to those of people in the occupation.

The Personal Style Scales measure an individual’s
work and learning style. Work Style is designed to
distinguish between people who like working with
others (e.g., school counselors) and those who prefer
working with data, things, and ideas (e.g., mathemati-
cians). Learning Environment identifies people who
prefer academic environments (e.g., sociologists)
versus those who prefer hands-on environments (e.g.,
auto mechanics). Leadership Style differentiates
people who like to take charge (e.g., school adminis-
trators) and those who prefer to follow (e.g., produc-
tion workers). Risk Taking identifies people who like
risky activities (e.g., firefighters) and those who are
cautious (e.g., librarians). Team Orientation contrasts
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those who prefer team-based activities (e.g., nursing
home administrators) and those who prefer working
alone (e.g., medical illustrators).

Studies have demonstrated the reliability of SII
scale scores over short and relatively long periods of
time. An extensive body of literature also reports evi-
dence of validity for SII scores for use with clients
who vary in age, ability, ethnicity, and interest
orientation.

—Jo-Ida C. Hansen

Further Reading

Donnay, D., Morris, M., Schaubhut, N., & Thompson, R.
(2005). Strong Interest Inventory manual. Palo Alto, CA:
Consulting Psychologists Press.

Hansen, J. C. (1992). User’s guide for the Strong Interest
Inventory. Stanford, CA: Stanford University Press.

STROOP COLOR AND WORD TEST

The Stroop Color and Word Test developed from the
observation by early experimental psychologists that
the naming of color hues is always slower than the
reading of color names in literate adults. The earliest
published report of this phenomenon was offered by
Cattell in 1886. J. Ridley Stroop suggested in 1935
that the difference in color naming and word reading
was due to colors’ being associated with a variety of
behavioral responses while words were associated
with only one behavioral response: reading. In order
to further study the relationship between color naming
and word reading, Stroop devised the test that has
come to be called the Stroop Color and Word Test.

The earliest version of the Stroop consisted of the
words red, green, brown, blue, and purple printed on
a page consisting of ten rows and ten columns. Each
word was printed in colored ink, but never in the color
it represented by the word (e.g., red could be printed
in blue ink but never in red ink). Another page of the
test consisted of colored ink printed as small rectan-
gles. The final page consisted of the color words listed
above, this time printed in black ink.

Since Stroop’s original studies, several hundred
studies have been published on the Stroop test. The
Stroop has attracted such attention because of its high
reliability in identifying individual differences and
because of its somewhat paradoxical nature. The
research has examined the use of the Stroop in cogni-
tive and personality research, in experimental psy-
chopathology, and in the diagnosis and understanding
of organic brain dysfunction.

Neuropsychological studies have suggested that
Stroop interference occurs not at the response stage 
or in the confusion of the participant but as a result 
of interference in verbal processing. The Stroop stim-
uli appear to activate an automatic verbal process-
ing response that interferes with the consciously
instructed color naming. The participant completes
the task either by completing both responses sequen-
tially (reading the word, followed by naming the
color) or by suppressing the automatic, word-reading
response through volitional control. 

Current versions of the Stroop test consist of three
pages and generally use only three colors. Page 1 con-
sists only of color word names (e.g., red, green, and
blue) while page 2 uses XXXX’s printed in red, green,
and blue ink. The third page (interference) consists of
the color words on page 1 printed in nonmatching ink
(e.g., the word red printed in blue ink). The participant
must name the color of the ink rather than the word.
The Stroop may be scored as the total number of items
finished in a set time (usually between 30 and 60
seconds) or the time to complete an entire page. The
former version has the advantage of limiting the time
the test takes without apparently limiting the informa-
tion that is gathered. It is used widely as a neuropsy-
chological instrument, primarily as a measure of
possible reading disorders (when there is no interfer-
ence effect) and as a measure of complex executive
functions (when the interference effect is unusually
large). 

—Charles Golden

Further Reading

Cattell, J. M. (1886). The time it takes to see and name objects.
Mind, 11, 63–65.

972———Stroop Color and Word Test



Dyer, F. N. (1973). The Stroop phenomenon and its use in the
study of perceptual, cognitive, and response processes.
Memory & Cognition, 1(2), 106–120.

Golden, C. J. (1976). The diagnosis of brain damage by the
Stroop test. Journal of Clinical Psychology, 32, 654–658.

Jensen, A. R., & Rohwer, W. D., Jr. (1966). The Stroop color-
word test: A review. Acta Psychologia, 25, 36–93.

Stroop, J. R. (1935). Studies of interference in serial verbal
reactions. Journal of Experimental Psychology, 18,
643–662.

Wheeler, D. D. (1977). Locus of interference on the Stroop
test. Perceptual and Motor Skills, 45, 263–266.

STRUCTURAL EQUATION MODELING

Structural equation modeling (SEM) is a general
term that describes a large number of statistical mod-
els used to evaluate the consistency of substantive
theories with empirical data. It represents an exten-
sion of general linear modeling procedures such as
analysis of variance and multiple regression. In addi-
tion, SEM can be used to study the relationships
among latent constructs that are indicated by multi-
ple measures and is applicable to experimental or
nonexperimental data and to cross-sectional or lon-
gitudinal data.

SEM has a number of synonyms or special cases in
the literature, including path analysis, causal model-
ing, and covariance structure analysis, or some varia-
tions of these terms. Path analysis is an extension of
multiple regression in that various multiple regression
models or equations can be estimated simultaneously;
it provides a more effective and direct way of model-
ing mediation effects. Path analysis can be considered
an early form and a special case of SEM in which
structural relations among only observed variables are
modeled. Structural relations are hypotheses about
how independent variables affect dependent variables.
Hence, the earlier path analysis or the later SEM is
sometimes referred to as causal modeling. Because
analyzing interrelations among variables is a major
part of SEM and these interrelations are supposed to
generate the observed covariance or correlation pat-
terns among the variables, SEM is also sometimes
called covariance structure analysis.

The measurement of latent variables originated
from psychometric theories. Unobserved latent vari-
ables cannot be measured directly but are indicated or
inferred by responses to a number of observable vari-
ables (indicators). Latent constructs such as intelli-
gence or reading ability are often gauged by responses
to a battery of items that are designed to tap those con-
structs. Responses of a participant are supposed to
reflect where the participant stands on the scale of the
latent variable. Factor analyses have been widely used
to examine the number of latent constructs underlying
the observed responses and to evaluate the adequacy
of individual items or variables as indicators for 
the latent constructs they are supposed to measure.
The mergence of confirmatory factor analysis models
(sometimes called measurement models) with struc-
tural path models on the latent constructs became 
a general SEM framework in analyzing covariance
structures. Today’s advancement of SEM includes the
modeling of mean structures in addition to covariance
structures, the modeling of growth or changes over
time (growth models), and the modeling of data
having nesting structures (e.g., students are nested
within classes, which in turn are nested within
schools; multilevel models).

How Does SEM Work?

SEM is a complex and growing collection of tech-
niques. This discussion will focus on only the basic
logic and mechanism of the way SEM works.
Interested readers should consult additional references
for the specific type of model and data involved. In gen-
eral, however, every SEM analysis goes through steps
of model specification, data collection, model estima-
tion, evaluation, and modification. Issues pertaining to
each of these steps are discussed briefly below.

Model Specification

A sound model is theory based. According to theories,
findings in the literature, knowledge in the field, or
one’s educated guesses, causes and effects among vari-
ables of interest can be specified. In SEM, a variable
can serve both as a source (i.e., cause) variable and 
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a result (i.e., effect) variable in a chain of causal
hypotheses. This kind of variable is often called a
mediator. Suppose that social status has a direct impact
on learning motivation, which in turn is supposed to
affect achievement. Motivation, then, is a mediator
between social status and achievement; it is the source
variable for achievement and the result variable for
social status. Furthermore, feedback loops among vari-
ables (e.g., achievement, in the example proposed
above, can in turn affect social status) are permissible
in SEM, as are reciprocal loops (e.g., learning motiva-
tion and achievement affect each other).

Models can be more easily conceptualized and
communicated in graphical forms. Many specialized
SEM software programs, such as LISREL and EQS,
can translate graphical specification of a model into
computer syntax for analysis. A directional arrow is
universally used to indicate a hypothesized causal
direction. For the mediation example above, the
model can be expressed as social status learning
motivation achievement. The variables to the right
of the arrow heads are commonly termed endogenous
variables, and the variables having no arrows pointing
to them are called exogenous variables.

Given the flexibility in model specification, a vari-
ety of models can be conceived. However, not all
specified models can be identified and estimated. Just
as in algebra, where equations cannot have more
unknowns than knowns, a basic principle of identifi-
cation is that a model cannot have a larger number of
unknown parameters to be estimated than the number
of unique pieces of information provided by the data
(variances and covariances of observed variables in
conventional SEM). Another basic principle is that all
latent variables must be scaled so that their values can
be interpreted. These are called necessary conditions
for identification, but they are not sufficient. The issue
of model identification is complex. Fortunately, there
are some established rules that can help researchers
decide whether a particular model of interest is iden-
tified. When a model is identified, every model para-
meter can be uniquely estimated. When a model fails
to be identified, on the other hand, either some model
parameters cannot be estimated or numerous sets of
parameter values can produce the same level of model

fit. In any event, results of such (unidentified) models
are not interpretable, and the models require respeci-
fication (often by the addition of constraints).

Data Collection

Data collection should come, if possible, after models
of interest are specified, such that sample size can be
determined a priori. The sample size required to pro-
vide accurate parameter estimates and model fit infor-
mation depends on the model size as well as the score
scale and distribution of the measured variables. For
example, larger models require larger samples to pro-
vide stable parameter estimates, and larger samples
are required for categorical or nonnormally distrib-
uted variables than for continuous or normally distrib-
uted variables.

SEM is a large-sample technique. That is, model
estimation and statistical inference or hypothesis test-
ing regarding the specified model and individual para-
meters are appropriate only if sample size is not too
small for the estimation method chosen. A general
rule of thumb is that the minimum sample size should
be no less than 200 (preferably no less than 400,
especially when observed variables are not multivari-
ate normally distributed) or 5 to 20 times the number 
of parameters to be estimated, whichever is larger.
Larger models often contain a larger number of model
parameters and hence demand larger sample sizes.

Model Estimation

A properly specified structural equation model often
has some fixed parameters (e.g., missing or omitted
paths have path coefficients of zero) and some free
parameters to be estimated from the data. Free para-
meters are estimated through iterative procedures to
minimize a certain discrepancy function between the
observed covariance matrix (data) and the model-
implied covariance matrix (model). Definitions of
the discrepancy function depend on specific methods
used to estimate the model parameters. A commonly
used normal theory discrepancy function is derived
from the maximum likelihood method. This estima-
tion method assumes that the observed variables are
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multivariate normally distributed or that there is no
excessive kurtosis of the variables.

When this distributional assumption is violated,
parameter estimates may be unbiased (if the proper
covariance or correlation matrix is analyzed; i.e.,
Pearson for continuous variables, polychoric or poly-
serial correlation when categorical variables are
involved), but their estimated standard errors will
likely be underestimated, and the model chi-square
statistic will be inflated. In other words, when distrib-
utional assumptions are violated, statistical inference
may be incorrect. Other estimation methods that do
not make distributional assumptions are available, but
they often require unrealistically large sample sizes to
work satisfactorily (N > 1,000). When sample size is
not that large, a viable alternative is to request robust
estimation from some SEM software programs (e.g.,
LISREL, EQS, Mplus), which provides some adjust-
ment based on the severity of nonnormality to the 
chi-square statistic and standard error estimates.
Statistical inference based on adjusted statistics has
been found to work quite satisfactorily, provided sam-
ple size is not too small.

The estimation of a model may fail to converge, or
the solutions provided may be improper. In the former
case, SEM software programs generally stop the
estimation process and issue an error message or
warning. In the latter, parameter estimates are provided,
but they are not interpretable because some estimates
are out of range (e.g., correlation greater than 1, neg-
ative variance). These problems may result if a model
is ill specified (e.g., the model is not identified), the
data are problematic (e.g., the sample size is too
small, the variables are highly correlated), or both.

Model Evaluation

Once model parameters have been estimated, one
would like to make a dichotomous decision: either
retain or reject the model. This is essentially a statisti-
cal hypothesis-testing problem, with the null hypoth-
esis being that the model under consideration fits the
data. The overall goodness-of-fit test statistic has a
chi-square distribution (i.e., it is a chi-square test).
Unfortunately, this test statistic has been found to be

extremely sensitive to sample size. That is, the model
may fit the data reasonably well, but the chi-square
test may reject the model because of large sample
size. In reaction to this sample size sensitivity prob-
lem, a variety of alternative goodness-of-fit indices,
such as goodness of fit index, normed fit index, and
comparative fit index, have been developed to supple-
ment the chi-square statistic. Higher values of these
indices indicate better model-data fit. Values in the
.90s (or more recently ≥ .95) are generally acceptable
as indications of good fit. Another popular index is the
root mean square error of approximation (RMSEA).
Unlike the other fit indices, a smaller value of
RMSEA indicates better model-data fit (≤ .05 indi-
cates close fit, ≤.08 indicates acceptable fit, ≥.10 indi-
cates bad fit). SEM software programs routinely
report a handful of goodness-of-fit indices. Some of
these indices work better than the others under certain
conditions. It is generally recommended that multiple
indices be considered simultaneously when overall
model fit is evaluated.

Because some solutions may be improper, it is pru-
dent for researchers to examine individual parameter
estimates as well as their estimated standard errors.
Unreasonable magnitude or direction of parameter
estimates or large standard error estimates are some
indications of plausible improper solutions.

Model Modification

When the goodness of fit of the hypothesized model is
rejected (by the chi-square model fit test and other fit
indices), SEM researchers are often interested in find-
ing an alternative model that fits the data. Post hoc
modifications of the model are often based on modifi-
cation indices, sometimes in conjunction with the
expected parameter change statistics (which approxi-
mate the expected sizes of misspecification for indi-
vidual fixed parameters). Large modification indices
suggest large improvement in model fit as measured
by chi-square if certain fixed parameter(s) were free to
be estimated (it is less likely due to chance fluctuation
if a large modification index is accompanied by a large
expected parameter change value). The suggested
modifications, however, may or may not be supported
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on theoretical grounds. Researchers are urged not to
make too many changes based on modification
indices, even if such modifications seem sensible on
theoretical grounds. Note that SEM takes a confirma-
tory approach to model testing; one does not try to
find the best model or theory via data using SEM.
Rather than data-driven post hoc modifications (which
may be very inconsistent over repeated samples), it is
often more defensible to consider multiple alternative
models a priori. That is, multiple models (e.g., based
on competing theories or different sides of an argu-
ment) should be specified prior to model fitting, and
the best-fitting model should be selected among the
alternatives. Because a more complex model, assum-
ing it is identified, will generally produce better fit,
and different models can produce the same fit, theory
is imperative in model testing.

In conclusion, it is worth noting that although SEM
allows the testing of causal hypotheses, a well-fitting
SEM model does not and cannot prove causal rela-
tions without satisfying the necessary conditions for
causal inference (e.g., time precedence, robust rela-
tionship in the presence or absence of other variables).
A selected well-fitting model in SEM is like a retained
null hypothesis in conventional hypothesis testing; 
it remains plausible among perhaps many other 
models that are not tested but may produce the same
or better level of fit. SEM users are cautioned not to
make unwarranted causal claims. Replications of
findings with independent samples are recommended,
especially if the models are obtained with post hoc
modifications.

—Pui-Wa Lei

Further Reading

Kline, R. B. (2005). Principles and practice of structural
equation modeling (2nd ed.). New York: Guilford. 

Schumacker, R., & Lomax, R. (1996). A beginner’s guide to
structural equation modeling. Mahwah, NJ: Erlbaum.

Structural equation modeling, by David A. Kenny: http://davi
dakenny.net/cm/causalm.htm

Structural equation modeling reference list (journal articles
and chapters on structural equation models), by Jason
Newsom: http://www.upa.pdx.edu/IOA/newsom/semrefs
.htm

STRUCTURED CLINICAL

INTERVIEW FOR DSM-IV

The Structured Clinical Interview for DSM-IV (SCID)
disorders is a semistructured standardized diagnostic
interview commonly used for clinical and research
applications. (DSM-IV is the American Psychiatric
Association’s Diagnostic and Statistical Manual of
Mental Disorders, fourth edition.) Several versions of
the SCID are available, including standard face-to-face
interview, computerized interviewer-entered data, and
computerized patient-entered self-report. The SCID
was developed at the New York Psychiatric Institute
Biometrics Research Lab in a comprehensive effort to
standardize DSM-IV diagnostic interviewing proce-
dures including uniform phrasing of interview ques-
tions. Standardized interview procedures were greatly
needed to enhance interrater DSM diagnostic reliabil-
ity, particularly when interviewers differed signifi-
cantly in education, training, and clinical experience.

When DSM-IV Axis I disorders are under consider-
ation, the SCID-I interview is appropriate. The SCID-I
interview is comprised of sequential modules that
assess for mood disorders, psychotic symptoms, psy-
chotic disorders, substance use disorders, anxiety, and
other Axis I disorders commonly found in adults. Each
module begins with screening questions. When negative
responses are provided for all the screening questions,
the interviewer is directed to the next module by means
of a branching system. When some positive responses
are provided for the screening questions, the inter-
viewer is directed to a more comprehensive review of
symptoms for that module. The SCID-II should be
used when Axis II personality disorders are under
consideration. Again, sequential modules are used to
examine each of the DSM-IV Axis II personality disor-
ders. The SCID-II can also be used for detecting the
DSM residual category (personality disorder not other-
wise specified) and some unofficial diagnostic cate-
gories (depressive personality disorder). A SCID-I or
SCID-II interview typically ranges from 45 to 90 min-
utes, depending on the complexity of patient report,
including long-standing psychiatric history.

The SCID-I and SCID-II are available in research
and clinician versions. The research versions closely
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follow DSM-IV criteria including detailed questions to
ascertain presence of DSM-IV subtype specifiers. The
research versions can be highly useful when docu-
menting multiple DSM subtype specifiers, as may be
encountered when interviewing a person with a
complicated history of depressive or manic episodes.
Although the research versions are preferred when
comprehensive diagnostic information is needed to
meet research protocol criteria for participant inclu-
sion and exclusion, these versions tend to be time
consuming when one is interviewing patients with
intricate psychiatric histories. Rest breaks may be
offered if a patient appears to be fatigued by a lengthy
interview. The test developers offer a one-sided mas-
ter copy of the research version and will permit mod-
ifications if the full diagnostic interview is not needed
for the intended research purposes. A one-time fee
with photocopying privileges is available for research
funded by nonprofit organizations. A per-use fee is
required when research is funded by for-profit organi-
zations (contact Biometrics Research, 212-543-5524).
Clinician versions of the SCID are streamlined to
cover major DSM disorders often seen in adult clini-
cal populations and are available from American
Psychiatric Press (appi.org). Computer-assisted
versions and a variety of training resources are avail-
able from Multi-Health Systems (mhs.com). On-site
training and a 20-hour video training series are
available from Biometrics Research. The Structured
Clinical Interview for DSM-IV Dissociative Disorders
(SCID-D) Revised, developed separately by Marlene
Steinberg, focuses specifically on dissociation,
including modules for posttraumatic dissociative
symptoms and acute stress disorder (see mhs.com).

Although the SCID-I and SCID-II have been used
in more than 700 published studies, it is difficult to
provide validity and reliability values as study
populations have varied considerably. In general,
moderate-to-high validity has been demonstrated
when SCID-generated diagnoses are compared across
expert clinicians. Reliability estimates tend to be
higher for more severe psychiatric disorders, and sum-
maries can be found on the biometrics Web site
(www.scid4.org). The SCID-I and SCID-II are readily
available in English. Although significant sections of
the SCID have been translated into Spanish, French,

German, Danish, and six other languages, these trans-
lations have been made on an ad hoc basis outside the
Biometrics Lab. Psychometric characteristics of non-
English versions are not readily available.

—Carolyn Brodbeck

Further Reading

First, M. B., Spitzer, R. L., Gibbon, M., & Williams, J. B. W.
(1997). Structured Clinical Interview for DSM-IV® Axis 
I disorders (SCID-I), clinician version, user’s guide.
Washington, DC: American Psychiatric Press.

Spitzer, R. L., Williams, J. B., Gibbon, M., & First, M. B.
(1992). The Structured Clinical Interview for DSM-III-R
(SCID). I: History, rationale, and description. Archives of
General Psychiatry, 49, 624–629.

Structured Clinical Interview for DSM-IV Web page: www
.scid4.org

SUNFLOWER PLOT

A sunflower plot is an extension of the scattergram for
displaying the distribution of pairs of observations. 
In high-density regions of a scattergram, it often
becomes impossible to assess the distribution of
observations because the points lie on top of each
other (known as overstriking). Sunflower plots
overcome this problem by using sunflower-like sym-
bols to represent the density.

The two-dimensional (x,y) plane is broken up into
a regular lattice of square cells (cells may also be
rectangular, depending on axis scale). The number 
of observations in each cell is counted. A point is
placed in the center of every cell that contains one or
more observations. Equiangular line segments
(petals) are drawn radiating from the central point.
The number of line segments is equal to the
number of observations. No petal is drawn for a
single observation.

A drawback of sunflower plots is that in low-
density regions, the location of individual observa-
tions is lost. To overcome this issue, it is  recommended
that for cells containing a small number of observa-
tions, the points be positioned at their actual locations.
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One issue with interpretation is that eyes can be drawn
to meaningless artifacts as a result of the formation of
neighboring sunflowers. This problem can be reduced
by randomly rotating the sunflowers.

For cells of extremely high density, the petals may
start to overlap and look like filled circles. In this case,
it may be sensible to set the number of petals to be
proportional to the number of observations (e.g.,
1 petal per 10 observations).

Figure 1, created using R, is an example of a sun-
flower plot for Fisher’s Iris data.

Many extensions of sunflower plots have been
suggested. For example, the use of different symbols
(e.g., circles, with size dependent on number of obser-
vations in cell) or cell shapes (e.g., hexagonal cells,
which can be packed more tightly). The use of shad-
ing or colors can improve the legibility of sunflower
plots and allow more information to be presented.

—Carl J. Scarrott

See also Scattergram; Smoothing

Further Reading

Cleveland, W. S., & McGill, R. (1984). The many faces of the
scatterplot. Journal of the American Statistical Association,
79, 807–822.

Sunflower plot creation using the R software, including refer-
ence index: http://cran.r-project.org/manuals.html

SUPPORT VECTOR MACHINES

Support vector machines (SVM) are a system
of machine learning (or classification) algo-
rithm that constructs a classifier to assign a
group label to each case on the basis of its
attributes. The algorithm requires that there
be two variables for each case in the data.
The first is the group variable to be classified
and predicted (such as disease status or treat-
ment), and the second is the variable of
attributes, which is usually multidimensional
numerical data (such as amount of daily cig-
arette consumption or abundance of particu-
lar enzymes in the blood). Normally a

classifier is learned from the method based on a set of
training cases. The classifier is then applied to an
independent test set to evaluate the classification
accuracy.

SVM was first developed by Vladimir Vapnik in
the 1990s. In the simplest situation, binary (e.g., “dis-
ease” vs. “normal”), separable, and linear classifica-
tion is considered. The method seeks a hyperplane
that separates the two groups of data with the maxi-
mum margin, where the margin is defined as the dis-
tance between the hyperplane and the closest example
in the data. The idea came originally from the Vapnik
Chervonenkis theory, which shows that the general-
ized classification error is minimized when the margin
is maximized.

Why the name support vector machines? The
answer is that the solution of the classification hyper-
plane for SVM depends only on the support vectors
that are the closest cases to the hyperplane. All the
remaining cases, farther away, do not contribute to the
formulation of the classification hyperplane. The opti-
mization problem is solved through quadratic pro-
gramming techniques, and algorithms are available
for fast implementation of SVM.

SVM is widely applied in virtually any classifi-
cation application, including writing recognition,
face recognition, disease detection, and other bio-
logical problems. Two important extensions in the
development of SVM made it popular and feasible
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in practical applications: kernel methods and soft
margin. Kernel methods are used to extend the con-
cept of linear SVM to construct a nonlinear classi-
fier. The idea is to map the current space to a
higher-dimensional space, with the nonlinear clas-
sifier in the current space transformed to a linear
one in the new, high-dimensional space. The dis-
tance structure (dot product) is simply replaced by
a kernel function, and the optimization is per-
formed similarly. Common choices of kernel func-
tions include polynomial, radial basis, and sigmoid.
Soft margin is used when the two groups of cases
are not separable by any possible hyperplane.
Penalties are given to “misclassified” cases in the
target function, and the penalized “soft margin” is
similarly optimized.

Assumptions and
Applications of SVM

SVM is a distribution-free method (in contrast to
methods like linear discriminant analysis). It is thus
more robust to skewed or ill-behaved distributed data.
The major considerations when using SVM are the
selection of a proper kernel function and the parame-
ters of penalties for soft margins. Selections of kernels
and parameters are usually determined by maximizing
the total accuracy in cross-validation.

Using the Computer

Since SVM is a relatively modern statistical tech-
nique, it is not implemented in most major statistical
software (e.g., SAS and S-PLUS). In the following, an
extension package, e1071, of R software is used to
implement SVM, and an example of classification of
car fuel efficiency is demonstrated. The data are a sub-
sample of 25 cars from the “auto-mpg” data set in the
UCI Machine Learning Repository. Fuel efficiency,
horsepower, and weight are shown in Table 1. The
goal of the classification problem is to classify ineffi-
cient and economic cars based on their attributes of
horsepower and weight. In Figure 1, inefficient cars
are shown on the right, and economic cars are on 
the left. Linear SVM is applied, and the resulting
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Table 1 Fuel Efficiency, Horsepower, and Weight

Car Efficiency Horsepower Weight

1 Inefficient 170 4654
2 Economic 65 2045
3 Inefficient 150 4699
4 Inefficient 225 3086
5 Inefficient 190 3850
6 Economic 70 1990
7 Inefficient 215 4312
8 Economic 62 2050
9 Economic 70 2200

10 Economic 65 2019
11 Economic 67 2145
12 Inefficient 150 4077
13 Economic 84 2370
14 Inefficient 120 3820
15 Inefficient 140 4080
16 Economic 70 2120
17 Inefficient 170 4668
18 Economic 53 1795
19 Inefficient 130 3840
20 Inefficient 150 3777
21 Inefficient 160 3609
22 Inefficient 110 3632
23 Inefficient 220 4354
24 Inefficient 110 3907
25 Inefficient 132 3455

Source: Data from the UCI Machine Learning Repository
(http://www.ics.uci.edu/~mlearn/MLRepository.html).

Note: Inefficient: <18 mpg; economic: >32 mpg. 
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classification hyperplane, margin, and three support
vectors (triangles) are indicated.

—George C. Tseng

Further Reading

Cristianini, N., & Shawe-Taylor, J. (2001). An introduction to
support vector machines. Cambridge, UK: Cambridge
University Press.

Newman, D. J., Hettich, S., Blake, C. L., & Merz, C. J. (1998).
UCI Repository of machine learning databases, Irvine:
University of California, Department of Information and
Computer Science. Retrieved from http://www.ics.uci.edu/
~mlearn/MLRepository.html

Vapnik, V. (1995). The nature of statistical learning theory.
New York: Springer-Verlag.

SUPPRESSOR VARIABLE

The suppressor phenomenon was first reported in the
1940s by P. Horst, who noted that variables that do
not have a high zero order correlation with the depen-
dent variable may contribute to an increased propor-
tion of explained variance. He described how the
selection of World War II pilots could be improved by
including in the prediction equation not only a vari-
able measuring their technical abilities but also a
variable assessing their verbal ability, even though
the latter variable is itself unrelated to the criterion
(navigating skills). He found that the verbal ability
regressor had a negative coefficient when entered into
the prediction equation.

Subsequently, Quinn McNemar provided an intu-
itive explanation in terms of common elements.
According to McNemar, a useful predictor has, of
course, many elements in common with the dependent
variable, but usually also irrelevant elements. A sup-
pressor is a variable that has no elements in common
with the dependent variable but does have irrelevant
elements in common with the predictor. If the predic-
tor and suppressor are positively correlated, then 
the suppressor has a negative regression weight after
inclusion in the regression equation. This negative
regression weight reflects the fact that the irrelevant

elements from the predictor are partialed out, which
“purifies” the predictor and improves the prediction.

McNemar’s explanation proved relevant to more
situations than Horst’s classical form. This is demon-
strated by the examples displayed in Table 1, showing
various patterns of bivariate correlations between a
dependent variable Y and two independent variables
X1 and X2.

From Table 1, the following observations can be
made:

1. The first example illustrates the classical suppressor
condition.

2. In the second example, two independent variables
have a positive zero order correlation with the depen-
dent variable and correlate positively with each other.
One of them receives a negative regression weight.
This situation is referred to as negative suppression.
Although the suppressor has relevant information in
common with Y, they share fewer common elements
than the common elements of irrelevant information
shared by the suppressor and the other predictor.

3. The third situation involves two variables that can act
as good predictors. They also share, however, infor-
mation that is irrelevant to Y, but with an opposite
orientation. When both variables are included in the
regression equation, they suppress a part of each
other’s irrelevant information. This case is called
reciprocal suppression.

4. In all the situations, inclusion of a second predictor
leads to an increase of the absolute value of the
regression coefficient, as well as of the proportion of
explained variance.
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Table 1 Examples of Three Suppressor Situations

1 2 3 4 5 8

Situation ry1 ry2 r12 by1.2 by2.1 R2
y.12

(r2
y1) (r2

y2)
Classical .40 .00 .707 .800 −.566 .320

(.16) (.00)
Negative .50 .10 .710 .865 −.514 .381

(.25) (.01)
Reciprocal .50 .30 −.270 .627 .469 .454

(.25) (.09)



On the latter characteristic, A. J. Conger based the
following general definition: “A suppressor variable is
defined to be a variable that increases the predictive
validity of another variable (or set of variables) by its
inclusion in a regression equation. This variable is a
suppressor only for those variables whose regression
weights are increased.” In a formula, variable X2 is a
suppressor for predictor X1 (in relation to the depen-
dent variable Y) if 

β1ry1 > ry
2

1.

—Gerard H. Maassen

Further Reading

Maassen, G. H., & Bakker, A. (2001). Suppressor variables in
path models: Definitions and interpretations. Sociological
Methods & Research, 30, 241–270.

SURVEY WEIGHTS

Weights are numerical values that are used in surveys
to multiply by response values in order to account for
missing observations. The missing data may be absent
as the result of a prearranged sample design or as the
result of nonresponse. In the case of sample designs,
weights are used to estimate totals or means for data
of interest, such as acres of corn grown or household
income, based on a selected subset of the entire popu-
lation. The population could be, say, all farms or all
households. The subset is known as a sample. In the
case of nonresponse, the weights are inflated further
to account for those missing observations. Another
method for accounting for nonresponse is to replace
those values with data derived from other information.
That process is known as imputation. Whether com-
pensation for nonresponse is done by imputation, by
weighting the results of a census, or by adjusting the
weights for a sample, one must consider whether the
missing data are different in some way from the data
actually observed. Here, however, we will examine
the more straightforward use of weights in surveys:
sampling weights.

Data collected on a given characteristic or charac-
teristics for a population, such as acres of corn
planted on farms in Minnesota, constitute a survey.
Thus a characteristic for a data element could be
number of acres of corn, and a population could be
all farms in Minnesota. Often we want to estimate
totals or means of data elements, such as total acres
of corn in a population (here, Minnesota farms), by
taking a sample of members of the population and
from that data, inferring an estimate for the popula-
tion. The sample is selected from the population
according to varying rules, depending on the type of
sample. Samples may be model based or design
based. Often they are design based with model-
assisted inference. If they are design based, then
samples are collected on the basis of the randomiza-
tion principle. This practice leads to the sample
weights we discuss here.

For example, the simplest design-based sample is
the simple random sample (SRS). If, for example, a
sample of 20 were to be drawn at random from a pop-
ulation with 100 members, with an equal chance of
selection for each member of the population, then that
sample would be an SRS. Here the sample size is n =
20, and the population size is N = 100. The probabil-
ity of selection for each member of the population to
become a member of the sample is In general,
the probability of selection for an SRS is Each
value we collect for a characteristic, here acres of
corn, for each member of the sample can be added
together for a sample total. The sample weight that we
need to multiply by this sample total to obtain an esti-
mated population total would be the inverse of the
probability of selection, or w = where w is the
weight. In the above example, w = 5.

These weights are always the inverses of the cor-
responding probabilities of selection. The probability
of selection depends on the structure of the design-
based sample and can be complex. This process may
involve various stages and adjustments, but the basic
fact to remember is that a sample weight for any
given observation is the inverse of its probability of
selection.

—James Randolph Knaub, Jr.
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Further Reading

Cochran, W. G. (1977). Sampling techniques (3rd ed.). New
York: Wiley. 

Hansen, M. H., Hurwitz, W. N., & Madow, W. G. (1993).
Sample survey methods and theory (2 vols.). New York:
Wiley. (Original work published 1953) 

Sarndal, C.-E., Swensson, B., & Wretman, J. (1992). Model
assisted survey sampling. New York: Springer-Verlag.

Journal of Official Statistics online: http://www.jos.nu (Click
on “Search,” and then search keyword “weight.” A number
of articles will be found on topics such as noncoverage,
raking, and other advanced topics.)

SURVIVAL ANALYSIS

Survival analysis is a well-developed branch of
statistics that concerns methods for the analysis of
time-to-event data. Such data arise in a number of
scientific fields, including medicine, biology, public
health, epidemiology, engineering, economics, and
demography, among others. Time-to-event data,
sometimes also referred to as failure time data (in
which case the event is regarded as a “failure”), have
two unique features. First, the response of interest,
time, is always nonnegative. Second, and more impor-
tant, these data are often censored or truncated or
both, making the survival analysis unique among most
other statistical methods.

Survival analysis often models survival function
and hazard function instead of the probability den-
sity function or cumulative distribution function.
Throughout this discussion, we will assume that the
time to event, denoted by T, is a nonnegative continu-
ous random variable with a probability density func-
tion f(t) and that F(t) = P(T ≤ t) = ∫ t

0 f (u) du is the
corresponding cumulative distribution function. The
survival function and the hazard function of T are then
defined as S(t) = P (T > t) = 1 – F(t) and λ(t) = lim∆t→0

P(t<T≤ t+∆t | T > t)/∆t, respectively. It can be easily
shown that  λ(t) = f(t)/S(t) and S(t) = exp{–Λ(t)}
where Λ(t) = ∫t

0 λ(u) du is termed the cumulative hazard
function. We see that the survival function gives the
probability that an individual “survives” up to time t,
while the hazard function represents the “instantaneous”

probability that the “failure” will occur in the next
moment, given that the individual has survived up to
time t. Both the survival function and the hazard func-
tion can be used to characterize the stochastic behav-
ior of the random variable T.

Censoring and Truncation

Time-to-event data present themselves in unique ways
that create special obstacles in analyzing such data.
The most important one is known as censoring.
Loosely speaking, censoring means that the data are
incomplete. Although there exist many censoring
mechanisms, we shall mainly focus on the two most
frequently encountered types of censoring: right cen-
soring and interval censoring.

Table 1 presents a typical right-censored data set
resulting from a clinical trial. The purpose of this clin-
ical trial was to evaluate the efficacy of maintenance
chemotherapy for acute myelogenous leukemia
(AML). In all, 23 patients were treated by chemother-
apy, which led to remission, and then randomly
assigned to two groups. The first group contained 11
patients and received maintenance chemotherapy. 
The second group contained 12 patients and did not
receive maintenance chemotherapy. Time until
relapse, the response variable denoted by T hereafter,
was recorded in weeks. The objective of the survival
analysis was to see if the maintenance chemotherapy
prolonged time until relapse. In later sections, we will
answer this question by applying appropriate survival
analysis methods.

