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Abstract— Interactions between robots and their environment
give rise to external wrenches acting on the robot structure. The
estimation of the resulting torques in the joints is fundamental
in human-robot interaction to detect/identify collisions and
perform suitable reaction strategies. Other applications may
require to use the estimation for compensating the effects of the
external torques within the control loop. The well-established
momentum observer, which relies on proprioceptive sensors
only, is usually used for these purposes. In this work, the
momentum dynamics is used to derive new observers. While
the classic momentum observer provides a first-order filtered
version of the external torques, here a (theoretically) finite-time
convergence is achieved. Simulations and experiments are used
to validate the performance of the proposed methods.

I. Introduction

In physical human-robot interaction (pHRI), unwanted or
unforeseen contact cannot be in general avoided, as the robot
must act in a dynamic and partially unknown environment.
Given the possibly high relative speed between the human
and the robot and/or edgy surface properties of the tool or
payload, accidental interactions might still result in injuries,
especially in clamping situations [1]–[3].

Several precautions can be taken in order to increase the
intrinsic safety of the robots. For example, the mechanical
design can be centered around the reduction of the inertia and
the use of compliant components [4], [5]. Similarly, control
strategies can aim at realizing a compliant and safe behavior
[6], [7] and avoid for possibly dangerous collisions [8], [9].
Nevertheless, all these strategies cannot always guarantee the
avoidance of all contacts and therefore, it is of paramount
importance to detect and identify possible interactions and
handle collisions in a safe way [10]–[12].

There exist several possible solutions to detect collisions
and estimate the involved external torques and wrench. A
single force-torque sensor at the end-effector can measure
the wrench, but is only capable of detecting collisions at the
end-effector and not elsewhere along the structure. Artificial
skin or airbags [13], [14] could solve this problem, but it
is currently very costly or even not possible to fully equip
all robots with such a solution. Monitoring the estimated
external torques based on proprioceptive sensors is a popular
approach that is widely used nowadays [15]. In some setups,
e.g. when localizing the contact point with an exteroceptive
vision system, the estimated external torques can also be used
to reconstruct an estimation of the external wrench [16].
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Fig. 1. When a robot is in contact with the environment, an external wrench
Fext is exerted on the robot structure. This wrench results in external torques
τext in the robot joints. The goal of a collision observer is to obtain a precise
estimate τ̂ext of the real external torques.

The most well-established collision detection scheme that
relies on proprioceptive torques sensors only is the so-called
momentum observer, which was originally proposed in [17].
Fifteen years after its first development in the context of
fault detection and identification, it has been used in different
fields and with different applications [15], [18]–[20]. The
success of the momentum observer goes along with the
increasing diffusion of human-friendly robots. However, the
momentum observer provides a first-order filtered version
of the external torques and therefore achieves asymptotic
convergence only for constant external torques.

In this paper, new momentum observers inspired by the
one in [17] are proposed. The new observers guarantee finite-
time convergence of the estimated torques to the real ones,
as well as a finite-time estimation of the joint acceleration.
Therefore, after a time T , the estimation coincides with the
real signals. The finite-time behavior of the observers is ob-
tained using sliding mode techniques [21], [22]. Furthermore,
the observers can be easily extended from joint space to task
space, to obtain directly an estimation of the external wrench.

The estimation of the external torques provided by the
proposed observers is useful not only in pHRI scenarios, but
also in other applications, like for friction compensation [18]
and reactive strategies in unmanned aerial vehicles [20].

The paper is organized as follows. Section II briefly
presents the dynamic model of the considered systems. In
Section III, the classic first order momentum observer is
recalled and afterwards the newly proposed ones are derived.
In Section IV the new results are compared to the state of
the art in simulation, while presenting an analysis of the
parameters. Section V reports the results of the experimental
comparisons. Finally, Section VI summarizes the work.



II. Robot Dynamics

The systems considered in this paper are rigid-joint and
rigid-link manipulators. Nevertheless, for estimating the ex-
ternal torques, the results obtained in the context of rigid-
joint robots can be trivially extended in presence of elastic
joints [15]. Therefore, the elastic case will not be considered.

