

San Francisco

P Y T H O N C R A S H
C O U R S E

3 R D E D I T I O N

A H a n d s - O n , P r o j e c t - B a s e d

I n t r o d u c t i o n t o P r o g r a m m i n g

by Er ic Matthes

PYTHON CRASH COURSE, 3RD EDITION. Copyright © 2023 by Eric Matthes.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

First printing

26 25 24 23 22 1 2 3 4 5

ISBN-13: 978-1-7185-0270-3 (print)
ISBN-13: 978-1-7185-0271-0 (ebook)

Publisher: William Pollock
Managing Editor: Jill Franklin
Production Editor: Jennifer Kepler
Developmental Editor: Eva Morrow
Cover Illustrator: Josh Ellingson
Interior Design: Octopod Studios
Technical Reviewer: Kenneth Love
Copyeditor: Doug McNair
Compositor: Jeff Lytle, Happenstance Type-O-Rama
Proofreader: Scout Festa

For information on distribution, bulk sales, corporate sales, or translations, please contact No Starch
Press, Inc. directly at info@nostarch.com or:

No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900
www.nostarch.com

The Library of Congress has catalogued the �rst edition as follows:

Matthes, Eric, 1972-

 Python crash course : a hands-on, project-based introduction to programming / by Eric Matthes.

pages cm

 Includes index.

 Summary: "A project-based introduction to programming in Python, with exercises. Covers general

programming concepts, Python fundamentals, and problem solving. Includes three projects - how to

create a simple video game, use data visualization techniques to make graphs and charts, and build

an interactive web application"-- Provided by publisher.

 ISBN 978-1-59327-603-4 -- ISBN 1-59327-603-6

1. Python (Computer program language) I. Title.

QA76.73.P98M38 2015

005.13'3--dc23

2015018135

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the bene�t of the trademark owner, with no intention of infringement of
the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in it.

About the Author

Eric Matthes was a high school math and science teacher for 25 years, and
he taught introductory Python classes whenever he could �nd a way to �t
them into the curriculum. Eric is a full-time writer and programmer now,
and he is involved in a number of open source projects. His projects have a
diverse range of goals, from helping predict landslide activity in mountain-
ous regions to simplifying the process of deploying Django projects. When
he’s not writing or programming, he enjoys climbing mountains and spend-
ing time with his family.

About the Technical Reviewer

Kenneth Love lives in the Paci�c Northwest with their family and cats.
Kenneth is a longtime Python programmer, open source contributor,
teacher, and conference speaker.

B R I E F C O N T E N T S

Preface to the Third Edition . xxvii

Acknowledgments . xxxi

Introduction . xxxiii

PART I: BASICS .1

Chapter 1: Getting Started. 3

Chapter 2: Variables and Simple Data Types . 15

Chapter 3: Introducing Lists . 33

Chapter 4: Working with Lists. 49

Chapter 5: if Statements. 71

Chapter 6: Dictionaries . 91

Chapter 7: User Input and while Loops . 113

Chapter 8: Functions . 129

Chapter 9: Classes . 157

Chapter 10: Files and Exceptions . 183

Chapter 11: Testing Your Code. 209

C O N T E N T S I N D E T A I L

PREFACE TO THE THIRD EDITION xxvii

ACKNOWLEDGMENTS xxxi

INTRODUCTION xxxiii

Who Is This Book For? . xxxiv
What Can You Expect to Learn?. xxxiv
Online Resources . xxxv
Why Python?. xxxvi

1
GETTING STARTED 3

Setting Up Your Programming Environment . 3
Python Versions. 4
Running Snippets of Python Code . 4
About the VS Code Editor . 4

Python on Different Operating Systems . 5
Python on Windows . 5
Python on macOS . 7
Python on Linux. 8

Running a Hello World Program . 9
Installing the Python Extension for VS Code . 9
Running hello_world.py . 10

Troubleshooting . 10
Running Python Programs from a Terminal . 11

On Windows . 12
On macOS and Linux . 12
Exercise 1-1: python.org . 13
Exercise 1-2: Hello World Typos . 13
Exercise 1-3: Infinite Skills . 13

Summary . 13

2
VARIABLES AND SIMPLE DATA TYPES 15

What Really Happens When You Run hello_world.py. 15
Variables . 16

Naming and Using Variables . 17
Avoiding Name Errors When Using Variables . 17
Variables Are Labels . 18
Exercise 2-1: Simple Message . 19
Exercise 2-2: Simple Messages . 19

xii Contents in Detail

Strings . 19
Changing Case in a String with Methods . 20
Using Variables in Strings. 20
Adding Whitespace to Strings with Tabs or Newlines 21
Stripping Whitespace . 22
Removing Prefixes . 23
Avoiding Syntax Errors with Strings . 24
Exercise 2-3: Personal Message . 25
Exercise 2-4: Name Cases . 25
Exercise 2-5: Famous Quote . 25
Exercise 2-6: Famous Quote 2 . 25
Exercise 2-7: Stripping Names .25
Exercise 2-8: File Extensions . 25

Numbers. 26
Integers . 26
Floats . 26
Integers and Floats . 27
Underscores in Numbers . 28
Multiple Assignment . 28
Constants . 28
Exercise 2-9: Number Eight .29
Exercise 2-10: Favorite Number . 29

Comments . 29
How Do You Write Comments?. 29
What Kinds of Comments Should You Write? . 29
Exercise 2-11: Adding Comments . 30

The Zen of Python . 30
Exercise 2-12: Zen of Python . 31

Summary . 32

3
INTRODUCING LISTS 33

What Is a List? . 33
Accessing Elements in a List . 34
Index Positions Start at 0, Not 1 . 34
Using Individual Values from a List. 35
Exercise 3-1: Names . 36
Exercise 3-2: Greetings . 36
Exercise 3-3: Your Own List . 36

Modifying, Adding, and Removing Elements . 36
Modifying Elements in a List . 36
Adding Elements to a List . 37
Removing Elements from a List . 38
Exercise 3-4: Guest List . 41
Exercise 3-5: Changing Guest List . 42
Exercise 3-6: More Guests . 42
Exercise 3-7: Shrinking Guest List . 42

Organizing a List . 42
Sorting a List Permanently with the sort() Method. 43
Sorting a List Temporarily with the sorted() Function . 43
Printing a List in Reverse Order . 44

Contents in Detail xiii

Finding the Length of a List . 44
Exercise 3-8: Seeing the World . 45
Exercise 3-9: Dinner Guests . 45
Exercise 3-10: Every Function . 45

Avoiding Index Errors When Working with Lists . 46
Exercise 3-11: Intentional Error . 47

Summary . 47

4
WORKING WITH LISTS 49

Looping Through an Entire List . 49
A Closer Look at Looping . 50
Doing More Work Within a for Loop . 51
Doing Something After a for Loop . 52

Avoiding Indentation Errors . 53
Forgetting to Indent . 53
Forgetting to Indent Additional Lines . 54
Indenting Unnecessarily . 54
Indenting Unnecessarily After the Loop. 55
Forgetting the Colon . 55
Exercise 4-1: Pizzas . 56
Exercise 4-2: Animals . 56

Making Numerical Lists. 56
Using the range() Function . 57
Using range() to Make a List of Numbers . 58
Simple Statistics with a List of Numbers . 59
List Comprehensions . 59
Exercise 4-3: Counting to Twenty . 60
Exercise 4-4: One Million . 60
Exercise 4-5: Summing a Million . 60
Exercise 4-6: Odd Numbers . 60
Exercise 4-7: Threes . 60
Exercise 4-8: Cubes . 60
Exercise 4-9: Cube Comprehension . 60

Working with Part of a List . 61
Slicing a List . 61
Looping Through a Slice . 62
Copying a List . 63
Exercise 4-10: Slices . 65
Exercise 4-11: My Pizzas, Your Pizzas .65
Exercise 4-12: More Loops . 65

Tuples . 65
Defining a Tuple . 65
Looping Through All Values in a Tuple . 66
Writing Over a Tuple. 67
Exercise 4-13: Buffet . 67

Styling Your Code . 68
The Style Guide . 68
Indentation . 68
Line Length . 69
Blank Lines . 69

xiv Contents in Detail

Other Style Guidelines. 69
Exercise 4-14: PEP 8 . 70
Exercise 4-15: Code Review . 70

Summary . 70

5
IF STATEMENTS 71

A Simple Example . 72
Conditional Tests . 72

Checking for Equality . 72
Ignoring Case When Checking for Equality . 73
Checking for Inequality . 74
Numerical Comparisons . 74
Checking Multiple Conditions . 75
Checking Whether a Value Is in a List . 76
Checking Whether a Value Is Not in a List . 76
Boolean Expressions . 77
Exercise 5-1: Conditional Tests . 77
Exercise 5-2: More Conditional Tests . 78

if Statements . 78
Simple if Statements . 78
if-else Statements. 79
The if-elif-else Chain . 80
Using Multiple elif Blocks . 81
Omitting the else Block . 82
Testing Multiple Conditions. 82
Exercise 5-3: Alien Colors #1 . 84
Exercise 5-4: Alien Colors #2 . 84
Exercise 5-5: Alien Colors #3 . 84
Exercise 5-6: Stages of Life . 84
Exercise 5-7: Favorite Fruit . 85

Using if Statements with Lists . 85
Checking for Special Items . 85
Checking That a List Is Not Empty . 86
Using Multiple Lists . 87
Exercise 5-8: Hello Admin . 88
Exercise 5-9: No Users . 88
Exercise 5-10: Checking Usernames . 88
Exercise 5-11: Ordinal Numbers . 88

Styling Your if Statements . 89
Exercise 5-12: Styling if Statements . 89
Exercise 5-13: Your Ideas . 89

Summary . 89

6
DICTIONARIES 91

A Simple Dictionary . 92
Working with Dictionaries . 92

Accessing Values in a Dictionary. 92
Adding New Key-Value Pairs . 93
Starting with an Empty Dictionary . 94

Contents in Detail xv

Modifying Values in a Dictionary . 94
Removing Key-Value Pairs . 96
A Dictionary of Similar Objects. 96
Using get() to Access Values . 97
Exercise 6-1: Person . 98
Exercise 6-2: Favorite Numbers . 98
Exercise 6-3: Glossary . 99

Looping Through a Dictionary . 99
Looping Through All Key-Value Pairs . 99
Looping Through All the Keys in a Dictionary . 101
Looping Through a Dictionary’s Keys in a Particular Order. 102
Looping Through All Values in a Dictionary . 103
Exercise 6-4: Glossary 2 . 104
Exercise 6-5: Rivers . 105
Exercise 6-6: Polling . 105

Nesting. 105
A List of Dictionaries . 105
A List in a Dictionary . 108
A Dictionary in a Dictionary. 110
Exercise 6-7: People . 111
Exercise 6-8: Pets . 111
Exercise 6-9: Favorite Places . 111
Exercise 6-10: Favorite Numbers . 111
Exercise 6-11: Cities . 111
Exercise 6-12: Extensions . 111

Summary . 111

7
USER INPUT AND WHILE LOOPS 113

How the input() Function Works . 114
Writing Clear Prompts . 114
Using int() to Accept Numerical Input. 115
The Modulo Operator . 116
Exercise 7-1: Rental Car . 117
Exercise 7-2: Restaurant Seating . 117
Exercise 7-3: Multiples of Ten . 117

Introducing while Loops . 117
The while Loop in Action . 117
Letting the User Choose When to Quit . 118
Using a Flag. 120
Using break to Exit a Loop . 121
Using continue in a Loop . 122
Avoiding Infinite Loops. 122
Exercise 7-4: Pizza Toppings .123
Exercise 7-5: Movie Tickets . 123
Exercise 7-6: Three Exits . 123
Exercise 7-7: Infinity . 123

Using a while Loop with Lists and Dictionaries . 124
Moving Items from One List to Another. 124
Removing All Instances of Specific Values from a List 125
Filling a Dictionary with User Input . 125
Exercise 7-8: Deli . 127

xvi Contents in Detail

Exercise 7-9: No Pastrami . 127
Exercise 7-10: Dream Vacation . 127

Summary . 127

8
FUNCTIONS 129

Defining a Function . 130
Passing Information to a Function . 130
Arguments and Parameters. 131
Exercise 8-1: Message . 131
Exercise 8-2: Favorite Book . 131

Passing Arguments . 131
Positional Arguments . 132
Keyword Arguments . 133
Default Values. 134
Equivalent Function Calls . 135
Avoiding Argument Errors . 136
Exercise 8-3: T-Shirt . 136
Exercise 8-4: Large Shirts . 137
Exercise 8-5: Cities . 137

Return Values. 137
Returning a Simple Value . 137
Making an Argument Optional . 138
Returning a Dictionary . 139
Using a Function with a while Loop . 140
Exercise 8-6: City Names . 141
Exercise 8-7: Album . 142
Exercise 8-8: User Albums . 142

Passing a List . 142
Modifying a List in a Function . 143
Preventing a Function from Modifying a List . 145
Exercise 8-9: Messages . 146
Exercise 8-10: Sending Messages . 146
Exercise 8-11: Archived Messages . 146

Passing an Arbitrary Number of Arguments. 146
Mixing Positional and Arbitrary Arguments . 147
Using Arbitrary Keyword Arguments . 148
Exercise 8-12: Sandwiches . 149
Exercise 8-13: User Profile . 149
Exercise 8-14: Cars . 149

Storing Your Functions in Modules . 149
Importing an Entire Module . 150
Importing Specific Functions . 151
Using as to Give a Function an Alias . 151
Using as to Give a Module an Alias . 152
Importing All Functions in a Module . 152

Styling Functions . 153
Exercise 8-15: Printing Models . 154
Exercise 8-16: Imports . 154
Exercise 8-17: Styling Functions . 154

Summary . 154

Contents in Detail xvii

9
CLASSES 157

Creating and Using a Class. 158
Creating the Dog Class . 158
The __init__() Method . 159
Making an Instance from a Class . 159
Exercise 9-1: Restaurant . 162
Exercise 9-2: Three Restaurants . 162
Exercise 9-3: Users . 162

Working with Classes and Instances . 162
The Car Class. 162
Setting a Default Value for an Attribute . 163
Modifying Attribute Values . 164
Exercise 9-4: Number Served . 166
Exercise 9-5: Login Attempts .167

Inheritance . 167
The __init__() Method for a Child Class . 167
Defining Attributes and Methods for the Child Class 169
Overriding Methods from the Parent Class . 170
Instances as Attributes . 170
Modeling Real-World Objects. 172
Exercise 9-6: Ice Cream Stand . 173
Exercise 9-7: Admin . 173
Exercise 9-8: Privileges . 173
Exercise 9-9: Battery Upgrade . 173

Importing Classes. 173
Importing a Single Class . 174
Storing Multiple Classes in a Module. 175
Importing Multiple Classes from a Module . 176
Importing an Entire Module . 176
Importing All Classes from a Module . 177
Importing a Module into a Module . 177
Using Aliases . 178
Finding Your Own Workflow . 179
Exercise 9-10: Imported Restaurant . 179
Exercise 9-11: Imported Admin . 179
Exercise 9-12: Multiple Modules . 179

The Python Standard Library . 179
Exercise 9-13: Dice . 180
Exercise 9-14: Lottery . 180
Exercise 9-15: Lottery Analysis . 180
Exercise 9-16: Python Module of the Week . 180

Styling Classes. 181
Summary . 181

10
FILES AND EXCEPTIONS 183

Reading from a File . 184
Reading the Contents of a File . 184
Relative and Absolute File Paths . 186
Accessing a File’s Lines . 186

xviii Contents in Detail

Working with a File’s Contents . 187
Large Files: One Million Digits . 188
Is Your Birthday Contained in Pi? . 189
Exercise 10-1: Learning Python . 189
Exercise 10-2: Learning C . 190
Exercise 10-3: Simpler Code . 190

Writing to a File. 190
Writing a Single Line . 190
Writing Multiple Lines . 191
Exercise 10-4: Guest . 192
Exercise 10-5: Guest Book .192

Exceptions. 192
Handling the ZeroDivisionError Exception . 192
Using try-except Blocks . 193
Using Exceptions to Prevent Crashes . 193
The else Block. 194
Handling the FileNotFoundError Exception . 195
Analyzing Text . 196
Working with Multiple Files . 197
Failing Silently . 198
Deciding Which Errors to Report. 199
Exercise 10-6: Addition . 200
Exercise 10-7: Addition Calculator . 200
Exercise 10-8: Cats and Dogs . 200
Exercise 10-9: Silent Cats and Dogs . 200
Exercise 10-10: Common Words . 200

Storing Data . 201
Using json.dumps() and json.loads() . 201
Saving and Reading User-Generated Data . 202
Refactoring. 204
Exercise 10-11: Favorite Number . 206
Exercise 10-12: Favorite Number Remembered . 206
Exercise 10-13: User Dictionary . 206
Exercise 10-14: Verify User . 206

Summary . 207

11
TESTING YOUR CODE 209

Installing pytest with pip . 210
Updating pip . 210
Installing pytest . 211

Testing a Function. 211
Unit Tests and Test Cases . 212
A Passing Test. 212
Running a Test . 213
A Failing Test . 214
Responding to a Failed Test . 215
Adding New Tests . 216
Exercise 11-1: City, Country . 217
Exercise 11-2: Population .217

Contents in Detail xix

Testing a Class. 217
A Variety of Assertions. 217
A Class to Test . 218
Testing the AnonymousSurvey Class. 220
Using Fixtures . 221
Exercise 11-3: Employee . 223

Summary . 223

PART I
B A S I C S

Part I of this book teaches you the basic concepts you’ll

need to write Python programs. Many of these con-

cepts are common to all programming languages, so

they’ll be useful throughout your life as a programmer.
In Chapter 1 you’ll install Python on your computer and run your �rst

program, which prints the message Hello world! to the screen.
In Chapter 2 you’ll learn to assign information to variables and work

with text and numerical values.
Chapters 3 and 4 introduce lists. Lists can store as much information as

you want in one place, allowing you to work with that data ef�ciently. You’ll
be able to work with hundreds, thousands, and even millions of values in
just a few lines of code.

In Chapter 5 you’ll use if statements to write code that responds one
way if certain conditions are true, and responds in a different way if those
conditions are not true.

Chapter 6 shows you how to use Python’s dictionaries, which let you
make connections between different pieces of information. Like lists, dic-
tionaries can contain as much information as you need to store.

In Chapter 7 you’ll learn how to accept input from users to make your
programs interactive. You’ll also learn about while loops, which run blocks
of code repeatedly as long as certain conditions remain true.

In Chapter 8 you’ll write functions, which are named blocks of code
that perform a speci�c task and can be run whenever you need them.

Chapter 9 introduces classes, which allow you to model real-world
objects. You’ll write code that represents dogs, cats, people, cars, rockets,
and more.

2 Part I: Basics

Chapter 10 shows you how to work with �les and handle errors so your
programs won’t crash unexpectedly. You’ll store data before your program
closes and read the data back in when the program runs again. You’ll learn
about Python’s exceptions, which allow you to anticipate errors and make
your programs handle those errors gracefully.

In Chapter 11 you’ll learn to write tests for your code, to check that
your programs work the way you intend them to. As a result, you’ll be able
to expand your programs without worrying about introducing new bugs.
Testing your code is one of the �rst skills that will help you transition from
beginner to intermediate programmer.

1
G E T T I N G S T A R T E D

In this chapter, you’ll run your �rst Python

program, hello_world.py. First, you’ll need

to check whether a recent version of Python

is installed on your computer; if it isn’t, you’ll

install it. You’ll also install a text editor to work with

your Python programs. Text editors recognize Python

code and highlight sections as you write, making it

easy to understand your code’s structure.

Setting Up Your Programming Environment

Python differs slightly on different operating systems, so you’ll need to keep
a few considerations in mind. In the following sections, we’ll make sure
Python is set up correctly on your system.

4 Chapter 1

Python Versions
Every programming language evolves as new ideas and technologies emerge,
and the developers of Python have continually made the language more
versatile and powerful. As of this writing, the latest version is Python 3.11,
but everything in this book should run on Python 3.9 or later. In this sec-
tion, we’ll �nd out if Python is already installed on your system and whether
you need to install a newer version. Appendix A contains additional details
about installing the latest version of Python on each major operating system
as well.

Running Snippets of Python Code
You can run Python’s interpreter in a terminal window, allowing you to try
bits of Python code without having to save and run an entire program.

Throughout this book, you’ll see code snippets that look like this:

>>> print("Hello Python interpreter!")
Hello Python interpreter!

The three angle brackets (>>>) prompt, which we’ll refer to as a Python
prompt, indicates that you should be using the terminal window. The bold
text is the code you should type in and then execute by pressing ENTER.
Most of the examples in this book are small, self-contained programs that
you’ll run from your text editor rather than the terminal, because you’ll
write most of your code in the text editor. But sometimes, basic concepts
will be shown in a series of snippets run through a Python terminal session
to demonstrate particular concepts more ef�ciently. When you see three
angle brackets in a code listing, you’re looking at code and output from
a terminal session. We’ll try coding in the interpreter on your system in a
moment.

We’ll also use a text editor to create a simple program called Hello World!
that has become a staple of learning to program. There’s a long-held tradi-
tion in the programming world that printing the message Hello world! to
the screen as your �rst program in a new language will bring you good luck.
Such a simple program serves a very real purpose. If it runs correctly on your
system, then any Python program you write should work as well.

About the VS Code Editor
VS Code is a powerful, professional-quality text editor that’s free and beginner-
friendly. VS Code is great for both simple and complex projects, so if you
become comfortable using it while learning Python, you can continue using
it as you progress to larger and more complicated projects. VS Code can be
installed on all modern operating systems, and it supports most programming
languages, including Python.

Appendix B provides information on other text editors. If you’re curi-
ous about the other options, you might want to skim that appendix at this

Getting Started 5

point. If you want to begin programming quickly, you can use VS Code to
start. Then you can consider other editors, once you’ve gained some experi-
ence as a programmer. In this chapter, I’ll walk you through installing VS
Code on your operating system.

N O T E If you already have a text editor installed and you know how to con�gure it to run
Python programs, you are welcome to use that editor instead.

Python on Different Operating Systems

Python is a cross-platform programming language, which means it runs on
all the major operating systems. Any Python program you write should run
on any modern computer that has Python installed. However, the methods
for setting up Python on different operating systems vary slightly.

In this section, you’ll learn how to set up Python on your system. You’ll
�rst check whether a recent version of Python is installed on your system,
and install it if it’s not. Then you’ll install VS Code. These are the only two
steps that are different for each operating system.

In the sections that follow, you’ll run hello_world.py and troubleshoot
anything that doesn’t work. I’ll walk you through this process for each oper-
ating system, so you’ll have a Python programming environment that you
can rely on.

Python on Windows
Windows doesn’t usually come with Python, so you’ll probably need to
install it and then install VS Code.

Installing Python

First, check whether Python is installed on your system. Open a command
window by entering command into the Start menu and clicking the Command
Prompt app. In the terminal window, enter python in lowercase. If you get a
Python prompt (>>>) in response, Python is installed on your system. If you
see an error message telling you that python is not a recognized command,
or if the Microsoft store opens, Python isn’t installed. Close the Microsoft
store if it opens; it’s better to download an of�cial installer than to use
Microsoft’s version.

If Python is not installed on your system, or if you see a version
earlier than Python 3.9, you need to download a Python installer for
Windows. Go to https://python.org and hover over the Downloads link.
You should see a button for downloading the latest version of Python.
Click the button, which should automatically start downloading the cor-
rect installer for your system. After you’ve downloaded the �le, run the
installer. Make sure you select the option Add Python to PATH, which
will make it easier to con�gure your system correctly. Figure 1-1 shows
this option selected.

https://python.org

6 Chapter 1

Figure 1-1: Make sure you select the checkbox labeled
Add Python to PATH.

Running Python in a Terminal Session

Open a new command window and enter python in lowercase. You should
see a Python prompt (>>>), which means Windows has found the version of
Python you just installed.

C:\> python
Python 3.x.x (main, Jun . . . , 13:29:14) [MSC v.1932 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>>

N O T E If you don’t see this output or something similar, see the more detailed setup instruc-
tions in Appendix A.

Enter the following line in your Python session:

>>> print("Hello Python interpreter!")
Hello Python interpreter!
>>>

You should see the output Hello Python interpreter! Anytime you want
to run a snippet of Python code, open a command window and start a
Python terminal session. To close the terminal session, press CTRL-Z and
then press ENTER, or enter the command exit().

Installing VS Code

You can download an installer for VS Code at https://code.visualstudio.com.
Click the Download for Windows button and run the installer. Skip the fol-
lowing sections about macOS and Linux, and follow the steps in “Running
a Hello World Program” on page 9.

https://code.visualstudio.com

Getting Started 7

Python on macOS
Python is not installed by default on the latest versions of macOS, so you’ll
need to install it if you haven’t already done so. In this section, you’ll install
the latest version of Python, and then install VS Code and make sure it’s
con�gured correctly.

N O T E Python 2 was included on older versions of macOS, but it’s an outdated version that
you shouldn’t use.

Checking Whether Python 3 Is Installed

Open a terminal window by going to Applications4Utilities4Terminal.
You can also press ⌘-spacebar, type terminal, and then press ENTER. To see
if you have a recent enough version of Python installed, enter python3. You’ll
most likely see a message about installing the command line developer tools.
It’s better to install these tools after installing Python, so if this message
appears, cancel the pop-up window.

If the output shows you have Python 3.9 or a later version installed,
you can skip the next section and go to “Running Python in a Terminal
Session.” If you see any version earlier than Python 3.9, follow the instruc-
tions in the next section to install the latest version.

Note that on macOS, whenever you see the python command in this
book, you need to use the python3 command instead to make sure you’re
using Python 3. On most macOS systems, the python command either points
to an outdated version of Python that should only be used by internal sys-
tem tools, or it points to nothing and generates an error message.

Installing the Latest Version of Python

You can �nd a Python installer for your system at https://python.org. Hover
over the Download link, and you should see a button for downloading the
latest version of Python. Click the button, which should automatically start
downloading the correct installer for your system. After the �le downloads,
run the installer.

After the installer runs, a Finder window should appear. Double-click
the Install Certi�cates.command �le. Running this �le will allow you to more
easily install additional libraries that you’ll need for real-world projects,
including the projects in the second half of this book.

Running Python in a Terminal Session

You can now try running snippets of Python code by opening a new termi-
nal window and typing python3:

$ python3
Python 3.x.x (v3.11.0:eb0004c271, Jun . . . , 10:03:01)
[Clang 13.0.0 (clang-1300.0.29.30)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

https://python.org

8 Chapter 1

This command starts a Python terminal session. You should see a
Python prompt (>>>), which means macOS has found the version of Python
you just installed.

Enter the following line in the terminal session:

>>> print("Hello Python interpreter!")
Hello Python interpreter!
>>>

You should see the message Hello Python interpreter!, which should
print directly in the current terminal window. You can close the Python
interpreter by pressing CTRL-D or by entering the command exit().

N O T E On newer macOS systems, you’ll see a percent sign (%) as a terminal prompt instead
of a dollar sign ($).

Installing VS Code

To install the VS Code editor, you need to download the installer at https://
code.visualstudio.com. Click the Download button, and then open a Finder
window and go to the Downloads folder. Drag the Visual Studio Code
installer to your Applications folder, then double-click the installer to run it.

Skip over the following section about Python on Linux, and follow the
steps in “Running a Hello World Program” on page 9.

Python on Linux
Linux systems are designed for programming, so Python is already installed
on most Linux computers. The people who write and maintain Linux expect
you to do your own programming at some point, and encourage you to
do so. For this reason, there’s very little to install and only a few settings to
change to start programming.

Checking Your Version of Python

Open a terminal window by running the Terminal application on your
system (in Ubuntu, you can press CTRL-ALT-T). To �nd out which ver-
sion of Python is installed, enter python3 with a lowercase p. When Python
is installed, this command starts the Python interpreter. You should see
output indicating which version of Python is installed. You should also see
a Python prompt (>>>) where you can start entering Python commands:

$ python3
Python 3.10.4 (main, Apr . . . , 09:04:19) [GCC 11.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

This output indicates that Python 3.10.4 is currently the default ver-
sion of Python installed on this computer. When you’ve seen this output,
press CTRL-D or enter exit() to leave the Python prompt and return to a

https://code.visualstudio.com
https://code.visualstudio.com

Getting Started 9

terminal prompt. Whenever you see the python command in this book, enter
python3 instead.

You’ll need Python 3.9 or later to run the code in this book. If the
Python version installed on your system is earlier than Python 3.9, or if you
want to update to the latest version currently available, refer to the instruc-
tions in Appendix A.

Running Python in a Terminal Session

You can try running snippets of Python code by opening a terminal and enter-
ing python3, as you did when checking your version. Do this again, and when
you have Python running, enter the following line in the terminal session:

>>> print("Hello Python interpreter!")
Hello Python interpreter!
>>>

The message should print directly in the current terminal window.
Remember that you can close the Python interpreter by pressing CTRL-D
or by entering the command exit().

Installing VS Code

On Ubuntu Linux, you can install VS Code from the Ubuntu Software
Center. Click the Ubuntu Software icon in your menu and search for vscode.
Click the app called Visual Studio Code (sometimes called code), and then
click Install. Once it’s installed, search your system for VS Code and launch
the app.

Running a Hello World Program

With a recent version of Python and VS Code installed, you’re almost ready
to run your �rst Python program written in a text editor. But before doing
so, you need to install the Python extension for VS Code.

Installing the Python Extension for VS Code
VS Code works with many different programming languages; to get the
most out of it as a Python programmer, you’ll need to install the Python
extension. This extension adds support for writing, editing, and running
Python programs.

To install the Python extension, click the Manage icon, which looks
like a gear in the lower-left corner of the VS Code app. In the menu that
appears, click Extensions. Enter python in the search box and click the
Python extension. (If you see more than one extension named Python,
choose the one supplied by Microsoft.) Click Install and install any addi-
tional tools that your system needs to complete the installation. If you see
a message that you need to install Python, and you’ve already done so, you
can ignore this message.

10 Chapter 1

N O T E If you’re using macOS and a pop-up asks you to install the command line devel-
oper tools, click Install. You may see a message that it will take an excessively long
time to install, but it should only take about 10 or 20 minutes on a reasonable inter-
net connection.

Running hello_world.py
Before you write your �rst program, make a folder called python_work on
your desktop for your projects. It’s best to use lowercase letters and under-
scores for spaces in �le and folder names, because Python uses these
naming conventions. You can make this folder somewhere other than
the desktop, but it will be easier to follow some later steps if you save the
python_work folder directly on your desktop.

Open VS Code, and close the Get Started tab if it’s still open. Make a
new �le by clicking File4New File or pressing CTRL-N (⌘-N on macOS).
Save the �le as hello_world.py in your python_work folder. The extension .py
tells VS Code that your �le is written in Python, and tells it how to run the
program and highlight the text in a helpful way.

After you’ve saved your �le, enter the following line in the editor:

hello_world.py print("Hello Python world!")

To run your program, select Run4Run Without Debugging or press
CTRL-F5. A terminal screen should appear at the bottom of the VS Code
window, showing your program’s output:

Hello Python world!

You’ll likely see some additional output showing the Python interpreter
that was used to run your program. If you want to simplify the information
that’s displayed so you only see your program’s output, see Appendix B. You
can also �nd helpful suggestions about how to use VS Code more ef�ciently
in Appendix B.

If you don’t see this output, something might have gone wrong in the
program. Check every character on the line you entered. Did you acciden-
tally capitalize print? Did you forget one or both of the quotation marks or
parentheses? Programming languages expect very speci�c syntax, and if
you don’t provide that, you’ll get errors. If you can’t get the program to
run, see the suggestions in the next section.

Troubleshooting

If you can’t get hello_world.py to run, here are a few remedies you can try
that are also good general solutions for any programming problem:

• When a program contains a signi�cant error, Python displays a traceback,
which is an error report. Python looks through the �le and tries to iden-
tify the problem. Check the traceback; it might give you a clue as to what
issue is preventing the program from running.

Getting Started 11

• Step away from your computer, take a short break, and then try again.
Remember that syntax is very important in programming, so something
as simple as mismatched quotation marks or mismatched parentheses
can prevent a program from running properly. Reread the relevant
parts of this chapter, look over your code, and try to �nd the mistake.

• Start over again. You probably don’t need to uninstall any software, but
it might make sense to delete your hello_world.py �le and re-create it
from scratch.

• Ask someone else to follow the steps in this chapter, on your computer
or a different one, and watch what they do carefully. You might have
missed one small step that someone else happens to catch.

• See the additional installation instructions in Appendix A; some of the
details included in the Appendix may help you solve your issue.

• Find someone who knows Python and ask them to help you get set up.
If you ask around, you might �nd that you unexpectedly know someone
who uses Python.

• The setup instructions in this chapter are also available through this
book’s companion website at https://ehmatthes.github.io/pcc_3e. The
online version of these instructions might work better because you can
simply cut and paste code and click links to the resources you need.

• Ask for help online. Appendix C provides a number of resources, such
as forums and live chat sites, where you can ask for solutions from peo-
ple who’ve already worked through the issue you’re currently facing.

Never worry that you’re bothering experienced programmers. Every
programmer has been stuck at some point, and most programmers are
happy to help you set up your system correctly. As long as you can state
clearly what you’re trying to do, what you’ve already tried, and the results
you’re getting, there’s a good chance someone will be able to help you. As
mentioned in the introduction, the Python community is very friendly and
welcoming to beginners.

Python should run well on any modern computer. Early setup issues
can be frustrating, but they’re well worth sorting out. Once you get hello
_world.py running, you can start to learn Python, and your programming
work will become more interesting and satisfying.

Running Python Programs from a Terminal

You’ll run most of your programs directly in your text editor. However,
sometimes it’s useful to run programs from a terminal instead. For
example, you might want to run an existing program without opening
it for editing.

You can do this on any system with Python installed if you know how
to access the directory where the program �le is stored. To try this, make
sure you’ve saved the hello_world.py �le in the python_work folder on your
desktop.

https://ehmatthes.github.io/pcc_3e

12 Chapter 1

On Windows
You can use the terminal command cd, for change directory, to navigate through
your �lesystem in a command window. The command dir, for directory, shows
you all the �les that exist in the current directory.

Open a new terminal window and enter the following commands to
run hello_world.py:

C:\> cd Desktop\python_work
C:\Desktop\python_work> dir
hello_world.py
C:\Desktop\python_work> python hello_world.py
Hello Python world!

First, use the cd command to navigate to the python_work folder, which is
in the Desktop folder. Next, use the dir command to make sure hello_world.py
is in this folder. Then run the �le using the command python hello_world.py.

Most of your programs will run �ne directly from your editor. However,
as your work becomes more complex, you’ll want to run some of your pro-
grams from a terminal.

On macOS and Linux
Running a Python program from a terminal session is the same on Linux
and macOS. You can use the terminal command cd, for change directory, to
navigate through your �lesystem in a terminal session. The command ls,
for list, shows you all the nonhidden �les that exist in the current directory.

Open a new terminal window and enter the following commands to
run hello_world.py:

~$ cd Desktop/python_work/
~/Desktop/python_work$ ls
hello_world.py
~/Desktop/python_work$ python3 hello_world.py
Hello Python world!

First, use the cd command to navigate to the python_work folder, which is
in the Desktop folder. Next, use the ls command to make sure hello_world.py is
in this folder. Then run the �le using the command python3 hello_world.py.

Most of your programs will run �ne directly from your editor. But as
your work becomes more complex, you’ll want to run some of your pro-
grams from a terminal.

Getting Started 13

T RY IT YOURSEL F

The exercises in this chapter are exploratory in nature. Starting in Chapter 2,

the challenges you’ll solve will be based on what you’ve learned.

1-1. python.org: Explore the Python home page (https://python.org) to find top-

ics that interest you. As you become familiar with Python, different parts of the

site will be more useful to you.

1-2. Hello World Typos: Open the hello_world.py file you just created. Make a

typo somewhere in the line and run the program again. Can you make a typo

that generates an error? Can you make sense of the error message? Can you

make a typo that doesn’t generate an error? Why do you think it didn’t make

an error?

1-3. Infinite Skills: If you had infinite programming skills, what would you build?

You’re about to learn how to program. If you have an end goal in mind, you’ll

have an immediate use for your new skills; now is a great time to write brief

descriptions of what you want to create. It’s a good habit to keep an “ideas”

notebook that you can refer to whenever you want to start a new project. Take

a few minutes now to describe three programs you want to create.

Summary

In this chapter, you learned a bit about Python in general, and you installed
Python on your system if it wasn’t already there. You also installed a text edi-
tor to make it easier to write Python code. You ran snippets of Python code
in a terminal session, and you ran your �rst program, hello_world.py. You
probably learned a bit about troubleshooting as well.

In the next chapter, you’ll learn about the different kinds of data you can
work with in your Python programs, and you’ll start to use variables as well.

https://python.org

2
V A R I A B L E S A N D

S I M P L E D A T A T Y P E S

In this chapter you’ll learn about the dif-

ferent kinds of data you can work with in

your Python programs. You’ll also learn

how to use variables to represent data in your

programs.

What Really Happens When You Run hello_world.py

Let’s take a closer look at what Python does when you run hello_world.py. As
it turns out, Python does a fair amount of work, even when it runs a simple
program:

hello_world.py print("Hello Python world!")

When you run this code, you should see the following output:

Hello Python world!

16 Chapter 2

When you run the �le hello_world.py, the ending .py indicates that the
�le is a Python program. Your editor then runs the �le through the Python
interpreter, which reads through the program and determines what each word
in the program means. For example, when the interpreter sees the word
print followed by parentheses, it prints to the screen whatever is inside the
parentheses.

As you write your programs, your editor highlights different parts of
your program in different ways. For example, it recognizes that print() is
the name of a function and displays that word in one color. It recognizes
that "Hello Python world!" is not Python code, and displays that phrase in a
different color. This feature is called syntax highlighting and is quite useful
as you start to write your own programs.

Variables

Let’s try using a variable in hello_world.py. Add a new line at the beginning
of the �le, and modify the second line:

hello_world.py message = "Hello Python world!"
print(message)

Run this program to see what happens. You should see the same output
you saw previously:

Hello Python world!

We’ve added a variable named message. Every variable is connected to a
value, which is the information associated with that variable. In this case
the value is the "Hello Python world!" text.

Adding a variable makes a little more work for the Python interpreter.
When it processes the �rst line, it associates the variable message with the
"Hello Python world!" text. When it reaches the second line, it prints the
value associated with message to the screen.

Let’s expand on this program by modifying hello_world.py to print a sec-
ond message. Add a blank line to hello_world.py, and then add two new lines
of code:

message = "Hello Python world!"
print(message)

message = "Hello Python Crash Course world!"
print(message)

Now when you run hello_world.py, you should see two lines of output:

Hello Python world!
Hello Python Crash Course world!

You can change the value of a variable in your program at any time,
and Python will always keep track of its current value.

Variables and Simple Data Types 17

Naming and Using Variables
When you’re using variables in Python, you need to adhere to a few rules
and guidelines. Breaking some of these rules will cause errors; other guide-
lines just help you write code that’s easier to read and understand. Be sure
to keep the following rules in mind when working with variables:

• Variable names can contain only letters, numbers, and underscores.
They can start with a letter or an underscore, but not with a number.
For instance, you can call a variable message_1 but not 1_message.

• Spaces are not allowed in variable names, but underscores can be used
to separate words in variable names. For example, greeting_message works
but greeting message will cause errors.

• Avoid using Python keywords and function names as variable names.
For example, do not use the word print as a variable name; Python
has reserved it for a particular programmatic purpose. (See “Python
Keywords and Built-in Functions” on page 466.)

• Variable names should be short but descriptive. For example, name is
better than n, student_name is better than s_n, and name_length is better
than length_of_persons_name.

• Be careful when using the lowercase letter l and the uppercase letter O
because they could be confused with the numbers 1 and 0.

It can take some practice to learn how to create good variable names,
especially as your programs become more interesting and complicated.
As you write more programs and start to read through other people’s code,
you’ll get better at coming up with meaningful names.

N O T E The Python variables you’re using at this point should be lowercase. You won’t get
errors if you use uppercase letters, but uppercase letters in variable names have spe-
cial meanings that we’ll discuss in later chapters.

Avoiding Name Errors When Using Variables
Every programmer makes mistakes, and most make mistakes every day.
Although good programmers might create errors, they also know how to
respond to those errors ef�ciently. Let’s look at an error you’re likely to
make early on and learn how to �x it.

We’ll write some code that generates an error on purpose. Enter the fol-
lowing code, including the misspelled word mesage, which is shown in bold:

message = "Hello Python Crash Course reader!"
print(mesage)

When an error occurs in your program, the Python interpreter does its
best to help you �gure out where the problem is. The interpreter provides
a traceback when a program cannot run successfully. A traceback is a record
of where the interpreter ran into trouble when trying to execute your code.

18 Chapter 2

Here’s an example of the traceback that Python provides after you’ve acci-
dentally misspelled a variable’s name:

Traceback (most recent call last):
1 File "hello_world.py", line 2, in <module>
2 print(mesage)

 ^^^^^^
3 NameError: name 'mesage' is not defined. Did you mean: 'message'?

The output reports that an error occurs in line 2 of the �le hello_world.py 1.
The interpreter shows this line 2 to help us spot the error quickly and
tells us what kind of error it found 3. In this case it found a name error
and reports that the variable being printed, mesage, has not been de�ned.
Python can’t identify the variable name provided. A name error usually
means we either forgot to set a variable’s value before using it, or we made a
spelling mistake when entering the variable’s name. If Python �nds a vari-
able name that’s similar to the one it doesn’t recognize, it will ask if that’s
the name you meant to use.

In this example we omitted the letter s in the variable name message in
the second line. The Python interpreter doesn’t spellcheck your code, but
it does ensure that variable names are spelled consistently. For example,
watch what happens when we spell message incorrectly in the line that
de�nes the variable:

mesage = "Hello Python Crash Course reader!"
print(mesage)

In this case, the program runs successfully!

Hello Python Crash Course reader!

The variable names match, so Python sees no issue. Programming lan-
guages are strict, but they disregard good and bad spelling. As a result, you
don’t need to consider English spelling and grammar rules when you’re try-
ing to create variable names and writing code.

Many programming errors are simple, single-character typos in one
line of a program. If you �nd yourself spending a long time searching for
one of these errors, know that you’re in good company. Many experienced
and talented programmers spend hours hunting down these kinds of tiny
errors. Try to laugh about it and move on, knowing it will happen frequently
throughout your programming life.

Variables Are Labels
Variables are often described as boxes you can store values in. This idea can
be helpful the �rst few times you use a variable, but it isn’t an accurate way
to describe how variables are represented internally in Python. It’s much
better to think of variables as labels that you can assign to values. You can
also say that a variable references a certain value.

Variables and Simple Data Types 19

This distinction probably won’t matter much in your initial programs,
but it’s worth learning earlier rather than later. At some point, you’ll see
unexpected behavior from a variable, and an accurate understanding of
how variables work will help you identify what’s happening in your code.

N O T E The best way to understand new programming concepts is to try using them in your
programs. If you get stuck while working on an exercise in this book, try doing some-
thing else for a while. If you’re still stuck, review the relevant part of that chapter. If
you still need help, see the suggestions in Appendix C.

T RY IT YOURSEL F

Write a separate program to accomplish each of these exercises. Save each pro-

gram with a filename that follows standard Python conventions, using lowercase

letters and underscores, such as simple_message.py and simple_messages.py.

2-1. Simple Message: Assign a message to a variable, and then print that

message.

2-2. Simple Messages: Assign a message to a variable, and print that message.

Then change the value of the variable to a new message, and print the new

message.

Strings

Because most programs de�ne and gather some sort of data and then do
something useful with it, it helps to classify different types of data. The �rst
data type we’ll look at is the string. Strings are quite simple at �rst glance,
but you can use them in many different ways.

A string is a series of characters. Anything inside quotes is considered
a string in Python, and you can use single or double quotes around your
strings like this:

"This is a string."
'This is also a string.'

This �exibility allows you to use quotes and apostrophes within your
strings:

'I told my friend, "Python is my favorite language!"'
"The language 'Python' is named after Monty Python, not the snake."
"One of Python's strengths is its diverse and supportive community."

Let’s explore some of the ways you can use strings.

20 Chapter 2

Changing Case in a String with Methods
One of the simplest tasks you can do with strings is change the case of the
words in a string. Look at the following code, and try to determine what’s
happening:

name.py name = "ada lovelace"
print(name.title())

Save this �le as name.py and then run it. You should see this output:

Ada Lovelace

In this example, the variable name refers to the lowercase string "ada
lovelace". The method title() appears after the variable in the print() call. A
method is an action that Python can perform on a piece of data. The dot (.)
after name in name.title() tells Python to make the title() method act on
the variable name. Every method is followed by a set of parentheses, because
methods often need additional information to do their work. That informa-
tion is provided inside the parentheses. The title() function doesn’t need
any additional information, so its parentheses are empty.

The title() method changes each word to title case, where each word
begins with a capital letter. This is useful because you’ll often want to think
of a name as a piece of information. For example, you might want your pro-
gram to recognize the input values Ada, ADA, and ada as the same name, and
display all of them as Ada.

Several other useful methods are available for dealing with case as well.
For example, you can change a string to all uppercase or all lowercase let-
ters like this:

name = "Ada Lovelace"
print(name.upper())
print(name.lower())

This will display the following:

ADA LOVELACE
ada lovelace

The lower() method is particularly useful for storing data. You typi-
cally won’t want to trust the capitalization that your users provide, so you’ll
convert strings to lowercase before storing them. Then when you want to
display the information, you’ll use the case that makes the most sense for
each string.

Using Variables in Strings
In some situations, you’ll want to use a variable’s value inside a string. For
example, you might want to use two variables to represent a �rst name and

Variables and Simple Data Types 21

a last name, respectively, and then combine those values to display some-
one’s full name:

full_name.py first_name = "ada"
last_name = "lovelace"

1 full_name = f"{first_name} {last_name}"
print(full_name)

To insert a variable’s value into a string, place the letter f immediately
before the opening quotation mark 1. Put braces around the name or
names of any variable you want to use inside the string. Python will replace
each variable with its value when the string is displayed.

These strings are called f-strings. The f is for format, because Python
formats the string by replacing the name of any variable in braces with its
value. The output from the previous code is:

ada lovelace

You can do a lot with f-strings. For example, you can use f-strings to
compose complete messages using the information associated with a vari-
able, as shown here:

first_name = "ada"
last_name = "lovelace"
full_name = f"{first_name} {last_name}"

1 print(f"Hello, {full_name.title()}!")

The full name is used in a sentence that greets the user 1, and the
title() method changes the name to title case. This code returns a simple
but nicely formatted greeting:

Hello, Ada Lovelace!

You can also use f-strings to compose a message, and then assign the
entire message to a variable:

first_name = "ada"
last_name = "lovelace"
full_name = f"{first_name} {last_name}"

1 message = f"Hello, {full_name.title()}!"
2 print(message)

This code displays the message Hello, Ada Lovelace! as well, but by
assigning the message to a variable 1 we make the �nal print() call much
simpler 2.

