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Abstract 
This work presents a novel approach for efficient systems design under uncertainty that 
uses data mining and model fitting methods during optimization to significantly reduce 
the associated computational effort. The proposed approach is implemented as part of a 
modified stochastic annealing algorithm, but remains independent of the employed 
optimization method. A numerical example and a case study on a stand-alone system for 
power generation from renewable energy sources are used to illustrate the merits of the 
developments. The obtained results indicate robustness and efficiency in terms of 
solution quality and computational performance, respectively. 
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1. Introduction 
Stochastic search methods such as Stochastic Annealing (StA) and Stochastic Genetic 
Algorithms (SGA) [1-4] have been proposed in recent years to address the optimization 
under uncertainty of process systems. The underlying algorithmic philosophy employed 
to treat uncertainty involves the use of probability distributions to generate samples 
which are introduced individually into the simulation of system models. This enables 
the emulation of effects caused by the uncertain parameters in the addressed 
optimization problem. Apparently, the number of utilized samples is of crucial 
importance. Large numbers of samples are required to maintain a realistic representation 
of the uncertain parameter distribution but at the expense of reduced computational 
efficiency. This is due to the increased computational effort required to simulate the 
effects of each sample through the employed system model during optimization. This 
major issue has been previously addressed [2, 3] by employing efficient sampling 
techniques and strategies that allow a variable sampling schedule throughout the 
optimization procedure. Fewer samples are allowed at initial optimization iterations, 
which are then increased significantly as the algorithm gradually proceeds to 
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termination. However, their utilization often requires significant computational effort as 
the random selection of a large number of samples is not prevented, even at initial 
optimization iterations. Furthermore, high numbers of samples towards termination still 
result to an increased computational burden for large-scale problems involving detailed 
system models and combinatorial complexities.  

2. Proposed method 
This work proposes the combined use of data mining and model fitting in the course of 
optimization to enable efficient management of the sampling procedure, employed to 
treat the considered uncertain parameters. Figure 1 illustrates the proposed approach as 
an extensive modification to the StA algorithm [1-3]. The novel algorithmic sequence is 
highlighted within the dashed frame. The implemented modifications are independent of 
the employed optimization algorithm, as they do not intervene with decision making 
operations that are distinctive of particular algorithms. While Hammersley sampling is 
employed in this work, any other sampling technique can also be utilized.  