The considered robotic systems are modeled by the set of
nonlinear differential equations:

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ + τe , (1)

where the link positions and velocities q, q̇ ∈ Rn (n is the
number of joints) are the state of the robot. It is used
M(q) ∈ Rn×n to denote the symmetric and positive definite
inertia matrix, C(q, q̇) ∈ Rn×n a Coriolis matrix satisfying the
passivity property

Ṁ(q, q̇) = C(q, q̇) + C(q, q̇)> , (2)

and g(q) ∈ Rn the gravity torque vector. The torques τ ∈ Rn

produced by the motors are an input to the system, together
with the external torques τe. If external wrenches are applied
to the system, then τe = Je(q)>we, where we ∈ R

6m (m is the
number of links in contact) collects the stacked wrenches
and Je(q) ∈ Rn×6m is the corresponding Jacobian matrix.

Finally, for sake of readability, the dependencies will be
dropped in the remainder of the paper.

III. Momentum Observers

Many schemes exist for detecting, isolating, and identify-
ing collisions in robotic manipulators. A thorough overview
and analysis of them is given in [15]. The most well
established method is the so-called momentum observer [10],
[17]. Despite its wide diffusion and application in scenarios
even beyond human-robot interaction [18], [20], this method
provides only a first-order filtered version of the disturbance.
As a consequence, the user is faced with a compromise
between noise attenuation and estimation performance.

The main result of this paper is inspired by the momentum
observer in [10], [17], but provides a finite-time estimation
of the disturbance instead of a first-order filtered version.
Theoretically, the resulting estimation is therefore more ac-
curate and it provides an exact estimation of the disturbance
after a finite time T . The possibility of having an improved
estimation is obviously beneficial also in applications that
aim at compensating for the disturbance [18].

In the following, it will be first reviewed the first-order
momentum observer and then presented the main contribu-
tion of this work, i.e. sliding mode momentum observers. The
classic first-order observer always requires two assumptions:

1) the dynamic model is perfectly known,
2) the friction torque is negligible or known.

These assumption are necessary also for the newly designed
ones. The reason is that the observers will estimate the whole
torques τe in (1), i.e., all the torques which are not explained
by the model. The two assumptions are, therefore, necessary
to guarantee that τe is due only to the interaction with
the environment and does not contain terms due to model

uncertainties and additional possible disturbances. The reader
is referred to [15] for detailed considerations related to this
topic. In short, all these effects can be accumulated with mea-
surement noise. Consequently, one must set an empirically-
obtained threshold to discriminate the occurrence of real
collisions and decrease the probability of false positives.

The derivation of all momentum observers is based on the
timely evolution of the generalized momentum of the robot

p = Mq̇ . (3)

Using (1), its time derivative is given by

ṗ = τ + τe − Cq̇ − g + Ṁq̇
= τ + τe + C> q̇ − g ,

(4)

where the passivity property (2) has been used.

A. First-Order Momentum Observer

The derivation of the classic first-order momentum ob-
server is based on the residual

r = KO

(
p−

∫ t

0
(τ + C> q̇ − g + r) ds − p(0)

)
, (5)

where p(0) is the initial value of the generalized momentum
(assuming t0 = 0 as initial time) and KO = diag(kO,i) > 0.
The key point in the definition of r is that, by using (4), its
time derivative is

ṙ = −KO

(
r − τe

)
, (6)

i.e., n decoupled linear systems. This means that r is a first-
order filtered version of τe and therefore it can be used as an
estimation of the external torques. Notice, nonetheless, that r
will be a practically exact estimation of τe only if the latter
is a constant signal and after a time given by the slowest
time constant TO,i = 1/kO,i.

In practice, when selecting the observer gain, one must
find a trade-off between desired monitoring bandwidth and
permissible noise amplification. The first-order characteristic
of the momentum observer leads to a phase lag in the
estimated external torque signal (see also Section IV).

B. Sliding Mode Momentum Observers

1) SOSM Momentum Observer: As in Section III-A, the
key point is to consider the generalized momentum p and
the expression of ṗ in (4). From the latter it follows

τ + C> q̇ − g = ṗ− τe ,

therefore the available left hand-side can be used in place
of the unknown terms on the right hand-side to design an
observer that provides an estimation of the momentum in
finite-time. Furthermore, the mismatch between the estimated
momentum dynamics and the real one is exactly the exter-
nal torque, which consequently will be as well estimated
in finite-time. The observer dynamics is allowed to have
discontinuous terms. In this case, the differential equation
with locally bounded Lebesgue-measurable right-hand side
is understood in the sense of Filippov [23] and the absolutely
continuous solutions satisfy the differential inclusion almost



everywhere. In particular, assuming that τe has a known
global Lipschitz constant L, so that the signal can be not
smooth, but its derivative exists almost everywhere, one can
consider the observer structure