In Group 1, the first and the second patients had
relapse times of precisely 9 weeks and 13 weeks,
respectively. That is, T1 = 9 and T2 = 13. The third
patient, however, was not able to provide an exact
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Table 1 The Acute Myelogenous Leukemia Data

Groups Time to relapse (in weeks)

Group 1 – 9, 13, 13+, 18, 23, 28+, 31, 34, 45+, 48,
maintained 161+
Group 2 – 5, 5, 8, 8, 12, 16+, 23, 27, 30, 33, 43,
not maintained 45

Note: + = right censoring.



relapse time, perhaps due to being dropped out of the
study. All we know is that, at Week 13, this patient
was still relapse free. Thus this patient’s relapse time
should be greater than 13 weeks, which is denoted by
13+ in the table. One can see that for this patient, we
have only “incomplete” information because instead
of knowing the exact value of T3, we know only that
T3 > 13. Such censoring is called right censoring.

A more complicated censoring mechanism is inter-
val censoring, which arises when the failure time of
interest, T, is known only to be bracketed between two
observation times, say, L < T ≤ R. This can happen, for
example, in a medical or health study that entails peri-
odic follow-up. An individual who should be observed
periodically for a clinically defined “failure” may
miss one or more prescheduled visits and return after
the failure occurred. In such cases, we know only that
the true failure time is greater than the last observation
time at which the failure had not occurred and less
than or equal to the observation time at which the fail-
ure has been observed to occur.

Table 2 presents an interval-censored data set
obtained from a cancer study. This study involved 94
early breast cancer patients with two treatments, radio-
therapy (radiation therapy) alone and radiotherapy

with adjuvant chemotherapy. Among them, 46 patients
were given radiotherapy alone, and 48 patients
received radiotherapy with adjuvant chemotherapy.
During the study, each patient was supposed to be
checked every 4 or 6 months by physicians for the
appearance of breast retraction, a response that has a
negative impact on overall cosmetic appearance.
However, actual observation times differ from patient
to patient, and only interval-censored data are available
for the appearance. For instance, the second patient in
the radiotherapy group had not developed any symp-
tom of breast retraction by Week 25. When she
returned at Week 37, however, breast retraction had
already appeared. Therefore, the failure time for this
patient must be between 25 and 37 weeks. A main
objective of the study was to compare the two treat-
ments in terms of the time until the appearance of
breast retraction, the survival time of interest.

Interval censoring can be regarded as a more gen-
eral censoring mechanism than right censoring. If
either L = R – ε for arbitrarily small ε or R = ∞, then
we have an exact or a right-censored survival time.

Another important feature of many failure time
data, sometimes confused with censoring, is trunca-
tion. Truncation of the failure time occurs when some

individuals cannot be observed (and in
fact may not even be known to exist)
because their failure times do not lie in a
certain observational window. This
contrasts with censoring, in which case
we at least have partial information of
the censored observations. Therefore,
truncated data must be analyzed under
the restriction of conditional inference.
In this article, we will focus on survival
analysis of censored data and refer read-
ers to some textbooks that discuss trun-
cation in detail.

Kaplan-Meier Estimator 
and Related Methods

The Kaplan-Meier (KM) estimation is a
nonparametric technique for estimating
the survival function of a homogeneous
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Table 2 Breast Cosmetic Deterioration Data

Radiotherapy Radiotherapy and Chemotherapy

(45, ∞] (25, 37] (37, ∞] (8, 12] (0, 5] (30, 34]
(6, 10] (46, ∞] (0, 5] (0, 22] (5, 8] (13, ∞]
(0, 7] (26, 40] (18, ∞] (24, 31] (12, 20] (10, 17]
(46, ∞] (46, ∞] (24, ∞] (17, 27] (11, ∞] (8, 21]
(46, ∞] (27, 34] (36, ∞] (17, 23] (33, 40] (4, 9]
(7, 16] (36, 44] (5, 11] (24, 30] (31, ∞] (11, ∞]
(17, ∞] (46, ∞] (19, 35] (16, 24] (13, 39] (14, 19]
(7, 14] (36, 48] (17, 25] (13, ∞] (19, 32] (4, 8]
(37, 44] (37, ∞] (24, ∞] (11, 13] (34, ∞] (34, ∞]
(0, 8] (40, ∞] (32, ∞] (16, 20] (13, ∞] (30, 36]
(4, 11] (17, 25] (33, ∞] (18, 25] (16, 24] (18, 24]
(15, 8] (46, ∞] (19, 26] (17, 26] (35, ∞] (16, 60]
(11, 15] (11, 18] (37, ∞] (32, ∞] (15, 22] (35, 39]
(22, ∞] (38, ∞] (34, ∞] (23, ∞] (11, 17] (21, 8]
(46, ∞] (5, 12] (36, ∞] (44, 48] (22, 32] (11, 20]
(46, ∞] (14, 17] (10, 35] (48, ∞]

Note: ∞ indicates observation is right censored.



right-censored sample. If there is no censoring in the
data, we can certainly use the empirical cumulative
distribution function (and then subtract it from 1) as
our estimator. However, existence of censoring
requires more complex treatment.

Let t1 < t2 < . . . < tk represent the exactly observed
(i.e., not censored) failure times in a sample of size n.
We first estimate the hazard function at time ti for 
i = 1, . . . ,k. Obviously, an intuitive estimator of 
λ(ti) = f(ti)/S(ti) should be λ̂(ti) = di/ni, where di is the
number of failures at time ti, and ni is the number of
participants at risk just prior to ti. Given all the λ̂(ti)
estimated, the KM estimator for the unknown survival
function S(t) is simply Ŝ(t) = ∏i:ti ≤ t 1 − λ̂(ti). A heuris-
tic argument of the validity of the KM estimator is
outlined as follows. Note that we can rewrite λ(x) =
f(x)/S(x) as S(t) = exp[–∫t

0λ (u) du]. Therefore, a dis-
crete approximation of S(t), if we know only the val-
ues of λ̂(t) at {t1,t2, …, tk}, is ∏i:ti ≤ t [1 - λ̂(ti)].

Confidence intervals of the survival function
can be obtained by estimating the variance of Ŝ (t)
via the so-called Greenwood formula and assum-
ing asymptotic normality. This topic will not be
explored further here.

We now illustrate the above procedure with the
AML data in Table 1. For the maintained group, n =
11 and k = 7. For the other group, n = 12 and k = 9.

The intermediate quantities we need, together with the
final estimate of S(t), are shown in Table 3.

Notice that censored observations contribute to the
change of ni in the above calculation. In the next sec-
tion, these two (estimated) survival functions will be
plotted and contrasted to see whether maintenance
prolongs time to relapse.

When interval-censored data are present, the KM
estimator can no longer be used because we usually
have not any exactly observed failure time (recall that
now all failure times fall in some interval). In such
cases, an extension of the KM estimator, the Turnbull
estimator, should be employed. This estimation pro-
cedure, which is essentially an expectation maxi-
mization (EM)–type algorithm, requires iterative
steps and is outlined as follows. Let the observed data
be {(li, ri]; i = 1, . . . , n} and 0 = a0 < a1 < . . . < am =
∞ such that each li and ri is contained in the set.
Define αij = 1 if (aj–1, aj] is a subset of (li, ri] and 0
otherwise for i = 1, . . . , n and j = 1, . . . , m. Note that
αij essentially indicates whether participant i con-
tributes to the estimation of the survival function (of
T) over the interval (aj–1, aj], depending on whether it
is likely that the (unobserved) failure time of the 
ith participant falls within this interval. The following
Steps 1 to 3 are then iteratively repeated until 
convergence.
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Table 3 Kaplan-Meier Estimates for the AML Data

Group 1 − Maintained Group 2 − Not Maintained

i ti di ni λ̂(ti) Ŝ(ti) i ti di ni λ̂ Ŝ(ti) 

1 9 1 11 1/11 0.909 1 5 2 12 2/12 0.833
2 13 1 10 1/10 0.818 2 8 2 10 2/10 0.667
3 18 1 8 1/8 0.716 3 12 1 8 1/8 0.583
4 23 1 7 1/7 0.614 4 23 1 6 1/6 0.486
5 31 1 5 1/5 0.491 5 27 1 5 1/5 0.389
6 34 1 4 1/4 0.368 6 30 1 4 1/4 0.292
7 48 1 2 1/2 0.184 7 33 1 3 1/3 0.194

8 43 1 2 1/2 0.097
9 45 1 1 1/1 0.000

Note: i = index; ti = ith uncensored observation time point; di = number of failures at time ti; ni = number of subjects at risk just prior
to ti; λ̂(ti) = estimate of the hazard function λ at time ti; Ŝ(ti) = estimate of the survival function S(ti) at time ti. 



Step 0. Assign initial values to S (aj) for j = 1, . . . , m – 1
(recall that S (a0) = 1 and S (am) = 0). A common choice
is S (aj) = (m – j)/m; that is, equal weight is given to each
time point.

Step 1. Compute the probability pj that an event occurs in
interval (aj–1, aj]; that is, pj = S (aj–1) – S (aj), j = 1, . . . , m.

Step 2. Update pj by

Note that the summand 

represents the probability that the ith failure time is in
interval (aj–1, aj] according to the (old) p1, . . . , pm.

Step 3. Compare pj
new and pj for all j = 1, . . . , m. If they

are close enough, stop. If not, replace pj by pj
new in Step

1 and repeat Steps 2 to 3.

It can be shown that, under mild conditions, the
above algorithm always converges although the con-
vergence can be very slow when sample size is large.
Table 4 gives the Turnbull estimate of the survival
function for the radiotherapy group of the breast
cosmetic deterioration data (see Table 2).

Some programming tips: In S-PLUS, the KM
estimate is computed by the routine Survfit, and
the Turnbull estimate can be obtained from
kaplanMeier. SAS, however, has only LIFETEST
for computing the KM estimate.

Log-Rank Tests

Sometimes it is of interest to test whether multiple
survival functions are identical. For example, as

described above, a physician may want to know
whether receiving maintenance chemotherapy really
helps patients. In such a case, the null hypothesis is
H0: S1(t) = S2(t) for all t, and the alternative hypothesis
is H1: S1(t) ≥ S2(t) for all t with at least one strict
inequality. We first consider the right-censored AML
data and plot the two estimated survival functions
obtained earlier.

It seems that the null hypothesis should be rejected
according to Figure 1. Nonetheless, we need to
develop a test statistic to rigorously justify our conclu-
sion. The log-rank test, which may be regarded as an
extension of the Mann-Whitney test for uncensored
data, is one of the most popular choices.

Let t1 < t2 < . . . < tm be the ordered observed dis-
tinct failure times (not censored observations) in the
sample formed by combining the two groups, and let
D1k and Y1k denote the number of observed failures
and number at risk, respectively, for the first group at
time tk, k = 1, . . . , m. Also let Dk and Yk be the corre-
sponding values in the combined sample. Under the

αij pj
∑m

k=1 αik pk

pnew
j = 1

n

n∑

i=1

αij pj
∑m

k=1 αik pk
.
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Figure 1 AML Data: Kaplan-Meier Estimate of the
Survival Functions

Table 4 Turnbull Estimates for the Breast Cosmetic Deterioration Data

t 0 – 4 5 – 6 7 8 – 11 12 – 24 25 – 33 34 – 38 40 – 48 ≥ 48

Ŝ(t) 1.000 0.954 0.920 0.832 0.761 0.668 0.586 0.467 0.000

Note: t = time to failure (i.e., time to breast cosmetic deterioration); Ŝ(t)  = estimate of the survival function S(t) at time t. 



null hypothesis that the two groups share a common
survival function (and thus hazard function), given
Y1k, Dk and Yk, D1k has a hypergeometric distribution
with mean E1k = DkY1k / Yk and variance V1k = DkY1k

(Yk – Y1k) (Yk – Dk) / Y 2
k / (Yk – 1). Define the test

statistic as

It can be shown that Z approximately follows a
standard normal distribution when sample sizes are
large. Note that the test statistic Z is essentially a quan-
tity of standardized observed-minus-conditionally-
expected number of events.

Applying the above test to the AML data, we
obtain Z = –1.843, yielding a p value of 0.033 for the
one-sided test specified above. Thus we may conclude
that the maintenance chemotherapy prolonged time
until relapse. If a two-sided test is preferred, that is,
the alternative hypothesis is S1(t) ≠ S2(t) for some t,
then the p value would be 0.065.

A few remarks are in order. First, the name log-rank
arises from two facts. One is that, in computing the test
statistic Z, we actually estimated two cumulative hazard
functions (one for Group 1 and the other for the com-
bined sample), which are the negative logarithm of the
survival functions. The other fact is that what matters is
really the ranks of the observed failure times. In other
words, if one monotonically transforms the data, say by
multiplying all the time points by 10 or taking square
roots, the test statistic will remain unchanged.

Second, the log-rank test presented above has
many modifications and extensions—so many that
sometimes they become confused with each other.
One major modification is that one can apply the
above method to multiple (rather than only two) sam-
ples. Another is that one can specify various weight
functions in calculating Z. Furthermore, the log-rank
test we have discussed is not applicable if the data are
interval censored. For such a case, we refer the read-
ers to the book by J. Sun under “Further Reading”
because the test procedures under interval censoring
are usually complicated. Several excellent textbooks
are also provided as further references.

Last, in S-PLUS, the routine survdiff can test
the hypothesis laid out above. In SAS, the log-rank
test is carried out by the LIFETEST procedure.

Semiparametric Regression Analysis

When covariates are present, especially when they are
ordinal or continuous, regression analysis often needs
to be performed. However, nonnegativity of the failure
time and censoring complicate the problem. In addi-
tion, in medical studies, clinical trials, and many other
fields, it is often not appropriate to make parametric
assumptions. Consequently, semiparametric regression
models are widely used in survival analysis.

The most commonly used semiparametric model,
the proportional hazards (PH) model, is also termed as
the Cox model in the literature. Denote the failure time
by T as before, and a vector of covariates by Z. The PH
model assumes that λ(t | Z = z) = λ0(t) exp{ββ′′z}, where
ββ is a vector of unknown regression parameters, with
ββ′′z denoting the inner product of two vectors ββ and z,
and λ0(t) is an unspecified nonnegative hazard func-
tion. Here λ(t | Z = z) should be interpreted as the haz-
ard function of T given the covariate Z == z. Notice that
when Z == 0, the hazard function of T is nothing but
λ0(t). Therefore, λ0(t) is termed the baseline hazard
function. Because λ0(t), having an unknown form, is
essentially a nonparametric component and exp{ββ′′z}
is obviously a parametric one, the PH model is there-
fore indeed a “semiparametric” model.

Suppose individual i has a covariate vector Zi and
another individual j has Zj. Then the two correspond-
ing hazard functions suggest that

which is a constant. In other words, the two hazard
functions are proportional to each other. That is where
the model obtains its name. 

For the AML data, denote the unmaintained group by
Z = 0 and the maintained group by Z = 1 (here Z is a
scalar). The PH model says that time to relapse of those
patients without maintained chemotherapy has a hazard

λi(t |Zi = zi)

λj (t |Zj = zj)
= λ0(t) exp

{
β′zi

}

λ0(t) exp
{
β′zj

}

= exp
{
β

′(zi − zj)
}
,

Z =
∑m

k=1
(D1k − E1k)

/√
∑m

k=1
V1k .
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function λ0(t) while that of the patients receiving
chemotherapy has λ0(t)e

β. In other words, the difference
caused by the maintained chemotherapy is reflected by
eβ (or rather, β), which we will estimate next.

Often we are interested in estimating ββ, the regres-
sion parameter, because it determines how the covari-
ates affect the failure time. An approach called partial
likelihood enables us to fulfill the task without being
troubled by the unknown. λ0(t). Suppose there are no
ties between the observed failure times (not censored
observations). Let t1 < t2 < . . . < tm be the ordered
observed failure times, Z(j) be the covariate associated
with the individual whose failure time is tj, and R(tj)
the risk set at time tj –, that is, the set of all individu-
als who are still under observation just prior to tj, j =
1,…,m. The partial likelihood of the data, based on the
PH model, is expressed by the following equation:

Maximizing the above partial likelihood or its log-
arithm, which requires numerical analysis tools,
yields the estimator ββ̂. Notice that the numerator uti-
lizes the information contributed by the jth failure,
whereas the denominator carries the information
about all individuals who are still at risk, some of
which may be censored later.

The partial likelihood specified above is not the usual
full likelihood. It is not even a conditional likelihood,
although under mild assumptions it coincides with the
marginal likelihood. Nonetheless, it yields an efficient
and asymptotic normal estimator of ββ and can be treated
as an ordinary likelihood. In fact, the variance of ββ̂ is
estimated by calculating the inverted observed informa-
tion matrix from the partial likelihood.

When ties are present, we need to modify the
above partial likelihood to break the tie. Several
methods exist in the literature for such a purpose. For
example, the Breslow version of the modified partial
likelihood is

where dj is the number of failures at time tj and s( j) =
∑i:ti = tj

zi is the sum of the covariates of individuals
observed to fail at tj.

Applying the PH model to the AML data by coding
Z as mentioned earlier, we obtain β̂ = –0.904 with a
standard error of 0.512. Thus the p value for testing H0:
β = 0 versus H1: β ≠ 0 is 0.078 (note that this result is
consistent with the log-rank test result), indicating
marginal significance. The value of β̂ can also be
interpreted via the hazard ratio—we may say that the
hazard function corresponding to the maintained group
is roughly 40% (e–0.904 = 0.405) of the hazard function
corresponding to the unmaintained group. Put another
way, if two patients, one in the maintained group and
the other in the unmaintained group, both have sur-
vived up to time t, then the probability that the former
will “fail” (in this case, relapse) in the next moment is
only about 40% of the probability that the latter will.

It must be emphasized that one should ignore the
baseline hazard function λ0(t) only when the interest
of study lies solely in testing whether the covariate
influences the failure time. If one also wants to predict
the survival probability for a particular patient, then
λ0(t) will need to be estimated too. The most commonly
used estimator is the Aalen-Breslow estimator. 

When interval censoring is present, things are
much more complicated. The reason is that we will
in general have to estimate the baseline hazard func-
tion λ0(t) simultaneously when we estimate ββ
because the partial likelihood approach no longer
applies. One remedy is to consider a more general
type of semiparametric model, termed linear trans-
formation models, which contain the PH model as a
special case. 

The SAS procedure PHREG contains many exten-
sions of the PH model. The corresponding routine in
S-PLUS is coxph.

—Zhigang Zhang

Further Reading
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SYSTEM OF MULTICULTURAL

PLURALISTIC ASSESSMENT

The System of Multicultural Pluralistic Assessment,
best known as SOMPA, was developed by S. Mercer
and A. Lewis in 1978 to meet the educational and
mental health needs of minority children. Published
by the Psychological Corporation, the SOMPA was
discontinued in 2003. The SOMPA was designed as
a system for assessing the level at which children
function in cognitive abilities, perceptual motor abil-
ities, and adaptive behavior in a nondiscriminatory
manner.

Intended to provide a comprehensive assessment of
children ages 5 to 11, the SOMPA included a medical
component, a social component, and a pluralistic
component. The medical component determined the
presence or absence of organic pathology. Six mea-
sures were used to assess the medical component:
physical dexterity tasks (sensory motor coordination),
the Bender Visual Motor Gestalt Test (perceptual and
neurological factors), the Health History Inventories,
weight by height norms (nutritional or developmental
problems), vision (the Snellen Test), and auditory acu-
ity (national norms).

The social component was concerned with a child’s
ability to adapt and function in social situations. Two
measures were used to assess the social component:
the Adaptive Behavior Inventory for Children and the
Wechsler Intelligence Scale for Children-Revised
(WISC-R).

Last, the pluralistic perspective yielded an index of
a child’s intelligence or Estimated Learning Potential
through a “corrected” WISC-R score based on a com-
parison of how well the child performed on that test
with the performance of other children who had had
similar learning opportunities.

The procedures of the SOMPA provided an alterna-
tive testing method to increase the proportion of minor-
ity students in gifted education programs, particularly
in states that used IQ cut-off scores for placement deci-
sions. There was some evidence to suggest that IQ or
Estimated Learning Potential, as measured by the
SOMPA, was able to predict school achievement. In
addition, the SOMPA had some utility as an aide to
psychological assessment of Native American Navajo
children. In spite of the general acceptance of the
SOMPA as a tool for assessing children from culturally
and linguistically diverse backgrounds, some criticism
remained unresolved. One was the claim that the
SOMPA was a better instrument than the WISC for
predicting learning potential in a school environment.
Also, concerns were raised regarding the national rep-
resentativeness of the sample. Despite the criticism,
the SOMPA represented the first attempt at reducing
cultural biases and stigmatization in assessing cultur-
ally and linguistically diverse children.

—Romilia Domínguez de Ramírez

Further Reading

Figueroa, R. (1982). SOMPA and the psychological testing of
Hispanic children. Metas, 2, 1–6.

Figueroa, R. A., & Sassenrath, J. M. (1989). A longitudinal
study of the predictive validity of the System of
Multicultural Pluralistic Assessment (SOMPA) (ERIC
Document Reproduction Service No. EJ391800). Psychology
in the Schools, 26, 5–19.
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T SCORES

A T score is a type of standard (not standardized)
score that has a mean of 50 and a standard deviation
of 10. It is very similar in concept to a z score, which
has a mean of 0 and a standard deviation of 1.

T scores are used when the researcher wants to
convert raw scores to a metric that is comparable
across distributions (different sets of scores) and
where there is a desire to have all scores as positive
values (which is the case unless a raw score is more
than 3 standard deviations below the mean).

The formula for T score is

T = 50 + 10z,

where

T is the T scores,

50 is the mean of the set of T scores,

10 is the amount that one T score deviates from the
mean, and

z is the corresponding z score for a particular raw score.

For example, here is a set of raw scores and their
corresponding z scores and T scores:

Raw Score z Score T Score

6 1.17 61.65
4 −0.78 42.23
5 0.19 51.94
4 −0.78 42.23
3 −1.75 32.52
6 1.17 61.65
5 0.19 51.94
4 −0.78 42.23
5 0.19 51.94
6 1.17 61.65

You can see that a raw score with a z score close to the
mean of the distribution (which is 4.8) is the closest to
50 and that all the T scores are well within the positive
range.

—Neil J. Salkind

See also Standard Scores; z Scores

Further Reading

Salkind, N. J. (2004). Statistics for people who (think they)
hate statistics. Thousand Oaks, CA: Sage.
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T TEST FOR TWO

POPULATION MEANS

The t test for independent means examines the differ-
ence between the means of two independent groups
and requires that for each case in the sample, there be
two variables. The first is the group variable (such as
treatment or gender), and the second is the test
variable (such as a score on a personality test or an
achievement test). The second variable, sometimes
known as the grouping variable, places each individ-
ual in one of two mutually exclusive categories, and
the t test itself evaluates whether there is a significant
difference between the two groups.

Why is it referred to as “Student’s t?” The test
was formulated by William Gossett (a student of
Karl Pearson) in the early 1900s, when he was a
chemist and a statistician at the Guinness Brewing
Company. As is true today, many company secrets
were proprietary, and his employer would not allow
him to publish his own work under his own name
(trade secrets and so forth). Instead, he was given
permission to publish it under the pseudonym
“Student.”

The Case Study and the Data

It is not difficult to find any school system that relies
on testing for a variety of different purposes, such as
adhering to different federal and state guidelines, for
example, the No Child Left Behind Act of 2001.
Another purpose might be to chart school progress or
determine differences between classrooms at the
same grade level. To examine whether such differ-
ences are significant, a t test for independent means
can be applied. Table 1 shows the sample data set for
25 children, one set from Susan Graves’s classroom
and one set from Jack Longer’s classroom.

The Assumptions 
Underlying the tt Test

Three important assumptions underlie the use of the 
t test for independent means:

1. The test variable (which in this example is the math
test score for each student) is normally distributed.
If the sample is large enough (15 or more per
group), this assumption is fairly resistant to being
violated, but if the scores are not normal, then a
larger sample size might be needed.

2. The variances for each of the test variables in both
groups are equal to one another.

3. The cases in each of the samples are random in
nature, and the scores on the test variable are inde-
pendent of one another. If this assumption is vio-
lated, then the resulting t value should not be
trusted.

The Research Hypothesis

The null hypothesis associated with this analysis is
that there is a difference between the population
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Table 1 Sample t Test Data

Student Graves Longer

1 89 47
2 89 67
3 85 78
4 76 89
5 68 87
6 95 65
7 99 67
8 87 62
9 67 51

10 76 69
11 92 56
12 89 99
13 85 97
14 65 80
15 72 86
16 78 70
17 76 78
18 77 72
19 53 67
20 78 99
21 91 86
22 67 54
23 80
24 87
25 66



means of the two samples. This is a nondirectional test
and can be stated as follows:

H1 : µ1 = µ2,

where µ equals the population mean.

Computing the tt Value

One formula for computing the t value is

where

X
_

1 is the mean for Group 1, which in this example is
79.48;

X
_

2 is the mean for Group 2, which in this example is
73.91;

n1 is the number of participants in Group 1, which in this
example is 25;

n2 is the number of participants in Group 2, which in this
example is 22;

s1
2 is the variance for Group 1, which in this example is

11.17;

s2
2 is the variance for Group 2, which in this example is

15.32.

Once the appropriate values are entered into the
equation, it appears like this:

Using the Computer

For this example, SPSS was used to compute the t value
for this test of independent means. The output shown in
Figure 1 includes the mean standard deviation and stan-
dard error of the mean for the dependent variable (math
score) for both the Graves and Longer classrooms. Also
shown in the output is the computation of the t value
(equal to 1.436), the degrees of freedom (45), and the
associated and exact level of significance (.158). Other
information in this output may be useful as well.

t = 79.48 − 73.91
√[

(25 − 1)11.172 + (22 − 1)15.322

25 + 22 − 2

] [
25 + 22

25.22

]

= 1.436.

t = X
---

1 − X
---

2
√[

(n1 − 1)s2
1 + (n2 − 1)s2

2

n1 + n2 − 2

] [
n1 + n2

n1n2

] ,
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Class N Mean Std. Deviation Std. Error Mean

Score Graves 25 79.4800 11.17333 2.23467

Longer 22 73.9091 15.31855 3.26593

Group Statistics

Levene’s Test for
Equality of Variances t-test for Equallity of Means

95% Confidence
Interval of the

Difference
Sig. Mean Std. Error

F Sig. t df (2-tailed) Difference Difference Lower Upper

Score Equal variances
assumed 2.964 .092 1.436 45 .158 5.57091 3.87914 −2.24207 13.38389

Equal variances
not assumed 1.408 37.982 .167 5.57091 3.95727 −2.44030 13.58211

Independent Samples Test

Figure 1 Group Statistics, Independent Samples Test



The chart shown in Figure 2 is a box plot chart cre-
ated using SPSS and shows the means and standard
deviations for each of the two groups as well as the
range of scores.

—Neil J. Salkind

See also Ability Tests

Further Reading

Bean, P., Loomis, C., Timmel, P., Hallinan, P., Moore, S.,
Mammel, J., et al. (2004). Outcome variables for anorexic
males and females one year after discharge from residential
treatment. Journal of Addictive Diseases, 23, 83–94.

Clark, R. (2004). Interethnic group and intra-ethnic group
racism: Perceptions and coping in Black university
students. Journal of Black Psychology, 30, 506–526.

Student’s t Test Applet: http://nimitz.mcs.kent.edu/~blewis/
stat/tTest.html (allows you to enter data and solve for t)

Applying Ideas in Statistics and Measurement

The following abstract is adapted from Heydenberk,
R. A., & Heydenberk, W. R. (2005). Increasing meta-
cognitive competence through conflict resolution.
Applying ideas on statistics and measurement.
Education and Urban Society, 37(4), 431–452.

The t test is one of the most popular of all infer-
ential tests, since the comparison it does between
two groups (be they independent or dependent) 
is such a common comparison found in almost 
any science. In this study, Heydenberk and
Heydenberk, from Lehigh University, determined
the effects of conflict resolution and related social
skill development on students’ metacognitive
competencies. The study was conducted over a 
5-year period in elementary schools in the
Philadelphia School District and in a neighboring
urban school district, and the participants were
fourth and fifth graders. The performance of each
student was assessed for significant pretest-to-
posttest differences using a one-tailed t test with
an alpha or significance level of .05. The results
showed that students who received the treat-
ment demonstrated significant improvement in
metacognitive skills, and the research hypothesis
was accepted—that the introduction of conflict
resolution worked. Their conclusion? Integrating
conflict resolution and social skills training into
curricula is an effective way to affect students’
metacognitive competences.

TEST-RETEST RELIABILITY

All observations and all measurements contain error.
The focus of much work in measurement is on mini-
mizing and estimating the amount of error in any
given measurement. In classical test theory, X is an
observed score that is composed of T, the true score,
and E, the error score: X = T + E. The true score is
never known, but it can be thought of as the long-
range average of scores from a single instrument
administered to an individual an infinite number of
times (the expected value or expected score). The
error score is random and may have many sources,
including testing conditions, individual characteristics
that fluctuate from administration to administration,
differences in forms, and instability of an individual’s
ability or trait over time.

This random error score is quite different from sys-
tematic sources of error, like testwiseness, which may
systematically increase an individual’s score on each
administration. Since testwiseness is systematic or
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constant, it finds its way into the true score and creates
problems regarding validity, since the trait being mea-
sured may be inadvertently influenced by testwiseness.
Random error, since it varies randomly, influences the
consistency of scores but not the expected value of a
score (the true score) and thus influences reliability,
not validity.

Theoretically, we can estimate the amount of error
if we know how much of a given score is due to errors
of measurement. If we were able to test a single
person repeatedly without the effects of recall and
fatigue, variation in that person’s scores would be
considered measurement error. If there were no mea-
surement error, that person would get the same score
on each administration. Since it is not possible to test
individuals repeatedly without the interference of
recall and fatigue, we employ groups to estimate mea-
surement error variance. This allows us to estimate the
standard error of measurement, the typical amount of
measurement error in a set of scores.

If we take the classical test theory model of scores
and consider groups of scores and their variances, we
see that the variance of the observed scores equals the
sum of the variance of true scores and the variance of
error scores: S2

X = S2
T + S2

E (in sample notation).
This is the long way of introducing the need for

reliability. Reliability is a tool used to estimate the
standard error of measurement but also has some
intrinsic benefits in and of itself. Theoretically, relia-
bility is considered the correlation between scores on
two parallel forms of a test. The idea is that if there is
no measurement error at work, scores from two paral-
lel forms administered to the same group of individu-
als should be perfectly correlated—each individual
should obtain the same score. It can be shown that the
correlation between two parallel forms of a test is
equal to the ratio of true score variance to observed
score variance—the proportion of variance in observed

scores that is due to true individual differences: rtt = S
2
T__

S2
X

. 

This reliability coefficient can then be used in estima-
tion of the standard error of measurement, because it
tells us the proportion of observed variance that is true
variance; the standard error of measurement is a
function of the proportion of observed variance that is
true variance.

Estimating Reliability

Based on the classical test theory conception of relia-
bility, scores are reliable to the extent that individuals’
scores remain constant on repeated measurements.
One way to estimate the degree of consistency or
stability of scores is to administer a test on multiple
occasions. Each administration provides a separate
observation or measurement, from which stability of
scores can be observed directly.

This form of reliability is best estimated when 
the actual measurement procedure employs multiple
administrations of a single form, because if scores
vary between administrations for a single individual,
we are likely to attribute this to differences in occa-
sions or time sampling—errors result from conditions
in the lapse of time. This is typically done by admin-
istering the test form to each individual twice, within
a specified time period. The scores resulting from the
two administrations are then correlated—this correla-
tion is the test-retest reliability coefficient.

Formal Conditions 
for Parallel Forms Reliability

Test-retest reliability is estimated from the adminis-
tration of one form on two occasions. This is appro-
priate when the measurement procedure includes a
single form that may be administered on multiple
occasions (pre-post tests or follow-up administra-
tions) or the inference from scores is based on the
ability to generalize in terms of the occasion or time
frame of measurement. Knowledge of test-retest reli-
ability allows one to generalize from one time of
measurement to other time periods or occasions. For
this to be a coefficient of reliability, the test should be
administered in a specified time frame and occasion
to the degree that is meaningful given the character-
istics being measured. To be able to adequately inter-
pret a test-retest reliability coefficient, one must
know the length of time between administrations, the
differences in specific occasions (time of day, day of
week, etc.), and the existence of relevant intervening
experiences that are likely to result in changes in
scores.
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At least three sources of score variability will lead
to instability of scores over time. First, variation due
to instability of the trait or ability being measured
from time to time will lead to variation in scores.
Variation in attention, motivation, and so on will lead
to variation in scores. Finally, if the forms differ from
one administration to another, content sampling will
also introduce variation in scores (often referred to as
a stability-equivalence estimate of reliability). To the
extent that the trait is normally thought of as being
unstable or easily malleable by intervening experiences,
test-retest reliability would not be an appropriate
method of estimating reliability. If we expected an
intervention to alter scores and needed to estimate
measurement error, an estimate of test-retest reliabil-
ity would overestimate measurement error, since we
produced a condition that created changes in scores
(the intervention). Test-retest reliability is an appro-
priate estimate of reliability when the trait is generally
expected to be stable over time and we are interested
in estimating the stability of scores from an instru-
ment intended to measure that trait.

Test-retest reliability coefficients are typically
lower when the administrations occur over longer
periods of time, when there are more opportunities for
relevant intervening experiences that change the trait
being measured, and when the content of the forms
changes. At the same time, if a given form of a test is
administered within a relatively short period of time,
the effects of memory or recall are likely to influence
scores in a way that is difficult to estimate. Recall will
prevent the individual from responding in a truthful
way and biasing results.

General Issues Regarding Reliability

Because the test-retest reliability estimate is based on
a correlation, it is not simply a characteristic of the
measurement instrument itself. Score variability
directly influences correlations, such that all else
being equal, the more score variance present, the
higher the correlation and thus the higher the reliabil-
ity. Correlational forms of reliability are sample spe-
cific and thus are not necessarily generalizable to
other samples. They do, however, provide an estimate
of score consistency for the scores at hand.

In any estimate of reliability, conditions present
during the specific administration of the measurement
instrument can impact performance and scores in
random ways, leading to lower consistency of scores
and lower reliability. Each type of reliability estimate
(e.g., test-retest reliability) also captures a specific
form of random error. The test-retest reliability pri-
marily captures measurement error due to sampling
time or occasions. If this source of error is important
to estimate given the measurement procedure
(because the test is administered multiple occasions
over time), then it is an appropriate form of reliability.
Technically speaking, an estimate of reliability should
be obtained for each set of scores, since any one esti-
mate is sample specific and the argument of general-
izability across samples is difficult to make.

Finally, because sampling error is a function of
sample size, all else being equal, longer forms will
yield higher reliability coefficients. Better, larger sam-
ples of items from the domain will reduce the likeli-
hood that two forms differ in their ability to cover the
domain. A functional relation between form length
and reliability is represented by the Spearman-Brown
prophecy formula.

—Michael C. Rodriguez

See also Coefficient Alpha; Reliability Theory; Standard Error
of Measurement

Further Reading

Feldt, L. S., & Brennan, R. L. (1989). Reliability. In R. L. Linn
(Ed.), Educational measurement (3rd ed., pp. 105–146).
New York: American Council on Education; Macmillan.

Thorndike, R. M. (2005). Measurement and evaluation in psy-
chology and education (7th ed.). Upper Saddle River, NJ:
Pearson Education.

Applying Ideas on Statistics and Measurement

The following abstract is adapted from Weng, 
L.-J. (2004). Impact of the number of response cat-
egories and anchor labels on coefficient alpha and
test-retest reliability. Educational and Psychological
Measurement, 64(6), 956–972.

Of the several different types of reliability, test-
retest is very often used to establish the consistency
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of a measure. A total of 1,247 college students
participated in this study on the effect of scale for-
mat on the reliability of Likert-type rating scales.
The number of response categories ranged from 3
to 9. The results indicated that the scales with few
response categories tended to result in lower reli-
ability, especially lower test-retest reliability. The
scales with all the response options clearly
labeled were likely to yield higher test-retest reli-
ability than those with only the end points
labeled. Scale design that leads to consistent par-
ticipant responses as indicated by test-retest relia-
bility should be preferred.