Adding Whitespace to Strings with Tabs or Newlines
In programming, whitespace refers to any nonprinting characters, such as
spaces, tabs, and end-of-line symbols. You can use whitespace to organize
your output so it’s easier for users to read.

22 Chapter 2

To add a tab to your text, use the character combination \t:

>>> print("Python")
Python
>>> print("\tPython")
 Python

To add a newline in a string, use the character combination \n:

>>> print("Languages:\nPython\nC\nJavaScript")
Languages:
Python
C
JavaScript

You can also combine tabs and newlines in a single string. The string
"\n\t" tells Python to move to a new line, and start the next line with a tab.
The following example shows how you can use a one-line string to generate
four lines of output:

>>> print("Languages:\n\tPython\n\tC\n\tJavaScript")
Languages:
 Python
 C
 JavaScript

Newlines and tabs will be very useful in the next two chapters, when
you start to produce many lines of output from just a few lines of code.

Stripping Whitespace
Extra whitespace can be confusing in your programs. To programmers,
'python' and 'python ' look pretty much the same. But to a program, they
are two different strings. Python detects the extra space in 'python ' and
considers it signi�cant unless you tell it otherwise.

It’s important to think about whitespace, because often you’ll want to
compare two strings to determine whether they are the same. For example,
one important instance might involve checking people’s usernames when
they log in to a website. Extra whitespace can be confusing in much sim-
pler situations as well. Fortunately, Python makes it easy to eliminate extra
whitespace from data that people enter.

Python can look for extra whitespace on the right and left sides of a
string. To ensure that no whitespace exists at the right side of a string, use
the rstrip() method:

1 >>> favorite_language = 'python '
2 >>> favorite_language

'python '
3 >>> favorite_language.rstrip()

'python'
4 >>> favorite_language

'python '

Variables and Simple Data Types 23

The value associated with favorite_language 1 contains extra whitespace
at the end of the string. When you ask Python for this value in a termi-
nal session, you can see the space at the end of the value 2. When the
rstrip() method acts on the variable favorite_language 3, this extra space is
removed. However, it is only removed temporarily. If you ask for the value
of favorite_language again, the string looks the same as when it was entered,
including the extra whitespace 4.

To remove the whitespace from the string permanently, you have to
associate the stripped value with the variable name:

>>> favorite_language = 'python '
1 >>> favorite_language = favorite_language.rstrip()

>>> favorite_language
'python'

To remove the whitespace from the string, you strip the whitespace
from the right side of the string and then associate this new value with
the original variable 1. Changing a variable’s value is done often in pro-
gramming. This is how a variable’s value can be updated as a program is
executed or in response to user input.

You can also strip whitespace from the left side of a string using the
lstrip() method, or from both sides at once using strip():

1 >>> favorite_language = ' python '
2 >>> favorite_language.rstrip()

' python'
3 >>> favorite_language.lstrip()

'python '
4 >>> favorite_language.strip()

'python'

In this example, we start with a value that has whitespace at the begin-
ning and the end 1. We then remove the extra space from the right side 2,
from the left side 3, and from both sides 4. Experimenting with these strip-
ping functions can help you become familiar with manipulating strings. In
the real world, these stripping functions are used most often to clean up
user input before it’s stored in a program.

Removing Prefixes
When working with strings, another common task is to remove a pre�x.
Consider a URL with the common pre�x https://. We want to remove this
pre�x, so we can focus on just the part of the URL that users need to enter
into an address bar. Here’s how to do that:

>>> nostarch_url = 'https://nostarch.com'
>>> nostarch_url.removeprefix('https://')
'nostarch.com'

24 Chapter 2

Enter the name of the variable followed by a dot, and then the method
removeprefix(). Inside the parentheses, enter the pre�x you want to remove
from the original string.

Like the methods for removing whitespace, removeprefix() leaves the
original string unchanged. If you want to keep the new value with the pre-
�x removed, either reassign it to the original variable or assign it to a new
variable:

>>> simple_url = nostarch_url.removeprefix('https://')

When you see a URL in an address bar and the https:// part isn’t shown,
the browser is probably using a method like removeprefix() behind the
scenes.

Avoiding Syntax Errors with Strings
One kind of error that you might see with some regularity is a syntax error.
A syntax error occurs when Python doesn’t recognize a section of your pro-
gram as valid Python code. For example, if you use an apostrophe within
single quotes, you’ll produce an error. This happens because Python inter-
prets everything between the �rst single quote and the apostrophe as a
string. It then tries to interpret the rest of the text as Python code, which
causes errors.

Here’s how to use single and double quotes correctly. Save this program
as apostrophe.py and then run it:

apostrophe.py message = "One of Python's strengths is its diverse community."
print(message)

The apostrophe appears inside a set of double quotes, so the Python
interpreter has no trouble reading the string correctly:

One of Python's strengths is its diverse community.

However, if you use single quotes, Python can’t identify where the string
should end:

message = 'One of Python's strengths is its diverse community.'
print(message)

You’ll see the following output:

 File "apostrophe.py", line 1
 message = 'One of Python's strengths is its diverse community.'
 1 ^
SyntaxError: unterminated string literal (detected at line 1)

In the output you can see that the error occurs right after the �nal single
quote 1. This syntax error indicates that the interpreter doesn’t recognize

Variables and Simple Data Types 25

something in the code as valid Python code, and it thinks the problem might
be a string that’s not quoted correctly. Errors can come from a variety of
sources, and I’ll point out some common ones as they arise. You might see
syntax errors often as you learn to write proper Python code. Syntax errors
are also the least speci�c kind of error, so they can be dif�cult and frustrat-
ing to identify and correct. If you get stuck on a particularly stubborn error,
see the suggestions in Appendix C.

N O T E Your editor’s syntax highlighting feature should help you spot some syntax errors
quickly as you write your programs. If you see Python code highlighted as if it’s
English or English highlighted as if it’s Python code, you probably have a mismatched
quotation mark somewhere in your �le.

T RY IT YOURSEL F

Save each of the following exercises as a separate file, with a name like name

_cases.py. If you get stuck, take a break or see the suggestions in Appendix C.

2-3. Personal Message: Use a variable to represent a person’s name, and print

a message to that person. Your message should be simple, such as, “Hello Eric,

would you like to learn some Python today?”

2-4. Name Cases: Use a variable to represent a person’s name, and then print

that person’s name in lowercase, uppercase, and title case.

2-5. Famous Quote: Find a quote from a famous person you admire. Print the

quote and the name of its author. Your output should look something like the

following, including the quotation marks:

Albert Einstein once said, “A person who never made a mistake never

tried anything new.”

2-6. Famous Quote 2: Repeat Exercise 2-5, but this time, represent the famous

person’s name using a variable called famous_person. Then compose your mes-

sage and represent it with a new variable called message. Print your message.

2-7. Stripping Names: Use a variable to represent a person’s name, and

include some whitespace characters at the beginning and end of the name.

Make sure you use each character combination, "\t" and "\n", at least once.

Print the name once, so the whitespace around the name is displayed.

Then print the name using each of the three stripping functions, lstrip(),

rstrip(), and strip().

2-8. File Extensions: Python has a removesuffix() method that works exactly

like removeprefix(). Assign the value 'python_notes.txt' to a variable called

filename. Then use the removesuffix() method to display the filename without

the file extension, like some file browsers do.

26 Chapter 2

Numbers

Numbers are used quite often in programming to keep score in games,
represent data in visualizations, store information in web applications, and
so on. Python treats numbers in several different ways, depending on how
they’re being used. Let’s �rst look at how Python manages integers, because
they’re the simplest to work with.

Integers
You can add (+), subtract (-), multiply (*), and divide (/) integers in Python.

>>> 2 + 3
5
>>> 3 - 2
1
>>> 2 * 3
6
>>> 3 / 2
1.5

In a terminal session, Python simply returns the result of the operation.
Python uses two multiplication symbols to represent exponents:

>>> 3 ** 2
9
>>> 3 ** 3
27
>>> 10 ** 6
1000000

Python supports the order of operations too, so you can use multiple
operations in one expression. You can also use parentheses to modify the
order of operations so Python can evaluate your expression in the order
you specify. For example:

>>> 2 + 3*4
14
>>> (2 + 3) * 4
20

The spacing in these examples has no effect on how Python evaluates
the expressions; it simply helps you more quickly spot the operations that
have priority when you’re reading through the code.

Floats
Python calls any number with a decimal point a �oat. This term is used in
most programming languages, and it refers to the fact that a decimal point

Variables and Simple Data Types 27

can appear at any position in a number. Every programming language must
be carefully designed to properly manage decimal numbers so numbers
behave appropriately, no matter where the decimal point appears.

For the most part, you can use �oats without worrying about how they
behave. Simply enter the numbers you want to use, and Python will most
likely do what you expect:

>>> 0.1 + 0.1
0.2
>>> 0.2 + 0.2
0.4
>>> 2 * 0.1
0.2
>>> 2 * 0.2
0.4

However, be aware that you can sometimes get an arbitrary number of
decimal places in your answer:

>>> 0.2 + 0.1
0.30000000000000004
>>> 3 * 0.1
0.30000000000000004

This happens in all languages and is of little concern. Python tries to
�nd a way to represent the result as precisely as possible, which is sometimes
dif�cult given how computers have to represent numbers internally. Just
ignore the extra decimal places for now; you’ll learn ways to deal with the
extra places when you need to in the projects in Part II.

Integers and Floats
When you divide any two numbers, even if they are integers that result in a
whole number, you’ll always get a �oat:

>>> 4/2
2.0

If you mix an integer and a �oat in any other operation, you’ll get a
�oat as well:

>>> 1 + 2.0
3.0
>>> 2 * 3.0
6.0
>>> 3.0 ** 2
9.0

28 Chapter 2

Python defaults to a �oat in any operation that uses a �oat, even if the
output is a whole number.

Underscores in Numbers
When you’re writing long numbers, you can group digits using underscores
to make large numbers more readable:

>>> universe_age = 14_000_000_000

When you print a number that was de�ned using underscores, Python
prints only the digits:

>>> print(universe_age)
14000000000

Python ignores the underscores when storing these kinds of values.
Even if you don’t group the digits in threes, the value will still be unaf-
fected. To Python, 1000 is the same as 1_000, which is the same as 10_00. This
feature works for both integers and �oats.

Multiple Assignment
You can assign values to more than one variable using just a single line of
code. This can help shorten your programs and make them easier to read;
you’ll use this technique most often when initializing a set of numbers.

For example, here’s how you can initialize the variables x, y, and z to zero:

>>> x, y, z = 0, 0, 0

You need to separate the variable names with commas, and do the same
with the values, and Python will assign each value to its respective variable.
As long as the number of values matches the number of variables, Python
will match them up correctly.

Constants
A constant is a variable whose value stays the same throughout the life of a
program. Python doesn’t have built-in constant types, but Python program-
mers use all capital letters to indicate a variable should be treated as a con-
stant and never be changed:

MAX_CONNECTIONS = 5000

When you want to treat a variable as a constant in your code, write the
name of the variable in all capital letters.

Variables and Simple Data Types 29

T RY IT YOURSEL F

2-9. Number Eight: Write addition, subtraction, multiplication, and division

operations that each result in the number 8. Be sure to enclose your operations

in print() calls to see the results. You should create four lines that look like this:

print(5+3)

Your output should be four lines, with the number 8 appearing once on

each line.

2-10. Favorite Number: Use a variable to represent your favorite number. Then,

using that variable, create a message that reveals your favorite number. Print

that message.

Comments

Comments are an extremely useful feature in most programming lan-
guages. Everything you’ve written in your programs so far is Python code.
As your programs become longer and more complicated, you should add
notes within your programs that describe your overall approach to the
problem you’re solving. A comment allows you to write notes in your spoken
language, within your programs.

How Do You Write Comments?
In Python, the hash mark (#) indicates a comment. Anything following a
hash mark in your code is ignored by the Python interpreter. For example:

comment.py # Say hello to everyone.
print("Hello Python people!")

Python ignores the �rst line and executes the second line.

Hello Python people!

What Kinds of Comments Should You Write?
The main reason to write comments is to explain what your code is sup-
posed to do and how you are making it work. When you’re in the middle
of working on a project, you understand how all of the pieces �t together.
But when you return to a project after some time away, you’ll likely have

30 Chapter 2

forgotten some of the details. You can always study your code for a while
and �gure out how segments were supposed to work, but writing good com-
ments can save you time by summarizing your overall approach clearly.

If you want to become a professional programmer or collaborate with
other programmers, you should write meaningful comments. Today, most
software is written collaboratively, whether by a group of employees at one
company or a group of people working together on an open source project.
Skilled programmers expect to see comments in code, so it’s best to start
adding descriptive comments to your programs now. Writing clear, concise
comments in your code is one of the most bene�cial habits you can form as
a new programmer.

When you’re deciding whether to write a comment, ask yourself if you
had to consider several approaches before coming up with a reasonable way
to make something work; if so, write a comment about your solution. It’s
much easier to delete extra comments later than to go back and write com-
ments for a sparsely commented program. From now on, I’ll use comments
in examples throughout this book to help explain sections of code.

T RY IT YOURSEL F

2-11. Adding Comments: Choose two of the programs you’ve written, and

add at least one comment to each. If you don’t have anything specific to write

because your programs are too simple at this point, just add your name and the

current date at the top of each program file. Then write one sentence describing

what the program does.

The Zen of Python

Experienced Python programmers will encourage you to avoid complexity
and aim for simplicity whenever possible. The Python community’s philoso-
phy is contained in “The Zen of Python” by Tim Peters. You can access this
brief set of principles for writing good Python code by entering import this
into your interpreter. I won’t reproduce the entire “Zen of Python” here, but
I’ll share a few lines to help you understand why they should be important
to you as a beginning Python programmer.

>>> import this
The Zen of Python, by Tim Peters
Beautiful is better than ugly.

Python programmers embrace the notion that code can be beautiful
and elegant. In programming, people solve problems. Programmers have
always respected well-designed, ef�cient, and even beautiful solutions to
problems. As you learn more about Python and use it to write more code,

Variables and Simple Data Types 31

someone might look over your shoulder one day and say, “Wow, that’s some
beautiful code!”

Simple is better than complex.

If you have a choice between a simple and a complex solution, and both
work, use the simple solution. Your code will be easier to maintain, and it
will be easier for you and others to build on that code later on.

Complex is better than complicated.

Real life is messy, and sometimes a simple solution to a problem is unat-
tainable. In that case, use the simplest solution that works.

Readability counts.

Even when your code is complex, aim to make it readable. When you’re
working on a project that involves complex coding, focus on writing infor-
mative comments for that code.

There should be one-- and preferably only one --obvious way to do it.

If two Python programmers are asked to solve the same problem, they
should come up with fairly compatible solutions. This is not to say there’s
no room for creativity in programming. On the contrary, there is plenty of
room for creativity! However, much of programming consists of using small,
common approaches to simple situations within a larger, more creative
project. The nuts and bolts of your programs should make sense to other
Python programmers.

Now is better than never.

You could spend the rest of your life learning all the intricacies of
Python and of programming in general, but then you’d never complete any
projects. Don’t try to write perfect code; write code that works, and then
decide whether to improve your code for that project or move on to some-
thing new.

As you continue to the next chapter and start digging into more
involved topics, try to keep this philosophy of simplicity and clarity in mind.
Experienced programmers will respect your code more and will be happy to
give you feedback and collaborate with you on interesting projects.

T RY IT YOURSEL F

2-12. Zen of Python: Enter import this into a Python terminal session and skim

through the additional principles.

32 Chapter 2

Summary

In this chapter you learned how to work with variables. You learned to use
descriptive variable names and resolve name errors and syntax errors when
they arise. You learned what strings are and how to display them using low-
ercase, uppercase, and title case. You started using whitespace to organize
output neatly, and you learned how to remove unneeded elements from a
string. You started working with integers and �oats, and you learned some
of the ways you can work with numerical data. You also learned to write
explanatory comments to make your code easier for you and others to read.
Finally, you read about the philosophy of keeping your code as simple as
possible, whenever possible.

In Chapter 3, you’ll learn how to store collections of information in
data structures called lists. You’ll also learn how to work through a list,
manipulating any information in that list.

3
I N T R O D U C I N G L I S T S

In this chapter and the next you’ll learn

what lists are and how to start working with

the elements in a list. Lists allow you to store

sets of information in one place, whether you

have just a few items or millions of items. Lists are

one of Python’s most powerful features readily acces-

sible to new programmers, and they tie together many

important concepts in programming.

What Is a List?

A list is a collection of items in a particular order. You can make a list that
includes the letters of the alphabet, the digits from 0 to 9, or the names of
all the people in your family. You can put anything you want into a list, and
the items in your list don’t have to be related in any particular way. Because

34 Chapter 3

a list usually contains more than one element, it’s a good idea to make the
name of your list plural, such as letters, digits, or names.

In Python, square brackets ([]) indicate a list, and individual elements
in the list are separated by commas. Here’s a simple example of a list that
contains a few kinds of bicycles:

bicycles.py bicycles = ['trek', 'cannondale', 'redline', 'specialized']
print(bicycles)

If you ask Python to print a list, Python returns its representation of the
list, including the square brackets:

['trek', 'cannondale', 'redline', 'specialized']

Because this isn’t the output you want your users to see, let’s learn how
to access the individual items in a list.

Accessing Elements in a List
Lists are ordered collections, so you can access any element in a list by
telling Python the position, or index, of the item desired. To access an ele-
ment in a list, write the name of the list followed by the index of the item
enclosed in square brackets.

For example, let’s pull out the �rst bicycle in the list bicycles:

bicycles = ['trek', 'cannondale', 'redline', 'specialized']
print(bicycles[0])

When we ask for a single item from a list, Python returns just that ele-
ment without square brackets:

trek

This is the result you want your users to see: clean, neatly formatted
output.

You can also use the string methods from Chapter 2 on any element in
this list. For example, you can format the element 'trek' to look more pre-
sentable by using the title() method:

bicycles = ['trek', 'cannondale', 'redline', 'specialized']
print(bicycles[0].title())

This example produces the same output as the preceding example,
except 'Trek' is capitalized.

Index Positions Start at 0, Not 1
Python considers the �rst item in a list to be at position 0, not position 1.
This is true of most programming languages, and the reason has to do with

Introducing Lists 35

how the list operations are implemented at a lower level. If you’re receiving
unexpected results, ask yourself if you’re making a simple but common off-
by-one error.

The second item in a list has an index of 1. Using this counting sys-
tem, you can get any element you want from a list by subtracting one from
its position in the list. For instance, to access the fourth item in a list, you
request the item at index 3.

The following asks for the bicycles at index 1 and index 3:

bicycles = ['trek', 'cannondale', 'redline', 'specialized']
print(bicycles[1])
print(bicycles[3])

This code returns the second and fourth bicycles in the list:

cannondale
specialized

Python has a special syntax for accessing the last element in a list. If you
ask for the item at index -1, Python always returns the last item in the list:

bicycles = ['trek', 'cannondale', 'redline', 'specialized']
print(bicycles[-1])

This code returns the value 'specialized'. This syntax is quite useful,
because you’ll often want to access the last items in a list without knowing
exactly how long the list is. This convention extends to other negative index
values as well. The index -2 returns the second item from the end of the list,
the index -3 returns the third item from the end, and so forth.

Using Individual Values from a List
You can use individual values from a list just as you would any other vari-
able. For example, you can use f-strings to create a message based on a
value from a list.

Let’s try pulling the �rst bicycle from the list and composing a message
using that value:

bicycles = ['trek', 'cannondale', 'redline', 'specialized']
message = f"My first bicycle was a {bicycles[0].title()}."

print(message)

We build a sentence using the value at bicycles[0] and assign it to the
variable message. The output is a simple sentence about the �rst bicycle in
the list:

My first bicycle was a Trek.

36 Chapter 3

T RY IT YOURSEL F

Try these short programs to get some firsthand experience with Python’s lists.

You might want to create a new folder for each chapter’s exercises, to keep

them organized.

3-1. Names: Store the names of a few of your friends in a list called names. Print

each person’s name by accessing each element in the list, one at a time.

3-2. Greetings: Start with the list you used in Exercise 3-1, but instead of just

printing each person’s name, print a message to them. The text of each mes-

sage should be the same, but each message should be personalized with the

person’s name.

3-3. Your Own List: Think of your favorite mode of transportation, such as a

motorcycle or a car, and make a list that stores several examples. Use your list

to print a series of statements about these items, such as “I would like to own a

Honda motorcycle.”

Modifying, Adding, and Removing Elements

Most lists you create will be dynamic, meaning you’ll build a list and then
add and remove elements from it as your program runs its course. For
example, you might create a game in which a player has to shoot aliens out
of the sky. You could store the initial set of aliens in a list and then remove
an alien from the list each time one is shot down. Each time a new alien
appears on the screen, you add it to the list. Your list of aliens will increase
and decrease in length throughout the course of the game.

Modifying Elements in a List
The syntax for modifying an element is similar to the syntax for accessing
an element in a list. To change an element, use the name of the list followed
by the index of the element you want to change, and then provide the new
value you want that item to have.

For example, say we have a list of motorcycles and the �rst item in the
list is 'honda'. We can change the value of this �rst item after the list has
been created:

motorcycles.py motorcycles = ['honda', 'yamaha', 'suzuki']
print(motorcycles)

motorcycles[0] = 'ducati'
print(motorcycles)

Introducing Lists 37

Here we de�ne the list motorcycles, with 'honda' as the �rst element.
Then we change the value of the �rst item to 'ducati'. The output shows
that the �rst item has been changed, while the rest of the list stays the same:

['honda', 'yamaha', 'suzuki']
['ducati', 'yamaha', 'suzuki']

You can change the value of any item in a list, not just the �rst item.

Adding Elements to a List
You might want to add a new element to a list for many reasons. For
example, you might want to make new aliens appear in a game, add new
data to a visualization, or add new registered users to a website you’ve
built. Python provides several ways to add new data to existing lists.

Appending Elements to the End of a List

The simplest way to add a new element to a list is to append the item to the
list. When you append an item to a list, the new element is added to the end
of the list. Using the same list we had in the previous example, we’ll add the
new element 'ducati' to the end of the list:

motorcycles = ['honda', 'yamaha', 'suzuki']
print(motorcycles)

motorcycles.append('ducati')
print(motorcycles)

Here the append() method adds 'ducati' to the end of the list, without
affecting any of the other elements in the list:

['honda', 'yamaha', 'suzuki']
['honda', 'yamaha', 'suzuki', 'ducati']

The append() method makes it easy to build lists dynamically. For example,
you can start with an empty list and then add items to the list using a series
of append() calls. Using an empty list, let’s add the elements 'honda', 'yamaha',
and 'suzuki' to the list:

motorcycles = []

motorcycles.append('honda')
motorcycles.append('yamaha')
motorcycles.append('suzuki')

print(motorcycles)

The resulting list looks exactly the same as the lists in the previous
examples:

['honda', 'yamaha', 'suzuki']

38 Chapter 3

Building lists this way is very common, because you often won’t know
the data your users want to store in a program until after the program is
running. To put your users in control, start by de�ning an empty list that
will hold the users’ values. Then append each new value provided to the list
you just created.

Inserting Elements into a List

You can add a new element at any position in your list by using the insert()
method. You do this by specifying the index of the new element and the
value of the new item:

motorcycles = ['honda', 'yamaha', 'suzuki']

motorcycles.insert(0, 'ducati')
print(motorcycles)

In this example, we insert the value 'ducati' at the beginning of the
list. The insert() method opens a space at position 0 and stores the value
'ducati' at that location:

['ducati', 'honda', 'yamaha', 'suzuki']

This operation shifts every other value in the list one position to the
right.

Removing Elements from a List
Often, you’ll want to remove an item or a set of items from a list. For example,
when a player shoots down an alien from the sky, you’ll most likely want to
remove it from the list of active aliens. Or when a user decides to cancel
their account on a web application you created, you’ll want to remove that
user from the list of active users. You can remove an item according to its
position in the list or according to its value.

Removing an Item Using the del Statement

If you know the position of the item you want to remove from a list, you can
use the del statement:

motorcycles = ['honda', 'yamaha', 'suzuki']
print(motorcycles)

del motorcycles[0]
print(motorcycles)

Here we use the del statement to remove the �rst item, 'honda', from the
list of motorcycles:

['honda', 'yamaha', 'suzuki']
['yamaha', 'suzuki']

Introducing Lists 39

You can remove an item from any position in a list using the del state-
ment if you know its index. For example, here’s how to remove the second
item, 'yamaha', from the list:

motorcycles = ['honda', 'yamaha', 'suzuki']
print(motorcycles)

del motorcycles[1]
print(motorcycles)

The second motorcycle is deleted from the list:

['honda', 'yamaha', 'suzuki']
['honda', 'suzuki']

In both examples, you can no longer access the value that was removed
from the list after the del statement is used.

Removing an Item Using the pop() Method

Sometimes you’ll want to use the value of an item after you remove it from a
list. For example, you might want to get the x and y position of an alien that
was just shot down, so you can draw an explosion at that position. In a web
application, you might want to remove a user from a list of active members
and then add that user to a list of inactive members.

The pop() method removes the last item in a list, but it lets you work
with that item after removing it. The term pop comes from thinking of a
list as a stack of items and popping one item off the top of the stack. In this
analogy, the top of a stack corresponds to the end of a list.

Let’s pop a motorcycle from the list of motorcycles:

1 motorcycles = ['honda', 'yamaha', 'suzuki']
print(motorcycles)

2 popped_motorcycle = motorcycles.pop()
3 print(motorcycles)
4 print(popped_motorcycle)

We start by de�ning and printing the list motorcycles 1. Then we pop a
value from the list, and assign that value to the variable popped_motorcycle 2.
We print the list 3 to show that a value has been removed from the list.
Then we print the popped value 4 to prove that we still have access to the
value that was removed.

The output shows that the value 'suzuki' was removed from the end of
the list and is now assigned to the variable popped_motorcycle:

['honda', 'yamaha', 'suzuki']
['honda', 'yamaha']
suzuki

40 Chapter 3

How might this pop() method be useful? Imagine that the motorcycles
in the list are stored in chronological order, according to when we owned
them. If this is the case, we can use the pop() method to print a statement
about the last motorcycle we bought:

motorcycles = ['honda', 'yamaha', 'suzuki']

last_owned = motorcycles.pop()
print(f"The last motorcycle I owned was a {last_owned.title()}.")

The output is a simple sentence about the most recent motorcycle we
owned:

The last motorcycle I owned was a Suzuki.

Popping Items from Any Position in a List

You can use pop() to remove an item from any position in a list by including
the index of the item you want to remove in parentheses:

motorcycles = ['honda', 'yamaha', 'suzuki']

first_owned = motorcycles.pop(0)
print(f"The first motorcycle I owned was a {first_owned.title()}.")

We start by popping the �rst motorcycle in the list, and then we print a
message about that motorcycle. The output is a simple sentence describing
the �rst motorcycle I ever owned:

The first motorcycle I owned was a Honda.

Remember that each time you use pop(), the item you work with is no
longer stored in the list.

If you’re unsure whether to use the del statement or the pop() method,
here’s a simple way to decide: when you want to delete an item from a list
and not use that item in any way, use the del statement; if you want to use an
item as you remove it, use the pop() method.

Removing an Item by Value

Sometimes you won’t know the position of the value you want to remove
from a list. If you only know the value of the item you want to remove, you
can use the remove() method.

For example, say we want to remove the value 'ducati' from the list of
motorcycles:

motorcycles = ['honda', 'yamaha', 'suzuki', 'ducati']
print(motorcycles)

motorcycles.remove('ducati')
print(motorcycles)

Introducing Lists 41

Here the remove() method tells Python to �gure out where 'ducati'
appears in the list and remove that element:

['honda', 'yamaha', 'suzuki', 'ducati']
['honda', 'yamaha', 'suzuki']

You can also use the remove() method to work with a value that’s being
removed from a list. Let’s remove the value 'ducati' and print a reason for
removing it from the list:

1 motorcycles = ['honda', 'yamaha', 'suzuki', 'ducati']
print(motorcycles)

2 too_expensive = 'ducati'
3 motorcycles.remove(too_expensive)

print(motorcycles)
4 print(f"\nA {too_expensive.title()} is too expensive for me.")

After de�ning the list 1, we assign the value 'ducati' to a variable
called too_expensive 2. We then use this variable to tell Python which value
to remove from the list 3. The value 'ducati' has been removed from
the list 4 but is still accessible through the variable too_expensive, allow-
ing us to print a statement about why we removed 'ducati' from the list of
motorcycles:

['honda', 'yamaha', 'suzuki', 'ducati']
['honda', 'yamaha', 'suzuki']

A Ducati is too expensive for me.

N O T E The remove() method deletes only the �rst occurrence of the value you specify. If there’s
a possibility the value appears more than once in the list, you’ll need to use a loop
to make sure all occurrences of the value are removed. You’ll learn how to do this in
Chapter 7.

T RY IT YOURSEL F

The following exercises are a bit more complex than those in Chapter 2, but

they give you an opportunity to use lists in all of the ways described.

3-4. Guest List: If you could invite anyone, living or deceased, to dinner, who

would you invite? Make a list that includes at least three people you’d like to

invite to dinner. Then use your list to print a message to each person, inviting

them to dinner.

(continued)

42 Chapter 3

3-5. Changing Guest List: You just heard that one of your guests can’t make the

dinner, so you need to send out a new set of invitations. You’ll have to think of

someone else to invite.

• Start with your program from Exercise 3-4. Add a print() call at the end of

your program, stating the name of the guest who can’t make it.

• Modify your list, replacing the name of the guest who can’t make it with the

name of the new person you are inviting.

• Print a second set of invitation messages, one for each person who is still in

your list.

3-6. More Guests: You just found a bigger dinner table, so now more space is

available. Think of three more guests to invite to dinner.

• Start with your program from Exercise 3-4 or 3-5. Add a print() call to the

end of your program, informing people that you found a bigger table.

• Use insert() to add one new guest to the beginning of your list.

• Use insert() to add one new guest to the middle of your list.

• Use append() to add one new guest to the end of your list.

• Print a new set of invitation messages, one for each person in your list.

3-7. Shrinking Guest List: You just found out that your new dinner table won’t

arrive in time for the dinner, and now you have space for only two guests.

• Start with your program from Exercise 3-6. Add a new line that prints a

message saying that you can invite only two people for dinner.

• Use pop() to remove guests from your list one at a time until only two

names remain in your list. Each time you pop a name from your list, print a

message to that person letting them know you’re sorry you can’t invite them

to dinner.

• Print a message to each of the two people still on your list, letting them

know they’re still invited.

• Use del to remove the last two names from your list, so you have an empty

list. Print your list to make sure you actually have an empty list at the end of

your program.

Organizing a List

Often, your lists will be created in an unpredictable order, because you
can’t always control the order in which your users provide their data.
Although this is unavoidable in most circumstances, you’ll frequently want
to present your information in a particular order. Sometimes you’ll want

Introducing Lists 43

to preserve the original order of your list, and other times you’ll want to
change the original order. Python provides a number of different ways to
organize your lists, depending on the situation.

Sorting a List Permanently with the sort() Method
Python’s sort() method makes it relatively easy to sort a list. Imagine we
have a list of cars and want to change the order of the list to store them
alphabetically. To keep the task simple, let’s assume that all the values in
the list are lowercase:

cars.py cars = ['bmw', 'audi', 'toyota', 'subaru']
cars.sort()
print(cars)

The sort() method changes the order of the list permanently. The cars
are now in alphabetical order, and we can never revert to the original order:

['audi', 'bmw', 'subaru', 'toyota']

You can also sort this list in reverse-alphabetical order by passing the
argument reverse=True to the sort() method. The following example sorts
the list of cars in reverse-alphabetical order:

cars = ['bmw', 'audi', 'toyota', 'subaru']
cars.sort(reverse=True)
print(cars)

Again, the order of the list is permanently changed:

['toyota', 'subaru', 'bmw', 'audi']

Sorting a List Temporarily with the sorted() Function
To maintain the original order of a list but present it in a sorted order, you
can use the sorted() function. The sorted() function lets you display your list
in a particular order, but doesn’t affect the actual order of the list.

Let’s try this function on the list of cars.

cars = ['bmw', 'audi', 'toyota', 'subaru']

1 print("Here is the original list:")
print(cars)

2 print("\nHere is the sorted list:")
print(sorted(cars))

3 print("\nHere is the original list again:")
print(cars)

44 Chapter 3

We �rst print the list in its original order 1 and then in alphabetical
order 2. After the list is displayed in the new order, we show that the list is
still stored in its original order 3:

Here is the original list:
['bmw', 'audi', 'toyota', 'subaru']

Here is the sorted list:
['audi', 'bmw', 'subaru', 'toyota']

1 Here is the original list again:
['bmw', 'audi', 'toyota', 'subaru']

Notice that the list still exists in its original order 1 after the sorted()
function has been used. The sorted() function can also accept a reverse=True
argument if you want to display a list in reverse-alphabetical order.

N O T E Sorting a list alphabetically is a bit more complicated when all the values are not in
lowercase. There are several ways to interpret capital letters when determining a sort
order, and specifying the exact order can be more complex than we want to deal with
at this time. However, most approaches to sorting will build directly on what you
learned in this section.

Printing a List in Reverse Order
To reverse the original order of a list, you can use the reverse() method. If
we originally stored the list of cars in chronological order according to when
we owned them, we could easily rearrange the list into reverse-chronological
order:

cars = ['bmw', 'audi', 'toyota', 'subaru']
print(cars)

cars.reverse()
print(cars)

Notice that reverse() doesn’t sort backward alphabetically; it simply
reverses the order of the list:

['bmw', 'audi', 'toyota', 'subaru']
['subaru', 'toyota', 'audi', 'bmw']

The reverse() method changes the order of a list permanently, but you
can revert to the original order anytime by applying reverse() to the same
list a second time.

Finding the Length of a List
You can quickly �nd the length of a list by using the len() function. The list
in this example has four items, so its length is 4:

>>> cars = ['bmw', 'audi', 'toyota', 'subaru']
>>> len(cars)
4

Introducing Lists 45

You’ll �nd len() useful when you need to identify the number of aliens
that still need to be shot down in a game, determine the amount of data
you have to manage in a visualization, or �gure out the number of regis-
tered users on a website, among other tasks.

N O T E Python counts the items in a list starting with one, so you shouldn’t run into any
off-by-one errors when determining the length of a list.

T RY IT YOURSEL F

3-8. Seeing the World: Think of at least five places in the world you’d like

to visit.

• Store the locations in a list. Make sure the list is not in alphabetical order.

• Print your list in its original order. Don’t worry about printing the list neatly;

just print it as a raw Python list.

• Use sorted() to print your list in alphabetical order without modifying the

actual list.

• Show that your list is still in its original order by printing it.

• Use sorted() to print your list in reverse-alphabetical order without chang-

ing the order of the original list.

• Show that your list is still in its original order by printing it again.

• Use reverse() to change the order of your list. Print the list to show that its

order has changed.

• Use reverse() to change the order of your list again. Print the list to show

it’s back to its original order.

• Use sort() to change your list so it’s stored in alphabetical order. Print the

list to show that its order has been changed.

• Use sort() to change your list so it’s stored in reverse-alphabetical order.

Print the list to show that its order has changed.

3-9. Dinner Guests: Working with one of the programs from Exercises 3-4

through 3-7 (pages 41–42), use len() to print a message indicating the number

of people you’re inviting to dinner.

3-10. Every Function: Think of things you could store in a list. For example, you

could make a list of mountains, rivers, countries, cities, languages, or anything

else you’d like. Write a program that creates a list containing these items and

then uses each function introduced in this chapter at least once.

46 Chapter 3

Avoiding Index Errors When Working with Lists

There’s one type of error that’s common to see when you’re working with
lists for the �rst time. Let’s say you have a list with three items, and you ask
for the fourth item:

motorcycles.py motorcycles = ['honda', 'yamaha', 'suzuki']
print(motorcycles[3])

This example results in an index error:

Traceback (most recent call last):
 File "motorcycles.py", line 2, in <module>
 print(motorcycles[3])
          ~~~~~~~~~~~^^^
IndexError: list index out of range

Python attempts to give you the item at index 3. But when it searches 
the list, no item in motorcycles has an index of 3. Because of the off-by-one 
nature of indexing in lists, this error is typical. People think the third item 
is item number 3, because they start counting at 1. But in Python the third 
item is number 2, because it starts indexing at 0.

An index error means Python can’t �nd an item at the index you 
requested. If an index error occurs in your program, try adjusting the 
index you’re asking for by one. Then run the program again to see if the 
results are correct.

Keep in mind that whenever you want to access the last item in a list, 
you should use the index -1. This will always work, even if your list has 
changed size since the last time you accessed it:

motorcycles = ['honda', 'yamaha', 'suzuki']
print(motorcycles[-1])

The index -1 always returns the last item in a list, in this case the value 
'suzuki':

suzuki

The only time this approach will cause an error is when you request the 
last item from an empty list:

motorcycles = []
print(motorcycles[-1])

No items are in motorcycles, so Python returns another index error:

Traceback (most recent call last):
  File "motorcyles.py", line 3, in <module>
    print(motorcycles[-1])
          ~~~~~~~~~~~^^^^
IndexError: list index out of range

Introducing Lists 47

If an index error occurs and you can’t �gure out how to resolve it, try
printing your list or just printing the length of your list. Your list might look
much different than you thought it did, especially if it has been managed
dynamically by your program. Seeing the actual list, or the exact number of
items in your list, can help you sort out such logical errors.

T RY IT YOURSEL F

3-11. Intentional Error: If you haven’t received an index error in one of your pro-

grams yet, try to make one happen. Change an index in one of your programs

to produce an index error. Make sure you correct the error before closing the

program.

Summary

In this chapter, you learned what lists are and how to work with the indi-
vidual items in a list. You learned how to de�ne a list and how to add and
remove elements. You learned how to sort lists permanently and temporar-
ily for display purposes. You also learned how to �nd the length of a list and
how to avoid index errors when you’re working with lists.

In Chapter 4 you’ll learn how to work with items in a list more ef�ciently.
By looping through each item in a list using just a few lines of code you’ll be
able to work ef�ciently, even when your list contains thousands or millions
of items.

4
W O R K I N G W I T H L I S T S

In Chapter 3 you learned how to make a

simple list, and you learned to work with the

individual elements in a list. In this chapter

you’ll learn how to loop through an entire list

using just a few lines of code, regardless of how long the

list is. Looping allows you to take the same action, or set

of actions, with every item in a list. As a result, you’ll be

able to work ef�ciently with lists of any length, including

those with thousands or even millions of items.

Looping Through an Entire List

You’ll often want to run through all entries in a list, performing the same
task with each item. For example, in a game you might want to move every
element on the screen by the same amount. In a list of numbers, you
might want to perform the same statistical operation on every element.

50 Chapter 4

Or perhaps you’ll want to display each headline from a list of articles on a
website. When you want to do the same action with every item in a list, you
can use Python’s for loop.

Say we have a list of magicians’ names, and we want to print out each
name in the list. We could do this by retrieving each name from the list indi-
vidually, but this approach could cause several problems. For one, it would
be repetitive to do this with a long list of names. Also, we’d have to change
our code each time the list’s length changed. Using a for loop avoids both of
these issues by letting Python manage these issues internally.

Let’s use a for loop to print out each name in a list of magicians:

magicians.py magicians = ['alice', 'david', 'carolina']
for magician in magicians:
 print(magician)

We begin by de�ning a list, just as we did in Chapter 3. Then we de�ne
a for loop. This line tells Python to pull a name from the list magicians,
and associate it with the variable magician. Next, we tell Python to print the
name that’s just been assigned to magician. Python then repeats these last
two lines, once for each name in the list. It might help to read this code as
“For every magician in the list of magicians, print the magician’s name.”
The output is a simple printout of each name in the list:

alice
david
carolina

A Closer Look at Looping
Looping is important because it’s one of the most common ways a computer
automates repetitive tasks. For example, in a simple loop like we used in
magicians.py, Python initially reads the �rst line of the loop:

for magician in magicians:

This line tells Python to retrieve the �rst value from the list magicians
and associate it with the variable magician. This �rst value is 'alice'. Python
then reads the next line:

 print(magician)

Python prints the current value of magician, which is still 'alice'. Because
the list contains more values, Python returns to the �rst line of the loop:

for magician in magicians:

Python retrieves the next name in the list, 'david', and associates that
value with the variable magician. Python then executes the line:

 print(magician)

Working with Lists 51

Python prints the current value of magician again, which is now 'david'.
Python repeats the entire loop once more with the last value in the list,
'carolina'. Because no more values are in the list, Python moves on to the
next line in the program. In this case nothing comes after the for loop, so
the program ends.

When you’re using loops for the �rst time, keep in mind that the set of
steps is repeated once for each item in the list, no matter how many items
are in the list. If you have a million items in your list, Python repeats these
steps a million times—and usually very quickly.

Also keep in mind when writing your own for loops that you can choose
any name you want for the temporary variable that will be associated with
each value in the list. However, it’s helpful to choose a meaningful name
that represents a single item from the list. For example, here’s a good way to
start a for loop for a list of cats, a list of dogs, and a general list of items:

for cat in cats:
for dog in dogs:
for item in list_of_items:

These naming conventions can help you follow the action being done
on each item within a for loop. Using singular and plural names can help
you identify whether a section of code is working with a single element from
the list or the entire list.

Doing More Work Within a for Loop
You can do just about anything with each item in a for loop. Let’s build on
the previous example by printing a message to each magician, telling them
that they performed a great trick:

magicians.py magicians = ['alice', 'david', 'carolina']
for magician in magicians:
 print(f"{magician.title()}, that was a great trick!")

The only difference in this code is where we compose a message to each
magician, starting with that magician’s name. The �rst time through the
loop the value of magician is 'alice', so Python starts the �rst message with the
name 'Alice'. The second time through, the message will begin with 'David',
and the third time through, the message will begin with 'Carolina'.

The output shows a personalized message for each magician in the list:

Alice, that was a great trick!
David, that was a great trick!
Carolina, that was a great trick!

You can also write as many lines of code as you like in the for loop. Every
indented line following the line for magician in magicians is considered inside
the loop, and each indented line is executed once for each value in the list.
Therefore, you can do as much work as you like with each value in the list.

52 Chapter 4

Let’s add a second line to our message, telling each magician that we’re
looking forward to their next trick:

magicians = ['alice', 'david', 'carolina']
for magician in magicians:
 print(f"{magician.title()}, that was a great trick!")
 print(f"I can't wait to see your next trick, {magician.title()}.\n")

Because we have indented both calls to print(), each line will be exe-
cuted once for every magician in the list. The newline ("\n") in the second
print() call inserts a blank line after each pass through the loop. This cre-
ates a set of messages that are neatly grouped for each person in the list:

Alice, that was a great trick!
I can't wait to see your next trick, Alice.

David, that was a great trick!
I can't wait to see your next trick, David.

Carolina, that was a great trick!
I can't wait to see your next trick, Carolina.

You can use as many lines as you like in your for loops. In practice,
you’ll often �nd it useful to do a number of different operations with each
item in a list when you use a for loop.

Doing Something After a for Loop
What happens once a for loop has �nished executing? Usually, you’ll want
to summarize a block of output or move on to other work that your pro-
gram must accomplish.

Any lines of code after the for loop that are not indented are executed
once without repetition. Let’s write a thank you to the group of magicians
as a whole, thanking them for putting on an excellent show. To display this
group message after all of the individual messages have been printed, we
place the thank you message after the for loop, without indentation:

magicians = ['alice', 'david', 'carolina']
for magician in magicians:
 print(f"{magician.title()}, that was a great trick!")
 print(f"I can't wait to see your next trick, {magician.title()}.\n")

print("Thank you, everyone. That was a great magic show!")

The �rst two calls to print() are repeated once for each magician in the
list, as you saw earlier. However, because the last line is not indented, it’s
printed only once:

Alice, that was a great trick!
I can't wait to see your next trick, Alice.

David, that was a great trick!

Working with Lists 53

I can't wait to see your next trick, David.

Carolina, that was a great trick!
I can't wait to see your next trick, Carolina.

Thank you, everyone. That was a great magic show!

When you’re processing data using a for loop, you’ll �nd that this is a
good way to summarize an operation that was performed on an entire data-
set. For example, you might use a for loop to initialize a game by running
through a list of characters and displaying each character on the screen.
You might then write some additional code after this loop that displays a
Play Now button after all the characters have been drawn to the screen.

Avoiding Indentation Errors

Python uses indentation to determine how a line, or group of lines, is related
to the rest of the program. In the previous examples, the lines that printed
messages to individual magicians were part of the for loop because they
were indented. Python’s use of indentation makes code very easy to read.
Basically, it uses whitespace to force you to write neatly formatted code with
a clear visual structure. In longer Python programs, you’ll notice blocks of
code indented at a few different levels. These indentation levels help you
gain a general sense of the overall program’s organization.

As you begin to write code that relies on proper indentation, you’ll
need to watch for a few common indentation errors. For example, people
sometimes indent lines of code that don’t need to be indented or forget
to indent lines that need to be indented. Seeing examples of these errors
now will help you avoid them in the future and correct them when they do
appear in your own programs.

Let’s examine some of the more common indentation errors.

Forgetting to Indent
Always indent the line after the for statement in a loop. If you forget, Python
will remind you:

magicians.py magicians = ['alice', 'david', 'carolina']
for magician in magicians:

1 print(magician)

The call to print() 1 should be indented, but it’s not. When Python
expects an indented block and doesn’t �nd one, it lets you know which line
it had a problem with:

 File "magicians.py", line 3
 print(magician)
 ^
IndentationError: expected an indented block after 'for' statement on line 2

54 Chapter 4

You can usually resolve this kind of indentation error by indenting the
line or lines immediately after the for statement.

Forgetting to Indent Additional Lines
Sometimes your loop will run without any errors but won’t produce the
expected result. This can happen when you’re trying to do several tasks
in a loop and you forget to indent some of its lines.

For example, this is what happens when we forget to indent the second
line in the loop that tells each magician we’re looking forward to their next
trick:

magicians = ['alice', 'david', 'carolina']
for magician in magicians:
 print(f"{magician.title()}, that was a great trick!")

1 print(f"I can't wait to see your next trick, {magician.title()}.\n")

The second call to print() 1 is supposed to be indented, but because
Python �nds at least one indented line after the for statement, it doesn’t
report an error. As a result, the �rst print() call is executed once for each
name in the list because it is indented. The second print() call is not
indented, so it is executed only once after the loop has �nished running.
Because the �nal value associated with magician is 'carolina', she is the only
one who receives the “looking forward to the next trick” message:

Alice, that was a great trick!
David, that was a great trick!
Carolina, that was a great trick!
I can't wait to see your next trick, Carolina.