 
Figure 1: Proposed data mining method as part of a modified Stochastic Annealing algorithm 
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2.1. Description 
Initially, a clustering method is used to generate k=1,Nclust coherent groups (clusters) of 
similar points out of the entire set of the selected sampling points i=1, samp, used for the 
representation of the uncertain parameters vector (u). Statistical cluster centers (uk) are 
then calculated for each group, which lie in close proximity to the entire data contained 
in each cluster. As a result, each cluster center can be considered a valid representative 
for all the data (sampling points) contained in the cluster. Subsequently all cluster 
centers, instead of all available sampling points, are introduced to simulations using a 
system model to calculate the objective function value OF(xm,uk) that corresponds to 
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each center (uk) (where xm represents the vector of decicion variables). In this respect, 
the available cluster center points (independent parameters) are then used in conjunction 
with their corresponding objective function values (dependent parameters) to calculate 
the regression coefficients of a continuous model. This model represents the employed 
OF(xm,uk) as a mathematical function of the cluster centers [OF(xm,uk)=f(uk)]. The 
objective function values OF(xm,ui) that correspond to the remaining sampling points 
(ui), contained in each cluster, can now be calculated using the developed predictive 
model, hence avoiding the time consuming simulations based on the system model.  
2.2. Implementation details 
The proposed approach enables the use of constantly large numbers of sampling points 
regardless of the size of the optimization problem addressed or the stage of the 
performed optimization search. The number of generated clusters is an important 
parameter that affects the performance of the method. A large number of clusters results 
to fewer points within each cluster.  This enables an improved representation from the 
derived center of all the cluster points and results to accurate predictions from the 
regression model. However, increasing the number of clusters also results to further 
time-consuming simulations. An automated statistical method is used [5] to maintain 
the number of clusters considerably lower compared to the sampled set of uncertain 
parameter values, while facilitating accurate model predictions.  
The fitted model provides objective function value predictions that are either identical 
or lie within very close proximity to the values calculated through simulations. This is 
verified by use of the R2 coefficient of multiple determination, which is calculated in 
three steps. Firstly, predictions are obtained through the regression model for OF(xm,ui) 
values. Subsequently, the predictions are used to replace their corresponding sampling 
points (ui) that exist within each one of the original clusters. Finally, a new cluster 
center is derived for each cluster based on the objective function values (and not the 
sampled points as previously). This center represents the predicted objective function 
values that lie within each cluster. If it is similar to the objective function values 
obtained through model simulations for each corresponding cluster center, then the 
regression model provides accurate predictions. This similarity is measured through R2. 
The number of regression terms employed in the model is derived through statistical F-
tests for model adequacy, also used to evaluate the correctness of R2. 
2.3. Numerical example 
The proposed method is illustrated through a numerical example that employs the 
following cost model (details available in [1]):  
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Terms y1, y2, y3 represent the decision variables. The uncertain parameters u1 and u2 
follow the probability distributions shown in Table 1, which also shows the clustering 
ranges considered and the employed regression model. The regression coefficients i 
(i=1,6) are recalculated in each algorithmic iteration. In all cases the performance of the 
StACMF algorithm (StA with clustering and model fitting) is compared with an 
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adaptation of StA developed in this work. Their comparative performance is measured 
based on the ratio of the number of simulations performed by the two algorithms 
(NStACMF/NStA) to achieve optimality. The number of allowed samples is constantly 150 
for StACMF, while sampling for StA is allowed to vary in the range [20, 150].  
Table 1: Data and optimization-computational performance results for the numerical example 

Case u1 u2 
Clustering 

range 
Optimum values for 

(y1),(y2),(y3) 
R2 Performance 

ratio  

1 N(0,2) N(0,2) 25-35 (3),(3,3,3),(3,3,3) >0.999 0.39 
2 N(0,2) N(0,2) 15-25 (3),(3,3,3),(3,3,3) >0.999 0.26 
3 N(0,2) U(1.5,3) 20-30 (3),(3,3,3),(1,1,1) >0.996 0.28 

Regression model: OF(u1,u2)=a1+a2 u1+a3 u2+a4 u1 u2+ a5 u2
2+a6  u1 u2

2 

In all three cases the two algorithms found the same optimum solution. The obtained 
results indicate that StACMF is significantly faster, as the number of required 
simulations is only a small fraction of those required by StA. The value of R2 is very 
high in all cases, indicating that the employed model provides accurate predictions. The 
minor inaccuracies in the predictions (R2<1) do not prohibit the identification of the 
optimum solution by StACMF. The use of a lower clustering range (fewer clusters) in 
case 2 results to improved performance compared to case 1, while the optimum solution 
is still obtained. The simultaneous use of different distributions in case 3 does not affect 
the optimization and computational performance of StACMF compared to StA.  