TESTS OF MEDIATING EFFECTS

Mediator variables are common in disciplines such as
psychology, sociology, management, education, politi-
cal science, and public administration. A mediator vari-
able (referred to hereafter as a mediator) transmits the
effects of an independent variable to a dependent vari-
able. This is illustrated in Figure 1a, which shows a
causal chain involving an independent variable (Z1), a
mediator (Z2), and a dependent variable (Z3). In
instances of actual (as opposed to assumed) mediation,
two types of effects are possible. We illustrate these
with reference to Figures 1a and 1b. In complete medi-
ation, there is only an indirect effect of the indepen-
dent variable on the dependent variable (see Figure
1a). However, in partial mediation, an independent
variable has both a direct effect on the dependent vari-
able and an indirect effect (see Figure 1b).

There are many examples of mediating effects. For
instance, behavioral intentions are assumed to medi-
ate the relation between attitudes and behavior, and
stress is hypothesized to mediate the relation between
stressors and strain.

Research Design Issues 
and Tests of Mediation

Tests of mediation may be based on data from studies
using three major types of designs: randomized exper-
iments, quasi-experiments, and nonexperiments.
Inferences about mediation that stem from such tests

rest on a relatively firm foundation when they are
based on data from randomized experiments. For
example, in testing for the mediating effect of Z2 on
the relation between Z1 and Z3, one randomized exper-
iment can be used to show that Z1 causes Z2, and
another can be conducted to demonstrate that Z2

causes Z3.
Unfortunately, when tests of mediation are based

on data from quasi-experimental studies, inferences
about mediation rest on a much weaker foundation.
Moreover, when such tests rely on data from non-
experimental research, inferences about mediating
effects are almost never justified. One of the major
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reasons for this is that when tests of mediation are
based on data from nonexperimental research, all that
a researcher can confidently conclude is that an
observed pattern of relations (e.g., covariances, corre-
lation coefficients) among the assumed independent,
mediator, and dependent variables is consistent with a
hypothesized model (e.g., that shown in Figure 1b).
However, the same pattern of relations may also be
consistent with a number of alternative models,
including those shown in Figures 1c to 1e. Thus, the
results of nonexperimental research almost always
provide highly equivocal evidence about mediation.
Moreover, as noted below, the validity of inferences
about mediation is not at all improved by the use of
various statistical procedures that purport to test
causal models. One important reason for this is that 
in quasi-experimental or nonexperimental research,
mediation models assume a specific set of causal con-
nections between (among) variables (e.g., the model
shown in Figure 1b), and statistical procedures are
incapable of providing credible evidence of the cor-
rectness of the assumed pattern of relations.

Statistical Approaches 
for Testing Mediation Models

A number of statistical procedures have been used in
tests of mediation that are based on data from non-
experimental or quasi-experimental research. Among
these are path analysis (PA), structural equation
modeling (SEM), and hierarchical multiple regression
(HMR). Contrary to seemingly very popular beliefs,
none of these provide valid tests of mediation.
Reasons for this are detailed below.

FFaaiilluurree  ttoo  SSaattiissffyy  RReeqquuiirreemmeennttss  
ffoorr  CCaauussaall  IInnffeerreennccee

Three major conditions are vital to demonstrating
a causal connection between a hypothesized cause
and an assumed effect: (a) The hypothesized cause
must precede the presumed effect in time; (b) the
variables must be related to one another; and (c) the
relation between the variables must not be a function
of one or more alternative causes. These conditions
are easy to satisfy in well-designed and well-conducted

experimental studies. However, in quasi-experimental
research, only the first two conditions can be satis-
fied. And in nonexperimental research, only the sec-
ond condition can be met. As a result, when
techniques such as PA, SEM, and HMR are applied to
data from quasi-experimental and nonexperimental
research, there is no valid basis for inferences about
causal connections among the hypothesized indepen-
dent, mediator, and dependent variables. It is critical
to recognize that just because variables are consid-
ered to be independent, mediator, and dependent in
statistical analyses does not mean that they actually
have this status. Regrettably, many researchers in
psychology and other social sciences seem to have
little understanding of or appreciation of this. As a
result, they very frequently make unwarranted and
inappropriate inferences about mediating effects
using data from either quasi-experimental or nonex-
perimental studies.

It deserves adding that even individuals who
advocate using statistical techniques to detect mediat-
ing effects recognize that inferences about mediation
are problematic when they are based on data from
nonexperimental research. For example, in 2002,
MacKinnon et al. observed that the HMR procedure
does not provide “the full set of necessary conditions
for strong inference of a causal effect of the indepen-
dent variable on the dependent variable through the
intervening [mediator] variable.” However, they
argued that it and similar procedures provide sugges-
tive evidence on mediation. In addition, in 2002,
Shrout and Bolger noted that “statistical analyses of
association cannot establish causal links definitively.”
Despite this, they stated that such analyses can “pro-
vide evidence that one mediation pattern is more
plausible than another.” For the reasons noted above,
Stone-Romero and Rosopa disagree strongly with
this view.

Model Specification Issues

One of the major reasons that statistical tests of medi-
ating effects are incapable of providing valid infer-
ences about mediation is that model misspecification
is always an issue in such tests. Several aspects of the
misspecification problem are discussed below.
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AAlltteerrnnaattiivvee  CCaauussaall  MMooddeellss

Tests of mediation models that are based on data
from quasi-experimental or nonexperimental research
assume a particular causal chain (e.g., Figure 1b).
However, the actual causal sequence may be different
from that which is specified by a researcher. For
example, instead of the actual causal chain being the
one illustrated in Figure 1b, it may be one of the other
models shown in Figure 1 (e.g., the one in Figure 1c).
This is an extremely important issue, because when
HMR is applied to a set of covariances among three
variables (e.g., Z1, Z2, and Z3) that stem from quasi-
experimental or nonexperimental research, the results
of the analysis can often provide support for an incor-
rect causal model. The same is true of other statistical
techniques (e.g., PA, SEM) that are frequently used 
to test assumed causal models. The fact that these
techniques are used for the purpose of what is called
causal modeling does not imply that the results of
model testing provide a valid basis for inferring the
validity of a hypothesized set of causal connections
between (among) variables.

Model misspecification may manifest itself in sev-
eral ways. We illustrate this with respect to the HMR
technique (described below). In the interest of brevity,
we comment on only four model misspecification
problems here. First, variables in a model may be
measured with error, and techniques such as HMR are
incapable of addressing this issue. As a result,
estimates of “effects” may be biased. Second, models
tested by HMR assume that the causal flow is unidi-
rectional. They have no capacity to model reciprocal
causation. Third, HMR is typically used to test medi-
ation models that involve a single mediator. However,
there may be multiple mediators of relations between
independent and dependent variables. Fourth, and
finally, HMR-based tests of mediation do not control
for the effects of confounding variables.

A Specific Strategy 
Used for Testing Mediation

One of the most commonly used techniques for test-
ing hypothesized models involving mediation is the
Baron and Kenny HMR procedure. It involves three

sequential multiple regression analyses, which are
illustrated here, with reference to the model shown in
Figure 1b.

Prior to describing the three analyses associated
with HMR tests of mediation, it is important to note
that the squared multiple correlation coefficients (R2s)
for each must be nonzero. Unless they are, the results
of the analyses cannot be used to infer the existence of
relations between variables in models that are tested.

TThhee  HHiieerraarrcchhiiccaall  MMuullttiippllee  
RReeggrreessssiioonn  AAnnaallyyttiicc  SSttrraatteeggyy

In the first analysis, the hypothesized mediator (Z2)
is regressed on the assumed independent variable (Z1).
This analysis must show a statistically significant (i.e.,
nonzero) regression coefficient for Z1 (ß2.1), supposedly
implying that Z1 causes Z2. In the second analysis, Z3 is
regressed on Z1. The analysis must produce a nonzero
regression coefficient for Z1 (ß3.1), ostensibly implying
that Z1 causes Z3. In the third analysis, Z3 is regressed
simultaneously on Z1 and Z2, producing regression
coefficients for both predictors. This analysis must
show that the regression coefficient for Z1 is lower than
the coefficient for the same variable that resulted from
the first analysis. Baron and Kenny argue that this pro-
vides a basis for inferring the existence of either partial
or complete mediation. An inference of partial media-
tion results when the regression coefficient for Z1 is
nonzero in the third analysis, supposedly meaning that
some of the effect of Z1 on Z3 is direct (nonmediated).
The existence of complete mediation is inferred if the
regression coefficient for Z1 does not differ signifi-
cantly from zero in the third analysis.

PPrroobblleemmss  WWiitthh  tthhee  HHiieerraarrcchhiiccaall  
MMuullttiippllee  RReeggrreessssiioonn  TTeecchhnniiqquuee

To illustrate the problems associated with the HMR
technique, Stone-Romero and Rosopa conducted a
simulation study in which four variables were manip-
ulated: (a) The values of correlations among indepen-
dent, mediator, and dependent variables in the model
tested were set at values between .10 and .90; and (b)
sample size (N) took on one of 13 values that ranged
from 20 to 3,000. The manipulations resulted in over
8,400 unique combinations of correlation coefficients
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and sample sizes. For each such combination, the
HMR technique was used to test for mediation. The
Type I error rate for these analyses was .05.

Note that two scenarios are possible for each test of
mediation. One is that the model being tested (i.e., the
one shown in Figure 1b) was properly specified; that
is, it represented the true causal model underlying the
set of correlation coefficients. The other scenario is
that the model tested was misspecified; that is, the true
causal model was the one shown in Figure 1e, but the
model tested was the one depicted in Figure 1b.

Assuming that the model tested was properly spec-
ified, the HMR procedure provided evidence sugges-
tive of (a) partial mediation in 3,647 cases (43.09% of
all HMR analyses) and (b) complete mediation in only
630 cases (7.44% of all HMR analyses). Thus, even if
one assumed that (a) the model being tested was
properly specified and (b) data from nonexperimental
research could serve as a legitimate basis for making
causal inferences, the HMR procedure proved to be of
relatively low value as a basis for inferring partial
mediation. In addition, it provided support for infer-
ences of complete mediation at a rate that was just
slightly above the Type I error rate. It is critical to
recognize, however, that if the model tested were
misspecified, all inferences about mediation would 
be invalid. In view of the results of their simulation
and issues associated with causal inference, Stone-
Romero and Rosopa concluded that the HMR tech-
nique should not be used to test for mediation.

OOtthheerr  RReesseeaarrcchh  oonn  tthhee  
PPoowweerr  ooff  tthhee  HHMMRR  TTeecchhnniiqquuee

Stone-Romero and Rosopa are not alone in demon-
strating the low power of the HMR technique. For
example, a 2002 simulation study by MacKinnon et
al. showed that it had very low power when mediator
effect sizes were small or when medium and sample
size were under 100. Thus, they recommended that
the difference in regression coefficients strategy be
used to test for mediation, rather than the HMR tech-
nique. In addition, a 2002 simulation study by Shrout
and Bolger showed that the usual HMR-based test of
indirect effects had very low power. As a result, they

recommended that bootstrap procedures be used to
develop a confidence interval around the estimate of
the supposed indirect effect. Their simulation showed
that this interval was superior to the interval based on
ordinary least squares regression in terms of providing
evidence of indirect effects.

Appropriate Strategies for Testing
Causal Models Involving Mediation

Clearly, research shows that statistical procedures
other than the HMR strategy have improved statistical
power in supposed tests of mediation. Nevertheless,
we believe that the most important objective in
research aimed at showing mediating effects is
demonstrating that the causal model hypothesized by
a researcher (e.g., Figure 1a or 1b) is more plausible
than alternative causal models (e.g., Figures 1c, 1d,
and 1e). Statistical techniques have no potential what-
soever to accomplish this goal. Thus, it is recom-
mended that the validity of causal models involving
mediation be demonstrated through well-designed
and well-executed experimental studies.

—Eugene F. Stone-Romero and Patrick J. Rosopa

See also Moderator Variable; Variable
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TEXT ANALYSIS

Text analysis constitutes a variety of social science
research methods designed to ascertain meaning and
bring structure to large amounts of unstructured infor-
mation derived from different acts of communication
embodied in written language. As such, text analysis
differs from observation-based methods in that the
acts in question have already taken place. Examples of
texts include books, transcripts of political speeches,
advertisements, interviews, newspaper editorials, and
government documents. Text analysis can be generally
defined as a research technique designed to make
systematic and replicable inferences from texts. Text
analysis is regularly utilized in a number of social
science disciplines, including sociology, anthropol-
ogy, psychology, and political science. With its focus
on written language, text analysis is somewhat distinct
from content analysis, which can focus on text but
also encompasses other diverse symbolic behavior
such as music, visual art, and body language.

Jack Sprat could eat no fat; his wife could
eat no lean.

And so betwixt them both, they licked the
platter clean.

The meanings inferred from written sources via
text analysis may be either manifest or latent.
Manifest meaning refers to the literal, surface mean-
ing of the words in question. It is a recognition of the
universal meaning of the words and phrases
employed in the text, divorced from the intentions of
the author and/or any reception from its intended
audience. With this meaning in mind, one may infer
from the age-old nursery rhyme above an equitable

division of a meal by a married couple. By contrast,
it is the very situational context—the creator’s intent,
the recipient’s response, the connection between the
parties—that constitutes the latent meaning of a text.
In this case, meaning can be inferred from factors
such as the type of language employed (e.g., formal
versus informal) or the identity and relative status of
the author and of the addressees (e.g., government
and citizens). That “Jack” and “his wife” refer to
King Charles I and his queen and “the platter” refers
to England’s treasury denotes a much more pointed
outcome than the amicable repast the surface mean-
ing implies.

Text analysis may be qualitative or quantitative in
nature, depending on the orientation of the researcher
and the research questions devised. Qualitative analy-
ses tend to be more inductive and exploratory, whereby
researchers examine data looking for patterns, while
quantitative analyses are more deductive and used to
confirm existing hypotheses. Often, both quantitative
and qualitative methods are employed within a single
research design.

A relatively recent innovation has been the
introduction of computer software programs (e.g.,
ATLAS/ti, NUD*IST) designed to facilitate text
analyses by cutting down or even eliminating many
of the time-consuming elements, such as the coding
of data by hand. In addition, the amount of readily
available textual information produced and dissemi-
nated digitally by newspapers, academic journals,
government publications, businesses, and so on con-
tinues to grow exponentially, furnishing a continu-
ous and easily accessible supply of raw data for
analysis.

—Johnny Holloway

See also Content Validity
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THEMATIC APPERCEPTION TEST

The Thematic Apperception Test (TAT) (author Henry
A. Murray; early coauthor Christiana Morgan) was
published by Harvard University Press (http://www 
.hup.harvard.edu) in 1943 and is currently distributed
by Harcourt Assessment, Inc. (http://www.harcourt
assessment.com). It is a widely used performance-
based personality assessment technique consisting of
31 achromatic cards. The cards contain scenes por-
traying either a solitary individual, individuals in
diverse interpersonal situations, or landscapes. The
pictures vary in their levels of ambiguity and detail.
For example, one card features a young woman stand-
ing in the foreground of a rural scene with two indi-
viduals in various poses behind her, and another card
is entirely blank. Examiners typically choose a subset
of the cards to present, and the instructions may vary.
Generally, however, the examinee is asked to create a
story about each scene that includes a description of
what is happening in the picture, what led up to this
event, what the characters are thinking and feeling,
and what the outcome is. The stories are often consid-
ered to contain projected material reflecting an indi-
vidual’s drives, motives, conflicts, needs, emotions,
and other personality dynamics. The test generally
takes about 1 to 2 hours to administer, depending on
the number of cards that are chosen for presentation,
and can be completed in one sitting or across time.

Because there are a number of ways the test is
administered and scored, examiners may use a variety
of methods for interpreting the stories produced by
examinees. They may rely on clinical inference, stan-
dardized ratings systems, or both. A number of quan-
titative rating methods exist for use in clinical practice
or in research, and although there is little adequate
reliability and validity data available for the TAT
itself, many of the scoring systems report their own
psychometric properties. Examples of existing scor-
ing systems include those that measure an individual’s
object relations, ego defense mechanisms, communi-
cation deviance, problem solving, and motives.

Although the TAT was designed for use with both
children and adults, additional versions of the test

(i.e., the Children’s Apperception Test and the Senior
Apperception Test) have been created for more spe-
cific populations. Others have designed TAT cards for
use with specific racial groups to address a concern
about the TAT’s cross-cultural applicability, though
these versions do not appear to be widely used.

—A. Jill Clemence

See also Personality Assessment Inventory; Personality
Research Form; Personality Tests

Further Reading

Gieser, L., & Stein, M. I. (1999). Evocative images: The
Thematic Apperception Test and the art of projection.
Washington, DC: American Psychological Association.

Murray, H. A. (1943). Thematic Apperception Test: Manual.
Cambridge, MA: Harvard University Press.

Robinson, F. (1992). Love’s story told: A life of Henry A.
Murray. Cambridge, MA: Harvard University Press.

Henry A. Murray and Christiana D. Morgan biographies:
http://www.mhhe.com/mayfieldpub/psychtesting/profiles/

THREE-CARD METHOD

The three-card method is a technique for gathering
information from people on questions that are sensi-
tive or controversial in nature. Some topics of interest
to researchers and policymakers concern illegal activ-
ities, unpopular opinions, and embarrassing personal
details, such as alcohol and drug abuse, criminal activ-
ity, and sexual behavior. Respondents, if asked
directly about sensitive topics, might refuse to answer
or might provide false answers.

Instead of being asked a sensitive question directly,
a respondent in the three-card method is shown one of
three cards. Each card lists valid response categories
organized into three distinct groups (A, B, or C). If a
response category is sensitive, it is never the only cate-
gory in a group on a card. That is, the sensitive response
is matched with one or more nonsensitive responses on
each card. Once shown a card, the respondent tells the
interviewer the group to which he or she belongs. The
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privacy of the respondent is protected, because the
respondents never have to definitely identify them-
selves as belonging to the controversial group. For
example, if foreign individuals in the United States are
being asked about immigration status, one possible
card would list both “green-card status” (a legal resi-
dency status) and “undocumented immigrant” (not a
legal resident) in Group B. A second card could list
“temporary work visa” (another legal residency status)
with “undocumented immigrant” together as Group B.
A respondent picking Group B on either card has not
directly admitted to being in the United States illegally.

In the whole survey, three cards (Card 1, Card 2,
and Card 3) with different alignments of categories
are used. Each card is designed to protect respondent
privacy. Each respondent is shown one card only. One
third of the sample individuals are shown each card.
Based on the pattern of responses to the three cards, it
is possible to estimate the proportion of respondents
in the sensitive category. For example, suppose there
are at least four response categories; researchers are
interested in the proportion of the population belong-
ing to Categories 1 through 4; and Category 4 (e.g.,
illegal immigrant) is a sensitive category. Below are
three cards that could be shown to the three thirds of
the people chosen for the sample.

Card 1 Card 2 Card 3

A Category 1 Category 2 Category 3
B Categories Categories Categories 

2, 3, 4 1, 3, 4 1, 2, 4
C Other categories Other categories Other categories

Suppose n people respond to each card. Let nA1,
nA2, and nA3 be the number of respondents who choose
Category A on the three cards, respectively. Let nB1,
nB2, and nB3 be the number of respondents who choose
Category B on the three cards, respectively. One
estimate of the proportion of people belonging to
category 4 is

(1/3)((nB1 + nB2 + nB3) − 2(nA1+nA2+nA3))/n.

A related set of methods for asking about sensitive
questions are called randomized-response techniques.

In one version of randomized response, some respon-
dents answer a sensitive question directly, but a
randomly selected subset answers a different, noncon-
troversial question. Privacy is protected, because the
interviewer does not know whether the subject is
answering the sensitive or the nonsensitive question.
Statistical methods are used to estimate the proportion
of the population belonging to the sensitive category.
Generally, the three-card method and randomized-
response methods have the advantage of eliciting
more truthful responses to questions. Their disadvan-
tage is that they take more time than a direct question
to explain to a participant in a survey. There is also
some loss of precision over what would be attained
with a direct question. Usually, though, the desire to
receive truthful information outweighs either of the
disadvantages.

The method is called the three-card method
because its original formulation in the context of
immigration studies used three cards, with three
groups per card. Depending on the application, the
method can be adapted to use different numbers of
cards and different numbers of groups per card.
Methods of statistical design can be used to design
sets of cards for a particular question that yield effi-
cient estimates of proportions. Statistical design can
also be used to optimally divide the survey respon-
dents among the available cards, instead of perform-
ing an even split of the subjects among the cards.

—Michael D. Larsen

See also Questionnaires
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THURSTONE SCALES

Thurstone scales are a set of procedures used to con-
struct attitude scales. These procedures were among
the earliest systematic methods devised to measure
attitudes. In the late 1920s, Louis L. Thurstone devel-
oped his law of comparative judgment. This provided
a foundation for the idea that attitudes lie along a psy-
chological continuum and can be measured despite
lacking a physical dimension. This allowed for quan-
titative investigations of subjective psychological
phenomena, such as attitudes. Thurstone developed
three different attitude-scaling techniques: the
method of equal-appearing intervals, the method of
paired comparisons, and the method of successive
intervals.

In his 1928 paper, “Attitudes Can Be Measured,”
Thurstone described his conceptualization of attitudes
as complex and multifaceted. Specifically, he thought
of an attitude as having a distribution of values on a
continuum, rather than having a single value, and there-
fore it would not be adequately represented by a single
number. He defined opinion as a verbal expression of
a person’s overall attitude. Therefore, he posited that
opinions can be used to measure attitudes. Based on
these assumptions, Thurstone developed his three
methods to measure attitudes. However, the method of
equal-appearing intervals has been the most widely
used of the three methods and is the method generally
referred to by the term Thurstone scales.

The Method of 
Equal-Appearing Intervals

In creating a scale using the method of equal-
appearing intervals, the first step is in determining the

attitude object that will be evaluated. The next step is
to construct a set of statements about the attitude of
object that captures an entire range of opinions, from
extremely unfavorable (e.g., “Abortion weakens the
moral fiber of our society”) to neutral (e.g., “Abortion
brings happiness to some, unhappiness to others”) to
extremely favorable (e.g., “Abortion should be
encouraged for unwanted pregnancies”). Thurstone
used 130 statements to develop one of his original
scales, although subsequent researchers have sug-
gested that 40 to 50 statements are typically enough to
fully capture the continuum of a particular attitude
object.

Once the researcher develops a complete set of
statements, judges rate favorability values for each
statement using an 11-point scale, which may take
various forms (see Figure 1). Typically, only the two
extreme ends and the midpoint of the scale are
labeled. These three forms are alternatives to
Thurstone’s original procedure of sorting the state-
ments, presented one at a time on cards, into 11
physical piles. Thurstone used 300 judges to obtain
favorability values, but other researchers have suc-
cessfully constructed scales using as few as 10 to 15
judges.

When making these ratings for the pool of state-
ments, judges are instructed to respond objectively on
the favorableness or unfavorableness of the state-
ments, not based on their personal agreement or dis-
agreement with the statement. Judges are also asked 
to treat each interval as being equal. To ensure that
judges’ ratings are not careless and conform to the
instructions, Thurstone recommended a screening
procedure to eliminate the data set of judges who
placed 30 or more statements (of the 130 total) into
just 1 category out of the 11. This is equivalent to
placing 23% or more statements into a single cate-
gory, which may be problematic considering the care
taken to develop the pool of statements to capture the
entire range of opinions from favorable to unfavor-
able. After this screening procedure, a measure of cen-
tral tendency for each statement and a measure of
variability are calculated across the remaining judges.
Thurstone used the median and interquartile range,
but in recent years, means and standard deviations
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have more commonly been used. Low variability indi-
cates relative consensus among the judges, whereas
high variability indicates little agreement between the
judges, signifying that the particular statement may be
ambiguous.

At this point, the researcher now has mean favora-
bility values and scores of variability between judges
for each statement. For example, the statement
“Abortion weakens the moral fiber of our society”
may have a mean favorability score of 1.6, with a stan-
dard deviation of .3. From this original pool of state-
ments, the researcher selects 20 to 25 statements using
the mean and variability scores. Optimally, the
selected statements should be equally spaced across
the entire range. For developing a 20-item scale, items
should be selected at intervals of .5. (There are 10 units
from 1 to 11 on an 11-point scale; 10 units ÷ 20 items
= .5.) Therefore, if the researcher were using the
example statement with a mean value of 1.6, he or she
would need to select 19 other statements with inter-
vals of .5 between statements (i.e., a statement closest
to each of the following values: 1.1, 1.6, 2.1, 2.6, 3.1,
3.6 . . . up to 10.6). These selected items should also
have low variability ratings across judges.

Once the researcher selects 20 to 25 statements
from the original set of statements using these criteria,
these selected statements are presented, randomized, in
a checklist form to create the final scale. In Figure 2,
mean favorability values have been reported in

parentheses following each statement, to illustrate that
the statements are presented in random order and show
the value associated with the varying degrees of opin-
ions. However, these values would not appear in an
actual scale given to participants. Participants are
instructed to place a check mark beside any of the
statements with which they agree. The scale score for
each respondent is calculated by finding the mean or
median of the total scale values that they agree with.
For example, a participant may agree with a total of
three statements in Figure 2, Items 4, 10, and 17. The
corresponding scale values are 6.0, 8.7, and 7.6. The
participant’s overall scale score is obtained by taking
the mean value, 7.4 in this case. A score of 7.4 indi-
cates that this participant has a moderately favorable
attitude toward abortion.

The Method of Paired Comparisons

In addition to the method of equal-appearing intervals,
Thurstone also developed two other less commonly
used methods. In the method of paired comparisons,
each attitude statement is paired with every other attitude
statement. For each pair, judges decide which statement
of the pair is more favorable toward the attitude object.
This information is used to position each statement on
the attitude continuum. In this method, as in the other
two methods, the final scale is constructed by eliminat-
ing ambiguous items, marked by high variability
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1. For each statement, circle the number that indicates the degree of favorableness of the statement toward the attitude object.

Extremely Extremely
unfavorable Neutral favorable
1 2 3 4 5 6 7 8 9 10 11 a. Abortion weakens the moral fiber of our society.
1 2 3 4 5 6 7 8 9 10 11 b. Adoption is a good alternative to abortion.

2. For each statement, circle the letter that indicates the degree of favorableness of the statement toward the attitude object.

Extremely Extremely
unfavorable Neutral favorable
A B C D E F G H I J K a. Abortion weakens the moral fiber of our society.
A B C D E F G H I J K b. Adoption is a good alternative to abortion.

3. For each statement, place a check mark on the adjacent line indicating the favorableness of the statement toward the attitude object.

Extremely Extremely
unfavorable Neutral favorable
|--------------------------------------------|--------------------------------------| a. Abortion weakens the moral fiber of our society.
|--------------------------------------------|--------------------------------------| b. Adoption is a good alternative to abortion.

Figure 1 Three Possible Forms of the Scale Used by Judges to Rate Favorability of Attitude Statements



between the judges, as well as eliminating irrelevant
items that fail to discriminate people with differing
attitudes from the pool of scaled attitude statements. 
A limitation of this method stems from the need to
compare each statement with every other statement.
For example, 10 statements require judging 45 pair-
ings, and 20 statements require 190 pairings, making
this technique cumbersome and unmanageable for
scaling a large number of attitude statements.

The Method of Successive Intervals

Finally, the method of successive intervals is an exten-
sion of the method of equal-appearing intervals. As in
the method of equal-appearing intervals, raters are
asked to make one comparative judgment for each
attitude statement, placing statements in categories 

of varying degrees of favorability. However, in this
method, equal intervals are determined statistically,
rather than relying on raters’ subjective judgments of
equal intervals. Specifically, the interval widths are
obtained based on the assumption that the distribution
of the judgments follows the normal curve. Estimates
of the widths of the intervals as well as the boundaries
relative to a statement’s scale value are obtained from
the proportion of raters who place a statement in each
favorability category. The final scale is constructed in
the same way as the other two methods.

Evaluating Thurstone Scales

Reliability for the scale is high with Cronbach’s
alpha, typically reported in the .80s. The scale also
has high test-retest reliability, in the range of .90 to
.95. Compared with other scaling methods, it is con-
siderably easier using the Thurstone method to create
alternative forms of the same scale. This is because
the researcher has a pool of statements that have been
scaled by judges. To construct a second equivalent
scale, the experimenter may simply choose state-
ments from the pool that are comparable to, but not
chosen for, the first complete scale. Thurstone scales
also have the advantage of having a clear neutral
point on the scale, unlike the Likert scale. This neu-
tral point allows for absolute interpretation of scale
scores.

One main disadvantage of Thurstone scales is that
they are labor-intensive. They require generation of a
comprehensive pool of sample statements, scaling the
favorability of the statements using at least 10 to 15
judges, then selecting 20 to 25 of the statements to
construct a final scale. Also, in the method of equal-
appearing intervals, the researcher assumes that
judges will follow the instruction of treating the inter-
vals as being equal, but this assumption cannot be
tested to verify whether it is warranted. Finally, there
has been criticism regarding whether judges’ personal
attitudes affect the perceived favorability of the atti-
tude statements. Although the evidence is mixed in
this regard, this problem may affect the scaling of
statements for the method of equal-appearing intervals,
but the problem has shown to have little or no effect
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Check ( ) the statements with which you agree.

___    1. Abortion brings happiness to some, unhappiness to
others. (5.1)

___    2. Abortion should be encouraged for all unwanted
pregnancies. (10.4)

___    3. Abortion prevents an unwanted child growing up in an
orphanage. (8.0)

___    4. Abortion is allowable if there is no financial cost to the
public. (6.0)

___    5. Abortion weakens the moral fiber of our society. (1.6)
___    6. We must allow abortions for certain situations. (8.7)
___    7. Abortion is never justified. (1.1)
___    8. It doesn’t make any difference to me whether we

allow abortions or not. (5.6)
___    9. Most people are too lax about allowing abortions.

(3.2)
___  10. People who get abortions deserve our understand-

ing, but not special treatment. (7.6)
___  11. Abortions should be easier to obtain than they are

now. (9.1)
___  12. Abortion is justified only in instances of rape. (3.6)
___  13. We can’t call ourselves civilized as long as we allow

abortions. (2.5)
___  14. Abortion may be unacceptable, but people deserve

our sympathy. (4.6)
___  15. If a woman wants an abortion, it is her right. (10.1)
___  16. Abortion may be the best option in certain cases.

(7.1)
___  17. People who get abortions should be treated like

everybody else. (9.5)
___  18. Abortion cannot be regarded as a sane method of

dealing with unwanted pregnancies. (2.2)
___  19. think allowing abortion is necessary, but I wish it

weren’t. (6.6)
___  20. Giving up a child for adoption is a good alternative to

abortion. (4.1)

Figure 2 Opinions About Abortion



for the method of successive intervals and the method
of paired comparisons.

Although Thurstone scales were one of the first
applications of formal scaling techniques to attitude
measurement, they are still accepted as a theoretically
sound and valid method of attitude measurement
today. Thurstone scales are still in use. However, they
are not the most commonly used form of attitude mea-
surement, as some other less labor-intensive methods
can produce attitude scales with adequate psychomet-
ric properties.

—Leandre R. Fabrigar and J. Shelly Paik

See also Likert Scaling
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Applying Ideas on Statistics and Measurement

The following abstract is adapted from Marsella, 
A. J., Dubanoski, J., Hamada, W. C., & Morse, H.
(2000). The measurement of personality across cul-
tures: Historical, conceptual, and methodological
issues and considerations. American Behavioral
Scientist, 44(1), 41–62.

This article discusses historical, conceptual,
and methodological issues (including familiarity
with different types of measurement tools, such
as Likert and Thurstone Scales) associated with
the cross-cultural measurement of personality. It
documents the extensive debate and discussion
that have emerged from the juxtaposition of the
trait-situation, universalism-relativism, quantitative-
qualitative, and anthropology-psychology polarities

in the past decade. Following a discussion of
these polarities, the article concludes that the
contending (and contentious) positions should be
replaced by collaborative disciplinary research
efforts that are open to the possibility of both
cultural variations and universals in human
behavior. Fundamental similarities in behavior
may exist across cultural boundaries because 
of bioevolutionary, natural language descriptors,
and similar life activity and socialization con-
texts, and major differences may exist for the very
same reasons.

TIME SERIES ANALYSIS

A time series is an ordered sequence of observations
over time, and very often there is dependence between
the past and the future values of these observations.
Time series analysis is the branch of statistics that
makes use of this serial dependence for the purpose of
modeling.

An effective way to graphically represent a time
series is by putting the observations on a Cartesian
plane, with the times of occurrence as abscissas and
the values of the observations as ordinates. Such a
graphical representation is called a time plot. Figure 1,
representing the quarterly time series of food retail
sales in New Zealand (in millions of New Zealand
dollars), provides an example.

Structural Models

Typically in a time series, four components can be
distinguished: trend (T), cycle (C), seasonality (S),
and irregular component (I). The trend is the longest-
term behavior of the time series, and the cycle is a
long-term cyclical component. Sometimes the time
series is not long enough to distinguish between trend
and cycle, and so a unique trend-cycle component can
be considered. The seasonality is a short-term cyclical
component often due to the seasons, and, finally, the
irregular component is an erratic component obtained
as residual once the other components are identified
and removed. The nonsystematic behavior of the
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irregular component is used to assess the goodness of
the decomposition, and often it can be reasonably
assumed that it follows a normal distribution.

There are two main basic ways in which the com-
ponents mix together: the additive model

X = T + C + S + I, (1)

where X is the original time series, and
the multiplicative model

X = (T)(C)(S)(I).

If the oscillations of the cyclical com-
ponents increase with a higher level of the
time series, a multiplicative model is more
appropriate; if the oscillations remain con-
stant, an additive model is preferable.

A possible way to find the different
components is based on regression, and
the time series of food retail sales pro-
vides an example to illustrate it.

Food retail sales have a tendency to
increase over time, and this could be
explained by the presence of a trend or by
an ascending part of a cycle, although
given the nature of the series, affected by
price inflation, it is more likely to be a
trend. We then consider three components

in this decomposition: trend-cycle,
seasonality, and irregular component.
The oscillations of the seasonal appear
independent from the level of the series,
suggesting an additive model.

It is a good strategy to remove the
longer-term components first, and in this
case, the trend-cycle (T + C) is exponen-
tial and can be estimated by the equation

where t is a regular ascending sequence
(0,1,2, . . .) representing a counter for
the time and ε is the residual part.
Consequently, the trend-cycle compo-
nent is given by

where c, α, and β are the parameters to estimate.
More specifically, the estimated equation by least
squares is

T + C = 1729.54 + 4.88t + 0.43t2.

The trend-cycle component estimated by the
equation above is shown in Figure 2.

T + C = c + αt + βt2 ,

X = c + αt + βt2 + ε ,
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The estimated component should then be removed
from the original time series, and following Equation 1,
we have

X − (T + C) = S + I. (2)

The seasonal component can be identified by the
equation

S + I = f1 + f2 + f3 + f4 + ε,

where the fs are the seasonal factors, one for each
quarter, as the series is quarterly. The seasonal compo-
nent is estimated by the equation

S = f1 + f2 + f3 + f4

with a least squares estimate given by

S = −23.84f1 − 61.80f2 − 49.39f3 + 137f4,

where the sum of the weights is not far away from
zero, the theoretical value. The irregular component is
then found as a residual by the equation

I = (S + I) − S.

Eventually, the goodness of the decomposition can
be assessed by an inspection of the distribution of the

irregular component. For the example of
the food retail sales, the distribution of
the irregular components is approximated
by the histogram in Figure 4, which is
close to a Normal.

ARIMA Models

A simple way to model the serial correla-
tion in a time series is by expressing the
current observation (xt) as a function of
the past observations (xt−1, xt−2, . . . , xt−p)
in a regression equation,

xt = α + φ1xt−1 + φ2xt−2 + …
+ φpxt−p + ε1,

(3)

where

α is a constant that can be omitted if the time
series is mean corrected,

φ1, φ2, . . . , φp are the parameters associated
with the past observations, and 

εt is the regression error, which should have zero mean and
be uncorrelated with previous and future regression errors. 