This is a logical error. The syntax is valid Python code, but the code does
not produce the desired result because a problem occurs in its logic. If you
expect to see a certain action repeated once for each item in a list and it’s
executed only once, determine whether you need to simply indent a line or
a group of lines.

Indenting Unnecessarily
If you accidentally indent a line that doesn’t need to be indented, Python
informs you about the unexpected indent:

hello_world.py message = "Hello Python world!"
 print(message)

We don’t need to indent the print() call, because it isn’t part of a loop;
hence, Python reports that error:

 File "hello_world.py", line 2
 print(message)
 ^
IndentationError: unexpected indent

Working with Lists 55

You can avoid unexpected indentation errors by indenting only when
you have a speci�c reason to do so. In the programs you’re writing at this
point, the only lines you should indent are the actions you want to repeat
for each item in a for loop.

Indenting Unnecessarily After the Loop
If you accidentally indent code that should run after a loop has �nished,
that code will be repeated once for each item in the list. Sometimes this
prompts Python to report an error, but often this will result in a logical
error.

For example, let’s see what happens when we accidentally indent the
line that thanked the magicians as a group for putting on a good show:

magicians.py magicians = ['alice', 'david', 'carolina']
for magician in magicians:
 print(f"{magician.title()}, that was a great trick!")
 print(f"I can't wait to see your next trick, {magician.title()}.\n")

1 print("Thank you everyone, that was a great magic show!")

Because the last line 1 is indented, it’s printed once for each person in
the list:

Alice, that was a great trick!
I can't wait to see your next trick, Alice.

Thank you everyone, that was a great magic show!
David, that was a great trick!
I can't wait to see your next trick, David.

Thank you everyone, that was a great magic show!
Carolina, that was a great trick!
I can't wait to see your next trick, Carolina.

Thank you everyone, that was a great magic show!

This is another logical error, similar to the one in “Forgetting to Indent
Additional Lines” on page 54. Because Python doesn’t know what you’re
trying to accomplish with your code, it will run all code that is written in
valid syntax. If an action is repeated many times when it should be executed
only once, you probably need to unindent the code for that action.

Forgetting the Colon
The colon at the end of a for statement tells Python to interpret the next
line as the start of a loop.

magicians = ['alice', 'david', 'carolina']
1 for magician in magicians

 print(magician)

56 Chapter 4

If you accidentally forget the colon 1, you’ll get a syntax error because
Python doesn’t know exactly what you’re trying to do:

 File "magicians.py", line 2
 for magician in magicians
 ^
SyntaxError: expected ':'

Python doesn’t know if you simply forgot the colon, or if you meant
to write additional code to set up a more complex loop. If the interpreter
can identify a possible �x it will suggest one, like adding a colon at the end
of a line, as it does here with the response expected ':'. Some errors have
easy, obvious �xes, thanks to the suggestions in Python’s tracebacks. Some
errors are much harder to resolve, even when the eventual �x only involves
a single character. Don’t feel bad when a small �x takes a long time to �nd;
you are absolutely not alone in this experience.

T RY IT YOURSEL F

4-1. Pizzas: Think of at least three kinds of your favorite pizza. Store these

pizza names in a list, and then use a for loop to print the name of each pizza.

• Modify your for loop to print a sentence using the name of the pizza,

instead of printing just the name of the pizza. For each pizza, you should

have one line of output containing a simple statement like I like pep-

peroni pizza.

• Add a line at the end of your program, outside the for loop, that states

how much you like pizza. The output should consist of three or more lines

about the kinds of pizza you like and then an additional sentence, such as

I really love pizza!

4-2. Animals: Think of at least three different animals that have a common char-

acteristic. Store the names of these animals in a list, and then use a for loop to

print out the name of each animal.

• Modify your program to print a statement about each animal, such as A

dog would make a great pet.

• Add a line at the end of your program, stating what these animals have in

common. You could print a sentence, such as Any of these animals would

make a great pet!

Making Numerical Lists

Many reasons exist to store a set of numbers. For example, you’ll need to
keep track of the positions of each character in a game, and you might want

Working with Lists 57

to keep track of a player’s high scores as well. In data visualizations, you’ll
almost always work with sets of numbers, such as temperatures, distances,
population sizes, or latitude and longitude values, among other types of
numerical sets.

Lists are ideal for storing sets of numbers, and Python provides a variety
of tools to help you work ef�ciently with lists of numbers. Once you under-
stand how to use these tools effectively, your code will work well even when
your lists contain millions of items.

Using the range() Function
Python’s range() function makes it easy to generate a series of numbers.
For example, you can use the range() function to print a series of numbers
like this:

first_numbers.py for value in range(1, 5):
 print(value)

Although this code looks like it should print the numbers from 1 to 5, it
doesn’t print the number 5:

1
2
3
4

In this example, range() prints only the numbers 1 through 4. This is
another result of the off-by-one behavior you’ll see often in programming
languages. The range() function causes Python to start counting at the �rst
value you give it, and it stops when it reaches the second value you provide.
Because it stops at that second value, the output never contains the end
value, which would have been 5 in this case.

To print the numbers from 1 to 5, you would use range(1, 6):

for value in range(1, 6):
 print(value)

This time the output starts at 1 and ends at 5:

1
2
3
4
5

If your output is different from what you expect when you’re using
range(), try adjusting your end value by 1.

You can also pass range() only one argument, and it will start the
sequence of numbers at 0. For example, range(6) would return the numbers
from 0 through 5.

58 Chapter 4

Using range() to Make a List of Numbers
If you want to make a list of numbers, you can convert the results of range()
directly into a list using the list() function. When you wrap list() around a
call to the range() function, the output will be a list of numbers.

In the example in the previous section, we simply printed out a series of
numbers. We can use list() to convert that same set of numbers into a list:

numbers = list(range(1, 6))
print(numbers)

This is the result:

[1, 2, 3, 4, 5]

We can also use the range() function to tell Python to skip numbers in a
given range. If you pass a third argument to range(), Python uses that value
as a step size when generating numbers.

For example, here’s how to list the even numbers between 1 and 10:

even_numbers.py even_numbers = list(range(2, 11, 2))
print(even_numbers)

In this example, the range() function starts with the value 2 and then
adds 2 to that value. It adds 2 repeatedly until it reaches or passes the end
value, 11, and produces this result:

[2, 4, 6, 8, 10]

You can create almost any set of numbers you want to using the range()
function. For example, consider how you might make a list of the �rst 10
square numbers (that is, the square of each integer from 1 through 10). In
Python, two asterisks (**) represent exponents. Here’s how you might put
the �rst 10 square numbers into a list:

square
_numbers.py

squares = []
for value in range(1, 11):

1 square = value ** 2
2 squares.append(square)

print(squares)

We start with an empty list called squares. Then, we tell Python to loop
through each value from 1 to 10 using the range() function. Inside the loop,
the current value is raised to the second power and assigned to the variable
square 1. Each new value of square is then appended to the list squares 2.
Finally, when the loop has �nished running, the list of squares is printed:

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

Working with Lists 59

To write this code more concisely, omit the temporary variable square
and append each new value directly to the list:

squares = []
for value in range(1,11):
 squares.append(value**2)

print(squares)

This line does the same work as the lines inside the for loop in the pre-
vious listing. Each value in the loop is raised to the second power and then
immediately appended to the list of squares.

You can use either of these approaches when you’re making more com-
plex lists. Sometimes using a temporary variable makes your code easier to
read; other times it makes the code unnecessarily long. Focus �rst on writ-
ing code that you understand clearly, and does what you want it to do. Then
look for more ef�cient approaches as you review your code.

Simple Statistics with a List of Numbers
A few Python functions are helpful when working with lists of numbers. For
example, you can easily �nd the minimum, maximum, and sum of a list of
numbers:

>>> digits = [1, 2, 3, 4, 5, 6, 7, 8, 9, 0]
>>> min(digits)
0
>>> max(digits)
9
>>> sum(digits)
45

N O T E The examples in this section use short lists of numbers that �t easily on the page. They
would work just as well if your list contained a million or more numbers.

List Comprehensions
The approach described earlier for generating the list squares consisted of
using three or four lines of code. A list comprehension allows you to generate
this same list in just one line of code. A list comprehension combines the
for loop and the creation of new elements into one line, and automatically
appends each new element. List comprehensions are not always presented
to beginners, but I’ve included them here because you’ll most likely see
them as soon as you start looking at other people’s code.

The following example builds the same list of square numbers you saw
earlier but uses a list comprehension:

squares.py squares = [value**2 for value in range(1, 11)]
print(squares)

60 Chapter 4

To use this syntax, begin with a descriptive name for the list, such as
squares. Next, open a set of square brackets and de�ne the expression for
the values you want to store in the new list. In this example the expression is
value**2, which raises the value to the second power. Then, write a for loop
to generate the numbers you want to feed into the expression, and close the
square brackets. The for loop in this example is for value in range(1, 11),
which feeds the values 1 through 10 into the expression value**2. Note that
no colon is used at the end of the for statement.

The result is the same list of square numbers you saw earlier:

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

It takes practice to write your own list comprehensions, but you’ll �nd
them worthwhile once you become comfortable creating ordinary lists.
When you’re writing three or four lines of code to generate lists and it
begins to feel repetitive, consider writing your own list comprehensions.

T RY IT YOURSEL F

4-3. Counting to Twenty: Use a for loop to print the numbers from 1 to 20,

inclusive.

4-4. One Million: Make a list of the numbers from one to one million, and then

use a for loop to print the numbers. (If the output is taking too long, stop it by

pressing CTRL-C or by closing the output window.)

4-5. Summing a Million: Make a list of the numbers from one to one million, and

then use min() and max() to make sure your list actually starts at one and ends

at one million. Also, use the sum() function to see how quickly Python can add

a million numbers.

4-6. Odd Numbers: Use the third argument of the range() function to make a list

of the odd numbers from 1 to 20. Use a for loop to print each number.

4-7. Threes: Make a list of the multiples of 3, from 3 to 30. Use a for loop to

print the numbers in your list.

4-8. Cubes: A number raised to the third power is called a cube. For example,

the cube of 2 is written as 2**3 in Python. Make a list of the first 10 cubes (that

is, the cube of each integer from 1 through 10), and use a for loop to print out

the value of each cube.

4-9. Cube Comprehension: Use a list comprehension to generate a list of the first

10 cubes.

Working with Lists 61

Working with Part of a List

In Chapter 3 you learned how to access single elements in a list, and in this
chapter you’ve been learning how to work through all the elements in a
list. You can also work with a speci�c group of items in a list, called a slice in
Python.

Slicing a List
To make a slice, you specify the index of the �rst and last elements you want
to work with. As with the range() function, Python stops one item before the
second index you specify. To output the �rst three elements in a list, you
would request indices 0 through 3, which would return elements 0, 1, and 2.

The following example involves a list of players on a team:

players.py players = ['charles', 'martina', 'michael', 'florence', 'eli']
print(players[0:3])

This code prints a slice of the list. The output retains the structure of
the list, and includes the �rst three players in the list:

['charles', 'martina', 'michael']

You can generate any subset of a list. For example, if you want the sec-
ond, third, and fourth items in a list, you would start the slice at index 1 and
end it at index 4:

players = ['charles', 'martina', 'michael', 'florence', 'eli']
print(players[1:4])

This time the slice starts with 'martina' and ends with 'florence':

['martina', 'michael', 'florence']

If you omit the �rst index in a slice, Python automatically starts your
slice at the beginning of the list:

players = ['charles', 'martina', 'michael', 'florence', 'eli']
print(players[:4])

Without a starting index, Python starts at the beginning of the list:

['charles', 'martina', 'michael', 'florence']

A similar syntax works if you want a slice that includes the end of a list.
For example, if you want all items from the third item through the last item,
you can start with index 2 and omit the second index:

players = ['charles', 'martina', 'michael', 'florence', 'eli']
print(players[2:])

62 Chapter 4

Python returns all items from the third item through the end of the list:

['michael', 'florence', 'eli']

This syntax allows you to output all of the elements from any point in
your list to the end, regardless of the length of the list. Recall that a nega-
tive index returns an element a certain distance from the end of a list;
therefore, you can output any slice from the end of a list. For example, if
we want to output the last three players on the roster, we can use the slice
players[-3:]:

players = ['charles', 'martina', 'michael', 'florence', 'eli']
print(players[-3:])

This prints the names of the last three players and will continue to work
as the list of players changes in size.

N O T E You can include a third value in the brackets indicating a slice. If a third value is
included, this tells Python how many items to skip between items in the speci�ed
range.

Looping Through a Slice
You can use a slice in a for loop if you want to loop through a subset of the
elements in a list. In the next example, we loop through the �rst three play-
ers and print their names as part of a simple roster:

players = ['charles', 'martina', 'michael', 'florence', 'eli']

print("Here are the first three players on my team:")
1 for player in players[:3]:

 print(player.title())

Instead of looping through the entire list of players, Python loops
through only the �rst three names 1:

Here are the first three players on my team:
Charles
Martina
Michael

Slices are very useful in a number of situations. For instance, when
you’re creating a game, you could add a player’s �nal score to a list every
time that player �nishes playing. You could then get a player’s top three
scores by sorting the list in decreasing order and taking a slice that includes
just the �rst three scores. When you’re working with data, you can use slices
to process your data in chunks of a speci�c size. Or, when you’re building
a web application, you could use slices to display information in a series of
pages with an appropriate amount of information on each page.

Working with Lists 63

Copying a List
Often, you’ll want to start with an existing list and make an entirely new list
based on the �rst one. Let’s explore how copying a list works and examine
one situation in which copying a list is useful.

To copy a list, you can make a slice that includes the entire original list
by omitting the �rst index and the second index ([:]). This tells Python to
make a slice that starts at the �rst item and ends with the last item, produc-
ing a copy of the entire list.

For example, imagine we have a list of our favorite foods and want to
make a separate list of foods that a friend likes. This friend likes everything
in our list so far, so we can create their list by copying ours:

foods.py my_foods = ['pizza', 'falafel', 'carrot cake']
1 friend_foods = my_foods[:]

print("My favorite foods are:")
print(my_foods)

print("\nMy friend's favorite foods are:")
print(friend_foods)

First, we make a list of the foods we like called my_foods. Then we make
a new list called friend_foods. We make a copy of my_foods by asking for a
slice of my_foods without specifying any indices 1, and assign the copy to
friend_foods. When we print each list, we see that they both contain the
same foods:

My favorite foods are:
['pizza', 'falafel', 'carrot cake']

My friend's favorite foods are:
['pizza', 'falafel', 'carrot cake']

To prove that we actually have two separate lists, we’ll add a new food
to each list and show that each list keeps track of the appropriate person’s
favorite foods:

my_foods = ['pizza', 'falafel', 'carrot cake']
1 friend_foods = my_foods[:]

2 my_foods.append('cannoli')
3 friend_foods.append('ice cream')

print("My favorite foods are:")
print(my_foods)

print("\nMy friend's favorite foods are:")
print(friend_foods)

64 Chapter 4

We copy the original items in my_foods to the new list friend_foods, as we
did in the previous example 1. Next, we add a new food to each list: we add
'cannoli' to my_foods 2, and we add 'ice cream' to friend_foods 3. We then
print the two lists to see whether each of these foods is in the appropriate list:

My favorite foods are:
['pizza', 'falafel', 'carrot cake', 'cannoli']

My friend's favorite foods are:
['pizza', 'falafel', 'carrot cake', 'ice cream']

The output shows that 'cannoli' now appears in our list of favorite foods
but 'ice cream' does not. We can see that 'ice cream' now appears in our
friend’s list but 'cannoli' does not. If we had simply set friend_foods equal to
my_foods, we would not produce two separate lists. For example, here’s what
happens when you try to copy a list without using a slice:

my_foods = ['pizza', 'falafel', 'carrot cake']

This doesn't work:
friend_foods = my_foods

my_foods.append('cannoli')
friend_foods.append('ice cream')

print("My favorite foods are:")
print(my_foods)

print("\nMy friend's favorite foods are:")
print(friend_foods)

Instead of assigning a copy of my_foods to friend_foods, we set friend_foods
equal to my_foods. This syntax actually tells Python to associate the new vari-
able friend_foods with the list that is already associated with my_foods, so now
both variables point to the same list. As a result, when we add 'cannoli' to
my_foods, it will also appear in friend_foods. Likewise 'ice cream' will appear
in both lists, even though it appears to be added only to friend_foods.

The output shows that both lists are the same now, which is not what we
wanted:

My favorite foods are:
['pizza', 'falafel', 'carrot cake', 'cannoli', 'ice cream']

My friend's favorite foods are:
['pizza', 'falafel', 'carrot cake', 'cannoli', 'ice cream']

N O T E Don’t worry about the details in this example for now. If you’re trying to work with
a copy of a list and you see unexpected behavior, make sure you are copying the list
using a slice, as we did in the �rst example.

Working with Lists 65

T RY IT YOURSEL F

4-10. Slices: Using one of the programs you wrote in this chapter, add several

lines to the end of the program that do the following:

• Print the message The first three items in the list are:. Then use a slice to

print the first three items from that program’s list.

• Print the message Three items from the middle of the list are:. Then use a

slice to print three items from the middle of the list.

• Print the message The last three items in the list are:. Then use a slice to

print the last three items in the list.

4-11. My Pizzas, Your Pizzas: Start with your program from Exercise 4-1 (page 56).

Make a copy of the list of pizzas, and call it friend_pizzas. Then, do the

following:

• Add a new pizza to the original list.

• Add a different pizza to the list friend_pizzas.

• Prove that you have two separate lists. Print the message My favorite piz-

zas are:, and then use a for loop to print the first list. Print the message My

friend’s favorite pizzas are:, and then use a for loop to print the second list.

Make sure each new pizza is stored in the appropriate list.

4-12. More Loops: All versions of foods.py in this section have avoided using

for loops when printing, to save space. Choose a version of foods.py, and

write two for loops to print each list of foods.

Tuples

Lists work well for storing collections of items that can change throughout the
life of a program. The ability to modify lists is particularly important when
you’re working with a list of users on a website or a list of characters in a game.
However, sometimes you’ll want to create a list of items that cannot change.
Tuples allow you to do just that. Python refers to values that cannot change as
immutable, and an immutable list is called a tuple.

Defining a Tuple
A tuple looks just like a list, except you use parentheses instead of square
brackets. Once you de�ne a tuple, you can access individual elements by
using each item’s index, just as you would for a list.

66 Chapter 4

For example, if we have a rectangle that should always be a certain size, we
can ensure that its size doesn’t change by putting the dimensions into a tuple:

dimensions.py dimensions = (200, 50)
print(dimensions[0])
print(dimensions[1])

We de�ne the tuple dimensions, using parentheses instead of square
brackets. Then we print each element in the tuple individually, using the
same syntax we’ve been using to access elements in a list:

200
50

Let’s see what happens if we try to change one of the items in the tuple
dimensions:

dimensions = (200, 50)
dimensions[0] = 250

This code tries to change the value of the �rst dimension, but Python
returns a type error. Because we’re trying to alter a tuple, which can’t be
done to that type of object, Python tells us we can’t assign a new value to
an item in a tuple:

Traceback (most recent call last):
 File "dimensions.py", line 2, in <module>
 dimensions[0] = 250
TypeError: 'tuple' object does not support item assignment

This is bene�cial because we want Python to raise an error when a line
of code tries to change the dimensions of the rectangle.

N O T E Tuples are technically de�ned by the presence of a comma; the parentheses make them
look neater and more readable. If you want to de�ne a tuple with one element, you
need to include a trailing comma:

 my_t = (3,)

It doesn’t often make sense to build a tuple with one element, but this can happen
when tuples are generated automatically.

Looping Through All Values in a Tuple
You can loop over all the values in a tuple using a for loop, just as you did
with a list:

dimensions = (200, 50)
for dimension in dimensions:
 print(dimension)

Working with Lists 67

Python returns all the elements in the tuple, just as it would for a list:

200
50

Writing Over a Tuple
Although you can’t modify a tuple, you can assign a new value to a variable
that represents a tuple. For example, if we wanted to change the dimensions
of this rectangle, we could rede�ne the entire tuple:

dimensions = (200, 50)
print("Original dimensions:")
for dimension in dimensions:
 print(dimension)

dimensions = (400, 100)
print("\nModified dimensions:")
for dimension in dimensions:
 print(dimension)

The �rst four lines de�ne the original tuple and print the initial dimen-
sions. We then associate a new tuple with the variable dimensions, and print
the new values. Python doesn’t raise any errors this time, because reassign-
ing a variable is valid:

Original dimensions:
200
50

Modified dimensions:
400
100

When compared with lists, tuples are simple data structures. Use them
when you want to store a set of values that should not be changed through-
out the life of a program.

T RY IT YOURSEL F

4-13. Buffet: A buffet-style restaurant offers only five basic foods. Think of five

simple foods, and store them in a tuple.

• Use a for loop to print each food the restaurant offers.

• Try to modify one of the items, and make sure that Python rejects the

change.

• The restaurant changes its menu, replacing two of the items with different

foods. Add a line that rewrites the tuple, and then use a for loop to print

each of the items on the revised menu.

68 Chapter 4

Styling Your Code

Now that you’re writing longer programs, it’s a good idea to learn how to
style your code consistently. Take the time to make your code as easy as pos-
sible to read. Writing easy-to-read code helps you keep track of what your
programs are doing and helps others understand your code as well.

Python programmers have agreed on a number of styling conventions
to ensure that everyone’s code is structured in roughly the same way. Once
you’ve learned to write clean Python code, you should be able to understand
the overall structure of anyone else’s Python code, as long as they follow the
same guidelines. If you’re hoping to become a professional programmer at
some point, you should begin following these guidelines as soon as possible
to develop good habits.

The Style Guide
When someone wants to make a change to the Python language, they write
a Python Enhancement Proposal (PEP). One of the oldest PEPs is PEP 8, which
instructs Python programmers on how to style their code. PEP 8 is fairly
lengthy, but much of it relates to more complex coding structures than what
you’ve seen so far.

The Python style guide was written with the understanding that code
is read more often than it is written. You’ll write your code once and then
start reading it as you begin debugging. When you add features to a pro-
gram, you’ll spend more time reading your code. When you share your
code with other programmers, they’ll read your code as well.

Given the choice between writing code that’s easier to write or code
that’s easier to read, Python programmers will almost always encourage you
to write code that’s easier to read. The following guidelines will help you
write clear code from the start.

Indentation
PEP 8 recommends that you use four spaces per indentation level. Using
four spaces improves readability while leaving room for multiple levels of
indentation on each line.

In a word processing document, people often use tabs rather than
spaces to indent. This works well for word processing documents, but the
Python interpreter gets confused when tabs are mixed with spaces. Every
text editor provides a setting that lets you use the TAB key but then converts
each tab to a set number of spaces. You should de�nitely use your TAB key,
but also make sure your editor is set to insert spaces rather than tabs into
your document.

Mixing tabs and spaces in your �le can cause problems that are very
dif�cult to diagnose. If you think you have a mix of tabs and spaces, you
can convert all tabs in a �le to spaces in most editors.

Working with Lists 69

Line Length
Many Python programmers recommend that each line should be less than
80 characters. Historically, this guideline developed because most com-
puters could �t only 79 characters on a single line in a terminal window.
Currently, people can �t much longer lines on their screens, but other rea-
sons exist to adhere to the 79-character standard line length.

Professional programmers often have several �les open on the same
screen, and using the standard line length allows them to see entire lines
in two or three �les that are open side by side onscreen. PEP 8 also rec-
ommends that you limit all of your comments to 72 characters per line,
because some of the tools that generate automatic documentation for
larger projects add formatting characters at the beginning of each com-
mented line.

The PEP 8 guidelines for line length are not set in stone, and some
teams prefer a 99-character limit. Don’t worry too much about line length
in your code as you’re learning, but be aware that people who are working
collaboratively almost always follow the PEP 8 guidelines. Most editors allow
you to set up a visual cue, usually a vertical line on your screen, that shows
you where these limits are.

N O T E Appendix B shows you how to con�gure your text editor so it always inserts four
spaces each time you press the TAB key and shows a vertical guideline to help you follow
the 79-character limit.

Blank Lines
To group parts of your program visually, use blank lines. You should use
blank lines to organize your �les, but don’t do so excessively. By following
the examples provided in this book, you should strike the right balance.
For example, if you have �ve lines of code that build a list and then another
three lines that do something with that list, it’s appropriate to place a blank
line between the two sections. However, you should not place three or four
blank lines between the two sections.

Blank lines won’t affect how your code runs, but they will affect the
readability of your code. The Python interpreter uses horizontal inden-
tation to interpret the meaning of your code, but it disregards vertical
spacing.

Other Style Guidelines
PEP 8 has many additional styling recommendations, but most of the
guidelines refer to more complex programs than what you’re writing at this
point. As you learn more complex Python structures, I’ll share the relevant
parts of the PEP 8 guidelines.

70 Chapter 4

T RY IT YOURSEL F

4-14. PEP 8: Look through the original PEP 8 style guide at https://python.org/

dev/peps/pep-0008. You won’t use much of it now, but it might be interesting

to skim through it.

4-15. Code Review: Choose three of the programs you’ve written in this chapter

and modify each one to comply with PEP 8.

• Use four spaces for each indentation level. Set your text editor to insert four

spaces every time you press the TAB key, if you haven’t already done so

(see Appendix B for instructions on how to do this).

• Use less than 80 characters on each line, and set your editor to show a

vertical guideline at the 80th character position.

• Don’t use blank lines excessively in your program files.

Summary

In this chapter, you learned how to work ef�ciently with the elements in a
list. You learned how to work through a list using a for loop, how Python
uses indentation to structure a program, and how to avoid some common
indentation errors. You learned to make simple numerical lists, as well as a
few operations you can perform on numerical lists. You learned how to slice
a list to work with a subset of items and how to copy lists properly using a
slice. You also learned about tuples, which provide a degree of protection
to a set of values that shouldn’t change, and how to style your increasingly
complex code to make it easy to read.

In Chapter 5, you’ll learn to respond appropriately to different condi-
tions by using if statements. You’ll learn to string together relatively complex
sets of conditional tests to respond appropriately to exactly the kind of situa-
tion or information you’re looking for. You’ll also learn to use if statements
while looping through a list to take speci�c actions with selected elements
from a list.

https://python.org/dev/peps/pep-0008
https://python.org/dev/peps/pep-0008

5
I F S T A T E M E N T S

Programming often involves examining

a set of conditions and deciding which

action to take based on those conditions.

Python’s if statement allows you to examine

the current state of a program and respond appro-

priately to that state.
In this chapter, you’ll learn to write conditional tests, which allow you

to check any condition of interest. You’ll learn to write simple if statements,
and you’ll learn how to create a more complex series of if statements to
identify when the exact conditions you want are present. You’ll then apply
this concept to lists, so you’ll be able to write a for loop that handles most
items in a list one way but handles certain items with speci�c values in a dif-
ferent way.

72 Chapter 5

A Simple Example

The following example shows how if tests let you respond to special situa-
tions correctly. Imagine you have a list of cars and you want to print out the
name of each car. Car names are proper names, so the names of most cars
should be printed in title case. However, the value 'bmw' should be printed
in all uppercase. The following code loops through a list of car names and
looks for the value 'bmw'. Whenever the value is 'bmw', it’s printed in upper-
case instead of title case:

cars.py cars = ['audi', 'bmw', 'subaru', 'toyota']

for car in cars:
1 if car == 'bmw':

 print(car.upper())
 else:
 print(car.title())

The loop in this example �rst checks if the current value of car is 'bmw' 1.
If it is, the value is printed in uppercase. If the value of car is anything other
than 'bmw', it’s printed in title case:

Audi
BMW
Subaru
Toyota

This example combines a number of the concepts you’ll learn about
in this chapter. Let’s begin by looking at the kinds of tests you can use to
examine the conditions in your program.

Conditional Tests

At the heart of every if statement is an expression that can be evaluated as
True or False and is called a conditional test. Python uses the values True and
False to decide whether the code in an if statement should be executed. If a
conditional test evaluates to True, Python executes the code following the if
statement. If the test evaluates to False, Python ignores the code following
the if statement.

Checking for Equality
Most conditional tests compare the current value of a variable to a speci�c
value of interest. The simplest conditional test checks whether the value of a
variable is equal to the value of interest:

>>> car = 'bmw'
>>> car == 'bmw'
True

if Statements 73

The �rst line sets the value of car to 'bmw' using a single equal sign, as
you’ve seen many times already. The next line checks whether the value of
car is 'bmw' by using a double equal sign (==). This equality operator returns
True if the values on the left and right side of the operator match, and False if
they don’t match. The values in this example match, so Python returns True.

When the value of car is anything other than 'bmw', this test returns False:

>>> car = 'audi'
>>> car == 'bmw'
False

A single equal sign is really a statement; you might read the �rst line
of code here as “Set the value of car equal to 'audi'.” On the other hand, a
double equal sign asks a question: “Is the value of car equal to 'bmw'?” Most
programming languages use equal signs in this way.

Ignoring Case When Checking for Equality
Testing for equality is case sensitive in Python. For example, two values with
different capitalization are not considered equal:

>>> car = 'Audi'
>>> car == 'audi'
False

If case matters, this behavior is advantageous. But if case doesn’t matter
and instead you just want to test the value of a variable, you can convert the
variable’s value to lowercase before doing the comparison:

>>> car = 'Audi'
>>> car.lower() == 'audi'
True

This test will return True no matter how the value 'Audi' is formatted
because the test is now case insensitive. The lower() method doesn’t change
the value that was originally stored in car, so you can do this kind of com-
parison without affecting the original variable:

>>> car = 'Audi'
>>> car.lower() == 'audi'
True
>>> car
'Audi'

We �rst assign the capitalized string 'Audi' to the variable car. Then,
we convert the value of car to lowercase and compare the lowercase value to
the string 'audi'. The two strings match, so Python returns True. We can see
that the value stored in car has not been affected by the lower() method.

Websites enforce certain rules for the data that users enter in a manner
similar to this. For example, a site might use a conditional test like this to

74 Chapter 5

ensure that every user has a truly unique username, not just a variation on
the capitalization of another person’s username. When someone submits a
new username, that new username is converted to lowercase and compared
to the lowercase versions of all existing usernames. During this check, a user-
name like 'John' will be rejected if any variation of 'john' is already in use.

Checking for Inequality
When you want to determine whether two values are not equal, you can use
the inequality operator (!=). Let’s use another if statement to examine how to
use the inequality operator. We’ll store a requested pizza topping in a vari-
able and then print a message if the person did not order anchovies:

toppings.py requested_topping = 'mushrooms'

if requested_topping != 'anchovies':
 print("Hold the anchovies!")

This code compares the value of requested_topping to the value 'anchovies'.
If these two values do not match, Python returns True and executes the code
following the if statement. If the two values match, Python returns False and
does not run the code following the if statement.

Because the value of requested_topping is not 'anchovies', the print()
function is executed:

Hold the anchovies!

Most of the conditional expressions you write will test for equality, but
sometimes you’ll �nd it more ef�cient to test for inequality.

Numerical Comparisons
Testing numerical values is pretty straightforward. For example, the follow-
ing code checks whether a person is 18 years old:

>>> age = 18
>>> age == 18
True

You can also test to see if two numbers are not equal. For example, the
following code prints a message if the given answer is not correct:

magic
_number.py

answer = 17
if answer != 42:
 print("That is not the correct answer. Please try again!")

The conditional test passes, because the value of answer (17) is not equal
to 42. Because the test passes, the indented code block is executed:

That is not the correct answer. Please try again!

if Statements 75

You can include various mathematical comparisons in your conditional
statements as well, such as less than, less than or equal to, greater than, and
greater than or equal to:

>>> age = 19
>>> age < 21
True
>>> age <= 21
True
>>> age > 21
False
>>> age >= 21
False

Each mathematical comparison can be used as part of an if statement,
which can help you detect the exact conditions of interest.

Checking Multiple Conditions
You may want to check multiple conditions at the same time. For example,
sometimes you might need two conditions to be True to take an action.
Other times, you might be satis�ed with just one condition being True. The
keywords and and or can help you in these situations.

Using and to Check Multiple Conditions

To check whether two conditions are both True simultaneously, use the key-
word and to combine the two conditional tests; if each test passes, the overall
expression evaluates to True. If either test fails or if both tests fail, the expres-
sion evaluates to False.

For example, you can check whether two people are both over 21 by
using the following test:

>>> age_0 = 22
>>> age_1 = 18

1 >>> age_0 >= 21 and age_1 >= 21
False

2 >>> age_1 = 22
>>> age_0 >= 21 and age_1 >= 21
True

First, we de�ne two ages, age_0 and age_1. Then we check whether both
ages are 21 or older 1. The test on the left passes, but the test on the right
fails, so the overall conditional expression evaluates to False. We then change
age_1 to 22 2. The value of age_1 is now greater than 21, so both individual
tests pass, causing the overall conditional expression to evaluate as True.

To improve readability, you can use parentheses around the individual
tests, but they are not required. If you use parentheses, your test would look
like this:

(age_0 >= 21) and (age_1 >= 21)

76 Chapter 5

Using or to Check Multiple Conditions

The keyword or allows you to check multiple conditions as well, but it passes
when either or both of the individual tests pass. An or expression fails only
when both individual tests fail.

Let’s consider two ages again, but this time we’ll look for only one per-
son to be over 21:

>>> age_0 = 22
>>> age_1 = 18

1 >>> age_0 >= 21 or age_1 >= 21
True

2 >>> age_0 = 18
>>> age_0 >= 21 or age_1 >= 21
False

We start with two age variables again. Because the test for age_0 1 passes,
the overall expression evaluates to True. We then lower age_0 to 18. In the �nal
test 2, both tests now fail and the overall expression evaluates to False.

Checking Whether a Value Is in a List
Sometimes it’s important to check whether a list contains a certain value
before taking an action. For example, you might want to check whether a
new username already exists in a list of current usernames before completing
someone’s registration on a website. In a mapping project, you might want to
check whether a submitted location already exists in a list of known locations.

To �nd out whether a particular value is already in a list, use the key-
word in. Let’s consider some code you might write for a pizzeria. We’ll
make a list of toppings a customer has requested for a pizza and then check
whether certain toppings are in the list.

>>> requested_toppings = ['mushrooms', 'onions', 'pineapple']
>>> 'mushrooms' in requested_toppings
True
>>> 'pepperoni' in requested_toppings
False

The keyword in tells Python to check for the existence of 'mushrooms'
and 'pepperoni' in the list requested_toppings. This technique is quite power-
ful because you can create a list of essential values, and then easily check
whether the value you’re testing matches one of the values in the list.

Checking Whether a Value Is Not in a List
Other times, it’s important to know if a value does not appear in a list. You
can use the keyword not in this situation. For example, consider a list of
users who are banned from commenting in a forum. You can check whether
a user has been banned before allowing that person to submit a comment:

banned_users.py banned_users = ['andrew', 'carolina', 'david']
user = 'marie'

if Statements 77

if user not in banned_users:
 print(f"{user.title()}, you can post a response if you wish.")

The if statement here reads quite clearly. If the value of user is not in
the list banned_users, Python returns True and executes the indented line.

The user 'marie' is not in the list banned_users, so she sees a message
inviting her to post a response:

Marie, you can post a response if you wish.

Boolean Expressions
As you learn more about programming, you’ll hear the term Boolean expression
at some point. A Boolean expression is just another name for a conditional
test. A Boolean value is either True or False, just like the value of a conditional
expression after it has been evaluated.

Boolean values are often used to keep track of certain conditions, such
as whether a game is running or whether a user can edit certain content on
a website:

game_active = True
can_edit = False

Boolean values provide an ef�cient way to track the state of a program
or a particular condition that is important in your program.

T RY IT YOURSEL F

5-1. Conditional Tests: Write a series of conditional tests. Print a statement

describing each test and your prediction for the results of each test. Your code

should look something like this:

car = 'subaru'
print("Is car == 'subaru'? I predict True.")
print(car == 'subaru')

print("\nIs car == 'audi'? I predict False.")
print(car == 'audi')

• Look closely at your results, and make sure you understand why each line

evaluates to True or False.

• Create at least 10 tests. Have at least 5 tests evaluate to True and another

5 tests evaluate to False.

(continued)

78 Chapter 5

5-2. More Conditional Tests: You don’t have to limit the number of tests you cre-

ate to 10. If you want to try more comparisons, write more tests and add them

to conditional_tests.py. Have at least one True and one False result for each of

the following:

• Tests for equality and inequality with strings

• Tests using the lower() method

• Numerical tests involving equality and inequality, greater than and less

than, greater than or equal to, and less than or equal to

• Tests using the and keyword and the or keyword

• Test whether an item is in a list

• Test whether an item is not in a list

if Statements

When you understand conditional tests, you can start writing if statements.
Several different kinds of if statements exist, and your choice of which to
use depends on the number of conditions you need to test. You saw several
examples of if statements in the discussion about conditional tests, but now
let’s dig deeper into the topic.

Simple if Statements
The simplest kind of if statement has one test and one action:

if conditional_test:
 do something

You can put any conditional test in the �rst line and just about any action
in the indented block following the test. If the conditional test evaluates to
True, Python executes the code following the if statement. If the test evaluates
to False, Python ignores the code following the if statement.

Let’s say we have a variable representing a person’s age, and we want to
know if that person is old enough to vote. The following code tests whether
the person can vote:

voting.py age = 19
if age >= 18:
 print("You are old enough to vote!")

Python checks to see whether the value of age is greater than or equal
to 18. It is, so Python executes the indented print() call:

You are old enough to vote!

if Statements 79

Indentation plays the same role in if statements as it did in for loops. All
indented lines after an if statement will be executed if the test passes, and
the entire block of indented lines will be ignored if the test does not pass.

You can have as many lines of code as you want in the block follow-
ing the if statement. Let’s add another line of output if the person is old
enough to vote, asking if the individual has registered to vote yet:

age = 19
if age >= 18:
 print("You are old enough to vote!")
 print("Have you registered to vote yet?")

The conditional test passes, and both print() calls are indented, so both
lines are printed:

You are old enough to vote!
Have you registered to vote yet?

If the value of age is less than 18, this program would produce no output.

if-else Statements
Often, you’ll want to take one action when a conditional test passes and a dif-
ferent action in all other cases. Python’s if-else syntax makes this possible. An
if-else block is similar to a simple if statement, but the else statement allows
you to de�ne an action or set of actions that are executed when the condi-
tional test fails.

We’ll display the same message we had previously if the person is old
enough to vote, but this time we’ll add a message for anyone who is not
old enough to vote:

age = 17
1 if age >= 18:

 print("You are old enough to vote!")
 print("Have you registered to vote yet?")

2 else:
 print("Sorry, you are too young to vote.")
 print("Please register to vote as soon as you turn 18!")

If the conditional test 1 passes, the �rst block of indented print()
calls is executed. If the test evaluates to False, the else block 2 is executed.
Because age is less than 18 this time, the conditional test fails and the code
in the else block is executed:

Sorry, you are too young to vote.
Please register to vote as soon as you turn 18!

This code works because it has only two possible situations to evaluate:
a person is either old enough to vote or not old enough to vote. The if-else

80 Chapter 5

structure works well in situations in which you want Python to always exe-
cute one of two possible actions. In a simple if-else chain like this, one of
the two actions will always be executed.

The if-elif-else Chain
Often, you’ll need to test more than two possible situations, and to evaluate
these you can use Python’s if-elif-else syntax. Python executes only one
block in an if-elif-else chain. It runs each conditional test in order, until
one passes. When a test passes, the code following that test is executed and
Python skips the rest of the tests.

Many real-world situations involve more than two possible conditions.
For example, consider an amusement park that charges different rates for
different age groups:

• Admission for anyone under age 4 is free.

• Admission for anyone between the ages of 4 and 18 is $25.

• Admission for anyone age 18 or older is $40.

How can we use an if statement to determine a person’s admission rate?
The following code tests for the age group of a person and then prints an
admission price message:

amusement
_park.py

age = 12
1 if age < 4:

 print("Your admission cost is $0.")
2 elif age < 18:

 print("Your admission cost is $25.")
3 else:

 print("Your admission cost is $40.")

The if test 1 checks whether a person is under 4 years old. When the
test passes, an appropriate message is printed and Python skips the rest of
the tests. The elif line 2 is really another if test, which runs only if the
previous test failed. At this point in the chain, we know the person is at least
4 years old because the �rst test failed. If the person is under 18, an appro-
priate message is printed and Python skips the else block. If both the if
and elif tests fail, Python runs the code in the else block 3.

In this example the if test 1 evaluates to False, so its code block is not
executed. However, the elif test evaluates to True (12 is less than 18) so its
code is executed. The output is one sentence, informing the user of the
admission cost:

Your admission cost is $25.

Any age greater than 17 would cause the �rst two tests to fail. In these
situations, the else block would be executed and the admission price would
be $40.

Rather than printing the admission price within the if-elif-else block,
it would be more concise to set just the price inside the if-elif-else chain

if Statements 81

and then have a single print() call that runs after the chain has been
evaluated:

age = 12

if age < 4:
 price = 0
elif age < 18:
 price = 25
else:
 price = 40

print(f"Your admission cost is ${price}.")

The indented lines set the value of price according to the person’s age,
as in the previous example. After the price is set by the if-elif-else chain, a
separate unindented print() call uses this value to display a message report-
ing the person’s admission price.

This code produces the same output as the previous example, but the
purpose of the if-elif-else chain is narrower. Instead of determining a price
and displaying a message, it simply determines the admission price. In addi-
tion to being more ef�cient, this revised code is easier to modify than the
original approach. To change the text of the output message, you would
need to change only one print() call rather than three separate print() calls.

Using Multiple elif Blocks
You can use as many elif blocks in your code as you like. For example, if the
amusement park were to implement a discount for seniors, you could add
one more conditional test to the code to determine whether someone quali-
�es for the senior discount. Let’s say that anyone 65 or older pays half the
regular admission, or $20:

age = 12

if age < 4:
 price = 0
elif age < 18:
 price = 25
elif age < 65:
 price = 40
else:
 price = 20

print(f"Your admission cost is ${price}.")

Most of this code is unchanged. The second elif block now checks to
make sure a person is less than age 65 before assigning them the full admis-
sion rate of $40. Notice that the value assigned in the else block needs to
be changed to $20, because the only ages that make it to this block are for
people 65 or older.

82 Chapter 5

Omitting the else Block
Python does not require an else block at the end of an if-elif chain.
Sometimes, an else block is useful. Other times, it’s clearer to use an addi-
tional elif statement that catches the speci�c condition of interest:

age = 12

if age < 4:
 price = 0
elif age < 18:
 price = 25
elif age < 65:
 price = 40
elif age >= 65:
 price = 20

print(f"Your admission cost is ${price}.")

The �nal elif block assigns a price of $20 when the person is 65 or
older, which is a little clearer than the general else block. With this change,
every block of code must pass a speci�c test in order to be executed.

The else block is a catchall statement. It matches any condition that
wasn’t matched by a speci�c if or elif test, and that can sometimes include
invalid or even malicious data. If you have a speci�c �nal condition you’re
testing for, consider using a �nal elif block and omit the else block. As a
result, you’ll be more con�dent that your code will run only under the cor-
rect conditions.

Testing Multiple Conditions
The if-elif-else chain is powerful, but it’s only appropriate to use when you
just need one test to pass. As soon as Python �nds one test that passes, it
skips the rest of the tests. This behavior is bene�cial, because it’s ef�cient
and allows you to test for one speci�c condition.

However, sometimes it’s important to check all conditions of interest. In
this case, you should use a series of simple if statements with no elif or else
blocks. This technique makes sense when more than one condition could
be True, and you want to act on every condition that is True.

Let’s reconsider the pizzeria example. If someone requests a two-topping
pizza, you’ll need to be sure to include both toppings on their pizza:

toppings.py requested_toppings = ['mushrooms', 'extra cheese']

if 'mushrooms' in requested_toppings:
 print("Adding mushrooms.")

1 if 'pepperoni' in requested_toppings:
 print("Adding pepperoni.")

if Statements 83

if 'extra cheese' in requested_toppings:
 print("Adding extra cheese.")

print("\nFinished making your pizza!")

We start with a list containing the requested toppings. The �rst if
statement checks to see whether the person requested mushrooms on their
pizza. If so, a message is printed con�rming that topping. The test for pep-
peroni 1 is another simple if statement, not an elif or else statement, so
this test is run regardless of whether the previous test passed or not. The
last if statement checks whether extra cheese was requested, regardless of
the results from the �rst two tests. These three independent tests are exe-
cuted every time this program is run.

Because every condition in this example is evaluated, both mushrooms
and extra cheese are added to the pizza:

Adding mushrooms.
Adding extra cheese.

Finished making your pizza!

This code would not work properly if we used an if-elif-else block,
because the code would stop running after only one test passes. Here’s
what that would look like:

requested_toppings = ['mushrooms', 'extra cheese']

if 'mushrooms' in requested_toppings:
 print("Adding mushrooms.")
elif 'pepperoni' in requested_toppings:
 print("Adding pepperoni.")
elif 'extra cheese' in requested_toppings:
 print("Adding extra cheese.")

print("\nFinished making your pizza!")

The test for 'mushrooms' is the �rst test to pass, so mushrooms are added
to the pizza. However, the values 'extra cheese' and 'pepperoni' are never
checked, because Python doesn’t run any tests beyond the �rst test that
passes in an if-elif-else chain. The customer’s �rst topping will be added,
but all of their other toppings will be missed:

Adding mushrooms.

Finished making your pizza!

In summary, if you want only one block of code to run, use an if-elif-else
chain. If more than one block of code needs to run, use a series of indepen-
dent if statements.

84 Chapter 5

T RY IT YOURSEL F

5-3. Alien Colors #1: Imagine an alien was just shot down in a game. Create a

variable called alien_color and assign it a value of 'green', 'yellow', or 'red'.

• Write an if statement to test whether the alien’s color is green. If it is, print

a message that the player just earned 5 points.

• Write one version of this program that passes the if test and another that

fails. (The version that fails will have no output.)

5-4. Alien Colors #2: Choose a color for an alien as you did in Exercise 5-3,

and write an if-else chain.

• If the alien’s color is green, print a statement that the player just earned 5

points for shooting the alien.

• If the alien’s color isn’t green, print a statement that the player just earned

10 points.

• Write one version of this program that runs the if block and another that

runs the else block.

5-5. Alien Colors #3: Turn your if-else chain from Exercise 5-4 into an if-elif-

else chain.

• If the alien is green, print a message that the player earned 5 points.

• If the alien is yellow, print a message that the player earned 10 points.

• If the alien is red, print a message that the player earned 15 points.

• Write three versions of this program, making sure each message is printed

for the appropriate color alien.

5-6. Stages of Life: Write an if-elif-else chain that determines a person’s stage

of life. Set a value for the variable age, and then:

• If the person is less than 2 years old, print a message that the person is

a baby.

• If the person is at least 2 years old but less than 4, print a message that the

person is a toddler.

• If the person is at least 4 years old but less than 13, print a message that

the person is a kid.

• If the person is at least 13 years old but less than 20, print a message that

the person is a teenager.

• If the person is at least 20 years old but less than 65, print a message that

the person is an adult.