˙̂p = τ + C> q̇ − g − T | p̃|
1
2 sgn( p̃) + σ , (7a)

σ̇ = −S sgn( p̃) , (7b)

where p̃ = p̂− p, all the operators in (7) have to be undersood
as applied element-wise and S,T ∈ Rn×n are positive definite
diagonal matrices, such that each element on the diagonal
satisfies the set of inequalities given in [22] (see also the
Appendix). Using (4) and defining s := σ − τe, one gets the
observer error dynamics

˙̃p = −T | p̃|
1
2 sgn( p̃) + s , (8a)

ṡ = −S sgn( p̃) − τ̇e , (8b)

i.e., n indipendent super twisting algorithms (STA) [21].
Since for the STA robust, global finite-time stability of the
equilibrium point ( p̃, s) = (0, 0) can be guaranteed [21], [22],
then σ becomes in finite time an estimation of τe.

Additionally, as p̃, ˙̃p → 0 in finite time, it is possible to
use ˙̂p to obtain a finite-time estimation of q̈, as

¨̂q = M−1 ˙̂p−
d
dt

(
M−1

)
p̂ . (9)

Once again, this is better than what it can be achieved by
the first-order momentum observer, which does not provide
an estimate of the generalized momentum.

It is worth noticing that although both methods use the
momentum dynamics to obtain an estimation of τe, the way
in which (4) is used is quite different. In the residual r,
the momentum dynamics is used as integrand, while in (7)
the states of the observers are directly an estimation of the
generalized momentum p and external torque τe.

In the nominal case, the observer guarantees finite-time
convergence to τe, but in real case scenarios model uncertain-
ties, measurement noise, sampling time, and chattering effect
will inevitably lead to a noisy estimation. As a consequence,
just like in Section III-A, the estimated signal will not be
exactly zero even when no contact is present and a threshold
has to be empirically set to avoid false positives.

2) SOSML Momentum Observer: Having understood the
basic idea leading to the SOSM momentum observer, the
result can be further improved by introducing linear terms
in (7). In this way, one obtains the observer

˙̂p = τ + C> q̇ − g − T1 | p̃|
1
2 sgn( p̃) − T2 p̃ + σ , (10a)

σ̇ = −S1 sgn( p̃) − S2 p̃ . (10b)

The error dynamics of this observer is n independent
second order sliding mode (SOSML) introduced in [22], for
which robust, global finite-time stability of ( p̃, s) = (0, 0) is
guaranteed if the elements on the diagonals of the positive
definite diagonal matrices Si, Ti satisfy the inequalities given
in [22] (see also the Appendix). The advantage of the
SOSML over the SOSM is in the behavior of the system
far from the equilibrium point in the origin. While the effect

of the nonlinear terms is stronger than the linear ones near
the equilibrium point (resulting in a finite-time rather than
exponential convergence), the linear terms are predominant
the farther the initial condition is from the origin.

IV. Parameter Analysis and Simulation Results

A. First-Order Momentum Observer

When selecting the observer gain, one must find a trade-
off between desired monitoring bandwidth and noise am-
plification. In order to achieve r ≈ τe, KO should be as
large as possible. However, large values for KO also result
in higher noise amplification in the estimated torque, which
deteriorates the observer performance in terms of sensitivity.

To gain an intuition on the role of KO in the noise
amplification, assume that:
• the main uncertainty is due to noise in the measured

joint velocity q̇mes = q̇ + ε, and
• the noise ε in the measured joint velocity has a high

frequency and is zero-mean, such that the effect on the
integral p̂ :=

∫ t
0 (τ + C> q̇mes − g + r) ds is negligible.

In these conditions, the difference between the ideal residual
r and robs obtained in presence of noise is:

∆rε = robs − r = KO
(
Mq̇mes − Mq̇

)
= KO Mε . (11)

The error due to a noisy velocity is thus amplified by both the
observer gain KO and the inertia matrix M. For illustrating
the influence of KO on the dynamic performance and noise
behavior, a 1-DOF joint was simulated. Typical values for
KO were used, namely 20, 50, and 80 in Hz. In Fig. 2
(left), we analyze the influence of the gain and the link
mass (1 kg and 4 kg) on noise amplification. The noise of
the velocity signal is zero mean Gaussian noise with 50 nW
power at 1 kHz sampling rate, which is comparable to the
one in the DLR/KUKA LWR III/IV. In agreement with (11),
the noise amplitude is proportional to both KO and the link
inertia. The influence of KO on phase lag and amplitude (in
absence of noise) is depicted in Fig. 3 (left). Therefore, the
larger bandwidth obtained by increasing KO, comes at the
price of a higher threshold for avoiding the occurrence of
false positives in the collision detection due to the noise
amplification. Finally, for a given value of the observer gain
and increasing noise power, Fig. 4 (left) shows that the phase
lag remains unaffected and only the noise level increases.