It is also often desirable for estimation and testing
purposes that the regression error have a Normal
distribution.

Equation 3 describes a regression of a variable on its
own past, and for this reason is called autoregression;
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in particular, it is an autoregression of order p, indi-
cated as AR(p), because we consider observations up
to xt−p. A desirable feature for a time series model is
stationarity with respect to the mean, where we would
like a particular estimated time series model to pro-
vide an adequate estimation of the mean of xt regard-
less of the specific time t considered. If a trend is
present, the time series is not stationary, as its
expected value depends on t; nevertheless, the differ-
ence of successive values of the observations is an
effective way to remove the trend.

Consider, as an example, a time series with an
additive deterministic trend modeled by the equation

(4)

where 

α is a constant,

β is the slope of the trend t, and 

εt is a zero mean stationary component. 

Its expected value,

depends on t. If we consider the first difference,

its expected value,

does not depend on t any more, the expected values of
εt and ετ−1 being identical, given the stationarity in
mean of εt.

Sometimes a higher order is needed to obtain sta-
tionarity in mean. As an example, consider the case of
a time series with a second-order polynomial additive
trend, modeled by the equation

(5)

Its first difference,

has expected value

which still depends on t and hence is not stationary in
mean; nevertheless, the second-order difference,

has expected value

which is stationary in mean.
The order, d, of the difference we need to consider

to obtain stationarity is called order of integration of
the time series, and it is indicated as I(d); the time
series arising from Equation 4 has order of integration
one, I(1), and the time series described by Equation 5
has order of integration two, I(2).

In principle, we could consider any order of
integration, but in practice, it is sensible to con-
sider up to second order, as higher orders of inte-
grations corresponding to polynomial trends of
order higher than 2 may describe stationary cyclic
time series.

An AR(p) model can also be represented as a mov-
ing average of the errors εt. Consider the simple case
of an AR(1) model,

By solving recursively,

xt = φ(φxt−2 + εt−1) + εt

= . . . = φnxt−n +
n−1∑

i=0

φiεt−1 ,

xt = φxt−1 + εt .

E(�2xt) = 2β2 ,

�2xt = (xt − xt−1) − (xt−1 − xt−2)

= 2β2 + εt − 2εt−1 + εt−2 ,

E(�xt) = β1 + 2β2t − β2 ,

�xt = xt − xt−1 = α + β1t + β2t
2 + εt

− [α + β1(t − 1) + β2(t − 1)2 + εt−1]
= β1 + 2β2t − β2 + εt − εt−1,

xt = α + β1t + β2t
2 + εt .

E(�xt) = β ,

�xt = xt − xt−1 = α + βt + zt

− [α + β(t − 1) + zt−1]
= β + εt − εt−1 ,

E(xt) = α + βt,

xt = α + βt + εt ,
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and for a large n and |φ|<1,

This suggests the possibility of modeling a time 
series by using a moving average of the errors εt−i, i =
0,1,…, q; that is,

(6)

where the parameters θi can be negative. Such a model
is called a moving average of order q and is indicated
as MA(q). In many situations, the most parsimonious
model in terms of parameters is obtained with a mixed
model containing both AR and MA components. This
leads to the general ARIMA(p,d,q) model; that is, after
having made a time series stationary by differencing it
d times, we can show the model as follows:

(7)

Without any loss of generality, Equation 7
assumes the stationary time series xt to have zero
mean; this can easily be obtained by subtracting a
nonzero mean from its original time series. Equation
7 encompasses as special cases the pure AR(p) and
MA(q) models.

The orders p and q of AR and MA models can be
identified by inspecting, respectively, the partial auto-
correlation function and the autocorrelation function.
An AR(p) model is adequate if the autocorrelation
function is not significantly different from zero after
the lag p. Similarly, a MA(q) model is adequate if the
autocorrelation function is not significantly different
from zero after the lag q. Both conditions ensure the
adequacy of an ARMA(p,q) model.

ARMA models are for single time series, but some-
times the consideration of more time series jointly is
preferable so that their interdependence can also be
modeled. If this is the case, ARMA models can be
generalized to a multivariate situation. Such models
are called vector ARMA models or, more simply,
VARMA models.

Using the Computer

For the analysis of food retail sales, the software
EVIEWS was used. Another suggested software is R,
which can be freely downloaded from the Internet.

—Marco Reale

See also Autocorrelation; Fourier Transform; Part and Partial
Correlations; Regression Analysis
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TORRANCE, E. PAUL

(1915–2003)

Ellis Paul Torrance is known throughout the world for
his eponymous tests of creative thinking. Yet he con-
sidered the tests a means to an end rather than an end
in themselves. His greatest interest and deepest sense
of pride came from his work in developing creativity
in all people.

Born on a farm in Milledgeville, Georgia, Paul was
physically unable to plow a straight line or pick much
cotton, but he showed precocious intellectual abilities.
Thus, his father urged him to pursue an education.
Lacking the funds to attend college during the
Depression, Paul worked and saved to attend school
when and where he could, including taking some
classes by correspondence and enrolling one summer

xt − φ1xt−1 − . . . − φpxt−p = εt

− θ1εt−1 − . . . − θqεt−q .

xt = εt − θ1εt−1 − . . . − θqεt−q,

xt ≈
∑

i

φiεt−i .
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as the only male at the Georgia State College for
Women. Afterward, teaching at Georgia Military
College, he became very interested in psychology and
the students labeled as “troublemakers” who had a
special “spark,” so he went on to earn an MA from the
University of Minnesota. Lacking the funds to pursue
the doctorate, he returned to a teaching and counsel-
ing career until he was drafted into the army to serve
as a psychologist. There, he saw the same spark in the
fighter pilots that he trained for survival and con-
cluded that the spark was related to creativity. After
completing his term of duty, he received the financial
support needed to obtain his doctorate at the
University of Michigan, in 1951.

In 1958, the launch of Sputnik and Guilford’s pres-
idential speech to the American Psychological
Association (APA) on creativity spurred the research
push that provided Torrance the opportunity to study
creativity. He was hired as the director of the Bureau
of Educational Research at the University of
Minnesota and commissioned to begin a 25-year
study on giftedness. Torrance’s studies of creativity
extended for more than 40 years.

As part of the research, Torrance developed many
creativity measures, with the Torrance Tests of
Creative Thinking (TTCT) and Thinking Creatively in
Action and Movement (TCAM) being two of the best
known. His studies with these measures helped dispel
the idea that IQ tests alone gauged all intelligence. 
His 7-year, 12-year, 22-year, and 40-year longitudinal
studies showed a strong relationship between test
behavior in childhood and adult real-life creative
behavior, thereby offering evidence of the predictive
validity of the TTCT.

However, Torrance was most proud of the Future
Problem Solving Program (FPSP) and the Incubation
Model of Teaching, which he created to infuse
creativity and relevancy into the school curriculum.
Started in 1974, the FPSP is now an international
program, with over 250,000 student participants and
over 40 affiliate programs. The Incubation Model of
Teaching, a three-dimensional curriculum model with
the goal of encouraging children’s inherent curiosity,
includes methods for guiding students to think about
what they have learned, delve into the topic by asking

questions and experimenting, and, ultimately, use
what they have learned. Upon Torrance’s retirement in
1984, The Torrance Center for Creative Studies was
established to continue scholarly inquiry into the
study of creativity.

—Bonnie Cramond and Kyung Hee Kim

See also Torrance Tests of Creative Thinking; Torrance
Thinking Creatively in Action and Movement
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TORRANCE TESTS

OF CREATIVE THINKING

The Torrance Tests of Creative Thinking (TTCT, pub-
lished by Scholastic Testing Service, http://www
.ststesting.com) are a battery of figural and verbal tests
designed to assess creative thinking in individuals from
kindergarten through adulthood. Just as IQ tests are
measures of some cognitive abilities related to intelli-
gence, the TTCT are measures of intellectual abilities
that are used in creative achievements. They are not
purported to measure the entire global construct of cre-
ativity, as they don’t measure motivation, skill, or any
other of the many components that may impact an indi-
vidual’s ultimate creative productivity. Yet in the 40-
plus years since they were created, the tests have been
translated into more than 35 languages and have been
used around the world. There are several studies affirm-
ing their predictive validity, most recently the results of
the 40-year follow-up of elementary children who were
given the tests in 1958 and were contacted in 1998 to
assess their creative achievements in adulthood.

Torrance believed that everyone has creativity and
that it can be nurtured. He designed the tests to mea-
sure creative thinking abilities so that they could be
enhanced. The tests were seen as a means of assess-
ing the effectiveness of creativity training, pointing

1010———Torrance Tests of Creative Thinking



out abilities that might otherwise go unnoticed,
understanding the human mind, and assisting with
curriculum design and psychotherapy. He and his
students and colleagues tested many stimuli to find
ones that were motivating to children and adults, gen-
der neutral, and not discriminatory to children from
different racial or socioeconomic groups. The resul-
tant tests are used for all ages, although the norms 
are age- or grade-based for conversion to standard
scores.

The verbal tests consist of six activities and take
about 1 hour to administer. The respondents are
requested to ask questions, guess causes, predict con-
sequences, improve a product, think of new uses for a
common object, and reason in a hypothetical situa-
tion. The figural tests consist of three activities and
take approximately 45 minutes to administer. The
respondents are given 10 minutes each to add details
to black-and-white shapes and abstract line drawings
to make something out of them. The instructions for
the activities are designed to motivate the respondents
to give creative responses by instructing them to give
many unusual, detailed ideas.

The TTCT are most often used as part of a
multiple-criterion approach to identifying students
for gifted programs. The recent and growing empha-
sis on identifying a broad array of talents in a diverse
population of students has increased interest in
assessments like the TTCT, especially the figural
forms, which are not heavily dependent on lan-
guage. Also, because Torrance was originally inter-
ested in creative students, “wild colts” who were
often in trouble in schools, the TTCT may be partic-
ularly useful for discovering and redirecting such
children’s energies and talents toward more positive
pursuits.

—Bonnie Cramond

See also Torrance, E. Paul; Torrance Thinking Creatively in
Action and Movement
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TORRANCE THINKING CREATIVELY

IN ACTION AND MOVEMENT

Thinking Creatively in Action and Movement
(TCAM) was developed by E. Paul Torrance in 1981.
Scholastic Testing Service, Inc. holds the copyright.
The TCAM is designed to measure fluency, original-
ity, and imagination in children age 3 to 8 through
various movement and manipulation exercises.

The test consists of four activities:

Activity I, “How Many Ways?” is used to observe the
child’s ability to move in alternate ways across the floor.

Activity II, “Can You Move Like?” asks the child to
move like animals or a tree.

Activity III, “What Other Ways?” has the child place a
paper cup in a wastebasket in alternate ways.

Activity IV, “What Might It Be?” involves the child
coming up with a variety of uses for a paper cup.

The activities use paper cups, a wastebasket, pencils,
and strips of red and yellow tape. The TCAM is admin-
istered individually, and it takes about 15 minutes.
There is no time limit, but the administrator should
keep a record of the time used. It is recommended that
time be limited to a period that will not overly fatigue
the child (generally 10−30 minutes). Only one child
should be in the activity room, with enough space for
movement. Warm-up and motivational procedures are
suggested before administration so that children can
relax and have fun with the activities.
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The examiner records the variety of verbal and
kinetic responses. A clear and easy-to-follow scoring
guide is provided, with directions for scoring and
administration procedures. Activities I, III, and IV
are scored for fluency and originality. Activity II is
scored for imagination. Fluency scores are the
number of relevant responses; originality scores
range from 0 to 3 points for each response and are
based on an originality list derived from the statisti-
cal frequency of responses; and imagination scores
are based on a 5-point Likert scale ranging from “no
movement” to “excellent; like the thing.”

Norms for the TCAM are based on 1,896 children,
age 3 to 8 years old, from 11 states and Guam, with
equal representation among Whites and Blacks. Tables
for converting raw scores to standard scores (M = 100;
SD = 20) are reported only for 3- to 6-year-olds.

Interscorer reliability coefficients were reported as
.90 to .99. Test-retest reliability coefficients were .84
for a sample of twenty 3- to 5-year-olds for a 2-week
interval, and .71 to .89 for a sample of thirty 7- to 
8-year-old boys with learning disabilities for 1- to 
14-day intervals. In this study, the alpha coefficient
for the test internal consistency was .79.

Validity studies showed significant positive corre-
lations between TCAM and other characteristics of
creativity, such as a modified Piaget measure of
divergent thinking, a divergent problem-solving-based
mathematics test, the production of humor, and the
Multidimensional Stimulus Fluency Measure.

There are many advantages of using the TCAM.
Studies found no evidence of bias for sex, socioeco-
nomic status, or race. Another advantage is that the
TCAM can be used with children with impairments,
such as those who are emotionally disturbed or deaf
and those who have behavior disorders or physical
disabilities. Furthermore, the use of movement is an
appropriate means of reaching young children’s cre-
ativity because it makes sense to children and can be
administered in a playful, gamelike environment,
rather than a sterile, testlike situation. Last, the TCAM
is useful for teaching creative movement and brain-
storming techniques, which can foster creativity in
young children. One concern, however, is that the
TCAM has not been renormed nor have the original-
ity lists been updated since 1981. Because of this, the

credibility of the norms and originality scores can be
questioned, because responses may have changed
between 1981 and the present.

E. Paul Torrance is best known for developing the
Torrance Tests of Creative Thinking (TTCT), which
are the most widely used tests of creativity, for kinder-
garteners through adults.

—Kyung Hee Kim

See also Torrance, E. Paul; Torrance Tests of Creative Thinking

TREE DIAGRAM

A tree diagram is used to summarize the probabilities
associated with a sequence of random events. The set
of branches emanating from any given start point rep-
resent all the possible events that could follow. Each
branch is labeled according to the probability of the
event occurring, given the events that have previously
happened. Hence, the sum of probabilities from each
set of branches must equal 1.

Each path from the start of the tree to the end
defines an outcome in the sample space. The outcomes
defined by the paths are mutually exclusive. All
outcomes in the sample space are represented by a
path. The probability of each outcome is obtained by
multiplying the conditional probabilities along the
path, which is often called the “Multiplication Rule.”
Therefore, these probabilities sum to 1.

An interesting application of tree diagrams is pro-
vided by the following example, toward anonymizing
a survey question. Consider the following:

• Toss a fair coin.
• If you get a “head,” answer the question:

Have you ever cheated in an exam? Yes or No.

• If you get a “tail,” answer the question:
Flip coin a second time. Did you get a head on the
second flip? Yes or No.

It is not possible to tell whether a particular indi-
vidual answered “Yes” because they cheated in an
exam or got a head on the second flip. However, if we
have a large sample of responses, we can estimate the
proportion of people who have cheated in an exam.
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Consider the tree diagram in Figure 1, created in
PowerPoint.

The probability of answering “Yes” is given by

P(Yes) = P(Head∩Cheat) (addition across 
+ P(Tail∩Head) branches)

= 0.5 × p + 0.5 × 0.5 (multiplying 
along path)

= 0.5p + 0.25

This calculation assumes a large sample with fair
coins to minimize bias in the coin flip probabilities. If
35% of sample answered “Yes,” then

0.35 = 0.5p + 0.25,

which can be rearranged to give

p = P(Cheat|Head) = 2 × (0.35 − 0.25) = 0.2.

The probability that someone cheated in an exam is
independent of the first head, so P(Cheat|Head) =
P(Cheat). Hence, from the survey, we estimate that
around 20% of students have cheated in an exam.

—Carl J. Scarrott

See also Conditional Probability

Further Reading
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TRUE/FALSE ITEMS

True/false items are used for achievement
type tests when there is a clear distinction
between the two alternatives, true and
false. One of the best criteria for judging
the value of a true/false item is whether
the correct answer (be it true or false) is
unequivocally the right one, the only one,
and the correct one.

There are several things to keep in
mind when writing true/false items:

1. True/false items are always stated as declarative
sentences.

2. The alternative answers can be true-false, right-
wrong, yes-no, like-dislike, and so on—as long as
they are very clear choices.

3. A good true/false item focuses on one and only one
idea, concept, or specific topic. With too many
ideas, the test taker can become confused.

4. Double negatives should not be used in true/false
questions.

5. Clues to the answer to a true/false item should not
be included in the item.

6. A different type of item should be used for more
complex types of inquiries that assess higher-order
thinking.

7. It is preferable to have equal number of true and
false items on the test. This minimizes the role that
chance plays.

The Advantages and Disadvantages 
of True/False Questions

The advantages of multiple-choice items are consider-
able. First, they are convenient, such that several can
be administered in a short amount of time. Second,
they are very easy to score. If well written, the
answers are either correct or incorrect.

But, as with all items, there are disadvantages as
well. First, true/false items place a premium on mem-
orization. It is tough to get beyond the most basic
levels of knowledge with true/false items. Second, it is
relatively easy to guess correctly; the probability of
being right (or wrong) is 50%, and by chance alone, if
the test taker selects T or F on a somewhat random
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P(No|Tail) = 0.5

Figure 1 Tree Diagram for Anonymized Exam Cheating Question



basis, the final score will be about 50%. Still, the odds
of guessing correctly are much higher than in any
other type of traditional item.

True/false test scores can be corrected for guessing
(that is the chance outcome of getting 50% correct by
guessing alone). This is a useful adjustment to make
so that scores more truly reflect those who really do
know more versus those who just guess.

Let’s propose a scoring system where students get
one point for being correct, one point for being incor-
rect, and nothing for leaving the item blank. So, the
formula for correction (or CS, for corrected score)
becomes

CS = R − W,
where

CS is the corrected score,

R is the number correct, and

W is the number incorrect.

For example, take the example of a 50-item test,
where you would expect a score of 25 by chance alone
(.5 × 50 = 25). Bruce gets 35 correct on a 50-item test,
and Bill gets 25 correct. How can we adjust these
scores so that Bruce’s performance (which is way
above chance) is recognized?

Correcting the scores, it turns out that Bruce’s new
one is 35 − 15 = 20, and Bill’s is 25 − 25 = 0. Bill is
clearly “punished” for guessing.

Table 1 shows the number correct on a 50-item test,
the number wrong, and the corrected score.

—Neil J. Salkind

See also Ability Tests; Essay Items; Multiple-Choice Items

Further Reading

Salkind, N. J. (2006). Tests and measurement for people who
(think they) hate tests and measurements. Thousand Oaks,
CA: Sage.

True/false item test administering using Blackboard:
http://www.mc.maricopa.edu/other/ctl/coursematerial/
respondus/importfromword.pdf

TRUE SCORE

Classical true-score theory, most often traced to the
work of Charles Spearman, has been profoundly
influential in educational and psychological mea-
surement since around the turn of the 20th century.
True-score theory is essentially a model of relation-
ships between measurement errors and observed
test scores. The central notion is that any observed
score can be decomposed into a “true” score com-
ponent and a random-error term. Importantly, dif-
ferent sources of error that contribute to the
observed score are not differentiated within the
latter term.

Classical true-score theory is expressed symboli-
cally in the well-known expression X = T + E, in
which X represents an observed score for a test taker,
T represents that test taker’s true score, and E is the
error score, or the error of measurement associated
with that observed score. In this model, the “true”
score component of any individual’s observed test
score is presumed to reflect the actual amount of the
characteristic being measured by the test that is pos-
sessed by the individual—that is, the score that the
person would have obtained in the absence of mea-
surement errors. Measurement errors (i.e., discrepan-
cies between the individual’s observed and true
scores) can result from any number of factors both
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Table 1 Corrected Scores on 50-Item Test

# Right # Wrong Corrected Score

50 0 50
45 5 40
40 10 30
35 15 20
30 20 10
25 (chance) 25 (chance) 0
20 30 –10
15 35 –20
10 40 –30
5 45 –40
0 50 –50



intrinsic and extrinsic to the test taker (e.g., the
specific day on which the test is taken).

For any given test taker and test, T is assumed to be
fixed, while E and X are assumed to vary for that same
test taker across conditions. If a student is capable of
attaining a score of 15 correct from 20 questions on a
particular test but is ill on the day of testing and misses
5 questions at random, the true score T for that student
would be 15; the observed score X would be 10; and
the error score E would be –5. If the same student takes
the test again and this time not only performs at his or
her ability level but also “gets lucky” in guessing two
multiple-choice questions, that student’s X would be
17; E would be +2; but T would still be 15.

The utility and generality of any test model hinges
on the assumptions it makes, because these dictate the
conditions under which the model may be assumed 
to hold. Classical true-score theory is, accordingly,
defined by a set of assumptions that dictate the cir-
cumstances under which the model may reasonably be
applied. Most of these assumptions are associated
with the definition of measurement error in the model
as random (rather than systematic) discrepancies
between true and observed test scores:

1. True scores and error scores combine addi-
tively to form observed scores. That is, there are no
multiplicative or other relationships between true and
error scores.

2. The population mean (expected value) of
observed X scores is equal to the test taker’s true
score, T, that is, ε(X) = T. Stated alternatively, if the
same test taker could complete a given test an infinite
number of times, the mean of the scores obtained by
that test taker on that test should be equal to his or her
true score. This assumption, in fact, defines T—that is,
T is the mean of the theoretical distribution of
observed scores that a test taker would obtain across
infinite independent attempts at the same test.

3. The error and true scores within a population of
test takers are uncorrelated (i.e., ρET = 0). This
assumption stipulates that high or low scores on a
given test should not be systematically associated

with more positive or negative error scores on that
test. Consider, for example, a test in which one ques-
tion is unsolvable. If all of the higher-achieving
students waste large amounts of time on this question
and thus do more poorly than they otherwise would on
the rest of the test, this could create a situation in
which there was a negative correlation between true
and error scores.

4. The error scores on two different tests are uncor-
related (i.e., ρE1E2 = 0, with E1 being the error score
for Test 1 and E2 being the error score for Test 2). This
means that if a particular individual had a positive
error score on one test, he or she should not be more
or less likely to obtain a positive error score on a sec-
ond test. For example, if a group of test takers’ scores
on different tests were greatly influenced by factors
that were common across the tests (e.g., fatigue), this
assumption would not be tenable.

5. The error scores on one test are uncorrelated
with true scores on another test (ρE1T2 = 0). This
assumption stipulates that the factors that cause
measurement errors on one test are not related
systematically to some characteristic being measured
on another test.

Other assumptions of the model are associated
with parallel and t-equivalent tests. Specifically, while
t-equivalent tests are those that yield the same true
scores with the exception of an additive constant, two
tests are deemed to be parallel only if both their true
scores and their error variances are equal in the
population.

The true-score model forms the basis for what has
become known as classical reliability theory. As
observed scores are assumed to comprise both true
and random error scores, observed score variance is,
accordingly, assumed to comprise both true and
random-error score variance. In classical reliability
theory, the reliability coefficient represents the ratio of
true to observed score variability. Stated alternatively,
reliability represents the extent to which variance in
observed scores can be attributed to unobservable
true-score variance.

True Score———1015



Since the true-score model was initially posed, a
vast array of techniques for estimating measurement
errors (and thus test reliability) have emerged. These
estimates consider measurement errors that are due to
inconsistencies across different forms of tests (e.g.,
parallel-forms reliability), across raters or markers
(e.g., interrater consistency), in domain representation/
sampling within tests (e.g., internal consistency), and
across test occasions (e.g., test-retest reliability).

One major limitation of the classical approach to
reliability, however, lies in its failure to consider the
impact of different error sources on observed scores
simultaneously. In notions of reliability derived from
the true-score model, there is an implicit assumption
of overlap across different error sources—that is, an
assumption that these are not cumulative and that they
do not interact to create additional error variance.

Generalizability (G) theory, which subsumes clas-
sical true-score theory as a special case, provides a
framework for estimating the magnitude of multiple
error sources simultaneously. As such, this model
allows an examination of cumulative and interactive
effects among different error sources. Despite the rel-
ative advantages that this approach offers, financial
and other practical constraints continue to make
approaches based on classical true-score theory an
attractive option for test developers.

—Elaine Chapman

See also Reliability Theory; Validity Theory
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TUKEY-KRAMER PROCEDURE

Tukey and Kramer proposed a procedure for pair-
wise testing of means in a one-way analysis of vari-
ance with unequal sample sizes. The procedure is
routinely applied after a significant overall F test,
although the F test is not required. In Tukey’s hon-
estly significant difference (HSD) procedure, a sin-
gle critical difference, CD, is calculated for each
pair of means. That critical difference uses critical
values from the Studentized range statistic. In
particular,

where

q1-α(k, dfE) is the Studentized range statistic at Level A
for k means and dfE,

dfE is the error degrees of freedom,

MSE is the error mean square, and

N is the common sample size.

In the Tukey-Kramer procedure, a different CD is
required to evaluate the significance of the differ-
ence between each pair of means that are based on
different sample sizes. The pairs are investigated
independent of all other pairs. Critical differences
are all based on the Studentized range distribution.
The formula for the Tukey-Kramer CD testing
means X

_
i and X

_
j is

where

Ni is mean i (i = 1, . . . , k) and

Nj is mean j (j = 1, . . . , k), but j ≠ i.

Anthony J. Hayter proved that the Tukey-Kramer is
conservative, that is, the probability of one or more
Type I error never exceeding α even if applied without
a significant F test. However, if a significant F test is
required, then the Tukey-Kramer CD becomes

CD = q1−α(k, dfE)

√[
MSE

2

[
1

Ni
+ 1

Nj

]]

,

CD = q1−α(k, dfE)

√
MSE

N
,
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The CD has the value that would be used only with 
k − 1 means. The resulting Hayter-Fisher version of
the Tukey-Kramer procedure will be more powerful
than the original Tukey-Kramer.

Illustrative Example

Consider the following data, in which four treatment
groups are being compared to a control. Lower scores
indicate better performance. The MSWG for these data
is 3.0326, with dfWG = 179.

Control Treat 1 Treat 2 Treat 3 Treat 4

Mean 4.05 3.52 3.18 3.15 2.24
N 42 24 38 40 40

The analysis of variance (ANOVA) for these
data would give F = 16.48 > 2.43 = F.95(4,160) >
F.95(4,179) = CV. Therefore, we reject the full null
hypothesis at the .05 level and proceed to pairwise
testing.

The CD for the Control (N = 42) and Treatment 1
(N = 24) group means is obtained from

Applying the same calculations to the Control (N = 42)
and Treatment 2 (N = 38) group means produces the CD

Applying the same calculations to the Control 
(N = 42) and Treatment 3 (N = 40) group means pro-
duces the CD

Applying the same calculations to the Treatment 1 
(N = 24) and Treatment 2 (N = 38) group means pro-
duces the CD

Applying the same calculations to the Treatment 1 
(N = 24) and Treatment 3 (N = 40) group means pro-
duces the CD

CD = 3.68

√[
3.0326

2

[
1

24
+ 1

38

]]

= 3.68
√

1.5163[0.0416667 + 0.0263158]

CD = 3.68
√

1.5163[0.067982]

= 3.68
√

0.103081 = 3.68(0.32106)

CD = 1.1815 = 1.18.

CD = 3.68

√[
3.0326

2

[
1

42
+ 1

40

]]

= 3.68
√

1.5163[0.0238095 + 0.025]

CD = 3.68
√

1.5163[0.0488095]

= 3.68
√

0.0740099 = 3.68(0.2720475)

CD = 1.0113 = 1.01.

CD = 3.68

√[
3.0326

2

[
1

42
+ 1

38

]]

= 3.68
√

1.5163[0.0238095 + 0.0263157]

CD = 3.68
√

1.5163[0.0501253]

= 3.68
√

0.0760050 = 3.68(0.275690)

CD = 1.0145 = 1.01.

CD = q1−α(k − 1, dfE)

√[
MSE

2

[
1

Ni
+ 1

Nj

]]

CD = 3.68

√[
3.0326

2

[
1

42
+ 1

24

]]

= 3.68
√

1.5163[0.0238095 + 0.0416667]

CD = 3.68
√

1.5163[0.065476]

= 3.68
√

0.0992815 = 3.68(0.315089)

CD = 1.1595 = 1.16.

CD = q1−α(k − 1, dfE)

√[
MSE

2

[
1

Ni
+ 1

Nj

]]

.
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Applying the same calculations to the Treatment 2 
(N = 38) and Treatment 3 (N = 40) group means pro-
duces the CD

Applying the same calculations to the Treatment 3 
(N = 40) and Treatment 4 (N = 40) group means pro-
duces the CD

Combining all the above, we have CD values for all
pairs of means.

Applying the CDs to the corresponding differences
between ordered means results in the following:

The largest difference is 1.81 between Treatment 4
and the Control. This exceeds the largest CD of 1.01
and is therefore significant. The individuals in
Treatment 4 have significantly lower average scores
than does the Control. The two second-largest
differences are 1.28 and .90. The value of 1.28 also
exceeds the CD of 1.17 and is significant. Those in
Treatment 4 are significantly lower than are those in
Treatment 1. However, .90 is less than the CD of 1.01
and is not significant. There is no significant differ-
ence between the mean for Treatment 3 and the
Control. All other differences are less than their corre-
sponding CD values and are therefore not significant.

Most computer packages continue to use the original
and slightly less powerful version of the Tukey-Kramer.
However, it is a rather simple matter to apply the more
powerful Hayter-Fisher version described above. If a
computer package is used to apply the Tukey-Kramer,
then any nonsignificant pair can be tested by applying
the more powerful Hayter-Fisher version.

—Philip H. Ramsey and Patricia Ramsey

CD = 3.68

√[
3.0326

2

[
1

40
+ 1

40

]]

= 3.68
√

1.5163[0.025 + 0.025]

CD = 3.68
√

1.5163[0.05]

= 3.68
√

0.075815 = 3.68(0.275345)

CD = 1.0132 = 1.01.

CD = 3.68

√[
3.0326

2

[
1

38
+ 1

40

]]

= 3.68
√

1.5163[0.0263158 + 0.025]

CD = 3.68
√

1.5163[0.0513158]

= 3.68
√

0.0778101 = 3.68(0.278944)

CD = 1.0265 = 1.03.

CD = 3.68

√[
3.0326

2

[
1

24
+ 1

40

]]

= 3.68
√

1.5163[0.0416667 + 0.025]

CD = 3.68
√

1.5163[0.066667]

= 3.68
√

0.10108667 = 3.68(0.317941)

CD = 1.1700 = 1.17.
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Table 1 Critical Values for Each Pair of Means

Tr 4 Tr 3 Tr 2 Tr 1 Control

Sample Sizes, N = 40 40 38 24 42

Tr 4, N = 40 — 1.01 1.01 1.17 1.01
Tr 3, N = 40 — 1.03 1.17 1.01
Tr 2, N = 38 — 1.18 1.01
Tr 1, N = 24 — 1.16

Note: Tr = treatment group.

Table 2 Mean Differences for Pair of Means

Tr 4 Tr 3 Tr 2 Tr 1 Control

Sample Sizes, N = 40 40 38 24 42

Tr 4 = 2.24 — .91 .94 1.28* 1.81*
Tr 3 = 3.15 — .03 .37 .90
Tr 2 = 3.18 — .34 .87
Tr 1 = 3.52 — .53

Note: Tr = treatment group. 
*p < .05
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TYPE I ERROR

Statistical significance is the degree of risk that a null
hypothesis will be rejected when it is actually true.
This level of risk is also known as a Type I error.
Traditionally, the null (a statement of equality) says
that there is no difference between the two groups.
Perhaps, in reality, however, there is no difference,
and if the null is rejected, an error is being made. This
risk is known as a Type I error.

The level of significance has certain conven-
tional values associated with it, such as .01 and
.05. For example, if the level of significance is .01,
it means that on any one test of the null hypothesis,
there is a 1% chance the null hypothesis will be
rejected when it is true—leading to the conclusion
that there is a group difference when there really is
no group difference. If the level of significance is
.05, it means that on any one test of the null
hypothesis, there is a 5% chance it will be rejected
when the null is true—leading to the conclusion
that there is a group difference when there really is
no group difference. Notice that the level of signif-
icance is associated with an independent test of the
null, and it is not appropriate to say that “on 100
tests of the null hypothesis, I will make errors on
only 5.”

In a research report, statistical significance is usu-
ally represented as p < .05, read as the probability of
observing that the outcome is less than .05, and often

expressed in a report or journal article simply as
“significant at the .05 level.”

—Neil J. Salkind

See also Significance Level; Type II Error
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Salkind, N. J. (2004). Statistics for people who (think they)
hate statistics. Thousand Oaks, CA: Sage.

TYPE II ERROR

The term Type II error describes a particular kind of
inferential mistake one can make when using data to
draw a conclusion about a null hypothesis within the
strategy called hypothesis testing. Simply stated, a
Type II error is committed when a false null hypothe-
sis is not rejected.

To understand what a Type II error is and to gain
insight into the various factors that operate to increase
or decrease Type II error risk, one must first be aware
of the logic and steps of hypothesis testing, a
statistical strategy widely used by applied researchers
in many disciplines.

Hypothesis Testing

In hypothesis testing, data are collected from one or
more samples and then used to make an educated
guess, or inference, as to the state of affairs within the
relevant population(s). In any given study, this edu-
cated guess will be focused on a specific statistical
characteristic of the population(s), such as the mean
(µ), the variance (σ2), or the correlation between two
measured variables (ρ). After a researcher chooses his
or her population(s), the variable(s) of interest, the
statistical focus, and the planned method for analyz-
ing the study’s data, that researcher can use hypothe-
sis testing as a strategy for making the desired
statistical inference.

There are six steps involved in the most basic
version of hypothesis testing. They involve the
following:
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1. Stating a null hypothesis (H0)

2. Stating an alternative hypothesis (Ha)

3. Selecting a level of significance (α)

4. Collecting data from the study’s sample(s)

5. Determining the probability, presuming H0 to be
true, of getting sample data like those actually
collected or sample data that deviate even further
from what would be expected (if H0 were true)

6. Deciding either to reject H0 or to fail to reject H0

An example may help clarify the way these six
steps permit a researcher to engage in hypothesis
testing—and how hypothesis testing may lead to a
Type II error. For this example, imagine that a
researcher is hired to settle a dispute between two tax-
payers from New York. One believes that if all high
school seniors in the state of New York were given an
intelligence test, the students’ mean IQ would be
higher than the national average of 100. The other
believes just the opposite. Also imagine that the
researcher, once hired, identifies a random sample of
25 students, that each student’s intelligence is mea-
sured by a trained psychologist, and that the resulting
IQ scores yield a mean of 104 with a standard devia-
tion of 15. Finally, imagine that the researcher
intended from the beginning to subject the data to a
one-sample t test with a level of significance equal to
.05. For this example, the six steps of the hypothesis
testing procedure would be as follows:

1. H0: µ = 100.

2. Ha ≠ 100.

3. α = .05.

4. In the sample, n = 25, M = 104, and SD = 15.

5. p = 0.1949.

6. H0 is not rejected.

As applied to this example, the logic of hypothesis
testing is straightforward. If the null hypothesis were
false, a random sample should most likely produce a
mean that is dissimilar to the number specified in H0.
However, the mean IQ of the 25 students, 104, is not
very inconsistent with what would be expected if H0

were true. (With the estimated standard error of the

mean being equal to 3.0, the t test’s calculated value
is equal to 1.33.) Because the probability associated
with the sample (p = .19) is larger than the selected
level of significance, the researcher decides that the
evidence available is not sufficiently “at odds” with
H0 to cast doubt on the null statement that the mean
IQ of high school students in New York is equal to
100. Consequently, the null hypothesis is not
rejected.

In this example, it is possible that the researcher’s
conclusion—not to reject H0—may have been a mis-
take. Such would have been the case if the unknown
population mean were equal to 115, 103, 98, or any
number other than 100. The null hypothesis value of
100 was selected simply because it was the “line of
demarcation” between the two taxpayers who held
different opinions about the actual mean IQ of all
high school students in New York. It is quite con-
ceivable that the null hypothesis is wrong, and if that
is the case, not rejecting H0 would have been the
wrong thing to do. Describing this possible mistake
in statistical terms, a Type II error may have been
made.