• If the person is age 65 or older, print a message that the person is an elder.

if Statements 85

5-7. Favorite Fruit: Make a list of your favorite fruits, and then write a series of

independent if statements that check for certain fruits in your list.

• Make a list of your three favorite fruits and call it favorite_fruits.

• Write five if statements. Each should check whether a certain kind of fruit

is in your list. If the fruit is in your list, the if block should print a statement,

such as You really like bananas!

Using if Statements with Lists

You can do some interesting work when you combine lists and if statements.
You can watch for special values that need to be treated differently than
other values in the list. You can ef�ciently manage changing conditions,
such as the availability of certain items in a restaurant throughout a shift.
You can also begin to prove that your code works as you expect it to in all
possible situations.

Checking for Special Items
This chapter began with a simple example that showed how to handle a spe-
cial value like 'bmw', which needed to be printed in a different format than
other values in the list. Now that you have a basic understanding of condi-
tional tests and if statements, let’s take a closer look at how you can watch
for special values in a list and handle those values appropriately.

Let’s continue with the pizzeria example. The pizzeria displays a mes-
sage whenever a topping is added to your pizza, as it’s being made. The code
for this action can be written very ef�ciently by making a list of toppings the
customer has requested and using a loop to announce each topping as it’s
added to the pizza:

toppings.py requested_toppings = ['mushrooms', 'green peppers', 'extra cheese']

for requested_topping in requested_toppings:
 print(f"Adding {requested_topping}.")

print("\nFinished making your pizza!")

The output is straightforward because this code is just a simple for loop:

Adding mushrooms.
Adding green peppers.
Adding extra cheese.

Finished making your pizza!

86 Chapter 5

But what if the pizzeria runs out of green peppers? An if statement
inside the for loop can handle this situation appropriately:

requested_toppings = ['mushrooms', 'green peppers', 'extra cheese']

for requested_topping in requested_toppings:
 if requested_topping == 'green peppers':
 print("Sorry, we are out of green peppers right now.")
 else:
 print(f"Adding {requested_topping}.")

print("\nFinished making your pizza!")

This time, we check each requested item before adding it to the pizza.
The if statement checks to see if the person requested green peppers. If so,
we display a message informing them why they can’t have green peppers.
The else block ensures that all other toppings will be added to the pizza.

The output shows that each requested topping is handled appropriately.

Adding mushrooms.
Sorry, we are out of green peppers right now.
Adding extra cheese.

Finished making your pizza!

Checking That a List Is Not Empty
We’ve made a simple assumption about every list we’ve worked with so far:
we’ve assumed that each list has at least one item in it. Soon we’ll let users
provide the information that’s stored in a list, so we won’t be able to assume
that a list has any items in it each time a loop is run. In this situation, it’s
useful to check whether a list is empty before running a for loop.

As an example, let’s check whether the list of requested toppings is
empty before building the pizza. If the list is empty, we’ll prompt the user
and make sure they want a plain pizza. If the list is not empty, we’ll build
the pizza just as we did in the previous examples:

requested_toppings = []

if requested_toppings:
 for requested_topping in requested_toppings:
 print(f"Adding {requested_topping}.")
 print("\nFinished making your pizza!")
else:
 print("Are you sure you want a plain pizza?")

This time we start out with an empty list of requested toppings. Instead
of jumping right into a for loop, we do a quick check �rst. When the name
of a list is used in an if statement, Python returns True if the list contains at
least one item; an empty list evaluates to False. If requested_toppings passes
the conditional test, we run the same for loop we used in the previous

if Statements 87

example. If the conditional test fails, we print a message asking the cus-
tomer if they really want a plain pizza with no toppings.

The list is empty in this case, so the output asks if the user really wants
a plain pizza:

Are you sure you want a plain pizza?

If the list is not empty, the output will show each requested topping
being added to the pizza.

Using Multiple Lists
People will ask for just about anything, especially when it comes to pizza
toppings. What if a customer actually wants french fries on their pizza? You
can use lists and if statements to make sure your input makes sense before
you act on it.

Let’s watch out for unusual topping requests before we build a pizza.
The following example de�nes two lists. The �rst is a list of available top-
pings at the pizzeria, and the second is the list of toppings that the user has
requested. This time, each item in requested_toppings is checked against the
list of available toppings before it’s added to the pizza:

available_toppings = ['mushrooms', 'olives', 'green peppers',
 'pepperoni', 'pineapple', 'extra cheese']

1 requested_toppings = ['mushrooms', 'french fries', 'extra cheese']

for requested_topping in requested_toppings:
2 if requested_topping in available_toppings:

 print(f"Adding {requested_topping}.")
3 else:

 print(f"Sorry, we don't have {requested_topping}.")

print("\nFinished making your pizza!")

First, we de�ne a list of available toppings at this pizzeria. Note that this
could be a tuple if the pizzeria has a stable selection of toppings. Then, we
make a list of toppings that a customer has requested. There’s an unusual
request for a topping in this example: 'french fries' 1. Next we loop
through the list of requested toppings. Inside the loop, we check to see if
each requested topping is actually in the list of available toppings 2. If it is,
we add that topping to the pizza. If the requested topping is not in the list
of available toppings, the else block will run 3. The else block prints a mes-
sage telling the user which toppings are unavailable.

This code syntax produces clean, informative output:

Adding mushrooms.
Sorry, we don't have french fries.
Adding extra cheese.

Finished making your pizza!

88 Chapter 5

In just a few lines of code, we’ve managed a real-world situation pretty
effectively!

T RY IT YOURSEL F

5-8. Hello Admin: Make a list of five or more usernames, including the name

'admin'. Imagine you are writing code that will print a greeting to each user

after they log in to a website. Loop through the list, and print a greeting to

each user.

• If the username is 'admin', print a special greeting, such as Hello admin,

would you like to see a status report?

• Otherwise, print a generic greeting, such as Hello Jaden, thank you for

logging in again.

5-9. No Users: Add an if test to hello_admin.py to make sure the list of users is

not empty.

• If the list is empty, print the message We need to find some users!

• Remove all of the usernames from your list, and make sure the correct mes-

sage is printed.

5-10. Checking Usernames: Do the following to create a program that simulates

how websites ensure that everyone has a unique username.

• Make a list of five or more usernames called current_users.

• Make another list of five usernames called new_users. Make sure one or

two of the new usernames are also in the current_users list.

• Loop through the new_users list to see if each new username has already

been used. If it has, print a message that the person will need to enter a

new username. If a username has not been used, print a message saying

that the username is available.

• Make sure your comparison is case insensitive. If 'John' has been used,

'JOHN' should not be accepted. (To do this, you’ll need to make a copy of

current_users containing the lowercase versions of all existing users.)

5-11. Ordinal Numbers: Ordinal numbers indicate their position in a list, such as

1st or 2nd. Most ordinal numbers end in th, except 1, 2, and 3.

• Store the numbers 1 through 9 in a list.

• Loop through the list.

• Use an if-elif-else chain inside the loop to print the proper ordinal ending

for each number. Your output should read "1st 2nd 3rd 4th 5th 6th 7th

8th 9th", and each result should be on a separate line.

if Statements 89

Styling Your if Statements

In every example in this chapter, you’ve seen good styling habits. The only
recommendation PEP 8 provides for styling conditional tests is to use a single
space around comparison operators, such as ==, >=, and <=. For example:

if age < 4:

is better than:

if age<4:

Such spacing does not affect the way Python interprets your code; it just
makes your code easier for you and others to read.

T RY IT YOURSEL F

5-12. Styling if Statements: Review the programs you wrote in this chapter, and

make sure you styled your conditional tests appropriately.

5-13. Your Ideas: At this point, you’re a more capable programmer than you

were when you started this book. Now that you have a better sense of how

real-world situations are modeled in programs, you might be thinking of some

problems you could solve with your own programs. Record any new ideas you

have about problems you might want to solve as your programming skills con-

tinue to improve. Consider games you might want to write, datasets you might

want to explore, and web applications you’d like to create.

Summary

In this chapter you learned how to write conditional tests, which always
evaluate to True or False. You learned to write simple if statements, if-else
chains, and if-elif-else chains. You began using these structures to identify
particular conditions you need to test and to know when those conditions
have been met in your programs. You learned to handle certain items in a
list differently than all other items while continuing to utilize the ef�ciency
of a for loop. You also revisited Python’s style recommendations to ensure
that your increasingly complex programs are still relatively easy to read and
understand.

In Chapter 6 you’ll learn about Python’s dictionaries. A dictionary is
similar to a list, but it allows you to connect pieces of information. You’ll
learn how to build dictionaries, loop through them, and use them in combi-
nation with lists and if statements. Learning about dictionaries will enable
you to model an even wider variety of real-world situations.

6
D I C T I O N A R I E S

In this chapter you’ll learn how to use

Python’s dictionaries, which allow you to con-

nect pieces of related information. You’ll learn

how to access the information once it’s in a dic-

tionary and how to modify that information. Because

dictionaries can store an almost limitless amount of
information, I’ll show you how to loop through the data in a dictionary.
Additionally, you’ll learn to nest dictionaries inside lists, lists inside diction-
aries, and even dictionaries inside other dictionaries.

Understanding dictionaries allows you to model a variety of real-world
objects more accurately. You’ll be able to create a dictionary representing a
person and then store as much information as you want about that person.
You can store their name, age, location, profession, and any other aspect of
a person you can describe. You’ll be able to store any two kinds of informa-
tion that can be matched up, such as a list of words and their meanings, a
list of people’s names and their favorite numbers, a list of mountains and
their elevations, and so forth.

92 Chapter 6

A Simple Dictionary

Consider a game featuring aliens that can have different colors and point
values. This simple dictionary stores information about a particular alien:

alien.py alien_0 = {'color': 'green', 'points': 5}

print(alien_0['color'])
print(alien_0['points'])

The dictionary alien_0 stores the alien’s color and point value. The last
two lines access and display that information, as shown here:

green
5

As with most new programming concepts, using dictionaries takes prac-
tice. Once you’ve worked with dictionaries for a bit, you’ll see how effectively
they can model real-world situations.

Working with Dictionaries

A dictionary in Python is a collection of key-value pairs. Each key is connected to
a value, and you can use a key to access the value associated with that key. A
key’s value can be a number, a string, a list, or even another dictionary. In fact,
you can use any object that you can create in Python as a value in a dictionary.

In Python, a dictionary is wrapped in braces ({}) with a series of key-value
pairs inside the braces, as shown in the earlier example:

alien_0 = {'color': 'green', 'points': 5}

A key-value pair is a set of values associated with each other. When you
provide a key, Python returns the value associated with that key. Every key is
connected to its value by a colon, and individual key-value pairs are separated
by commas. You can store as many key-value pairs as you want in a dictionary.

The simplest dictionary has exactly one key-value pair, as shown in this
modi�ed version of the alien_0 dictionary:

alien_0 = {'color': 'green'}

This dictionary stores one piece of information about alien_0: the alien’s
color. The string 'color' is a key in this dictionary, and its associated value
is 'green'.

Accessing Values in a Dictionary
To get the value associated with a key, give the name of the dictionary and
then place the key inside a set of square brackets, as shown here:

alien.py alien_0 = {'color': 'green'}
print(alien_0['color'])

Dictionaries 93

This returns the value associated with the key 'color' from the diction-
ary alien_0:

green

You can have an unlimited number of key-value pairs in a dictionary.
For example, here’s the original alien_0 dictionary with two key-value pairs:

alien_0 = {'color': 'green', 'points': 5}

Now you can access either the color or the point value of alien_0. If a
player shoots down this alien, you can look up how many points they should
earn using code like this:

alien_0 = {'color': 'green', 'points': 5}

new_points = alien_0['points']
print(f"You just earned {new_points} points!")

Once the dictionary has been de�ned, we pull the value associated with
the key 'points' from the dictionary. This value is then assigned to the vari-
able new_points. The last line prints a statement about how many points the
player just earned:

You just earned 5 points!

If you run this code every time an alien is shot down, the alien’s point
value will be retrieved.

Adding New Key-Value Pairs
Dictionaries are dynamic structures, and you can add new key-value pairs
to a dictionary at any time. To add a new key-value pair, you would give the
name of the dictionary followed by the new key in square brackets, along
with the new value.

Let’s add two new pieces of information to the alien_0 dictionary: the
alien’s x - and y -coordinates, which will help us display the alien at a par-
ticular position on the screen. Let’s place the alien on the left edge of the
screen, 25 pixels down from the top. Because screen coordinates usually
start at the upper-left corner of the screen, we’ll place the alien on the left
edge of the screen by setting the x -coordinate to 0 and 25 pixels from the
top by setting its y -coordinate to positive 25, as shown here:

alien.py alien_0 = {'color': 'green', 'points': 5}
print(alien_0)

alien_0['x_position'] = 0
alien_0['y_position'] = 25
print(alien_0)

94 Chapter 6

We start by de�ning the same dictionary that we’ve been working with.
We then print this dictionary, displaying a snapshot of its information.
Next, we add a new key-value pair to the dictionary: the key 'x_position'
and the value 0. We do the same for the key 'y_position'. When we print the
modi�ed dictionary, we see the two additional key-value pairs:

{'color': 'green', 'points': 5}
{'color': 'green', 'points': 5, 'x_position': 0, 'y_position': 25}

The �nal version of the dictionary contains four key-value pairs. The
original two specify color and point value, and two more specify the alien’s
position.

Dictionaries retain the order in which they were de�ned. When you
print a dictionary or loop through its elements, you will see the elements in
the same order they were added to the dictionary.

Starting with an Empty Dictionary
It’s sometimes convenient, or even necessary, to start with an empty diction-
ary and then add each new item to it. To start �lling an empty dictionary,
de�ne a dictionary with an empty set of braces and then add each key-value
pair on its own line. For example, here’s how to build the alien_0 dictionary
using this approach:

alien.py alien_0 = {}

alien_0['color'] = 'green'
alien_0['points'] = 5

print(alien_0)

We �rst de�ne an empty alien_0 dictionary, and then add color and
point values to it. The result is the dictionary we’ve been using in previous
examples:

{'color': 'green', 'points': 5}

Typically, you’ll use empty dictionaries when storing user-supplied data
in a dictionary or when writing code that generates a large number of key-
value pairs automatically.

Modifying Values in a Dictionary
To modify a value in a dictionary, give the name of the dictionary with the
key in square brackets and then the new value you want associated with
that key. For example, consider an alien that changes from green to yellow
as a game progresses:

alien.py alien_0 = {'color': 'green'}
print(f"The alien is {alien_0['color']}.")

Dictionaries 95

alien_0['color'] = 'yellow'
print(f"The alien is now {alien_0['color']}.")

We �rst de�ne a dictionary for alien_0 that contains only the alien’s
color; then we change the value associated with the key 'color' to 'yellow'.
The output shows that the alien has indeed changed from green to yellow:

The alien is green.
The alien is now yellow.

For a more interesting example, let’s track the position of an alien that
can move at different speeds. We’ll store a value representing the alien’s
current speed and then use it to determine how far to the right the alien
should move:

alien_0 = {'x_position': 0, 'y_position': 25, 'speed': 'medium'}
print(f"Original position: {alien_0['x_position']}")

Move the alien to the right.
Determine how far to move the alien based on its current speed.

1 if alien_0['speed'] == 'slow':
 x_increment = 1
elif alien_0['speed'] == 'medium':
 x_increment = 2
else:
 # This must be a fast alien.
 x_increment = 3

The new position is the old position plus the increment.
2 alien_0['x_position'] = alien_0['x_position'] + x_increment

print(f"New position: {alien_0['x_position']}")

We start by de�ning an alien with an initial x position and y position,
and a speed of 'medium'. We’ve omitted the color and point values for the
sake of simplicity, but this example would work the same way if you included
those key-value pairs as well. We also print the original value of x_position to
see how far the alien moves to the right.

An if-elif-else chain determines how far the alien should move to
the right, and assigns this value to the variable x_increment 1. If the alien’s
speed is 'slow', it moves one unit to the right; if the speed is 'medium', it
moves two units to the right; and if it’s 'fast', it moves three units to the
right. Once the increment has been calculated, it’s added to the value of
x_position 2, and the result is stored in the dictionary’s x_position.

Because this is a medium-speed alien, its position shifts two units to the
right:

Original x-position: 0
New x-position: 2

96 Chapter 6

This technique is pretty cool: by changing one value in the alien’s dic-
tionary, you can change the overall behavior of the alien. For example, to
turn this medium-speed alien into a fast alien, you would add this line:

alien_0['speed'] = 'fast'

The if-elif-else block would then assign a larger value to x_increment
the next time the code runs.

Removing Key-Value Pairs
When you no longer need a piece of information that’s stored in a diction-
ary, you can use the del statement to completely remove a key-value pair.
All del needs is the name of the dictionary and the key that you want to
remove.

For example, let’s remove the key 'points' from the alien_0 dictionary,
along with its value:

alien.py alien_0 = {'color': 'green', 'points': 5}
print(alien_0)

1 del alien_0['points']
print(alien_0)

The del statement 1 tells Python to delete the key 'points' from the
dictionary alien_0 and to remove the value associated with that key as well.
The output shows that the key 'points' and its value of 5 are deleted from
the dictionary, but the rest of the dictionary is unaffected:

{'color': 'green', 'points': 5}
{'color': 'green'}

N O T E Be aware that the deleted key-value pair is removed permanently.

A Dictionary of Similar Objects
The previous example involved storing different kinds of information about
one object, an alien in a game. You can also use a dictionary to store one
kind of information about many objects. For example, say you want to poll a
number of people and ask them what their favorite programming language
is. A dictionary is useful for storing the results of a simple poll, like this:

favorite
_languages.py

favorite_languages = {
 'jen': 'python',
 'sarah': 'c',
 'edward': 'rust',
 'phil': 'python',
 }

Dictionaries 97

As you can see, we’ve broken a larger dictionary into several lines. Each
key is the name of a person who responded to the poll, and each value is
their language choice. When you know you’ll need more than one line to
de�ne a dictionary, press ENTER after the opening brace. Then indent the
next line one level (four spaces) and write the �rst key-value pair, followed
by a comma. From this point forward when you press ENTER, your text edi-
tor should automatically indent all subsequent key-value pairs to match the
�rst key-value pair.

Once you’ve �nished de�ning the dictionary, add a closing brace on a
new line after the last key-value pair, and indent it one level so it aligns with
the keys in the dictionary. It’s good practice to include a comma after the
last key-value pair as well, so you’re ready to add a new key-value pair on the
next line.

N O T E Most editors have some functionality that helps you format extended lists and dic-
tionaries in a similar manner to this example. Other acceptable ways to format long
dictionaries are available as well, so you may see slightly different formatting in your
editor, or in other sources.

To use this dictionary, given the name of a person who took the poll,
you can easily look up their favorite language:

favorite
_languages.py

favorite_languages = {
 'jen': 'python',
 'sarah': 'c',
 'edward': 'rust',
 'phil': 'python',
 }

1 language = favorite_languages['sarah'].title()
print(f"Sarah's favorite language is {language}.")

To see which language Sarah chose, we ask for the value at:

favorite_languages['sarah']

We use this syntax to pull Sarah’s favorite language from the dictionary 1
and assign it to the variable language. Creating a new variable here makes for a
much cleaner print() call. The output shows Sarah’s favorite language:

Sarah's favorite language is C.

You could use this same syntax with any individual represented in the
dictionary.

Using get() to Access Values
Using keys in square brackets to retrieve the value you’re interested in from a
dictionary might cause one potential problem: if the key you ask for doesn’t
exist, you’ll get an error.

98 Chapter 6

Let’s see what happens when you ask for the point value of an alien that
doesn’t have a point value set:

alien_no
_points.py

alien_0 = {'color': 'green', 'speed': 'slow'}
print(alien_0['points'])

This results in a traceback, showing a KeyError:

Traceback (most recent call last):
 File "alien_no_points.py", line 2, in <module>
 print(alien_0['points'])
          ~~~~~~~^^^^^^^^^^
KeyError: 'points'

You’ll learn more about how to handle errors like this in general in 
Chapter 10. For dictionaries speci�cally, you can use the get() method to set  
a default value that will be returned if the requested key doesn’t exist.

The get() method requires a key as a �rst argument. As a second optional 
argument, you can pass the value to be returned if the key doesn’t exist:

alien_0 = {'color': 'green', 'speed': 'slow'}

point_value = alien_0.get('points', 'No point value assigned.')
print(point_value)

If the key 'points' exists in the dictionary, you’ll get the correspond-
ing value. If it doesn’t, you get the default value. In this case, points doesn’t 
exist, and we get a clean message instead of an error:

No point value assigned.

If there’s a chance the key you’re asking for might not exist, consider 
using the get() method instead of the square bracket notation.

N O T E  If you leave out the second argument in the call to get() and the key doesn’t exist, 
Python will return the value None. The special value None means “no value exists.” 
This is not an error: it’s a special value meant to indicate the absence of a value. 
You’ll see more uses for None in Chapter 8.

T RY IT YOURSEL F

6-1. Person: Use a dictionary to store information about a person you know. 

Store their first name, last name, age, and the city in which they live. You 

should have keys such as first_name, last_name, age, and city. Print each piece  

of information stored in your dictionary.

6-2. Favorite Numbers: Use a dictionary to store people’s favorite numbers. 

Think of five names, and use them as keys in your dictionary. Think of a favorite 



Dictionaries   99

number for each person, and store each as a value in your dictionary. Print 

each person’s name and their favorite number. For even more fun, poll a few 

friends and get some actual data for your program.

6-3. Glossary: A Python dictionary can be used to model an actual dictionary. 

However, to avoid confusion, let’s call it a glossary.

• Think of five programming words you’ve learned about in the previous 

chapters. Use these words as the keys in your glossary, and store their 

meanings as values.

• Print each word and its meaning as neatly formatted output. You might 

print the word followed by a colon and then its meaning, or print the word 

on one line and then print its meaning indented on a second line. Use the 

newline character (\n) to insert a blank line between each word-meaning 

pair in your output.

Looping Through a Dictionary

A single Python dictionary can contain just a few key-value pairs or millions 
of pairs. Because a dictionary can contain large amounts of data, Python 
lets you loop through a dictionary. Dictionaries can be used to store infor-
mation in a variety of ways; therefore, several different ways exist to loop 
through them. You can loop through all of a dictionary’s key-value pairs, 
through its keys, or through its values.

Looping Through All Key-Value Pairs
Before we explore the different approaches to looping, let’s consider a new 
dictionary designed to store information about a user on a website. The  
following dictionary would store one person’s username, �rst name, and 
last name:

user.py user_0 = {
    'username': 'efermi',
    'first': 'enrico',
    'last': 'fermi',
    }

You can access any single piece of information about user_0 based 
on what you’ve already learned in this chapter. But what if you wanted to 
see everything stored in this user’s dictionary? To do so, you could loop 
through the dictionary using a for loop:

user_0 = {
    'username': 'efermi',
    'first': 'enrico',
    'last': 'fermi',
    }



100   Chapter 6

for key, value in user_0.items():
    print(f"\nKey: {key}")
    print(f"Value: {value}")

To write a for loop for a dictionary, you create names for the two vari-
ables that will hold the key and value in each key-value pair. You can choose 
any names you want for these two variables. This code would work just as 
well if you had used abbreviations for the variable names, like this:

for k, v in user_0.items()

The second half of the for statement includes the name of the dictionary 
followed by the method items(), which returns a sequence of key-value pairs. 
The for loop then assigns each of these pairs to the two variables provided. 
In the preceding example, we use the variables to print each key, followed 
by the associated value. The "\n" in the �rst print() call ensures that a blank 
line is inserted before each key-value pair in the output:

Key: username
Value: efermi

Key: first
Value: enrico

Key: last
Value: fermi

Looping through all key-value pairs works particularly well for diction-
aries like the favorite_languages.py example on page 96, which stores the 
same kind of information for many different keys. If you loop through the 
favorite_languages dictionary, you get the name of each person in the dic-
tionary and their favorite programming language. Because the keys always 
refer to a person’s name and the value is always a language, we’ll use the 
variables name and language in the loop instead of key and value. This will 
make it easier to follow what’s happening inside the loop:

favorite 
_languages.py

favorite_languages = {
    'jen': 'python',
    'sarah': 'c',
    'edward': 'rust',
    'phil': 'python',
    }

for name, language in favorite_languages.items():
    print(f"{name.title()}'s favorite language is {language.title()}.")

This code tells Python to loop through each key-value pair in the dic-
tionary. As it works through each pair the key is assigned to the variable 
name, and the value is assigned to the variable language. These descriptive 
names make it much easier to see what the print() call is doing.



Dictionaries   101

Now, in just a few lines of code, we can display all of the information 
from the poll:

Jen's favorite language is Python.
Sarah's favorite language is C.
Edward's favorite language is Rust.
Phil's favorite language is Python.

This type of looping would work just as well if our dictionary stored the 
results from polling a thousand or even a million people.

Looping Through All the Keys in a Dictionary
The keys() method is useful when you don’t need to work with all of the val-
ues in a dictionary. Let’s loop through the favorite_languages dictionary and 
print the names of everyone who took the poll:

favorite_languages = {
    'jen': 'python',
    'sarah': 'c',
    'edward': 'rust',
    'phil': 'python',
    }

for name in favorite_languages.keys():
    print(name.title())

This for loop tells Python to pull all the keys from the dictionary favorite 
_languages and assign them one at a time to the variable name. The output 
shows the names of everyone who took the poll:

Jen
Sarah
Edward
Phil

Looping through the keys is actually the default behavior when looping 
through a dictionary, so this code would have exactly the same output if you 
wrote:

for name in favorite_languages:

rather than:

for name in favorite_languages.keys():

You can choose to use the keys() method explicitly if it makes your code 
easier to read, or you can omit it if you wish.

You can access the value associated with any key you care about inside 
the loop, by using the current key. Let’s print a message to a couple of 
friends about the languages they chose. We’ll loop through the names in 



102   Chapter 6

the dictionary as we did previously, but when the name matches one of our 
friends, we’ll display a message about their favorite language:

favorite_languages = {
    --snip--
    }

friends = ['phil', 'sarah']
for name in favorite_languages.keys():
    print(f"Hi {name.title()}.")

1     if name in friends:
2         language = favorite_languages[name].title()

        print(f"\t{name.title()}, I see you love {language}!")

First, we make a list of friends that we want to print a message to. Inside 
the loop, we print each person’s name. Then we check whether the name 
we’re working with is in the list friends 1. If it is, we determine the person’s 
favorite language using the name of the dictionary and the current value of 
name as the key 2. We then print a special greeting, including a reference to 
their language of choice.

Everyone’s name is printed, but our friends receive a special message:

Hi Jen.
Hi Sarah.
    Sarah, I see you love C!
Hi Edward.
Hi Phil.
    Phil, I see you love Python!

You can also use the keys() method to �nd out if a particular person 
was polled. This time, let’s �nd out if Erin took the poll:

favorite_languages = {
    --snip--
    }

if 'erin' not in favorite_languages.keys():
    print("Erin, please take our poll!")

The keys() method isn’t just for looping: it actually returns a sequence of 
all the keys, and the if statement simply checks if 'erin' is in this sequence. 
Because she’s not, a message is printed inviting her to take the poll:

Erin, please take our poll!

Looping Through a Dictionary’s Keys in a Particular Order
Looping through a dictionary returns the items in the same order they 
were inserted. Sometimes, though, you’ll want to loop through a dictionary 
in a different order.



Dictionaries   103

One way to do this is to sort the keys as they’re returned in the for loop. 
You can use the sorted() function to get a copy of the keys in order:

favorite_languages = {
    'jen': 'python',
    'sarah': 'c',
    'edward': 'rust',
    'phil': 'python',
    }

for name in sorted(favorite_languages.keys()):
    print(f"{name.title()}, thank you for taking the poll.")

This for statement is like other for statements, except that we’ve 
wrapped the sorted() function around the dictionary.keys() method. This 
tells Python to get all the keys in the dictionary and sort them before starting 
the loop. The output shows everyone who took the poll, with the names dis-
played in order:

Edward, thank you for taking the poll.
Jen, thank you for taking the poll.
Phil, thank you for taking the poll.
Sarah, thank you for taking the poll.

Looping Through All Values in a Dictionary
If you are primarily interested in the values that a dictionary contains, you 
can use the values() method to return a sequence of values without any 
keys. For example, say we simply want a list of all languages chosen in our 
programming language poll, without the name of the person who chose 
each language:

favorite_languages = {
    'jen': 'python',
    'sarah': 'c',
    'edward': 'rust',
    'phil': 'python',
    }

print("The following languages have been mentioned:")
for language in favorite_languages.values():
    print(language.title())

The for statement here pulls each value from the dictionary and assigns 
it to the variable language. When these values are printed, we get a list of all 
chosen languages:

The following languages have been mentioned:
Python
C
Rust
Python



104   Chapter 6

This approach pulls all the values from the dictionary without check-
ing for repeats. This might work �ne with a small number of values, but in a 
poll with a large number of respondents, it would result in a very repetitive 
list. To see each language chosen without repetition, we can use a set. A set 
is a collection in which each item must be unique:

favorite_languages = {
    --snip--
    }

print("The following languages have been mentioned:")
for language in set(favorite_languages.values()):
    print(language.title())

When you wrap set() around a collection of values that contains dupli-
cate items, Python identi�es the unique items in the collection and builds a 
set from those items. Here we use set() to pull out the unique languages in 
favorite_languages.values().

The result is a nonrepetitive list of languages that have been mentioned 
by people taking the poll:

The following languages have been mentioned:
Python
C
Rust

As you continue learning about Python, you’ll often �nd a built-in feature 
of the language that helps you do exactly what you want with your data.

N O T E  You can build a set directly using braces and separating the elements with commas:

>>> languages = {'python', 'rust', 'python', 'c'}
>>> languages
{'rust', 'python', 'c'}

It’s easy to mistake sets for dictionaries because they’re both wrapped in braces. 
When you see braces but no key-value pairs, you’re probably looking at a set. Unlike 
lists and dictionaries, sets do not retain items in any speci�c order.

T RY IT YOURSEL F

6-4. Glossary 2: Now that you know how to loop through a dictionary, clean 

up the code from Exercise 6-3 (page 99) by replacing your series of print() 

calls with a loop that runs through the dictionary’s keys and values. When 

you’re sure that your loop works, add five more Python terms to your glossary. 

When you run your program again, these new words and meanings should 

automatically be included in the output.



Dictionaries   105

6-5. Rivers: Make a dictionary containing three major rivers and the country 

each river runs through. One key-value pair might be 'nile': 'egypt'.

• Use a loop to print a sentence about each river, such as The Nile runs 

through Egypt.

• Use a loop to print the name of each river included in the dictionary.

• Use a loop to print the name of each country included in the dictionary.

6-6. Polling: Use the code in favorite_languages.py (page 96).

• Make a list of people who should take the favorite languages poll. Include 

some names that are already in the dictionary and some that are not.

• Loop through the list of people who should take the poll. If they have 

already taken the poll, print a message thanking them for responding. 

If they have not yet taken the poll, print a message inviting them to take 

the poll.

Nesting

Sometimes you’ll want to store multiple dictionaries in a list, or a list of 
items as a value in a dictionary. This is called nesting. You can nest dictionar-
ies inside a list, a list of items inside a dictionary, or even a dictionary inside 
another dictionary. Nesting is a powerful feature, as the following examples 
will demonstrate.

A List of Dictionaries
The alien_0 dictionary contains a variety of information about one alien, 
but it has no room to store information about a second alien, much less a 
screen full of aliens. How can you manage a �eet of aliens? One way is to 
make a list of aliens in which each alien is a dictionary of information about 
that alien. For example, the following code builds a list of three aliens:

aliens.py alien_0 = {'color': 'green', 'points': 5}
alien_1 = {'color': 'yellow', 'points': 10}
alien_2 = {'color': 'red', 'points': 15}

1 aliens = [alien_0, alien_1, alien_2]

for alien in aliens:
    print(alien)



106   Chapter 6

We �rst create three dictionaries, each representing a different alien. 
We store each of these dictionaries in a list called aliens 1. Finally, we loop 
through the list and print out each alien:

{'color': 'green', 'points': 5}
{'color': 'yellow', 'points': 10}
{'color': 'red', 'points': 15}

A more realistic example would involve more than three aliens with 
code that automatically generates each alien. In the following example, we 
use range() to create a �eet of 30 aliens:

# Make an empty list for storing aliens.
aliens = []

# Make 30 green aliens.
1 for alien_number in range(30):
2     new_alien = {'color': 'green', 'points': 5, 'speed': 'slow'}
3     aliens.append(new_alien)

# Show the first 5 aliens.
4 for alien in aliens[:5]:

    print(alien)
print("...")

# Show how many aliens have been created.
print(f"Total number of aliens: {len(aliens)}")

This example begins with an empty list to hold all of the aliens that will 
be created. The range() function 1 returns a series of numbers, which just 
tells Python how many times we want the loop to repeat. Each time the loop 
runs, we create a new alien 2 and then append each new alien to the list 
aliens 3. We use a slice to print the �rst �ve aliens 4, and �nally, we print 
the length of the list to prove we’ve actually generated the full �eet of  
30 aliens:

{'color': 'green', 'points': 5, 'speed': 'slow'}
{'color': 'green', 'points': 5, 'speed': 'slow'}
{'color': 'green', 'points': 5, 'speed': 'slow'}
{'color': 'green', 'points': 5, 'speed': 'slow'}
{'color': 'green', 'points': 5, 'speed': 'slow'}
...

Total number of aliens: 30

These aliens all have the same characteristics, but Python considers each 
one a separate object, which allows us to modify each alien individually.

How might you work with a group of aliens like this? Imagine that one 
aspect of a game has some aliens changing color and moving faster as the 
game progresses. When it’s time to change colors, we can use a for loop and 
an if statement to change the color of the aliens. For example, to change 



Dictionaries   107

the �rst three aliens to yellow, medium-speed aliens worth 10 points each, 
we could do this:

# Make an empty list for storing aliens.
aliens = []

# Make 30 green aliens.
for alien_number in range (30):
    new_alien = {'color': 'green', 'points': 5, 'speed': 'slow'}
    aliens.append(new_alien)

for alien in aliens[:3]:
    if alien['color'] == 'green':
        alien['color'] = 'yellow'
        alien['speed'] = 'medium'
        alien['points'] = 10

# Show the first 5 aliens.
for alien in aliens[:5]:
    print(alien)
print("...")

Because we want to modify the �rst three aliens, we loop through a 
slice that includes only the �rst three aliens. All of the aliens are green now, 
but that won’t always be the case, so we write an if statement to make sure 
we’re only modifying green aliens. If the alien is green, we change the color 
to 'yellow', the speed to 'medium', and the point value to 10, as shown in the 
following output:

{'color': 'yellow', 'points': 10, 'speed': 'medium'}
{'color': 'yellow', 'points': 10, 'speed': 'medium'}
{'color': 'yellow', 'points': 10, 'speed': 'medium'}
{'color': 'green', 'points': 5, 'speed': 'slow'}
{'color': 'green', 'points': 5, 'speed': 'slow'}
...

You could expand this loop by adding an elif block that turns yellow 
aliens into red, fast-moving ones worth 15 points each. Without showing the 
entire program again, that loop would look like this:

for alien in aliens[0:3]:
    if alien['color'] == 'green':
        alien['color'] = 'yellow'
        alien['speed'] = 'medium'
        alien['points'] = 10
    elif alien['color'] == 'yellow':
        alien['color'] = 'red'
        alien['speed'] = 'fast'
        alien['points'] = 15

It’s common to store a number of dictionaries in a list when each dic-
tionary contains many kinds of information about one object. For example, 
you might create a dictionary for each user on a website, as we did in user.py  



108   Chapter 6

on page 99, and store the individual dictionaries in a list called users. All 
of the dictionaries in the list should have an identical structure, so you can 
loop through the list and work with each dictionary object in the same way.

A List in a Dictionary
Rather than putting a dictionary inside a list, it’s sometimes useful to put 
a list inside a dictionary. For example, consider how you might describe a 
pizza that someone is ordering. If you were to use only a list, all you could 
really store is a list of the pizza’s toppings. With a dictionary, a list of top-
pings can be just one aspect of the pizza you’re describing.

In the following example, two kinds of information are stored for each 
pizza: a type of crust and a list of toppings. The list of toppings is a value 
associated with the key 'toppings'. To use the items in the list, we give the 
name of the dictionary and the key 'toppings', as we would any value in the 
dictionary. Instead of returning a single value, we get a list of toppings:

pizza.py # Store information about a pizza being ordered.
pizza = {
    'crust': 'thick',
    'toppings': ['mushrooms', 'extra cheese'],
    }

# Summarize the order.
1 print(f"You ordered a {pizza['crust']}-crust pizza "

    "with the following toppings:")

2 for topping in pizza['toppings']:
    print(f"\t{topping}")

We begin with a dictionary that holds information about a pizza that 
has been ordered. One key in the dictionary is 'crust', and the associated 
value is the string 'thick'. The next key, 'toppings', has a list as its value that 
stores all requested toppings. We summarize the order before building the 
pizza 1. When you need to break up a long line in a print() call, choose 
an appropriate point at which to break the line being printed, and end the 
line with a quotation mark. Indent the next line, add an opening quotation 
mark, and continue the string. Python will automatically combine all of the 
strings it �nds inside the parentheses. To print the toppings, we write a for 
loop 2. To access the list of toppings, we use the key 'toppings', and Python 
grabs the list of toppings from the dictionary.

The following output summarizes the pizza that we plan to build:

You ordered a thick-crust pizza with the following toppings:
    mushrooms
    extra cheese

You can nest a list inside a dictionary anytime you want more than one 
value to be associated with a single key in a dictionary. In the earlier example 
of favorite programming languages, if we were to store each person’s 
responses in a list, people could choose more than one favorite language. 



Dictionaries   109

When we loop through the dictionary, the value associated with each per-
son would be a list of languages rather than a single language. Inside the 
dictionary’s for loop, we use another for loop to run through the list of lan-
guages associated with each person:

favorite 
_languages.py

favorite_languages = {
    'jen': ['python', 'rust'],
    'sarah': ['c'],
    'edward': ['rust', 'go'],
    'phil': ['python', 'haskell'],
    }

1 for name, languages in favorite_languages.items():
    print(f"\n{name.title()}'s favorite languages are:")

2     for language in languages:
        print(f"\t{language.title()}")

The value associated with each name in favorite_languages is now a 
list. Note that some people have one favorite language and others have 
multiple favorites. When we loop through the dictionary 1, we use the 
variable name languages to hold each value from the dictionary, because we 
know that each value will be a list. Inside the main dictionary loop, we use 
another for loop 2 to run through each person’s list of favorite languages. 
Now each person can list as many favorite languages as they like:

Jen's favorite languages are:
    Python
    Rust

Sarah's favorite languages are:
    C

Edward's favorite languages are:
    Rust
    Go

Phil's favorite languages are:
    Python
    Haskell

To re�ne this program even further, you could include an if statement 
at the beginning of the dictionary’s for loop to see whether each person has 
more than one favorite language by examining the value of len(languages). 
If a person has more than one favorite, the output would stay the same. If 
the person has only one favorite language, you could change the wording to 
re�ect that. For example, you could say, “Sarah’s favorite language is C.”

N O T E  You should not nest lists and dictionaries too deeply. If you’re nesting items much 
deeper than what you see in the preceding examples, or if you’re working with someone 
else’s code with signi�cant levels of nesting, there’s most likely a simpler way to solve 
the problem.



110   Chapter 6

A Dictionary in a Dictionary
You can nest a dictionary inside another dictionary, but your code can get 
complicated quickly when you do. For example, if you have several users 
for a website, each with a unique username, you can use the usernames as 
the keys in a dictionary. You can then store information about each user by 
using a dictionary as the value associated with their username. In the fol-
lowing listing, we store three pieces of information about each user: their 
�rst name, last name, and location. We’ll access this information by looping 
through the usernames and the dictionary of information associated with 
each username:

many_users.py users = {
    'aeinstein': {
        'first': 'albert',
        'last': 'einstein',
        'location': 'princeton',
        },

    'mcurie': {
        'first': 'marie',
        'last': 'curie',
        'location': 'paris',
        },

    }

1 for username, user_info in users.items():
2     print(f"\nUsername: {username}")
3     full_name = f"{user_info['first']} {user_info['last']}"

    location = user_info['location']

4     print(f"\tFull name: {full_name.title()}")
    print(f"\tLocation: {location.title()}")

We �rst de�ne a dictionary called users with two keys: one each for the 
usernames 'aeinstein' and 'mcurie'. The value associated with each key is 
a dictionary that includes each user’s �rst name, last name, and location. 
Then, we loop through the users dictionary 1. Python assigns each key to 
the variable username, and the dictionary associated with each username is 
assigned to the variable user_info. Once inside the main dictionary loop, we 
print the username 2.

Then, we start accessing the inner dictionary 3. The variable user_info, 
which contains the dictionary of user information, has three keys: 'first', 
'last', and 'location'. We use each key to generate a neatly formatted full 
name and location for each person, and then print a summary of what we 
know about each user 4:

Username: aeinstein
    Full name: Albert Einstein
    Location: Princeton



Dictionaries   111

Username: mcurie
    Full name: Marie Curie
    Location: Paris

Notice that the structure of each user’s dictionary is identical. Although 
not required by Python, this structure makes nested dictionaries easier to 
work with. If each user’s dictionary had different keys, the code inside the 
for loop would be more complicated.

T RY IT YOURSEL F

6-7. People: Start with the program you wrote for Exercise 6-1 (page 98). Make 

two new dictionaries representing different people, and store all three dictionar-

ies in a list called people. Loop through your list of people. As you loop through 

the list, print everything you know about each person.

6-8. Pets: Make several dictionaries, where each dictionary represents a differ-

ent pet. In each dictionary, include the kind of animal and the owner’s name. 

Store these dictionaries in a list called pets. Next, loop through your list and as 

you do, print everything you know about each pet.

6-9. Favorite Places: Make a dictionary called favorite_places. Think of three 

names to use as keys in the dictionary, and store one to three favorite places for 

each person. To make this exercise a bit more interesting, ask some friends to 

name a few of their favorite places. Loop through the dictionary, and print each 

person’s name and their favorite places.

6-10. Favorite Numbers: Modify your program from Exercise 6-2 (page 98) so 

each person can have more than one favorite number. Then print each person’s 

name along with their favorite numbers.

6-11. Cities: Make a dictionary called cities. Use the names of three cities as 

keys in your dictionary. Create a dictionary of information about each city and 

include the country that the city is in, its approximate population, and one fact 

about that city. The keys for each city’s dictionary should be something like 

country, population, and fact. Print the name of each city and all of the infor-

mation you have stored about it.

6-12. Extensions: We’re now working with examples that are complex enough 

that they can be extended in any number of ways. Use one of the example pro-

grams from this chapter, and extend it by adding new keys and values, chang-

ing the context of the program, or improving the formatting of the output.

Summary

In this chapter, you learned how to de�ne a dictionary and how to work with  
the information stored in a dictionary. You learned how to access and  
modify individual elements in a dictionary, and how to loop through all  



112   Chapter 6

of the information in a dictionary. You learned to loop through a diction-
ary’s key-value pairs, its keys, and its values. You also learned how to nest 
multiple dictionaries in a list, nest lists in a dictionary, and nest a dictionary 
inside a dictionary.

In the next chapter you’ll learn about while loops and how to accept 
input from people who are using your programs. This will be an exciting 
chapter, because you’ll learn to make all of your programs interactive: 
they’ll be able to respond to user input.



7
U S E R  I N P U T  A N D  W H I L E  L O O P S

Most programs are written to solve an end 

user’s problem. To do so, you usually need 

to get some information from the user. For 

example, say someone wants to �nd out whether 

they’re old enough to vote. If you write a program to 

answer this question, you need to know the user’s age  
before you can provide an answer. The program will need to ask the user 
to enter, or input, their age; once the program has this input, it can com-
pare it to the voting age to determine if the user is old enough and then 
report the result.

In this chapter you’ll learn how to accept user input so your program 
can then work with it. When your program needs a name, you’ll be able 
to prompt the user for a name. When your program needs a list of names, 
you’ll be able to prompt the user for a series of names. To do this, you’ll use 
the input() function.

You’ll also learn how to keep programs running as long as users want 
them to, so they can enter as much information as they need to; then, your 



114   Chapter 7

program can work with that information. You’ll use Python’s while loop to 
keep programs running as long as certain conditions remain true.

With the ability to work with user input and the ability to control how 
long your programs run, you’ll be able to write fully interactive programs.

How the input() Function Works

The input() function pauses your program and waits for the user to enter 
some text. Once Python receives the user’s input, it assigns that input to a 
variable to make it convenient for you to work with.

For example, the following program asks the user to enter some text, 
then displays that message back to the user:

parrot.py message = input("Tell me something, and I will repeat it back to you: ")
print(message)

The input() function takes one argument: the prompt that we want to 
display to the user, so they know what kind of information to enter. In this 
example, when Python runs the �rst line, the user sees the prompt Tell me 
something, and I will repeat it back to you: . The program waits while the 
user enters their response and continues after the user presses ENTER. The 
response is assigned to the variable message, then print(message) displays the 
input back to the user:

Tell me something, and I will repeat it back to you: Hello everyone!
Hello everyone!

N O T E  Some text editors won’t run programs that prompt the user for input. You can use these 
editors to write programs that prompt for input, but you’ll need to run these programs 
from a terminal. See “Running Python Programs from a Terminal” on page 11.

Writing Clear Prompts
Each time you use the input() function, you should include a clear, easy-to-
follow prompt that tells the user exactly what kind of information you’re 
looking for. Any statement that tells the user what to enter should work. For 
example:

greeter.py name = input("Please enter your name: ")
print(f"\nHello, {name}!")

Add a space at the end of your prompts (after the colon in the preced-
ing example) to separate the prompt from the user’s response and to make 
it clear to your user where to enter their text. For example:

Please enter your name: Eric
Hello, Eric!



User Input and while Loops   115

Sometimes you’ll want to write a prompt that’s longer than one line. 
For example, you might want to tell the user why you’re asking for certain 
input. You can assign your prompt to a variable and pass that variable to the 
input() function. This allows you to build your prompt over several lines, 
then write a clean input() statement.

greeter.py prompt = "If you share your name, we can personalize the messages you see."
prompt += "\nWhat is your first name? "

name = input(prompt)
print(f"\nHello, {name}!")

This example shows one way to build a multiline string. The �rst line 
assigns the �rst part of the message to the variable prompt. In the second 
line, the operator += takes the string that was assigned to prompt and adds 
the new string onto the end.

The prompt now spans two lines, again with space after the question 
mark for clarity:

If you share your name, we can personalize the messages you see.
What is your first name? Eric

Hello, Eric!