B. SOSM and SOSML Momentum Observers

For a successful implementation and application of the
proposed sliding mode momentum observers, it is important
to know how the gains T, S, and Ti, Si, respectively, affect
not only the stability, but also the dynamic behavior. The
stability is ensured by satisfying the inequalities given in [22]
(see also the Appendix). For selecting the gains of the SOSM
momentum observer one may first choose the parameter S
and then the parameter T. Since S is the absolute value of
the slope of σ (see (7)), it determines the tracking capability.
If the slope of the external torque is higher than σ, then
the observer is not capable of tracking the reference signal
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Fig. 2. Influence of observer parameters KO and S 1 on noise amplification. The case of a single joint for mass values of m = 1 kg and 4 kg was considered.
The remaining parameters of the SOSML observer are: T1 = 2

√
S 1, S 2 = 1600 Hz2, T2 = 80 Hz.
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Fig. 3. Influence of observer parameters KO and S 1 on the tracking performance for a single joint with mass m = 1 kg without measurement noise. The
remaining parameters of the SOSML observer are: T1 = 2

√
S 1, S 2 = 1600 Hz2, T2 = 80 Hz.
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Fig. 4. Influence of measurement noise power Pnoise on the tracking performance and on the estimation noise for a single joint with mass m = 1 kg. The
remaining parameters of the SOSML observer are: T1 = 2

√
S 1, S 2 = 1600 Hz2, T2 = 80 Hz.
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Fig. 5. Comparison of the step response of the first order observer (FO) and
the proposed sliding mode observers (SOSM and SOSML). All simulations
have been carried out with a single joint with mass m = 1 kg.
Parameter set 1: K0 = 25 Hz (FO); S = 80 Hz2, T = 22.4 Hz (SOSM);
S 1 = 80 Hz2, T1 = 17.9 Hz, S 2 = 1600 Hz2, T2 = 80 Hz (SOSML).
Parameter set 2: K0 = 5 Hz (FO); S = 20 Hz2, T = 11.2 Hz (SOSM);
S 1 = 20 Hz2, T1 = 8.9 Hz, S 2 = 64 Hz2, T2 = 16 Hz (SOSML).

anymore. This is reflected by the requirement for τe to have
a known global Lipschitz constant L, which is used in the
selection of the gain S.

In order to obtain an intuition on how to tune the parameter
T, the error dynamics in (8) can be rewritten as the second

order differential equation

˙̃p = −T | p̃|
1
2 sgn( p̃) − S

∫ t

0
sgn( p̃) ds − τe , (12)

which can be interpreted as a non-linear PI controller. The
parameter T can now be interpreted as the equivalent of a
proportional gain, while the parameter S as the equivalent
of the integral gain. Too high values for T will lead to
overshoot, while too small values result in poor convergence.
Empirically, starting with a value of T = 1.6

√
S and tuning

the gain is a reasonable way to obtain a desired behavior.
For the SOSML momentum observer, the linear terms

correspond to those of a as second order linear filter. Thus, T2
and S2 can be chosen, for example, such that critical damping
is achieved. The parameter S1 can be designed analogously
to S in the SOSM momentum observer since the correction
action of the linear terms is negligible in the vicinity of the
equilibrium point. Again, the parameter T1 can be initialized
with T1 = 1.6

√
S1 and then tuned.

To compare the SOSM and SOSML momentum observers,
it is considered their step response, as well as the step re-



sponse of the first-order momentum observer. The parameters
S2,T2 of the SOSML momentum observer are selected such
that the equivalent second-order linear system has the same
cutting frequency as the first-order momentum observer.
Fig. 5 shows that, although the convergence of the SOSM
momentum observer happens in finite time, the estimate
grows linearly towards the real value. In contrast, the classic
first-order momentum observer converges exponentially with
a time constant independent of the amplitude of the real
signal. By using the SOSML approach, the drawback of
the SOSM momentum observer is overcome as the observer
behaves similar to a linear filter far from the equilibrium. In
this way, the estimation grows exponentially towards the real
value and with the robustness and accuracy guaranteed by a
finite-time convergence.