When Type II Errors 
Can and Cannot Occur

As indicated at the outset, a Type II error is commit-
ted when a false null hypothesis is not rejected. This
kind of inferential error is always a possibility when
any statistical test leads to a decision not to reject the
null hypothesis being evaluated. In studies dealing
with correlation, a Pearson r is often tested to see if it
is significantly different from a null value of 0.00. In
this kind of study, a Type II error is possible if a deci-
sion is reached not to reject H0: ρ = 0.00. In studies in
which k groups are compared in terms of their
variances, a Type II error is possible if a fail-to-reject
decision is reached when evaluating H0: σ2

1 = σ2
2

= . . . = σ2
k . In studies in which logistic regression is

used to see which of several independent variables
help predict status on a nominal dependent variable,
a Type II error is possible if a particular variable’s
odds ratio is found not to differ significantly from the
null value of 1.00. It is worth repeating that a Type II
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error is always a possibility when any statistical 
test leads to a decision not to reject the test’s null
hypothesis.

There are two situations in which a Type II error
cannot occur. On the one hand, a Type II Error cannot
be committed if the null hypothesis is rejected. (In this
case, a Type I error—rejecting a true H0—may or may
not occur, but it is impossible to incorrectly fail to
reject a false null hypothesis if that H0 is rejected.) On
the other hand, it is impossible to make a Type II error
if the six-step hypothesis-testing procedure is turned
into a four-step procedure by eliminating the third
step (setting a level of significance) and final step
(deciding to reject or not reject H0). In this four-step
approach to evaluating an H0, the size of the data-
based p-value is interpreted as providing a “level of
support” for the null hypothesis. The smaller the p, the
lower the level of support. With no binary decision
being made about H0, the notion of a Type II error (as
well as the notion of a Type I error) does not apply.

Synonyms for Type II Error

There are different labels for this particular kind of
inferential error. A Type II error is sometimes
referred to as an acceptance error, a false negative,
an error of the second kind, or a beta error. The first
of these synonyms come into being because a deci-
sion not to reject H0 makes it appear as if H0 is being
accepted. (Technically, it is wrong to “accept” H0 in
hypothesis testing.) The notion of a “false negative”
comes from the medical field, in which diagnostic
tests sometimes yield inaccurate results. An erro-
neous diagnosis can indicate that a patient has a dis-
ease when he or she doesn’t (a false positive) or that
the patient doesn’t have a disease when he or she
does (a false negative). The third synonym, error of
the second kind, makes sense when one realizes that
any inference in hypothesis testing, like a medical
diagnosis, can potentially be wrong in either of two
ways. (An error of the first kind, or Type I error, is
committed whenever a true null hypothesis is
rejected.) The final synonym, beta error, exists
because a Type I error is sometimes referred to as an
alpha error.

Type II Error as a Probability

After a study’s data are collected but prior to the time
a decision is reached about H0, there is a fixed
probability that a Type II error will be made. This
probability can be illustrated graphically, as shown in
Figure 1.

Each of the two curves in Figure 1 represents the
distribution of the test statistic (e.g., the computed z
value if a z test is being conducted). The curve on the
left is labeled H0 because it represents the distribution
of the test statistic that would occur if the null hypoth-
esis happened to be true. The curve on the right is
labeled Ha because it represents the distribution of the
test statistic that would occur if the null hypothesis
happened to be false by an amount equal to the hori-
zontal distance between the two curves.

In Figure 1, there is a vertical line that simultane-
ously divides each curve into two parts. The position
of that line was determined by considering only (a)
the H0 curve, (b) the directional or nondirectional
nature of the alternative hypothesis, and (c) the level
of significance. Because the illustration in Figure 1
has been set up to depict a one-tailed test conducted
with α set equal to 0.05, the vertical line is positioned
such that it creates, in the H0 curve, a tail consisting of
5% of the full H0 distribution. This portion of the
baseline to the right of the vertical line is referred to
as the region of rejection. Once computed, the 
data-based test statistic is simply compared to the
numerical value on the baseline under the vertical line
to see if the former exceeds the latter. If so, H0 is
rejected; if not, H0 is not rejected.

The shaded part of the Ha curve represents the
probability that a Type II error will occur. This por-
tion of the right-hand curve shows the likelihood of
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not rejecting H0 if the true state of affairs corre-
sponds with Ha rather than H0. Because the shaded
area of the right-hand curve constitutes 35% of the
Ha curve, the probability of incorrectly failing to
reject H0 is 0.35.

Type II Error Probability and Power

In hypothesis testing, H0 is either rejected or not
rejected. If the null hypothesis is false, failing to reject
it constitutes a mistake, a Type II error, while reject-
ing H0 represents a correct decision. The probability
that H0, if false, will be correctly rejected is called the
statistical test’s power.

Because the final decision in hypothesis testing is
binary (either reject or do not reject H0), one of the
two events is guaranteed to occur. Therefore, the prob-
ability of not rejecting H0 plus the probability of
rejecting it is equal to 1.0. This is true regardless of
whether H0 is true or false. However, when H0 is false,
the first of these two probabilities is the probability of
a Type II error, whereas the second one is the proba-
bility of a correct decision. Because the second prob-
ability is, by definition, the test’s power, it follows 
that the probability of a Type II error + Power = 1.
Rearranging terms, it also follows that Power = 1 – the
probability of a Type II error. If the probability of a
Type II error is represented by the word beta (because
the terms beta error and Type II error are synonyms),
it can be said that

Power = 1 − beta.

In Figure 1, the right-hand (Ha) curve is divided
into two parts. The shaded part represents the proba-
bility of a Type II error (i.e., the likelihood of a beta
error). The unshaded portion of the Ha curve repre-
sents the probability of correctly rejecting H0—the
power of the statistical test. In Figure 1, power is
equal to .65.

Factors That Affect the 
Probability of a Type II Error

When a single statistical test is run (and presuming all
assumptions are met), the probability of a Type I error

is determined by one factor: the level of significance.
In this same situation (one test with assumptions met),
there are seven factors that jointly influence the prob-
ability of a Type II error: the numerical value in H0, α,
the size of the sample(s), the variability in the popula-
tion(s), the test used to analyze the data, the nature of
Ha, and the true state of affairs in the population(s) of
interest.

For any statistical test, the probability of a Type II
error is lower to the extent that (a) there is a greater
difference between the null hypothesis and the true
state of affairs in the population(s), (b) the level of sig-
nificance is lenient (i.e., high), (c) there is low vari-
ability in the population(s), and (d) large amounts of
sample data are available. Also, certain statistical tests
(e.g., a t test to compare two sample means) are less
likely to produce a Type II error than are other tests
(e.g., a median test). As long as they are “pointed” in
the right direction, one-tailed tests are less prone to
generate Type II errors than are two-tailed tests.

Because the likelihood of a Type II error is influ-
enced jointly by many factors, any statement of Type II
error risk in a given study is tied to the specific features
of that particular study. Thus, the fact that Figure 1 has
35% of the Ha curve shaded is tied to a specific
situation defined by the seven factors mentioned above.
Make a change in any of those factors and the size of
the shaded area in the Ha curve will either increase or
decrease. For example, make the test two-tailed rather
than one-tailed and the shaded area will increase.

Considering Type II Error 
Risk When Planning Studies

As indicated earlier, the most basic version of hypoth-
esis testing involves six steps. Many researchers use
that version of hypothesis testing. However, that
method of research is considered by many authorities
to be elementary, because no consideration is given to
Type II error risk. More sophisticated studies have this
kind of risk considered (and controlled) in the design
phase of the investigation.

In any given study, it is possible to estimate the
likelihood that a Type II error will be committed. This
is done by means of a power analysis. In a power
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analysis, a researcher indicates (or, in some cases,
estimates) the seven factors mentioned in the previous
section. A formula is then used to indicate the proba-
bility that a false H0 will be rejected. That probability
is the test’s power. The complement of power is Type
II error risk. Therefore, by doing a power analysis to
see if sample sizes are large enough to produce a
desired level of power, a researcher is simultaneously
checking to see if the study’s design is such that Type
II error risk is at or below some predetermined level.

Common Misconceptions 
Concerning Type II Errors

There are three misconceptions that many people have
about Type II errors. First, it is widely believed that
Type II errors are not as “damaging” as Type I errors.
(In some studies, it is far worse to draw a conclusion
that is a false negative rather than a false positive.)
Second, many people think that the probability of
committing a Type I error is inversely related to the
probability of a Type II error, with the thought being

that an increase in one brings about a decrease in the
other. (Actually, it is possible to reduce both kinds of
error possibilities.) Finally, it is generally thought that
nonparametric tests are inherently less powerful—and
thus less likely to generate Type II errors—than
parametric tests. (In reality, certain nonparametric pro-
cedures, under specified conditions, have a lower Type
II error risk than do their parametric counterparts.)

—Schuyler W. Huck

See also Hypothesis and Hypothesis Testing; Type I Error
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Type II Error———1023



UNBIASED ESTIMATOR

Let the data be represented by X1, X2, . . . , Xn, a
collection of random variables, whose behavior can be
modeled by a probability distribution Fθ, where θ
represents a parameter to be estimated from the data.
Here, θ may be a k-dimensional vector. For example,
Fθ may be the family of normal distributions with θ
representing the mean of the Xis, or θ may be a two-
dimensional vector, θ = (µ, σ2), representing the mean
and variance of the Xis. Let δ(X1, . . . , Xn) be a func-
tion of the data. That is, δ(X1, . . . , Xn) is an estimator. 

The estimator δ(X1, . . . , Xn) is said to be unbiased
for g(θ) if, for all θ,

Εθ(δ(X1, . . . , Xn)) = g(θ ). (1)

When Condition 1 does not hold, the bias of δ is
defined as b(θ) = Εθ(δ(X1, . . . , Xn)) − g(θ ). Gauss
introduced the concept of unbiasedness to denote lack
of systematic error in the estimation process. 

Example 1. Let X1, . . . , Xn denote random variables
with the same expectation θ. Because E(∑n

i=1ciXi) = θ,
whenever ∑n

i=1ci = 1, then ∑n

i=1ciXi is unbiased for θ. 

Example 2 (Survey Sampling). Let a population
consist of N individuals, each with annual income ti,
i = 1, . . . , N. To estimate the total income T = ∑n

i=1ti

take a random sample of size n and denote by
{y1, . . . , yn} the incomes of the n sampled individuals.
Note that each of the {y1, . . . , yn} has probability 1_

N
of

being equal to each of the ti, i = 1, . . . , N. 
The following calculation shows that N_

n ∑n

i=1Yi is
unbiased for T:

In most cases, the requirement of unbiasedness as
defined by Condition 1 yields intuitive estimators with
good properties. However, unbiased estimators may
not exist, and when they do exist, sometimes they
behave poorly. 

Example 3. Let X be a binomial random variable
with parameters n and θ = probability of success. It is
known that there is no unbiased estimator for g(θ)
unless g(θ) is a polynomial in θ of degree less than 
or equal to n. For example, there is no unbiased 
estimator for 1_

θ based on X. On the other hand, when a

E

{
N

n

n∑

i=1

yi

}

= N

n

n∑

i=1

E(yi) = N

n

n∑

i=1

1

N

N∑

j=1

tj = T .
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geometric random variable Y with θ = probability of
success is observed, Y is unbiased for 1_

θ . 
Example 4. Let X be a Poisson random variable

with parameter θ. When estimating ( p{X = 0})2 = e−2θ,
the unique unbiased estimator is δ (X) = (−1)X, a silly
estimator. Lehmann considers this issue and proposes
that it is due to inadequate information. For example,
if, instead of a single Poisson observation, there are n
independent Poisson observations, setting T = ∑n

i=1Xi

an unbiased estimator for e−2θ is δ (T) = (1− 2_
n)

T, which
is a reasonable estimator for n > 2. 

A general concept of unbiasedness was proposed
by Lehmann. Let (L(δ(X), g(θ)) represent the loss
incurred in estimating g(θ) by δ(X). Then δ(X) is said
to be L-unbiased with respect to the loss function L if,
for all θ ∗ ≠ θ,

Eθ(L(δ(X), g(θ)) ≤ Eθ(L(δ(X), g(θ*)). (2)

When the loss function is squared-error loss,
L(δ(X), g(θ)) = (δ(X) − g(θ))2 , Condition 2 is equiva-
lent to Condition 1. When the loss function is absolute
error, L(δ(X), g(θ)) =⏐δ(X) − g(θ)⏐, Condition 2 is
equivalent to median-unbiasedness; that is, Condition
2 is equivalent to requiring that δ(X) satisfy the con-
dition that for all θ ,

Pθ{δ(X) > g(θ)} = Pθ{δ(X) < g(θ)}.

Rojo and Klebanov studied the existence of 
L-unbiased estimators. 

—Javier Rojo
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UNIVERSAL NONVERBAL

INTELLIGENCE TEST

The Universal Nonverbal Intelligence Test (UNIT) is 
an individually administered test designed to measure
the general intelligence and cognitive abilities of
children and adolescents ages 5 through 17 years who
may be disadvantaged by traditional language-loaded
ability tests. The UNIT is intended to provide a fair
assessment for children and adolescents who have
speech, language, or hearing impairments; who have dif-
ferent cultural or language backgrounds (e.g., English
as a Second Language); and who are verbally uncom-
municative due to psychiatric (e.g., elective/selective
mutism), developmental (e.g., autistic spectrum), or
organic reasons (e.g., traumatic brain injury). 

Although its administration and response formats
are entirely nonverbal (i.e., no verbal directions, no
verbal items, and no verbal responses), the UNIT
employs eight standardized gestures to demonstrate
the nature of each task and to guide test administra-
tion. The UNIT is a comprehensive measure of intel-
ligence and assesses a broad range of complex
memory and reasoning abilities, including those lend-
ing themselves to internal processes of verbal media-
tion (symbolic tasks) as well as those that are less
conducive to such mediation (nonsymbolic tasks).
UNIT memory subtests measure complex memory,
with multiple salient characteristics to be recalled
(e.g., color, object, location, and sequence). The
UNIT reasoning subtests measure pattern processing,
problem solving, understanding of analogic relation-
ships, and planning abilities. Although the UNIT is a
highly g-saturated measure of general intelligence,
with five of six subtests having average g-loadings

1026———Universal Nonverbal Intelligence Test



above .70, exploratory and confirmatory factor analy-
ses support the test’s 2 × 2 theoretical model (i.e.,
Memory/Reasoning; Symbolic/Nonsymbolic). Table
1 depicts the UNIT theoretical model in its entirety,
including subtest representation and total sample
alpha coefficients for the UNIT scale quotients and
the full-scale IQ (FSIQ). As can be seen in Table 1, the
UNIT is a highly reliable and comprehensive measure
of general intelligence. 

For additional versatility and practicality, the
UNIT combines its three memory subtests and three
reasoning subtests in a flexible manner that permits
the use of three possible batteries. The 15-minute
UNIT Abbreviated Battery includes only the first two
subtests (i.e., Symbolic Memory and Cube Design);
the 30-minute Standard Battery is a four-subtest con-
figuration that adds Spatial Memory and Analogic
Reasoning to the first two subtests. The 45-minute
six-subtest Extended Battery adds Object Memory
and Mazes to the first four subtests. Regardless of the
desired length of administration, the UNIT’s theoreti-
cal model underpins each of the three batteries. 

The UNIT is a standardized, norm-
referenced measure. The normative data
are based on a comprehensive national
sample that closely matched the U.S.
population on important demographic
variables. The sample was composed of
2,100 children and adolescents, and
included a proportional representation
of students receiving services for identi-
fied exceptional needs as well as
students receiving services for English
as a Second Language (ESL) and bilin-
gual education. The UNIT Examiner’s

Manual dedicates an entire chapter to the topic of fair-
ness in testing, which highlights the authors’ efforts 
to render the instrument as fair as possible for all
students. Comparative reliabilities and factor analyses
by age, race/ethnicity, and gender are reported in the
manual, as well as a large number of matched-sample
mean score comparisons between various groups. 

—Bruce A. Bracken
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425–440). New York: Guilford.
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Table 1 UNIT Subtests, Subtest-to-Scale Assignment, and
Coefficient Alpha for Scale Quotients and Full-Scale IQ

SCALE/ Symbolic Nonsymbolic
Subtest Quotient Quotient Alpha

Memory Symbolic Memory Spatial Memory .88
Quotient Object Memory
Reasoning Analogic Reasoning Cube Design .90
Quotient Mazes

FSIQ
Alpha .87 .91 .93



VALIDITY COEFFICIENT

The validity coefficient is a statistical index used to
report evidence of validity for intended interpreta-
tions of test scores and defined as the magnitude of
the correlation between test scores and a criterion
variable (i.e., a measure representing a theoretical
component of the intended meaning of the test). For
example, the relationship between Scholastic
Aptitude Test scores and college grade point average
(GPA) as the criterion variable may demonstrate
validity evidence for interpreting Scholastic Aptitude
Test scores as an indication of academic success
(intended meaning) in terms of achieving high grades
(theoretical component).

According to the 1999 edition of the Standards for
Educational and Psychological Testing, the term
validity refers to the extent to which an intended inter-
pretation of test scores is supported by evidence.
Rather than discussing validity in terms of differing
types (e.g., construct, content, and criterion-related
validity), the 1999 standards view construct validity as
the only type of validity that can be supported 
by evidence based on test content, response processes,
internal structure, relations to other variables, and

consequences of testing. As empirically based forms
of evidence, validity coefficients are determined 
by studies that examine relations to other variables
(formerly referred to as criterion-related validity) and
commonly include correlational studies.

Correlational studies of validity evidence often are
discussed in terms of being concurrent or predictive in
nature. Concurrent evidence is indicated by relations
between test and criterion scores that are measured at
approximately the same time, whereas predictive
evidence reflects the relation between test scores gath-
ered at one time and criterion scores measured at 
a later time. In other words, test scores that predict
future behavior are said to have predictive validity,
whereas test scores that reflect present behavior are
said to have concurrent validity. For example, the rela-
tionship between Scholastic Aptitude Test scores of
high school students at Time 1 and the same students’
college GPAs at Time 2 would be an example of pre-
dictive validity evidence, whereas the relationship
between the Scholastic Aptitude Test scores of high
school students and the same students’ high school
GPAs would be an example of concurrent validity evi-
dence. Table 1 presents hypothetical concurrent and
predictive validity evidence for the Scholastic
Aptitude Test. 
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Less commonly used approaches for gathering
evidence of the relation between test scores and crite-
ria include the following:

studies of postdictive validity (the ability to relate to a
criterion that had previously occurred) 

studies of incremental validity (the ability to improve on
the validity of an existing test) 

studies of group comparison validity (the ability to mea-
sure expected differences for multiple groups) 

studies of experimental validity (the ability to measure
expected change in criteria) 

Computation and Interpretation

Although there are a number of statistics for the com-
putation of a correlation, such as the Spearman rank
correlation (rho) and Kendall’s rank correlation coef-
ficient (tau), the validity coefficient typically is
computed with the Pearson product-moment correla-
tion (r). The interpretation of validity coefficient
values follows that of a correlation index. Thus, coef-
ficient values may range from −1 to +1. The magni-
tude of the relationship is described in terms of
strength, such that values near 0 indicate very weak
relations between test and criterion scores, whereas
values near +1 or −1 indicate very strong relations.
Similarly, the magnitude of the correlation is dis-
cussed in terms of size (e.g., large or small). Positive
values indicate direct relations (e.g., as test scores
increase, so do criterion scores), whereas negative
correlations indicate indirect relations (e.g., as test
scores decrease, criterion scores increase).

The validity coefficient often is interpreted in terms
of the square of its value (r2). Referred to as the

coefficient of determination, the squared value repre-
sents the percentage of variance the test and criterion
scores have in common. In other words, the square of
the validity coefficient can be interpreted as the per-
centage of the variance in criterion scores that can be
accounted for by test scores. For example, a validity
coefficient value of .50 would indicate that 25% of the
variance of the criterion (e.g., college GPA) could be
accounted for by the test scores (e.g., Scholastic
Aptitude Test).

In addition, the interpretation of coefficient values
is often discussed with regard to statistical signifi-
cance, which indicates that a true relationship
between test scores and criterion scores is statistically
probable. Statistical significance is a function of
sample size (n), so significance can be achieved for
relatively low coefficient values when such values are
based on a large sample size. The statistical signifi-
cance for a particular coefficient value can be deter-
mined by looking at a table of critical r values (i.e.,
values indicating the point when the null hypothesis
should be rejected) or by computing the t statistic and
looking at a table of critical t values.

The distinction between the terms statistical signif-
icance, strength of the relationship, and meaningful-
ness warrants additional discussion. Recall that a large
coefficient value indicates a strong relation and that a
significant value indicates that a true relationship is
probable. However, a large correlation may not be sig-
nificant, and a significant relationship may not be a
strong one. In addition, because the validity coeffi-
cient is based on the correlation between test scores
and criterion scores, a significant or strong relation-
ship does not necessarily indicate what the test
actually measures. In other words, a correlation index
does not necessarily indicate a meaningful relation
exists between test scores and criteria. For example, a
correlation may be found between Scholastic Aptitude
Test scores and shoe size, but clearly the Scholastic
Aptitude Test is not a meaningful measure of shoe
size. A meaningful criterion is one that is based on a
sound theoretical rationale.

Last, when interpreting validity coefficient values,
one should be aware that the formulas for computing
correlations (e.g., Pearson’s r) are based on the
assumption that a linear relationship exists between
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Table 1 Hypothetical Concurrent and Predictive
Validity Evidence for the SAT 

Type of Validity 
Test Criterion Validity Coefficient

SAT GPA Concurrent .54
SAT GPA Predictive .47
SAT Class rank Concurrent .35
SAT Class rank Predictive .32
SAT ACT Concurrent .58



test and criterion scores. If in actuality a nonlinear
(i.e., curvilinear) relationship exists, then coefficient
values will be less accurate. Graphing data points in a
scatter plot helps identify the linearity of a relationship.

Evaluating Validity 
With the Coefficient

Validity coefficient values may be evidence for the
criterion validity of test score interpretation, but the
evaluation of a single validity coefficient value 
cannot constitute an adequate validation process.
Consequently, a gold standard or benchmark coeffi-
cient value that one could use to determine whether a
particular interpretation of test scores is valid does not
exist. Generally, however, coefficient values do not
exceed .60, and values wide of .00 are commonly
interpreted as indicating that test scores are superior 
to guesswork. To deem an interpretation to have
adequate evidence of validity, one must consider other
forms of information, such as the intended construct
to be measured (e.g., academic achievement), the
intended population of test takers (e.g., age), and the
intended use of the test (e.g., college admissions). For
example, the assertion that there is evidence for the
validity of Scholastic Aptitude Test scores for the pur-
pose of predicting the academic success of high
school students would need to be based on an exten-
sive examination of test scores in relation to the
construct of academic success, the population of high
school students, and the common use of test scores to
determine college admittance.

A number of factors can influence the value of the
validity coefficient. First, and perhaps most important,
the meaningfulness of the criterion variable will tend
to affect the coefficient value. When a criterion in not
meaningful or relevant, the correlation between test
scores and criterion scores likely will be weak. For
instance, the validity coefficient of Scholastic
Aptitude Test scores likely would be very low if the
chosen criterion were a measure of shoe size. Again,
meaningful criteria are based on sound theoretical
rationales.

Second, the reliability of both the test scores and
the criteria will influence coefficient values. This is
because the validity of test scores is a function of their

reliability; that is, test scores cannot be valid if they
are not reliable (although test scores may be reliable
and not valid). Therefore, test scores or criteria with
low levels of reliability will not be apt to achieve a
high coefficient value.

Third, coefficient values also can be affected by
the range of the test and criterion scores. For
instance, as the range of a measure’s scores increases,
the corresponding coefficient values will tend to
increase. The variability of criterion scores often is
restricted or reduced in cases in which individuals
with high test scores are selected for such things as
admittance to highly competitive colleges or employ-
ment. For example, if Scholastic Aptitude Test scores
of high-achieving students are collected and com-
pared to the students’ GPAs, the variability of test
scores and GPAs would be relatively low (because
nearly all the scores and GPAs will be very high),
which would engender a low validity coefficient
value. This type of situation is referred to as a restric-
tion of range.

If restriction of range or a low level of reliability
has occurred, correction formulas can be used to
determine “corrected” validity coefficient values. An
appropriate use of correction formulas would be to
determine the degree that the validity coefficient
would increase if the reliability for the test or criterion
were to increase a given amount. This information
would be helpful to test developers who may be con-
sidering a revision to an existing measure. An inap-
propriate use would be to evaluate the validity of test
scores with corrected coefficient values. The follow-
ing formula can be used to compute corrected coeffi-
cient values based on a change in the reliability of test
scores or criteria:

where 

rc is the corrected correlation value;

ro is the observed correlation, .50;

αY′ is the improved reliability coefficient for the
criterion, .85;

rc = ro

(√
α ′

Y

√
α ′

X√
αY

√
αX

)

,

Validity Coefficient———1031



αX′ is the improved reliability coefficient for the 
test, .89;

αY is the measured reliability coefficient for the
criterion, .75; and

αX is the measured reliability coefficient for the 
test, .74.

After the values have been entered, the equation
appears like this:

Valid test scores may or may not be of value to
test users; therefore, the validity coefficient alone
also cannot indicate the overall value or goodness of
a test. To make a judgment concerning the value of a
particular test, one must examine the relevant types
of validity and reliability; the relative value of a test
also should be examined in terms of both the utility
and cost of the test and the utilities and costs of
preexisting tests. For instance, if a new measure
were more costly than an existing measure but only
slightly improved in terms of validity coefficient val-
ues, the new test would tend not to be of value to test
users. However, if the measures were being used in
high-stakes situations, the improved test might be of
value.

Last, it is the responsibility of publishers and test
authors to provide adequate evidence of validity and
reliability for test scores. Informed decisions with
regard to appropriate test selection, usage, and inter-
pretation of test scores require test users to be familiar
with the psychometric data. In their validation
processes, test users can find validity coefficient
values and other validity and reliability evidence 
in test manuals and also in studies published in 
peer-reviewed journals. A comprehensive validation
process considers the corpus of evidence supportive
and contradictive of intended, as well as alternative,
interpretations of test scores.

—Shawn T. Bubany

See also Construct Validity; Content Validity; Face Validity 
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VALIDITY THEORY

The concept of validity is one of the most influential
concepts in science because considerations about its
nature and scope influence everything from the design
to the implementation and application of scientific
research. Validity is not an abstract property of any
observable, unobservable, or conceptual phenomenon,
such as a measurement instrument, a personality trait,
or a study design. Rather, validity is a characteristic of
the inferences that are drawn about phenomena by
human agents and the actions that result from these
inferences. Specifically, validity is always a matter of
degree and not absolutes. This stems partly from the
fact that validity is not an observable characteristic of
inferences and actions but something that has to be
inferred also.

The evaluation of the degree to which inferences
are valid and resulting actions are justifiable is, there-
fore, necessarily embedded in a social discourse
whose participants typically bring to the table diverse
frameworks, assumptions, beliefs, and values about
what constitutes credible evidence. Specifically, mod-
ern frameworks for validity typically list both rational
and empirical pieces of evidence as necessary, but in
each individual context, what these pieces should look
like is open to debate. Put differently, a coherent state-
ment about the validity of inferences and actions
requires negotiation as well as consensus and places

rc = .5

(√
.85

√
.89√

.75
√

.74

)

= .58.
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multiple responsibilities on the stakeholders who
develop such a statement.

Negotiating Validity

A metaphor may illustrate complications that can
arise in a discourse about validity. If an educational
assessment is viewed as the construction of a house,
inferences are markers of the utility of the house. In
this sense, an evaluation of the validity of inferences
can be viewed as an evaluation of the degree to which
the house provides structural support for the purposes
that are envisioned for it. Obviously, the parties who
are envisioning a certain use of the house are not nec-
essarily the same as the designers or builders of the
house, and so discrepancies can arise easily. Of
course, other reasons for a mismatch are possible and
could stem from a miscommunication between the
designers of the house and the users of the house or
from a faulty implementation of the design plans for
the house. In a sense, the search for inferences that
can be supported can be viewed as the search for how
a house can be transformed into a home.

In general, the stakeholders in an assessment can
be coarsely viewed as belonging to four comple-
mentary groups. First, there are the test developers,
who create a research program, a framework, or an
instrument under multiple considerations, such as
theoretical adequacy and feasibility for practical
implementation. Second are the examinees, whose
needs in the process are typically more practical and
may differ quite substantially from those of the other
stakeholders involved. Third are the test users, or the
decision makers who utilize the scores and diagnostic
information from the assessment to make decisions
about the examinees; only rarely are the examinees
the only decision makers involved. Fourth are the
larger scientific and nonscientific communities to
which the results of an assessment program are to be
communicated and whose needs are a mélange of
those of the test developers, the test users, and the
examinees. Therefore, determining the degree to
which inferences and actions are justifiable is situated
in the communicative space among these different
stakeholders.

Not surprisingly, examples of problems in deter-
mining the validity of inferences abound. For
example, the inferences that test users may want to
draw from a certain assessment administered to a cer-
tain population may be more commensurate with an
alternative assessment for a slightly different popula-
tion. However, that is not a faulty characteristic of the
assessment itself. Rather, it highlights the difference
between the agents who make inferences and the
agents who provide a foundation for a certain set of
inferences, of which the desired inferences may not be
a member.

Historical Developments 
of Validity Theories

Until well into the 1970s, validity theory presented
itself as the coexistent, though largely unrelated, trin-
ity of criterion-based, content-based, and construct-
based conceptions of validity. According to the
criterion-based approach, the validity of an assess-
ment could be evaluated in terms of the accuracy with
which a test score could predict or estimate the value
of a defined criterion measure, usually an observable
performance measure. The criterion-based model,
notably introduced by Edward L. Thorndike at the
beginning of the 20th century, owed much of its lin-
gering popularity to an undisputable usefulness in
many applied contexts that involve selection decisions
or prognostic judgments, such as hiring and place-
ment decisions in the workplace or medical and foren-
sic prognoses. Depending on whether the criterion is
assessed at the same time as the test or at a subsequent
time, one can distinguish between concurrent and pre-
dictive validity, respectively. Though a number of
sophisticated analytical and statistical techniques have
been developed to evaluate the criterion validity 
of test scores, the standard methods applied were
simple regression and correlation analyses. The
resulting coefficient was labeled validity coefficient.
Occasionally, these procedures were supplemented by
the known-groups method. This approach bases valid-
ity statements on a comparison of mean test scores
between groups with hypothesized extreme values
(e.g., devout churchgoers and members of sex-chat
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forums on the Internet on a newly developed sexual
permissiveness scale).

The content-based model of validity comes into
play when a well-defined and undisputed criterion
measure is not readily available, especially when the
prediction is targeted at a broader and multifaceted cri-
terion (e.g., achievement in a content area like mathe-
matics). An argument for content validity is usually
established through a panel of experts, who evaluate
the test content in terms of (a) relevance and (b) repre-
sentativeness for the content area under scrutiny. Not
surprisingly, the vagueness and subjectivity of the
evaluation process has led many psychometricians to
discount the content-based model as satisfying face-
validity requirements at best. However, modern propo-
nents of the content-based model have applied a
wealth of sophisticated quantitative procedures to
ensure and evaluate interrater agreement, thereby
trying to lend credibility to otherwise qualitative and
judgment-based validity evidence.

Shortcomings of the criterion-based and the
content-based models of validity incited the American
Psychological Association to set forth technical
recommendations for justifying interpretations of
psychological tests. As a result of this endeavor, the
term construct validity was coined and later elabo-
rated by Lee J. Cronbach and Paul Meehl. In the
beginning, they tied their validity theory closely to a
more general and abstract nomological network,
which was described in 1952 by Carl G. Hempel in his
classic essay Fundamentals of Concept Formation in
Empirical Science. Metaphorically and graphically,
the constructs are represented by knots, and the
threads connecting these knots represent the defini-
tions and hypotheses included in the theory. The
whole system, figuratively speaking, “floats” above
the plane of observation and is connected to it by
“strings,” or rules of interpretation. The complex sys-
tem of theoretical definitions can be used to formulate
theoretical hypotheses, which can, in turn, be used 
to formulate empirical hypotheses about relation-
ships among observable variables. In this framework,
validity is not a characteristic of a construct or its
observed counterpart but of the interpretation of
defined logical relations of a causal nature that function

to semantically circumscribe a theoretical network of
constructs and construct relations.

An obvious epistemological problem arises, how-
ever, when the observed relationships are inconsistent
with theory, which is exacerbated by the dearth of
developed formal theories in many psychological and
social science domains. This lack of strong theory led
Cronbach to coin the phrases “weak program” and
“strong program” of construct validity. He cautions
that, without solid theory (i.e., with only a weak
program of construct validity), every correlation of
the construct under development with any other
observed attribute or variable could be accepted as
validity evidence. Consequently, in the absence of any
coordinated argument, validation research would then
resemble more an empirical shotgun procedure than a
scientific program.

Such problems notwithstanding, by the 1980s, the
notion of construct validity became accepted as the
basis for a new framework of validity assessment that is
characterized by its unifying nature. The unifying aspect
stems primarily from the acknowledgment that interpre-
tive elements like assumptions and value judgments are
pervasive when measuring psychological entities and,
thus, are unavoidable in any discourse about any aspect
of validity. As Samuel Messick, the most prominent
proponent of a unified theory of validity, has framed it,
“The validation process is scientific as well as rhetorical
and requires both evidence and argument.”

The most controversial aspect of the unified con-
cept of validity as developed by Messick pertains to
the role of consequences in the validation process. In
this view, a validity argument must specifically
consider and evaluate the social consequences of test
interpretation and test use, which are describable only
on the basis of social values. Importantly, his notion of
social consequences does not refer merely to test mis-
use but, specifically, to the unanticipated conse-
quences of legitimate test score interpretation and use.
A number of critics reject his idea that evidential and
consequential aspects of construct validity cannot be
separated, but despite this debate and recent clarifica-
tions on the meaning of the consequential aspects, the
question of value justification within a unified validity
approach persists.
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Philosophical Challenges

The unification of validity theory under a construc-
tivist paradigm has challenged the prevailing implicit
and explicit philosophical realism that many applied
social scientists had hitherto followed in their practi-
cal measurement endeavors. In philosophical realism,
a test’s task was to accurately measure an existing
entity and not to question whether such an entity
existed in the first place (an ontological question) or
whether it could be assessed at all (an epistemologi-
cal question). In the constructivist view, it is not a test
that is validated but its interpretation (i.e., the infer-
ences that are drawn from a test score). Therefore, it
is insufficient to operationalize validity through a
single validity coefficient. Rather, validation takes
the form of an open-ended argument that evaluates
the overall plausibility of the proposed test score
interpretations from multiple facets. Currently, the
strengthening of cognitive psychology principles 
in construct validation as described by Susan
Embretson and Joanna Gorin, for example, appears to
be one of the most promising avenues for developing
validity theory toward a more substantive theory that
can truly blend theoretical models with empirical
observations. Models with genesis in cognitive psy-
chology enable one to disentangle and understand the
processes that respondents engage in when they react
to test items and to highlight the test instrument as an
intervention that can be used to search for causal
explanations, an argument that was developed
recently in detail by Borsboom, Mellenbergh, and
van Heerden.

Perspectives for the Future

To comprehensively develop a unified theory of
validity in the social sciences, a lot more must be
accomplished besides a synthesis of the evidential
and consequential bases of test interpretation and use.
In particular, a truly unified theory of validity would
be one that crosses methodological boundaries 
and builds on the foundations that exist in other
disciplines and subdisciplines. Most prominently,
consider the threats-to-validity approach for general-
ized causal inferences from experimental and 

quasi-experimental designs, the closely related
validity generalization approach by virtue of meta-
analytical techniques, and the long tradition of valid-
ity concepts in qualitative research. In the end, it may
be best to acknowledge that validity itself is a com-
plex construct that also needs to be validated every
once in a while.