Using int() to Accept Numerical Input
When you use the input() function, Python interprets everything the user 
enters as a string. Consider the following interpreter session, which asks for 
the user’s age:

>>> age = input("How old are you? ")
How old are you? 21
>>> age
'21'

The user enters the number 21, but when we ask Python for the value of 
age, it returns '21', the string representation of the numerical value entered. 
We know Python interpreted the input as a string because the number is 
now enclosed in quotes. If all you want to do is print the input, this works 
well. But if you try to use the input as a number, you’ll get an error:

>>> age = input("How old are you? ")
How old are you? 21

1 >>> age >= 18
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>

2 TypeError: '>=' not supported between instances of 'str' and 'int'

When you try to use the input to do a numerical comparison 1, Python 
produces an error because it can’t compare a string to an integer: the string 
'21' that’s assigned to age can’t be compared to the numerical value 18 2.



116   Chapter 7

We can resolve this issue by using the int() function, which converts 
the input string to a numerical value. This allows the comparison to run 
successfully:

>>> age = input("How old are you? ")
How old are you? 21

1 >>> age = int(age)
>>> age >= 18
True

In this example, when we enter 21 at the prompt, Python interprets the 
number as a string, but the value is then converted to a numerical represen-
tation by int() 1. Now Python can run the conditional test: it compares age 
(which now represents the numerical value 21) and 18 to see if age is greater 
than or equal to 18. This test evaluates to True.

How do you use the int() function in an actual program? Consider a 
program that determines whether people are tall enough to ride a roller 
coaster:

rollercoaster.py height = input("How tall are you, in inches? ")
height = int(height)

if height >= 48:
    print("\nYou're tall enough to ride!")
else:
    print("\nYou'll be able to ride when you're a little older.")

The program can compare height to 48 because height = int(height) 
converts the input value to a numerical representation before the compari-
son is made. If the number entered is greater than or equal to 48, we tell 
the user that they’re tall enough:

How tall are you, in inches? 71

You're tall enough to ride!

When you use numerical input to do calculations and comparisons, be 
sure to convert the input value to a numerical representation �rst.

The Modulo Operator
A useful tool for working with numerical information is the modulo operator (%), 
which divides one number by another number and returns the remainder:

>>> 4 % 3
1
>>> 5 % 3
2
>>> 6 % 3
0
>>> 7 % 3
1



User Input and while Loops   117

The modulo operator doesn’t tell you how many times one number �ts 
into another; it only tells you what the remainder is.

When one number is divisible by another number, the remainder is 0, 
so the modulo operator always returns 0. You can use this fact to determine 
if a number is even or odd:

even_or_odd.py number = input("Enter a number, and I'll tell you if it's even or odd: ")
number = int(number)

if number % 2 == 0:
    print(f"\nThe number {number} is even.")
else:
    print(f"\nThe number {number} is odd.")

Even numbers are always divisible by two, so if the modulo of a number 
and two is zero (here, if number % 2 == 0) the number is even. Otherwise, 
it’s odd.

Enter a number, and I'll tell you if it's even or odd: 42

The number 42 is even.

T RY IT YOURSEL F

7-1. Rental Car: Write a program that asks the user what kind of rental car they 

would like. Print a message about that car, such as “Let me see if I can find you 

a Subaru.”

7-2. Restaurant Seating: Write a program that asks the user how many people 

are in their dinner group. If the answer is more than eight, print a message say-

ing they’ll have to wait for a table. Otherwise, report that their table is ready.

7-3. Multiples of Ten: Ask the user for a number, and then report whether the 

number is a multiple of 10 or not.

Introducing while Loops

The for loop takes a collection of items and executes a block of code once 
for each item in the collection. In contrast, the while loop runs as long as, or 
while, a certain condition is true.

The while Loop in Action
You can use a while loop to count up through a series of numbers. For example,  
the following while loop counts from 1 to 5:

counting.py current_number = 1
while current_number <= 5:



118   Chapter 7

    print(current_number)
    current_number += 1

In the �rst line, we start counting from 1 by assigning current_number the 
value 1. The while loop is then set to keep running as long as the value of 
current_number is less than or equal to 5. The code inside the loop prints the 
value of current_number and then adds 1 to that value with current_number += 1. 
(The += operator is shorthand for current_number = current_number + 1.)

Python repeats the loop as long as the condition current_number <= 5 
is true. Because 1 is less than 5, Python prints 1 and then adds 1, making 
the current number 2. Because 2 is less than 5, Python prints 2 and adds 1 
again, making the current number 3, and so on. Once the value of current 
_number is greater than 5, the loop stops running and the program ends:

1
2
3
4
5

The programs you use every day most likely contain while loops. For 
example, a game needs a while loop to keep running as long as you want 
to keep playing, and so it can stop running as soon as you ask it to quit. 
Programs wouldn’t be fun to use if they stopped running before we told 
them to or kept running even after we wanted to quit, so while loops are 
quite useful.

Letting the User Choose When to Quit
We can make the parrot.py program run as long as the user wants by putting 
most of the program inside a while loop. We’ll de�ne a quit value and then 
keep the program running as long as the user has not entered the quit value:

parrot.py prompt = "\nTell me something, and I will repeat it back to you:"
prompt += "\nEnter 'quit' to end the program. "

message = ""
while message != 'quit':
    message = input(prompt)
    print(message)

We �rst de�ne a prompt that tells the user their two options: entering 
a message or entering the quit value (in this case, 'quit'). Then we set up a 
variable message to keep track of whatever value the user enters. We de�ne 
message as an empty string, "", so Python has something to check the �rst 
time it reaches the while line. The �rst time the program runs and Python 
reaches the while statement, it needs to compare the value of message to 
'quit', but no user input has been entered yet. If Python has nothing to 
compare, it won’t be able to continue running the program. To solve this 



User Input and while Loops   119

problem, we make sure to give message an initial value. Although it’s just an 
empty string, it will make sense to Python and allow it to perform the com-
parison that makes the while loop work. This while loop runs as long as the 
value of message is not 'quit'.

The �rst time through the loop, message is just an empty string, so Python 
enters the loop. At message = input(prompt), Python displays the prompt and 
waits for the user to enter their input. Whatever they enter is assigned to 
message and printed; then, Python reevaluates the condition in the while 
statement. As long as the user has not entered the word 'quit', the prompt 
is displayed again and Python waits for more input. When the user �nally 
enters 'quit', Python stops executing the while loop and the program ends:

Tell me something, and I will repeat it back to you:
Enter 'quit' to end the program. Hello everyone!
Hello everyone!

Tell me something, and I will repeat it back to you:
Enter 'quit' to end the program. Hello again.
Hello again.

Tell me something, and I will repeat it back to you:
Enter 'quit' to end the program. quit
quit

This program works well, except that it prints the word 'quit' as if it 
were an actual message. A simple if test �xes this:

prompt = "\nTell me something, and I will repeat it back to you:"
prompt += "\nEnter 'quit' to end the program. "

message = ""
while message != 'quit':
    message = input(prompt)

    if message != 'quit':
        print(message)

Now the program makes a quick check before displaying the message 
and only prints the message if it does not match the quit value:

Tell me something, and I will repeat it back to you:
Enter 'quit' to end the program. Hello everyone!
Hello everyone!

Tell me something, and I will repeat it back to you:
Enter 'quit' to end the program. Hello again.
Hello again.

Tell me something, and I will repeat it back to you:
Enter 'quit' to end the program. quit



120   Chapter 7

Using a Flag
In the previous example, we had the program perform certain tasks while 
a given condition was true. But what about more complicated programs in 
which many different events could cause the program to stop running?

For example, in a game, several different events can end the game. 
When the player runs out of ships, their time runs out, or the cities they 
were supposed to protect are all destroyed, the game should end. It needs 
to end if any one of these events happens. If many possible events might 
occur to stop the program, trying to test all these conditions in one while 
statement becomes complicated and dif�cult.

For a program that should run only as long as many conditions are 
true, you can de�ne one variable that determines whether or not the entire 
program is active. This variable, called a �ag, acts as a signal to the pro-
gram. We can write our programs so they run while the �ag is set to True 
and stop running when any of several events sets the value of the �ag to 
False. As a result, our overall while statement needs to check only one condi-
tion: whether the �ag is currently True. Then, all our other tests (to see if an 
event has occurred that should set the �ag to False) can be neatly organized 
in the rest of the program.

Let’s add a �ag to parrot.py from the previous section. This �ag, which 
we’ll call active (though you can call it anything), will monitor whether or 
not the program should continue running:

prompt = "\nTell me something, and I will repeat it back to you:"
prompt += "\nEnter 'quit' to end the program. "

active = True
1 while active:

    message = input(prompt)

    if message == 'quit':
        active = False
    else:
        print(message)

We set the variable active to True so the program starts in an active 
state. Doing so makes the while statement simpler because no comparison is 
made in the while statement itself; the logic is taken care of in other parts of 
the program. As long as the active variable remains True, the loop will con-
tinue running 1.

In the if statement inside the while loop, we check the value of message 
once the user enters their input. If the user enters 'quit', we set active to 
False, and the while loop stops. If the user enters anything other than 'quit', 
we print their input as a message.

This program has the same output as the previous example where we 
placed the conditional test directly in the while statement. But now that we 



User Input and while Loops   121

have a �ag to indicate whether the overall program is in an active state, it 
would be easy to add more tests (such as elif statements) for events that 
should cause active to become False. This is useful in complicated programs 
like games, in which there may be many events that should each make the 
program stop running. When any of these events causes the active �ag to 
become False, the main game loop will exit, a Game Over message can be 
displayed, and the player can be given the option to play again.

Using break to Exit a Loop
To exit a while loop immediately without running any remaining code in 
the loop, regardless of the results of any conditional test, use the break state-
ment. The break statement directs the �ow of your program; you can use it 
to control which lines of code are executed and which aren’t, so the program 
only executes code that you want it to, when you want it to.

For example, consider a program that asks the user about places they’ve 
visited. We can stop the while loop in this program by calling break as soon 
as the user enters the 'quit' value:

cities.py prompt = "\nPlease enter the name of a city you have visited:"
prompt += "\n(Enter 'quit' when you are finished.) "

1 while True:
    city = input(prompt)

    if city == 'quit':
        break
    else:
        print(f"I'd love to go to {city.title()}!")

A loop that starts with while True 1 will run forever unless it reaches a 
break statement. The loop in this program continues asking the user to enter 
the names of cities they’ve been to until they enter 'quit'. When they enter 
'quit', the break statement runs, causing Python to exit the loop:

Please enter the name of a city you have visited:
(Enter 'quit' when you are finished.) New York
I'd love to go to New York!

Please enter the name of a city you have visited:
(Enter 'quit' when you are finished.) San Francisco
I'd love to go to San Francisco!

Please enter the name of a city you have visited:
(Enter 'quit' when you are finished.) quit

N O T E  You can use the break statement in any of Python’s loops. For example, you could use 
break to quit a for loop that’s working through a list or a dictionary.



122   Chapter 7

Using continue in a Loop
Rather than breaking out of a loop entirely without executing the rest of its 
code, you can use the continue statement to return to the beginning of the 
loop, based on the result of a conditional test. For example, consider a loop 
that counts from 1 to 10 but prints only the odd numbers in that range:

counting.py current_number = 0
while current_number < 10:

1     current_number += 1
    if current_number % 2 == 0:
        continue

    print(current_number)

First, we set current_number to 0. Because it’s less than 10, Python enters 
the while loop. Once inside the loop, we increment the count by 1 1, so  
current_number is 1. The if statement then checks the modulo of current_number 
and 2. If the modulo is 0 (which means current_number is divisible by 2), the 
continue statement tells Python to ignore the rest of the loop and return to 
the beginning. If the current number is not divisible by 2, the rest of the 
loop is executed and Python prints the current number:

1
3
5
7
9

Avoiding Infinite Loops
Every while loop needs a way to stop running so it won’t continue to run for-
ever. For example, this counting loop should count from 1 to 5:

counting.py x = 1
while x <= 5:
    print(x)
    x += 1

However, if you accidentally omit the line x += 1, the loop will run 
forever:

# This loop runs forever!
x = 1
while x <= 5:
    print(x)



User Input and while Loops   123

Now the value of x will start at 1 but never change. As a result, the con-
ditional test x <= 5 will always evaluate to True and the while loop will run 
forever, printing a series of 1s, like this:

1
1
1
1
--snip--

Every programmer accidentally writes an in�nite while loop from time 
to time, especially when a program’s loops have subtle exit conditions. If 
your program gets stuck in an in�nite loop, press CTRL-C or just close the 
terminal window displaying your program’s output.

To avoid writing in�nite loops, test every while loop and make sure the loop  
stops when you expect it to. If you want your program to end when the user 
enters a certain input value, run the program and enter that value. If the 
program doesn’t end, scrutinize the way your program handles the value that 
should cause the loop to exit. Make sure at least one part of the program can 
make the loop’s condition False or cause it to reach a break statement.

N O T E  VS Code, like many editors, displays output in an embedded terminal window. To 
cancel an in�nite loop, make sure you click in the output area of the editor before 
pressing CTRL-C.

T RY IT YOURSEL F

7-4. Pizza Toppings: Write a loop that prompts the user to enter a series of 

pizza toppings until they enter a 'quit' value. As they enter each topping, print 

a message saying you’ll add that topping to their pizza.

7-5. Movie Tickets: A movie theater charges different ticket prices depending on 

a person’s age. If a person is under the age of 3, the ticket is free; if they are 

between 3 and 12, the ticket is $10; and if they are over age 12, the ticket is 

$15. Write a loop in which you ask users their age, and then tell them the cost 

of their movie ticket.

7-6. Three Exits: Write different versions of either Exercise 7-4 or 7-5 that do 

each of the following at least once:

• Use a conditional test in the while statement to stop the loop.

• Use an active variable to control how long the loop runs.

• Use a break statement to exit the loop when the user enters a 'quit' value.

7-7. Infinity: Write a loop that never ends, and run it. (To end the loop, press 

CTRL-C or close the window displaying the output.)



124   Chapter 7

Using a while Loop with Lists and Dictionaries

So far, we’ve worked with only one piece of user information at a time. We 
received the user’s input and then printed the input or a response to it. 
The next time through the while loop, we’d receive another input value and 
respond to that. But to keep track of many users and pieces of information, 
we’ll need to use lists and dictionaries with our while loops.

A for loop is effective for looping through a list, but you shouldn’t mod-
ify a list inside a for loop because Python will have trouble keeping track of 
the items in the list. To modify a list as you work through it, use a while loop. 
Using while loops with lists and dictionaries allows you to collect, store, and 
organize lots of input to examine and report on later.

Moving Items from One List to Another
Consider a list of newly registered but unveri�ed users of a website. After 
we verify these users, how can we move them to a separate list of con�rmed 
users? One way would be to use a while loop to pull users from the list of 
uncon�rmed users as we verify them and then add them to a separate list of 
con�rmed users. Here’s what that code might look like:

confirmed 
_users.py

# Start with users that need to be verified,
#  and an empty list to hold confirmed users.

1 unconfirmed_users = ['alice', 'brian', 'candace']
confirmed_users = []

# Verify each user until there are no more unconfirmed users.
#  Move each verified user into the list of confirmed users.

2 while unconfirmed_users:
3     current_user = unconfirmed_users.pop()

    print(f"Verifying user: {current_user.title()}")
4     confirmed_users.append(current_user)

# Display all confirmed users.
print("\nThe following users have been confirmed:")
for confirmed_user in confirmed_users:
    print(confirmed_user.title())

We begin with a list of uncon�rmed users 1 (Alice, Brian, and Candace) 
and an empty list to hold con�rmed users. The while loop runs as long as 
the list unconfirmed_users is not empty 2. Within this loop, the pop() method 
removes unveri�ed users one at a time from the end of unconfirmed_users 3. 
Because Candace is last in the unconfirmed_users list, her name will be the 
�rst to be removed, assigned to current_user, and added to the confirmed_users 
list 4. Next is Brian, then Alice.

We simulate con�rming each user by printing a veri�cation message 
and then adding them to the list of con�rmed users. As the list of uncon-
�rmed users shrinks, the list of con�rmed users grows. When the list of 



User Input and while Loops   125

uncon�rmed users is empty, the loop stops and the list of con�rmed users 
is printed:

Verifying user: Candace
Verifying user: Brian
Verifying user: Alice

The following users have been confirmed:
Candace
Brian
Alice

Removing All Instances of Specific Values from a List
In Chapter 3, we used remove() to remove a speci�c value from a list. The 
remove() function worked because the value we were interested in appeared 
only once in the list. But what if you want to remove all instances of a value 
from a list?

Say you have a list of pets with the value 'cat' repeated several times. To 
remove all instances of that value, you can run a while loop until 'cat' is no 
longer in the list, as shown here:

pets.py pets = ['dog', 'cat', 'dog', 'goldfish', 'cat', 'rabbit', 'cat']
print(pets)

while 'cat' in pets:
    pets.remove('cat')

print(pets)

We start with a list containing multiple instances of 'cat'. After printing 
the list, Python enters the while loop because it �nds the value 'cat' in the list 
at least once. Once inside the loop, Python removes the �rst instance of 'cat', 
returns to the while line, and then reenters the loop when it �nds that 'cat' is 
still in the list. It removes each instance of 'cat' until the value is no longer in 
the list, at which point Python exits the loop and prints the list again:

['dog', 'cat', 'dog', 'goldfish', 'cat', 'rabbit', 'cat']
['dog', 'dog', 'goldfish', 'rabbit']

Filling a Dictionary with User Input
You can prompt for as much input as you need in each pass through a while 
loop. Let’s make a polling program in which each pass through the loop 
prompts for the participant’s name and response. We’ll store the data we 
gather in a dictionary, because we want to connect each response with a 
particular user:

mountain_poll.py responses = {}
# Set a flag to indicate that polling is active.
polling_active = True



126   Chapter 7

while polling_active:
    # Prompt for the person's name and response.

1     name = input("\nWhat is your name? ")
    response = input("Which mountain would you like to climb someday? ")

    # Store the response in the dictionary.
2     responses[name] = response

    # Find out if anyone else is going to take the poll.
3     repeat = input("Would you like to let another person respond? (yes/ no) ")

    if repeat == 'no':
        polling_active = False

# Polling is complete. Show the results.
print("\n--- Poll Results ---")

4 for name, response in responses.items():
    print(f"{name} would like to climb {response}.")

The program �rst de�nes an empty dictionary (responses) and sets a �ag 
(polling_active) to indicate that polling is active. As long as polling_active is 
True, Python will run the code in the while loop.

Within the loop, the user is prompted to enter their name and a moun-
tain they’d like to climb 1. That information is stored in the responses 
dictionary 2, and the user is asked whether or not to keep the poll run-
ning 3. If they enter yes, the program enters the while loop again. If they  
enter no, the polling_active �ag is set to False, the while loop stops running, 
and the �nal code block 4 displays the results of the poll.

If you run this program and enter sample responses, you should see 
output like this:

What is your name? Eric
Which mountain would you like to climb someday? Denali
Would you like to let another person respond? (yes/ no) yes

What is your name? Lynn
Which mountain would you like to climb someday? Devil's Thumb
Would you like to let another person respond? (yes/ no) no

--- Poll Results ---
Eric would like to climb Denali.
Lynn would like to climb Devil's Thumb.



User Input and while Loops   127

T RY IT YOURSEL F

7-8. Deli: Make a list called sandwich_orders and fill it with the names of various 

sandwiches. Then make an empty list called finished_sandwiches. Loop through 

the list of sandwich orders and print a message for each order, such as I made 

your tuna sandwich. As each sandwich is made, move it to the list of finished 

sandwiches. After all the sandwiches have been made, print a message listing 

each sandwich that was made.

7-9. No Pastrami: Using the list sandwich_orders from Exercise 7-8, make sure 

the sandwich 'pastrami' appears in the list at least three times. Add code  

near the beginning of your program to print a message saying the deli has  

run out of pastrami, and then use a while loop to remove all occurrences of 

'pastrami' from sandwich_orders. Make sure no pastrami sandwiches end up  

in finished_sandwiches.

7-10. Dream Vacation: Write a program that polls users about their dream vaca-

tion. Write a prompt similar to If you could visit one place in the world, where 

would you go? Include a block of code that prints the results of the poll.

Summary

In this chapter, you learned how to use input() to allow users to provide 
their own information in your programs. You learned to work with both 
text and numerical input and how to use while loops to make your programs 
run as long as your users want them to. You saw several ways to control the 
�ow of a while loop by setting an active �ag, using the break statement, and 
using the continue statement. You learned how to use a while loop to move 
items from one list to another and how to remove all instances of a value 
from a list. You also learned how while loops can be used with dictionaries.

In Chapter 8 you’ll learn about functions. Functions allow you to break 
your programs into small parts, each of which does one speci�c job. You 
can call a function as many times as you want, and you can store your 
functions in separate �les. By using functions, you’ll be able to write more 
ef�cient code that’s easier to troubleshoot and maintain and that can be 
reused in many different programs.





8
F U N C T I O N S

In this chapter you’ll learn to write func-

tions, which are named blocks of code 

designed to do one speci�c job. When you 

want to perform a particular task that you’ve 

de�ned in a function, you call the function respon-

sible for it. If you need to perform that task multiple 

times throughout your program, you don’t need to 

type all the code for the same task again and again;  
you just call the function dedicated to handling that task, and the call 
tells Python to run the code inside the function. You’ll �nd that using 
functions makes your programs easier to write, read, test, and �x.

In this chapter you’ll also learn a variety of ways to pass information to 
functions. You’ll learn how to write certain functions whose primary job is 
to display information and other functions designed to process data and 
return a value or set of values. Finally, you’ll learn to store functions in sep-
arate �les called modules to help organize your main program �les.



130   Chapter 8

Defining a Function

Here’s a simple function named greet_user() that prints a greeting:

greeter.py def greet_user():
    """Display a simple greeting."""
    print("Hello!")

greet_user()

This example shows the simplest structure of a function. The �rst line 
uses the keyword def to inform Python that you’re de�ning a function. This 
is the function de�nition, which tells Python the name of the function and, if 
applicable, what kind of information the function needs to do its job. The 
parentheses hold that information. In this case, the name of the function is 
greet_user(), and it needs no information to do its job, so its parentheses are 
empty. (Even so, the parentheses are required.) Finally, the de�nition ends 
in a colon.

Any indented lines that follow def greet_user(): make up the body of the 
function. The text on the second line is a comment called a docstring, which 
describes what the function does. When Python generates documentation 
for the functions in your programs, it looks for a string immediately after 
the function's de�nition. These strings are usually enclosed in triple quotes, 
which lets you write multiple lines.

The line print("Hello!") is the only line of actual code in the body of 
this function, so greet_user() has just one job: print("Hello!").

When you want to use this function, you have to call it. A function call 
tells Python to execute the code in the function. To call a function, you write 
the name of the function, followed by any necessary information in paren-
theses. Because no information is needed here, calling our function is as 
simple as entering greet_user(). As expected, it prints Hello!:

Hello!

Passing Information to a Function
If you modify the function greet_user() slightly, it can greet the user by 
name. For the function to do this, you enter username in the parentheses of 
the function’s de�nition at def greet_user(). By adding username here, you 
allow the function to accept any value of username you specify. The function 
now expects you to provide a value for username each time you call it. When 
you call greet_user(), you can pass it a name, such as 'jesse', inside the 
parentheses:

def greet_user(username):
    """Display a simple greeting."""
    print(f"Hello, {username.title()}!")

greet_user('jesse')



Functions   131

Entering greet_user('jesse') calls greet_user() and gives the function the 
information it needs to execute the print() call. The function accepts the 
name you passed it and displays the greeting for that name:

Hello, Jesse!

Likewise, entering greet_user('sarah') calls greet_user(), passes it 'sarah', 
and prints Hello, Sarah! You can call greet_user() as often as you want and 
pass it any name you want to produce a predictable output every time.

Arguments and Parameters
In the preceding greet_user() function, we de�ned greet_user() to require a 
value for the variable username. Once we called the function and gave it the 
information (a person’s name), it printed the right greeting.

The variable username in the de�nition of greet_user() is an example of a 
parameter, a piece of information the function needs to do its job. The value 
'jesse' in greet_user('jesse') is an example of an argument. An argument is 
a piece of information that’s passed from a function call to a function. 
When we call the function, we place the value we want the function to work 
with in parentheses. In this case the argument 'jesse' was passed to the 
function greet_user(), and the value was assigned to the parameter username.

N O T E  People sometimes speak of arguments and parameters interchangeably. Don’t be sur-
prised if you see the variables in a function de�nition referred to as arguments or the 
variables in a function call referred to as parameters.

T RY IT YOURSEL F

8-1. Message: Write a function called display_message() that prints one sen-

tence telling everyone what you are learning about in this chapter. Call the 

function, and make sure the message displays correctly.

8-2. Favorite Book: Write a function called favorite_book() that accepts one 

parameter, title. The function should print a message, such as One of my 

favorite books is Alice in Wonderland. Call the function, making sure to 

include a book title as an argument in the function call.

Passing Arguments

Because a function de�nition can have multiple parameters, a function call 
may need multiple arguments. You can pass arguments to your functions 
in a number of ways. You can use positional arguments, which need to be in 
the same order the parameters were written; keyword arguments, where each 
argument consists of a variable name and a value; and lists and dictionaries 
of values. Let’s look at each of these in turn.



132   Chapter 8

Positional Arguments
When you call a function, Python must match each argument in the func-
tion call with a parameter in the function de�nition. The simplest way to  
do this is based on the order of the arguments provided. Values matched 
up this way are called positional arguments.

To see how this works, consider a function that displays information 
about pets. The function tells us what kind of animal each pet is and the 
pet’s name, as shown here:

pets.py 1 def describe_pet(animal_type, pet_name):
    """Display information about a pet."""
    print(f"\nI have a {animal_type}.")
    print(f"My {animal_type}'s name is {pet_name.title()}.")

2 describe_pet('hamster', 'harry')

The de�nition shows that this function needs a type of animal and the 
animal’s name 1. When we call describe_pet(), we need to provide an ani-
mal type and a name, in that order. For example, in the function call, the 
argument 'hamster' is assigned to the parameter animal_type and the argu-
ment 'harry' is assigned to the parameter pet_name 2. In the function body, 
these two parameters are used to display information about the pet being 
described.

The output describes a hamster named Harry:

I have a hamster.
My hamster's name is Harry.

Multiple Function Calls

You can call a function as many times as needed. Describing a second, dif-
ferent pet requires just one more call to describe_pet():

def describe_pet(animal_type, pet_name):
    """Display information about a pet."""
    print(f"\nI have a {animal_type}.")
    print(f"My {animal_type}'s name is {pet_name.title()}.")

describe_pet('hamster', 'harry')
describe_pet('dog', 'willie')

In this second function call, we pass describe_pet() the arguments 'dog' 
and 'willie'. As with the previous set of arguments we used, Python matches 
'dog' with the parameter animal_type and 'willie' with the parameter pet_name. 
As before, the function does its job, but this time it prints values for a dog 
named Willie. Now we have a hamster named Harry and a dog named Willie:

I have a hamster.
My hamster's name is Harry.



Functions   133

I have a dog.
My dog's name is Willie.

Calling a function multiple times is a very ef�cient way to work. The 
code describing a pet is written once in the function. Then, anytime you 
want to describe a new pet, you call the function with the new pet’s infor-
mation. Even if the code for describing a pet were to expand to 10 lines, you 
could still describe a new pet in just one line by calling the function again.

Order Matters in Positional Arguments

You can get unexpected results if you mix up the order of the arguments in 
a function call when using positional arguments:

def describe_pet(animal_type, pet_name):
    """Display information about a pet."""
    print(f"\nI have a {animal_type}.")
    print(f"My {animal_type}'s name is {pet_name.title()}.")

describe_pet('harry', 'hamster')

In this function call, we list the name �rst and the type of animal 
second. Because the argument 'harry' is listed �rst this time, that value 
is assigned to the parameter animal_type. Likewise, 'hamster' is assigned to 
pet_name. Now we have a “harry” named “Hamster”:

I have a harry.
My harry's name is Hamster.

If you get funny results like this, check to make sure the order of the 
arguments in your function call matches the order of the parameters in the 
function’s de�nition.

Keyword Arguments
A keyword argument is a name-value pair that you pass to a function. You 
directly associate the name and the value within the argument, so when you 
pass the argument to the function, there’s no confusion (you won’t end up 
with a harry named Hamster). Keyword arguments free you from having 
to worry about correctly ordering your arguments in the function call, and 
they clarify the role of each value in the function call.

Let’s rewrite pets.py using keyword arguments to call describe_pet():

def describe_pet(animal_type, pet_name):
    """Display information about a pet."""
    print(f"\nI have a {animal_type}.")
    print(f"My {animal_type}'s name is {pet_name.title()}.")

describe_pet(animal_type='hamster', pet_name='harry')



134   Chapter 8

The function describe_pet() hasn’t changed. But when we call the func-
tion, we explicitly tell Python which parameter each argument should be 
matched with. When Python reads the function call, it knows to assign the 
argument 'hamster' to the parameter animal_type and the argument 'harry' to 
pet_name. The output correctly shows that we have a hamster named Harry.

The order of keyword arguments doesn’t matter because Python 
knows where each value should go. The following two function calls are 
equivalent:

describe_pet(animal_type='hamster', pet_name='harry')
describe_pet(pet_name='harry', animal_type='hamster')

N O T E  When you use keyword arguments, be sure to use the exact names of the parameters in 
the function’s de�nition.

Default Values
When writing a function, you can de�ne a default value for each parameter. 
If an argument for a parameter is provided in the function call, Python 
uses the argument value. If not, it uses the parameter’s default value. So 
when you de�ne a default value for a parameter, you can exclude the cor-
responding argument you’d usually write in the function call. Using default 
values can simplify your function calls and clarify the ways your functions 
are typically used.

For example, if you notice that most of the calls to describe_pet() are 
being used to describe dogs, you can set the default value of animal_type to 
'dog'. Now anyone calling describe_pet() for a dog can omit that information:

def describe_pet(pet_name, animal_type='dog'):
    """Display information about a pet."""
    print(f"\nI have a {animal_type}.")
    print(f"My {animal_type}'s name is {pet_name.title()}.")

describe_pet(pet_name='willie')

We changed the de�nition of describe_pet() to include a default value, 
'dog', for animal_type. Now when the function is called with no animal_type 
speci�ed, Python knows to use the value 'dog' for this parameter:

I have a dog.
My dog's name is Willie.

Note that the order of the parameters in the function de�nition had 
to be changed. Because the default value makes it unnecessary to specify a 
type of animal as an argument, the only argument left in the function call 
is the pet’s name. Python still interprets this as a positional argument, so  
if the function is called with just a pet’s name, that argument will match up 
with the �rst parameter listed in the function’s de�nition. This is the reason 
the �rst parameter needs to be pet_name.



Functions   135

The simplest way to use this function now is to provide just a dog’s 
name in the function call:

describe_pet('willie')

This function call would have the same output as the previous example. 
The only argument provided is 'willie', so it is matched up with the �rst 
parameter in the de�nition, pet_name. Because no argument is provided for 
animal_type, Python uses the default value 'dog'.

To describe an animal other than a dog, you could use a function call 
like this:

describe_pet(pet_name='harry', animal_type='hamster')

Because an explicit argument for animal_type is provided, Python will 
ignore the parameter’s default value.

N O T E  When you use default values, any parameter with a default value needs to be listed 
after all the parameters that don’t have default values. This allows Python to con-
tinue interpreting positional arguments correctly.

Equivalent Function Calls
Because positional arguments, keyword arguments, and default values can 
all be used together, you’ll often have several equivalent ways to call a func-
tion. Consider the following de�nition for describe_pet() with one default 
value provided:

def describe_pet(pet_name, animal_type='dog'):

With this de�nition, an argument always needs to be provided for 
pet_name, and this value can be provided using the positional or keyword for-
mat. If the animal being described is not a dog, an argument for animal_type 
must be included in the call, and this argument can also be speci�ed using 
the positional or keyword format.

All of the following calls would work for this function:

# A dog named Willie.
describe_pet('willie')
describe_pet(pet_name='willie')

# A hamster named Harry.
describe_pet('harry', 'hamster')
describe_pet(pet_name='harry', animal_type='hamster')
describe_pet(animal_type='hamster', pet_name='harry')

Each of these function calls would have the same output as the previous 
examples.

It doesn’t really matter which calling style you use. As long as your func-
tion calls produce the output you want, just use the style you �nd easiest to 
understand.



136   Chapter 8

Avoiding Argument Errors
When you start to use functions, don’t be surprised if you encounter errors 
about unmatched arguments. Unmatched arguments occur when you 
provide fewer or more arguments than a function needs to do its work. 
For example, here’s what happens if we try to call describe_pet() with no 
arguments:

def describe_pet(animal_type, pet_name):
    """Display information about a pet."""
    print(f"\nI have a {animal_type}.")
    print(f"My {animal_type}'s name is {pet_name.title()}.")

describe_pet()

Python recognizes that some information is missing from the function 
call, and the traceback tells us that:

Traceback (most recent call last):
1   File "pets.py", line 6, in <module>
2     describe_pet()

    ^^^^^^^^^^^^^^
3 TypeError: describe_pet() missing 2 required positional arguments: 

    'animal_type' and 'pet_name'

The traceback �rst tells us the location of the problem 1, allowing us 
to look back and see that something went wrong in our function call. Next, 
the offending function call is written out for us to see 2. Last, the trace-
back tells us the call is missing two arguments and reports the names of 
the missing arguments 3. If this function were in a separate �le, we could 
probably rewrite the call correctly without having to open that �le and read 
the function code.

Python is helpful in that it reads the function’s code for us and tells us 
the names of the arguments we need to provide. This is another motiva-
tion for giving your variables and functions descriptive names. If you do, 
Python’s error messages will be more useful to you and anyone else who 
might use your code.

If you provide too many arguments, you should get a similar traceback  
that can help you correctly match your function call to the function de�nition.

T RY IT YOURSEL F

8-3. T-Shirt: Write a function called make_shirt() that accepts a size and the 

text of a message that should be printed on the shirt. The function should print a 

sentence summarizing the size of the shirt and the message printed on it.

Call the function once using positional arguments to make a shirt. Call the 

function a second time using keyword arguments.



Functions   137

8-4. Large Shirts: Modify the make_shirt() function so that shirts are large 

by default with a message that reads I love Python. Make a large shirt and a 

medium shirt with the default message, and a shirt of any size with a different 

message.

8-5. Cities: Write a function called describe_city() that accepts the name of 

a city and its country. The function should print a simple sentence, such as 

Reykjavik is in Iceland. Give the parameter for the country a default value. 

Call your function for three different cities, at least one of which is not in the 

default country.

Return Values

A function doesn’t always have to display its output directly. Instead, it can 
process some data and then return a value or set of values. The value the 
function returns is called a return value. The return statement takes a value 
from inside a function and sends it back to the line that called the func-
tion. Return values allow you to move much of your program’s grunt 
work into functions, which can simplify the body of your program.

Returning a Simple Value
Let’s look at a function that takes a �rst and last name, and returns a neatly 
formatted full name:

formatted 
_name.py

def get_formatted_name(first_name, last_name):
    """Return a full name, neatly formatted."""

1     full_name = f"{first_name} {last_name}"
2     return full_name.title()

3 musician = get_formatted_name('jimi', 'hendrix')
print(musician)

The de�nition of get_formatted_name() takes as parameters a �rst and 
last name. The function combines these two names, adds a space between 
them, and assigns the result to full_name 1. The value of full_name is con-
verted to title case, and then returned to the calling line 2.

When you call a function that returns a value, you need to provide a 
variable that the return value can be assigned to. In this case, the returned 
value is assigned to the variable musician 3. The output shows a neatly for-
matted name made up of the parts of a person’s name:

Jimi Hendrix

This might seem like a lot of work to get a neatly formatted name when 
we could have just written:

print("Jimi Hendrix")



138   Chapter 8

However, when you consider working with a large program that needs 
to store many �rst and last names separately, functions like get_formatted 
_name() become very useful. You store �rst and last names separately and 
then call this function whenever you want to display a full name.

Making an Argument Optional
Sometimes it makes sense to make an argument optional, so that people 
using the function can choose to provide extra information only if they 
want to. You can use default values to make an argument optional.

For example, say we want to expand get_formatted_name() to handle 
middle names as well. A �rst attempt to include middle names might look 
like this:

def get_formatted_name(first_name, middle_name, last_name):
    """Return a full name, neatly formatted."""
    full_name = f"{first_name} {middle_name} {last_name}"
    return full_name.title()

musician = get_formatted_name('john', 'lee', 'hooker')
print(musician)

This function works when given a �rst, middle, and last name. The 
function takes in all three parts of a name and then builds a string out of 
them. The function adds spaces where appropriate and converts the full 
name to title case:

John Lee Hooker

But middle names aren’t always needed, and this function as written 
would not work if you tried to call it with only a �rst name and a last name. 
To make the middle name optional, we can give the middle_name argument 
an empty default value and ignore the argument unless the user provides a 
value. To make get_formatted_name() work without a middle name, we set the 
default value of middle_name to an empty string and move it to the end of the 
list of parameters:

def get_formatted_name(first_name, last_name, middle_name=''):
    """Return a full name, neatly formatted."""

1     if middle_name:
        full_name = f"{first_name} {middle_name} {last_name}"

2     else:
        full_name = f"{first_name} {last_name}"
    return full_name.title()

musician = get_formatted_name('jimi', 'hendrix')
print(musician)

3 musician = get_formatted_name('john', 'hooker', 'lee')
print(musician)



Functions   139

In this example, the name is built from three possible parts. Because 
there’s always a �rst and last name, these parameters are listed �rst in the 
function’s de�nition. The middle name is optional, so it’s listed last in the 
de�nition, and its default value is an empty string.

In the body of the function, we check to see if a middle name has been 
provided. Python interprets non-empty strings as True, so the conditional 
test if middle_name evaluates to True if a middle name argument is in the 
function call 1. If a middle name is provided, the �rst, middle, and last 
names are combined to form a full name. This name is then changed to 
title case and returned to the function call line, where it’s assigned to the 
variable musician and printed. If no middle name is provided, the empty 
string fails the if test and the else block runs 2. The full name is made 
with just a �rst and last name, and the formatted name is returned to the 
calling line where it’s assigned to musician and printed.

Calling this function with a �rst and last name is straightforward. If 
we’re using a middle name, however, we have to make sure the middle 
name is the last argument passed so Python will match up the positional 
arguments correctly 3.

This modi�ed version of our function works for people with just a �rst 
and last name, and it works for people who have a middle name as well:

Jimi Hendrix
John Lee Hooker

Optional values allow functions to handle a wide range of use cases 
while letting function calls remain as simple as possible.

Returning a Dictionary
A function can return any kind of value you need it to, including more com-
plicated data structures like lists and dictionaries. For example, the follow-
ing function takes in parts of a name and returns a dictionary representing 
a person:

person.py def build_person(first_name, last_name):
    """Return a dictionary of information about a person."""

1     person = {'first': first_name, 'last': last_name}
2     return person

musician = build_person('jimi', 'hendrix')
3 print(musician)

The function build_person() takes in a �rst and last name, and puts 
these values into a dictionary 1. The value of first_name is stored with the 
key 'first', and the value of last_name is stored with the key 'last'. Then, 
the entire dictionary representing the person is returned 2. The return 
value is printed 3 with the original two pieces of textual information now 
stored in a dictionary:

{'first': 'jimi', 'last': 'hendrix'}



140   Chapter 8

This function takes in simple textual information and puts it into a 
more meaningful data structure that lets you work with the information 
beyond just printing it. The strings 'jimi' and 'hendrix' are now labeled as 
a �rst name and last name. You can easily extend this function to accept 
optional values like a middle name, an age, an occupation, or any other 
information you want to store about a person. For example, the following 
change allows you to store a person’s age as well:

def build_person(first_name, last_name, age=None):
    """Return a dictionary of information about a person."""
    person = {'first': first_name, 'last': last_name}
    if age:
        person['age'] = age
    return person

musician = build_person('jimi', 'hendrix', age=27)
print(musician)

We add a new optional parameter age to the function de�nition and 
assign the parameter the special value None, which is used when a variable 
has no speci�c value assigned to it. You can think of None as a placeholder 
value. In conditional tests, None evaluates to False. If the function call 
includes a value for age, that value is stored in the dictionary. This function 
always stores a person’s name, but it can also be modi�ed to store any other 
information you want about a person.

Using a Function with a while Loop
You can use functions with all the Python structures you’ve learned about 
so far. For example, let’s use the get_formatted_name() function with a while 
loop to greet users more formally. Here’s a �rst attempt at greeting people 
using their �rst and last names:

greeter.py def get_formatted_name(first_name, last_name):
    """Return a full name, neatly formatted."""
    full_name = f"{first_name} {last_name}"
    return full_name.title()

# This is an infinite loop!
while True:

1     print("\nPlease tell me your name:")
    f_name = input("First name: ")
    l_name = input("Last name: ")

    formatted_name = get_formatted_name(f_name, l_name)
    print(f"\nHello, {formatted_name}!")

For this example, we use a simple version of get_formatted_name() that 
doesn’t involve middle names. The while loop asks the user to enter their 
name, and we prompt for their �rst and last name separately 1.

But there’s one problem with this while loop: We haven’t de�ned a quit 
condition. Where do you put a quit condition when you ask for a series of 



Functions   141

inputs? We want the user to be able to quit as easily as possible, so each 
prompt should offer a way to quit. The break statement offers a straightfor-
ward way to exit the loop at either prompt:

def get_formatted_name(first_name, last_name):
    """Return a full name, neatly formatted."""
    full_name = f"{first_name} {last_name}"
    return full_name.title()

while True:
    print("\nPlease tell me your name:")
    print("(enter 'q' at any time to quit)")

    f_name = input("First name: ")
    if f_name == 'q':
        break

    l_name = input("Last name: ")
    if l_name == 'q':
        break

    formatted_name = get_formatted_name(f_name, l_name)
    print(f"\nHello, {formatted_name}!")

We add a message that informs the user how to quit, and then we break 
out of the loop if the user enters the quit value at either prompt. Now the pro-
gram will continue greeting people until someone enters q for either name:

Please tell me your name:
(enter 'q' at any time to quit)
First name: eric
Last name: matthes

Hello, Eric Matthes!

Please tell me your name:
(enter 'q' at any time to quit)
First name: q

T RY IT YOURSEL F

8-6. City Names: Write a function called city_country() that takes in the name 

of a city and its country. The function should return a string formatted like this:

"Santiago, Chile"

Call your function with at least three city-country pairs, and print the values 

that are returned.

(continued)



142   Chapter 8

8-7. Album: Write a function called make_album() that builds a dictionary 

describing a music album. The function should take in an artist name and an 

album title, and it should return a dictionary containing these two pieces of 

information. Use the function to make three dictionaries representing different 

albums. Print each return value to show that the dictionaries are storing the 

album information correctly.

Use None to add an optional parameter to make_album() that allows you to 

store the number of songs on an album. If the calling line includes a value for 

the number of songs, add that value to the album’s dictionary. Make at least 

one new function call that includes the number of songs on an album.

8-8. User Albums: Start with your program from Exercise 8-7. Write a while 

loop that allows users to enter an album’s artist and title. Once you have that 

information, call make_album() with the user’s input and print the dictionary 

that’s created. Be sure to include a quit value in the while loop.

Passing a List

You’ll often �nd it useful to pass a list to a function, whether it’s a list of 
names, numbers, or more complex objects, such as dictionaries. When you 
pass a list to a function, the function gets direct access to the contents of 
the list. Let’s use functions to make working with lists more ef�cient.

Say we have a list of users and want to print a greeting to each. The 
following example sends a list of names to a function called greet_users(), 
which greets each person in the list individually:

greet_users.py def greet_users(names):
    """Print a simple greeting to each user in the list."""
    for name in names:
        msg = f"Hello, {name.title()}!"
        print(msg)

usernames = ['hannah', 'ty', 'margot']
greet_users(usernames)

We de�ne greet_users() so it expects a list of names, which it assigns 
to the parameter names. The function loops through the list it receives and 
prints a greeting to each user. Outside of the function, we de�ne a list of 
users and then pass the list usernames to greet_users() in the function call:

Hello, Hannah!
Hello, Ty!
Hello, Margot!

This is the output we wanted. Every user sees a personalized greeting, 
and you can call the function anytime you want to greet a speci�c set of 
users.



Functions   143

Modifying a List in a Function
When you pass a list to a function, the function can modify the list. Any 
changes made to the list inside the function’s body are permanent, allowing 
you to work ef�ciently even when you’re dealing with large amounts of data.

Consider a company that creates 3D printed models of designs that 
users submit. Designs that need to be printed are stored in a list, and after 
being printed they’re moved to a separate list. The following code does this 
without using functions:

printing 
_models.py

# Start with some designs that need to be printed.
unprinted_designs = ['phone case', 'robot pendant', 'dodecahedron']
completed_models = []

# Simulate printing each design, until none are left.
#  Move each design to completed_models after printing.
while unprinted_designs:
    current_design = unprinted_designs.pop()
    print(f"Printing model: {current_design}")
    completed_models.append(current_design)

# Display all completed models.
print("\nThe following models have been printed:")
for completed_model in completed_models:
    print(completed_model)

This program starts with a list of designs that need to be printed and 
an empty list called completed_models that each design will be moved to after 
it has been printed. As long as designs remain in unprinted_designs, the while 
loop simulates printing each design by removing a design from the end of 
the list, storing it in current_design, and displaying a message that the cur-
rent design is being printed. It then adds the design to the list of completed 
models. When the loop is �nished running, a list of the designs that have 
been printed is displayed:

Printing model: dodecahedron
Printing model: robot pendant
Printing model: phone case

The following models have been printed:
dodecahedron
robot pendant
phone case

We can reorganize this code by writing two functions, each of which 
does one speci�c job. Most of the code won’t change; we’re just structuring 
it more carefully. The �rst function will handle printing the designs, and 
the second will summarize the prints that have been made:

1 def print_models(unprinted_designs, completed_models):
    """
    Simulate printing each design, until none are left.



144   Chapter 8

    Move each design to completed_models after printing.
    """
    while unprinted_designs:
        current_design = unprinted_designs.pop()
        print(f"Printing model: {current_design}")
        completed_models.append(current_design)

2 def show_completed_models(completed_models):
    """Show all the models that were printed."""
    print("\nThe following models have been printed:")
    for completed_model in completed_models:
        print(completed_model)

unprinted_designs = ['phone case', 'robot pendant', 'dodecahedron']
completed_models = []

print_models(unprinted_designs, completed_models)
show_completed_models(completed_models)

We de�ne the function print_models() with two parameters: a list of 
designs that need to be printed and a list of completed models 1. Given 
these two lists, the function simulates printing each design by emptying the 
list of unprinted designs and �lling up the list of completed models. We 
then de�ne the function show_completed_models() with one parameter: the list 
of completed models 2. Given this list, show_completed_models() displays the 
name of each model that was printed.