Because the SOSML momentum observer generally out-
performs the SOSM momentum observer, we will only
consider the former in the remainder of this paper.

C. Properties of the SOSML Momentum Observer and Com-
parison to the First-Order Momentum Observer

Like for the first-order momentum observer, the following
points will be analyzed also for the SOSML version:
• influence of observer gains and link mass on noise

amplification, see Fig. 2 (right),
• convergence to reference signal in absence of noise, see

Fig. 3 (right),
• influence of varying velocity noise on tracking perfor-

mance, see Fig. 4 (right).
Due to all the different sources of uncertainty and the switch-
ing nature of the observer related to the limited sampling
rate1, the estimation signal is a triangular wave centered at
the real signal. The amplitude of the triangular wave depends
on the sampling time and the parameter S1. On the other
hand, the influence of S 1 on the noise amplification2 is
illustrated in Fig. 2 (right). The noise amplitude is (slightly)
proportional to S 1, but in contrast to the first-order filter, the
observer seems to be almost insensitive to the value of the
link mass.

In Fig. 3 (right), it is shown the ability of the SOSML
momentum observer to track a reference signal (in absence of
noise) for varying values of S 1. Here, the linear terms were
parameterized to have the same time constant as the first-
order momentum observer with gain KO = 25 Hz. As long
as the slope of the external torque is below the one S 1 was
designed for, then the estimation converges to the reference
in finite time. Therefore, the tracking performance improves
with increasing S 1. However, the estimation becomes noisier
due to the switching behavior of the scheme.

Finally, Fig. 4 (right) shows the deterioration of the
tracking performance of the SOSML momentum observer,
for a constant value of the observer parameters and varying
power of the velocity noise. In the considered example,

1Simulatons are implemented using a simple Euler method.
2T1 was selected such that no overshoot occurs. The linear terms of

the SOSML have negligible effect on the noise level.

the phase lag increases and the amplitude decreases for
increasing noise power. However, in contrast to the first-
order momentum observer, the noise on the estimation signal
remains almost unaltered.

The comparison between the first-order momentum ob-
server and the SOSML momentum observer can be summa-
rized with the following qualitative observations:

• the estimation noise for the state-of-the-art technique is
proportional to KO and the inertia of the system. On
the contrary, the noise level in the SOSML momentum
observer depends only on the selected gains (S 1),

• the dynamic response of the first-order momentum
observer is mainly affected by its gain and not by a
noisy velocity. For the SOSML momentum observer,
both have an influence,

• the amplitude of the estimation noise is proportional
to the velocity noise power for the classic momentum
observer, but not for the SOSML one.

V. Experimental Validation

To further compare the SOSML momentum observer and
the classic first-order momentum observer, two experiments
were carried out. The setup consists of a DLR/KUKA
Lightweight Robot IV (LWR) and a ME-Systeme KD24s
1-DOF force sensor attached to the end-effector of the
robot. The sensor was used as ground truth. All signals
were recorded at 1 kHz sampling rate. For the first-order
momentum observer, the gain was selected as K0 = 25 Hz
for each joint. The SOSML momentum observer parameters
were S 1 = 80 Hz2, T1 = 17.9 Hz, S 2 = 1600 Hz2, and
T2 = 80 Hz2. To make the comparison of both observers as
fair as possible, the linear terms S 2,T2 were selected such
that both observers have a similar dynamic response. Then,
the non-linear terms S 1,T1 were tuned to match the noise
level in the estimation signals of the two methods. In this
way, the first-order momentum observer could be replaced by
the SOSML one, while keeping the same collision thresholds.

In the first experiment, it was evaluated the capability of
the observers to estimate a sinusoidal external force at the
end-effector. The robot was put in a configuration where the
end-effector is pointing downwards. A mass-spring system
was attached to the sensor and given an initial displacement
to induce the sinusoidal motion. The recorded sensor and
estimation signals are shown in Fig. 6. The result indicates
that the estimation of both observers is very similar, with the
SOSML momentum observer being slightly faster than the
first-order momentum observer in this experiment.