—André A. Rupp and Hans Anand Pant

See also Construct Validity; Content Validity; Face Validity;
Validity Coefficient
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VARIABLE

A variable represents a class of outcomes that can
take on more than one value. For example, car make
is a variable that can take on the values of Pontiac,
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Volvo, or Chevrolet, among others. Other examples of
variables are height (expressed as short or tall or 
5 feet or 6 feet, etc.), income (expressed as more than
$60,000 or less than $60,000, for example), age at
menarche, number of badges earned, time in rank,
speed for the 100-yard dash, and favorite type of
food. All these characteristics can take on any one of
several values.

Table 1 lists types of variables, definitions, and
alternative terms for the variables.

The two most important variables are dependent
and independent variables.

A dependent variable represents the measure that
reflects the outcomes of a research study. For example,
if the difference between two groups of adults on how
well they can remember a set of 10 single digits after 
a 5-hour period is measured, the number of digits
remembered is the dependent variable.

A dependent variable is the outcome measure that
depends on the experimental treatment or on what the
researcher changes or manipulates.

An independent variable represents the treatments
or conditions that the researcher controls, either
directly or indirectly, to test their effects on a particu-
lar outcome. An independent variable is also known as
a treatment variable; it is in this context that the term
treatment is most often used. An independent variable
is manipulated in the course of an experiment to
understand the effects of this manipulation on the
dependent variable.

For example, the effectiveness of three different
reading programs on children’s reading skills may be
tested. Method A includes tutoring, Method B
includes tutoring and rewards, and Method C includes
neither tutoring nor rewards (these kids just spend
some time with the teacher). In this example, the
method of reading instruction is manipulated, and it is
the independent variable. The outcome, or dependent,
variable could be reading scores. This experiment
includes three levels of one independent variable
(method of teaching) and one dependent variable
(reading score).

The distinction between direct and
indirect manipulation of the indepen-
dent variable(s) has to do with whether
the researcher actually creates the
levels (such as Method A, Method B,
and Method C above) or whether the
levels occur naturally and cannot be
manipulated directly but only tested.
Examples of naturally occurring vari-
ables include differences such as gen-
der (we cannot very well assign that
trait to people) or age (we cannot make
people younger or older).

The general rule to follow in
experimental design is that when the
researcher is manipulating anything
or assigning participants to groups
based on some characteristic, such as
age or ethnicity or treatment, that
variable is the independent variable.
When researchers look at some 
outcome to determine whether the
grouping had an effect, they are look-
ing at the dependent variable.
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Table 1 Types of Variables

Other Terms You
Type Definition Might See

Dependent variable A variable that is measured Outcome variable
to see whether the treatment Results variable
or manipulation of the Criterion variable
independent variable had 
an effect

Independent variable A variable that is manipulated Treatment
to examine its impact on a Factor
dependent variable Predictor variable

Control variable A variable that is related to Restricting variable
the dependent variable, the 
influence of which needs 
to be removed

Extraneous variable A variable that is related to Threatening variable
the dependent variable or 
independent variable and that 
is not part of the experiment

Moderator variable A variable that is related to the Interacting variable
dependent variable or 
independent variable and has 
an impact on the dependent 
variable



Independent variables must take on at least two
levels or values (because they are variables). For
example, if a researcher were studying the effects of
gender differences (the independent variable) on
language development (the dependent variable), the
independent variable would have two levels, male and
female. Similarly, if a researcher were investigating
differences in stress for people 30 to 39 years of age,
40 to 49 years, and 50 to 59 years, then the indepen-
dent variable would be age, and it would have three
levels.

The Relationship Between 
Independent and Dependent Variables

The best independent variable is one that is inde-
pendent of any other variable that is being used in
the same study. In this way, the independent variable
can contribute the maximum amount of understand-
ing beyond what other independent variables can
offer. When variables compete to explain the effects,
their potential influence is sometimes called
confounding.

The best dependent variable is one that is sensitive
to changes in the different levels of the independent
variable.

—Neil J. Salkind

See also Dependent Variable; Descriptive Research;
Independent Variable
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VARIABLE DELETION

The law of parsimony (see “Ockham’s Razor”) states
that the fewer variables used to explain a situation, the
more probability that the explanation will be closer to

reality, which confers more replicability and more
generalizability on the explanation. Reducing the
number of variables lessens Type II error probability
because degrees of freedom are also lessened. The
goal is to estimate a given amount of variance with the
smallest variable set possible; thus bigger is not better
when one is using canonical correlation analysis
(CCA), making variable deletion a necessity.

The following example uses CCA and variable
deletion strategies (DSs) to illustrate how to arrive at
the most parsimonious variable set for predicting how
well students’ attitudes toward mathematics correlate
with their geometric and spatial visualization abilities.
Students were administered three tests: (a) a math atti-
tude survey containing six subscales, usefulness (U),
intrinsic value (I), worry (W), confidence (C), percep-
tions (P), and attitude (A) toward success, serving as
the six predictor variables; (b) a spatial relationship
test assessing spatial sense; and (c) a geometry con-
tent knowledge test ranging from Level 0 to Level 2.
The two math tests and Level 0 of the geometry test
served as the three criteria variables (space relation-
ship test, or space rel; variable Level 0, or Lev 0; and
geometry content knowledge score, or GCK sum).
The command syntax for running the MANOVA
analysis in SPSS was as follows:

MANOVA
spacerel lev0 gcksum with U I W C P A/
print=signif (multiv eigen dimenr)
discrim (stan estim cor) alpha (.999))/design.

The results of the analysis are shown in Table 1. 
To make the process of completing the table as

clear as possible, the “func” (canonical function coef-
ficient), the “ rs” (canonical structure coefficient), and
the Rc

2 (squared canonical correlation coefficient) for
each function were gotten directly from the SPSS
printout. The rs

2 (squared canonical structure coeffi-
cient) was figured by squaring the canonical structure
coefficients for each variable and putting them in
percentage format. The h2 (communality coefficient)
for each variable was obtained by summing all the
rs

2s. The adequacy coefficient, an average of all the
squared structure coefficients for the variables in one
set with respect to one function, was calculated by
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adding all the structure coefficients in the criterion set,
dividing by the number of variables in the set, and
placing the result in percentage format. The adequacy
coefficient for the predictor set was determined by the
same method. The redundancy coefficient (the measure
of the proportion of the variance of the criterion vari-
able set predictable from the predictor variable set)
was calculated by multiplying the adequacy coeffi-
cient by the Rc

2 for each function.
After examining the full CCA, the law of parsimony

needed to be invoked through variable deletion. In
order to make this deletion process as understandable
as possible, three different strategies will be examined.

During the deletion process, three coefficients will
be looked at:

• rs
2: how much variance a variable linearly shares with

a canonical variable 
• h2: sum of all rs

2s; how much of the variance in a
given observed variable is reproduced by the com-
plete canonical solution 

• Rc
2: how much each function is contributing to the

overall canonical solution 

DS 1 looks at the h2s only and involves the follow-
ing steps:

1. Look at all the h2s. 

2. Find the lowest h2 and delete it.

3. Check the change to the Rc
2 for each function.

4. If there is little change to Rc
2, find the next lowest h2.

5. Delete that variable, and repeat the process until the
Rc

2 change is too big.

Limitations of DS 1 are that contributions are not
evaluated until after the variable is dropped, which
results in retention of a large h2 that happened only on
the last canonical function and had a small Rc

2 effect
size, as shown in Tables 2 and 3.

DS 2 looks at the contribution of each function to the
total canonical solution. It includes the following steps:

1. Look at the Rc
2 for each function.

2. Omit the function with the smallest Rc
2. See Table 4.

3. Compute the subset of h2s.
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Table 1 Initial Solution With Canonical Communality Coefficients (h2) 

DS 1

Function 1 Function 2 Function 3

Statistic Func. rs rs
2 Func. rs rs

2 Func. rs rs
2 h2

spacerel 0.5 −0.845 71.40% 0.556 0.162 2.62% 0.956 0.509 25.91% 99.94%
Lev0 −0.179 −0.604 36.48% 1.008 0.510 26.01% −0.617 −0.613 37.58% 100.07%
gcksum −0.521 −0.901 81.18% −1.197 −0.331 10.96% −0.843 −0.279 7.78% 99.92%
Adequacy 63.02% 13.20% 23.76%
Rd 16.13% 0.49% 0.50%
Rc

2 25.60% 3.70% 2.10%
Rd 6.86% 0.68% 0.23%
Adequacy 26.80% 18.35% 10.71%
U 0.157 0.581 33.76% 0.153 −0.076 0.58% −0.565 −0.463 21.44% 55.77%
I −0.096 0.426 18.15% −0.579 −0.63 39.69% −0.862 −0.571 32.60% 90.44%
W −0.187 −0.081 0.66% −0.829 −0.805 64.80% 0.531 0.292 8.53% 73.99%
C 0.932 0.972 94.48% −0.023 −0.207 4.28% 0.787 0.083 0.69% 99.45%
P 0.046 0.244 5.95% 0.2 −0.061 0.37% 0.145 0.033 0.11% 6.43%
A 0.061 0.279 7.78% 0.229 −0.061 0.37% −0.222 −0.096 0.92% 9.08%

Note: spacerel = space relations portion of differential aptitude test score; Lev0 = score from geometry content knowledge test; gcksum =
geometry content knowledge test sum score; Func. = canonical function coefficient; rs = canonical structure coefficient; rs

2 = squared
canonical structure coefficient; h2 = canonical communality coefficient; Rd = redundancy coefficient; Adequacy = adequacy 
coefficient; Rc

2 = squared canonical correlation coefficient; U = usefulness subscale; I = intrinsic value subscale; W = worry subscale; 
C = confidence subscale; P = perceptions subscale; A = attitude toward success subscale.
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Table 2 Solution With h2s With Perceptions Deleted 

DS 1, Iteration 1

Function 1 Function 2 Function 3

Statistic Func. rs rs
2 Func. rs rs

2 Func. rs rs
2 h2

spacerel −0.503 −0.846 71.57% 0.522 0.142 2.02% 0.974 0.513 26.32% 99.90%
Lev0 −0.181 −0.605 36.60% 1.028 0.528 27.88% −0.583 −0.596 35.52% 100.00%
gcksum −0.516 −0.9 81.00% −1.181 −0.324 10.50% −0.524 −0.292 8.53% 100.02%
Adequacy 63.06% 13.46% 23.45%
Rd 16.14% 0.26% 0.94%
Rc

2 25.60% 1.90% 4.00%
Rd 6.62% 0.35% 0.44%
A 25.85% 18.60% 11.04%
U 0.167 0.581 33.76% 0.211 −0.061 0.37% −0.53 −0.467 21.81% 55.94%
I −0.093 0.427 18.23% −0.56 −0.622 38.69% −0.891 −0.603 36.36% 93.28%
W −0.177 −0.08 0.64% −0.817 −0.825 68.06% 0.525 0.255 6.50% 75.21%
C 0.934 0.973 94.67% −0.03 −0.204 4.16% 0.802 0.079 0.62% 99.46%
P 0 0 0.00% 0 0 0.00% 0 0 0.00% 0.00%
A 0.072 0.279 7.78% 0.286 −0.057 0.32% −0.176 −0.098 0.96% 9.07%

Note: spacerel = space relations portion of differential aptitude test score; Lev0 = score from geometry content knowledge test; gcksum =
geometry content knowledge test sum score; Func. = canonical function coefficient; rs = canonical structure coefficient; rs

2 = squared
canonical structure coefficient; h2 = canonical communality coefficient; Rd = redundancy coefficient; Adequacy = adequacy 
coefficient; Rc

2 = squared canonical correlation coefficient; U = usefulness subscale; I = intrinsic value subscale; W = worry subscale; 
C = confidence subscale; P = perceptions subscale; A = attitude toward success subscale.

Table 3 Solution With h2s With P and A Deleted 

DS 1, Iteration 2

Function 1 Function 2 Function 3

Statistic Func. rs rs
2 Func. rs rs

2 Func. rs rs
2 h2

spacerel −0.504 −0.846 71.57% 0.583 0.171 2.92% 0.938 0.505 25.50% 100.00%
Lev0 −0.190 −0.610 37.21% 0.984 0.482 23.23% −0.651 −0.628 39.44% 99.88%
gcksum −0.509 −0.898 80.64% −1.218 −0.349 12.18% −0.441 −0.266 7.08% 99.90%
Adequacy 63.14% 12.78% 24.01%
Rd 16.10% 0.43% 0.43%
Rc

2 25.50% 3.40% 1.80%
Rd 6.29% 0.67% 0.20%
Adequacy 24.67% 19.78% 10.97%
U 0.175 0.582 33.87% 0.229 −0.075 0.56% −0.584 −0.475 22.56% 57.00%
I −0.093 0.43 18.49% −0.629 −0.664 44.09% −0.845 −0.557 31.02% 93.60%
W −0.153 −0.078 0.61% −0.732 −0.840 70.56% 0.549 0.339 11.49% 82.66%
C 0.950 0.975 95.06% 0.082 −0.187 3.50% 0.764 0.087 0.76% 99.32%
P 0 0 0.00% 0 0 0.00% 0 0 0.00% 0.00%
A 0 0 0.00% 0 0 0.00% 0 0 0.00% 0.00%

Note: spacerel = space relations portion of differential aptitude test score; Lev0 = score from geometry content knowledge test; gcksum =
geometry content knowledge test sum score; Func. = canonical function coefficient; rs = canonical structure coefficient; rs

2 = squared
canonical structure coefficient; h2 = canonical communality coefficient; Rd = redundancy coefficient; Adequacy = adequacy 
coefficient; Rc

2 = squared canonical correlation coefficient; U = usefulness subscale; I = intrinsic value subscale; W = worry subscale; 
C = confidence subscale; P = perceptions subscale; A = attitude toward success subscale.



4. Now find the variable that has the lowest h2; drop it
from the original solution.

5. Repeat the preceding steps until the remaining vari-
ables are reasonably close in their subset h2 values.
This will be a matter of researcher judgment.

Limitations of DS 2 are that it ignores functions
with small Rc

2 values and the variations as to where
h2 values come from. P, A, and U are deleted in
Table 5.

DS 2 considers weighted h2s, looking at the vari-
ables’ contribution to the complete canonical solution.
It includes the following steps:

1. Multiply Rc
2 times rs

2 and add the products together
for each row.

2. Drop the lowest weighted h2.

3. Look at the change in the Rc
2; if there is little change,

drop the next-lowest h2.

4. Repeat, taking out as many variables as possible
without compromising the Rc

2.

This is considered the best of the DSs because the
h2s are weighted (see Table 6).

The goal of all DSs is a more parsimonious solu-
tion. Therefore, choosing the smaller variable set when
the same amount of variance can be reproduced is the
objective, because “bigger is not better!” in CCA.

—Mary Margaret Capraro

See also Variable
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Table 4 Canonical Solution After Dropping Function 3 With Subset h2s 

DS 2, Iteration 1

Function 1 Function 2

Statistic Func. rs rs
2 Func. rs rs

2 h2

spacerel −0.5 −0.845 71.40% 0.556 0.162 2.62% 74.03%
Lev0 −0.179 −0.604 36.48% 1.008 0.510 26.01% 62.49%
gcksum −0.521 −0.901 81.18% −1.197 −0.331 10.96% 92.14%
Adequacy 63.02% 13.20%
Rd 16.13% 0.49%
Rc

2 25.60% 3.70%
Rd 6.86% 0.68%
Adequacy 26.80% 18.35%
U 0.157 0.581 33.76% 0.153 −0.076 0.58% 34.33%
I −0.096 0.426 18.15% −0.579 −0.63 39.69% 57.84%
W −0.187 −0.081 0.66% −0.829 −0.805 64.80% 65.46%
C 0.932 0.972 94.48% −0.023 −0.207 4.28% 98.76%
P 0.046 0.244 5.95% 0.2 −0.061 0.37% 6.33%
A 0.061 0.279 7.78% 0.229 −0.061 0.37% 8.16%

Note: spacerel = space relations portion of differential aptitude test score; Lev0 = score from geometry content knowledge test; gcksum =
geometry content knowledge test sum score; Func. = canonical function coefficient; rs = canonical structure coefficient; rs

2 = squared
canonical structure coefficient; h2 = canonical communality coefficient; Rd = redundancy coefficient; Adequacy = adequacy 
coefficient; Rc

2 = squared canonical correlation coefficient; U = usefulness subscale; I = intrinsic value subscale; W = worry subscale; 
C = confidence subscale; P = perceptions subscale; A = attitude toward success subscale.
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Table 5 Solution With h2s With P, A, and U Deleted 

DS 2, Iteration 4

Function 1 Function 2

Statistic Func. rs rs
2 Func. rs rs

2 h2

spacerel −0.491 −0.837 70.06% 0.692 0.225 5.06% 75.12%
Lev0 −0.216 −0.629 39.56% 0.892 0.393 15.44% 55.01%
gcksum −0.503 −0.9 81.00% −1.268 −0.389 15.13% 96.13%
Adequacy 63.54% 11.88%
Rd 16.20% 0.40%
Rc

2 25.50% 3.40%
Rd 4.96% 0.68%
Adequacy 19.46% 19.90%
U 0 0 0.00% 0 0 0.00% 0.00%
I −0.065 0.434 18.84% −0.682 −0.709 50.27% 69.10%
W −0.139 −0.073 0.53% −0.68 −0.817 66.75% 67.28%
C 1.031 0.987 97.42% 0.249 −0.154 2.37% 99.79%
P 0 0 0.00% 0 0 0.00% 0.00%
A 0 0 0.00% 0 0 0.00% 0.00%

Note: spacerel = space relations portion of differential aptitude test score; Lev0 = score from geometry content knowledge test; gcksum =
geometry content knowledge test sum score;  Func. = canonical function coefficient; rs = canonical structure coefficient; rs

2 = squared
canonical structure coefficient; h2 = canonical communality coefficient; Rd = redundancy coefficient; Adequacy = adequacy 
coefficient; Rc

2 = squared canonical correlation coefficient; U = usefulness subscale; I = intrinsic value subscale; W = worry subscale; 
C = confidence subscale; P = perceptions subscale; A = attitude toward success subscale.

Table 6 Initial Solution With h2s 

DS 3

Function 1 Function 2 Function 3 Weighted

Statistic Func. rs rs
2 Func. rs rs

2 Func. rs rs
2 h2

spacerel −0.500 −0.845 71.40% 0.556 0.162 2.62% 0.956 0.509 25.91% 18.92%
Lev0 −0.179 −0.604 36.48% 1.008 0.510 26.01% −0.617 −0.613 37.58% 11.09%
gcksum −0.521 −0.901 81.18% −1.197 −0.331 10.96% −0.843 −0.279 7.78% 21.35%
Adequacy 63.02% 13.20% 23.76%
Rd 16.13% 0.49% 0.50%
Rc

2 25.60% 3.70% 2.10%
Rd 6.86% 0.68% 0.23%
Adequacy 26.80% 18.35% 10.71%
U 0.157 0.581 33.76% 0.153 −0.076 0.58% −0.565 −0.463 21.44% 9.11%
I −0.096 0.426 18.15% −0.579 −0.63 39.69% −0.862 −0.571 32.60% 6.80%
W −0.187 −0.081 0.66% −0.829 −0.805 64.80% 0.531 0.292 8.53% 2.74%
C 0.932 0.972 94.48% −0.023 −0.207 4.28% 0.787 0.083 0.69% 24.36%
P 0.046 0.244 5.95% 0.2 −0.061 0.37% 0.145 0.033 0.11% 1.54%
A 0.061 0.279 7.78% 0.229 −0.061 0.37% −0.222 −0.096 0.92% 2.03%

Note: spacerel = space relations portion of differential aptitude test score; Lev0 = score from geometry content knowledge test; gcksum =
geometry content knowledge test sum score; Func. = canonical function coefficient; rs = canonical structure coefficient; rs

2 = squared
canonical structure coefficient; h2 = canonical communality coefficient; Rd = redundancy coefficient; Adequacy = adequacy 
coefficient; Rc

2 = squared canonical correlation coefficient; U = usefulness subscale; I = intrinsic value subscale; W = worry subscale; 
C = confidence subscale; P = perceptions subscale; S = attitude toward success subscale.



VARIANCE

In addition to the standard deviation, a very
common measure of variability is the variance. If 
you know the standard deviation of a set of scores,
you can easily compute the variance of that same
set of scores; the variance is simply the square of
the standard deviation, as shown in the following
formula:

where

s2 is the variance,

∑ is the summation of deviations from the mean
squared,

X is the data point,

X
_

is the mean of the set of data points,

n is the sample size.

Consider the data set of 10 observations as follows:

5, 7, 5, 3, 4, 6, 5, 7, 9, 9,

which has a mean of 6. From the above formula, the
value of the variance is 4.00.

Excel’s VAR Function

While variance is a relatively easy descriptive
statistic to compute by hand, it is much easier to 
use a software package such as Excel and the VAR
function.

To compute the variance of a set of numbers by
means of Excel, follow these steps:

1. Enter the individual scores into one column in a
worksheet. The data in this example were entered
into cells A1 through A10.

2. Select the cell into which you want to enter the VAR
function. In this example, we are going to compute
the variance in cell A11.

3. Now click on cell A11 and type the Average function
as follows,

=VAR (A1:A10),

and press the Enter key.

4. As you can see in Figure 1, the variance was
computed and the value returned to cell A11. Notice
that in the formula bar in Figure 1, you can see the
VAR function fully expressed and the value
computed.

s2 =
∑

(X − X
---
)2

n − 1
,
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Figure 1 Using the VAR Function to Compute the
Variance

Figure 2 Using the Data Analysis ToolPak to
Compute the Variance and Other
Descriptive Statistics



Using the Excel Data 
Analysis ToolPak

The variance can also be computed easily with
Excel’s Data Analysis ToolPak, as shown in Figure 2.
Here, the Data Analysis option was selected from the
Tools menu, the Descriptive Statistics option was
selected, and the range of data and location for output
were identified. The results show a complete descrip-
tive analysis of the data.

—Neil J. Salkind

See also Data Analysis ToolPak; Excel Spreadsheet Functions;
Standard Deviation

Further Reading

Salkind, N. J. (2004). Statistics for people who (think they)
hate statistics (2nd ed.). Thousand Oaks, CA: Sage.

HyperStat Online tutorial and steps for the computation of the
variance: http://davidmlane.com/hyperstat/A16252.html

VERBAL IQ

Verbal IQ is a measure of aspects of intelligence that
relate to words and language and is associated with the
Wechsler Intelligence Scale. When David Wechsler
developed his IQ test in 1939, he divided it into two
components—tasks that required mainly verbal abili-
ties and tasks that required mainly perceptual-manipu-
lative skills. The verbal IQ can be considered primarily
a measure of acquired knowledge, verbal reasoning,
and general verbal skills. It includes measures of
vocabulary knowledge, verbal concept formation,
arithmetic skill, auditory memory, general fund of
information, and understanding of social rules and
norms. Recent editions of the Wechsler scales have
broken down verbal IQ into a verbal comprehension
component and a working memory component. The
verbal comprehension scale most closely represents
what has traditionally been thought of as verbal IQ.

Another way of thinking about verbal IQ is that 
it is that aspect of intelligence that depends on

experience and learning, sometimes referred to as
crystallized intelligence. Because of its dependence
on experience, verbal IQ is highly culturally loaded. 
If an individual has not had life experiences similar 
to the typical United States citizen, her or his score
may be artificially lowered. Although the research is
far from definitive, there is some indication that skills
measured by verbal IQ stay the same or increase 
with age and experience while those measured by per-
formance IQ tend to decline. Attempts to tie verbal IQ
to the left hemisphere of the brain and performance 
IQ to the right hemisphere have generally not been
successful.

—Steve Saladin

See also Wechsler Adult Intelligence Scale

Further Reading

Gregory, R. J. (1999). Foundations of intellectual assessment:
The WAIS-III and other tests in clinical practice. Boston:
Allyn & Bacon.

Kaufman, A. S., & Lichtenberger, E. O. (2005). Assessing ado-
lescent and adult intelligence (3rd ed.). New York: Wiley. 

Applying Ideas on Statistics and Measurement

The following abstract is adapted from Gibson, 
C. L., Piquero, A. R., & Tibbetts, S. G. (2001). The
contribution of family adversity and verbal IQ 
to criminal behavior. International Journal of
Offender Therapy and Comparative Criminology,
45(5), 574–592. 

Several studies have reported on the risk factor
prevention paradigm, an effort to identify risk
factors and protective factors that increase and
decrease the odds of offending. For example,
some have suggested that multiplicative interac-
tions of such factors should be explored in an
attempt to understand how they are linked to
offending behaviors such as offending prevalence
and early onset of offending. In this research,
Chris Gibson and his colleagues examine Moffitt’s
interactional hypothesis, which states that two
specific risk factors, verbal IQ and family adver-
sity, interact to increase the probability of particular
types of criminal behavior. Logistic regression
analyses using data from the Philadelphia portion 
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of the Collaborative Perinatal Project of 987
African American youth indicate that the com-
bined effect of verbal IQ and family adversity did
not significantly increase the odds of becoming
an offender, whereas the combined effect of low
verbal IQ scores at age 7 and family adversity sig-
nificantly increased the odds of early onset of
offending.

VINELAND ADAPTIVE

BEHAVIOR SCALES

The Vineland Adaptive Behavior Scales (VABS),
published by American Guidance Service (http://
ags.pearsonassessments.com), assess the personal
and social sufficiency of individuals from birth to 90
years of age. They are used for diagnostic evalua-
tions, program planning, and research investigations.
The second edition of the Vineland Adaptive
Behavior Scales (VABS-II) is currently in press and
will be available by early 2006. The VABS are
commonly used in conjunction with assessments of
intellectual functioning to differentiate between indi-
viduals’ intellectual ability and their everyday func-
tioning. Intellectual ability scores that are within the
intellectually handicapped range may not accurately
describe individuals’ abilities to fend for themselves
in daily life. Therefore, an assessment of adaptive
functioning is necessary to measure everyday 
living skills and design appropriate supportive
interventions.

There are four versions of the VABS-II, all admin-
istered to a person who is familiar with the behavior
of the individual of interest. The Survey Interview is a
semistructured interview (requiring up to 60 minutes
for administration) that provides a general assessment
of adaptive functioning. The Expanded Interview
(which takes up to 90 minutes to administer) offers 
a more comprehensive assessment and a systematic
basis for preparing individual educational, habilita-
tive, or treatment programs. The Parent/Caregiver
Rating Form covers the same content as the Survey

Interview but uses a rating scale format and works
well when time or access is limited. The Teacher
Rating Form is independently completed by a class-
room teacher, provides an assessment of behavior in
the classroom, takes up to 20 minutes to complete,
and applies to people from the age of 3 years to 22
years. Scoring can be done manually or by computer
program and provides a profile of strengths and weak-
nesses across the domains measured.

Behaviors measured are divided into five
domains: communication, daily living skills, social-
ization, motor skills, and maladaptive behaviors.
The motor skills domain applies only to children
under the age of 5 years, and the maladaptive behav-
iors domain applies only to children over the age of
5 years. The first four domains each have sub-
domains, and each subdomain has categories. For
example, the daily living skills domain has a per-
sonal subdomain, which includes the categories of
eating and drinking, toileting, dressing, bathing,
grooming, and health care. Items are short sentences
describing behaviors (for example, “Opens mouth
when spoon with food is presented” or “Makes own
bed when asked”), and the interviewer seeks behav-
iors that are regularly performed, not those that
could be performed.

In the VABS-II, updating of content reflects tasks
and daily living skills that are more attuned to current
societal expectations than are those of the 1984 edi-
tion. Current norms match the latest census data in the
United States, and current items encompass a wider
range of functioning and a wider age range than did
those of the first edition.

There are considerable data to support the reliabil-
ity, validity, and cross-cultural stability of the VABS.
They are the most highly rated scales of adaptive
functioning in the United States and have been
endorsed as a measure of adaptive behavior by the
World Health Organization. A particular strength of
the instrument is that, due to the interview structure,
valuable qualitative information may be gleaned from
the open-ended questions that are used to elicit spe-
cific information.

—Fran Vertue
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Further Reading

Beail, N. (2003). Utility of the Vineland Adaptive Behavior
Scales in diagnosis and research with adults who have
mental retardation. Mental Retardation, 41(4), 286–289.

De Bildt, A., Kraijer, D., Sytema, S., & Minderaa, R. (2005).
The psychometric properties of the Vineland Adaptive
Behavior Scales in children and adolescents with mental
retardation. Journal of Autism and Developmental
Disorders, 35, 53–62.

Sparrow, S. S., & Cicchetti, D. V. (1989). The Vineland
Adaptive Behavior Scales. In C. S. Newmark (Ed.), Major
psychological assessment instruments, Vol. 2 (pp. 199–231).
Needham Heights, MA: Allyn & Bacon.

Vineland Adaptive Behavior Scales product information:
http://ags.pearsonassessments.com

VINELAND SOCIAL MATURITY SCALE

The Vineland Social Maturity Scale (American
Guidance Service, Inc., http://ags.pearsonassessments
.com) is an assessment scale of personal and social
skills pertaining to individuals from birth to 18 years,
11 months (including low-functioning adults). This
evaluation measures four domains of adaptability,
including communication, daily living, socialization,
and motor skills, through semistructured interviews
administered to the primary caregiver. This scale is
one of the most common measures of adaptive behav-
ior and is widely used to assess individuals with
mental retardation or individuals who have difficulty
performing in testing situations. The Vineland is used
to identify not only individuals with mental retarda-
tion but also those with developmental delays, autism
spectrum disorders, and other impairments, such as
attention deficit/hyperactivity disorder, and also 
helps in the development of educational and treatment
plans.

The Vineland Social Maturity Scale was origi-
nally developed and published in 1935 by Edgar A.
Doll, who was one of the first people to define men-
tal retardation as being characterized by a limita-
tion in adaptive skills. The scale was revised in
1984 by Sara Sparrow, Domenic Cicchetti, and
David Balla and renamed the Vineland Adaptive

Behavior Scales (VABS). The most current revision
is the Vineland Adaptive Behavior Scales II (VABS-
II). This latest revision includes a fifth domain that
encompasses maladaptive behavior, covers an age
range from birth to age 90, and has updated content
regarding social expectations of tasks and living
skills, as well as new norms based on current U.S.
census data. The VABS is available in three for-
mats: the expanded forms, which contain 577 items
and take 60 to 90 minutes to administer; the survey
form, which includes 297 items and takes 20 to 60
minutes to complete; and the classroom edition of
244 items, which is a questionnaire completed by
an individual’s teacher and takes approximately 20
minutes.

Items address the ability to perform tasks such as
dressing or preparing meals, following rules, and
building and maintaining relationships. Each of the
domains contains two or three subdomains, which
classify the behavior into specific categories.
Communication comprises receptive, expressive,
and written categories. Daily living skills include
personal, domestic, and community categories.
Socialization consists of interpersonal relationships,
play, and leisure-time categories, and coping skills
and motor skills are measured as fine and gross. The
new maladaptive behavior index is an optional scale
of internalizing, externalizing, and other behaviors
that are assessed by questions that address inappropri-
ate or dangerous behaviors. The individual receives a
score in each of the domains and an Adaptive
Behavior Composite with a mean of 100 and a stan-
dard deviation of 15. A score of 70 would suggest a
diagnosis of mild mental retardation, and a score of 
20 to 25 would be required for a diagnosis of
profound mental retardation.

—Kirsten Wells

See also Vineland Adaptive Behavior Scales

Further Reading

Beail, N. (2003). Utility of the Vineland Adaptive Behavior
Scales in diagnosis and research with adults who have
mental retardation. Mental Retardation, 41(4), 286–289.
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WECHSLER ADULT

INTELLIGENCE SCALE

The Wechsler Adult Intelligence Scale (WAIS) is a set
of tests that takes 90 to 120 minutes to administer and
that assesses the intellectual functioning of adoles-
cents and adults ages 16 to 89. It is the most widely
used measure of adult intelligence, and its sister mea-
sures, the Wechsler Intelligence Scale for Children
(WISC) and the Wechsler Preschool and Primary
Scale of Intelligence (WPPSI), are the most widely
used for school-age children (6–16) and preschool
children (ages 2–7), respectively.

The WAIS uses deviation IQ scores such that
about 50% of people fall between 90 and 110, with
100 being the mean. Truly exceptional scores are 70
and below (possible mental retardation) and 130 and
above (gifted). The test is divided into verbal subtests,
which are designed to measure aspects of intelligence
that rely on language (word meanings, general fund of
knowledge, abstract verbal reasoning, etc.), and per-
formance subtests, which measure reasoning that does
not rely on language (visual pattern recognition, novel

problem solving, attention to visual detail, etc.). The
Full Scale IQ (FSIQ) score is based on 11 subtests
(6 verbal and 5 performance) and is generally consid-
ered the best measure of overall intelligence, unless
there are large differences in performance among the
subtests. Also generated are Verbal IQ and Perfor-
mance IQ scores. Large differences between these
scores (and between the subtests that make them up)
can suggest strengths and weaknesses and in some
cases neurological impairment.

The third edition (called WAIS-III and published in
1997) saw the addition of several supplemental scales
that could be administered to generate index scores
that were identified via factor analysis. These include
the Verbal Comprehension Index (similar to Verbal
IQ), Perceptual Organization Index (similar to
Performance IQ), Working Memory Index (a measure
of how much information someone can hold in aware-
ness while solving problems), and Processing Speed
Index (a measure of how quickly someone can per-
form routine visual tasks). Despite these changes,
WAIS-III maintains the same basic structure as previ-
ous versions, allowing users to apply research with all
versions as an aid in interpretation. The WAIS offers a
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reliable and valid measure of intellectual functioning,
with a large and representative standardization sample,
and is used widely in research and clinical settings.

—Steve Saladin

See also Factor Analysis; Mean; Performance IQ; Verbal IQ;
Wechsler Preschool and Primary Scale of Intelligence

Further Reading

Gregory, R. J. (1999). Foundations of intellectual assessment:
The WAIS-III and other tests in clinical practice. Boston:
Allyn & Bacon.

Kaufman, A. S., & Lichtenberger, E. O. (2005). Assessing ado-
lescent and adult intelligence (3rd ed.). New York: Wiley. 

Wechsler Adult Intelligence Scale page: http://www.psych
central.com/psypsych/Wechsler_Adult_Intelligence_Scale

WECHSLER INDIVIDUAL

ACHIEVEMENT TEST

The Wechsler Individual Achievement Test (WIAT;
published by Harcourt Assessment, www.harcourt
assessment.com) is a comprehensive measure of basic
scholastic skills. The second edition (WIAT-II) is a
general broadening and updating of the original WIAT.
The WIAT-II is composed of nine subtests divided into
four areas: reading, mathematics, written language,
and oral language. The subtest scores yield composite
scores for each area, as well as a total composite score.
Each subtest is organized around grade levels, from
pre-kindergarten to 16 (i.e., college students and
adults); not all the tests are administered to pre-kinder-
garten and kindergarten children. The WIAT can be
administered to individuals from ages 4 to 85 and
requires between 45 minutes and 2 hours to complete.
The test is suitable for individual administration only.

The reading composite score is made up of the
word reading, reading comprehension, and pseudo-
word decoding subtests. This area includes reading
aloud from lists of words, decoding pseudowords, and
answering questions on given comprehension pas-
sages. The mathematics composite score is derived

from the numerical operations and math reasoning
subtests. This area includes straightforward calcula-
tions as well as word problems. The written language
composite score is composed of the spelling and writ-
ten expression subtests. This area includes simple
spelling as well as sentence, paragraph, and essay
composition. The oral language composite score con-
tains the listening comprehension and oral expression
subtests. This area tests understanding of orally pre-
sented material and the ability to generate words in a
category for describing a complex pictorial scene and
to give verbal directions for simple tasks. The total
composite score gives a general overall assessment of
achievement level. The raw scores from each subtest
and the composite are converted to standard scores
with a mean of 100 and standard deviation of 15.
Average is defined as 90 (25th percentile) to 110 (75th
percentile), and by increments of 10, three additional
categories on each side are defined. Grade equivalents
are also available.