This program has the same output as the version without functions, but 
the code is much more organized. The code that does most of the work has 
been moved to two separate functions, which makes the main part of the 
program easier to understand. Look at the body of the program and notice 
how easily you can follow what’s happening:

unprinted_designs = ['phone case', 'robot pendant', 'dodecahedron']
completed_models = []

print_models(unprinted_designs, completed_models)
show_completed_models(completed_models)

We set up a list of unprinted designs and an empty list that will hold the 
completed models. Then, because we’ve already de�ned our two functions, 
all we have to do is call them and pass them the right arguments. We call 
print_models() and pass it the two lists it needs; as expected, print_models() 
simulates printing the designs. Then we call show_completed_models() and 
pass it the list of completed models so it can report the models that have 
been printed. The descriptive function names allow others to read this code 
and understand it, even without comments.

This program is easier to extend and maintain than the version with-
out functions. If we need to print more designs later on, we can simply call 



Functions   145

print_models() again. If we realize the printing code needs to be modi�ed, 
we can change the code once, and our changes will take place everywhere 
the function is called. This technique is more ef�cient than having to 
update code separately in several places in the program.

This example also demonstrates the idea that every function should 
have one speci�c job. The �rst function prints each design, and the second 
displays the completed models. This is more bene�cial than using one func-
tion to do both jobs. If you’re writing a function and notice the function 
is doing too many different tasks, try to split the code into two functions. 
Remember that you can always call a function from another function, 
which can be helpful when splitting a complex task into a series of steps.

Preventing a Function from Modifying a List
Sometimes you’ll want to prevent a function from modifying a list. For 
example, say that you start with a list of unprinted designs and write a 
function to move them to a list of completed models, as in the previous 
example. You may decide that even though you’ve printed all the designs, 
you want to keep the original list of unprinted designs for your records. But 
because you moved all the design names out of unprinted_designs, the list is 
now empty, and the empty list is the only version you have; the original is 
gone. In this case, you can address this issue by passing the function a copy 
of the list, not the original. Any changes the function makes to the list will 
affect only the copy, leaving the original list intact.

You can send a copy of a list to a function like this:

function_name(list_name[:])

The slice notation [:] makes a copy of the list to send to the function. If 
we didn’t want to empty the list of unprinted designs in printing_models.py, 
we could call print_models() like this:

print_models(unprinted_designs[:], completed_models)

The function print_models() can do its work because it still receives the 
names of all unprinted designs. But this time it uses a copy of the original 
unprinted designs list, not the actual unprinted_designs list. The list completed 
_models will �ll up with the names of printed models like it did before, but 
the original list of unprinted designs will be unaffected by the function.

Even though you can preserve the contents of a list by passing a copy 
of it to your functions, you should pass the original list to functions unless 
you have a speci�c reason to pass a copy. It’s more ef�cient for a function to 
work with an existing list, because this avoids using the time and memory 
needed to make a separate copy. This is especially true when working with 
large lists.



146   Chapter 8

T RY IT YOURSEL F

8-9. Messages: Make a list containing a series of short text messages. Pass the 

list to a function called show_messages(), which prints each text message.

8-10. Sending Messages: Start with a copy of your program from Exercise 8-9. 

Write a function called send_messages() that prints each text message and 

moves each message to a new list called sent_messages as it’s printed. After 

calling the function, print both of your lists to make sure the messages were 

moved correctly.

8-11. Archived Messages: Start with your work from Exercise 8-10. Call the func-

tion send_messages() with a copy of the list of messages. After calling the func-

tion, print both of your lists to show that the original list has retained its messages.

Passing an Arbitrary Number of Arguments

Sometimes you won’t know ahead of time how many arguments a function 
needs to accept. Fortunately, Python allows a function to collect an arbi-
trary number of arguments from the calling statement.

For example, consider a function that builds a pizza. It needs to accept a 
number of toppings, but you can’t know ahead of time how many toppings a 
person will want. The function in the following example has one parameter, 
*toppings, but this parameter collects as many arguments as the calling line 
provides:

pizza.py def make_pizza(*toppings):
    """Print the list of toppings that have been requested."""
    print(toppings)

make_pizza('pepperoni')
make_pizza('mushrooms', 'green peppers', 'extra cheese')

The asterisk in the parameter name *toppings tells Python to make a 
tuple called toppings, containing all the values this function receives. The 
print() call in the function body produces output showing that Python can 
handle a function call with one value and a call with three values. It treats 
the different calls similarly. Note that Python packs the arguments into a 
tuple, even if the function receives only one value:

('pepperoni',)
('mushrooms', 'green peppers', 'extra cheese')

Now we can replace the print() call with a loop that runs through the 
list of toppings and describes the pizza being ordered:

def make_pizza(*toppings):
    """Summarize the pizza we are about to make."""



Functions   147

    print("\nMaking a pizza with the following toppings:")
    for topping in toppings:
        print(f"- {topping}")

make_pizza('pepperoni')
make_pizza('mushrooms', 'green peppers', 'extra cheese')

The function responds appropriately, whether it receives one value or 
three values:

Making a pizza with the following toppings:
- pepperoni

Making a pizza with the following toppings:
- mushrooms
- green peppers
- extra cheese

This syntax works no matter how many arguments the function receives.

Mixing Positional and Arbitrary Arguments
If you want a function to accept several different kinds of arguments, the 
parameter that accepts an arbitrary number of arguments must be placed 
last in the function de�nition. Python matches positional and keyword 
arguments �rst and then collects any remaining arguments in the �nal 
parameter.

For example, if the function needs to take in a size for the pizza, that 
parameter must come before the parameter *toppings:

def make_pizza(size, *toppings):
    """Summarize the pizza we are about to make."""
    print(f"\nMaking a {size}-inch pizza with the following toppings:")
    for topping in toppings:
        print(f"- {topping}")

make_pizza(16, 'pepperoni')
make_pizza(12, 'mushrooms', 'green peppers', 'extra cheese')

In the function de�nition, Python assigns the �rst value it receives to 
the parameter size. All other values that come after are stored in the tuple 
toppings. The function calls include an argument for the size �rst, followed 
by as many toppings as needed.

Now each pizza has a size and a number of toppings, and each piece of 
information is printed in the proper place, showing size �rst and toppings 
after:

Making a 16-inch pizza with the following toppings:
- pepperoni



148   Chapter 8

Making a 12-inch pizza with the following toppings:
- mushrooms
- green peppers
- extra cheese

N O T E  You’ll often see the generic parameter name *args, which collects arbitrary positional 
arguments like this.

Using Arbitrary Keyword Arguments
Sometimes you’ll want to accept an arbitrary number of arguments, but you 
won’t know ahead of time what kind of information will be passed to the 
function. In this case, you can write functions that accept as many key-value 
pairs as the calling statement provides. One example involves building user 
pro�les: you know you’ll get information about a user, but you’re not sure 
what kind of information you’ll receive. The function build_profile() in the 
following example always takes in a �rst and last name, but it accepts an 
arbitrary number of keyword arguments as well:

user_profile.py def build_profile(first, last, **user_info):
    """Build a dictionary containing everything we know about a user."""

1     user_info['first_name'] = first
    user_info['last_name'] = last
    return user_info

user_profile = build_profile('albert', 'einstein',
                             location='princeton',
                             field='physics')
print(user_profile)

The de�nition of build_profile() expects a �rst and last name, and then 
it allows the user to pass in as many name-value pairs as they want. The 
double asterisks before the parameter **user_info cause Python to create 
a dictionary called user_info containing all the extra name-value pairs the 
function receives. Within the function, you can access the key-value pairs in 
user_info just as you would for any dictionary.

In the body of build_profile(), we add the �rst and last names to the 
user_info dictionary because we’ll always receive these two pieces of infor-
mation from the user 1, and they haven’t been placed into the dictionary 
yet. Then we return the user_info dictionary to the function call line.

We call build_profile(), passing it the �rst name 'albert', the last 
name 'einstein', and the two key-value pairs location='princeton' and 
field='physics'. We assign the returned profile to user_profile and print 
user_profile:

{'location': 'princeton', 'field': 'physics',
'first_name': 'albert', 'last_name': 'einstein'}

The returned dictionary contains the user’s �rst and last names and, in 
this case, the location and �eld of study as well. The function will work no 
matter how many additional key-value pairs are provided in the function call.



Functions   149

You can mix positional, keyword, and arbitrary values in many differ-
ent ways when writing your own functions. It’s useful to know that all these 
argument types exist because you’ll see them often when you start reading 
other people’s code. It takes practice to use the different types correctly 
and to know when to use each type. For now, remember to use the simplest 
approach that gets the job done. As you progress, you’ll learn to use the 
most ef�cient approach each time.

N O T E  You’ll often see the parameter name **kwargs used to collect nonspeci�c keyword 
arguments.

T RY IT YOURSEL F

8-12. Sandwiches: Write a function that accepts a list of items a person wants 

on a sandwich. The function should have one parameter that collects as many 

items as the function call provides, and it should print a summary of the sand-

wich that’s being ordered. Call the function three times, using a different num-

ber of arguments each time.

8-13. User Profile: Start with a copy of user_profile.py from page 148. Build a 

profile of yourself by calling build_profile(), using your first and last names 

and three other key-value pairs that describe you.

8-14. Cars: Write a function that stores information about a car in a diction-

ary. The function should always receive a manufacturer and a model name. It 

should then accept an arbitrary number of keyword arguments. Call the func-

tion with the required information and two other name-value pairs, such as a 

color or an optional feature. Your function should work for a call like this one:

car = make_car('subaru', 'outback', color='blue', tow_package=True)

Print the dictionary that’s returned to make sure all the information was 

stored correctly.

Storing Your Functions in Modules

One advantage of functions is the way they separate blocks of code from 
your main program. When you use descriptive names for your functions, 
your programs become much easier to follow. You can go a step further by 
storing your functions in a separate �le called a module and then importing 
that module into your main program. An import statement tells Python to 
make the code in a module available in the currently running program �le.

Storing your functions in a separate �le allows you to hide the details of 
your program’s code and focus on its higher-level logic. It also allows you to 
reuse functions in many different programs. When you store your functions 
in separate �les, you can share those �les with other programmers without 



150   Chapter 8

having to share your entire program. Knowing how to import functions 
also allows you to use libraries of functions that other programmers have 
written.

There are several ways to import a module, and I’ll show you each of 
these brie�y.

Importing an Entire Module
To start importing functions, we �rst need to create a module. A module is 
a �le ending in .py that contains the code you want to import into your pro-
gram. Let’s make a module that contains the function make_pizza(). To make 
this module, we’ll remove everything from the �le pizza.py except the func-
tion make_pizza():

pizza.py def make_pizza(size, *toppings):
    """Summarize the pizza we are about to make."""
    print(f"\nMaking a {size}-inch pizza with the following toppings:")
    for topping in toppings:
        print(f"- {topping}")

Now we’ll make a separate �le called making_pizzas.py in the same 
directory as pizza.py. This �le imports the module we just created and then 
makes two calls to make_pizza():

making 
_pizzas.py

import pizza

1 pizza.make_pizza(16, 'pepperoni')
pizza.make_pizza(12, 'mushrooms', 'green peppers', 'extra cheese')

When Python reads this �le, the line import pizza tells Python to open 
the �le pizza.py and copy all the functions from it into this program. You 
don’t actually see code being copied between �les because Python copies 
the code behind the scenes, just before the program runs. All you need  
to know is that any function de�ned in pizza.py will now be available in  
making_pizzas.py.

To call a function from an imported module, enter the name of the 
module you imported, pizza, followed by the name of the function, make 
_pizza(), separated by a dot 1. This code produces the same output as the 
original program that didn’t import a module:

Making a 16-inch pizza with the following toppings:
- pepperoni

Making a 12-inch pizza with the following toppings:
- mushrooms
- green peppers
- extra cheese

This �rst approach to importing, in which you simply write import fol-
lowed by the name of the module, makes every function from the module 



Functions   151

available in your program. If you use this kind of import statement to import 
an entire module named module_name.py, each function in the module is 
available through the following syntax:

module_name.function_name()

Importing Specific Functions
You can also import a speci�c function from a module. Here’s the general 
syntax for this approach:

from module_name import function_name

You can import as many functions as you want from a module by sepa-
rating each function’s name with a comma:

from module_name import function_0, function_1, function_2

The making_pizzas.py example would look like this if we want to import 
just the function we’re going to use:

from pizza import make_pizza

make_pizza(16, 'pepperoni')
make_pizza(12, 'mushrooms', 'green peppers', 'extra cheese')

With this syntax, you don’t need to use the dot notation when you call a 
function. Because we’ve explicitly imported the function make_pizza() in the 
import statement, we can call it by name when we use the function.

Using as to Give a Function an Alias
If the name of a function you’re importing might con�ict with an exist-
ing name in your program, or if the function name is long, you can use a 
short, unique alias—an alternate name similar to a nickname for the func-
tion. You’ll give the function this special nickname when you import the 
function.

Here we give the function make_pizza() an alias, mp(), by importing make 
_pizza as mp. The as keyword renames a function using the alias you provide:

from pizza import make_pizza as mp

mp(16, 'pepperoni')
mp(12, 'mushrooms', 'green peppers', 'extra cheese')

The import statement shown here renames the function make_pizza() to 
mp() in this program. Anytime we want to call make_pizza() we can simply 
write mp() instead, and Python will run the code in make_pizza() while avoid-
ing any confusion with another make_pizza() function you might have writ-
ten in this program �le.



152   Chapter 8

The general syntax for providing an alias is:

from module_name import function_name as fn

Using as to Give a Module an Alias
You can also provide an alias for a module name. Giving a module a short 
alias, like p for pizza, allows you to call the module’s functions more quickly. 
Calling p.make_pizza() is more concise than calling pizza.make_pizza():

import pizza as p

p.make_pizza(16, 'pepperoni')
p.make_pizza(12, 'mushrooms', 'green peppers', 'extra cheese')

The module pizza is given the alias p in the import statement, but all of 
the module’s functions retain their original names. Calling the functions 
by writing p.make_pizza() is not only more concise than pizza.make_pizza(), 
but it also redirects your attention from the module name and allows you 
to focus on the descriptive names of its functions. These function names, 
which clearly tell you what each function does, are more important to the 
readability of your code than using the full module name.

The general syntax for this approach is:

import module_name as mn

Importing All Functions in a Module
You can tell Python to import every function in a module by using the aster-
isk (*) operator:

from pizza import *

make_pizza(16, 'pepperoni')
make_pizza(12, 'mushrooms', 'green peppers', 'extra cheese')

The asterisk in the import statement tells Python to copy every function  
from the module pizza into this program �le. Because every function is 
imported, you can call each function by name without using the dot notation. 
However, it’s best not to use this approach when you’re working with larger 
modules that you didn’t write: if the module has a function name that matches 
an existing name in your project, you can get unexpected results. Python may 
see several functions or variables with the same name, and instead of import-
ing all the functions separately, it will overwrite the functions.

The best approach is to import the function or functions you want, or 
import the entire module and use the dot notation. This leads to clear code 
that’s easy to read and understand. I include this section so you’ll recognize 
import statements like the following when you see them in other people’s code:

from module_name import *



Functions   153

Styling Functions

You need to keep a few details in mind when you’re styling functions. 
Functions should have descriptive names, and these names should use 
lowercase letters and underscores. Descriptive names help you and others 
understand what your code is trying to do. Module names should use these 
conventions as well.

Every function should have a comment that explains concisely what 
the function does. This comment should appear immediately after the 
function de�nition and use the docstring format. In a well-documented 
function, other programmers can use the function by reading only the 
description in the docstring. They should be able to trust that the code 
works as described, and as long as they know the name of the function, the 
arguments it needs, and the kind of value it returns, they should be able to 
use it in their programs.

If you specify a default value for a parameter, no spaces should be used 
on either side of the equal sign:

def function_name(parameter_0, parameter_1='default value')

The same convention should be used for keyword arguments in func-
tion calls:

function_name(value_0, parameter_1='value')

PEP 8 (https://www.python.org/dev/peps/pep-0008 ) recommends that you 
limit lines of code to 79 characters so every line is visible in a reasonably 
sized editor window. If a set of parameters causes a function’s de�nition to 
be longer than 79 characters, press ENTER after the opening parenthesis 
on the de�nition line. On the next line, press the TAB key twice to separate 
the list of arguments from the body of the function, which will only be 
indented one level.

Most editors automatically line up any additional lines of arguments to 
match the indentation you have established on the �rst line:

def function_name(
        parameter_0, parameter_1, parameter_2,
        parameter_3, parameter_4, parameter_5):
    function body...

If your program or module has more than one function, you can sepa-
rate each by two blank lines to make it easier to see where one function 
ends and the next one begins.

All import statements should be written at the beginning of a �le. The 
only exception is if you use comments at the beginning of your �le to 
describe the overall program.

https://www.python.org/dev/peps/pep-0008


154   Chapter 8

T RY IT YOURSEL F

8-15. Printing Models: Put the functions for the example printing_models.py in a 

separate file called printing_functions.py. Write an import statement at the top 

of printing_models.py, and modify the file to use the imported functions.

8-16. Imports: Using a program you wrote that has one function in it, store that 

function in a separate file. Import the function into your main program file, and 

call the function using each of these approaches:

import module_name
from module_name import function_name
from module_name import function_name as fn
import module_name as mn
from module_name import *

8-17. Styling Functions: Choose any three programs you wrote for this chapter, 

and make sure they follow the styling guidelines described in this section.

Summary

In this chapter, you learned how to write functions and to pass arguments 
so that your functions have access to the information they need to do their 
work. You learned how to use positional and keyword arguments, and also 
how to accept an arbitrary number of arguments. You saw functions that 
display output and functions that return values. You learned how to use 
functions with lists, dictionaries, if statements, and while loops. You also saw 
how to store your functions in separate �les called modules, so your program 
�les will be simpler and easier to understand. Finally, you learned to style 
your functions so your programs will continue to be well-structured and as 
easy as possible for you and others to read.

One of your goals as a programmer should be to write simple code that 
does what you want it to, and functions help you do this. They allow you to 
write blocks of code and leave them alone once you know they work. When 
you know a function does its job correctly, you can trust that it will continue 
to work and move on to your next coding task.

Functions allow you to write code once and then reuse that code as 
many times as you want. When you need to run the code in a function, all 
you need to do is write a one-line call and the function does its job. When 
you need to modify a function’s behavior, you only have to modify one 
block of code, and your change takes effect everywhere you’ve made a call 
to that function.

Using functions makes your programs easier to read, and good func-
tion names summarize what each part of a program does. Reading a series 
of function calls gives you a much quicker sense of what a program does 
than reading a long series of code blocks.



Functions   155

Functions also make your code easier to test and debug. When the bulk 
of your program’s work is done by a set of functions, each of which has a 
speci�c job, it’s much easier to test and maintain the code you’ve written. 
You can write a separate program that calls each function and tests whether 
each function works in all the situations it may encounter. When you do 
this, you can be con�dent that your functions will work properly each time 
you call them.

In Chapter 9, you’ll learn to write classes. Classes combine functions and 
data into one neat package that can be used in �exible and ef�cient ways.





9
C L A S S E S

Object-oriented programming (OOP) is one of 

the most effective approaches to writing 

software. In object-oriented programming, 

you write classes that represent real-world things 

and situations, and you create objects based on these 

classes. When you write a class, you de�ne the general 

behavior that a whole category of objects can have.
When you create individual objects from the class, each object is auto-

matically equipped with the general behavior; you can then give each 
object whatever unique traits you desire. You’ll be amazed how well real-
world situations can be modeled with object-oriented programming.

Making an object from a class is called instantiation, and you work with 
instances of a class. In this chapter you’ll write classes and create instances 
of those classes. You’ll specify the kind of information that can be stored in 
instances, and you’ll de�ne actions that can be taken with these instances. 
You’ll also write classes that extend the functionality of existing classes, so 
similar classes can share common functionality, and you can do more with 



158   Chapter 9

less code. You’ll store your classes in modules and import classes written by 
other programmers into your own program �les.

Learning about object-oriented programming will help you see the world 
as a programmer does. It’ll help you understand your code—not just what’s 
happening line by line, but also the bigger concepts behind it. Knowing the 
logic behind classes will train you to think logically, so you can write pro-
grams that effectively address almost any problem you encounter.

Classes also make life easier for you and the other programmers you’ll 
work with as you take on increasingly complex challenges. When you and 
other programmers write code based on the same kind of logic, you’ll be 
able to understand each other’s work. Your programs will make sense to the 
people you work with, allowing everyone to accomplish more.

Creating and Using a Class

You can model almost anything using classes. Let’s start by writing a simple 
class, Dog, that represents a dog—not one dog in particular, but any dog. What 
do we know about most pet dogs? Well, they all have a name and an age. We 
also know that most dogs sit and roll over. Those two pieces of information 
(name and age) and those two behaviors (sit and roll over) will go in our Dog 
class because they’re common to most dogs. This class will tell Python how 
to make an object representing a dog. After our class is written, we’ll use it to 
make individual instances, each of which represents one speci�c dog.

Creating the Dog Class
Each instance created from the Dog class will store a name and an age, and 
we’ll give each dog the ability to sit() and roll_over():

dog.py 1 class Dog:
    """A simple attempt to model a dog."""

2     def __init__(self, name, age):
        """Initialize name and age attributes."""

3         self.name = name
        self.age = age

4     def sit(self):
        """Simulate a dog sitting in response to a command."""
        print(f"{self.name} is now sitting.")

    def roll_over(self):
        """Simulate rolling over in response to a command."""
        print(f"{self.name} rolled over!")

There’s a lot to notice here, but don’t worry. You’ll see this structure 
throughout this chapter and have lots of time to get used to it. We �rst 
de�ne a class called Dog 1. By convention, capitalized names refer to classes 
in Python. There are no parentheses in the class de�nition because we’re 
creating this class from scratch. We then write a docstring describing what 
this class does.



Classes   159

The __init__() Method
A function that’s part of a class is a method. Everything you learned about 
functions applies to methods as well; the only practical difference for now 
is the way we’ll call methods. The __init__() method 2 is a special method 
that Python runs automatically whenever we create a new instance based 
on the Dog class. This method has two leading underscores and two trail-
ing underscores, a convention that helps prevent Python’s default method 
names from con�icting with your method names. Make sure to use two 
underscores on each side of __init__(). If you use just one on each side, the 
method won’t be called automatically when you use your class, which can 
result in errors that are dif�cult to identify.

We de�ne the __init__() method to have three parameters: self, name, 
and age. The self parameter is required in the method de�nition, and 
it must come �rst, before the other parameters. It must be included in 
the de�nition because when Python calls this method later (to create an 
instance of Dog), the method call will automatically pass the self argument. 
Every method call associated with an instance automatically passes self, 
which is a reference to the instance itself; it gives the individual instance 
access to the attributes and methods in the class. When we make an 
instance of Dog, Python will call the __init__() method from the Dog class. 
We’ll pass Dog() a name and an age as arguments; self is passed automati-
cally, so we don’t need to pass it. Whenever we want to make an instance 
from the Dog class, we’ll provide values for only the last two parameters, name 
and age.

The two variables de�ned in the body of the __init__() method each 
have the pre�x self 3. Any variable pre�xed with self is available to every 
method in the class, and we’ll also be able to access these variables through 
any instance created from the class. The line self.name = name takes the 
value associated with the parameter name and assigns it to the variable name, 
which is then attached to the instance being created. The same process 
happens with self.age = age. Variables that are accessible through instances 
like this are called attributes.

The Dog class has two other methods de�ned: sit() and roll_over() 4. 
Because these methods don’t need additional information to run, we just 
de�ne them to have one parameter, self. The instances we create later 
will have access to these methods. In other words, they’ll be able to sit and 
roll over. For now, sit() and roll_over() don’t do much. They simply print 
a message saying the dog is sitting or rolling over. But the concept can be 
extended to realistic situations: if this class were part of a computer game, 
these methods would contain code to make an animated dog sit and roll 
over. If this class was written to control a robot, these methods would direct 
movements that cause a robotic dog to sit and roll over.

Making an Instance from a Class
Think of a class as a set of instructions for how to make an instance. The 
Dog class is a set of instructions that tells Python how to make individual 
instances representing speci�c dogs.



160   Chapter 9

Let’s make an instance representing a speci�c dog:

class Dog:
    --snip--

1 my_dog = Dog('Willie', 6)

2 print(f"My dog's name is {my_dog.name}.")
3 print(f"My dog is {my_dog.age} years old.")

The Dog class we’re using here is the one we just wrote in the previ-
ous example. Here, we tell Python to create a dog whose name is 'Willie' 
and whose age is 6 1. When Python reads this line, it calls the __init__() 
method in Dog with the arguments 'Willie' and 6. The __init__() method 
creates an instance representing this particular dog and sets the name and 
age attributes using the values we provided. Python then returns an instance 
representing this dog. We assign that instance to the variable my_dog. The 
naming convention is helpful here; we can usually assume that a capitalized 
name like Dog refers to a class, and a lowercase name like my_dog refers to a 
single instance created from a class.

Accessing Attributes

To access the attributes of an instance, you use dot notation. We access the 
value of my_dog’s attribute name 2 by writing:

my_dog.name

Dot notation is used often in Python. This syntax demonstrates how 
Python �nds an attribute’s value. Here, Python looks at the instance my_dog 
and then �nds the attribute name associated with my_dog. This is the same 
attribute referred to as self.name in the class Dog. We use the same approach 
to work with the attribute age 3.

The output is a summary of what we know about my_dog:

My dog's name is Willie.
My dog is 6 years old.

Calling Methods

After we create an instance from the class Dog, we can use dot notation to 
call any method de�ned in Dog. Let’s make our dog sit and roll over:

class Dog:
    --snip--

my_dog = Dog('Willie', 6)
my_dog.sit()
my_dog.roll_over()



Classes   161

To call a method, give the name of the instance (in this case, my_dog) 
and the method you want to call, separated by a dot. When Python reads 
my_dog.sit(), it looks for the method sit() in the class Dog and runs that 
code. Python interprets the line my_dog.roll_over() in the same way.

Now Willie does what we tell him to:

Willie is now sitting.
Willie rolled over!

This syntax is quite useful. When attributes and methods have been 
given appropriately descriptive names like name, age, sit(), and roll_over(), 
we can easily infer what a block of code, even one we’ve never seen before, is 
supposed to do.

Creating Multiple Instances

You can create as many instances from a class as you need. Let’s create a 
second dog called your_dog:

class Dog:
    --snip--

my_dog = Dog('Willie', 6)
your_dog = Dog('Lucy', 3)

print(f"My dog's name is {my_dog.name}.")
print(f"My dog is {my_dog.age} years old.")
my_dog.sit()

print(f"\nYour dog's name is {your_dog.name}.")
print(f"Your dog is {your_dog.age} years old.")
your_dog.sit()

In this example we create a dog named Willie and a dog named Lucy. 
Each dog is a separate instance with its own set of attributes, capable of the 
same set of actions:

My dog's name is Willie.
My dog is 6 years old.
Willie is now sitting.

Your dog's name is Lucy.
Your dog is 3 years old.
Lucy is now sitting.

Even if we used the same name and age for the second dog, Python 
would still create a separate instance from the Dog class. You can make 
as many instances from one class as you need, as long as you give each 
instance a unique variable name or it occupies a unique spot in a list or 
dictionary.



162   Chapter 9

T RY IT YOURSEL F

9-1. Restaurant: Make a class called Restaurant. The __init__() method for 

Restaurant should store two attributes: a restaurant_name and a cuisine_type. 

Make a method called describe_restaurant() that prints these two pieces of 

information, and a method called open_restaurant() that prints a message indi-

cating that the restaurant is open.

Make an instance called restaurant from your class. Print the two attri-

butes individually, and then call both methods.

9-2. Three Restaurants: Start with your class from Exercise 9-1. Create three 

different instances from the class, and call describe_restaurant() for each 

instance.

9-3. Users: Make a class called User. Create two attributes called first_name 

and last_name, and then create several other attributes that are typically stored 

in a user profile. Make a method called describe_user() that prints a summary 

of the user’s information. Make another method called greet_user() that prints 

a personalized greeting to the user.

Create several instances representing different users, and call both meth-

ods for each user.

Working with Classes and Instances

You can use classes to represent many real-world situations. Once you write 
a class, you’ll spend most of your time working with instances created from 
that class. One of the �rst tasks you’ll want to do is modify the attributes 
associated with a particular instance. You can modify the attributes of an 
instance directly or write methods that update attributes in speci�c ways.

The Car Class
Let’s write a new class representing a car. Our class will store information 
about the kind of car we’re working with, and it will have a method that 
summarizes this information:

car.py class Car:
    """A simple attempt to represent a car."""

1     def __init__(self, make, model, year):
        """Initialize attributes to describe a car."""
        self.make = make
        self.model = model
        self.year = year

2     def get_descriptive_name(self):
        """Return a neatly formatted descriptive name."""
        long_name = f"{self.year} {self.make} {self.model}"



Classes   163

        return long_name.title()

3 my_new_car = Car('audi', 'a4', 2024)
print(my_new_car.get_descriptive_name())

In the Car class, we de�ne the __init__() method with the self parameter 
�rst 1, just like we did with the Dog class. We also give it three other param-
eters: make, model, and year. The __init__() method takes in these parameters 
and assigns them to the attributes that will be associated with instances 
made from this class. When we make a new Car instance, we’ll need to spec-
ify a make, model, and year for our instance.

We de�ne a method called get_descriptive_name() 2 that puts a car’s 
year, make, and model into one string neatly describing the car. This will spare 
us from having to print each attribute’s value individually. To work with the 
attribute values in this method, we use self.make, self.model, and self.year. 
Outside of the class, we make an instance from the Car class and assign it to 
the variable my_new_car 3. Then we call get_descriptive_name() to show what 
kind of car we have:

2024 Audi A4

To make the class more interesting, let’s add an attribute that changes 
over time. We’ll add an attribute that stores the car’s overall mileage.

Setting a Default Value for an Attribute
When an instance is created, attributes can be de�ned without being 
passed in as parameters. These attributes can be de�ned in the __init__() 
method, where they are assigned a default value.

Let’s add an attribute called odometer_reading that always starts with a 
value of 0. We’ll also add a method read_odometer() that helps us read each 
car’s odometer:

class Car:

    def __init__(self, make, model, year):
        """Initialize attributes to describe a car."""
        self.make = make
        self.model = model
        self.year = year

1         self.odometer_reading = 0

    def get_descriptive_name(self):
        --snip--

2     def read_odometer(self):
        """Print a statement showing the car's mileage."""
        print(f"This car has {self.odometer_reading} miles on it.")

my_new_car = Car('audi', 'a4', 2024)
print(my_new_car.get_descriptive_name())
my_new_car.read_odometer()



164   Chapter 9

This time, when Python calls the __init__() method to create a new 
instance, it stores the make, model, and year values as attributes, like it 
did in the previous example. Then Python creates a new attribute called 
odometer_reading and sets its initial value to 0 1. We also have a new method 
called read_odometer() 2 that makes it easy to read a car’s mileage.

Our car starts with a mileage of 0:

2024 Audi A4
This car has 0 miles on it.

Not many cars are sold with exactly 0 miles on the odometer, so we 
need a way to change the value of this attribute.

Modifying Attribute Values
You can change an attribute’s value in three ways: you can change the value 
directly through an instance, set the value through a method, or increment 
the value (add a certain amount to it) through a method. Let’s look at each 
of these approaches.

Modifying an Attribute’s Value Directly

The simplest way to modify the value of an attribute is to access the attri-
bute directly through an instance. Here we set the odometer reading to 23 
directly:

class Car:
    --snip--

my_new_car = Car('audi', 'a4', 2024)
print(my_new_car.get_descriptive_name())

my_new_car.odometer_reading = 23
my_new_car.read_odometer()

We use dot notation to access the car’s odometer_reading attribute, and 
set its value directly. This line tells Python to take the instance my_new_car, 
�nd the attribute odometer_reading associated with it, and set the value of 
that attribute to 23:

2024 Audi A4
This car has 23 miles on it.

Sometimes you’ll want to access attributes directly like this, but other 
times you’ll want to write a method that updates the value for you.

Modifying an Attribute’s Value Through a Method

It can be helpful to have methods that update certain attributes for you. 
Instead of accessing the attribute directly, you pass the new value to a 
method that handles the updating internally.



Classes   165

Here’s an example showing a method called update_odometer():

class Car:
    --snip--

    def update_odometer(self, mileage):
        """Set the odometer reading to the given value."""
        self.odometer_reading = mileage

my_new_car = Car('audi', 'a4', 2024)
print(my_new_car.get_descriptive_name())

1 my_new_car.update_odometer(23)
my_new_car.read_odometer()

The only modi�cation to Car is the addition of update_odometer(). This 
method takes in a mileage value and assigns it to self.odometer_reading. 
Using the my_new_car instance, we call update_odometer() with 23 as an argu-
ment 1. This sets the odometer reading to 23, and read_odometer() prints 
the reading:

2024 Audi A4
This car has 23 miles on it.

We can extend the method update_odometer() to do additional work every 
time the odometer reading is modi�ed. Let’s add a little logic to make sure 
no one tries to roll back the odometer reading:

class Car:
    --snip--

    def update_odometer(self, mileage):
        """
        Set the odometer reading to the given value.
        Reject the change if it attempts to roll the odometer back.
        """

1         if mileage >= self.odometer_reading:
            self.odometer_reading = mileage
        else:

2             print("You can't roll back an odometer!")

Now update_odometer() checks that the new reading makes sense before 
modifying the attribute. If the value provided for mileage is greater than 
or equal to the existing mileage, self.odometer_reading, you can update 
the odometer reading to the new mileage 1. If the new mileage is less 
than the existing mileage, you’ll get a warning that you can’t roll back an 
odometer 2.

Incrementing an Attribute’s Value Through a Method

Sometimes you’ll want to increment an attribute’s value by a certain amount, 
rather than set an entirely new value. Say we buy a used car and put 100 miles  



166   Chapter 9

on it between the time we buy it and the time we register it. Here’s a 
method that allows us to pass this incremental amount and add that value  
to the odometer reading:

class Car:
    --snip--

    def update_odometer(self, mileage):
        --snip--

    def increment_odometer(self, miles):
        """Add the given amount to the odometer reading."""
        self.odometer_reading += miles

1 my_used_car = Car('subaru', 'outback', 2019)
print(my_used_car.get_descriptive_name())

2 my_used_car.update_odometer(23_500)
my_used_car.read_odometer()

my_used_car.increment_odometer(100)
my_used_car.read_odometer()

The new method increment_odometer() takes in a number of miles, and adds 
this value to self.odometer_reading. First, we create a used car, my_used_car 1.  
We set its odometer to 23,500 by calling update_odometer() and passing it 
23_500 2. Finally, we call increment_odometer() and pass it 100 to add the  
100 miles that we drove between buying the car and registering it:

2019 Subaru Outback
This car has 23500 miles on it.
This car has 23600 miles on it.

You can modify this method to reject negative increments so no one 
uses this function to roll back an odometer as well.

N O T E  You can use methods like this to control how users of your program update values 
such as an odometer reading, but anyone with access to the program can set the odom-
eter reading to any value by accessing the attribute directly. Effective security takes 
extreme attention to detail in addition to basic checks like those shown here.

T RY IT YOURSEL F

9-4. Number Served: Start with your program from Exercise 9-1 (page 162). 

Add an attribute called number_served with a default value of 0. Create an 

instance called restaurant from this class. Print the number of customers the 

restaurant has served, and then change this value and print it again.



Classes   167

Add a method called set_number_served() that lets you set the number of 

customers that have been served. Call this method with a new number and print 

the value again.

Add a method called increment_number_served() that lets you increment 

the number of customers who’ve been served. Call this method with any number 

you like that could represent how many customers were served in, say, a day of 

business.

9-5. Login Attempts: Add an attribute called login_attempts to your User class 

from Exercise 9-3 (page 162). Write a method called increment_login_attempts() 

that increments the value of login_attempts by 1. Write another method called 

reset_login_attempts() that resets the value of login_attempts to 0.

Make an instance of the User class and call increment_login_attempts() 

several times. Print the value of login_attempts to make sure it was incremented 

properly, and then call reset_login_attempts(). Print login_attempts again to 

make sure it was reset to 0.

Inheritance

You don’t always have to start from scratch when writing a class. If the class 
you’re writing is a specialized version of another class you wrote, you can 
use inheritance. When one class inherits from another, it takes on the attri-
butes and methods of the �rst class. The original class is called the parent 
class, and the new class is the child class. The child class can inherit any 
or all of the attributes and methods of its parent class, but it’s also free to 
de�ne new attributes and methods of its own.

The __init__() Method for a Child Class
When you’re writing a new class based on an existing class, you’ll often 
want to call the __init__() method from the parent class. This will initialize 
any attributes that were de�ned in the parent __init__() method and make 
them available in the child class.

As an example, let’s model an electric car. An electric car is just a spe-
ci�c kind of car, so we can base our new ElectricCar class on the Car class 
we wrote earlier. Then we’ll only have to write code for the attributes and 
behaviors speci�c to electric cars.

Let’s start by making a simple version of the ElectricCar class, which 
does everything the Car class does:

electric_car.py 1 class Car:
    """A simple attempt to represent a car."""

    def __init__(self, make, model, year):
        """Initialize attributes to describe a car.""
        self.make = make
        self.model = model



168   Chapter 9

        self.year = year
        self.odometer_reading = 0

    def get_descriptive_name(self):
        """Return a neatly formatted descriptive name."""
        long_name = f"{self.year} {self.make} {self.model}"
        return long_name.title()

    def read_odometer(self):
        """Print a statement showing the car's mileage."""
        print(f"This car has {self.odometer_reading} miles on it.")

    def update_odometer(self, mileage):
        """Set the odometer reading to the given value."""
        if mileage >= self.odometer_reading:
            self.odometer_reading = mileage
        else:
            print("You can't roll back an odometer!")

    def increment_odometer(self, miles):
        """Add the given amount to the odometer reading."""
        self.odometer_reading += miles

2 class ElectricCar(Car):
    """Represent aspects of a car, specific to electric vehicles."""

3     def __init__(self, make, model, year):
        """Initialize attributes of the parent class."""

4         super().__init__(make, model, year)

5 my_leaf = ElectricCar('nissan', 'leaf', 2024)
print(my_leaf.get_descriptive_name())

We start with Car 1. When you create a child class, the parent class 
must be part of the current �le and must appear before the child class in 
the �le. We then de�ne the child class, ElectricCar 2. The name of the par-
ent class must be included in parentheses in the de�nition of a child class. 
The __init__() method takes in the information required to make a Car 
instance 3.

The super() function 4 is a special function that allows you to call a 
method from the parent class. This line tells Python to call the __init__() 
method from Car, which gives an ElectricCar instance all the attributes 
de�ned in that method. The name super comes from a convention of calling 
the parent class a superclass and the child class a subclass.

We test whether inheritance is working properly by trying to create 
an electric car with the same kind of information we’d provide when 
making a regular car. We make an instance of the ElectricCar class and 
assign it to my_leaf 5. This line calls the __init__() method de�ned in 
ElectricCar, which in turn tells Python to call the __init__() method 
de�ned in the parent class Car. We provide the arguments 'nissan', 
'leaf', and 2024.



Classes   169

Aside from __init__(), there are no attributes or methods yet that are 
particular to an electric car. At this point we’re just making sure the electric 
car has the appropriate Car behaviors:

2024 Nissan Leaf

The ElectricCar instance works just like an instance of Car, so now we 
can begin de�ning attributes and methods speci�c to electric cars.

Defining Attributes and Methods for the Child Class
Once you have a child class that inherits from a parent class, you can add 
any new attributes and methods necessary to differentiate the child class 
from the parent class.

Let’s add an attribute that’s speci�c to electric cars (a battery, for example)  
and a method to report on this attribute. We’ll store the battery size and 
write a method that prints a description of the battery:

class Car:
    --snip--

class ElectricCar(Car):
    """Represent aspects of a car, specific to electric vehicles."""

    def __init__(self, make, model, year):
        """
        Initialize attributes of the parent class.
        Then initialize attributes specific to an electric car.
        """
        super().__init__(make, model, year)

1         self.battery_size = 40

2     def describe_battery(self):
        """Print a statement describing the battery size."""
        print(f"This car has a {self.battery_size}-kWh battery.")

my_leaf = ElectricCar('nissan', 'leaf', 2024)
print(my_leaf.get_descriptive_name())
my_leaf.describe_battery()

We add a new attribute self.battery_size and set its initial value to 
40 1. This attribute will be associated with all instances created from the 
ElectricCar class but won’t be associated with any instances of Car. We also 
add a method called describe_battery() that prints information about the 
battery 2. When we call this method, we get a description that is clearly 
speci�c to an electric car:

2024 Nissan Leaf
This car has a 40-kWh battery.

There’s no limit to how much you can specialize the ElectricCar class. 
You can add as many attributes and methods as you need to model an 



170   Chapter 9

electric car to whatever degree of accuracy you need. An attribute or 
method that could belong to any car, rather than one that’s speci�c to an 
electric car, should be added to the Car class instead of the ElectricCar class. 
Then anyone who uses the Car class will have that functionality available as 
well, and the ElectricCar class will only contain code for the information 
and behavior speci�c to electric vehicles.

Overriding Methods from the Parent Class
You can override any method from the parent class that doesn’t �t what 
you’re trying to model with the child class. To do this, you de�ne a method in 
the child class with the same name as the method you want to override in 
the parent class. Python will disregard the parent class method and only pay 
attention to the method you de�ne in the child class.

Say the class Car had a method called fill_gas_tank(). This method is 
meaningless for an all-electric vehicle, so you might want to override this 
method. Here’s one way to do that:

class ElectricCar(Car):
    --snip--

    def fill_gas_tank(self):
        """Electric cars don't have gas tanks."""
        print("This car doesn't have a gas tank!")

Now if someone tries to call fill_gas_tank() with an electric car, Python 
will ignore the method fill_gas_tank() in Car and run this code instead. 
When you use inheritance, you can make your child classes retain what you 
need and override anything you don’t need from the parent class.

Instances as Attributes
When modeling something from the real world in code, you may �nd that 
you’re adding more and more detail to a class. You’ll �nd that you have a 
growing list of attributes and methods and that your �les are becoming 
lengthy. In these situations, you might recognize that part of one class can 
be written as a separate class. You can break your large class into smaller 
classes that work together; this approach is called composition.

For example, if we continue adding detail to the ElectricCar class, we 
might notice that we’re adding many attributes and methods speci�c to 
the car’s battery. When we see this happening, we can stop and move those 
attributes and methods to a separate class called Battery. Then we can use a 
Battery instance as an attribute in the ElectricCar class:

class Car:
    --snip--

class Battery:
    """A simple attempt to model a battery for an electric car."""

1     def __init__(self, battery_size=40):



Classes   171

        """Initialize the battery's attributes."""
        self.battery_size = battery_size

2     def describe_battery(self):
        """Print a statement describing the battery size."""
        print(f"This car has a {self.battery_size}-kWh battery.")

class ElectricCar(Car):
    """Represent aspects of a car, specific to electric vehicles."""

    def __init__(self, make, model, year):
        """
        Initialize attributes of the parent class.
        Then initialize attributes specific to an electric car.
        """
        super().__init__(make, model, year)

3         self.battery = Battery()

my_leaf = ElectricCar('nissan', 'leaf', 2024)
print(my_leaf.get_descriptive_name())
my_leaf.battery.describe_battery()

We de�ne a new class called Battery that doesn’t inherit from any other 
class. The __init__() method 1 has one parameter, battery_size, in addition 
to self. This is an optional parameter that sets the battery’s size to 40 if no 
value is provided. The method describe_battery() has been moved to this 
class as well 2.

In the ElectricCar class, we now add an attribute called self.battery 3. 
This line tells Python to create a new instance of Battery (with a default size 
of 40, because we’re not specifying a value) and assign that instance to the 
attribute self.battery. This will happen every time the __init__() method 
is called; any ElectricCar instance will now have a Battery instance created 
automatically.

We create an electric car and assign it to the variable my_leaf. When 
we want to describe the battery, we need to work through the car’s battery 
attribute:

my_leaf.battery.describe_battery()

This line tells Python to look at the instance my_leaf, �nd its battery 
attribute, and call the method describe_battery() that’s associated with the 
Battery instance assigned to the attribute.

The output is identical to what we saw previously:

2024 Nissan Leaf
This car has a 40-kWh battery.

This looks like a lot of extra work, but now we can describe the battery 
in as much detail as we want without cluttering the ElectricCar class. Let’s 



172   Chapter 9

add another method to Battery that reports the range of the car based on 
the battery size:

class Car:
    --snip--

class Battery:
    --snip--

    def get_range(self):
        """Print a statement about the range this battery provides."""
        if self.battery_size == 40:
            range = 150
        elif self.battery_size == 65:
            range = 225

        print(f"This car can go about {range} miles on a full charge.")

class ElectricCar(Car):
    --snip--

my_leaf = ElectricCar('nissan', 'leaf', 2024)
print(my_leaf.get_descriptive_name())
my_leaf.battery.describe_battery()

1 my_leaf.battery.get_range()

The new method get_range() performs some simple analysis. If the bat-
tery’s capacity is 40 kWh, get_range() sets the range to 150 miles, and if the 
capacity is 65 kWh, it sets the range to 225 miles. It then reports this value. 
When we want to use this method, we again have to call it through the car’s 
battery attribute 1.

The output tells us the range of the car based on its battery size:

2024 Nissan Leaf
This car has a 40-kWh battery.
This car can go about 150 miles on a full charge.

Modeling Real-World Objects
As you begin to model more complicated things like electric cars, you’ll 
wrestle with interesting questions. Is the range of an electric car a property 
of the battery or of the car? If we’re only describing one car, it’s probably 
�ne to maintain the association of the method get_range() with the Battery 
class. But if we’re describing a manufacturer’s entire line of cars, we proba-
bly want to move get_range() to the ElectricCar class. The get_range() method 
would still check the battery size before determining the range, but it would 
report a range speci�c to the kind of car it’s associated with. Alternatively, 
we could maintain the association of the get_range() method with the bat-
tery but pass it a parameter such as car_model. The get_range() method would 
then report a range based on the battery size and car model.

This brings you to an interesting point in your growth as a program-
mer. When you wrestle with questions like these, you’re thinking at a higher 



Classes   173

logical level rather than a syntax-focused level. You’re thinking not about 
Python, but about how to represent the real world in code. When you reach 
this point, you’ll realize there are often no right or wrong approaches to 
modeling real-world situations. Some approaches are more ef�cient than 
others, but it takes practice to �nd the most ef�cient representations. If 
your code is working as you want it to, you’re doing well! Don’t be discour-
aged if you �nd you’re ripping apart your classes and rewriting them several 
times using different approaches. In the quest to write accurate, ef�cient 
code, everyone goes through this process.

T RY IT YOURSEL F

9-6. Ice Cream Stand: An ice cream stand is a specific kind of restaurant. Write 

a class called IceCreamStand that inherits from the Restaurant class you wrote in 

Exercise 9-1 (page 162) or Exercise 9-4 (page 166). Either version of the class 

will work; just pick the one you like better. Add an attribute called flavors that 

stores a list of ice cream flavors. Write a method that displays these flavors. 