3. Case study 

3.1. Background 
The proposed approach is applied to the design optimization of a hybrid system for 
power generation from renewable energy sources, with medium- to long-term energy 
storage capabilities in the form of hydrogen. It consists of photovoltaic panels, wind 
generators, chemical accumulators, an electrolyser, a fuel cell, a compressor, hydrogen 
storage tanks and a diesel generator. Details can be found in [6]. The design of such a 
system involves increased uncertainty due to unpredictable weather variability and 
equipment efficiency changes. The optimization aims to minimize the net present value 
(NPV) of investment for a ten year operating period. The considered decision variables 
are 8, namely the number of PV panels (npv), the number of the wind generators (nwg), 
the nominal capacity of the accumulators (nacc), the maximum operating power of the 
electrolyzer (Pmax,e), the capacity of the intermediate (Vb) hydrogen storage tanks, the 
nominal power of the fuel cell (Pop,fc) and the upper (SOCmax) and lower (SOCmin) limits 
of the stage of charge of the accumulators. The considered uncertain parameters are 4 
and involve the solar radiation (u1) and wind speed (u2) as well as the efficiencies of the 
electrolyzer (u3) and of the fuel cell (u4). The number of allowed samples for the two 
algorithms is similar to that used in the numerical example, whereas the range of 
allowed clusters is [25, 35].  
3.2. Results and discussion 
The optimum OF value identified by StA is slightly better than StACMF (Table 2). This 
is a reasonably small deviation considering the high combinatorial complexity of the 
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problem. It is also characteristic of stochastic search methods that often converge to a 
narrow distribution of similar solutions. The small difference corresponds to slightly 
fewer PV panels identified in StA and slightly different SOC limits (up to 4%), while 
the optimum values for the remaining decision parameters are identical. Even though 
the design problem involves multiple decision variables and uncertain parameters, the 
regression model consists of only eight terms. Only uncertain parameters u1 and u2 are 
necessary in the model, based on the statistical tests performed for the determination of 
the required terms which implies that only u1 and u2 have significant effect on the 
objective function value under the operating conditions assumed in the case. Design of 
the system under different weather data (e.g., another location) would have resulted in 
fitting models with significant contribution by the equipment efficiencies u3 and u4. In 
the vast majority of the optimization iterations R2 is maintained over 0.98. This 
indicates reasonably good fitting using a simple model, compared to the much more 
complex system models that are avoided. The time performance per iteration is almost 
three times better with StACMF, indicating significant gains for time-consuming design 
problems. Such benefits are combined with the constantly used 150 samples throughout 
the optimization in StACMF.   
Table 2: Data and performance results of StA and StACMF algorithms in case study.  

Method 

Average 
number of 
simulations 
per iteration 

Average 
CPU time 
(sec) per 

simulation

Average CPU time (sec) 
for clustering + model 
fitting calculations per 

iteration

Average total 
CPU time 
(sec) per 
iteration 

OF [k€] 

StA 79 0.0642 - 5.0726 -46.205 
StACMF 28 0.0642 0.0143 1.8122 -46.268 

Regression model
2
217

2
126215

2
24

2
13221121 ),( uubuubuubububububbuuOF o

 

4. Concluding remarks 
The proposed approach increases the computational efficiency in systems optimization 
problems under uncertainty, while constantly maintaining an inclusive representation of 
the uncertain parameters throughout the optimization search. The implementation of 
clustering and model fitting are fast and computationally insignificant compared to 
numerous system model simulations required in existing StA implementations. The 
approach can handle increased numbers of decision variables and uncertain parameters 
without making the optimization computational effort prohibitive.  

References 
[1]  Painton L., Diwekar U., (1995), Europ. J. Oper. Res., 83, 489-502. 
[2]  Chaudhuri, P. Diwekar U., (1996), AICHE J., 42, 3, 742-752. 
[3]  Chaudhuri P., Diwekar U., (1999), AICHE J., 45, 8, 1671-1687. 
[4]  Xu W., Diwekar U. (2005), Ind. Eng. Chem. Res., 44, 7132-7137. 
[5]  Papadopoulos A.I., Linke P., (2006), Chem. Eng. Sci., 61(19), 6316-6336. 
[6]  Giannakoudis G., Papadopoulos A.I., Seferlis P., Vouetakis P., (2010), Int. J. Hyd. Ener., 35, 

872-891.  

A data mining approach for efficient systems optimization under uncertainty using 
stochastic search methods 315 



 EUROPEAN 
SYMPOSIUM ON 
COMPUTER AIDED 

Edited by

Amsterdam – Boston – Heidelberg – London – New York – Oxford 
Paris – San Diego – San Francisco – Singapore – Sydney – Tokyo 

COMPUTER-AIDED CHEMICAL ENGINEERING, 29

PROCESS ENGINEERING

t21s

PART – A 

 

Edited by

E.N. Pistikopoulos  

M.C. Georgiadis

A.C. Kokossis  
National Technical University of Athens, Greece 
 

Imperial College London, UK 

Aristotle University of Thessaloniki, Greece 