The WIAT-II is useful for determining areas of
strength or weakness, as well as ability-achievement
discrepancies that may indicate a learning disability.
To assist with discrepancy analysis, it has been linked
through the normative sample to the Wechsler Adult
Intelligence Scale-III, the Wechsler Intelligence Scale
for Children-IV, and the Wechsler Preschool and
Primary Scale of Intelligence-III. In the second edi-
tion, the listening comprehension subtest of the WIAT
contains only receptive vocabulary, expressive vocab-
ulary, and sentence comprehension. It does not test the
comprehension of longer, more complex passages, as
was done by the first edition, so it may overestimate
listening comprehension for children with attentional
or memory problems. Finally, given the increasing
demands of modern curricula, caution must be used
when achievement expectations as expressed by these
test scores are transferred to the classroom, particu-
larly when scores fall at the low end of the average
range.

—John R. Reddon and
Vincent R. Zalcik

See also Achievement Tests; Intelligence Tests
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Further Reading

Lichtenberger, E. O., & Smith, D. B. (2005). Essentials of
WIAT-II and KTEA-II assessment. Hoboken, NJ: Wiley.

Wechsler Individual Achievement Test page: http://www 
.wiat-ii.com/

WECHSLER PRESCHOOL AND

PRIMARY SCALE OF INTELLIGENCE

The third edition of the Wechsler Preschool and
Primary Scale of Intelligence (WPPSI-III; published
by the Psychological Corporation, www.harcourt
assessment.com) is an individually administered,
norm-referenced clinical instrument for assessing
the intelligence of children between the ages of 2
years 6 months (2:6) and 7 years 3 months (7:3). The
scale provides subtest and composite scores that rep-
resent intellectual functioning in verbal and perfor-
mance cognitive domains, as well as a composite
score that represents a child’s general intellectual
ability. 

The scale consists of 14 subtests, grouped into
three general categories: core, supplemental, and
optional. The age range has been divided into two age
bands to accommodate the substantial changes in
children’s cognitive development between the ages
2:6 and 7:3. For children age 2:6 through 3 years 11
months (3:11), the core verbal subtests are Receptive
Vocabulary and Information. For the Receptive
Vocabulary subtest, children look at pictures and are
instructed to “Show me the cup” and “Show me rain-
ing.” The core performance subtests are Block
Design and Object Assembly. For Object Assembly, a
child is presented with pieces of a puzzle and
instructed to fit the pieces together in 90 seconds.
Picture Naming is a supplemental verbal subtest.
Four composite scores are possible for this age band:
Verbal IQ, Performance IQ, Full Scale IQ, and
General Language Composite. 

For children age 4 years through 7:3, the core
verbal subtests are Information, Vocabulary, and
Word Reasoning. For the Information subtest, a

child responds to a question such as “Show me your
nose” and “How many days make a week?” The
core performance subtests are Block Design,
Matrix Reasoning, and Picture Concepts. For the
Matrix Reasoning subtest, the child looks at an
incomplete matrix of pictures and chooses the miss-
ing portion from 4 or 5 choices. Coding is the core
Processing Speed subtest. The supplemental verbal
subtests are Comprehension and Similarities, and
supplemental performance subtests are Picture
Completion and Object Assembly. Symbol Search
is the supplemental processing-speed subtest.
Receptive Vocabulary and Picture Naming are
optional verbal subtests but cannot be substituted
for core Verbal subtests. Five composites are possi-
ble for this age band: Verbal IQ, Performance 
IQ, Processing Speed Quotient, Full Scale IQ, and
General Language Composite. 

For children age 2:6 to 3:11, administration of the
core subtests takes 30 to 35 minutes; if the supple-
mental subtest is administered as well, 5 to 7 minutes
should be added to the testing time. For children age
4 years to 7:3, administration of the core subtests
takes 40 to 50 minutes; if all subtests are adminis-
tered, an additional 30 to 35 minutes will be required.

The WPPSI-III can be used to obtain a compre-
hensive assessment of general intellectual function-
ing. The scale can also be used as part of an
assessment to identify intellectual giftedness, cogni-
tive developmental delays, and mental retardation. In
addition, the results can serve as a guide for
placement decisions in clinical or school-related
programs.

—Ann M. Weber and 
Kristen M. Kalymon

Further Reading

Hamilton, W., & Burns, T. G. (2003). WPPSI-III: Wechsler
Preschool and Primary Scale of Intelligence (3rd ed.).
Applied Neuropsychology, 10(3), 188–190.

Wechsler Preschool and Primary Scale of Intelligence page:
http://harcourtassessment.com/haiweb/Cultures/en-US/
dotCom/WPPSI-III/WPPSI-III.htm

Wechsler Preschool and Primary Scale of Intelligence———1049



Applying Ideas on Statistics and Measurement

The following is adapted from Farver, J. A. M.,
Kim, Y. K., & Lee-Shin, Y. (2000). Within cultural
differences: Examining individual differences in
Korean American and European American pre-
schoolers’ social pretend play. Journal of Cross-
Cultural Psychology, 31(5), 583–602. 

The assessment of intelligence has been the
focus of thousands of papers and countless dis-
cussions in the area of measuring and understand-
ing individual differences. This study by Jo Ann
Farver and her colleagues examined such differ-
ences in 30 Korean American and 30 European
American preschoolers’ play behavior to better
understand how intracultural variations in
children’s skills and behavioral characteristics are
associated with social pretend play. Children’s
social behaviors and play complexity were
observed and recorded, teachers rated children’s
social behavior, parents completed a child rear-
ing questionnaire, and children were given the
Wechsler Preschool and Primary Scale of
Intelligence and the Multidimensional Stimulus
Fluency Measure. The findings showed similar
patterns predictive of pretend play for both
groups. Overall, children’s interactive style, posi-
tive social interaction with peers, and creativity
scores significantly predicted pretend play.

WEST HAVEN-YALE

MULTIDIMENSIONAL PAIN INVENTORY

The West Haven-Yale Multidimensional Pain Inven-
tory (WHYMPI) is a 52-item, multidimensional mea-
sure of chronic pain that assesses status in the
following domains: perceived pain intensity and
impact of pain on various facets of a patient’s life; per-
ception of responses from significant others; participa-
tion in common activities; and activity level. Each
domain is divided into 12 subscales. The first domain
includes five subscales: perceived interference of pain
in various aspects of functioning, support and concern
of significant others, pain severity, self-control, and
negative mood. The second domain includes three sub-
scales: perceived frequency of punishing responses,
perceived frequency of solicitous responses, and

perceived frequency of distracting responses from
significant others. The third domain includes four
subscales: participation in household chores, outdoor
work, activities away from home, and social activities
(these scores are added for a general activity score).
Each item is answered on a 7-point scale that ranges
from 0 (never) to 6 (very frequently). The WHYMPI
is self-administered in approximately 10 to 20 min-
utes. Alternative versions offer a 61-item and a 48-item
Multidimensional Pain Inventory. A substantial body
of research literature is available to guide the
WHYMPI’s applications.

Validation of the original WHYMPI was con-
ducted on a predominantly male population of veter-
ans experiencing a broad array of chronic pain
syndromes, with lower back pain afflicting 36% of
the sample. Reliability and validity estimates have
been reported for men and women and across various
ages and pain conditions. The WHYMPI displays
internal consistency reliability ranging from 0.70 to
0.90, with test-retest stability (generally with a 
2-week interval) ranging from 0.62 to 0.91.
Additional normative information for particular 
types and locations of pain is available at www.pain
.pitt.edu/mpi/MPI_Norms.pdf. Research suggests the
combination of the WHYMPI, the Beck Depression
Inventory, the McGill Pain Questionnaire, and a clin-
ical interview may provide the most useful descrip-
tion of a patient’s pain experience with respect to the
four-factor model of pain: affective distress, support
from significant others, pain description, and func-
tional capacity. The activities subscale of the
WHYMPI may be compromised in predicting func-
tional capacity because some items may be culturally
related or gender related. Examiners may find it help-
ful to inquire whether an activity was prominent prior
to the onset of pain. The WHYMPI has been vali-
dated in German, Swedish, Dutch, and English, its
original format. A significant-other version of the
WHYMPI has been developed to assess significant
others’ perception of the number of solicitous, dis-
tracting, and negative responses given by a chronic
pain patient.

The instrument is available from Robert D. Kerns,
one of its authors, and from the ProQolid Quality of
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Life Instruments Database at www.qolid.org for a
minimal fee. 

—Luci A. Martin and Joseph A. Doster

Further Reading

Burckhardt, C. S., & Jones, K. D. (2003). Adult measures of
pain: The McGill Pain Questionnaire (MPQ), Rheumatoid
Arthritis Pain Scale (RAPS), Short-Form McGill Pain
Questionnaire (SF-MPQ), Verbal Descriptive Scale (VDS),
Visual Analog Scale (VAS), and West Haven-Yale
Multidisciplinary Pain Inventory (WHYMPI). Arthritis &
Rheumatism (Arthritis Care & Research), 49, 96–104.

De Gagne, T. A., Mikail, S. F., & D’Eon, J. L. (1995).
Confirmatory factor analysis of a 4-factor model of chronic
pain evaluation. Pain, 60, 195–202.

Kerns, R. D., & Rosenberg, R. (1995). Pain-relevant responses
from significant others: Development of a significant-other
version of the WHYMPI scales. Pain, 61, 245–249.

Kerns, R. D., Turk, D. C., & Rudy, T. E. (1985). The West
Haven-Yale Multidimensional Pain Inventory (WHYMPI).
Pain, 23, 345–356.

WILCOXON, FRANK

(1892–1965)

Frank Wilcoxon was born in Glengarriffe Castle near
Cork in Ireland on September 2, 1892 (his wealthy
American parents had rented the castle for the occa-
sion). However, Wilcoxon became something of a
rebel, running away to sea as a teenager and spending
periods as an oil-well worker and as a tree surgeon. It
was not until after World War I that Wilcoxon finally
went to university. He studied chemistry at Rutgers
University, where he was a contemporary of the singer
Paul Robeson. He obtained his MSc in 1921 and 
his PhD in 1924 (in physical chemistry, at Cornell
University).

In 1925, Ronald Fisher had published the first
edition of his classic work Statistical Methods for
Research Workers. This was compulsory reading for
Wilcoxon during his postdoctoral fellowship at the
Boyce Thompson Institute for Plant Research in
Yonkers, where he investigated the use of copper
compounds as fungicides. Wilcoxon gained further

employment at the Institute before moving, in 1943,
to become group leader of the insecticide and fungi-
cide laboratory at American Cyanamid, where he con-
tributed to the development of malathion.

Wilcoxon’s first statistical papers appeared in
1945, and it was in the second of these that he intro-
duced the rank-sum and signed-rank tests that nowa-
days bear his name. These tests, and their extensions,
were collected in the 1947 pamphlet titled Some
Rapid Approximate Statistical Procedures.

In 1960, following retirement from industry,
Wilcoxon accepted a part-time appointment in the
new department of statistics at Florida State Uni-
versity, in Tallahassee. Wilcoxon had been an
enthusiastic cyclist in his younger days, and at
Tallahassee his preferred method of transport was a
motorcycle. He died there on November 18, 1965.
His innovatory statistical work is now marked by
the journal Technometrics, which gives an annual
award in his name for the best practical applications
paper.

—Graham Upton

Further Reading

Heyde, C. C., & Seneta, C. (Eds.). (2001). Statisticians of the
centuries. New York: Springer.

Frank Wilcoxon biographical essay: http://www.umass.edu/
wsp/statistics/tales/wilcoxon.html

WILCOXON MANN-WHITNEY TEST

See MANN-WHITNEY U TEST (WILCOXON RANK-
SUM TEST)

WILCOXON SIGNED RANKS TEST

The Wilcoxon signed ranks test may be used as a one-
sample test of location or as a test of difference in
location between two dependent samples. The under-
lying assumptions are that the distribution is continu-
ous and symmetric.
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The Wilcoxon signed ranks procedure is primarily
used as a test for location, such as the median. In the
one-sample case, the one-sided test of the null hypoth-
esis is H0: ϕ = median, which is tested against the
alternative Ha: ϕ > median or Ha: ϕ < median. The
alternative hypothesis for the two-sided test is Ha: ϕ ≠
median. In the two-sample case, the Wilcoxon signed
ranks test is applied to matched or paired data, such
as an examination of pretest versus posttest scores.
Although the Wilcoxon test may also be used as a
test of symmetry, there are often more powerful
procedures.

The Wilcoxon test is nonparametric. This means it
preserves the Type I error rate (i.e., the false positive
rate) to nominal alpha regardless of the population
shape. This is a fundamental advantage over its para-
metric counterparts, the one-mean Student t test and
the two-dependent-samples Student t test, which rely
on the normality distribution assumption.

Theoretical power comparisons indicate that the
asymptotic relative efficiency of the Wilcoxon signed
ranks test with the Student t test is .955 for the normal
distribution, but it can be as high as ∞ for nonnormal
distributions. Monte Carlo simulations indicate that
the spectacular power gains achieved by the indepen-
dent-samples version of this test (i.e., the Wilcoxon
rank-sum test; see the entry on Mann-Whitney U
Test) over the Student t test are not realized although
the Wilcoxon signed ranks test is often at least slightly
more powerful than the t test for depar-
tures from population normality. The
explanation is that in the paired-samples
case, tests are conducted on the distrib-
ution of the difference scores. Sub-
tracting a pretest score from the
posttest score, for example, is a mildly
normalizing procedure, producing a
distribution that is less deviant than the
parent population and more similar to
the normal distribution.

To conduct the two-sample matched-
pairs Wilcoxon signed ranks test, com-
pute the difference (d)  between each
pair of scores, ignoring the signs. (This
is achieved by taking the absolute value

|d|.) Next, denote the ranks of the positive differences
with a + sign and the negative differences with 
a − sign. Finally, sum the ranks associated with the
lesser-occurring sign.

Example

A claim is made by a test preparation corporation that
its study program leads to a statistically significant
increase in performance on a standardized college
entrance exam. The pretest is the standardized score
obtained by an examinee prior to the curriculum inter-
vention, and the posttest score is the standardized
score after participating in the study program.
Suppose the test scores were those depicted in Table 1.

To test this claim, subtract the pretest score from
the posttest score (d) and take the absolute value (|d|).
Note that there are eight + ranks and two − ranks. For
convenience, the test statistic T is based on the smaller
number of signed ranks. Therefore, the sum of the
ranks with negative signs is computed:

T = 3 + 1

= 4.

The critical values for a one-sided test with n = 10
for α = .05 and α = .01 are 10 and 5, respectively. The
null hypothesis is rejected if T is less than or equal to
the critical value. Thus, the null hypothesis is rejected
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Table 1 Pretest and Posttest Scores

Rank Rank of 
Pretest Posttest d |d| of |d| Sign Lesser Sign

450 484 34 34 7 +
480 470 −10 10 1 − 1
481 516 35 35 8 +
490 527 37 37 10 +
492 523 31 31 4 +
493 529 36 36 9 +
509 479 −30 30 3 − 3
531 564 33 33 6 +
573 605 32 32 5 +
611 622 11 11 2 +

Note: d = posttest score − pretest score; |d| = absolute value of d.



at the α = .05 and the α = .01 level, and the claim that
the study program is effective in increasing college
entrance test scores is supported.

The p value associated with T = 4 is .017. In com-
parison, the two-dependent-samples Student t test
yields t = −2.869, df = 9, and p = .019.

SPSS

Enter the pretest scores in one column and the
posttest scores in another column. Click Analyze |
Nonparametric Tests | 2 Related Samples. Then,
select the pretest and posttest variables and click the
“→” button to move the pair into the “Test Pair(’s)
List” box. Click Wilcoxon | OK. The results are
depicted below.

One-Sample Test

Suppose a claim to mitigate the conclusion that the
study program is effective in raising test scores is
made on the basis of the caliber of participants at the
pretest stage. Could the study program be effective
only with high-achieving students? Suppose further

that the median score of the standardized test is 500.
The claim can be tested by application of the
Wilcoxon signed ranks test to the pretest scores, cre-
ating another column of 10 scores, each with the value
of the median = 500. The sum of the lesser signed
ranks is 26, and the associated p value is .878.
Therefore, the claim is dismissed because there is no
evidence that the group’s initial scores are statistically
significantly different from the population median.

Large Sample

The Wilcoxon signed ranks test can be evaluated with
a large sample approximation. This becomes neces-
sary when tabled critical values are not available. The
formula is

—Shlomo S. Sawilowsky

Further Reading

Hodges, J. L., Jr., & Lehmann, E. L. (1956). The efficiency of
some nonparametric competitors of the t-test. Annals of
Mathematical Statistics, 27, 324–335.

Sawilowsky, S. S., & Blair, R. C. (1992). A more realistic look
at the robustness and type II error properties of the t test 
to departures from population normality. Psychological
Bulletin, 111, 353–360.

Wilcoxon, F. (1945). Individual comparisons by ranking
methods. Biometrics, 1, 80–83.

WOODCOCK JOHNSON

PSYCHOEDUCATIONAL BATTERY

Originally published in 1977, the Woodcock Johnson
(WJ) was the first comprehensive psychoeducational
battery with conormed measures of cognitive abilities,
academic achievement, and interests. It was revised in
1989 to become the Woodcock Johnson-Revised 
(WJ-R), dropping the interest measure and restructur-
ing the cognitive measure to reflect the Cattell-Horn

z = T − n(n+1)

4√
n(n+1)(2n+1)

24

.
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Table 2 Ranks and Test Statistics

Ranks

Mean Sum of 
N Rank Ranks

Posttest-
pretest Negative ranks 2a 2.00 4.00

Positive ranks 8b 6.38 51.00
Ties 0c

Total 10

Notes: a. posttest < pretest; b. posttest > pretest; c. posttest = pretest.

Test Statisticsa

Posttest- 
Pretest

Z −2.395b

Asymp. Sig. 
(two-tailed) .017

Notes: a. Wilcoxon signed ranks test; b. based on negative ranks.



Gf-Gc model of intelligence. The current version, the
Woodcock Johnson-III (WJ-III), is comprised of two
separate but conormed batteries: the Tests of Cognitive
Abilities and the Tests of Achievement.

The WJ-III Tests of Cognitive Abilities was devel-
oped using an integration of the original Cattell-Horn
Gf-Gc model of intelligence and Carroll’s Three
Stratum model, the Cattell-Horn-Carroll (CHC)
theory. This second-iteration test development center-
ing on essentially the same model has resulted in an
instrument that is one of the most theoretically sound
measures of intelligence on the market today.
Consisting of 20 subtests organized into standard and
extended batteries, the WJ-III Tests of Cognitive
Abilities generates scores on seven broad CHC clus-
ters as well as measures of general intellectual ability
(brief, standard, and extended). Each subtest was cho-
sen to represent a different narrow ability as defined
by CHC theory (e.g., induction, associative memory)
while the seven broad clusters represent broad CHC
factors (e.g., fluid reasoning, long-term retrieval).

—Steve Saladin

See also Gf-Gc Theory of Intelligence

Further Reading

Kaufman, A. S., & Lichtenberger, E. O. (2006). Assessing ado-
lescent and adult intelligence. New York: Wiley. 

Mather, N., Wendling, B. J., & Woodcock, R. W. (2001).
Essentials of WJ-III tests of achievement assessment. New
York: Wiley. 

Schrank, F. A., & Flanagan, D. P. (2003). WJ-III clinical use
and interpretation: Scientist-practitioner perspectives. San
Diego, CA: Academic Press. 

Schrank, F. A., Flanagan, D. P., Woodcock, R. W., & Mascolo,
J. T. (2002). Essentials of WJ-III cognitive abilities assess-
ment. New York: Wiley. 

WOODCOCK READING

MASTERY TESTS REVISED

The Woodcock Reading Mastery Tests Revised
(WRMTR; published by American Guidance Service,
http://www.agsnet.com/) are a set of scales that take

40–50 minutes to administer en toto and that assess
reading achievement. The WRMTR contains tests 
of visual-auditory learning and letter identification,
which comprise the Reading Readiness Cluster. The
word identification and word attack tests combine to
form the Basic Skills Cluster, and the word compre-
hension and passage comprehension tests make up the
Reading Comprehension Cluster. The word compre-
hension test comprises three subtests: synonyms,
antonyms, and analogies.

The WRMTR has two forms, only one of which
(i.e., Form G) contains the Reading Readiness Cluster
tests. The tests are intended for use with individuals
from kindergarten through college-age students and
with older adults (75 years and older). With the excep-
tion of the visual-auditory learning and word attack
tests, starting point, basal, and ceiling rules are consis-
tent throughout the battery. The two exceptions cause
confusion for some examiners. Hand scoring can be
time consuming and prone to error, but the available
scoring software reduces scoring time by 70 to 80
percent. The WRMTR provides a full range of score
types: age and grade equivalents, standard scores,
percentile ranks, relative performance indices, and
instructional ranges (i.e., easy, instructional level, and
difficult). Standard errors of measurement allow the
hand scorer to construct 68% confidence intervals to
estimate the true score. Standard errors of differences,
which would allow the user to estimate an examinee’s
strengths and weaknesses, are not available in the man-
ual or the scoring software. Instead, the test author
recommends profile analysis, which has inherent
weaknesses and provides information that is prone to
error.

New norms, which include only grades kinder-
garten through high school, were collected in 1995 to
1996 and were based on 1994 census data.
Approximately 3,400 individuals were tested, though
the exact number varies from one test or cluster to
another. The sample was controlled for age, gender,
race, region, socioeconomic status, community 
size, and special populations. Nevertheless, Native
Americans, Asians, and Pacific Islanders are overrep-
resented, and the northeastern states are underrepre-
sented in the WRMTR sample.
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The author reports only split-half reliability coeffi-
cients. The median internal consistency reliability
coefficient for the tests is .91 (range = .68 to .98). For
the clusters, the median reliability coefficient is .95
(range = .87 to .98). For the full-scale score, the
median reliability coefficient is .97 (range = .86 to
.99). The lack of alternate-form and test-retest relia-
bility estimates is a serious omission for this highly
popular test battery.

Very little information on the validity of the WRMTR
is presented in the manual; much of it is based on the
original (1973) version of the battery. Presumably,
independent research will clarify the validity of this set
of instruments, but it remains incumbent on the author

of the assessment tool to provide evidence of the
technical adequacy of his product.

—Ronald C. Eaves and 
Thomas O. Williams, Jr.

See also Woodcock-Johnson Psychoeducational Battery

Further Reading

Woodcock, R. N. (1998). Woodcock Reading Mastery Tests
Revised/Normative update. Circle Pines, MN: American
Guidance Service.

Woodcock Reading Mastery Tests Revised research bibliogra-
phy: http://www.agsnet.com
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Research is the process of going up alleys to see if they are blind. 

—Marston Bates
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Z
Z SCORES

A score by itself does not tell much. If we are told that
we have obtained a score of 85 on a beauty test, this
could be very good news if most people have a score
of 50 but less so if most people have a score of 100.
In other words, a score is meaningful only relative to
the means of the sample or the population. Another
problem occurs when we want to compare scores
measured with different units or on different popula-
tions. How to compare, for example a score of 85 on
the beauty test with a score of 100 on an IQ test? 

Scores from different distributions, such as the
ones in our example, can be standardized in order to
provide a way of comparing them that includes con-
sideration of their respective distributions. This is
done by transforming the scores into z scores, which
are expressed as standardized deviations from their
means. These z scores have a mean of 0 and a standard
deviation equal to 1. Z scores computed from different
samples with different units can be directly compared
because these numbers do not express the original unit
of measurement. 

Definition of zz  Scores

In order to compute a z score, we start with an origi-
nal score (called Y) obtained from a sample (or a pop-
ulation) with a mean of MY and a standard deviation
of SY. We eliminate the mean by subtracting it from
the score, which transforms the original score into a
deviation from its mean. We eliminate the original
unit of measurement by dividing the score deviation
by the standard deviation. Specifically, the formula for
calculating a z score is 

We say that subtracting the mean centers the distri-
bution and that dividing by the standard deviation nor-
malizes the distribution. The interesting properties of
the z scores are that they have a zero mean (effect of
centering) and a variance and standard deviation of 1
(effect of normalizing). It is because all distributions
expressed in z scores have the same mean (0) and the
same variance (1) that we can use z scores to compare
observations coming from different distributions. 

Z = Y − MY

SY

.



An Example

Applying the formula for a z score to a score of Y = 85
coming from a sample of mean MY = 75 and standard
deviation SY = 17 gives

Effect of zz  Scores

When a distribution of numbers is transformed into z
scores, the shape of the distribution is unchanged, but
this shape is translated in order to be centered on the
value 0, and it is scaled such that its area is now equal
to 1.

As a practical guide, when a distribution is normal,
more than 99% of the z scores lie between the values
−3 and +3. Also, because of the central limit theorem,
a z score with a magnitude larger than 6 is extremely
unlikely to occur regardless of the shape of the origi-
nal distribution. 

Demonstrating That
zz  Scores Have a Mean of

0 and a Variance of 1

In order to show that the mean of the z scores is equal
to 0, it suffices to show that the sum of the z scores is
equal to 0. This is shown by developing the formula
for the sum of the z scores:

In order to show that the variance of the z scores is
equal to 1, it suffices to show that the sum of the squared
z scores is equal to (N − 1) (where N is the number of
scores). This is shown by developing the formula for
the sum of the squared z scores:

—Hervé Abdi

∑
Z2 =

∑ (
Y − MY

SY

)2

= 1

S2
Y

∑
(Y − MY)2.

But (N − 1)S2
Y =

∑
(Y − MY)2, hence :

∑
Z2 = 1

S2
Y

× (N − 1)S2
Y

= (N − 1).

∑
Z =

∑ Y − MY

SY

= 1

SY

∑
(Y − MY)

= 1

SY

(∑
Y − NMY

)

= 1

SY

(NMY − NMY )

= 0.

Z = Y − MY

SY

= 85 − 75

17
= 10

17
= .59.

1058———zz Scores



Now that you know how to analyze data, you would
be well served to hear something about collecting
them. The data collection process can be a long and
rigorous one, even if it involves only a simple, one-
page questionnaire given to a group of students, par-
ents, patients, or voters. The data collection process
may very well be the most time-consuming part of
your project. But as many researchers do, this period
of time is also used to think about the upcoming
analysis and what it will entail. 

Here they are: the ten commandments for making
sure your data get collected in a way that they are
usable. Unlike the original Ten Commandments, these
should not be carved in stone (because they can cer-
tainly change), but if you follow them, you can avoid
lots of aggravation. 

Commandment 1. As you begin thinking about a
research question, also begin thinking about the type
of data you will have to collect to answer that ques-
tion. Interview? Questionnaire? Paper and pencil?
Find out how other people have done it in the past by
reading the relevant journals in your area of interest
and consider doing what they did. 

Commandment 2. As you think about the type of
data you will be collecting, think about where you
will be getting the data. If you are using the library
for historical data or accessing files of data that have

already been collected, such as census data (available
through the U.S. Census Bureau and some online),
you will have few logistical problems. But what if
you want to assess the interaction between newborns
and their parents? The attitude of teachers toward
unionizing? The age at which people over 50 think
they are old? All of these questions involve needing
people to provide the answers, and finding people can
be tough. Start now. 

Commandment 3. Make sure that the data collection
forms you use are clear and easy to use. Practice on a set
of pilot data so you can make sure it is easy to go from
the original scoring sheets to the data collection form. 

Commandment 4. Always make a duplicate copy of
the data file, and keep it in a separate location. Keep
in mind that there are two types of people: those who
have lost their data and those who will. Keep a copy
of data collection sheets in a separate location. If you
are recording your data as a computer file, such as a
spreadsheet, be sure to make a backup! 

Commandment 5. Do not rely on other people to col-
lect or transfer your data unless you have personally
trained them and are confident that they understand
the data collection process as well as you do. It is
great to have people help you, and it helps keep the
morale up during those long data collection sessions.
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Ten Commandments of Data Collection 

The following text is taken from Neil J. Salkind’s best-selling introduction to statistics text, Statistics for People
Who (Think They) Hate Statistics, 2nd edition (2004).



But unless your helpers are competent beyond
question, you could easily sabotage all your hard work
and planning. 

Commandment 6. Plan a detailed schedule of when
and where you will be collecting your data. If you
need to visit three schools and each of 50 children
needs to be tested for a total of 10 minutes at each
school, that is 25 hours of testing. That does not mean
you can allot 25 hours from your schedule for this
activity. What about travel from one school to
another? What about the child who is in the bathroom
when it is his turn, and you have to wait 10 minutes
until he comes back to the classroom? What about the
day you show up and Cowboy Bob is the featured
guest . . . and on and on. Be prepared for anything,
and allocate 25% to 50% more time in your schedule
for unforeseen happenings. 

Commandment 7. As soon as possible, cultivate
possible sources for your subject pool. Because you
already have some knowledge in your own discipline,
you probably also know of people who work with the
type of population you want or who might be able to
help you gain access to these samples. If you are in a

university community, it is likely that there are
hundreds of other people competing for the same sub-
ject sample that you need. Instead of competing, why
not try a more out-of-the-way (maybe 30 minutes
away) school district or social group or civic organi-
zation or hospital, where you might be able to obtain
a sample with less competition? 

Commandment 8. Try to follow up on subjects who
missed their testing session or interview. Call them
back and try to reschedule. Once you get in the habit of
skipping possible participants, it becomes too easy to
cut the sample down to too small a size. And you can
never tell—the people who drop out might be dropping
out for reasons related to what you are studying. This
can mean that your final sample of people is qualita-
tively different from the sample you started with. 

Commandment 9. Never discard the original data,
such as the test booklets, interview notes, and so forth.
Other researchers might want to use the same data-
base, or you may have to return to the original materi-
als for further information.

And Number 10? Follow the previous 9. No kidding! 
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Tables of Critical Values

The following tables are taken from Neil J. Salkind’s best-selling introduction to statistics text, Statistics for
People Who (Think They) Hate Statistics, 2nd edition (2004).
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Table 2 t Values Needed for Rejection of the Null Hypothesis

How to use this table:

1. Compute the t value test statistic. 
2. Compare the obtained t value to the critical value listed in this table. Be sure you have calculated the number

of degrees of freedom correctly and you have selected an appropriate level of significance. 
3. If the obtained value is greater than the critical or tabled value, the null hypothesis (that the means are equal)

is not the most attractive explanation for any observed differences. 
4. If the obtained value is less than the critical or table value, the null hypothesis is the most attractive

explanation for any observed differences.

One-Tailed Test Two-Tailed Test

df 0.10 0.05 0.01 df 0.10 0.05 0.01

1 3.078 6.314 31.821 1 6.314 12.706 63.657

2 1.886 2.92 6.965 2 2.92 4.303 9.925

3 1.638 2.353 4.541 3 2.353 3.182 5.841

4 1.533 2.132 3.747 4 2.132 2.776 4.604

5 1.476 2.015 3.365 5 2.015 2.571 4.032

6 1.44 1.943 3.143 6 1.943 2.447 3.708

7 1.415 1.895 2.998 7 1.895 2.365 3.5

8 1.397 1.86 2.897 8 1.86 2.306 3.356

9 1.383 1.833 2.822 9 1.833 2.262 3.25

10 1.372 1.813 2.764 10 1.813 2.228 3.17

11 1.364 1.796 2.718 11 1.796 2.201 3.106

12 1.356 1.783 2.681 12 1.783 2.179 3.055

13 1.35 1.771 2.651 13 1.771 2.161 3.013

14 1.345 1.762 2.625 14 1.762 2.145 2.977

15 1.341 1.753 2.603 15 1.753 2.132 2.947

16 1.337 1.746 2.584 16 1.746 2.12 2.921

17 1.334 1.74 2.567 17 1.74 2.11 2.898

18 1.331 1.734 2.553 18 1.734 2.101 2.879

19 1.328 1.729 2.54 19 1.729 2.093 2.861

20 1.326 1.725 2.528 20 1.725 2.086 2.846

21 1.323 1.721 2.518 21 1.721 2.08 2.832

22 1.321 1.717 2.509 22 1.717 2.074 2.819

23 1.32 1.714 2.5 23 1.714 2.069 2.808

24 1.318 1.711 2.492 24 1.711 2.064 2.797

25 1.317 1.708 2.485 25 1.708 2.06 2.788

26 1.315 1.706 2.479 26 1.706 2.056 2.779

27 1.314 1.704 2.473 27 1.704 2.052 2.771
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Table 2 (Continued)

One-Tailed Test Two-Tailed Test

df 0.10 0.05 0.01 df 0.10 0.05 0.01

28 1.313 1.701 2.467 28 1.701 2.049 2.764

29 1.312 1.699 2.462 29 1.699 2.045 2.757

30 1.311 1.698 2.458 30 1.698 2.043 2.75

35 1.306 1.69 2.438 35 1.69 2.03 2.724

40 1.303 1.684 2.424 40 1.684 2.021 2.705

45 1.301 1.68 2.412 45 1.68 2.014 2.69

50 1.299 1.676 2.404 50 1.676 2.009 2.678

55 1.297 1.673 2.396 55 1.673 2.004 2.668

60 1.296 1.671 2.39 60 1.671 2.001 2.661

65 1.295 1.669 2.385 65 1.669 1.997 2.654

70 1.294 1.667 2.381 70 1.667 1.995 2.648

75 1.293 1.666 2.377 75 1.666 1.992 2.643

80 1.292 1.664 2.374 80 1.664 1.99 2.639

85 1.292 1.663 2.371 85 1.663 1.989 2.635

90 1.291 1.662 2.369 90 1.662 1.987 2.632

95 1.291 1.661 2.366 95 1.661 1.986 2.629

100 1.29 1.66 2.364 100 1.66 1.984 2.626

Infinity 1.282 1.645 2.327 Infinity 1.645 1.96 2.576



1066———Encyclopedia of Measurement and Statistics

Table 3 Critical Values for Analysis of Variance or F Test

How to use this table:

1. Compute the F value. 
2. Determine the number of degrees of freedom for the numerator (k – 1) and the number of degrees of

freedom for the denominator (n – k). 
3. Locate the critical value by reading across to locate the degrees of freedom in the numerator and down 

to locate the degrees of freedom in the denominator. The critical value is at the intersection of this column
and row. 

4. If the obtained value is greater than the critical or tabled value, the null hypothesis (that the means are equal
to one another) is not the most attractive explanation for any observed differences. 