Create an instance of IceCreamStand, and call this method.

9-7. Admin: An administrator is a special kind of user. Write a class called 

Admin that inherits from the User class you wrote in Exercise 9-3 (page 162) 

or Exercise 9-5 (page 167). Add an attribute, privileges, that stores a list of 

strings like "can add post", "can delete post", "can ban user", and so on. 

Write a method called show_privileges() that lists the administrator’s set of 

privileges. Create an instance of Admin, and call your method.

9-8. Privileges: Write a separate Privileges class. The class should have one 

attribute, privileges, that stores a list of strings as described in Exercise 9-7. 

Move the show_privileges() method to this class. Make a Privileges instance 

as an attribute in the Admin class. Create a new instance of Admin and use your 

method to show its privileges.

9-9. Battery Upgrade: Use the final version of electric_car.py from this section. 

Add a method to the Battery class called upgrade_battery(). This method 

should check the battery size and set the capacity to 65 if it isn’t already. Make 

an electric car with a default battery size, call get_range() once, and then 

call get_range() a second time after upgrading the battery. You should see an 

increase in the car’s range.

Importing Classes

As you add more functionality to your classes, your �les can get long, even 
when you use inheritance and composition properly. In keeping with the 
overall philosophy of Python, you’ll want to keep your �les as uncluttered as 
possible. To help, Python lets you store classes in modules and then import 
the classes you need into your main program.



174   Chapter 9

Importing a Single Class
Let’s create a module containing just the Car class. This brings up a subtle 
naming issue: we already have a �le named car.py in this chapter, but this 
module should be named car.py because it contains code representing a car. 
We’ll resolve this naming issue by storing the Car class in a module named 
car.py, replacing the car.py �le we were previously using. From now on, any 
program that uses this module will need a more speci�c �lename, such as 
my_car.py. Here’s car.py with just the code from the class Car:

car.py 1 """A class that can be used to represent a car."""

class Car:
    """A simple attempt to represent a car."""

    def __init__(self, make, model, year):
        """Initialize attributes to describe a car."""
        self.make = make
        self.model = model
        self.year = year
        self.odometer_reading = 0

    def get_descriptive_name(self):
        """Return a neatly formatted descriptive name."""
        long_name = f"{self.year} {self.make} {self.model}"
        return long_name.title()

    def read_odometer(self):
        """Print a statement showing the car's mileage."""
        print(f"This car has {self.odometer_reading} miles on it.")

    def update_odometer(self, mileage):
        """
        Set the odometer reading to the given value.
        Reject the change if it attempts to roll the odometer back.
        """
        if mileage >= self.odometer_reading:
            self.odometer_reading = mileage
        else:
            print("You can't roll back an odometer!")

    def increment_odometer(self, miles):
        """Add the given amount to the odometer reading."""
        self.odometer_reading += miles

We include a module-level docstring that brie�y describes the contents 
of this module 1. You should write a docstring for each module you create.

Now we make a separate �le called my_car.py. This �le will import the 
Car class and then create an instance from that class:

my_car.py 1 from car import Car

my_new_car = Car('audi', 'a4', 2024)
print(my_new_car.get_descriptive_name())



Classes   175

my_new_car.odometer_reading = 23
my_new_car.read_odometer()

The import statement 1 tells Python to open the car module and import 
the class Car. Now we can use the Car class as if it were de�ned in this �le. 
The output is the same as we saw earlier:

2024 Audi A4
This car has 23 miles on it.

Importing classes is an effective way to program. Picture how long 
this program �le would be if the entire Car class were included. When you 
instead move the class to a module and import the module, you still get all 
the same functionality, but you keep your main program �le clean and easy 
to read. You also store most of the logic in separate �les; once your classes 
work as you want them to, you can leave those �les alone and focus on the 
higher-level logic of your main program.

Storing Multiple Classes in a Module
You can store as many classes as you need in a single module, although 
each class in a module should be related somehow. The classes Battery and 
ElectricCar both help represent cars, so let’s add them to the module car.py.

car.py """A set of classes used to represent gas and electric cars."""

class Car:
    --snip--

class Battery:
    """A simple attempt to model a battery for an electric car."""

    def __init__(self, battery_size=40):
        """Initialize the battery's attributes."""
        self.battery_size = battery_size

    def describe_battery(self):
        """Print a statement describing the battery size."""
        print(f"This car has a {self.battery_size}-kWh battery.")

    def get_range(self):
        """Print a statement about the range this battery provides."""
        if self.battery_size == 40:
            range = 150
        elif self.battery_size == 65:
            range = 225

        print(f"This car can go about {range} miles on a full charge.")

class ElectricCar(Car):
    """Models aspects of a car, specific to electric vehicles."""

    def __init__(self, make, model, year):
        """



176   Chapter 9

        Initialize attributes of the parent class.
        Then initialize attributes specific to an electric car.
        """
        super().__init__(make, model, year)
        self.battery = Battery()

Now we can make a new �le called my_electric_car.py, import the ElectricCar 
class, and make an electric car:

my_electric 
_car.py

from car import ElectricCar

my_leaf = ElectricCar('nissan', 'leaf', 2024)
print(my_leaf.get_descriptive_name())
my_leaf.battery.describe_battery()
my_leaf.battery.get_range()

This has the same output we saw earlier, even though most of the logic 
is hidden away in a module:

2024 Nissan Leaf
This car has a 40-kWh battery.
This car can go about 150 miles on a full charge.

Importing Multiple Classes from a Module
You can import as many classes as you need into a program �le. If we 
want to make a regular car and an electric car in the same �le, we need to 
import both classes, Car and ElectricCar:

my_cars.py 1 from car import Car, ElectricCar

2 my_mustang = Car('ford', 'mustang', 2024)
print(my_mustang.get_descriptive_name())

3 my_leaf = ElectricCar('nissan', 'leaf', 2024)
print(my_leaf.get_descriptive_name())

You import multiple classes from a module by separating each class 
with a comma 1. Once you’ve imported the necessary classes, you’re free to 
make as many instances of each class as you need.

In this example we make a gas-powered Ford Mustang 2 and then an 
electric Nissan Leaf 3:

2024 Ford Mustang
2024 Nissan Leaf

Importing an Entire Module
You can also import an entire module and then access the classes you need 
using dot notation. This approach is simple and results in code that is easy 
to read. Because every call that creates an instance of a class includes the 
module name, you won’t have naming con�icts with any names used in the 
current �le.



Classes   177

Here’s what it looks like to import the entire car module and then 
create a regular car and an electric car:

my_cars.py 1 import car

2 my_mustang = car.Car('ford', 'mustang', 2024)
print(my_mustang.get_descriptive_name())

3 my_leaf = car.ElectricCar('nissan', 'leaf', 2024)
print(my_leaf.get_descriptive_name())

First we import the entire car module 1. We then access the classes 
we need through the module_name.ClassName syntax. We again create a Ford 
Mustang 2, and a Nissan Leaf 3.

Importing All Classes from a Module
You can import every class from a module using the following syntax:

from module_name import *

This method is not recommended for two reasons. First, it’s helpful to be 
able to read the import statements at the top of a �le and get a clear sense of 
which classes a program uses. With this approach it’s unclear which classes 
you’re using from the module. This approach can also lead to confusion 
with names in the �le. If you accidentally import a class with the same name 
as something else in your program �le, you can create errors that are hard 
to diagnose. I show this here because even though it’s not a recommended 
approach, you’re likely to see it in other people’s code at some point.

If you need to import many classes from a module, you’re better off 
importing the entire module and using the module_name.ClassName syntax. 
You won’t see all the classes used at the top of the �le, but you’ll see clearly 
where the module is used in the program. You’ll also avoid the potential 
naming con�icts that can arise when you import every class in a module.

Importing a Module into a Module
Sometimes you’ll want to spread out your classes over several modules to 
keep any one �le from growing too large and avoid storing unrelated classes 
in the same module. When you store your classes in several modules, you 
may �nd that a class in one module depends on a class in another module. 
When this happens, you can import the required class into the �rst module.

For example, let’s store the Car class in one module and the ElectricCar 
and Battery classes in a separate module. We’ll make a new module called 
electric_car.py—replacing the electric_car.py �le we created earlier—and copy 
just the Battery and ElectricCar classes into this �le:

electric_car.py """A set of classes that can be used to represent electric cars."""

from car import Car



178   Chapter 9

class Battery:
    --snip--

class ElectricCar(Car):
    --snip--

The class ElectricCar needs access to its parent class Car, so we import 
Car directly into the module. If we forget this line, Python will raise an error 
when we try to import the electric_car module. We also need to update the 
Car module so it contains only the Car class:

car.py """A class that can be used to represent a car."""

class Car:
    --snip--

Now we can import from each module separately and create whatever 
kind of car we need:

my_cars.py from car import Car
from electric_car import ElectricCar

my_mustang = Car('ford', 'mustang', 2024)
print(my_mustang.get_descriptive_name())

my_leaf = ElectricCar('nissan', 'leaf', 2024)
print(my_leaf.get_descriptive_name())

We import Car from its module, and ElectricCar from its module. We 
then create one regular car and one electric car. Both cars are created 
correctly:

2024 Ford Mustang
2024 Nissan Leaf

Using Aliases
As you saw in Chapter 8, aliases can be quite helpful when using modules 
to organize your projects’ code. You can use aliases when importing classes 
as well.

As an example, consider a program where you want to make a bunch 
of electric cars. It might get tedious to type (and read) ElectricCar over and 
over again. You can give ElectricCar an alias in the import statement:

from electric_car import ElectricCar as EC

Now you can use this alias whenever you want to make an electric car:

my_leaf = EC('nissan', 'leaf', 2024)



Classes   179

You can also give a module an alias. Here’s how to import the entire 
electric_car module using an alias:

import electric_car as ec

Now you can use this module alias with the full class name:

my_leaf = ec.ElectricCar('nissan', 'leaf', 2024)

Finding Your Own Workflow
As you can see, Python gives you many options for how to structure code 
in a large project. It’s important to know all these possibilities so you can 
determine the best ways to organize your projects as well as understand 
other people’s projects.

When you’re starting out, keep your code structure simple. Try doing 
everything in one �le and moving your classes to separate modules once every-
thing is working. If you like how modules and �les interact, try storing your 
classes in modules when you start a project. Find an approach that lets you 
write code that works, and go from there.

T RY IT YOURSEL F

9-10. Imported Restaurant: Using your latest Restaurant class, store it in a mod-

ule. Make a separate file that imports Restaurant. Make a Restaurant instance, 

and call one of Restaurant’s methods to show that the import statement is work-

ing properly.

9-11. Imported Admin: Start with your work from Exercise 9-8 (page 173). Store 

the classes User, Privileges, and Admin in one module. Create a separate file, 

make an Admin instance, and call show_privileges() to show that everything is 

working correctly.

9-12. Multiple Modules: Store the User class in one module, and store the 

Privileges and Admin classes in a separate module. In a separate file, create 

an Admin instance and call show_privileges() to show that everything is still 

working correctly.

The Python Standard Library

The Python standard library is a set of modules included with every Python 
installation. Now that you have a basic understanding of how functions and 
classes work, you can start to use modules like these that other programmers 
have written. You can use any function or class in the standard library by 
including a simple import statement at the top of your �le. Let’s look at one 
module, random, which can be useful in modeling many real-world situations.



180   Chapter 9

One interesting function from the random module is randint(). This 
function takes two integer arguments and returns a randomly selected inte-
ger between (and including) those numbers.

Here’s how to generate a random number between 1 and 6:

>>> from random import randint
>>> randint(1, 6)
3

Another useful function is choice(). This function takes in a list or tuple 
and returns a randomly chosen element:

>>> from random import choice
>>> players = ['charles', 'martina', 'michael', 'florence', 'eli']
>>> first_up = choice(players)
>>> first_up
'florence'

The random module shouldn’t be used when building security-related 
applications, but it works well for many fun and interesting projects.

N O T E  You can also download modules from external sources. You’ll see a number of these 
examples in Part II, where we’ll need external modules to complete each project.

 T RY IT YOURSEL F

9-13. Dice: Make a class Die with one attribute called sides, which has a 

default value of 6. Write a method called roll_die() that prints a random num-

ber between 1 and the number of sides the die has. Make a 6-sided die and 

roll it 10 times.

Make a 10-sided die and a 20-sided die. Roll each die 10 times.

9-14. Lottery: Make a list or tuple containing a series of 10 numbers and 5 letters. 

Randomly select 4 numbers or letters from the list and print a message saying that 

any ticket matching these 4 numbers or letters wins a prize.

9-15. Lottery Analysis: You can use a loop to see how hard it might be to win 

the kind of lottery you just modeled. Make a list or tuple called my_ticket. Write 

a loop that keeps pulling numbers until your ticket wins. Print a message report-

ing how many times the loop had to run to give you a winning ticket.

9-16. Python Module of the Week: One excellent resource for exploring the 

Python standard library is a site called Python Module of the Week. Go to 

https://pymotw.com and look at the table of contents. Find a module that looks 

interesting to you and read about it, perhaps starting with the random module.

https://pymotw.com


Classes   181

Styling Classes

A few styling issues related to classes are worth clarifying, especially as your 
programs become more complicated.

Class names should be written in CamelCase. To do this, capitalize the 
�rst letter of each word in the name, and don’t use underscores. Instance 
and module names should be written in lowercase, with underscores 
between words.

Every class should have a docstring immediately following the class de�-
nition. The docstring should be a brief description of what the class does, 
and you should follow the same formatting conventions you used for writing 
docstrings in functions. Each module should also have a docstring describ-
ing what the classes in a module can be used for.

You can use blank lines to organize code, but don’t use them excessively. 
Within a class you can use one blank line between methods, and within a 
module you can use two blank lines to separate classes.

If you need to import a module from the standard library and a module 
that you wrote, place the import statement for the standard library module 
�rst. Then add a blank line and the import statement for the module you 
wrote. In programs with multiple import statements, this convention makes it 
easier to see where the different modules used in the program come from.

Summary

In this chapter, you learned how to write your own classes. You learned 
how to store information in a class using attributes and how to write meth-
ods that give your classes the behavior they need. You learned to write 
__init__() methods that create instances from your classes with exactly the 
attributes you want. You saw how to modify the attributes of an instance 
directly and through methods. You learned that inheritance can simplify 
the creation of classes that are related to each other, and you learned to 
use instances of one class as attributes in another class to keep each class 
simple.

You saw how storing classes in modules and importing classes you need 
into the �les where they’ll be used can keep your projects organized. You 
started learning about the Python standard library, and you saw an example 
based on the random module. Finally, you learned to style your classes using 
Python conventions.

In Chapter 10, you’ll learn to work with �les so you can save the work 
you’ve done in a program and the work you’ve allowed users to do. You’ll 
also learn about exceptions, a special Python class designed to help you 
respond to errors when they arise.





10
F I L E S  A N D  E X C E P T I O N S

Now that you’ve mastered the basic skills 

you need to write organized programs that 

are easy to use, it’s time to think about making 

your programs even more relevant and usable. In 

this chapter, you’ll learn to work with �les so your pro-

grams can quickly analyze lots of data.
You’ll learn to handle errors so your programs don’t crash when they 

encounter unexpected situations. You’ll learn about exceptions, which are 
special objects Python creates to manage errors that arise while a program 
is running. You’ll also learn about the json module, which allows you to save 
user data so it isn’t lost when your program stops running.

Learning to work with �les and save data will make your programs easier 
for people to use. Users will be able to choose what data to enter and when 
to enter it. People will be able to run your program, do some work, and then 
close the program and pick up where they left off. Learning to handle excep-
tions will help you deal with situations in which �les don’t exist and deal with 
other problems that can cause your programs to crash. This will make your 
programs more robust when they encounter bad data, whether it comes from 



184   Chapter 10

innocent mistakes or from malicious attempts to break your programs. With 
the skills you’ll learn in this chapter, you’ll make your programs more appli-
cable, usable, and stable.

Reading from a File

An incredible amount of data is available in text �les. Text �les can contain 
weather data, traf�c data, socioeconomic data, literary works, and more. 
Reading from a �le is particularly useful in data analysis applications, but 
it’s also applicable to any situation in which you want to analyze or modify 
information stored in a �le. For example, you can write a program that 
reads in the contents of a text �le and rewrites the �le with formatting that 
allows a browser to display it.

When you want to work with the information in a text �le, the �rst step 
is to read the �le into memory. You can then work through all of the �le’s 
contents at once or work through the contents line by line.

Reading the Contents of a File
To begin, we need a �le with a few lines of text in it. Let’s start with a �le 
that contains pi to 30 decimal places, with 10 decimal places per line:

pi_digits.txt 3.1415926535
  8979323846
  2643383279

To try the following examples yourself, you can enter these lines in an 
editor and save the �le as pi_digits.txt, or you can download the �le from 
the book’s resources through https://ehmatthes.github.io/pcc_3e. Save the �le 
in the same directory where you’ll store this chapter’s programs.

Here’s a program that opens this �le, reads it, and prints the contents 
of the �le to the screen:

file_reader.py from pathlib import Path

1 path = Path('pi_digits.txt')
2 contents = path.read_text()

print(contents)

To work with the contents of a �le, we need to tell Python the path to 
the �le. A path is the exact location of a �le or folder on a system. Python 
provides a module called pathlib that makes it easier to work with �les and 
directories, no matter which operating system you or your program’s users 
are working with. A module that provides speci�c functionality like this is 
often called a library, hence the name pathlib.

We start by importing the Path class from pathlib. There’s a lot you can 
do with a Path object that points to a �le. For example, you can check that 
the �le exists before working with it, read the �le’s contents, or write new 
data to the �le. Here, we build a Path object representing the �le pi_digits.txt, 
which we assign to the variable path 1. Since this �le is saved in the same 

https://ehmatthes.github.io/pcc_3e


Files and Exceptions   185

directory as the .py �le we’re writing, the �lename is all that Path needs to 
access the �le.

N O T E  VS Code looks for �les in the folder that was most recently opened. If you’re using VS 
Code, start by opening the folder where you’re storing this chapter’s programs. For 
example, if you’re saving your program �les in a folder called chapter_10, press 
CTRL-O (⌘-O on macOS), and open that folder.

Once we have a Path object representing pi_digits.txt, we use the read_text() 
method to read the entire contents of the �le 2. The contents of the �le are 
returned as a single string, which we assign to the variable contents. When we 
print the value of contents, we see the entire contents of the text �le:

3.1415926535
  8979323846
  2643383279

The only difference between this output and the original �le is the 
extra blank line at the end of the output. The blank line appears because 
read_text() returns an empty string when it reaches the end of the �le; this 
empty string shows up as a blank line.

We can remove the extra blank line by using rstrip() on the contents 
string:

from pathlib import Path

path = Path('pi_digits.txt')
contents = path.read_text()
contents = contents.rstrip()
print(contents)

Recall from Chapter 2 that Python’s rstrip() method removes, or strips, 
any whitespace characters from the right side of a string. Now the output 
matches the contents of the original �le exactly:

3.1415926535
  8979323846
  2643383279

We can strip the trailing newline character when we read the con-
tents of the �le, by applying the rstrip() method immediately after calling 
read_text():

contents = path.read_text().rstrip()

This line tells Python to call the read_text() method on the �le we’re 
working with. Then it applies the rstrip() method to the string that read 
_text() returns. The cleaned-up string is then assigned to the variable  
contents. This approach is called method chaining, and you’ll see it used often  
in programming.



186   Chapter 10

Relative and Absolute File Paths
When you pass a simple �lename like pi_digits.txt to Path, Python looks in 
the directory where the �le that’s currently being executed (that is, your .py 
program �le) is stored.

Sometimes, depending on how you organize your work, the �le you want 
to open won’t be in the same directory as your program �le. For example, 
you might store your program �les in a folder called python_work; inside 
python_work, you might have another folder called text_�les to distinguish 
your program �les from the text �les they’re manipulating. Even though 
text_�les is in python_work, just passing Path the name of a �le in text_�les 
won’t work, because Python will only look in python_work and stop there; 
it won’t go on and look in text_�les. To get Python to open �les from a 
directory other than the one where your program �le is stored, you need 
to provide the correct path.

There are two main ways to specify paths in programming. A relative 
�le path tells Python to look for a given location relative to the directory 
where the currently running program �le is stored. Since text_�les is inside 
python_work, we need to build a path that starts with the directory text_�les, 
and ends with the �lename. Here’s how to build this path:

path = Path('text_files/filename.txt')

You can also tell Python exactly where the �le is on your computer, 
regardless of where the program that’s being executed is stored. This is 
called an absolute �le path. You can use an absolute path if a relative path 
doesn’t work. For instance, if you’ve put text_�les in some folder other than 
python_work, then just passing Path the path 'text_files/ filename.txt' won’t 
work because Python will only look for that location inside python_work. 
You’ll need to write out an absolute path to clarify where you want Python 
to look.

Absolute paths are usually longer than relative paths, because they start 
at your system’s root folder:

path = Path('/home/eric/data_files/text_files/filename.txt')

Using absolute paths, you can read �les from any location on your sys-
tem. For now it’s easiest to store �les in the same directory as your program 
�les, or in a folder such as text_�les within the directory that stores your pro-
gram �les.

N O T E  Windows systems use a backslash (\) instead of a forward slash (/) when displaying 
�le paths, but you should use forward slashes in your code, even on Windows. The 
pathlib library will automatically use the correct representation of the path when it 
interacts with your system, or any user’s system.

Accessing a File’s Lines
When you’re working with a �le, you’ll often want to examine each line  
of the �le. You might be looking for certain information in the �le, or  



Files and Exceptions   187

you might want to modify the text in the �le in some way. For example, you 
might want to read through a �le of weather data and work with any line 
that includes the word sunny in the description of that day’s weather. In a 
news report, you might look for any line with the tag <headline> and rewrite 
that line with a speci�c kind of formatting.

You can use the splitlines() method to turn a long string into a set of 
lines, and then use a for loop to examine each line from a �le, one at a time:

 file_reader.py from pathlib import Path

path = Path('pi_digits.txt')
1 contents = path.read_text()

2 lines = contents.splitlines()
for line in lines:
    print(line)

We start out by reading the entire contents of the �le, as we did ear-
lier 1. If you’re planning to work with the individual lines in a �le, you 
don’t need to strip any whitespace when reading the �le. The splitlines() 
method returns a list of all lines in the �le, and we assign this list to the 
variable lines 2. We then loop over these lines and print each one:

3.1415926535
  8979323846
  2643383279

Since we haven’t modi�ed any of the lines, the output matches the 
original text �le exactly.

Working with a File’s Contents
After you’ve read the contents of a �le into memory, you can do whatever 
you want with that data, so let’s brie�y explore the digits of pi. First, we’ll 
attempt to build a single string containing all the digits in the �le with no 
whitespace in it:

pi_string.py from pathlib import Path

path = Path('pi_digits.txt')
contents = path.read_text()

lines = contents.splitlines()
pi_string = ''

1 for line in lines:
    pi_string += line

print(pi_string)
print(len(pi_string))

We start by reading the �le and storing each line of digits in a list, just 
as we did in the previous example. We then create a variable, pi_string,  



188   Chapter 10

to hold the digits of pi. We write a loop that adds each line of digits to  
pi_string 1. We print this string, and also show how long the string is:

3.1415926535  8979323846  2643383279
36

The variable pi_string contains the whitespace that was on the left side 
of the digits in each line, but we can get rid of that by using lstrip() on 
each line:

--snip--
for line in lines:
    pi_string += line.lstrip()

print(pi_string)
print(len(pi_string))

Now we have a string containing pi to 30 decimal places. The string 
is 32 characters long because it also includes the leading 3 and a decimal 
point:

3.141592653589793238462643383279
32

N O T E  When Python reads from a text �le, it interprets all text in the �le as a string. If you 
read in a number and want to work with that value in a numerical context, you’ll 
have to convert it to an integer using the int() function or a �oat using the float() 
function.

Large Files: One Million Digits
So far, we’ve focused on analyzing a text �le that contains only three lines, 
but the code in these examples would work just as well on much larger 
�les. If we start with a text �le that contains pi to 1,000,000 decimal places, 
instead of just 30, we can create a single string containing all these digits. 
We don’t need to change our program at all, except to pass it a different 
�le. We’ll also print just the �rst 50 decimal places, so we don’t have to 
watch a million digits scroll by in the terminal:

pi_string.py from pathlib import Path

path = Path('pi_million_digits.txt')
contents = path.read_text()

lines = contents.splitlines()
pi_string = ''
for line in lines:
    pi_string += line.lstrip()

print(f"{pi_string[:52]}...")
print(len(pi_string))



Files and Exceptions   189

The output shows that we do indeed have a string containing pi to 
1,000,000 decimal places:

3.14159265358979323846264338327950288419716939937510...
1000002

Python has no inherent limit to how much data you can work with; you 
can work with as much data as your system’s memory can handle.

N O T E  To run this program (and many of the examples that follow), you’ll need to download 
the resources available at https://ehmatthes.github.io/pcc_3e.

Is Your Birthday Contained in Pi?
I’ve always been curious to know if my birthday appears anywhere in the 
digits of pi. Let’s use the program we just wrote to �nd out if someone’s 
birthday appears anywhere in the �rst million digits of pi. We can do this 
by expressing each birthday as a string of digits and seeing if that string 
appears anywhere in pi_string:

pi_birthday.py --snip--
for line in lines:
    pi_string += line.strip()

birthday = input("Enter your birthday, in the form mmddyy: ")
if birthday in pi_string:
    print("Your birthday appears in the first million digits of pi!")
else:
    print("Your birthday does not appear in the first million digits of pi.")

We �rst prompt for the user’s birthday, and then check if that string is 
in pi_string. Let’s try it:

Enter your birthdate, in the form mmddyy: 120372
Your birthday appears in the first million digits of pi!

My birthday does appear in the digits of pi! Once you’ve read from a 
�le, you can analyze its contents in just about any way you can imagine.

T RY IT YOURSEL F

10-1. Learning Python: Open a blank file in your text editor and write a few lines 

summarizing what you’ve learned about Python so far. Start each line with the 

phrase In Python you can. . . . Save the file as learning_python.txt in the same 

directory as your exercises from this chapter. Write a program that reads the file 

and prints what you wrote two times: print the contents once by reading in the 

entire file, and once by storing the lines in a list and then looping over each line.

(continued)

https://ehmatthes.github.io/pcc_3e


190   Chapter 10

10-2. Learning C: You can use the replace() method to replace any word in a 

string with a different word. Here’s a quick example showing how to replace 

'dog' with 'cat' in a sentence:

>>> message = "I really like dogs."
>>> message.replace('dog', 'cat')
'I really like cats.'

Read in each line from the file you just created, learning_python.txt, and 

replace the word Python with the name of another language, such as C. Print 

each modified line to the screen.

10-3. Simpler Code: The program file_reader.py in this section uses a temporary 

variable, lines, to show how splitlines() works. You can skip the temporary 

variable and loop directly over the list that splitlines() returns:

for line in contents.splitlines():

Remove the temporary variable from each of the programs in this section, 

to make them more concise.

Writing to a File

One of the simplest ways to save data is to write it to a �le. When you write 
text to a �le, the output will still be available after you close the terminal 
containing your program’s output. You can examine output after a program 
�nishes running, and you can share the output �les with others as well. You 
can also write programs that read the text back into memory and work with 
it again later.

Writing a Single Line
Once you have a path de�ned, you can write to a �le using the write_text() 
method. To see how this works, let’s write a simple message and store it in a 
�le instead of printing it to the screen:

write 
_message.py

from pathlib import Path

path = Path('programming.txt')
path.write_text("I love programming.")

The write_text() method takes a single argument: the string that you 
want to write to the �le. This program has no terminal output, but if you 
open the �le programming.txt, you’ll see one line:

programming.txt I love programming.



Files and Exceptions   191

This �le behaves like any other �le on your computer. You can open it, 
write new text in it, copy from it, paste to it, and so forth.

N O T E  Python can only write strings to a text �le. If you want to store numerical data 
in a text �le, you’ll have to convert the data to string format �rst using the str() 
function.

Writing Multiple Lines
The write_text() method does a few things behind the scenes. If the �le that 
path points to doesn’t exist, it creates that �le. Also, after writing the string 
to the �le, it makes sure the �le is closed properly. Files that aren’t closed 
properly can lead to missing or corrupted data.

To write more than one line to a �le, you need to build a string contain-
ing the entire contents of the �le, and then call write_text() with that string. 
Let’s write several lines to the programming.txt �le:

from pathlib import Path

contents = "I love programming.\n"
contents += "I love creating new games.\n"
contents += "I also love working with data.\n"

path = Path('programming.txt')
path.write_text(contents)

We de�ne a variable called contents that will hold the entire contents of 
the �le. On the next line, we use the += operator to add to this string. You 
can do this as many times as you need, to build strings of any length. In this 
case we include newline characters at the end of each line, to make sure 
each statement appears on its own line.

If you run this and then open programming.txt, you’ll see each of these 
lines in the text �le:

I love programming.
I love creating new games.
I also love working with data.

You can also use spaces, tab characters, and blank lines to format your 
output, just as you’ve been doing with terminal-based output. There’s no 
limit to the length of your strings, and this is how many computer-generated 
documents are created.

N O T E  Be careful when calling  write_text() on a path object. If the �le already exists, 
write_text() will erase the current contents of the �le and write new contents 
to the �le. Later in this chapter, you’ll learn to check whether a �le exists using 
pathlib.



192   Chapter 10

T RY IT YOURSEL F

10-4. Guest: Write a program that prompts the user for their name. When they 

respond, write their name to a file called guest.txt.

10-5. Guest Book: Write a while loop that prompts users for their name. Collect 

all the names that are entered, and then write these names to a file called 

guest_book.txt. Make sure each entry appears on a new line in the file.

Exceptions

Python uses special objects called exceptions to manage errors that arise dur-
ing a program’s execution. Whenever an error occurs that makes Python 
unsure of what to do next, it creates an exception object. If you write code 
that handles the exception, the program will continue running. If you don’t 
handle the exception, the program will halt and show a traceback, which 
includes a report of the exception that was raised.

Exceptions are handled with try-except blocks. A try -except block asks 
Python to do something, but it also tells Python what to do if an excep-
tion is raised. When you use try-except blocks, your programs will continue 
running even if things start to go wrong. Instead of tracebacks, which can 
be confusing for users to read, users will see friendly error messages that 
you’ve written.

Handling the ZeroDivisionError Exception
Let’s look at a simple error that causes Python to raise an exception. You 
probably know that it’s impossible to divide a number by zero, but let’s ask 
Python to do it anyway:

division 
_calculator.py

print(5/0)

Python can’t do this, so we get a traceback:

Traceback (most recent call last):
  File "division_calculator.py", line 1, in <module>
    print(5/0)
          ~^~

1 ZeroDivisionError: division by zero

The error reported in the traceback, ZeroDivisionError, is an exception 
object 1. Python creates this kind of object in response to a situation where 
it can’t do what we ask it to. When this happens, Python stops the program 
and tells us the kind of exception that was raised. We can use this informa-
tion to modify our program. We’ll tell Python what to do when this kind of 
exception occurs; that way, if it happens again, we’ll be prepared.



Files and Exceptions   193

Using try-except Blocks
When you think an error may occur, you can write a try-except block to 
handle the exception that might be raised. You tell Python to try running 
some code, and you tell it what to do if the code results in a particular kind 
of exception.

Here’s what a try-except block for handling the ZeroDivisionError excep-
tion looks like:

try:
    print(5/0)
except ZeroDivisionError:
    print("You can't divide by zero!")

We put print(5/0), the line that caused the error, inside a try block. If 
the code in a try block works, Python skips over the except block. If the code 
in the try block causes an error, Python looks for an except block whose 
error matches the one that was raised, and runs the code in that block.

In this example, the code in the try block produces a ZeroDivisionError, 
so Python looks for an except block telling it how to respond. Python then 
runs the code in that block, and the user sees a friendly error message 
instead of a traceback:

You can't divide by zero!

If more code followed the try-except block, the program would continue 
running because we told Python how to handle the error. Let’s look at an 
example where catching an error can allow a program to continue running.

Using Exceptions to Prevent Crashes
Handling errors correctly is especially important when the program has 
more work to do after the error occurs. This happens often in programs 
that prompt users for input. If the program responds to invalid input appro-
priately, it can prompt for more valid input instead of crashing.

Let’s create a simple calculator that does only division:

division 
_calculator.py

print("Give me two numbers, and I'll divide them.")
print("Enter 'q' to quit.")

while True:
1     first_number = input("\nFirst number: ")

    if first_number == 'q':
        break

2     second_number = input("Second number: ")
    if second_number == 'q':
        break

3     answer = int(first_number) / int(second_number)
    print(answer)



194   Chapter 10

This program prompts the user to input a first_number 1 and, if the 
user does not enter q to quit, a second_number 2. We then divide these two 
numbers to get an answer 3. This program does nothing to handle errors, 
so asking it to divide by zero causes it to crash:

Give me two numbers, and I'll divide them.
Enter 'q' to quit.

First number: 5
Second number: 0
Traceback (most recent call last):
  File "division_calculator.py", line 11, in <module>
    answer = int(first_number) / int(second_number)
             ~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~
ZeroDivisionError: division by zero

It’s bad that the program crashed, but it’s also not a good idea to let
users see tracebacks. Nontechnical users will be confused by them, and in
a malicious setting, attackers will learn more than you want them to. For
example, they’ll know the name of your program �le, and they’ll see a part
of your code that isn’t working properly. A skilled attacker can sometimes
use this information to determine which kind of attacks to use against
your code.

The else Block
We can make this program more error resistant by wrapping the line that
might produce errors in a try-except block. The error occurs on the line
that performs the division, so that’s where we’ll put the try-except block.
This example also includes an else block. Any code that depends on the try
block executing successfully goes in the else block:

--snip--
while True:
 --snip--
 if second_number == 'q':
 break

1 try:
 answer = int(first_number) / int(second_number)

2 except ZeroDivisionError:
 print("You can't divide by 0!")

3 else:
 print(answer)

We ask Python to try to complete the division operation in a try block 1,
which includes only the code that might cause an error. Any code that
depends on the try block succeeding is added to the else block. In this case,
if the division operation is successful, we use the else block to print the
result 3.

The except block tells Python how to respond when a ZeroDivisionError
arises 2. If the try block doesn’t succeed because of a division-by-zero error,

Files and Exceptions 195

we print a friendly message telling the user how to avoid this kind of error.
The program continues to run, and the user never sees a traceback:

Give me two numbers, and I'll divide them.
Enter 'q' to quit.

First number: 5
Second number: 0
You can't divide by 0!

First number: 5
Second number: 2
2.5

First number: q

The only code that should go in a try block is code that might cause an
exception to be raised. Sometimes you’ll have additional code that should
run only if the try block was successful; this code goes in the else block.
The except block tells Python what to do in case a certain exception arises
when it tries to run the code in the try block.

By anticipating likely sources of errors, you can write robust programs
that continue to run even when they encounter invalid data and missing
resources. Your code will be resistant to innocent user mistakes and mali-
cious attacks.

Handling the FileNotFoundError Exception
One common issue when working with �les is handling missing �les. The
�le you’re looking for might be in a different location, the �lename might
be misspelled, or the �le might not exist at all. You can handle all of these
situations with a try-except block.

Let’s try to read a �le that doesn’t exist. The following program tries to
read in the contents of Alice in Wonderland, but I haven’t saved the �le alice.txt
in the same directory as alice.py:

alice.py from pathlib import Path

path = Path('alice.txt')
contents = path.read_text(encoding='utf-8')

Note that we’re using read_text() in a slightly different way here than
what you saw earlier. The encoding argument is needed when your system’s
default encoding doesn’t match the encoding of the �le that’s being read.
This is most likely to happen when reading from a �le that wasn’t created
on your system.

Python can’t read from a missing �le, so it raises an exception:

Traceback (most recent call last):
1 File "alice.py", line 4, in <module>
2 contents = path.read_text(encoding='utf-8')

 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

196 Chapter 10

 File "/.../pathlib.py", line 1056, in read_text
 with self.open(mode='r', encoding=encoding, errors=errors) as f:
 ^^^
 File "/.../pathlib.py", line 1042, in open
 return io.open(self, mode, buffering, encoding, errors, newline)
 ^^^

3 FileNotFoundError: [Errno 2] No such file or directory: 'alice.txt'

This is a longer traceback than the ones we’ve seen previously, so let’s
look at how you can make sense of more complex tracebacks. It’s often best
to start at the very end of the traceback. On the last line, we can see that a
FileNotFoundError exception was raised 3. This is important because it tells
us what kind of exception to use in the except block that we’ll write.

Looking back near the beginning of the traceback 1, we can see that
the error occurred at line 4 in the �le alice.py. The next line shows the line
of code that caused the error 2. The rest of the traceback shows some code
from the libraries that are involved in opening and reading from �les. You
don’t usually need to read through or understand all of these lines in a
traceback.

To handle the error that’s being raised, the try block will begin with
the line that was identi�ed as problematic in the traceback. In our example,
this is the line that contains read_text():

from pathlib import Path

path = Path('alice.txt')
try:
 contents = path.read_text(encoding='utf-8')

1 except FileNotFoundError:
 print(f"Sorry, the file {path} does not exist.")

In this example, the code in the try block produces a FileNotFoundError,
so we write an except block that matches that error 1. Python then runs the
code in that block when the �le can’t be found, and the result is a friendly
error message instead of a traceback:

Sorry, the file alice.txt does not exist.

The program has nothing more to do if the �le doesn’t exist, so this
is all the output we see. Let’s build on this example and see how exception
handling can help when you’re working with more than one �le.

Analyzing Text
You can analyze text �les containing entire books. Many classic works of
literature are available as simple text �les because they are in the pub-
lic domain. The texts used in this section come from Project Gutenberg
(https://gutenberg.org). Project Gutenberg maintains a collection of literary
works that are available in the public domain, and it’s a great resource
if you’re interested in working with literary texts in your programming
projects.

https://gutenberg.org

Files and Exceptions 197

Let’s pull in the text of Alice in Wonderland and try to count the number
of words in the text. To do this, we’ll use the string method split(), which
by default splits a string wherever it �nds any whitespace:

from pathlib import Path

path = Path('alice.txt')
try:
 contents = path.read_text(encoding='utf-8')
except FileNotFoundError:
 print(f"Sorry, the file {path} does not exist.")
else:
 # Count the approximate number of words in the file:

1 words = contents.split()
2 num_words = len(words)

 print(f"The file {path} has about {num_words} words.")

I moved the �le alice.txt to the correct directory, so the try block will
work this time. We take the string contents, which now contains the entire
text of Alice in Wonderland as one long string, and use split() to produce a
list of all the words in the book 1. Using len() on this list 2 gives us a good
approximation of the number of words in the original text. Lastly, we print
a statement that reports how many words were found in the �le. This code
is placed in the else block because it only works if the code in the try block
was executed successfully.

The output tells us how many words are in alice.txt:

The file alice.txt has about 29594 words.

The count is a little high because extra information is provided by the
publisher in the text �le used here, but it’s a good approximation of the
length of Alice in Wonderland.

Working with Multiple Files
Let’s add more books to analyze, but before we do, let’s move the bulk of
this program to a function called count_words(). This will make it easier to
run the analysis for multiple books:

word_count.py from pathlib import Path

def count_words(path):
1 """Count the approximate number of words in a file."""

 try:
 contents = path.read_text(encoding='utf-8')
 except FileNotFoundError:
 print(f"Sorry, the file {path} does not exist.")
 else:
 # Count the approximate number of words in the file:
 words = contents.split()
 num_words = len(words)
 print(f"The file {path} has about {num_words} words.")

198 Chapter 10

path = Path('alice.txt')
count_words(path)

Most of this code is unchanged. It’s only been indented, and moved
into the body of count_words(). It’s a good habit to keep comments up to date
when you’re modifying a program, so the comment has also been changed
to a docstring and reworded slightly 1.

Now we can write a short loop to count the words in any text we want to
analyze. We do this by storing the names of the �les we want to analyze in a
list, and then we call count_words() for each �le in the list. We’ll try to count
the words for Alice in Wonderland, Siddhartha, Moby Dick, and Little Women,
which are all available in the public domain. I’ve intentionally left siddhartha.txt
out of the directory containing word_count.py, so we can see how well our
program handles a missing �le:

from pathlib import Path

def count_words(filename):
 --snip--

filenames = ['alice.txt', 'siddhartha.txt', 'moby_dick.txt',
 'little_women.txt']
for filename in filenames:

1 path = Path(filename)
 count_words(path)

The names of the �les are stored as simple strings. Each string is then
converted to a Path object 1, before the call to count_words(). The missing
siddhartha.txt �le has no effect on the rest of the program’s execution:

The file alice.txt has about 29594 words.
Sorry, the file siddhartha.txt does not exist.
The file moby_dick.txt has about 215864 words.
The file little_women.txt has about 189142 words.

Using the try-except block in this example provides two signi�cant
advantages. We prevent our users from seeing a traceback, and we let the
program continue analyzing the texts it’s able to �nd. If we don’t catch
the FileNotFoundError that siddhartha.txt raises, the user would see a full
traceback, and the program would stop running after trying to analyze
Siddhartha. It would never analyze Moby Dick or Little Women.

Failing Silently
In the previous example, we informed our users that one of the �les
was unavailable. But you don’t need to report every exception you catch.
Sometimes, you’ll want the program to fail silently when an exception
occurs and continue on as if nothing happened. To make a program fail
silently, you write a try block as usual, but you explicitly tell Python to do

Files and Exceptions 199

nothing in the except block. Python has a pass statement that tells it to
do nothing in a block:

def count_words(path):
 """Count the approximate number of words in a file."""
 try:
 --snip--
 except FileNotFoundError:
 pass
 else:
 --snip--

The only difference between this listing and the previous one is the pass
statement in the except block. Now when a FileNotFoundError is raised, the
code in the except block runs, but nothing happens. No traceback is pro-
duced, and there’s no output in response to the error that was raised. Users
see the word counts for each �le that exists, but they don’t see any indica-
tion that a �le wasn’t found:

The file alice.txt has about 29594 words.
The file moby_dick.txt has about 215864 words.
The file little_women.txt has about 189142 words.

The pass statement also acts as a placeholder. It’s a reminder that
you’re choosing to do nothing at a speci�c point in your program’s execu-
tion and that you might want to do something there later. For example,
in this program we might decide to write any missing �lenames to a �le
called missing_�les.txt. Our users wouldn’t see this �le, but we’d be able to
read the �le and deal with any missing texts.

Deciding Which Errors to Report
How do you know when to report an error to your users and when to let
your program fail silently? If users know which texts are supposed to be
analyzed, they might appreciate a message informing them why some texts
were not analyzed. If users expect to see some results but don’t know which
books are supposed to be analyzed, they might not need to know that some
texts were unavailable. Giving users information they aren’t looking for
can decrease the usability of your program. Python’s error-handling struc-
tures give you �ne-grained control over how much to share with users when
things go wrong; it’s up to you to decide how much information to share.

Well-written, properly tested code is not very prone to internal errors,
such as syntax or logical errors. But every time your program depends on
something external such as user input, the existence of a �le, or the avail-
ability of a network connection, there is a possibility of an exception being
raised. A little experience will help you know where to include exception-
handling blocks in your program and how much to report to users about
errors that arise.

200 Chapter 10

T RY IT YOURSEL F

10-6. Addition: One common problem when prompting for numerical input

occurs when people provide text instead of numbers. When you try to convert

the input to an int, you’ll get a ValueError. Write a program that prompts for

two numbers. Add them together and print the result. Catch the ValueError if

either input value is not a number, and print a friendly error message. Test your

program by entering two numbers and then by entering some text instead of a

number.

10-7. Addition Calculator: Wrap your code from Exercise 10-5 in a while loop

so the user can continue entering numbers, even if they make a mistake and

enter text instead of a number.

10-8. Cats and Dogs: Make two files, cats.txt and dogs.txt. Store at least three

names of cats in the first file and three names of dogs in the second file. Write

a program that tries to read these files and print the contents of the file to the

screen. Wrap your code in a try-except block to catch the FileNotFound error,

and print a friendly message if a file is missing. Move one of the files to a dif-

ferent location on your system, and make sure the code in the except block

executes properly.

10-9. Silent Cats and Dogs: Modify your except block in Exercise 10-7 to fail

silently if either file is missing.

10-10. Common Words: Visit Project Gutenberg (https://gutenberg.org) and find

a few texts you’d like to analyze. Download the text files for these works, or

copy the raw text from your browser into a text file on your computer.

You can use the count() method to find out how many times a word or

phrase appears in a string. For example, the following code counts the number

of times 'row' appears in a string:

>>> line = "Row, row, row your boat"
>>> line.count('row')
2
>>> line.lower().count('row')
3

Notice that converting the string to lowercase using lower() catches all

appearances of the word you’re looking for, regardless of how it’s formatted.

Write a program that reads the files you found at Project Gutenberg and

determines how many times the word 'the' appears in each text. This will be

an approximation because it will also count words such as 'then' and 'there'.

Try counting 'the ', with a space in the string, and see how much lower your

count is.

https://gutenberg.org 

Files and Exceptions 201

Storing Data

Many of your programs will ask users to input certain kinds of information.
You might allow users to store preferences in a game or provide data for a visu-
alization. Whatever the focus of your program is, you’ll store the information
users provide in data structures such as lists and dictionaries. When users close
a program, you’ll almost always want to save the information they entered. A
simple way to do this involves storing your data using the json module.

The json module allows you to convert simple Python data structures
into JSON-formatted strings, and then load the data from that �le the next
time the program runs. You can also use json to share data between differ-
ent Python programs. Even better, the JSON data format is not speci�c to
Python, so you can share data you store in the JSON format with people
who work in many other programming languages. It’s a useful and portable
format, and it’s easy to learn.

N O T E The JSON (JavaScript Object Notation) format was originally developed for
JavaScript. However, it has since become a common format used by many languages,
including Python.

Using json.dumps() and json.loads()
Let’s write a short program that stores a set of numbers and another pro-
gram that reads these numbers back into memory. The �rst program will
use json.dumps() to store the set of numbers, and the second program will use
json.loads().

The json.dumps() function takes one argument: a piece of data that should
be converted to the JSON format. The function returns a string, which we can
then write to a data �le:

number
_writer.py

from pathlib import Path
import json

numbers = [2, 3, 5, 7, 11, 13]

1 path = Path('numbers.json')
2 contents = json.dumps(numbers)

path.write_text(contents)

We �rst import the json module, and then create a list of numbers to
work with. Then we choose a �lename in which to store the list of num-
bers 1. It’s customary to use the �le extension .json to indicate that the data
in the �le is stored in the JSON format. Next, we use the json.dumps() 2
function to generate a string containing the JSON representation of the
data we’re working with. Once we have this string, we write it to the �le
using the same write_text() method we used earlier.