The second experiment shows the detection of a collision.
The robot was hit at the force sensor by a padded impactor.
Fig. 7 shows (as in [15]) the timing properties of the force
signal, the observer residuals, and the collision detection
signals. In terms of the time required to detect the collision
(with threshold set at 3 Nm), both observers have similar
performance. Here, the first-order momentum observer is one
time step faster than the SOSML momentum observer.
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Fig. 6. Estimated Cartesian force of the first-order (blue) and SOSML (red)
observers, with force sensor signal (black) for two mass-spring experiments.
The excitation frequencies are approximately 1.8 Hz and 4.4 Hz.
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Fig. 7. Timing properties of force estimation and collision detection. The
solid blue and red line represent the torque estimations τ̂∗4,FO and τ̂∗4,S OS ML
of the fourth joint. Both signals were normalized w.r.t. the maximum of
τ̂4,S OS ML. The black line is the external force f ∗ext , normalized w.r.t. its
maximum. The dashed red and blue lines are the collision detection signals.

VI. Conclusion

The so-called momentum observer is widely used in the
robotics community due to the many scenarios in which it
is required an estimation of the external wrenches arising
during interactions with the environment. Nevertheless, the
classic momentum observer provides an exact estimation
only when the external torques are constant. This is a
consequence of the observer structure, which leads to n inde-
pendent first-order filters for the estimation. In this work, two
observers were proposed, which are capable (theoretically)
of estimating in finite-time any external torques as long as
the signals have a known global Lipschitz constant. The
class of disturbances for which the new observers guarantee
good performance is therefore greatly larger. This is possible
by relying on sliding mode techniques for the design of
the observer dynamics. Most importantly, the improvement
comes with no additional prerequisite on the robot and signal
properties compared to the state-of-the-art approach.

The role of the parameters of both classic and newly pro-
posed observers was explained. In particular, it was analyzed
their influence on (velocity) noise amplification and sig-
nal tracking performance. Experiments with a DLR/KUKA
Lightweight Robot IV and simulations verified the effec-
tiveness of the sliding mode momentum observer, which

achieved similar or even slightly better results than the classic
scheme. As the results depend on many factors, such as
measurement noise, modeling errors, robot mass distribution,
observer parameters and so on, at this point it was not
possible to draw a definitive conclusion on which observer is
superior for a certain class of systems. On the one hand, the
superiority of the proposed method is thoroughly understood
and verified in the nominal case without model uncertainties
and measurement noise. On the other hand, the influence of
the latter on the estimated torques requires further analysis
to be addressed in future works.

Appendix

The following is taken from [22] and the case of an STA
can be easily obtained by setting the linear gains to zero.

Theorem 1 ( [22]): Given the differential inclusion

ẋ1 = −k1|x1|
1
2 sgn(x1) − k2x1 + x2 + ρ1(t, x) (13)

ẋ2 = −k3 sgn(x1) − k4x1 + ρ2(t, x) , (14)

suppose that the perturbation terms are globally bounded by

|ρ1| ≤ δ1|x1|
1
2 + δ3|x1| , |ρ2| ≤ δ2 + δ4|x1| ,

for some known constants δi ≥ 0, i ∈ {1, 2, 3, 4}. If the
gains satisfy the following set of inequalities for which there
always exists a solution for every δi

k1 > 2 max(δ1,
√
δ2) , k2 >

3
8
δ3 +

1
4

√
9
4
δ2

3 + 8δ4

k3 > k1
δ1k1 + 1

8δ
2
1 + δ2

2
(

1
2 k1 − δ1

)
k4 >

k1

[
p2

(
2k2

2 −
3
2δ2k2 − δ4

)
+

(
5
2 k2

2 + 3
2δ3k2 + δ4

)
p1

]
2 (p1 − p2)

(
1
2 k1 − δ1

) −
1
2

k2
2

and

k2 > 2δ3 , k4 > k2
k2 (k2 + 3δ3) + 1

2δ
2
3 + δ4

p3

k3 >

(
k2δ1 + 1

2 k1δ3

)2

2k2 p3
+
δ2k2 + 3

2δ1k1k2 − 2k2
1k2 + 1

2δ3k2
1

p3

where

p1 = k1

(
1
4

k2
1 − δ2

)
+

(
1
4

k1 − δ1

) (
2k3 +

1
2

k2
1

)
p2 =

1
2

k1

(
k1 +

1
2
δ1

)2

, p3 = k2 − 2δ3

then the origin is an equilibrium point that is strongly
globally asymptotically stable and all trajectories converge
to it in finite time.
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[1] S. Haddadin, A. Albu-Schäffer, and G. Hirzinger, “Requirements for

safe robots: Measurements, analysis & new insights,” Int. Journal of
Robotics Research, vol. 28, no. 11-12, pp. 1507–1527, 2009.
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