5. If the obtained value is less than the critical or tabled value, the null hypothesis is the most attractive
explanation for any observed differences.

df for the Numerator
df for the Type I 
Denominator Error Rate 1 2 3 4 5 6

1 .01 4052.00 4999.00 5403.00 5625.00 5764.00 5859.00

.05 162.00 200.00 216.00 225.00 230.00 234.00

.10 39.90 49.50 53.60 55.80 57.20 58.20

2 .01 98.50 99.00 99.17 99.25 99.30 99.33

05 18.51 19.00 19.17 19.25 19.30 19.33

10 8.53 9.00 9.16 9.24 9.29 9.33

3 .01 34.12 30.82 29.46 28.71 28.24 27.91

.05 10.13 9.55 9.28 9.12 9.01 8.94

10 5.54 5.46 5.39 5.34 5.31 5.28

4 .01 21.20 18.00 16.70 15.98 15.52 15.21

.05 7.71 6.95 6.59 6.39 6.26 6.16

.10 .55 4.33 4.19 4.11 4.05 4.01

5 .01 16.26 13.27 12.06 11.39 10.97 10.67

.05 6.61 5.79 5.41 5.19 5.05 4.95

.10 4.06 3.78 3.62 3.52 3.45 3.41

6 .01 13.75 10.93 9.78 9.15 8.75 8.47

.05 5.99 5.14 4.76 4.53 4.39 4.28

.10 3.78 3.46 3.29 3.18 3.11 3.06

7 .01 12.25 9.55 8.45 7.85 7.46 7.19

.05 5.59 4.74 4.35 4.12 3.97 3.87

.10 3.59 3.26 3.08 2.96 2.88 2.83

8 .01 11.26 8.65 7.59 7.01 6.63 6.37

.05 5.32 4.46 4.07 3.84 3.69 3.58

.10 3.46 3.11 2.92 2.81 2.73 2.67



Table 3 (Continued)

df for the Numerator
df for the Type I 
Denominator Error Rate 1 2 3 4 5 6

9 .01 10.56 8.02 6.99 6.42 6.06 5.80

.05 5.12 4.26 3.86 3.63 3.48 3.37

.10 3.36 3.01 2.81 2.69 2.61 2.55

10 .01 10.05 7.56 6.55 6.00 5.64 5.39

.05 4.97 4.10 3.71 3.48 3.33 3.22

.10 3.29 2.93 2.73 2.61 2.52 2.46

11 .01 9.65 7.21 6.22 5.67 5.32 5.07

.05 4.85 3.98 3.59 3.36 3.20 3.10

.10 3.23 2.86 2.66 2.54 2.45 2.39

12 .01 9.33 6.93 5.95 5.41 5.07 4.82

.05 4.75 3.89 3.49 3.26 3.11 3.00

.10 3.18 2.81 2.61 2.48 2.40 2.33

13 .01 9.07 6.70 5.74 5.21 4.86 4.62

.05 4.67 3.81 3.41 3.18 3.03 2.92

.10 3.14 2.76 2.56 2.43 2.35 2.28

14 .01 8.86 6.52 5.56 5.04 4.70 4.46

.05 4.60 3.74 3.34 3.11 2.96 2.85

.10 3.10 2.73 2.52 2.40 2.31 2.24

15 .01 8.68 6.36 5.42 4.89 4.56 4.32

.05 4.54 3.68 3.29 3.06 2.90 2.79

.10 3.07 2.70 2.49 2.36 2.27 2.21

16 .01 8.53 6.23 5.29 4.77 4.44 4.20

.05 4.49 3.63 3.24 3.01 2.85 2.74

.10 3.05 2.67 2.46 2.33 2.24 2.18

17 .01 8.40 6.11 5.19 4.67 4.34 4.10

.05 4.45 3.59 3.20 2.97 2.81 2.70

.10 3.03 2.65 2.44 2.31 2.22 2.15

18 .01 8.29 6.01 5.09 4.58 4.25 4.02

.05 4.41 3.56 3.16 2.93 2.77 2.66

.10 3.01 2.62 2.42 2.29 2.20 2.13

19 .01 8.19 5.93 5.01 4.50 4.17 3.94

.05 4.38 3.52 3.13 2.90 2.74 2.63

.10 2.99 2.61 2.40 2.27 2.18 2.11

20 .01 8.10 5.85 4.94 4.43 4.10 3.87

.05 4.35 3.49 3.10 2.87 2.71 2.60

.10 2.98 2.59 2.38 2.25 2.16 2.09
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Table 3 (Continued)

df for the Numerator
df for the Type I 
Denominator Error Rate 1 2 3 4 5 6

21 .01 8.02 5.78 4.88 4.37 4.04 3.81

.05 4.33 3.47 3.07 2.84 2.69 2.57

.10 2.96 2.58 2.37 2.23 2.14 2.08

22 .01 7.95 5.72 4.82 4.31 3.99 3.76

.05 4.30 3.44 3.05 2.82 2.66 2.55

.10 2.95 2.56 2.35 2.22 2.13 2.06

23 .01 7.88 5.66 4.77 4.26 3.94 3.71

.05 4.28 3.42 3.03 2.80 2.64 2.53

.10 2.94 2.55 2.34 2.21 2.12 2.05

24 .01 7.82 5.61 4.72 4.22 3.90 3.67

.05 4.26 3.40 3.01 2.78 2.62 2.51

.10 2.93 2.54 2.33 2.20 2.10 2.04

25 .01 7.77 5.57 4.68 4.18 3.86 3.63

.05 4.24 3.39 2.99 2.76 2.60 2.49

.10 2.92 2.53 2.32 2.19 2.09 2.03

26 .01 7.72 5.53 4.64 4.14 3.82 3.59

.05 4.23 3.37 2.98 2.74 2.59 2.48

.10 2.91 2.52 2.31 2.18 2.08 2.01

27 .01 7.68 5.49 4.60 4.11 3.79 3.56

.05 4.21 3.36 2.96 2.73 2.57 2.46

.10 2.90 2.51 2.30 2.17 2.07 2.01

28 .01 7.64 5.45 4.57 4.08 3.75 3.53

.05 4.20 3.34 2.95 2.72 2.56 2.45

.10 2.89 2.50 2.29 2.16 2.07 2.00

29 .01 7.60 5.42 4.54 4.05 3.73 3.50

.05 4.18 3.33 2.94 2.70 2.55 2.43

.10 2.89 2.50 2.28 2.15 2.06 1.99

30 .01 7.56 5.39 4.51 4.02 3.70 3.47

.05 4.17 3.32 2.92 2.69 2.53 2.42

.10 2.88 2.49 2.28 2.14 2.05 1.98

35 .01 7.42 5.27 4.40 3.91 3.59 3.37

.05 4.12 3.27 2.88 2.64 2.49 2.37

.10 2.86 2.46 2.25 2.14 2.02 1.95

40 .01 7.32 5.18 4.31 3.91 3.51 3.29

.05 4.09 3.23 2.84 2.64 2.45 2.34

.10 2.84 2.44 2.23 2.11 2.00 1.93

45 .01 7.23 5.11 4.25 3.83 3.46 3.23

.05 4.06 3.21 2.81 2.61 2.42 2.31

.10 2.82 2.43 2.21 2.09 1.98 1.91
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Table 3 (Continued)

df for the Numerator
df for the Type I 
Denominator Error Rate 1 2 3 4 5 6

50 .01 7.17 5.06 4.20 3.77 3.41 3.19

.05 4.04 3.18 2.79 2.58 2.40 2.29

.10 2.81 2.41 2.20 2.08 1.97 1.90

55 .01 7.12 5.01 4.16 3.72 3.37 3.15

.05 4.02 3.17 2.77 2.56 2.38 2.27

.10 2.80 2.40 2.19 2.06 1.96 1.89

60 .01 7.08 4.98 4.13 3.68 3.34 3.12

.05 4.00 3.15 2.76 2.54 2.37 2.26

.10 2.79 2.39 2.18 2.05 1.95 1.88

65 .01 7.04 4.95 4.10 3.65 3.31 3.09

.05 3.99 3.14 2.75 2.53 2.36 2.24

.10 2.79 2.39 2.17 2.04 1.94 1.87

70 .01 7.01 4.92 4.08 3.62 3.29 3.07

.05 3.98 3.13 2.74 2.51 2.35 2.23

.10 2.78 2.38 2.16 2.03 1.93 1.86

75 .01 6.99 4.90 4.06 3.60 3.27 3.05

.05 3.97 3.12 2.73 2.50 2.34 2.22

.10 2.77 2.38 2.16 2.03 1.93 1.86

80 .01 3.96 4.88 4.04 3.56 3.26 3.04

.05 6.96 3.11 2.72 2.49 2.33 2.22

.10 2.77 2.37 2.15 2.02 1.92 1.85

85 .01 6.94 4.86 4.02 3.55 3.24 3.02

.05 3.95 3.10 2.71 2.48 2.32 2.21

.10 2.77 2.37 2.15 2.01 1.92 1.85

90 .01 6.93 4.85 4.02 3.54 3.23 3.01

.05 3.95 3.10 2.71 2.47 2.32 2.20

.10 2.76 2.36 2.15 2.01 1.91 1.84

95 .01 6.91 4.84 4.00 3.52 3.22 3.00

.05 3.94 3.09 2.70 2.47 2.31 2.20

.10 2.76 2.36 2.14 2.01 1.91 1.84

100 .01 6.90 4.82 3.98 3.51 3.21 2.99

.05 3.94 3.09 2.70 2.46 2.31 2.19

.10 2.76 2.36 2.14 2.00 1.91 1.83

Infinity .01 6.64 4.61 3.78 3.32 3.02 2.80

.05 3.84 3.00 2.61 2.37 2.22 2.10

.10 2.71 2.30 2.08 1.95 1.85 1.78
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Table 4 Values of the Correlation Coefficient Needed for Rejection of the Null Hypothesis

How to use this table:

1. Compute the value of the correlation coefficient. 
2. Compare the value of the correlation coefficient with the critical value listed in this table. 
3. If the obtained value is greater than the critical or tabled value, the null hypothesis (that the correlation

coefficient is equal to 0) is not the most attractive explanation for any observed differences. 
4. If the obtained value is less than the critical or tabled value, the null hypothesis is the most attractive

explanation for any observed differences. 

One-Tailed Test Two-Tailed Test

df .05 .01 df .05 .01

1 .9877 .9995 1 .9969 .9999
2 .9000 .9800 2 .9500 .9900
3 .8054 .9343 3 .8783 .9587
4 .7293 .8822 4 .8114 .9172
5 .6694 .832 5 .7545 .8745
6 .6215 .7887 6 .7067 .8343
7 .5822 .7498 7 .6664 .7977
8 .5494 .7155 8 .6319 .7646
9 .5214 .6851 9 .6021 .7348

10 .4973 .6581 10 .5760 .7079
11 .4762 .6339 11 .5529 .6835
12 .4575 .6120 12 .5324 .6614
13 .4409 .5923 13 .5139 .6411
14 .4259 .5742 14 .4973 .6226
15 .4120 .5577 15 .4821 .6055
16 .4000 .5425 16 .4683 .5897
17 .3887 .5285 17 .4555 .5751
18 .3783 .5155 18 .4438 .5614
19 .3687 .5034 19 .4329 .5487
20 .3598 .4921 20 .4227 .5368
25 .3233 .4451 25 .3809 .4869
30 .2960 .4093 30 .3494 .4487
35 .2746 .3810 35 .3246 .4182
40 .2573 .3578 40 .3044 .3932
45 .2428 .3384 45 .2875 .3721
50 .2306 .3218 50 .2732 .3541
60 .2108 .2948 60 .2500 .3248
70 .1954 .2737 70 .2319 .3017
80 .1829 .2565 80 .2172 .2830
90 .1726 .2422 90 .2050 .2673

100 .1638 .2301 100 .1946 .2540
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How to use this table:

1. Compute the χ2 value. 
2. Determine the number of degrees of freedom for the rows (R – 1) and the number of degrees of freedom

for the columns (C – 1). If it’s a one-dimensional table, then you have only columns. 
3. Locate the critical value by locating the degrees of freedom in the titled (df) column, and under the

appropriate column for level of significance, read across. 
4. If the obtained value is greater than the critical or tabled value, the null hypothesis (that the frequencies

are equal to one another) is not the most attractive explanation for any observed differences. 
5. If the obtained value is less than the critical or tabled value, the null hypothesis is the most attractive

explanation for any observed differences. 

Table 5 Critical Values for the Chi-Square Test

Level of Significance

df .10 .05 .01

1 2.71 3.84 6.64
2 4.00 5.99 9.21
3 6.25 7.82 11.34
4 7.78 9.49 13.28
5 9.24 11.07 15.09
6 10.64 12.59 16.81
7 12.02 14.07 18.48
8 13.36 15.51 20.09
9 14.68 16.92 21.67

10 16.99 18.31 23.21
11 17.28 19.68 24.72
12 18.65 21.03 26.22
13 19.81 22.36 27.69
14 21.06 23.68 29.14
15 22.31 25.00 30.58
16 23.54 26.30 32.00
17 24.77 27.60 33.41
18 25.99 28.87 34.80
19 27.20 30.14 36.19
20 28.41 31.41 37.57
21 29.62 32.67 38.93
22 30.81 33.92 40.29
23 32.01 35.17 41.64
24 33.20 36.42 42.98
25 34.38 37.65 44.81
26 35.56 38.88 45.64
27 36.74 40.11 46.96
28 37.92 41.34 48.28
29 39.09 42.56 49.59
30 40.26 43.77 50.89
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What follows is a listing of Internet sites and a brief
description of each that focus on the general areas of
statistics and measurement. Also included are sites
where data (on many different topics) have been
collected and can be accessed.

As you use these, keep in mind the following:

• Internet addresses (known as URLs) often change, as
does the content. If one of these Internet addresses
does not work, search for the name of the site using
any search engine.

• Any Internet site is only as good as its content. For
example, N or N − 1 might be given as the correct
denominator for a formula, and although that might
be true, you should double check any information
with another Internet resource or a book on the
subject.

• If you find something that is inaccurate on a site,
contact the Webmaster or the author of the site and
let him or her know that a correction needs to be
made.

Name: statistics.com
Where to find it: http://www.statistics.com/

If there is a queen of statistics sites, then
statistics.com is it. It offers not only links to hundreds
of other sites and an online introductory statistics
course, but also online professional development
courses. You can try statistics software, look at the
free stuff available on the Web, get help if you’re a
teacher with quizzes and other teaching materials, and

even participate in online discussions. This is the
place to start your travels.

Name: U.S. Department of Labor, Bureau of Labor
Statistics

Where to find it: http://www.bls.gov/
Local, state, and federal government agencies are

data warehouses, full of information about everything
from employment to demographics to consumer spend-
ing. This particular site (which is relatively old at 10
years on the Web) is for the Bureau of Labor Statistics,
the principal fact-finding agency for the federal govern-
ment in the areas of labor economics and statistics. It is
full of numbers and ideas. Some of the data can be
downloaded as HTML or Excel files, and you can also
get historical data going back 10 years in some instances.

Name: Probability and Quintile Applets
Where to find it: http://www.stat.stanford.edu/~
naras/jsm/FindProbability.html

Applets are small programs that can visually repre-
sent an idea or a process very effectively. These two,
by Balasubramanian Narasimhan from Stanford
University, do such things as compute the probability
of a score under the normal curve (see Figure 1 on the
following page) and calculate the quintiles (fifths) of a
distribution. They are easy to use, fun to play with, and
very instructional. You can find another similar applet
by Gary McClelland at http://psych.colorado.edu/~
mcclella/java/normal/handleNormal.html

Appendix B
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Name: FedStats
Where to find it: http://www.fedstats.gov/

Here’s another huge storehouse of data that is the
entry point for many different federal agencies. You
can easily access data from individual states or from
agencies by subjects (such as health), access pub-
lished collections of statistics, and even get the kids
involved in child-oriented agency Web sites both
entertaining and educational.

Name: Random Birthday Applet
Where to find it: http://www-stat.stanford.edu/~
susan/surprise/Birthday.html

This is an incredible illustration of how probability
works. You enter the number of birthdays you want
generated at random, and the laws of probability should
operate so that in a group of 30 such random selections,
the odds are very high that there will be at least two
matches for the same birthday. Try it⎯it works.

Name: The Statistics Homepage
Where to find it: http://www.statsoftinc.com/
textbook/stathome.html

Here you’ll find a self-contained
course in basic statistics, brought
to you by the people who devel-
oped and sell StatSoft, one of
many statistical programs. On this
site, you will find tutorials that
take you from the elementary con-
cepts of statistics through the more
advanced topics, such as factor and
discriminant analysis.

Name: National Center for
Health Statistics

Where to find it: http://www.cdc
.gov/nchs/

The National Center for Health
Statistics compiles information
that helps guide actions and
policies to improve health in the
United States. Among other things,
these data are used to help identify
health problems, evaluate the

effectiveness of programs, and provide data for
policymakers.

Name: The World Wide Web Virtual Library:
Statistics

Where to find it: http://www.stat.ufl.edu/vlib/
statistics .html

The good people at the University of Florida’s
Department of Statistics bring you this page, which
contains links to statistics departments all over the
world. It provides a great deal of information about
graduate study in these areas as well as other
resources.

Name: Social Statistics Briefing Room
Where to find it: http://www.whitehouse.gov/fsbr/
ssbr.html

This service, which calls the White House home,
provides access to current federal social statistics and
links to information from a wide range of federal
agencies. This is a very good, and broad, starting
point to access data made available through different
agencies.
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Figure 1 Probability Applet



Name: Statistics on the Web
Where to find it: http://my.execpc.com/~helberg/
statistics.html

More groupings of URLs and Internet addresses
from Clay Helberg. A bit like statistics.com, but full
of listings of professional organizations, publications,
and software packages (many of which you can down-
load for a trial).

Name: Food and Agriculture Organization for the
United Nations

Where to find it: http://faostat.fao.org/
If you want to go international, this is a site con-

taining online information (in multilingual formats)
and databases for more than 3 million time series
records covering international statistics in areas such
as production, population, and exports.

Name: Web Pages That Perform Statistical
Calculations!

Where to find it: http://members.aol.com/johnp71/
javastat.html

At the time of this writing, this site contains more
than 600 links to books, tutorials, free software, and
interactive tools, such as a guide to what statistical test
to use to answer what questions, all assembled by
John Pezzullo.

Name: Free Statistical Software
Where to find it: http://freestatistics.altervista.org/
stat.php

An extensive collection of statistical analysis soft-
ware packages that range from simple programs for
students to advanced programs that do everything
from statistical visualization to time series analysis.
Many of these programs are freeware, and many are
open source, available to be modified by users.

Name: Java Applets
Where to find it: http://www.stat.duke.edu/sites/
java.html

The Institute of Statistics and Decision Sciences at
Duke University and NWP Associates put together a
collection of Java applets (Java is the language in
which these small programs are written, and applets

are small applications) that allows the user to demon-
strate interactively various statistical techniques and
tools, such as constructing histograms and illustrating
how the central limit theorem works.

Name: HyperStat Online Textbook
Where to find it: http://davidmlane.com/hyperstat/

This site contains an entire online course in basic
statistics from David Lane that covers every topic
from simple descriptive statistics to effect size. The
“Hyper” nature of the site allows the user to easily
move from one topic to another through the extensive
use of live links. And, as a bonus, each new screen
has additional links to sites that focus on learning
statistics.

Name: Rice Virtual Lab in Statistics
Where to find it: http://www.ruf.rice.edu/~lane/rvls.html

This is where the HyperStat Online Textbook has
its home and is the main page (also done by David
Lane) of Rice University’s statistics program. In addi-
tion to the HyperStat link, it has links to simulations,
case studies, and a terrific set of applets that are very
useful for teaching and demonstration purposes.

Name: Reliability, Validity, and Fairness of
Classroom Assessments

Where to find it: http://www.ncrel.org/sdrs/areas/
issues/methods/assment/as5relia.htm

A discussion of the reliability, validity, and fairness
of classroom testing from the North Central
Educational Laboratory.

Name: The Multitrait Multimethod Matrix
Where to find it: http://www.socialresearchmethods
.net/kb/mtmmmat.htm

A very good site for a discussion of validity issues
in measurement in general and specific discussion
about the multitrait multimethod brought to you by
William M. K. Trochim.

Name: Content Validity, Face Validity, and
Quantitative Face Validity

Where to find it: http://www.burns.com/wcbcontval
.htm
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Although a bit dated (around 1996), this Web site
offers a detailed discussion by William C. Burns 
on content, face, quantitative, and other types of
validity.

Name: The National Education Association
Where to find it: http://www.nea.org/parents/testing
guide.html.also

This national organization of teaching profession-
als provides assistance to parents, teachers, and others
in understanding test scores.

Name: The Learning Center
Where to find it: http://webster.commnet.edu/
faculty/~simonds/tests.htm

It’s a reality that other than through studying, test
scores can be improved if test takers understand the
different demands of different types of tests. This item
contains information on using different strategies to
increase test scores.

Name: The Advanced Placement
Where to find it: http://apbio.biosci.uga.edu/exam/
Essays/

This is an old site, but people at the University of
Georgia have posted items from a variety of different
topic areas covered in the Advanced Placement (AP)
exams that high school students can take in a step to
qualify for college credit.

Name: Essay Question
Where to find it: http://www.salon.com/tech/feature/
1999/05/25/computer_grading/

Salon.com offers a discussion of automated grad-
ing in general and specially, as well as essay question
grading using computers.

Name: Matching Questions on Minerals and Rocks
Where to find it: http://www.usd.edu/esci/exams/
matching.html

A good example of how easy it is to adapt
matching questions to an interactive electronic format.

An increasingly large part of doing research, as
well as other intensive, more qualitative projects,
involves specially designed software. At http://www
.scolari.com/, you can find a listing of several differ-
ent types and explore which might be right for you if
you intend to pursue this method (interviewing) and
this methodology (qualitative).

FairTest⎯The National Center for Fair and Open
Testing at http://www.fairtest.org/index.htm has as its
mission to “end the misuses and flaws of standardized
testing and to ensure that evaluation of students,
teachers and schools is fair, open, valid and education-
ally beneficial.” A really interesting site to visit.

Preparing Students to Take Standardized
Achievement Tests (at http://pareonline.net/getvn
.asp?v=1&n=11) was written by William A. Mehrens
(and first appeared in Practical Assessment, Research
& Evaluation) for school administrators and teachers
and discusses what test scores mean and how they 
can be most useful in understanding children’s
performance.

The Clifton StrengthsFinder™ at http://education
.gallup.com/content/default.asp?ci=886 is a Web-
based assessment tool published by the Gallup
Organization (yep, the poll people) to help people
better understand their talents and strengths by mea-
suring the presence of 34 themes of talent. You might
want to take it and explore these themes.

Find out just about everything you ever wanted 
to know (and more) about human intelligence at
Human Intelligence: Historical Influences, Current
Controversies and Teaching Resources at http://www
.indiana.edu/~intell/

1076———Encyclopedia of Measurement and Statistics



Pages and pages of every type of statistical resource
you can want has been creatively assembled by Pro-
fessor David W. Stockburger at http://www.psychstat
.smsu.edu/scripts/dws148f/statisticsresourcesmain.asp.
This site receives the gold medal of statistics sites.
Don’t miss it. 

For example, take a look at Berrie’s page (at
http://www.huizen.dds.n~berrie/) and see some
QuickTime (short movies) of the effects of changing
certain data points on the value of the mean and stan-
dard deviation. Or, look at the different home pages
that have been created by instructors for courses
offered around the country. Or, look at all of the dif-
ferent software packages that can do statistical analysis. 

Want to draw a histogram? How about a table of ran-
dom numbers? A sample-size calculator? The Statistical
Calculators page at http://www.stat.ucla.edu/calculators/
has just about every type (more than 15) of calculator
and table you could need. Enough to carry you
through any statistics course that you might take and
even more. 

For example, you can click on the Random
Permutations link and complete the two boxes (as you
see in Figure 2 for 2 random permutations of 100
integers), and you get the number of permutations you
want. This is very handy when you need a table of

random numbers for a specific number of participants
so you can assign them to groups. 

The History of Statistics page located at http://
www.Anselm.edu/homepage/jpitocch/biostatshist.html
contains portraits and bibliographies of famous statis-
ticians and a time line of important contributions to the
field of statistics. So, do names like Bernoulli, Galton,
Fisher, and Spearman pique your curiosity? How about
the development of the first test between two averages
during the early 20th century? It might seem a bit bor-
ing until you have a chance to read about the people
who make up this field and their ideas—in sum, pretty
cool ideas and pretty cool people. 

SurfStat Australia (at http:// www.anu.edu.au/
nceph/surfstat/surfstat-home/surfstat.html) is the
online component of a basic stat course taught at the
University of Newcastle, Australia, but has grown
far beyond just the notes originally written by
Annette Dobson in 1987, and updated over several
years’ use by Anne Young, Bob Gibberd, and others.
Among other things, SurfStat contains a complete
interactive statistics text. Besides the text, there are
exercises, a list of other statistics sites on the
Internet, and a collection of Java applets (cool little
programs you can use to work with different statisti-
cal procedures). 

This online tutorial with 18
lessons, at http://www.davidm
lane.com/hyperstat/index.html,
offers nicely designed and user-
friendly coverage of the impor-
tant basic topics. What we really
liked about the site was the glos-
sary, which uses hypertext to
connect different concepts to one
another. For example, in Figure 3,
you can see the definition of

descriptive statistics also linked to
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The following text is taken from Neil J. Salkind’s best-selling introduction to statistics text, Statistics for People
Who (Think They) Hate Statistics, 2nd edition (2004).

Figure 2 Generating a Set of Random Numbers



other glossary terms, such as mean, standard deviation,
and box plot. Click on any of those and zap! you’re
there. 

There are data all over the place, ripe for the pick-
ing. Here are just a few. What to do with these?
Download them to be used as examples in your work
or as examples of analysis that you might want to do,
and you can use these as a model. 

• Statistical Reference Datasets at http://www.itl.nist
.gov/div898/strd/ 

• United States Census Bureau (a huge collection and
a gold mine of data) at http://factfinder.census.gov/
servlet/DatasetMainPage-Servlet?_lang=en 

• The Data and Story Library (http://lib.stat.cmu
.edu/DASL/) with great annotations about the data
(look for the stories link) 

• Tons of economic data sets at Growth Data Sets (at
http://www.bris.ac.uk/Depts/Economics/Growth/
datasets.htm) 

Then there are all the data sets that are available
through the federal government (besides the census).
Your tax money supports it, so why not use it? For
example, there’s FEDSTATS (at http://www.fedstats
.gov/), where more than 70 agencies in the U.S. federal
government produce statistics of interest to the public.
The Federal Interagency Council on Statistical Policy

maintains this site to provide easy
access to the full range of statis-
tics and information produced by
these agencies for public use.
Here you can find country profiles
contributed by the (boo!) CIA;
public school student, staff, and
faculty data (from the National
Center for Education Statistics);
and the Atlas of the United States
Mortality (from the National Center
for Health Statistics). What a ton
of data! 

The University of Michigan’s
Statistical Resources on the Web
(at http://www.lib.umich.edu/gov
docs/stats.html) has hundreds and
hundreds of resource links,

including those to banking, book publishing, the
elderly, and, for those of you with allergies, pollen
count. Browse, search for what exactly it is that you
need—no matter, you are guaranteed to find some-
thing interesting. 

At http://mathforum.org/workshops/sum96/data
.collections/datalibrary/ data.set6.html, you can find a
data set including the 1994 National League Baseball
Salaries or the data on TV, Physicians, and Life
Expectancy. Nothing earth-shaking, just fun to down-
load and play with. 

The World Wide Web Virtual Library: Statistics is
the name of the page, but the one-word title is mis-
leading because the site (from the good people at the
University of Florida at http://www.stat.ufl.edu/vlib/
statistics.html) includes information on just about
every facet of the topic, including data sources, job
announcements, departments, divisions and schools of
statistics (a huge description of programs all over the
world), statistical research groups, institutes and asso-
ciations, statistical services, statistical archives and
resources, statistical software vendors and software,
statistical journals, mailing list archives, and related
fields. Tons of great information is available here.
Make it a stop along the way. 

Statistics on the Web at http://www.maths.uq.edu.au/~
gks/webguide/datasets.html is another location that’s
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just full of information and references
that you can easily access. Here, you’ll
find information on professional orga-
nizations, institutes and consulting
groups, educational resources, Web
courses, online textbooks, publications
and publishers, statistics book lists,
software-oriented pages, mailing lists
and discussion groups, and even infor-
mation on statisticians and other statis-
tical people. 

If you do ever have to teach statis-
tics, or even tutor fellow students,
this is one place you’ll want to visit:
http://noppa5.pc.helsinki.fi/links.html.
It contains hundreds of resources on
every topic that was covered in Statistics
for People Who (Think They) Hate Statistics and
more. You name it and it’s here: regression, demos,
history, Sila (a demonstration of inference), an
interactive online tutorial, statistical graphics,
handouts to courses, teaching materials, journal
articles, and even quizzes! Whew, what a deal.
There tends to be a lot of material that may not be
suited to what you are doing in this class, but this
wide net has certainly captured some goodies. 

Statistics.com (www.statistics.com) has it all—a
wealth of information on courses, software, statistical
methods, jobs, books, and even a homework helper.
For example, if you want to know about free Web-
based stat packages, click on that link on the left-hand
side of the page. Here’s one (see Figure 4) from 
Dr. Bill Trochim. . . . You just click your way through
answering questions to get the answer to what type of
analysis should be used. 

Appendix B: Internet Sites About Statistics———1079

Figure 4 Selecting the Correct Stat Technique to Use—Just a Few
Clicks Away



Analysis of variance 

A test for the difference between two or more
means. A simple analysis of variance (or ANOVA)
has only one independent variable, whereas a
factorial analysis of variance tests the means of
more than one independent variable. One-way
analysis of variance looks for differences between
the means of more than two groups. 

Arithmetic mean 

A measure of central tendency that sums all the
scores in the data sets and divides by the number
of scores. 

Asymptotic 

The quality of the normal curve such that the
tails never touch. 

Average 

The most representative score in a set of scores. 

Bell-shaped curve 

A distribution of scores that is symmetrical about
the mean, median, and mode and has asymptotic
tails. 

Class interval 

The upper and lower boundaries of a set of
scores used in the creation of a frequency
distribution. 

Coefficient of alienation 

The amount of variance unaccounted for in the
relationship between two variables. 

Coefficient of determination 

The amount of variance accounted for in the
relationship between two variables. 

Coefficient of nondetermination 

See coefficient of alienation 

Concurrent validity 

A type of validity that examines how well a test
outcome is consistent with a criterion that occurs
in the present. 

Construct validity 

A type of validity that examines how well a test
reflects an underlying construct. 

Content validity 

A type of validity that examines how well a test
samples a universe of items. 

Correlation coefficient 

A numerical index that reflects the relationship
between two variables. 

Correlation matrix 

A set of correlation coefficients. 
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Criterion 

Another term for the outcome variable. 

Criterion validity 

A type of validity that examines how well a test
reflects some criterion that occurs either in the
present (concurrent) or in the future (predictive). 

Critical value 

The value necessary for rejection (or
nonacceptance) of the null hypothesis. 

Cumulative frequency distribution 

A frequency distribution that shows frequencies
for class intervals along with the cumulative
frequency for each. 

Data 

A record of an observation or an event such as a
test score, a grade in math class, or a response
time. 

Data point 

An observation. 

Data set 

A set of data points. 

Degrees of freedom 

A value that is different for different statistical
tests and approximates the sample size of
number of individual cells in an experimental
design. 

Dependent variable 

The outcome variable or the predicted variable in
a regression equation. 

Descriptive statistics 

Values that describe the characteristics of a
sample or population. 

Direct correlation 

A positive correlation where the values of both
variables change in the same direction. 

Directional research hypothesis 

A research hypothesis that includes a statement
of inequality. 

Effect size 

A measure of the magnitude of a particular
outcome. 

Error in prediction 

The difference between the actual score (Y) and
the predicted score (Y

_
). 

Error of estimate 

See error in prediction 

Error score 

The part of a test score that is random and
contributes to the unreliability of a test. 

Factorial analysis of variance 

An analysis of variance with more than one
factor or independent variable. 

Factorial design 

A research design where there is more than one
treatment variable. 

Frequency distribution 

A method for illustrating the distribution of
scores within class intervals. 

Frequency polygon 

A graphical representation of a frequency
distribution. 

Histogram 

A graphical representation of a frequency
distribution. 

Hypothesis 

An if-then statement of conjecture that relates
variables to one another. 

Independent variable 

The treatment variable that is manipulated or the
predictor variable in a regression equation. 

Indirect correlation 

A negative correlation where the values of
variables move in opposite directions. 

Inferential statistics 

Tools that are used to infer the results based 
on a sample to a population. 
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Interaction effect 

The outcome where the effect of one factor is
differentiated across another factor. 

Internal consistency reliability 

A type of reliability that examines the 
one-dimensional nature of an assessment tool. 

Interrater reliability 

A type of reliability that examines the
consistency of raters. 

Interval level of measurement 

A scale of measurement that is characterized by
equal distances between points on some
underlying continuum. 

Kurtosis 

The quality of a distribution such that it is flat or
peaked. 

Leptokurtic 

The quality of a normal curve that defines its
peakedness. 

Line of best fit 

The regression line that best fits the actual scores
and minimizes the error in prediction. 

Linear correlation 

A correlation that is best expressed as a straight
line. 

Main effect 

In analysis of variance, when a factor or an
independent variable has a significant effect
upon the outcome variable. 

Mean 

A type of average where scores are summed and
divided by the number of observations. 

Mean deviation 

The average deviation for all scores from the
mean of a distribution. 

Measures of central tendency 

The mean, median, and mode. 

Median 

The point at which 50% of the cases in a
distribution fall below and 50% fall above. 

Midpoint 

The central point in a class interval. 

Mode 

The most frequently occurring score in a
distribution. 

Multiple regression 

A statistical technique where several variables
are used to predict one. 

Nominal level of measurement 

A scale of measurement that is characterized by
categories with no order or difference in magnitude. 

Nondirectional research hypothesis 

A hypothesis that posits no direction, but a
difference. 

Nonparametric statistics 

Distribution-free statistics. 

Normal curve 

See bell-shaped curve 

Null hypothesis 

A statement of equality between a set of
variables. 

Observed score 

The score that is recorded or observed. 

Obtained value 

The value that results from the application of a
statistical test. 

Ogive 

A visual representation of a cumulative
frequency distribution. 

One-tailed test 

A directional test. 

One-way analysis of variance 

See analysis of variance 
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Ordinal level of measurement 

A scale of measurement that is characterized by
an underlying continuum that is ordered. 

Outliers 

Those scores in a distribution that are noticeably
much more extreme than the majority of scores.
Exactly what score is an outlier is usually an
arbitrary decision made by the researcher. 

Parallel forms reliability 

A type of reliability that examines the consistency
across different forms of the same test. 

Parametric statistics 

Statistics used for the inference from a sample to
a population. 

Pearson product-moment correlation 

See correlation coefficient 

Percentile point 

The point at or below where a score appears. 

Platykurtic 

The quality of a normal curve that defines its
flatness. 

Population 

All the possible subjects or cases of interest. 

Post hoc 

After the fact, referring to tests done to
determine the true source of a difference
between three or more groups. 

Predictive validity 

A type of validity that examines how well a test
outcome is consistent with a criterion that occurs
in the future. 

Predictor 

The variable that predicts an outcome. 

Range 

The highest minus the lowest score, and a gross
measure of variability. Exclusive range is the
highest score minus the lowest score. Inclusive
range is the highest score minus the lowest score
plus 1. 

Ratio level of measurement 

A scale of measurement that is characterized by
an absolute zero. 

Regression equation 

The equation that defines the points and the line
that are closest to the actual scores. 

Regression line 

The line drawn based on the values in the
regression equation. 

Reliability 

The quality of a test such that it is consistent. 

Research hypothesis 

A statement of inequality between two variables. 

Sample 

A subset of a population. 

Sampling error 

The difference between sample and population
values. 

Scales of measurement 

Different ways of categorizing measurement
outcomes. 

Scattergram, or scatterplot 

A plot of paired data points. 

Significance level 

The risk set by the researcher for rejecting a null
hypothesis when it is true. 

Simple analysis of variance 

See analysis of variance 

Skew, or skewness 

The quality of a distribution that defines the
disproportionate frequency of certain scores. 
A longer right tail than left corresponds to 
a smaller number of occurrences at the 
high end of the distribution; this is a 
positively skewed distribution. A shorter 
right tail than left corresponds to a larger 
number of occurrences at the high end of the
distribution; this is a negatively skewed
distribution. 
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Source table 

A listing of sources of variance in an analysis of
variance summary table. 

Standard deviation 

The average deviation from the mean. 

Standard error of estimate 

A measure of accuracy in prediction. 

Standard score 

See z score 

Statistical significance 

See significance level 

Statistics 

A set of tools and techniques used to organize
and interpret information. 

Test-retest reliability 

A type of reliability that examines consistency
over time. 

Test statistic value 

See obtained value 

True score 

The unobservable part of an observed score that
reflects the actual ability or behavior. 

Two-tailed test 

A test of a nondirectional hypothesis where the
direction of the difference is of little importance. 

Type I error 

The probability of rejecting a null hypothesis
when it is true. 

Type II error 

The probability of accepting a null hypothesis
when it is false. 

Unbiased estimate 

A conservative estimate of a population
parameter. 

Validity 

The quality of a test such that it measures what it
says it does. 

Variability 

The amount of spread or dispersion in a set of
scores. 

Variance 

The square of the standard deviation, and
another measure of a distribution’s spread or
dispersion. 

Y′′ or Y prime 

The predicted Y value. 

z score 

A raw score that is adjusted for the mean and
standard deviation of the distribution from which
the raw score comes. 
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