This program has no output, but let’s open the �le numbers.json and
look at it. The data is stored in a format that looks just like Python:

[2, 3, 5, 7, 11, 13]

202 Chapter 10

Now we’ll write a separate program that uses json.loads() to read the
list back into memory:

number
_reader.py

from pathlib import Path
import json

1 path = Path('numbers.json')
2 contents = path.read_text()
3 numbers = json.loads(contents)

print(numbers)

We make sure to read from the same �le we wrote to 1. Since the data
�le is just a text �le with speci�c formatting, we can read it with the read_text()
method 2. We then pass the contents of the �le to json.loads() 3. This func-
tion takes in a JSON-formatted string and returns a Python object (in this
case, a list), which we assign to numbers. Finally, we print the recovered list of
numbers and see that it’s the same list created in number_writer.py:

[2, 3, 5, 7, 11, 13]

This is a simple way to share data between two programs.

Saving and Reading User-Generated Data
Saving data with json is useful when you’re working with user-generated
data, because if you don’t store your user’s information somehow, you’ll
lose it when the program stops running. Let’s look at an example where we
prompt the user for their name the �rst time they run a program and then
remember their name when they run the program again.

Let’s start by storing the user’s name:

remember
_me.py

from pathlib import Path
import json

1 username = input("What is your name? ")

2 path = Path('username.json')
contents = json.dumps(username)
path.write_text(contents)

3 print(f"We'll remember you when you come back, {username}!")

We �rst prompt for a username to store 1. Next, we write the data
we just collected to a �le called username.json 2. Then we print a message
informing the user that we’ve stored their information 3:

What is your name? Eric
We'll remember you when you come back, Eric!

Files and Exceptions 203

Now let’s write a new program that greets a user whose name has
already been stored:

greet_user.py from pathlib import Path
import json

1 path = Path('username.json')
contents = path.read_text()

2 username = json.loads(contents)

print(f"Welcome back, {username}!")

We read the contents of the data �le 1 and then use json.loads() to
assign the recovered data to the variable username 2. Since we’ve recovered
the username, we can welcome the user back with a personalized greeting:

Welcome back, Eric!

We need to combine these two programs into one �le. When someone
runs remember_me.py, we want to retrieve their username from memory if
possible; if not, we’ll prompt for a username and store it in username.json for
next time. We could write a try-except block here to respond appropriately
if username.json doesn’t exist, but instead we’ll use a handy method from the
pathlib module:

remember
_me.py

from pathlib import Path
import json

path = Path('username.json')
1 if path.exists():

 contents = path.read_text()
 username = json.loads(contents)
 print(f"Welcome back, {username}!")

2 else:
 username = input("What is your name? ")
 contents = json.dumps(username)
 path.write_text(contents)
 print(f"We'll remember you when you come back, {username}!")

There are many helpful methods you can use with Path objects. The
exists() method returns True if a �le or folder exists and False if it doesn’t.
Here we use path.exists() to �nd out if a username has already been stored 1.
If username.json exists, we load the username and print a personalized greeting
to the user.

If the �le username.json doesn’t exist 2, we prompt for a username and
store the value that the user enters. We also print the familiar message that
we’ll remember them when they come back.

Whichever block executes, the result is a username and an appropriate
greeting. If this is the �rst time the program runs, this is the output:

What is your name? Eric
We'll remember you when you come back, Eric!

204 Chapter 10

Otherwise:

Welcome back, Eric!

This is the output you see if the program was already run at least once.
Even though the data in this section is just a single string, the program
would work just as well with any data that can be converted to a JSON-
formatted string.

Refactoring
Often, you’ll come to a point where your code will work, but you’ll recognize
that you could improve the code by breaking it up into a series of functions
that have speci�c jobs. This process is called refactoring. Refactoring makes
your code cleaner, easier to understand, and easier to extend.

We can refactor remember_me.py by moving the bulk of its logic into one
or more functions. The focus of remember_me.py is on greeting the user, so
let’s move all of our existing code into a function called greet_user():

remember
_me.py

from pathlib import Path
import json

def greet_user():
1 """Greet the user by name."""

 path = Path('username.json')
 if path.exists():
 contents = path.read_text()
 username = json.loads(contents)
 print(f"Welcome back, {username}!")
 else:
 username = input("What is your name? ")
 contents = json.dumps(username)
 path.write_text(contents)
 print(f"We'll remember you when you come back, {username}!")

greet_user()

Because we’re using a function now, we rewrite the comments as a doc-
string that re�ects how the program currently works 1. This �le is a little
cleaner, but the function greet_user() is doing more than just greeting the
user—it’s also retrieving a stored username if one exists and prompting for
a new username if one doesn’t.

Let’s refactor greet_user() so it’s not doing so many different tasks. We’ll
start by moving the code for retrieving a stored username to a separate
function:

from pathlib import Path
import json

def get_stored_username(path):
1 """Get stored username if available."""

Files and Exceptions 205

 if path.exists():
 contents = path.read_text()
 username = json.loads(contents)
 return username
 else:

2 return None

def greet_user():
 """Greet the user by name."""
 path = Path('username.json')
 username = get_stored_username(path)

3 if username:
 print(f"Welcome back, {username}!")
 else:
 username = input("What is your name? ")
 contents = json.dumps(username)
 path.write_text(contents)
 print(f"We'll remember you when you come back, {username}!")

greet_user()

The new function get_stored_username() 1 has a clear purpose, as stated
in the docstring. This function retrieves a stored username and returns the
username if it �nds one. If the path that’s passed to get_stored_username()
doesn’t exist, the function returns None 2. This is good practice: a function
should either return the value you’re expecting, or it should return None.
This allows us to perform a simple test with the return value of the func-
tion. We print a welcome back message to the user if the attempt to retrieve
a username is successful 3, and if it isn’t, we prompt for a new username.

We should factor one more block of code out of greet_user(). If the user-
name doesn’t exist, we should move the code that prompts for a new username
to a function dedicated to that purpose:

from pathlib import Path
import json

def get_stored_username(path):
 """Get stored username if available."""
 --snip--

def get_new_username(path):
 """Prompt for a new username."""
 username = input("What is your name? ")
 contents = json.dumps(username)
 path.write_text(contents)
 return username

def greet_user():
 """Greet the user by name."""
 path = Path('username.json')

1 username = get_stored_username(path)
 if username:
 print(f"Welcome back, {username}!")

206 Chapter 10

 else:
2 username = get_new_username(path)

 print(f"We'll remember you when you come back, {username}!")

greet_user()

Each function in this �nal version of remember_me.py has a single, clear
purpose. We call greet_user(), and that function prints an appropriate mes-
sage: it either welcomes back an existing user or greets a new user. It does
this by calling get_stored_username() 1, which is responsible only for retriev-
ing a stored username if one exists. Finally, if necessary, greet_user() calls
get_new_username()2, which is responsible only for getting a new username
and storing it. This compartmentalization of work is an essential part of
writing clear code that will be easy to maintain and extend.

T RY IT YOURSEL F

10-11. Favorite Number: Write a program that prompts for the user’s favorite

number. Use json.dumps() to store this number in a file. Write a separate pro-

gram that reads in this value and prints the message “I know your favorite

number! It’s _____.”

10-12. Favorite Number Remembered: Combine the two programs you wrote in

Exercise 10-11 into one file. If the number is already stored, report the favorite

number to the user. If not, prompt for the user’s favorite number and store it in a

file. Run the program twice to see that it works.

10-13. User Dictionary: The remember_me.py example only stores one piece of

information, the username. Expand this example by asking for two more pieces

of information about the user, then store all the information you collect in a

dictionary. Write this dictionary to a file using json.dumps(), and read it back

in using json.loads(). Print a summary showing exactly what your program

remembers about the user.

10-14. Verify User: The final listing for remember_me.py assumes either that the

user has already entered their username or that the program is running for the

first time. We should modify it in case the current user is not the person who last

used the program.

Before printing a welcome back message in greet_user(), ask the user if

this is the correct username. If it’s not, call get_new_username() to get the correct

username.

Files and Exceptions 207

Summary

In this chapter, you learned how to work with �les. You learned to read the
entire contents of a �le, and then work through the contents one line at a
time if you need to. You learned to write as much text as you want to a �le.
You also read about exceptions and how to handle the exceptions you’re
likely to see in your programs. Finally, you learned how to store Python data
structures so you can save information your users provide, preventing them
from having to start over each time they run a program.

In Chapter 11, you’ll learn ef�cient ways to test your code. This will help
you trust that the code you develop is correct, and it will help you identify
bugs that are introduced as you continue to build on the programs you’ve
written.

11
T E S T I N G Y O U R C O D E

When you write a function or a class, you

can also write tests for that code. Testing

proves that your code works as it’s supposed

to in response to all the kinds of input it’s

designed to receive. When you write tests, you can be

con�dent that your code will work correctly as more
people begin to use your programs. You’ll also be able to test new code as
you add it, to make sure your changes don’t break your program’s existing
behavior. Every programmer makes mistakes, so every programmer must
test their code often, to catch problems before users encounter them.

In this chapter, you’ll learn to test your code using pytest. The pytest
library is a collection of tools that will help you write your �rst tests quickly
and simply, while supporting your tests as they grow in complexity along
with your projects. Python doesn’t include pytest by default, so you’ll learn
to install external libraries. Knowing how to install external libraries will
make a wide variety of well-designed code available to you. These libraries
will expand the kinds of projects you can work on immensely.

210 Chapter 11

You’ll learn to build a series of tests and check that each set of inputs
results in the output you want. You’ll see what a passing test looks like and
what a failing test looks like, and you’ll learn how a failing test can help you
improve your code. You’ll learn to test functions and classes, and you’ll start
to understand how many tests to write for a project.

Installing pytest with pip

While Python includes a lot of functionality in the standard library, Python
developers also depend heavily on third-party packages. A third-party package
is a library that’s developed outside the core Python language. Some popu-
lar third-party libraries are eventually adopted into the standard library,
and end up being included in most Python installations from that point
forward. This happens most often with libraries that are unlikely to change
much once they’ve had their initial bugs worked out. These kinds of librar-
ies can evolve at the same pace as the overall language.

Many packages, however, are kept out of the standard library so they can
be developed on a timeline independent of the language itself. These pack-
ages tend to be updated more frequently than they would be if they were
tied to Python’s development schedule. This is true of pytest and most of the
libraries we’ll use in the second half of this book. You shouldn’t blindly trust
every third-party package, but you also shouldn’t be put off by the fact that a
lot of important functionality is implemented through such packages.

Updating pip
Python includes a tool called pip that’s used to install third-party packages.
Because pip helps install packages from external resources, it’s updated
often to address potential security issues. So, we’ll start by updating pip.

Open a new terminal window and issue the following command:

$ python -m pip install --upgrade pip
1 Requirement already satisfied: pip in /.../python3.11/site-packages (22.0.4)

--snip--

2 Successfully installed pip-22.1.2

The �rst part of this command, python -m pip, tells Python to run the
module pip. The second part, install --upgrade, tells pip to update a package
that’s already been installed. The last part, pip, speci�es which third-party
package should be updated. The output shows that my current version of
pip, version 22.0.4 1, was replaced by the latest version at the time of this
writing, 22.1.2 2.

You can use this command to update any third-party package installed
on your system:

$ python -m pip install --upgrade package_name

N O T E If you’re using Linux, pip may not be included with your installation of Python. If
you get an error when trying to upgrade pip, see the instructions in Appendix A.

Testing Your Code 211

Installing pytest
Now that pip is up to date, we can install pytest:

$ python -m pip install --user pytest
Collecting pytest
 --snip--

Successfully installed attrs-21.4.0 iniconfig-1.1.1 ...pytest-7.x.x

We’re still using the core command pip install, without the --upgrade
�ag this time. Instead, we’re using the --user �ag, which tells Python to
install this package for the current user only. The output shows that the lat-
est version of pytest was successfully installed, along with a number of other
packages that pytest depends on.

You can use this command to install many third-party packages:

$ python -m pip install --user package_name

N O T E If you have any dif�culty running this command, try running the same command
without the --user �ag.

Testing a Function

To learn about testing, we need code to test. Here’s a simple function that
takes in a �rst and last name, and returns a neatly formatted full name:

name
_function.py

def get_formatted_name(first, last):
 """Generate a neatly formatted full name."""
 full_name = f"{first} {last}"
 return full_name.title()

The function get_formatted_name() combines the �rst and last name
with a space in between to complete a full name, and then capitalizes and
returns the full name. To check that get_formatted_name() works, let’s make
a program that uses this function. The program names.py lets users enter a
�rst and last name, and see a neatly formatted full name:

names.py from name_function import get_formatted_name

print("Enter 'q' at any time to quit.")
while True:
 first = input("\nPlease give me a first name: ")
 if first == 'q':
 break
 last = input("Please give me a last name: ")
 if last == 'q':
 break

 formatted_name = get_formatted_name(first, last)
 print(f"\tNeatly formatted name: {formatted_name}.")

212 Chapter 11

This program imports get_formatted_name() from name_function.py. The
user can enter a series of �rst and last names and see the formatted full
names that are generated:

Enter 'q' at any time to quit.

Please give me a first name: janis
Please give me a last name: joplin
 Neatly formatted name: Janis Joplin.

Please give me a first name: bob
Please give me a last name: dylan
 Neatly formatted name: Bob Dylan.

Please give me a first name: q

We can see that the names generated here are correct. But say we want
to modify get_formatted_name() so it can also handle middle names. As we
do so, we want to make sure we don’t break the way the function handles
names that have only a �rst and last name. We could test our code by run-
ning names.py and entering a name like Janis Joplin every time we modify
get_formatted_name(), but that would become tedious. Fortunately, pytest
provides an ef�cient way to automate the testing of a function’s output. If
we automate the testing of get_formatted_name(), we can always be con�dent
that the function will work when given the kinds of names we’ve written
tests for.

Unit Tests and Test Cases
There is a wide variety of approaches to testing software. One of the sim-
plest kinds of test is a unit test. A unit test veri�es that one speci�c aspect of
a function’s behavior is correct. A test case is a collection of unit tests that
together prove that a function behaves as it’s supposed to, within the full
range of situations you expect it to handle.

A good test case considers all the possible kinds of input a function
could receive and includes tests to represent each of these situations. A test
case with full coverage includes a full range of unit tests covering all the pos-
sible ways you can use a function. Achieving full coverage on a large project
can be daunting. It’s often good enough to write tests for your code’s criti-
cal behaviors and then aim for full coverage only if the project starts to see
widespread use.

A Passing Test
With pytest, writing your �rst unit test is pretty straightforward. We’ll
write a single test function. The test function will call the function we’re
testing, and we’ll make an assertion about the value that’s returned. If our
assertion is correct, the test will pass; if the assertion is incorrect, the test
will fail.

Testing Your Code 213

Here’s the �rst test of the function get_formatted_name():

test_name
_function.py

from name_function import get_formatted_name

1 def test_first_last_name():
 """Do names like 'Janis Joplin' work?"""

2 formatted_name = get_formatted_name('janis', 'joplin')
3 assert formatted_name == 'Janis Joplin'

Before we run the test, let’s take a closer look at this function. The
name of a test �le is important; it must start with test_. When we ask pytest
to run the tests we’ve written, it will look for any �le that begins with test_,
and run all of the tests it �nds in that �le.

In the test �le, we �rst import the function that we want to test: get
_formatted_name(). Then we de�ne a test function: in this case, test_first
_last_name() 1. This is a longer function name than we’ve been using, for
a good reason. First, test functions need to start with the word test,
followed by an underscore. Any function that starts with test_ will be
discovered by pytest, and will be run as part of the testing process.

Also, test names should be longer and more descriptive than a typical
function name. You’ll never call the function yourself; pytest will �nd the
function and run it for you. Test function names should be long enough
that if you see the function name in a test report, you’ll have a good sense
of what behavior was being tested.

Next, we call the function we’re testing 2. Here we call get_formatted
_name() with the arguments 'janis' and 'joplin', just like we used when we
ran names.py. We assign the return value of this function to formatted_name.

Finally, we make an assertion 3. An assertion is a claim about a condi-
tion. Here we’re claiming that the value of formatted_name should be 'Janis
Joplin'.

Running a Test
If you run the �le test_name_function.py directly, you won’t get any output
because we never called the test function. Instead, we’ll have pytest run the
test �le for us.

To do this, open a terminal window and navigate to the folder that con-
tains the test �le. If you’re using VS Code, you can open the folder containing
the test �le and use the terminal that’s embedded in the editor window. In the
terminal window, enter the command pytest. Here’s what you should see:

$ pytest
========================= test session starts =========================

1 platform darwin -- Python 3.x.x, pytest-7.x.x, pluggy-1.x.x
2 rootdir: /.../python_work/chapter_11
3 collected 1 item

4 test_name_function.py . [100%]
========================== 1 passed in 0.00s ==========================

214 Chapter 11

Let’s try to make sense of this output. First of all, we see some information
about the system the test is running on 1. I’m testing this on a macOS system,
so you may see some different output here. Most importantly, we can see which
versions of Python, pytest, and other packages are being used to run the test.

Next, we see the directory where the test is being run from 2: in my
case, python_work/chapter_11. We can see that pytest found one test to run 3,
and we can see the test �le that’s being run 4. The single dot after the
name of the �le tells us that a single test passed, and the 100% makes it clear
that all of the tests have been run. A large project can have hundreds or
thousands of tests, and the dots and percentage-complete indicator can be
helpful in monitoring the overall progress of the test run.

The last line tells us that one test passed, and it took less than 0.01 sec-
onds to run the test.

This output indicates that the function get_formatted_name() will always
work for names that have a �rst and last name, unless we modify the func-
tion. When we modify get_formatted_name(), we can run this test again. If the
test passes, we know the function will still work for names like Janis Joplin.

N O T E If you’re not sure how to navigate to the right location in the terminal, see “Running
Python Programs from a Terminal” on page 11. Also, if you see a message that the
pytest command was not found, use the command python -m pytest instead.

A Failing Test
What does a failing test look like? Let’s modify get_formatted_name() so it can
handle middle names, but let’s do so in a way that breaks the function for
names with just a �rst and last name, like Janis Joplin.

Here’s a new version of get_formatted_name() that requires a middle name
argument:

name
_function.py

def get_formatted_name(first, middle, last):
 """Generate a neatly formatted full name."""
 full_name = f"{first} {middle} {last}"
 return full_name.title()

This version should work for people with middle names, but when we
test it, we see that we’ve broken the function for people with just a �rst and
last name.

This time, running pytest gives the following output:

$ pytest
========================= test session starts =========================
--snip--

1 test_name_function.py F [100%]
2 ============================== FAILURES ===============================
3 ________________________ test_first_last_name _________________________

 def test_first_last_name():
 """Do names like 'Janis Joplin' work?"""

4 > formatted_name = get_formatted_name('janis', 'joplin')
5 E TypeError: get_formatted_name() missing 1 required positional

 argument: 'last'

Testing Your Code 215

test_name_function.py:5: TypeError
======================= short test summary info =======================
FAILED test_name_function.py::test_first_last_name - TypeError:
 get_formatted_name() missing 1 required positional argument: 'last'
========================== 1 failed in 0.04s ==========================

There’s a lot of information here because there’s a lot you might need
to know when a test fails. The �rst item of note in the output is a single
F 1, which tells us that one test failed. We then see a section that focuses
on FAILURES 2, because failed tests are usually the most important thing to
focus on in a test run. Next, we see that test_first_last_name() was the test
function that failed 3. An angle bracket 4 indicates the line of code that
caused the test to fail. The E on the next line 5 shows the actual error that
caused the failure: a TypeError due to a missing required positional argument,
last. The most important information is repeated in a shorter summary at
the end, so when you’re running many tests, you can get a quick sense of
which tests failed and why.

Responding to a Failed Test
What do you do when a test fails? Assuming you’re checking the right condi-
tions, a passing test means the function is behaving correctly and a failing
test means there’s an error in the new code you wrote. So when a test fails,
don’t change the test. If you do, your tests might pass, but any code that
calls your function like the test does will suddenly stop working. Instead,
�x the code that’s causing the test to fail. Examine the changes you just
made to the function, and �gure out how those changes broke the desired
behavior.

In this case, get_formatted_name() used to require only two parameters: a
�rst name and a last name. Now it requires a �rst name, middle name, and
last name. The addition of that mandatory middle name parameter broke
the original behavior of get_formatted_name(). The best option here is to
make the middle name optional. Once we do, our test for names like Janis
Joplin should pass again, and we should be able to accept middle names as
well. Let’s modify get_formatted_name() so middle names are optional and
then run the test case again. If it passes, we’ll move on to making sure the
function handles middle names properly.

To make middle names optional, we move the parameter middle to the
end of the parameter list in the function de�nition and give it an empty
default value. We also add an if test that builds the full name properly,
depending on whether a middle name is provided:

name
_function.py

def get_formatted_name(first, last, middle=''):
 """Generate a neatly formatted full name."""
 if middle:
 full_name = f"{first} {middle} {last}"
 else:
 full_name = f"{first} {last}"
 return full_name.title()

216 Chapter 11

In this new version of get_formatted_name(), the middle name is optional.
If a middle name is passed to the function, the full name will contain a �rst,
middle, and last name. Otherwise, the full name will consist of just a �rst
and last name. Now the function should work for both kinds of names. To
�nd out if the function still works for names like Janis Joplin, let’s run the
test again:

$ pytest
========================= test session starts =========================
--snip--

test_name_function.py . [100%]
========================== 1 passed in 0.00s ==========================

The test passes now. This is ideal; it means the function works for
names like Janis Joplin again, without us having to test the function
manually. Fixing our function was easier because the failed test helped
us identify how the new code broke existing behavior.

Adding New Tests
Now that we know get_formatted_name() works for simple names again, let’s
write a second test for people who include a middle name. We do this by
adding another test function to the �le test_name_function.py:

test_name
_function.py

from name_function import get_formatted_name

def test_first_last_name():
 --snip--

def test_first_last_middle_name():
 """Do names like 'Wolfgang Amadeus Mozart' work?"""

1 formatted_name = get_formatted_name(
 'wolfgang', 'mozart', 'amadeus')

2 assert formatted_name == 'Wolfgang Amadeus Mozart'

We name this new function test_first_last_middle_name(). The function
name must start with test_ so the function runs automatically when we run
pytest. We name the function to make it clear which behavior of get_formatted
_name() we’re testing. As a result, if the test fails, we’ll know right away what
kinds of names are affected.

To test the function, we call get_formatted_name() with a �rst, last, and
middle name 1, and then we make an assertion 2 that the returned full
name matches the full name (�rst, middle, and last) that we expect. When
we run pytest again, both tests pass:

$ pytest
========================= test session starts =========================
--snip--

collected 2 items

1 test_name_function.py .. [100%]
========================== 2 passed in 0.01s ==========================

Testing Your Code 217

The two dots 1 indicate that two tests passed, which is also clear from
the last line of output. This is great! We now know that the function still
works for names like Janis Joplin, and we can be con�dent that it will work
for names like Wolfgang Amadeus Mozart as well.

T RY IT YOURSEL F

11-1. City, Country: Write a function that accepts two parameters: a city name

and a country name. The function should return a single string of the form

City, Country, such as Santiago, Chile. Store the function in a module called

city_functions.py, and save this file in a new folder so pytest won’t try to run the

tests we’ve already written.

Create a file called test_cities.py that tests the function you just wrote.

Write a function called test_city_country() to verify that calling your function

with values such as 'santiago' and 'chile' results in the correct string. Run the

test, and make sure test_city_country() passes.

11-2. Population: Modify your function so it requires a third parameter, population.

It should now return a single string of the form City, Country – population xxx,

such as Santiago, Chile – population 5000000. Run the test again, and make sure

test_city_country() fails this time.

Modify the function so the population parameter is optional. Run the test,

and make sure test_city_country() passes again.

Write a second test called test_city_country_population() that verifies

you can call your function with the values 'santiago', 'chile', and 'population

=5000000'. Run the tests one more time, and make sure this new test passes.

Testing a Class

In the �rst part of this chapter, you wrote tests for a single function. Now
you’ll write tests for a class. You’ll use classes in many of your own pro-
grams, so it’s helpful to be able to prove that your classes work correctly. If
you have passing tests for a class you’re working on, you can be con�dent
that improvements you make to the class won’t accidentally break its cur-
rent behavior.

A Variety of Assertions
So far, you’ve seen just one kind of assertion: a claim that a string has a
speci�c value. When writing a test, you can make any claim that can be
expressed as a conditional statement. If the condition is True as expected,
your assumption about how that part of your program behaves will be
con�rmed; you can be con�dent that no errors exist. If the condition you

218 Chapter 11

assume is True is actually False, the test will fail and you’ll know there’s an
issue to resolve. Table 11-1 shows some of the most useful kinds of assertions
you can include in your initial tests.

Table 11-1: Commonly Used Assertion Statements in Tests

Assertion Claim

assert a == b Assert that two values are equal.

assert a != b Assert that two values are not equal.

assert a Assert that a evaluates to True.

assert not a Assert that a evaluates to False.

assert element in list Assert that an element is in a list.

assert element not in list Assert that an element is not in a list.

These are just a few examples; anything that can be expressed as a con-
ditional statement can be included in a test.

A Class to Test
Testing a class is similar to testing a function, because much of the work
involves testing the behavior of the methods in the class. However, there
are a few differences, so let’s write a class to test. Consider a class that helps
administer anonymous surveys:

survey.py class AnonymousSurvey:
 """Collect anonymous answers to a survey question."""

1 def __init__(self, question):
 """Store a question, and prepare to store responses."""
 self.question = question
 self.responses = []

2 def show_question(self):
 """Show the survey question."""
 print(self.question)

3 def store_response(self, new_response):
 """Store a single response to the survey."""
 self.responses.append(new_response)

4 def show_results(self):
 """Show all the responses that have been given."""
 print("Survey results:")
 for response in self.responses:
 print(f"- {response}")

This class starts with a survey question that you provide 1 and includes
an empty list to store responses. The class has methods to print the survey
question 2, add a new response to the response list 3, and print all the
responses stored in the list 4. To create an instance from this class, all you

Testing Your Code 219

have to provide is a question. Once you have an instance representing a par-
ticular survey, you display the survey question with show_question(), store a
response using store_response(), and show results with show_results().

To show that the AnonymousSurvey class works, let’s write a program that
uses the class:

language
_survey.py

from survey import AnonymousSurvey

Define a question, and make a survey.
question = "What language did you first learn to speak?"
language_survey = AnonymousSurvey(question)

Show the question, and store responses to the question.
language_survey.show_question()
print("Enter 'q' at any time to quit.\n")
while True:
 response = input("Language: ")
 if response == 'q':
 break
 language_survey.store_response(response)

Show the survey results.
print("\nThank you to everyone who participated in the survey!")
language_survey.show_results()

This program de�nes a question ("What language did you first learn to
speak?") and creates an AnonymousSurvey object with that question. The program
calls show_question() to display the question and then prompts for responses.
Each response is stored as it is received. When all responses have been entered
(the user inputs q to quit), show_results() prints the survey results:

What language did you first learn to speak?
Enter 'q' at any time to quit.

Language: English
Language: Spanish
Language: English
Language: Mandarin
Language: q

Thank you to everyone who participated in the survey!
Survey results:
- English
- Spanish
- English
- Mandarin

This class works for a simple anonymous survey, but say we want to
improve AnonymousSurvey and the module it’s in, survey. We could allow
each user to enter more than one response, we could write a method to
list only unique responses and to report how many times each response
was given, or we could even write another class to manage non-anonymous
surveys.

220 Chapter 11

Implementing such changes would risk affecting the current behavior
of the class AnonymousSurvey. For example, it’s possible that while trying to
allow each user to enter multiple responses, we could accidentally change
how single responses are handled. To ensure we don’t break existing behav-
ior as we develop this module, we can write tests for the class.

Testing the AnonymousSurvey Class
Let’s write a test that veri�es one aspect of the way AnonymousSurvey behaves.
We’ll write a test to verify that a single response to the survey question is
stored properly:

test_survey.py from survey import AnonymousSurvey

1 def test_store_single_response():
 """Test that a single response is stored properly."""
 question = "What language did you first learn to speak?"

2 language_survey = AnonymousSurvey(question)
 language_survey.store_response('English')

3 assert 'English' in language_survey.responses

We start by importing the class we want to test, AnonymousSurvey. The
�rst test function will verify that when we store a response to the survey
question, the response will end up in the survey’s list of responses. A good
descriptive name for this function is test_store_single_response() 1. If this
test fails, we’ll know from the function name in the test summary that there
was a problem storing a single response to the survey.

To test the behavior of a class, we need to make an instance of the
class. We create an instance called language_survey 2 with the question
"What language did you first learn to speak?" We store a single response,
English, using the store_response() method. Then we verify that the response
was stored correctly by asserting that English is in the list language_survey
.responses 3.

By default, running the command pytest with no arguments will run all
the tests that pytest discovers in the current directory. To focus on the tests
in one �le, pass the name of the test �le you want to run. Here we’ll run
just the one test we wrote for AnonymousSurvey:

$ pytest test_survey.py
========================= test session starts =========================
--snip--

test_survey.py . [100%]
========================== 1 passed in 0.01s ==========================

This is a good start, but a survey is useful only if it generates more than
one response. Let’s verify that three responses can be stored correctly. To
do this, we add another method to TestAnonymousSurvey:

from survey import AnonymousSurvey

def test_store_single_response():

Testing Your Code 221

 --snip--

def test_store_three_responses():
 """Test that three individual responses are stored properly."""
 question = "What language did you first learn to speak?"
 language_survey = AnonymousSurvey(question)

1 responses = ['English', 'Spanish', 'Mandarin']
 for response in responses:
 language_survey.store_response(response)

2 for response in responses:
 assert response in language_survey.responses

We call the new function test_store_three_responses(). We create a sur-
vey object just like we did in test_store_single_response(). We de�ne a list
containing three different responses 1, and then we call store_response()
for each of these responses. Once the responses have been stored, we
write another loop and assert that each response is now in language_survey
.responses 2.

When we run the test �le again, both tests (for a single response and
for three responses) pass:

$ pytest test_survey.py
========================= test session starts =========================
--snip--

test_survey.py .. [100%]
========================== 2 passed in 0.01s ==========================

This works perfectly. However, these tests are a bit repetitive, so we’ll
use another feature of pytest to make them more ef�cient.

Using Fixtures
In test_survey.py, we created a new instance of AnonymousSurvey in each test
function. This is �ne in the short example we’re working with, but in a real-
world project with tens or hundreds of tests, this would be problematic.

In testing, a �xture helps set up a test environment. Often, this means
creating a resource that’s used by more than one test. We create a �xture in
pytest by writing a function with the decorator @pytest.fixture. A decorator is
a directive placed just before a function de�nition; Python applies this direc-
tive to the function before it runs, to alter how the function code behaves.
Don’t worry if this sounds complicated; you can start to use decorators from
third-party packages before learning to write them yourself.

Let’s use a �xture to create a single survey instance that can be used in
both test functions in test_survey.py:

import pytest
from survey import AnonymousSurvey

1 @pytest.fixture
2 def language_survey():

 """A survey that will be available to all test functions."""

222 Chapter 11

 question = "What language did you first learn to speak?"
 language_survey = AnonymousSurvey(question)
 return language_survey

3 def test_store_single_response(language_survey):
 """Test that a single response is stored properly."""
4 language_survey.store_response('English')

 assert 'English' in language_survey.responses

5 def test_store_three_responses(language_survey):
 """Test that three individual responses are stored properly."""
 responses = ['English', 'Spanish', 'Mandarin']
 for response in responses:

6 language_survey.store_response(response)

 for response in responses:
 assert response in language_survey.responses

We need to import pytest now, because we’re using a decorator that’s
de�ned in pytest. We apply the @pytest.fixture decorator 1 to the new func-
tion language_survey() 2. This function builds an AnonymousSurvey object and
returns the new survey.

Notice that the de�nitions of both test functions have changed 3 5;
each test function now has a parameter called language_survey. When
a parameter in a test function matches the name of a function with the
@pytest.fixture decorator, the �xture will be run automatically and
the return value will be passed to the test function. In this example, the
function language_survey() supplies both test_store_single_response() and
test_store_three_responses() with a language_survey instance.

There’s no new code in either of the test functions, but notice that two
lines have been removed from each function 4 6: the line that de�ned a
question and the line that created an AnonymousSurvey object.

When we run the test �le again, both tests still pass. These tests would
be particularly useful when trying to expand AnonymousSurvey to handle
multiple responses for each person. After modifying the code to accept
multiple responses, you could run these tests and make sure you haven’t
affected the ability to store a single response or a series of individual
responses.

The structure above will almost certainly look complicated; it contains
some of the most abstract code you’ve seen so far. You don’t need to use
�xtures right away; it’s better to write tests that have a lot of repetitive code
than to write no tests at all. Just know that when you’ve written enough
tests that the repetition is getting in the way, there’s a well-established way
to deal with the repetition. Also, �xtures in simple examples like this one
don’t really make the code any shorter or simpler to follow. But in projects
with many tests, or in situations where it takes many lines to build a resource
that’s used in multiple tests, �xtures can drastically improve your test code.

When you want to write a �xture, write a function that generates the
resource that’s used by multiple test functions. Add the @pytest.fixture

Testing Your Code 223

decorator to the new function, and add the name of this function as a
parameter for each test function that uses this resource. Your tests will be
shorter and easier to write and maintain from that point forward.

T RY IT YOURSEL F

11-3. Employee: Write a class called Employee. The __init__() method should

take in a first name, a last name, and an annual salary, and store each of these

as attributes. Write a method called give_raise() that adds $5,000 to the

annual salary by default but also accepts a different raise amount.

Write a test file for Employee with two test functions, test_give_default

_raise() and test_give_custom_raise(). Write your tests once without using a

fixture, and make sure they both pass. Then write a fixture so you don’t have to

create a new employee instance in each test function. Run the tests again, and

make sure both tests still pass.

Summary

In this chapter, you learned to write tests for functions and classes using
tools in the pytest module. You learned to write test functions that verify
speci�c behaviors your functions and classes should exhibit. You saw how
�xtures can be used to ef�ciently create resources that can be used in mul-
tiple test functions in a test �le.

Testing is an important topic that many newer programmers aren’t
exposed to. You don’t have to write tests for all the simple projects you try
as a new programmer. But as soon as you start to work on projects that
involve signi�cant development effort, you should test the critical behaviors
of your functions and classes. You’ll be more con�dent that new work on
your project won’t break the parts that work, and this will give you the free-
dom to make improvements to your code. If you accidentally break existing
functionality, you’ll know right away, so you can still �x the problem easily.
Responding to a failed test that you ran is much easier than responding to a
bug report from an unhappy user.

Other programmers will respect your projects more if you include some
initial tests. They’ll feel more comfortable experimenting with your code
and be more willing to work with you on projects. If you want to contribute
to a project that other programmers are working on, you’ll be expected to
show that your code passes existing tests and you’ll usually be expected
to write tests for any new behavior you introduce to the project.

Play around with tests to become familiar with the process of testing
your code. Write tests for the most critical behaviors of your functions and
classes, but don’t aim for full coverage in early projects unless you have a
speci�c reason to do so.

	Cover
	Copyright
	About the Author and Technical Reviewer
	Brief Contents
	Contents in Detail
	Part I: Basics
	Chapter 1: Getting Started
	Setting Up Your Programming Environment
	Python Versions
	Running Snippets of Python Code
	About the VS Code Editor

	Python on Different Operating Systems
	Python on Windows
	Python on macOS
	Python on Linux

	Running a Hello World Program
	Installing the Python Extension for VS Code
	Running hello_world.py

	Troubleshooting
	Running Python Programs from a Terminal
	On Windows
	On macOS and Linux
	Exercise 1-1: python.org
	Exercise 1-2: Hello World Typos
	Exercise 1-3: Infinite Skills

	Summary

	Chapter 2: Variables and Simple Data Types
	What Really Happens When You Run hello_world.py
	Variables
	Naming and Using Variables
	Avoiding Name Errors When Using Variables
	Variables Are Labels
	Exercise 2-1: Simple Message
	Exercise 2-2: Simple Messages

	Strings
	Changing Case in a String with Methods
	Using Variables in Strings
	Adding Whitespace to Strings with Tabs or Newlines
	Stripping Whitespace
	Removing Prefixes
	Avoiding Syntax Errors with Strings
	Exercise 2-3: Personal Message
	Exercise 2-4: Name Cases
	Exercise 2-5: Famous Quote
	Exercise 2-6: Famous Quote 2
	Exercise 2-7: Stripping Names
	Exercise 2-8: File Extensions

	Numbers
	Integers
	Floats
	Integers and Floats
	Underscores in Numbers
	Multiple Assignment
	Constants
	Exercise 2-9: Number Eight
	Exercise 2-10: Favorite Number

	Comments
	How Do You Write Comments?
	What Kinds of Comments Should You Write?
	Exercise 2-11: Adding Comments

	The Zen of Python
	Exercise 2-12: Zen of Python

	Summary

	Chapter 3: Introducing Lists
	What Is a List?
	Accessing Elements in a List
	Index Positions Start at 0, Not 1
	Using Individual Values from a List
	Exercise 3-1: Names
	Exercise 3-2: Greetings
	Exercise 3-3: Your Own List

	Modifying, Adding, and Removing Elements
	Modifying Elements in a List
	Adding Elements to a List
	Removing Elements from a List
	Exercise 3-4: Guest List
	Exercise 3-5: Changing Guest List
	Exercise 3-6: More Guests
	Exercise 3-7: Shrinking Guest List

	Organizing a List
	Sorting a List Permanently with the sort() Method
	Sorting a List Temporarily with the sorted() Function
	Printing a List in Reverse Order
	Finding the Length of a List
	Exercise 3-8: Seeing the World
	Exercise 3-9: Dinner Guests
	Exercise 3-10: Every Function

	Avoiding Index Errors When Working with Lists
	Exercise 3-11: Intentional Error

	Summary

	Chapter 4: Working with Lists
	Looping Through an Entire List
	A Closer Look at Looping
	Doing More Work Within a for Loop
	Doing Something After a for Loop

	Avoiding Indentation Errors
	Forgetting to Indent
	Forgetting to Indent Additional Lines
	Indenting Unnecessarily
	Indenting Unnecessarily After the Loop
	Forgetting the Colon
	Exercise 4-1: Pizzas
	Exercise 4-2: Animals

	Making Numerical Lists
	Using the range() Function
	Using range() to Make a List of Numbers
	Simple Statistics with a List of Numbers
	List Comprehensions
	Exercise 4-3: Counting to Twenty
	Exercise 4-4: One Million
	Exercise 4-5: Summing a Million
	Exercise 4-6: Odd Numbers
	Exercise 4-7: Threes
	Exercise 4-8: Cubes
	Exercise 4-9: Cube Comprehension

	Working with Part of a List
	Slicing a List
	Looping Through a Slice
	Copying a List
	Exercise 4-10: Slices
	Exercise 4-11: My Pizzas, Your Pizzas
	Exercise 4-12: More Loops

	Tuples
	Defining a Tuple
	Looping Through All Values in a Tuple
	Writing Over a Tuple
	Exercise 4-13: Buffet

	Styling Your Code
	The Style Guide
	Indentation
	Line Length
	Blank Lines
	Other Style Guidelines
	Exercise 4-14: PEP 8
	Exercise 4-15: Code Review

	Summary

	Chapter 5: if Statements
	A Simple Example
	Conditional Tests
	Checking for Equality
	Ignoring Case When Checking for Equality
	Checking for Inequality
	Numerical Comparisons
	Checking Multiple Conditions
	Checking Whether a Value Is in a List
	Checking Whether a Value Is Not in a List
	Boolean Expressions
	Exercise 5-1: Conditional Tests
	Exercise 5-2: More Conditional Tests

	if Statements
	Simple if Statements
	if-else Statements
	The if-elif-else Chain
	Using Multiple elif Blocks
	Omitting the else Block
	Testing Multiple Conditions
	Exercise 5-3: Alien Colors #1
	Exercise 5-4: Alien Colors #2
	Exercise 5-5: Alien Colors #3
	Exercise 5-6: Stages of Life
	Exercise 5-7: Favorite Fruit

	Using if Statements with Lists
	Checking for Special Items
	Checking That a List Is Not Empty
	Using Multiple Lists
	Exercise 5-8: Hello Admin
	Exercise 5-9: No Users
	Exercise 5-10: Checking Usernames
	Exercise 5-11: Ordinal Numbers

	Styling Your if Statements
	Exercise 5-12: Styling if Statements
	Exercise 5-13: Your Ideas

	Summary

	Chapter 6: Dictionaries
	A Simple Dictionary
	Working with Dictionaries
	Accessing Values in a Dictionary
	Adding New Key-Value Pairs
	Starting with an Empty Dictionary
	Modifying Values in a Dictionary
	Removing Key-Value Pairs
	A Dictionary of Similar Objects
	Using get() to Access Values
	Exercise 6-1: Person
	Exercise 6-2: Favorite Numbers
	Exercise 6-3: Glossary

	Looping Through a Dictionary
	Looping Through All Key-Value Pairs
	Looping Through All the Keys in a Dictionary
	Looping Through a Dictionary’s Keys in a Particular Order
	Looping Through All Values in a Dictionary
	Exercise 6-4: Glossary 2
	Exercise 6-5: Rivers
	Exercise 6-6: Polling

	Nesting
	A List of Dictionaries
	A List in a Dictionary
	A Dictionary in a Dictionary
	Exercise 6-7: People
	Exercise 6-8: Pets
	Exercise 6-9: Favorite Places
	Exercise 6-10: Favorite Numbers
	Exercise 6-11: Cities
	Exercise 6-12: Extensions

	Summary

	Chapter 7: User Input and while Loops
	How the input() Function Works
	Writing Clear Prompts
	Using int() to Accept Numerical Input
	The Modulo Operator
	Exercise 7-1: Rental Car
	Exercise 7-2: Restaurant Seating
	Exercise 7-3: Multiples of Ten

	Introducing while Loops
	The while Loop in Action
	Letting the User Choose When to Quit
	Using a Flag
	Using break to Exit a Loop
	Using continue in a Loop
	Avoiding Infinite Loops
	Exercise 7-4: Pizza Toppings
	Exercise 7-5: Movie Tickets
	Exercise 7-6: Three Exits
	Exercise 7-7: Infinity

	Using a while Loop with Lists and Dictionaries
	Moving Items from One List to Another
	Removing All Instances of Specific Values from a List
	Filling a Dictionary with User Input
	Exercise 7-8: Deli
	Exercise 7-9: No Pastrami
	Exercise 7-10: Dream Vacation

	Summary

	Chapter 8: Functions
	Defining a Function
	Passing Information to a Function
	Arguments and Parameters
	Exercise 8-1: Message
	Exercise 8-2: Favorite Book

	Passing Arguments
	Positional Arguments
	Keyword Arguments
	Default Values
	Equivalent Function Calls
	Avoiding Argument Errors
	Exercise 8-3: T-Shirt
	Exercise 8-4: Large Shirts
	Exercise 8-5: Cities

	Return Values
	Returning a Simple Value
	Making an Argument Optional
	Returning a Dictionary
	Using a Function with a while Loop
	Exercise 8-6: City Names
	Exercise 8-7: Album
	Exercise 8-8: User Albums

	Passing a List
	Modifying a List in a Function
	Preventing a Function from Modifying a List
	Exercise 8-9: Messages
	Exercise 8-10: Sending Messages
	Exercise 8-11: Archived Messages

	Passing an Arbitrary Number of Arguments
	Mixing Positional and Arbitrary Arguments
	Using Arbitrary Keyword Arguments
	Exercise 8-12: Sandwiches
	Exercise 8-13: User Profile
	Exercise 8-14: Cars

	Storing Your Functions in Modules
	Importing an Entire Module
	Importing Specific Functions
	Using as to Give a Function an Alias
	Using as to Give a Module an Alias
	Importing All Functions in a Module

	Styling Functions
	Exercise 8-15: Printing Models
	Exercise 8-16: Imports
	Exercise 8-17: Styling Functions

	Summary

	Chapter 9: Classes
	Creating and Using a Class
	Creating the Dog Class
	The __init__() Method
	Making an Instance from a Class
	Exercise 9-1: Restaurant
	Exercise 9-2: Three Restaurants
	Exercise 9-3: Users

	Working with Classes and Instances
	The Car Class
	Setting a Default Value for an Attribute
	Modifying Attribute Values
	Exercise 9-4: Number Served
	Exercise 9-5: Login Attempts

	Inheritance
	The __init__() Method for a Child Class
	Defining Attributes and Methods for the Child Class
	Overriding Methods from the Parent Class
	Instances as Attributes
	Modeling Real-World Objects
	Exercise 9-6: Ice Cream Stand
	Exercise 9-7: Admin
	Exercise 9-8: Privileges
	Exercise 9-9: Battery Upgrade

	Importing Classes
	Importing a Single Class
	Storing Multiple Classes in a Module
	Importing Multiple Classes from a Module
	Importing an Entire Module
	Importing All Classes from a Module
	Importing a Module into a Module
	Using Aliases
	Finding Your Own Workflow
	Exercise 9-10: Imported Restaurant
	Exercise 9-11: Imported Admin
	Exercise 9-12: Multiple Modules

	The Python Standard Library
	Exercise 9-13: Dice
	Exercise 9-14: Lottery
	Exercise 9-15: Lottery Analysis
	Exercise 9-16: Python Module of the Week

	Styling Classes
	Summary

	Chapter 10: Files and Exceptions
	Reading from a File
	Reading the Contents of a File
	Relative and Absolute File Paths
	Accessing a File’s Lines
	Working with a File’s Contents
	Large Files: One Million Digits
	Is Your Birthday Contained in Pi?
	Exercise 10-1: Learning Python
	Exercise 10-2: Learning C
	Exercise 10-3: Simpler Code

	Writing to a File
	Writing a Single Line
	Writing Multiple Lines
	Exercise 10-4: Guest
	Exercise 10-5: Guest Book

	Exceptions
	Handling the ZeroDivisionError Exception
	Using try-except Blocks
	Using Exceptions to Prevent Crashes
	The else Block
	Handling the FileNotFoundError Exception
	Analyzing Text
	Working with Multiple Files
	Failing Silently
	Deciding Which Errors to Report
	Exercise 10-6: Addition
	Exercise 10-7: Addition Calculator
	Exercise 10-8: Cats and Dogs
	Exercise 10-9: Silent Cats and Dogs
	Exercise 10-10: Common Words

	Storing Data
	Using json.dumps() and json.loads()
	Saving and Reading User-Generated Data
	Refactoring
	Exercise 10-11: Favorite Number
	Exercise 10-12: Favorite Number Remembered
	Exercise 10-13: User Dictionary
	Exercise 10-14: Verify User

	Summary

	Chapter 11: Testing Your Code
	Installing pytest with pip
	Updating pip
	Installing pytest

	Testing a Function
	Unit Tests and Test Cases
	A Passing Test
	Running a Test
	A Failing Test
	Responding to a Failed Test
	Adding New Tests
	Exercise 11-1: City, Country
	Exercise 11-2: Population

	Testing a Class
	A Variety of Assertions
	A Class to Test
	Testing the AnonymousSurvey Class
	Using Fixtures
	Exercise 11-3: Employee

	Summary

